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Extending Mechanics to Minds

This book deploys the mathematical axioms of modern rational mechanics to help the
reader understand minds as mechanical systems that exhibit actual, not metaphorical,
forces, inertia, and motion. Using precise mental models developed in artificial intelli-
gence, the author analyzes motivation, attention, reasoning, learning, and communica-
tion in mechanical terms.

These analyses provide psychology and economics with new characterizations of
bounded rationality, provide mechanics with new types of materials exhibiting the con-
stitutive kinematic and dynamic properties characteristic of different kinds of minds,
and provide philosophy with a rigorous theory of hybrid systems combining discrete
and continuous mechanical quantities. The resulting mechanical reintegration of the
physical sciences that characterize human bodies and the mental sciences that character-
ize human minds opens traditional philosophical and modern computational questions
to new paths of technical analysis.
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For Carol

Wife of noble character,
Clothed with strength and dignity,

Worth far more than rubies,
Gift of God.

O unaussprechlich süßes Glück!
Wer ein holdes Weib errungen,
Stimm in unsern Jubel ein!
Nie wird es zu hoch besungen,
Retterin des Gatten sein.

O unspeakably sweet fortune!
Let him who has won a fair wife
join in our rejoicing!
Our song can never praise too much
the savior of her husband.

Beethoven, Bouilly, & Sonnleithner, Fidelio, Act II Finale





Contents

Preface page xi
Outline of the book xix

Part I Reconciling Natural and Mental Philosophy 1

1 Mechanical intelligence 3
1.1 Mechanical philosophy 5
1.2 The great divorce 6
1.3 The awaiting reconciliation 7

2 Why mechanics? 10
2.1 Rethinking materialism 11
2.2 Characterizing rationality 22
2.3 Designing minds 42

3 Why mechanics now? 47
3.1 Impediments to understanding 47
3.2 Vital analogy 52
3.3 Physical analogy 56
3.4 Machine analogy 62
3.5 Appraisal 68

Part II Reconstructing Rational Mechanics 69

4 What is mechanics? 71
4.1 The nature of mechanics 71
4.2 The structure of modern mechanics 76
4.3 A path to a general mechanics 79
4.4 Organization of the exposition 86

vii



viii Contents

5 Kinematics 88
5.1 Bodies 88
5.2 Events 97
5.3 Time 99
5.4 Space 105
5.5 Bodies in space 125
5.6 Motion in space 128

6 Dynamics 135
6.1 Mass 135
6.2 Momentum 147
6.3 Force 154
6.4 Force and motion 165
6.5 Energy 168

7 The character of mechanical law 173
7.1 Mechanical processes 174
7.2 Determinism 176
7.3 Continuity 187
7.4 Conservation 195
7.5 Economy 202
7.6 Reversibility 211
7.7 Locality 215

Part III Mechanical Minds 223

8 Mental varieties 225
8.1 What is plural discrete affective cognition? 226
8.2 Why plural discrete affective cognition? 226
8.3 Are such minds mechanical? 227
8.4 An example: reason maintenance 230

9 Mind and body 241
9.1 Bodies 241
9.2 Forces 247

10 Attitudes, outlook, and memory 251
10.1 Attitudinal structure and variety 252
10.2 Discrete binary information space 253
10.3 Motion 260
10.4 Mass 263
10.5 Momentum 266
10.6 Force 268



Contents ix

10.7 Energy 272
10.8 Illustration: simple computation 273

11 Reasoning 276
11.1 Reasons 276
11.2 Reasoned positions 281
11.3 Reasoned motion 282
11.4 Reason forces 285
11.5 Reason stresses 289

12 Rationality 295
12.1 Limits on rationality 295
12.2 Inherent rationality 307
12.3 Rational motives 314

13 Learning 326
13.1 Accretion 326
13.2 Stretching 327
13.3 Shearing 328
13.4 Configurational intentions 330
13.5 Relaxation and adaptation 337
13.6 Evolution of geometry 343

14 Uncertainty 346
14.1 Measurement uncertainty 347
14.2 Probabilistic indeterminism 348
14.3 Self-measurement 356

Part IV The Metaphysics of Mechanics 371

15 Materialism 373
15.1 What is materialism? 373
15.2 Why materialism? 374
15.3 Is materialism true? 375
15.4 New materials for materialism 376

16 Reductionism 379
16.1 What is reducibility? 379
16.2 Why reducibility? 380
16.3 Is physical reducibility true? 380
16.4 Science without reductionism 388
16.5 The end(s) of science 390



x Contents

17 Effectiveness 392
17.1 What is effective computation? 393
17.2 Why effectiveness? 394
17.3 Is computation effective? 394

18 Finitism 399
18.1 What is finitism? 399
18.2 Why finitism? 400
18.3 Is finitism true? 401
18.4 Summary 402

Part V Conclusion of the Matter 405

19 Reflections 407
19.1 Assessment 408
19.2 Prospects 412
19.3 Perspective 418

System of Notation 425
Bibliography 429
Index 443



Preface

This book uses concepts from mechanics to help the reader understand and
formalize theories of mind, with special concentration on understanding and
formalizing notions of rationality and bounded rationality that underlie many
parts of psychology and economics. The book provides evidence that mechani-
cal notions including force and inertia play roles as important in understanding
psychology and economics as they play in physics. Using this evidence, it at-
tempts to clarify the nature of the concepts of motivation, effort, and habit in
psychology and the ideas of rigidity, adaptation, and bounded rationality in
economics. The investigation takes a mathematical approach. The mechanical
interpretations developed to characterize mechanical reasoning and rationality
also speak to other questions about mind, notably questions of dualism and
materialism.

More generally, the exposition sketches the development of psychology and
economics as subfields of mechanics by showing how one might formalize
representative psychological and economic systems in such a way that these
formalized systems satisfy modern axiomatic treatments of mechanics. This
formalization explicates psychological and economic concepts under study by
identifying corresponding properties of certain mechanical systems. Not all
concepts of psychology and economics correspond to mechanical notions, and
among those that do, not all concepts currently popular in psychology and
economics correspond to natural mechanical ones. The concepts studied nev-
ertheless permit natural identifications of familiar psychological or economical
notions as natural mechanical notions, formalizing the memory of an agent as
its mass and internal configuration, and the agent’s motivations as forces that
produce changes in the agent’s momentum by means of changes in its mass
and velocity.

Psychology and economics have endured many attempts at physical anal-
ogy, most perhaps deserving the apparent failure they reaped as a result of

xi



xii Preface

inadequate formal basis, lack of ties to concrete problems, or sheer wrong-
headedness about the phenomena and concepts of physics, psychology, or eco-
nomics. The present effort avoids a similar fate by combining modern mathe-
matical axiomatizations of mechanics developed by Walter Noll (1958, 1963,
1972, 1973) with concrete examples of proven interest from computation and
artificial intelligence. The result shows that at least some minds constitute
actual mechanical systems, not merely participants in occasional mechanical
analogies.

Program
There is no philosophy that is not founded upon knowledge of the phenomena, but to
get any profit from this knowledge it is absolutely necessary to be a mathematician.

Daniel Bernoulli, 1763 letter to John Bernoulli III (Truesdell 1984b, pp. 19–20)

I approach the foundations of psychology and economics dissatisfied with the
analytical and mathematical concepts typically employed to describe these
fields, concepts that, especially in psychology, frequently vex the student, fail
the scholar, and leave the subject needlessly disconnected from the rest of sci-
ence. At the same time, I rejoice in the panoply of concepts and methods cur-
rent mathematics offers for ordering the world, to borrow Jaffe’s (1984) apt
phrase, concepts that have been applied relentlessly to understanding physics
and more recently computation and economics but less so to psychology. The
past century of mathematics has provided astounding progress in understand-
ing logic, computation, meaning, and ideal rationality, but one need not assume
that in coming to a mathematical understanding of mind these contributions
will continue to play the roles current sensibilities might assign them.

The search for better ways of formulating problems and possible solutions
forms the most fundamental activity of any field, and indeed of much of think-
ing and computing. Hamming (1962) wrote that “The purpose of computing
is insight, not numbers,” and Minsky (1974, pp. 78, 56) wrote that “thinking
begins first with suggestive but defective plans and images, that are slowly
(if ever) refined and replaced by better ones,” and that “[t]he primary purpose
in problem solving should be better to understand the problem space, to find
representations within which the problems are easier to solve.”

In searching for better and more appropriate formulations, each field of
thought seizes upon successive sets of fundamental concepts and uses these
conceptual “atoms” as the basis for its views of the problems and theories of
the field. Each set of atoms has its day, with intensive exploration revealing
how well it illuminates the problems and how well it eases their solution. As
its limits become clearer, theorists introduce some new atom or set of atoms to
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provide an even better point of view. The aim of the search is to find the most
appropriate conceptual atoms, those that cleanly divide the phenomena and
problems in powerful ways. As Miller (1986) points out, most conceptualiza-
tions of psychology in the past have focused on sets of atoms inadequate to the
task, “dismembering cognition,” in his vivid phrase, with a set of concepts that
“leaves its object shattered in lumps” rather than a set that “carves a topic at
its joints.” Mathematicians use the terms beauty and depth as terms of appro-
bation for good theories, expressing something of the same theoretical esthetic
as Miller, reviling the logger and applauding the wright. One can observe the
search process especially clearly in mathematics. In the large, one finds alterna-
tive foundations for all of mathematics, foundations based on logic, set theory,
category theory, and intuitionism. In the small, specific mathematical theories
are decomposed into parts (matrix theory into noncommutative algebra and
representations over specific rings) and recast by exchanging conclusions and
axioms (exchanging natural numbers and arithmetic for zero, a successor func-
tion, and an exclusion or comprehension principle).

I use the term rational psychology to name the branch of mathematics aim-
ing to investigate psychology by means of the most fit mathematical concepts,
that is, the mathematical concepts that yield the simplest, most elegant, most
powerful, and most insightful formulation of psychological theories (Doyle
1983f). Rational here refers to conceptual, mathematical analysis, not to any
putative rationality or irrationality of the systems under study. Historically the
term referred to the philosophical study of psychology. My use of the term
follows the model of rational mechanics, which has named the study of the
foundations of mechanics since the time of Newton.

Rational psychology studies mathematically possible organizations for
agents. I call these possible organizations “psychologies” (Doyle 1982a,
1990a). One can thus view rational psychology as seeking to classify all pos-
sible psychologies in the same way that group theory seeks to classify all pos-
sible groups. The special laws of mechanics represent such classificatory de-
vices. Identifying special psychological materials or structures characteristic
of interesting classes of agents represents a central method of the field.

The present effort draws directly on the model of rational mechanics by es-
chewing theories formulated in terms of representations in favor of theories
cast in terms of the behaviors themselves, and by treating the problem of un-
derstanding different types of mental organization and behavior as formaliza-
tion of distinct types of psychological materials, rather than as a search for the
“true” theory of psychology or economics. Each type of psychological mater-
ial obeys not only the general mechanical laws applicable to every material but
also special laws characteristic of the specific material.
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Prerequisites

The ideas presented in this book draw on a broad range of fields, including
mathematics, physics, philosophy, psychology, economics, politics, logic, and
computation. The ideal reader of this book would bring to the reading a solid
grasp of the foundations and development of mathematics, classical and rel-
ativistic rational mechanics, quantum theory, logic, probability, the theory of
computation, psychology, artificial intelligence, and mathematical, psycholog-
ical, and political economics. Undoubtedly a keen appreciation of Aeschylus
and Aristophanes would also help, but even the former list probably rules out
everyone, including the author. Cognizant of the demands of the material, the
book has been written with hopes that readers possessing common college ac-
quaintance with mathematical physics, computation, and artificial intelligence
will find something intelligible and interesting in the book. Familiarity with
(not necessarily mastery of) the mathematical way of thinking, the broad spec-
trum of mathematical ideas, and their basic mechanical applications would be
very valuable; Mac Lane’s (1986) useful survey represents a good model of this
knowledge. The interior survey chapters of Penrose’s (1989) book and Gurtin’s
(1981) introduction to continuum mechanics might offer useful supplements.
Truesdell’s (1968b; 1984c) essays and Benvenuto’s (1991) history of mechan-
ics provide valuable perspective on the recency and impermanence of current
interpretations of mechanical concepts. Russell and Norvig’s (2002) textbook
of artificial intelligence employs economic rationality to convey a unified per-
spective of that field in a manner reasonably consonant with the approach taken
here.

Plea
The player who stakes his whole fortune on a single play is a fool, [but the science of
mathematics] merely shows that other players are greater fools.

(Julian Lowell Coolidge 1909, p. 189)

I am fortunate that virtually every element of the development presented here
is known, even well known, in at least one field of scholarly thought. While I
know much about some of these fields, la vida breve frustrates gaining thor-
ough expertise in each. Accordingly, much as I love books that present what
for a generation or two seem the most elegant, general, or final forms of ideas,
completing this book required continuous battle against the urge to perfect.
My aim in writing instead was to develop each component enough to show
its place in the theory and to make the basic ideas formal enough to enable
interested parties to find their proper mathematical form. To reapply another
sentiment earlier expressed by Julian Lowell Coolidge (1940, p. xii), while my
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own inadequacy for such a task has been abundantly evident to me, it did not
seem sufficient reason for not making the attempt.

Although many research monographs provide a chapter outlining future
work, such a chapter would seem a joke here, for one may view the entire
book as outlining a program of future work. I am told that Paul Halmos once
ended a talk by saying words to the effect that “If I stopped now, I’d be stop-
ping before the most important point, but I don’t have anything more to say”
and then walking away. I am sure this book stops before the most important
point, and I hope the reader will press on regardless.

Because of the diversity of the subject matter and background, a careful
reading is likely to require substantial effort, even for a reader familiar with
the technical developments of a relevant field. I know of no short-term remedy
for this difficulty, but I try to provide some repetition of explanation and mo-
tivation appropriate to points at which readers of different interests might take
up the text.

Completing this exposition proved difficult because numerous possible al-
ternative treatments presented themselves at every point of the development,
and at times I despaired of pulling together sensible selections from the great
and bewildering variety of alternative views. At such times, the best hope for
completing any exposition seemed to be to write a collection of interrelated and
potentially competing vignettes of each alternative view of each topic, in the
style of Minsky’s (1986) Society of Mind. Although that approach has some-
thing to recommend it, not least that it may offer the only feasible possibility
for describing systems as complicated as the mind with instruments as simple
as the mind, I rebelled against the approach because mechanics, unlike psy-
chology, possesses an extended and ordered conceptual development. Surely, I
thought, a mechanical understanding of mind must admit at least some of this
logical development.

Even if one finds the development presented here compelling or convincing,
one should not assume the main interpretations presented here to be the best
ones, no matter how many interesting and intuitive properties they exhibit.
Although I believe many interpretations presented here lie on the right path,
there might be more than one reasonable mechanical interpretation of some
psychological or economic systems. Sufficiently abstract systems might admit
alternative possible mechanical interpretations. Common computational mod-
els, such as Turing machines (Turing 1936), finite automata (Rabin & Scott
1959), and the random-access stored program machine, or RASP (Elgot &
Robinson 1964), might fall in this class. One can blame some of the difficulty
I experienced in completing this exposition on the interpretational ambiguities
I encountered in analyzing the more structured equilibrium-transition model of
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the Reason Maintenance System, or RMS (Doyle 1983e, 1994), which served
as the primary focus of my formalization efforts for many years.

Dana Scott (1989, p. 5) once wrote that “[y]ou cannot have a clear con-
science in Mathematics if you do not follow up the possibilities,” and in this re-
spect my conscience is not clear, for I regard the theory presented here merely
as a down payment on a true mechanics of mind. In some ways, the theory that
follows hews much too closely to traditional mechanical formalism, and thus
raises the suspicion that it simplifies too much to capture the true complexities
of the mind. I would love to learn that one loses nothing by these simplifica-
tions and that this traditional mechanical form suffices to characterize even the
most subtle mental phenomena and properties, but I do not expect to live long
enough to see such good news or its refutation. The present volume gives some
indications of developments in the direction of these mental subtleties. I hope
to write another examining even more in further detail.

I thus expect that further examination of these topics will find ways to justify
and perfect the interpretation given here, to identify and justify other interpre-
tations, or both. My own limitations—in knowledge, in competence, in vision,
and in time—require me to leave most such investigations to others.

Past

This book represents part of a larger effort aiming to come to a mathemati-
cal understanding of rationality and, more generally, all of thinking. My
work on mathematical and computational analysis of thinking began in about
1973, yielding the early works A Truth Maintenance System (Doyle 1979),
Explicit Control of Reasoning (de Kleer et al. 1977), Non-Monotonic Logic
I (McDermott & Doyle 1980), and A Model for Deliberation, Action, and
Introspection (Doyle 1980). Those works bear few traces of the mechanical
perspective explored here, apart from a concern with the kinematical, mecha-
nistic approach that underlies most machine computation and modern artificial
intelligence, but they provided the central concrete example of the nonmono-
tonic RMS and the insight used to construct the mechanical interpretation of
thinking presented here.

The present investigation of mechanical treatments of mind began in about
1981 as I sought to understand RMS conservatism in terms of least action
principles and Lagrangian formalism. The first outlines and partial drafts of
this book date from 1982–1983, during which time the importance of inertia
for psychology and economics became clear. In 1984 I completed the first
extended draft, numerous portions of which survive in the present version.
A variety of interruptions delayed completion, so that the present exposition
took form in 1998–1999 and underwent gradual expansion before coming into
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nearly final form in 2003, with brief synopses circulated along the way (Doyle
2001, 2002a).

The prolonged period of completion is misleading, however. Mechanical in-
vestigations provided the direct inspiration for and some technical elements of
numerous ideas presented in earlier monographs, including The Foundations
of Psychology (Doyle 1982a, 1990a), What Is Church’s Thesis? (Doyle 1982b,
2002b), Some Theories of Reasoned Assumptions (Doyle 1983e), Artificial In-
telligence and Rational Self-Government (Doyle 1988a), Rationality and Its
Roles in Reasoning (Doyle 1992a), and Reasoned Assumptions and Rational
Psychology (Doyle 1994). The present book provides numerous references to
these writings, wherein the interested reader might find additional details.
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Outline of the book

This book motivates the mechanical study of intelligence and rationality, re-
views modern mechanics and its historical relations to psychology, adapts me-
chanical axioms to cover hybrid and discrete systems, presents illustrative for-
malizations of representative rational systems in psychology and economics,
and reflects on the character of mechanical laws and theories. My exposition
of these ideas divides the development into several parts.

Part I: Reconciling Natural and Mental Philosophy

Part I introduces the problem, the aims of the project, and some of its back-
ground.

• Chapter 1 introduces the subject and ideas of the book in the context of
understanding the mind and constructing mechanical persons.

• Chapter 2 discusses the benefits of the mechanical approach, especially in
shedding new light on questions of materialism and new methods for char-
acterizing limits to rationality.

• Chapter 3 explores in greater detail the mechanical viewpoint and its history,
briefly relating the project to past efforts on mechanical interpretations of
psychological and economic phenomena as an aid to understanding better
the subsequent development.

Part II: Reconstructing Rational Mechanics

Part II explains the structure of modern rational mechanics and reformulates
the axiomatic development in a manner appropriate to hybrids of continuous,
discrete, physical, and mental mechanical subsystems.

xix
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• Chapter 4 summarizes the theoretical structure of modern rational mechan-
ics, including the modern conception of physical law and the division of
mechanical laws into general and special laws.

• Chapter 5 develops the kinematic axioms of mechanics, generalizing the
usual axioms to accommodate discrete aspects of space, hybrid mechanical
systems, and indeterministic worlds.

• Chapter 6 develops the dynamical axioms, which parallel the usual devel-
opments in most respects, evidencing the modesty of the reformation of
mechanics needed to cover psychology and economics.

• Chapter 7 reconsiders several characteristics of mechanical systems in light
of the reconstruction of kinematical and dynamical axioms, including de-
terminism, continuity, conservation principles, least action principles, re-
versibility, and locality.

Part III: Mechanical Minds

Part III presents mechanical formalizations of key psychological and econom-
ical notions.

• Chapter 8 notes the wide variety of mental organizations presumed or postu-
lated by theorists in many fields, identifies one special class involving plural,
discrete, affective cognition for special examination, and summarizes the
structure of the Reason Maintenance System, or RMS, that illustrates this
class of psychologies.

• Chapter 9 uses the mechanical formalism to examine mind–body duality and
the plurality inherent in mental organization and faculties.

• Chapter 10 sets out the basic framework of discrete mechanical motion,
mass, and force underlying the analyses of the following chapters.

• Chapter 11 takes a detailed look at simple reasoning patterns as exemplify-
ing mechanical forces and then offers speculative relations between these
simple forces and more complex mathematical concepts and mechanical
phenomena.

• Chapter 12 analyzes the mechanical nature of rationality and limits on ratio-
nality, including effort, volition, inherent intelligence, and the forces gener-
ated by desire, intention, habit, refraction, and other rational motives.

• Chapter 13 characterizes learning in terms of mechanical concepts of mass,
persistent configuration, plastic deformation, and relaxation responses to ap-
plied forces.
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• Chapter 14 studies mental uncertainty as a mechanical phenomenon, con-
structing a straightforward theory of measurement that yields structures akin
to subjective probabilities and weakness of will, and then presenting a spec-
ulative subjective measurement structure with connections to concepts of
quantum theory.

Part IV: The Metaphysics of Mechanics

Part IV discusses a number of mainly philosophical characteristics of physical
theories in relation to mechanics.

• Chapter 15 discusses implications of the mechanical axioms for traditional
philosophical questions of materialism, especially similarities between the
numerous past broadenings of concepts of materialistic theories and the
present further broadening to the materials of psychology and economics.

• Chapter 16 addresses the reducibility of physical law to behaviors of ele-
mentary particles and considers related topics including the possibility of
discovering additional physical laws, the uniformity of physical laws, and
other topics connected with the completeness of physics.

• Chapter 17 relates mental mechanics to notions of effective computation,
both to understand computation in mental terms and to understand the rela-
tion of effectiveness to mechanical theory.

• Chapter 18 examines issues pertaining to the finiteness or infiniteness of
the universe, especially as these relate to discrete models of mechanics as
developed here.

Part V: Conclusion of the Matter

• Chapter 19 summarizes and assesses the work, identifies some additional
issues for future exploration, and reflects on the history of some of the ideas.





Part I

Reconciling Natural and Mental Philosophy





1

Mechanical intelligence

What do you think when someone claims that people are mechanical?
Some people find this claim offensive, as likening their own thoughtful be-

havior to the unthinking behavior of the machine, as in Skinner’s famous apho-
rism “The real question is not whether machines think but whether men do”
(Skinner 1969, p. 288). Even though passing time has changed the prototypical
machine from the pulley in the well to the steam locomotive to the automobile
to the home computer, a comparison to machines represents one common form
of insult (“Dali, pfui. He paints like a machine.”). In this view, depicted in
Figure 1.1, claiming people to be mechanical brings people down to a lower
level.

Students of artificial intelligence seeking to construct intelligent machines
often share the underlying revulsion against comparing people to washing ma-
chines and other “dumb” appliances, but usually take a broader view of ma-
chines that includes ones not yet constructed, and paint a picture in which one

People

Machines

�������

�

People

Machines

Fig. 1.1. Bringing people down to the level of machines.

3



4 Mechanical intelligence

People

Machines

�

�������

People

Machines

Fig. 1.2. Bringing machines up to the level of people.

endeavors to raise machines up to the level of humans, in stages of approx-
imation if not all at once, as depicted in Figure 1.2. For example, through-
out history clothes have been washed by people, and it is not demeaning to
compare a person with a person who washes clothes. If only we could make
washing machines as smart and capable and, well, as personable as people, say
students of artificial intelligence, surely comparison to such machines need not
be offensive.

This response does not placate those who view the hypothetical assumption
as an offensive impossibility, or who think people have a character that no
machine, no matter how intelligent, could possess. For example, many think
that people have a spiritual character that sets them apart from merely material
devices like machines, which only contain what their human designers put into
them. Churchill famously advanced such a concern in his own inimitable way:

The destiny of man is not decided by material computation. When great causes are
on the move in the world, stirring all mens’ souls, drawing them from their firesides,
casting aside comfort, amusement, wealth, and the pursuit of happiness, in response to
impulses at once awe-striking and irresistible, then it is that we learn that we are spirits,
not animals, and that something is going on in space and time, and beyond space and
time, which, whether we like it or not, spells duty. (Churchill 1941)

Making this distinction lets one offer complimentary comparisons to machines
(“I can’t believe how much she gets done. She just keeps going like some sort
of machine!”) without diminishing the sense of separation between our kind
and theirs, and without legitimizing claims that people are just complicated
machines.

In the following, I approach this dispute about the nature of people from a
different direction.
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1.1 Mechanical philosophy

Behold the man!
John 19:5 (KJV)

Thoughtful ancients saw mysteries everywhere, in space, in time, in matter,
and in themselves. Some of the greatest puzzles turned on the multiple natures
of things; a beach might look as smooth as the water shaping it, but close in-
spection reveals an array of grains of sand as seemingly numerous as the more
obviously discrete stars in the heavens. The ancients recognized themselves as
providing the greatest of such puzzles: once dead, composed of matter suitable
for the worms of the soil; in life, manifesting both the smooth motions of the
gymnasium and distinct decisions of judge and marketplace, in body bound
to a location changing only a few kilometers a day, in mind free to range un-
bounded through worlds real and fanciful, past, present, and future, all within
minutes, and for many, contemplating a life for the soul unhindered by the
death of the body.

The new sciences developing across the centuries explored evidence that
man’s body exists subject to various regularities or laws of physics, chemistry,
biology, and physiology, with some of these laws explaining much more than
the human body. The array of scientific theories yielded by these explanations
have greatly increased understanding of the world, and have supported power-
ful technologies affecting almost all areas of life: labor, transportation, com-
munication, agriculture, medicine, manufacturing, trade, and war. We share
species with the ancients, but increase in knowledge has transformed the envi-
ronment of life in fundamental ways.

The advance of transformative science proceeded slowly before a dramatic
acceleration in the seventeenth and eighteenth centuries, when discoveries in
mathematics and rational mechanics altered the character of natural philosophy
in fundamental ways.

The term rational mechanics has fallen out of general use, but it remains
the traditional name given to the conceptual or mathematical investigation of
mechanical concepts (Truesdell 1958). The term has persisted from the time of
Newton to the revival of rational mechanics by Truesdell and others in the past
century. Although today the scientific term rational is closely tied to the con-
cept of rational decision and action in much of the literature, the term rational
mechanics itself in no way refers to rational action as studied in psychology
and economics.

Rational mechanics, as developed by Newton, Euler, and others, reworked
natural philosophy into the modern sciences we know today. Earlier nat-
ural philosophy was dominated by informal, largely philosophical debate and



6 Mechanical intelligence

observation. Rational mechanics, and the mathematical viewpoint more gen-
erally, focused on technical investigation, on explicit models of the evolution
of physical systems in accordance with specific mathematical equations, and
on explicit calculation from specific hypothesized initial conditions to observ-
able and unobservable properties of physical systems. These mathematical
models enabled scientists to refine physical theories, and enabled engineers
to construct complicated physical systems to meet precise specifications. The
advance in understanding changed perspectives so much that Leibniz claimed
sufficiently great calculating abilities and a full description of conditions at
some initial time would permit determination of the entire future of the world
subsequent to the initial time.

1.2 The great divorce

The optimism expressed by the natural philosophers did not bear out in the
contemporaneous early stages of the human sciences of psychology and eco-
nomics. In contrast to the progress seen in understanding the physical world,
understanding the mind has proven very difficult. We understand much today
compared with past centuries, but in honest appraisal this represents compari-
son of infinitesimals.

Why did the advance of science scant mental philosophy even while en-
riching natural philosophy? Part of the explanation might lie in the limited
applicability of the new conceptual tools.

Recall that the seventeenth century also saw Descartes’ promulgation of a
dualistic theory of mind, in which a mental substance of the mind accompa-
nied the physical substance of the body. Discourse at the time also spoke of
forces on minds and bodies, just as it does today. In spite of such conceptions
in which mind and body consisted of substances acted upon by forces, the
mathematical tools of the new mechanics did not apply to Cartesian minds, for
their mental substances lacked physical position, meaning that mental actions
lacked description in terms of the physical motion treated by mechanics. The
new mechanics thus offered no way to apply its developing formal concepts
to understanding the relation of the mind to the body or the nature of forces
acting on minds.

The study of the mind did not stagnate, however, and mathematical theories
of psychology and economics emerged later from nonmechanical theories of
logic, probability, and utility. These theories gave central place to the notion of
rational action, eventually understood as action chosen so as to maximize the
expected utility of action. The principle of rational action provided the study
of the mind with a formal framework for investigation and analysis comparable
with the formal framework that the central mechanical notions of force, mass,
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and motion provided for physics. This difference with respect to mathemati-
cal formalism produced an increasingly wide separation of the mental and the
physical sciences, between those based on the concept of rationality and those
based on the concept of force.

The scientific import of this divorce of mental and physical sciences became
clearer later as psychology began to explore computational characterizations of
reasoning and behavior, and as economics began to cast about for theories that
match human capabilities better than its foundational theory of ideal rational
choice. Computational formalizations of psychological theories involved mo-
tion in “spaces” of mental states that, though very different than physical space,
at least proved susceptible to mathematical formalization. Realistic economists
grew appreciative of the hard work involved in making choices and of the
slowness of the mind to change when subjected to new information or other
influences. Popular discourse still spoke of mental forces, work, and inertia
to reflect these concerns (“I had to force myself to concentrate”), much as in
the days of Descartes and Newton. People also came to use mechanical con-
cepts of inertia, force, energy, and pressure informally in describing economic
markets and behavior (“Market forces are putting increasing pressure on oil
prices”). In spite of the continuing application of seemingly similar concepts,
the divorce of the mental and physical sciences impoverished the mental sci-
ences when compared with the physical sciences by abandoning to the purely
physical realm mechanical concepts of force and inertia that proved fruitful
in analyzing physical behaviors. Study a physical problem, and one has re-
course to physics, chemistry, and biology, as well as differential equations and
mathematical theorems that aid in analysis and prediction. Study a mental sys-
tem, and one lacks almost all of this intellectual heritage, for the traditional
conceptual tools do not apply.

1.3 The awaiting reconciliation

The scientific separation of mental and physical need not stand. In the follow-
ing, I bridge the gap between matter and mind with mechanics, and explore
the possibility that people are indeed mechanical, in both mind and body, but
are not necessarily machines or material machines. I do this, as depicted in
Figure 1.3, by understanding “mechanical” in the sense of the science of me-
chanics, and show how one can rework the traditional mechanics one learns
in high school or college physics classes to cover reasoning and other mental
phenomena in a natural way.

Specifically, I show that the mathematical concepts of modern axiomatic
rational mechanics apply more broadly than generally recognized. The quiet
progress of mechanics in recent years provides formal concepts of force, mass,
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Systems satisfying axioms of mechanics
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Fig. 1.3. Understanding people and machines as mechanical systems. Not all machines
have nontrivial controllers.

momentum, and work that enable one to transform some heretofore metaphor-
ical uses of these terms into meaningful, true or false, nonmetaphorical state-
ments about psychological and economic systems within the axiomatic frame-
work of modern rational mechanics.

In psychology, applying the mechanical perspective to mental inertia and
mental forces helps one understand and formalize the difficulty of changing
one’s mind, of learning, of maintaining a focus of attention in the presence
of distractions, and of overcoming habitual behaviors. Mechanics helps one
understand the different characters of people and types of people.

In economics, nonphysical applications of mechanical axioms provide new
means for characterizing more realistic notions of economic rationality and
limits on reasoning abilities, and translate studies of different types of psycho-
logical and economic agents into studies of new types of mechanical materials.

In artificial intelligence, mechanics provides new concepts for analyzing the
structure of artificial agents, new terms with which to specify desired charac-
teristics of agents, and new paths for implementing agents efficiently.

The mechanical perspective provides these benefits without requiring
one to give up nonmechanical perspectives. It instead provides an additional
perspective offering clearer paths to some familiar apprehensions than those
offered by traditional perspectives.
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The mechanical perspective does not demote people to the level of machines.
One might think of the human body as a machine of magnificent design, or
one might not, for even traditional mechanics appears to transcend standard
conceptions of “machine,” especially the notion crystallized by Turing and
popularized in today’s digital computers. In a similar way, one might think
of the human mind as a machine, or as something more, because mechanics
itself does not say what sorts of forces exist in the world, nor from whence
they issue.



2

Why mechanics?

The mechanical understanding of mind bridges both the gap between the men-
tal and the physical and the gap between the rational and the dynamical. In
addition to seeking a better understanding of the relation of mind to body, one
specific motivation in pursuing this understanding stems from an interest in
finding new means with which to characterize and analyze limits to rationality,
a central interest common to psychology, economics, and artificial intelligence.
Pursuing this motivation requires facing philosophical problems that have puz-
zled people for millennia.

Although science has answered some of these philosophical questions about
nature and mind, it has left others unanswered. For example, one ancient ques-
tion concerns determinism, or more generally, lawfulness. Many views hold
the mind to exhibit essential freedoms not enjoyed by matter; other views hold
the mind subject to various laws of psychology, economics, sociology, and an-
thropology, and argue about the precedence of these competing regulations.
Though scientific progress has inspired some of the competing variants and
the development of quantum theories has complicated the stark alternatives
contemplated by earlier generations, scientific evidence has done less than one
might expect to support or weaken the cases for the fundamental alternatives.
The liberty or lawfulness of the mind remains controversial.

Unresolved questions do not represent failures of science. They represent
the human condition. Given the long lifetime of fundamental questions, one
measures the contribution of science not so much in terms of how many ques-
tions it has answered, but in terms of how many problems it made amenable to
technical and experimental investigation. Truesdell, as usual, states the issue
beautifully:

Now a mathematician has a matchless advantage over general scientists, historians,
politicians, and exponents of other professions: He can be wrong. A fortiori, he can
also be right. (Truesdell 1968b, p. 140)

10
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The quickest way to tire the lay observer is with what appears to be philosoph-
ical debate, for philosophical debate has the reputation, perhaps deserved, of
never resolving anything. The mathematical and theoretical advances of mod-
ern natural science have left some fundamental questions unanswered, but they
have shown how to remove others from the domain of opinion into the domain
of knowledge.

The continuing lack of consensus on fundamental characteristics of mind
illustrates the paucity of progress in converting the questions of mental philos-
ophy into subjects for technical and experimental investigation. Accordingly,
I believe the primary immediate benefit provided by the reconciliation of the
mental and the physical comes not in providing immediate answers to long-
standing questions but in opening some long-standing philosophical problems
to serious mathematical investigation. The more one removes technical limi-
tations that handicap the human sciences relative to the physical sciences, the
more one improves prospects for rich and effective mental sciences.

We cannot yet see all the ramifications of the mechanical perspective. Never-
theless, it seems likely that augmentation of the existing technical conceptions
of logic, economics, and computational intelligence with the formal concepts
of mechanics will permit construction of mechanical theories of the interaction
of mind and body and of limits on ideal economic rationality. These mechan-
ical theories in turn seem likely to offer improvements in techniques used in
engineering artificial agents. The remainder of this chapter sketches elements
of such potential benefits. Later chapters return to the ideas to provide more
details.

2.1 Rethinking materialism

The ancient question of materialism, as regards psychology, asks whether peo-
ple have minds or spirits distinct from their body, or whether these are mere
by-products of brain and body. Philosophers have speculated for centuries
about possible relations between mind and body, with theories ranging from
nonexistence of mind to nonexistence of body, and from complete disconnec-
tion of mind from body to complete correspondence of mind and body.

Although Descartes viewed mind and body as somewhat separate entities
acting on each other, dualistic theories fell into disrepute for at least two rea-
sons. First, proponents of dualistic theories could not supply any formal model
for or rules governing either mental motions or the proposed interactions be-
tween mind and body. Science was just beginning to understand physical
forces in mathematical terms, but not in a way that applied to understanding
interactions of mind and body. Second, even setting aside the lack of a formal
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model for mind–body forces, proponents could not identify measurable forces
of this type. Everyone knew that lifting one’s arm caused one’s arm to rise, but
this apparently causal relation did not seem to fit the mechanical mold because
the mental effort required to lift the arm did not clearly vary with the weight of
things held by the arm.

The demise of dualism and the everyday incredibility of idealism have fa-
cilitated the dominance of the scientific viewpoint by materialism (or more
precisely, physicalism), which today we interpret as the view that everything
in the world consists of the material particles and fields of physics. Mate-
rialism even dominates thinking in psychology, where a tradition of behav-
iorism, computational mechanism, and neurophysiological primacy sidelines
the rather obvious disconnection between the experience of mental life and
the specific circumstances of embodiment. Though many have observed the
tenuous and inessential grounding of commonsense psychological concepts
in the physical, chemical, and neurophysiological bodily base, better under-
standing of the dramatic effects of certain chemicals and bodily trauma on
mental behavior has led others to dismiss ordinary psychological talk about
beliefs, desires, emotions, volition, and the like as hopelessly flawed, even as
an approximation to some supposed neurophysiological truth. This philosoph-
ical attitude has developed along with a shift in emphasis in artificial intel-
ligence away from symbolic models of thought toward models in which nu-
merical pseudoneurological quantities overlay varying kinds of nonnumerical
pseudosynaptic structure.

Economics, in contrast, represents perhaps the last holdout of amaterialist
thinking, even though it epitomizes “materialistic thinking” in an irrelevant
popular sense. Theoretical economics deals mainly with a theory of ideal ra-
tionality based solely on belief, preference, and choice independent of any
materialist grounding. The preferences economists attribute to humans may
derive from complex balances among underlying motivations, emotions, and
sentiments, but these underlying origins do not concern the economist as long
as these origins yield preferences fitting the form demanded by ideal
rationality.

The present work provides both formal means to rehabilitate dualistic psy-
chologies and motivations for doing so. I use the modern axioms of mechan-
ics to characterize the structure of forces exerted by mind on body, by body
on mind, and by mind on mind in exactly the same way that these axioms
characterize forces among physical bodies. Though the early formulations
of mechanics did not cover the Cartesian conception of mental substances,
the mathematically refined axioms developed in the twentieth century provide
the necessary breadth. The resulting mechanical characterization of mental
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substances calls into question the conventional conception of materialism, much
as discoveries in physics have extended the ancient concept of materialism to
include the invisible fields of electromagnetism and various quantum particle
fields unobservable in everyday life, and to include a theory of gravitation in
which energy itself has mass.

2.1.1 Interacting minds and bodies

The formal framework developed later in this book offers the following simple
straightforward technical application to addressing psychological theories of
the interaction of mind and body. The illustration given here uses only two
elements of modern mechanical formalism: the notion of material universes,
which consist of lattices of simple and complex bodies, that is, sets of bodies
ordered by the “part-of” relation, and the notion of systems of forces, which
consist of assignments of force values to pairs of bodies, assigned in a way
that satisfies mechanical principles including the vectoral force-addition (or
parallelogram) law.

The mechanics developed in the following allows us to formalize persons
as mechanical systems composed of hybrids of two component mechanical
systems, one physical, one mental. Let us consider here the body and mind
of a person I call René. Figure 2.1 depicts a division of René into mental
and physical bodies. For the physical part of René we presume a standard
mechanical model, and identify the body of René as a body Bp existing within
a universe Bp of physical bodies. Similarly, for the mental part of René we
identify the mind of René as a body Bm existing within a distinct universe Bm

of mental bodies. We denote the lattice join of bodies B and B′ by B+B′, and
denote the largest, most inclusive, or “universal” body in a material universe by
U . Our simple illustration then uses the hybrid body BR = Bp + Bm to model
the person René, and the hybrid body U = Up + Um to model the universal
body.

Let us now consider the total force acting on René at some instant. In the
hybrid mechanical formalism, we write this force as f(BR,U), that is, the
force exerted on BR by the universal body U . The separation of the mental and
physical bodies and the axioms for forces then let us rewrite this force as

f(BR,U) = f(Bp,U) + f(Bm,U). (2.1)

Let us look first at f(Bp,U), which represents the force on the physical
body. We decompose U into separate components

U = BR + Be
R = Bp + Bm + Bpe

p + Bme
m , (2.2)
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Fig. 2.1. Schematic division of a world containing a person BR into mental and phys-
ical bodies (Bp and Bm), plus mental and physical exteriors (Bme

m and Bpe
p ), all com-

prising universal mental and physical bodies (Um and Up).

where Be
R denotes the environment of BR, obtained as the relative comple-

ment of BR with respect to the hybrid universal body U ; where Bpe
p denotes

the physical environment of the physical body, obtained as the relative com-
plement of Bp with respect to the greatest physical body Up; and where Bme

m

denotes the mental environment of the mind, obtained as the relative comple-
ment of Bm with respect to the greatest mental body Um. With this partition of
the hybrid universal body, we apply the axioms for forces to rewrite the force
on the physical body as

f(Bp,U) = f(Bp,Bp) + f(Bp,Bm) + f(Bp,Bpe
p ) + f(Bp,Bme

m ). (2.3)

This just says the total force on the physical body consists of the sum of the
forces exerted on the body by the body itself, by the mind, by the physical
environment, and by the mental environment. From a similar decomposition,
we obtain the force on the mind as

f(Bm,U) = f(Bm,Bm) + f(Bm,Bp) + f(Bm,Bme
m ) + f(Bm,Bpe

p ). (2.4)
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The forces f(Bp,U) and f(Bm,U) constitute hybrid forces, containing com-
ponents in both the physical and mental worlds. We can thus decompose them
into components, for example, writing

f(Bp,U) = fp(Bp,U) + fm(Bp,U), (2.5)

where fp(Bp,U) denotes the component of f(Bp,U) that lies in physical space,
and fm(Bp,U) denotes the component of f(Bp,U) that lies in mental space.
Either or both of these components might be zero. Deformations or motion of
the physical body and the mind depend only on these respective components
in the hybrid mechanics, so motion of the physical body depends only on

fp(Bp,U) = fp(Bp,Bp) + fp(Bp,Bm) + fp(Bp,Bpe
p ) + fp(Bp,Bme

m ). (2.6)

Thus the physical motion stems from physical forces, but the origin of these
forces might include mental bodies. Similarly, motion of the mind depends
only on

fm(Bm,U) =

fm(Bm,Bp) + fm(Bm,Bm) + fm(Bm,Bpe
p ) + fm(Bm,Bme

m ). (2.7)

By providing a rigorous conception of forces between mind and body, the
present work provides new avenues for exploring questions about the exis-
tence, nature, and origin of such forces. For example, Truesdell once posed
a brief query seeking evidence of measurable nonphysical forces on material
objects. The query in its entirety reads:

Can any reader supply examples of magic whose effect is measured? E.g., a magician
whose spells could lift a ten-pound weight, but none heavier. (Truesdell 1956, p. 59)

The query does not spell out whether Truesdell had in mind psychokinetic or
supernatural forces. Possibly he offered the query in jest or ridicule, for Trues-
dell usually mentioned psychology, and artificial intelligence for that matter,
as in the conclusion to (Truesdell 1984a), only to disparage the intellectual
shoddiness of that field in comparison with the rigor attained in mechanics and
other sciences. But publishing in Isis does not bespeak jest, and it seems rea-
sonable to interpret the query as indicating that Truesdell considered mechan-
ics as a broad subject, covering potential interactions between the physical and
the mental as well as interactions among the purely physical. In the current set-
ting, one can read the query as asking whether the cross-terms in (2.6) always
vanish, that is, whether we have in fact

fp(Bp,U) = fp(Bp,Bp) + fp(Bp,Bpe
p ). (2.8)
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The formal framework of forces provided by mechanics covers many pos-
sibilities with no presumption that any or all of these exist in our world. It
provides a formalization of interaction in which the mind raises the arm by
forcing communication of information that initiates a physical action, with the
distinction between informational force and physical force resolving the lack
of proportionality between will and lift that puzzled earlier mental philoso-
phers. The formal framework provided here makes sense of the possibility
of telekinesis in the same way that traditional mechanics makes room for all
sorts of possible forces not known to the ancients. The formal framework of-
fered here also retains the traditional modest aspirations of mechanics. Just as
Newton’s mechanics did not presume to identify all types of physical forces,
we make no suppositions regarding telekinesis or other undemonstrated forces
and leave questions about the existence additional forces beyond those com-
monly recognized to future physical and psychological investigation. What we
do show is that such questions have an empirical character, and that mechanics
alone does not restrict the types of conceivable forces.

2.1.2 Correlation

Few have ever thought of mind and body as operating completely indepen-
dently of one another. Someone hit will hurt, and may choose to react by
moving and speaking. Mental and physical events enjoy some degree of cor-
relation. The debate in philosophy over the centuries has concerned the degree
and nature of such correlation. The constitutive assumptions that traditional
mechanics uses to characterize special materials provide models for phrasing
assumptions about the correlation of mental and physical events.

Traditional mechanics characterizes rigid bodies by a constitutive kinematic
assumption, namely the assumption that the relative positions of all body parts
remain constant throughout all motions. One might use similar “kinematic”
assumptions to require that certain physical events always co-occur with cer-
tain mental events in some or all circumstances, as is the content of some
identity theories of mind, and of some idealistic theories that posit unexcep-
tional co-occurrence of mental and physical events. For example, one might
assume that certain stimulations of the visual cortex always correlate with cer-
tain perceptions about surroundings. Such correlations amount to a path of
communication between physical and mental bodies, and open the possibility
that mental events can generate physical forces even without the explicit cross-
terms of (2.6).

At the same time, one might not assume that decisions based on these per-
cepts correlate in any regular way with activity in other portions of the brain.
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Indeed, with a bit of stretching, one might interpret Penrose’s (1989) specula-
tions on the role of quantum gravity in consciousness as suggesting that mental
events might influence certain delicate physical events but otherwise stem di-
rectly from the major flow of physical bodily events. The large range of possi-
bility between no regular co-occurrence and completely regular co-occurrence
offers room for many different theories of mind.

When one does not assume complete correlation between mental and physi-
cal events, one expects divergence between mental and physical states to occur.
We see such divergence in the experience of the disoriented and the insane. The
ordinary sort of disorientation represented by discrepancies between what the
agent thinks about the world and the way it really is poses no philosophical
difficulties. Most people lose this correlation a few times each day, and in rare
cases lose it seriously and permanently, but ordinarily this sort of disorienta-
tion requires only minor, even unconscious or automatic, effort by the sufferer
to correct the discrepancy, by changing mental or physical state to match the
other. People who build robots go to some trouble to prevent such disorien-
tation from crippling their robots by reducing thinking as much as possible to
direct perception or reaction to overt physical states (Rosenschein & Kaelbling
1986; Brooks 1991). Such designs sometimes employ feedback control sys-
tems to imitate mechanical elasticity, in which perturbation from certain states
generates restorative forces to bring the configuration back to the equilibrium
one. The more thinking abstracts from these lower levels to construct plans and
formulate long-term desires, the greater the openings provided for introducing
discrepancies and disorientation.

2.1.3 Mechanical reasoning

As noted in the preceding discussion, Cartesian dualism failed to endow mental
substances with familiar properties of location and mass. The absence of these
notions posed far bigger problems for the theory than a mere lack of ways of
making formal reference to forces involving minds. The present development
addresses this gap in Cartesian theory by using modern mechanics to identify
locations and masses in some of the simple but relatively detailed models of
reasoning agents developed in artificial intelligence.

To illustrate the ideas briefly, I now sketch a mechanical interpretation of
a simple but concrete formal model of reasoning, in which reasoning occurs
through selection, interpretation, and application of explicit rules of reasoning.
The mechanical restatement first identifies the underlying mathematical spaces
characterizing mental motion and mass in the reasoner, and then identifies the
forces generated by reasoning rules.
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2.1.3.1 States of reasoning

In this illustration, let us regard each mental state of the reasoner as reflecting
a set of beliefs, desires, intentions, or other mental attitudes drawn from a
finite or infinite set D (Doyle 1983e, 1994). More generally, we regard D as
comprising all identifiable elements of mental states in the model, including
explicit rules of reasoning.

We regard the possible sets of attitudes and rules in the power set P(D) as
elements of the binary vector space D = (Z2)D over the field Z2, so that each
vector in D represents the characteristic function of a set of attitudes and rules.
We use set and vector notation interchangeably in the following as convenient,
writing 0 to denote the vector of zeros corresponding to ∅ ∈ P(D), and 1
to denote the vector of ones corresponding to D ∈ P(D). We write x =
1− x to indicate the vector or set D \ x complementary to x. Because Z2 has
characteristic 2, we have x = −x for every x ∈ D. D also forms a ring under
pointwise binary multiplication.

2.1.3.2 Structure of reasoning

The term reason reflects the appearance of such rules in the Reason Mainte-
nance System, or RMS, also called the Truth Maintenance System, or TMS
(Doyle 1979), in which the growth and change of the set of reasons highlights
the cumulative action of reasoning rules on memory and states of reasoning.

Section 8.4 describes reason maintenance in more detail, but I summarize
the ideas briefly as follows. The RMS and similar reasoning systems record
dependencies or argument or proof steps in long-term memory in service of
a reasoning system external to the RMS. These recorded dependencies repre-
sent propositional nonmonotonic default rules, which here I call reasons. The
RMS uses these reasons to maintain a set of conclusions in working memory.
The RMS constructs the conclusions so as to represent a set that is closed with
respect to consequences of reasons and grounded with respect to the recorded
reasons and starting assumptions. The nonmonotonicity of reasons supports
a form of reasoning in which all changes to conclusions can, if desired, be
effected by means of adding new reasons, which can either generate new con-
clusions or defeat earlier ones. When current conclusions are defeated by new
information, the RMS traces through the reasons supporting consequences of
the defeated conclusion and removes any that do not have some other means
of support. This process becomes complicated when, as commonly happens,
reasons form circular arguments in which different conclusions support each
other. When consequences are changed, the RMS notes the changes and in-
forms the external reasoner.
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Let us divide mental states into two parts. One part reflects mental positions
or points of view that we regard as a space S of locations of the agent. The
other part reflects habits of thought or rules that we regard as the mass of the
agent, with values in a set M. Forces acting on the agent can cause spatial
motion, change of mass, or both, with momenta and forces taking values in a
set P. As in traditional mechanics, S and P form vector spaces, and M forms a
ring of scalars acting on P, but in the setting of discrete mental attitudes these
vector spaces and ring are discrete.

In the simplest conception, reasoning constitutes change of view or posi-
tion, and learning constitutes change of habits or mass. This fits with common
conceptions in which habits and knowledge persist across episodes of reason-
ing, and in which not all conclusions reached in reasoning lead to long-term
changes.

We use D to represent instantaneous spatial and mass values, with S = D =
M, and use D to represent the translation spaces (sets of difference vectors)
of these sets as well, thus permitting us to use P = M × S = D2 to repre-
sent momentum and force values. For each instant t in an interval of discrete
times, we write xt to denote the position, ẋt the velocity, ẍt the acceleration,
mt the mass, ṁt the mass flux, and pt the momentum of the reasoner at t.
We assume the set of discrete instants to be enumerated, so that t+ 1 denotes
the instant succeeding instant t. For present purposes we regard instantaneous
position, mass, and velocity as constituting an instantaneous mechanical state,
denoted by (xt,mt, ẋt) or (xt, pt), the latter form using momentum values
pt = (mt, ẋt) to pair mass and velocity values. We regard histories or trajec-
tories of the reasoner as functions mapping instants in a temporal interval to
the mechanical states occurring at those instants. We write ft to denote the ap-
plied force acting on the reasoner at t, and call a history a mechanical process
just in case it satisfies Euler’s equation

f = ṗ (2.9)

at each instant.
In the discrete setting, we interpret ẋt, ṁt, and ṗt in terms of discrete differ-

ences. We identify ẋt as the trailing velocity ẋt = xt−xt−1, but identify accel-
eration ẍt = ẋt+1−ẋt, mass flux ṁt = mt+1−mt, and change of momentum
ṗt = pt+1 − pt = (ṁt, ẍt) as leading differences. The difference in for-
mal treatment reflects a common design for reasoning systems. In this design,
changes in attitudes trigger application of reasoning rules. Mechanically, this
means the reasoner generates self-forces that depend on current position, mass,
and trailing velocity. Such a reasoner also suffers changes imposed by users or
other portions of their environments on its attitudes and rules. Mechanically,
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we regard such imposed changes as forces applied to the reasoner. These ex-
ternal changes affect or produce future mental states and so represent leading
changes.

2.1.3.3 Reasoned motion

Explicit rules of logical, probabilistic, and heuristic reasoning appear in many
forms in artificial intelligence systems, including production systems, logic
programming languages, semantic networks, conceptual inheritance systems,
Bayesian networks, Boolean computation circuits, and Minsky’s (1980) K-
lines (see Russell & Norvig 2002 for more on most of these). Although each of
these forms exhibits a mechanical character, we focus on reasoning generated
by simple types of nonmonotonic rules, or reasons (Doyle 1983e, 1994), such
as the rule

“Conclude (c) ‘Sasha can fly’ whenever

it is believed that (a) ‘Sasha is a bird,’ and

it is not believed that (b) ‘Sasha cannot fly.’” (2.10)

Each reason involves four sets of beliefs, desires, intentions, rules, or other
elements of D, any or all of which might be empty. We denote a reason r with
the notation

r = Ar \\ Br ‖− Cr \\ Dr, (2.11)

which we read as “Ar without Br gives Cr without Dr,” where Ar, Br, Cr,

Dr ⊆ D. We thus might write (2.10) as the reason

{a} \\ {b} ‖− {c} \\ ∅. (2.12)

We interpret each reason r as stating that each element of Cr should be held
and each element of Dr should not be held if each element of Ar is held and
each element of Br is not held.

One can interpret reasons of the form of (2.11) synchronously, as applying
to instantaneous states of the reasoner, or diachronically, as relating successive
instantaneous states of the reasoner. In a synchronous interpretation, reason
(2.11) expresses the rule that the reasoner’s conclusions contain each element
of C and no element of D if it contains each element of A and no element of
B. In a diachronic interpretation, reason (2.11) concerns presence or absence
of state characteristics at different times, saying that if A \\ B applies to the
state prior to a change, then C \\ D should apply to the state after.

In our simple illustration, we assume the reasoner’s environment initiates
episodes of reasoning by changing the reasoner’s memory to include a new
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reason, whereupon the reasoner applies reasons that change position until ei-
ther no reasons remain unapplied or the environment imposes further changes
on memory. This assumption is compatible with simple perception and com-
munication or imposition of new attitudes because reasons of the form ∅ \\
∅ ‖− C \\ ∅ produce conclusions without requiring antecedent or ancillary
conditions. We regard such motion as reflecting the combination of an ex-
ternal force (ṁ,0) with a self-generated force (0, ẍ) to produce a total force
f = (ṁ, ẍ).

In considering a mechanical state (xt,mt, ẋt) at instant t, we regard ap-
plication of a single reason r = Ar \\ Br ‖− Cr \\ Dr as generating the
acceleration

ẍt =
{
Crxt +Drxt − ẋt if Arxt +Brxt = 0
ẋt otherwise,

(2.13)

which yields the new velocity

ẋt+1 =
{
Crxt +Drxt if Arxt +Brxt = 0
0 otherwise,

(2.14)

and hence the expected new position

xt+1 =
{
xt + Crxt +Drxt if Arxt +Brxt = 0
xt otherwise.

(2.15)

2.1.3.4 Reason forces

Define the function U : D → (D → D) by

U(r)(x) =
{
Crxt +Drxt if Arxt +Brxt = 0
0 otherwise.

(2.16)

This value for U(r)(x) is thus the same product from a reason and position as
was identified in expression (2.14) for the velocity produced in single-reason
motion, so that ẍt = U(r)(xt) − ẋt. As we are assuming that application
of rules changes only position and not mass, appearance of reasoned motion
(2.15) in a mechanical process satisfying (2.9) requires us to identify

fr(xt,mt, ẋt) = (0, U(r)(xt) − ẋt), (2.17)

as the force generated by the reason r in the state (xt,mt, ẋt).
To obtain the force fR(xt,mt, ẋt) due to applying a set of reasons R in a

mechanical state (xt,mt, ẋt), we lift U to a function U : P(D) → (D → D)
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by additive superposition

U(R)(x) =
∑
r∈R

U(r)(x), (2.18)

following the convention that an empty sum equals 0. Thus if Rt denotes the
set of reasons acting at time t, we obtain the acceleration

ẍt = U(Rt)(xt)− ẋt, (2.19)

and so define the force generated by Rt by

fRt(xt,mt, ẋt) = (0, U(Rt)(xt) − ẋt). (2.20)

One easily verifies that f{r}(xt,mt, ẋt) = fr(xt,mt, ẋt).

2.2 Characterizing rationality

Even if mechanics helps provide a better understanding of the interaction of
mind and body in terms of forces and masses, it provides no guidance about
how to understand the specific forces involved. Although one can view human
minds as suffering and generating a variety of forces, as does Shand (1920),
the present effort focuses on using mechanics to understand the forces charac-
teristic of rational thought and action. Used in this way, mechanics provides
a “new” formal language for characterizing limits to rationality, a language in
which mental effort relates to mechanical work, in which attention relates to
directions of resultant forces, and in which dimensionality of communication
channels places bounds on the magnitude of possible forces.

2.2.1 What is rationality?

People use the term rational in many senses. In the terms rational mechanics
and rational psychology, the word means conceptual or mathematical, as op-
posed to speculative or experimental. In everyday life, however, the three main
senses consist of the psychological, logical, and economic, corresponding to
whether the agent reasons according to rules, draws sound and consistent con-
clusions, and makes the best choices possible given the available knowledge.

Of these three everyday senses, the logical and economic have received the
most attention as formal subjects, developing from philosophical roots two
millennia ago and flowering in the development of mathematics in the past
few centuries.

Today, the theory of economic rationality reigns supreme in the social sci-
ences. In the modern formulations of von Neumann and Morgenstern (1953)
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and Savage (1972), which formally characterize rational beliefs and prefer-
ences and how the agent’s beliefs change with the acquisition of new infor-
mation, the economic ideal of rational choice supports a deep mathematical
development unrivaled by any science outside the physical sciences save for
mathematical logic and the mathematical theory of computation. The concep-
tual coherence and power of the theory of economic rationality permit it to
serve as the basis for quite elaborate theoretical developments in the theory of
markets and other topics. As an organizing principle, the theory and its un-
derlying assumptions also undergird much thinking in modern politics, man-
agement, and, increasingly, artificial intelligence, psychology, the theory of
computation, and even biology. Policy analysis now involves explicit decision-
theoretic and game-theoretic analyses; computational agents explicitly repre-
sent and reason with probabilistic and utilitarian information; psychologists
study the probabilistic and preferential reasoning of ordinary people; compu-
tation theorists and algorithm engineers augment notions of worst-case and
average-case complexity with expected utility models; and biologists employ
economic choice models at many levels, ranging from the resource economics
of ecosystems to the more controversial genetic levels.

Despite its preeminence in our current views of sciences and humanities,
however, the theory of economic rationality suffers from many problems.
These are most clearly seen in the broader context of human rationality. To
understand these problems and to see how mechanics provides a path to reme-
dying at least some of them, we examine the several notions of rationality and
irrationality in turn.

2.2.1.1 Psychological rationality

The psychological sense of rationality means basing beliefs, decisions, and
actions on explicit reasoning and argument about what must true (as in logical
rationality) and about what must be good or what must be done (as in economic
rationality), given one’s assumptions and goals. The picture underlying this
sense depicts thought and action guided by rules and procedures in a way that
permits one to explain the reasons underlying specific actions and attitudes
by articulating the rules and attitudes that constitute the reasons. One can
regard psychological rationality as related to the practical reasoning reflected
in Aristotle’s (1962) practical syllogism “I desire D; action A will achieve D;
therefore I do A,” and to Newell’s (1982) modern restatement in his principle
of rationality.

Many common uses of the psychological sense of rationality contrast “ratio-
nal” with “emotional,” often presupposing that action based on emotion cannot
also be based on reasoning, but as understood here, psychological rationality
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refers only to actions having reasons, not to the emotional or epistemic content
of those reasons. Psychological rationality thus says nothing about the emo-
tional or nonemotional basis of thought and behavior. One can exhibit psycho-
logical rationality and still have major elements of behavior under nonrational
control.

The psychological sense of rationality makes far weaker assumptions about
the nature of the rules involved in reasoning than do the logical and economic
senses. In contrast to the stronger notions, one cannot characterize psycholog-
ical rationality exactly because it denotes an indefinite range of mental char-
acters rather than the singular crisp ideal characters of logical and economic
rationality (see Doyle 1983e, 1994 for an elaboration of some of the varieties).
Instead, one must look to formal frameworks that cover a variety of psycho-
logical organizations, each interpretable as involving some sort of rule-guided
reasoning or action.

Mathematical studies of some varieties in which explicit reasons of the form
shown in (2.11) mediate reasoning states and reasoned state-changes have been
elaborated in some detail in theories of reasoned assumptions (Doyle 1983e,
1994) and nonmonotonic logics (Marek & Truszczyński 1993), as well as ex-
amined philosophically in Doyle (1982a, 1990a, 1988a). Though simple in
structure, analysis of such reasons reveals a fairly deep structure, with many
connections to philosophy, logic, and economics. Indeed, the logical and eco-
nomic senses of rationality refine this picture by understanding reasoning rules
as rules of logical inference and understanding RMS interpretation of nonmon-
otonic reasons as choosing sets of conclusions that maximize expected utility.

2.2.1.2 Logical rationality

The logical sense of rationality specializes the psychological sense of action
based on reasoning by viewing thought as concerning logical propositions and
logical relations among them, and by requiring that one’s beliefs and intentions
remain free of contradiction and include only their deductive consequences.

The first requirement of logical rationality is that thoughts be interpretable
as statements or propositions in a logical language, or more accurately, as atti-
tudes toward such statements, such as a belief that p, desire that p, or intention
that p. Such interpretations let one then judge logical relations among the
propositions involved in thinking. Formally, logical rationality views a belief
state, for example, as a set (a “proposition”) p of possible ways the world might
be, or alternatively, as a set S of statements expressing the proposition p.

The second requirement of logical rationality is that beliefs, preferences, and
intentions are consistent, regarding these relations as semantic ones holding
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between the meanings of thoughts. Thus the logically rational agent cannot
believe simultaneously, as did Carroll’s Red Queen, eight impossible things,
whether before, during, or after breakfast. Formally, and with respect to be-
liefs, this amounts to the requirement that the proposition p characterizing be-
liefs is nonempty, p �= ∅, and in particular, that any set of statements S express-
ing p does not contain an explicit contradiction; that is, there is no statement q
such that S contains both q and ¬q.

The third requirement of logical rationality is that beliefs, preferences, and
intentions are closed under entailment. This means that the agent must believe
every consequence of its beliefs, prefer every consequence of its preferences,
and intend every consequence of its intentions. Formally, and again with re-
spect to belief, this means that if the proposition p characterizes the agent’s
beliefs and p is contained in q, then the agent also believes q, or alternatively,
that if S expresses p, then S is its own deductive closure, S = Th(S).

The fourth requirement of logical rationality is that reasoning only adds de-
ductive consequences of current beliefs, and that only perception and action
make other additions or subtractions. This means that each new conclusion
reached by thinking or reasoning must follow by deductive inference from
current conclusions, so that beliefs change only by means of perception and
action. Thus the third requirement of deductive closure captures all conse-
quences of reasoning.

Logical rationality requires only a propositional character of beliefs, as this
semantic character suffices to identify notions of consistency and closure. In
mental organizations that employ sentential or other syntactic representations
of semantic propositions, logical rationality carries over to deductive consis-
tency and closure requirements.

Although the pure notion of logical rationality involves only propositional
character, consistency, and deductive closure and character, some regard the
notion as also requiring that reasoning reflect deduction and that revision main-
tains information content as the agent accommodates new information and
takes action (Gärdenfors 1988). In particular, when new information conflicts
with existing beliefs, this strengthened notion of logical rationality requires
that any accommodation of the new information retain as many of the existing
beliefs as possible, for example, by moving to a maximal consistent subset of
the union of existing beliefs with the new information. I regard such strength-
enings as extralogical, embodying value information in addition to mere logic;
in particular, such strengthenings imply that all information is intrinsically
valuable, and that information is more valuable than lack of information (Doyle
1991).
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2.2.1.3 Economic rationality

The economic sense of rationality means acting optimally with coherent be-
liefs and preferences or utility judgments. The notion of coherence employed
in the economic sense of rationality includes the logical notions of consistency
and deductive closure, so it is fair to say that the economic sense of rationality
subsumes the pure notion of logical rationality. More importantly, the eco-
nomic notion has received extensive axiomatic and mathematical study as a
theory of ideal agents, in contrast to the notions of argument and logic, which
though studied extensively, have not been understood as theories of agents until
recently.

More specifically, ideal economic rationality means acting to maximize ex-
pected utility. The theory views agents as facing a set of alternatives or ac-
tions, each of which has many different possible consequences or outcomes.
The theory assumes the agent assigns probabilities to these outcomes given the
actions, and that the agent has some way of ordering all outcomes by degree of
desirability, such that degrees of desirability can be represented by a numerical
utility function over outcomes. The theory then defines the expected utility of
an alternative as the average utility of its outcomes, with the utility of each
individual outcome weighted by its probability. The theory calls the agent
rational if the agent always acts to choose alternatives of maximal expected
utility.

The axioms for rational economic agents start by characterizing a notion of
preference-based choice among alternative actions (von Neumann & Morgen-
stern 1953). The theory begins with a setA = {A1, A2, . . .} of alternatives and
a binary choice relation �A = � of weak preference over A, where A � B

means that the agent weakly prefers B to A in that it finds B at least as desir-
able as A. The theory defines two additional relations in terms of weak pref-
erence. The theory defines indifference among alternatives, written A ∼ B, so
thatA � B andB � A, meaning that the agent finds that whatever differences
exist between the alternatives leave them equally desirable. The theory defines
strict preference, written A ≺ B, so that A � B but A �� B, meaning the
agent finds B more desirable than A.

Three axioms characterize the notion of ideal preference by requiring that
weak preference constitute a complete preorder, that is, a complete reflexive
and transitive relation. These requirements entail that strict preference is tran-
sitive and asymmetric, and that indifference is an equivalence relation. A
fourth axiom then requires that the agent choose alternatives maximal with
respect to the ordering of weak preference. The axioms on preferences ensure
that every finite set of alternatives offers at least one rational choice. Infinite
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sets of alternatives can lack any rational choice without constraints on the na-
ture of the preferences and the structure of alternatives.

The subjective Bayesian theory of rational decision adds the notion of a set
Ω of decision outcomes, meaning states or futures that can result from actions
and in which the agent takes action. It posits another preference order �Ω over
these outcomes that compares desirability of outcomes rather than actions. It
posits a belief function prA : Ω → R for each action A ∈ A that assigns to
each outcome the agent’s degree of belief that the outcome results from A.

Three axioms require �Ω to constitute a complete preorder, just as with �A.
These axioms imply the existence of numerical utility functions u : Ω → R

that represent �Ω in the sense that A �Ω B iff u(A) ≤ u(B). Another axiom
requires that the belief functions representing beliefs about the consequences
of choices constitute probability measures over outcomes. One can develop
this probabilistic axiom in turn from further axioms about belief comparisons
(Savage 1972).

The theory combines the numerical utility and probability functions into an
expected utility function û : A → R such that û(A) =

∫
Ω prA(ω)u(ω). A

fourth axiom then makes preferences among actions correspond to compar-
isons of expected utility by requiring that A �A B iff û(A) ≤ û(B).

The theory of multiattribute decision making extends the concepts of sub-
jective Bayesian decision theory by decomposing utility functions over out-
comes into functions over properties or characteristics of those outcomes. The
set of properties of interest induces a multidimensional representation of the
set of outcomes. The theory then studies utility functions over the multidi-
mensional representation that can take the form of functional compositions of
“subutility” functions over lesser-dimensional subspaces of the multiattribute
representation.

Recent approaches to machine computation of rational decisions augment
multidimensional decompositions of preference and utility information with
multidimensional decompositions of probability measures, for example, us-
ing Bayesian networks to express probability distributions relatively succinctly
in terms of causal relations among propositions holding true in different out-
comes (Pearl 1988; Boutilier, Dean, & Hanks 1999).

Finally, the theory of rational group decisions extends the theory of rational
individual decisions just summarized by setting requirements on choices made
by a group of rational individuals (Arrow 1963). The theory of rational group
decisions consists of three axioms characterizing the group preference order
�G in terms of member preference orders �i for each member i of the group
G. The first axiom of collective rationality requires that the group preferences
derive from a function over all possible rational preference relations of the
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individuals. The second axiom, of Pareto optimality or unanimity, insists that
the group preferences agree with the individual preferences for alternatives on
which the individuals agree. The third axiom, of “independence of irrelevant
alternatives,” requires that the ranking of two alternatives in the global order
depends only on how the individual orders rank those two alternatives, inde-
pendent of how they rank other alternatives relative to the given two.

Social fairness concerns in human decision making suggest adding a fourth
axiom of nondictatorship that ensures none of the group members acts as a
“dictator” whose preferences automatically determine the group’s, indepen-
dent of the other individual orderings. Arrow (1963) proved this requirement
conflicts with the first three. Some theories of group rationality abandon or
modify some of the first three in order to adopt this fourth restriction.

Markets represent a familiar context for group decisions. The competing
individual preferences determine demand functions. Markets provide auctions
in which these group demand functions combine with supply levels to produce
equilibrium prices or exchange ratios for sets of goods.

2.2.2 Human rationality

People sometimes seem to reason and can give explanations of how they ar-
rived at conclusions or came to decisions. People sometimes change their be-
liefs to avoid contradiction, and sometimes seek to determine consequences of
their beliefs. People sometimes make decisions by assessing utility and prob-
ability and comparing the expected utility of different alternatives. This lets
one say people are sometimes rational, but much evidence exists to show that
people do not fully meet the standards of the logical and economic ideals.

2.2.2.1 Humane logical rationality

First consider rationality in the logical sense. The sad law of unexpected con-
sequences testifies to the difficulty people have of seeing consequences, even
in cases in which explanations after the fact involve no facts not already known
before the event. Grand masters of chess might see that the capture KP x QB
will lead unavoidably to losing the game, but the rest of us remain blind to that
consequence. Indeed, the P = NP? problem in the theory of computation
reflects this asymmetry between the difficulty of finding an argument and the
difficulty of following an argument.

Logical consistency also is problematic, for everyone knows the ease with
which one can detect inconsistencies in the beliefs of one’s opponents com-
pared with the difficulty one has in detecting inconsistencies in one’s own
beliefs. In some cases, these inconsistencies reflect the incompleteness or lack
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of deductive closure of beliefs, as real people remain ignorant of many of the
consequences of their own beliefs, including consequences that would high-
light inconsistencies. In other cases, people hold inconsistent beliefs due to
strong motivations or principles. In the most benign case, someone holds two
conflicting beliefs indefinitely while seeking out or awaiting ways of reconcil-
ing the two.

It is also easy to observe that much commonsense reasoning is not deductive,
but presumptive, as people make defeasible assumptions left and right that
stand until overridden by new information or until the consequences of prior
knowledge become clear.

2.2.2.2 Humane economic rationality

People are notorious for making poor choices that indicate a degree of eco-
nomic irrationality. The serious study of the human form of economic ratio-
nality came to prominence in the work of Simon (1955, 1956), who presented
one of the first critiques of the ideal conception of economic rationality in his
theory of bounded rationality, in which he sought to take into account the limits
on ratiocination, information, and consistency common to people.

Simon pointed out that although people enjoy seemingly endless possibil-
ities for action at every instant, they can comprehend only a few samples or
dimensions of variation in these possibilities. Embodying the ideal theory in
a world as complex as ours apparently requires fairly complete probabilistic
and preferential information about truly vast or even infinite numbers of possi-
ble circumstances and events. Economic rationality encompasses large action
spaces without difficulty, but one simply does not see this sort of synoptic
awareness in people, who routinely find themselves or others ignorant of the
consequences of their actions, and find making decisions overwhelming when
faced with the myriad possibilities and ramifications of even simple decisions.
For instance, medical practice these days tends to distress people in part be-
cause clinics routinely ask patients to sign consent forms that list death as a
possible outcome, even for such minor procedures as removing an ingrown toe-
nail. Few people think of dying when contemplating toenail removal, though
making rational decisions about the procedure must take that possibility into
account, even if only to dismiss it because of its improbability. Death, how-
ever, is only the most easily foreseen unlikely possibility, and people pass over
infinitely many other possibilities without ever thinking about them.

Similarly, an person unable to comprehend sufficient quantities of informa-
tion will experience difficulty observing the inconsistency of separate pieces of
information, even if the person can easily see the inconsistency when the pieces
are presented together. Decision making based on inconsistent preference
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information can result in failure to find any rational choice when inconsistent
preferences rule each alternative strictly worse than others.

Economics shows how with special effort one can hide some of the com-
plexity of real circumstances of choice by circumscribing the scope of each
decision to a carefully constructed “small world” (Savage 1972). In spite of
such practices, the issue of the quantity of information required by rational
agents becomes inescapable in subjective Bayesian decision theory, which re-
quires agents to employ Bayesian conditionalization to update beliefs to reflect
new information. Conditionalization implies that the beliefs of the agent at any
instant suffice to determine the appropriate updates for every possible sequence
of future information updates. In a world with an unbounded continuum of fu-
ture times, this leads quickly to the need for belief states that represent infinite
quantities of information.

Although economics posits beliefs and preferences that exhibit unbounded
degrees of accuracy, completeness, and consistency at each instant of acting,
humans find thinking difficult. As noted earlier, they have trouble seeing the
consequences of their beliefs and preferences for the decisions that economics
supposes they rationally make. But beyond these failures of awareness, people
also suffer failures of agility, for when confronted with new information, they
often fail to adjust their expectations in the comprehensive way prescribed by
economics, or can take a long time to do so. This slowness to update does
not fit the economic ideal, which is a theory of specified results and behavior,
not of incremental and accumulating change. When an agent receives a new
piece of information, the ideal theory says it changes its beliefs by condition-
alizing the old on the basis of the truth of the new. While the ideal theory
does not specify how long this process takes, it does formulate sequential ac-
tion by presuming that the updates take place prior to decisions about the next
action, so as a practical matter one must view the ideal theory as requiring
the updates to take place arbitrarily quickly. Worse still, the new informa-
tion may change the belief state completely, so there need be no proportion-
ality between the new information and change of state. The ideal concep-
tion of rationality thus involves changing beliefs arbitrarily much arbitrarily
quickly.

Rational economic agents do not exhibit weakness of will because they have
no goals or intentions against which to measure success, but instead only have
instantaneous choices that can change with their beliefs and preferences. Yet
people do not seem to have the ability to assess expected utilities in the co-
herent way demanded by economic rationality, for even when people come
to rational decisions, impulsive desires or persistent habits can interfere and
cause them to act against their own rational judgments.
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2.2.2.3 Humane psychological rationality

Finally, it is also clear that although psychological rationality does not consti-
tute a rationalistic ideal in the way that logical and economic rationality do,
many aspects of human behavior have little to do with overt ratiocination, but
instead have much to do with the functioning of the human body. Most peo-
ple have personal experience with how pure physiological responses to med-
ications, intoxicants, and illnesses can produce or undercut beliefs and desires
without any involvement of recognizable reasoning processes. More generally,
people do numerous things seemingly without reason that they cannot explain.

Although it is true that we have no strong evidence to say that all of these
stem from the operation of unidentified rules of reasoning, failures of intro-
spection do not in themselves count as evidence against psychological ratio-
nality. Neurophysiology has revealed portions of the brain that not only play
large but subconscious roles in perception and motor control, but also appear to
provide related functions in the course of thinking. Such structure-sharing sug-
gests that a person might be conscious of some reasoning in some settings and
unconscious of the same reasoning in other settings. In addition, we can con-
struct reason-based interpretations of a wide range of behaviors (Doyle 1994).
Although we might thus regard organs of perceptual and motor activity as ef-
fecting a very complicated sort of reasoning, we might instead regard it as
more straightforward to view these mental changes as nonrational elements of
thought, more akin to the trained muscular reflexes of an athlete than to the
trained inference of a physician.

2.2.2.4 Do the differences matter?

One might excuse departures from logical and economic rationality to some
extent by noting that these senses of rationality represent ideals, not practical
observations, and that individuals can achieve greater rationality by expending
greater effort toward that end. Indeed, economists tend to think that large num-
bers of people acting in markets generally do produce rational decisions, with
the flaws of one person canceling out the flaws of another and with the correct
judgments of each reinforcing each other. Of course, no one expects reality
to fit the ideal perfectly, but even granting such claims, observed individual
behavior approximates the ideal conception of rationality only poorly. Some
consider the departures from the ideal severe enough and common enough to
call into question the suitability of the ideal as the standard by which to judge
rationality.

In practical terms, the perfection and strength of the economic concept of
rationality means that only agents of extreme simplicity, such as thermostats
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and toasters, can satisfy its strict requirements under suitable imputations of
beliefs and preferences. Realistic agents of even moderate complexity, to say
nothing of the great complexity of the human mind, suffer various physical,
computational, and informational limitations that generally prevent action in
accord with the ideal.

Yet one should not abandon the economic ideals too hastily, nor in all appli-
cations. Acting rationally means taking into account one’s limitations, includ-
ing limitations on one’s own rationality. In particular, mitigating the effects of
limitations on rationality requires recognizing and exploiting the limitations.
Recognizing limitations allows the agent to allocate its scarce resources to ob-
tain better results than those resulting from haphazard or uniform allocation to
all deliberative tasks. Exploiting limitations allows conservation of resources
by removing some possibilities from consideration in the first place, lessen-
ing the complexity of the deliberative task to be faced at future times to more
manageable levels. I use the terms rational self-government (Doyle 1988a) or
rational self-management (Doyle 1980) to describe methods for recognizing
and exploiting one’s own limitations.

2.2.3 Mechanical rationality

Recognizing the mismatch between the strong theoretical ideal of economic
rationality and the sometimes appalling reality of decision making by humans
of limited mental capacity and rationality, thoughtful economists have sought
theories of more realistic conceptions of rationality for some time. They have
explored a fair number of ways of trying to weaken the ideal theory, with some
conceptual successes in theories of consumer and organizational behavior. Un-
fortunately, none of the weakenings explored to date serve well the standing
needs of economics. As Truesdell and Noll (1992, p. 4) remark, “[t]he task
of the theorist is to bring order into the chaos of the phenomena of nature, to
invent a language by which a class of these phenomena can be described ef-
ficiently and simply,” but the weakenings explored to date all seem too weak
or too complex to serve as starting points for a realistic reconstruction of the
theory of markets and other economic subtheories.

The search for a realistic theory of rationality has met with only modest
success because developing a characterization of realistic rationality implies
development of a serviceable mathematical model of human or human-like
thinking. Economics should find such a model in psychology, but psychology
has no such model to provide. Neurophysiological models exist in mathemat-
ical form, but the mathematical concepts they involve say nothing about the
properties of interest to the economist.
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In the following chapters, I interpret aspects of psychological limitations
in terms of mechanical characteristics of mass, force, and effort in hopes of
transferring at least some of the theoretical conclusions available in traditional
mechanics to psychology and economics as part of an analytical and predic-
tive theory of mechanical rationality. To wit, some psychological limitations
involving update reflect the role of mental mass; some limitations involving
habit and character reflect constitutional properties of the psychological ma-
terial in question; some limitations of attention reflect the additivity of forces
and energetic properties; and some limitations of consistency reflect multiple
bodies as well as the additivity of forces. Roughly speaking, one can find
masses in memory, intention, habits, skills, and other forms of human capital;
forces in motivations, desires, sensation, and attention; energy in effort; and
constitution in character. The hope in seeking such a transfer of mechanical
concepts to psychology is that a mathematical basis of mechanics may provide
more realistic foundations for economics, foundations that help reconstruct the
standard theoretical economic superstructures in more useful ways.

We find evidence of the possibility of such transfer in psychological truisms.
Numerous truisms attest to the limits of economic formalism and point to a so-
lution. Everybody knows from self-help books that one has to force oneself
to change, and the bigger the desired change, the more one has to work at it.
Everybody knows that the more one knows about some question the harder
it is to change one’s position. Everybody knows that getting going on tack-
ling a task is often the hardest problem faced in carrying out the task, and that
once one overcomes this initial inertia, progress generates its own momentum
that keeps one going. Everybody knows that maintaining direction or focus
requires forcing oneself to ignore distractions. We can speculate that people
express and use such truisms because people have well-developed abilities for
predicting the motions of physical objects in such terms and because everyone
gains some understanding by applying the same terms and abilities to men-
tal behavior, even after acknowledging the unpredictable ways minds can act
compared to inanimate objects.

Science, when confronted by things “everybody knows,” can seek to con-
firm, disprove, refine, or correct the claims experimentally or theoretically.
Doing any of these requires making the claims precise, preferably in mea-
surable ways. This was done in natural philosophy at the time of Newton.
“Everyone knew” many things about the behavior of ordinary objects. New-
ton captured some of these in his three laws of mechanics—and arguably his
law of inertia was something almost everyone thought false. Finding sensible
mathematical formalizations of Newton’s laws posed major difficulties in the
century following their statement.
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In the same way, finding appropriate formalizations of psychological tru-
isms in mechanical form poses a major difficulty for developing a theory of
realistic rationality, whether the appropriate formalism involves mechanics or
not. If scientists judge they can never make the claims precise, they may dis-
miss them as nonsense or misunderstandings. Scientists have regarded many
psychological truisms as nonsense for centuries because the mathematical for-
malism developed in physics has not applied in clear ways to mental forces or
inertia, even though truisms about these make sense in everyday life and seem
consonant with physical intuition. This creates an uncomfortable conflict for
the humble and reflective scientist, since everyday living involves applying
terms one disbelieves intellectually.

The mechanics developed in subsequent chapters points a way to reducing
these conflicts. The formalizations that follow identify notions of psychologi-
cal and economic force, mass, and momentum as precise as the familiar phys-
ical ones and obeying essentially the same laws and interrelations. This lets
us transform some truisms and common beliefs about psychology into sensi-
ble formal statements of mechanics, statements that we might then endeavor to
show true or false. We certainly do not yet know how to make all such truisms
and beliefs sensible, and some might remain formally uninterpretable forever,
but some truisms do appear to correspond to true formal statements, justifying
their persistence despite centuries of scientific censure.

2.2.3.1 Mental inertia

From the mechanical point of view, motion corresponding to ideal rationality,
in which new information produces arbitrarily high velocities, requires either
infinite forces or massless bodies, neither of which characterizes human bodies
or minds. Instead, as noted previously, people take time to adjust their beliefs
and expectations after acquiring new information. One fits this delay into the
ideal of economic rationality only by distinguishing receipt from acquisition
of information, and saying that one has “acquired” new information only once
one has assimilated all the implications of the new information. This termi-
nological dodge does not really solve the problem, of course, especially as it
means that people never acquire new information, because they never fully
comprehend all the consequences.

In contrast to the economic ideal, the mechanical view of learning and rea-
soning explicitly recognizes that effecting change takes time, and that the con-
cept of inertia represents a key element of describing the resistance to or slow-
ness of change, with forces producing changes in momentum. The sketch of
mechanical reasoning in Section 2.1.3 illustrated this in part by characteriz-
ing reasoning states in terms of both position—the current conclusions—and
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momentum—reason memory and current changes or velocity. As illustrated
in the reason forces identified earlier, reasoning rules change the conclusions a
few at a time, with each reason adding or subtracting some set of conclusions,
and so change the velocity of the reasoner.

In the case of RMS and similar reasoning systems, some learning consists
of corresponding changes to the set of reasoning rules used to conduct reason-
ing. In reasoners employing memory structures other than sets of reasoning
rules, one finds related mechanical interpretations. For example, in kernel-
based learning methods (Müller et al. 2001), such as support-vector machines
(Burges 1998), learning corresponds to the notion of deformation that under-
lies much of continuum mechanics. To separate two disjoint subsets X and
Y of a set Z of data points expressed using a space A of data-attribute tuples,
kernel-based methods aim to construct a nonlinear mapping Φ : A→ A′ from
the given space A of data-attribute tuples to a space A′ of higher dimensional-
ity such that X and Y are separable by hyperplanes in the enlarged space. The
nonlinear mapping is defined in terms of a kernel function. A kernel function k
is a positive-definite symmetric function of pairs of points in the original data
space; that is, k(x, y) ≥ 0 and k(x, y) = k(y, x) for each x, y ∈ A. Such
kernels can be viewed as representing inner products in the transformed space.
The Gram matrix of the full data set Z = {z1, . . . , zn} consists of the square
matrix with entries k(zi, zj). The Gram matrix has a natural interpretation in
mechanics as the spatial configuration of the data points, that is, as the matrix
of distances between points in Z . The process of constructing a set of distances
that separates the two classes corresponds to identification of a deformation of
the original configuration of the data that exhibits the desired separation of the
body part inhabiting the points X from the body part inhabiting Y .

2.2.3.2 Mental effort

Identifying mechanical forces and masses in psychology and economics pro-
vides a new formal vocabulary for characterizing limits on rationality. In tra-
ditional settings, mechanics expresses some limitations on behavior in terms
of summary measures of mass, distance, speed, and energy that characterize
gross characteristics of bodies and motions without reference to the fine de-
tails. Many limitations on mechanical systems translate into limitations on
these summary characteristics, providing the basis for familiar back-of-the-
envelope calculations. Limitations on speed, whether maximum stable speeds
of an aircraft or relativistic restrictions to the speed of light, provide lower
bounds on the times needed to traverse specific distances. Mass itself limits
the average speed of travel, assuming bounded forces. Limits on forces arise in
turn in considering the actions of finite bodies on each other and in considering
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transmission of forces through limited linkages between bodies. Knowledge of
the magnitudes of possible forces, or relative size of masses, thus allows one
to rule out some conceivable motions as mechanically impossible.

Mechanical expressions of limits offer a similar promise in the psycholog-
ical setting, with mechanical concepts of mass and force used to express lim-
its on the speed with which agents can change mental state and direction in
accommodating new information and in reasoning and deliberation. The me-
chanical notions of force, momentum, and work also play roles in constructing
measures of psychological effort or ratiocinative complexity.

Physics textbooks use calculations of work performed or energy expended
to answer a variety of questions. We find reflections of the physical notion
in self-help truisms like “bigger changes require more work” that apparently
concern not physical work but instead a common reckoning of effort of reason-
ing or will. In fact, the mechanical interpretation of reasoning provides some
justification to such truisms.

For example, we can calculate the mechanical work performed in reasoning
by building on the mechanical reasoning interpretation of Section 2.1.3. In the
case examined earlier of pure reasoning without any learning, the formalization
obtained a force ft = (0, ẍt) resulting from applying the reasonsRt according
to (2.20). Applying the elementary rule that work equals force applied times
distance moved, we obtain the work expended in the motion as

wt = (0, ẍtẋt+1). (2.21)

This product combines acceleration at t with velocity at t + 1 because we
have defined the velocity ẋt+1 as a trailing difference in the formalization, so
that acceleration at one instant acts across the same temporal interval as the
velocity at the next instant. The contribution to work of the mass component
of reasoning is zero. Because ẍt = ẋt+1 − ẋt, we can write the contribution
to work from the spatial component of force and distance as

(ẋt+1 − ẋt) · ẋt+1 = ẋt+1 · ẋt+1 − ẋt · ẋt+1. (2.22)

If we now recall the meaning of the forces identified in (2.20), we see that the
first term ẋt+1 · ẋt+1 represents a count of the number of changes made by the
reasons operating at instant t, which is certainly one natural measure of work
performed in reasoning. If we consider only motion in which the reasoner does
not immediately reverse conclusions made or removals performed at the pre-
ceding step, the second term of this expression vanishes. If we do not restrict
attention in this way, the measure assigns no effort to immediate changes of
mind. Indeed, we shall see later that repetitive reversals correspond to inertial
motion, which, as expected, does no work.
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This same calculation extends to multistep reasoning episodes by summing
the work performed at each instant, with the total work representing the num-
ber of changes made to spatial attributes throughout the episode.

We obtain one simple overestimate of this measure of reasoning by multi-
plying the number of temporal steps by the total number of spatial attributes
changed across the reasoning episode. This overestimate has some similarity
to time–space products sometimes used as measures of computational effort.
One of the founding students of computational complexity, Juris Hartmanis,
started his career as a physicist, and reports that physical analogy played an
important role in his identification and study of computational measures (Hart-
manis 1973). More fundamentally, bounded changes of memory in computa-
tional systems capture an essential ingredient of Turing’s concept of mechani-
cal computation.

I note in passing that the analysis of mental effort in mechanical terms takes
place at a much finer level of detail than that typical in the standard theory
of computational complexity, in which most of the focus rests on complexity
classes defined by functional properties of fixed sets of inference rules, such
as whether the time or space they require for convergence on a closed set of
conclusions grows polynomially or exponentially with the number of the ini-
tial hypotheses. The focus in mechanical measures of mental work rests not
on placement of some problem in the complexity hierarchy but on comparison
of the fruits of particular resource allocations. Cobham’s (1966) celebrated
analysis of time–space trade-offs in recognizing palindromes provides an early
model here. Roughly stated, Cobham proved that the lower bounds for recog-
nizing palindromes of length n satisfies Time(n)·Space(n) = O(n2). Standard
separation theorems of complexity theory then imply one can split the factors
pretty much any way one wants, from time n and space n, with each reduction
in space increasing the time needed. More prosaic forms of such trade-offs
play a role in the economics of computational resource allocation in the work
of Horvitz (1987) and others.

Bounded forces play a key role in artificial intelligence. Many approaches
to automatic reasoning seek to exhibit psychological rationality and use ex-
plicit rules as the basis for conscious reasoning. Even though one can conceive
of individual rules conditional on enormous numbers of beliefs and produc-
ing enormous numbers of changes, conscious human reasoning appears to in-
volve only finite steps conditioned on and changing only fairly small numbers
of mental attitudes. This limitation arises in part because practical reasoning
rules act as a form of communication, either in the reasoner telling itself some
consequences of what it knows in order to get it to change its state, or of the
reasoner explaining to others how it arrived at some conclusion. This role in
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communication means that useful reasons must be individually intelligible. If
some large change is needed, the inference must be broken down into smaller
steps. This means that practical psychology places upper bounds on the size
of reasons, and because reasons serve as the generators of forces in reasoning
systems, practical psychology involves bounded forces operating on bodies of
nonzero mass.

We also find bounded forces in other aspects of the structure of reasoners,
as the dimensionality of communication channels within agents imposes limits
on contact forces in ways related to the limits on communication rates devel-
oped in Shannon’s (1948) information theory. Indeed, we might regard the
limits on reason sizes as having a similar origin as bounds on the amount of in-
formation the reasoner can pass through its own consciousness. For example,
if consciousness depends on having representations in short-term or working
memory, then the size of this memory imposes the indicated limits.

2.2.3.3 Self-control

The preceding discussion of mental inertia and mental effort touched on pre-
dictions of limitations based on comparing the magnitude of force available
with the magnitude of forces needed. But force has both magnitude and direc-
tion, and similar limitations can be predicted by comparing the directions of
available and needed forces. In psychology, these directional questions come
to the fore in analyzing the maintenance of focus of attention in the presence
of competing motivations.

Section 2.1.3 identified reason forces that can combine the contributions of
several reasons by additive superposition, as made explicit in (2.18). Additive
superposition of forces forms the standard combination seen in physics, and is
reflected in the mechanical axioms for forces. When one looks at common de-
signs for reasoners, however, one does not usually see obvious superpositions,
but instead sees a variety of methods for resolving conflicts among reasoning
rules. The additive combinations of rule conclusions used here presumes that
any “conflict resolution” method used by the reasoner comes into play in deter-
mining the setRt of reasons applicable at instant t, prior to combining the con-
clusions of these reasons. Reasoners employing different conflict-resolution
methods constitute different mental materials exhibiting different responses to
stress.

Put another way, the mechanical centrality of additive superposition of forces
gives rise to the common psychological notion of focus of attention. As in
everyday mechanics, if one wants to move a body from here to there, one must
apply forces that not only push the body in the desired direction, but that also
counteract gravity or any other forces that might act during the motion to push
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the body so as to miss the target location. The same considerations apply in
human reasoning and action, in which reasoning unrelated to achieving the
goal can distract one into irrelevancies, and in which habits can cause failure
through weakness of will when action is based merely on easily changed posi-
tion rather than on enforced intentions. In general, work on one goal requires
application of forces to counteract distractions of all sorts, whether from irrel-
evant reasoning rules or other habits.

To plan effective reasoning strategies, the reasoner must have some judg-
ment about the possibility of distractions and the availability of forces able to
boost itself into the right position. If there are forces that can push in directions
other than the desired one, the reasoner must look to apply opposing forces in
those directions. In the simple context of the reasoner formalized in Section
2.1.3, one can regard reasons as the only generator of forces, and so look to the
conclusions of reasons to find those that can directly influence the desired path
of reasoning. In practice, the problem is more complicated because chaining of
reasoning rules requires one to consider more than the immediate influences.

One can use mechanical notions akin to elasticity to analyze habitual and
refractory behavior, in which movement away from ordinary positions or path-
ways produces forces directed so as to restore motion to the usual pattern. Me-
chanical notions of force can also be used to view some equilibrium notions
of economics in terms of static balance of forces and relaxed or equilibrium
states of materials.

2.2.3.4 Self-consciousness

The first step in counteracting distracting events and habits is to recognize or
perceive them. More generally, exercising the self-control needed to succeed
in the face of limitations on available mental effort requires knowledge of one’s
own limitations.

As noted earlier, however, realistic agents cannot exhibit the consequential
omniscience characteristic of logical rationality, so the question shifts to what
knowledge about the reasoner’s limitations can be available to the reasoner.

A first step toward a more realistic conception of the self-awareness un-
derlying economic rationality is to use measures of mental effort to separate
conscious self-perception from potential but unconscious self-perception. The
obvious candidate is to characterize limits of rationality in terms of resource
volumes, namely the sets of conclusions or degrees of rationality in action that
can be achieved without exceeding specified limits on reasoning effort. For ex-
ample, treatments of “feasible inference” or “obvious” inference (Davis 1981)
have studied concepts such as conclusions derivable by means of a fixed or
expected number of applications of inference rules, such as “all conclusions
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within 40 applications of Modus Ponens to the axioms,” or by means of clo-
sure with respect to a fixed set of finite inference rules that are guaranteed to
reach a definite conclusion quickly. These notions all aim to capture the au-
tomatic or habitual inference that people perform with no apparent effort or
intention.

Unfortunately, circumscribing self-awareness in terms of resource limits
does not yield very clear characterizations of the extent of a reasoner’s knowl-
edge. Instead of some simply checked criterion for feasible implications, one
instead has a complicated volume in a space of irregular topology. For illustra-
tion, consider the motion of Simon’s (1981) ant on the beach or the shape of a
chess search tree as developed by a modern search algorithm. In both exam-
ples, the shape of the conclusions—the positions reached—in a fixed number
of steps may exhibit a very complex structure, depending on the environment
represented by the beach detrius or the initial chess board position.

One might seek to obtain more intelligible characterizations of the accessi-
ble volumes resulting from resource allocations by approximating the surfaces,
smoothing over the bumps and holes to achieve larger and simpler surfaces,
since the volumes themselves represent the superficial descriptions of great-
est detail. If done in a principled way, for example using an appropriate ma-
chine learning method (Russell & Norvig 2002), one might regard the resulting
smoothing as an approximately correct characterization of the reasoner’s con-
scious mental state. Unfortunately, even if one can smooth such volumetric
characterizations of limits to rationality, such characterizations do not neces-
sarily address one other source of complexity, namely the starting set from
which conclusions proceed. Even if one finds a simple resource measure ac-
cording to which the conclusions inhabit a bubble-like, easily characterizable
volume about each starting point (such as 40 applications of Modus Ponens), a
complex set of initial hypotheses or axioms that form the centers of the bubbles
can appear in a complex overall pattern. Aggregating all these bubbles into one
large volume might yield a hopelessly inaccurate approximation to the actual
volume, including many more things not in the volume than conclusions ac-
tually in the volume. One can certainly group together various shadings of
“yes” as the bubble of positive responses, and the various shadings of “no” as
the negative responses, but trying to smooth the description of these two to-
gether may yield a volume including everything, including all the shadings of
“maybe.”

However, nothing guarantees that ordinary intelligence is easily intelligi-
ble. In particular, nothing guarantees the existence of approximations smooth
enough to aid understanding yet accurate enough to avoid gross misrepresen-
tations. Though people generally seem capable of identifying and predicting
many elements of someone else’s thinking, decisions and other behavior that
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rely on balancing many factors against each other often prove difficult to pre-
dict with confidence, since the outcome depends on details elided by smooth
approximations. Indeed, artificial intelligence experience with formalizing
knowledge of practical matters has shown repeatedly the pervasiveness of spe-
cial cases and exceptions, all of which prevent the capture of many subjects in
a few easily comprehended and delimited axioms. Important parts of artificial
intelligence treat the problem of how to capture these irregularities in regular
ways, notably by using nonmonotonic logics and by following practical guide-
lines for their use that provide a form of approximation by exception. Some
view the irregularity of knowledge as indicating the futility of some concep-
tions of artificial intelligence, but this fear seems as baseless as a fear that our
inability to predict the weather more than a few days hence renders planning
of long-term activities impossible or useless.

Even if resource-bound characterizations of inferential limitations do not
serve to provide the desired self-understanding, one need not be discouraged,
for other paths might lead to this goal. In particular, one can use sets of reasons
both to describe the limits to reasoning and to compare degrees of rational-
ity (Doyle 1988a, Chapter 5). Reasons serve these purposes because reasons
admit natural logical and economic interpretations. The sets of conclusions
derived from sets of reasons exhibit a natural equilibrium structure akin to ra-
tional equilibrium notions from market theory, and constitute direct means for
characterizing the limits to rationality inherent in reasoned self-government
(Doyle 1983e, 1994). In particular, reasons themselves bear a natural interpre-
tation as expressions of preferences over agent states, such that the states de-
rived from reasons correspond to Pareto optimal choices (Doyle 1985b), that is,
selections which satisfy maximal sets of these preferences. This sort of distrib-
uted self-construction raises standard social-choice issues (Doyle & Wellman
1991) and offers possibilities for addressing reasoned state construction using
the analytical tools of general equilibrium theory. In addition to expressing
preferences themselves, reasons embody decisions or policies, and oftentimes
may be interpreted directly as reasoning policies adopted rationally in response
to economic decisions about the value of different habits of reasoning (see
Doyle 1980, 1983e). Because of these close connections between reasons and
rational decision making, one may view reasoned self-government as a compu-
tationally tractable (or hopefully tractable) approximation to or mechanism for
rational self-government. In particular, the economic interpretation of reasons
permits one to use reasoned states themselves as an accurate characterization of
limits to rational reasoning.

As with attempts to characterize limits to reasoning in terms of resource-
bounded inference, characterizations of degrees of rationality in terms of sets
of reasons also need not always be very intelligible, again necessitating some
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sort of summary characterizations. But some such summaries take the form of
reasons themselves, as in approaches to learning based on chunking (Laird,
Newell, & Rosenbloom 1987), derivational analogy (Carbonell 1986), and
explanation-based learning (Mitchell, Keller, & Kedar-Cabelli 1986).

2.3 Designing minds

Progress toward achieving the scientific aims of psychology and economics
promises to aid in furthering the engineering aims of artificial intelligence
and economics. Scientific progress aids most noticeably in providing meth-
ods for specifying the desired characteristics of objects or systems, methods
for predicting whether specific designs will achieve the stated specifications,
and knowledge that points the way to improvements to known solutions or
compromises.

2.3.1 Design specifications

Rationality constitutes just one notable characteristic of humans. The eco-
nomic conception of rationality abstracts from the many sources of belief and
preference in the underlying psychology. Some of these underlying sources
vary from person to person and from time to time, but others characterize dif-
ferent personalities or psychological types. The mechanical perspective offers
additional insight in understanding such classifications of minds through the
notion of distinct mechanical materials.

The problem at issue is that psychological engineering at present has rel-
atively few formal concepts for specifying designs of minds. Some come
from various areas of the theory of computation, such as liveness, fairness,
and availability; some come from control theory, such as controllability and
reachability; some come from psychology and philosophy, such as knowledge,
belief, desire, intention, plan, reasoning, and memory; and some come from
economics and philosophy, such as rationality and justice.

The mechanical concepts of mass, force, and the like provide an additional
“new” theoretical language of terms with which to specify desired behaviors,
initial conditions, and the material laws embodied in designs. One might ex-
pect conformance of system behavior with human predictions based on infor-
mal mechanical truisms to represent one of the more important uses of these
concepts. Such uses aim not to facilitate predictions by the design engineer,
but to improve the accuracy of predictions made by the users of the designed
system.
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The language of mechanical specification includes the variety of ideal ma-
terials as well as general terms like mass and force. One can expect a similar
role for ideal materials in psychology and economics. Some of these might
correspond to ideal types familiar in traditional mechanics. For example, one
way of looking at reasons makes reasoning agents have the character of elastic
materials. Other ideal types in psychology and economics will reflect instead
the standard types of minds and markets studied in those fields.

People differ with respect to several underlying native mental competences,
motivations, and proclivities that do not correspond to any known properties
of neurons or even assemblages of neurons, but do correspond in fairly di-
rect ways to material characterizations familiar in mechanics. Some important
components of native competence find reflection in kinematic assumptions that
restrict mental states to ones exhibiting certain degrees of local consistency
and completeness in the same way that rigidity assumptions restrict material
states to ones exhibiting certain relationships among distances between por-
tions of bodies. Similarly, important characterizations of inherent motivations
and reasoning processes, such as common human drives and variations in the
deliberativeness, wantonness, and conservatism exhibited in different person-
ality types, in turn find reflection in assumptions about the forces generated by
and acting in different types of persons and their behaviors. The mechanical
interpretation developed here treats personality types and more refined classifi-
cations of human character on a par with mechanical identifications of elastic,
electromagnetic, and gravitational materials.

2.3.2 Predicting performance

Truesdell and Noll (1992, pp. 2–3) observe that “the aim of theoretical physics
is to construct mathematical models such as to enable us, from the use of
knowledge gathered in a few observations, to predict by logical processes the
outcomes in many other circumstances.” Although mechanics seeks to enable
people to make predictions in this way, nothing in the character of mechanics
ensures that making predictions must be easy. The same holds true in psychol-
ogy, economics, and artificial intelligence. In each of these areas, the specific
aim of theory is to substitute logic for simulation in obtaining predictions.

Traditional applications of mechanics use mechanical laws to make predic-
tions by two means: by applying theorems that yield conclusions about future
behavior from specific facts about past and present behavior, and by detailed
numerical calculation or simulation of behavior. In practice, scientists and en-
gineers address most problems of prediction with numerical calculation, some-
times because of ignorance of or impatience with theoretical conclusions, but
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more commonly because theoretical methods do not seem to provide a solu-
tion. In fact, people often turn to simulation because not all predictions prove
amenable to analytic solution, even in traditional mechanical applications. If
one cannot predict the behavior or underlying structure of a system analyti-
cally from its axioms, at least one can try to simulate the temporal evolution
and look to see what happens.

In most of science and engineering this simulation consists of solving differ-
ential equations numerically. Such simulation suffers from two main problems:
numerical inaccuracy engendered by floating-point numerical computation and
computational difficulty that increases with the temporal distance of the pre-
diction from the present. The field of numerical analysis seeks to minimize
the numerical inaccuracies, but even when minimized, such errors call for hes-
itation in believing numeric results (Truesdell 1984a). As Hamming (1962)
put it, “the purpose of computing is insight, not numbers.” The “arithmetic
mechanics” of Donald Greenspan (Greenspan 1972; LaBudde & Greenspan
1974) represents an attempt to avoid these inaccuracies in mechanical compu-
tations, not by proving theorems, but instead by reformulating standard me-
chanical computations in terms of exact rational-number formulas that can be
performed using roundoff-free integer operations. More recent work along
these lines recasts variational techniques in discrete terms to produce accurate
integration methods for dynamical systems (e.g., Wendlandt & Marsden 1997;
Guo & Wu 2003).

The discrete character of much of the structure of psychological and eco-
nomic behavior removes many prediction problems from the realm of applica-
bility of traditional differential equations and numerical calculation. This does
not make the notion of simulation less important. In the discrete realm of
psychology, simulation amounts to application of discrete rules or transition
systems, such as application of argument steps to obtain conclusions or rea-
soned changes of mental state. This sort of simulation is exactly that practiced
in artificial intelligence and cognitive simulation, in which one writes a pro-
gram to describe (rather than compute) the desired behavior and then runs the
program to observe the resulting behavior (Doyle 1985a). Though different
in the operations performed, symbolic or reasoned calculation corresponds di-
rectly to ordinary numerical integration, which one may view as a method for
discrete simulation of continuous flows.

Mathematical development of the mechanical perspective on psychology
presented in the following may lead eventually to a practice of artificial in-
telligence less reliant on simulation. As one illustration, the cornerstone of
understanding rigid body motion is that for many purposes the shape and mass
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distribution of the body, however complex, are irrelevant except insofar as they
determine three directions called the Euler axes and their associated principal
moments of inertia. Knowledge of the conservation of these moments of in-
ertia permits straightforward calculation of many behaviors, even if the bodily
shape and mass distribution resist simple or even finite characterization. In a
similar way, we may view reasons of the form considered in Section 2.1.3 as
representing “invariant” properties of or integrity conditions on bodies: simple
properties that must be satisfied by the body no matter how complex the rest
of the configuration becomes. Knowledge of the reasons shaping the motion
of a reasoner thus might permit straightforward calculation of some properties
of mental states, even for infinite and incompletely understood models.

We can view reasons as invariants mainly because we regard the reasoner
as satisfying constitutive kinematic conditions concerned with the stability or
closure and grounding of conclusions in reasons. In a similar way, kinematic
assumptions about limited logical consistency and closure might provide addi-
tional bases for efficient prediction. Such conditions have the same character
as familiar mechanical assumptions about kinematic structure, such as rigidity
of certain bodies or incompressibility of certain fluids.

In the short term, however, the primitive state of mathematics appropriate to
psychology and economics promises to slow progress, because the ability to
make powerful theoretical predictions that short circuit or simplify simulations
depends critically on the power of the available mathematics to formalize and
analyze the central structures under study.

Even if simulation remains the rule, one can expect mental mechanics to
provide an increase in the degree of clarity and intelligibility of the designs
proposed and examined by artificial intelligence. Natural sciences seeking
to understand some phenomenon must work with the situation they find, but
engineers of artificial systems can choose designs to facilitate prediction and
analysis as well as to minimize cost or to facilitate manufacture. This abil-
ity to choose the target can render the limitations of theoretical prediction less
onerous in engineering than in science.

2.3.3 Achieving efficiency

Many common conceptions of reasoning, like some clockworks and the the-
ory of computation more generally, focus on reasoners that act in limited
steps, do not proceed further without instruction, and thus exhibit velocity-
dependent forces of the kind represented by (2.20) that traditional mechanics
would regard as frictional. The mechanical view of reasoning need not stop
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with characterization of these familiar reasoning forces, but instead might con-
tinue on and look for ways of implementing reasoning that achieve greater
efficiency by avoiding the frictional component −ẋt in reason forces. In par-
ticular, one might investigate the design of artificial agents that, like other fa-
miliar mechanical systems, exhibit free inertial motion between application of
impulsive forces. The primary investigation to date examines the notion of
conservative or reversible logic systems (Fredkin & Toffoli 1982).
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Why mechanics now?

Mechanics has enjoyed some four centuries of sustained development with-
out producing results in psychology or economics. The mental sciences have
enjoyed a couple centuries of sustained development without requiring me-
chanical intervention. To use the standard economic argument, if there was a
connection worth pursuing, would not one have already been made?

In fact, people have made numerous attempts at connecting mechanics and
mind. Although those attempts at establishing such connections have failed,
there are identifiable changes in scientific circumstances that explain why a
mechanical approach to psychology and economics should prove more fruitful
now.

To see the reasons for the lack of successful connections in the past, this
chapter examines some of the difficulties prevailing at earlier times and how
they have undercut historical attempts at connecting physics and psychology.
Readers wishing to proceed to mechanics proper can skip ahead to Chapter 4
or Chapter 5 without loss of understanding.

3.1 Impediments to understanding

Why have the mental sciences lagged the physical so markedly? The answer
could involve social factors, such as the stimulus to physical discovery made
by war and trade, but one might expect that discoveries about the mind might
benefit these activities to some extent as well, as was assumed by Joseph
Göbbels and is known by advertising agencies today. The answer could in-
volve philosophical considerations, such as those regarding free will that led
Herbart (1891) to deny the possibility of psychological experimentation, but
these apparently seemed as unconvincing to his contemporaries as they do to
many today. For deeper answers, we must look elsewhere.

47
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3.1.1 Phenomenal complexity

Even if one deems the mind subject to laws just like those governing matter,
as have many in the past century, the sheer complexity of mental phenomena
poses a barrier to understanding.

It is worth recognizing that the mind, even in routine operation and behav-
ior, seems quite exotic and complex compared to the simple mechanical sys-
tems on which traditional mechanics cut its teeth, such as flying cannon balls,
falling objects, pendulums, and planets moving in space. Ballistics, for exam-
ple, advanced its development by discovery that many characteristics of ballis-
tic motion depend little on the composition of the projectile, with the motion
determined to a reasonable approximation by three quantities: the weight of
the projectile, and its speed and direction upon exit from the hand, sling, bow,
or barrel. Though these observable properties did not suffice to determine the
motion, it was not hard to identify the most common additional influences,
such as gusts of wind or accidental or intended collisions with men, wildlife,
or other objects, and the most obvious exceptions, such as throwing feathers or
substituting balloons for the archer’s arrows.

In contrast, the inscrutability of human motivations has provided the mater-
ial for legend, epic, story, and novel. Even when one knows something of the
motivations of a person, even when one has observed the person acting in a
regular, habitual manner in the past, one cannot rule out unknown and perhaps
unobservable factors influencing the person’s actions that might divert him or
her from what one expects on the basis of the known motivations. The best one
can hope to achieve is to find explanations of the actions actually taken when
these differ from the expected ones.

To find psychological or computational systems of apparent complexity sim-
ilar to the simple systems of textbook physics, one must diminish aspirations
to simple operations such as computing the factorial function, as does Her-
mann (1990), following the example of Abelson and Sussman (1985). Even
the RMS (Doyle 1979), a simple device for tracking the grounded conclusions
of a nonmonotonic reasoner, proves vastly more complicated than the factorial
computation, even though it represents one of the simplest systems that both
exhibits characteristics akin to those of the mind and admits concrete and un-
ambiguous formalization. The unadorned RMS is in turn a pale reflection of
the complexity of the human mind. One should thus expect psychological laws
to be looser, behavior wilder, and discovery harder. If chaotic physics had been
the rule of observable nature instead of the periphery, with most of experience
more like the turbulence of rapids than the flow of smooth streams, or more
like the flight of leaves in a thunderstorm than the flight of an arrow in calm
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weather, one can expect that physics would have been much slower to develop
as well.

3.1.2 Inadequate mathematics

A lack of mathematical tools appropriate to analyzing mental phenomena has
aggravated the difficulty of understanding the mind.

Recall that natural philosophy grew and flourished in concert with mathe-
matical analysis, with the concepts of calculus invented to formalize mechan-
ics, and with physical problems posing ever more demanding challenges to
mathematical invention. Most of the mathematics that give physics its cur-
rent power—differential calculus, integration techniques, power series, matrix
algebra, Fourier expansions, partial differential equations, manifolds—was de-
veloped long after Newton (1687) propounded his “laws,” which were infor-
mal statements that resisted mathematical formalization of any generality for
many decades after their informal statement in the Principia. Even the familiar
equation f = ma was not available as a general equation of mechanics until
its identification as such by Euler in 1750.

The mathematical analysis developed to understand physical systems con-
centrated on continuous processes, with characterizations exemplified by dif-
ferential equations and continuous algebraic transformations. This wonderful
body of continuous mathematics offered little help in understanding discrete
processes, such as the discrete transitions between discrete states characteris-
tic of sequential reasoning, deliberation, and modern-day digital computers.
Enjoying a scientific understanding of the mind comparable with the present
scientific understanding of the physical world calls for development of a body
of mathematics of comparable power.

One need look no further than mechanics itself to see the direct dependence
of scientific progress on mathematical progress. For long stretches, mechanics
endured relative stagnation awaiting development of mathematical concepts
and techniques adequate to formulating and solving the problems mechanics
posed. It is not hard to see the reason why, for if one lacks mathematics ade-
quate to make competing alternatives precise enough to distinguish them, one
likely cannot test them either and so determine the appropriate course of in-
vestigation. In this way, limits on mathematical understanding have limited
progress in physical thought.

To date, mathematical progress has come only because individual people
have worked to gain better understandings of problems and then to communi-
cate these understandings to others. Reliance on this developmental pathway
has meant that progress in mathematics is slow and difficult. No individual can
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comprehend more than a small fraction of the field, so progress relies on some
individual’s seeking out and comprehending the right fraction needed to see
the next step. No one has yet found a way of speeding up this process other
than by producing more mathematicians.

If it takes Euler and the Bernoullis decades to move from Newton’s informal
laws to the equation f = ma, slow progress on developing the mathematics
needed to support mental mechanics should not surprise anyone.

3.1.3 Piecemeal models

The additional initial complexity of mental phenomena noted in the preced-
ing paragraphs compounds the inadequacy of mathematics for psychology in
comparison with physics.

The mental sciences struggled first to find ways of applying existing mathe-
matics to psychological problems, and then to invent appropriate mathematics
where the existing concepts failed. These efforts toward what we can now view
as a mathematical psychology produced probability theory first, followed by
mathematical logics, utility theory, game theory, information theory, automata
theory, denotational semantics, and various special logics including modal,
dynamic, and nonmonotonic logics. The growth of mathematical tools and un-
derstanding has permitted continuing attempts to reapply concepts from other
parts of mathematics, especially several classes of variational methods (see,
e.g., Ackley, Hinton, & Sejnowski 1985; Hermann 1990, 1991).

Although physics has no lack of variety in theoretical concepts ranging from
mechanics, to electrodynamics, to gravitation, to quantum theory and beyond,
the variety seen in the history of physics is much greater than that seen today.
Euler’s law f = ma, for example, served to unify a large number of more
special analyses, as did Cauchy’s theory of stress. As these examples illustrate,
physicists have continually sought out more comprehensive formulations of
physical law, and in so doing, increase the comprehensibility of the whole
field.

Mathematical psychology today continues to produce a large number of
analyses of specific systems and problems, just as in the history of mathemat-
ical physics. Some of these yield mathematical formalizations of large ideas,
such as ideal economic rationality. Others formalize individual ideas, such as
theories of measurement (Krantz et al. 1971; Roberts 1979). Still others iden-
tify parametric statistical models to which one can seek to fit a set of experi-
mental data. The pattern of these contributions to a mathematical psychology
departs from the pattern seen in the history of mathematical physics mainly
in a lack of connection between many of the essentially isolated analyses.
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Although the theory of rational decisions provides some glue to hold together
some studies involving decision making, many of the more statistical models
have little to connect them to anything else besides the underlying statistical
methodology. In mechanical terms, many such studies provide at best a kine-
matical or behavioral description of mental processes, and lack the conceptual
connections provided by mechanical characterizations that relate underlying
forces to behavior.

3.1.4 Simplistic models

The complexity of everyday mental phenomena has also promoted an unin-
tended concentration in the mental sciences on systems even more idealized
than those of textbook physics.

In the mental sciences, as in any field, people tend to study problems for
which technical formulations already exist, rather than problems, however im-
portant, that lack adequate formalizations. For example, recurrent complaints
accuse mathematical economics of adopting many assumptions about the na-
ture of economic systems, not because these assumptions capture an obvious
reality, but because the idealizations and extreme simplifications represented
by the assumptions seem necessary in order to reduce the behavioral equations
to mathematical forms one can solve using standard mathematical tools.

Now economics hardly stands alone in receiving such accusations. All sci-
entific fields use idealizations and simplifications to get traction on difficult
problems. The issue is how conscientiously people in the field recall that these
formulations are idealizations and simplifications, and how vigorously they
work to move formalizations closer to reality. Economics argues that these
idealizations still yield correct predictions in many important cases, and these
arguments have substantial merit, at least in some cases. The arguments nev-
ertheless rub some observers the wrong way because economics sometimes
seems to take the arguments as a license to stick with its idealizations and
simplifications even when the assumptions strike most outsiders as obviously
suspect.

If economics were not the queen of the mathematical mental sciences, such
devotion to idealizations and simplifications might not matter much. But as
the primary exemplar of the use of advanced mathematics in support of a uni-
fying theory of behavior, this devotion might strike many observers as reason
to suspect all unifying mathematical concepts as means for the mathematically
sophisticated to hold reality at arm’s length. Yet who but noneconomists would
be prone to insist on discussing the phenomena rather than the simplification?
By concentrating analysis on these tractable special cases while waiting for
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someone else to address the problem of developing conceptual tools for the
unidealized problems, mathematical economics risks stranding itself in psy-
chological backwaters.

3.1.5 Repugnant formalisms

Formal mathematical exploration of psychology may suffer guilt by associ-
ation, for if a sound mathematical psychology must resemble mathematical
economics, some might expect the wicked to stay and the righteous to flee.

Numerous sciences meet and battle on the field of psychology, which grounds
the theory of personal interactions in the theory of personal action. The battles
arise because not all social theories employ the same conception of psychology
and human nature. Economics, of course, thinks of people as rational agents;
sociology views people as nonrational rule followers; anthropology takes ei-
ther view as convenient; and history tends to describe people in rational, moral,
or Freudian terms.

Most of these sciences come lightly armed in mathematical terms, and fear
the giant of mathematical economics, which wields strong, strange, and to
some, sinister mathematics. In earlier centuries, economics bore the burden
of association with human greed and utilitarianism, long despised in much of
western thought; in recent times, it gained popularity by shedding this burden
for a more neutral amorality, though observers differ on whether the popular-
ity stems from an appreciation for its analytical utility or from a degradation
of popular morals to the moral vacuity of modern economics. To many, no
doubt, economics still represents reduction of human, social, moral, and theo-
logical values to the currency of the hustler. To many, no doubt, mathematics—
especially apparently aggressively esoteric mathematics—recalls schoolroom
perplexities and schoolyard bullies. One can expect such associations to foster
a resistance to exploring psychology using the conceptual tools of mathemat-
ical economics. Since rapid scientific progress requires making conceptual
issues formal enough to pose well-defined experiments and to perform mathe-
matical analysis, an avoidance of mathematical studies of psychological theo-
ries may well impede the advance of the science.

3.2 Vital analogy

Students of mind have applied one analogy after another in seeking, as peo-
ple do, to make sense of their observations, attempting to use human success
at reasoning in other areas as a way of understanding or reproducing human
success—such as it is—at reasoning about human behavior and thinking. The
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years have seen attempts to understand the mind by making analogies to biol-
ogy, anthropology, theology, and physics. Let us examine these in turn.

3.2.1 Biological analogy

Biological analogies have a long history. Life abounds around us, and the
marvelous complexity of organisms remains unmatched by anything made by
humans. People, as self-aware living beings, naturally developed biological
analogies to understand the mind.

Many organisms exhibit obvious structural decomposition into distinct or-
gans and organ systems. Organic or physiological structure thus provides a
basis for several biological views of mind. Such include the now discred-
ited cardiovascular and pulmonary pictures of mind, in which the mind pumps
around thoughts or vital spirits as a sort of heart, as well as the informal or-
ganic or systemic functional theories, including various philosophical theories
of mental organs (reason, perception, etc.).

Organic structure also offers support to popular neurological views of mind,
in which the structure of thinking is closely identified with the structure of
neurophysiological systems. Although direct correspondences between neu-
rons and thoughts have not held up under philosophical scrutiny, modern neu-
rophysiology has revealed areas of correspondence between identifiable struc-
tures in the brain and some common patterns of commonsense thought and
action (Lakoff & Núñez 2000). Such correspondences shed some light on in-
nate patterns of thought, but offer little help in understanding the structure of
thinking shaped by experience and education. Environmental and deliberate
influences on how one thinks can develop modes of cognition bearing little
resemblance to the innate structures. For example, mathematicians who study
complex analysis reportedly learn ways of visualizing such functions, even the
simplest of which involves four ordinary dimensions.

Artificial neural networks and related formalisms provide further evidence
of the essential independence of patterns of thought from neural structure. Al-
though human brains develop common structures, standard approaches to arti-
ficial neural networks employ an essentially formless starting point unlike the
innate structures of the brain. With enough patience, these artificial neural
networks can be trained well enough to serve as useful solutions to some
practical decision problems. Supplying “innate” structure can help speed the
training process in some cases, and one can sometimes trim the resulting net-
work to leave a more structured subnetwork providing about the same perfor-
mance. But in the end, the relative independence of network performance from
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network structure argues that theories of neural organs have limited prospects
for explaining the richness and power of educated thought.

Beyond such direct analogies to biological structure, theorists have also
attempted to view the mind in terms of biological processes. Such app-
roaches also offer some attractions, but have proven very limited in scope
because, apart from an essentially economic theory of ecology, biology pro-
vides little in the way of a theory other than idealized theories of genetics and
evolution.

Pursuing a genetic analogy, the field of artificial intelligence has worked
out moderately successful formal computer programs describing the evolution
of some types of thought in an individual agent. Methods of genetic algo-
rithms appealing directly to theories of genetic combination provide means
for generating new candidates during search, with random genetic mutation
and recombination introducing a stochastic element into the search. However,
most of the appeal of genetic algorithms to date stems more from the genetic
analogy than to any technical contribution. Other search techniques introduce
stochastic elements in more controlled and comprehensible ways than do many
genetic algorithms. Many of the original genetic algorithms also relied heavily
on bit-level representations of genotypes that shed little light on the structure
or representation of information, despite the strong and well-known influence
that representation has on the efficacy of thinking and learning. More gener-
ally, the silence of genetic analogies on the organization of thoughts and of
thinking has provided little evidence of efficacy except when these systems are
set to work in carefully constructed situations, as in genetic engineering and
market innovation.

Numerous authors make an evolutionary analogy, viewing the operation of
the mind in terms of interdependent selection processes filtering a stream of
small changes in the available information. The economist Marshall (1949)
used biological as well as mechanical terminology in his treatise, and viewed
the notion of gradual adaptive evolution as central to economics. His suc-
cessors have made serious, attractive attempts at working out the evolutionary
theories of economics in formal detail. Schumpeter (1934) shared this perspec-
tive, and it has been pursued vigorously in recent years by Elster (1979) and
Nelson and Winter (1982). Nelson’s and Winter’s approach also has some-
thing in common with that of Simon (1982), for whom learning and rea-
soning are best viewed as gradual adaptive search processes generally lack-
ing long-term controls, and Minsky (1963, 1965, 1967, 1986), for whom the
point of reasoning is to increase the applicability of ideas to the problems at
hand.
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3.2.2 Anthropological analogy

People socialize and accomplish many things in groups, and theories based on
anthropological analogies relate mental structure and function to the organiza-
tion and behavior of human groups. The most direct of these theories posits
social structures in the mind, in many ways close kin to the organic structures
of some biological analogies. Minsky’s (1986) society of mind theory provides
an example, as do earlier theories of mental functional differentiation and di-
vision of labor, especially common artificial intelligence views of the mind
in terms of large software systems organized along bureaucratic lines. Earlier
still, Le Bon (1895) and later theorists of “collective” minds claimed similar-
ities between the behavior of mobs and other unorganized assemblies and the
behavior of certain kinds of minds.

All aspects of human group behavior have found a role in such theories,
including politics, especially the theory of conflict and group choice in soci-
ety of mind theories (Doyle & Wellman 1991); economics, viewing the mind
as a market in ideas and tasks; law, the common rule-guided view of much
of thinking (Loui 1998); and culture, with many theories of common sense
(Geertz 1983) and some tribal aspects of society of mind theories. The diffi-
culty for some of these views has been tying them down to concrete formal
interpretations adequate to making or computing predictions. Formal theories
are sparse in most of the social sciences save economics, and without a pre-
cise target, most theories based on anthropological analogy depend on ad hoc
application to specific situations.

3.2.3 Theological analogy

Theological analogies for understanding the mind have been proposed as well,
though here some resulting theories have been even more informal than in the
analogies derived from social sciences. The least distinguished theological
analogies view thinking in terms of a war between good and evil, or between
competing deities attempting to work their way in a person’s behavior. Little
distinguishes most of such portrayals from political battles between mental
homunculi in a society of mind. The most fruitful theological studies have
attempted to understand the characteristics of human minds by understanding
and then degrading divine characteristics. The best known of these studies
stem from the western monotheisms, and especially from the Judaic tradition
in which God creates man as imago Dei, the “image” of God. Most of the
early works in modal and philosophical logics began as theological studies
of concepts of divine goodness, omniscience, law, and license, though these



56 Why mechanics now?

theological origins play little or no role in the modern technical sequelae. More
generally, one can view any ideal theory, even one infeasible or impossible to
implement in this world, as a theory of divine thought, as in Bram’s (1980,
1983) game-theoretic analyses of theological issues and biblical events.

* * *

While biological, anthropological, and theological analogies have offered
some insight, search techniques, and important modal logics, they mainly
served to provide evidence for common abstractions used in understanding
experience across many fields, and mainly failed to produce a science of mind
exhibiting the rigor and formality of the physical sciences. The identification
of common abstractions aids current work on formalizing human knowledge
but must certainly count as a disappointment to the grander aspirations of sci-
entific psychology.

3.3 Physical analogy

Some of the most technically successful analogies for understanding the mind
have drawn on physics and chemistry, representing hopes that the success of
those fields would rub off on the application to psychology. Other physical
analogies, however, evoke the poignancy of a child’s imitation of a more ma-
ture brother or sister.

3.3.1 Chemical analogy

Chemistry provides notions of atomic structures and of specific rules governing
the combination of atomic structures. Thinking about the nature of thought has
drawn on analogies reflecting both of these aspects of chemical theory.

Syllogisms and other logical rules have been known from ancient times, and
so have interest that is independent of any chemical analogy. Nevertheless,
the numerous specific qualitative and quantitative rules expressing chemical
reactions have engendered additional efforts at viewing thinking in chemical
terms, comparing the way in which logical rules produce specific conclusions
from specific antecedents with the way in which chemical rules produce spe-
cific molecules from other molecules exhibiting specific valences. Such mole-
cular comparisons entered into some thinking about associations, a mainstay
of Enlightenment philosophers of mind and one that, in the hands of Wundt,
developed into the first quantitative theories of psychophysical measurements.

The notion of chemical atoms or molecular primitives has had immense in-
fluence as an exemplar in conceptual theories. The notion of conceptual or
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theoretical atoms underlies many ideas in empiricism and philosophy of sci-
ence, notably the ideas of Ernst Mach and the logical positivists, and more
recently formed the basis of theories of conceptual primitives proposed by
Schank (1982) and others.

Despite the analogical attractions of the atomic concept, none of the theo-
ries of conceptual atoms have intimated any specific connection between the
chemical properties of matter and the structure of thinking. Indeed, the most
interesting connection was made by Turing (1952), who originated one of the
first chemical theories seeking to bridge the chemical and biological or infor-
mational levels. Turing’s theory of morphogenesis has remained of fundamen-
tal importance in biochemistry, though it still leaves the chemical level itself
having little implication for the mental levels.

3.3.2 Dynamical analogy

Physical analogy has included mechanical analogies to forces, energetics, and
thermodynamics.

As noted earlier, dynamical analogies occur routinely in ordinary speech
to describe the behavior of minds and economies, as in “It will take a lot of
pressure to force him to change his position,” “She felt the weight of his ar-
gument holding her back,” “Falling oil prices exerted downward pressure on
refinery shares today,” or “Economic forces tilted the election in favor of the
challenger.” Tolstoy even used theoretical mechanical analogies explicitly in
War and Peace:

At Borodino the armies meet. Neither army is destroyed, but the Russian army, im-
mediately after the conflict, retreats as inevitably as a ball rebounds after contact with
another ball flying with greater impetus to meet it. And just as inevitably (though part-
ing with its force in the contact) the ball of the invading army is carried for a space
further by the energy, not yet fully spent, within it. (Tolstoy 1869, Pt. 11, Ch. 2)

An innumerable collection of freely acting forces (and nowhere is a man freer than
on the field of battle, where it is a question of life and death) influence the direction
taken by a battle, and that can never be known beforehand and never corresponds with
the direction of any one force.

If many forces are acting simultaneously in different directions on any body, the
direction of its motion will not correspond with any one of the forces, but will always
follow a middle course, the summary of them, what is expressed in mechanics by the
diagonal of the parallelogram of forces. (Tolstoy 1869, Pt. 13, Ch. 7)

Secondly, it was impossible [to cut off the retreat of Napoleon’s army], because to
paralyze the force of inertia with which Napoleon’s army was rebounding back along
its track, incomparably greater forces were needed than those the Russians had at their
command. (Tolstoy 1869, Pt. 14, Ch. 19)

What is the force that moves nations? (Tolstoy 1869, Epilogue, Pt. 2, Ch. 2)
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Herbart (1891) made much of the forces conflicting concepts exert on each
other, and devised a numerical scheme for calculating the magnitudes of these
forces. He gave no formal mechanical basis within which to interpret these
quantities—no bodies, no space, no motions—so the entire scheme moved
only slightly away from mere suggestive analogy toward a quantitative the-
ory of strength of belief. Subsequent psychologists dropped the mechanical
conceptualization but modified the numerical schemes into theories of psy-
chophysical measurement that formed the basis for the emerging experimental
psychology: an outcome of no little irony, seeing how Herbart explicitly denied
the very possibility of psychological experimentation.

A century later, Shand also used an explicit mechanical terminology of
forces and characteristic properties in discussing motivation, emotion, and
character.

The processes of perception and thought, of feeling and will, have been detached from
the forces of character at their base. We have what purports to be a science of these
processes; while that which alone directs and organises them is left out of account
as if it had no importance. Yet we find in the text-books a small and subordinate place
allotted to the emotions which, rightly conceived, are among these forces; but too often,
as William James complained in his time, they are treated in such a way as to deprive
them of the living interest which they have in the drama and the novel.

If we are to have a complete science of the mind, this will include a science of
character as the most important part of it; and if we are to make any approach to such
a science, it would seem that we must begin by a study of the fundamental emotions
and of the instincts connected with them. But we have to conceive of the problem as
essentially dynamical. The emotions are forces, and we have to study them as such.
(Shand 1920, p. 1)

We have then first to investigate the forces at the base of character, and the part they
play in the general economy of mind.

The solution of this problem presupposes that we can profitably study the emotions
dynamically, and that for this purpose we can sufficiently isolate them from one another
and from the character as a whole. . . . In a strict sense we can never isolate the emotions.
Each is bound up with others. Each subsists and works in a mental environment in
which it is liable to be interfered with by the rest. Nor do these forces keep themselves,
like human beings in the social environment, always distinct. On the contrary, they
frequently become blended together, and often what we feel is a confused emotion
which we cannot identify. (Shand 1920, p. 2)

Shand provided no formalism comparable to standard mechanics or to Herbart’s
quantification of forces, but presented detailed discussions of the roles differ-
ent emotions and sentiments play in generating forces. Each of these emotions
generated characteristic dynamics, in his view, acting to increase the order ex-
hibited in mental states.
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We also find dynamical analogies provided in more recent works. For ex-
ample, Burges and Schölkopf sketch the following mechanical interpretation of
the Lagrangian optimization methods used in support-vector machine methods
to construct the separating Gram matrix in terms of a set of “support vectors”
drawn from the data set.

The structure of the optimization problem closely resembles those that typically arise
in Lagrange’s formulation of mechanics. (Schölkopf 2000, p. 8)

If we assume that each support vector s̄j exerts a perpendicular force of size αi and
sign yi on a solid plane sheet lying across the hyperplane Ψ̄ · x̄+b = (k0 +k1)/2, then
the solution satisfies the requirements of mechanical stability. At the solution, the αj

can be shown to satisfy
�NS

j=1 αjyj = 0, which translates into the forces on the sheet
summing to zero; and Equation (4) implies that the torques also sum to zero. (Burges
& Schölkopf 1997, p. 377)

As we shall see, similarity to Lagrangian formulations of mechanics has less
import than one might think. Nevertheless, the suggestion illustrates that op-
portunities for mechanical analysis of mental phenomena are not hard to find.

I digress briefly before proceeding to point out some potentially mislead-
ing mathematical terminology. The word dynamics comes from δύναµη, the
Greek word for force, and the discussion in this book attempts to use it primar-
ily in connection with the notion of force. In mathematics, however, the term
dynamical system today refers to a conceptual method for describing differ-
ential equations. Dynamical systems in mathematics have no connection with
force or other physical content, any more than general differential equations
do. Dynamical systems serve only as a useful framework for describing any
sort of mathematical function, whether it be the orbit of the Moon, the mul-
tiplication of bacteria in vitro, or the growth of the number of prime factors
of integers. Indeed, as Rubel’s (1981) universal differential equation suggests,
even a single differential equation might satisfy almost every purpose. The
recent claim of van Gelder (1998) that the mind is a dynamical system thus
means little more than the mind changes.

The primary concern of a mathematical scientific theory of mind is not the
mathematical method or form used in describing the mind, but rather the con-
tent of the description. My interest in this book is to indicate the value of
concepts of force and mass in analyzing the mind. Dynamical analogy thus
refers to analogies to the notion of force, not to description based solely on the
fact of change.

3.3.3 Energetical analogy

Psychology has produced numerous theories based on analogies to mechanical
energy and to motion determined by fields of potential energy. Freud (1895)
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proposed an early theory involving energy flows between id, ego, and super-
ego, but this theory was always purely informal and suggestive, never re-
spectable. Similar insubstantiality appears in Zipf’s (1949) work in linguistics,
metaphorically connecting the structure of language to least action principles
in physics. Though this work proved premature as an application of physics to
language, “Zipf’s Law” relating word length and word frequency in language
use represents an anticipation of important notions in information theory and
statistics. Lewin’s (1951) topological theory of psychology cast mental dy-
namics in terms of potential field theory. Unfortunately, there was never any
real substance to his theory: like Freud’s, it relied mainly on purely suggestive
terminology, but unlike Freud’s, in a presentation laced with a few unsupported
mathematical symbols to lend an air of mathematical rigor and meaning. The
well-publicized catastrophe theory of Thom (1975) and Zeeman (1977) drew
on respectable mathematical structures and represented talk by mathematicians
who knew whereof they spoke mathematically, but conveyed only suggestive
psychological concepts. With the mathematical structures providing no guid-
ance to the applier, other than to choose the application so as to obtain the
desired answer, catastrophe theory provided no more specifically psychologi-
cal conclusions than did number theory (cf. Truesdell 1984d).

In economics, which stands on a much more extensive and fruitful mathe-
matical basis than psychology, people have proposed both mechanical analo-
gies and formal theories regularly for many years, to the point where Samuel-
son (1971) complained of the flow of such “crank” papers onto his desk. With-
out having seen Samuelson’s crank papers, one might suspect many rely on
vacuous energetic analogies. Some nonphysicists see physicists using Hamil-
tonian equations throughout classical and quantum mechanics, note how physi-
cists explain these equations in terms of energy functions, infer that the notion
of energy suffices to construct a physical theory, and conclude that the no-
tion of energy therefore suffices to construct a physical theory of minds, of
economies, or of what have you.

What nonphysicists (and perhaps even some physicists) do not see as clearly
is that physicists’ use of Hamiltonian and other energetic equations assumes
one already has a detailed physical theory of how mechanics, electrodynamics,
gravitation, and the like play out in the system under analysis. Physicists use
these overtly physical concepts to construct Hamiltonian functions represent-
ing real or abstract notions of energy that encode all the underlying physical
laws. Outsiders say “Assume a Hamiltonian” and think the rest follows for
free, when in fact nothing in science comes for free; without an underlying
theory justifying the construction of specific Hamiltonians, the outsiders get
only an unspecified Hamiltonian to which they attribute talismanic powers.
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Energetic analogies that rely only on an abstract notion of energy and vari-
ational or Hamiltonian formalisms exhibit a theoretical vacuity reflecting the
physical vacuity of the underlying variational theories. One can fit almost any
theory of anything into a variational theory over abstract potential functions,
whether the theory is correct or not. Indeed, Feynman motivated variational
theories in terms of an “unworldliness” function U , defined essentially to be
the square of the difference between a conceivable system behavior and the
“legal” behaviors of interest. Vacuous energetic theories lack even the sugges-
tion of properly mechanical notions like mass and force. One encounters only
potential fields and dynamical systems, general mathematical structures for de-
scribing almost any changing system as long as one can encode all the laws of
the system, physical or otherwise, into the Lagrangian function (cf. Sussman &
Wisdom 2001). This psychological and mechanical vacuity reduces these the-
ories, when formal, to merely another way of writing systems of differential or
difference equations. Although rewriting equations characterizing economic
dynamics in terms of conjugate pairs of variables (symplectic structures) can
offer computational advantages (Cass & Shell 1976), Hamiltonian methods
cannot create laws where none existed. “Physical” theories of mind relying
only on conceptually impoverished imitations of variational mechanical meth-
ods do little to illuminate relations between mechanics and economics, and
bring disrepute upon the enterprise (Mirowski 1989).

In fact, the mechanical perspective on mind developed in the following
might offer some insight into Samuelson’s crank papers. It may well be that
all of those papers were hopelessly flawed, justifying Samuelson’s judgments
of them. The ideal rational agent studied by economists lacks the important
mechanical property of inertia. Inertia, as resistance to change, entails limita-
tions on abilities that constitute some of the most obvious differences between
the imaginary species homo economicus and the actual species homo sapi-
ens sapiens. Thus looking back at discussions of mechanics by economists,
one can say that Marshall (1949) was justified in his mildly apologetic use of
mechanical analogies, for he talked of people. Knight (1956) was also jus-
tified in his criticism of Marshall’s analogies, for Knight talked of an ideal.
In both cases, the focus was properly not on purely mathematical variational
methods but on the underlying properties and characteristic laws of economic
systems.

3.3.4 Thermodynamical analogy

Thermal theories and theories based on statistical mechanics may have not
inspired any overall psychological theories, though they regularly figure in
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macroeconomic reporting, as in “economic competition heats up as the
economy contracts and cools as it expands.” The primary formal application
of these concepts has appeared in application of methods of statistical me-
chanics to search and learning problems in which statistical techniques serve
to introduce a measure of randomizing noise into the search, noise introduced
to avoid the local minima that capture and stall standard gradient-following
search methods. Search algorithms, however, say little about mental organi-
zation and the structure of thinking. The behaviors of the algorithms instead
derive their most important properties from those nonsearch characteristics of
mind concerned with how one poses and designs the search problem.

3.4 Machine analogy

The preceding analogies to chemistry, mechanical forces, energetics, and ther-
modynamics represent the failures, not the successes, of physical analogy.
From the perspective of the mechanical understanding of psychology and eco-
nomics developed in the following chapters, one can say that failures occurred
for three main reasons.

First, many of these physically inspired analogies were presented to illus-
trate imprecise and informal psychological theories. The analogies thus bore
the complete burden of providing a formalization. Without any independent
verification of the psychological plausibility of the formalizations so produced,
the analogies failed to provide the desired understanding and prediction.
Putting vague ideas into otherwise meaningless symbols benefits neither the
vague ideas nor the pathetic symbols.

Second, some physically inspired theories lacked much in the way of psy-
chological theories altogether. The theorist using the analogy was supposed to
provide the missing laws prior to making the analogy. This constitutes science
by appropriation rather than science by investigation.

Third, some attempts at physical analogy required no small suspension of
belief, as they required ignoring the mismatch between the continuous mod-
els of physical behavior and the partially continuous but undeniably discrete
nature of thought. No one disputes the importance of chemical dynamics
and thermomechanics in baking a cake, but expressing the baker’s recipe in
differential equations—or even expecting such expression to convey under-
standing—is ludicrous.

However, if the preceding chemical, dynamic, energetic, and thermody-
namic analogies represent failures of physical analogy, then computational
analogy to machines, based on purely kinematical concepts akin to clockwork
gears, has delivered the major success of mechanical analogy to date.
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The idea of creating artificial intelligences or persons has a long history,
tracing backward through the stories of Dr. Frankenstein’s monster and the
Golem to early Greek and Chinese automata and perhaps even the god-creation
implicit in the construction of Mesopotamian idols.

The philosophers of the Enlightenment believed animals to be automata,
merely complicated biological machines, but believed humans to have free
souls controlling their bodies that, were the soul to depart, would exhibit only
innate automatic behavior. The development of the Church–Turing theses of
mechanizability of a wide range of procedures began to push back the bound-
ary between mechanism and mind, to the point where Turing’s (1950) spec-
ulations on the mechanization of thought, capping two decades of cascading
conceptual and technical advances by Turing, von Neumann, Wiener, McCul-
loch, and others, gave rise to the modern field of artificial intelligence, typically
viewed as dating from the famed Dartmouth meeting of 1956.

The decades of investigation subsequent to the Dartmouth meeting have not
proven Turing’s conjecture that one can reduce all intelligence to computa-
tion. Much experience suggests that many of the formal tasks one learns to do
through formal education admit approximate mechanizations, with no appar-
ent limit on how far one can improve the approximations through refining the
underlying formalized knowledge and methods. Capturing all this knowledge
requires much human work, even with the development of some techniques for
automation of learning. In the most advanced investigations to date, the com-
plexity of the body of mechanized knowledge makes it difficult to distinguish
an automaton basing its conclusions and actions on that knowledge from a hu-
man performer, at least as long as one restricts the attempts to distinguish the
two to viewing task performance in isolation, forbidding free-ranging ques-
tioning of the sort envisaged by Turing (1950) in his imitation game. No tech-
nical advance has yet resolved the fundamental questions posed by Turing’s
conjecture. Some argue we will replicate human intelligence by formalizing
commonsense knowledge and reasoning and adding in vast stores of specific
expertise; others object that common sense and consciousness require some-
thing beyond Turing’s notion of mechanical computation, be it some form
of hypercomputation (Copeland 2002) or even esoteric physical notions like
quantum gravity (Penrose 1989).

3.4.1 Examples and exceptions

Whether or not one can automate thinking, and regardless of the technologi-
cal value of artificial intelligence systems, modern automata theory has pro-
vided mathematical tools for analyzing and understanding far more complex
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kinematic mechanisms than ever before conceived. Work on artificial intelli-
gence has exploited this capability to produce precise formal models of think-
ing far more concrete and complex than any prior psychological system. These
models capture at least some aspects of human thought. Sometimes the models
capture only superficial aspects, and sometimes not. In either case, the models
do something to aid psychological analysis by providing a serviceable toehold
for the mathematical analysis of thinking. In particular, many of the compu-
tational models embody structural hypotheses that serve as complements and
alternatives to statistical models developed in mathematical psychology.

Development of such models changes the landscape of psychological in-
vestigation. Making precise mathematical models of vagueness and nonsense
hardly seems worth the effort, but without a sound theory of mental structure
and behavior suitable for formalization, earlier attempts to make mathemat-
ical or mechanical theories of psychology were bound to founder. Artificial
intelligence and computational cognitive simulations altered this situation by
providing the large yet precise models of a number of complex psychological
phenomena so conspicuously lacking in earlier efforts. It matters little whether
these particular models prove correct. Their value for psychological investiga-
tion derives not from their correctness but instead from their visible structure,
formal character, and amenability to experimentation. These qualities offer
far easier material for technical investigation and analysis than human minds.
As long as these models exhibit some plausibly mental behavior, their eas-
ier access and testability may outweigh concerns about some differences from
humans.

Despite technological advances flowing from the machine analogy, one might
judge the conceptual perspective of current artificial intelligence a failure. Ar-
tificial intelligence, at base, instructs one to understand thinking by viewing
mental behavior as computation, whether the steps be digital or neural. On
its face, this is preposterous. People demonstrate reasonable powers of under-
standing of human behavior, including moderate abilities to predict what they
themselves and others will do. People also have little difficulty understanding
plans consisting of a sequence of simple steps. These abilities notwithstand-
ing, any introductory programming instructor can testify how students struggle
to comprehend the nature of even simple computations. Even when the flow
of control involves only simple sequences and loops, compositions of compo-
sitions and nontrivial mappings between intuitive concepts and the machine
states identified in test steps move programs beyond easily understood levels
of complexity.

Although a focus on computation certainly aids construction of useful cogni-
tive processes in artificial intelligence, this focus does little to exploit the power
of concepts that have proven useful in understanding behavior in other realms
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of worldly events. People use many concepts transcending the computational
in understanding human behavior, viewing individuals and groups through the
prism of multiple analogies and metaphors, including but not limited to the
biological, anthropological, theological, and machine analogies discussed ear-
lier. To gain added powers of understanding in psychology, we cannot rest
content with only the concepts of machines. The present investigation thus
seeks to move beyond the machine metaphor toward understanding thinking in
mechanical terms at the level of intentional or rational agents, or, in Newell’s
(1982) phrase, at the knowledge level.

3.4.2 Machines without mechanics

Artificial intelligence seeks to use computational ideas to help explain and
understand the structures of realistic psychologies and the nature of limited
rationality, but the pallid kinematic picture provided by automata theory pro-
vides little help in this effort. Pursuing a richer conception of the mechanical
analogy requires facing up to two central problems: developing a mechanics
appropriate to both continuous and discrete motion, and transferring mechani-
cal concepts of force and mass to the mental realm.

As noted earlier, some attempts to bring the mind under the analysis of phys-
ical law have foundered on the apparent discreteness exhibited by reasoning
and deliberation. Most of the success of physical theory relies on mathemat-
ics developed for the analysis of smooth motions, mathematics inapplicable,
at least in direct approaches, to analysis of discrete thought. The superficial
discreteness of mind might, of course, prove illusory, with physiological the-
ories of neural function providing smooth mechanisms for mental operation.
Even supposing such a theory to hold, however, neurophysiological smooth-
ness seems to miss the point, as the existence of discontinuous phenomena,
in both ordinary physics and in the mental realm, requires a theory at the dis-
crete level. Some of the apparent constraints on behavior relate to constraints
between the discrete states of reasoning, not on any constraints visible in mi-
croscopic smooth motion between the discrete states. Little compares with the
change one observes as one makes a decision and then finds the need to defend
it, fixing the decision in an essentially discrete operation. Indeed, the need for
a discrete theory arises in many mechanical situations. Consider the pendulum
clock. Its pendulum provides a literal textbook example of smooth motion,
while its discrete gear motions provide prime examples of discrete motion. No
wonder some automata derived from the clockmakers.

Recent work on hybrid system models has provided mathematical tools
for describing systems exhibiting both discrete and continuous behaviors
(Alur et al. 1993; Branicky 1995; Davoren 1998). The simplest such models
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characterize the system motion in terms of the product of a finite automaton
and a space of smooth motions. Each state of the automaton corresponds to a
different regime of smooth motion, a regime with its own acceptable operating
region in the continuous portion of the state space. Smooth motions that move
outside the acceptable region trigger transitions between the discrete states and
corresponding transitions between operating regimes of smooth motion. The
nature of the triggering conditions and the automaton structure guide the ac-
tual discrete state transitions. The smooth motion continues under the regime
imposed by the new discrete state.

The pendulum clock, for example, corresponds to a fairly trivial system in
which the smooth dynamics remain the same in all discrete states, but in which
movement of the pendulum to certain angles triggers transitions from one gear
state to the next, with groups of these gear states representing the times dis-
played by the clock through its second, minute, and hour hand positions.

These hybrid models, though useful in providing conceptual tools for an-
alyzing complex systems, do not in themselves restrict system structure or
behavior in any way. The hybrid models themselves can involve any possi-
ble discrete and continuous structures, whether or not these structures appear
in physical law. In particular, extant hybrid models by themselves provide no
means for reconciling rather than merely juxtaposing rational psychological
and economic behavior with physical law.

To date, most works in philosophy and artificial intelligence that consider
hybrid models have been content to adopt the restrictions on smooth dynamics
identified in standard physical theories, viewing the body as a massy electro-
chemical-neural system subject to the usual laws. Indeed, many such works
regard the physical system as the determining element, viewing the behavior
of the mind as something akin to the behavior of the gears in the pendulum
clock: mediated by the body but shaped by the arrangement of the discrete
computer instructions.

3.4.3 The costs of division

Artificial intelligence has benefited greatly from the separation or isolation
of the discrete level of mental behavior from the continuous level of physi-
cal behavior because this separation provides freedom to ignore the underly-
ing physics and concentrate on studying the organization of knowledge and
thought. Just as the written word permits one to understand thoughts across
space and time regardless of details of lingual motions and communication me-
dia, a focus on the structure of reasoning, independent of the physical origin,
representation, or maintenance of thoughts, has supported much progress in
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understanding how to organize thoughts into conceptual representations, how
to reason about situations, decisions, and plans, and how to interpret and learn
from experience.

Separating mental and physical behavior provides benefits familiar in all
traditional methods of analysis, which aim to divide problems into parts that
can be solved separately for later reconstitution into solutions to the original
problem. Separation of the mental from the physical has not been without
costs, however. Much has been written about the danger of taking the separa-
tion of levels as license to view thinkers as divorced from their bodies, which
can lead to loss of correlation between what the agent thinks about the world
and the way the world really is. Proper agent design seems to avoid the worst
problems.

The most serious cost, however, has not been practical, but intellectual. By
separating the mental from the physical, we have abandoned to the purely
physical realm concepts that have proven fruitful in analyzing physical behav-
iors. The result has been to impoverish the mental sciences when compared
with the physical sciences. Study a physical problem, and one has recourse to
physics, chemistry, and biology, as well as differential equations and mathe-
matical theorems that greatly aid in analysis and prediction. Study a mental
system, and one lacks almost all of this intellectual heritage, with or without
a hybrid modeling method, for the traditional conceptual tools do not apply.
This puts the analysis of mental phenomena at a great disadvantage.

Reasoning about physical motions provides a case in point. People seem
pretty good at predicting the motions of physical objects, at least in qualita-
tive terms, yet we have had no way to apply this same reasoning formally to
predicting or analyzing mental behaviors. Of course, mental behavior can be
unpredictable in ways not commonly seen in inanimate objects, but current
formal tools do not permit use of the same concepts to make predictions of the
least surprising mental behaviors.

Some aspects of the modern theory of computation stem in part from a re-
action against this intellectual decoupling of psychology and physics. Juris
Hartmanis, one of the founders of the field, recounts his motivations in the
following terms (see also Hartmanis 1973):

I loved physics for its beautifully precise laws that govern and explain the behavior of
the physical world. In Shannon’s work, for the first time, I saw precise quantitative laws
that governed the behavior of the abstract entity of information. For an ex-physicist the
idea that there could be quantitative laws governing such abstract entities as information
and its transmission was surprising and immensely fascinating. Shannon had given a
beautiful example of quantitative laws for information which by its nature is not directly
constrained by physical laws. This raised the question whether there could be precise
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quantitative laws that govern the abstract process of computing, which again was not
directly constrained by physical laws. Could there be quantitative laws that determine
for each problem how much computing effort (work) is required for its solution and
how to measure and determine it? (Hartmanis 1994, p. 38)

3.5 Appraisal
There is nothing so absurd but some philosopher has said it.

M. T. Cicero, De Divinatione

Attempts to understand psychology and economics in terms of physical sci-
ence have exploited many different mechanical analogies, including analogies
to forces, energetics, thermodynamics, and machines. None of these attempts
succeeded. One should not, however, tar the mechanical approach to under-
standing minds presented in the following chapters with the failures of these
precursors, for the present understanding rests not on analogy but on reality.

In particular, I use mathematics to forfend the target of Cicero’s pessimistic
observation. As Truesdell remarks,

There is nothing that can be said by mathematical symbols and relations which cannot
also be said by words. The converse, however, is false. Much that can be and is said
by words cannot successfully be put into equations, because it is nonsense. (Truesdell
1966, p. 35)

Turning around Truesdell’s implication, I subsequently work to rehabilitate
some of the earlier physical analogies by combining mathematical concepts
of mechanics with models from artificial intelligence to show that some psy-
chological and economic systems satisfy an appropriate reformulation of me-
chanical axioms. Because such psychological and economic systems satisfy
the axioms of mechanics, they are mechanical systems that actually have mass
and exhibit forces. One may thus apply theorems of mechanics to make predic-
tions and to characterize behavior. Systematic application of existing theorems
requires additional progress in mathematics to provide the analytical concepts
and techniques necessary to understand the complex systems of psychology
and economics.
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What is mechanics?

The common picture of mechanics embodies many unfortunate misconcep-
tions about the nature, scope, and structure of mechanics, with many people
having the idea that mechanics consists of applying to physical systems the
three axioms stated by Newton. Applying mechanics to psychology and eco-
nomics requires a firmer theoretical basis than that provided by popular mis-
conceptions. To proceed, we thus must confront and set aside mechanical mis-
conceptions, lest the misconceptions prevent proper appreciation of the contri-
bution mechanics makes to understanding the world. Accordingly, the present
chapter examines the nature of mechanics at a high level, reconsidering the
content and form of mechanical theories in light of the history of mechanical
concepts and mathematical formalisms. This examination highlights the com-
mon misconceptions and how they divert one from the proper understanding
needed for the following development.

Readers wishing to skip this somewhat philosophical discussion in favor of
the development of the mechanical axioms themselves might proceed directly
to Chapters 5 and 6, which review the structure and content of the axioms of
modern rational mechanics. The modern axioms have enjoyed widespread use
for decades among mathematicians studying mechanics and among mechani-
cal engineers, although not in beginning physics textbooks. In contrast to the
postulates of popular legend, the modern axioms provide a formal character-
ization of the notion of force, and reveal the true generality of mechanics in
ways that usual textbook presentations do not.

4.1 The nature of mechanics

It might sound odd to say that some psychological and economical notions
are mechanical as well, for we have been taught that physics makes the only
precise uses of terms like mass and force, and that all other uses merely corrupt
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the physical. This seeming oddity reflects an anachronism of current scientific
pedagogy. Prior to Newton and Euler, speakers applied mechanical terms as
widely as they do today, to both physical and nonphysical situations.

Much of the effort of the early natural philosophers went to arguing over the
nature of mechanical concepts in physical situations. To some, what we call
mass today was a force; to some, force was energy; and on and on. Eventually
the natural philosophers discovered and propagated the fruitful identifications
of the meanings of these terms that we use today. We forget that these in-
terpretations, now so standard and taken on faith, required effort to discover,
and we easily believe early-seventeenth-century physics to have originated the
mechanical terms.

Newton and his contemporaries translated what they understood of the me-
chanical structure of nature into mathematical terms in the natural and limited
mathematical languages of the day. One need not regard that translation as any
more accurate or authoritative than the roughly contemporaneous translation
commissioned by King James of England of Biblical Hebrew and Greek into
the refined English of the day.

4.1.1 Mechanical laws

Many people have been taught a concept of mechanics based on popular leg-
ends about “the” axioms of mechanics. Many have heard that Newton pro-
pounded three axioms, and many might even remember paraphrased trans-
lations from the Latin. Readers of introductory physics texts might recall
the equation f = ma (force equals mass times acceleration) as the formal
embodiment of mechanics, and Newton’s law of universal gravitation f =
gm1m2/r

2 and Maxwell’s laws of electromagnetism as the primary laws of
nature. Physics textbooks show how to use these equations to treat simple
machines (levers, pendulums, inclines), ballistics, planetary motion, and rigid
bodies (spinning tops, tumbling satellites). If one presses on, advanced text-
books show how to reexpress these basic concepts and laws in Lagrangian
and Hamiltonian formalisms, and how to reformulate and revise the under-
lying laws themselves to fit in theories of relativistic mechanics or quantum
mechanics.

Popular legends aside, Newton’s axioms arguably do not deserve corona-
tion as the proper axioms of mechanics, even though their introduction revolu-
tionized how natural philosophers approached their subject. Newton’s postu-
lates lack any precise formal meaning, and have little to do with what modern
physics reads into them. In particular, they do not state the equation f = ma,
which was developed as a general mechanical equation by Euler and published
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half a century after Newton’s book. Nor does this equation provide an ax-
iomatic basis for mechanics, though it appears as an expression within one
axiom among many in some modern formulations. In the present treatment, it
appears in Axiom F19.

Quibbling about which axioms state the laws of mechanics, however, misses
the most important question about just what it means to be a law. Though peo-
ple hear about the “laws” of mechanics, the axioms of mechanics form a purely
mathematical, not physical, theory. The axioms do not represent laws of any-
thing by themselves. This may not have been Newton’s view, who imitated the
example of Euclid in providing axioms of mechanics extending those of geom-
etry. At the time, prior to the discovery of non-Euclidean geometries, natural
philosophers viewed geometry as a fixed subject, and viewed mechanics the
same way. Today, however, we recognize that the formal theory of mechanics
merely presents a mathematical theory, one neither right nor wrong on its own
in the absence of specific interpretations of its concepts. Like group theory,
and indeed, like the theory of ideal rationality in psychology and economics,
the formal theory of mechanics is only applicable or inapplicable to systems
of interest, satisfied or unsatisfied by them under specific interpretations.

If we believe that mechanics provides a useful framework for thinking about
the world, then we should seek to apply it to systems of interest, and look for
objects and relationships with which to interpret its terms. Mechanics relates
forces, masses, motions, and energies, but leaves them abstract. To apply me-
chanics we must determine or decide what sorts of masses exist and where
forces come from: that is, we must determine what these terms mean in the
systems of interest. In this way the utility of mechanical laws in physics de-
rives from conventional interpretations of their objects as things in the real
world—physical bodies, masses, forces, and so on.

Schools today teach students physical identifications of mechanical concepts
as an inseparable part of the theory, and there seems to be little confusion;
masses are masses, forces are forces, and the axioms are laws. In some cases,
teachers use the theory to help correct misapprehensions, explaining (as with
the logician’s notion of Ramsey sentences) that mass is not weight but instead
the quantity that satisfies the properties of mass. Teachers might explain that
most ordinary uses of these terms in language (force of will, inertia of habit,
mental energy) are uninterpreted metaphor, legacies of license granted to po-
ets and self-help authors. Such explanations, though true, require qualification.
Although many ordinary uses of mechanical terms do exhibit the same squishy
vagueness characteristic of pre-Newtonian mechanics, one can find important
and sizable classes of uses that do fall under the mathematical concepts. In the
following chapters I indicate how to provide formal mechanical interpretations
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for concepts pervasive in everyday discourse about psychology and economics.
It should not be surprising if someday psychological masses, forces, and en-
ergies may become as familiar and conventional as those of physics. Students
might then be taught mechanics as part of the laws of psychology, and this will
be as misleading as in the case of physics.

4.1.2 Defining mechanics

Any logically sound theory [enabling logical prediction of outcomes from partial ob-
servations] is a good theory, whether or not it be derived from “ultimate” or “funda-
mental” truth. It is as ridiculous to deride continuum physics because it is not obtained
from nuclear physics as it would be to reproach it with lack of foundation in the Bible.
(Truesdell & Noll 1992, pp. 2–3)

Once we discount misrepresentations of the nature of mechanics, we appre-
ciate more clearly the implications for psychology and economics of a point
made by David Hilbert a century ago.

Standing on the post-Newtonian discoveries of non-Euclidean geometries,
Hilbert emphasized that mathematical notions have no definite meaning apart
from the axioms that characterize the relations of these notions to one another.
In the sixth problem he gave in his famous address of 1900, he called for the
axiomatization of the physical sciences, especially mechanics, probability, and
statistical physics, so as to provide a clearer foundation for scientific analysis.

6. MATHEMATICAL TREATMENT OF THE AXIOMS OF PHYSICS. The investigations
on the foundations of geometry suggest the problem: To treat in the same manner, by
means of axioms, those physical sciences in which mathematics plays an important
part; in the first rank are the theory of probabilities and mechanics. (Hilbert 1902,
p. 418)

We recognize that we get axioms for a subject by abstracting from specific
examples of known interest, and by refining the axioms after looking to see
what satisfies them that should not. Once formalization of disparate exam-
ples forces the axioms to exhibit some level of abstraction or generality, we
ordinarily regard additional satisfiers as new examples of that concept, not as
uninvited guests.

The mechanical axioms devised by Noll (1958) to solve Hilbert’s sixth prob-
lem really do seem to capture the general intuitions underlying the subject of
mechanics. They identify the basic structure and interrelations of the concepts
of bodies, masses, motions, and forces. The level of generality they exhibit
stems directly from the variety of acknowledged mechanical systems Noll in-
tends them to characterize. We can rejoice in discovering that these axioms
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also characterize important psychological and economic systems with only mi-
nor and inessential changes, changes mainly aimed at removing assumptions
of continuity rather than at changing any of the directly mechanical character-
istics.

Mechanics in its essence involves no notion of continuity. People infor-
mally understood motion long before mathematicians developed any formal
notion of continuity. To see this, recall the difficulties Zeno revealed in trying
to gain a precise understanding of continuous motion prior to the develop-
ment of adequate intellectual tools, and recall that Galileo explicitly treated
mechanical motion as concatenation of many small discrete changes. Indeed,
much of what we call mechanical today, such as gears and clockworks, in-
volves discrete kinematic motions intelligible quite apart from the continuous
mathematics needed to understand smooth motions. Extending mechanics to
discrete systems thus seems a natural enterprise, not like abandonment of some
tenet essential to the identity of the subject. Force and motion constitute the
central notions of mechanics. Neither of these notions necessarily involves
continuity.

4.1.3 Distinguishing mechanics from mathematics

The mathematical tools used to formalize and analyze mechanics also mag-
nify the apparent distance between traditional mechanical subjects and those
of psychology and economics. Mechanics makes heavy use of vector calculus,
smooth functions, linear operators, and the partial differential equations of the
Lagrangian and Hamiltonian formalisms. One finds bits and pieces of such
mathematics in psychology, and more in economics, in which the theory of
general market equilibrium has been formulated in terms of calculus on man-
ifolds and in Hamiltonian terms. Nevertheless, the mechanical tools that per-
vade traditional mechanics seem absent from most treatments of psychology
and economics. This dissimilarity in the level of mathematical analysis does
not provide a reliable indicator of whether a subject has mechanical nature,
however.

Close examination of the content of mechanics reveals that many of the
most prominent features of mathematical formulations of mechanics actually
have very limited connections with the conceptual content of mechanics. Most
people recognize that the calculus, for example, has no mechanical content
in itself, and that it provides means for formalizing mechanical and nonme-
chanical subjects alike. As noted in the preceding discussion of energetical
analogies, fewer people recognize that the same holds true for Euler–Lagrange
equations and Hamilton’s equations that supposedly represent the acme of
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mechanics, and of variational theories generally. The Lagrangian and Hamil-
tonian mathematical forms for equations were initially developed for aiding
the solution of equations describing specific mechanical systems, but the equa-
tional forms themselves possess no mechanical content whatsoever. Indeed, to
apply the Euler–Lagrange or Hamiltonian equations, one must first concoct
(no other word fits the process so well) a function that, all by itself, encodes
all the laws governing the system of interest. Even basic mechanical princi-
ples like f = ma must be encoded in the Lagrangian or Hamiltonian func-
tions or the resulting equations will not yield mechanical behaviors. In this
regard, Lagrangian and Hamiltonian theories resemble the universal compu-
tational machines invented by Turing; they take as input a description of the
motion or computation of interest, and then use that description to determine
or carry out the motion or computation so described. Rather than representing
the quintessence of mechanical law, Lagrangian and Hamiltonian formalisms
represent the abandonment of all mechanical content.

4.2 The structure of modern mechanics

Mechanical laws divide into general laws governing all bodies and special laws
characterizing special classes of materials or systems.

4.2.1 General laws

The general laws set forth mechanical principles applying to all types of bod-
ies, motions, and forces. Some general laws characterize the basic notions of
bodies, forces, and motions in their own right; other general laws characterize
their relation to one another.

In broad terms, the axioms for bodies say that bodies exhibit a part–whole
relationship with familiar properties, and that continuous bodies exhibit the
structure of a manifold.

The axioms for forces say that forces may be added together, that systems of
forces identify the force each body exerts on each other body, and that the sum
of all forces on each body is zero. This last condition may seem strange, but
really just generalizes the familiar f = ma by treating an inertial force −ma
as just one special sort of force canceling out the sum of all the other forces on
the body (f −ma = 0). The force laws are more general than might appear,
since they apply to all bodies and parts of bodies, not merely the body points
addressed in textbook mechanics.

Further general laws instead place restrictions on the relationship between
forces and their possible sources. These laws state conditions on legitimate
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force-determination prescriptions rather than on the values taken by functions
at particular points. The most common such restrictions are those of locality,
determinism, and realism or frame indifference.

The locality axiom specifies that at any instant the forces acting in some lo-
calities in time and space depend only on the bodies and events in that locality.
This rules out what is called action at a distance in the sense that distant bod-
ies and events must cause a change in the local bodies and events in order to
change the forces acting in a locality.

The determinism axiom states that the dependence of forces on histories is
unique, that the history of the system leading up to some instant determines
the forces acting at that instant.

The frame-indifference axiom states that forces acting at some instant do
not depend on the frame of reference of any observer, although the appearance
of those forces may vary with such frames of reference. This requirement is
also familiar, but it is rarely stated explicitly in elementary mechanics and of-
ten goes by different names. Most people learn mechanics from books that
introduce mechanical concepts and laws in particular coordinate systems—the
familiar xyz coordinates of the Euclidean space R3, for example. Most things,
however, do not come with names or numbers written on them. Except when
one is describing hopes, dreams, and plans, there usually is little point in work-
ing hard to carefully describe something that does not exist. One thus expects
characterizations of mechanical objects to reflect that namelessness and focus
instead on the actual structural relations present among the objects. Rational
mechanics does just this by introducing the concepts and laws as independent
of particular coordinate systems, employing a geometric language that refers
directly to the mechanical components of a system, such as points on surfaces
and mass values, rather than to their representations as vectors or scalars in
some system of coordinates or units. The fundamental methodological prin-
ciple underlying the coordinate-free approach is called realism by Gärdenfors
(1988), meaning that the theory should speak of the reality under study, not of
descriptions of that reality imposed by observers. Physicists also sometimes
use the term covariance for some ideas related to frame indifference.

The “realistic” approach also has the practical virtue of emphasizing the
invariance of reality under changes of representation, giving the analyst the
freedom to choose representations so as to make descriptions simple and com-
putations easy. In theoretical reasoning, the simpler a description the easier
it is to understand. Many mechanical concepts and their interrelations can
be stated quite simply in coordinate-free terms, so avoiding the unnecessary
complexity of description entailed by phrasing everything in terms of a partic-
ular coordinate system, and free of the need to complicate matters further by
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supplying additional rules for changes of coordinates. In practical calcula-
tions, starting with the invariant structure allows us to rerepresent the structure
as desired, for each calculation choosing the coordinate system that makes that
calculation easiest. In fact, because of the relative simplicity of the invariant
descriptions, some calculations may be avoidable, with the desired results fol-
lowing directly from qualitative reasoning over the essential structures, with-
out descent to computation in coordinates. Rational mechanics is replete with
powerful theorems about qualitative behavior that are independent of particular
coordinate systems (Truesdell 1958).

4.2.2 Special laws

In themselves, the general laws provide a weak basis for mechanical predic-
tion and analysis because they make no assumptions about the properties of
specific materials. The builder’s choice of reinforcing steel over bamboo, the
auto mechanic’s choice of lubricating motor oil over sand, and the magician’s
choice of levitating magnetic steel over wooden containers all exploit the dif-
ferent characteristics of different materials. Mechanics thus incorporates many
different specialized axioms characterizing the properties of special materials.
These constitutive assumptions may characterize broad classes and abstract
properties, or narrow and specific ones.

In particular, none of the most general laws say anything about which forces
exist, or even that any particular forces exist. Similarly, the most general laws
do nothing to distinguish different types of bodies, shapes, or substances. Such
statements instead come in special laws of mechanics that characterize the
behavior of special types of materials. The vast variety of materials observed
in the world all share the underlying general mechanical laws, but the casual
observer might have difficulty noticing that small patch of concord amidst the
overwhelming overall differences.

Some special laws take the form of kinematical constraints on bodies. For
example, rigid body mechanics comes from adding kinematical constraints to
the general theory, namely constraints that fix the relative distances of body
parts. Other kinematical constraints characterize the structure of solids, link-
ages, crystals, liquid crystals, isotropic materials, incompressible fluids, and
other mechanical materials and systems.

Special laws of dynamogenesis, on the other hand, characterize the origin of
forces. For example, the theory of rubber comes from augmenting mechanics
with the configuration-dependent forces characteristic of rubber, and the the-
ory of charged particles characterizes the electromagnetic forces generated by
electromagnetic charges. More generally, Euler’s laws stating the balances of
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momentum and rotational momentum represent the most widely applicable of
the special laws. These laws provide a place for inertial forces, special forces
generated by masses that play an important role in many, but not all mechani-
cal problems. Noll (1995) cites the motion of toothpaste out of a squeezed tube
as an example showing the occasional effective irrelevance of mass to motion.
Einstein’s (1916) theory of general relativity extends Euler’s laws to relate the
spatial distribution of masses to the structure of space itself.

Other special laws constrain the form of forces without necessarily stipulat-
ing their values. Examples here include laws characterizing elastic materials
and materials with fading memory.

Mechanics uses the term constitutive assumption to refer to the laws char-
acterizing special materials, choosing this term because the laws reflect as-
sumptions about the constitution of the material. Mechanical practice depends
critically on these special laws. Rather than restrict attention to the basic me-
chanical axioms and use them to draw conclusions for each system in isolation,
we create and study extensions of mechanics, each describing a class of sys-
tems of interest, each a powerful theory of a special, idealized material or of a
special, separable aspect of general materials. These narrow theories not only
yield qualitative understanding, but also more efficient computational methods
that take advantage of the restricted nature of the materials.

For some years the most visible work in physics has been construction of
theories and particle accelerators aimed at uncovering so-called fundamental
laws, laws of the very small and very fast from which all other physical law
is supposed to flow. Although this work has led to advances in understanding,
these fundamental laws stand largely irrelevant to the special laws of mechan-
ics because rigorous derivation of most special laws from fundamental proper-
ties of elementary particles or strings remains well beyond present theoretical
capabilities (Truesdell & Toupin 1960).

4.3 A path to a general mechanics

Presenting a more general mechanics that accommodates and illuminates the
mathematical structure of psychology and economics requires some reforma-
tion of the assumptions embodied in traditional mechanical formalism. Al-
though an ultratraditionalist might view this reformation as undercutting the
use of the term mechanics to name the result, that view makes sense only if
one holds that the nature of physics was somehow set in stone at the time
of Newton. A more realistic view of the history of the subject recognizes
that mechanics is a living subject, not a petrified specimen or one preserved
for perpetual reference. Different areas of mechanics make do with different
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assumptions, and our reformations, though themselves nontraditional, main-
tain this familiar catholicism of tradition.

The remainder of this section examines the alternative formalisms avail-
able for use as starting points in developing a more general mechanics, and it
sketches the types of changes needed in carrying out the broadening of me-
chanical theory.

4.3.1 Formal bases for mechanics

Formalisms adequate for many mechanical calculations have existed since the
time of Euler, Cauchy, and the Bernoullis, who created much of what we to-
day call mechanics, including the familiar mechanics of elementary physics
textbooks, in which f = ma is complemented with Newtonian gravitation
and Hooke’s law of springs to solve textbook problems. Although the mathe-
matical and physical discoveries underlying this calculational picture represent
great triumphs, this approach cannot serve here, as it provides no formal char-
acterizations of anything, only semiformal examples and solutions.

One cannot properly start the task of reforming traditional mechanics to
cover the mind with the picture of mechanics propagated in freshman physics
textbooks, or even most graduate physics textbooks, though to paraphrase
Truesdell (1991, p. xviii), even this degraded encounter with mechanical for-
malism can represent a first step useful in obtaining a better understanding of
the subject. Instead one must start the task by considering the axiomatic struc-
ture of mechanics. As noted earlier, we do not count Newton’s postulates as
comprising such an axiomatic basis, though those surely win the most votes in
any determination of the popular conception of the “axioms of mechanics.” It
should surprise no one that most people have never seen a proper set of axioms
for mechanics. It should surprise more that even most physicists have never
seen a plausible set of axioms for mechanics; and surprise more still that many
mechanical engineers have.

Hilbert’s call to find good axiomatic bases for mechanics and other physical
sciences was taken up soon thereafter by Hamel (1908), who made progress
but lacked a full axiomatization of the key notion of force. The axiomatic
project regarding mechanics then languished for several decades before being
revived in the work of McKinsey, Suppes, and Sugar (1953a, 1953b), who
took the standard physics notations and set them in a logical axiomatic form
that hews closely to the numerical textbook formulations of particle mechan-
ics. Although one can regard any consistent axiomatic foundation as better
than none, this numerically framed axiomatization does not address the present
needs. Adapting mechanics to psychological and economic systems requires
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a conceptual basis that separates central mechanical concepts as much as pos-
sible from particular numerical representations. Formulating mechanical no-
tions directly in terms of continuous number systems, as do Suppes and his
collaborators, makes adaptation of mechanics to psychology much harder by
hiding mechanical essence within a sheathing of numerical accident. Truesdell
(1984f) criticized this axiomatization on a variety of other grounds as well, but
one need not take a stand on those criticisms to appreciate the unsuitability of
the McKinsey, Suppes, and Sugar axioms to the present purposes. One might
read the “synthetic mechanics” project of Burgess (1984) as an additional cri-
tique of axiomatizations like that of McKinsey, Suppes, and Sugar, although in
fairness Burgess’s synthetic mechanics has no mechanical content. It instead
uses the language of philosophical nominalism to express the standard practice
of rational mechanics as conceived by Hilbert, Truesdell, and Noll.

The first axiomatic basis suitable for both modern continuum and parti-
cle mechanics was developed in 1958 by Walter Noll and extended by Noll
and others in subsequent decades (Noll 1958, 1963, 1973, 1972, 1974; Noll
& Virga 1988). Through clear formulation in terms of modern mathematical
concepts, these axioms distinguish many central properties of mechanical con-
cepts from special characteristics of physical space and time, and so reduce the
revisions needed to adapt the axioms to cover discrete psychological systems.

Noll focuses his axiomatic effort on obtaining the most mathematically el-
egant representations for standard continuum mechanics. Although this focus
increases the beauty and simplicity of the development, it also incorporates
more of the continuum structure than I desire. To develop axioms suitable to a
general mechanics covering both physical and mental systems, I thus base my
development on both Noll’s works and on the exposition given by Truesdell
in his introductory textbook on continuum mechanics (Truesdell 1991), and
his longer survey article with Toupin (Truesdell & Toupin 1960), which pro-
vide more detail on the historical, conceptual, and axiomatic interrelations of
mechanical notions.

4.3.2 Broadening the general laws

Noll’s axioms characterize the nature of space-time events, the variety and in-
terrelationships of mechanical bodies, mechanical quantities of mass, inertia,
energy, and most centrally, the notion of force and the laws relating force to
motion. In fact, his axioms already exhibit much of the structure needed to
facilitate adaptation to psychology and economics. Abstracting away the spe-
cial characteristics of the many types of physical materials, and introducing
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natural mathematical separations among distinct formal concepts, leaves Noll’s
axioms with a very general structure.

4.3.2.1 Discrete mechanics

As with all traditional treatments of mechanics, Noll’s axioms embed mechan-
ical ideas in a setting of continuous motions of continuous bodies in smooth
spaces. Broadening mechanics to cover minds and markets as well as flesh
and bone requires recasting the mathematical axioms of mechanics in a way
that separates out assumptions about smoothness of the space in which motion
takes place.

To do this, I separate Noll’s axioms into those parts that rely on smoothness
or continuity assumptions (or more properly, involve continua) and those parts
that do not. Removing smoothness assumptions changes the formalism less
than one might think, for in seeking to abstract away from the highly varied
properties of physical materials and to separate notions in the most mathemat-
ically natural way, Noll’s axioms already characterize many concepts in ways
independent of the nature of the underlying space. For example, his theory of
bodies stays away from any requirements on geometry, and assumes geomet-
ric structure only when considering specific universes of bodies. His axioms
for force systems likewise characterize an algebraic structure independent of
geometry, and only at the end add assumptions about how force values relate
to spatial entities.

In view of this existing partial separation of continuity assumptions, I carry
over all axioms independent of continuous space and time directly. The axioms
that depend on the usual continuum structure of space and time I decompose
into subaxioms that characterize the essential structure and sub-axioms that
require continuity. I then retain all the structural axioms. My reconstruction
then makes assumptions about smoothness only for the special case of ordinary
physical materials and systems.

Noll (1972, p. 48) himself made first steps in this direction by indicating a
generalization of his most abstract mechanical theory away from familiar phys-
ical space to the level of the abstract state spaces of general systems theory
(Kalman, Falb, & Arbib 1969). Unfortunately, that generalization abandons
all traces of mechanical concepts, and so provides few insights into psychol-
ogy beyond those already familiar from pure dynamical systems theory and
automata theory.

Mathematically, the upshot of the extension of mechanics to discrete sys-
tems comes primarily in changes in assumptions made about the algebraic
structure of space, time, and motion. Traditional mechanics formalizes these
structures in terms of real vector spaces, that is, continuous vector spaces over
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scalars in R. Discrete mechanics first pulls back from real vector spaces to
discrete vector spaces over discrete fields, such as the binary vector spaces Zn

2

over Z2. These constitute discrete algebraic structures that serve well in almost
all standard mechanical roles. The requirements of hybrid mechanics call for
additional changes to geometric and algebraic properties of space, described
shortly.

Scientists have much familiarity in working with discrete time representa-
tions of continuous behaviors, and such prove useful here too in the form of
tools for analyzing difference equations and the like. On the whole, however,
the new discrete setting calls for development of additional mathematical ideas
that extend traditional techniques of continuous analysis to treat the discrete
correspondents.

4.3.2.2 Hybrid mechanics

The other step in broadening Noll’s axioms consists of extending each of his
formal theories to cover hybrid structures that combine notions of ordinary
physical space and mass with additional dimensions of space and mass in much
the same way that traditional control theory and the more recent hybrid sys-
tem theories (Alur et al. 1993) extend notions of physical state with additional
dimensions of abstract and possibly discrete state. Making hybrid compos-
ites of ordinary mechanical systems involves few significant changes to the
mathematical form of mechanics, so the constructions stay close to traditional
mechanical concepts. Indeed, we might view one of Noll’s constructions, in
which he takes a full Euclidean vector space to represent the exterior of a body,
as a very simple instance of a hybrid mechanics (Noll 1973, p. 77).

Roughly speaking, a hybrid mechanical system exhibits a geometry obtained
as the product of the geometries of the factor mechanical systems, and a space
of forces obtained as the product of the force spaces of the factor systems, a
hybrid time that linearizes the factor timelines, and involves hybrid bodies that
act in each of the factor systems.

The product structure of space in hybrid mechanical systems requires ad-
justment to the mechanical characterization of space in terms of vector spaces.
Although products of vector spaces over the same field of scalars are also vec-
tor spaces, hybrid mechanics in which the factor spaces are vector spaces over
different fields require a different treatment. The natural scalars for such prod-
ucts consist of the products of the corresponding scalar fields, but fields do not
retain their character under hybridization. Thus to obtain a discrete mechanics
that works properly within a hybrid mechanics, we pull back a bit more from
vector spaces to free modules over commutative rings of scalars, and require
these modules to possess scalar-valued symmetric bilinear forms that serve the
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Table 4.1. Disposition of the axiomatic elements of traditional mechanics in
the mechanics modified to cover the mind.

Axiom Subject Disposition

Bodies retained
Time retained
Space modified
Masses modified
Forces modified
Energy modified
Frame indifference retained
Locality specialized
Determinism specialized

roles of inner products. Every field is a commutative ring, and every vector
space is a free module. Some rings differ from fields in not possessing a no-
tion of division. Accordingly, some free modules differ from vector spaces in
not supporting some of the standard algorithms of vector algebra. This mild
algebraic weakening of the geometric assumptions does not affect the underly-
ing description of motion, but it can limit the applicability of some traditional
analytic techniques.

The factor systems interact through the forces characteristic of the hybrid
material, or more specifically, through the way the the product states give rise
to the product forces. This formulation permits, but does not require, each fac-
tor system to contribute to the forces acting in other factor systems. Artificial
intelligence provides examples in which these hybrid forces play crucial roles
within the nonphysical factor spaces.

4.3.2.3 The bottom line

Table 4.1 summarizes the extent to which we carry over the standard axiomatic
structure to the mechanics of mental bodies. Several of the basic axiomatic el-
ements carry over essentially unchanged, while most others appear in forms
modified to regard traditional unidimensional continuous quantities as mul-
tidimensional discrete quantities. I abandon the general requirement of de-
terminism, but do not require indeterminism, and say little about locality in
the present treatment. Even in terms of physical experience, determinism and
locality rest on much shakier ground than do the deeper mechanical under-
pinnings. I retain them as types of special laws rather than as general laws,
applicable to special systems or parts of systems rather than as necessary reg-
ulators of all bodies.
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Quantum mechanics, of course, denies determinism, or perhaps more ac-
curately, transforms it to determinism in a more abstract space. The psycho-
logical systems of interest seem at least as indeterministic as quantum theory,
which perhaps lies behind Penrose’s curious interest in finding explanations of
consciousness in quantum gravity.

Quantum theory and general relativity both dispute locality in various ways.
I see numerous reasons for doubting the necessity of locality, at least when
one defines locality in terms of physical space. As with the issue of quantum
determinism, one might salvage mechanical locality by redefining it in terms
of more abstract spaces, but this possibility seems peripheral to most of the
topics considered here.

4.3.3 Adding new special laws

Special laws play a very natural role in psychology and economics, though we
expect the important special laws in those fields to differ greatly from those
important in physics. A theory of a specific psychological material, such as
the typical human, if such there be, or the ideal rational agent of economics
need not look much like the theory of rigid bodies or the theory of ideal fluids.
On the other hand, the theories of acknowledged mechanical materials do not
look much like each other either. One should thus not regard similarity of su-
perficial appearance to traditional mechanical theories as a necessary criterion
of mechanical nature. Newton sought to see beyond superficial dissimilarities
of everyday materials to their common underlying mechanical properties. We
need not regard that effort as finished.

Mathematical economists have familiarity with the concept of special laws,
having developed theories of special economic types includingn-person games,
deterministic games, markets with a continuum of agents, and agents with con-
vex preferences.

Psychologists may find special laws less familiar, partly because of the lack
of mathematical formulations of theories, and partly because of an excessive
focus on finding “the” theory of human psychology. We do not assume humans
exhibit any unexceptional psychological uniformity, but even if they did, the
complexity of human nature makes it worthwhile to develop special theories
of special aspects of human mental structure and behavior, in order to speed
the discovery of the actual combination characterizing people. Without the
assumption of uniformity of people, we expect benefits from studying theories
of special classes of people.

Artificial intelligence provides examples of such an approach, wherein a va-
riety of different organizations or architectures for agents and for representing
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knowledge have been proposed and studied. Each of these organizations may
have provable qualitative behaviors and efficiencies. To choose an organiza-
tion, the designer would compare the results of such specialized analyses.

The monograph (Doyle 1983e) illustrates this approach, analyzing the struc-
ture of agents constructed from a number of sorts of special reason-based psy-
chological materials. Here also, special theories of special aspects allow the
designer to combine different decisions about the different aspects and have
some understanding of the properties of the resulting system. In this instance,
the special theories of agent and representation types describe the toolkit of
materials available to the psychological engineer, just as the variety of special
theories of physical materials describe the factors available to the mechanical
engineer. As with all engineering disciplines, psychological engineering re-
quires a keen sense of the limits of the possibilities and an ample helping of
designer’s wisdom.

I offer laws concerning the genesis of forces mainly for the special sort of
materials I called reasons in Section 2.1.3, and say little about the sources of
forces more generally. Chapter 11 presents details of the main interpretation,
in which the reasoner or agent constitutes a body, the conclusions of reasoning
constitute the position or shape of the body, the base set of reasons constitutes
the mass of the agent, and changes to these base reasons represent compo-
nents of forces, the other components consisting of changes to the signals or
reports of changes that represent velocities. The difficulty of changing mental
states is then reflected in limits on forces and the accumulation in momentum,
principally through the accumulation of mass.

I believe it is significant that Noll classifies Euler’s laws as special rather
than general laws, since this makes it clear that physical mass need not always
play a role in mental motion, and that mental mass need not always play a
role in physical motion. Nothing in the treatment given here forbids forces
from being determined by nonphysical laws, whether psychological law, the
economic law of acting to maximize expected utility, or for that matter, some
sort of theological law.

Psychologists have sought to classify fundamental human motivations
(Bolles 1975). If such classes of motivations have any reality, they should
make possible definitions of classes of special psychological materials and the
psychological forces associated with these materials.

4.4 Organization of the exposition

In each part of Chapters 5 and 6, I first repeat axioms that characterize tra-
ditional mechanical foundations, and then develop modified axioms covering
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hybrid mechanical systems that couple traditional physical systems with dis-
crete mental systems.

Not everyone likes axiomatics. Many just want to see the results, and the
same person can seek to consider axioms at some times and to avoid axioms
at other times. Thus even though articulation and examination of axioms char-
acterizing mechanics forms a part of our investigation, a part necessary to ap-
preciate the similarities and differences of mechanical concepts in traditional
physics and psychology and economics, I attempt to satisfy everyone by pref-
acing each bit of axiomatic development with a summary of the development
and of its upshot.

Overall, and in many details, the organization of my presentation borrows
heavily from those of Noll (1972) and Truesdell (1991), which one should re-
gard both as a testimony to their insight and a tribute to how close rigorous
development of traditional mechanical concepts brings one to the broader me-
chanics we seek.

The modified axioms developed here need not represent the best possible
formulation. I explain reasons why the particular form of my modifications
seem attractive, but further investigations might well reveal better means to the
same end.
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Kinematics

Mechanics traditionally divides into kinematics, which studies bodies and their
motions across space and time, and dynamics, which studies mass, force, en-
ergy, and the shaping of motions by forces. I treat kinematics in this chapter,
and dynamics in the next.

Traditional kinematics axiomatizes a hierarchy of continuous and discrete
bodies, a continuum of temporal instants, and a three-dimensional affine space
of locations. It states general axioms that assume little about the specific struc-
ture of the world.

The part of the subsequent formalization that concerns hybrid mechanics
assumes a set of mechanical systems indexed by indices i in an index set I,
with each factor mechanical system characterized by factor material universes
Bi, times Ti, places Si, and so on for each factor mechanics. Applications of
the formalization will typically take a standard mechanics as one of the factor
systems, but the general axioms do not require that any factor system consists
of traditional physical mechanics.

5.1 Bodies

Bodies form the objects or parts from which a world is constructed. A particu-
lar universe may contain many sorts of bodies. Mechanics treats both discrete
bodies, such as the sets of point bodies familiar in analytical mechanics, and
continuous bodies, such as solid rigid bodies, rods, and shells, among others
(all ordinarily conceived as consisting of sets of body points).

For the time being I follow continuum mechanics in assuming that all ma-
terials persist without creation or destruction, just reshuffling into different
forms. Ultimately, however, the theory should address creation, destruction,
and nonrealization of bodies, and determine whether this is best formulated in
terms of realized forms rather than changing materials.

88
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Even though the subject in this chapter is mainly traditional physical sys-
tems, I look to the following development and add agents, organizations, sub-
agents, suborganizations, and others to this list. These classes of bodies may
overlap. I use either of the terms body and agent as convenient. At first, body
will be most appropriate. Once I assume enough psychological structure, agent
can replace it as the usual term.

To summarize this section, I recapitulate Noll’s (1972) axioms for bodies.
These axioms characterize material universes of bodies and their parts. A ma-
terial universe consists of a set B of bodies together with a subbody or part-of
relation � on B×B. We read B � C as saying that B is a (possibly improper)
subbody or part of C. Six axioms—stating antisymmetry and transitivity of
the subbody relation, the existence of greatest and least bodies, the existence
of a unique exterior Be of each body B ∈ B, the separateness of body parts
from the body exterior, and the existence of meets—characterize the mater-
ial universe, and together imply that the material universe forms a Boolean
lattice. I will follow almost all treatments of mechanics and assume for sim-
plicity that each body consists of a set of body points. Bodies consisting of
single points can represent the point masses of analytical mechanics. Bodies
consisting of continua of points of different dimensions represent the bodies
studied in continuum mechanics. The assumption that bodies consist of sets
implies the material universe forms a Boolean lattice or field of sets.

The notion of body changes least when moving from traditional to discrete
and hybrid mechanical systems. Indeed, the only changes noted here involve
speculations about the possible desirability of new structures for bodies that
reflect self-referential or self-inclusive representations in psychology.

5.1.1 Universes

In each world, all bodies fit together in a mathematical structure called a
Boolean lattice. The set B of all bodies constitutes the universe, also known as
the material universe in rational mechanics. In each branch of mechanics, com-
putation, psychology, or economics, one begins the specification of a system
by specifying a universe.

For example, the most familiar classical mechanics typically assumes a uni-
verse of bodies in which each body consists of a set of independent point
bodies or extended rigid bodies. Continuum mechanics considers richer uni-
verses in which individual bodies form rods, shells, solids, fluids, and other ex-
tended structures. One can regard economics as considering bodies much like
those of classical mechanics, in which individual economic agents form the
point bodies and organizations or economies form larger bodies constructed by
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aggregating the point bodies. Psychology makes room for richer structures in
which minds form bodies that themselves include substructures correspond-
ing to different types of memory or even mental subagencies, as in Minsky’s
(1986) society of mind model.

5.1.1.1 Ordering

The part relation forms the fundamental relation (other than identity) between

bodies. I write B
B

� C to mean that a body B is a part of body C. I ordinarily
omit the superscript and write just �, reverting to the more explicit notation
only when necessary.

To characterize the body-part relation, let us adopt three axioms jointly sta-
ting that � partially orders the set B, that is, for all bodies B, C,D ∈ B,

Axiom B1 B � B.

Axiom B2 If B � C and C � B, then B = C.

Axiom B3 If B � C and C � D, then B � D.

That is, B is a part of itself; it is the largest of its subparts; and parts of parts
are themselves parts.

5.1.1.2 Bounding bodies

A body O ∈ B is called the null body iff it is a part of every body in B, that is,
if O � B for each B ∈ B. B need not contain such an element, but if it does,
it is unique by Axiom B2.

A body U ∈ B is called the universal body iff every body in B is part of it,
that is, if B � U for each B ∈ B. Again, B need not contain such an element,
but if it does, it is unique, again by Axiom B2.

If B does not contain a null or universal body, we may adjoin such to form

B = B ∪ {O,U}, (5.1)

the closed universe corresponding to B. We extend the partial order � on B to
a partial order on B in the obvious way.

Axiom B4 For all B ∈ B, O � B � U .

Thus if B � O, then B = O, and if U � B, then B = U . Clearly, B is thus
partially ordered by �, with null body O and universal body U , and for each



5.1 Bodies 91

B ∈ B,

B � O = O (5.2)

B  O = B (5.3)

B � U = B (5.4)

B  U = U . (5.5)

Thus each two bodies B and C in B have at least one common part, namely O.

5.1.1.3 Separation

If the null body is the only common part of B and C, we say these bodies are
separate. Thus B and C are separate iff

B � C = O. (5.6)

We say that a body B is atomic if it has no proper parts, that is, if A � B
implies A = O or A = B.

We wish to speak not only of a body in a universe, but of everything else as
well, that is, of the body’s environment or exterior. We assume that each body
has an environment, and that all environments are themselves bodies.

Axiom B5 For each B ∈ B, there exists a unique body Be, called the exterior
of B, such that B � Be = O, B  Be = U , and if C � Be = O, then C � B.

Thus Be is separate from B, only U contains them both, and the only bodies
separate from Be are the parts of B. It is easy to see that

Oe = U (5.7)

Ue = O (5.8)

(Be)e = B. (5.9)

5.1.1.4 Overlap

A body D containing both bodies B and C is called an envelope of B and C. If
some envelopeA is part of every envelope of B and C, then it is called the join
of B and C, written

A = B  C. (5.10)

That is, A = B  C if A � D whenever B � A, C � A, B � D, and C � D.
Dually, the greatest common part of B and C, if one exists, is called the meet
of B and C, and written

A = B � C. (5.11)

That is, A = B � C if D � A whenever A � B, A � C, D � B, and D � C.



92 Kinematics

The next axiom asserts that the pairwise lower bounds represented by meets
always exist.

Axiom B6 For each B, C ∈ B, B � C ∈ B.

It follows that all joins exist as well because B  C = (Be � Ce)e.
Though by induction Axiom B6 implies that meets and joins exist for any

finite collection of bodies, it does not imply that infinite collections of bodies
also have lower and upper bounds.

5.1.1.5 Subuniverses

When a subset of a universe and a restriction of the part relation to this subset
satisfies the axioms for universes, we call it a subuniverse. For example, if
B ∈ B, the set

B � B = {A ∈ B | A � B} (5.12)

of all parts of B forms a subuniverse with universal body B; more generally, if
A � B, then the set

B � [A,B] = {C ∈ B | A � C � B} (5.13)

of all bodies C such that A � C � B forms a subuniverse with null body A
and universal body B.

5.1.1.6 Substructure

With the structure for universes given by these axioms, bodies may always be
represented as sets of body points, indeed, as subsets of a set U of points chosen
to represent the universal body U . In finite universes, one can choose the set
of body points so that the material universe is isomorphic the powerset of the
set of body points, but nothing forces this interpretation. Let us simplify the
problems of formalizing mechanics in the following development by always
taking bodies to be sets of body points.

Assumption B7 Each B ∈ B is a set, so that U = U , and for each B, C ∈ B,
C � B iff C ⊆ B.

Given this assumption, the closed universe B ⊂ P(U) is a Boolean sublattice
of P(U). It is common to represent the null body O by the empty set of points
∅, but mechanics admits inclusion in every body of some fixed subset of points,
with this subset representing the points comprising the null body.



5.1 Bodies 93

In fact, let us assume further that body points support a topological structure
giving bodies a natural topological structure. A topology (U ,Θ) consists of a
set Θ of all open sets of U . For each set B ⊆ U , we write B to denote the
topological closure of B, and write intB to denote the interior of B, that is, the
largest open set contained in B.

The regularly open sets in a topology are the sets of points B = intB equal
to the interior of their closures. Regularly open sets are ones that do not have
any obvious omissions. In the ordinary topology of the Euclidean plane, for
example, an open disk with one interior point removed is not regularly open,
because the interior of its closure would contain the missing interior point. In
the discrete topology over a finite set of body points, every set is regularly
open because the discrete topology makes every set its own interior and its
own closure.

In the following, let us assume that B consists of regularly open sets.

Assumption B8 There exists a topology (U ,Θ) on the universal set U of body
points such that each body in B consists of a regularly open set in Θ.

In this setting, exteriors are interiors of complements, that is, Be = int (U \ B),
and finite meets are just intersections. Meets of larger collections Bk are inte-
riors of closures of intersections, that is,

�kBk = int
⋂
k

Bk. (5.14)

The join of any collection Bk of bodies is the regularization of the union, that
is

kBk = int
⋃
k

Bk. (5.15)

5.1.1.7 Examples

The first class of examples employs the set conception of bodies most thor-
oughly. Let B = P(U), and let A � B mean A ⊆ B. As is well known, this
universe is a Boolean lattice with

A� B = A ∩ B (5.16)

A B = A ∪ B (5.17)

Ae = U −A (5.18)

O = ∅. (5.19)

When U carries the discrete topology, every set is regularly open.
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When U is a finite set

U = {X1, . . . , Xn}, (5.20)

this provides the universe for classical analytical dynamics, where the bodies
{Xi} are called particles or mass-points. However, B contains other bodies as
well, for example, {Xi, Xj} and {Xi, Xj , Xk}.

The single-agent or point universe forms the simplest nonvacuous example.
Here

U = {X} (5.21)

B = {∅, {X}} (5.22)

{X}e = ∅. (5.23)

In this universe there is only one particle, {X}, and only one nonnull body,
U = {X}.

The two-point universe forms the simplest universe useful for analyzing ac-
tual systems, as it includes a body to represent the system of interest plus a
body to represent the environment of the system of interest. We employ this
type of universe later to analyze embodied minds in mechanical terms. In the
universe based on two points X1 and X2, we have

U = {X1, X2} (5.24)

B = {∅, {X1}, {X2}, {X1, X2}} (5.25)

{X1}e = {X2} (5.26)

{X2}e = {X1}. (5.27)

The second class of examples steps back from using all subsets of a uni-
versal set as bodies, and instead bases the notion of body more specifically
on topological concepts. One universe B that satisfies all the axioms, but not
Assumption B8, consists of the set of all closures of open sets in a topological
space. Here exteriors are closures of complements, that is, Be = U \ B, and
meets are closures of intersections of interiors, that is,

A� B = intA ∩ intB. (5.28)

Finite joins are merely unions, but for any collection of bodies Bk, the join is

�kBk =
⋃
k

intBk. (5.29)

Universes based on topological assumptions provide the common universes
of continuum mechanics. Several restricted forms of the closed-body universe
just described are also natural in continuum mechanics. For example, one may
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restrict attention to finite unions of closed polyhedra and closed exteriors of
polyhedra in Euclidean space, to closed regular regions (those with piecewise
smooth boundaries), and to sets of finite perimeter (Truesdell 1991). Closed
regular regions, however, do not constitute a proper universe as they do not
satisfy Axiom B6 on the existence of meets. Noll and Virga (1988) identified a
suitable universe of topological sets called the fit regions, which are regularly
open, bounded, of finite perimeter, and with negligible boundary; these do
form a Boolean lattice.

These topological universes also appear in continuum economics, which
studies markets over an uncountable measure space of consumers and pro-
ducers (Aumann 1964; Arrow & Hahn 1971). Such universes aim to capture
markets in which no single agent has any influence on prices, but in which
market shares do.

5.1.2 Extensions

Neither discrete mechanics nor hybrid mechanics requires any immediate
change to the axioms for bodies already presented.

Traditional mechanics already considers discrete bodies forming discrete
material universes, such as the first material universes discussed in the preced-
ing section.

Traditional mechanics also already contains within it the structure for hybrid
bodies and hybrid material universes by simple reinterpretation of the notion
of subuniverses discussed in Section 5.1.1.5. We obtain the bodies of a hybrid
mechanics by simple combination of the bodies of the component mechanics.
Each component universe of bodies Bi comprises a Boolean lattice, and we
form the hybrid universe B =

⊕
i Bi by taking the direct sum of these lattices.

A standard theorem of lattice theory says that the direct sum of Boolean lattices
also forms a Boolean lattice, so the hybrid universe satisfies Axioms B1, B2,
B3, B4, B5, and B6.

For Boolean lattices the direct sum and direct product have the same struc-
ture, with the hybrid body Bi for Bi ∈ Bi represented in the product by an
element B′ such that B′

i = Bi and B′
j = Uj for each j ∈ I \ {i}, where Uj

stands for the maximum element in Bj . This equivalence frees us to use either
notation as convenient. I typically use the sum notation in preference to the
product notation for hybrid bodies because it usually makes it easier to discuss
forces among bodies of different type.

The assumption that each component universe consists of a Boolean lattice
of sets of point bodies permits us to view each body in the hybrid universe as
a set of point bodies as well.
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Although mechanics has provided both the notions of discrete and contin-
uous bodies for centuries, and so does not require discrete mechanics to call
for a new type of body, some of the structures explored in logic and compu-
tation in recent decades might point the way to interesting new categories of
bodies.

The assumption that bodies consist of sets of points constitutes the most ob-
vious candidate for revision or replacement in the standard theory. Philoso-
phers and logicians have long studied models of self-referential statements
and conscious agents that seem to call for models that contain elements re-
ferring to themselves, and so pose difficult problems for models built on stan-
dard sets. One approach to treating such problems involves using a set the-
ory lacking the axiom of foundation (Aczel 1988). Sets in such theories need
not be reducible to constructions over atomic elements alone, and so rule out
Assumption B7. More significantly, bodies forming such structures could ex-
hibit a cyclic subbody relation, and so require weakening or abandonment of
Axiom B2.

Axiom B5 requiring that bodies have unique exterior bodies also constitutes
a candidate for reconsideration. Prior to the identification of fit regions, contin-
uum mechanics had to choose between working either with material universes
that did not include all bodies of interest, or with material universes that in-
cluded the bodies of interest even though not all such bodies had exteriors in
the designated universe.

Scott’s (1973, 1976) theory of functions and domains forms the basis for
major elements of the theory of computation and data structures. It interprets
data structures in terms of sets of pointlike information elements and partial
functions over these sets, and focuses on a notion of continuity based on a
domain-based approximation relation between elements and partial functions.
This approximation relation gives the domain the structure of a T0 topology.
One might naturally consider this approximation relation to provide the body-
part relation for bodies taking the structure of elements in such a domain.
These topologies do not always support a notion of unique complements, so if
motivation exists for considering bodies with such structure, one would have
to abandon Axiom B5, or perhaps weaken it to only require relative comple-
ments, in which case the universe of bodies would form a generalized Boolean
lattice.

One might also want to modify Axiom B5 for other reasons. As noted ear-
lier, Noll’s axioms for bodies build into their very structure an assumption that
the set of bodies persists independently of time and motion of the bodies. This
views bodies in terms of component materials rather than human-identified
objects, so that destruction of a book in a shredder only destroys the form of
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the body, not the body itself. A more general mechanics might hew closer to
human thought and permit the set of bodies to grow or shrink over time. One
way of doing this might be to distinguish the set of all possible bodies from the
bodies realized at a given time. The axioms above continue to serve as char-
acterization of the set of all possible bodies, but treating the notion of realized
bodies requires modification of Axiom B5 to permit the realized exterior of a
realized body to change over time as bodies separate from the realized body
appear and disappear.

5.2 Events

We analyze the world under inspection into a set W of events, called the event
world. These events make up the spatiotemporal activities of classical and rela-
tivistic mechanics. Each deterministic history consists of a linearly ordered set
of events involving a system of bodies. Each nondeterministic history consists
of a set of contemporaneous deterministic ones.

Events may have many properties. Every event has the two properties of
place and time, where and when. Other properties of events, which I treat
later, include occupation by bodies and fields, and indirectly, the qualities of
the occupying bodies and fields. As each event enjoys a unique combination
of place and time, we may think of all other properties as fields over the space-
time projection of the event world. In the following, I abuse the terminology
in the standard way and identify the event world with its space-time portion,
and speak separately about the other properties of events.

I develop the structure of space and time in stages. I start with geometric
structures that individuate places and times and measure duration and distance.
I add algebraic structure that characterizes the translational structure of space.
I finish with differential structure that combines topological notions of limits
with algebraic conceptions of vectors to characterize motions locally in terms
of derivatives and paths on manifolds.

5.2.1 Framings

Abstractly, we regard the event world W as a topological space homeomorphic
(at least locally) to a product S×T of two topological spaces, space S and time
T, representing places and instants. We call a homeomorphism

φ : W → S × T (5.30)

a framing of W, and the inverse homeomorphism

φ−1 : S× T → W (5.31)
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a slicing of W (by S). We write Φ(W, S,T) to mean the set of all framings of
W with S and T.

Framings amount to labelings of events with names for their places and
times. As these names are just names and not reality, we aim to make all state-
ments about events themselves independent in meaning, if not in statement, of
which labeling we choose. We describe this property of such statements by
calling them realistic, or frame indifferent.

We also can think of each framing as corresponding to a possible observer
of events. The variety of framings corresponds to the variety of possible ob-
servers.

General mechanics assumes a variety of structures for time and space, in that
particular mechanical theories place restrictions on the sorts of framings with
which one can interpret the event world. Continuum mechanics and relativity
are the showcases for the manifold modeling of space-times. In classical con-
tinuum mechanics, for example, T is the Euclidean space R and S is the Euclid-
ean space R3 or the spatial manifold of a constrained system. In special relativ-
ity, for example, worlds are pseudo-Riemannian manifolds with a Minkowski
metric that determines whether the difference between events is spacelike,
timelike, or null (lightlike). In special relativity, framings are restricted to those
in which each slice of the world is spacelike, that is, in which no two distinct
events in the same slice have lightlike or timelike separation (see Bressan 1978;
Misner, Thorne, & Wheeler 1973; Noll 1964, 1973). In such cases, the relevant
set of framings forms a proper subclass of Φ(W, S,T). Relativistic metrics and
framings have been deployed in analyses of distributed computation as well
(Lamport 1978).

5.2.2 Neoclassical event worlds

To simplify the introduction of discrete and hybrid mechanics, I restrict at-
tention in the following development to neoclassical event worlds that involve
only products of flat (Euclidean) spaces with time. One can vary the devel-
opment that follows to obtain axioms for event worlds bearing the structure
of curved manifolds, but I avoid that complication here. Curved space-times
appear to have application to describing some geometries of reasoning in psy-
chology, but impose unnecessary distractions when setting out the notions of
psychological mechanics in the first place.

In summary, discrete mechanics makes no changes to the notions of event
worlds already developed in traditional and hybrid mechanics apart from
changes in the notions of time and space. In discrete mechanics time and space
can form discrete sets rather than continua. Moreover, space can have more
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than three dimensions without necessarily being considered a hybrid space, al-
though the algebraic structures involved can be identical. Hybrid mechanics in
turn broadens the notion of place to include the possibility of additional dimen-
sions beyond the familiar three, but still supposes that each event happens at
some place, at some instant. This change in character appears in the formalism
mainly in a change of the algebraic composition and character of event worlds.

I develop the structures for time and space separately before considering
the detailed space-time structure of the event world. Discrete time has much
familiarity from automata theory, discrete event systems, and discrete dynam-
ics, and difference equations. Discrete space has less familiarity in mechanics,
being mainly a concern of automata and coding theory.

5.3 Time

The notion of time enters modern physics as one component of the more gen-
eral notion of space-time. In the traditional conception, time consists of a
linearly ordered continuum T of times or instants along with a temporal metric
or measure of duration.

I begin this section by summarizing Noll’s formalization of the traditional
conception, but then progress to consider modified formalizations that permit
discrete and hybrid conceptions of time.

5.3.1 Continuous metric time

Noll’s (1973) standard axiomatization of time adds to the event world a time-
lapse function t̂ : W × W → R giving the duration of the temporal interval
between events, where t̂(e, e′) > 0 means e occurs before e′. Three axioms
characterize this function as antisymmetric under time reversal, additive for in-
tervals sharing a common event endpoint, and reflecting a continuum of events
and times. We state these formally as follows.

Axiom T1 t̂(e, e′) = −t̂(e′, e) for each e, e′ ∈ W.

The second metric axiom characterizes time lapse as additive for intervals shar-
ing a common endpoint, or formally

Axiom T2 t̂(e, e′) + t̂(e′, e′′) = t̂(e, e′′) for each e, e′, e′′ ∈ W.

Axiom T3 For each e ∈ W and every t ∈ R, there exists an event e′′ ∈ W

such that t̂(e, e′) = t.
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Axiom T3 implies that time forms a continuum with the usual topology rep-
resenting the standard notion of an unbroken progression of instants. Axioms
T1 and T2 imply that the absolute value |t̂| of the time-lapse function forms a
Euclidean metric on W.

The time-lapse function t̂ induces on W an equivalence relation ≈W,t̂ of
simultaneity on W. When the context permits, we drop the subscripts and
write e ≈ e′ to mean that events e and e′ are simultaneous. The simultaneity
relation in turn induces a partition Γ[≈], normally abbreviated Γ, of W into sets
of simultaneous events, or instants. Intuitively, each instant consists of events
corresponding to all the locations in space at that instant. Mechanics typically
assumes each instant looks just like the others.

We write τ(e) to mean the equivalence class containing e, that is, τ(e) =
{e′ ∈ W | e ≈ e′}. Thus τ(e) is the instant containing e, so that τ(e) = τ ∈ Γ
iff e ∈ τ .

One obtains a time-lapse function t̄ : Γ × Γ → R over instants from t̂ and
Γ in the obvious way, defining t̄ so that t̄(τ(e), τ(e′)) = t̂(e, e′) for all events
e, e′ ∈ W, and hence for all instants. Combining this definition with Axiom
T1 and Axiom T2, we see that t̄(τ, τ ′) = −t̄(τ ′, τ) and t̄(τ, τ ′) + t̄(τ ′, τ ′′) =
t̄(τ, τ ′′) for each τ, τ ′, τ ′′ ∈ Γ, and that t̄(τ, τ ′) = 0 iff τ = τ ′. The absolute
value of t̄ thus constitutes a Euclidean metric on Γ.

Although I usually represent time in terms of a linear numerical space like
Z or R, this representation does not convey the essence of the role of time
in space-time, but instead confuses times with measurements of durations. In
axiomatizing the properties of time, I employ a more realistic identification
of time in terms of the event world, in which each instant consists of a set of
events that I interpret as simultaneous events.

5.3.2 Discrete time

The notion of discrete time is familiar from automata theory and other subjects
in which one instant follows another without intervening instants, yielding a
notion of the “next” instant and a progression of discrete times. One need
not change the axioms for continuous metric time by much to permit discrete
sequences of instants; dropping Axiom T3, which requires instants to form
a continuum, suffices. This allows instants to take forms including discrete
points, isolated continua, or mixtures of the two. Naturally, this change has no
impact on the notions of simultaneity or on the identification of instants.

However, I go further than merely dropping the continuity axiom and dis-
sect the metric axioms into a more detailed picture of time. I do this because
some discrete systems of interest, such as automata theory, carry no natural
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notion of or role for temporal metrics. One can introduce temporal metrics in
such systems, but for most purposes any metric will do as long as it is com-
patible with a specified temporal order. Other systems, such as the mechanics
of Minkowskian relativity, involve incomplete metrics, as discussed by Noll
(1964). Looking ahead to discrete-continuous hybrids, I find it makes more
sense to think of formalizations of discrete systems as adopting temporal met-
rics used in the continuous systems rather than as starting out with their own. I
thus begin by formulating more detailed temporal axioms characterizing tem-
poral ordering relationships among events and instants, and then proceed to
augment these essentially topological ordering assumptions with metric as-
sumptions.

5.3.2.1 Ordering and intervals

Let us relate events in W to each other by a binary relation
T

�. I ordinarily
omit the superscript on the order relation to write � when this introduces no
ambiguity. We read e � e′ as “e occurs no later than e′.” The fundamental
properties of this relation are given by three axioms stating reflexivity, tran-
sitivity, and completeness properties. First, no event occurs before itself, or
formally,

Axiom T4 For each e ∈ W, e � e.

Second, times occurring after times that occur after others occur after the others
as well, or formally

Axiom T5 For each e, e′, e′′ ∈ W, if e � e′ and e′ � e′′, then e � e′′.

Finally, distinct instants occur either before or after each other, or formally

Axiom T6 For each e, e′ ∈ W, either e � e′ or e′ � e.

Together these three axioms give � the structure of a complete preordering of
W.

The simultaneity equivalence relation ≈ between events identified earlier
corresponds, in the temporal ordering, to events occurring as late as each other,
so that e ≈ e′ iff e � e′ and e′ � e.

As before, the simultaneity relation ≈ partitions W into instants Γ, and the
order on events induces a similar lifted order � on Γ, such that for τ, τ ′ ∈ Γ,
we have τ � τ ′ just in case e � e′ for some e ∈ τ and some e′ ∈ τ ′. Because
simultaneity forms an equivalence relation, the induced ordering relation on
instants is antisymmetric, that is, τ ≈ τ ′ implies τ = τ ′. The completeness
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of the event order also implies the completeness of the ordering of instants,
making the ordering of instants a complete linear order.

The linear order generates the usual order topology on Γ. This topology
in turn yields the familiar notion of temporal intervals as the set of times oc-
curring between two instants. Let us call intervals open, closed, or half-open,
respectively, depending on whether the interval contains neither, both, or one
of the bounding instants.

5.3.2.2 Temporal indices

I often identify the set T of times as a set indexing the set of instants Γ by
means of a one-to-one function t : Γ → T, with T possessing a linear order
� compatible with the order over Γ, that is, t(τ) � t(τ ′) whenever τ � τ ′.
While one can simply use the set Γ as its own index by taking Γ = T, common
practice takes T to consist of numerical or seminumerical sets, such as

(i) A finite set, such as {−, 0,+} representing “past”, “present”, and “fu-
ture”, or the numbers 0, . . . , n, representing the history of some com-
putation;

(ii) A calendar, such as Years×Months×Days , where Years = Z\{0},
Months = {January, . . . ,December}, and Days = {1, . . . , 31};

(iii) A countable set, such as the integers Z under the usual order and dis-
crete topology, representing an infinite succession of clock ticks;

(iv) A continuum, such as R under the usual ordering and topology, rep-
resenting the standard notion of an unbroken progression of instants;
or

(v) A mixture of these, such as {−} ∪ [0, 100] ∪ {+}, representing a
bounded unbroken progression augmented by “earlier and “later.”

Naturally, numerical temporal index sets suggest temporal metrics on events
and instants. Mixed index sets, however, need not have the homogeneity
needed to support trivial metric constructions.

5.3.2.3 Duration

In addition to recognizing temporal order and topological structure, physics
seeks to measure time. Zeno’s paradox and the impatience of infants do not
make sense without measures that assign durations to intervals or the separa-
tion of events.

Familiar notions of duration correspond to different temporal metrics. For
example, one might identify the discrete metric that maps all trivial intervals to
0 and all nontrivial intervals to 1 as the temporal metric employed by the impa-
tient infant, for whom everything is too late if it is not done now. Index-based
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metrics can identify temporal distances with differences in temporal indices
of instants, taking the duration of the interval between τ and τ ′ as given by
|t(τ) − t(τ ′)|.

Physics typically regards temporal metrics as measuring durations by real
numbers R, and I follow this tradition here by employing the time-lapse func-
tions t̂ : W ×W → R and t̄ : Γ × Γ → R introduced earlier.

The first axiom of temporal duration constrains the time-lapse functions to
agree with the temporal ordering of events.

Axiom T7 For each e, e′, e′′ ∈ W, t̂(e, e′) ≥ 0 iff e � e′.

With this relation between time lapse and order, we have t̄(τ, τ ′) > 0 just in
case τ occurs before τ ′, and t̄(τ, τ ′) = 0 just in case τ = τ ′.

Axiom T7 requires only that the time-lapse function provides a numerical
representation of temporal ordering, not that its values constitute meaningful
measures of temporal duration. We obtain the structure of a measure or metric
on events and instants by reaffirming for discrete time the earlier Axioms T1
and T2.

Coupled with Axiom T7 and the standard properties of numbers, the original
axioms, T1 and T2, imply the three ordering axioms, T4, T5, and T6.

5.3.3 Hybrid time

Although the event world as portrayed in the preceding section may seem a
uniform stage on which processes unfold, we can interpret the same event
world as encompassing the progress of different processes unfolding at dif-
ferent scales and rates, so that what constitutes an instant from the point of
view of one subprocess can constitute an interval from the point of view of
another subprocess. For example, a yearbook chronology might divide history
into years, each of which would consist of hundreds of days in a more refined
chronology. In addition, different processes might exhibit more complex rela-
tionships than mere subdivision; consider, for example, chronologies in which
days start at midnight and chronologies in which days start at sunset. We can,
in fact, make such complicated identifications of temporal substructures using
the notions of temporal ordering already introduced by considering temporal
orderings consistent with a specified one, and so obtain a notion of hybrid time
that models time at multiple granularities.

5.3.3.1 Hybrid instants

We now consider an indexed set {t̂i | i ∈ I} of temporal metrics on W, such
that each metric t̂i satisfies Axioms T4–T6. As before, each factor metric t̂i
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gives rise to a set of instants Γi. For each e ∈ W we define 	τ (e) to be the
vector or function from indices I to instants defined so that [	τ (e)]i = τi(e).

We define τ(e), the hybrid instant containing e, by τ(e) = ∩iτi(e). By
definition, e ∈ τi(e), so we know that e ∈ τ(e). We define the set of hy-
brid instants Γ to consist of all such intersection equivalence classes; that is,
Γ = {τ(e) | e ∈ W}. Because each of the intersected sets constitutes an
equivalence class or partition element, so do the intersections. Hybrid instants
thus partition the set of events.

5.3.3.2 Hybrid order and duration

We order instants in Γ by projection of the product order over the factor in-
stants, so that e � e′ just in case e �i e

′ for each i ∈ I and e < e′ just in case
e � e′ and e <i e

′ for some i ∈ I. A time-lapse function t̂ on the hybrid event
world W must match up with the hybrid event ordering �.

A hybrid temporal metric, however, need not bear any relation in scale to
its component temporal metrics. Even when two of the factor systems each
employ continuous time, nothing in mechanics forces us to assume the sys-
tems measure duration the same way. Certainly as human observers we know
people who live in the same world but seem to experience duration at differ-
ent rates, whether by occupying different stages of life, or because, though
seated in the same grand hall, one loves the opera while one’s companion
does not.

When traditional physical mechanics forms one of the factor mechanics, we
can expect that the usual notion of continuous time also forms the hybrid no-
tion of time. We see this sort of hybrid time in the theory of discrete event sys-
tems, in which discrete events exist for some nontrivial interval of continuous
time.

5.3.4 Extensions

Traditional continuous time need not absorb the times of all factor mechan-
ics. For example, some approaches (Iwasaki et al. 1995) in hybrid systems
theory consider temporal orderings isomorphic to subsets of the nonstandard
real numbers ∗R. The nonstandard reals augment ordinary numbers with in-
finitesimal numbers. One can use first-order infinitesimals to model an infi-
nite sequence of discrete computational steps occurring between any distinct
real numbers, no matter how close, by considering a series of numbers t, t +
α, . . . , t + nα, . . . for some infinitesimal number α. From the point of view
of ordinary continuous time, one can regard this series of nonstandard reals as
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all occurring within the single instant t. Indeed, one can even consider higher-
order infinitesimals, and consider such infinite sequences occurring within in-
finitesimals themselves. In this way the nonstandard reals ∗R under the usual
ordering and topology embed the infinite product Rω into a continuum.

One might wish to weaken the temporal axioms somewhat for certain appli-
cations. For example, some ways of describing nondeterministic event worlds
might call for using partially ordered times, forgoing T6. Some cosmologies
might conceive of time as a cyclical chain of distinct instants, a possibility
incompatible with the present axiomatization, because it would collapse all
events in such a cycle to a single instant. Standard Minkowskian relativity, in
particular, abandons the completeness of the event preordering, which turns
the ordering of instants into a partial ordering. Noll (1964) develops axioms
for Minkowskian time related to those given here for discrete time.

5.4 Space

The temporal ordering divides the event world into instants. We intend each
instant to correspond to a set of locations, but the mere grouping of events into
instants says nothing about the structure of these instants. The portion of kine-
matics concerned with space develops axioms that characterize the structure of
these instants in spatial terms.

We ordinarily regard our bodies and other objects as occupying a three-
dimensional space S, which, perspective aside, appears Euclidean to the un-
aided senses. Nonrelativistic mechanics thus models space as Euclidean 3-
space, using R3 as the typical representation, and models restricted subspaces
of interest with real differentiable manifolds of dimension 1, 2, or 3, that is,
topological spaces locally diffeomorphic to one-, two-, or three-dimensional
Euclidean space, possibly with a boundary locally homeomorphic to the one-,
two-, or three-dimensional Euclidean half-space.

Relativistic mechanics models space as only locally Euclidean. Space is lo-
cally Euclidean and globally Minkowskian in special relativity, a three-
dimensional spatial manifold slicing a four-dimensional event world manifold.
Space in general relativity is locally Minkowskian. I treat only neoclassical
space here, which is globally Euclidean.

5.4.1 Continuous Euclidean space

A Euclidean vector space, or inner product space, is a vector space V over R

that has an inner product. An inner product, of course, is a symmetric bilinear
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form 〈, 〉 : V × V → R for which the associated quadratic form is positive
definite, meaning that 〈v, v〉 is always nonnegative, and is zero only when v
is the zero vector. The inner product determines a quadratic form q : V → V

defined so that q(v) = 〈v, v〉 for each v ∈ V. The inner product provides
a metric d on V by applying the quadratic form to differences of points and
defining

d(v, w) =
√
q(v − w) =

√
〈v − w, v − w〉. (5.32)

Although we want to assume that mechanical space has a Euclidean char-
acter, mechanical space consists of a set of locations, not a vector space. Fol-
lowing Noll (1964; 1973), let us thus define the notion of a Euclidean space
as a set endowed with a Euclidean metric, meaning a metric representable by
a quadratic form on the translation space of the set. I explain these terms as
follows.

Consider a metric d : Λ × Λ → R+ on the set of locations Λ. We say
that a function φ : Λ → Λ is an isometry just in case φ is a bijection that
preserves distances; that is, d(λ, λ′) = d(φ(λ), φ(λ′)) for each λ, λ′ ∈ Λ.
Because inverses and compositions of isometries are isometries, and because
the identity function is an isometry, the isometries of Λ with respect to d form
a group Vd, abbreviated V, by taking composition of isometries as the group
operation.

The familiar notion of translation consists of mappings of a space onto itself
that preserve distances and compose in a commutative and reversible way. We
thus look for the set of translations V to form a subgroup of the full isomet-
ric group V, almost always a proper subgroup because the set of isometries
of Λ can include plenty of mappings, such as rigid rotations, beyond the de-
sired translations. We express the desired properties of translations in terms of
commutativity, transitivity, and free action.

Commutativity, of course, means that one can combine translations in any
order and get the same result, as seen in the standard parallelogram law of
vector addition. We say that a subgroup V of V is commutative just in case
v ◦ v′ = v′ ◦ v for each v, v′ ∈ V. The full group of isometries is not generally
commutative. For example, taking two steps forward and then facing right
leaves one with a different view of the world than does facing right and then
taking two steps forward.

To better reflect the usual notation for vectors, we write translations and
other isometries in additive terms, even though isometries in general lack the
usual commutativity of addition. For λ ∈ Λ and v ∈ V, we write λ + v to
denote the application v(λ) of the isometry v to the location λ, and for v′ ∈ V
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we write v + v′ to denote v ◦ v′. In the additive notation, the commutativity
requirement is that v + v′ = v′ + v.

Transitivity means one can always form translations that carry one location
into another. In vector terms, this means we can form vectors denoted as λ′ −
λ, and can connect any two locations through such translations. We say a
subgroup V acts transitively just in case for each λ, λ′ ∈ Λ there exists a
translation v ∈ V such that v(λ) = λ′, or λ+ v = λ′ in additive notation.

Free action, in turn, means that translations affect the whole space uni-
formly, so that a translation that leaves one location fixed must leave all lo-
cations fixed. We say a subgroup V acts freely just in case v consists of the
identity mapping 0V whenever v(λ) = λ for some λ, or in additive notation,
whenever λ+ v = λ.

We combine these notions to define a translation group of isometries as a
commutative, transitive, and free-acting subgroup of isometries.

A translation space of Λ then consists of an inner product space over the
underlying translation group. Thus V constitutes a translation space of Λ only
if it admits a scalar multiplication (α, v) �→ αv ∈ V making V into a vector
space, along with an inner product 〈·, ·〉 : V× V → R such that

d(v, w) =
√
〈v − w, v − w〉. (5.33)

Noll proves that for each metric space of locations there is at most one transla-
tion group admitting the structure of an inner product space, and that the inner
product space is unique if it exists. In such a case we say that the metric is a
Euclidean metric.

Some axiomatizations of space simply assume the typical representation at
the start by postulating that each instant is a copy of R3, as in McKinsey,
Sugar, and Suppes (1953a). At a more appropriate level of generality, one
can state axioms characterizing the specific properties wanted of space, rather
than tying the theory to the specific space R3. Noll (1973) takes this app-
roach by assuming that space consists of a Euclidean metric space of
dimension 3.

Noll’s axiomatization starts by assuming that each instant τ ∈ Γ admits
a distance function d̂τ : τ × τ → R+ taking pairs of simultaneous events
to nonnegative numbers. We ordinarily abbreviate d̂τ to d̂ when the instant
in question is understood. If we call each event in an instant a location, we
can say that the distance function takes each pair of locations to nonnegative
distance separating the two locations.
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Noll’s first axiom states that the space of locations is Euclidean.

Axiom S1 For each instant τ ∈ Γ, the distance function d̂τ : τ × τ → R+

is a Euclidean metric, and hence endows τ with the structure of a Euclidean
space.

Noll’s second axiom specifies that the dimensionality of space is uniform across
all instants, with the familiar value.

Axiom S2 For each instant τ ∈ Γ, the dimension of the translation space Vτ

is three.

Because each instant consists of a three-dimensional Euclidean space, each
instant is isomorphic to every other, and to any other three-dimensional Euclid-
ean space. We can thus pick a three-dimensional Euclidean space S to serve as
a standard representative of the instants of the event world.

5.4.2 Frame indifference

A frame of reference corresponds to the perspective of some possible observer.
Each observer sees exactly the same space, but from a perspective that can
change from instant to instant. A change of frame at some instant represents
an isomorphism

φ : S → S (5.34)

of the space of positions with itself. Such changes of representation play a key
role in solving practical problems by allowing one to choose the frame to sim-
plify the statement and solution of the problem. Some of the fundamental laws
or principles of mechanics concern invariance of basic mechanical notions un-
der changes of frame.

In the mechanics considered here, we consider only rigid changes of per-
spective that do not change distances, so that each change of reference frame
reflects an isometry of the space of locations.

Axiom S1 states that the space of locations is a Euclidean space. Euclid-
ean spaces have the characteristic that one can decompose each isometry into
the composition of a translation and an orthogonal transformation or gener-
alized rotation. We call an isomorphism Q : V → V orthogonal if 〈v, w〉 =
〈Q(v),Q(w)〉 for every v, w ∈ V. We can think of orthogonal transformations
as preserving angles and distances. The stated property of Euclidean spaces is
thus that if φ is an isometry of Λ, then there exists a λ0 ∈ V and an orthogonal
transformation Q such that

φ(λ) = φ(λ0) + Q(λ− λ0) (5.35)

for every λ ∈ Λ.
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The requirement of frame indifference placed on mechanical laws states that
true properties of the world do not depend on how we name or label them, and
thus do not depend on the choice of reference frame.

Indifference to changes of frame does not mean strict invariance. It means
that the quantity in question changes in a manner consonant with the change
in frame.

A frame-indifferent scalar quantity is a scalar quantity that is the same in-
dependent of choice of reference frame. If we write sφ to denote the value of
the scalar quantity s in the frame φ, frame indifference of s means just that
sφ = sφ′ for all isometries φ and φ′.

A frame-indifferent vector quantity is a vector quantity that rotates with the
rotation of the change in frame. If we write vφ to denote the value of the vector
quantity v in the frame φ, where φ(λ) = φ(λ0)+Q(λ−λ0), frame indifference
of v means just that vφ = Qv for each φ. One defines frame-indifferent tensor
quantities in an analogous manner.

Mechanical position or location is frame indifferent but not invariant, as
it changes directly with the frame. Velocity, however, is not in general frame
indifferent since it tracks only the rotational component of the change of frame,
and not the translational component, which can generate the familiar effect of
relative velocity.

In the presentation that follows, I imitate Truesdell (1991) and simplify
most discussions of changes of frame by means of notation in which I omit
explicit denotation of a framing function and use a superscript � to indicate
a quantity after a change of frame. Thus if we write v to denote a vector
given a frame φ, we can write v� to denote the corresponding vector given the
frame φ�.

5.4.3 Discrete space

Moving from traditional mechanical space to discrete mechanical spaces re-
quires identifying the characteristics of space that prove crucial to the practice
of mechanics. We of course need an algebraic character like that of vector
spaces, allowing calculation of translations, velocities, and accelerations. We
also need an algebraic character like that of Euclidean spaces, allowing ex-
pression of rigid changes of frame as translations and rotations. We do not
need, however, the involvement of the continuum R in discrete spatial
structures.

The quickest path to discrete spatial structures simply moves from Euclidean
spaces over R to Euclidean spaces over finite fields, such as the binary vector
space Zn

2 over the field Z2. We follow this path, and go a bit further, relaxing
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the vector-space requirement to the slightly weaker algebraic notion of free
modules over commutative rings.

5.4.3.1 Algebraic structures

Ordinary vector spaces consist of additive groups augmented with multiplica-
tion by elements of a scalar field. Fields, of course, are algebraic structures
permitting addition, subtraction, multiplication, and division (except by zero).
Vector spaces admit bases, sets of vectors that generate the rest of the vectors
in the space through suitable addition and scalar multiplication.

Modules over rings are much like vector spaces; the difference is that divi-
sion of scalars by each other need not be possible.

A ring is an algebraic structure in which one can add, subtract, and mul-
tiply, but not necessarily divide, and in which multiplication distributes over
addition. Commutative rings are rings in which addition and multiplication
commute. A field is a ring in which one can always divide by nonzero ele-
ments.

A module over a ring is just like a vector space, except that the scalars need
only form a ring, and need not form a field. Modules thus have the usual “vec-
tor” addition and scalar multiplication, with multiplication distributing over
addition. A module over a ring that is not also a field need not allow one
to normalize vectors, since one cannot always find a multiplicative inverse to
scalar multipliers. A module over a ring that is not also a field need not possess
a well-defined dimension, in that the module might be generated by linearly in-
dependent sets of different sizes.

A free module is a module that has a basis, that is, a linearly independent
set of generators such that each module element has a unique representation
(up to commutativity) in terms of the generators. When the ring of scalars is
commutative or is a field, all bases of a free module have the same size, and
thus one can speak sensibly of the dimension of the module. In this book, all
free modules we consider are free modules over commutative rings, so all have
well-defined dimensions.

A ring (or field) has characteristic n if adding 1 to itself n times yields zero.
The rings Zk for integer k have characteristic k.

A linear form over a module V is a function f : V → R such that f(αv +
βw) = αf(v) + βf(w). A bilinear form is a function f : V2 → R such
that both f(v, ·) and f(·, v) are linear forms for each choice of v ∈ V. A
symmetric bilinear form is a bilinear form f such that f(v, w) = f(w, v) for
each v, w ∈ V. A bilinear form f is nondegenerate if f(v, ·) and f(·, v) are
never the constant zero mappings for any nonzero v. A quadratic form is a
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function q : V → R such that there exists a nondegenerate symmetric bilinear
form f such that q(v) = f(v, v) for each v ∈ V.

We call a nondegenerate symmetric bilinear form a generalized inner prod-
uct. We say that an isomorphism Q : V → V of a module V with itself
is orthogonal with respect to a generalized inner product 〈, 〉 just in case Q
preserves the generalized inner product, that is, if 〈v, w〉 = 〈Qv,Qw〉 for all
v, w ∈ V.

5.4.3.2 Pseudo-Euclidean space

Axiom S1 requires that the distance notion characterizing space give rise to
a Euclidean translation space over the set of locations. The metric strongly
shapes the form of the translation space in two ways. First, the metric and
inner product conditions force the uniqueness of the translation space, if one
exists, and guarantee the decomposability of isometries into translations and
rotations. Second, the resulting translation space necessarily exhibits a con-
tinuum character, because scalar multiplication by numbers in R forces each
dimension to resemble a continuum in any space of positive dimension.

Discrete mechanics only needs to consider abandoning the second of these
two consequences of Axiom S1. Indeed, mechanics demands retaining all or
most of the first consequence.

Fortunately, we can abandon the continuum aspects of Axiom S1 with little
difficulty, as shown by Noll (1964, pp. 134–136, esp. Remark 1). Although
the usual development of Euclidean translation space assumes a real-valued
distance metric on locations and R as the field of scalars, in almost all cases
the same algebraic constructions and theorems hold when one replaces the field
R with a commutative ring R.

The more general construction of translations spaces starts with a sepa-
ration function σ : Λ × Λ → R taking pairs of locations to values in a
commutative ring R. To recover the continuous case, we just take σ = d̂2.
The modified axioms to come will give σ the structure of a quadratic form.
One then considers separation-preserving isomorphisms of the set of locations
in place of isometries. We define the set Vσ of σ-preserving isomorphisms
of Λ with itself to contain exactly those bijections φ : Λ → Λ in which
σ(λ, λ′) = σ(φ(λ), φ(λ′)) for each λ, λ′ ∈ Λ. As with ordinary isometries,
the separation-preserving bijections form a group by taking composition of
functions as the group operation.

The more general construction also foregoes the requirement that the trans-
lation space forms a real vector space, and instead requires that the transla-
tion group admits the structure of a module over R on which a generalized
R-valued inner product 〈, 〉 induces the given separation function through its
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associated quadratic form, in the sense that σ(λ, λ′) = 〈λ−λ′, λ−λ′〉 for each
λ, λ′ ∈ Λ.

Noll proves that for rings of characteristic other than 2 there is at most one
such module structure, and that this module structure provides for unique rep-
resentations of all isometries in the form given in (5.36). With this more gen-
eral setting of Noll’s axioms available, we obtain axioms for discrete mechan-
ics by assuming a suitable separation function and then modifying Axioms S1
and S2 appropriately.

I augment the assumption of a metric on the space of locations with a sep-
aration function σ : Λ × Λ → R taking pairs of locations to values in a com-
mutative ring R. I require compatibility between the metric and separation
function in the following axiom.

Axiom S3 The separation function σ is such that

(i) σ(λ, λ′) = 0 (in R) whenever d(λ, λ′) = 0, and

(ii) Each bijection φ : Λ → Λ preserves distance only if it also preserves
separation; that is, if d(λ, λ′) = d(φ(λ), φ(λ′)) for every λ, λ′ ∈ Λ,
then σ(λ, λ′) = σ(φ(λ), φ(λ′)) for every λ, λ′ ∈ Λ.

Thus the separation function preserves locations, and the separation-preserving
maps Vσ include the isometries Vd; that is Vd ⊆ Vσ .

I next split Axiom S1 into parts. The first part states that a translation group
exists with respect to the metric function.

Axiom S1a The isometric group Vd includes a translation subgroup V.

By Axiom S3, this means that V also forms a subgroup of the separation-
preserving maps Vσ .

The second part requires the existence of a free inner product module over
the translation group.

Axiom S1b There exist a scalar multiplication operation · : R × V → V

giving V the structure of a free module over the commutative ring R, and a
generalized inner product 〈·, ·〉 : V × V → R over V such that σ(λ, λ′) =
〈λ− λ′, λ− λ′〉 for every λ, λ′ ∈ Λ.

It could be that some other structure would serve the purpose better than free
modules over commutative rings, but I do not address that possibility here.

The third part ensures the decomposability of separation-preserving maps
into translations and rotations.
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Axiom S1c For every every isometry v ∈ Vd, there exists a location λ0 ∈ Λ
and transformation Q orthogonal with respect to 〈·, ·〉 on V such that

v(λ) = v(λ0) + Q(λ− λ0) (5.36)

for each λ ∈ Λ.

Noll’s theorem ensures that Axiom S1c follows from Axioms S1a and S1b
when R has characteristic other than 2. However, Chapter 10 shows that the
case of characteristic 2, in which x + x = 0, has significant interest. We
thus adopt Axiom S1c to ensure the needed character of mechanical space
pending a proof that isometries decompose properly even in the case of rings
of characteristic 2. Note that Dieudonné (1963) shows how one can define
quadratic forms for inner product modules over rings of characteristic 2, such
as 〈v, w〉 = vw + v + w, and Milnor and Husemoller (1973) provide related
results.

Discrete mechanics also weakens Axiom S2 to ensure only uniformity of
dimension, omitting the specific dimensionality of ordinary physical space.

Axiom S2a For each τ, τ ′ ∈ Γ, the dimension of the translation space Vτ

equals that of Vτ ′ .

These axioms imply the isomorphism of all instants to each other, so we can
still pick a representative set S isomorphic to each instant.

Continuous Euclidean space carries a natural topology defined by the metric.
The following axiom ensures even discrete pseudo-Euclidean space carries a
uniform topology compatible with the metric or separation function.

Axiom S4 The locations in each instant τ ∈ Γ form a topological space
(Λτ ,Θ(Λτ )) such that

(i) The ε-balls (interiors of “spheres” of radius ε for each ε) of Λτ with
respect to d̂τ form open sets in Θ(Λτ ), and

(ii) The spaces (Λτ ,Θ(Λτ )) and (Λτ ′ ,Θ(Λτ ′)) are homeomorphic for
each τ, τ ′ ∈ Γ.

Because all instants are homeomorphic, we can represent the topology on each
with a topology (S,ΘS) on the index space S that makes S homeomorphic to
each of the instants.

5.4.3.3 Examples

Discrete mechanical spaces include many discrete vector spaces, such as Zn
p

over Zp for prime p, and thus include the binary vector spaces Zn
2 over Z2
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familiar in computing. The standard L-norms provide natural metrics, defined
by

dl(x, y) =

(
n∑

i=1

(xi − yi)l

)−l

. (5.37)

When l = 2, we have the standard Euclidean (L2) metric. When considering
vectors in Zn

2 and taking l = 1, we have the Hamming (L1) metric. We obtain
natural generalized inner products by employing the same forms as in (5.37),
but taking sums in the scalar field (denoted by

∑
(p)) rather than in R, that is,

dl(x, y) =

(
n∑

i=1

(p) (xi − yi)l

)−l

. (5.38)

Working in Z2 when l = 1, this yields the parity of the binary sum of vec-
tors. The same constructions work as well for mechanical spaces based on the
modules Zn

k over the finite rings Zk .
In fact, one can construct such spaces using an arbitrary finite set of cardi-

nality k by identifying the elements of the set with the elements of the finite
ring Zk. One obtains translations by arranging the elements of the set in a
circle, as on a roulette wheel. Translations in this finite set then correspond
to rotations of the circle bringing one element to the place formerly held by
another. We need not assume anything additional just to get a linear mod-
ule structure for translations. Every commutative group, and in particular the
translation group, supports a linear space structure in the form of a module
over the ring of integers Z. The natural Z-module structure need not be the
module structure of importance in mechanics, however. For example, the ordi-
nary three-dimensional space of traditional mechanics forms a Z-module, but
the module structure of interest is the very different R-module (the real vector
space) structure.

Alternatively, one can derive finite algebraic structures from stipulated met-
rics. Each metric on a set of k locations determines between 1 and k(k− 1)/2
distances between the locations. Each separation function satisfying the pre-
ceding axioms determines between 1 and k(k − 1)/2 separation values for
the locations. The compatibility requirement ensures that there are no more
distinct separation values than metric values, and that partitioning pairs of lo-
cations into the equivalence classes according to the metric refines the cor-
responding partition into equivalence classes according to separation values.
One can thus enumerate the equivalence classes of separation values in order
of increasing metric value. If there are n such equivalence classes according
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to separation value, one can consider modules over Zn. Alternatively, one can
represent locations as vectors in the vector space Zk over the binary field Z2.

It would be good to understand better the implications of basing mechanics
on free modules over commutative rings rather than on vector spaces. Do the
mathematical differences between these notions really matter to mechanics or
its development?

Several trains of work do follow paths that diverge from the usual vector-
space setting in different ways. Noll’s construction of translation spaces ex-
hibits the methods used in synthetic differential geometry (Kock 1981).
Lawvere (2002) presents constructions from a similar viewpoint. Baez and
Gilliam (1994, 1996) exploit ideas of synthetic differential geometry and com-
mutative algebra to develop the discrete translation spaces comparable with
the ones here for vector spaces over Z2. One might view these constructions
as following on Kalman’s (1969) use of modules over polynomial rings, which
he views as the most natural structural assumption about state spaces in system
theory.

5.4.3.4 Extensions

Axiom S1b requires that the translation space of locations forms a free mod-
ule. The requirement that the module have a basis certainly reflects the familiar
case of physical space, but might not always be appropriate for some discrete
systems. We have yet to understand the consequences of dropping the ba-
sis requirement in favor of requiring only a module with a generalized inner
product.

5.4.4 Hybrid space

While the different notions of time in hybrid mechanical systems merge into
a common refinement, the different notions of space do not combine into a
common structure, but retain their independent characters, something like the
different notions of bodies in hybrid systems.

In the setting of hybrid mechanics, we consider distance metrics d̂τ : τ ×
τ → R+ for each τ ∈ Γi and i ∈ I. Each distance metric takes pairs of si-
multaneous events to nonnegative reals that represent distance or metric values
in one-factor mechanics, and that satisfy the axioms given earlier for space.
Each factor metric thus yields a set of locations Λi(τ). Each event contained
in λ ∈ Λi(τ) has the same position in the ith mechanical factor space Λi(τ),
but different events contained in the same factor location will have different lo-
cations in some other factor mechanics. Thus if e, e′ ∈ λ ∈ Λi(τ) and e �= e′,
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there should be some other factor instant τ ′ ∈ Γj and location λ′ ∈ Λj(τ ′)
such that e, e′ ∈ τ ′ and e ∈ λ′ but e′ /∈ λ′.

Just as each event determines a hybrid instant τ(e) defined as the intersection
of the vector 	τ (e) of factor instants, each event also determines a vector of
factor locations and hybrid location. We define λi(e) to denote the location
of e in the ith factor mechanics, that is, the location λ ∈ Λi(τi(e)) such that
e ∈ λ. We define the hybrid location λ(e) of e to consist of the tuple or
function taking indices in I to factor locations, such that [λ(e)]i = λi(e).

One can lift the metrics d̂τ : τ × τ → R+ over simultaneous events to
a metric d̂i : Λi × Λi → R+ over locations in the natural way by defining
d̂i(e, e′) = d̂τ(e)i

(λ(e)i, λ(e′)i).
By definition, we know e ∈ [λ(e)]i, so we know that e ∈ ⋂i[λ(e)]i. We

also know that λi(e) ⊆ τi(e), so that
⋂

i λi(e) ⊆
⋂

i τi(e) = τ(e), so that the
events common to all the factor locations containing e exist within the same
hybrid instant.

The prime axiom characterizing hybrid space ensures that the combination
of hybrid instant and hybrid location allows no ambiguity about events.

Axiom S5 For each τ ∈ Γ and e ∈ τ ,
⋂

i∈I [λ(e)]i = {e}.

That is, the set of factor locations containing an event identifies the event
uniquely. The second axiom characterizing hybrid space ensures uniformity
of hybrid structure by requiring each hybrid instant to reflect all combinations
of factor locations.

Axiom S6 For each τ ∈ Γ and selection 	λ ∈ ∏i Λi, there exists some event e
such that e ∈ τ and e ∈ ⋂i[	λ]i.

Together Axioms S5 and S6 imply the existence of a bijection between each
hybrid instant and the space of product locations Λ =

∏
i Λi. If we choose Si

to represent the locations Λi, then S =
∏

i Si represents hybrid locations, so
that the axioms yield an isomorphism between W and T × S.

Many times we will want to consider mechanical systems augmenting tradi-
tional physical space with additional spatial dimensions. If we write Sp and Sp

to indicate a distinguished decomposition of the factor spaces into the factor
Sp representing a traditional physical space of dimension at most 3 and Sp to
represent the product of all other factor spaces, we can reexpress hybrid space
S =

∏
i Si as the product S = Sp × Sp.
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5.4.4.1 Hybrid translation space

To verify the pseudo-Euclidean nature of hybrid space, we start with the fac-
tor translation spaces Vi on Λi induced by the factor metrics d̂i. Axiom S1b
requires each Vi to be a free module over a commutative ring Ri. If we de-
fine the hybrid separation function σ to be the product function

∏
i σi, so that

[σ(λ, λ′)]i = σi(λi, λ
′
i), it is easy to obtain the hybrid translation space V as

the product module V = ΠiVi over the product ring R = ΠiRi. The product
of commutative rings is again a commutative ring, and the product of free mod-
ules is again a free module, so hybrid translation space fits the mold required
of the factor translation spaces.

This construction indicates why we cannot in general expect a hybrid trans-
lation space to be a vector space. The product of vector spaces over the same
field is indeed a vector space, but the product of vector spaces, considered as
free modules, over nonisomorphic fields requires taking as scalars the product
of the scalar fields, considered as rings. The ring product of nonisomorphic
fields is only a ring, not a field.

Consider, for example, a simple model of a human employing Zn
2 to rep-

resent mental locations and R3 to represent physical locations. Though both
Zn

2 and R3 form vector spaces, these vector spaces employ different fields of
scalars, respectively Z2 and R. Forming the product space Zn

2 ×R3 thus leads
to scalars in Z2 × R. This space of scalars does not form a field since some
nonzero elements have zero product, as in (a, 0)(0, b) = (a0, 0b) = (0, 0),
where (0, 0) serves as the zero element of the product space. The product of
the scalar fields thus only forms a ring, making the product of the factor spaces
form only a module rather than a vector space.

For hybrid distance, one can take the natural Euclidean metric over the factor
metrics, defining the hybrid metric d̂ on hybrid locations Λ by

d̂(λ, λ′) =
√∑

i

d̂2
i (λi, λ′i). (5.39)

This hybrid metric agrees with the factor metrics on the factor spaces, but
otherwise has little import.

5.4.4.2 Hybrid frames

The requirement that isometries of hybrid space also be hybrid separation-
preserving maps restricts the relevant isometries of hybrid space to the hybrid
isometries. A hybrid isometry of an instant τ ∈ Γ is a bijection φ : τ → τ

that preserves the integrity of factor spaces in the sense that e, e′ ∈ τi iff
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[φ(e)]i = [φ(e′)]i for each e, e′ ∈ W and i ∈ I. We call φ a hybrid isometry
just in case each φi : Λi → Λi is an isometry of Λi with respect to d̂i.

The requirement of compatibility between separation and metric thus means
that hybrid isometries factor into hybrid translations plus hybrid rotations.
That is, in the hybrid setting, we view observers as observing individual factor
spaces separately, so that observers of the hybrid space do not confuse events
in one factor mechanics with events in others. We thus obtain a set of repre-
sentations

φi,t(x) = φit(xi,o) + Qi,t(x − xi,o), (5.40)

making the hybrid frame a hybrid translation composed with a hybrid rotation
along each of the factor spaces.

All the important mechanical structure of the hybrid space comes from the
factor spaces. The true hybrid metric values outside the factor spaces play no
role in the resulting hybrid mechanical structure. One can take this to indicate
that hybrid space need not sustain any common measure of overall distance, but
need only make sense of the notion of distance within each type of component
space. When psychology is formalized, this lack of comprehensive notions of
distance reflects the Cartesian intuitions of incommensurability of mental and
physical distances.

5.4.4.3 Hybrid substructure

It might prove feasible and desirable to follow traditional mechanics a bit fur-
ther and assume that each factor translation space forms a vector space.

Assumption S7 For each i ∈ I, the scalars Ri of the translation space Vi

form a field, so that Vi forms a vector space.

In particular, going back to earlier remarks on the typical decomposition S =
Sp × Sp, the traditional physical vector space factor Sp satisfies Assumption
S7. The assumption just requires that each of the other factor systems possess
a similarly strong algebraic character.

However, this strengthening of assumptions about factor mechanics still
does not make the hybrid translation space into a vector space for the reasons
just explained. If all factor spaces can be viewed as modules over a com-
mon field, then the hybrid space will have the structure of a vector space. If
two factor spaces lack translation spaces over a common field, then the hybrid
translation space will only have the structure of a free module, not the structure
of a vector space.

One can partition the factor spaces by grouping together factor spaces hav-
ing translation spaces over the same fields and form the vector spaces
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corresponding to the products of the factor spaces in each partition element.
The full hybrid translation space thus consists of the product of these “super-
factor” vector spaces. For example, if all the factor spaces making up Sp are
binary vector spaces, one can combine them so that Sp is also a binary vector
space. Similarly, if some such factors are vector spaces over R and the rest are
binary, one can combine the factor spaces over R with the Sp factor and group
all the remainder together as a vector space over Z2.

The reasonability of Assumption S7 would be strengthened if it were true
that every free module over a commutative ring can be viewed as the product
of vector spaces over a product ring.

5.4.5 Extensions

Translation space fits sets conceived of as flat or affine spaces, that is, spaces
with no curvature. One treats the more general case of curved spaces in terms
of manifolds and local translation spaces called tangent spaces. Manifolds pro-
vide a means for studying globally complicated but locally Euclidean spaces.
General relativity provides the most famous examples of space modeled as a
curved manifold, but special systems of classical mechanics provide others,
such as the submanifold of space through which a pendulum moves. I forego
repetition of the usual examples (see Abraham & Marsden 1978; Marsden &
Hughes 1983; Misner, Thorne, & Wheeler 1973).

5.4.5.1 Manifolds

An n-dimensional topological manifold is a topological space locally home-
omorphic to Rn, possibly with a boundary locally homeomorphic to the n-
dimensional real half-space. A differentiable manifold is a topological mani-
fold with interior and boundary diffeomorphic to real spaces and half-spaces.
I review the definition of these concepts, consider their relation to discrete and
hybrid spaces, and examine a notion of premanifold generalizing the standard
continuum notions.

Formally, an n-dimensional topological manifold is a topological space M
together with a set of the local homeomorphisms, called local charts, that con-
sist of homeomorphisms φ : U → Rn between subsets U of M and open
subsets of Rn. A compatible covering collection of charts is called an atlas.
Formally, writing a local chart φ on U as (U, φ), we see that an atlas on M is
a family

A = {(Ui, φi) : i ∈ I} (5.41)
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of charts. We require that the charts of the atlas cover the manifold

M =
⋃
i

Ui. (5.42)

For every two charts (Ui, φi) and (Uj , φj) with overlapping domainsUi∩Uj �=
∅, we form the overlap maps

φji = φj ◦ φ−1
i � φi(Ui ∩ Uj). (5.43)

Compatibility requires that each overlap map φji(Ui ∩ Uj) is open in Rn and
that φji is a homeomorphism.

Two atlases A1 and A2 are equivalent iff A1 ∪ A2 is an atlas. An atlas
structure A∗ on M consists of an equivalence class of atlases. The union of
atlases in A∗,

AA∗ =
⋃

A∗ =
⋃
{A | A ∈ A∗}, (5.44)

is the maximal atlas of A∗, and a chart (U, φ) ∈ AA∗ is an admissible local
chart. If A is an atlas on M , the set of all atlases equivalent to A is called the
atlas structure generated by A.

Differentiable manifolds are topological manifolds for which the charts and
their inverses (as well as all translation maps between overlapping charts)
are C∞ diffeomorphisms, not just homeomorphisms. One builds up tangent
spaces over differentiable manifolds as follows. At each point p of a manifold
M , one defines tangents to curves onM through p, using any of several equiv-
alent methods. One method characterizes tangents as equivalence classes of
curves, calling two curves through p equivalent if their images in a local chart
at p have the same derivative (that is, are mutually tangent). Curves equivalent
in one local chart at p must be equivalent in all local charts at p, so this is a
good definition. The set of all tangents toM at p is a vector space TpM , which
is the tangent space to M at p, isomorphic to Rn. The set TM of all tangent
spaces to M ,

TM =
⋃

p∈M

TpM, (5.45)

is called the tangent bundle of M . It is also a manifold, a R2n manifold if M
is an Rn manifold. I will not dwell on the details of the construction of tangent
spaces to manifolds since so many good expositions exist.

The notion of manifold fits naturally into hybrid mechanics, because the
product of topological manifolds is again a topological manifold, and the prod-
uct of differentiable manifolds is again a differentiable manifold.
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5.4.5.2 Discrete manifolds

Consideration of mechanics in the setting of discrete space and motion opens
the question of whether discrete spaces admit characterization in terms of
something like the notion of manifold.

A step in this direction forms the basis of hybrid systems theory
(Alur et al. 1993; Branicky 1995; Davoren 1998), which, building on the the-
ory of discrete event systems (Ramadge & Wonham 1982, 1987), provides a
model for such multifactor spaces by employing products of automata and dif-
ferentiable manifolds. Discrete event systems in turn have significant similar-
ities to Noll’s (1972, p. 48) abstract version of his theory of simple materials
and to Willems (1972a, 1972b) similar approach in systems theoretic terms.
Although the result is a differentiable manifold as long as at least one of the
factors is, the models of hybrid systems theory do not in themselves exhibit
all the properties one might desire. Discrete sets may be modeled as topolog-
ical manifolds using the discrete topology on the set, which makes each dis-
crete point homeomorphic to the zero-dimensional topological manifold R0.
We cannot directly extend this to the differentiable case, however, because
R0 is not a differentiable manifold, although the product of a point with a
differential manifold is of course a differentiable manifold when the product
points are given a topology mirroring that of the differentiable manifold. More
to the point, however, the hybrid systems model leaves the automaton states
outside the algebraic framework imposed on the continuum physical states.
It makes no distinctly spatial interpretation of the automata state space, and
does not distinguish or require any portion of the manifold to represent any
part of physical space. For the purposes of mechanics, we seek theories of
space that treat all factors in comparable algebraic, geometric, and topological
terms.

As considered in later chapters, the representational systems studied in psy-
chology and artificial intelligence often decompose into hybrids and sums of
several types of representations. The concepts underlying the notion of man-
ifolds might prove useful in studying these discrete representational systems
as well, for example, as a way of studying local representations or encod-
ings of logical, computational, or psychological information. In particular, one
thinks of the structure of a network of markets incorporating both simple local
structures consisting of sets of participants in an auction for a specific good,
and complicated global structure in terms of the topological relations between
markets in different goods.

I turn to this question briefly and introduce a variant of the notion of atlas
appropriate to discrete spaces in a frankly speculative notion, which is the
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premanifold. I introduce this concept not because it seems right—indeed, it
seems to miss the mark in several important ways—but because it might help
in finding the right way of formulating an invariant notion of representational
structure. In particular, this completely straightforward way of adapting the
standard chart and atlas notions yields a construction that collapses in the end,
and permits global representations of the discrete spaces as subsets of discrete
vector spaces. Perhaps the synthetic structures proposed by Lawvere (2002)
would serve these purposes better.

Formally, we get the structure of premanifolds by essentially the same con-
struction as that for topological manifolds after changing the notion of local
charts from functions that represent open subsets of the underlying set as open
sets in Rn to functions that represent these open subsets as open sets in some
other topological module. Real vector spaces with the usual topology consti-
tute the topological modules of interest in ordinary manifolds. In the discrete
setting, we consider finite vector spaces under the discrete and other topologies
as well.

Formally, we take a local chart on M to be a bijection φ from a subset U of
M to an open subset of a free topological moduleMφ over a commutative ring
RMφ

. We go beyond the generality common in the usual notion of topological
manifold to permit the coordinate module Mφ to vary with the subset U under
consideration, but it is not clear that treating the discrete systems of interest
requires this added generality. The primary focus here falls on premanifolds in
which all local charts map to the same topological module.

We define atlases of charts in the same was as for topological manifolds,
requiring that the overlap domains φji(Ui ∩ Uj) be open in Mi, and that the
overlap maps φji be homeomorphisms. When all charts in A map to the same
module M, we call A an atlas modeled on M or M-atlas. The notions of
atlas equivalence, structure, and maximal atlases carry over directly. We then
define a premanifoldM as a pair (M,A∗), whereM is a set and A∗ is an atlas
structure on M .

A premanifold is an M-premanifold iff for each point a ∈ M there exists
an admissible local chart (U, φ) with a ∈ U and φ(U) ⊂ M. A premanifold
is an n-premanifold iff it is an M-premanifold and M has dimension n, such
as M = Rn or M = Zn

2 .
Note that all differentiable n-manifolds are n-premanifolds, the only extra

conditions being that the charts map M to Rn, and that the overlap maps are
C∞ diffeomorphisms.

Premanifolds become topological spaces by defining the open sets of M to
be those A ⊂ M such that for each a ∈ A there is an admissible local chart
(U, φ) such that a ∈ U and U ⊂ A.
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We note that if M is a Zn
2 -premanifold, then the derived topology for M is

discrete, and there is a global chart (M,φ) representing each point of M as a
vector in Zn

2 . Clearly, for any finite set M , if 2n < |M | ≤ 2n+1, then M is
a Zk

2 -premanifold iff n < k. Thus while not every continuum can be given
the structure of a manifold, every finite set can be made into a premanifold by
representing it with binary vectors.

The upshot is that each premanifold modeled on discrete topological mod-
ules admits a global coordinate representation, obviating the complexity of the
premanifold definition, and calling into question the utility of the concept. Of
course, the discrete topology need not be the only topology of interest when
one is considering discrete spaces, especially those involved in informational
or computational systems. In such systems, the relevant topology might be the
T0 topologies of continuous Scott lattices, which lie between those of Euclid-
ean metric spaces and discrete sets. Does the notion of a premanifold as de-
fined provide a less trivial result when the representation topology is, for ex-
ample, the T0 Scott topology? Does some modified definition of premanifold
provides a useful notion of local rerepresentation?

The algebraic structure provided by local charts lets us extend the tangent
space notions of standard manifold theory to notions of tangent spaces for
premanifolds. One path to extending traditional tangent space notions to the
discrete case might be to regard translations over discrete factor spaces as rep-
resenting “infinitesimal” tangents, and take the translation space as constituting
the tangent space at each point. In this way we arrive at a notion of tangent
spaces appropriate to hybrid mechanics. For each point p ∈ S in hybrid space,
we take the hybrid tangent space to consist of the product of the factor tangent
spaces; that is,

TpS =
∏

i

TpiSi. (5.46)

A more general theory might not assume that every point in S is a possible
successor, or equivalently, that not all curves are “continuous.” One natural
isomorphism identifies a tangent (p, q) with q, making the tangent space TS

isomorphic to S × S, the set of all “transitions” between elements of S.

5.4.5.3 State space

The notion of manifold was developed to formalize the state spaces of mechan-
ical systems, spaces augmenting or replacing physical space with parameters
appropriate to the system under study. For example, the parameters normally
appropriate for describing the pendulum or double pendulum are not the usual
Cartesian coordinates.
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The conceptual danger of the state-space approach is that one loses sight
of the underlying concept of space itself. Each parameter of the system de-
scription, be it mass, charge, or charm, becomes yet another dimension of state
space, with no distinction in the formalism itself between dimensions related
to space and those related to other physical concepts. This uniformity can offer
mathematical and conceptual benefits, but at the cost of removing the underly-
ing physical concepts from the formalism.

The worst cost of discarding the fundamental physical concepts is that one
is left with mere variational mechanics. As I detail in Section 7.5, variational
mechanics represents a formalism well suited to some mechanical systems but
ill suited to the full range of physical systems, much less the psychological
and economic systems of interest here. The variational formalism exploits the
abstract state space, but requires one to encode both general physical laws and
laws specific to the system of interest in a Lagrangian function. This obvi-
ously obscures the physical laws by making them seem ad hoc to each prob-
lem solved. It also implicitly requires the system laws to be unchanging over
time and to be completely specified in advance. Neither of these assumptions
fits the needs of psychology and economics well. It is worth noting that the
underlying mechanical laws suffer no such problems.

5.4.5.4 Event worlds

With the preceding structures for hybrid space and time, we can describe a
variety of event worlds from physics, computation, and other fields.

In the state spaces of hybrid system theory, and for some of the psychologi-
cal systems considered here, the space S represents the product of discrete sets
with differentiable manifolds, so that the event world looks like many copies
(one per discrete spatial element) of the differentiable manifold. In many of
these, the discrete factor itself bears the structure of a Euclidean space, such as
the usual Euclidean structure on Zn

2 over the field Z2.
In plain computation, S and T are discrete, with T = Z, and S taken to be the

state space of the system, for example, the set of states of a finite automaton.
The sets W, S, and T are given the discrete topology, so that homeomorphisms
are just bijections.

In the case of computational models like perceptrons (Minsky & Papert
1969) or the Boltzmann machine (Hinton, Sejnowski, & Ackley 1984), and
in econometrics, S is a Euclidean continuum and T is discrete.

For general parallel computers, including life machines, connection and
grid machines, and cellular automata, S and T are discrete and Euclidean
or possibly Minkowskian. Here space has the structure of the sum of the
spaces of individual processors or cells. The spacelikeness restriction rules out
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instantaneous global states that do not also constitute proper instantaneous lo-
cal states. In particular, this restriction narrows the global sum structure to
a global product structure. In this setting, a metric on events that measures
propagation or computation delays results in a more specific restriction, whose
freedoms express the possible independent time rates of the individual proces-
sors or cells.

5.5 Bodies in space

Mechanics does not just concern bodies, space, and time, but also how bodies
occupy portions of space and how these occupations change over time.

5.5.1 Placements

Axiom B8 requires that the set of body points possesses a topology, and Axiom
S4 does the same for the set of locations. A placement of a body B in space S

consists of a smooth mapping χ : B → S of the body points of B into points
of space, that is, a mapping χ that is continuous with respect to the topologies
(U ,ΘU) and (S,ΘS). Requiring continuity rules out placements that involve
ripping or tearing of a body when placing it in space.

Most treatments of continuum mechanics in fact restrict attention to place-
ments that constitute homeomorphisms of bodies and places, that is, continu-
ous invertible (1-1) mappings that have continuous inverses. Requiring place-
ments to be homeomorphisms means that placements cannot assign the same
place to distinct body points, and so rules out placements that involve folding
or penetration.

Because we regard each body as a subset of U , we can express a placement
of all bodies with a placement χ : U → S of the universal body U . The image
χ(b) of a body point b is called its location or position in the placement χ.

We call the image χ(B) = {χ(b) | b ∈ B} the shape of B in the placement
χ. This association of shapes with bodies yields a functionχB : B → P(S) on
bodies that assigns to each body the shape of the body. We call χB a placement
of the universe B.

We write BS to denote the universe of shapes, that is, the set of possible
images across all placements χB. Placements need not fill all of space with
bodies, so in general BS need not equal P(S). The assumption that B forms
a lattice of subsets of U means we can view each placement χB as a lattice
homomorphism χB : B �→ BS. In fact, because B forms a Boolean lattice
of subsets of U , the image of χB forms a Boolean lattice with top element
χB(U).
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5.5.2 Examples

In analytical dynamics, U is a finite set of body points with the discrete topol-
ogy. Placements map these points into R3 or some other 3-manifold. The
discrete topology means that every placement is continuous.

Continuum mechanics takes U to be the set of closed, regular, or fit regions
in R3 or some other differentiable manifold, and takes S to be R3 or some
other differentiable manifold. The more interesting topologies of these sets
place significant restrictions on placements.

Computation takes bodies to be discrete sets and placements to be maps into
state space. If U is a singleton (as is common), then each placement may be
identified with a point, which in some cases can be thought of as the system’s
state.

5.5.3 Configurations

Although placements associate bodies and space, placements involve a global
perspective on space in an essential way. This means that placements reflect
the perspective of an observer. From the point of view of mechanics, we seek
a more intrinsic notion of the relation between a body and space.

Noll characterizes the spatial organization of the body intrinsically in terms
of spatial relations between the various body points rather than in terms of lo-
cations between places inhabited by body points and other places uninhabited
by body points. He calls this intrinsic notion the configuration of the body, and
defines a configuration κ of a body B as a metric κ : B × B → R+ defined
on the points of B that gives the distances between points of the body. Each
different metric constitutes a different configuration of the body. Metrics on U
thus constitute configurations of the entire material universe.

Each placement χ : B → S determines a configuration of B. Pulling back
the metric d on S through the placement χ induces a distance function dχ such
that dχ(b, b′) = d(χ(b), χ(b′)). The metric dχ thus constitutes a configuration
of B. The universe of shapes BS thus gives rise to a universe of configurations
we denote by BC. We write BC(B) to indicate the set of all configurations of
B.

Going the other way, each configuration κ ∈ BC corresponds to the set of
placements BS(d) = {χ ∈ BS | κ = dχ} exhibiting that configuration.

5.5.4 Deformations

In addition to considering relations between placements and configurations,
mechanics also considers relations between configurations. A deformation is
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a mapping of body points that carries one configuration into another. As with
placements, continuum mechanics usually restricts attention to deformations
that constitute homeomorphisms of bodies and places.

It is useful to consider deformations generated by homeomorphisms. If χ
is a placement and hS : S → S and hU : U → U are homeomorphisms, then
χ′ = hS ◦ χ ◦ hU is a placement as well, and constitutes a deformation of χ.

Standard practice in mechanics picks one particular placement χr to serve
as a reference placement, thus also determining a reference configuration κr

as the body metric dχr obtained from the reference placement. Other place-
ments and configurations are then regarded as deformations of these reference
entities.

5.5.5 Extensions

It might prove useful to consider spaces of forms BS that have distinctive struc-
ture apart from the topology of S. Continuous lattices, such as the domains
characterized by Scott (1982) information systems, explicitly describe struc-
tural forms useful in characterizing computations. One issue here is whether
the image χB(U) can still form a Boolean sublattice of BS. Scott domains can
lack complements, but this might not matter, seeing as how placements need
not fill all of space. Another issue concerns the interaction between the mater-
ial topology on U and the topology of the continuous lattice. If one identifies a
body B with the set of spatial points it occupies, can it be that one always has
χB(B) = χB(B), so that the placement of the body is a proper element of the
continuous lattice?

5.5.6 Special kinematic laws

The general kinematical laws place no particular restrictions on placements
and configurations. Such restrictions are essential in characterizing common
materials, however.

5.5.6.1 Deformation classes

Standard practice in mechanics identifies various classes of configurations that
prove important in applications. Each of these classes corresponds to a differ-
ent assumption about the constitution of the bodies or materials involved. Me-
chanics expresses the principal constitutive assumptions about configuration
in terms of the classes of deformations allowed for the material in question.
These characteristic classes are called deformation classes, and indicate the
deformation type of the body or material at issue.
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For example, one can characterize rigid materials as ones in which deforma-
tions must be isometries, that is, isomorphisms that preserve distances between
body points. One can characterize continuous bodies as ones in which defor-
mations must be bounded homeomorphisms.

In analytical dynamics, body points are allowed to collide, to occupy (tem-
porarily at least) the same place. In ordinary continuum mechanics, bodies
(continua) undergo only smooth deformations, with no interpenetration. This
prescription accurately captures some continuum phenomena but not others,
such as mixing of fluids, though continuum mechanics lacks effective means
for treating general interpenetration and other nonsmooth phenomena.

We write C to indicate the set of all allowed configurations of B, and C(B)
to indicate the set of all allowed configurations of B.

5.5.6.2 Placement classes

The notion of deformation type of a material represents an intrinsic restriction
on the ways in which the material appears in space. One can also consider
a parallel notion of placement type based on placement classes that restricts
where bodies can appear in space.

Traditional mechanics and physics do not involve the notion of placement
classes directly, but instead typically assume bodies may be placed anywhere in
space as long as the resulting configuration is consistent with the constitution
of the body. The exception to this is in the curved space-times of general
relativity. That theory says that black holes have an apparent location defined
by the center of their event horizons, but that there really isn’t any place there
at all because space-time ends at the event horizon.

One finds perhaps stronger reasons for considering placement classes in psy-
chology and economics. For example, legal configurations of a chess board
require that same-color bishops must occupy squares of different colors, at
least prior to any promotion of pieces, and legal configurations of a RMS re-
quire sets of conclusions that satisfy the reasons held by the system (see Doyle
1983e and Section 13.4).

5.6 Motion in space

Over time, bodies undergo changes of place, shape, and configuration. We
call changes of configuration deformation processes, and changes of place
motion. Motion thus decomposes into intrinsic motion characterized by the
events related to the body, and extrinsic or framed motion relative to frames of
reference.
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The direct way of describing a motion is as a temporal curve χ : T → BS
in the set BS of placements, that is, as a function from T (or an open interval
of T) to BS. The motion thus yields a placement χt : U → S for each time
t. Accordingly, we can view a motion as a function χ(b, t) taking body points
and times to places, or, holding the body point of interest fixed, as functions
χb(t) taking times to places.

5.6.1 Deformation processes

Looking at bodies in intrinsic terms, we call a history κ : I → C of configura-
tions over a temporal interval I a deformation process. A deformation process
does not indicate how a body moves through space, only how the parts of the
body move relative to each other.

One obtains notions of material derivatives by considering rates of change
within a deformation process.

5.6.2 Intrinsic motion

To characterize motion in space intrinsically, we need a description that does
not depend explicitly on a framing of reference. Following the path of general
relativity and Truesdell’s (1991) exposition of continuum mechanics, we can
characterize motions in more realistic terms as follows.

Consider the event world W and a framing φ : W → S×T, which we fix for
the present discussion. A world line in W is a continuous curve in W whose
image in the framing is functional in time, that is, a function from an interval
of T into W such that no two points in the image have the same value in T. A
world tube is a set of world lines over the same interval. A motion of a body is
a world tube over an interval of time consisting of a world line for each point
in the body.

Formally, a motion of the universe over a temporal interval I consists of a
function

χ : U → PW (5.47)

such that each image χ(b) ⊆ W is a world line over I . In what follows, let
us write Iχ to denote the temporal interval over which a motion χ occurs, that
is, the domain of definition of the motion. Using the assumed framing, we can
thus view a motion as a family of placements

χt : U → S (5.48)

such that χt assigns to each body point b its location χt(b) at the instant t.
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Because each body forms a subset of the universal body, we can also regard
a motion χ as assigning a placement or shape χt(B) to each B at each instant
t in the interval of motion. Motions thus consist of curves in the set of shapes
or placements, where we write

χB : B → (I → BS) (5.49)

to indicate the function assigning to each body B the placement curve χB(B) :
I → BS, so that χt = χB(U)(t). Noll calls such motions kinematic processes.

A motion is called regular or invertible if each instantaneous placement is
invertible as a function of the body points. That is, χ is regular if for each t,
the placement χt is an open, 1-1 (invertible) function. Intersections of world
lines represent collisions or the creation or destruction of bodies or parts of
bodies, so intuitively, a regular motion is one in which nothing “catastrophic”
like ripping or interpenetration has occurred. Continuum mechanics usually
rules out such occurrences, but I do not do so here.

More generally, I do not assume full continuity of motion as a central ax-
iom of mechanics. I return to the question of continuity of motion and other
mechanical quantities in Section 7.3, at which point I do assume a form of
piecewise continuity.

5.6.3 Extrinsic motion

The notion of extrinsic motion comes about by combining the intrinsic motion
with changes of frames of reference. A frame of reference or reference process
consists of a family of Euclidean metrics on instants in some interval.

With a nonconstant reference process, one can view a body as exhibiting
motion even though the body maintains a fixed configuration and a fixed shape
in the reference placement.

One obtains rates of motion, velocities, and accelerations by considering
spatial derivatives of placements relative to frames of reference in straight-
forward ways. Standard mechanics also assumes continuity of the first two
derivatives of motions and frames of reference.

5.6.4 Hybrid motion

We write χi to denote the projection of a hybrid motion χ onto the event world
Wi.

The use of the product topology on hybrid space means that a motion through
space is continuous iff each of its projections onto the different factor
dimensions of space are continuous in those factor spaces. In particular, the
motion of the body in ordinary physical space must be continuous, independent
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of its motion in other dimensions of space. In formalizing psychological sys-
tems of interest, use of a discrete topology on the mental dimensions of space
makes every path through these mental dimensions continuous, independent
of its motion in ordinary physical space. Of course, not all nonphysical spatial
dimensions need use the discrete topology, as some might form continua with
nondiscrete topologies.

5.6.5 Discrete motion

The notion of motion itself requires no weakening to cover discrete mechanics.
The same definitions that work for traditional mechanics work as they stand for
the discrete case.

The big difference comes in considering differential constructs from motion.
Traditional mechanics and hybrids over traditional mechanics both support the
standard concepts of differential calculus: limits, derivatives, integrals, and
the like. These concepts either do not apply or provide less power in analyz-
ing discrete trajectories and discrete spaces, though standard treatments of dy-
namics include notions of discrete derivatives and difference equations, and
Lawvere (2002) develops abstract notions of microtransitions fulfilling the
ideas of Galileo about the nature of smooth motion.

Substantial work has been done by Akers (1959) and others (Sellers, Hsaio,
& Bearnson 1968; Thayse & Davio 1973; Yanushkevich et al. 2000) to de-
velop various notions of a Boolean differential calculus that carry over a fair
portion of standard calculus to the discrete setting, including discrete versions
of partial and total differentials, Taylor series, and other familiar concepts. As
the subsequent development makes clear, a binary differential calculus would
have greater direct relevance to mechanics. In fact, treatments of some con-
ceptions of Boolean differential calculus relate the Boolean calculus to a bi-
nary differential calculus. The lattice-ordered presentation of the Boolean cal-
culus, however, obscures some of the ideas central to mechanical analysis,
and a more direct development in binary form might aid analysis of discrete
mechanics.

To develop a discrete mechanics as close to traditional mechanics as possi-
ble, later chapters examine a variety of additional partial replacements for the
missing concepts of analysis, including conditional vectorial analogs of differ-
entials and tangent vectors, and “continuity” notions based on conservatism of
trajectories relative to comparative similarity relations, which one can view as
taking seriously Truesdell’s (1984d) discussion of the role of smoothest path
principles in mechanics. I noted earlier that although one can choose to mea-
sure hybrid distances using a standard Euclidean distance, as in (5.39), this
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construct means little because the algebraic structure of the hybrid space comes
directly from the structure of the factor spaces. The metrics in the factor spaces
have mechanical meaning in defining the translation spaces; the seemingly ar-
bitrary metric on the hybrid space has less direct mechanical meaning. In this
setting, we may wish to avoid assuming the existence of a hybrid Euclidean
distance metric and instead focus on a comparative similarity relation that tells
when one translation dominates another, as in comparisons along individual di-
mensions, without providing an ordering of size over all possible translations.
Such comparison relations then support minimum principles shaping discrete
motions.

5.6.6 Motion from flows

In traditional mechanics, the behaviors of mechanical systems are specified in
terms of differential equations or dynamical systems on manifolds.

A dynamical system on a differentiable manifold M is a section of the tan-
gent space TM , that is, a vector field

ψ : M → TM (5.50)

assigning a tangent (x, v) ∈ TxM to every point x ∈ M . We define integral
curves of the section ψ to be curves c in M such that c ∈ ψ(x) for each x ∈ c,
that is, curves whose tangent at each point x is given by the section valueψ(x).
If we think of the vector field ψ as the right-hand side of a differential equation
on the manifold, then an integral curve is just a solution to the equation defined
by the dynamical system.

Traditional mechanics focuses on dynamical systems over the tangent space
TS. Each point (x, v) ∈ TS represents both a position x and a velocity v. Such
pairs are called kinematical states, and the tangent space TS is the state space.
The behavioral laws of mechanical systems are expressed as a dynamical sys-
tem on the state-space manifold, a section

ψ : TS → TTS (5.51)

specifying how positions and velocities change.
Many treatments of mechanics work with the phase space of the system

rather than the state space. The phase space is the cotangent bundle T ∗S,
where, in the traditional setting cotangents are linear functionals of tangents

g : TxS → R, (5.52)

the idea being that cotangents carry information about “momentum” (mass and
velocity) rather than simple velocity. The state-space and phase-space mani-
folds are homeomorphic, but the phase space carries a natural symplectic (or
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Hamiltonian) structure, which simplifies analysis of some systems. In particu-
lar, dynamical systems obeying conservation laws (for instance, conservation
of energy) have a particularly simple form, that of Hamilton’s equations for a
corresponding Hamiltonian function. Because of this, elements of phase space
(x, v∗) ∈ T ∗S are interpreted as positions x and generalized momenta v∗.

Discrete dynamical systems can be thought of as “movies” of continuous
dynamical systems. That is, one follows the integral curves of a dynamical
system, and notes where each ends up after one time unit. This defines a
function (perhaps partial)

g : TS → TS. (5.53)

Iterating this function yields the values after successive time intervals. Thus if
ϕ(x, t) describes the solution curves for x ∈ TS, we have

g(x) = ϕ(x, 1) (5.54)

gn(x) = ϕ(x, n). (5.55)

More generally, each homeomorphism g : S → S of S with itself can be
regarded as a discrete dynamical system, and as the unit time function of some
continuous dynamical system. Still more generally, each continuous function
g : S → S can be regarded as a discrete dynamical system, though not always
as a movie of a continuous dynamical system.

Symbolic dynamical systems are discrete dynamical systems in which the
manifold is replaced by a discrete topological space, especially finite sets with
the discrete topology. That is, instead of unit time functions g : S → S, we
consider continuous functions g : D → D. If D has the discrete topology, all
functions are continuous, so we can consider the iterates gn of any function g
as giving successive elements of trajectories.

Given a section

ψ : S × S′ → TS× TS′ (5.56)

of a tangent bundle over the combination of a continuous manifold S and a dis-
crete manifold S′ as already defined, one defines the notion of integral curves
in a straightforward way in terms of the projections of the section onto the dif-
ferent tangent spaces. A curve in S × S′ is a function c : T → S × S′, and c
is an integral curve of ψ iff πS ◦ c is an integral curve of πS ◦ ψ and πS′ ◦ c
is a piecewise constant function with changes at points of change described by
πS′ψ.
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5.6.7 Nondeterministic motions

We say a set H of deterministic motions constitutes a nondeterministic motion
just in case it is both temporally uniform in the sense that all of its deterministic
motions share the same temporal interval of definition IH , that is, Iχ = IH
for each χ ∈ H , referentially uniform in the sense that each of the motions
involves the same framing, and materially uniform in the sense that each of the
motions is of the same body or set of body points BH .

The mathematical form of the description of nondeterministic systems can
be brought close to that of deterministic ones by collecting together all possi-
bilities into set-valued functions called correspondences (Klein & Thompson
1984). Economics makes heavy use of correspondences, which admit notions
of continuity similar to the ordinary one. When used to express the vector
fields defining nondeterministic dynamical systems, these correspondences are
sometimes called differential inclusions (Aubin & Cellina 1984).

Each nondeterministic motionH over BH and IH induces, for each discrete
sequence of instants ID ⊆ IH , a discrete correspondence function

∆H : S× BH × ID → P(S) (5.57)

over states and instants defined so that at every point j in the sequence ID , we
have x′ ∈ ∆H(x, b, tj) iff there exists some χ ∈ H in which χ(b, tj) = x and
χ(b, tj+1) = x′.

In turn, each correspondence ∆ : S×B∆ × I∆ → P(S) over B∆ and a dis-
crete sequence of successive instants I∆ ⊆ T induces a set H∆ of discrete mo-
tions. Let H(B, I) denote the set of all deterministic motions over the points
of body B and the instants of a temporal interval I . We then define H∆ by
saying that a motion χ ∈ H(B∆, I∆) is in H∆ iff χ(b, tj+1) ∈ ∆(χ(b, tj), tj)
at each point j in the sequence I∆. The induced correspondence clearly lacks
information needed to reconstruct the original set of motions, since if two de-
terministic motions share the same state at some instant, the nondeterministic
motion H∆ generated by the correspondence representation includes all those
deterministic motions obtained by splicing the past of one motion to the future
of the other, even when the original set of motions lacks this composite motion.
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Dynamics

The kinematics developed in the preceding chapter broadened traditional me-
chanical axioms to cover discrete and hybrid conceptions of bodies, space,
time, and motion. The present chapter continues the development by similarly
broadening traditional mechanical axioms for mass, force, and energy.

Just as in the case of kinematics, the broadening of dynamics to discrete
and hybrid mechanics has precedent in traditional mechanics. The traditional
kinematics of clocks and other discrete machines carries within it the notion
of movement between discrete states, foreshadowing discrete mechanical sys-
tems. Traditional kinematics foreshadows hybrid mechanics in textbooks that
first develop mechanics in the plane and then extend the treatment to mechan-
ics in three-dimensional space. Traditional dynamics, in turn, foreshadows
broader notions of mass and energy in its distinction between inertial and grav-
itational mass and between kinetic and internal energy.

6.1 Mass

Mass enters into informal characterizations in almost all realms of human ac-
tivity, though mathematical usage is restricted largely to traditional physical
mass (and some probability theories; see Shafer 1976). The notion of mass
arises when one seeks to characterize the resistance of objects to changes in
position. Newton pointed the way to Euler’s characterization of the force of
inertia generated by mass, and also characterized the role of mass in the force
of gravitation.

Traditional mechanics posits a measure m : B → R+ that assigns to each
body B a nonnegative quantity of mass m(B). Mechanics assumes that each
body’s mass sums, in a continuous way, the masses of its separate parts. Noll
and Truesdell axiomatize this notion by identifying the structure of bodies that
have mass and by characterizing the relation between the mass of a body and

135



136 Dynamics

the masses of its parts and other bodies as a measure function or integral over
bodies. Other axioms, treated later in this book, concern the forces generated
by masses.

In preview, the extensions to discrete and hybrid mechanics developed here
extend the traditional scalar measures of mass to more complex vectorial mea-
sures of mass.

6.1.1 Massy bodies

The bodies of interest in dynamics have mass; let us call them massy. The
massy bodies constitute a subclass Bm of the closed universe B. For the notion
of mass to matter, let us first require that this subclass have members.

Axiom M1 Some body has mass; that is, Bm �= ∅.

Next, let us require the set of massy bodies to be closed under joins and takings
of exteriors.

Axiom M2 If B1,B2 ∈ Bm, then B1  B2 ∈ Bm.

Axiom M3 If B ∈ Bm, then Be ∈ Bm.

It follows that meets of massy bodies are massy, and that O and U are massy.
With these requirements, therefore, the massy bodies form a Boolean sublattice
of B.

Mechanics normally assumes that the massy bodies exhaust the universe of
bodies.

Assumption M4 All bodies are massy; that is, Bm = B.

In light of this assumption, in the following I usually just write B instead of
Bm.

6.1.2 Mass configurations

To say a body B is massy is to say that the body has a mass; but what mass,
and when? Truesdell and Noll follow the custom in continuum mechanics
of assuming a unique mass value for each body, independent of time, and so
implicitly assuming conservation of mass through the implicit assumption of
conservation of bodies. I capture the typical assumption of Truesdell and Noll
in the following axiom, which requires nonnegative numerical mass values for
each body.
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Axiom M5 For each B ∈ Bm, there exists a unique numberm(B) constituting
the mass of B, with 0 ≤ m(B) ≤ ∞.

Let us write M to denote the set of all possible masses bodies can possess.
Axiom M5 states that M ⊆ [0,∞]. This axiom also implies that the masses of
bodies form what I call a mass configuration, that is, a function

m : Bm → M (6.1)

defined on Bm taking values in M. We write Cm to denote the set of possible
mass configurations.

Mechanics restricts mass configurations to ones that respect the role of mass
in mechanics. Mechanics traditionally views mass as constituting a measure
(integral) over bodies. This means, in the first place, that each mass configura-
tion must be additive on separate bodies.

Axiom M6 For each m ∈ Cm, if B1,B2 ∈ Bm are separate, then

m(B1  B2) = m(B1) +m(B2). (6.2)

Since B1 is the join of the separate bodies B1 � B2 and B1 � Be
2, Axiom M6

implies that massy bodies satisfy

m(B1  B2) = m(B1) +m(B2)−m(B1 � B2). (6.3)

Moreover, because each body is separate from the null body, Axiom M6
implies that the null body has zero mass, m(O) = 0. A body assigned mass 0
is called massless. This is a different notion from nonmassy, which means not
assigned any mass value at all. Thus O, the null body, is massless, but there
may be other massless bodies.

Mechanics per se does not generally specify the value m(U) representing
the total mass of all bodies, which Axiom M5 ensures exists.

Axiom M6, together with the axioms on bodies and the assumption that
bodies are sets of points, implies thatm is a finitely additive measure function.
Continuum mechanics assumes further that the massy bodies are Borel sets
of the space, so as to ensure the existence of measure functions over bodies.
This assumption starts with a requirement about completeness of the lattice of
massy bodies.

Assumption M7 The universe of massy bodies forms a σ-complete lattice;
that is, the join of a countable collection of bodies in Bm is also a body in Bm.

Because we assumed earlier that bodies consist of sets of body points, As-
sumption M7 implies that bodies form a σ-field or Borel field of sets. We then
add the corresponding condition on mass configurations.
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Assumption M8 The mass configurationm constitutes a measure over Bm.

This assumption means bodies form a measure space. Continuum mechanics
also assumes that on continuous bodies the mass measure possesses a continu-
ous density function, so that we may write mass as an integral

m(B) =
∫
B
dm. (6.4)

We do not formalize this assumption here, but include in the notion of integral
summation over both continuous and discrete bodies, as in Stieltjes integration.

We also assume that the assignment of masses to bodies does not depend on
the frame of reference used to describe the motion of the body.

Axiom M9 Mass is frame indifferent; that is, m(B) does not depend on the
frame of reference.

This axiom would require revision were we to attempt to treat relativistic me-
chanics, which regards the apparent mass of a body as changing with the
velocity of the body relative to some observer. In Einstein’s special relativ-
ity, mass is not a frame-indifferent quantity, but varies nonlinearly with the
speed of the body in the frame of reference. Though mass varies, the mass
of the body in a frame of reference in which the body is stationary consti-
tutes a distinguished value called the rest mass of the body. Special relativity
assumes that rest mass is frame indifferent with respect to changes of frame
that leave the body at rest. Einstein’s general relativity develops a theory of
mass involving frame indifference with respect to much more general changes
of frame.

6.1.3 Mass variation

Assignment of mass values directly to bodies implicitly requires that the mass
of a body does not change with time or motion. Mechanics does not always
make this assumption. Indeed, this principle proves false when one moves
to the realm of quantum theory and quantum electrodynamics, in which split
atoms and smaller particles emit energetic radiation that leaves the remainder
with less mass than before the split. Broadening the perspective to that of
general relativity, in which energy has a mass equivalent, recovers some of the
conservation principle, but no strong reason is known to suppose the total mass
of the universe remains constant, and no strong reason exists at this preliminary
stage of investigation for assuming that conservation of mass applies uniformly
in mental universes.
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Accordingly, let us separate assumptions about conservation of mass from
the basic formalism. The simplest way of doing this is to weaken Axiom M5
to require instead that each body has a mass value at each instant of time.

Axiom M5a For each t ∈ T and B ∈ Bm, there exists a unique value mt(B),
with 0 ≤ mt(B) ≤ ∞, that constitutes the mass of B.

We retain the remaining axioms concerning the structure of mass configura-
tions, and extend the notation to write mt(B) or m(B, t) to indicate the mass
of body B at time t. We call a function

m : T → Cm, (6.5)

the variation of mass across time, a mass variation.
When mass varies over time, we call the change or rate of change at an

instant the mass flux or massing at that instant.

6.1.4 Mass, place, and body

The question of mass conservation and variation involves complicated issues
about the relation of mass to space and bodies. I pause briefly to summarize
some of these issues.

Even without considering relativistic mass changes, nonrelativistic school-
book mechanics considers bodies that change mass, such as a rocket expelling
combusted fuel in its thrust, or a hot-air balloon leaking sand from one of its
weights.

Traditional continuum mechanics does not view the rocket and balloon ex-
amples as true changes of mass because it takes a view of mass centered on the
notion of matter rather than on human identifications of objects. Specifically,
continuum mechanics identifies bodies with bits of matter, and maintains these
identifications across motions of the parts of the bodies. Thus in continuum
mechanics, if one starts with one body consisting of a bucket of blue sand and
a second body consisting of a bucket of yellow sand, then, after one dumps
one bucket into the other and stirs thoroughly, one still has the two bodies
one had before, only with the placement of their parts intermingled. In this
point of view, elements of matter constitute the underlying bodies, and appar-
ent changes of mass consist of changing the body of interest, from the rocket
full of fuel to the rocket less the fuel already expelled.

Indeed, from one point of view, continuum mechanics can dispense with
the notion of mass altogether. To do this, one identifies the mass of a body
as the measure or volume of the body in a reference configuration, and ob-
tains the mass of any volume in a later configuration by inverting the motion
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mapping to obtain the original volume. If one tracks the motion of bodies,
this representation naturally yields a conserved quantity, since the same body
always maps back to the same reference configuration, at least in deterministic
histories. Because of this possibility, Truesdell and Toupin remark that one
may treat mass as a kinematical quantity, on a par with position, in fact, as one
which may be defined in terms of positional quantities. They write this:

Kinematics is neither more nor less general after the introduction of mass. . . . It would
be possible, though less interesting and less fruitful, to develop all this material [on
kinematical topics whose usefulness is connected with mass] without mentioning mass.
(Truesdell & Toupin 1960, p. 465)

Truesdell and Toupin do not use spatial representation to render the notion
of mass superfluous, however. Their discussion makes clear that the primary
reasons for distinguishing mass from spatial quantities are not to be found
in its kinematical structure, but in its dimensional independence from spatial
quantities and in its different role in dynamical relationships.

Dimensional independence in traditional mechanics means that there is no
natural way of converting mass values into position values. While one can
compare meters along the horizontal with meters along the vertical, and thus
say these two values are dimensionally similar, one cannot say how many me-
ters equals a gram, except through entirely ad hoc means such as identifying
mass with lengths by which a standard spring is extended by a depending body
possessing that mass. This dimensional relation clearly does not serve for all
possible mass values because of its specificity to the Earth’s gravitational field.
Relations between mass and position are, in contrast, almost routine fare in
general relativity, in which mass distribution and the shape of space (the met-
ric), and hence the possible positions, are mutually constraining in a manner
expressed by Einstein’s equations.

The difference in dynamical treatment of mass goes beyond the mere or-
thogonality of one dimension from another, which of course even multiple
spatial dimensions exhibit. In traditional mechanics, differences in dynamical
roles provide the reason why the purely spatial definition of mass derived from
volume in a reference configuration is not a useful concept in relativity. The
spatial definition applies to all mechanical systems, and requires that mass is
always conserved. Relativistic dynamics offer no role for this kinematic con-
ception of mass, but instead involves the usual notion of relativistic mass.

6.1.5 Discrete mass

Discrete mechanics broadens the traditional requirements on mass in ways par-
allel to the broadening of traditional requirements on space. In this setting,
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mass changes from a continuous measure to a discrete one, taking values in
modules over rings rather than only in the nonnegative extended real numbers.

6.1.5.1 Mass values

As noted earlier, mechanics traditionally uses the set of mass values M =
[0,∞], apart from some esoteric theories that also employ negative or imag-
inary mass values. Real-valued mass measures fit well with the use of real
vector spaces in modeling velocity, since then mass values may act as scalar
multipliers in forming momentum values from velocities.

In the more general setting here, I avoid the standard prescription in fa-
vor of mass values that merely provide the algebraic properties necessary to
serve in summing masses of bodies into masses of combined bodies. As with
the treatment of discrete spatial dimensions in Chapter 5, admitting discrete
masses results in mass values that have the structure of a free monoid over
a ring. Indeed, mass values provide yet another motivation for regarding the
translation space of places as a module. In this setting, one uses mass values as
elements of the ring of scalars to form momentum values as products of mass
and spatial-translation values.

To serve as measure values, the set of mass values must support a notion of
combination or summation. Let us write such combinations additively, so that
m+m′ means the combined value of the mass values m and m′, and require
mass addition to be commutative and associative, so that combined values do
not depend on the order of combination.

Axiom M10 Mass values admit a commutative and associative addition func-
tion + : M ×M → M, so that for each m,m′,m′′ ∈ M, m+m′ = m′ +m

and m+ (m′ +m′′) = (m+m′) +m′′.

We also require the existence of a zero mass value.

Axiom M11 There exists a mass value 0M ∈ M such that m+ 0M = m for
each m ∈ M.

Together, Axioms M10 and M11 require the zero mass value to be unique, and
give M the structure of a commutative monoid under addition.

Although the traditional notions of mass measure mass in terms of nonneg-
ative real numbers, discrete mass measures need not provide any correspond-
ing and compelling notion of positivity of nonzero values. Accordingly, we
follow the lead of traditional treatments and regard actual mass assignments
(e.g., nonnegative real numbers) as occurring within a somewhat larger struc-
ture of potential values (e.g., all real numbers). Thus the next mass axiom
requires that potential mass values have additive inverses.



142 Dynamics

Axiom M12 For each m ∈ M there exists a mass value m′ ∈ M such that
m+m′ = 0M.

The preceding axioms require such inverses to be unique, so with this axiom,
M forms a group. As usual, when m+m′ = 0M we write m′ = −m.

In the case of traditional mass notions, Axiom M12 goes against the initial
identification of M as the set of possible mass values and the methodology of
realism, as it seems to posit quantities or entities that do not exist in the system
being formalized. To avoid this, one might instead seek to axiomatize mass
values in terms of semirings that only contain values that mass configurations
might assign to bodies.

The traditional conception of mass also admits scaling of mass values, in-
cluding scales chosen so as to make some particular value the unit mass value.
This scaling implies that the space of potential mass values admits a scalar
multiplication. Let us follow this lead in the next axiom, which posits a mod-
ule structure for mass values based on the existence of a ring of mass scalars
and a corresponding notion of scalar multiplication.

Axiom M13 There exist both a commutative ring RM with multiplicative unity
1M of mass scalars and a corresponding scalar multiplication · : RM ×M →
M that give M the structure of a free module over RM.

As was noted in the earlier discussion of translation spaces, every commutative
group forms a module over the integers, but that module need not be free.

The traditional conception of mass inherits a notion of continuity of change
from the ordinary topology of R. We assume a corresponding notion of con-
tinuity exists for the more general conception of mass values in the following
axiom.

Axiom M14 There exists a topology (M,ΘM) on the set of mass values and
a topology (RM,ΘRM

) on the module scalars such that linear operations on
the mass module are continuous.

6.1.5.2 Examples

In the language of the broadened axioms for mass, traditional mechanics for-
malizes mass scalars RM and mass values M as the same space, R.

In Chapter 10 I consider masses formalized as binary vector spaces, for ex-
ample, the vector spaces Zn

2 over the field of scalars Z2. One may also consider
such spaces as rings over themselves by defining multiplication component-
wise, and thus also as modules over themselves.
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Since Boolean lattices can be regarded as binary vector spaces over their
atomic elements and hence as modules over Z2, we may trivially regard every
massy universe as its own set of mass values, by taking M to be Bm and defin-
ing m : Bm → Bm to be the identity function. Addition then corresponds to
Boolean exclusive-or.

6.1.5.3 Mass configurations

Discrete mechanics retains Axiom M9 requiring the frame indifference of mass,
but the changes in the character of mass values requires some adjustment to
the other requirements placed earlier on real-valued mass configurations. Nat-
urally, the first step is to modify Axiom M5 a second time to remove the re-
quirement of nonnegative numerical mass values.

Axiom M5b For each t ∈ T andB ∈ Bm, there exists a unique valuemt(B) ∈
M constituting the mass of B.

We still have mass configurations as possibly time-dependent functions from
bodies to mass values. Our standing Assumption B7, that bodies consist of
sets of body points, means that mass configurations constitute set functions on
Bm taking values in M rather than (necessarily) the nonnegative extended real
numbers.

We retain Axioms M6 concerning the structure of mass configurations, which
in the discrete setting means that mass configurations form additive M-valued
set functions. The change of range does not change the familiar consequences
noted earlier, such as the necessary assignment of the zero mass 0M to the null
bodyO. We also retain Assumption M7, and restate Assumption M8 to require
mass to constitute a countably additive set function.

Assumption M8a Each mass configuration m constitutes a countably addi-
tive set function over Bm.

Possibly additional requirements might retain yet more of the measure-theoretic
structure of traditional notions of mass.

In traditional mechanics, additivity of mass implies that the empty body has
zero mass. Moreover, existence of relative complements implies that all parts
of massless bodies are massless; that is, that if B � C and m(C) = 0M, then
m(B) = 0M. Can one require the same of discrete mechanical mass? The
converse of the massless part requirement is that if B � C and m(B) �= 0M,
then m(C) �= 0M. This means that the join of two bodies of nonzero mass
must also be of nonzero mass. Such a requirement would thus serve as a partial
replacement for the notion of nonnegativity of traditional mass values. But if
the discrete mass module has nonzero characteristic, the requirement that all
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parts of massless bodies be massless would imply that the total mass of the
universe is less than the order of the mass module. This unexpected connection
between the class of massless bodies and the set of possible mass values leads
us to not impose such requirements on discrete mechanical systems.

More generally, should some order structure be required of discrete mass
values? The axioms on mass values do not presume any sort of order or partial
order on mass values. In the case of traditional mass, one knows that B � C
implies m(B) ≤ m(C). As with the requirement about massless bodies just
considered, any formulation of an order requirement on discrete mass values
must take into account the possibility that cyclic discrete values might add to
smaller ones.

Questions about mass measures and mass orderings come together when we
consider the regrets expressed by Truesdell (1991) concerning the dependence
of the underlying mechanical theory of mass on the special assumption that
bodies are sets. Truesdell observes that what one really wants is some purely
algebraic method for constructing a measure over the Boolean lattice of bodies
from the lattice structure alone, without any assumptions about decomposition
of bodies into sets of body points. Such constructions might be possible by
drawing on the work of McShane (1953), who develops a theory of integration
on lattices, and the work of Schlechta (1995, 1997), who develops a notion
of integration on logical spaces. It would be especially interesting to develop
a notion of integration connected with the Scott (1982) construction of con-
tinuous lattices. Indeed, discrete mechanics could make use of such a theory
not only for mass measures, but also for the theory of conservative motion
discussed later.

6.1.5.4 Nonmassy bodies

Axiom M5b and, for that matter, Axiom M6, require that the universal body
U has a mass value. These axioms do not specify what value this is, or even
whether m(U) is finite or infinite. One nevertheless might want to weaken the
axioms.

Specifications of universal mass, when made, usually appear as part of cos-
mological theories. Theories have been proposed in which the total mass of the
universe is finite, and others in which it is infinite. In some theories, however,
the total mass of the universe is not a well-defined quantity. In such theories,
it seems proper to omit the universal body from the set of massy bodies.

Are there other cases calling for treatment of nonmassy bodies within me-
chanics? Critics of Descartes’ mental substances, of course, might have noted
the lack of good suggestions from Descartes about how to regard the mass
of such bodies, which he already viewed as lacking place. One might pursue
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that train of thought and declare all nonmassy bodies as outside the realm of
mechanics.

Yet one should not be hasty in issuing such a declaration. Most of the general
laws of force do not necessarily have anything to do with mass, and continue to
place requirements on forces even without the involvement of mass-dependent
forces like inertia and gravitation. Indeed, some natural phenomena, such as
electromagnetism and rigid material structure, have no direct relation to the
mass of a body. Noll gives the example of deformations of incompressible
fluids (e.g., squeezing toothpaste from a tube) as a motion within mechanics in
which the notion of mass plays essentially no role.

The example of infinite or undefined mass for the universal body might be
taken more generally. Specifically, one might translate the difficulties attend-
ing the universal body to bounded bodies and question the usual assumption in
mechanics that bounded bodies have bounded mass.

Traditional mechanics formalizes the standard notion of physical mass so
that finite bodies have finite mass. Although no general mechanical principle
forces discrete mechanics to make a similar assumption, we nevertheless seek
to hew to the physical model in this regard. Doing so requires adding additional
structure to what we have supposed for mass values, as modules used as spaces
of mass values need not have any obvious notion of “infinite” values.

The assumption that bounded bodies must have finite mass bears further
study. Computational theories of psychology typically assume finite informa-
tion content for representations and states of mind, and certainly all of the
computer programs written to date are characterized by finite information con-
tent. If we then regard information content as a cross-dimensional measure of
total mental mass, this motivates translating the assumption of bounded mass
for bounded bodies to mental bodies as well. If we instead consider idealized
agents with infinite-dimensional mental spaces, or mental states employing
continuous physical elements as representations, assumptions of finite infor-
mation content become problematic.

6.1.6 Hybrid mass

Hybrid mechanics generalizes the traditional conception of mass directly by
regarding hybrid mass as a product of mass values in component mechanical
systems. Specifically, suppose that B =

⊕
i∈I Bi denotes the universe of

hybrid bodies, and that for each i ∈ I the factor bodies, mass values, and
configurations Bi, Mi, and Cmi satisfy the axioms given previously. We then
form the set M of hybrid mass values as the product module M =

∏
i∈I Mi

over the product scalar ring RM =
∏

i∈I RMi and the set Cm of hybrid mass
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configurations as
∏

i∈I Cmi. Then for each body B ∈ B, m ∈ Cm, and i ∈ I
we have

[m(B)]i = mi(Bi). (6.6)

These hybrid mass values and configurations clearly satisfy the mass axioms
if the factor values and configurations do.

Although this construction provides a general definition of hybrid mass val-
ues, it seems reasonable to maintain the traditional mechanical constraint of
nonnegative mass values as a constraint on mass configurations rather than as
a constraint on potential mass values. We do this through the following axiom.

Axiom M15 The mass values and scalars of traditional mechanics form a
module isomorphic to the module of R over itself, and physical mass config-
urations only assign values corresponding to nonnegative extended real num-
bers.

Consider, for example, the hybrid of a physical body characterized by the
traditional sort of mass values and a mental body with mass values charac-
terized by a binary (propositional) vector space. We take the traditional mass
values to consist of the one-dimensional vector space of vectors R over scalars
R, and the mental mass values to consist of vectors in Zn

2 over scalars Z2. In
this case, the set of hybrid mass values is just the module of elements R × Zn

2

over scalars R × Z2. If we take instead the mental mass values as elements
in Zn

2 over scalar ring Zn
2 , then the set of hybrid mass values is the module of

elements R × Zn
2 over scalars R × Zn

2 .
For a second example, consider a mental body U made up of several mental

subbodies, such as a set of mental agents in Minsky’s (1986) society of mind,
or a set of interconnected computers. In this case, we might view each subbody
b ∈ U as a distinct mechanical system with its own set of mass values Mb. If
so, the masses of the overall body would consist of products or disjoint sums
of the subbody masses; that is,

M =
⊕
b∈U

Mb. (6.7)

As this system illustrates, the mass values of the component bodies need not
have anything in common.

The idea that mass might have different dimensions has a long history in tra-
ditional mechanics. Even Newtonian mechanics distinguishes, both conceptu-
ally and dynamically, between inertial mass and gravitational mass. Traditional
mechanics makes their identity an explicit assumption adopted because all hu-
man experience showed inertial and gravitational mass to vary proportionately



6.2 Momentum 147

for all bodies at all times. This assumption received theoretical justification
with the discovery of general relativistic mechanics, which enlarged the con-
ception of mass so that both inertial and gravitational masses derive from the
same fundamental conception of mass.

Hybrid mechanics enlarges the conception of mass once again, by consider-
ing multiple, possibly irreducible dimensions of mass. This enlargement serves
to encompass distinctions between physical and mental mass at the outset, and
further differentiation of mental mass into multiple dimensions of mental mass
in more detailed investigations.

As in the case of inertial and gravitational mass, specific mechanical the-
ories might propose ways of reducing all these dimensions to smaller sets
of dimensions. For example, one might ask why ordinary three-dimensional
space, which one might consider as a hybrid of three one-dimensional spaces,
does not yield three dimensions of mass. One possible answer is that the
first role of mass is in defining linear momentum. Ordinary physical mass
would divide into three sorts only if one could readily distinguish linear mo-
tion along one dimension from linear motion along the other two. The as-
sumed isotropy of physical space means that such is not the case, because a
simple change of frame suffices to translate any linear motion into linear mo-
tion along a given axis. This interchangeability may be taken as the reason
ordinary mechanics has the same conceptions of mass for the distinct spatial
dimensions.

If superficially hybrid physical mass dimensions reduce to a single dimen-
sion of physical mass, can we not reduce more general hybrid masses to the
usual physical conception of mass? One might seek to extend mechanics with
measures of total mass that combine values in each dimension, but such mea-
sures would seem to suffer the same artificiality afflicting measures of distance
that combine physical and mental positions. I do not pursue such reductions
here, though I provide some speculations on relativistic notions. No one has
exhibited any convincing practical means for verifying any putative theoretical
reduction of psychological and economic matters to physical. Indeed, Jack-
son (1986) and Chapter 16 discuss reasons to think such a reduction might not
exist. Unless and until we discover enough about the structure of the world
to justify such theoretical assumptions, it seems unreasonable to impose such
assumptions in the very fabric of mechanics itself.

6.2 Momentum

Mass and velocity combine to form momentum, so that momentum values
exhibit the dimensionality of both mass and spatial tangents or velocities.
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Traditional mechanics defines momentum in a reference process as the sum
or integral of velocity with respect to mass. In the case of point bodies, this
identifies the momentum as the usual product of the mass and velocity. Mo-
mentum values thus form a space isomorphic to the space of velocities TS due
to the natural embedding of linear mass values R+ into the scalar field of the
velocity vector space R3. The four pure momentum dimensions, one of mass
and three of space, thus reduce to three mass-spatial mixed dimensions.

The nonlinear nature of mass in the present axiomatization requires that
the formalization of momentum enlarge similarly on the traditional conception
of spatial momentum. The differences shrink again when we compare our en-
largement to the generalized momenta of traditional phase-space or Lagrangian
mechanics.

6.2.1 Linear momentum

In traditional mechanics, the linear momentum of a body B is a functional
p(B;χ,m) of a body’s spatial motion and mass variation. Here we overload
the symbol p, using it to denote both a bilinear map p : M × TS → TS from
mass and velocity values to momentum values and a corresponding mapping
from bodies and motions to momentum histories. For a body point b possessed
of a mass m(b, t) and velocity χ̇(b, t) at time t, the linear momentum is given
by the familiar equation

p(b,m(b), χ(b))(t) = m(b, t)χ̇(b, t). (6.8)

The linear momentum of a general body B is the integral over the body of the
velocity with respect to the mass density:

p(B, χ,m)(t) =
∫
B
χ̇tdm. (6.9)

This expression is meant to indicate the usual formula for smooth spaces and
traditional masses, and to indicate summing of momentum elements for each
body point for discrete bodies.

6.2.2 Rotational momentum

In traditional mechanics, the notion of rotational or “angular” momentum with
respect to some point of origin resembles the notion of linear momentum, but
involves a dual of the velocity space instead of the velocity space’s entering
into linear momentum.

Specifically, the dual space V∗ of a vector space V consists of the vector
space of linear functions from V to R. These linear functions are called tensors



6.2 Momentum 149

over V. The tensor product v⊗w of vectors v andw in V consists of the linear
map in V∗ defined for all u ∈ V by

(v ⊗ w)u = (w · u)v. (6.10)

The alternating product v ∧ w of two tensors v and w consists of the tensor

v ∧ w = v ⊗ w − w ⊗ v. (6.11)

Naturally, the alternating product has the property that v ∧ v = 0.
Each choice of an isomorphism � : V → V∗ induces a dual momentum

functional p∗(B;χ,m) such that

p∗(b,m, v∗) = p(b,m, �−1(v∗)). (6.12)

To formalize rotational momentum, we choose some particular isomorphism
�, determine the corresponding dual momentum function p∗, and define the
rotational momentumLx0(b, x,m, v) of a body element b at location x of mass
m and velocity v about a point x0 by

Lx0(b, x,m, v) = p∗(b,m, (x− x0) ∧ v). (6.13)

The linearity of the maps involved in this definition means we can rewrite
rotational momentum as

Lx0(b, x,m, v) = (x− x0) ∧ p∗(b,m, v). (6.14)

6.2.3 Discrete momentum

The traditional development of momentum just summarized simply defines
momentum in terms of mass and motion. To understand the nature of momen-
tum in this more general setting, we must reexamine assumptions implicit in
the usual formalization.

The first axiom of momentum simply states that mass and velocity values
uniquely determine momentum values.

Axiom P1 For each mass value m ∈ M and velocity value v ∈ TS, there
exists a unique value of the momentum corresponding to m and v.

We collect the momentum values corresponding to all mass and velocity values
into a set P. Axiom P1 implies the existence of a function

p : M × TS → P (6.15)

that constructs momentum values p(m, v) from masses m ∈ M and velocities
v ∈ TS.
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6.2.3.1 Momentum values

In the concepts of discrete mechanics just developed, both the set M of mass
values and the set TS of local translations consist of free modules over com-
mutative rings RM and RS. We thus look to the set of momentum values to
have a similar character.

Axiom P2 The set P of possible momentum values forms a free module P

over the ring of scalars RP = RM × RS associated with the product module
M × TS.

Alternatively, one might obtain the desired structure by rephrasing Axiom P2
to state that P forms a bimodule over the two rings RM and RS. This might
permit a simpler analysis that avoids introducing a ring of scalars when com-
bining mass and velocity vector spaces over the same field.

6.2.3.2 Bilinearity

Mass and velocity values not only determine momentum values, they do so
in a way such that separate sums and multiples of mass and velocity values
yield sums and multiples of momentum values. The next axiom captures this
algebraically.

Axiom P3 The momentum mapping p constitutes a bilinear function from
M × TS to P.

The bilinearity required by Axiom P3 permits us to view the momentum
map as a tensor. The tensor definitions given in Section 6.2.2 apply more
generally to bilinear maps from modules to rings, not just maps to R, so that
M⊗R M′ denotes the tensor product of modules M and M′ over a ring R.
This bilinearity has several implications.

The first implication of bilinearity comes about because the tensor product
M ⊗RP

TS is universal among bilinear mappings from the product module
M × TS. This means simply that one can decompose the mapping p into
the composition of the natural mapping that takes the pair (m, v) ∈ M × TS

to the product tensor m ⊗ v ∈ M ⊗RP
TS with the induced bilinear map-

ping p⊗ : M ⊗ TS → P defined so that p(m, v) = p⊗(m ⊗ v) for each m
and v.

By construction P forms the image of p, so by a standard theorem of alge-
bra we know that P is isomorphic to a submodule of M × TS. Each partic-
ular isomorphism lets us regard P as a submodule of M × TS. We thus can
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regard the momentum construction function as reflecting an enlarged momen-
tum mapping

p× : M × TS → M × TS. (6.16)

Composing the chosen isomorphism with the ordinary projection functions on
M × TS thus induces mappings

p×M : P → M (6.17)

p×V : P → TS (6.18)

that project momentum values to mass and velocity values. The pair of func-
tions (p×M, p

×
V ) thus represent the chosen isomorphism of P with M × TS.

Traditional mechanics certainly has momentum values that form a submod-
ule of M × TS. Indeed, momentum values form a vector space identical to
TS because mass values in R also represent scalars in the real vector space of
translations V. One can thus view traditional momenta as spatial vectors.

The second implication of bilinearity is that we can regard p⊗ as factoring
through its arguments separately, so that each mass value m ∈ M determines
a linear mapping p⊗m : TS → P and each velocity value v ∈ TS determines a
linear mapping p⊗v : M → P. The traditional conception of momentum cer-
tainly implies the existence of such mappings, but also requires more, namely
that momentum be collinear with or proportional to the velocity. We thus re-
strict the momentum mapping to produce values collinear with the generating
mass and velocity values. Formally, we deem two vectors v and v′ in a module
over a ring R collinear iff there is some r ∈ R such that rv = v′. Note that
by choice of r = 0, the zero vector is collinear with every vector. We thus can
capture the collinearity requirement in the following axiom.

Axiom P4 For every m ∈ M there exists a scalar a(m) ∈ RP such that for
every v ∈ TS

p×m(v) = a(m)v, (6.19)

and for every v ∈ TS there exists a scalar b(v) ∈ RP such that for every
m ∈ M

p×v (m) = b(v)m. (6.20)

The traditional conception of momentum satisfies this axiom easily: for mass
m we have proportionality value a(m) = m, and for velocity v we have the
proportionality value b(v) = 1. In my treatment of discrete memory in Chapter
10, we have the proportionality values a(m) = 1 and b(v) = 1M.
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6.2.3.3 Dimensionality

Earlier we required that M and TS consist of free modules. The tensor product
M ⊗ TS is therefore also a free module. Since M ⊗ TS is a module over a
commutative ring RP, it too has a well-defined dimension. By Axiom P2, the
same holds true of P.

In discrete mechanics, mass values need not admit an interpretation as spa-
tial scalars, thus limiting the mixing of dimensions seen in traditional mechan-
ics. In consequence, momentum values can form a space for which the number
of dimensions lies between that of velocity space TS and the product M× TS

of the mass space with the velocity space. The traditional physical momentum
mapping illustrates a case in which dim(P) < dim(M)+dim(S) (3 < 1+3).
The interpretation of discrete momentum presented in Chapter 10 illustrates a
case in which dim(P) = dim(M) + dim(S).

Need mechanics place a nontrivial lower bound on the dimensionality of
momentum values? All the examples we have considered resemble the ones
herein, in which momenta have at least as many nontrivial dimensions as ve-
locities. Extrapolating from these examples, we regard the spatial aspect of
momentum as foremost, and assume that the dimensionality of momenta meets
or exceeds that of velocities.

Assumption P5 Momentum has at least as many dimensions as velocity; for-
mally, dim(S) ≤ dim(P).

Of course, if Axiom P4 forbade collapsing maps and null constants of propor-
tionality, it would imply that momenta have at least as many dimensions as
mass or velocity. For example, if one assumes that there must always be some
mass value m such that p×m(v) = 1v = v for every v ∈ TS (here 1 means
1RP

), then momentum must have at least as many dimensions as does veloc-
ity. The valuem = 1M = 1 satisfies this requirement in traditional mechanics,
and every mass value satisfies this requirement in the mechanization of mem-
ory considered in Chapter 10. Future investigation might uncover cases for
which appropriate momenta resemble a proper subspace of velocities, or even
resemble a subspace of masses with no spatial character.

When dim(P) = dim(S), I say that momenta are spatial, and when
dim(P) > dim(S), I say that momenta are superspatial. We say the mechani-
cal system as a whole is spatial or superspatial, respectively, as its momenta are
spatial or superspatial. One cannot reduce the distinction between spatial and
superspatial momenta to the distinction between linear and nonlinear masses.
Even linear masses may yield superspatial momenta if the mass values do not
fold into spatial scalars in the right way. In maximally superspatial momenta,
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dim(P) = dim(M) + dim(TS), and one can decompose each momentum
value into a unique mass and velocity value, while in spatial momenta, the
same momentum value may not admit a unique decomposition. For this rea-
son, one might alternatively label the spatial–superspatial distinction instead as
the distinction between merged or separated momenta, or mass-indeterminate
and mass-determinate momenta.

We do not yet understand how much of the special character of traditional
mechanics stems from the special properties of three-dimensional space and
how much stems from the spatial character of traditional momentum.

6.2.3.4 Geometry

Although the requirements stated earlier ensure that the set of momenta P

forms a free module over a commutative ring, we have not yet required any
sort of metric or inner product structure on this module. To extend the no-
tion of rotational momentum to the discrete case in a comprehensive way, we
now require that the space of momenta have a geometric structure akin to that
required of the spatial translation space.

Axiom P6 The module P of momentum values has a structure of a pseudo-
Euclidean module of the same general structure as the spatial translation
space, characterized by

(i) a Euclidean metric dP : P× P → R+,

(ii) a separation function σP : P × P → R such that

(a) σP(p, p′) = 0 (in R) whenever dP(p, p′) = 0, and

(b) each bijection φ : P → P preserves distance only if it also
preserves separation, that is, if dP(p, p′) = dP(φ(p), φ(p′))
for every p, p′ ∈ P, then σP(p, p′) = σP(φ(p), φ(p′)) for every
p, p′ ∈ P, and

(iii) a generalized inner product 〈·, ·〉 : P× P → R over P such that

(a) σP(p, p′) = 〈p− p′, p− p′〉 for every p, p′ ∈ P, and

(b) for every every isometry v ∈ VdP
, there exists a p0 ∈ P and

transformation Q orthogonal with respect to 〈·, ·〉 on P such
that v(p) = v(p0) + Q(p− p0) for each p ∈ P.

This long axiom combines several axioms adopted earlier for space.
We also obtain a topology on P from the metric dP.
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6.2.3.5 Duality

We write P(∗) to denote a module that is semidual to P in the sense that

p×M(p∗(b,m, v∗)) = p×M(p(b,m, v)), (6.21)

p×V (p∗(b,m, v∗)) = �(p×V (p(b,m, v))). (6.22)

Each isomorphism � of V with its dual V∗ thus provides an isomorphism be-
tween P and P(∗).

We then define discrete rotational momenta much as before, but taking into
account the semidual structure of P(∗), and recast (6.14) using a modified al-
ternation product ∧∗ defined so that

Lx0(b, x,m, v) = (x− x0) ∧∗ p∗(b,m, v) (6.23)

= p∗(b,m, (x− x0) ∧ v). (6.24)

In the following discussion, let us streamline the notation by writing ∧ even
when ∧∗ is meant.

6.2.4 Hybrid momentum

Hybrid momentum combines factor dimensions of mass and velocity into hy-
brid mass and velocity. Previous sections have described the structure of hybrid
mass and velocity. We obtain hybrid momentum notions by direct products of
those notions and the factor momentum mappings. These products retain all
the desired structure, as the product of free modules over commutative scalar
rings is again a free module over the product ring.

We briefly examine the special structure of momentum for traditional physi-
cal space. Section 5.4 required that hybrid spatial modules contain submodules
representing different subspaces, sometimes including a real vector space Sp

representing the ordinary conception of physical space and a module Sp repre-
senting the nontraditional dimensions of space. We similarly can expect that
mass contain at least the standard physical dimension. In this case, we of
course use the standard definitions of linear and rotational momentum over the
traditional dimensions Sp. The standard definitions yield a hybrid rotational
momentum consisting of the tensor product of the rotational momenta in phys-
ical and nonphysical component spaces.

6.3 Force

Mechanics extends geometry with the notion of forces acting on bodies, or
more precisely, forces exerted by bodies on each other. We write f(B, C) to
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denote the force exerted on B by C. This conception covers all pairs of bod-
ies, including f(B,O) and f(B,U). Mechanics requires that the null body O
exerts no force, but admits the possibility that the universal body U does exert
forces on bodies it contains, forces one might think of as free-floating forces
acting on a body but not associated with specific other separate bodies.

We characterize the fundamental properties of forces in terms of systems of
forces or force systems, each of which describes the forces acting on all bodies
at some instant. A force system consists of a mapping of pairs of separate
bodies to force values in a set F. Traditional mechanics identifies force values
with spatial vectors in V; discrete mechanics generalizes this to characterize F

in terms of the space P of momentum values. Mechanics also concerns systems
of torques, which consist of mappings, akin to systems of forces, of separate
bodies and spatial locations to linear transformations of force values.

One may state mechanical axioms about forces in several equivalent ways,
as does Noll (1958, 1963, 1972, 1973). The following employs a formulation
of the axioms by Truesdell (1991) that separates the central structures from the
specific assumptions of continuum mechanics somewhat more explicitly than
do some of Noll’s continuum-focused presentations.

To summarize, the first axiom of forces states that forces—exerted on or by
separate subbodies of a body—combine additively. The second axiom states a
balance of forces, expressed through the requirement that the exterior of a body
exerts no force on the body, that the sum of all forces on each body vanishes.
This last condition may seem strange, but really just amounts to treating all
components of familiar force equations equally. In particular, this axiom leads
to treating the inertial force−ma as just one special sort of force canceling out
the sum of all the other forces on the body, thus rewriting the familiar f = ma

as f −ma = 0. The third axiom states that a similar balance of torques holds
for all bodies and all spatial reference points. These laws apply more generally
than might appear, since they hold for all bodies and parts of bodies, not merely
body points.

Each force system induces two subsidiary force systems, internal forces be-
tween separate parts of a body, and external forces exerted by the exterior of a
body on its parts. The fourth axiom states that the internal forces are contact
forces that vary continuously with the area of the contact boundary between
the two parts, while the fifth axiom states that the external forces can be by
contact and at a distance and vary continuously with the mass, volume, and
contact boundary areas of the parts. Standard continuum mechanics shows that
these axioms on body and contact forces imply the existence of Cauchy’s stress
tensor, which in turn summarizes both types of forces on the body through
Cauchy’s equation of motion ṗ = B + div(T ), in which p = mv is the
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inertia, −ṗ is the inertial force, B is the body force, and div(T ) is the di-
vergence of the stress tensor T .

6.3.1 Systems of forces

A system of forces (or force configuration) on a universe B is an assignment
f of elements of a set F of force values to all pairs of separate bodies of B.
Writing (B × B)0 to mean the set of pairs of separate bodies of B, we thus
have

f : (B ×B)0 → F, (6.25)

with f(B, C) denoting the force exerted on B by C. Holding one or the other
of these bodies fixed, we also write f⇐C : B → F to denote the forces exerted
on bodies by C and f⇒B : B → F to denote the forces exerted on B by bodies,
such that

f(B, C) = f⇐C(B) (6.26)

= f⇒B(C) (6.27)

for each separate B, C ∈ B.
Since bodies are separate from their exteriors, we can consider f(B,Be), the

resultant force on B, or the force exerted on B by its exterior.
Each instant of a history may manifest a different collection of forces, each

represented in the theory by an instantaneous force configuration. We write

Cf = ((B ×B)0 → F) (6.28)

to mean the set of all force configurations, and as with mass, extend the nota-
tion to write a force variation as a function

f : T → Cf, (6.29)

writing ft(B, C) or f(B, C, t) as convenient to mean the force exerted on B by
C at time t.

6.3.1.1 Force values

We follow mechanical tradition in identifying F with the translation space
of momenta P, intending that forces can result in spatial motions, in mass
changes, or both, and that changes in momenta cover all these cases.

Axiom F1 The set F of force values forms a module isomorphic to the trans-
lation space of the momentum module P.
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In traditional mechanics, this requirement identifies force values with spatial
vectors because one can treat momentum values as spatial vectors. In the for-
malization of Chapter 10, this identifies force values with pairs of mass and
velocity vectors.

Because traditional mechanics views P as a vector space, it admits an iso-
morphism with its translation space. We can do the same with our assumptions,
and use the simplest such isomorphism by regarding F as the same space as P,
so that

F = P = TP. (6.30)

The set of possible forces thus inherits the topology, metric, and inner product
of the set of momenta.

The relation of force values to the space of translations and momenta raises
the issue of how forces changes with changes of observer. We require that
forces transform as vectors indifferent to the framing used to describe the mo-
tions of the bodies involved.

Axiom F2 Forces are frame indifferent; that is,

f� = Qf. (6.31)

6.3.1.2 Additive forces

We now turn to characterizing relationships holding within configurations of
forces present at each some instant. The next two axioms on forces state that
forces are additive on separate bodies.

Axiom F3 f(C1 C2,B) = f(C1,B)+ f(C2,B) for pairwise separate bodies
B, C1, and C2.

Axiom F4 f(B, C1 C2) = f(B, C1) + f(B, C2) for pairwise separate bodies
B, C1, and C2.

Writing 0 to denote the null or zero force, we easily extend any system of
forces to F : (B ×B)0 by defining

f(B,O) = f(O,B) = 0 (6.32)

for all B ∈ B (including B = U and B = O). In addition, we can extend these
axioms slightly to avoid the assumption of separate bodies by taking as axioms
instead the following, which reduce to the original ones in the case of separate
bodies:

Axiom F3a f(C1  C2,B) = f(C1,B) + f(C2,B)− f(C1 � C2,B).
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Axiom F3b f(O,B) = 0.

Axiom F4a f(B, C1  C2) = f(B, C1) + f(B, C2) − f(B, C1 � C2).

Axiom F4b f(B,O) = 0.

6.3.1.3 Measurable forces

Axiom F3 implies that the forces exerted on separate parts of a body B by its
exterior Be are additive; that is, if we have A1 � B, A2 � B, and A1 � A2 =
O, then we have

f(A1  A2,Be) = f(A1,Be) + f(A2,Be). (6.33)

The next axiom goes further and states that we may describe such exterior
forces with a F-valued measure on the body.

Axiom F5 For each B ∈ B, the function f⇐Be is a F-valued measure over B.

Since we regard bodies as sets, this axiom means we can write

f(A,Be) =
∫
A
df⇐Be (6.34)

if A � B. Another way of putting this is that if A and B are separate, f⇐B is
a measure over A.

6.3.1.4 Pairwise equilibrated forces

The preceding axioms characterizing systems of forces provide a structure suit-
able for combining forces and apportioning them over subbodies, but otherwise
say nothing about the relation of one force to another. The next axiom restricts
forces more strongly.

If all mutual forces are equal and opposite, that is, if

f(B, C) = −f(C,B) (6.35)

for all (B, C) ∈ (B×B)0, we say the system of forces is pairwise equilibrated.
The next axiom requires this property of mechanical forces.

Axiom F6 Forces are pairwise equilibrated.

This restriction recalls Newton’s principle of action and reaction, but is not
equivalent to it. Noll’s early axioms for mechanics posit this axiom, but his
later axioms instead derive this restriction on forces from an axiom requiring
the frame indifference of a quantity called the working of the system of forces.
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6.3.1.5 Applied forces and self-forces

In many practical situations we focus attention on a particular set of bodies and
wish to understand the interactions and motions of these bodies, and we ignore
the forces and motions outside the focus of attention except for their net effect
on the parts of the subsystem of interest. This division of the universe is called
isolating the system.

We express this restriction of attention in the notion of a great system or
locality. A locality G is the subset of B of all the bodies of interest, so that its
exterior Ge represents the parts of the universe we wish to leave unexamined.
We consider Ge only through its resultant forces f(B,Ge) on bodies B ∈ G,
and ignore the internal dynamics of Ge itself. This restriction of attention
yields a submotion of the full history, that of G alone.

The locality G induces a division of the exterior of B into two parts: Ge, the
exterior of the locality, and Be

G = (G \B), the exterior of B within or relative
to the locality. The resultant force f(B,Be) thus divides into two components:
f(B,Ge), and f(B,Be

G), with

f(B,Be) = f(B,Ge) + f(B,Be
G).

Mechanics uses the term applied force to refer to resultant forces within great
systems, defining fa(B) = f(B,Be

G). We call the force a body exerts on itself
the self-force f s(B) = f(B,B).

The total force f(B,U) on a body B is thus the sum of the applied force,
self-force, and nonlocal forces; that is,

f(B,U) = fa(B) + f s(B) + f(B,Ge). (6.36)

Traditional mechanics considers many situations in which the nonlocal and
self-forces vanish, so that the total force on a body consists of the applied
force on the body.

6.3.1.6 Balanced forces

If all resultant forces are zero, that is, if

f(B,Be) = 0 (6.37)

for all B ∈ B, then the system of forces is said to be balanced.
Because resultant forces satisfy the identity

f(B, C) + f(C,B) = f(B,Be) + f(C, Ce) − f(B  C, (B  C)e), (6.38)

it follows that a system of forces is pairwise equilibrated iff the resultant force
f(B,Be), regarded as a function of B, is additive on the separate bodies of B.



160 Dynamics

The constant function 0 is additive, so it follows that every balanced system of
forces is pairwise equilibrated.

This does not mean that all forces between pairs of bodies are equilibrated.
It can be shown (Truesdell 1991, pp. 20–21, 27–29) that universal forces equal
self-forces in a balanced system of forces, that is,

f(B,U) = f(B,B), (6.39)

so self-forces vanish only if the universal body is passive, that is, exerts no
force. Thus a balanced system of forces is pairwise equilibrated for all bodies
iff the universal body is passive.

6.3.1.7 Body and contact forces

Mechanics assumes that forces may be decomposed into two parts: body forces
between arbitrary bodies, and contact forces between bodies sharing a bound-
ary, that is, bodies sharing a nonnull subpart. Decomposability of forces in this
way means that for each force f(A, C) we can identify a body force fB(A, C)
and a contact force fC(A, C) such that

f(A, C) = fB(A, C) + fC(A, C). (6.40)

Because bodies in contact may exert both contact and body forces on each
other, just knowing the total force configuration does not tell one what body
and contact forces exist. Instead, one must identify these forces separately,
and regard the total forces as derived from these components. For this to make
sense, we assume that body and contact forces form force systems on their
own.

Assumption F7 Body and contact forces constitute force systems that each
satisfy Axioms F2, F3a, F3b, F4a, F4b, F5, and F6.

It follows that the force system constructed as the sum of body and contact
forces,

f = fB + fC, (6.41)

also satisfies the axioms for force systems.
It is possible to derive both Axiom F5 and the content of Assumption F7

from a more fundamental axiom bounding the magnitude of forces by certain
multiples of areas of contact and masses of bodies. I will not elaborate the
details of this result, but instead summarize Truesdell’s (1991, pp. 155–157)
treatment. We write ∂χ(B) to denote the boundary of the shape of a body B in
a placement χ, that is, the intersection of the topological closure of the shape
χ(B) of the body and the closure of its complement. We write ∂∗χ(B) to
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denote the reduced boundary, by which we mean the set of all points in ∂χ(B)
at which the boundary has an outer normal. Paraphrasing Truesdell slightly,
the more fundamental axiom reads as follows.

Axiom F8 Let A and C be separate bodies, the area of contact of whose
shapes is sufficiently small, and let the mass of A be sufficiently small. Then

|f(A, C)| ≤ k1Area(∂∗χ(A) ∩ ∂∗χ(C)) + k2(C)m(A), (6.42)

for some positive constant k1 and some positive, bounded function k2 : Bm →
R such that

lim
m(C)→0

k2(C) = 0. (6.43)

One can then use this axiom to prove the existence of systems fB and fC of
body and contact forces such that

|fB(A, C)| ≤ k2(C)m(A) (6.44)

|fC(A, C)| ≤ k1Area(∂∗χ(A) ∩ ∂∗χ(C)) (6.45)

f(A, C) = fB(A, C) + fC(A, C). (6.46)

I will not develop the theory of body and contact forces other than to note
one general result: if the system of forces f is balanced, then both the system
of body forces and the system of contact forces are pairwise equilibrated. That
is, if fB + fC is balanced, then for all (A, C) ∈ (B ×B)0, we have

fB(A, C) = −fB(C,A) (6.47)

and

fC(A, C) = −fC(C,A). (6.48)

As Truesdell (1991, p. 163) notes, one might call this the theorem of action
and reaction.

6.3.2 Torques

The isomorphism between the spaces of force and momentum values lets us
use the spatial inner product to form the inner product of forces and other vec-
tors such as positions, velocities, and accelerations. We use this isomorphism
and the momentum relations to define the simple torque Fx0 about the point
x0 generated by force f in the usual way, with

Fx0 = (x− x0) ∧ f. (6.49)
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Each force system f on a universe B and spatial point x0 combine to pro-
duce a system of torques (or torque configuration), namely an assignment F of
elements of a set L of torque values to all pairs of bodies of B. We thus have

F : B ×B× S → L, (6.50)

with F (B, C, x) denoting the torque about x exerted on B by C. In traditional
mechanics, L is just F∗, and in the discrete setting we assume L = F(∗) =
P(∗).

Each torque configurationF must satisfy corresponding versions of Axioms
F2, F3a, F3b, F4a, F4b, F5, and F6.

Axiom F9 F (C1  C2,B, x0) = F (C1,B, x0) + F (C2,B, x0) − F (C1 �
C2,B, x0).

Axiom F10 F (O,B, x0) = 0.

Axiom F11 F (B, C1  C2, x0) = F (B, C1, x0) + F (B, C2, x0) − F (B, C1 �
C2, x0).

Axiom F12 F (B,O, x0) = 0.

Axiom F13 For each B ∈ B, the function F⇐Be is an L-valued measure over
B.

Axiom F14 Torques are frame indifferent; that is,

F � = QF. (6.51)

Some traditional treatments of particle mechanics falsely suggest that torques
represent a purely derivative concept of the concept of force, and that one needs
only axioms on forces to capture mechanical law. In fact, mechanics involves
laws on torques that stand independent of the laws on forces. The first of
these, stated in the following axiom, requires that torques balance in addition
to forces.

Axiom F15 Torques are pairwise equilibrated; that is,

F (B, C, x) = F (C,B, x) (6.52)

for all bodies B, C and locations x.

Like Axiom F6, Axiom F15 also recalls Newton’s action–reaction principle.
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6.3.3 Stress

As described in the preceding section, Noll’s axiomatization starts with forces
and motions, and then constructs the notion of torque from the notions of space
and force. He then quickly proceeds to construct stress from force, torque, and
body and contact forces. Stress serves as the primary analytical concept of
continuum mechanics, and forms a symmetric tensor field, from which one
can derive the body and contact forces existing at any point in or on a body.

Noll’s construction of stress from body and contact forces proceeds by plac-
ing certain smoothness assumptions on the force and torque fields. Some of
the smoothness assumptions only serve to make the mathematical construc-
tions complete, and appear to lack strong physical motivation. Noll (1973)
apologizes for the need to introduce the smoothness assumptions, and invites
improvement of the axiomatization to render these technical assumptions su-
perfluous. In light of the broader applications of mechanics considered in the
preceding chapters, in which assumptions of continuity do not apply generally,
the artificiality of Noll’s continuity assumptions should not seem surprising.

Although the concept of stress provides the most natural mathematical for-
mulation of continuum mechanics, and the most convenient means for many
calculations in continuum mechanics, I do not develop the theory of hybrid
and discrete stress here. The issue of smoothness assumptions just mentioned
naturally gives one pause in seeking a notion of stress that provides analyti-
cal power in discrete mechanics. Indeed, the role of torque itself in discrete
mechanics engenders some hesitations. I thus focus attention in what follows
on the underlying notions of force and torque rather than on the theoretical
construct of stress.

6.3.4 Discrete forces and torques

Discrete mechanics retains essentially all the structure given for forces in tra-
ditional and hybrid mechanics except for the traditional assumptions about the
character of force values, which change to reflect the changed structures of
space, mass, and momentum. Specifically, the structure of F constitutes the
translation space of P; F thus consists of a free module over a ring RF. In the
discrete case, the module and ring are discrete, while in continuum mechanics,
F is a finite-dimensional real vector space.

As with mass, the principal deviation in the axioms from traditional axioms
of force comes in Axiom F5, which changes from an axiom positing a measure
function to one positing a countably additive set function.

Axiom F5a For each B ∈ B, the function f⇐Be is a countably additive F-
valued set function over B.
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Axiom F13a For each B ∈ B, the function F⇐Be is a countably additive L-
valued set function over B.

I also assume one can carry over the bounds required by Axiom F8 to dis-
crete mechanical systems by replacing the notion of area of reduced contact
boundary with some other suitable function A : P(S) → R in such a way as
to obtain corresponding bounds on body and contact forces. I do not attempt
to state an appropriate modification of Axiom F8 here, but instead state the
desired conclusion as an assumption.

Assumption F16 There exists a positive constant k1, a positive, bounded
function k2 : Bm → R, and a positive function A : P(S) → R such that

|fC(A, C)| ≤ k1A(∂∗χ(A) ∩ ∂∗χ(C)) (6.53)

|fB(A, C)| ≤ k2(C)|m(A)| (6.54)

for all pairs of separate bodies A and C.

6.3.5 Hybrid forces

Force systems in hybrid mechanics take exactly the same form as the force
systems in the component mechanics, namely a mapping f : B × B → V of
pairs of bodies to spatial vectors. As in Noll’s axioms, we require the hybrid
force system to exhibit additivity on separate bodies, and in particular, on bod-
ies from different components. We require the same balance of forces as in
Noll’s axioms, and the same continuity and boundedness constraints on body
and contact forces within each factor mechanics. The differences between hy-
brid mechanics and traditional mechanics lie elsewhere.

The first difference comes in considering the balance of torques posited by
Noll. The notion of torque makes sense in each of the component space-times,
but in the hybrid space-time we must interpret torques as vectors of component
torques, not as general linear transformations over the hybrid space. To retain
the balance of torques, we insist that torques balance within each component
system given the force value projections fi.

If {Fi | i ∈ I} comprises the set of factor force values, we form the set of
hybrid force values as

F =
∏
i∈I

Fi. (6.55)

Similarly, if {Cfi | i ∈ I} comprises the set of factor force configurations, we
obtain the set of hybrid force configurations by

Cf =
∏
i∈I

Cfi. (6.56)
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If f ∈ Cf and B, C ∈ B, we have

[f(B, C)]i = fi(Bi, Ci). (6.57)

Hybrid force configurations clearly satisfy the axioms for force systems be-
cause the factor systems do. Note that (6.57) only connects the structure of
factor and hybrid force assignments. It says nothing about how forces are gen-
erated.

6.4 Force and motion

Identifying force values as elements of the momentum module brings force and
motion together into shouting distance, and I now turn to the relations between
forces and motions that constitute the heart of mechanics.

6.4.1 Working

One general connection between force and motion comes through an axiom on
rate of work that restates earlier axioms on balance of forces and torques.

We define the working of the system of forces on a body by

W (B;χ(·, t); fBe) =
∫
B
χ̇(·, t) · dfBe . (6.58)

Standard physics textbooks introduce the quantity force × distance as the work
done in a motion. The definition of working captures the rate at which work is
done on the body in a motion by forces external to the body.

Noll’s initial axiomatizations of mechanics employed axioms corresponding
to Axioms F6 and F15. His later axiomatizations replaced these two balance
axioms with a single axiom stating the frame indifference of working.

Axiom F17 Working is frame indifferent; that is,

W � = W. (6.59)

Truesdell (1991, pp. 62–63) provides a derivation of balance equations (6.35)
and (6.52) from Axiom F17.

6.4.2 Inertia

None of the preceding axioms on forces state or imply Euler’s famous law
f = ṗ = ma, relating force to changes in linear momentum, because this
law states a condition concerning inertial forces alone instead of a general
condition concerning all forces. Indeed, Noll (1995) regards the axioms of
inertia only as special laws, in part because they only concern one type of
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force, and in part because forces generated by masses play an important role in
many, but not all, mechanical problems. He cites the motion of toothpaste out
of a squeezed tube as an example showing the occasional effective irrelevance
of mass to motion.

Noll’s observation that motion can occur independent of mass, and that
therefore one should regard laws of inertia as special rather than general laws,
has broader implications than where to place axioms in a list. If physical mass
need not always play a role in physical motion, it hardly seems strange to sup-
pose it need not always play a role in mental motion. Conversely, it would
hardly seem strange that mental mass need not always play a role in physical
motion. Thus identifying laws of inertia as special rather than general laws fits
well with viewing mechanics as a broad subject covering both the physical and
the mental.

Labels aside, axioms relating force and inertia surely represent the most
basic of the most general constitutive assumptions concerning fundamental
physical forces. Here I follow Truesdell (1991), who formulates the mechani-
cal laws of inertial forces in two axioms. The first axiom states the existence of
inertial frames: frames of reference in which a body has constant momentum
during some interval if and only if the resultant force on the body vanishes.
The second axiom refines the first to say that in an inertial frame the resultant
force on a body equals the negative derivative of the momentum of the body.
Combining these axioms with the general balance laws of forces and torques
yields Euler’s fundamental laws f = ṗ and F = L̇ stating the respective bal-
ances of linear and rotational momentum.

Truesdell’s axioms concerning force, inertia, and motion focus attention on
a particular great system or locality G. His first axiom states the existence of
certain framings relative to the locality.

Axiom F18 There is a framing φ ∈ Φ such that p(B, χ,m) is constant over
an open interval of time in φ iff f(B,Ge) = 0 in that interval.

A framing φ of the kind posited by Axiom F18 is an inertial framing, which
we can think of as the point of view of an “unaccelerated” observer.

The second axiom of inertia forms the heart of many treatments of mechan-
ics, whether classical or discrete, and states the relation known to all students
as f = ma.

Axiom F19 In an inertial frame,

f(B,Ge) = −ṗ(B;χ). (6.60)
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Truesdell (1991, p. 68) motivates Axiom F19 as the simplest relation between
force and motion consistent with Axiom F18 and exhibiting dependence only
on motion of the body in question.

Mechanics complements this requirement on forces with a parallel require-
ment on torques.

Axiom F20 In an inertial frame,

F (B,Ge, x0) = −L̇x0(B;χ). (6.61)

In traditional terminology, Axioms F19 and F20 state the balance of the load
and the reaction for every body at every instant, where one regards the total
force f and the total torque F as the two components of the load and the
change ṗ in linear momentum and the change L̇ in rotational momentum as
the two components of the reaction.

Axiom F20 joins Axiom F19 as a central element of continuum mechanics,
but many people remain unaware of its independence of balance of linear mo-
mentum. Some traditional textbooks of physics communicate the false idea
that balance of rotational momentum and torque follows from the balance of
linear momentum and force. Such derivations hold true only in certain special
and atypical mechanical systems, such as the motion of point bodies under the
influence of mutual gravitation studied in celestial mechanics (Truesdell 1991,
p. 72).

The fundamental laws of balance were first formulated by Euler: (6.60) as
the “new principle of mechanics” in Euler (1750), and (6.61) in Euler (1775),
long after Newton’s (1687) Principia. These new laws rendered nearly every
prior treatment of mechanical problems obsolete (Truesdell 1984c, p. 321).

Of course, natural philosophers recognized the existence of relationships
between force and change of momentum long before the formulation of these
laws, but they disagreed on the nature and role of these relationships.
D’Alembert and others, for example, sought to define forces as changes of
momentum, a relationship right in line with (6.60), but one that collapses ut-
terly in the study of statics, in which opposing forces continue to exist even
after the bodies involved reach equilibria that lack motion.

Discrete mechanics does not differ significantly from traditional mechanics
as regards these axioms of inertia. However, a superspatial character of dis-
crete momenta might make the identity mapping on M×TS the only momen-
tum mapping consistent with Euler’s law of linear momentum, as expressed in
Axiom F19.

Hybrid mechanics also does not require modification of the axioms of in-
ertia. Indeed, regarding mass as a vector concept means the familiar equation
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f = ma holds in each component system when we restrict attention to the
projections fi, mi, and ai of the values of a hybrid force system, masses, and
accelerations into the values holding within each component mechanics.

The role of inertial frames in formulating Euler’s laws means that the most
useful changes of frames in mechanics change only position and velocity, but
exhibit no acceleration. The class of such changes of frames is called the
Galilean class of changes, those in which the rotation is constant (that is, the
frame is not rotating in motion), and the displacement changes linearly in time,
or formally

φt(x) = Q0(x− xo) + (t− to)(φ1(xo)− φ0(xo)). (6.62)

Here we presume the change of frame places the body at the origin 0 at to, and
that the quantity φ1(xo)−φ0(xo) represents the constant translational velocity
of the body.

6.5 Energy

The concept of energy plays an enormous role in modern physics and in many
of the mathematical tools developed for analyzing physical systems, especially
in the mathematical fiction of potential energy used to characterize motion
in gravitational and electromagnetic fields. Apart from thermodynamics, in
contrast, energy plays a much more limited role in the axiomatic foundations
of mechanics. Potential energy plays no axiomatic role at all, as befits its
nature as a convenient fiction.

Noll postulates a measure E : B → R+ assigning to each body its non-
negative internal energy, together with a mapping Q : B × B → R called a
system of heatings. The system of heatings satisfies axioms similar to those
defining systems of forces and others that require that heatings correspond to
transfers of energy between bodies. Noll defines work in terms of force and
distance as usual, and, as noted in Section 6.4.1, proves the balance of forces
and torques corresponds exactly to frame indifference of the working of the
system of forces.

The treatment of energy in the broadened mechanics recapitulates changes
seen earlier in the notions of mass and momentum. Discrete and hybrid con-
ceptions of energy depart from the traditional conception mainly in moving
away from a unidimensional conception to one in which energy takes multidi-
mensional values.

6.5.1 Energetic bodies

In addition to having mass, the bodies of interest in dynamics have energy; we
say they are energetic.
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Energies have much in common with masses, and, as with massy bodies, the
energetic bodies constitute a subclass Be of the closed universe B, which we
restrict to be closed under joins and takings of exteriors.

Axiom E1 If B1,B2 ∈ Be, then B1  B2 ∈ Be.

Axiom E2 If B ∈ Be, then Be ∈ Be.

It follows that O, U , and meets of energetic bodies are energetic. With these
requirements, therefore, the energetic bodies form a Boolean sublattice of B.
Moreover, we demand that energy always accompanies mass (but not neces-
sarily the converse).

Axiom E3 Bm ⊆ Be.

As we have already assumed that Bm = B, this means we also assume that all
bodies are energetic, that is, that Be = B, and hence Be = Bm.

6.5.2 Energy values

We write E to denote the set of possible energy values. In traditional me-
chanics, momentum has dimensions of (mass)(distance)(time)−1 and energy
has dimensions of (mass)(distance)2(time)−2. These dimensional characteri-
zations involve the same set of underlying dimensions, even though they differ
in how these underlying dimensions combine. Let us follow this example by
assuming that energy values have the same structure as momentum values.

Axiom E4 The set of energy values forms a module E over a ring RE isomor-
phic to the momentum module P.

In the discrete and hybrid setting, these values need not take the traditional
form of nonnegative numbers in R. Because we allow multidimensional mass
and superspatial momenta, this structure for energy values corresponds to al-
lowing several sorts of energies, not all comparable. As with force values, we
assume the simplest possible isomorphism, namely that E = P. We write 0E

to denote the zero energy value.

6.5.3 Energy configurations

An energy configuration consists of an energy function

E : Be → E (6.63)

defined on Be taking values in E. We define the set

CE = (Be → E) (6.64)
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to be the set of all energy configurations. We write E(B, t) to indicate the
energy of body B at time t, thus extending the notation E to also mean an
energy variation

E : T → CE (6.65)

giving the energy of each body point at each instant.

6.5.4 Additive energies

We require that the energy function E is additive on separate bodies.

Axiom E5 If B1,B2 ∈ Be and B1 � B2 = O, then E(B1  B2) = E(B1) +
E(B2).

That is, for separate bodies, the energy of the join is the sum of the energies.
We see E(O) = 0E by applying Axiom E5 to O = O O. The energy of the
universal body, E(U), need not be any special element of E.

One might also wish to require that all bodies containing a body of nonnull
energy also have nonnull energy. As in the case of mass, such an assumption
has consequences for the set of possible energy values.

6.5.5 Heating

Let us use the term heating to describe changes (positive or negative) in internal
energy. A system of heatings Q : (B × B)0 → E assigns an E-valued amount
Q(B, C) to each pair of separate bodies. Let us require each system of heatings
to satisfy axioms E6–E8 like those F3–F5 satisfied by forces.

Axiom E6 Q(C1C2,B) = Q(C1,B)+Q(C2,B) for pairwise separate bodies
B, C1 and C2.

Axiom E7 Q(B, C1C2) = Q(B, C1)+Q(B, C2) for pairwise separate bodies
B, C1 and C2.

Axiom E8 For each B ∈ Be, the function Q(·,Be) is an E-valued measure
over B.

In the discrete case, we interpret Axiom E8 as requiring a countably additive
set function over body points. Again, since we assume that bodies are measur-
able subsets of U , Axiom E8 means that when A � B we have

Q(A,Be) =
∫
A
dQBe . (6.66)
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The quantity Q(B,Be) is called the resultant heating of B. In some spe-
cial cases, the resultant heating exactly corresponds to the change in internal
energy, that is,

Ė(B) = Q(B,Be). (6.67)

Such special circumstances are called energetically perfect.
We require that heatings be frame indifferent. Because we regard heatings

and internal energies as vector-valued measures, frame indifference means that
heatings transform as vectors indifferent to the framing used to describe the
motions of the bodies involved.

Axiom E9 Heatings are frame indifferent.

6.5.6 Kinetic and total energy

The internal energy of a body reflects energy not connected with motion, such
as heat or internal binding energy. In addition to internal energy, each body
has a kinetic energy K that reflects its “energy of motion” within a frame of
reference. Kinetic energy is defined for each body B and motion χ to be

K(B;χ(·, t)) =
∫
B
χ̇(·, t) · dp, (6.68)

which in the traditional case reduces to

K(B;χ(·, t)) = 1
2

∫
B
|χ̇(·, t)|2dm. (6.69)

Kinetic energy obviously varies with the frame of reference; a body in free
inertial motion in an inertial frame of reference has zero velocity and zero
kinetic energy, yet the same body has nonzero kinetic energy in any inertial
frame in which it has nonzero velocity. We say the total energy of a body B in
an inertial frame of reference is just the sum E(B) +K(B) of the internal and
kinetic energy.

The first law of thermodynamics, also known as the balance of energy, states
that the change in internal energy corresponds directly to the heating acting on
the body and the rate of work done on the body, which we can express in the
following axiom.

Axiom E10

Ė = W +Q. (6.70)



172 Dynamics

Axioms F17 and E9 stated the frame indifference of working and heating.
Putting these together with Axiom E10, we see that Ė is frame indifferent,
and hence E is as well.

In an inertial frame, the rate of work done on a body by the great system is
called the power P . The axioms of mechanics imply that power, working, and
kinetic energy are related by

W = P − K̇. (6.71)

This means that in an inertial frame, all work done on or by a body either
changes the internal energy or changes the kinetic energy. In mechanically
perfect systems, which include rigid bodies and point bodies, all work goes
into kinetic energy, so that W = 0. Combining (6.71) with Axiom E10, we
have

K̇ + Ė = P +Q, (6.72)

indicating that in an inertial frame each change in the total energy of a body
derives directly from the heating and power acting on the body.
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The character of mechanical law

The axioms on forces given in the previous chapter characterize the nature of
inertial forces and the structure of systems of forces in isolation, but otherwise
say nothing about how forces arise in the evolution of mechanical systems.
Although the special laws of forces depend on the specific class of material in-
volved, Noll states three additional general axioms concerning dynamogenesis
that bear on the general character of mechanical forces.

The first of Noll’s general axioms on dynamogenesis states the principle
of determinism, that the history of body and contact forces (or equivalently,
the stress) at preceding instants determines a unique value for these forces at
a given instant. The second axiom states the principle of locality, that the
forces at a point depend only on the configuration of bodies within arbitrarily
small neighborhoods of the point. The third axiom states the principle of frame
indifference, that forces depend only on the intrinsic properties of motions and
deformation, not on properties that vary with the reference frame.

Although we follow the pattern set by Noll regarding frame indifference, the
broader mechanics requires some adjustment in the conceptions of both deter-
minism and locality. The discrete materials of psychology and economics pro-
vide different and somewhat weaker motivations for determinism and
locality of dynamogenesis, even if one winds up making traditional deter-
minism and locality assumptions in specific systems. In contrast, just stat-
ing correct axioms of determinism and locality for hybrid mechanical systems
requires some technical restatement, as well as reconsideration of the motiva-
tions of the conditions. The following sections thus restate these dynamoge-
netic axioms for the extended mechanics.

The following examination of the character of mechanical law also goes
beyond the three dynamogenetic axioms considered by Noll to address con-
cepts of continuity, conservatism, reversibility, and optimality. Some of these
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characteristics appear implicitly as part of the traditional mechanical axiomatic
setting. Some do not appear at all in the standard formalisms, but appear im-
portant in thinking about minds and economies as mechanical systems.

7.1 Mechanical processes

Stating axioms of determinism, locality, and frame indifference on dynamo-
genesis requires the ability to talk about possible behaviors that satisfy the
preceding axioms of mechanics. As a first step in this direction, Noll (1973)
defines a mechanical process to be a kinematical process or motion χ, a refer-
ence motion or observer frame χr, and time-varying force system f that satisfy
Euler’s axioms of mechanics at every instant of a temporal interval I , collected
together into a triple (χ, χr, f).

The motion, reference frame, and force elements of Noll’s conception of me-
chanical process form a minimal set sufficient for Noll’s purposes, but not for
the extended mechanics considered here. The simpler conception just stated
presumes fixed masses for bodies, and ignores energetic and thermomechani-
cal quantities. To support mechanical analysis in the broader setting, I extend
the minimal notion of mechanical process to include mass variation, energy
variation, and heating variation over the same interval, yielding an enlarged
list (χ, χr, f,m,E,Q).

Following common practice in the theory of computation and control theory,
we abstract away from such unwieldy 6-tuples and write Σ to denote the set of
instantaneous mechanical states. We write

h : I → Σ (7.1)

to denote a deterministic history of states. We then regard mechanical processes
as pairings (h, χr) that couple histories with reference processes over the same
interval.

We regard the original process components χ, f , m, E, and Q as projec-
tions of mechanical histories (or states) onto the corresponding components.
For most purposes, I omit explicit mention of the framing. In fact, I will as-
sume each instantaneous state also includes values representing the low-order
derivatives of the process quantities as well, so obtaining an even larger tu-
ple representation (xt, ẋt, ẍt,mt, ṁt, pt, ṗt, ft, ḟt, Et, Ėt, Qt, Q̇t). Because
we consider discrete mechanical systems that lack derivatives, some of these
derivative quantities actually consist of difference or jump values, but distin-
guishing the correct nature will not be crucial in most of what follows. In fact,
I will normally only mention the state quantities relevant to the discussion at
hand rather than listing all the components of mechanical states.
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I extend the notation presented earlier for nondeterministic histories to cover
nondeterministic mechanical processes. A nondeterministic mechanical process
H consists of a set of deterministic mechanical processes over the same tem-
poral interval and employing the same reference frame, that is, such that the set
{χ(h) | (h, χr) ∈ H} forms a nondeterministic motion and such that χr

1 = χr
2

whenever H contains both (h1, χ
r
1) and (h2, χ

r
2). Let us write H to denote

the set of all histories, and HI to mean the set of all histories over a common
interval I .

7.1.1 Response functionals

Noll formulates his axioms of dynamogenesis in terms of response functionals
of the materials in question. A response functional over histories gives the
stress at each point of a body as a function of the history and present state of
the materials.

Unfortunately, the very notion of a response functional builds in the notion
of determinism in talk of the response “functional.” To formulate the notion
of mechanical response in a way amenable to the broader applications, the
following sections view response as a set-valued function of the stress at a point
and the history to that point, a function that represents the relation between the
history and the stress at each point.

7.1.2 Frame indifference

Frame indifference distinguishes the underlying reality (motion) from par-
ticular ways of describing that motion (coordinates and speeds in reference
frames). It may seem we have already assumed enough about the frame indif-
ference of mechanical entities, but in fact we need to assume more.

We have already seen in the preceding chapters that Noll’s axioms for me-
chanics require frame indifference in several ways. The first requirements, re-
flected in Axioms M9, F2, and F17, state the frame indifference of mass, force,
and working. These axioms say only that the quantities we take as mass, force,
and working must transform appropriately with a change of frame. Frame in-
difference of mass and force serves mainly to ensure we work with reliable
concepts rather than accidents of the perspectives peculiar to particular ob-
servers. Frame indifference of working carries additional consequences, as it
entails balance of forces and torques.

The frame-indifference conditions on mass, force, and working ensure the
frame indifference of the general laws of mechanics, but the conditions impose
no strong restrictions on special laws describing special materials. Noll’s ax-
iom of dynamical frame indifference concerns such special laws explicitly by
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requiring that the special laws should exhibit the same frame indifference as
the general laws. Dynamical frame indifference requires that prescriptions for
stresses transform appropriately under changes of reference frame, or formally,
in terms of a stress-response functional θ,

θ(h) = θ�(h�). (7.2)

We can express the same requirement without reference to stresses by retreat-
ing to Noll’s (1958, 1963) more direct dynamical axioms that refer directly to
frame indifference of the underlying forces and torques by means of force- and
torque-response functionals θf and θF .

Axiom F21 Force responses are frame indifferent; that is,

θf (h) = θ�
f (h�). (7.3)

Axiom F22 Torque responses are frame indifferent; that is,

θF (h) = θ�
F (h�). (7.4)

Frame indifference retains its attractions even in discrete mechanics, al-
though it is not clear that all forces of interest in psychology and economics
exhibit this property. Frame indifference in the psychological context might
entail some sort of semantic equivalence, which easily could be too strong for
a realistic psychological theory in which one can hold different beliefs about
the same thing (the planet Venus) under different descriptions (the morning and
evening stars). However, it seems unlikely that frame indifference always re-
quires semantic equivalence, since the invariant quantities can be mental struc-
tures and need not be sets of possible worlds. That is, a reasoning agent might
represent some concept in many different ways, each of which has properties
beyond those of the intended referent, but once the agent has settled on some
particular structure with which to represent the concept, the properties of that
particular representation do not depend on how one describes it in some exter-
nal language. Later chapters return to these questions.

7.2 Determinism

Many people consider mechanics the paradigm example of a deterministic the-
ory. High-school and college physics classes often instill a picture of mechan-
ics deriving from Laplace’s (1814) philosophical estimation of the import of
Newtonian mechanics: to an unlimited intelligence capable of apprehending at
one instant the positions of every particle and all forces acting on them “noth-
ing would be uncertain and the future, as the past, would be present to its eyes.”
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He based this estimation on the success at explaining every then-known oddity
of planetary motion purely in terms of Newton’s gravitational theory. The fo-
cus on astronomy and inattention to the study of extended bodies misled him,
however. Laplace’s view of celestial mechanics, like Lagrange’s portrait of an-
alytical mechanics, of whirling particles and planets, evolving so precisely and
delicately that one can continue their motion forever forward and backward in
time to determine all of history, has little to recommend itself as a theory of our
world, even considering only those aspects treated by classical mechanics, and
less still when one broadens mechanics to include modern theories of quantum
phenomena or the mental systems examined here. The Laplacian, or perhaps
more deservedly Lagrangian, blinders focus attention on the smooth, easily
intelligible portions of motion that occur between the nonsmooth, poorly visi-
ble, and less replicable events that produce the initial conditions for the smooth
portions. Setting aside these blinders, one might view determinism as the ex-
ception, not the rule.

In the broadened mechanics developed here I abandon determinism as a uni-
versal requirement, but leave open adoption of determinism requirements suit-
able to restricted theories and systems. To help the reader understand the issues
better, I further examine the role of assumptions of determinism in mechan-
ics, psychology, and economics. Chapter 14 develops an analytical formalism
for quantifying indeterminism and measuring characteristics of indeterminate
states.

7.2.1 What is determinism?

Determinism represents a restriction on the set of possible histories of the sys-
tem in question, a restriction that forbids distinct histories from sharing an
initial segment. But another way, this restriction states that if h and h′ take the
same values for all instants preceding t, then h = h′. One can phrase deter-
minism more incrementally as the restriction that identity of histories prior to
instant t implies identity through instant t, and then prove this implies identity
at all future instants, but the result is the same.

In mechanics, determinism reduces to the requirement that histories uniquely
determine the forces or stresses at each instant. We can phrase Noll’s axiom of
determinism as follows.

Axiom F23 The history of events to some instant uniquely determines the
response at that instant; that is, if two histories h and h′ involve exactly the
same bodies and materials and agree at all times up to some instant t, then
both assign the same response θ(h) = θ(h′) at each location in instant t.
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The basic dynamical axioms of mechanics require merely that the proper rela-
tionships hold between mass, velocity, force, and other mechanical quantities
in any course of events. The axioms characterizing these notions fix many
relations among mechanical quantities, but say nothing about the origin or
uniqueness of forces, of materials or systems in which any of several force val-
ues might obtain at an instant. Without an axiom of determinism, these axioms
still restrict motion within each possible history of the body so that the mass
and the velocity in the history change so as to represent a momentum change
equal to the force in the history. In symbols, if the material generates a set
of possible forces {ft,i} on the same body, these would generate histories (or
classes of histories) {hi} such that ft,i = mt,iẍt,i in hi. Noll’s axiom of de-
terminism on the response functionals that characterize materials specifically
rules out a material generating multiple possible forces given its history, and
the other mechanical axioms then produce a unique continuation of the his-
tory from this unique force. This uniqueness restriction then allows us to treat
response as a function of history.

The broader mechanical axioms presented earlier offer the possibility of a
less traditional role for mechanical determinism, in which a unique force value
may be met with a set of possible responses. In traditional mechanics one
might arrive at a set of histories for which ft = mt,iẍt,i in each hi. Each his-
tory distributes the change represented by the force differently across mass and
motion. Superspatial momenta can leave less freedom, for if momenta keep
mass and velocity as separate components, we have that (mi, ẍi) = (mj , ẍj)
iff mi = mj and ẍi = ẍj , thus requiring different force values to obtain
different reactions.

7.2.2 Why determinism?

Requirements of determinism stem from several sources, including the philo-
sophical, the practical, and the mathematical.

Some philosophical motivations for assuming determinism stem from the
mere existence of common repeatable phenomena. The quest for the most
beautiful mechanical theory gravitates toward the deterministic idealization
of this repeatability, requiring that everything be repeatable if only one can
re-create the same past conditions. Other philosophical ideas include com-
pletely nonmechanical, somewhat therapeutic motivations, in which determin-
ism offers reassurance that even though bad things happen to us and even
though we do bad things, it could not have been otherwise.

The practical and mathematical motivations for determinism seem more
central in mechanics. One expects to have an easier time making correct



7.2 Determinism 179

predictions in a deterministic world. With determinism, in each situation there
is just one future to predict; with indeterminism, at best one can predict the
possibilities but not know which one will occur. Similarly, one expects to
have an easier time putting these predictions into mathematical calculations.
With determinism, one looks for differential equations, especially ones with
closed-form solutions; with indeterminism, one has search problems that often
become harder rapidly as one looks to longer-term predictions.

Determinism, however, does not guarantee easier prediction and mathemat-
ical solution. As we will see in the following section, some deterministic sys-
tems can defy prediction and simple mathematical solution.

7.2.3 Is determinism true?

Although some assume that quantum mechanics has settled the issue in fa-
vor of an indeterministic world, the truth is somewhat more complicated, with
pseudoindeterminism and pseudodeterminism adding twists to the already fa-
miliar complications concerning human behavior.

7.2.3.1 Pseudoindeterminism

In classical physics, theorists have long known that fairly simple deterministic
equations of motion admit solutions of extreme complexity that resist reliable
calculation beyond very short times. The phenomenon of turbulence in fluid
mechanics provided the canonical example for many years, especially in its
interference with weather prediction. In recent years, understanding of this
possibility has grown more acute with the identification of properties of chaotic
systems characterized by extreme sensitivity of solutions to initial conditions.
Chaotic systems exhibit trajectories that diverge from each other at exponential
rates even though starting from points as close as one chooses. Many aspects of
the behaviors of these deterministic systems appear anything but deterministic.

If chaotic systems represented mathematical oddities, one might feel safe
in ignoring them when seeking to predict behavior for realistic systems. In
fact, chaotic systems pervade our world, and chaotic behavior arises through
virtually all the standard equations of physical theory, providing at least one
explanation for the appearance of indeterminism in physical observations. The
same has been observed in standard models of economic behavior as well,
showing the burden does not rest solely on physical theory. That is, even when
one starts with equations developed by examining simple situations in which
motion appears deterministic to the limits of the measuring apparatus, extrap-
olating from these same equations to laws covering more complicated systems
saddles one with chaotic behaviors.
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In some cases, we see seemingly chaotic and random behavior occurring by
design. Modern cryptography, for example, develops the notion of pseudo-
randomness, in which a sequence or set of data reflects a determinate rule too
difficult to recognize in the sense that all procedures for identifying the rule
require computational resources exponential in the length of the sequence or
size of the data set. At present some numerical cryptographic methods rely
on the fact that decoding appears to entail this level of computational effort,
though we do not know this for a fact. Messages coded using these pseudoran-
dom mechanisms provide obvious, if artificial, examples of seemingly random
deterministic systems.

One might conclude that complicated deterministic behavior and the or-
dinary ambiguity of limited-resolution measurement together account for all
apparent indeterminism. This conclusion, which one might view as a math-
ematical expression of some mysteries of religious faiths, undoubtedly pro-
vided some assurance to generations of natural philosophers, assurance akin to
Hilbert’s (1902, p. 412) completely conventional conviction of the decidability
of all mathematical questions.

The discovery of quantum phenomena and the developments of early quan-
tum theory began to undermine the hypothesis of physical determinism even
before Gödel gave pause to Hilbert’s conviction. The early quantum theorists,
notably Bohr, explicitly denied the possibility that quantum indeterminism rep-
resents merely the indeterministic appearance of an underlying deterministic
theory. Many adherents of determinism found it difficult to swallow this claim,
and eventually it was proven false by Bohm (1952), who provided an entirely
deterministic theory of quantum mechanics, complete with elementary parti-
cles bouncing off one another in a straightforward mechanical way. To do
this, Bohm introduced a “vector potential” that provided the means by which
behavior varied across repeated experiments. In principle, one could capture
any complete history of the universe using deterministic physics and such a
vector potential. In practice, one has no way of identifying the specific poten-
tial short of having such a complete history. The vector potential represents
an initial condition dwarfing that of Laplace’s all-seeing mind, and possesses
a complexity unrivaled by those appearing in routine engineering situations.
The deterministic equations of motion support all the chaotic behavior in this
application that they do in more traditional models. This leaves one with ordi-
nary indeterministic quantum mechanics as the best predictive tool. Somewhat
later, Nelson (1966) derived some simple cases of the Schrödinger equation
from classical mechanics, but later gave up the project because of difficulties
in generalizing the solution to more complicated cases (Nelson 1985). The
“many-worlds” interpretation of quantum mechanics described by Everett (de
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Witt & Graham 1973) provided another framework for viewing quantum inde-
terminism in terms of classical histories, but this theory also proved difficult to
use in making predictions.

These deterministic quantum theories did little to abate the practical facts of
indeterminism, and left one with standard indeterministic quantum mechanics
as the best practical approach to prediction, much as even a devout determin-
ist uses a probabilistic model in calling the roll of the die. The hypothesis
of determinism suffered what many considered a more serious blow with the
appearance of Bell’s (1966, 1987) theorems proving that any hidden variable
theories, such as those of Bohm, must exhibit nonlocal correlations. Since
the same physical intuition of microscopic behaviors provided both conviction
of determinism and locality, as seen in Noll’s axioms, these theorems pit two
aspects of the same intuitions against each other. Many take the restrictions
posed by relativity theory on distant communication to weigh in on the side
of locality, and thus give up on determinism. This intellectual conversion does
not represent true repentance of deterministic doctrine, however. Bohr’s prin-
ciple that one cannot know more than statistical properties of quantum states
continues to grate against the methodological optimism of many scientists who
believe they can figure things out if they work hard enough.

7.2.3.2 Pseudodeterminism

We may turn the notion of pseudorandomness around to consider the notion
of pseudodeterminism. A pseudodeterministic system is an indeterministic
system that appears deterministic, but for which the cost in time or other re-
sources of observing the indeterminism is impractically high. A simple but
artificial example is provided by a probabilistic finite automaton in which one
transition from each state has a probability extremely close 1, say 1 − 10−23.
Observing that this automaton is in fact indeterministic by observing its be-
havior can be expected to take a very long time, unless one is able to employ
molar-level parallelism, as in recent DNA and NMR computation techniques.
Indeed, if we assume quantum mechanics describes a true indeterminism of
the world, an isolated atom of uranium 238, an isotope with a half-life of 4.5
billion years, constitutes a fine pseudodeterministic system, with a decay prob-
ability around 3.5×10−18 per second. Even the far less stable U-234 atom, an
isotope with a half-life of 244,000 years, would serve well here. The fact is that
apart from radioactivity and the interference phenomena that gave rise to quan-
tum mechanics in the first place, we have little basis for saying the apparently
deterministic parts of nature are deterministic rather than pseudodeterministic.

Of course, in psychology, pseudodeterministic behavior might reflect not
mere probability but actual intelligence and intentions to hide from observation.
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The schoolteacher hears scuffling and whispers, but sees only properly seated
students each time he or she turns from the blackboard to reprimand the class;
Winston Smith makes sure he gives the expected answers, even though his
heart has changed.

As a practical matter, however, the most familiar sorts of pseudodetermin-
ism result from deliberate engineering design, in which levels of abstraction
introduce forms of relative determinism that hide indeterminism at one level
from observers of higher levels.

For example, good engineers develop a keen appreciation for the proper
place of the notion of determinism. They ordinarily consider determinism a
desirable but temporary and uncertain characteristic of designed mechanisms.
They presume that most of the building blocks used in their design lack de-
terministic response, and regard doing otherwise as asking for trouble. For
example, watchmakers design gear mechanisms to exhibit insensitivity to pos-
sible variations in the driving mechanisms, whether they arise through motions
of pendulums, human arms, or crystals. Of course, this engineering wisdom
merely improves on the common prudence most people gain as they grow up.

Strictly speaking, the engineers do not assume their building blocks possess
true nondeterministic freedom of action. Except perhaps in moments of frus-
tration, when they may bemoan Murphy’s law or curse malevolent influences,
they expect only a form of practical, epistemic indeterminism, resulting either
from imperfect knowledge of the precise state of the components, from envi-
ronmental noise or other unknown influences, from component failure, or from
true nondeterminism on the part of the component. No one trusts mechanisms
to work as designed without long experience, significant testing, and often,
built-in self-testing mechanisms.

The practice of engineering does not support the false distinction between
calculating the solution to a differential equation and verifying some logical
property of a nondeterministic automaton, digital circuit, or distributed sys-
tem. All engineering involves the verification of properties of indeterministic
systems; the differences arise only in whether the proofs and experimental tests
quantify or sample over continuous or discrete configurations and trajectories.

The original RMS, or indeed almost any computational system performing
heuristic search, provides a good example of a system exhibiting determinism
at one level but not at another. To the external observer, or in the external,
summary theory captured in nonmonotonic logics, the RMS exhibits a free-
dom of choice or lack of determinism in many respects: first in the alternative
sets of conclusions possible given sets of nonmonotonic base reasons, and sec-
ond in the alternative revisions of conclusions possible given updates to the
base reasons. This indeterminism serves the theory well, whether or not the
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RMS actually operates deterministically. The original RMS, in fact, worked
strictly deterministically. It recorded all reasons in lists with stable orderings,
and employed regular ordered procedures for examining these lists, leading
to identical results when rerunning the program from the same initial condi-
tions. This implementation determinism, in turn, was relative to the underly-
ing MACLISP/ITS/KA-10 system on which it ran, and these underlying levels
were intended to operate reasonably deterministically relative to the quantum
states of the KA-10 electronics, which in the conventional view operate inde-
terministically.

7.2.3.3 Human experience

Indeterminism and unpredictability abound in human experience, from the tod-
dler’s experience of apparent capriciousness of parents to the old-timer’s expe-
rience of chance, bluff, and deception by opponents in card games. Essentially
every regularity known from common sense and long experience suffers excep-
tions. If, following William of Ockham, we ask for the simplest explanation of
this apparent indeterminism, we conclude that human behavior is indetermin-
istic. One might interpret the standard economic theory of rational decisions
in this way, as saying that rational people can choose freely among all alterna-
tives of maximal expected utility, and groups of rational people acting together
can join together in any of the equilibrium solutions to the games represented
by their preferences.

Note that human indeterminism might happen even if all physical materi-
als follow deterministic rules, for we have no evidence to suggest determinism
holds for nonphysical materials. Indeed, all the evidence we have suggests in-
determinism, not determinism. Of course, this indeterminism might reflect an
underlying reality too complex to see as deterministic, but for practical pur-
poses, we must view humans as either pseudoindeterministic or indeterminis-
tic. Experiments to determine any underlying determinism certainly seem in-
feasible. At the gross level available today, the experimenter lacks essentially
all certain knowledge about the nature of the psychological material (how the
subject behaves in different circumstances) and the state of mind of the sub-
ject. Worse still, the subject can remember what he or she experiences, and
has the intelligence to exhibit deceptive behavior. All this serves to undermine
the experimenter’s ability to repeat experiments in the strictest sense, though it
does not foreclose all possibility of an experimental psychology. It is remotely
conceivable one could prepare two human beings to have the same state by
cloning, isolation, and so on, in order to subject them to a series of tests to
ascertain the identity of their responses, but the cost, not to say the immorality,
of such an experiment is prohibitive.
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More generally, a world fully deterministic at both physical and psycholog-
ical levels would leave no room for free will, the ability to choose freely that
forms part of the common human experience, no matter what one’s beliefs
on the reality of this appearance of freedom. This implication makes relevant
some sources of nonobservational evidence, including the testimony or reve-
lation available in numerous religions, and the near universal conviction that
one can and should condemn some behavior as evil. A long theological, philo-
sophical, and moral tradition argues that a world without choice is a world in
which one cannot criticize choices, a world without good and evil. For many,
the conviction one can and should condemn the person who hurts a loved one
outweighs any aesthetic or engineering desire for a completely deterministic
physical theory.

7.2.3.4 Free will

As noted, a deterministic world is a world without choice, at least as most
understand the notion of choice. Yet acceptance of physical indeterminism
does not require acceptance of free will, for psychology might be deterministic
relative to some level above that of atoms and subatomic particles. Indeed,
the controversy surrounding Penrose’s (1989) suggestion that consciousness
somehow depends on and reflects quantum indeterminacy stems in part from
a belief held by many that psychological behavior should not depend on any
particulars of motions at that level. But even if one believes mental behavior
indeterminate, indeterminism does not in itself imply the sort of conscious
freedom of choice bound up in the notion of free will. Few credit the uranium
atom with free will, even if it exemplifies probabilistic indeterminacy.

Nothing in the technical development of mechanics given here requires tak-
ing a stand on the existence of free will. Decision making, though, forms a
category of mental action fundamental to psychology, economics, artificial in-
telligence, and other fields, and one faces tough sledding to pursue the study of
decision making and rationality without accepting free will at least as a sound
theoretical viewpoint.

The simplest, and perhaps typical, response to this question was exhibited by
William James, who overcame a severe depression by freely choosing to reject
the idea that free will is an illusion and to instead believe he had the power to
choose (1920, Vol. I, pp. 147–148). To use Festinger’s (1957) language, one
might speculate that the cognitive dissonance between the plain facts of human
experience and the tenuous chain of hypothesis emboldening the psychological
determinists eventually grew too great, at which point James surmounted the
issue by deciding to believe in free will.

The point here is that the experience of free choice is as common and sure
as the experience of the heat of fire and warmth of a mother’s love; more sure,
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indeed, since some live without fire, and not all mothers love. Even the in-
sane or addicted who regard some of their thoughts and impulses as beyond
their control ascribe many of their decisions to their own choices, not to the
tormenting afflictions. While in principle such apparent freedom to choose
might prove an illusion, much of the modern push to view mind as determin-
istic stems from the deterministic illusion of Laplace and other interpreters
who magnified the narrow and deterministic slice of mechanics formalized in
the seventeenth and eighteenth centuries into a scientific justification for a de-
terministic metaphysics. The progress of modern science since that time has
systematically eroded that deterministic illusion. The present work adds to
the demonstrations that mere indeterminacy does not destroy science but en-
riches it. In this setting, it seems perfectly reasonable to interpret the human
experience of choice as true choice.

7.2.4 Specializing determinism

The long-standing debates about determinism, from ancient disputes about
free will to modern quantum mechanics and analyses of pseudodeterminism
and pseudoindeterminism, suggest that universal axioms of determinism seem
overly contentious components of a philosophically neutral mechanics intended
to cover both mind and millstone.

The level-dependence of determinism means the theorist must choose care-
fully when deciding where to demand determinism. Noll’s mechanics places
the requirement at a general level above even assumptions about the presence
and properties of mass, on the grounds that mass proves irrelevant to some me-
chanical systems and thus should not be considered as one of the fundamental
concepts. Mass thus enters Noll’s mechanics as a concept used in a broad
but not exhaustive class of theories of special materials. With so much of the
structure of mechanics standing independent of determinism assumptions, it
seems reasonable to treat the axiom of determinism in the same way, demot-
ing it from a universal principle governing all possible materials in all possible
circumstances to one covering many but not all materials, and many but not all
circumstances.

In hybrid mechanics, especially, the force on a body within some component
system potentially depends on contributions exerted by bodies in other compo-
nent systems as well as bodies within the same component system. This means
that the axiom of determinism cannot hold within the component systems, un-
less the separate mechanical components evolve separately with no interaction.
Accordingly, any general axiom of determinism must be stated at the hybrid
level as a restriction on the system of hybrid forces, not as a restriction on the
component force systems. I therefore omit dynamogenetic determinism as a
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general law of discrete mechanics, and relegate it to the status of a special law
characteristic of specific types of materials or hybrid systems.

This demotion of determinism to a special and sometime property of me-
chanical systems need not make life more difficult for the student of mechan-
ics. Axioms requiring determinism aid little if the remainder of the theory
does nothing to shape behavior into deterministic paths. Although one can
construct deterministic theories of special psychological materials, it seems
more useful to construct theories in deterministic and indeterministic varieties.
The indeterministic theories might exactly capture observational knowledge
about people and their lack of deterministic responses to identical visible stim-
uli and aspects of mental states. The deterministic theories might augment
the indeterministic theories with suppositions about underlying deterministic
mechanisms.

For example, the standard theory of rational choice underlying psychology
and economics explicitly permits multiple rational choices. One thus might
doubt the utility of a deterministic theory obtained simply by adding an ax-
iom of determinateness to such an otherwise indeterminate theory, for knowl-
edge that only one of the possible paths occurs without some way of telling
which one occurs leaves one unable to make many predictions beyond those
available in the nondeterministic theory. One might instead achieve determin-
ism by adding instead an axiom that states a specific rule for making all such
choices, but there usually are many such rules possible, and most such as-
sumptions introduce a level of detail more appropriate to specific materials or
types of minds than to general mechanical analyses. The value of theories of
special materials lies in their susceptibility to analysis and applicability to a
reasonable class of actual materials. Exceedingly detailed constructions of de-
terministic behaviors greatly increase the risk that the resulting theory will not
apply to some materials of interest. In such cases, the nondeterministic the-
ory might prove useful for more purposes than would a special deterministic
theory.

Indeed, even mathematical prediction need not be aided by determinism. For
example, the concept of a finite automaton forms both a core idea in the theory
of computation and a widely used computational tool. The theory of compu-
tation studies both deterministic and nondeterministic finite automata, which
one can prove have equivalent computational power in terms of the formal lan-
guages they can recognize. This equivalence of power aside, both deterministic
and nondeterministic concepts have advantages in different studies. For some
purposes, such as implementing string pattern matching machines, determin-
istic finite automata are the tool of choice. Here one simply a constructs a
finite automaton that recognizes the string or pattern in question and runs the



7.3 Continuity 187

data through it to find the matches. For other purposes, such as analyzing the
existence of solutions, nondeterministic finite automata prove more useful. In
particular, the full Kleene language of regular expressions involving sequence,
negation, and union permits much simpler analyses of automata and languages
than a deterministic sublanguage.

More generally, and for similar reasons, mathematics makes heavy use of
nonconstructive existence proofs even when constructive proofs are possible.
We thus regard the predictive benefits conferred by determinism on systems
describable by differential equations as a special case of mathematical analysis,
not as a limitation of predictive simplicity to deterministic systems.

7.3 Continuity

Many people believe that classical mechanics respects Leibniz’s law of conti-
nuity: Natura non facit saltum, “Nature makes no jumps.” Indeed, people have
applied this dictum beyond the mechanical realm, to wit Darwin’s rejection of
genetic saltation and Marshall’s (1949) use of it as the epigram of his famous
economics textbook. Certainly everyone has keenly regretted this law when
seeing someone one would rather not see coming down the hall from the other
direction. What then should we make of continuity requirements in seeking a
discrete mechanics?

Indeed, much of classical mathematical analysis relies on the notion of con-
tinuity. What fate awaits theories of discrete processes, such as computation,
reasoning, decision making, and action, that involve mainly discontinuous mo-
tion? To help the reader understand this question, in the following section I
examine the concept of continuity and the role it plays in mechanics and other
systems. It turns out one can salvage important aspects of the classical frame-
work even in the discrete setting.

7.3.1 What is continuity?

Although Leibniz’s statement “nature makes no jumps” serves as a good first
approximation to the notion of continuity, mathematics formalizes the notion
in a variety of ways. The most familiar way says that small changes come from
small changes; a function f is continuous at a point x if any value v suitably
close to f(x) can be obtained as the value v = f(y) for some y suitably close
to x.

To make this work as a general concept, mathematics defines a topology
(X,O) on a set X to be a collection of sets O, called the open sets of the
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topology, closed under arbitrary unions and finite intersections. This defini-
tion admits a wide range of topologies and corresponding continuity notions.
Mathematicians classify topologies according to various properties, especially
according to how easy a topology makes it to separate one point from another
by means of open sets that contain one point but not the other.

One should not confuse continuity with determinism or other notions. Intu-
itively, determinism means the motion admits no branches; continuity means
the motion makes no jumps. To see the difference from determinism, one can
consider the discrete state sequences of deterministic finite automata. These
constitute deterministic functions from the nonnegative integers to automaton
states, but utterly discrete functions. One can view these functions as con-
tinuous, but only by using trivial discrete topologies that make every function
continuous. For a more subtle example, consider the pair of real functions con-
sisting of the constant function 0 and the function that is 0 for all nonpositive
numbers and is e−1/x2

for every positive number x. Treating these functions as
alternative paths of motion in a nondeterministic history, we see that the history
presents a split at 0, even though both have everywhere continuous derivatives
of every order, and all derivatives at 0 take the same value 0. Clearly continu-
ity, whether of the path or of any of its derivatives, does not identify the split
between these alternatives.

7.3.2 Why continuity?

Mathematical analysis thrives on continuity, which provides the foundation for
limits, differentiation, and integration, and through these, equations of motion
and their solution, which in turn provide the basis for predictive calculations
throughout mechanical applications. As noted in the preceding examples, con-
tinuity is strictly speaking neither necessary nor sufficient for these elements of
mechanical understanding and prediction, but these examples notwithstanding,
traditional mechanics would look very different without routine continuity.

Continuity has other benefits as well. Continuity enables predictions of
bounds and boundedness in many problems because the continuous image of
a closed set is again a closed set. But the greatest benefit provided by continu-
ity is the notion of successive or iterative approximation, the ability to quickly
get an initial approximation and then work as long as desired to improve the
approximation. Continuous functions offer the hope that additional work can
improve the approximation, and perhaps bound the amount of improvement
one can expect from further effort. Discontinuous functions need not support
meaningful senses of further approximation, and can thus force reliance on
other means in obtaining adequate answers.
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7.3.3 Is continuity true?

The truth of claims about continuity of nature or mechanical systems depends
on the sort of topology of interest in the system under analysis, for lacking a
stipulated topology, the answer can be yes or no. One sees this dependence of
continuity on topological assumptions in the previously noted example of the
discrete topology. If one regards a space of points as having the discrete topol-
ogy, in which every set is open, and every set is a neighborhood of every point
it contains, then every function from that space to any other topological space
is continuous. This trivial case provides little benefit other than to show the
broadness of the mathematical concept. In terms of understanding, it provides
only a meaningless notion of continuity that lacks any structure at all.

7.3.3.1 Physical continuity

Consider next some interesting answers that give lie to Leibniz’s law of conti-
nuity. In fact, as Truesdell (1984d) points out, mechanics is full of examples
of discontinuous behavior, examples known for hundreds of years. For this
reason, modern mechanics formulates its dynamical laws as balance condi-
tions that apply at both points of continuity and, as jump conditions, at points
of discontinuity. Truesdell discusses some common occurrences in classical
mechanics including the motion of vibrating strings and colliding bodies.

Mathematicians have made attempts to understand mechanical discontinu-
ities in more detail through several programs of research.

Thom’s (1975) catastrophe theory, which gained much prominence for a
while, made an attempt to give singularities their due by using the tools of dif-
ferential topology to study the possible bifurcation of classical systems. Thom
hoped that understanding bifurcations in mechanics would help illuminate the
nature of bifurcations in biological, social, and computational systems. While
Thom investigated bifurcations in mechanics, he focused on the mere facts of
discontinuity and nondeterminism, leaving open the question of whether all
possible changes are equally likely to occur, and if not, their likelihood of oc-
currence. This weakness of the theory contributed to a decline in its influence.

More recently, the excitement once attending to catastrophe theory has been
transferred to theories of chaos and deterministic but seemingly random behav-
ior, theories that provide some means for estimating probabilities of different
behaviors. Chaos theory highlights the importance of continuity in a dramatic
manner, as it clearly distinguishes successive approximation of solutions to
equations from successive approximations to initial conditions. Getting use-
ful predictions requires both sorts of approximations. Chaos theory empha-
sizes how tiny variations in model or initial conditions can produce dramatic



190 The character of mechanical law

differences in behavior. This has big implications for successive approximation
of solutions. Although it is easy to spend more and more effort to get further
precision or accuracy in a solution to a system of equations, it normally is much
more difficult to obtain more and more accuracy in measurements or predic-
tion of initial conditions. Physical and informational limits on our knowledge
of initial conditions thus lead to major limits on our ability to predict behavior,
no matter how good our computational facilities.

Specifically, quantum mechanics provides the prime theoretical limitations
on our ability to know initial conditions, for the uncertainty relations of quan-
tum theory rule out simultaneous measurement of various pairs of quantities,
such as position and momentum. In fact, Bohm’s (1952) theory of the vector
potential provides an excellent example of the power of knowledge of initial
conditions, for it shows that one can describe every quantum history of the uni-
verse as the result of purely deterministic physical (mechanical, electromag-
netic, or other) laws operating from a suitable deterministic initial condition.
More famously, however, the foundation of quantum theory consists of con-
tinuous evolution of states punctuated by discontinuous jumps at measurement
events, directly contradicting any uniform assumption of continuity.

7.3.3.2 Computational continuity

The theory of computation developed despite a lack of explicit notions of con-
tinuity, rendering the powerful tools of classical analysis either inapplicable or
ineffective, and leading to laments like the following one by Smale.

I would like to make it clear that I find merit in the Catastrophe theorists use of modern
calculus and geometric techniques in models in science. In particular discontinuities
can often be best understood via this kind of mathematics. For example, it would
be important to find a calculus oriented model for the computer, a machine which is
intrinsically discrete. Such a calculus model would not be exact, but it could give great
insight to automata theory. (Smale 1978, p. 1366)

Of course, one can make the motions of discrete systems into continuous ones
by employing the discrete topology, but that makes all possible paths continu-
ous and so provides no conceptual or practical analytical help.

It might seem surprising, then, that even though computation seems inher-
ently discrete and discontinuous, the attentions of some stellar mathematicians
have begun to reconcile the theory of computation with traditional continuous
analytic mathematics, to the point where the theory of computation actually
showcases some of the main examples of continuity outside ordinary physical
theory.

The fundamental insight comes by considering computation as a process of
successive approximation. The most obvious perspective giving computation



7.3 Continuity 191

this character is that in which one views the computational process as con-
structing successive initial segments of a sequential trajectory of states. At
each step of the process, the computation identifies the next state in the trajec-
tory, and then moves to it.

This perspective bears clear resemblance to the standard situation in most
numerical computations in the physical sciences, that of incrementally extend-
ing a solution of a system of differential equations over one interval to a solu-
tion over a slightly larger interval by using the equations to compute the value
at the next grid point beyond the end of the current interval. The resemblance
becomes stronger as one considers models of computation that formulate the
state-transition determination as a set of equations, typically logical equations,
as in a Prolog program (cf. Hermann 1990).

Of course, one usually does not meet the typical case of solutions that re-
quire numerical approximation in calculus textbooks, making the resemblance
seem strained. Textbooks usually focus on the rather limited set of equations
one can solve in closed form. Yet even in the computational realm, one finds a
corresponding, if limited, set of equations one can solve in closed form. These
include regular expressions, which provide closed-form descriptions or char-
acterizations of the behavior of finite-state automata; context-free grammars
for some unbounded automata; and a beautiful theory using formal power se-
ries to describe formal languages, which builds a bridge between a classical
technique of continuous analysis and the discrete theory of languages and ma-
chines (Salomaa & Soittola 1978).

In traditional mechanical applications, one rarely encounters closed-form
solutions outside of the classroom, but at least one has many rules of cal-
culation for transforming the equations to forms that either reveal important
structure directly or simplify the process of numerical solution or simulation
(Truesdell 1958). Logical inference of properties of programs provides some
corresponding help in the theory of computation, but generally leaves the au-
tomaton analyst little alternative to simulation, that is, running the automaton
to see what behavior results. Such simulation or execution corresponds directly
to numerical solution of differential equations.

Scott’s theory of computable functions and data structures, based on non-
trivial topology, limits, and continuous functions, represents the most direct
attempt to exploit the notion of continuity in computation. This theory con-
structs data structures as sets of “atomic propositions” or points that satisfy
specified abstract consistency and completeness conditions. Key to the con-
struction is a T0 topology based on set inclusion that lets one construct infinite
functions on data structures as limits of finite partial approximations. This no-
tion of approximation corresponds directly to normal computational notions
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like computing the next few digits of an answer, or the adjacent value of the
function, yet satisfies all the formal requirements of the theory of continuous
functions. The upshot is that although the set of all functions on these data
structures contains many more functions than the computable ones, the set of
continuous functions is closed under composition, product, and so on, and cor-
responds to the set of computable functions over the data structures. Scott
describes the general character of his theory in the following terms.

Though the words ‘calculus’ and ‘logic’ do have general significance, I would propose
calling the systems of Church and Curry λ-algebra (or if you like: combinatory al-
gebra). This is in analogy to classical algebra. Their theories are equational theories
of (type-free) functions in combination: the algebra of functions—whether formulated
with λ-abstraction or with the so-called combinators. (True, it is a branch of logic like
Boolean algebra; but we can usefully apply mathematical techniques.) What I have
done is to introduce something new: limits and topology. Therefore, in analogy with
classical mathematics, I would like to call the extended theory λ-calculus. Any system
of rules can be called a calculus, if you like; but analysis (differential and integral cal-
culus) only took wing from the starting point of algebra after the notion of limit was
introduced.

This sounds egotistical and is in a way, because I have not discovered anything quite
as useful as the integral. But I am not quite mad, as I can show by example. We recall
Church’s troubles with normal forms and nonnormal forms. These problems can all be
completely analyzed in logical space with the aid of limits. . . . In other words: a certain
infinite series can be written in closed form. Such a result seems to me to be very much
in the spirit of classical analysis. There must be many other such results. We must
develop the methods of proving them not only for logical space but for the many other
analogous spaces that can be similarly constructed. (Scott 1973, pp. 186–187)

Other trains of work seek to exploit classical mathematical analysis in de-
velopment of a theory of the complexity of computation over the real and com-
plex numbers (Blum et al. 1998), to exploit functional analysis in a theory of
machine learning (Cucker & Smale 2002), and to recast symbolic computa-
tion in the kinematical terms of differential geometry and dynamical systems
(Hermann 1991).

7.3.3.3 Hybrid continuity

Recent hybrid system theories characterize state space as consisting of a set
of disjoint manifolds, with a possibly different continuous flow (set of dif-
ferential equations) governing motion within each component manifold, and
with an automaton governing jumps of the motion between component man-
ifolds. In the simplest and most tractable cases, the discontinuous jumps be-
tween the manifolds constitute the state transitions of a finite automaton, with
each component manifold representing a single state of the automaton. One
can thus view the system state space as the product of a manifold with the



7.3 Continuity 193

states of a finite automaton, and the dynamics as the combination of the finite
automaton transitions together with possibly different continuous dynamics
within each finite-state control region. The topology of the product space is
the product of the manifold topology and a discrete topology on the automaton
states. This topology makes trajectories continuous as long as their projections
onto the manifold are continuous, with the discrete topology on the automaton
states making the projection of trajectories onto automaton states automatically
continuous.

Unfortunately, most hybrid system theories provide little structure for the
discrete jumps beyond the simple notions of automata theory. A theory incor-
porating Scott topologies, for example, still awaits exploration.

7.3.4 Smoothness and relative continuity

No amount of attention to computational and hybrid systems can hide the ap-
pearance of discontinuities in traditional physical systems. In plain fact, some
motions involve discontinuities of velocity or other quantities. Faced with
these discontinuities, do we simply abandon Leibniz’s law of continuity, or
do we salvage something from it?

Truesdell (1984d) credits Euler with developing an approach to accommo-
dating discontinuities into Leibniz’s perspective that Truesdell calls the prin-
ciple of smoothest path. This principle has two parts. One part says to expand
domains of continuity as much as possible. Formally, we might think of this
as introducing an ordering of paths according to “relative continuity” in which
one path is more continuous than another if it has larger domains of continuity.
The principle of smoothest path then requires that bodies follow motions max-
imal among the alternatives according to the ordering of relative continuity,
so ensuring that domains of continuity are as large as possible. In contrast to
Leibniz’s doctrine, Euler’s principle says that even if nature does make jumps,
it makes as few jumps as possible, which we might render as Natura non facit
nimium saltum (“Nature makes no unnecessary jumps”).

To illustrate the principle of smoothest path, Truesdell recalls an example of
Galileo’s about motion of a point on a polygonal surface. Figure 7.1 depicts
a traveling mass that meets an obstructing surface and continues in a motion
along the surface. Although there are similar trajectories that have more than
one discontinuity of velocity, the actual motion avoids those.

Although maximizing domains of continuity in this way certainly seems
natural and desirable, it does not seem sufficient, and the second part of the
principle of smoothest path requires that changes be as small as possible at
the points of discontinuity. This part of the principle has a somewhat different
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Fig. 7.1. A body in downward motion hits a slope. The downward motion follows path
(A), not path (B), which, though it involves segments with the same character as in path
(A), has unnecessary discontinuities in velocity.

character than the part about continuity. I continue the discussion of Eulerian
smoothness in the subsequent discussion of conservatism.

7.3.5 The character of discontinuities

Mathematics includes examples of discontinuities of much worse character
than those we expect to encounter in mechanics. For example, the function
that takes the value 0 for all nonpositive numbers and for each x > 0 takes the
value sin 1

x , takes all values between −1 and 1 in every positive neighborhood
of 0.

In mechanics, we expect all quantities to be piecewise continuous with def-
inite limits. To ensure this, I add the following axiom to the requirements on
motion.

Axiom C1 The mechanical state of each body point and its position, veloc-
ity, acceleration, mass, massing, momentum, momentum change, energy, and
heating components form piecewise continuous functions of time in each me-
chanical history, and have temporal limits from both the past and the future at
each instant.

That is, all discontinuities take the form of a jump in values from one limiting
value (limit from the past) to another (limit from the future). This rules out mo-
tions taking an intermediate value at points of discontinuity, such as placement
at −1 for all earlier times, placement at 1 for all later times, and placement at
0 at the instant of discontinuity. Some theories of hybrid systems allow such
intermediate values at discontinuities, but I do not pursue such possibilities
here.
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7.4 Conservation

As noted earlier, Truesdell (1984d) credits Euler with developing the princi-
ple of smoothest path, which says to expand domains of continuity as much
as possible, and to make motion as smooth as possible by making discontin-
uous changes as small as possible, so as to conserve as many properties of
the motion as possible at discontinuities. The first part of this principle con-
cerns maximization of the intervals of continuity; the second, minimization of
the magnitude of change at discontinuities. In the following section, I exam-
ine ideas related to this sort of change minimization, including conservative
systems and invariants of motion.

7.4.1 What are conservative systems?

Using the size of jumps at the points of discontinuity to judge comparative
smoothness of paths has some similarity to the intuitive notion of continuity,
but a more accurate characterization of this notion of smoothness is as a prin-
ciple of motion that conserves the values of mechanical quantities as much as
possible throughout the motion, as a conservation principle rather than an ex-
pression of continuity. Continuity means the motion makes no jumps; conser-
vatism means that jumps are as small as possible. In these terms, the principle
of smoothest path says that motion is conservative and maximally continuous.

Now when physicists use the terms conservation principles and conserv-
ative systems, they mean principles according to which or systems in which
some quantity remains unchanged over time. Such principles and systems have
great importance, but outside physics the term conservation means economiz-
ing, minimizing change rather than complete changelessness. In this present
world, a conservator can only seek to slow the inevitable decline, not to pre-
vent it entirely. Compared with this more ordinary meaning of the term, the
physicist’s meaning reflects an especially crabbed conception of conservation.
To distinguish the two, I use the terms invariance principles and systems with
invariants to refer to principles or systems keeping things unchanged, and con-
servative, conservation, and conservatism to refer to principles or systems that
minimize how things change.

The principle of smoothest path expresses a temporally local restriction on
motion, the restriction that some quantity change as little as possible at each
instant. Truesdell (1984d) presents the illustrations reproduced in Figure 7.2 to
illustrate the principle. This illustration depicts a traveling mass that first meets
an obstructing surface and then continues in a motion that conserves as much
of its former momentum as possible—in these cases, with no change of energy,
as the motion is continuous, even if its derivatives are not. Truesdell notes that
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Fig. 7.2. A body in downward motion hits a slope. The downward motion follows path
(A), not path (B), which has the same point of discontinuity but changes the downward
momentum more than necessary.

the motion of the object preserves as much of its downward component as
possible.

As applied in mechanical settings, the principle of smoothest path may econ-
omize changes of position, mass, momentum, or energy. Schoolbook mechan-
ics makes a point of how position and velocity change smoothly even though
acceleration may change discontinuously through impulse. Truesdell points
out that energy, which often depends on position and velocity, forms a more
general candidate, with maximal conservation of energy in some cases entail-
ing maximal conservation of position and velocity. For a still more general
conception, one can consider economizing of the quantity called action, which
provides the foundations of variational approaches to physics. I examine these
in Section 7.5.

7.4.2 Why conservative systems?

The utility of physical invariance principles, the strongest form of conserva-
tion principles, requires little explanation, as invariance principles allow one
to avoid calculation entirely in predicting the behavior of some systems.

Apart from least action principles, which I treat separately in the following
section, the utility of more general conservation principles is less well known.
Mechanics provides some examples of the utility of conservation principles;
psychology and other fields provide even more.

Truesdell and Toupin (1960) point out that although the standard principles
of mechanics do not suffice to determine the motion of a buckling column,
adding a principle of minimizing the elastic energy of the buckled column
does determines the motion. Similar energy-minimization principles appear in
statistical mechanics, and in real and simulated annealing.
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The notion of conservation of belief or truth forms the basis of numer-
ous theories in psychology and artificial intelligence, especially the theories
of belief revision and counterfactuals. Prominent theories of belief revision
(Doyle 1979, 1983e; Gärdenfors & Makinson 1988) provide formal versions of
Quine’s “maxim of minimal mutilation” (Quine & Ullian 1978), in which one
accommodates new beliefs by making the minimal changes required in current
beliefs. Corresponding theories of the meaning of counterfactual statements
(Rescher 1964; Lewis 1973; Stalnaker 1984) rest on related ideas by saying a
counterfactual is true just in case the consequent is true in those worlds making
the antecedent true that are the most similar to, or are the least different from,
the actual world.

7.4.3 Are conservation principles true?

We face two difficulties in assessing the truth of conservation principles.
The first difficulty concerns the nature of conservation principles. As stated

herein, conservatism might apply to different mechanical attributes or quali-
ties. One cannot say the general idea is true or false, only whether certain me-
chanical quantities are conserved or not. Experience in physics suggests that
one varies what one thinks of as conserved to suit the system under analysis.
In classical mechanics, one usually assumes that closed systems have invariant
measures of total mass, but that assumption requires modification in cases of
relativistic motion, atomic disintegration, and when one considers the mass of
the entire known universe, which, according to general relativity, cannot be as-
signed a definite quantity. Similar ambiguity afflicts assumptions of invariant
energy, which one assumes conserved in classical terrestrial settings of kinetic
and “potential” energy, but must formulate more carefully in relativistic and
quantum settings.

Rather than discuss the truth of conservatism in general, let us focus our
attention in the following paragraphs on the nature and truth of conservatism
in special cases.

The second difficulty in assessing the truth of conservation principles con-
cerns metaphysics. The very statement of conservation principles refers to
motion as smooth or as conservative as possible. The truth of such claims
thus depends on how narrowly or broadly we conceive of the range of possi-
ble motions. Certainly possible must imply “possible according to the other
laws of mechanics,” but this implicit dependence means that the truth of con-
servation principles can change as we add, abandon, or emend other axioms of
mechanics.

We return to the metaphysics of conservatism shortly.
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Beyond these concerns, the truth of conservation principles might also in-
teract with questions about determinism. In particular, conservation principles
might be probabilistic, requiring that larger changes be less likely than smaller
ones even when both are possible. Strict conservatism, which forbids nonmin-
imal changes, then corresponds a probability distribution in which nonminimal
changes have zero probability.

7.4.4 Formalizing conservation principles

Formalizing the conservative portion of the principle of smoothest path re-
quires an order for comparing the magnitude of changes at discontinuities.

Although the term smoothest path implicitly indicates smoothness of spatial
position and its derivatives, a general treatment of conservation principles re-
quires treatment of histories of full states, not just histories of spatial motion.
The relevant discontinuities are those of full histories, not just the spatial com-
ponent, so that, as in Figure 7.2, we can treat the discontinuity of momentum
even though position varies continuously.

By Axiom C1, one can represent changes of value or state transitions at each
point of discontinuity by elements of T(Σ), the tangent space of the space of
mechanical states Σ.

7.4.4.1 Ordering changes

We start by considering a binary relation � over T(Σ) for comparing state
transitions, and read the comparison (σ1, σ2) � (σ3, σ4) as stating that the
change from σ3 to σ4 is at least as large as the change from σ1 to σ2. We
assume that the comparison relation constitutes a (partial) preorder over all
possible transitions, that is, a reflexive and transitive relation.

Axiom C2 (σ1, σ2) � (σ1, σ2).

Axiom C3 If (σ1, σ2) � (σ3, σ4) � (σ5, σ6), then (σ1, σ2) � (σ5, σ6).

We write ≺ to mean the strict portion of the relation �.
We also require that null changes (points of continuity) rank as small as any

other transition.

Axiom C4 (σ, σ) � (σ1, σ2).

These axioms do not restrict the choices of measures of the closeness of states
in any substantive way, since the weakest comparison relation in which every
state is equally close to every other is one possibility. Under this weakest
comparison relation, every change is minimal and hence conservative.
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In fact, we normally will want to compare only alternative transitions start-
ing from the same state, that is, comparisons of the form

(σ, σ1) � (σ, σ2). (7.5)

This usage means that the transition-comparison relation induces a state-
dependent ordering of states. We use the symbol �σ to denote the order asso-
ciated with state σ, and define this order by

σ1 �σ σ2 iff (σ, σ1) � (σ, σ2). (7.6)

A formally similar comparison notion appears in logical treatments of coun-
terfactuals, where the measure of size of change is called a comparative simi-
larity relation (see Lewis 1973). The notion of comparative similarity relation
has close connections with notions of metrics. Clearly, a metric on the tran-
sition space generates a comparative similarity relation, and one might think
of such relations as deriving from metriclike functions that take values in par-
tially ordered spaces instead of the reals. Schlechta and Makinson (1994) have
shown that one can find a true metric generating the comparative similarity
relation (or at least equivalent to it with regard to counterfactual conclusions)
when one places certain conditions on the relation. One can also consider vari-
ations on the simple comparative similarity notion based on concepts akin to
metrics, such as pseudometrics, or on concepts from topology, such as neigh-
borhood systems and pseudotopologies.

7.4.4.2 Conservative histories

With a transition comparison relation as just described, we thus can introduce
a nearest-state function ν : Σ × P(Σ) → P(Σ) defined so that for each state
σ ∈ Σ and finite set of states S ⊆ Σ, the set ν(σ, S) contains a state σ′ ∈ S just
in case for each σ′′ ∈ S we have (σ, σ′) ≺ (σ, σ′′) whenever (σ, σ′′) ≺ (σ, σ′).
This definition works for finite S, but can fail for infinite S without further
assumptions about limits. We thus base the notion of conservative history on
an explicitly topological construction.

We use the comparison relation to define conservative histories as follows.
Consider a history h and a nondeterministic motion H , both over a temporal
interval I = I(h) = I(H). Axiom C1 guarantees that h and each history
in H has forward and backward limits at each instant in I . We say that h is
conservative with respect to H just in case for each path h′ ∈ H and instant
t0 ∈ I(H), if h(t) = h′(t) for each t < t0, then

lim
t↓t0

h′(t) �≺σ lim
t↓t0

h(t), (7.7)
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where

σ = lim
t↑t0

h(t) = lim
t↑t0

h′(t). (7.8)

If H ⊆ H ′, we say that the nondeterministic motion H is conservative with
respect to H ′ just in case each history h ∈ H is conservative with respect to
H ′. Clearly, if h is conservative with respect to H , then it is also conservative
with respect to any H ′ ⊆ H . Finally, we say that H is conservative iff H is
conservative with respect to itself.

The notion of conservative history just defined captures the obvious sense
of forward conservatism. I do not treat here the corresponding notion of con-
servatism backward in time.

Note also that this definition of conservative motion subsumes the continuity-
maximizing portion of the smoothest path principle, because if there is a con-
tinuous path, it will have the same forward and reverse limits at each point, and
so its null transition at each point will make the continuous path be the only
conservative one.

The notion of conservative history depends strongly on the reference class
of histories. In particular, each history h is conservative with respect to the
singleton history {h}. Thus if only one history is mechanically possible, the
jumps it contains are the jumps that are necessary. To state the conservatism or
smoothest path principle, we thus need to identify the reference class, which
for us will be the mechanically possible motions.

Axiom C5 In every fixed framing, the motion of a mechanical system, whether
deterministic or nondeterministic, is conservative with respect to the set of all
mechanical processes of the system.

This axiom has a different character than the previous ones, in that it repre-
sents a “closure” axiom applying to the results of all the previous axioms, as
captured in the notion of mechanical process defined earlier.

We do not need to assume frame indifference of the conservatism compari-
son relation because Axiom C5 only applies it within individual framings, not
across framings.

7.4.4.3 Energetic conservatism

To move beyond purely formal conservation principles, we must consider con-
servation of different physical quantities. We begin by taking Truesdell’s sug-
gestion to apply the principle of smoothest path to the energy of a system.

The preceding section has stated no general laws about the total energyK+
E of the body other than equality (6.72) between the total change in energy
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K̇ + Ė and the combined power and heating P +Q in every inertial frame of
reference. For the extreme body, U , there is no external system and hence no
power, and as a frame-indifferent quantity heating cannot contribute to kinetic
energy, so the relation reduces to Ė(U) = Q(U ,O); that is, the change of total
energy is equal to the heating due to the null body. Applying Axiom E7 to the
bodies U and O = O  O yields Q(U ,O) = 0E, and hence Ė(U) = 0E; that
is, total energy is constant.

The invariance of total energy forms the motivation for Hamiltonian for-
mulations of mechanics, which express invariance of energy implicitly. In
the Hamiltonian approach, one expresses the total energy of the system as an
energy-valued functionH of the instantaneous states of the atomic bodies, and
takes as an axiom that the global motion must occur on a level set ofH , that is,
that the total energy is constant throughout the motion. Time-varying Hamil-
tonian functions are also employed when one considers nonisolated great sys-
tems instead of global motions. In the time-varying case, Hamiltonians are
functionals of partial histories rather than functions of atomic states.

In the case of discontinuous and discrete systems, however, the simple as-
sumption of invariant energy is inadequate. Applying the principle of smoothest
path to energy, we assume that at discontinuities, the change of total energy is
minimized. Phrased generally, this assumption subsumes the usual case, since
at points of continuity the zero change of energy is as small as possible.

To make this notion precise, we need a preordering of the sizes of changes of
energy that ranks the null changes (diagonal pairs) at bottom, that is, a relation
�e on E2 ×E2 satisfying conditions on pairs of energy values like those stated
for mechanical states in Axioms C2, C3, and C4. Pure energetic conservatism
then consists of defining the relation � on mechanical states so that σ � σ′

just in case E(σ) �e E(σ′).
In traditional mechanics, the obvious preorder on energy pairs compares

the absolute value of energy differences, that is, (E1, E2) � (E3, E4) iff
|E1 − E2| ≤ |E3 − E4|. For energies taking values in Zn

2 , we might de-
fine (E1, E2) � (E3, E4) to hold just in case E1 − E2 ⊆ E3 − E4, or just
in case dE(E1 − E2) ≤ dE(E3 − E4), or by using other measures of these
difference sets.

Quantum mechanics suggests considering several generalizations of the no-
tion of strict energy conservatism.

The first generalization is to probabilistic energetic conservatism, which
makes the probabilities of a change a function of the size of the change in
energy. In some systems, the probability of a transition in quantum mechanics
declines with the increase in energy of the transition, so that the most probable
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transitions are the ones involving the least change of energy. Not all transition
distributions have this character, however.

Probabilistic conservatism certainly plays a role in characterizing some no-
tions of stochastic search, in which the probability of a transition is related to
the negative exponential of an energy difference.

Another variation is that of level-bound restrictions, in which motions need
not keep the same energy level, but must stay within a fixed range of energies.
A related variation is a bounded-change restriction, in which the changes of
energy at discontinuities are dominated by a fixed maximum value. And of
course, one may consider a probabilistic version of each of these, in which
the probability of transition is a function of the excessiveness of the energy
change. These notions all relate to the stability of the system.

As in quantum mechanics, we say that the spectrum of a system is the set of
possible changes of energy levels at discontinuities. Depending on the system,
the spectrum may be continuous or discrete. The level-bound and bounded-
change restrictions amount to restrictions on the size of the spectrum. In con-
trast, a purely conservative system may have an unbounded spectrum, for min-
imal changes may be large in absolute magnitude. As energy changes cor-
respond to energy inputs or outputs of the system, it would be interesting to
relate the spectrum of a computational system to its communication or input–
output behavior. These inputs and outputs amount to the changes in the system
observable by an outsider.

7.5 Economy

Although traditional physics has not made the principle of smoothest path a
formal axiom, physical formalism makes heavy use of concepts connected
with the principle of least action, a more familiar principle that specializes
and strengthens the principle of smoothest path.

7.5.1 What is economy of action?

The principle of least action specializes the notion of smoothest path principle
by focusing attention on a quantity, action, which standard treatments take to
have dimensions

(action) = (energy)(time)

= (mass)(length)2(time)−1

= (force)(length)(time)

= (length)(momentum)

= (mass)(length)(velocity).
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The action quantity represents a path integral over the motion in question of
a function of mechanical properties of the system. This function is typically
called the Lagrangian (function) of the system. As the dimensional equations
indicate, action normally melds notions of mass, position, velocity, momen-
tum, and energy. One can thus view action as a proxy for all these quantities,
and typically can choose action functions to reflect desired conditions on the
smoothness of any of these other quantities.

The principle of least action strengthens the principle of smoothest path by
moving from a local requirement to a global requirement. Instead of simply re-
quiring that change be as smooth as possible at each instant, the strict principle
of least action requires that the motion be such as to yield an action value rep-
resenting a minimum value over all possible paths. Taking a minimum value
means that the variation or derivative of the action with respect to variations
in the path is zero. The normal principle of least action used in mathematical
physics diverges from the strict principle by using vanishing variation of the
action as the indicator of true paths, so dropping the requirement that the ac-
tion take only a minimum value on that path. In the normal usage, therefore,
on true paths the action might take a value representing maxima or inflection
points as well as minima.

One easily sees that global least action implies both least action at disconti-
nuities and a smoothest action principle at these points, for global least action
amounts to requiring that the motion minimize the magnitude of change in
action at the point of discontinuity relative to other possible motions. The
converse implication, however, does not hold; local smoothest path does not
imply global smoothest path, in that minimization of changes at each instant of
discontinuity does not entail minimization of the net change over a multistep
trajectory.

The principle of least action underlies the widely used Lagrangian and
Hamiltonian formalisms. Lagrange derived the Euler–Lagrange equations as
one consequence of setting the variation of the integral of the Lagrangian equal
to zero; Euler derived them earlier from other assumptions. One then defines
the Hamiltonian function from special cases of the Lagrangian function, typi-
cally assuming the Lagrangian function to have the form

L = K − U (7.9)

for some potential function U , in which case the Hamiltonian function has the
form

H = K + U (7.10)

so that

H = 2K − L. (7.11)
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More generally, one obtains Hamiltonian functions from Lagrangian functions
by means of Legendre transformations.

The least action principle, applied to such Lagrangian functions, implies
the energy-minimizing principle of smoothest path. Since the minimization
holds at discontinuities, the value of K is the same at the discontinuity, so
minimizing L means minimizing ∆H .

7.5.2 Why economize action?

One can divide motivations for the principle of least action into three cate-
gories: the philosophical, the physical, and the mathematical. Let us examine
these motivations in turn.

The oldest motivations for least action principles exhibit a philosophical
character, stemming from notions of divine and scientific aesthetics. The old-
est version, that of the economy or perfection of nature, traces back to Aristo-
tle. This idea regards nature as exhibiting a form of economy or optimality on
account of a divine abhorrence of waste, disorder, and superfluous motion in
creating the world; surely an odd expectation from a culture organized around
the chaotic Greek pantheon, but more in keeping with the monotheisms that re-
placed pagan pantheons around the Mediterranean. Leibniz made such notions
an important portion of his philosophy, in which the actual world represents
the best of all possible worlds, and in which economy represents one aspect of
goodness and waste one aspect of badness.

Physical motivations for least action principles took strength from Fermat’s
discovery of the principle of least time in optics, namely that light takes a
path that minimizes the time needed for travel between its source and destina-
tion. This experimentally demonstrable principle owed nothing to philosophy.
Though it covers a very narrow range of phenomena compared with the more
general philosophical notion, it bore within it the seeds of modern relativity
theory, in which light paths explicitly constitute the shortest possible paths,
namely those of zero length in the Lorentz metric on the four-dimensional
space-time manifold. Maupertuis drew on Fermat’s discovery and the philo-
sophical tradition to propose that motions follow paths that minimize an inte-
gral of the motion, which Hamilton later formalized in his principle of least
action. Related notions appear in D’Alembert’s principle, which expresses the
balance principles of mechanics in terms of the invariance of work under infini-
tesimal perturbations of the actual motion. Later still, the motivations for least
action principles received additional strengthening by their utility in guiding
the discovery of laws of quantum mechanics.

The mathematical motivations for regarding nature as exhibiting economy or
optimality stem from the extreme fecundity and power of variational principles
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in computation. The first successes of these techniques, developed by the
Bernoullis and Euler in solving the famous brachistochrone problem and oth-
ers, antedated statements of least action principles. Variational methods re-
ceived widespread application in later years with discovery of the Euler–
Lagrange equations, and more application still with Hamilton’s discovery of
the Hamiltonian formulation of these principles.

The Lagrangian and Hamiltonian formalizations of mechanical systems of-
fer four interrelated potential benefits. The first potential benefit of the La-
grangian and Hamiltonian formalism is simplifying the equations of motion
by expressing these equations in terms of the most natural variables. Although
one can try to simplify any equation by rerepresenting quantities, the form
of the Euler–Lagrange equations offer a nice target for choosing such sim-
plifications. Mathematical physics thus includes a repertoire of “canonical
transformations” that constitute changes of variables that leave invariant the
Euler–Lagrange and Hamiltonian equational forms.

The second potential benefit is that the Lagrangian and Hamiltonian for-
malisms simplify solutions by melding problem-specific constraints and laws
into single expressions. This means that one need not first solve general equa-
tions and then throw out those violating specific constraints, but can find the
target solutions directly. When combined with the first benefit, this second
potential benefit means one can choose coordinate systems that simplify the
combined requirements from general laws and problem-specific constraints.

The third potential benefit is that the Lagrangian and especially the Hamil-
tonian formalisms help identify invariant quantities, which themselves greatly
aid the analysis of systems. Nöther proved a general result that the symme-
try of a physical system under certain transformations implies the existence of
a conserved quantity. In the Hamiltonian context, symmetries of the Hamil-
tonian function directly indicate conserved quantities.

A fourth potential benefit is that the Lagrangian and Hamiltonian formalisms
allow one to economize on solution effort by using the same abstract form of
equations for almost all physical systems. In the setting of automated compu-
tation, this permits one to immediately reapply numerical or analytical solution
techniques developed for the solution of one system to the solution of others.

7.5.3 Is economy of action true?

In attempting to assess the truth of optimality claims, I distinguish between the
philosophical senses of goodness and economy and the mathematical senses
of vanishing variation, for these senses have very different answers.

I start with the mathematical sense. Assessing the truth of variational prin-
ciples of physical law is easier than assessing the truth of philosophical claims
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of goodness or economy because the mathematical formalization represents a
value-free formulation that dispenses with notions of goodness. Just as econo-
mists regard rational decisions as maximizing utility and statisticians regard
exactly the same rational decisions as minimizing loss, the mathematics of
variational or least action principles relies only on techniques that provide the
same answers independent of moral interpretations involving goodness or bad-
ness. Once I address the truth of mathematical optimality, we stand better
poised to tackle the more contentious philosophical claims.

7.5.3.1 Truth without consequences

Economy of action is true in a mathematical sense because all known physi-
cal theories indeed satisfy the principle of least action. This positive answer
means less than one might think because all possible physical theories satisfy
the principle of least action, even theories known to be false. This happens
because, as noted earlier in Section 3.3.3, the variational framework of the
Euler–Lagrange and Hamiltonian equations is physically vacuous. These for-
malisms say nothing at all about the physics of the system under consideration,
even though they provide the important formal and computational advantages
enumerated earlier. One gets just as much information about the world from
the Lagrangian and Hamiltonian frameworks as one does from Rubel’s (1981)
universal differential equation.

To be specific, let us consider Lagrangian mechanics, perhaps the most
widely used mathematical formulation of mechanical principles, one that leads
directly to the formulation of Hamilton’s equations. One misspeaks when one
talks of the Euler–Lagrange equations, for these equations serve only as a
schematic form for many different equations. The Euler–Lagrange equations
themselves, in terms of an abstract Lagrangian function, involve no axioms
of mechanical concepts, and indeed, involve no mechanical concepts at all.
Feynman, for example, characterized the variational approach well by carica-
ture, talking of a function U measuring the “unworldliness” of motions, cho-
sen so that U is zero only on “worldly” motions that might actually happen
according to the laws of mechanics, or according to whatever other theory one
considers.

One sees the physical vacuity of the Euler–Lagrange equations clearly in the
derivation of these equations. Sussman and Wisdom (2001) provide the clear-
est exposition of the classical approach. In summary, one starts by seeking a
functionU of paths that discriminates legal from illegal paths, as in Feynman’s
caricature. Reasoning about how the function must behave on subpaths, one
seeks a function involving an integral. Simple considerations show that one
cannot just look for this integral to vanish, for that entails that the integrand
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must vanish everywhere. One therefore follows established practice in looking
to minimize (or maximize) this integral, using philosophical or aesthetic prin-
ciples about the actual world’s being the best possible; Sussman and Wisdom
reason to much the same conclusion, looking for inflection points of the in-
tegral. One then derives the Euler–Lagrange equations relating the position
and velocity on the path by requiring the derivative of the integral to be zero.
Denoting the integrand function of paths by L, which one assumes to be a
function of triples representing positions, velocities, and times, one obtains the
equations

d

dt

∂L

∂ẋ
=
∂L

∂x
(7.12)

in the traditional but confusing notation (Sussman and Wisdom employ a much
clearer formulation). Nothing in this derivation expresses any known physical
law; everything proceeds purely from the functional form of the quantities
involved and the assumption of vanishing variation.

The equations of motion take an even simpler form when one moves from
the Lagrangian function to the Hamiltonian function, which in mathemati-
cal abstraction becomes motion on symplectic manifolds. Using a Legendre
transformation to transform generalized position and velocity coordinates to
generalized position and momentum coordinates, one arrives at Hamilton’s
equations:

dqi
dt

=
∂H

∂pi
(7.13)

dpi

dt
= −∂H

∂qi
. (7.14)

If the Euler–Lagrange equations say nothing about physics, why does physics
find them so useful? To see why, I elaborate on the reasons given earlier.

One first sees that the Lagrangian approach makes the laws of physics into
a parameter, in that to use the equations to analyze some system, one invents a
Lagrangian function L that encapsulates the laws of that system. For example,
the simple Lagrangian

L(x, ẋ, t) = 1
2mẋ

2 − V (t, x) (7.15)

expresses the Eulerian laws governing the motion of a particle of mass m and
position x moving in a potential field V . This parameterization of the system
laws proves very useful in computing behaviors, since it lets one incorporate
constraints specific to the system in question into the same formalism as ex-
presses the general laws. The particular form given here violates the require-
ment of frame indifference, since it involves a Lagrangian defined in terms
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of a specific coordinate system, but Sussman and Wisdom show how to sep-
arate out the coordinatization of space and paths that demonstrates the frame
indifference of the basic equations. In spite of this frame indifference, the
variational equations still violate the principle of reality, however, because if
one Lagrangian function characterizes a set of desired behaviors, an infinite
number do. No one has managed to find the distinct equivalence classes of
Lagrangian functions that might remedy this situation.

A formalism that applies to all physical theories has no physical content.
The Euler–Lagrange and Hamiltonian equations say no more about physics
than do English or Esperanto; all simply provide means for describing both
physical and nonphysical systems.

The good side of this silence on physics is applicability to other systems
of interest. Because the variational approach takes the laws of physics and
of the system under consideration as a parameter, and so says nothing about
mechanics or about any other part of physics, it therefore presumably applies
to analyzing psychology and economics as much as it does to physics. In-
deed, extant psychological applications include Lagrangian search techniques;
extant economic applications including Lagrangian optimization techniques
(see, for example, Cass & Shell 1976). Casting discrete systems of the form
considered here poses additional challenges to the variational formulation, but
Baez and Gilliam (Baez & Gilliam 1994; Gilliam 1996) have used techniques
from commutative algebra and synthetic differential geometry to adapt stan-
dard Lagrangian mechanics to abstract discrete state spaces and so provide a
discrete version of the Euler–Lagrange equations, complementing techniques
for making discrete-time versions of Lagrangian and Hamiltonian techniques
(Wendlandt & Marsden 1997; Guo & Wu 2003). They also analyze examples
involving particles in potential fields, derive constructions for symplectic man-
ifolds, and prove a discrete analog of Noether’s theorem relating symmetries
to conserved quantities.

Reconsider now the other potential benefit of the variational formalisms,
that of helping to identify invariant quantities. These come out quite nicely in
the Hamiltonian formalism, because the time rate of change of any function of
states is given by its Lie bracket with the Hamiltonian,

df

dt
= [f,H ], (7.16)

so that any invariant quantity or “constant of the motion” satisfies

[f,H ] = 0. (7.17)

In particular, since [H,H ] = 0, the total energyH is constant during motions.
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But pursuing the same reasoning just discussed about parameterizing the
laws of mechanics, we see that this potential benefit is something of an il-
lusion. The Hamiltonian function is a parameter of the system, and different
Hamiltonians represent different sets of invariants. Use of the Hamiltonian for-
malism constitutes an admission that we do not know the invariants of the sys-
tem. Picking the Hamiltonian means picking the full set of invariants, though
perhaps not knowing all these invariants at the time of choosing.

7.5.3.2 The simple truth

Truth of the variational formulation of physical laws, even if physically vacu-
ous, does nothing to decide the truth of Aristotelian and Leibnizian conceptions
of the economy or optimality of nature, for the variational formulation makes
no distinction between Leibnizian optimists who believe this is the best of all
possible worlds and Voltairean pessimists who posit divine malevolence that
ensures the worst possible outcomes. Mathematically, the mirroring relation-
ships of these interpretations make it easy to switch between these interpreta-
tions, much as a bipolar psychology switches between depressive (pessimistic)
and manic (optimistic) phases, or less dramatically but more commonly, as
nonmonotonic reasoners may switch between complementary assumptions.

Some students of nature might say no evidence exists to decide the truth
of physical economy. Others may take typical human tastes as evidence with
which to distinguish optimism and pessimism in variational principles. On the
basis of human tastes, the evidence clearly falls on the side of the optimal-
ity of nature. Indeed, conceptual beauty and simplicity constitute some of the
fundamental guiding principles of the esthetics of scientific theorizing. One
might adapt Dostoyevsky to express this aesthetic by saying that true theories
are beautiful in the same way, while false theories are each ugly in their own
way. The optimistic interpretation of nature provides the only metaphysical
account of natural law consonant with the metaphysical principles of science
itself. Others still may take human tastes in this regard to reflect divine char-
acteristics of order and economy and call on supposed evidence of divine self-
revelations to justify assuming the economy of nature. Finally, one can look
to specific laws of economy, such as Fermat’s law in optics, to justify the op-
timistic interpretation. Whichever body of evidence one takes, however, the
evidence falls clearly on the side of optimism, of taking motion to be as simple
as possible.

[T]here is no greatness where there is not simplicity, goodness, and truth.
(L. Tolstoy 1869, Pt. 14, Ch. 18)
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7.5.4 Economy of action as physical law

By bringing psychological notions of conservatism and rationality under the
umbrella of mechanical formalism, the mechanics presented here provides ad-
ditional motivation for regarding some variational principles as true physical
laws on a par with Fermat’s law of optics rather than mere mathematical de-
vices. This motivation becomes stronger as one shifts attention from uniformly
smooth and reversible Hamiltonian motion to discrete, discontinuous, and in-
deterministic motions of the sorts considered here. In the broader setting, least
action principles provide needed constraints on motion as well as mathematical
elegance in the formulation.

The Baez–Gilliam (1994) discrete formulation of Euler–Lagrange equations
provides a starting point for seeking to apply traditional variational forms to
discrete systems, but the overt discreteness of this formalism hides a more
difficult problem for applying Lagrangian and Hamiltonian techniques to psy-
chological systems. Such applications diverge from traditional ones both in
their discreteness and in their openness.

Put another way, traditional Lagrangian and Hamiltonian formalisms apply
to closed systems. Casting a discrete psychological force in Lagrangian terms
requires formulating sensible laws by which psychological forces arise. The
desired theory of psychology distinguishes internal from external forces, and
seeks to take the external or exogenous forces as givens, rather than part of
laws of the system. A Lagrangian formulation must somehow express interac-
tions of the agent with its environment in terms of a Lagrangian function, so
without some specific conception of the environment, one can only postulate
the existence of a suitable Lagrangian function, not describe it. Since charac-
terizing a realistic environment for the psychological systems of interest would
seem to involve many complexities, I do not pursue that avenue here.

Despite the likely inapplicability of simple Hamiltonian models to psycho-
logical systems, in which conservatism is not the perfect energetic conserva-
tion of Hamiltonian motion, exploration of these models in the discrete settings
considered here offers an interesting path for future work. For example, can
one derive a result relating conserved quantities to smoothest path principles
corresponding to the results relating invariant quantities to symmetries of the
Hamiltonian? Since the smoothest path principle only seeks to approximate
conservation of quantities, one cannot expect to find exactly conserved quan-
tities in all cases. Trivially, one may say that the state is the approximately
conserved quantity, but when can one determine that some quantity making up
the state is in fact the object of approximate conservation?

The present formalization of conservative systems opens additional possi-
bilities for exploration. What conditions on conservatism relations and action
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quantities make local smoothness consistent with global smoothness? Surely
these conditions have more to do with the structure of the action quantity than
with the conservatism relation, since even standard metrics on Euclidean space
do nothing to require that the endpoints of curves are separated more than the
intermediate points are.

7.6 Reversibility

Some people today view temporal reversibility as a fundamental characteristic
of physical law. The following paragraphs examine the role of reversibility in
mechanics.

7.6.1 What is reversibility?

Reversibility consists of a temporal symmetry in equations and their solutions
that permits one to continue local solutions either forward or backward in time.
This means it permits solution of the equations even when one reverses the di-
rection of time and reverses all velocities. Reversibility is thus a much stronger
notion than determinism, for it entails that the future determines the past, and
the past determines the future.

7.6.2 Why reversibility?

Modern theories of reversibility stem from a reduction of the behavior of the
world to the behavior of elementary particles of atomic and subatomic physics
and from the theory of relativity. The local laws discovered so far governing
such particles exhibit this temporal symmetry, and the theory of relativity ex-
plicitly considers observers moving backward in time relative to the ordinary
sense of time to require the invariance of events with respect to such time-
inverted observers.

Reversibility is also an essential characteristic of Hamiltonian dynamics,
which forms the favored mathematical formulation of many physical theories,
as it directly embodies conservation of energy in its simplest forms. Even when
some particle acts irreversibly in some circumstances, the focus on Hamil-
tonian characterizations of behavior helps overlook these irreversible
behaviors.

7.6.3 Is reversibility true?

The plausibility of reversibility varies as one looks at different aspects of me-
chanical theory and experience. In the remainder of this section I consider
reversibility in both everyday experience and in the laws of physics.



212 The character of mechanical law

7.6.3.1 Theoretical reversibility

The canonical reversible physical situations open in principle to everyday ob-
servation consist of planetary motions, since a system consisting of two rigid
masses orbiting each other under the influence of mutual gravitation can be
stable across all time and reversible as well. In fact, Truesdell points out that
this system constitutes the primary example of a perpetual motion machine.
Unlike idealized situations of perfectly elastic billiard balls on a pool table,
this example could conceivably exist for a long time if suitably distanced from
the rest of the matter in the universe.

Engineering attempts to harness reversibility have focused on the energy-
conservation characteristic of reversible astronomical systems to use reversibil-
ity in the service of energy efficiency. Some have explored tangible versions of
such reversible systems by designing computer logic gates that act reversibly at
the computational level and come close to acting reversibly at the level of phys-
ical energy (Fredkin & Toffoli 1982; Toffoli & Margolus 1987, 1990; Frank
1999; Frank, Knight, & Margolus 1998).

7.6.3.2 Theoretical irreversibility

The truth of reversibility depends in part on the reducibility of all behavior to
the behavior of particles that exhibit reversible behavior, since if the behav-
ior of the entire world consists solely of motions of particles with behavior
reversible at every instant of time, then clearly the world as a whole exhibits
reversibility.

The macroscopic laws of thermomechanics impose a nonreversible condi-
tion on the evolution of systems, namely that the rate of entropy production be
nonnegative. This condition is not reversible, because reversing the sense of
time would yield histories in which the rate of entropy production is nonposi-
tive. This means that the only reversible systems are those, like the planetary
systems mentioned earlier, that have constant entropy across all time.

7.6.3.3 Phenomenological irreversibility

As everyone trying to clean badly stained garments knows, reversibility goes
contrary to most everyday experience, in which one typically cannot run sys-
tems backward, even though they exhibit conservative motion. Even classi-
cal mechanics includes simple situations exhibiting such irreversibility. Fig-
ure 7.3, adapted from Truesdell (1984d), illustrates a body striking an inclined
plane (A), where the reversed final motion (B) meets no obstruction and so dif-
fers from the forward motion. Reversibility in this case would require a passive
plane to suddenly generate a subhorizontally directed force on the body at the
point of departure.
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Fig. 7.3. A body in sideways motion hits an incline. The sideways motion follows path
(A), though reversing the motion subsequent to deflection by the incline yields path (B),
which diverges from the forward motion.

Conservative psychological systems also exhibit such irreversibility. Con-
sider, for example, the Nixon diamond, a famous example from the study of
nonmonotonic logic (McDermott & Doyle 1980). This involves two plausible
default rules and one or more awkward facts:

• Quakers are typically pacifists;

• Republicans are typically not pacifists;

• Nixon is Quaker and Republican.

Phrasing these rules as nonmonotonic reasons or default rules of the kind dis-
cussed in Section 2.1.3 yields the following.

Quaker(Nixon) \\ ¬pacifist(Nixon) ‖− pacifist(Nixon) (7.18)

Republican(Nixon) \\ pacifist(Nixon) ‖− ¬pacifist(Nixon). (7.19)

The first rule allows one to conclude that Nixon is a pacifist when one believes
he is Quaker and does not believe he is not a pacifist. The second allows one
to conclude he is not a pacifist if one believes he is a Republican and does not
believe him to be a pacifist.

Suppose further that the agent starts with a set of beliefs containing the be-
liefs Quaker(Nixon) and Republican(Nixon), and is told the two rules given
here sequentially. Suppose the agent learns (7.18) first. With just one of the
rules, there is no ambiguity about assumptions, and (7.18) produces the con-
clusion pacifist(Nixon) because the agent does not believe ¬pacifist(Nixon).

When the agent next learns (7.19), the two rules and original beliefs now
support two coherent sets of conclusions supported by these beliefs and rules,
one making Nixon a pacifist, and one making him a nonpacifist. However,
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addition of the second rule produces no conclusion because the agent already
holds its defeating condition as an assumption produced by the first rule.

If one then adds the belief ¬pacifist(Nixon), the stipulated beliefs and rules
have only one coherent set of conclusions, one making Nixon out to be non-
pacifist, so the agent must abandon the assumption pacifist(Nixon) for the stip-
ulated belief ¬pacifist(Nixon). If one then takes back this stipulation, the agent
is left again with two coherent sets of conclusions. However, the agent does not
revert to its original assumption because retaining the belief ¬pacifist(Nixon)
as an assumption from the second rule represents the minimal change from its
preceding set of beliefs. Thus conservatism does not always produce reversible
state changes.

7.6.3.4 Punctuated reversibility

The view that physical materials act reversibly stretches the scientific theories
somewhat, since almost all reversible theories of particulate behavior focus
on the intervals between collisions and other events of discontinuity. The re-
versibility of the laws applies to the intervals between these collisions, but not
necessarily to the motions across these events. The physical theories typically
make separate provision for characterizing motion across discontinuities.

Indeed, we see a different picture if we consider the axiomatic form of most
physical theories. As seen earlier, the axioms of mechanics do not imply re-
versibility at all, though reversible systems can certainly satisfy them. The
standard theory of thermodynamics does not provide for complete reversibility
of motion except in special systems like the isolated planetary system men-
tioned previously. Quantum mechanics also possesses no axiom of reversibil-
ity. Indeed, standard theories of quantum mechanics involve the fundamentally
irreversible notion of measurement, discontinuous events at which irreversible
state changes take place. In between these events, quantum mechanics pos-
tulates Hamiltonian, and therefore reversible, motion, though no satisfactory
account exists of when and where measurements occur. The special theory of
relativity postulates temporal reversibility of behavior, but the general theory
of relativity contains the notion of black holes that are not reversible. One rea-
sonably wonders which theory involves the better approximation to the truth:
special relativity with its temporal reversibility, or all the other major physical
theories, with their patent irreversibility.

The focus on smooth intervals of motion is tied to the favored Hamiltonian
formulations of laws. Hamiltonian motion is automatically reversible. The
practice of theoretical computation in many areas of physical thought sup-
presses recognition of possible irreversibility by assuming a Hamiltonian for-
mulation. Recall that our earlier discussion of Lagrangian and Hamiltonian
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formulations pointed out that these formulations essentially pack all laws of
the system into the Lagrangian or Hamiltonian function, including both gen-
eral laws and specific characteristics of the particular materials of the system
in question. This approach to formalization of physical theories thus starts by
assuming reversibility and prevents one from even expressing rules guiding ir-
reversible behaviors. Much physical theorizing rests content with examining
behavior between discontinuities; areas like continuum mechanics, for which
the irreversibility of the phenomena of interest make Hamiltonian formulations
either impossible or useless, form an exception.

Reversibility per se does not form a law of mechanics or of any of physical
theory save relativity. There is no guarantee that any new laws discovered in
the future will exhibit reversibility.

7.7 Locality

Noll’s general axioms for mechanics include a requirement of locality stating
that the forces or stresses on a body be determined by conditions obtaining
in local neighborhood of the body. The following paragraphs examine the
suitability of such axioms for both current physics and the broader mechanics
developed here.

7.7.1 What is locality?

Noll’s axiom of determinism requires the past to determine the future of a sys-
tem. In making this stipulation, it permits all portions of the past to influence
behavior at all portions of the future. In particular, it allows the immediate past
of widely separated bodies to influence their behavior. This type of influence
gained the name action at a distance in earlier years and became the subject
of controversy for some time. The theory of relativity provided strong motiva-
tions for avoiding such distant influences, on the grounds that such influences
would then represent transmission of something faster than the speed of light.
Since relativity theory has proven so accurate in essentially every experimental
test, the incompatibility of relativity theory with action at a distance provided
strong motivation for requiring that all influences on behavior act locally. The
requirement of locality thus extends the requirement of determinism by requir-
ing that behaviors at some point of space be determined by each neighborhood
(arbitrarily small) of the point. In effect, this makes local motions independent
of motions at distant locations.

The usual approach to ensuring locality, now taken almost without comment,
replaces supposed distant influences by fields extending across space, such that
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the field values at a point determine the force or stress at the point. Relativistic
constraints then appear as restrictions on the speed at which changes in these
fields may propagate across space.

Noll’s axiom of locality phrases this requirement by saying that the local
neighborhood determines the force or stress acting at the point.

Axiom F24 The history of events to some instant locally determines the re-
sponse at that instant; that is, if two histories h and h′ involve exactly the
same bodies and materials and agree at all times up to some instant t and in
some neighborhood of an event e ∈ t, then both assign the same response
θ(h) = θ(h′) at that event.

This phrasing represents a specialization of the general notion of locality in
two ways.

First of all, Noll’s axiom expresses determinism of behavior indirectly in
terms of force or stress, rather than directly stating that the motion at the point
is the same for all global behaviors that agree in a neighborhood of the point.
This indirect specification does not matter too much, however, because contin-
uum mechanics, through the presupposition of determinism and Euler’s bal-
ance laws, provides an exact correspondence between local stress histories and
local motions.

Second, Noll’s axiom expresses locality only under the supposition of deter-
ministic motion. Locality itself, however, represents a requirement applicable
to indeterministic motion as well as deterministic motion. A more appropriate
phrasing would require that the set of possible motions of a point be deter-
mined by neighborhoods of the point. Expressed indirectly in terms of force or
stress, a indeterministic axiom of locality would require that the set of possible
forces or stresses acting at the point be determined by neighborhoods of the
point.

7.7.2 Why locality?

As mentioned earlier, the strong evidence for the theory of relativity moti-
vates modern formulations of locality restrictions. Theorists sought locality
long before the advent of Einsteinian relativity, however, since the notion of
locality is central to the primary method of physical analysis, that of isolat-
ing the system. This isolation seeks to convert the experimental apparatus into
its own closed universe of study in which no outside factors work in the phe-
nomena under study. Such isolation is important in moving beyond the un-
controlled experience with which physical theory starts to obtain instead con-
trollable experiments with which to manufacture structured variations on the
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initial observations, variations that provide information aimed at testing tenta-
tive theories about the behavior of the system. This scientific methodology has
worked and continues to work well. Conceptual analysis of experience gained
in this way has yielded many of the familiar laws of physics, and many less
familiar bits of knowledge as well.

If locality aids in analyzing the properties of physical systems, it also aids in
predicting their behavior. Locality means one can formulate behavioral laws
in terms of differential equations or automata, as in the familiar equations of
mathematical physics and in recent treatments of cellular automata (Toffoli
& Margolus 1987). Instead of requiring knowledge about the global state to
compute the next bit of behavior, one needs only the derivatives of the local
motion.

More generally, human understanding ordinarily relies on analysis, on sep-
arating things into distinct objects of study. Nonlocality proves the bane of
analysis, for it prevents the student of nature from understanding things by
themselves.

7.7.3 Is locality true?

A totally local physics gladdens the heart of the student of nature, for it gives
hope that in principle one might understand every bit of the universe by closer
inspection, more careful isolation, and more effective calculation. To the de-
light of many, broad elements of physical theory take the form of local theo-
ries, including general relativity, electrodynamics, continuum mechanics, and
many theories of special materials. For most practical purposes, the physics
of interest is local, permitting exploitation of this locality in many branches of
engineering.

7.7.3.1 Locality from local methodology

One should not take comfort from the prevalence of local physical laws, since
the very methodology used to identify these laws, that of isolating the system,
works best at identifying local laws, simply by the nature of the methodology
itself. Isolating the system typically means making experiments that occur in
small physical volumes over short periods of time. Such experiments, like nu-
merical differentiation of a function at a point, tell us what happens locally
in that region of space and time, but require separate verification that similar
things happen at other places and in larger regions. Verification of behavior in
other regions consists of repeating the experiment, perhaps varying the exper-
imental parameters, perhaps varying the experimenter. Many of the accepted
local laws have satisfied this test. Verification of the theory in larger volumes



218 The character of mechanical law

is more difficult, principally since we have no way of constructing experimen-
tal regions much larger than our planet or solar system, much less ways of
isolating such experimental regions from other influences.

In consequence, most physical laws extrapolate local conditions near the
surface of our planet to conclusions about the universe as a whole. Such
parochial observations run a theoretical risk of missing out on characteristics
of the universe in other regions. Consider the possibility of a law that forbade
any particles or radiation from entering a sphere of space a meter in diameter
located somewhere between our galaxy and M31 in Andromeda. Such a law
would be peculiar to say the least, but it need not conflict with any known phys-
ical principles, even with frame indifference as long as the exclusionary region
was determined by some topological or metric characteristic of the universe
rather than by some coordinate-based definition. For that matter, consider the
possibility of a great many such forbidden regions of space between the galax-
ies, or even between stars within galaxies. We have no reason to expect the
existence of such regions or any law that would require them, but as long as
their density was low, we also would be very unlikely to obtain evidence that
they exist without actually running into them. As this concocted example sug-
gests, from a logical point of view we have no evidence to suggest that there
are not additional restrictions on the laws that apply to regions of space or time
unobservable by us.

Most students of nature might scoff at the very idea of such nonuniformity of
physical laws, for if we have no direct evidence to rule out forbidden regions
or other nonuniformities, we also have no reason to expect them to exist in
the form just described. On the other hand, we do expect black holes to exist
on the basis of general relativity. Black holes constitute a different sort of
nonuniformity, as we do not expect (and have no reasons to expect) standard
physical laws to obtain inside black holes, whatever inside means for such
objects. Even in everyday experience, we observe great nonuniformities in the
world. It is perfectly reasonable to seek uniform underlying laws in spite of
the nonuniformity of appearance, but the rational student of the universe must
view postulates of uniformity more as fruitful and falsifiable hypotheses rather
than as unquestionable dogma asserted as common sense.

7.7.3.2 Formal locality

Now I do not mean to suggest that the laws of mechanics, general relativity, and
quantum mechanics (or laws very close to them) do not hold pretty universally
throughout physical space. I only wish to point out that this assumption of
universality is an extrapolation from limited and local evidence.
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Of course, one can always take any any set of nonuniform laws and give
them an artificially uniform appearance by explicitly making the context part
of the law. Just as in logic the deduction theorem justifies concluding that A
implies B from the provability of B given the assumption A, one transforms
a law in region R stating that conditions C hold to a law holding everywhere
that says that C holds if one is in R. Such “uniform” laws presumably violate
frame indifference if they refer to specific locations in space.

In another form, however, laws relativized to surroundings play an important
role in everyday mechanics, for laws of specific materials take such forms,
laws stating the stresses, electromagnetic, or gravitational fields existing within
materials of different sorts. Here the relativization refers to the environment of
the location in question rather than to specific locations, and so avoids violating
frame indifference. This sort of local law fits perfectly with our experience of
the nonuniformity of the world, and provides a welcome theoretical reflection
of the diversity we experience.

Laws of specific materials show we need not resort to concocted examples to
acknowledge the existence of laws holding at intermediate scales. The question
then is whether recognized “fundamental” laws fully determine all regularities
at intermediate levels, or put another way, whether one can reduce all laws at
intermediate levels to the fundamental laws operating in special circumstances.
Intellectual honesty requires one to always ask if observed regularities admit
reduction to other principles at other scales, but no principle of rationality or
honesty requires one to accept without evidence the common scientific dogma
of reductionism (discussed further in Chapter 16).

To ameliorate the risks posed by local observations, one can fall back on the
wide variety of experience provided by the large and rich universe. In mechan-
ics this means falling back on astronomical observations, and such observa-
tions have generally seemed to validate local mechanical laws on much larger
scales. Seeming counterexamples have, over time, generally been found to of-
fer some confirmation of the theoretical modifications represented by general
relativity and quantum mechanics.

7.7.3.3 Intimations of nonlocality

Not all of physical law takes local form. Some mechanical properties fail to
make sense, or may not be locally measurable. Examples extend from the
whole universe, for which the notion of total energy does not make sense,
to black holes, for which only mass and rotational momentum make sense,
to elementary particles, which suffer the standard Heisenberg uncertainty re-
lations in measuring position and momentum. Bell’s theorem in quantum
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mechanics indicates the impossibility of making nonrelativistic quantum the-
ory completely local. Partly in consequence, a completely satisfactory theory
of general relativistic quantum mechanics still awaits discovery.

Even the very conditions of statements of locality offer some degree of un-
certainty, since they refer to arbitrarily small neighborhoods. The theory of
electrons traditionally suffered problems with infinite self-energies, due to the
divergence of the field at small distances (Rohrlich 1965). Quantum electro-
dynamics swept some of these problems under the rug by means of renormal-
ization methods. These methods seem to work, and produce theoretical pre-
dictions in remarkable agreement with the finest experimental measurements,
but retain a degree of intellectual disreputability by their reliance on seemingly
arbitrary mathematical manipulations. Various theorists have sought to avoid
these difficulties by taking a different approach, in which one avoids the singu-
larities that occur at extremely small scales by understanding physics in terms
of elemental lengths, or, as in string theory, by ensuring that even the smallest
particle has a nontrivial width. Some speculative theories raise the possibility
that the observable physical universe represents the behavior of a vast cellular
automaton with cells at the Planck length of 10−35 meters. These fundamental
length theories thus offer their own sort of nonlocality by preventing inspec-
tion at smaller scales. Now it may be that locality at this scale suffices for
all theoretical and practical purposes, but no one has demonstrated that yet,
and in the context of mathematical limiting processes, even the Planck length
looms large. Sussman (1996) has observed that if physics were local down
to the Planck length, then one would have no way of telling what reality, if
any, exists at smaller scales, because each of the cells of space at such lengths
could be a universal computer, with all the flexibility that universal computa-
tion allows in exhibiting the desired behavior independent of the structure of
the world below this length.

7.7.4 Localizing locality

The status of locality seems even more dubious when we extend the scope of
mechanics beyond the traditional range of applications. For example, we might
interpret the nonlocalities that so complicate economics in terms of the non-
locality of equilibria of global or extended markets, though in practice these
markets rely on standard physical media in transmitting information, and so
may be viewed as relativistically limited fields, akin to electrodynamic fields.

More serious doubts arise when we broaden the notion of space to include
nonphysical dimensions. In such cases, the notion of spatial locality need not
respect the topology of ordinary three-dimensional space. The axiomatization
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of these generalized spaces in Chapter 5 employs the product topology, which
does not allow the nonphysical dimensions to disturb neighborhood relations in
physical space, but it might well be that a better notion of space for psychology
employs a different topology. Standard topologies on discrete sets provide only
the discrete or indiscrete topologies, in which the notion of locality provides
no useful restriction on dynamogenesis. The nontrivial discrete topologies of
Scott’s (1973) function theory might provide more useful alternatives here, as
might putatively nontopological notions such as tolerance relations.

The preceding examples give reason to doubt the necessity of locality in a
mechanics covering mental and physical systems. Accordingly, we also omit
locality as a general restriction on dynamogenesis. As with the axiom of de-
terminism, we instead look for specialized assumptions that require locality of
specific materials, specific systems, or specific conditions. In fact, some inter-
nal constraints on the structure of reasoned mental states exhibit a natural sort
of computational locality quite distinct from physical spatial locality (see also
Doyle 1983e, 1994).

We do not yet know all the reasonable forms of locality that might play
important roles in mechanical systems. We might find that locality constraints
vary with types of forces, so that only some types of forces are determined by
local states. The notion of reasoning locality just mentioned certainly has a
very different character than the ordinary notion of spatial locality.

The investigation of types of locality also calls for investigation of non-
Euclidean metric or locality relations on mental and physical space. While
general relativity already employs non-Euclidean metrics, we might consider
metrics that exploit additional mental dimensions to introduce “wormholes” in
physical space, points much closer in the enlarged space than in purely physical
space. The conservatism relations and metrics of Section 7.4, for example,
offer conceptions of locality in which nearness is not symmetric.
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Mechanical Minds
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Mental varieties

Understanding psychology and economics in mechanical terms requires look-
ing at specific concepts of psychology and economics from the mechanical
point of view. If we look to the literature, however, we find that the cognitive
sciences study a wide range of possible or hypothesized psychological orga-
nizations as explanations of human thought. For example, the ideally rational
agents of economics have one kind of mind, a kind very different from almost
all known human minds. But even among humans, individual minds have very
different characters, exhibiting different levels of intelligence at different tasks,
different temperaments, different degrees of adaptability, and so on. The well-
known Myers–Briggs test (Myers & Myers 1980), to give another example,
sorts minds into sixteen well-populated classes. These classes correspond to
recognizable and common types of personal character, types that give some
insight and enable reasonable, though not perfect, predictions of individual
behavior.

It does not take deep reflection to realize that if we are already on page 225
and just starting the mechanical examination of psychology and economics,
we cannot hope to examine all the concepts of all hypothesized mental orga-
nizations in this book, no matter how long, without exhausting all patience. I
therefore undertake to examine the structure and mechanical nature of some
special kinds of minds that serve to illustrate the mechanical nature of think-
ing, in part to open the special classes to mechanical investigation, and in part
to suggest ways of understanding other kinds of minds in mechanical terms.

In fact, mechanics provides additional motivations for examining specific
types of psychologies that stand quite apart from questions of endurance on
the part of the reader. We think of each of these kinds of minds as a different
type of mental material, exhibiting constraints and responses characteristic of
the specific mental material. As was also noted earlier, any physical mechanics
broad enough to cover the great diversity of physical materials comes out so
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broad as to say little specific about the behavior of particular bodies. The same
holds true in mental mechanics. To go beyond the generalities of discrete and
hybrid mechanics presented earlier, we must focus attention on specific types
of psychological organizations and behaviors. The specific types considered
here still cover a wide assortment of human characters.

This narrowing of scope means that our discussion of some important topics
in psychology and economics must remain informal, general, and speculative,
reflecting the early stages of the mechanical investigation of psychology and
economics.

8.1 What is plural discrete affective cognition?

The following chapters examine, in the main, a model of thinking in which
minds exhibit core and peripheral sensorimotor organs or faculties, short- and
long-term memories holding discrete mental attitudes and affects, and distinct
episodes of rational deliberate and habitual rule-guided reasoning. For lack of
a better term, I call this model plural discrete affective cognition, or PDAC.
The term affective cognition refers to reasoning, reflection, and rational cal-
culation that produces and takes into account both attitudes and affects. The
term discrete refers both to discrete episodes or changes in mental state and
to memory contents that identify discrete attitudes, affects, or representations.
The term plural here refers to the division of the mind into parts, as opposed
to indivisible individual agents.

In focusing on this type of psychology, I seek only to simplify the structure
of the agent, not to simplify the content of mental states or behavioral patterns.
For example, I discuss a wide range of types of reasoning and thought, includ-
ing rationality, intentionality, volition, wanton and deliberate action, attention,
automaticity, habit, and entrenchment. In discussing mental states, I consider
belief, motivation, desire, intention, uncertainty, fears, loves, appetites, and en-
thusiasms. In considering agent substructure, I include physiological organs,
mental faculties, types of memories, and mental subagencies.

8.2 Why plural discrete affective cognition?

The class of minds exhibiting PDAC encompasses a wide range of classi-
cal psychologies from philosophy and artificial intelligence, including the so-
called BDI (belief, desire, intention) agents and the RMS. One might even
regard it as capturing directly interpreted aspects of recently popular neuro-
logically based theories, but I do not enforce such an interpretation. I focus
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on this model because it shares many features with more detailed and com-
plex mental organizations studied in traditional approaches in artificial intel-
ligence and numerous theories of cognitive psychology and philosophy, and
so suggests ways in which one might extend a mechanical understanding of
PDAC to understandings of more realistic psychologies. We have no reason
to believe that human psychology decomposes in exactly the way PDAC sug-
gests, but that does not diminish its utility any more than the inaccuracy of
Hooke’s law diminishes its utility in learning and applying physics to simple
machines.

As in mechanics generally, my focus falls primarily on forces and the resul-
tant motions of interrelated bodies. Most of my psychological simplifications
thus concern the universe of bodies (the plural part of PDAC) and the geometry
of spaces (the discrete affective cognition part of PDAC) of the agent.

8.3 Are such minds mechanical?

For present purposes, I say a mind or a kind of mind is mechanical just in case
it satisfies the axioms of discrete and hybrid mechanics developed in the pre-
ceding chapters. I leave for future investigation whether minds are mechanical
according to other axiom systems as well, such as those of modern rational
mechanics, or different discrete and hybrid mechanics than the one we have
formalized.

In the following chapters I examine a sequence of psychological concepts
that illuminate the mechanical nature of some PDAC agents. I interpret short-
term memory content as position, and long-term memory content as mass. I in-
terpret desires as body forces and intentions as self-forces. I interpret commu-
nication with peripheral organs as contact forces. Volitional behavioral modes
represent different material modes and types, with incoherent wanton behav-
iors resembling amorphous or stochastic gaseous bodies and different degrees
of coherent deliberate behaviors as plastic, elastic, and rigid bodies. Attention
involves generating self-forces to counterbalance all environmental forces save
selected ones. Different volitional modes produce different stability and insta-
bility properties in agents subject to similar forces. Notions of rigidity, habit,
entrenchment, conservatism, and uncertainty come out as constitutional prop-
erties in which internal forces are generated automatically (without conscious
deliberation or action) by components of mental states, and by deliberate rea-
soning in which the agent shapes the forces acting upon itself.

I develop the sequence psychological concepts studied to exhibit increasing
levels of detail and specificity. The first mental properties studied are fairly
general, but later ones less so.
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Even in the context of our hybrid and discrete mechanical axioms, two sorts
of ambiguities cloud determinations of whether PDAC minds are mechanical:
psychological ambiguities and interpretational ambiguities.

8.3.1 Psychological ambiguities

Although the PDAC framework focuses attention on one type of mental orga-
nization out of many possible ones, it does not restrict the class enough to say
that all PDAC minds are mechanical. Instead, the PDAC psychology leaves
many details of agent behavior unspecified, so that only some kinds of PDAC
minds are mechanical.

Part of the problem here is one of uniformity. While traditional mechanics
provides numerous theories of specific types of materials, the uniformity of
physical materials that ensures that models of one sample of rubber or iron ap-
ply as well to the next batch does not hold in psychology at the level addressed
by our simplified psychology. People come in batches of one, with each indi-
vidual batch extremely different in details, if not in overall form, from the next.
Gaining a better detailed understanding of prototype psychologies may benefit
the search for abstract psychological materials or theories that make it easier
to understand each person in turn, though everyone knows the way prototypes
can mislead one in understanding individual people.

Part of the problem is theoretical. The PDAC framework accommodates a
large variety of psychological theories of different degrees of formality. The
structure exhibited by some of the fairly specific psychological organizations
proposed in artificial intelligence constrains possible mechanical interpreta-
tions enough to say yes or no to the question of mechanical nature. No one,
however, claims that the formal psychologies studied in artificial intelligence
represent accurate accounts of any human psychology. Instead, the many the-
ories of human psychology one finds in the literature offer much less precision
and many fewer constraints on mechanical interpretation than do the artificial
psychologies of artificial intelligence. We thus find a much wider range of
possible mechanical interpretations for more familiar accounts of human psy-
chology.

Mere observation does not promise a resolution to the ambiguities of psy-
chological theory anytime soon. The only observables on which to base hy-
potheses are behavior and anatomical structure, but these observables offer few
constraints on psychological organization due to the fungibility of information.
As in the theory of computation, it is easy to produce the same behavior using
very different programs executing on very different underlying machines; this
production is, as they say, a “simple matter of programming.” The underlying
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machine and observed behavior impose some limits, of course, but for stronger
clues to psychological organization one must look instead at the available in-
formation, the motivations of the agent, and the structure of the environment.

To answer questions about mechanical nature, one needs to add further con-
stitutive assumptions to the PDAC framework. Indeed, just as physical materi-
als may exhibit different constitutions though composed of the same physical
components, as in the case of ice, water, and steam, mental materials or psy-
chological types may exhibit different constitutions involving what we think
of as the same mental attitudes. The roles played by beliefs, desires, and inten-
tions can differ in each of these constitutions in that the attitudes can generate
forces in one constitution but no force or different forces in another. Just as the-
ories of physical elasticity posit that elastic materials generate specific types of
forces in response to deformation, theories of psychologies posit that agents
generate specific types of forces from deformations or changes to the attitudes
that represent the position of the agent.

8.3.2 Interpretational ambiguities
He who should hope, either in metaphysics or psychology, to see himself rewarded by
perfect certainty of knowledge, nay even by a certainty generally communicable, on ac-
count of extreme carefulness bestowed upon the accuracy of definitions and correctness
of conclusions, will certainly be sadly disappointed. (Herbart 1877, p. 263)

The following chapters show that some interpretations of PDAC psycholo-
gies are mechanical, but this judgment depends on an appropriate choice of
interpretation. Lack of consensus regarding the nature of psychological no-
tions means that one cannot expect consensus on the targets of formalization
either. One may thus make different mechanical interpretations of a single
psychological concept by shifting its meaning among those championed by
different interpreters. Moreover, if one seeks a concept-by-concept mapping
into mechanics, the very problem is underspecified because the specific be-
havioral features characteristic of that concept might be obtained by several
mechanical means. To avoid this underspecification, one needs to construct
mechanical interpretations of sets of related concepts all at once, so as to ex-
ploit the constraints these concepts place on each other.

In light of these ambiguities, one should take the interpretations and dis-
cussions presented here as speculations rather than reliable formalizations, as
candidates for exploration or replacement rather than the last word.

It may be that the best approach is to follow the lead of physics, taken some
centuries ago, to move away from viewing the problem as one of finding the
forces and masses inherent in behavior, and instead to approach the problem as
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one of setting out or specifying forces and masses corresponding to a situation
of interest and then calculating the resulting behavior. This doesn’t banish
the problem of understanding behavior, but it does transform it into a problem
of matching predictions to measurements instead of one of matching abstract
concepts against each other.

8.4 An example: reason maintenance

Although focusing on the PDAC class of psychological systems helps us to
begin an examination of mechanical concepts of mind, the PDAC class still
proves too general for us to illustrate some mechanical aspects of thinking. To
obtain the needed level of specificity and concreteness, let us turn to a specific
example.

Good examples serve to illustrate theories at many levels of abstraction, pro-
viding a set of target aspects or phenomena small enough to be comprehended
and analyzed, yet complex enough to exercise the main dimensions of the the-
ory. The best examples exhibit a depth to which the theorist may return again
and again for new challenges and insight.

The first danger here lies in considering only very simple examples for
which any approach will work. Such examples allow one to work out ele-
ments of an approach, but can lack the constraints needed to address other
cases. For example, the generalization from classical to quantum mechanics
began by examining one of the simplest mechanical systems, the simple os-
cillator. The simplicity of this example let theorists concentrate on identifying
the desired changes from classical behavior. In later extensions of the theory,
however, the simplicity of the oscillator hid the phenomena of interest, and so
more complex examples were needed. Feynman puts it this way:

I hoped then to generalize to other than a harmonic oscillator, but I learned to my regret
something, which many people have learned. The harmonic oscillator is too simple;
very often you can work out what it should do in quantum theory without getting much
of a clue as to how to generalize your results to other systems. (Feynman 1966, p. 703)

This same issue arises in psychology. Focusing on only the simplest systems,
such as a finite-state automaton or even a universal Turing machine, can offer
little purchase in making further progress if these systems do not exhibit some
of the complexity that makes minds interesting. Even some form of universal-
ity, whether that of a universal Turing machine or that of the Euler–Lagrange
equations, does not guarantee ready visibility of the important problems to be
addressed. Indeed, one might worry that universality means the system hides
rather than displays the characteristics of interest.
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To better understand the mechanical interpretation of psychological organi-
zations, we augment the PDAC conception with the more concrete example
of the RMS (Doyle 1979). The RMS admits a full formal specification of its
structure and behavior that refines that of PDAC, and one that clearly illus-
trates many issues concerning how mechanical notions work in psychological
and economic systems.

8.4.1 What is reason maintenance?

A RMS provides limited central memory, reasoning, and introspective func-
tions to higher-level mental operations.

In the original conception (Doyle 1977, 1979), a RMS serves as an auto-
mated subsystem of a reasoning or problem-solving system external to the
RMS, receiving information about inferences made and actions taken by the
external system, and providing information about the current conclusions or
mental state resulting from these inferences. These operations go beyond mere
database entries because the RMS revises conclusions on the basis of recorded
inferences, not on the basis of simple instructions to add or remove conclu-
sions.

To do this, the RMS stores changing sets of reasons, which constitute ex-
plicit records of inferences or changes of mental state that relate specific
patterns of antecedents to specific patterns of consequences. The inferences
recorded in reasons need not be deductive, and may concern any explicitly
represented aspect of mental states: not just beliefs, but intentions, desires,
preferences, and even emotions. The RMS uses these records as prescriptions
and guidelines to construct the mental state, to update the state as new rea-
sons are recorded, and to explain and introspectively analyze the composition
of states. When all the antecedents of a reason fit the pattern indicated by the
reason, the RMS acts to make its state fit the pattern indicated by the conse-
quences of the reason.

Changes made to satisfy one reason may cascade, causing the RMS to add
or remove other items to satisfy other reasons. When the higher-level men-
tal operations determine the existence of an undesirable mental state, such
as a set of contradictory beliefs or intentions, they may instruct the RMS
to trace back through the reasons used to construct the state to identify
assumptions or hypotheses that, if removed, might unravel the undesirable
state by triggering consequential removals or additions. The defeasible rea-
sons provided by the RMS permit accomplishing most updates by adding
new reasons instead of removing old ones. The actual process of unraveling
consequences requires special care, since mutually supporting consequences
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represent knots or tangles that, if undetected, would halt the desired unraveling
prematurely.

External or higher-level reasoning systems can use the RMS operations of
constructing and revising mental states in many ways, ranging from backtrack-
ing search in problem-solving, to switching of mental contexts or behavioral
regimes, to generation of explanations. The structure of RMS also reflects
central organizational aspects of many artificial intelligence systems, with el-
ements related to short-term and long-term memory, propositional deduction
rules, production rules, Bayesian probabilistic networks, artificial neural net-
works, noncognitive representations, and contextual linkages among represen-
tations.

The original RMS was developed in 1976 as an outgrowth of the dependency-
based electronic circuit analysis systems developed by Sussman and Stallman
(Sussman & Stallman 1975; Stallman & Sussman 1977) and as a key compo-
nent of an approach to explicit declarative control of reasoning exemplified in
the AMORD reasoning system (de Kleer et al. 1977). The original descrip-
tions (Doyle 1976, 1977, 1979) used the name Truth Maintenance System or
TMS, with the more apt name RMS adopted by Doyle in 1980 and used in later
works. Later conceptions (Doyle & Wellman 1990; Doyle 1996) extended the
original conception to provide a distributed, resource-limited service to ex-
ternal distributed problem-solving agents, one that maintained as coherent a
picture of the information state as possible given its informational and compu-
tational resources.

As this telegraphic history of the RMS suggests, one may implement the
abstract structure and behavior of the RMS in many ways. For example, some
studies have examined numerous techniques for searching through reasons and
their consequences. The ordering of this search may vary, as may the informa-
tion employed and the amount of effort expended. Indeed, different versions
of the original RMS employed simple depth-first search and more sophisti-
cated searches based on identification of strongly connected topological com-
ponents. The original RMS maintained a degree of determinism by basing
order of search on the order with which reasons were constructed and identi-
fied as supporting conclusions, but other implementations might do better by
randomizing the ordering. The original RMS incorporated mechanisms for
backtracking through assumptions into its algorithms, but other implementa-
tions separate this higher-level activity from the underlying mechanisms for
updating consequences. Different update methods also correspond to different
conceptions of what constitutes conservative revision. In fact, different imple-
mentations might decouple groundedness and conservatism requirements to
yield different behaviors (Doyle 1983e, 1992b). I view each of these possible
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varieties of a RMS as representing a different psychological material or type
of mind (Doyle 1982a, 1990a).

I do not attempt to construct a mechanical interpretation for any actual RMS
implemented in years past; though possible, doing so would prove somewhat
tedious because of the complexity of those systems. Given the range of dif-
ferent types of implementations, and the range of types of possible imple-
mentations identified in work on reasoned assumptions (Doyle 1983e, 1994),
I simplify our task by adjusting the target to suit the concepts at hand. I
pick a behavior for a RMS compatible with identified implementations but
modified to make mechanical analysis easier. Thus the examples presented
here combine aspects of different RMS versions, including ones described
by Doyle (Doyle 1979, 1983e, 1983b; Doyle & Wellman 1990; Doyle 1994,
1996). Not all of these have been implemented, and the composites employed
here almost certainly have not been. The composites considered here extend
the framework of Doyle (1983e) by permitting the enclosing system to stipu-
late changes in conclusions in addition to stipulating changes in reasons. I do
not assume the enclosing system actually does or should stipulate conclusions,
only that such stipulation be possible.

In the long run one should reverse this analytical approach and seek to iden-
tify a “most-mechanical” version of RMS as a target for implementation and
use. I expect the patently mechanical behavior of such an implementation
would display greater intelligibility and predictability by facilitating the appli-
cation of familiar mechanisms for reasoning about the behavior of everyday
mechanical situations to reasoning about reasoning systems as well.

8.4.2 Why reason maintenance?

Reason maintenance provides a good example for mechanical analysis in sev-
eral ways.

First, as noted earlier, reason maintenance admits a concrete, precise, and
detailed formalization. This specificity permits careful analysis of the me-
chanical nature (or nonmechanical nature) of RMS structure and behavior, in-
cluding identifications of position and mass, kinematic constraints, and RMS
dynamogenesis. In summary, the mechanical interpretation of the RMS views
the RMS as a body interacting with its environment. The conclusions of the
RMS constitute its position. The changes in these conclusions, which the RMS
reports to its environment, constitute its velocity. The base reasons posited by
the environment constitute its mass, which we view as a vector quantity rather
than a scalar. The RMS obeys Euler’s law of the balance of linear momentum,
the familiar equation f = ṗ. Indeed, the changes wrought by the environment
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on the RMS mass and position are naturally interpreted as forces. More im-
portantly, each reason used by the RMS in constructing its position determines
a force, and so acts as a component of the stress suffered by the RMS body.
The equilibrium states computed by the RMS, which satisfy the conditions
expressed by the reasons they contain, in turn bear a natural interpretation as
relaxed states of an elastic material. This interpretation extends to viewing the
total force on the RMS as satisfying Cauchy’s first law relating stress, body
force, and momentum flux.

Second, although reason maintenance forms a somewhat simple system
when compared with the full variety of computational, psychological, and eco-
nomic systems, we can see in RMS structure and behavior limited forms of
many of the central concepts of these broader fields, so that by formalizing
the RMS in mechanical terms we also are formalizing a simple instance of a
computational, psychological, and economic system.

Detailed explanation of the connections between the RMS and more gen-
eral psychological and economic systems would enlarge the present work be-
yond endurance. Accordingly, the remainder of this section summarizes these
broader interpretations of reason maintenance. The summarization is very
brief in the case of psychological and economic notions, which subsequent
chapters reexamine with more of the details most relevant to mechanical for-
malization. The summarization is less brief in the case of computation, so that
before we proceed we may get a picture of how reason maintenance grew out
of computational problems.

8.4.2.1 Computation

Formalizing the RMS in mechanical terms illustrates mechanical formaliza-
tion of computational systems because RMS is itself a moderately complex
computational system that involves several important aspects of computation.

In brief, the RMS presents a mutable state, external inputs, and effective
state transitions, with these transitions determined by a set of instructions. The
application of these instructions follows the characteristic scheme of recursive
computation, with equilibrium states arrived at through cascading steps of sim-
ilar form. The computational form of these states and policies resembles the
axioms, rules, proof structures, and closure conditions that underlie Boolean
circuit models of computation, logic programming systems, and logical seman-
tics of data types. RMS computation combines these elements in forms seen in
the higher levels of computational practice. First, it formulates explicit specifi-
cations of behavioral goals and invariants and then automatically searches for
solutions. Second, it involves transaction and update operations on complex
multipart objects, reversible updates that change parts of the complex objects
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in ways that preserve stipulated integrity conditions. The remainder of this
section explains some of these in a bit more detail.

The RMS was developed with the idea, underlying most knowledge-based
systems in artificial intelligence, that it is easier to specify what to do than to
describe details about how to do it, and that one should design reasoning sys-
tems to concentrate on the hard problems while leaving the details to automatic
mechanisms (cf. McCarthy 1958, Ginsberg 1996).

Computing did not start with this viewpoint. Many familiar computational
systems exhibit a very simple method of operation in which an input signal and
the current state directly determine the next state. This method characterizes
finite automata as well as stored program and Turing machines. For example,
a finite automaton observing an input symbol moves directly to the next state,
while a Turing machine directly changes the tape contents, the head locations,
and the controller state.

If one examines the range of computational systems studied in computation
and artificial intelligence, however, one may also observe another approach to
system operation. In this more complex method of operation, input signals
and the current state directly determine only a portion of the the next state,
which in turn constrains the choice of the remainder of the state. For example,
a change of state of a RMS begins with direct specification of a new reason
to be added to the set of base reasons, but ends with adjustment of the rest
of the state as needed to reflect the conclusions supported by the stipulated
reason.

Consider the following concrete example phrased in logical terms. We sup-
pose the system state consists of a set of logical statements and their logical
consequences, and that the system acts to ensure the closure of the conse-
quences when the set of statements is modified. Suppose the current state is

Th({A =⇒ B,C =⇒ D}), (8.1)

where Th denotes the operation of taking all deductive consequences, and A,
B, C, and D represent the sentences

A = “Socrates is a man.”

B = “Socrates is mortal.”

C = “Socrates works for a living.”

D = “Socrates owes taxes.”

If we now add A to the state, we get a new state

Th({A,A =⇒ B,C =⇒ D}),



236 Mental varieties

which also contains B, an additional element we did not specify directly when
adding A. If we now add B =⇒ C, we get

Th({A,A =⇒ B,B =⇒ C,C =⇒ D}),
which contains C and D as well.

In contrast to the implicit acquisition of beliefs seen in this example, a tradi-
tional computational approach would have no sentence carrying indirect con-
sequences by itself, and thus would need to explicitly identify and add each
consequence of statements already held in the state. One may view the direct
state change method as a special case of the more complex one by supposing
direct changes have no additional consequences.

There are a variety of motivations for considering indirect state changes.
Perhaps the principal motivation is that the sheer complexity of minds and
large software systems makes it easier to conceive of organizing them around
the idea of self-specification than around the idea of modifications specific
in every particular. That is, it is too difficult to completely comprehend the
structure and state of a mind or complex system, so instead of spelling out how
each aspect of the state should change, one only specifies what properties the
new state should have, and lets the system figure out, perhaps by searching,
how to change so as to satisfy these specifications (Doyle 1982a).

Early appearances of this motivation arose in logicist artificial intelligence
planning systems, which sought to characterize the state of the world follow-
ing some action. These planners used axioms that specified what changed as a
result of taking the action. McCarthy and Hayes (1969) described the “frame
problem” faced by these planners as the problem of avoiding the need to give
additional (and innumerable) axioms specifying what did not change. The
main approach taken by many planning systems in subsequent years was to
describe actions in terms of STRIPS (Fikes and Nilsson 1971) add lists and
delete lists stating properties of the world made true and made no longer true
by the action, interpreted with the so-called STRIPS assumption that nothing
changes as the result of an action except those properties appearing in the add
or delete lists of the action description. The STRIPS assumption proved un-
satisfying for realistically complicated situations, however, since the full set
of changes engendered by an action includes both the primary effects of the
action and a potential multitude of indirect effects. For example, the direct
effect of Julius Caesar’s crossing the Rubicon was to place him on the other
side, while the indirect consequences of this action involved new, nonspatial
relationships between Caesar and the Senate and people of Rome. Rather
than force the action axioms to enumerate all of these possible ramifications
of an action, it seemed preferable to simply list the primary or direct effects
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(whether these are considered to be intended or side effects), and then to de-
duce indirect effects from these via other axioms, not necessarily referring to
the causing action, about the structure of the world. Organized in this way,
a planner would update its beliefs about the current state of the world by
augmenting the add and delete lists with the implications of these explicitly
specified changes.

The RMS was developed to step back from the ordinary conception of pro-
grams in which programs directly modify their store of information. In or-
dinary programming one might assign a new value to a variable or to some
component of a data structure or computational object, at which point the prior
value becomes inaccessible. The RMS retreats from such direct changes by
creating something like a transaction log for recording these actions, so as
to permit undoing of changes, as in standard data management systems. In
contrast to typical database transaction logs, however, RMS inference records
explicitly indicate the dependence of one change on others, so that one may
undo or redo only those changes that depend on a particular mental action.
This indirect computational method makes it more appropriate to speak of the
RMS as constructing the information state of the external system it supports,
in the sense that the external system describes some base elements (axioms
or boundary values) plus the interrelation of various possible elements of its
state (inference rules, constraints, or equations) to the RMS, from which the
RMS pieces together a picture (possibly partial) of the makeup of the state of
the external system (see also Doyle 1980, 1982a, 1989). This lets the external
system reason in terms of its natural hypotheses, with the RMS automatically
changing derived information in response to changes in hypotheses.

8.4.2.2 Psychology

While the modest structure of the RMS offers only a pale reflection of the
richness of the psychological systems found in human minds, the RMS exhibits
some of the central characteristics and complications evident in those more
complex systems.

The RMS structures of base rules and derived conclusions correspond to
common divisions of memory into long-term and short-term memory. Sequen-
tial update of conclusions brings portions of memory into a bounded region of
working memory that serves as a focus of inferential attention. Operation by
adding reasons to the base set corresponds to memory growth and learning.

The rules and conclusions themselves can represent a variety of mental asso-
ciations, attitudes, sentiments, and emotions. Individual reasons have a famil-
iar associational character related to Minsky’s (1980) K-line theory of memory
and mental states, artificial neural networks, and Bayesian belief networks.
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Reasons can be used to summarize or encapsulate larger sets of reasons in
some forms of learning (Doyle 1979), and to produce conceptual clustering
and inheritance structures into memory (Doyle 1980, 1983d).

The inferential structures represented by reasons lie at the base of numerous
theories of nonmonotonic reasoning and logics (McDermott & Doyle 1980;
Reiter 1980; Doyle 1983e, 1994; Marek & Truszczyński 1993), and have in-
timate connections with theories of belief revision and update (Doyle 1979;
Harman 1986; Gärdenfors 1988; Doyle 1991, 1992b). Nonmonotonic reasons
form a key method of specifying and indicating many of the plausible assump-
tions that pervade commonsense reasoning (Doyle 1979, 1983d; Touretzky
1986). The replay of reasons associated with RMS update induces a limited
form of sequential thought.

From a more general or deeper point of view, the function of the RMS is
closely related to limited notions of introspection and consciousness. Philo-
sophical and mathematical analysis of RMS reasons and states brings out the
fundamental role of reasons in the mind’s self-specification, as noted earlier,
and in the mind’s self-construction, in how it distinguishes itself from its en-
vironment (Doyle 1982a, 1983e, 1990a, 1994). This sort of self-demarcation
and self-construction lies at the heart of some theories of personhood (Frank-
furt 1971).

The proximate motivation for developing the RMS was to provide means for
exercising control in complicated reasoning tasks (Doyle 1976, 1979). This
motivation encompassed the ability to make plausible assumptions before be-
ing forced to make implausible ones, and the ability to assign blame to faulty
assumptions when things go wrong. RMS reasons can be used in straightfor-
ward ways to encode not just simple plausible assumptions, but also common
patterns of sequential control (Doyle 1979, 1980). The reasons themselves can
be marshaled in forms of preeconomic dialectical reasoning to choose among
alternatives (Doyle 1980) effective in reflective decision-making methods.

8.4.2.3 Economics

Although the initial conception of reason maintenance focused on controlling
reasoning and action through intelligent assumption making and update, the
issue of control itself concerns effective decision making, and so the subject of
economic rationality. It thus should not have been surprising to find the struc-
ture and behavior of the RMS reflecting economic notions of preference and
choice, but in fact it took time for these connections to be realized, overshad-
owed as they were by the prima facie connections to logical reasoning.

Mathematical analysis of the content of RMS reasons and the structure of
RMS states revealed that reasons and states could not be interpreted in purely
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logical terms, but instead involved notions of intention and preference in cen-
tral ways (Doyle 1983e, 1994). Each reason carries a requirement that any
acceptable set of conclusions exhibit a certain pattern, namely satisfying the
reason consequent if satisfying the reason antecedent. Moreover, each reason
also expresses a preference among the different ways sets of conclusions can
satisfy the intended requirements, namely holding the preferred assumptions
rather than not holding them. Indeed, by formalizing the notion of plausible
reasoning in terms of expected reasoning utility, one can view reasons them-
selves as the outcomes of rational decisions, with each reason constituting a
reasoning policy adopted on grounds that doing so increases the expected util-
ity of the reasoner’s abilities (Doyle 1983e).

The preferential content of reasons shows that the sets of conclusions in
RMS states carry a natural interpretation as Pareto optimal economic equilib-
ria. Each reason expresses a preference order over possible states, and it is
not hard to prove that the standard nonmonotonic sets of conclusions satisfy
maximal sets of the reason preferences (Doyle 1983e, 1985b). Indeed, the
theoretical structure closely reflects the structure of group choice in political
economy, and one can prove a version of Arrow’s (1963) theorem that exposes
limits on the rationality of nondictatorial nonmonotonic reasoning methods
(Doyle 1985b, 1988b; Doyle & Wellman 1991).

The Arrow limits to rationality also are reflected in explicit decision-making
procedures, such as the dialectical reasoned deliberation methods mentioned
previously (Doyle 1980, 1981), in which the deliberator must periodically de-
cide whether the arguments constructed so far present a clear case for one
alternative or another.

More generally, recent decades have seen an increasing recognition of the
role of economic rationality in shaping the structure of thinking as well as the
structure of action (Doyle 1988a, 1992a; Russell & Norvig 2002).

8.4.2.4 Summary

The RMS makes a plausible proxy for illustrating the applicability of me-
chanics to psychology and economics. The RMS involves obvious elements
of psychological reasoning, short- and long-term memory, learning, concep-
tual associations, commonsense reasoning, rationalization, explanation, inten-
tion, search, reflection, and self-consciousness. It involves obvious elements
of economic preferences, constrained optimization, and individual and group
decision making. These elements exhibit a fundamental and commonplace
contextual dependence and ambiguity that highlights the commonplace forms
of invention and conservatism seen in almost all thinking and decision mak-
ing. This conceptual richness provides detail sufficient to guide the analysis to
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the desired end of providing insight into limited rationality and more elaborate
forms of these aspects of mind and action, and comes close to providing some-
thing like a universal basis on which to construct a large variety of possible
psychological and economic systems. At the same time, RMS structures are
concrete and circumscribed enough to permit direct formalization and analysis.

If the RMS fails as a good example for guiding the reconstruction of me-
chanics, surely it fails by excessive complexity, not excessive simplicity. The
complexity of the RMS noticeably exceeds that of the pendulum. One may
legitimately question the necessity of this apparent extra complexity, but the
combination of so many important aspects of psychology and economics in
one small package at present seems an advantage rather than a disadvantage.
Generalizing from Daniel Pearl’s (1994) observation that “even a mediocre
Stradivarius can be inspirational,” I take heart that even a nonoptimal example
of the right kind can serve present purposes adequately.



9

Mind and body

Traditional mechanics treats physical bodies, while psychology and economics
concern persons and their minds. Let us begin our examination of mechani-
cal minds by considering the structures of material universes appropriate to
different arrangements of agents and their environments, as well as the force
systems that describe the interactions of these mechanical bodies.

Almost all of the discussion in subsequent chapters concerns the case of
a single person or agent interacting with his, her, or its environment. For the
discussion in this chapter, let us regard the agent as a person and call the person
René Maupertuis Schwartz, or René or R for short.

9.1 Bodies

Mechanically, we view the person of René as a body BR, and his environ-
ment as the body Be

R. For some purposes we could stop with this division and
consider a material universe B = {O,BR,Be

R,U}, with U = {BR,Be
R}.

9.1.1 Simple dualism

Instead of viewing René as a unitary person, we instead assume that René has
both a physical body and a nonphysical mind.

For the physical part of René we take the standard mechanical model, and
identify the body of René as a body Bp existing within a universe Bp of phys-
ical bodies. We assume René has a physical environment, so the minimal
structure needed in the physical universe consists of Bp = {Op,Bp,Be

p,Up}.
Similarly, for the mental part of René we identify the mind of René as a body

Bm existing within a separate universe Bm of mental bodies. In a solipsistic
world we might consider the mental universe to consist only of René’s mind,
with Um = Om = Bm, but we instead assume that René’s mind has a mental
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environment too. This means the minimal structure for the mental universe
consists of Bm = {Om,Bm,Be

m,Um}.
The person René then consists of the hybrid body BR = Bp + Bm = Bp 

Bm within the hybrid material universe B = Bp ⊕ Bm, in which the hybrid
body U = Up + Um = Up  Um forms the universal body.

We presume René’s physical body obeys all the usual physical laws. The
only difference in our treatment consists of an admission of the theoretical
possibility that physical forces on the body generated by the body and its en-
vironment may depend on René’s state of mind as well as the physical state of
his body, and may include forces exerted on the body by his mind. Let us con-
centrate our attention on the mechanical structure of the mind in the following
section, and not discuss the physical body in much detail.

9.1.2 Mental sensorimotor substructure

Just as we need not assume René consists of a unitary, indivisible person, we
need not assume René’s mind lacks further subdivision. The next level of detail
divides René’s mind into portions on the boundary with its environment and
an interior portion. As usual, the boundary portions include mental sensory
or effector organs or faculties. Some of these naturally correspond to organs
of the physical body. We make no identification between mind and brain, nor
between mental interior and the brain. We may, if we choose, regard the mind
and its parts as spread across different bodily organs in ways of no special
relevance here.

For the mechanical analysis, we regard René, his mental organs, and his
environment as mechanical bodies. The organs, of course, form subbodies of
his mind. Some subbodies lie on the boundary with his environment; the join
of these constitutes the boundary of René’s mind. The relative complement of
this boundary within his mind constitutes the mental interior body, and may
itself exhibit further division into interior subbodies.

Specifically, we view the simple psychology as involving a universe of bod-
ies, depicted in Figure 9.1, that further refines the mental universe just de-
scribed. We might well further divide René’s mental environment into parts,
but that division will matter little in this initial mechanical interpretation com-
pared with further division of his mind into parts.

The principal division of the mind distinguishes parts of the mind in contact
with the mental environment from those parts not in such contact. We iden-
tify two parts of the mind in contact with the environment, or on the external
boundary: the sensor part, and the effector part. We treat these parts as units in
the present discussion, though each may admit subdivision into different types
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Environment/Sensor Boundary (ESB)

Sensor Interior (SI)

Agent/Sensor Boundary (ASB)

Environment/Effector Boundary (EEB)

Effector Interior (EI)

Agent/Effector Boundary (AEB)

Agent Interior (AI)

Fig. 9.1. The mechanical interpretation of the simplified psychology focuses on the
bodies representing the agent, its sensors and effectors, its exterior environment, and
the boundaries between these.

of sensors or effectors. We also simplify some of the discussion by treating the
sensor and effector parts as separate, though in some psychologies these parts
will overlap (consider human fingers, for example).

We divide the sensor body

BS = BESB + BSI + BASB (9.1)

into three possibly void parts. BESB is the boundary part of the sensor or-
gans in contact with the environment. This boundary constitutes the com-
munication medium between environment and sensor. The internal boundary
part BASB of the sensor is shared with the cognitive interior part of the mind
and constitutes the communication medium between sensor and this interior.
For simplicity we assume that these two boundary portions are either separate
(BESB �BASB = O) or identical (BESB = BASB), conditions we can sum-
marize by saying that the symmetric difference of the two sets of body points
is null; that is, (BESB \ BASB) ∪ (BESB \ BASB) = ∅. Finally, the sensor
interior body BSI consists of the (possibly null) remainder of the sensor body
apart from the two boundary parts.

The effector body

BE = BEEB + BEI + BAEB (9.2)
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Fig. 9.2. The lattice of mental subbodies corresponding to the sensor, interior, and
effector organs depicted in Figure 9.1.

has three similar parts: the boundary with the environment BEEB, the bound-
ary with the agent interior BAEB, and the remainder of the effector BEI. The
two boundary portions BEEB and BAEB are either separate or identical, and
the interior part BEI is separate from both of these.

The agent interior body

BA = BASB + BAI + BAEB (9.3)

consists of the parts providing the internal boundaries with the sensor and ef-
fector bodies together with the remainder part of the agent interior BAI. As
with the sensor and effector organs, we assume that the boundary bodies are
either separate or identical, and that the interior is separate from both.

We can also depict the containment relations in the lattice diagram given in
Figure 9.2.

The separation assumptions do not significantly restrict the number of point
bodies within the agent. The sensor, for example, might consist of a single
point body constituting both boundary portions, leaving a null sensor interior.
In the same way, the agent itself might contain a single body point that consti-
tutes both sensor and effector, with a null agent interior. Indeed, we can think
of this last possibility as characterizing the single point body employed in most
of the subsequent chapters.

If we assume that physical and mental bodies correlate exactly, then the
overall universe of bodies consists of the product of universes of physical and
mental bodies, each of which exhibits the structure depicted in Figure 9.1.
This correlation breaks down if we decompose the mental states of the agent to
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reflect standard techniques of knowledge representation, for which the physical
body provides no correlates. For simplicity, most of the following sections
treat only correlated physical and mental body pairs at or above the level of
Figure 9.1.

9.1.3 Mental substructure

Different psychological organizations for minds divide the interior portion of
the mind into different structures.

One common interior organization postulates a long-term memory provid-
ing persistent storage of mental information and a short-term memory serving
as the focus of attention or locus of consciousness. In such a division, one
expects the long-term memory body to have an associated mass that persists
across changes in long-term position. One also expects the short-term memory
to have no associated mass and a position of reduced dimensionality, perhaps
even a position that reverts to a distinguished origin or null vector periodically.

Faculty psychologies constitute another common organization for mind. A
faculty psychology divides the mind into several mental faculties or cognitive
organs, each of which forms a separate subbody of the mind. As with sen-
sor and effector organs, each of the cognitive organs has its own mass and
position embodying its own habits and local working memory, as in the dis-
tributed RMS described as Doyle (1996). One can regard Minsky’s (1986)
society of mind theory as a limiting case of faculty theories, dividing the mind
into many small faculties and subfaculties called mental subagencies, each
of which again has its own mass and position. In the larger setting of eco-
nomics and social organizations, faculty psychologies correspond to corporate
or bureaucratic organization. In these multiperson organizations, one regards
departments, offices, and positions, or societies, groups, and agents, as bodies,
hierarchically arranged. In addition, cognitive organizations need not have the
sort of fixed organizational structures seen in organization charts, but instead
can have more fluid teaming, political, or representational groupings, such as
the association structures and reasoned conceptual societies of Doyle (1988a
and 1983d, respectively).

More importantly, several such divisions might all represent the same mind.
For example, faculty psychologies might spread short-term and long-term mem-
ories across different interior mental faculties, or even spread across all por-
tions of the mind, whether on the boundary or in the interior. The formalism
of the lattice of bodies permits one to slice and dice the mind in multiple ways.

Indeed, one can regard minds as having much finer decompositions into
subbodies, especially in ways that do not correspond to any neurological
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substructure. The primary example here consists of conceptual organization,
in which one regards the lattice-oriented taxonomic structure of concepts in
terms of a lattice of bodies. In this setting, each concept is a body, as are the
aspects, slots, or other defining elements of each concept. Subtype relation-
ships between concepts then correspond to body–part relationships.

The conceptual universe idea applies beyond standard conceptual hierar-
chies to include libraries of conceptual designs. In this setting, lattices of bod-
ies in the external world are mirrored in lattices of concepts representing them.
For example, suppose we consider two offices with telephones that can reach
each other. This set of things might be represented as three overlapping com-
posite bodies and their parts: the two offices each having their telephone as a
part, and the telephone network having the two telephones and the cable con-
necting them as parts. There may even be added levels of detail to consider:
each telephone and the cable may have terminals as parts, and the cable may
actually be many wires and a switching computer. The key idea, however, is
that each object, concrete or abstract, is a body, atomic or composite, and some
connections or relations between objects are bodies as well, shared parts of the
things they connect. In this setting, one can have several distinct part-of rela-
tions, each of which projects the overall relation onto a subuniverse, with roles
and subconcepts forming subuniverses and subrelations.

Artificial intelligence employs a variety of related representational ideas to
characterize these mental structures, including constraints (Sussman & Steele
1980), ontologies, and description logics (Baader et al. 2003). In these ap-
plications, primitive or undecomposed concepts constitute atomic elements or
point bodies, and the universe (or relevant subuniverse) consists of the pow-
erset of the atomic elements. Most of the bodies in this powerset are of no
interest and remain unnamed, but some one singles out to name and to reason
about. Common computational systems for constructing such networks allow
one to change the meaning of names, to create new atomic bodies, to add new
parts to bodies, and to identify parts of different bodies, but in mechanics one
thinks of the universe as fixed for each application—or at most, of infinite ex-
tent, with these computational operations merely changing the focus of interest
by manipulations of names and references.

In most of what follows I simplify the discussion by regarding the agent
memories as global configurations of the agent rather than by identifying dis-
tinct subbodies of the agent or agent interior that represent long-term and short-
term memories. In fact, I take the simplified memories as properties of the
mental interior, and regard the mind of the agent as consisting of a single body
point, so folding sensorimotor organs into a unitary mind.
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9.2 Forces

The forces operating in our simplified psychology include environmental
forces acting on the agent and its parts, and internal forces exerted by the agent
or its parts on the agent or its parts, including self-forces of agent parts on
themselves.

The subsequent discussion of mental mechanics assumes that specified
forces refer to an inertial frame of reference, so that we can express the body
loads and reactions in the simple form of Euler’s laws of the balance of linear
momentum f = ṗ (6.60) and rotational momentum F = L̇ (6.61).

9.2.1 Hybrid forces

In accord with our simplifying assumption that the mind consists of a point
body, we consider only a small set of the possible interactions we would see in
minds with more substructure. The subsequent discussion mainly follows the
decomposition of forces set out in Section 2.1.1, which took the decomposition
BR = Bp + Bm of the person René into mind and body and identified the
forces exerted on René’s mind and body by these parts of René and by René’s
environment, with the decomposition given in (2.6),

fp(Bp,U) = fp(Bp,Bp) + fp(Bp,Bm) + fp(Bp,Bpe
p ) + fp(Bp,Bme

m ),

indicating the physical force acting on René’s physical body and (2.7),

fm(Bm,U) =

fm(Bm,Bp) + fm(Bm,Bm) + fm(Bm,Bpe
p ) + fm(Bm,Bme

m ),

indicating the mental force acting on René’s mind.
As these decompositions indicate, although motion of the physical body

stems from the physical force on the body, and motion of the mind stems from
the mental force on the mind, each of these forces can depend on the other
mechanical body. Hybrid mechanics thus offers a mathematically coherent
framework for understanding systems inhabiting different spaces but coupled
through dynamogenesis.

As noted earlier, the existence of this mathematical framework says nothing
about whether our world provides instances of such coupled mechanical sys-
tems. In particular, apart from the apparent interaction of mind and body in
individuals, we lack both demonstrable examples of physical forces produced
by mental systems and proofs that such do not occur. Even suggestions like
Truesdell’s (1956) search for measurable physical forces generated by minds
run into fundamental problems of will and cooperation, seen in the expectation
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that such forces will stem from choices of conscious or free agents, who, like
ornery people everywhere, need not follow strict regulations ensuring uniform
experimental response.

Nevertheless, even if finding evidence for some possible types of hybrid
mechanical systems in nature proves difficult, one can look for such systems in
artificial systems as well. In particular, artificial intelligence provides examples
in which these hybrid forces play crucial roles within the nonphysical factor
spaces. The subfield of control theory dealing with hybrid systems provides
models and real examples of systems moving in multiple disparate spaces,
though these models do not give mechanical form to the nonphysical factor
systems.

9.2.2 Body, contact, and self-forces

Many physical theories assume that self-forces vanish, that f(B,B) = 0 holds
for each body B. As noted earlier, this assumption carries with it many pleas-
ant consequences, such as the pairwise equilibration of both body and contact
forces. Moreover, some theories in which bodies exert forces on themselves
suffer conceptual difficulties, to wit, the infinite self-action evident in the clas-
sical theory of the electron (Rohrlich 1965), and the lightspeed temporal prop-
agation limits that motivate the mass-space fields of general relativity.

The assumption of vanishing self-forces seems less desirable, however, if
not outright unrealistic, in seeking mechanical formalization of conscious
agents, for which it is natural to view communication between agent interior
and sensors and effectors in terms of contact forces and some motivations as
self-forces. Self-conscious or self-directed action seems to suggest a mind that
exerts nonzero force on itself. For example, as I elaborate later, it is natural
to view self-regarding desires and intentions of the agent as exerting forces on
the agent. One might regard such self-forces as either body forces or contact
forces, depending on whether one thinks of the agent as in contact with itself.

On the other hand, nonvanishing self-forces might prove unnecessary in for-
malizing some kinds of minds. In particular, one might formalize a mind orga-
nized into competing sets of mental subagents (as in Minsky 1986) as involv-
ing only forces between separate mental components, so avoiding the need for
nonzero self-forces.

9.2.3 Intentionality

As stated earlier, I focus my examination on thinking that involves mental
attitudes and sentiments including belief, desire, and intention. Such mental
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attitudes refer to objects or conditions existing outside or beyond the
agent itself. Brentano (1874) called this referential relationship intentionality.
Brentano characterized mental attitudes as “directed at” their objects, the prop-
erty of intentionality, not to be confused with the specific mental attitudes
called intentions, which also bear intentionality. Thus belief, desire, intention
are all directed at things, as are hopes for, fears of, and so on. Other mental
conditions do not bear intentionality as they are not directed at anything, such
as pain, anxiety, happiness, depression, and the like, though perhaps some of
these come in both directed and undirected forms (fear and anxiety might form
such a pair).

The most notable mechanical concept that one thinks of in connection with
a relation of “directed at” is that of force. It is natural then to ask whether
intentionality reflects forces existing between agent and object of thought.

If intentionality reflects a force between agent and object, it would seem
to be a force exerted by the object on the agent, not vice versa. It sounds
a bit strange to say that my belief in something exerts a force on that thing,
especially when the thing in question exists only in my imagination, though
less strange to say that the thing exerts a force on me. This ability to have
beliefs about imaginary objects suggests that perhaps any forces involved in
intentionality connect different mental concepts to the agent, rather than exter-
nal objects. One might regard Herbart’s (1891) forces among concepts as an
attempt to capture such notions.

Section 13.4 examines an important class of such self-forces, namely self-
specifications or self-regarding intentions and preferences that constrain the
mental positions of the agent to exhibit certain coherence properties.

The mechanical requirement that force systems be balanced constrains in-
terpretations of intentionality in terms of forces. In the arrangement in which
forces on the agent are directed by objects, we would view this force on the
mind as conveyed by mental attitudes. For example, a dish of ice cream might
exert a force on René, who desires ice cream. For a direct force of ice cream on
René to be a balanced interaction, the direct force would require that René’s
desires exert a force on the ice cream as well. One usually doesn’t observe
such forces, except perhaps as the agent moves his hand to reach for the ice
cream.

An easier way of obtaining balanced forces of intentionality involves chang-
ing perspective from objects to information. This perspective regards René’s
interactions with his environment as measurements, as exchanges of informa-
tion. Information transmission is a balanced force, since information sent is
just the information received at the boundary of the agent, though these two
are not necessarily the same once transmitted to the interior of the agent.
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With intentionality primarily concerned with transmission of information,
we convert forces of intentionality into self-forces. Thus we view desire for
ice cream as generating a force on René, leading him to seek out ice cream or
to attend to ice cream in the immediate environment. In this way, the environ-
mental ice cream gives rise to a force on the agent, but only indirectly, with the
balanced force of information causing the force of desire.

In fact, as this example suggests, the role of the concept of force in under-
standing intentionality might have relations to the role of force in understand-
ing deliberation. The ability to think in detail about acting without actually
acting characterizes the human behavior of deliberation. In naive terms, de-
liberation seems to involve pretending to apply forces to find a resultant, but
without actually applying the forces to the body until the point at which the
decision is made to act. The end action in question may be either mental, such
as a decision, or physical, such as a motor action.

It is not clear how one should view the stimulation of physical motion by
deliberation. The direct way is to view deliberation as producing only mental
forces until the end, at which time, if the end be a physical motion, the delib-
eration produces a physical force on the body. The physical force need not be
large if we assume the body operates under the influence of signal amplifiers
that convert small command signals from the mind into large-scale motions of
the body.
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Attitudes, outlook, and memory

Many theories of psychological organization posit both long-term and short-
term memories. The long-term memories serve as persistent (but not neces-
sarily perfect) repositories of knowledge, skills, and other elements of human
capital; the short-term memories serve to store the fleeting facts of present
experience, which then either are discarded or incorporated into long-term
memory.

The notion of memory in these theories concerns the function of memory
structures in thinking, but this function has mainly to do with issues of persis-
tence, not with the content of memory. In common theories, memory content
is assumed to contain elements of what we can call the outlook, point of view,
or attitudes of the agent, as well as habits, skills, and other aspects of mind.

This chapter examines the notions of memory and outlook from the me-
chanical point of view, without adopting a position on the exact set of mental
elements that define outlook. The fundamental identifications explored take
mental outlook to constitute mental position, and memory to consist of both
mental mass and persistent aspects of internal configuration reflected in the po-
sition. Thinking of memory as mass and configuration fits well with everyday
usage. Mass persists across motion, and this also holds for long-term memory;
some aspects of configuration, such as the support one belief has in others, also
persist and can be used in explaining behavior. Thinking of mental attitudes as
positions also finds a good home in everyday usage. The attitudes one holds
are often spoken of as one’s positions on the issues. Each change of belief or
intention constitutes a change of position.

Mental mass and position do exhibit a somewhat more complex relation than
do ordinary physical mass and position, in that many elements of memory are
reflected in the outlook, meaning that some elements of the mass constrain
some elements of position. Indeed, in learning or transfer into memory, some
elements of position constrain some elements of mass.

251
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10.1 Attitudinal structure and variety

There are many ways of thinking of what mental attitudes include. In so-
called BDI agents, for example, the attitudes of the mind consist of beliefs,
desires, and intentions. One can regard these as expressing simple statements
of what is believed, desired, or intended. Alternatively, one can regard these
attitudes as coming in different absolute and comparative forms, with the com-
paratives expressing that one thing is believed more, desired more, or intended
more than another. In that conception, the set of attitudes contains at least six
subtypes; absolute beliefs and relative likelihoods, absolute desires and pref-
erences (relative desires), and absolute intentions and priorities (relative inten-
tions). Even within these broad classes of attitudes, different theories consider
different conceptions of what these attitudes mean, making for many different
types of BDI agent attitudes.

We also consider mental outlook as involving reasons, rules, emotions, sen-
timents, and other elements in addition to attitudes of belief, desire, and inten-
tion. Some of these, such as reasons and rules, can also be thought of as mental
habits or skills.

One can certainly find alternative conceptions of position to the extended
BDI attitudes considered here. In the theory of ideal rationality, one constructs
the space of positions from the sets of all preference orders over alternatives
and all belief functions (probability distributions) over alternatives and out-
comes. We might formalize the space of mental positions of an ideal rational
agent in terms of an inhomogeneous module consisting of a product U × P ,
in which a vector space U of all utility functions over outcomes uses R as the
field of scalars and pointwise addition as the vector sum, and a vector space P
of all probability distributions over actions and outcomes uses Z2 as the field
of scalars and the normalized sum of distributions as the vector sum.

Many economic analyses use an even simpler conception of position, that
of just the belief functions, and treat the preferences of the agent as fixed
in its constitution, with all variation of decision obtained through variation
in the agent’s beliefs. While one can embed many desired ranges of agent
behaviors into such belief-centered representations, in modeling ordinary hu-
man cognition one often finds it more natural to think of the agent’s chang-
ing preferences as well as beliefs (Doyle 1992a; Doyle & Thomason 1999;
Doyle 2004). Economists tend to avoid models involving change of prefer-
ence mainly because they possess no empirical or prescriptive theory of how
preferences change. One can formulate such changes in the standard frame-
work of rational action by taking the self-management perspective exempli-
fied by Pascal’s (1962) wager and James’ (1897) will to believe (Doyle 1980,
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1989), in which the agent makes choices about adopting or abandoning discrete
attitudes or sets of attitudes. The literature provides other patterns for prefer-
ence revision as well (James 1890; Shand 1920; Russell 1930; Yates 1985;
Doyle 1990b).

The self-management perspective of ordinary psychology imputes more
structure to states of belief and preference than one can recover from util-
ity functions and simple probability distributions. In consequence, the two-
component space of positions seems unsuitable for a theory of bounded ratio-
nality. One needs instead a theory that encompasses discrete actions and bears
close similarity to psychological theories based on discrete or semidiscrete
conceptions of mental state, whether the conceptions involve beliefs, desires,
intentions, and the like, or the structured representations used in computational
decision theory (Boutilier, Dean, & Hanks 1999).

At a more fundamental level, when one characterizes mental positions di-
rectly in terms of utility functions and probability distributions, one builds
the axioms of economic rationality into the very fabric of mental space. This
makes weakening the notion of rationality fairly difficult, as one must work
against the ideal nature of the points of space themselves.

To capture discrete psychological theories more directly, and to make weak-
ening the rationality assumptions easier, I decompose mental positions into dis-
crete elements of preference and belief information. Specifically, I replace the
inhomogeneous two-component space of ideal rationality with homogeneous
multidimensional binary vector spaces. To capture wider ranges of psycholo-
gies, I go further and employ inhomogeneous modules that augment the basic
attitudes and representations of rational economic agents with other attitudes,
feelings, emotions, sentiments, perceptions, and sensations.

In decomposing the space of positions into discrete attitudes, I move the
consistency and completeness axioms of rationality out of the characterization
of the structure of space, where they stand unmodifiable in particular mechan-
ical systems, and into constitutive assumptions about dynamogenesis and the
structure of admissible configurations. We may then modify these constitutive
assumptions freely to characterize agents of different degrees of rationality.
Constitutive assumptions of consistency and completeness in restricted cases
exhibit a purely kinematic character akin to more familiar kinematic constitu-
tive assumptions for rigid bodies and crystalline materials.

10.2 Discrete binary information space

The axioms for discrete mechanical systems do not require a specifically attitu-
dinal structure for mental states. They can be satisfied by any space of mental
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positions that consists of a discrete free module S over a discrete commutative
ring of scalars RS, by any space of masses that forms a discrete free module M

over a discrete commutative ring RM, and by a momentum module P formed
as the product module S × M over the product ring RS × RM. For discrete
motion, the axioms are satisfied by instants that form a discrete interval T,
possibly improper, within Z.

The discrete perspective on mental operation can make sense even when
the underlying system also admits continuous characterizations, as evident in
the ordinary practice of describing electronic computers in terms of discrete
states and transitions rather than the underlying continuous electrical changes,
as well as in the discussion of symbolic dynamics presented earlier. I thus do
not assume that the discrete minds examined here have only discrete states or
motions. My aim instead is to examine discrete characterizations of thought
from the mechanical perspective and to understand them in mechanical terms.

I simplify the language used to discuss discrete mechanical systems by using
the term vector to refer to elements of S, M, and P, even though these might
only be elements of free modules over commutative rings and not elements of
vector spaces. This mathematical inaccuracy will not matter in what follows,
because I consider spatial and mass modules that form binary vector spaces,
spaces that represent a conception quite familiar in artificial intelligence and
the theory of computation.

To understand mental attitudes and representations in spatial terms, we start
not with a vector-space conception, but with a simpler conception in which
each mental position consists of a set of attitudes or other representations. For-
mally, we write D (think dimensions or data) to mean the set of all possible
elements of spatial locations in the mind under consideration, so that each lo-
cation consists of some subset λ ⊆ D. Following RMS terminology, we use
the terms In and Out to indicate indicate presence or absence of an element
of D in a mental position. As in the RMS, In and Out do not stand for true
and false, only for presence or absence. In particular, we view contrary men-
tal attitudes as different attitudes, not as differing states of the same attitude.
Thus a belief that “Bertrand is clever” would in the framework here constitute
a different element of D than the belief that “Bertrand is not clever.” By dis-
tinguishing propositions from their negations in attitudes, the formalism here
naturally yields a four-valued logic of the sort described by Belnap (1976),
which associates four possible information states with each statement: “told
true,” “told false,” “told neither true nor false,” and “told both true and false.”
The first two of these correspond to the familiar notions of true and false; the
third to ignorance; and the fourth to a state of contradiction.
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Note that this conception of mental space in terms of combinations of atti-
tudes reflects only the internal structure of attitudes and does not depend di-
rectly on any external meanings we associate with the attitudes.

One should note that mental spaces that distinguish only In and Out rep-
resent only the simplest sort of space useful for analyzing mental states. In
psychologies of realistic complexity, one can expect to look to conceptions
of space that incorporate additional information about mental attitudes. For
example, most RMS algorithms augment the primary In and Out labels with
auxiliary or temporary labels representing information about the state of the la-
beling process. These algorithms start a revision episode by “unlabeling” each
consequence of changed item, changing the labels of each of the items being
reconsidered to Nyl, meaning “not yet labeled.” The algorithms then replace
each of these Nyl labels In or Out in the course of relabeling.

Consideration of other reasoning methods can motivate even more extensive
conceptions of mental position. Looking again to the RMS for another exam-
ple, we find that RMS also labels each In attitude with a “supporting reason”
that identifies the reason on the basis of which the supported attitude has been
labeled In. Such records of supporting reasons might form elements of the
position, indicating temporary support, in contrast to their role in memory as
permanent records of a possible inference.

10.2.1 Binary translation space

To obtain the translation space of attitude-set locations, we identify each set
of attitudes with its characteristic function and represent each such subset-
characteristic function as a binary vector. Formally, we represent each subset
of D as a vector in the vector space D = (Z2)D , in which vectors have coor-
dinate values in the field Z2, interpreting In as 1 and Out as 0, and in which
vectors add componentwise. We denote this vector space in tuple form by con-
sidering an enumeration {di : 1 ≤ i < |D|} of D and adopting the convention
that the set x ⊆ D corresponds to the vector in which coefficient xi = 1 if
di ∈ x and xi = 0 if di /∈ x.

This space consists of a product of many dimensions, one for each mental
attitude, with each distinct possible mental attitude giving rise to a separate
dimension of position. We thus assume one spatial dimension for each be-
lief, desire, and intention, and regard each dimension as a binary state space
indicating presence or absence of the attitude in the state of mind or agent con-
figuration. Accordingly, we can treat each element d ∈ D as a basis vector,
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and treat x ⊆ D as the vector

x =
∑
d∈x

d. (10.1)

Elements of D can thus represent changes to positions, with the element x− y

representing the change from position y to position x.
The following development takes D to represent the set of all positions S,

and switches back and forth among the interrelated set and vector representa-
tions as needed to simplify the analysis.

10.2.2 Binary algebra

We use 0 to denote the vector (0, . . . , 0) consisting of all zeros, which corre-
sponds to ∅ in the set representation. We use 1 to denote the vector (1, . . . , 1)
consisting of all ones corresponding to the set D in the set representation.

The algebra of vectors over Z2 exhibits the familiar properties 0x = 0 and
1x = x for all vectors, as well as the special binary properties x + x = 0 and
x− y = x+ y that obtain because the field Z2 is of characteristic 2.

The vector algebra D bears obvious connections with the Boolean algebra
P(D) of subsets of D, though the operations involved in these algebras dif-
fer. Where the vector space provides operations of vector addition and scalar
multiplication, the Boolean algebra provides operations of union, intersec-
tion, set difference, and complement. Addition in this vector space corre-
sponds to symmetric difference of sets; that is, x + y = x \ y ∪ y \ x. We
translate complement by x = 1 − x, and intersection as pointwise multi-
plication in D; that is, x ∩ y = xy = (x1y1, . . . , xnyn). Intersection thus
introduces a product operation in D, a product satisfying xx = x, x(y + z) =
xy + xz, xy = yx, 1x = x, and 0x = 0. We then translate set dif-
ference as x \ y = x ∩ y = xy = x(1 − y) = x − xy, and union as
x∪y = x ∩ y = 1− (1−x)(1− y) = 1−11−x1− y1+xy = xy−x− y.

When D is a finite set, the space D is a free module over Z2, as called
for in the mechanical axioms presented in Chapter 5. When D is infinite,
however, the function module D = ZD

2 is not free, and to conform to the
axioms we must restrict attention to a free submodule of D. One standard free
submodule, which we denote by Df, consists of all vectors in D with finite
support, that is, with only finitely many nonzero coordinates. Each vector in
Df thus corresponds to a finite subset ofD. The vectors corresponding to single
elements of D form a basis for Df.

The module Df does not admit the desired correspondence with a Boolean
algebra of sets, however, because it lacks the element 1. We thus extend Df
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to a larger module by adding 1 as a new basis vector. We write Db to denote
the free module over Z2 generated by the elements of D and 1. Each element
of Db represents either a finite set or the complement of a finite set, and so
has either only finitely many nonzero coordinates or only finitely many zero
coordinates.

In the following development, let us use the simpler notation D to mean Db

when appropriate to the dimensionality of D.

10.2.3 Other algebras

Although the binary algebra of mental attitudes serves many purposes well,
other discrete algebraic systems provide alternatives worth exploring. Chief
among these are the free modules over D, obtained by replacing the binary
field Z2 by a commutative ring R that provides finer divisions or gradings of
each positional element. This replacement yields a R-module DR over D, with
D corresponding to R = Z2. We write elements x ∈ DR in the form

m = x1d1 ⊕ x2d2 ⊕ . . . . (10.2)

The module addition ⊕ is performed componentwise, with

x⊕ y = (x1 + y1)d1 ⊕ (x2 + y2)d2 ⊕ . . . . (10.3)

Here the addition of coefficients (e.g., x1 + y1) takes place in R. When R =
Z2, one removes an element simply by adding it in. If R = Z, one removes an
element by subtracting it enough times, or with enough weight.

More complicated renditions might allow dimensions that provide a contin-
uous grade or quantity for each attitude. Such representations exchange the
attitude-set view of vectors in favor of vectors of coefficients or strengths, and
replace the space (Z2)D with RD or [0, 1]D.

The polynomial rings Zk(x) can also form alternative free modules for
countable D, with the enumeration indices of D corresponding to powers of
the indeterminate x. Baez and Gilliam (1994) exploit these modules in their
treatment of discrete mechanics. Indeed, the infinite-dimensional free module
Df is isomorphic to the additive module Z2[x] over Z2, with each finite basis
vector in Df corresponding to a binary polynomial. The polynomial algebra of
Z2[x] is not the same as the binary algebra identified earlier for Df, however, as
polynomial rings involve a multiplication operation different from the intersec-
tion product considered in the preceding, with products of powers of the inde-
terminate producing other powers of the indeterminate. Unless the attitudes in
D have some corresponding composition property, polynomial multiplication
seems a questionable addition to the underlying free module over Zk.
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10.2.4 Inner products and metrics

To analyze the geometry of mental spaces, we make use of several generalized
inner products, from which we derive two metrics.

The first generalized inner product i1 : D × D → D, defined by

i1(x, y) = xy, (10.4)

takes values in the ring D, or equivalently, in the powerset of D, and cor-
responds to the pointwise product or intersection of the two elements. This
product produces a new vector by pointwise multiplication, so that for each
component i of these vectors, (xy)i = xiyi, taking the product of these values
in Z2.

When D is finite, we define a second generalized inner product i2 : D ×
D → R by

i2(x, y) =
∑

i

xiyi (10.5)

= |i1(x, y)|. (10.6)

This product multiplies coordinates as in the ordinary Euclidean dot product,
and thus counts the number of places in which the two vectors agree. This
equals the cardinality of the intersection of the two positions viewed as sets.
With this definition x · y = 0 iff the vectors x and y have null intersection in
P(D).

When D is infinite, sum (10.5) need not make sense. It is unproblematic
when we consider only vectors in Df that have finitely many nonzero entries,
but not when we consider vectors in Db. To the extent that mechanics needs
only concern distances between body points placed in vectors in Df, inner
product (10.5) will do, but more generally one might instead vary (10.5) by
introducing a convergent sequence {wi | i ∈ N} of positive weights and define
i3 : D × D → R by

i3(x, y) =
∑

i

wixiyi, (10.7)

where we assume
∑

iwi < ∞. As a practical matter, such a weighted in-
ner product need not differ much from starting out with a finite D. Exceed-
ingly complex complex beliefs simply do not appear in everyday cognition.
If indices assigned to attitudes increase with complexity, we can expect that
high-index attitudes receive vanishing weights and so really do not affect com-
parisons greatly. Unfortunately, the weighted approach generates problems
concerning frame indifference.
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The fourth generalized inner product i4 : D × D → Z2, defined by

i4(x, y) = |i1(x, y)| mod 2 (10.8)

=
(Z2)∑

i

xiyi, (10.9)

multiplies coordinates and sums these products in Z2. This inner product thus
gives a 0 or 1 depending on whether the number of matching places in x and y
is even or odd.

The generalized inner product i2 induces two metrics on D in the usual
way, by applying the quadratic forms associated with the products to differ-
ences of the vectors in question. The difference x − y yields a vector z that
has nonzero entries only at places in which x and y differ. Evaluating the
quadratic form i2(z, z) thus yields a count of these places of difference. This
count itself constitutes the Hamming or Manhattan distance between the two
vectors, the Minkowski metric of exponent 1. The square root of this form,√

i2(x − y, x− y), yields the standard Euclidean distance between x and y,
the Minkowski metric of exponent 2.

Note also that the generalized inner product i4, applied as a quadratic form
to difference vectors, yields the parity of the Hamming distance of binary
vectors.

10.2.5 Changes of frame

As stated in Axiom S1c, the free modules and vector spaces used in mechanics
have the property that each isometry φt of the space at some instant t consists
of the composition of a translation and orthogonal transformation, that is,

φt(x) = φt(xo) + Qt(x− xo) (10.10)

for some fixed point xo representing the displacement of origin, or separation
of the new observer from the old, and some orthogonal (distance preserving)
tensor or rotation Qt taking vectors into vectors.

In our binary vector space, orthogonal transformations consist of permuta-
tions of D, that is, relabeling of state components with different elements of
D. We can represent these permutations with binary matrices that contain only
zero entries except for exactly one 1 in each row and column, and show that
every isometry of Zn

2 decomposes into a translation and permutation (Hartwig
& Doyle 2002).

Constant linear motion and Galilean changes of frame in D consist of a type
of cyclic motion. Recall from (6.62) the form of Galilean changes of frame
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is φt(x) = Q0(x − xo) + (t − to)(φ1(xo) − φ0(xo)). In D we interpret the
product (t− tφ)x as a (t− tφ)-fold sum of x with itself, that is,

1x = x

2x = x+ x

3x = x+ x+ x,

and so on. As these repeated additions show, constant linear motion in the bi-
nary space consists of repeated flipping of position on some set of dimensions
with a constant interval between flips.

10.3 Motion

Following Section 7.1, we think of each motion χ as part of a history h : Ih →
S occurring over a temporal interval Ih. For simplicity, we restrict discus-
sion to motion of body points. We treat discrete motions of body points as
sequences of vectors in S = D. We write xh,t ∈ S to denote the placement
at instant t in the history h, or, more commonly, just xt when the history is
understood.

10.3.1 Velocity and acceleration

I define the instantaneous velocity as a difference vector, writing

ẋt = xt − xt−1 (10.11)

to denote the change in position at instant t. This change constitutes a trailing
velocity. I treat velocity as a trailing quantity for two reasons.

First, most designs for automated reasoning agents have the agent choose its
actions on the basis of its current state at some instant. This means that defi-
nitions of the state at some instant must be independent of or compatible with
the different choices for successor states. In consequence, any velocity used
as an input to or as grounds for these choices must be a trailing difference. Of
course, the decision process will probably not restrict itself to considering only
this input velocity, but might also consider alternative output or leading veloc-
ities. For example, a system attempting to choose its actions rationally will
seek to compare alternative changes to its state, and these alternative changes
correspond to or determine possible leading velocities.

Second, almost all artificial reasoning systems constructed in artificial in-
telligence rely on changes in beliefs, intentions, or other mental attitudes to
trigger or initiate the application of some routine or habit or reasoning. The
well-known production systems so common in psychological models provide
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a familiar example of such change-triggered behavior. This role for attitudi-
nal changes in initiating behavior means that mental dynamogenesis involves
velocity in crucial ways. Mental positions do not simply change in response
to forces; trailing changes themselves help generate or shape forces at subse-
quent times. To do this, automated change-based reasoners use various means
for tracking changes in position. The RMS, for example, keeps a record of the
label of In or Out obtaining prior to the most recent update. The difference be-
tween these two labels across all information elements constitutes the velocity
of the system. The RMS uses this velocity by informing its environment which
of the state elements experienced a change of status.

Although we interpret velocity as a trailing difference, we view other other
mechanical difference quantities as leading differences. In particular, we de-
fine ẍt, the acceleration at t, to be a leading acceleration:

ẍt = ẋt+1 − ẋt (10.12)

= xt+1 − xt − ẋt (10.13)

= (xt+1 − xt) − (xt − xt−1) (10.14)

= xt+1 − 2xt + xt−1 (10.15)

= xt+1 + xt−1. (10.16)

The last step, from (10.15) to (10.16), only holds in D and other modules
over fields of characteristic 2, in which the middle term of (10.15) vanishes.
The second equation, (10.13), expresses the acceleration in terms of the next
position and the current position and velocity.

The mechanical development presented in the following focuses on reason-
ing that determines instantaneous forces on the basis of past motion. By (6.60),
therefore, the results of decisions must determine leading accelerations if they
are to represent forces that provide the next increment of motion. If a decision
process needs to consider acceleration as input, the acceleration needs to be a
trailing acceleration such as ẍt−1 = ẋt − ẋt−1.

We treat differential quantities in disparate ways for lack of an interpretation
that measures all changing quantities in the same way. Although in the present
development it makes sense to treat the main notions of velocity and accelera-
tion differently because of the the different ways these concepts enter into the
operation of computational agents, a more uniform interpretation might also
be possible.

One more uniform interpretation, not adopted here because it does not ad-
dress the preceding considerations concerning decision-making causality, is
the definition of velocity employed by Toffoli and Margolus (1990), who use
xt+1 + xt−1 to characterize the velocity of a second-order cellular automaton
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Fig. 10.1. The kinematical relationships among position variables in time. The boxed
quantities denote conventional labels for the quantities of interest at instant t, with a
reasoning agent observing xt and ẋt and choosing ẍt.

at time t. One can view this quantity as related to the average of the trailing
and leading velocity at time t,

xt+1 + xt−1 = (xt+1 − xt) + (xt − xt−1). (10.17)

Of course, in binary vector spaces velocity (10.17) is the same as the leading
acceleration identified in (10.16). In the binary Toffoli–Margolus scheme, the
average acceleration at t is the quantity xt+2 + xt−2.

Velocity (10.17) represents twice the average velocity in ordinary real vector
spaces, but we do not assume that the modules of interest in discrete
mechanics have a normalizing scalar corresponding to 1

2 . In particular, D lacks
such a scalar, so to accommodate the range of possible spatial modules, we
treat this quantity as representing a kind of average. This average conception
of velocity, however, does not correspond to a quantity readily available to a
reasoning agent attempting to determine its position at the next instant.

In fact, the nonuniformity in treatment of discrete velocity and acceleration
visible in (10.11) and (10.12) is reflected in a comparable nonuniformity in the
treatment of cellular automata by Toffoli and Margolus, who employ a grid
of integral and half-integral instants to depict these quantities. We adapt this
device to depict the kinematical quantities as in Figure 10.1.
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10.3.2 Configuration and deformation

Configuration and deformation in continuum mechanics concern the relative
placement and change of relative placement of body points. Our focus here
on the motion of reasoners considered as point bodies makes configuration
and deformation into trivial matters, since a point body always has the same
location as itself. This observation, however, does not suggest ignoring config-
uration as much as it suggests exploring richer, multibody models of mental
structure, because the notion of configuration plays a clear role in some aspects
of ordinary thought.

Despite some appearances, human minds do not change attitudes freely and
randomly, but often preserve dependency relations among different attitudes.
For example, I might maintain an intention to refuel the car at lunchtime,
despite forming, carrying out, and discharging numerous other thoughts and
plans throughout the morning, until my wife reports she filled it up while re-
turning from an errand. Such thinking maintained the causal connection be-
tween a belief the car was low on fuel and the intention to refuel at lunchtime,
and maintained the intention to refuel despite many changes to other intentions,
perhaps changes that involved resolving conflicts between other intentions and
the intention to refuel. We regard these persistent relations as aspects of the
reasoner’s configuration that form part of the memory of the agent. The idea
of such persistent relations goes back at least to Hume, who regarded much
thinking and intelligence as the product of associations between ideas. It also
underlies the notion of RMS reason.

Although most of the following discussion of reasoning and learning treats
the reasoner as a point body, for some purposes I view the multidimensional lo-
cations in D as representing placements of attitudes in D in a two-dimensional
space of locations in order to treat the issue of mental configuration. I do
not pursue here the elaboration of mental substructure needed to justify these
complementary views of mental states.

I also do not draw a clear line between persistent relations represented in
the mass of the agent and persistent relations represented in the position of the
agent. I instead regard such relations as part of both configuration and mass,
and regard formation and use of such relations as important aspects of learning
and mental dynamogenesis.

10.4 Mass

The class of psychologies considered here distinguishes position from
mass primarily by the dynamical role played by these aspects of agents. In
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psychological terms we speak of beliefs, desires, and intentions as stored in
memory, but distinguish different types of memories, such as short-term and
long-term memories, and cognitive and motor memories. In some cases dis-
tinctions between types of memories correspond merely to the type of contents
held in the memory, but in other cases the distinctions follow differences in
dynamical treatment.

Persistence over time constitutes one difference in treatment used to distin-
guish memory from outlook. For example, one usually distinguishes between
short-term and long-term memory by saying that items in long-term memory
persist across changes of attention, while items in short-term memory persist
only through the current episode and are lost when attention shifts. In the me-
chanical setting, this suggests viewing long-term memories as connected with
mass, and short-term memories as connected with position, because these iden-
tifications provide the normal persistence of mass across changes of position.

As the preceding remarks about configuration indicate, however, mere per-
sistence does not provide a clear separation between outlook and memory. The
differing roles of memory and outlook in generating forces on the mind provide
more fundamental means for distinguishing the two.

10.4.1 Mass values

Because the primary distinction between mental position and mental mass lies
in dynamical role rather than in psychological form, I simplify the discussion
here by assuming that the same space of beliefs, desires, and other mental
elements characterize the spaces of positions and masses. I therefore use the
same space D to formalize mass values in M as we use to formalize locations.
Particular psychologies might involve mental elements that can only appear
in positions or in masses. When needed, we can recover such restrictions to
subspaces by means of kinematic restrictions.

We write mt ∈ M = D to denote the mass of the agent at time t. Because
we presume the agent determines a leading force and so leading acceleration
and massing, our interest chiefly lies in the leading change of mass. We write
ṁt to mean this leading change; that is,

ṁt = mt+1 −mt. (10.18)

In identifying values in D as the mass of the body, we replace a scalar
with a vector measure, a one-dimensional real Euclidean space with a multi-
dimensional space. In traditional mechanics, it might be more natural to say
that the mass elements in m, considered as a subset of D, form the material of
the body at instant t, and that |m| or some other numerical measure over the
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elements represents the mass itself, which tradition conceives of as a measure
of the quantity of matter. Instead of this traditional approach, we view m as
the mass itself, and forego universal comparability of material quantities, giv-
ing up absolute mass along with absolute space and time. We can take each
element of D to comprise a different type of matter, and view m as a vector of
scalar mass values, one value for each type of matter. In this view, the vector
m can be thought of as simultaneously representing both matter and mass.

10.4.2 Spatial representations

Using the same space D to represent both position and mass invites questions
about the distinction between mass and position, in particular, whether mass
values should just be considered additional spatial dimensions.

One might view the use of the same space to represent mental position and
mass as a sort of spatial representation of material employing each spatial co-
ordinate to distinguish a type of mass, and identifying the body with its place-
ment in this space. This identification of mass with placement recalls the ref-
erence placement concept in continuum mechanics in which one identifies a
body with its placement at some time, identifying points in space with points
of the body, and deriving the measure of mass at other times from the measure
of mass in the reference placement and from properties of the process by which
the reference placement is changed into the placement in question.

This identification also may serve us better when we consider mental spaces
corresponding to different agents. We can think of each body as having differ-
ent types of matter, with no overlap on mass values. We thus avoid the need
to find a single nonlinear space for all mass values, though of course we can
construct one for any specific collection of bodies and types of materials by
taking the direct sum of the separate spaces.

Why does ordinary three-dimensional space not yield three dimensions of
mass in the same way? One possible answer is that the first role of mass is
in defining linear momentum. Ordinary physical mass would divide into three
sorts only if one could readily distinguish linear motion along one dimension
from linear motion along the other two. Such is not the case, however, for a
simple change of frame suffices to translate any linear motion into linear mo-
tion along a given axis, and the axioms of frame indifference require physical
mass to remain unchanged through this transformation. This interchangeabil-
ity may be taken as the reason ordinary mechanics has the same conception of
mass for the distinct spatial dimensions.

A different situation obtains in the binary vector space D considered here,
where no rotation suffices to change the linear motion into motion along
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a single dimension. Rotating the frame preserves the dimensionality of the
motion, so the rotated representation of motion changes the same number of
coordinates no matter what. One might consider other rerepresentations in
which the direction of motion is mapped to a single nonbinary dimension, but
I do not treat such here.

10.5 Momentum

In the discrete setting considered here, linear momentum takes values in the
module M × S = D × D with the two components representing the mass and
velocity of the body. Because the factors in this product are homogeneous, we
regard momenta as forming a module over Z2.

We write pt = (mt, ẋt) to denote the linear momentum of the body at instant
t. We write ṗt to mean the leading change in momentum at instant t, that is,

ṗt = pt+1 − pt (10.19)

= (mt+1, ẋt+1) − (mt, ẋt) (10.20)

= (mt+1 −mt, ẋt+1 − ẋt) (10.21)

= (ṁt, ẍt). (10.22)

We obtain the discrete rotational momentum Ly,t with respect to some lo-
cation y at time t as

Ly,t = (xt − y) ∧ pt (10.23)

= (mt, (xt − y) ∧ ẋt). (10.24)

Change of rotational momentum follows the same pattern as change of linear
momentum, namely

L̇y,t = Ly,t+1 − Ly,t (10.25)

= (mt, (xt − y) ∧ ẍt). (10.26)

To see this last equality, (10.26), we expand the definition of L̇y,t to obtain

Ly,t+1 − Ly,t

= (mt+1, (xt+1 − y) ∧ ẋt+1) − (mt, (xt − y) ∧ ẋt) (10.27)

= (ṁt, (xt+1 − y) ∧ ẋt+1 − (xt − y) ∧ ẋt) (10.28)

= (ṁt, xt+1 ∧ ẋt+1 − y ∧ ẋt+1 − xt ∧ ẋt + y ∧ ẋt). (10.29)

Consider now the spatial component (L̇y,t)2 of the value obtained in (10.29).
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By rearranging terms and applying kinematical definitions, we obtain

(L̇y,t)2
= xt+1 ∧ ẋt+1 − y ∧ ẋt+1 − xt ∧ ẋt + y ∧ ẋt (10.30)

= xt+1 ∧ ẋt+1 − xt ∧ ẋt − y ∧ ẋt+1 + y ∧ ẋt (10.31)

= xt+1 ∧ ẋt+1 − xt ∧ ẋt − y ∧ (ẋt+1 − ẋt) (10.32)

= xt+1 ∧ ẋt+1 − xt ∧ ẋt − y ∧ ẍt. (10.33)

The portion of this quantity not involving the reference point y then reduces as
follows.

(L̇y,t)2 + y ∧ ẍt

= xt+1 ∧ (xt+1 − xt) − xt ∧ (xt − xt−1) (10.34)

= xt+1 ∧ xt+1 − xt+1 ∧ xt − xt ∧ xt + xt ∧ xt−1 (10.35)

= −xt+1 ∧ xt + xt ∧ xt−1 (10.36)

= xt ∧ xt+1 − xt ∧ xt − xt ∧ xt + xt ∧ xt−1 (10.37)

= xt ∧ (xt+1 − xt − xt + xt−1) (10.38)

= xt ∧ (ẋt+1 − ẋt) (10.39)

= xt ∧ ẍt. (10.40)

Here the simplification from (10.35) to (10.36) uses the skew-symmetry of the
alternation, which implies that xt+1 ∧ xt+1 = xt ∧ xt = 0. Putting (10.29)
and (10.40) together gives

(L̇y,t)2 = xt ∧ ẍt − y ∧ ẍt (10.41)

= (xt − y) ∧ ẍt, (10.42)

so we again obtain result (10.26). Note that this result is also what we would
find by taking change of rotational momentum to consist of the difference
of moments formed using the current position with the successive velocities,
namely

L̇y,t = (mt+1, (xt − y) ∧ ẋt+1)− (mt, (xt − y) ∧ ẋt) (10.43)

= (ṁt, (xt − y) ∧ ẍt). (10.44)

These components are also what we would expect to obtain using the product
rule for derivatives. The discrete change of mt is just ṁt, and we obtain the
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discrete change of the spatial component (xt − y) ∧ ẋt by

∆[(xt − y) ∧ ẋt] = ∆(xt − y) ∧ ẋt + (xt − y) ∧ ∆ẋt (10.45)

= ẋt ∧ ẋt + (xt − y) ∧ ẍt (10.46)

= (xt − y) ∧ ẍt. (10.47)

Here (10.45) simply expresses the product rule. Note that to obtain (10.46)
from (10.45) we must follow the earlier patterns and interpret the change in xt

as the trailing velocity ẋt and the change in velocity ẋt as the leading acceler-
ation ẍt. The result in (10.47) then matches that in (10.42).

10.6 Force

Forces take values in the momentum module M × S = D × D over Z2, with
the two components representing a massing and an acceleration of the body.
We write ft to denote a force acting at instant t.

In traditional mechanics, one can use Euler’s first law either to determine
motion given stipulated forces and initial conditions, or to determine the forces
acting in a stipulated motion. One can do the same in the present case. We
use Equation (6.60) as a prescription for identifying the forces corresponding
to stipulated masses and motions by the rule that the force at instant t, ft,
equals the change in momentum at t, ṗt. That is, starting with a mechanical
state (xt, ẋt,mt) or (xt, pt), combining (6.60) with the preceding kinematic
equations we obtain the successor state (xt+1, pt+1) as

(xt+1, pt+1) = (xt+1, (mt+1, ẋt+1)) (10.48)

= (xt + ẋt + ẍt, (mt + ṁt, ẋt + ẍt)). (10.49)

Put another way, taking initial values for position and momentum together
with a sequence of momentum changes determines a sequence of successive
positions and momenta. Conversely, a sequence of positions and momenta,
together with an initial velocity value, determines a sequence of momentum
changes.

The discrete torque Fy,t with respect to some location y at time t takes the
form

Fy,t = (xt − y) ∧ ft (10.50)

= (ṁt, (xt − y) ∧ ẍt). (10.51)
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As we require that the system of forces be balanced, torques do not depend
on the reference point, so using the origin 0 for reference we have the simpler
formula Ft = (ṁt, xt ∧ ẍt).

Mental force systems over D2 satisfy the equilibration demands of Axiom
F6 in a slightly different way than familiar physical force systems. Recall that
the demand of equilibration is that for all bodies B and C the force system
assigns values to f(B, C) and f(C,B) so that f(B, C) = −f(C,B). By taking
forces to inhabit D2, a module of characteristic 2, we have x = −x for all x,
even when x �= 0. Thus for mental forces in D2, force equilibration reduces to
f(B, C) = f(C,B).

The divisions of mental states into mass and position permit us to look more
closely at the forces producing mental motion, in particular, at the differences
between forces in reasoning, learning, and other changes in mental state.

10.6.1 Environmental interactions

The mental interior enters into a sequence of interactions with its environment,
in particular the agent’s sensors and effectors. These interactions constitute
the forces applied by the environment on the mind and by the mind on the
environment. In the setting of minds and computational systems, it also seems
natural to introduce an additional division of the resultant force f(B,Be) into
input forces and output forces corresponding to input and output interactions
with the environment.

The division between input and output forces or interactions cuts across the
division of forces into body and contact forces. This division refers to the
genesis of the forces, not to the medium of application. Because the system
of forces is pairwise equilibrated, the force f(B,Be) exerted on the body by
the environment is the opposite of the force f(Be,B) exerted by the body on
the environment. The notion of input and output interaction corresponds to
a distinction between the quantity and origins of forces, making it sensible
to refer to input forces as forces f i(B,Be) generated by the environment on
an agent, and to refer to output forces as forces fo(Be,B) generated by the
agent on its environment. Using pairwise equilibration, we can thus write the
resultant force as the combination

f(B,Be) = f i(B,Be) − fo(Be,B) (10.52)

of input and output forces. When the environment of the great system in
question is passive, the input and output forces also sum to yield the applied
force fa.
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The input interactions fall into several categories, some simpler, some more
complex. The simpler types of input interactions convey information or re-
quests.

• The interaction may instruct the agent to change its position or mass in cer-
tain ways, typically by stipulating that certain sets of attitudes should be
added to or removed from the attitudes In the position or mass.

• The interaction may query the agent about the status, In or Out, of a set of
attitudes in the current position or mass.

Following standard terminology in artificial intelligence, we think of these as
the input aspects of Tell and Ask interactions. We may take these transactions
to occur singly or in combination without much difficulty, but the following
chapters generally assume that at most one transaction occurs at each instant.

In addition to these fairly natural types of input interactions, common prac-
tice in artificial intelligence and psychology also considers a more complex
type of input interactions that enlarges the set of attitudes, and so changes the
mental space inhabited by the agent. Such an interaction instructs the agent
to expand the set D of possible attitudes with one or more additional elements
representing previously unimagined or unconsidered attitudes. Although this
type of interaction seems natural in computational systems, one can formalize
such interactions mathematically in ways that do not involve adding elements
toD. To do this, one thinks ofD as an infinite set, and regards the agent as only
using a finite portion of this set at any instant, as in Df or Db. One then views
the requests just described as indicating the agent should consider a somewhat
larger finite subset of D.

Although assuming all attitudes exist from the start obviates piecemeal con-
struction of D, it is not clear this is the best way of viewing human minds or
artificial agents. The physical constitution of human brains can shape the men-
tal constitution of human minds. It is possible that processes in which portions
of the brain grow or die are best viewed as enlargement of or contraction in the
dimensionality of mental space rather than mere enlargement or contraction of
some active set of dimensions.

The output interactions fall into several categories, with the primary ones
involving provision of answers and notification of changes.

• The interaction can convey answers to queries posed in Ask interactions. In
some cases, these answers may form part of the same interaction as the query
itself. Answers to some questions may provide extended sets of attitudes
and other information, as when answering questions about why something
attitude is held.
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• The interaction can inform the environment about changes in specific di-
mensions of position or momentum.

Although these interactions can also take place in combination with others, we
focus on the case in which only one output interaction occurs at a time.

The division of interactions between the mind and its environment into input
and output interactions has little parallel in traditional mechanics. People do
construct physical mechanical systems such as church bells in which interac-
tions all take the form of external impulses, but nothing in ordinary mechanics
enforces such a partition of motion. Such separations mainly serve to simplify
system control and to enhance intelligibility of behavior. Future investiga-
tion of artificial psychologies might therefore seek to determine how much
one loses by maintaining such divisions, and whether one can design control
systems that carry out intended activities intermingling control actions with
external impulses, as in fly-by-wire aircraft control systems or in distributed
systems such as the rational distributed RMS (Doyle & Wellman 1990).

10.6.2 Spatial and mass forces

Forces change momentum, and hence can change both mass and velocity.
However, not all forces need change both of these components of momen-
tum. Some forces might take the form (0, ẍ), indicating no change to the mass
and some change to the velocity and hence to outlook. We call such a force
a spatial force because it has a vanishing massing component. Indeed, tradi-
tional mechanics regards almost all forces as having a purely spatial character.
Another force might take the form (ṁ, 0), indicating a change only to mass,
not to position. We call such a force a mass force, as it has a vanishing velocity
component.

We thus can decompose forces applied to the agent into an applied mass
force

fm
t = (ṁt,0) (10.53)

and an applied spatial force

f s
t = (0, ẍt), (10.54)

yielding a total applied force

fa
t = fm

t + f s
t (10.55)

= (ṁt, ẍt). (10.56)

Most automated agents studied in artificial intelligence, being built as sequen-
tial processes on sequential machines, obey a simplified pattern of action in
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which the agent suffers a single type of force at any instant. Such forces
can come from the environment, as just summarized, or can constitute self-
forces generated by the agent’s own reasoning habits and volition. Sequen-
tial rule-based reasoning methods form a prime example of such sequential
self-forces.

In the psychologies considered here, we think of simple reasoning as change
in view or change in outlook, with no changes to long-term memory or habits
except perhaps indirectly through the action of forces that embed attitudes into
long-term memory when the attitudes persist over a long enough interval. Me-
chanically, therefore, we expect reasoning to stem from forces that change only
the outlook or attitudes of the agent, and that do not directly change either long-
term memories or the set of habits. In this case, spatial forces mediate simple
reasoning.

Similarly, we think of learning as involving changes in long-term attitudes
and habits. Such changes can involve changes in configuration or mass or both,
with different types of learning involving different combinations of changes.
Learning that acts only to embed long-held configurations into mass, for ex-
ample, would consist of pure change of mass. Some sorts of learning might
change mass directly, yet also cause consequential changes to outlook. Other
types of learning might involve no change of mass, but instead consist of
change of stable shape or configuration. In physical materials, plastic bend-
ing of an elastic metal band represents such spatial learning. In mental mate-
rials, plastic shift of shape or conservative update to accommodate stipulated
changes represents a similar form of spatial learning.

10.7 Energy

Ordinary mechanics obtains the familiar formulas

Kt = 1
2mtẋ

2
t (10.57)

= 1
2ptẋt (10.58)

for the kinetic energy of a body by assuming constant mass, rewriting the in-
cremental contributions ṗtẋt as mẍẋ, and integrating over time. The factor
of 1

2 in this expression means we cannot use this formula in the binary vector
space D, in which the scalar ring Z2 lacks an element corresponding to 1

2 .
The discrete definition of kinetic energy builds on the definition of momen-

tum, following the idea of the kinetic energy of a body as the “energy of
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motion.” In this view, kinetic energy consists of the cumulative changes in
momentum across distances, defined by

Kt+1 = Kt + ẋt(ṁt, ẍt) (10.59)

= Kt + (ṁt, ẋtẍt), (10.60)

where ẋt represents the distance traversed in the time step t and the product
ẋtṗt is the power Pt, that is, the work done by the force ft across that distance.
Integrating this across time we obtain

Kt = ptẋt (10.61)

as the value for discrete kinetic energy. This value, which differs from the
usual by a change of scale, represents the quantity called the live force, vis
viva, used by Euler and Lagrange in the early days of rational mechanics.

We evaluate product (10.61) by preserving the natural separation of the com-
ponents,

Kt = (mt, ẋtẋt) (10.62)

= (mt, ẋt) (10.63)

= pt. (10.64)

We interpret the product ẋtẋt in (10.62) componentwise, and obtain (10.63)
from (10.62) because componentwise squaring is the identity in the setting of
binary vector spaces. In our discrete setting, therefore, kinetic energy turns out
to be the same quantity as the momentum.

As in traditional mechanics, the kinetic energy depends on the frame of ref-
erence, since an observer moving with the body will see zero velocity or mo-
mentum and hence no kinetic energy, while an observer associated with a body
in motion relative to the first will see a nonzero velocity and kinetic energy.
The formalism makes this frame relativity clear by the explicit dependence of
kinetic energy on the velocity, which is not indifferent to frame changes.

The equivalence of values of kinetic energy and momentum means that at
least one form of energetic conservatism corresponds to a smoothest path prin-
ciple for position and mass, that is, to conservation of position and mass in the
face of alternative responses to force.

10.8 Illustration: simple computation

As a first illustration of the preceding framework for discrete mechanics, I
recast briefly the familiar finite automaton model of computation.
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Consider a finite automaton with n states, l symbols in its input alphabet, and
m symbols in its output alphabet. The following interprets the automaton as
a simple constant-mass mechanical system. We treat the n states as positions
in the module Zn over the ring Z. Because the mass of the automaton does
not change through any motion, it matters little what module we choose to
represent the mass values. For simplicity we think of mass values as inhabiting
the same module Zn as positions. It also matters little which value we choose
to represent the constant mass, and again for simplicity, we use the value 1.

We view the inputs and outputs of the automaton as portions of the position
of the environment. We use the module Zl over the ring Z to represent the
inputs, and use the module Zm over Z to represent the outputs. This means
we can regard the environmental position, as seen by the automaton, as the
module Zl ×Zm over Z, and can regard the entire space relevant to automaton
motion as the module Zn × Zl × Zm over Z.

The conventional transition table of the automaton thus consists of a map

∆ : Zl × Zn → Zm × Zn (10.65)

representing a rule that says how to respond to receiving input symbols in
automaton states by emitting output symbols and moving to new states. We
can divide ∆ into two projected maps that give the dynamics controlling the
automaton for each input symbol. The first map

∆s : Zl → (Zn → Zn) (10.66)

tells how states map to states in the presence of a particular input symbol. The
second map

∆o : Zl → (Zn → Zm) (10.67)

tells how outputs vary with state in the presence of a particular input symbol.
These projections are defined so that

∆(i, s) = (∆o(i)(s),∆s(i)(s)). (10.68)

For each input symbol i ∈ Zl, we denote the resultant transition and output
maps by ∆s(i) and ∆o(i) respectively.

The most straightforward interpretation of automaton motion in terms of
forces regards the mechanical state of the automaton as the automaton posi-
tion. To do this, we characterize automaton motion with a sequence of quin-
tuples (xt, ẋt,mt, it, ot). By hypothesis, we regard all mass components mt

as having the same constant value m = 1. We identify successive automaton
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states in accord with the transition table, so that

xt = ∆s(it−1)(xt−1) (10.69)

ẋt = xt −∆s(it−2)(xt−2). (10.70)

We can thus regard the map ∆s(it) as producing a vector field over the state
space. We define acceleration as before and from (10.15) obtain

ft = (0,∆s(it)(xt) + xt − ẋt). (10.71)

These definitions permit extension of the transition table to a map

∆ : Zl → [(Z3
n × Zm) → (Z3

n × Zm)] (10.72)

that takes each input value to a map from partial states (xt, ẋt,mt, ot) to partial
states (xt+1, ẋt+1,mt+1, ot+1). We define ∆ so that we have, for each input
i ∈ Zl,

∆i(x, ẋ,m, o) = (∆s(i)(x),∆i(i)(x) − x,m,∆o(i)(x)) (10.73)

The Markovian character of the finite automaton is as evident in this expanded
transition map as in the original transition table, and in the values given by the
mechanical translation.

One can enlarge this interpretation of finite automata to interpretation of
other models of computation. For example, because one can regard a Turing
machine as a writable tape controlled by a finite automaton, one can extend
the mechanical description of a finite automaton to a mechanical description
of a Turing machine. Such an extension would interpret the controller state as
one dimension of the position of the body, with another dimension describing
the infinitely many tape head positions, and with infinitely many mass values
describing the tape contents as a variable mass. Other computational models
offer similar mechanical formalizations. The random-access stored program,
or RASP machine (Elgot & Robinson 1964), for example, would use its lo-
cation pointer as the position, and its memory contents as mass. The pro-
jected maps described in the preceding paragraphs then resemble the RASP
instruction-interpretation maps.
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Reasoning

I distinguish reasoning from logical inference by identifying reasoning as
change of view as opposed to mere relation between propositions (Harman
1986). This chapter recapitulates and expands on the mechanical analysis,
sketched in Chapter 2, of motion and forces produced by simple types of rules
called reasons. I first look at the simplest roles played by reasons in the RMS,
and then present exploratory material in which the technical details have a
more speculative nature. Examination of roles played by reasons in limited
rationality, in learning, and in expressing kinematic constitutive constraints on
mental configuration then continues in subsequent chapters.

11.1 Reasons

Earlier I presented reasons as four-part expressions

A \\ B ‖− C \\ D,
and noted that reasons have connections to the propositional deduction rules,
propositional default rules, propositional production rules, Bayesian proba-
bilistic networks, and artificial neural networks that form the basis of var-
ious theories of reasoning and nonmonotonic knowledge representations in
psychology and artificial intelligence. I will not pursue here the connections
between such representations, but instead look in more detail at the origins,
meaning, and variety of reasons.

11.1.1 Simple reasons

The original RMS employed two forms of reasons, the simplest of which was
called a support-list reason (Doyle 1979). One can characterize each support-
list reason r in terms of three components: the inlist Ar, the outlist Br and the

276
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consequent cr, where Ar, Br ⊆ D and cr ∈ D. We denote such a reason with
the notation

Ar \\ Br ‖− cr, (11.1)

read as “Ar without Br gives cr.” We interpret each support-list reason as
requiring that the consequent element be In if all of the elements of the inlist
are In and all of the elements of the outlist are Out. Formally, we say a position
x satisfies the reason r just in case cr ∈ x wheneverAr ⊆ x and x ∩Br = ∅,
or in vector terms, wheneverArx+Brx = 0. We write [[r]] to mean the set of
all positions that satisfy r, so we have

[[r]] = {x ∈ S | Ar ⊆ x ⊆ Br =⇒ cr ∈ x}, (11.2)

or in vector terms,

[[r]] = {x ∈ S | Arx+Brx = 0 =⇒ {cr} x̄}. (11.3)

When the elements of the inlist are In some position and the elements of
the outlist are Out, we say the reason is valid in the position. Thus a state
must make the consequent of a valid support-list reason In in order to satisfy
the reason; the state can satisfy an invalid support-list reason with an Out con-
sequent.

We call the reason monotonic if the outlist is empty, and nonmonotonic oth-
erwise. One can write monotonic reasons omitting the outlist altogether as

Ar ‖− cr. (11.4)

One can view monotonic reasons as corresponding in some ways to logical
inference rules. Nonmonotonic reasons can represent heuristic or plausible
inferences by making assumptions absent information that would contradict or
defeat the assumptions.

We earlier noted that the simplest sort of reasoning forces the agent into
the position of holding a particular attitude. We can represent such a forced
attitude with a monotonic reason r of the form

∅ ‖− cr. (11.5)

The meaning is just what one expects, namely

[[r]] = {x ∈ S | cr ∈ x}. (11.6)

One naturally generalizes support-list reasons to encompassing multiple
consequents, expressed as

Ar \\ Br ‖− Cr (11.7)
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for a set Cr ⊆ D. Such generalized support-list reasons were called simple
reasons by Doyle (1983e). Simple reasons indicate that each of the conse-
quents must be In if the hypothesis conditions hold, or formally,

[[r]] = {x ∈ S | Ar ⊆ x ⊆ Br =⇒ Cr ⊆ x}. (11.8)

Support-list reason (11.1) thus corresponds to the simple reason

Ar \\ Br ‖− {cr}. (11.9)

Simple reasons cannot forbid the presence of elements in mental states, but
they do allow one to express reasons that remove other reasons from consider-
ation. To accomplish this, one uses defeat of nonmonotonic reasons to remove
the grounds for holding some attitude, and designs a system of uniformly de-
feasible reasons, in which one can defeat any previously stated reason simply
by adding defeating information (Doyle 1983e).

11.1.2 Interval reasons

Although nonmonotonic reasons permit defeat of the grounds for holding an
attitude, no amount of defeating information can force an agent clinging to
some hopeless belief to abandon the belief. To accomplish this, one needs
some way of expressing more than reasons that defeat reasons; one must ex-
press exclusion of attitudes.

We see exclusionary mechanisms motivating the backtracking procedures
incorporated in the original RMS (Doyle 1979). In that scheme, based on the
dependency-directed backtracking methods of Stallman and Sussman (1977),
we represent the inconsistency of a set of beliefs by creating a “nogood” ele-
ment stating the joint inconsistency of the beliefs, and by then using this no-
good to provide a reason for a contradiction belief c. The backtracking system
then would attempt to undo one of the assumptions directly underlying c. In
effect, the backtracker would attempt to make the contradiction Out. If the
backtracker could be guaranteed of success in its efforts, we could assign the
interpretation [[c]] = ∅ to the contradiction, meaning that c should not be held
in any acceptable state of mind. In fact, however, the backtracker might fail to
remove the contradiction, so the notions of nogood and contradiction elements
do not represent pure exclusionary conditions on states.

Accordingly, we generalize simple reasons further still by introducing ex-
clusionary conditions that produce a structural symmetry between hypothesis
and consequent conditions. We write

Ar \\ Br ‖− Cr \\ Dr, (11.10)
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read “Ar without Br gives Cr without Dr,” to denote an interval reason. An
interval reason bears the interpretation that each element of the consequences
Cr must be In and each element of the exclusions Dr must be Out if each
element of Ar is In and each element of Br is Out. In set-theoretic terms, we
write

[[r]] = {x ∈ S | Ar ⊆ x ⊆ Br =⇒ Cr ⊆ x ⊆ Dr}. (11.11)

In vector terms, we write instead

[[r]] = {x ∈ S | Arx+Brx = 0 =⇒ Crx+Drx = 0}. (11.12)

We may then view a simple reason of the form (11.7) shorthand for

Ar \\ Br ‖− Cr \\ ∅. (11.13)

The interval reason satisfaction condition has a nice algebraic interpretation
that suggests the interval reason terminology. When one views D as the lattice
of sets P(D), one can interpret Ar \\ Br and Cr \\ Dr as specifying intervals
in this lattice, namely the intervals

[Ar, Br] = {x ⊆ D | Ar ⊆ x ⊆ Br} (11.14)

[Cr, Dr] = {x ⊆ D | Cr ⊆ x ⊆ Dr}, (11.15)

taking complements relative to D, of course. The reason condition thus says
that any set satisfying the reason must fall in the consequent interval if it falls
in the interval specified in the antecedent of the reason.

11.1.3 Reasons as directional derivatives

The algebraic characterization of reason meanings apparent in (11.12) reflects
an even more pleasing underlying mathematical nature, for we can also inter-
pret reasons as representations of discrete directional derivatives in the sense
of differential calculus. In this way, the development of RMS reasons to permit
reuse of “rational” or “logical” derivations of conclusions in contexts different
from those in which these conclusions were first derived makes use of what
seems more than an amusing ambiguity in applying the English term deriva-
tion. Just as mathematics uses the notion of derivative to characterize change
in traditional mechanics, psychology can use the notion of derivative, in the
form of reasons, to characterize changes in position.

Consider first the appearance of derivatives and partial derivatives in the
discrete setting. We start with a base point x and an incremental (direction)
vector y = ∆x. The direction vector represents a translation, as depicted in
Figure 11.1.
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Fig. 11.1. A translation vector in the space D. The vector x represents the origin of the
translation, and y the translation vector itself.

Let f : D → D be a function on positions. A derivative at a point x ∈ D in
the direction y ∈ D is given by the formula

f(y + x) − f(x)
y

=
f(x+ ∆x) − f(x)

∆x
. (11.16)

From this we obtain the quantities f(x), f(x+ ∆x), and

∆f(x) = f(x+ ∆x) − f(x). (11.17)

The four quantities x, ∆x, f(x), and ∆f(x) give rise to a reason

r(x, f) = Ar \\ Br ‖− Cr \\ Dr (11.18)

via the following identifications:

Ar = ∆x x (11.19)

Br = ∆x x (11.20)

Cr = ∆f(x) f(x) (11.21)

Dr = ∆f(x) f(x). (11.22)

These identifications stem from viewing ∆x and ∆f(x) as indicating the pos-
itive and negative changes from the reference values x and f(x).

Though we derive the reason r(x, f) from the directional derivative of f at
x, the reason itself generalizes away from the point of derivation and yields an
expression independent of the specific point. In particular, we cannot recover
either the point x or the function f from the reason. It is easy to see that

∆x = Ar +Br (11.23)

∆f(x) = Cr +Dr, (11.24)

but this gives no information about x itself. Moreover, even given the point x
we know that

f(x) = Cr +Dr + f(x+Ar + Br), (11.25)

but this provides no way to recover the value f(x).
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The generality of the reason as compared with the specific change of con-
clusions from which it was derived was in fact one of the intentions of the
RMS, to allow reuse of derivations (in the logical or rhetorical sense) in a
context different from those in which the derivations were first applied or dis-
covered.

11.2 Reasoned positions

Although we could employ the notion of reason only to analyze or express
reasoning behavior, it is more natural to consider the possibility that some
reasons appear as elements in D. In fact, we assume that each element d ∈ D
carries an interval reason interpretation [[d]] = Ad \\ Bd ‖− Cd \\ Dd.

This assumption is completely innocuous when we consider attitudes that
carry no constitutive import. We note that every position satisfies the trivial
reason condition

[[d]] = ∅ \\ ∅ ‖− ∅ \\ ∅ (11.26)

with Ad = Bd = Cd = Dd = ∅. Thus extending reason interpretations to
these elements changes nothing about the behavior of the reasoner.

This assumption does place a substantial restriction on meanings, namely
that interval reasons represent the most complex meanings attributed to ele-
ments of D. We will not worry about this restriction here, as interval reasons
already allow significant complexity in psychological theories (Doyle 1983e,
1994).

We say that a position x satisfies its reasons (or is satisfying) just in case
it satisfies the conditions expressed by each of its In reasons. Formally, x is
satisfying iff x ∈ [[r]] for each reason r in x. Since we view every element in
D as a (possibly trivial) reason, this means x is satisfying if x ∈ [[r]] for each r
in x. We define

[[x]] =
⋂
r∈x

[[r]] (11.27)

to be the set of all positions satisfying the In elements of x. With this definition,
x ∈ [[x]] means that x is satisfying.

Section 13.5 examines a notion of equilibrium or relaxed states in which
self-satisfying states represent a limiting case of temporal inference, the result
of quiescence or closure with respect to sets of rules of reasoning. The fol-
lowing paragraphs examine the nonequilibrium case of simple reason-guided
motion.
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11.3 Reasoned motion

According to (10.49), an applied force fa
t = (ṁt, ẍt) and mechanical state

(xt,mt, ẋt) combine to produce a new state

(xt + ẋt + ẍt, (mt + ṁt, ẋt + ẍt)).

Although applied forces can change either mass or velocity or both, we here fo-
cus on spatial forces that do not involve learning of the sort that changes mass.

Typical conceptions of reasoning, like the theory of computation more gen-
erally, focus on reasoners that act in limited steps and do not proceed without
further instruction. In rule-guided reasoning, the usual conception of rule ap-
plication is that if the antecedent conditions of the rule are satisfied, then the
rule produces the stipulated conclusions, and produces no further changes.

In the following sections, let us consider the motion resulting from applica-
tion of a single reason, from application of several reasons, and from removal
of reasons.

11.3.1 Single reason motion

Suppose the reasoner with position xt and velocity ẋt at instant t applies a
reason

Ar \\ Br ‖− Cr \\ Dr.

If the reason is valid, it stipulates the reasoner should hold the conclusions
Cr and not hold the exclusionsDr. To determine the actual changes and so the
velocity, one must translate these stipulated conclusions and exclusions into the
corresponding sets of attitudes to be added to or removed from the position, so
that one may then determine the velocity that carries the old position into the
new.

Translating between stipulated conclusions and the corresponding conclu-
sions and exclusions is straightforward. The stipulation Cr \\ Dr implies a set
of additions

ẋ
(+)
t+1 = Cr \ xt = Crxt (11.28)

because the elements in ẋ(+)
t , being not present in xt, will appear in xt+1 =

xt + ẋt+1. The stipulation similarly implies a set of removals

ẋ
(−)
t+1 = Dr ∩ xt = Drxt (11.29)

because the elements in ẋ(−)
t+1, already present in xt, will not appear in xt+1.

By construction, ẋ(+)
t+1 and ẋ(−)

t+1 are disjoint even if Cr and Dr overlap, so we
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can obtain the changes as the single set

ẋt+1 = ẋ
(+)
t+1 ∪ ẋ(−)

t+1 = ẋ
(+)
t+1 + ẋ

(−)
t+1. (11.30)

If the reason is invalid and so does not specify any changes to be made at the
instant t, we view it as specifying empty sets of additions and deletions, which
implies ẋ(+)

t+1 = ẋ
(−)
t+1 = ∅, so that ẋt+1 = 0 and xt+1 = xt.

Putting these observations together, we see that the position resulting from
applying a reason r should satisfy

xt+1 =
{
xt + Crxt +Drxt if Arxt +Brxt = 0
xt otherwise.

(11.31)

This yields a velocity of

ẋt+1 =
{
Crxt +Drxt if Arxt +Brxt = 0
0 otherwise,

(11.32)

and an acceleration of

ẍt =
{
Crxt +Drxt − ẋt if Arxt +Brxt = 0
ẋt otherwise.

(11.33)

We note that if Ar and Br overlap, then r cannot be valid, and so indicates no
motion.

Acceleration (11.33) implies that immediately applying the reason a second
time leaves the position unchanged. Suppose r was applied at time t producing
ẍt, ẋt+1, and xt+1, and is now to be applied again at t + 1 to produce ẍt+1,
ẋt+2, and xt+2. If the reason is no longer valid, then we have

ẍt+1 = ẋt+1, (11.34)

while if the reason remains valid, we get the same result since

Crxt+1 = Drxt+1 = 0. (11.35)

The only change to the spatial state is that the velocity vanishes, since

ẋt+2 = ẋt+1 + ẍt+1 = ẋt+1 + ẋt+1 = 0. (11.36)

11.3.2 Multireason motion

We obtain the motion due to applying a set of reasons R in a state (xt,mt, ẋt)
in a way similar to that used to obtain motion from single reasons. Multi-
ple reasons only require modifying the desired changes to consist of the total
changes indicated by all the reasons acting at the instant in question.
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We first define R�(x) to be the subset of reasons in R valid in x, that is,

R�(x) = {r ∈ R | Arx+Brx = 0}. (11.37)

We then introduce two functions

U,U � : D → (D → D) (11.38)

to denote, respectively, the changes due to reasons taking into account the
validity or invalidity of the reasons and the changes assuming validity. We
define

U(r)(x) =
{
Crx+Drx if Arx+Brx = 0
0 otherwise

(11.39)

U �(r)(x) = Crx+Drx. (11.40)

The function U(r) provides the change value identified in (11.32), and van-
ishes when the reason is invalid in the state. The function U �(r), in contrast,
simply applies the conclusions of the reason r to a state, and thus does not
depend on whether the reason is valid or not.

We lift these functions to functions over sets of reasons

U,U � : P(D) → (D → D) (11.41)

by defining, for R ⊆ D,

U(R)(x) =
∑
r∈R

U(r)(x) (11.42)

U �(R)(x) =
∑
r∈R

U �(r)(x). (11.43)

We follow the convention that an empty sum equals 0. The changes of inter-
est, of course, do not depend on where in the formalism we take validity into
account, in that

U(R)(x) = U �(R�(x))(x). (11.44)

We then identify the acceleration at time t produced by a set of reasons
Rt as

ẍt = U(Rt)(xt) − ẋt (11.45)

=


 ∑

r∈R�
t(xt)

Crxt +Drxt


− ẋt. (11.46)
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Thus if there are no reasons to apply or all applied reasons are either invalid or
satisfied, the resulting acceleration is zero, leaving the resulting velocity zero
and the position unchanged.

Observe that acceleration (11.33) previously derived for a single reason r is
just the value obtained in (11.45) for the singleton set Rt = {r}.

11.3.3 Removal of reasons

Note that (11.33) and (11.45) give the accelerations stemming from application
of a reason or a set of reasons to a state. Taking back reasons Rt retains the
requirement that the reason antecedents be satisfied, and reverses the sense of
the state in applying the conclusions. This requirement obtains in a RMS that
undoes portions of the state supported by the changed set of base reasons prior
to constructing a new state corresponding to the changed reasons. It also holds
during the search for global satisfying states when tentative constructions are
undone to try different assumptions permitted by the reasons.

Accordingly, we define a function U to invert the production of conclusions
compared with that in U , using the definition

U(r)(x) =
{
Crx+Drx if Arx+Brx = 0
0 otherwise,

(11.47)

and lift this function to sets of reasons by

U(R)(x) =
∑
r∈R

U(r)(x). (11.48)

We then obtain the acceleration corresponding to removal of reason conse-
quences for a set of reasons Rt as

ẍt = U(Rt)(xt)− ẋt (11.49)

=


 ∑

r∈R�
t(xt)

Crxt +Drxt


− ẋt. (11.50)

11.4 Reason forces

Extending the preceding characterization of reasoned motion to a characteri-
zation of reason forces is straightforward, because we regard each reason as
generating a spatial force. The interval reason r = Ar \\ Br ‖− Cr \\ Dr

generates the force

fr(xt,mt, ẋt) = (0, U(r)(xt) − ẋt) (11.51)
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in the mechanical state (xt,mt, ẋt) at instant t, and a set Rt of reasons gener-
ates the force

fRt(xt,mt, ẋt) = (0, U(Rt)(xt) − ẋt). (11.52)

The earlier remarks on accelerations imply concordance of these definitions,
namely f{r}(xt,mt, ẋt) = fr(xt,mt, ẋt).

11.4.1 Friction and inertial motion

The motion engendered by a rule application halts the instant after application.
Motion from rule application thus resembles the familiar mechanical situation
of pushing a heavy rough box across a carpet. This conception suggests a fric-
tional character for the forces shaping reasoning. We see this mathematically
as well because the reason force explicitly depends on the velocity of the body.
Physics traditionally calls such velocity-dependent forces frictional. The co-
efficient of friction exhibited here suffices to damp the velocity to zero when
applied forces cease.

Not all computational systems work this way. One might view operating
systems as always doing something, even if just spinning endlessly in a wait
loop, and recent theories of interactive computing might be viewed in simi-
lar ways. The existence of frictionless systems in traditional mechanics then
raises the possibility of designing artificial reasoning agents in which reason
forces lack or diminish this frictional component and exhibit something like
free inertial motion.

Without the frictional component, a reason force applied at one instant and
then withdrawn would engender free inertial motion that alternates between the
preceding two positions. Specifically, a reason acceleration ẍt = A without
the frictional term −ẋt would still produce a change, but cessation of applied
forces at some instant would then lead to linear cyclic behavior. For example,
suppose that at time t we have (xt, ẋt, ẍt) = (X,V,0). We then would see a
sequence of kinematic states of the form

(xt, ẋt, ẍt) = (X,V,0)

(xt+1, ẋt+1, ẍt+1) = (X + V, V,0)

(xt+2, ẋt+2, ẍt+2) = (X,V,0)

(xt+3, ẋt+3, ẍt+3) = (X + V, V,0)
...

This behavior would fix conclusions in the state only after the reasoner made
subsequent changes that did not affect the conclusions in question.
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One might interpret such linear cyclic motion as introducing a small element
of the distinction between long-term and short-term memory. The most recent
changes would represent short-term memory, while older changes, now fixed
in position, would represent long-term memory. Unlike standard conceptions
of short-term memory, this type of frictionless reasoning induces a division of
memory contents that depends on the actions of the reasoner rather than some
architectural or structural aspect. As will be seen in Chapter 13, one direct
interpretation of standard theories of long-term and short-term memory calls
for explicit forces that generate changes in reasons or mass when certain con-
clusions remain sufficiently long in the conclusions or position. It would be in-
teresting to know to what extent encoding or embodying memory dynamics in
kinematical form can obviate the need for explicit memory-conversion forces.

One can also regard linear cyclic motion as inducing a degree of uncertainty
about the mental position. The position of a body depends on the instant of ob-
servation in any free mechanical motion, but in the discrete space D, the set of
possible positions has just two members, rather than comprising an entire line
or half-line, with a 50–50 probability distribution between the two possibili-
ties. I examine some consequences of this and other mechanical uncertainties
in Chapter 14.

11.4.2 Superposition and conflict resolution

The binary additive combination of reason conclusions embodied in (11.42)
clearly represents only one of the simplest possibilities. The mechanical for-
malism presented herein presupposes that conflict resolution takes place in the
course of determining the reasons on which to base changes. We view dif-
ferent means for resolving such conflicts as constitutive of different types of
agents or psychological materials. Mechanics itself provides the notion of ad-
dition or superposition of forces; if this simple method of combining reason
contributions does not provide the desired behavior, then conflict resolution
must occur in determining the force due to the whole set of reasons.

One can view serial consideration of single reasons as the result of just such
a conflict-resolution procedure, for example, one that uses an ordering of the
reasons to find the first valid but unsatisfied reason and then produces the force
due to that reason acting alone. A less serial conflict-resolution method might
use a similar ordering on reasons to determine the force from all of the valid
but unsatisfied reasons by summing the changes indicated by all the reasons,
breaking conflicts by omitting the changes indicated by the higher numbered
of the conflicting reasons. In such ways one might find reasonable means of
shifting some of the burden to the combination function U that aggregates the
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individual reason contributions. The attractions of such an approach would
have to outweigh the benefits offered by the superposition approach implicit in
(11.42).

More generally, the mechanical interpretation says nothing specific about
the genesis of reason forces or about how specific psychological materials or
architectures resolve conflicts among reasons. Such specifics lie outside the
bounds of mechanics proper, just as do electromagnetic, gravitational, nuclear
forces, and the many specific material forces or response functionals of con-
tinuum physics. We may expect a wide range of types of forces in psychol-
ogy and economics, especially in light of the artificial nature of these subjects
(Simon 1981). At present we lack ways of even enumerating or envisioning all
these possible forces, much less categorizing such forces into a small number
of types.

11.4.3 Frame indifference

The way that reasons generate forces should not depend on the particular frame
of reference from which we interpret the reasons. In the Truesdell notation, this
means reason forces must satisfy

[fr(x,m, ẋ)]� = fr�(x�,m�, ẋ�). (11.53)

Mass plays no role in the reason interpretations under examination. Frame
indifference of reasons means that the changes produced by reasons should
transform as vectors with respect to orthogonal transformations of the reason
quantities. We thus interpret (11.53) to mean

Qfr(x,m, ẋ) = (11.54){
QCrQx+ QDrQx− Qẋ if QArQx+ QBrQx = 0
Qẋ otherwise.

To verify (11.54), we first consider the way reframing affects the set rela-
tions underlying reason interpretations. As noted earlier, orthogonal transfor-
mations represent permutations of the elements of D in the binary space D,
so frame indifference of reasons means invariance of effect under renaming of
all state elements. Intuitively, therefore, frame indifference of reasons means
that set intersections, complements, and symmetric differences transform with
permutations of D, and that permuting the reason identities as well preserves
the structure of satisfying states. It is also clear that permutations of D do in
fact preserve these things. We run through the formal verification as follows.
Let Q be an orthogonal transformation (permutation) operator on D, and let
x, y ∈ D. We know that such transformations preserve symmetric differences
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because the linearity of Q means Q(x + y) = Qx + Qy. We know that or-
thogonal transformations preserve complements because Qx = Q(1 + x) =
Q1 + Qx = 1 + Qx = Qx. Finally, to see that orthogonal transformations
preserve set intersections, we overload the notation and write Q(e) to mean
the element of D assigned to e in the permutation Q. Clearly e ∈ Q(xy) iff
e = Q(e′) for some e′ ∈ xy. This holds iff e ∈ x and e ∈ y, which holds iff
e ∈ Q(x) and e ∈ Q(y), the two of which in turn hold iff e ∈ Q(x)Q(y). Thus
we have Q(xy) = Q(x)Q(y).

Applying these algebraic results to (11.54), we have that

QArQx+ QBrQx = QArQx+ QBrQx (11.55)

= Q(Arx) + Q(Brx) (11.56)

= Q(Arx+Brx). (11.57)

Because Q0 = 0, (11.57) means that QArQx + QBrQx = 0 iff Arx +
Brx = 0, so the reason condition changes appropriately with the frame. By
similar reasoning we see that

QCrQx+ QDrQx− Qẋ = Q(Crx+Drx− ẋ). (11.58)

Reason forces therefore transform as desired with the frame of reference.
The set-inclusion conditions underlying reason conditions and consequences

do not appear indifferent to translations. In particular, even if we have A ⊆ x,
the corresponding inclusion A + z ⊆ x + z on the translates holds only if
z \A ⊆ z \x, which combined with the inclusionA ⊆ x implies z \A = z \x.
This equality holds for all translation sets z only if A = x. Such sensitivity
to choice of origin reflects a structure present in informational spaces such as
D that is lacking in the physical spaces of ordinary mechanics. In this struc-
ture, the condition of holding some belief or reason has different consequences
than the condition of lacking that belief or reason, introducing an asymmetry
between In and Out. The relevant class of reference frames for assessing frame
indifference thus appears to be the class of translation-free isometries, that is,
the orthogonal transformations.

11.5 Reason stresses

The preceding identification of the forces induced by reasons suffices to com-
plete the mechanical interpretation of reasoning at the level of Euler’s law. The
following section begins a more speculative development in which we consider
additional interpretations aimed at uncovering additional and possibly deeper
mechanical structures exhibited by forces of reasoning.
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Toward this end, we first consider the possibility of interpreting reasons as
generating or embodying stresses, as tensors that take vectors into vectors. The
notion of stress arises in continuum mechanics when we consider the repre-
sentation of forces acting across surfaces within or without a body. Mechanics
conceives of stress as a tensor that, when applied to a vector normal to a surface
element of a body, yields the contact force acting across the surface.

Stress plays a central role in the analysis of many systems and in many
equations of continuum mechanics. First among these equations is Cauchy’s
first law of motion,

ṗ = B + div(T ), (11.59)

which relates the inertial force −ṗ to the body force B, and the stress tensor
T . The following sections show that reason forces admit an interpretation
satisfying (11.59) under suitable identifications of the stress tensor, body force,
and body surfaces. Our point of departure in developing a theory of reason
stresses is to interpret the change operator U as a stress “tensor” that depends
on a set of reasons R acting in a mechanical state (x,m, ẋ).

11.5.1 Reasons as tensors

A tensor is a linear function from a vector space into itself, and a tensor of
order n maps n copies of the space into itself. The tensors of primary interest
in mechanics are tensors of order 2 that map a pair of vectors into a third vector.
As befits most linear algebra, the tensors of order n over a vector space form a
vector space themselves.

We can regard the function U �(r) as a tensor, because it is a linear func-
tion exhibiting the tensorial additive structure identified in (11.43), accord-
ing to which U �(R)(x) is the superposition or sum of the component values
U �(r)(x).

The functionU also exhibits the additive structure identified in (11.42), with
U(R)(x) being the superposition or sum of the component valuesU(r)(x). We
cannot, however, properly call U(r) a tensor because it is a nonlinear function
of conclusion states. The nonlinearity comes about through the conditionality
expressed by the antecedent of the reason, which makes U(r) piecewise linear
over two regions of D, and which can make the superposition U(R)(x) piece-
wise linear over more complicated parts of D. We call a superposition of such
piecewise linear functions a piecewise-linear (PL) tensor. Let us summarize
linear analysis in each of the linear regions by treating the piecewise-linear
operator U(R) as a tensor, dropping the piecewise linear qualification when
possible but distinguishing the two concepts as necessary.
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Another path for investigation might regard reason tensors as proper linear
operators over a transformed space by moving to a larger space in which each
vector in the original space represents a dimension of the enlarged space. In-
vertible or reversible operators on the original space then become permutation
matrices over the enlarged space, and that, as linear operators, constitute proper
tensors.

11.5.2 Reasoner surfaces

Stress represents the forces acting across body surfaces. Applying the stress at
a point to the normal to the surface of the body at that point yields the traction
force on the body across that surface. The total contact force on the body is
thus the sum of the traction forces for each point on its surface.

The preceding treatment of reasoning has primarily considered the reasoner
as a point body, to which placements assign a point location in space. To
regard reasons as stresses acting on the body, we must find a way of treating
the reasoner as a body with surfaces.

One way to approach this difficulty is to regard the reasoner’s position as a
degenerate surface. In this approach, we regard multiple reasons as multiple
stresses all acting on the same degenerate surface, from which we find the total
stress by superposition.

Another approach is to regard the set of conclusions previously treated as
a point location in a multidimensional space as instead representing a set of
points, a form or shape or “volume” occupied, so to speak, in the space of
mental attitudes. In this approach, we regard different reasons as referring to
different surface elements of the reasoner. Recall that our earlier discussion of
reasons as directional derivatives showed how to construct a reason that repre-
sents a directional derivative based at a specific point. As was pointed out, the
use of these reasons to shape motion at other points involves a generalization
step, abstracting the derivative at the original point of discovery to a derivative
holding at other positions as well. As was also pointed out, we can interpret
the antecedent condition A \\ B of an interval reason A \\ B ‖− C \\ D as
referring to a subspace in the lattice P(D), which corresponds to a region or
subspace in D. The volumetric perspective on reason stresses regards each of
these antecedent conditions as specifying a surface in D. If we can interpret
the antecedents A \\ B as specifying a surface in D, we can also interpret the
consequent C \\ D as specifying a vector associated with the surface. The
volumetric perspective on reason stresses regards this associated vector as a
normal vector for the surface. Distinct reasons with the same antecedent su-
perpose to yield the total stress acting across that surface. We get the total
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traction by summing these contributions over all the surfaces, that is, over all
the reasons.

The analysis that follows appears to fit either of these approaches. It de-
velops a stress corresponding to a set of reasons acting either on a degenerate
surface encompassing the body or on multiple surfaces of the body, treating
individual reasons as stresses acting simultaneously on these surfaces and ob-
taining the overall stress by summing the stresses derived from the individual
reasons. In the following discussion we assume D is finite with |D| = n and
that elements di ∈ D for 1 ≤ i ≤ n enumerate D.

11.5.3 Cauchy’s first law of motion

Consider first the gradient of U . The gradient of a function over a vector space
is, when expressed in a coordinate system, a vector of partial derivatives over
the coordinates of the space. We then have

∇U(R)(x) =
(
∂U(R)
∂d1

(x), . . . ,
∂U(R)
∂dn

(x)
)

(11.60)

=
|D|∑
i=1

∂U(R)
∂di

(x) di. (11.61)

In (11.61) we regard each di as a basis vector, and the partial derivatives as
coefficients. We interpret a partial derivative ∂U(R)

∂di
(x) here to be the set of

conclusion changes we get if the set of reasons changes from R \ {di} to
R ∪ {di}; that is,

∂U(R)
∂di

(x) = U(R)(x) − U(R \ {di})(x). (11.62)

In the binary algebra of D, this difference also represents the change in con-
clusions seen in moving fromR to R+ di, regarding di as a basis vector in D,
or

∂U(R)
∂di

(x) = U(R)(x) − U(R+ di)(x). (11.63)

From the definition of U , we see that this difference reduces to

∂U(R)
∂di

(x) =
{
U(di)(x) if di ∈ R
0 otherwise.

(11.64)

Next we consider the divergence ofU . The divergence is the trace of the gra-
dient, that is, the sum of the coefficients of the gradient vector. In the present
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case, this means

div(U)(R)(x) = tr(∇U(R)(x)) (11.65)

=
|D|∑
i=1

∂U(R)
∂di

(x). (11.66)

Combining this definition with the values of these partial derivatives as given
in (11.64), we have

div(U)(R)(x) =
∑
r∈R

U(r)(x) = U(R)(x). (11.67)

We can now recognize formula (11.52) for reason forces as an instance of
Cauchy’s first law (11.59). To see this, we identify the inertial force ṗ with
(0, ẍ), the body force B with the frictional force component (0, ẋ), and the
stress tensor T with (0, U(R)(x)). In this interpretation, (0, U(R)(x)) also
represents the traction due to R exerted at x, and (0, U(r)(x)) represents the
traction due to r exerted at x.

One might also view the production of forces by reasons in other terms as
well. For example, one might view the function U as additively superposing
potentials produced by each reason, in which case the preceding obtains the
total reason force as the gradient of the total potential. Reasons appear in this
picture as carriers of charges that produce fields that produce forces. Such rea-
son potentials might also be used in a discrete Lagrangian formalism (Baez &
Gilliam 1994). Another possibility is to interpret reasons tensors as expressing
or generating torques acting on the reasoner.

11.5.4 Serial composition

The interpretation of reason tensors as indicating stresses on the reasoner makes
use of the superposition of tensors, the operation of adding tensors together to
get another tensor. These tensors are of order 1 and, as functions from a vector
space to itself, may also be composed to obtain other tensors. We may use
serial composition of reason tensors to view some state transitions as resulting
from the serial composition of a series of reason tensors, each of which applies
or undoes the application of an individual reason.

We write such serial tensors as tensor products

r1 ⊗ r2 ⊗ · · · ⊗ rn. (11.68)
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Assuming all the elements of such a product represent application of reasons
without any removals, we may obtain the interpretation of such a product by
the formula

U(r1 ⊗ r2 ⊗ · · · ⊗ rn)(x) = U(r1)[U(r2)[. . . [U(rn)(x)] . . .]]. (11.69)

Here each reason adds its bit to the conclusions, so each is interpreted as an
operator, not as a difference. As we would expect, taking tensor products in
different orders produces different resultant positions or sets of conclusions.



12

Rationality

The preceding treatment of reasoning indicates how we can interpret psycho-
logical rationality in terms of mechanical processes. Let us now look at the
ways in which mechanical concepts enter into characterizing forms of eco-
nomic rationality.

12.1 Limits on rationality

The difficulty and slowness with which real agents change their mental state
constitutes one of the most evident limitations on rationality. As noted earlier,
we can see reflections of the mechanical connection between momentum and
force in “the more you need to change, the more you have to force yourself,”
“the more you know, the harder it is to change your mind,” and other truisms of
popular psychology. We can read the first of these truisms as stating a mono-
tonicity relation between the size of changes and the size of the required forces
and work done, and the second as stating a monotonicity relation between the
mass and the force required for given changes. Notions of monotonicity and
proportionality among the numerical magnitudes of momentum and force are
familiar in traditional mechanics, but how do these apply in the discrete me-
chanical setting?

A mechanical interpretation of thinking also naturally relates slowness of
change to inertia. From the same perspective, the unreality of ideal rational-
ity appears because when we determine actions by finding the maxima of an
expected utility function generated by instantaneous beliefs and desires, large
changes can come from small impulses. This lack of proportionality between
the new information causing changes and the resulting changes suggests we
view these systems as operating without inertia.

To fully understand limits to change, however, one must consider concepts
beyond that of mere inertia. Simon (1955) pointed out long ago that the ideal
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rationality of economics lacks measures of the effort required to make deci-
sions. The modern theory of computational complexity studies a number of
specific and abstract measures of procedural difficulty, some of which were
inspired by the concepts of physical science (Hartmanis 1994). Computational
time is patterned after physical time, even though computational time mea-
sures generally have no fixed relation to physical time, only the compatibility
requirements seen in the treatment of hybrid time presented earlier. The the-
ory of computation patterns its measures of computational space after notions
of length and area in physics; in this case with even less connection to the
physical notions. Information theory, in turn, patterns measures of informa-
tion content after measures of physical mass, with strong formal connections
to physical concepts of entropy. Recent theories of rational allocation of infer-
ential resources exploit these measures in addressing questions about mental
effort (Horvitz, Cooper, & Heckerman 1989).

The great generality of abstract measures of computational effort need not
prevent one from looking for more specific measures of computational effort
relative to specific mental organizations and bodily structures. The prime can-
didate for investigation here is, of course, the human mind. On some tasks
people will differ greatly in the effort they require, but on other tasks one can
find more uniformity. Mental rotation of mental images forms an interesting
example, in that the time people need to perform mental rotation of objects
they have been asked to visualize seems to exhibit the dependence on angle
of rotation one would expect of fixed-speed physical rotation (Freyd 1987).
Rotation-dependent timings might arise through a variety of mechanisms, not
necessarily mechanical ones, but the connections might bear investigation, es-
pecially in light of evidence that the mind uses portions of the brain for both
perceiving physical motion and for reasoning about such motion.

12.1.1 Work and effort

The mechanical perspective brings yet another way of thinking about these
issues by interpreting effort not just as assignments of resources to tasks but
as mechanical work, the exercise of force across distance. Devoting resources
to tasks produces changes of resources (mass) accompanied by changes of
position (task achievement), which forms a quantity of work.

Section 2.2.3.2 identified the mechanical work performed in a special case
of reasoning. Let us revisit this calculation in light of the subsequent formal
development. We focus on the power exerted by the environment on the rea-
soner as a gauge of the work done on the agent, because we treat a reasoner
as a point body, for which every motion is rigid, and the working of any bal-
anced system of forces vanishes in a rigid motion. The power exerted or work
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performed a force ft = (ṁ, ẍt) at time t producing a velocity ẋt+1 over the
same temporal interval is given by

Pt = ẋt+1(ṁt, ẍt) (12.1)

= (ṁt, ẋt+1ẍt) (12.2)

= (ṁt, ẋt+1(ẋt+1 − ẋt)) (12.3)

= (ṁt, ẋt+1 − ẋt+1ẋt), (12.4)

using the idempotence of multiplication in D in obtaining (12.4). As noted
in the earlier discussion, the cross-time term ẋt+1ẋt vanishes if the reasoning
under consideration does not immediately reverse any changes made at the
preceding instant. The term also vanishes if we follow the pattern of common
computation and assume motion halts after every step of reasoning. In that
setting, the velocity vanishes going into every step of reasoning, and vanishes
again the instant after completing the reasoning. The cross-time terms always
vanish in this form of motion, and the work done in every step of reasoning
counts twice, once instigating the movement, and once halting the movement,
a uniform doubling that simply changes the scale of measurement. We thus
simplify calculations of work done by assuming the cross-time term always
vanishes, leaving us with

Pt = (ṁt, ẋt+1) (12.5)

as the expression for power.
To use (12.5) in a measure of the quantity of work done at an instant, we

consider the magnitude of this expression, calculated by extending the ordinary
inner product i2 defined in (10.5) to the product space D2. We then obtain

|Pt| = |(ṁt, ẋt+1)| (12.6)

= |ṁt|+ |ẋt+1|, (12.7)

which identifies the quantity of work as the total number of changes made to
mass and position elements. We obtain the total work performed over some
extended motion by summing the contributions at each instant, thus obtaining
a measure that counts the total number times mass or position elements are
changed during the motion.

By way of application, we note that this relation between external work and
the applied force lets us use the notions of power and work to reexpress familiar
measures of computational effort in Turing machines. If we interpret Turing
machines mechanically by regarding the finite controller state as position and
the tape contents as mass, we see that the instantaneous change in position is
bounded by the size of the finite controller and the instantaneous change in
mass is bounded by the width of the tape window in which the tape head can
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move in a single step. For each particular Turing machine these bounds are
constants, so the amount of work performed in a computation is bounded by
an amount proportional to the number of steps performed.

To use this measure of work performed to understand limits on change, we
begin by looking at the way the character of mental forces limits the changes
undergone by the mind, especially in the way force magnitude and direction
limit change. We can interpret limitations on the magnitude of forces as limit-
ing the rate at which the environment stimulates change in the agent’s mental
state, and limitations on the direction of forces as influencing the coherence
and focus of the agent’s actions. In fact, because reasoning and learning con-
sist of changes in mass and position, Euler’s law means that force and inertia
both limit the scope and speed of reasoning and learning. Combining forces
with the changes they produce yields notions of work related to familiar eco-
nomic measures that combine measures of costs and benefits into measures of
work.

12.1.1.1 Magnitude of force

Continuum mechanics divides forces into contact and body forces, with con-
tact forces acting across a shared boundary and body forces acting directly on
a body without need for contact. Continuum mechanics also ordinarily as-
sumes that body and contact forces vary smoothly as we vary the size of the
contact area and body mass. More precisely, it assumes that contact forces
vary continuously with the area of the contact boundary and that body forces
vary continuously with both the surface area and mass of the body. We formal-
ized these smoothness conditions in terms of inequalities that, as in Axiom F8,
bound contact forces by some multiple of the area of the contact surface and
bound body forces by multiples of the mass of the body. We carried over such
assumptions to discrete mechanics in Assumption F16.

In psychology, one naturally views communications between agent and en-
vironment and between agent interior and periphery in terms of contact forces.
Indeed, communication of information through shared boundary bodies be-
tween agent environment, sensors, cognition, and effectors provides a nat-
ural connection between mechanical and psychological concepts in which the
inequalities expressed in Assumption F16 highlight certain natural limits on
force and change.

12.1.1.2 Channel capacity

In continuum mechanics, boundaries between bodies typically have zero mass.
These boundary bodies nevertheless impose limitations on the forces acting on
bodies as a result of Axioms F7, F5, and F8.
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We see similar limitations on the magnitude of forces in the psychological
realm, this time as bounds reflecting information content. In the psychological
setting, as in continuum mechanics, boundary bodies serve only to communi-
cate forces. Forces do not change the mass of these bodies, only their position
and velocity.

In mental mechanics, however, simple boundary bodies correspond to com-
munication channels; more complex ones to sensors. We may view the com-
munication boundary bodies as fixed-area contact regions. The dimensionality
(number of orthogonal components) of the binary state spaces of these com-
munications boundaries is proportional to the dimensionality of the boundary
body. We can use this dimensionality measure as a substitute area measure
for use in Assumption F16 to obtain limits on the magnitude of contact forces.
The dimensionality of nonbinary state spaces provides related bounds flowing
from the limits on channel capacity identified in Shannon’s (1948) theory of
communication across a noisy channel.

12.1.1.3 Rate of change

We might regard the Shannon theorems as providing a theoretical basis for the
traditional mechanical conception of limited forces. In continuum mechanics,
the assumption of bounds is motivated both by natural experience, as we ob-
serve such bounds in everyday physics, and by mathematics, where the bounds
ensure the integrability of the forces over boundaries and bodies. The Shan-
non limits concern only transmission of discrete symbols through noisy media.
Traditional forces need not come in discrete quantities, except in the setting
of quantum mechanics, and we normally do not regard boundaries as noisy,
though Shannon’s concept applies as well to zero noise levels. We might thus
seek a communication-theoretic analysis of traditional mechanical forces. In
this direction, Margolus and Levitin (1997) have calculated bounds on the rate
of computation possible within traditional physical law.

We can apply the same same kind of reasoning to body forces as applied to
contact forces and see that the dimensionality of the mental momentum space
limits the magnitude of body forces on the mind. In this case, the dimension-
ality of momentum corresponds to both the mass and the area. Because forces
are limited to changing mass or position elements along these dimensions, the
dimensionality of forces limit the magnitudes of body forces as well. This im-
plies that the rate of change decreases with increasing momentum when the
magnitude of the force is held constant. It seems natural to ask if such decreas-
ing rates of change help explain some cases of diminishing returns in psychol-
ogy and economics, in which the motivational effects of specific quantities
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of money, food, and other goods decrease with increasing levels of wealth on
satisfaction.

12.1.1.4 Continuity

In addition to limits on forces imposed by the dimensionality of the spaces
mediating forces, it appears that other limits on forces stem from the continuity
of the functionals that characterize mental dynamogenesis.

Continuity means that distance plays a role in restricting forces. Continuing
the earlier discussion of Turing machine computation, one can say the bounded
changes implicit in the finite controller and explicit in the head-motion window
clearly limit the magnitude of forces, and thus the rapidity of motion.

One might ask, however, if such limits merely reflect inessential aspects of
Turing machines or constitute essential elements of the notion of computation
by machines. Common wisdom in the theory of computation says that all
“reasonable” models of computing machines are such that switching from one
reasonable model to another increases the time and space needed to compute
functions by at most a polynomial. That is, if one reasonable machine M
computes a function in time bounded by T (n) and space bounded by S(n),
then for any other reasonable machine M ′ that computes the same function
there is a polynomial p such that M ′ computes the function in time and space
bounded respectively by p(T (n)) and p(S(n)).

This common definition of reasonability of models of computation is im-
portant in classifying problems by computational complexity. The famous ex-
pectation P �= NP depends on some restriction of this kind. For example,
the vector machine model of computation, like the RASP model of Elgot and
Robinson (1964), involves changes in position of magnitude varying with the
values stored in memory. Vector machines, in contrast, allow operations that
shift a value in memory by an amount obtained by interpreting the vector as
a number; Pratt, Rabin, and Stockmeyer (1974, 1976) showed that such rapid
changes of value permit vector machines to compute results in polynomial
time that require polynomial time on nondeterministic Turing machines and
random access machines, thus speeding up these computations beyond what
is permissible according to standard expectations that P �= NP . The conven-
tional conclusion drawn is that vector machines of this sort do not constitute a
reasonable model of computation.

The mechanical point of view suggests one might seek to reinterpret the
received notion of reasonability of models of computation in terms of the
continuity and boundedness of forces one expects in mechanics. This might
involve looking for natural bounds and computational topologies that distin-
guish P from NP , treating the change of position seen in Turing machines as
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continuous but treating the changes made by self-shifting vector machines
as discontinuous. Notions of computational continuity already play an im-
portant role in distinguishing functions computable by Turing machines from
functions uncomputable by Turing machines. The model here comes from
Scott (1973, 1976), who showed how to use continuity notions to characterize
Church–Turing computability itself.

A specific question of interest is whether the mere existence of bounds on
the rate of work suffices to entail the reasonability criterion that demands that
effort in different machine models be related by polynomial transformations.
Another mechanical question for investigation is the relation of continuity and
locality conditions. Scott’s computational topologies explicitly capture a no-
tion of continuity of computation, but this notion seems quite different from the
bounds one sees placed on the motion of the tape heads in Turing machines.
Are the head-motion bounds best formalized in terms of continuity conditions
or as locality principles that rule out action at sufficiently great distances?

12.1.2 Attention and volition

The preceding limits on rationality all stem from bounds on the magnitude of
forces and effort available. To these we now add limits relating to the direction
of forces, which matter just as much in psychology as in physics. In particular,
persistence or stability in direction of force enters into the concepts of attention
and volition.

In traditional mechanics, all forces values inhabit the same three-
dimensional space, so all forces combine by superposition in a simple way.
The forces applied to a body combine by vector addition to produce a resultant
or total force that, in general, represents both forces applied by the environment
on the body, and forces applied to the body by the body itself or by its parts.
The algebraic combination means that sometimes different applied forces can
cancel each other out, leaving unopposed forces untouched in the resultant.

In the hybrid mechanics considered here, different forces can inhabit sepa-
rate subspaces of F, and though they still combine by additive superposition,
the response of the material to force-generating components in one subspace
can exhibit a degree of nonlinearity due to the presence of force-generating
components in another subspace.

In human terms, superposition of forces from disparate motivations leaves
one confused, pulled in different directions. The agent’s volition reflects its
response to observations of these competing forces and the mental elements
that generate them. Most decision making involves a nonlinear response in
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which competing desires yield distinct actions corresponding to the strongest
desire rather than mixtures of actions in proportion to the several desires.

As in standard physical materials, one expects different agents, exemplify-
ing different psychological materials, to follow different rules in generating
forces from their history and environment. Such differences correspond to the
different psychological types observed in people. Some individuals are de-
liberate and consider every change carefully; others are wanton or impulsive
and follow strong desires irrespective of prior actions or plans. For example,
a highly wanton individual might act on some desire or intention picked at
random at each point of action. Little differentiates desires and intentions in
the psychology of such an agent. A somewhat less wanton individual might
simply act on the strongest desire at any instant, and on the highest-priority
intention if no desires remain unsatisfied. The agent presented in Doyle (1980)
lies at the other end of the spectrum, as it first carefully deliberates about what
intentions, if any, to form on the basis of beliefs and desires, and then sys-
tematically carries out intentions according to their priorities. That pattern of
volition strongly differentiates between desires and intentions, letting desires
conflict all one wants, requiring consistency of intentions, and only acting di-
rectly on intentions, not on desires.

We thus may interpret volitional differences in terms of the way agents gen-
erate the forces they exert on themselves. In wanton agents, forces tend to
produce action immediately in the direction of some desire, while in deliberate
agents, the agent itself shapes the forces leading up to action by summariz-
ing them in a considered intention. In particular, intentional agents decouple
construction of self-forces from application of these forces. Intentional agents
shape forces they expect to apply to themselves prior to applying them.

12.1.2.1 Attention and stable deliberate response

An agent seeking to act coherently in a complex world must deal with many
types of distractions. Some distracting forces might come from outside the
agent, as the environment produces forces or force stimuli that would push
the agent from the chosen path. Other distracting forces might come from
conflicting desires or motivating forces operating within the agent. In wanton
volition, which lacks much sense of consciousness, the agent merely acts in
whatever way these combined influences point. The normal disunity of internal
and external forces then produces the normal incoherence of wanton action.
To act coherently, the agent must deliberate about its actions. Deliberation
generally forms a conscious process, which in mechanical terms involves the
agent’s identifying and applying forces to itself to shape the direction of the
resultant of these self-generated forces with other environmental and internal
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forces. Deliberate dynamogenesis thus involves intentional forces that seek to
maintain attention or focus in the agent’s actions and state.

Attention as such does not appear explicitly in the ideal theory of rational
action. The fickle economic agent can jump from one activity to another to
track minute shifts in the levels of expected utility of alternative activities. Al-
though such behavior might serve the agent’s purposes well, shifting activities
can consume significant cognitive and external resources. Such task-shifting
costs normally slow progress on intended activities and thus represent costs
worth avoiding. Realistic rationality requires that the agent account for these
costs in assessing expected utility. Attention thus appears only implicitly, as
an epiphenomenon of the structure of expected utility assessments, rather than
as a quality directly visible in the formalization.

In the extreme of concentrated attention, the agent views one force as the
focus of attention and all other forces as distractions. It then tries to chan-
nel its actions to address the focus of attention by blocking the distractions.
That blocking involves generating self-forces that by superposition cancel the
unwanted distracting forces, leaving only the desired focus force in the resul-
tant. For example, reasoned deliberation as described in Doyle (1980) makes
decisions by constructing defeasible arguments for and against alternatives.
A deliberator dead set on some course of action will seek to multiply argu-
ments for the chosen course and to defeat any proposed counterarguments, and
similarly, will seek to make arguments against other alternatives and to defeat
arguments favoring the other alternatives. Ordinary human experience also has
something of this character, though not always consciously. Sometimes notic-
ing a distraction causes one to spend a brief period thinking explicitly about
how not to pay attention to the distraction. Although the intent to suppress the
distraction is conscious, the suppression itself, if successful, is not.

Maintaining attention involves work, a truism known to everyone who learns
discipline. When distractions exert forces that move attention away from the
intended direction, the agent does mental work in exerting either a force that
restores the desired position from the perturbed one, or a force to reintroduce or
maintain the countervailing force itself, or both, in order to restore the integrity
of the desired force. Such self-restorative forces serve to producing deliberate
entrenchment or commitment of mental attitudes. These forces seek to ensure
a behavioral coherence in the agent’s mental motion by ensuring a structural
coherence within the agent’s mental state.

The work required to maintain attention motivates the use of additional
attention-focusing mechanisms when one must concentrate attention over long
periods of time. In some cases, agents that seek to maintain a prolonged fo-
cus of attention might find it easier to move to avoid circumstances that would
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produce distracting forces than to continually generate restorative forces to
counteract or defeat the forces of distraction.

Unfortunately, distractions never cease, and limits on the time and effort
available to the agent limit the rationality of the agent’s actions. As the agent’s
countervailing efforts fall short of the distractions, the agent’s actions become
more wanton, and when the agent becomes attentionally exhausted, purely
wanton behavior can result.

At the same time, even a capable deliberative agent can fail to meet the ideal
of economic rationality because it acts on the basis of its intentions even when
changes in its preferences make some other action more desirable. However,
agents that deliberate little will presumably exhibit lesser degrees of rational-
ity than agents that deliberate longer, though one must take some care in the
formal definition of rationality comparisons for this to hold.

12.1.2.2 Couples and unstable wanton response

In the psychological setting, pure wanton volition represents perhaps the sim-
plest but most unstable response to superpositions of disparate motivational
forces, acting whichever way the wind blows. Purely wanton psychologies
exhibit little if any rationality, since their actions will prove rational only by
accident.

As hinted earlier, one might regard even the perfectly rational economic
agent as a wanton agent. If the agent has preferences that reflect a set of goals
(Wellman & Doyle 1991) and is in a state of ignorance, the agent always acts
on the strongest desire. More generally, if we view the forces as graded by
a utility or desirability function that assigns qualitatively different magnitudes
to different types of motivations, then addition of forces will select out the
biggest of the forces. One might view some behavior-based robot architec-
tures as exemplifying such wantonness, though of course such architectures
are normally designed to exploit the grading of magnitudes to achieve some
sort of coherence in action.

In many common human situations, conflicting desires have comparable
magnitudes and the force superposition rule produces moderately unpredictable
results. When conflicting forces largely counterbalance each other, leaving a
small or vanishing resultant, we might say the agent experiences confusion,
with the mutually defeating forces yielding no clear direction for motion. Un-
like the stable equilibrium obtained when acting on all reason forces produces
a self-satisfying state, the near-equilibrium of confusion represents an unsta-
ble equilibrium, one in which variations in the strengths of the conflicting
forces produce net forces in varying directions. One can expect such varia-
tions as a result of uncertainty of inferred attitudes in some agents. In human
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terms, one can feel pulled in many directions, with momentary strengthenings
in one direction soon changing to strengthening in other directions or returns to
equilibrium.

Now a rational response to conflicting desires might consist of compromise,
as when conflicting desires for a family sedan and workhorse pickup truck
stimulate purchase of a minivan. The minivan might not be directly related
to either of the conflicting motivations, but it nevertheless might lie closest to
their resultant.

Rational response to conflict is hardly the norm, however. In some cases,
balanced conflicting desires can lead to paralysis, to the inaction of Buridan’s
ass, with the agent unable to decide what to do. Mechanically, this situation
recalls static equilibrium of forces. In other cases, seemingly random behavior
can result, with the person liable to do something else entirely as an escape
from or response to the conflicting pressures. From a logical point of view, we
might view conflicting motivations as contradictions from which the agent can
draw any conclusion. Indeed, folklore says people are liable to do anything
when pressured enough by conflicting demands. From a mechanical point of
view, however, one might interpret this type of response in terms of the notion
of couples. Couples form when balanced forces operate on a body in parallel
but opposite directions and combine to exert rotational torques on the body.

From the mechanical perspective one can group human response to conflict-
ing demands into several categories. In one group of responses, the person
suffering conflict acts in some way unrelated to either of the conflicting forces,
moving orthogonally to escape the conflict. In a second group, the person
chooses which demand to follow and generates a force in line with that com-
peting demand, in effect ignoring the opposing force. In a third group, the
person seeks to act in ways that give something to each conflicting force, to
switch or spin in attempts to satisfy each of the demands in turn. The first
group of responses recalls the response of a squeezed toothpaste tube. The
second recalls material collapse. The third group of motions, translated into
the physical realm, exemplify material response to couples.

In plural minds, couples appear through the action of conflicting mental sub-
agencies on the mind. It requires little effort to extend this observation to the-
ories of group behavior, in which the individuals consist of persons rather than
submental agencies. Many of the oft-noted limitations of committee decision
making might reflect compromises orthogonal to the principal interests of the
committee members.

It might be possible, or even desirable, to regard the interplay between de-
liberation and action, especially between deliberation and physical action, as
formation of and response to a couple. The deliberation builds up a complex of
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mental forces that either constitutes a couple and eventually produces motion
in some orthogonal external direction, or that the agent eventually counters
with a force to terminate the deliberation, with the opposition between the de-
liberation result and the terminating force producing the motion.

12.1.3 Rigidity

Rigid motion constitutes the simplest type of spatial deformation, in which the
shape and distances between body parts remain constant as the body changes
position. As in traditional mechanics, we can think of rigid bodies as expe-
riencing internal or constitutive forces that carry body parts along with their
neighbors and so preserve the configuration throughout changes of placement.
In rigid motion, these constitutive forces maintain perfect coordination. In tra-
ditional mechanics, rigid motion consists of translation and rotation, and every
motion of a point body is rigid. The same holds true in the broadened mechan-
ics because of the requirement that space enjoy pseudo-Euclidean properties.

The mere possibility of rigid motion in both traditional and broadened me-
chanics does not in itself mean one can expect to find rigid materials in psy-
chology or economics. Indeed, if rationality involves flexibility and adaptation
to circumstances, one might view rigidity as the most extreme sort of limitation
on rationality, even the antithesis of rationality. This need not be true, however,
for as the saying goes, even a stopped clock is right twice a day. A completely
rigid system might be just the tool for certain purposes.

Consider, for example, an agent with distinct sensor bodies and mental inte-
rior. Rigid motion means that movements of sensors and mental interior track
exactly, which would seem to be a good thing. But what does rigidity really
mean in psychological terms? One might regard mind-sensor rigidity as say-
ing that thinking immediately keeps up with perception, that just as the sensors
observe something the mind notes it too. Does that mean that thinking adds
nothing to perception, that the mind cannot move beyond what the sensors
observe? Not necessarily. Although there are useful reflex agents in which
pure sensor-bounded tracking might be desirable, one ordinarily expects the
mind to do more with the senses. In fact, rigidity need not limit thinking to
replicating the sensor reports if thinking changes mental state in dimensions
separate from those characterizing sensor reports. Suppose that the position
of the interior mental body decomposes into a pair (X,Y ) in which X rep-
resents only the sensor reports and Y represents only the results of thinking,
that is, the sensor body occupies only the first subspace of this interior space.
Thinking upon some fixed sensor report thus changes location from (X,Y ) to
some (X,Y ′). Let |Y ′ − Y | denote the distance between these two locations.
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In this case, rigid motion would mean that |Y ′ − Y | stays constant throughout
thinking. Algebraically this means thinking serves to rotate the mind to differ-
ent locations in a hypersphere centered at (X,Y ). Psychologically, this might
mean that thinking only changes the contents of a working memory of fixed
size, always removing one element in order to insert another.

Although it is unclear that any interesting reasoning fits the sort of psy-
chological rigidity just described, one might find better applications for other
forms of rigid motion. The next chapter examines a very useful class of partial
rigidities, namely preserved configurational conditions that represent some of
the memory of a reasoner. Another form of rigidity consists of uniform change
of representation across a computational system. This can change the location
of each point in the same way, but leave the distances intact. Address trans-
lation systems, such as dynamic software module linkers and network address
translation schemes, might be viewed in these terms.

12.2 Inherent rationality

Traditional mechanics uses constitutive kinematic assumptions to characterize
special types of materials or systems. Rigid materials, for example, reflect
a restriction of configurations to ones in which all body parts retain a fixed
set of mutual distances. Crystalline materials enforce a particular rigid lattice
geometry on the body parts. Isotropic materials are locally the same in every
direction, but in polarized materials, some directions offer behavior others do
not. Finally, incompressible materials, especially fluids, are characterized by
rigid volume constraints instead of rigid distance constraints.

Some traditional kinematical assumptions might apply to some mental ma-
terials. Point bodies, of course, are trivially rigid; mental organs might exhibit
fixed contact boundaries; and we typically think of cellular automata as inhab-
iting crystalline lattices. We expect, however, that the kinematic constraints of
importance in psychology and economics will differ from those in traditional
physics because of the different character of space in mental mechanics.

The first and most natural kinematic constraints in mental mechanics take
the form of restrictions on possible locations or configurations. The preceding
chapters have developed mental space as the product D of all the individual
attitudinal positions. Although this space provides a good algebraic setting for
examining mental motion, it does not reflect natural constraints on sets of atti-
tudes realistic agents exhibit. For example, the constitution of an agent might
keep it from ever exhibiting attitude d1 at the same time as d2, or might re-
quire exhibiting d2 whenever it exhibits d1. Database theory calls these sorts
of restrictions “integrity constraints” (Reiter 1988), but similar restrictions
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appear in many other guises in computing, including “information systems”
(Scott 1982), “system laws” (Minsky 1988), and “admissible state semantics”
(Doyle 1983a). Such nonmetric rigidity restrictions mean that the agent can in-
habit only a subspace of D rather than the full product of individual attitudinal
positions.

Restrictions on location appear in traditional mechanics mainly in the con-
text of restrictions that forbid two bodies from inhabiting the same locations
at the same time. The exact analog in mental mechanics would require us to
view individual attitudes as body points, 0 and 1 as the only two locations, and
vectors in D as representing placements of all individual attitudes in the two
available locations. We instead treat vectors in D as representing complex lo-
cations of individual bodies with restrictions on locations shaping the allowed
subset of positions rather than respective positions of different bodies.

12.2.1 Constitutive logics

One of the principal advantages of using materials exhibiting kinematic con-
straints in traditional engineering is that the constitution of the materials does
some of the work for you. To throw a javelin, you need only toss the hand-
hold of the spear the right way and the rest of the javelin follows. To elevate
a car, you need only push the hydraulic fluid on one end of the jack and the
incompressible fluid inside lifts the car mounted on the other end.

Kinematic constraints serve as a similar aid in approaching psychological
engineering, enforcing certain properties of the agent without requiring ongo-
ing attention or effort on the part of the designer. In particular, they permit
one to divide reasoning into a portion performed automatically, always with-
out need for conscious attention, and a portion performed deliberately, only
through conscious effort.

We expect that automatic reasoning forms an important part of what we
think of as the native intelligence exhibited by an agent. The native intel-
ligence places a lower bound on the degree of intelligence exhibited by the
agent (Doyle 1988a).

Kinematically imposed lower bounds on reasoning abilities have a large in-
fluence on the average or peak intelligence exhibited by the agent as well.
Geniuses and dullards alike sometimes err in allocating effort and sometimes
take stupid actions, but the less able suffer from abnormally low lower bounds
on their constitutional abilities. Most can perform the same reasoning as the
more able in principle, but must perform much more of their reasoning con-
sciously, at enormous cost in attention and resources. Because they must attend
to the bookkeeping needed to keep attention focused as well as to the external
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focus of reasoning, the half-witted find things not uniformly twice as hard, but
exponentially (in the complexity of the problem) harder than their full-witted
cousins. Even extreme diligence finds this handicap hard to conquer.

The difference between novices and experts constitutes an important spe-
cial case of this difference personally familiar to most people. Novices, even
when possessed of adequate instructions, must perform every step consciously,
and expend much effort in keeping track of their progress and of their under-
standing of the instructions. The expert performs almost all of this reasoning
automatically and seemingly effortlessly. Normal novices have adequate auto-
matic reasoning powers, but have not yet committed their instructions to these
powers. Their intelligence in other arenas helps but little in their new subject.

Inherent reasoning also affects the degree of rationality exhibited by the
agent through the levels of consistency, completeness, and inferential compe-
tence they provide in the agent’s beliefs and preferences (Doyle 1988a, 1992a,
2004). For example, we interpret limitations on the rationality possible in hu-
mans and other nonideal agents as requiring us to drop the completeness as-
sumptions underlying the ideal theory of rational choice and consider agents
with partial, not total, weak preference orders. With plural minds composed of
interacting and conflicting subagencies, it becomes sensible to treat the con-
struction of the mental state of the agent as a group decision problem, subject
to an appropriate adaptation of the axioms of group rationality (Doyle & Well-
man 1991). This treatment provides added incentive to weaken completeness
assumptions. We similarly give up consistency of the preferential order and al-
low the agent to possess conflicting pieces of preference information. We need
not, however, abandon all consistency and completeness constraints. We in-
stead consider agents in which inherent structure ensures at least some degree
of consistency and completeness.

Thus the most natural kind of kinematical constraint in psychology consists
of constraints on the logic of attitudes. For example, a logically idealized agent
might occupy only consistent closed positions in which its beliefs contain all
their deductive consequences and do not contradict each other. Other types of
agents might inhabit positions that contain some consequences and avoid some
contradictions, but miss some consequences and contradictions. Some agents
might inhabit subspaces in which they always hold or avoid some attitudes, no
matter what.

12.2.2 Information systems

One can capture restricted forms of completeness and consistency using the
formalization of information systems developed by Scott (1982) as a way of
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formalizing incremental computation over general data types or computational
domains.

As we apply them here, each information system captures a constitutive
logic of consistency and closure on mental attitudes and states. Information
systems view each element of D as an “atomic proposition” about states in
an abstract logical system, and each set of elements as a partial description of
some state, with bigger sets representing better descriptions.

Although information systems capture a natural and flexible notion of inher-
ent intelligence, they cannot express all forms of constitutional intelligence. In
particular, they enjoy the key logical property of monotonicity, meaning that
more axioms produce more consequences. Information systems thus cannot
directly express nonmonotonic or defeasible inferences of the kind common in
human reasoning and artificial intelligence systems, which must be expressed
by other means, such as reasons and other configurational intentions.

The fundamental concepts of information systems begin by considering fi-
nite amounts of information about states, represented by the finite subsets ofD.
We write Pf(D) to denote the class of all such finite subsets. This is much the
same starting point as was taken in defining the space D of positions, which,
in the case of infinite D, was defined to include the free module Df of po-
sitions of finite support. Clearly, the vectors in Df are just the characteristic
functions of the sets in Pf(D). As we shall see, the difference in treatment is
that the preceding development of mechanics rested content to consider just
such positions of finite support (in the form of Db of positions of finite or
cofinite support), while the theory of information systems uses convergent se-
quences of such finite descriptions to identify ideal states of possibly infinite
support.

12.2.2.1 Limited consistency

Let us define abstract consistency relations on D as follows. We define a finite
consistency relation to be a set Con ⊆ Pf(D) of finite subsets of D, interpreted
as setting out the “consistent” finite subsets. We require that Con satisfy the
following two conditions.

The first condition on consistency relations states that subsets of consistent
sets are consistent. Formally, we require that for each X,Y ⊆ D, if X ⊆ Y ∈
Con, then X ∈ Con.

The second condition states that each individual attitude is consistent, or
formally, that for each e ∈ D, if e ∈ D, then {e} ∈ Con. This stipulation
means that each individual element of a state of mind is possible in isola-
tion. The intent of a consistency relation is only to rule out combinations of



12.2 Inherent rationality 311

different elements deemed inconsistent with each other, not to rule out isolated
elements.

We then call an arbitrary setX ⊆ D consistent just in case each finite subset
Y ⊆ X is consistent according to Con.

12.2.2.2 Limited entailment

We define abstract entailment relations relative to a consistency relation Con
as relations between finite consistent sets of D and individual elements of D.
We require an entailment relation � on Con ×D to satisfy three conditions.

The first condition states that addition of entailed consequences preserves
consistency. Formally, for each e ∈ D and X ⊆ D, if X � e, then X ∪ {e} ∈
Con.

The second condition requires that consistent sets entail their own elements.
Formally, this means that if e ∈ X , then X � e, for each e ∈ D and X ⊆ D.

The third condition states that entailments of entailments are also entail-
ments. Formally, for each e, e′ ∈ D and X,Y ⊆ D, if Y � e for all e ∈ X ,
and X � e′, then Y � e′.

We extend the notation of entailment in the natural way to say that X � Y
iffX � e for each e ∈ Y . With this extension, we can rephrase the second con-
dition as stating that entailment is reflexive, that is, X � X , and can rephrase
the third condition as stating that entailment is transitive, that is, that X � Z

wheneverX � Y and Y � Z .
We say that a setX ⊆ D is (deductively) closed just in case e ∈ X whenever

Y ⊆ X and Y � e. Clearly D is closed, as are intersections of closed sets.
If X is consistent we define the closure Th(X) of X to be the least closed

superset of X . The operator Th exhibits properties similar to those of the
usual deductive closure operator in ordinary logic. One easily checks that
Th is monotonic: Th(X) ⊆ Th(Y ) whenever X ⊆ Y ⊆ D; idempotent:
Th(Th(X)) = Th(X); and identifies the closed sets as its fixed points: X is
closed iff X = Th(X). Computational domain theory usually restricts atten-
tion to closures of consistent sets, but we find it useful to employ the unre-
stricted notion as well.

The least closed set is Th(∅), which also consists of the intersection of all
closed sets. If ∅ � e, we say e is a tautology.

12.2.2.3 Information elements and approximation

An information system I = (D,Con,�) over a set D consists of D together
with a consistency relation Con and entailment relation �.



312 Rationality

We say that a set X ⊆ D is an element of the information system (not to be
confused with an element of D) just in case X is both closed and consistent.
We write Elt(I) to denote the set of elements of I.

The primary relation between elements of information system is approxima-
tion, which gives rise to a lattice structure on the elements of the information
system. We say that X approximates Y , written X �I Y or simply X � Y ,
whenever both are elements of the information system and X ⊆ Y . Every
element in a domain is the limit of its finite approximations, and there is a rich
theory of approximation that forms the basis of the theory of computation over
domains (see Scott 1982). In terms of approximations, the closure Th(X) of a
set is the least element of Elt(I) approximated by X .

We naturally view some elements of the information system as the partial
(or incomplete) elements of the domain. The most incomplete, and hence min-
imal, element in the information system consists of ⊥ = Th(∅), the conse-
quences of the empty set.

The total (or complete) elements are those elements maximal under set in-
clusion, that is, elements X ∈ Elt(I) such that Y = X if Y ∈ Elt(I) and
X � Y . We write Elt+(I) to mean the set of total elements of I.

12.2.2.4 Frame indifference

Information systems and their constitutive relations exhibit frame indifference
in a manner akin to forces, that is, as relations that transform with the frame
rather than as relations invariant under changes of frame.

Specifically, we say that an information system is frame indifferent just in
case its constituent notions of consistency and entailment transform as frame-
indifferent relations over D. We earlier noted that the orthogonal transforma-
tions Q of D correspond to permutations of D. As before, we write Q(e) to
denote the permuted element corresponding to e ∈ D. We also write Q(X) to
denote the set of permuted elements corresponding to X ⊆ D.

Given an information system I = (D,Con,�), we define the orthogonal
transform QI = (D,QCon,�Q) of I by

QCon = {Q(X) | X ∈ Con} (12.8)

and

�Q = {(Q(X),Qe) | X � e}. (12.9)

We say that the information system I = (D,Con,�) is frame indifferent just in
case the information system elements and order transform accordingly in the
sense that

Elt(QI) = QElt(I) (12.10)
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and

�QI = �I. (12.11)

It is not hard to verify information systems are frame indifferent in this sense.
Requiring invariance of information system consistency and entailment re-

lations, in the sense of QCon = Con and �Q = �, proves much too strong
a requirement on logical kinematic structure. One can easily see that not all
information systems exhibit such invariance. For example, if one has {e} � e′
and {e′} �� e, an isometry that simply swaps e and e′ would have the result that
{φ(e′)} � φ(e).

Invariance of consistency under changes of frame means that all sets are
consistent. Invariance of entailment under changes of frame means that any
nontrivial entailment must mean universal entailment, in the sense that if X �
e for some e /∈ X , then frame invariance requires thatX � e′ for every e′ ∈ D.
This means there are just two frame-invariant information systems. In one, sets
entail only their own members, and the elements of the information system
consist of all subsets of D. In the other, each set entails all of D, so the only
element of the information system is D itself.

These observations highlight the representational nature of logical structure.
Information systems and traditional logics directly characterize the structure
of representations. Indeed, a prime application of information structures is in
characterizing data structures, computational representations par excellence.

Information systems do not, however, characterize directly the information
represented by their elements. Such information content instead appears as
the subject of information theory. Indeed, information measures in informa-
tion theory take the same form as theories of mass, exhibiting the same sort of
frame invariance as that seen in the mass measures of traditional nonrelativistic
mechanics. Information content in discrete mechanics differs from this tradi-
tional setting in having different, noncomparable dimensions of mass. In the
discrete setting, frame indifference requires that mass transforms as a vector
instead of as a scalar. With these distinctions, one can regard information the-
ory as a theory of computation based on frame-invariant algorithms specified
in terms of information and information-determined operations on information
rather than on data structures.

One can use information systems to study structures independent of repre-
sentational details by identifying information systems with isomorphic sets of
elements. That is, one regards I over D equivalent to I′ over D′ just in case
the ordered sets (Elt(I),�I) and (Elt(I′),�I′) are isomorphic. Each equiva-
lence class of information systems then characterizes a certain type of data or
structure independent of the representational details inherent in the underlying
sets of atomic propositions.



314 Rationality

12.2.3 Admissible positions

One can use information systems to state useful constitutive kinematic assump-
tions about the positions a body can occupy. The idea here is that instead of
taking S to be isomorphic to D, one instead requires that positions be elements
or total elements of an information system; that is, S ⊆ Elt(I) or S ⊆ Elt+(I).

When using such assumptions to characterize the constitutive intelligence of
a type of agent, one varies the assumed level of inherent intelligence by vary-
ing the strength of the constitutive consistency and closure relations. If one
takes trivial consistency and closure relations, the information system places
no general restriction on positions, and every set of elements is acceptable.
If one takes full logical consistency and implication, the information system
places strong conditions on positions. Suitable intermediate relations can ex-
press restrictions to subspaces that contain or avoid certain combinations of
attitudes, or that always recognize certain obvious or easy inferences and in-
consistencies.

12.3 Rational motives

Rational behavior optimizes one’s pursuit of one’s desires, or put in the for-
malism of mathematical economics, maximization of one’s expected utility.
Understanding rationality in mechanical terms thus means understanding how
the underlying motivations and character of the agent shape the generation of
forces, understanding how the generated forces shape optimization of expecta-
tions, and understanding how limitations on these forces shape limitations on
the degree of rationality exhibited by an agent.

12.3.1 Motivational forces

In psychology, motivation consists of those forces an agent exerts on itself.
Although we sometimes speak of external things as exerting attractions—a
person, a bottle, an unopened letter, a possible promotion—outside of fiction
such locutions usually mean that a mental event, such as sight of the object
or thought about the condition, generates a force that shapes the agent’s sub-
sequent actions. In seeking to understand these forces, psychology studies a
variety of motivations as grounds for or impetus to action, including forms of
desire, likes, dislikes, will, and intention. We regard all these different con-
cepts as playing special roles in mental dynamogenesis.

Motivational self-forces take exactly the same form as external forces. The
main difference comes in the classification of self-forces as body or contact
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forces. Classifying external forces as body or contact usually poses few diffi-
culties, but to classify self-forces in this way requires knowledge of the struc-
ture of the agent. If one part of the mind battles with another for control of the
agent’s attention, we might consider these forces to be contact forces joined in
a working memory that serves as the boundary of the two parts, but such an in-
terpretation seems less well suited to the attractions generated by true love. Al-
though the distinction between body and contact force might prove significant
in understanding some aspects of attention and volition, let us focus instead on
the origins and roles of motivational forces.

12.3.2 Motivational character

Many aspects of personal character in psychology and legal, organizational,
or economic character in economics relate as much to dynamogenesis as to
structural properties. Personal character, whether the character of a specific
individual or the character of a personality type, provides the structure of un-
derlying motivations and behavior, as distinguished from the instantaneous im-
pulses and thoughts of the person. In particular, personal character shapes the
response of the person to different forces or burdens. Variation of response to
the same mechanical loads provides a clear separation between material types
in traditional mechanics. Consider, for example, placing an anvil on the sur-
face of a flagstone, on the surface of a trampoline, and on the surface of a lake.
Even in economics, where attention lies more on structural aspects of multi-
agent systems, we can distinguish different types of economic character that
reflect organizational goals, such as missions or profit maximization, and be-
havioral rules, such as negotiation and communication protocols, social norms,
or legal constitutions.

Although mechanics distinguishes laws that relate forces existing at an in-
stant to motion at that instant from dynamogenetic characteristics of materials
that give rise to the instantaneous forces, psychology does less well at making
this distinction clear in language. For example, terms like desire and moti-
vation can refer to specific temporal attitudes and sentiments that act at some
instant as well as to underlying desires and motivations that persist and on oc-
casion give rise to specific temporal manifestations. In the mechanical view,
we interpret desires both as forces and as generators of forces. We interpret
individual desires active at particular instants as particular forces acting on or
within the agent, and desires more generally as mental elements participating
in the genesis of particular forces. The more general type of desire or motiva-
tion represents a part of the mass of the agent, an aspect of the agent’s character
or constitution, or both.
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12.3.3 Utility gradient forces

Psychology and economics have made some attempts to regard decision mak-
ing and motivation in terms of the field viewpoint that has proven so useful in
physics. The force fields of physics include attractive and repulsive forces in
which the variation of force with position is expressible in terms of the gradi-
ent of a scalar potential field. For example, the electromagnetic potential field
is formed by summing the contributions of positively and negatively charged
bodies distributed in space, and the gravitational field is obtained by summing
the fields generated by masses distributed in space.

The primary use of field theory in psychology and economics has been to
regard preference, supply, and demand information as generating a utility field
over decision outcomes. The optimization characteristic of rational agents then
corresponds to the generation of gradient forces from this utility field or from
its expectation transform. These gradients of the utility surface indicate direc-
tions of attractions to local maxima and repulsions from local minima. Numer-
ous “hill-climbing” economic optimization methods follow these local gradi-
ents to find local maxima or minima. Stochastic variations on these methods
seek to find global maxima or minima. Prominent market-equilibration mecha-
nisms, such as Walrasian iteration, also use these local gradients to guide mar-
ket participants toward prices that balance supply and demand for all goods
(Wellman 1993; Cheng & Wellman 1998).

Field methods are used in these economic applications not because peo-
ple believe the fields are describing some natural phenomena, but because of
the wealth of mathematical and computational techniques developed by math-
ematicians for using them. These techniques support numerous methods of
economic analysis that borrows concepts and tools from mathematical physics
(Arrow & Hahn 1971; Cass & Shell 1976; Samuelson 1971; Smale 1980).
However, as noted in Chapter 3, when one looks at the scientific content of
the applications of field ideas, one can find them lacking (Mirowski 1989). In
particular, applications of field theories in economics suffer from both superfi-
ciality and complexity compared with physical fields.

The field-theoretic treatment of utility exhibits a certain simplicity compared
with physics because it reduces all psychological motivations to the prefer-
ences they entail concerning possible choices made by the agent, in contrast
to the multiplicity of physical forces and constraints. The utility function thus
acts as a sort of “unified field” description for agent behavior. But the utility
function does not constitute what physics would call a “unified field theory,”
namely a theory that explains a range of formerly disassociated phenomena.
Instead, the utility function superficially combines the underlying motivations
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in such a way that although one can determine overall behavior, one cannot
easily recover the underlying motivations from this overall behavior. Rather
than explaining numerous phenomena, utility fields obscure them. A true un-
derstanding of psychology and mental action thus cannot rest content with the
simplified framework adopted by economics. It instead must probe deeper to
find the underlying motivations that shape the utility surface, or that perhaps
even deny the applicability of the economic assumptions.

In addition, the utility fields corresponding to familiar human or ideal be-
havior exhibit structures that do not fit well with generation of utility from
simple charges. For example, economic preferences often exhibit complemen-
tarity, in which the decision maker values some combination of items highly
but attaches no value to proper subsets. The soldier has no use for bullets
without guns; the skydiver has no use for the parachute without the aircraft;
the teenager has no use for fashionable clothes without somewhere to go in
them. One thus cannot represent desires for the component elements of a set
with utility-generating charges, for complementarity denies the superposition
principle for such component desires. If one is to represent such common pref-
erences as charges, the fields these charges generate have to vary nonlinearly
with the presence or absence of other charges, as in the forces produced by rea-
sons treated in Chapter 11. For another example, consider the ordered rules of
logic programs and the ordered hierarchy of behaviors in robotic subsumption
architectures. Regarded as charges, one of these rules or behaviors generates a
nonzero force only if all higher-ranked rules or behaviors generate null forces.
One can expect combinations of motivations and preferences to exhibit all the
structures seen in other forms of knowledge, with conditionality, nonmono-
tonicity, abstraction hierarchies, and exception hierarchies (Russell & Norvig
2002). Each of these structural characteristics goes against the simple additiv-
ity of physical charge theories.

On the other hand, decision analysts commonly seek to construct utility
functions out of linearly weighted combinations of single-attribute subutility
functions. Such linear-additive utility functions admit a simple interpretation
as the result of charges, with the linear subutility functions corresponding to
functions that give the variation of the strength of the field resulting from a
charge with “distances” of the decision point to the charge. In the simplest
models, the component fields vary linearly with the distance. Despite the
convenience of such models, one cannot expect that one can always find di-
mensions that give any realistic utility function with this linear structure, or
that the linearizing dimensions remain fixed as preferences change. The non-
linear models of artificial intelligence make one dubious that linear models al-
ways exist, and the experience of artificial intelligence with constructing such
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models automatically makes one hesitant to think one can always construct the
models with reasonable effort.

These doubts about the linearity of utility fields notwithstanding, one can
consider reasonable interpretations of charge-generated utility fields as long as
one is willing to admit nonlinear interactions between charges. To do this, one
looks to goal-based representations of preference information studied in artifi-
cial intelligence (Wellman & Doyle 1991; Doyle, Shoham, & Wellman 1991;
Doyle & Thomason 1999; Doyle 2004). In this framework, one interprets
qualitative goals as positive or negative charges, and one interprets trade-off
preferences as expressing interactions among these charges.

Problem-solving goals constitute the most familiar class of sources of at-
tractive and repulsive forces. The representation of a goal usually identifies a
list of one or more conditions or attributes required to satisfy the goal, and one
identifies solutions by a successful match of the goal characteristics with the
solution characteristics. If we use points in D to represent both goal conditions
and current circumstances, we can then get different match conceptions by
means of different inner products on D. A perfect match produces the norm of
the goal vector as the result of the inner product of the goal vector with the situ-
ational vector. The inner product decreases in magnitude with each unsatisfied
goal, and so indicates the need for further work to solve the problem. One can
interpret numerical inner products as distances of the current situation from the
desired one. One can interpret set-valued inner products that produce the set of
satisfied or unsatisfied goals as the sort of goal-matching measures introduced
in GPS (Newell, Shaw, & Simon 1960). A wide variety of problem-solving
techniques use the unmatched difference itself to guide the problem solution.

Without trade-off preferences, one can form a utility function by means of
the inner product of goals with situation. In any realistic application, how-
ever, one must add preferences expressing trade-offs among partial satisfac-
tions. Tradeoff preferences of the sort seen in logics of preference ceteris
paribus (Wellman & Doyle 1991; Doyle, Shoham, & Wellman 1991) modify
the simple distance measures by taking complex configuration conditions into
account.

12.3.4 Cognitive forces

Some applications of field concepts in psychology have started with more sub-
stantive notions than the generic utility conception of economics. As noted
earlier, Shand (1920) characterizes many types of emotions and sentiments in
terms of particular patterns of forces acting to increase certain types of order
in mental states. From his perspective, one might think of each distinct type of
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attitude, emotion, or sentiment—desires, likes, dislikes, fears, hates, unease,
and so on—as representing a different type of charge, each generating a dif-
ferent characteristic field of position-dependent attractive and repulsive forces.
These forces might still be used to construct a utility function, but the utility
function then represents the strength of desires or motivation traceable to the
specific attitudes generating it.

This perspective has something in common with the goal-preference util-
ity decomposition just discussed, and recognizes the existence of noncogni-
tive motivations underlying human behavior. The main departure from simple
goal-based utility is that each desire or other motive might itself involve a
multidimensional evaluation of the situation or of specific objects. As with the
goal-preference decomposition, one expects to see numerous nonlinear inter-
actions between these different types of forces.

The slower-changing intentions and plans that humans and artificial agents
use to mediate action represent the most visible departure from linear force
generation. Beliefs and desires guide decisions to adopt or abandon intentions,
and these intentions persist until the agent acts on them or makes further deci-
sions that change them. Will or intention exhibits similarities to motivation or
desire in that we also naturally view intentions as having direction in exactly
the same way that we understand the directionality of desire.

Intention and desire differ, however, in that the notion of strength of desire
has no natural correspondent in intention. The relative strengths of conflicting
desires constrain which one produces action. Intentions, in principle, should
not exhibit explicit conflicts with each other, and so do not carry a notion of rel-
ative strength in the same sense as desires. Instead, one must address conflicts
among intentions by giving up at least one of the intentions in order to achieve
consistency. Seriality conflicts, conflicts about what to do first, are resolved by
temporarily releasing the claim of one intention on immediate action. Strength
of intention in this sense thus corresponds to priority of intention. Logical
conflicts, conflicts about whether to achieve some end or not, are resolved by
abandoning one of the conflicting intentions. Strength of intention in this sense
thus corresponds to firmness or entrenchment of the intention, to the order in
which one abandons intentions when forced to by circumstances. Many things
might enter into determining the firmness of some intention. Firm intentions
are ones held in spite of changes of desires or external circumstances that now
make other actions more desirable. The firmest intentions are those that persist
despite failures experienced in trying to carrying them out in the face of active
opposition. Weakness of will manifests in abandoning intentions when desires
change, or in hesitation that postpones attempts to carry out intentions when
uncertainty grows.
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Firmness and entrenchment correspond to a notion of persistence not asso-
ciated with desires. No one judges an agent badly for strongly desiring some-
thing at one instant and then having no desire for it at the next instant. The
notion of intention, in contrast, brings with it a notion of commitment that
requires progressive changes to intentions rather than arbitrary fluctuations.

12.3.5 Habit

Like intentions, habits constitute persistent generators of forces. Where inten-
tions form considered constraints that generate persistent forces maintaining
or achieving some condition, habits generate instantaneous forces that shape
mental motion along well-worn pathways. As Hobbes (1656) put it, “Habit is
motion made more easy and ready by custom.” Indeed, common expressions
refer to the “force of habit” and “force of will.”

The simplest sort of habit of reasoning consists of persistent attitudes. Be-
cause we take the outlook or point of view of the agent to include its mental
attitudes, we regard persistent attitudes as habits that continually reproduce
their own content in the agent’s outlook. Put another way, a habitual belief in
memory causes a belief of the same content to appear in the outlook, either at
all instants or whenever needed. In the mechanical setting, this means that a
persistent belief occurring in the mass produces the same belief in the position.

Slightly more complex but still simple habits of reasoning consist of reason-
ing rules that produce new conclusions from antecedents, as were examined
in Chapter 11. In this case, though, we can still regard the habit as repro-
ducing its content in the outlook, but the more interesting product consists of
the conclusions, if any, generated by applying the rule. In this sense, habits
of reasoning constitute automatically operating rules that produce changes of
outlook.

We can distinguish rules in memory that produce conclusions automatically
from those that produce conclusions only when consciously applied. The for-
mer constitute habits of reasoning; the latter conscious rules of reasoning. Of
course, we do not distinguish these two types of rules by their “logical” con-
tent. Habitual and consciously applied rules might have exactly the same pro-
ductive content, the same antecedents producing the same consequents. We
instead distinguish them by their role in mental operations. The habitual rules
produce new or changed conclusions whenever their antecedent or triggering
conditions are satisfied, while conscious rules produce no new conclusions on
their own, but only after conscious decisions on the part of the reasoner to
perform the reasoning indicated by the rules. Indeed, one way of learning
a habitual rule of some form is to practice a conscious inference rule of the
same form.
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Habits operate unconsciously and without volition even when the agent con-
sciously recognizes their existence and action. Such unconscious and auto-
matic action contrasts with volition, in which some amount of conscious de-
liberation usually occurs in choosing actions. Indeed, the effective agent will
need to acknowledge and expect habitual behavior, because habitual behavior,
operating unthinkingly and independently of current beliefs and desires, can
result in the agent’s taking certain actions contrary to conscious desires and
intentions, actions the agent judges irrational immediately afterward. Going
against habit requires force, to counteract the forces exerted by habit.

Lack of desire as well as lack of consciousness can distinguish habit from
volition. Many habits form through repeated action in line with the agent’s
desires and intentions. We can thus consider some habitual action as action
motivated by past desires, although habits can produce action even when the
present desires provide no motivation for the action.

Habit and volition also differ in the degree of persistence they exhibit. We
regard habits as part of long-term memory that persist across episodic actions
and changes of situation, so that changing habits requires force. Volition,
in contrast, produces intentions and actions that typically remain operational
only through present or near-term episodes of actions. Indeed, as every parent
knows or quickly learns, a standard means of defeating someone’s intention is
to distract the person in hopes that during pursuit of the distraction the person
will forget his or her intention before committing it to memory.

These typical differences do not constitute necessary differences, however,
and the distinction between habit and volition is not sharp. As considered
here, anything a habit can do can also be done by volition. More to the point,
many of the steps occurring within the operation of ordinary volition can occur
through the action of habit. Indeed, some efforts in artificial intelligence seek
to reduce volition to combinations of mental habits that characterize particular
patterns of thought and action.

12.3.6 Refraction and elastic forces

In an elastic material, deformation from a relaxed configuration generates a
restorative force. Hooke’s law, for example, says that a spring exhibits a linear
elastic response under small deformations, with the restorative force propor-
tional in magnitude to the size of the deformation, to the distance the spring is
compressed or stretched. Most realistic elastic materials exhibit forces that
vary nonlinearly with the deformation, and exhibit an elastic response that
varies from material to material.

Characterizing some force as elastic does not say how it arises, only that it
varies with the deformation from a “relaxed” configuration. Because elasticity
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depends only on material behavior, not on material identity, we can interpret
some forms of both intentional and unintentional psychological behavior as
exhibiting an elastic character. In particular, we might think refractory forces
arising both through the action of habits and through deliberate thought as elas-
tic forces. Human refraction involves habitual or active resistance to imposed
change that seeks to nullify the imposition and, in willful behavior, maintain
or even strengthen current attitudes and activities.

Refraction can also represent the obverse of conscious efforts to focus rea-
soning on a goal. As was discussed earlier in the context of focus of attention,
this deliberate form of elasticity arises when the agent generates and applies
forces to maintain focus by counterbalancing the forces of distraction, leaving
only forces in the intended direction. In such cases, the intended properties or
direction of motion constitutes the zero-point of the elastic response.

In planning, for example, an agent might expend significant effort to enforce
the consistency and completeness of the intentions that make up its plans, or
to enforce some other relation of mutual coherence or compatibility among
its attitudes. In such a setting, removal of some intention might only remove
the plan step temporarily, until the agent reconstructs the step to restore the
expected degree of coherence in its plan. Similarly, if new information under-
mines the motivations for some intentions or portions of plans, the agent might
choose to reconsider these. This character of a responsible planner is similar to
the restoration of RMS conclusions, and quite reasonably in light of the under-
lying interpretation of RMS reasons as intentions to draw specific conclusions
in specific circumstances. With intentions generating forces, these intentions
to restore coherence represent forces the agent generates on itself to counteract
certain types of external forces. Finally, if new stimuli motivate new plans that
threaten to draw attention from primary concerns, the agent might choose to
temporarily defeat or postpone the new plans to keep action focused on the
primary concerns.

More generally, one might interpret many forms of negative feedback in
terms of elastic response. Many simple control systems employ negative linear
feedback modeled directly on Hookean elasticity.

Refraction also can include habits that act to maintain habitual positions or
behaviors. Some habits, for example, might undercut or repress discomforting
thoughts, or might act to infer or reintroduce desired or obsessive thoughts.
One can see action of this character in the RMS, in which an attempt to change
position by defeating a reason for some attitude can fail if some other reason
represents an uncountered habit that offers alternative support.

“Good” habits can further the progress of intentional actions; “bad” habits
can impede such progress. As everyone knows who has fought bad habits,
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these habits tend to generate fixed desires seemingly independent of intentional
consideration, desires that can undermine resultant forces in a way that creates
weakness of will or backsliding. But application of course-correcting forces
to counteract these habitual forces does real work, accounting for the effort
so familiar in maintaining resolve, and for some of the difficulty in continu-
ing the expenditure of this effort. Because habits tend to restore distractions
over and over, seeking to maintain a course of action in spite of recurring ha-
bitual distractions involves a great deal of work. When strong desires or fears
threaten to undermine the ability to act on intentions, the agent might choose to
set up additional intentions as backups or to take preliminary actions to shape
the circumstances in ways that prevent backsliding or weakness of will (Elster
1979).

Perhaps understandably, the philosophical tradition of studying rationality in
thought and action has devoted little attention to the nature of active stubborn-
ness or refraction. Examples include Shand’s (1920) discussion of reactions
generated by various circumstances in agents of different mental character,
and Minsky’s (1986) discussion of active conflicts among mental subagencies.
One cannot avoid refraction in seeking to understand rational behavior, how-
ever. Efficiency in action demands that much behavior be habitual rather than
deliberate. The problem of refraction arises because good habits can easily
turn bad when the circumstances of action change.

The notion of elastic response depends on a notion of baseline state from
which one measures elastic deformations. Mechanics calls these states relaxed
states, and assumes that simple materials placed in a certain shape move toward
and eventually reach a relaxed state.

Computational theories of mind involve a variety of equilibrium notions we
can regard as relaxed states of the agent, most notably the states representing
closure of mental attitudes with respect to sets of inference rules, a topic I
return to in the next chapter. In forward chaining inference systems, for ex-
ample, the reasoner applies every applicable inference rule each time one adds
new axioms, and continues this process as inference rules add new conclusions,
stopping only when all applicable rules have been applied, at which point we
say the reasoner has reached a state of closure or quiescence. From the me-
chanical perspective, we regard new information obtained by the reasoner as
a new boundary condition that triggers motion to a new relaxed state. We can
think of such boundary conditions as expanding or stretching the shape of the
mental body, necessitating a period of reequilibration.

Plastic deformation occurs when the deformation moves the “set-point” state
to a different relaxed state than existed prior to the deformation. One might
regard adoption of new intentions in action as effecting such deformations.
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12.3.7 Conceptual forces

For the first half of the journey, from Krementchug to Kiev, all Rostov’s thoughts—as is
apt to be the case with travellers—turned to what he had left behind—to his squadron.
But after being jolted over the first half of the journey, he had begun to forget his three
roans and his quartermaster, Dozhoyveyky, and was beginning to wonder uneasily what
he should find on reaching Otradnoe. The nearer he got, the more intense, far more
intense, were his thoughts of home (as though moral feeling were subject to the law
of acceleration in inverse ratio with the square of the distance). At the station nearest
to Otradnoe he gave the sledge-driver a tip of three roubles, and ran breathless up the
steps of his home, like a boy. (L. Tolstoy 1869, Pt. 7, Ch. 1)

One also finds several psychological subjects concerned with what one might
regard as mutual attractive forces. As noted earlier, Herbart (1891) regarded
mental concepts as exerting “forces” on each other. Some of the similarity-
based and density-based clustering methods of machine learning represent
modern ideas related to such conceptual forces.

For example, one class of density-based clustering methods pretends that
each item in a set of numeric-attribute data generates a symmetric single-
peaked potential field, for example, in Gaussian shape. One then sums the
fields from all data items, applies a threshold, and interprets the regions of the
attribute space exceeding the threshold value as clusters of data points. One
might regard this as having these data density fields acting on one’s notion of
the cluster centers.

Another important class of clustering methods relies on similarity measures.
Some similarity-based learning methods compute inner products of the at-
tribute vector of a data item with the attribute vector of prototypes to clas-
sify the data item according to its “cosine” similarity with different prototypes.
When classifying new data items with respect to a known set of clusters, one
uses the inner product in a one-sided manner by finding the prototype most
similar to the data item and assigning the data item to that prototype’s clus-
ter. When analyzing a new data set to choose a set of prototypes representing
clusters, one instead uses the inner product in a two-sided manner by clumping
together similar data items in a symmetric fashion.

One can treat desires for objects in a way related to the similarity-based
clustering methods by thinking of a desire as specified by some vector of bi-
nary attributes characterizing the objects of desire and so specifying the direc-
tion of the force of desire, so that each different object of desire corresponds
to a different direction in attribute space, and the direction corresponding to
compound objects represents the sum or combination of the directions corre-
sponding to its elements. We then obtain a degree of desire for some object by
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considering the match between the vector of desired attributes with the vector
of attributes characterizing the object.

The attribute-vector formulation of desire does not easily capture the full
range of underlying attitudes and sentiments. It does not even capture all the
expressions of preference and relative desire, which in more general cases re-
quire interpreting desires in terms of regions in attribute space rather than as
mere directions or hyperplanes. We have already seen such nonlinearity in
the reason forces detailed earlier, which generate zero force in one range of
positions and generate a nonzero force elsewhere.

One might also regard some forms of decision making as involving mutual
attraction expressible in related forms. Consider Festinger’s (1957) notion of
cognitive dissonance, in which the holder of clearly conflicting points of view
on some matter experiences pressure to resolve the conflict. Although the sim-
plest means for conflict resolution is to abandon one of the points of view in
favor of the other, one might also consider consensus formation as a process
of mutual attraction by the different sides, in which the similarity measures
indicate the strength and direction of force pulling each point of view toward
the other.



13

Learning

While reasoning can produce temporary changes of location, learning produces
persistent changes of mass or configuration. When someone temporarily re-
sponds to instruction or threat but then reverts to an old behavior when the
teacher or threat departs, we say that person did not learn anything. Mechan-
ically, we would identify such response with an elastic material that rebounds
on relief from compression, but such elastic behavior does not produce the per-
manent changes we associate with thought. True learning, involving change of
mass or deformation of spatial configuration, constitutes plastic changes in the
character of the material, including dynamogenetic changes that affect material
response. In this chapter, let us consider learning involving changes of habits
represented in the mass and changes of configuration represented in position.
We distinguish types of reasoning and learning both by the types of changes
involved and by the types of forces producing the change.

13.1 Accretion

The simplest sort of changes to memory just add new elements to the long-term
memory represented by the mass of the agent. Such accretion also represents
the effects of the most common sort of inference and learning mechanisms.

Many psychological theories view learning as transfer of information from
short-term memory to long-term memory. Different theories of learning posit
different means for effecting this transfer. Some theories require transfer to
long-term memory of some beliefs in short-term memory simply because they
persist long enough in short-term memory. We might regard each of these
forms of learning as occurring through the generation of forces in which some
event, such presence of a belief in certain circumstances, or presence after pass-
ing a certain length of time, generates a force adding that element of position
to the mass.

326
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The chunking mechanism of Soar (Laird, Newell, & Rosenbloom 1987), for
example, creates a new rule or habit every time the reasoner solves a prob-
lem or subproblem. This new rule encapsulates the essential elements of the
solution in a form independent of the context of the solution, in a manner
patterned after the fundamental deduction theorem of logic. The solution jus-
tifications typical of problem solving in AMORD (de Kleer et al. 1977) con-
stitute propositional instances of the sorts of rules created by Soar’s chunking
mechanism. The conditional-proof justifications of the RMS (Doyle 1979)
instruct it to learn new simple justifications in much the same way, adding
new simple justifications as the RMS passes through different positions that
reveal them to exemplify the conditional-proof justifications. All of these are
instances of learning mechanisms that take short-term beliefs or other atti-
tudes involved in certain forms of reasoning and transfer them to long-term
memory.

Once transferred to memory, rules or beliefs represent new habits of reason-
ing. We note that creating such habits requires effort, namely the effort needed
to rehearse or maintain the habitual behavior long enough to trigger or enable
the transfer process. Breaking habits also requires effort, of the sort needed to
counteract or disrupt the forces produced by the habits being undermined.

13.2 Stretching

Accretive learning operating in isolation can take the agent through a nonrigid
motion. Traditional designs for automated agents have the agent thinking for
some period of time in between the instants at which percepts provide new in-
formation. During this interval, deduction or other inferential processes derive
new or additional conclusions from existing beliefs or other attitudes. In such
a process, the perceptual organs stay in a fixed position, while the mental in-
terior first acquires the new percept from the perceptual bodies, then performs
reasoning, and so shifts position accordingly. One can thus think of this sort of
reasoning as producing a stretching of the mental configuration, with the rea-
soning conducted between perceptual events modifying the distances between
perceptual organs and the mental interior.

Simple accumulation of conclusions represents an atypical form of learning,
especially because reasoning is commonly nonmonotonic, not merely deduc-
tive. Other forms of learning involve nonadditive changes that exemplify more
interesting kinds of stretching of mental configuration.

We see the deformation character of learning in a more specific way by
considering kernel learning methods, such as support-vector machines (SVMs)
(Burges 1998; Müller et al. 2001).
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Recall that Noll (1973) identifies spatial configurations with body metrics
that specify the sets of distances between each pair of body points in the con-
figuration. One can represent a body metric κ by a symmetric matrix with zero
diagonals, in which the κi,j entry gives the distance between body points bi
and bj .

The same sorts of distance metrics appear in SVM theory as the Gram ma-
trices of the data set. These learning methods implicitly develop nonlinear
separation boundaries between classes of data, and encapsulate the emerging
geometry of the data examined so far by matrices that give the distances sep-
arating each pair of data points. As sketched in Section 2.2.3.1, from the me-
chanical point of view kernel machines deform the initial geometry of the data
so that distinct classes admit separating hyperplanes or approximately separat-
ing hyperplanes.

One finds a common manifestation of deliberate plasticity in familiar learn-
ing and exercise stratagems, in which the learner pushes beyond current abili-
ties in order to expand those abilities and come to rest at some new equilibrium
point beyond the current frontier. Some negotiation protocols exploit a similar
form of plasticity, making knowingly unacceptable demands or bids intended
to reset the expectations and appetites of other participants. Each of these
forms of learning work against a natural elasticity or refractory nature by seek-
ing to bend the material until it breaks, or undergoes a plastic transformation
to a new relaxed state different than was possible before.

13.3 Shearing

The stretching induced by SVM learning methods to reflect separation be-
tween distinct concepts or behaviors represents just one of the sorts of division
induced by learning and reasoning. The more familiar division reflects the
distinction between the intended and unintended effects of actions, which we
might interpret in terms of shear forces that move one part of the body relative
to the rest.

13.3.1 Intentions and differential effects

Much reasoning and some learning happen as the result of deliberate action,
action that aims to effect specific changes in mental state. For example, delib-
erate reasoning seeks to obtain specific conclusions; deliberate external action
seeks to achieve specific effects in the environment; and deliberate learning
seeks to discover specific new information or inculcate specific new habits.

Intentions thus divide the changes involved in reasoning and learning into
the intentional changes and the unintentional changes or side effects. To a first
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approximation, we think of the intentional changes as the aims of the action
and the unintentional changes as the additional adaptation needed to effect the
intentional changes. Action thus seeks to achieve specific aims independent of
other changes.

An agent typically only knows a portion of the direction of its intended mo-
tion, namely the intended effects. The actual motion will involve some com-
bination of intended and unintended effects due to environmental or configu-
rational constraints. In mechanical terms, we regard intentional self-change as
shearing the body, moving a portion to a new configuration in the intended di-
rection while leaving the rest of the configuration intact. The intentionality of
action thus corresponds not to a full force, but to a partial force that indicates
changes along only some of the dimensions of D. The total force is determined
from the partial shearing forces together with the constitutive forces shaping
adaptation, such as conservative update or relaxation. In contrast to the inten-
tionality of the intended aims, this adaptation lacks specific aims and instead
works to minimize changes or discrepancies independent of the action causing
them. This distinction blurs a bit if we consider actions intended to adapt the
body to specific conditions.

13.3.2 Conservative response

The most common property exhibited by mental deformation appears in the
typical and habitual conservatism of human thought when the agent adopts
or abandons elements of mental states. Accommodating a new conclusion can
require abandoning a prior assumption; adding a new habit can demand replac-
ing or modifying another. The typical change of memory or outlook therefore
involves several separate changes rather than a single change. We regard these
secondary or consequential changes as adaptation of the state of the agent to the
required changes.

One sees adaptation vividly in theories of belief revision. Most theoreti-
cal prescriptions in philosophy (see especially Quine & Ullian 1978, Harman
1986, Gärdenfors 1988) and actual practice in artificial intelligence restrict
the admissible changes of state to ones that keep as much of the previous
state of belief as possible. For example, in addition to the STRIPS assump-
tion, each of the backtracking procedures used in artificial intelligence rep-
resents some notion of minimal revisions. In “chronological” backtracking,
the agent keeps all beliefs except the ones most recently added. “Nonchrono-
logical” or “dependency-directed” backtracking is even more conservative,
abandoning as small a set of beliefs as possible regardless of the order in
which they were adopted. For instance, the DDB procedure (Doyle 1979) for
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dependency-directed backtracking minimizes the changes by abandoning only
“maximal assumptions.” Indeed, conservatism appears in the action of the
RMS even without backtracking, for when new information defeats prior con-
clusions, the RMS seeks a new state satisfying constitutional consistency, com-
pleteness, and grounding requirements but standing as close as possible to the
previous state. Conservatism figures similarly in studies of updates in data-
bases (Fagin, Ullman, & Vardi 1983).

Conservatism also plays a role in some forms of deliberate learning. For
example, analogies and metaphors are often very useful in problem solving
and learning. While all forms of learning call for the reasoner to adapt expla-
nations, hypotheses, and theories to new information, in using analogies and
metaphors the reasoner deforms one explanation or concept into another and
judges the aptness of different deformations according to how mildly or greatly
they torture the original (Carbonell 1986). Finding the mildest deformation is
just another version of conservatism in reasoning.

Conservative update also plays a central role in some economic theories of
adaptation. Schumpeter’s (1934) theories make destruction of outmoded hand-
me-down habits and practices a key to economic progress. One finds simi-
lar concerns in Nelson and Winter’s (1982) evolutionary theory of economic
processes, in Elster’s (1979) theories of rational change, and in Leibenstein’s
(1980) theory of X-efficiency, in which updates retain outdated habits after the
reasons motivating their adoption disappear.

Section 7.4 characterized conservative revision in terms of a distance no-
tion for mental states, or more generally a comparative similarity relation that
embodies a preorder on state transitions. Even a weak comparison suffices to
identify the minimal changes that include the intended changes while satis-
fying constitutional requirements. Indeed, several theories of belief revision
employ a notion of “epistemic entrenchment” (Gärdenfors & Makinson 1988)
to formalize the sorts of minimum-change revision principles just discussed.
The idea is to order beliefs by degree of entrenchment, so that when the agent
removes beliefs to retain consistency, it removes the least entrenched beliefs
first. Similar notions apply to changes to preferences and other mental qualities
as well (Doyle 1990b).

13.4 Configurational intentions

In contrast to physical materials, which exhibit behavior but do not choose their
own behavior, minds exhibit both inherent and chosen behavior. A physical
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material exhibits the same behavior as long as it exists, with a set pattern of
variation across temperature, pressure, and other physical conditions. A mind
can bind itself to new patterns by means of its intentions. Although an agent
adopts many intentions concerning actions it will perform, some intentions it
adopts concern properties of the agent itself. Indeed, one can view a large
portion of thinking as a process of self-specification and self-construction by
means of such self-regarding intentions (Doyle 1980, 1982a, 1990a).

The following section treats such self-regarding intentions as intentions that
express restrictions on the configuration of the reasoner. Thus, we can regard
such intentions as expressing learnable and revisable constitutive assumptions
(Doyle 1983e, 1983a, 1988a). The following treatment paraphrases that of
Doyle (1994).

13.4.1 Self-specifications

We regard self-specifications as mental attitudes in D, as we do with other
kinds of intentions. We interpret these intentions as identifying a set of ac-
ceptable positions or mass values represented by admissible subsets of D. For-
mally, we assume a meaning function [[ ]] : D → P(P(D)), or in positional
language, [[ ]] : D → P(D), interpreted so that the meaning [[e]] of an element
e consists of the set of possible states that satisfy the constitutive intent, if any,
of the element. We assume the meaning function applies to all elements of D,
by taking [[e]] = P(D) = D when e has no constitutive import. This meaning
places no restrictions on possible states.

Chapter 11 ascribed such meaning to reasons, and noted that they can
express nonmonotonic kinematic restrictions not expressible using the
consistency and closure notions of ordinary monotonic logic or information
systems.

Although we interpret elements of D as representing (possibly vacuous)
self-specifications, the only self-specifications that actually matter in a par-
ticular case are the ones the agent actually holds. For an agent to satisfy its
own self-specifications, its position need not satisfy all intentions in D, only
those self-regarding intentions its current position contains. This was the basis
for the notion of satisfying position introduced earlier.

As a formal method, one might apply the idea of self-specification to physi-
cal systems as well as to mental systems, for example, regarding bits of rubber
as specifying that they themselves obey the laws governing rubber, or regarding
each bit of mass as specifying something about the local geometry governing
motion in the vicinity of the mass as in general relativity.
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13.4.2 Satisfaction systems

I develop the notion of satisfaction system as a way of formalizing the notion
of configurational self-specification. Satisfaction systems broaden the notion
of satisfying position introduced earlier to encompass a wider range of self-
specifications not tied to reasons.

Satisfaction of self-specifications means that the configurations inhabited
by the agent must satisfy the self-specifications held by the agent. In this way,
mental positions themselves set out part of their own constitution. We thus
might regard configurational intentions, as well as more the fixed constitutional
logics treated in Section 12.2, as fitting Boole’s notion of “laws of thought,”
with state-inspecific restrictions capturing fixed legal constitutions of the agent,
and state-specific restrictions capturing variable laws and amendments to the
fixed constitution.

Formally, a satisfaction system S = (D, [[ ]]) over D consists of D together
with a meaning function [[ ]] : D → P(P(D)). The elements or satisfying sets
Sat(S) of the satisfaction system consist of those subsets of D that satisfy the
constitutive import of each of the elements they contain. Formally, X ⊆ D is
satisfying just in case X ∈ [[e]] for each e ∈ X , a condition we can also write
as

X ∈
⋂

e∈X

[[e]]. (13.1)

We extend the meaning function over elements of D to a function over sub-
sets of D by defining [[∅]] = P(D) and [[X ]] =

⋂
e∈X [[e]] for each nonempty

X ⊆ D. With this extension,X is satisfying just in case X ∈ [[X ]].
The empty set always satisfies all its elements, meaning that ∅ ∈ Sat(S) for

every satisfaction system S. Indeed, inadmissibility of ∅ is essentially the only
condition inexpressible by satisfaction systems.

13.4.3 Locality

Practical satisfaction systems do not involve arbitrarily complicated relations
between elements of D, but instead concern only local conditions on finite
portions of states, even when the states themselves might be infinite, corre-
sponding to the compactness properties exhibited by many traditional logical
systems. We define an analogous notion of compactness for satisfaction sys-
tems as follows.

If G ⊆ D, we write πG : P(D) → P(G) to denote both the natural projec-
tion function of subsets of D onto subsets ofG and its lifting to sets of subsets,
so that πG(X) = X∩G. We say that [[e]] has basisG ⊆ D just in case S ∈ [[e]]
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iff πG(S) ∈ πG([[e]]) for every S ⊆ D. For example, the meaning given in
(11.8) has basis A ∪ B ∪ C. We say that [[ ]] has basis G iff [[e]] has basis G
for each e ∈ D, and that a satisfaction system is compact iff for each e ∈ D,
whenever [[e]] has basis G there exists a finite G′ ⊆ G such that [[e]] has basis
G′.

Clearly, every meaning has basis D, so every component meaning of a com-
pact satisfaction system has a finite basis. Not all interesting meanings have
finite basis; in particular, the meaning P(D) \ {∅} expressing only nonempti-
ness of states does not have finite basis if D is infinite. However, the trivial
meaning P(D) has finite (indeed, empty) basis, so the trivial satisfaction sys-
tem assigning this meaning to each element is compact.

Locality also enters into other computational notions. In artificial neural
networks, for example, each artificial neuron has connections to a fixed set of
other neurons. One can characterize the equilibrium states of these networks
with requirements that the activation level of each neuron matches the appro-
priate function of the activation levels of its children. We also see locality in
cellular automata, which base changes in a cell on the inhabitants of the cells
in some diameter-bounded neighborhood. Cellular automata do not typically
involve any kinematic constraints, however, so that the locality notion only
restricts changes and not the resultant states.

13.4.4 Frame indifference

We say that a satisfaction system is frame indifferent just in case its constituent
meanings transform as frame-indifferent relations over D. Formally, for each
satisfaction system S = (D, [[ ]]) we define the orthogonally transformed sys-
tem QS = (D, [[ ]]Q) so that

[[Q(e)]]Q = Q([[e]]) (13.2)

for each e ∈ D. We say that S is frame indifferent just in case

Sat(SQ) = QSat(S). (13.3)

It is not hard to verify that satisfaction systems are frame indifferent in this
sense.

Asking that satisfaction relations remain invariant under changes of frame
asks too much. Invariance under change of frame would mean that [[Q(e)]] =
Q([[e]]) for each e ∈ D. This can happen only if [[ ]] is constant, and further,
contains only sets invariant under framings. Since the only sets of that kind
are ∅ and D, a meaning function can be invariant under frame changes only if
there is some subset X of {∅,D} such that [[e]] = X for every e ∈ D.
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13.4.5 Constitutive self-specification

Just as we can think of the same logical inference as occurring automatically
by virtue of a constitutive logic or deliberately through a process of inten-
tional reasoning, we divide self-specifications into ones fulfilled by virtue of
the agent’s constitution and ones fulfilled by virtue of the agent’s deliberate
actions. The self-specifications forming part of the fixed constitution of the
agent then define a satisfaction system imposing constraints on mental states
at the same level as the constraints imposed by constitutive logics.

In fact, one can use the notion of constitutive self-specification to capture
almost every constitutive logic. Given any information system I, one can em-
bed the restriction to elements of the information system within a satisfaction
system by replacing each meaning [[e]] by the refined meaning [[e]] ∩ Elt(I).
For a finite information system, one can achieve the same effect by recasting
the finite entailment and minimal inconsistent sets in terms of monotonic rea-
sons and denials. More generally, recalling that satisfaction systems cannot
express nonemptiness, one can recover any set E ⊆ P(D) such that ∅ ∈ E by
defining [[e]] = E for every e ∈ D. Simple nonemptiness is not expressible in
constitutive logics either, but these can easily require that every state contain
some particular element.

13.4.6 Constructive configurations

The kinematic integrity constraints formalized in satisfaction systems can ap-
ply to position alone, to mass alone, or to the combination of the two, express-
ing relationships that must hold between position and mass.

It might seem odd to have configurational connections between mass and
position, but these do appear in traditional mechanics. For example, one ex-
pects a proper theory of soap bubbles to restrict the configuration of the soapy
water to sizes that maintain a minimum density of soapy water. One drop of
soapy water cannot form a bubble the size of Texas.

One expects relationships between position and mass to play a larger role in
psychology, because of the obvious connections between memory and outlook
in familiar psychological organizations.

One can regard some learning mechanisms in terms of constraints that
position places on mass. Soar’s mechanism of chunking (Laird, Newell, &
Rosenbloom 1987), for example, adds element to memory whenever the rea-
soner adds problem solutions to position. These new memory elements sum-
marize the dependence of the solution on other attitudes. One might try to view
learning mechanisms that add long-lived attitudes to memory in the same way,
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but as discussed earlier, one ordinarily thinks of such transfer mechanisms as
relying on persistence in outlook over time rather than involving configura-
tional constraints.

Let us focus here on constructive constraints that require that elements of
mental position be grounded in elements of mental mass. This type of con-
structive relationship is exemplified in the RMS, which requires that conclu-
sions be grounded in the reasons stored in memory.

13.4.6.1 Grounded construction

The constitution of the RMS requires that the state it presents to its environ-
ment satisfy its configurational self-specifications. The main RMS conception
of satisfaction requires that the position satisfies the meaning of each reason
it contains. This amounts to the stability condition that each positive con-
clusion of every valid reason is In. The RMS groundedness configuration
condition strengthens this pure satisfaction condition (Doyle 1983e, 1994).

The RMS views groundedness in terms of reasons, and more specifically,
in terms of positive conclusions of reasons. This means RMS groundedness
does not involve the denial component of interval reasons. Formally, x is a
grounded position with respect to mass m just in case for each e ∈ D we have
e ∈ x iff there is a finite sequence 〈e0, . . . , em〉 of In elements of x such that
e = em and for each i ≤ m, either ei ∈ m, or there is some j < i such that

(i) ej = A \\ B ‖− C \\ D,

(ii) for each e′ ∈ A, e′ = ek for some k < j,

(iii) for each e′ ∈ B, e′ /∈ x, and

(iv) ei ∈ C.

The base condition means that every element In m is also In x.
Putting all these conditions together, we say a position x is a legal or ad-

missible position of the RMS just in case x consists exactly of the grounded
consequences of the reasons m and satisfies the reasons in x. In other words,
x is a legal position if the set of In items satisfies every reason in x and if every
item in x is supported by a noncircular argument from the valid reasons in m.
We say the In conclusions of a legal position form an admissible extension of
the mass reasons m, and write α(m) to denote the set of all consistent, closed,
and satisfying positions x grounded with respect to m.

The nonmonotonicity of reasons introduces an ambiguity of interpretation
familiar from the study of nonmonotonic logics (McDermott & Doyle 1980;
Reiter 1980; Marek & Truszczyński 1993), an ambiguity that lets some sets
of reasons possess more than one stable grounded labeling, some sets possess
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exactly one, and some sets none at all. For example, the single nonmonotonic
reason

{∅ \\ {e} ‖− {e}} (13.4)

supports no admissible extensions, the single nonmonotonic reason

{∅ \\ ∅ ‖− {e}} (13.5)

supports one, and if e �= e′, the two nonmonotonic reasons

{ ∅ \\ {e} ‖− {e′}, ∅ \\ {e′} ‖− {e} } (13.6)

supports two admissible extensions.

13.4.6.2 Rational construction

The grounded constructions characterizing RMS states also reflect economic
structures. As stated earlier, each reason expresses an intention of the reasoner
about the structure or degree of coherence of its state, namely that the labeling
should satisfy the condition on labelings expressed by the reason. Each reason
in addition expresses preferences over possible labelings. For monotonic rea-
sons, these preferences rank all labelings equally. For nonmonotonic reasons,
the preferences rank labelings yielding the conclusions over labelings in which
defeaters prevent the reason from yielding the conclusions.

Stable grounded labelings exhibit Pareto optimality with respect to these
preferences (Doyle 1983e, 1985b, 1988a, 1994). Such labelings satisfy maxi-
mal sets of nonmonotonic reasons, so that making some defeated reason unde-
feated requires defeating some other reason. This means one cannot increase
preferability with respect to one reason without decreasing preferability with
respect to some other reason, rendering the labeling an equilibrium point of
an optimizing process. Indeed, this preferential import of reasons means that
a version of Arrow’s theorem on the impossibility of rational social choice
methods applies to RMS labeling methods as well (Doyle & Wellman 1991).

13.4.6.3 Personal construction

Frankfurt’s (1971) theory of personhood takes possession of attitudes toward
one’s own attitudes as the criterion of personhood. In a sense, self-regarding
attitudes delineate the boundary between the person and his or her environ-
ment, so that the person determines his or her own identity. One sees evidence
for something like this view in reports by survivors of terrible torture or injury,
some of whom report separating themselves from the suffering body parts, say-
ing something like “Look at that crushed arm over there. Isn’t that curious?”
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Constitutive self-specifications serve exactly this purpose, although perhaps
on a limited scale. They determine which attitudes are In and which are Out,
terminology that itself suggests a boundary between self and other. More com-
pellingly, self-construction based on nonmonotonic reasons involves a choice
of position, with the mind choosing its own contents in accord with its inten-
tions and preferences about its own makeup. This sort of self-construction, and
the self-interpretation enabling it, certainly seem to meet the requirements of
Frankfurt’s personhood criterion.

One therefore might also regard self-construction as involving conscious-
ness or self-consciousness to some extent. The satisfactive and constructive
integrity notions represented by self-intentions and self-preferences carry in-
tentionality, with the mind and its constitution as the intentional objects. In or-
dinary intentions and desires, intentionality involves only pure direction, and
no necessary element of consciousness. Self-specifications and constructive
attitudes, in addition, involve a notion of self that provides some awareness of
self together with awareness of the distinction between self and other. This
might legitimate ascription of a type of self-consciousness to agents exhibiting
such integrity.

13.5 Relaxation and adaptation

The standard notion of kinematic constraint in mechanics interprets such con-
straints as properties of the body holding at each instant. Thus a rigid body
always has the same form, and an incompressible fluid always has the same
volume. Psychology also has need of such invariant constraints, especially in
understanding underlying character and architectural features of agents.

The sequential reasoning forces generated by reasons or sets of reasons ex-
amined earlier produced direct changes that might not preserve the integrity of
the mental state with respect to configurational intentions. What do configu-
rational intentions mean if reasoning need not respect them? To answer this
question, we look to the notion of relaxed states from continuum mechanics.

13.5.1 Integral motion

Mechanics uses the notion of relaxed states to characterize a response of adap-
tation to maintained stresses. Exerting stresses on the surface of a body leads
to internal stresses. If one holds the superficial stresses constant, the inter-
nal stresses change over time to a stable pattern, that is, a relaxed state of the
material.

It seems natural to regard some psychological and economic systems in
terms of relaxed states as well, identifying relaxed states with those states that
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satisfy all the configurational intentions. We thus view the mind as occupy-
ing some relaxed state until some impulse or perception forces transition to a
different relaxed state, with the mind remaining in that new relaxed state until
suffering some further impetus. We think of such transitions among relaxed
states as occurring over time, and involving motion through one or more non-
integral states in the course of the transition.

We call movement from one relaxed state to another integral motion. Inte-
gral motion of the RMS and other psychological systems represents the point
of view of an observer who only sees the macroscopic integral states and tran-
sitions between them, but not any of the microscopic substructure involved in
motion between the integral states.

For example, we view the RMS as computing integral positions that satisfy
satisfaction and grounding conditions. Interactions that add or remove new
reasons to the RMS memory represent impulses that can trigger movement to
a new integral state. When such change is necessary, the RMS computes a
new integral state, but traverses various nonintegral states in the course of un-
labeling and relabeling elements. Different implementations involve different
sequences of intermediate states, but all follow this same basic pattern.

The remainder of this section examines the mechanical character of move-
ment between integral states. It focuses on the example of the RMS for con-
creteness, even though this involves some simplifications one would not expect
in more complicated mechanical systems.

13.5.2 Subintegral motion

Mechanics does not restrict the duration of the relaxation process taking some
perturbed state to a new relaxed state. In some special materials it may reach a
limiting state rapidly, while in others, no finite time suffices to reach a limiting
relaxed state. This variability fits the computational operation of the RMS
well, because the RMS requires a process of indefinite length to find a new
equilibrium state given a change of reasons. Because the integral transitions
can take differing lengths of time to complete, we abstract away the underlying
notion of time to a discrete conception of “integral time” that labels successive
integral states with successive integers, taking each integral transition to last
just one unit of integral time. This corresponds to regarding the RMS as a
hybrid system itself, in which one factor moves directly from integral state to
integral state at succeeding instants, while the other moves from integral state
to integral state through a sequence of nonintegral states, without a fixed ratio
relating the flow of time in the two factor systems.
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Integral states
σt

�


σt,0

�
σt+1

�


σt+1,0

� � � � � � �
rt,1 . . . rt,kt

Nonintegral states

Fig. 13.1. Decomposition of an integral transition between two integral states into a
sequence of nonintegral transitions representing application or unwinding of individual
reasoning steps.

I depict the relation of integral and nonintegral motion in Figure 13.1, tak-
ing a view that admits arbitrary but finite numbers of nonintegral intermediate
positions. Let us decompose each transition

σt, σt+1

through integral states into a series of kt transitions through nonintegral states

σt, σt,1, . . . , σt,kt , σt+1.

In the simplest case, each of the intermediate nonintegral states results from the
action of one or more reasons, along the lines presented earlier. For simplicity,
let us consider here only single-reason trajectories. We denote the reason ap-
plied or removed at microstep i of instant t by rt,i, and view each such reason
as an operator that produces a new state from an old one.

σt,1 = rt,0(σt) (13.7)

σt,i+1 = rt,i(σt,i) (13.8)

σt+1 = σt,k. (13.9)

If we extend the topologies already assumed on times, places, and body points
to a topology on the set of states, we can extend the notion of integral transition
to allow an infinite number of microtransitions between integral states and to
regard relaxation as an infinite equilibration process by taking

σt+1 = σt,∞ = lim
i→∞

σt,i, (13.10)

assuming this limit exists. For the finite sequences of microtransitions, of
course, we take the limit value to be the final state.
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13.5.3 Applied forces and self-forces

Each integral state transition begins with some impulse or perturbation, namely
an applied force of the form

ft = (ṁt, ẍt). (13.11)

For simplicity we follow the model of the original RMS and consider pertur-
bations that only change the mental mass by adding new reasons. These take
the form of an applied mass force

fm
t = (ṁt,0). (13.12)

The subintegral transitions then result from a series of self-forces correspond-
ing to the reasoning steps

ft,1 = (0, ẍt,1) (13.13)
...

ft,n = (0, ẍt,n), (13.14)

changing only the conclusions, that is, the velocity and position. Upon reach-
ing quiescence in a new integral state, the integral transition comprises a spatial
self-force

f s
t = (0, ẍt) (13.15)

that we can regard as transmitting velocity or change signals to the environ-
ment.

Of course, this decomposition of applied and self-forces across time and
across mass and space represents just one possible means for organizing rea-
soning. No mechanical principle forbids applied or self-forces from mixing
mass and velocity changes. Indeed, the distributed RMS described by Doyle
(1996, 1997) permits external forces to stipulate changes to conclusions as well
as to base reasons. Such stipulations appear necessary to allow each part of a
distributed system to reason without undue dependence on other parts. Similar
mixed forces might also be applied by reasons in subintegral transitions, or
better still, by schematic reasoning rules applied during the course of updates.

Although we can describe the forces involved in integral motion in mechan-
ical terms, the preceding description does not provide a reasonable train of
causality, in that it requires computing the complete successor state in order to
determine the force acting at an integral instant. The ordinary sense of causal-
ity familiar in traditional mechanical prediction and calculation determines the
force at an instant as a function of the current state or past history, or as an
external given, and then computes the next state directly from the force. Of
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course, no notion of causality inheres in these mathematical equations them-
selves, and in fact this apparent reversal of causality is somewhat misleading.
The causal discomfort in this description of behavior does not result from any
acausality of the reasoner itself. The discomfort results from splitting the deter-
mination of force across both the mind and its environment. Rather than taking
the force as an input to the reasoner and using this force to determine a new
velocity and mass, this interpretation implies that the environment determines
the mass velocity component of the force, while the mind itself determines the
spatial acceleration component of the force. Thus if we seek to view the en-
vironment as specifying the force on the mind, this interpretation requires the
environment to predict the acceleration component determined by the mind
from the mass change component. Such prediction seems problematic because
of the indeterminacy of conclusions with respect to base reasons.

13.5.4 Conservatism

As noted earlier, constructive integrity sometimes involves a degree of indeter-
minism in constructing admissible extensions of states. Such indeterminism of
admissible extensions leads directly to indeterminism of integral motion. The
notion of conservatism plays an important role in shaping integral motion by
acting to minimize the unnecessary changes and keep the new state as close as
possible to the prior one.

Define the function α� : M → P(Σ) to pick out those states having posi-
tions that are admissible extensions of specified masses, that is,

α�(m) = {σ ∈ Σ | m(σ) = m ∧ x(σ) ∈ α(m)}. (13.16)

Using the nearest-state operator ν of Section 7.4.4, we can express the require-
ment of conservative update as the condition

σt+1 ∈ ν(σt, α
�(m(σt+1))), (13.17)

which requires successor states to have positions that are admissible extensions
as close as possible to the preceding state.

The original RMS was constructed to produce conservative position updates
given changes to the reasons represented by the mass. In this conception,
the conservatism order on state changes stems from a conservatism order on
changes of position. Given a change of mass from mt to mt+1, the posi-
tion would change from xt to a new position xt+1 ∈ α(mt+1) minimizing
the velocity ẋt+1 = xt+1 − xt in the sense of a nearest-position operator
ν� : S × P(S) → P(S), so that

xt+1 ∈ ν�(xt, α(mt+1)). (13.18)
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The original RMS also was designed to embody a notion of conservatism
based on topological locality notions. In the RMS, the natural notion of local-
ity concerns the topology of the network of dependencies induced by the rea-
sons among nodes representing components of mental positions. Topological
notions such as partial ordering of nodes and strongly connected components
of the dependency graph induce a natural notion of neighborhood, in which
each node has a set of nearest neighbors as seen from the connections given
by the reasons. Indeed, one can reasonably view the RMS reason-following
process as propagating contact forces through the body, with each reason in
contact with others through its meaning. The original RMS revision meth-
ods exploited these topological relations by seeking to remove contradictions
by changing assumptions holding maximal positions in the topological order
underneath the contradiction. The original formalization of reasoned assump-
tions (Doyle 1983e) explicitly treated the notion of local groundedness, both
as a way of formalizing a weak notion of groundedness in which all reasons
employed in reasoning only relate nodes that are close to each other. That
original formalization also provided means for considering that some sets of
nodes are close to each other a priori, as was later exploited in the notion of
RMS “locales” employed in the distributed RMS of Doyle and Wellman (1990;
1996), and as had been exploited earlier in the notion of local theories (Doyle
1980).

Rather than address the complications of this topological order, the formal-
ization in Doyle (1983e) reformulated the intent of RMS conservatism as min-
imizing set differences; that is

σ1 ≺σ σ2 iff x(σ) + x(σ1) ⊆ x(σ) + x(σ2). (13.19)

This means that no change is acceptable if its additions and deletions strictly
include those of some other change. We can regard it as minimizing a norm
based on the inner product i1 introduced earlier. If the current set of conclu-
sions included A and B, and a new reason ruled out any state in which both
of these conclusions appear, then the RMS would give up either A or B to
obtain a legal state, but would not seek to give up both of these, nor any unre-
lated conclusions. The design of the original RMS addressed the difficulty of
computing such set minimizations by employing methods that approximate the
desired behavior. As explained in Doyle (1983e), the heuristic method used by
the original RMS to minimize changes provided no assurance that the changes
made were actually minimal.

One also could consider instead RMS variants in which the transition rule
embodies some other comparison between states. For example, the comparison
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relation

σ1 ≺σ σ2 iff |x(σ) + x(σ1)| ≤ |x(σ) + x(σ2)| (13.20)

compares the number of changed items, and so represents a norm based on
the inner product i2 given earlier. Harman (1986) calls this the simple mea-
sure. One might generalize this by employing a measure function µ over S to
compare measures of sets of changes instead of cardinality of these sets, as in

σ1 ≺σ σ2 iff µ(x(σ) + x(σ1)) ≤ µ(x(σ) + x(σ2)). (13.21)

One might choose such measure functions to represent probability, utility, or
other properties of the sets of conclusions. The theoretical freedom to choose
conservation relations in these theories represents different possible conserved
quantities. Both these theories may be extended to cover additional aspects
of mental states, permitting expression of conservation of yet more quantities.
The approach taken in Doyle (1983e), in one sense, already covered many
possible quantities since it made no presuppositions about the nature of the
mental state components entering into the conservation restrictions.

13.6 Evolution of geometry

The RMS exhibits a form of conservatism in which the nature of conservative
updates changes as the RMS mass changes. Because the conservation relations
reflect locality relations derived from the set of reasons, the apparent local
structure of space changes as the RMS changes the set of base reasons that
constitute the mass of the system. Changes of spatial locality relations thus
follow changes of mass distribution. This interaction of matter and space in
RMS conservatism recalls the interaction of matter and geometry in general
relativity, in which the structure of locality changes over time in response to
changing distributions of matter. The following section provides some highly
speculative reflections on this observation.

The preceding section has interpreted reasons as constraints on the geometry
and shape of states, constraints that give rise to the pseudometrical structure of
the space of equilibrium states. The reasons determine the admissible positions
or configurations of the body. Putting these determinations together for all
mass values, we obtain the set of all equilibrium configurations as a subset
of the set of all positions, so that the reasons taken together with mass values
determine a reduced space of positions.

The equilibrium of reasons and positions present in such states resembles the
equilibrium of matter and space in general relativity, expressed in the slogan
“Space acts on matter, telling it how to move. In turn, matter reacts on space,
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telling it how to curve” (Misner, Thorne, & Wheeler 1973, p. 5). The reasons
in the mass of the RMS determine much of the structure of the comparative
similarity relations employed in formulating conservation principles that shape
RMS motion.

Comparative similarity relations do not yield proper metrics formally; a pre-
order over the space of state transitions need not correspond to a numerical
measure of distance satisfying the triangle inequality. Comparative similarity
relations may also fail to represent metrics on conceptual grounds as well, as
the smoothness of paths may depend on full states rather than just position.
That is, to view them as metrics, one must take them as metrics over phase
space, not over the position space. It would be interesting to know if one can
relate conservation relations to something like symplectic structure on phase
space.

Another question is whether we can regard comparative similarity relations
themselves as constituting a weakened concept of configuration. We earlier
followed Noll (1995) in defining the configuration of a body as the set of all
body-centric metrics, that is, as the set of functions, one for each subbody B,
such that the function for B indicates the distance from B to all parts of the
enclosing body. Can we interpret comparative similarity relations as playing a
similar formal role, that of a characterization of the configuration independent
of any particular frame of reference? Comparative similarity relations certainly
can capture the underlying ordering relations expressed by a metric configura-
tion, and provided the basis for the initial explorations of RMS conservatism.
The question is whether this ordering information itself suffices to distinguish
different mechanical configurations, or whether the additional metric informa-
tion is needed to characterize the intrinsic structure of a body.

Attempting to connect mass-dependent conservatism to the geometric dy-
namics of general relativity also suggests reconsidering conservative motion
as a form of geodesic motion. Geodesics represent “straight” lines in mani-
folds. It is tempting to identify at least some types of conservative motion as
approximations to geodesic motion, specifically, geodesic motion on a discrete
manifold constrained so that not all tangents represent possible motions within
the manifold. In this setting, one might define pseudogeodesics to be curves
that are as straight as possible, given the geometry of the manifold.

In its simplest form, the RMS change-minimization principle amounts to
minimizing velocity, an interpretation that naturally suggests relations to geo-
desic motion as employed in general relativity, in which motion proceeds by
the straightest and longest or locally slowest possible route. Macroscopic
changes begin, in the most common way, by changing the mass of the RMS
and then undergoing additional accelerations that minimize the state change.
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If one simplifies this to choosing a minimal macroscopic acceleration, the re-
sulting motion can then be viewed as pseudogeodesic, as the path is as straight
as possible given the influence of mass on position.

One can view RMS conservatism geometrically as something like straight-
line motion by observing that the velocity being minimized consists of the
symmetric difference between current position and the successor position. Min-
imizing this velocity means in part maximizing the conserved elements or over-
lap between current and successor states. One can obtain this overlap as the
inner product of the current and successor states, as the projection of new on
old. This projection is maximized when the motion keeps the same direction,
when the new is the same as the old, so conservative RMS motion approxi-
mates geodesic motion in a quite natural way.

Of course, the notion of geodesic motion applies to vector fields generally,
not just to dynamical geometries. Thus one might also return to the interpre-
tation of reasons as generating potential fields that determine state-dependent
forces on the body. Instead of simply viewing the reason potential as generat-
ing reason forces as gradients, one might view the reason potential as giving
the geometry of the space in which the reasoner moves, with reason-following
motion consisting of geodesic motion in this geometry.



14

Uncertainty

The preceding development of mental mechanics does not require determinism
of mechanical systems. It instead requires only that motion satisfy mechanical
relationships independent of determinism requirements.

The preceding chapters also illustrated several sources of possible indeter-
minacy. Reasoning, whether habitual or deliberate, can produce indetermin-
ism when several reasons apply at the same instant, requiring serialization or
conflict resolution. In addition, rational deliberation can result in several pos-
sible self-constructions from reasoning rules; conservative update in response
to reasoned changes can follow multiple resolutions; and volition can encom-
pass multiple choices of action on the basis of the same desires and intentions.
These sources of mechanical indeterminism complement the forms of indeter-
minism acknowledged in traditional mechanics, including situations of inde-
terministic collapse and bifurcation considered in continuum mechanics and
the pervasive indeterminacy of quantum physics. All of these forms of inde-
terminacy represent theoretical allowances of multiple possibilities that stand
separate from uncertainties arising from the practicalities of measurement con-
nected with repeatability and resolution of measuring apparati.

From the viewpoint of psychology, mechanical indeterminism generates
what one can call a “kinematical” notion of uncertainty, in which one seeks
to measure the amount of indeterminism, or degree of uncertainty about pre-
dictions introduced by indeterminism. In the simplest terms, qualities of mo-
tion shared by all possible histories represent certain predictions about mo-
tion, while qualities exhibited by some histories but not by others represent
uncertain predictions about motion. The kinematic conception of uncertainty
provides means for comparing these degrees of certainty and uncertainty in
quantitative terms. This chapter develops formal concepts for measuring and
describing uncertainty over indeterministic histories. Apart from a speculative
formalization of measurement algebras at the end of the chapter, the concepts
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presented here all represent straightforward adaptations of well-known tech-
niques.

The kinematic conception of uncertainty measures the degree of certainty
irrespective of the sources of the uncertainty, whether these sources lie in vo-
litional choices, indeterministic discrete laws of motion, or elsewhere. The
kinematic conception also constitutes an external conception of uncertainty,
capturing the uncertainty in motion as seen by an omniscient observer who
sees all possible motions.

The kinematic conception of uncertainty is distinct from any subjective un-
certainty experienced by the agent, which includes subjective probabilities and
degrees of belief, weakness of will, and preference and strength of desire.
These phenomena do not merely involve measurements of uncertainty by an
external observer; they involve the agent itself gauging its own level of uncer-
tainty.

14.1 Measurement uncertainty

Practical measurements of mechanical quantities involve uncertainties due to
the repeatability of measurement events and uncertainties due to the resolution
of the measuring apparatus. Even if one assumes a deterministic world, one
may be uncertain about exactly which state one measured (perhaps just before
or after the state one intended to measure), about the actual functioning of the
measuring apparatus, or about the interpretation of the measuring apparatus’
state. These uncertainties mean the agent suffers partial observability of its
world.

Traditional approaches to measurement view measuring apparati as noisy
channels. If the function of the apparatus is stable enough to permit repeatable
behavior, one can model the uncertainty of the measurement as a distribu-
tion giving the probability pr (vm|v) of the measurement of some quantity V
yielding a value vm in a set Vm of possible measurement outcomes given an
actual value v ∈ V . If one also has a priori estimates pr (v) of the proba-
bilities of the distinct possible values v ∈ V , one may use Bayes rule to ob-
tain the probabilities pr(v|vm) of actual values given measured values by the
formula

pr(v | vm) =
pr(v)pr (vm | v)

pr (vm)
(14.1)

where

pr (vm) =
∑
v′∈V

pr(v′)pr (vm | v′). (14.2)
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One then obtains a revised probability distribution pr ′ for actual values v from
a measured value vm by using the formula

pr ′(v) = pr (v|vm). (14.3)

Of course, not all mechanical quantities need suffer from measurement un-
certainties. Digital circuits, clockworks, and other kinematic systems with a
discrete character are designed specifically to provide certain sorts of mea-
surements with no uncertainty.

14.2 Probabilistic indeterminism

Indeterminism introduces additional uncertainty into measurement beyond that
already present as a result of the practicalities of measurement. To quantify
uncertainties due to indeterminism, we employ probability measures over his-
tories in the same way as done by Feynman (1949), Everett (1957), and others
(Beltrametti & Cassinelli 1981; Nelson 1985; van Fraassen 1991) in quantum
theory.

Let H be the set of all linear histories of the universe in question, with
H(B, I) denoting the restriction of H to motions of the body B over the tem-
poral interval I . The history-measure approach assumes one has a probability
measure µH : P(H) → [0, 1] on some measure space of sets over H. In
the finite case, each such measure assigns a number to each possible world
representing how likely it is to be the actual world. We then determine the
probabilities of a value of a quantity by Feynman’s rule, by summing the prob-
abilities of all the different ways the value might occur. That is, we measure
the set of all possible histories in which that value or event occurs. This results
in a probability distribution on the possible values of the quantity.

The mathematical concept of measure space underlies this approach to mea-
surement. A measure space consists of a base set, a set of its subsets compris-
ing the measurable subsets, and a function mapping the measurable subsets to
R (ordinarily). When the base set is finite, one may deem all subsets measur-
able, though nothing requires this. When the base set is infinite, one ordinarily
cannot consider all subsets measurable, so measure spaces require only that
the set of measurable subsets satisfy some simple properties, namely additiv-
ity on disjoint subsets and across countable subcollections. Measurable sets
contained in a nonmeasurable subset provide lower bounds on its measure,
and measurable sets containing the nonmeasurable one provide upper bounds
on its measure. For measurable sets, these lower and upper bounds coincide.

Since the set of all deterministic histories contained in a nondeterminis-
tic history does not depend on any framings, we see that this source for
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probabilities is attractively frame independent. Because the objects assigned
probabilities (the linear histories) are so primitive, it is hard to conceive of a
metaphysically more modest approach.

A measure on the set of all histories permits calculation of many other
frame-independent quantities. For example, the degree with which one frame-
independent condition entails another is just the relative measure or conditional
probability of the two corresponding sets of linear histories.

14.2.1 Probabilities of states

We call a function assigning probabilities to sets of instantaneous mechanical
states a density function. Such a function is simply a measure function µΣ :
P(Σ) → [0, 1] such thatµΣ(Σ) = 1, that is, a function that says that the system
must be in some state. Every nontrivial measure function µ : P(Σ) → [0,∞)
such that µ(Σ) > 0 induces a density function by normalization, defining for
S ⊆ Σ

µΣ(S) =
µ(S)
µ(Σ)

. (14.4)

The set of all density functions on Σ forms a convex set. That is, w1µ
Σ
1 +

w2µ
Σ
2 is a density function whenever µΣ

1 and µΣ
2 are density functions and

w1 + w2 = 1.
Each measure on histories induces a probability distribution on instanta-

neous states. The induced probability measure on states is frame dependent
because instants are. The state probability distribution at instant t is given by

pr(σ, t) = µH({h ∈ H | h(t) = σ}), (14.5)

where h(t) is the configuration at time t in the history in the chosen framing.

14.2.2 Probabilities of state transitions

We use the measure on histories to derive probabilities on the unit time transi-
tions at each instant in a similar way. The distribution over successor states σ2

given that state σ1 obtains at instant t is given by

pr (σ1, σ2, t) = µH({h ∈ H | h(t) = σ1 ∧ h(t+ 1) = σ2}). (14.6)

The probability pr+(σ1, σ2, t) that σ2 will occur at some instant later than t is
given by

pr+(σ1, σ2, t) = µH({h ∈ H | h(t) = σ1 ∧ ∃t′ > t. h(t′) = σ2}). (14.7)
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Similarly, we may obtain the probability pr→(σ1, σ2) that one state directly
transforms into another at any time during the histories by the formula

pr→(σ1, σ2) =
µH({h ∈ H |∃t, t+ 1 ∈ IH.

h(t) = σ1 ∧ h(t+ 1) = σ2})
(14.8)

=
∫

IH

pr(σ1, σ2, t). (14.9)

14.2.2.1 Markovian probabilities

We follow tradition in calling systems Markovian just in case successor states
depend only on the immediately preceding states and not on any more distant
portions of the past history. Transition probabilities relate very simply to prob-
abilities of histories in Markovian systems. The Markov property means that
the transition probabilities pr (σ, σ′, t) giving the probability of a state σ di-
rectly transforming into the successor state σ′ do not depend on time, so that
we may write pr(σ, σ′, t) = pr→(σ, σ′). From such probabilities, we then
construct the probability of an individual history h as

pr (h) =
∏
Ih

pr(h(t), h(t+ 1)) (14.10)

and the probability of a nondeterministic histories by

pr(H) =
∫

H

pr (h). (14.11)

With Markovian transition probabilities, we can describe the temporal evo-
lution of probability distributions over states in terms of instantaneous density
functions. We assume an initial density function µΣ

0 for t = 0, for example,

µΣ
0 (σ) =

{
0 σ �= σ0

1 σ = σ0
. (14.12)

We then apply the transition probabilities to determine the probabilities through
the sequence of successive times〈

µΣ
0 , µ

Σ
1 , µ

Σ
2 , . . .

〉
. (14.13)

We compute these successive density functions by combining the probability
that the system is in a particular state with the probability of moving from that
state to specific other states. We add up the probabilities of reaching a state,
and we have the new density function. Formally, we define µΣ

t+1 for each
σ ∈ Σ by

µΣ
t+1(σ) =

∑
σ′∈Σ

µΣ
t (σ′)pr (σ′, σ). (14.14)
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The resulting function µΣ
t+1 is a density function since by induction∑

σ′∈Σ

pr (σ′, σ) = 1 (14.15)

and µΣ
t+1 is the convex combination of density functions.

Mechanical systems generally do not exhibit the Markov property, at least
kinematically, as the applied force may depend on the nonkinematic history
of the system and on the environment of the body in question. The usual way
around this difficulty is to define the “total” state to contain all information
required to decouple future behavior from past behavior, in the sense that the
probability of a transition given the current state is the same as the probability
of the transition given the full history to that point; that is,

pr (σt+1 | σt) = pr (σt+1 | σt, σt−1, . . .). (14.16)

Identifying such total states may be possible for specific materials, but enforc-
ing such a requirement in general has important implications for the construc-
tion of physical theory, in that discovery of new behaviors can require revision
of the conception of what information characterizes total states. Such revision
has occurred often in the past, first adding thermal and electromagnetic prop-
erties to mechanical properties, and then, in the atomic realm, adding spin,
charm, color, and other influences on behavior.

14.2.2.2 Constructive probabilities

We may seek to avoid imposing inappropriate assumptions of Markovian be-
havior by going deeper still and constructing transition probabilities from non-
deterministic mechanical trajectories together with probabilities derived from
structural aspects of the transitions themselves.

Each set H of histories induces a possibly nondeterministic transition func-
tion ∆H : Σ × T → P(Σ) giving the set of possible successor states at each
instant, defined by ∆H(σ, t) = {h(t+ 1) | h(t) = σ}. Each measure function
µ on Σ such that µ(∆H(σ, t)) > 0 gives rise to a probabilistic interpretation
of the transition table ∆H by defining the probability of moving from σ to σ′

at t to be

pr(σ, σ′, t) =
µ({σ′})

µ(∆H(σ, t))
. (14.17)

This interpretation recalls the relation between the standard and many-worlds
interpretations of quantum mechanics (de Witt & Graham 1973; Van Fraassen
1980).

For instance, one may make a Laplacian assumption saying that each possi-
ble nondeterministic transition from a state is equally likely. This assumption
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corresponds to the natural counting measure µ† that gives every state equal
weight, that is,

µ†({σ}) = 1. (14.18)

With this measure, the degree of certainty of a state component in a set of
successor states is just the fraction of them in which it appears.

Alternatively, one might assume that transitions to simple states are more
likely than transitions to more complex states. Vacuum fluctuations provide
a relevant physical model here. Quantum theory implies that something is
always happening even when nothing is happening, in the sense that empty
regions of space are subject to fluctuations in quantum fields that one may
interpret as momentary creation and destruction of particles and fields. The
probability of such events depends largely on the characteristics of the events
themselves. Instantaneous creation and destruction of a simple structure, such
as an electron–positron pair, has a much greater probability than instantaneous
creation and destruction of more complicated structure, such as copies of l’Arc
de Triomphe de l’Étoile or das Brandenburger Tor.

For psychological uncertainty to follow this model, possible constructions
would make temporary appearances occur with probabilities determined by
structural simplicity measures. The specificity measure µ∗ provides a nat-
ural example of such a structure-dependent measure function. This measure
weights states by how “specific” they are. Let N(σ) = |x(σ)| + |m(σ)| de-
note the function that counts the numbers of attitudes occurring in the position
and mass in the state σ. We can think of N as assessing the specificity of a
state. We then use N to construct a specificity measure µ∗ that takes values
given by

µ∗({σ}) = 2−|N(σ)|. (14.19)

One way of looking at this measure is to think of states as partial descriptions of
all the sets of components extending them, and to weight states proportionally
to the number of possible supersets. To obtain such weights, one would instead
define µ∗ by

µ∗({σ}) = 22|D|−|N(σ)|. (14.20)

Definition (14.20), of course, simply multiplies each of the specificity weights
given in (14.20) by the constant 22|D|, and so changes none of the relative
weights of states. Constructions similar to the Laplacian and specificity mea-
sures were proposed by Carnap in his theory of probability as “degrees of
entailment” (Carnap 1950; Kyburg 1970).
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Transition probability rules from physics suggest other possibilities as well.
One might have that the probability of state transitions vary with some char-
acteristic of the state change, such as the change of energy or the distance tra-
versed. Yet another structural probabilistic measure derives from information
content (Kolmogorov 1969; Chaitin 1975). The probabilities for this measure
require that states with more information content have lower probabilities. The
information-theoretic origin for probabilities has many conceptual attractions,
but it poses problems as a target for computational implementation because the
information content of a state is generally uncomputable.

Specific psychological organizations might engender their own structural
probabilities. For example, the construction of conclusions from reasons in the
RMS suggest choosing probabilities that reflect how frequently some attitude
occurs in randomly selected admissible extensions, or how many valid reasons
support the attitude, or how many nonmonotonic assumptions it depends on.
Each of these choices captures different intuitions about the meaning of “de-
gree of certainty,” and might be preferable in different circumstances (Doyle
1983e, 1983c). In a similar way, one might derive probabilities not from fre-
quency in admissible extensions but instead from frequency in the results of
the conservative revision performed by the RMS. These frequencies reflect the
resilience of mental attitudes or the relative ease with which they may be ob-
tained or avoided in successor states. If a frequency is large, most successors
will contain the attitude in question, so it is difficult to avoid. These frequen-
cies measure not only of degrees of belief but of strength of desire and firmness
of intent, and might serve as degrees of epistemic entrenchment (Gärdenfors
& Makinson 1988). Pursuit of this interpretation leads to an interesting non-
Bayesian decision theory. One may view all of these as probabilities tied to
the comparative similarity relations that Section 7.3 used to formalize conser-
vatism. Constructions of this form also seem related to probabilistic logics
(Bacchus et al. 1996; Nilsson 1986).

We can motivate psychostructural measures in terms of either incomplete
information or probabilistic algorithms. In the first view, we interpret prob-
abilities as reflecting how likely the actual behavior is to occur among the
behaviors compatible with incomplete knowledge. Alternatively, we can treat
these measures as specifications for probabilistic algorithms (Rabin 1976) in
which the agent makes a series of random choices (of legal transitions or con-
structions) and then decides what to do by exact means based on the the re-
sults of the choices. At present, we lack efficient algorithms for computing
admissible extensions according to specified measure functions. RMS imple-
mentations make arbitrary choices in constructing admissible extensions, and
while several authors have suggested designs that make these choices depend
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on properties of the foreseen resulting extensions, there is no known way of de-
riving the resulting measure on states from these intra-algorithmic choices, nor
any known recipe for finding an appropriate algorithm when the final measure
is specified.

14.2.2.3 Inertial indeterminacy

We might also interpret constructive probability in physical terms. Section
11.4.1 observed that we might interpret constant linear motion through posi-
tions in the binary space D as generating a limited form of uncertainty, as a
position x and constant velocity ẋ generate a sequence of positions x, x +
ẋ, x, x + ẋ, x, x + ẋ, . . . that repeatedly “flips the bits” represented by the
velocity ẋ. Considering these two alternating states as possible outcomes of
measurement, we see that constant linear motion engenders a probability dis-
tribution on D that assigns the values 1 to each element of D in x but absent
from ẋ, 0 to each element absent from both x and ẋ, and 1

2 to each element
present in ẋ. We obtain a similar but shifting distribution from inertial motion
that superposes constant rotation on constant linear translation.

More speculatively, we might also regard uncertainty as reflecting rotation
on alternation through constructive extensions. In this interpretation, we re-
gard extensions as arranged around the circumference of a circle. We divide
the circumference into regions, with the length of each region representing the
probability (e.g., Laplacian or specificity) of one associated extension. If we
imagine the mechanical state as a radial vector spinning with some frequency
around the center of this circle, we can then expect to observe extensions with
the proper probability by repeated observations of the region in which the ra-
dial vector lies, as long as the frequency of spin exceeds and is incommensurate
with the frequency of sampling.

It seems unlikely that one can regard this sort of spin as some form of rota-
tion through space, but one can continue the speculation in different ways. One
might replace nonuniform weighting of circumferential portions by regarding
the circumference as tilted with respect to the axis of spin and let measurement
report which circle segment lies closest to the radial vector. The orientation
of the circle with respect to the axis of rotation then affects the probability of
observation of different extensions. One might also replace nonspatial spin
through extensions with a more spatial conception of rotation through sets of
assumptions underlying the extensions. For example, some RMS implementa-
tions analyze the dependency graph of reasons into a directed graph of strongly
connected components. Each strongly connected component represents a set
of assumptions that could be varied independently of downstream portions
of the dependency network. One might consider each clique of reasons as
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sets spinning independently, perhaps with differing rates of spin or differ-
ing orientations, and so obtain differing probabilities for the resulting overall
extensions.

14.2.3 Probability of belief

One may easily extend the preceding constructions to measuring the probabil-
ity of inhabiting a state that exhibits particular properties. If S ⊆ Σ consists of
the states satisfying some property, we obtain

pr(S, t) = µH({h ∈ H | h(t) ∈ S}) (14.21)

as the probability that the state at t exhibits the property S. One may use this
same idea to assess the expected value of functions of states. If f(σ) gives the
numerical value of the quantity of interest in state σ, then the expected value
〈ft〉 at time t is just

〈ft〉 =
∫

Σ

fdµH. (14.22)

Some of the most interesting probabilistic questions about states concern
whether the state exhibits certain beliefs, desires, or intentions. Probabilities
of beliefs, desires, and intentions all arise in the same way. For example, the
probability that a belief b appears in the position x is given by a transform of
the property-probability formula picking out those states having the property
of exhibiting that belief, namely

pr (b, t) = µH({h ∈ H | b ∈ x(h(t))}), (14.23)

Viewing the belief b as a 0-1-valued characteristic function of states, we can
rewrite this as

pr(b, t) = 〈bt〉 =
∫

Σ

b(σ)dµH. (14.24)

A probability measure on a nondeterministic history induces a measure quan-
tifying probability of belief at each instant of the history. How might these
probabilities of belief relate to the degrees of belief assumed by decision the-
ory? Mechanics, of course, imposes no necessary connection between proba-
bility of belief and belief probability, as it states no properties of belief at all. In
the following paragraphs, let us explore ways of relating probability of belief
to subjective probability and other notions.

It is clear that probability of belief and subjective probability have some
apparent differences.

First, the influential Bayesian view of belief as subjective probability holds
that the beliefs of an agent form a probability distribution over states of affairs.
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Believing that snow is white with subjective probability .999 means that one
thinks that of states of affairs compatible with one’s beliefs all but one one-
thousandth make snow white. In contrast, having the belief “snow is white”
hold with probability .999 means that of the possible states of belief, all but
one one-thousandth contain the belief that snow is white.

Second, the probability of belief derived from measures on histories applies
not just to absolute statements of belief, such as “snow is white,” but also to
direct representations of probability in mental position, as in a probability entry
in a Bayesian network stating that “the probability of ‘snow is white’ is .999.”
One might be ready to interpret a .999 probability of belief in “snow is white”
as a .999 degree of belief, but how should one interpret a .999 probability of
belief in “the probability of ‘snow is white’ is .75”?

Third, probabilities of belief induced by measures on histories need not sat-
isfy all the laws of subjective Bayesian probability. For example, unless all
states are complete, that is, contain at least one of each belief or its contrary,
the degrees of belief will be non-unitary. Formally, suppose that e,¬e ∈ D
represent some belief and its negation. If the agent can inhabit incomplete
positions in which neither of these beliefs is In, then it can happen that

pr (e) + pr (¬e) < 1. (14.25)

If the agent can inhabit inconsistent positions in which both of these beliefs are
In, then it can happen that

pr (e) + pr (¬e) > 1. (14.26)

Thus even though a measure on histories induces a probability distribution on
instantaneous states, these instantaneous state distributions need not induce
probability distributions on beliefs.

14.3 Self-measurement

We can reduce the difference between psychological and subjective probabil-
ity if we take the “subjective” in subjective probability seriously and regard
subjective probability as the result of the agent’s assessing or measuring its
own degree of belief. If the agent can perform such measurements, the lack of
direct representation of psychological uncertainty forms less of an impediment
to rational behavior.

To give a personal example, I observe that I determine my degree of certainty
about difficult decisions or questions by repeated self-polling, going through
the decision several times to see what answers I get. If one answer comes up
every time, or most of the time, I interpret that answer as the one with the
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greatest certainty. When I have no reason to expect psychological uncertainty,
I can simply poll or query myself once and use the resulting answer.

Self-measurement by collecting statistics about one’s self corresponds nat-
urally to the notion of probabilistic algorithms. Probabilistic primality testing,
for example, repeatedly picks a random value for a certain parameter and then
performs some arithmetic operations on the target number, operations that de-
pend on the randomly chosen number. If the operations say the number is
composite, the number truly is composite, but if the random operations say
the number is prime, all one knows is that the number is prime with some low
probability. Repeating this test a number of times, using different random pa-
rameters each time, enables one to rapidly determine either that the target is
composite or is prime with exceedingly high probability. The degree of cer-
tainty appears nowhere in these measurement processes, at least as an explicit
parameter somewhere that one can simply observe. The degree of certainty
instead comes from the statistics of the measurement process.

Self-measurement need not rely on deliberate variation of construction by
the agent. Classical and quantum measurement provide ample expectation of a
changing world in which the distribution of answers to repeated measurements
follows from the dynamical evolution of the system under measurement.

Of course, self-measurement lacks the explicitness and amenability to direct
manipulation, update, and measurement that make direct uncertainty represen-
tations like Bayesian networks the approach of choice in artificial intelligence.
In indeterministic reasoners, however, it seems there is no way of avoiding psy-
chological uncertainty, even if mental states employ explicit representations of
subjective uncertainty. One thus looks for ways of using measurements to re-
calibrate explicit representations.

14.3.1 Subjective probability

Because realistic states of belief need be neither complete nor consistent, sub-
jective self-measurement probabilities of Bayesian decision theory appear to
overidealize by confusing properties of minds with properties of the world
inhabited by the minds. The aforementioned constructions indicate the natu-
ralness and importance of the idea of strength of beliefs on which Bayesian-
ism is based, but also cast doubt upon the identification of degree of belief
with subjective probability. The measure of degree of belief via psychological
or historical probability is a perfectly good probability measure, but the pro-
jection of this measure onto the logical structure of states is not in general
a probability measure without a sometimes specious axiom of completeness
and a sometimes unachievable axiom of consistency. As in quantum theory,
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the projected measure represents a lattice of possible events, and only repre-
sents a Boolean lattice in the special case of complete states (Birkhoff 1967;
Beltrametti & Cassinelli 1981).

The Bayesian might respond that the preceding constructions do not capture
subjective probabilities, but only lower bounds on subjective probabilities, as
in the Dempster–Shafer theory of evidence (Shafer 1976). This reply may offer
a way of reconciling the views, but it faces difficulties posed by paradoxical
sentences, and I do not pursue it here (see Lewis 1980). We only observe that
whatever the attractions of the stronger Bayesian theory for more competent
agents, in computationally realized agents, the lower bounds offered by our
construction may be the only reasonable choices for “degrees of belief.”

If consideration of historical probabilities provides motivations for some of
the concerns of subjective Bayesian probability theory, it also helps us under-
stand Zadeh’s (1975) notions of fuzzy sets and concepts. Statements like “Sue
is tall” are considered vague because “tall” is not a well-defined concept; there
are many heights Sue could reach and be thought tall. Zadeh formalizes this
notion by introducing a spectrum of truth values for the sentence, a spectrum
derived from a spectrum of tallness values. We might instead develop a theory
of fuzzy concepts in terms of state probabilities. Rather than simply assuming
tallness spectra, we could formulate exact theories of tallness and simply look
to see what distribution these entail for particular statements. For example, we
might require exact theories of tallness to specify exact intervals of height, and
given this restriction, look to the admissible extensions of the statement “Sue
is tall.” If there are many intervals saying one height is tall and fewer intervals
saying another height is tall, then the first height will be “more tall” than the
second.

14.3.2 Weakness of will

The concept of degree of belief is very different from the concept of degree of
conviction, or as it is also called, epistemic entrenchment. Degree of belief cor-
responds to frequency of answering a certain way under repeated questioning,
while degree of entrenchment reflects the order in which one gives up beliefs
when forced to change one’s beliefs. For example, lacking any information to
the contrary, Alice might believe that Bob’s pet bird can fly, even if Alice ex-
hibits psychological uncertainty regarding other conditions. Alice also might
readily give up the belief that Bob’s bird can fly upon learning it is a penguin.
At the same time, Alice might believe that Bob never jokes or lies, and be quite
unwilling to give up this belief. If Bob tells Alice his pet bird cannot fly, she
must either give up her belief that the bird flies or her belief in Bob’s reliability,
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so she abandons her belief about Bob’s bird because it is less entrenched than
her belief about Bob’s reliability. Thus one can view the degrees of belief
resulting from historical indeterminism as involving unforced changes of be-
lief. Entrenchment, in contrast, concerns forced changes of belief. One might
measure the expected degree of entrenchment by assessing entrenchment in
different extensions.

Although the conviction or entrenchment of belief is important to under-
standing behavior, this notion appears even more important for understanding
weakness of will, the inability to carry through on one’s intentions. We can
think of weakness of will as occurring through several means, including psy-
chological uncertainty of intention, entrenchment of intention, and susceptibil-
ity to distractions and fears.

Psychological uncertainty engenders weakness of will when each of the
agent’s self-measurements of intent prior to the point of action show an in-
tention to act, but the agent’s self-measurement at the point of action lacks the
intent in question. As in measuring degree of belief by repeated queries, degree
of intention follows the fraction of alternative states exhibiting the intention.
The main difference between the case of belief and intention comes from voli-
tion, which takes actions based on intentions but not on belief. Volition can fail
to produce action even when strength of will is high, if action comes through
a measurement yielding an atypical answer.

Entrenchment of intention, or properly speaking, lack of entrenchment, also
can play a role in weakness of will. The issue here is how easily is the intention
displaced as a result of forces of reasoning, distraction, or fear. As in consid-
ering the elastic character of entrenchment, ease of displacement involves how
many reasons or other mental forces stand ready to restore the intention upon
attempted removals, and on how ready the agent stands to maintain or gener-
ate the forces of concentration needed to cancel forces that distract from the
intended actions.

Susceptibility to fear is similar to susceptibility to distraction, but in fear
the forces diverting attention stem not from the environment but from within
the agent itself. Everyone experiences fears that start small when the action
in question lies in the distant future but that grow larger and larger as the time
for action nears. In such cases, the countervailing forces must increase along
with the fears if the agent is to carry through. This continual increase and
counterbalancing requires the additional work on the part of the agent, since
it involves continued replacement, augmentation, or refreshing of the forces
generated to block the fear.

The problem in many situations of action is that the resultant grounds of ac-
tion represent an unstable equilibrium of forces and countervailing forces, so
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small fluctuations can produce large changes in probabilities. Ease of deflec-
tion in distractable agents can result either from unstable equilibria, in which
slight changes to forces can tip the outcome from the desired one, or from low
mass agents, in which even slight forces can yield a significant motion. The
larger the mass of the agent, the less slight discrepancies between distracting
and blocking forces matter. Highly deliberate agents provide a good exam-
ple here, as complete arguments buttressing the chosen path and defeating the
alternatives will not be changed by slight perturbations in conclusions. The
arguments for the action and against the alternatives will provide redundancy
adequate to withstand random changes, or perhaps only certain types of varia-
tions.

14.3.3 Consequential measurement

Physics recognizes that measuring a system can change the system. Conse-
quential measurement occurs in classical mechanics when the measuring ap-
paratus touches or otherwise perturbs the system being measured, but careful
design of the apparatus can minimize or eliminate such effects. In contrast,
consequential measurement forms a key aspect of quantum mechanics. Quan-
tum mechanics posits that the act of measurement forces the measured system
from a state reflecting a superposition of pure states into a state reflecting a
pure value of the measured quantity.

We see a similar variation in psychological systems. Many traditional ar-
tificial reasoners answer queries without changing the state of the reasoner in
any way that affects its attitudes or future actions. In other artificial reasoners,
queries do change the state of the reasoner. For example, SOAR’s chunking
mechanism produces new rules in the course of answering a query, and rea-
soners employing reason maintenance learn new reasons. Rule and reason
learning, however, typically constitute deterministic effects of measurement.

Reasoners exhibiting constructive indeterminacy of the sorts discussed ear-
lier offer the possibility of consequential measurements more like those seen
in quantum mechanics. In particular, answering queries in the presence of both
constructive indeterminacy and conservative motion might produce a determi-
nate state with respect to the object of the query in distinct ways, either by
fixing the extension or by introducing new reasons or conclusions that con-
strain the extension to one determinative of the answer to the query.

The reasoner considered in Section 7.6 has reasons for concluding that ei-
ther that Nixon is a pacifist because he is Quaker or that Nixon is not a pacifist
because he is Republican. If the reasoner has not yet considered these pos-
sibilities, we might regard it as inhabiting an indeterminate state with respect
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to Nixon’s pacifism, a state combining the two definite states. Asking the
reasoner whether Nixon is pacifist or not would then lead to it making one as-
sumption or the other, and conservatism would have it keep that assumption in
place. In this way, the operation of querying the indeterminate state produces
a determinate state corresponding to one of the pure states contributing to the
former indeterminism.

More generally, an agent conducting the sort of self-polling described ear-
lier might use the result not just to assess a degree of belief but to adopt a
position on the question. In such cases, we find an intimate connection be-
tween self-measurement and self-construction, and a connection between self-
measurement and a form of self-awareness or self-consciousness.

These observations suggest we take a second look at the relation of self-
measurement and the self-action involved in reasoning. Chapter 11 treated
reasons in terms of forces and stresses. Stresses are tensors or, in the previous
examination, piecewise-linear tensors that act on mechanical states to produce
reason forces. The following discussion presents some speculative ideas for
formalisms that attempt to follow the pattern set by quantum-mechanical no-
tions of measurement in the context of discrete mental systems. To do this, I
introduce a formalism using the familiar Dirac notation to characterize reason
forces and stresses as state operators akin to those used in the operator calculus
of quantum mechanics.

I present these speculations mainly to indicate something of the range of ex-
plorations possible within the mechanical framework. Quantum measurement
perspectives have been studied previously in the theory of computation. The
most prominent usage today occurs in connection with quantum computation,
in which quantum states encode a multiplicity of deterministic computations,
and the ideas examined here have direct connections with the idea of observing
sets of possible histories. When used to treat theories of thinking, finding roles
for quantum measurement in the formalization of reasoning methods might
also yield connections with Penrose’s (1989) ideas relating quantum gravity to
consciousness.

Note that Manthey and Moret (1983) sketched a quantum-mechanical anal-
ogy for computation not intended to be limited only to actual quantum com-
putation. Their work consisted largely of an abstract analogy, with no specific
interpretation or axiomatic basis underlying the informal suggestions. It does
provide a useful direction for extending the present developments, however.
It employs a mass measure consisting of the number of bits in a word (or per-
haps the information content), and measures speed of change as number of bits
changed. This approach represents a compromise between the vector-mass ap-
proach developed here and the scalar theories of traditional mechanics.
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14.3.3.1 Dyadic states

Let us begin by recasting reason forces using the familiar Dirac notation from
quantum mechanics to express algebraic reasoning operators. We move from
thinking of mental states as positions in the vector space D to thinking of them
as “state vectors” in D×D. We regard D×D as a vector space by means of the
obvious extension of the scalar multiplication and addition in D to the product
space. We denote vectors in this space with the Dirac ket notation; that is, we
write an element of D × D in the form |X,Y 〉.

Although we can view D2 as the translation space over D, we now take a
different approach, and regard vectors in the space as representing “present”
and “absent” subsets of D. In particular, we reinterpret each position x as the
state vector

ψ = |x, x〉. (14.27)

Clearly |x, x〉 contains the same information as does x; we only change the
form of the representation for the new analysis. If one has in mind the stress
interpretation of reasons presented earlier, it might be useful to think of |x, x〉
as a vector based at the point x and normal or orthogonal to the degenerate
surface x.

We earlier introduced both a product operation and an inner product on D.
We now introduce a symmetric bilinear form

〈 | 〉 : D2 × D2 → D (14.28)

over D2 defined so that

〈W,X | Y, Z〉 = (WZ) + (XY ). (14.29)

This operation is clearly linear, and also symmetric, in that

〈W,X | Y, Z〉 = 〈X,W | Z, Y 〉. (14.30)

We define the conjugate of the vector |X,Y 〉 to be the bra 〈Y,X |, and so
regard the “bracket” product 〈W,X | Y, Z〉 as denoting the product of the
state vectors |X,W 〉 and |Y, Z〉.

We can easily extend these definitions to larger state vectors by defining the
conjugate of |X1, . . . , Xn〉 to be 〈Xn, . . . , X1|, and by defining the product
〈Xn, . . . , X1 | Y1, . . . , Yn〉 by

〈Xn, . . . , X1 | Y1, . . . , Yn〉 = (X1Y1) + . . .+ (XnYn). (14.31)

This form rephrases linear form (10.5) used in defining inner products.
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14.3.3.2 Dyadic reasons

We next seek to interpret each reason

r = Ar \\ Br ‖− Cr \\ Dr

in a way fitting the dyadic state conception, namely as a dyadic tensor

r = |Dr, Cr〉〈Ar, Br|. (14.32)

As noted earlier, the condition stating the validity of the reason r is

Arx+Brx = 0. (14.33)

In the dyadic representations we can reexpress (14.33) in the condition

〈Ar , Br | x, x〉 = 0. (14.34)

Similarly, we can reexpress the changes produced by r when valid, namely

Crx+Drx, (14.35)

as the product

〈Cr, Dr | x, x〉 (14.36)

since adding in this result to x will add the necessary elements of Cr and
remove the necessary elements of Dr.

Were it not for the nonlinearity of the conditional evident in (11.32), we
could seek to use these algebraic identities to write the result of applying the
reason tensor to a state |x, x〉. We now consider two paths in this direction.
Neither one admits as simple a characterization as one might want because of
the nonlinearity of reasons, but I entertain the hope that future investigations
will find better possibilities.

In the first approach, we attempt to regard the reason an operator something
like

fr = |Dr, Cr〉〈Ar , Br|, (14.37)

so as to obtain the changes resulting from reason application as the “expecta-
tion value”

fr = 〈x, x | Dr, Cr〉〈Ar , Br | x, x〉. (14.38)

To do this, we recast the reason interpretation in a nonlinear function

Z : (D2 × D2) → (D2 → D) (14.39)
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defined so that

Z(|Ar, Br〉, |Cr , Dr〉)(|x, y〉)

=
{ 〈Cr, Dr | x, y〉 if 〈Ar, Br | x, y〉 = 0

0 otherwise.
(14.40)

From the earlier remarks, we see that Z(|Br, Ar〉, |Dr, Cr〉)(|x, x〉) provides
the conclusion changes called for by the reason r in state x. Thus

Z(|Br, Ar〉, |Dr, Cr〉)(|x, x〉) = U(r)(x). (14.41)

We see that Z has a structure suitable for additive superposition of operators
corresponding to different reasons. If we define

Zr = Z(|Br, Ar〉, |Dr, Cr〉) (14.42)

and

ZR =
∑
r∈R

Zr, (14.43)

we then have

U(R)(x) =
∑
r∈R

U(r)(x) (14.44)

=
∑
r∈R

Zr(|x, x〉) (14.45)

= ZR(|x, x〉). (14.46)

In the second approach, we seek to regard the reason as something like an
operator of the form

fr = 〈Cr, Dr|〈Ar, Br|, (14.47)

which, when applied to the state |x, x〉, yields the operator

fr|x, x〉 = 〈Br, Ar | x, x〉〈Cr , Dr|, (14.48)

that we can apply in turn to the state to obtain the reason-induced changes. To
do this, we recast reason interpretation as a function

Z� : (D2 × D2) → (D2 → D2) (14.49)

such that

Z�(|Br , Ar〉, |Dr, Cr〉)(|x, y〉)

=
{ 〈Cr , Dr| if 〈Br, Ar | x, y〉 = 0

〈0,0| otherwise.
(14.50)
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Thus

Z�(|Br, Ar〉, |Dr, Cr〉)(|x, x〉)|x, x〉
= Z(|Br, Ar〉, |Dr, Cr〉)(|x, x〉). (14.51)

We also define

Z�
r = Z�(|Br, Ar〉, |Dr, Cr〉) (14.52)

and

Z�
R =

∑
r∈R

Z�
r, (14.53)

so that

Z�
R|x, x〉 =


 ∑

r∈R�(x)

〈Cr , Dr|

 |x, x〉 (14.54)

=


〈 ∑

r∈R�(x)

Cr,
∑

r∈R�(x)

Dr

∣∣∣∣∣

 |x, x〉 > (14.55)

=
∑

r∈R�(x)

Crx+
∑

r∈R�(x)

Drx (14.56)

=
∑

r∈R�(x)

Crx+Drx (14.57)

=
∑
r∈R

Zr(|x, x〉) (14.58)

= ZR(|x, x〉). (14.59)

14.3.4 Measurement operators

The use here of the Dirac notation differs from the operator formalism of quan-
tum mechanics in two respects: the discrete states do not inhabit the complex
vector space usually employed in quantum theory, and nothing ensures the nor-
malization of these vectors needed to obtain probabilistic measurements. Let
us examine these issues in turn.

14.3.4.1 Hermitian operators

Quantum theory identifies measurable quantities or measurement actions with
Hermitian (complex linear self-adjoint) operators on quantum states. The eigen-
values of each operator correspond to the possible values of the measurable
quantity.
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Along these lines, one might view the “two-dimensional” structure of the al-
gebraic form of reasons as reflecting the structure of complex numbers, view-
ing the vector |A,B〉 as denoting the quantity 1A + iB. This translation into
complex numbers has some attractions, such as taking orthogonally interpreted
vectors |1,0〉 and |0,1〉 into orthogonal dimensions with units 1 and i. How-
ever, this algebra retains the quality of real vector spaces. In particular, since
B = −B in the binary vector space, we have A+ iB = A − iB. Thus every
such quantity is its own complex conjugate, a property normally associated
with real numbers. Now in quantum theory, the conjugate of the vector |A,B〉
is the complex conjugate of its transpose,

|A,B〉∗ = 〈B∗, A∗|. (14.60)

Because complex conjugation degenerates to the identity in the binary setting,
vector conjugation degenerates to transposition; that is,

|A,B〉∗ = 〈B,A|. (14.61)

Quantum mechanics requires all operators representing physical observables
to be Hermitian operators, defined to be linear operatorsH such that

H = H∗. (14.62)

The degeneracy of complex conjugation in the binary setting means that Her-
mitian operators reduce, in the present case, to symmetric operators

H = HT. (14.63)

These considerations highlight a substantial divergence of the theory of rea-
son materials from both standard quantum mechanics and continuum mechan-
ics, which for very different reasons, ordinarily requires symmetry of the stress
tensor, though it does consider asymmetric stresses in analyzing polar media
and other special materials. Let us define the transpose of a reason tensor by

(|D,C〉〈A,B|)T = |B,A〉〈C,D|. (14.64)

For such an operator to be Hermitian, the reason would need to have the sym-
metric form

|B,A〉〈A,B|,
corresponding to the action of adding the elements B and removing the el-
ements A if the elements A are present and B are absent. But we see very
little motivation for requiring reasons, when viewed as either state operators or
stress tensors, to exhibit any kind of symmetry. The only case in which such
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symmetric reasons have been used is in the special case of so-called free de-
faults, in which A = ∅, so that the symmetric reason could be written in the
form

∅ \\ B ‖− B \\ ∅. (14.65)

Such reasoning draws conclusions based only on the absence of those same
conclusions, and forms the basis for assumption making in McAllester’s (1980)
TMS. It would be interesting to find cases in which the more general form of
symmetric reasons play a significant role.

14.3.4.2 Probability amplitudes and graded states

In addition to regarding measurement operations as Hermitian operators on
states, and measurable quantities as eigenvalues of Hermitian operators, quan-
tum mechanics also considers states as vectors scaled with phase factors φ of
the form eix, roots of unity. Quantum mechanics regards vectors differing only
by a factor of eix as representing the same physical state because such factors
cancel out in measurements, that is,

〈(eix)∗ψ∗|H |eixψ〉 = e−ixeix〈ψ∗|H |ψ〉 = 〈ψ∗|H |ψ〉. (14.66)

The phase factor is nonetheless crucial in considering how multiple histories
add together, as it provides the means for quantum interference.

The simplest way of carrying over the notion of phase factors to binary state
spaces is to note that there is only one root of unity, namely 1, equal to its
own negative. Binary spaces thus exhibit only trivial phase factors. Less trivial
notions of phase factors might offer some attractions, however, in reflecting
notions ranging from degrees of belief to frictionless motion in mechanical
states.

Consider first an expansion of the notion of mechanical states that moves
from binary vector spaces to states graded by an infinite ring R, thus mov-
ing from positions inhabiting D = (Z2)D to positions inhabiting RD. In
such a theory, positions would consist of weighted combinations of elemen-
tal state-components. One might grade states with integers (ZD), rationals
(QD), or real numbers (RD), so that positions allow each element of D to
carry a numeric weight. We continue to interpret mental positions in terms of
the nonzero attitudes they contain rather than the associated weights, and ob-
tain theories related to quantum mechanics and probabilistic networks through
different means of reading out these attitudes from the weighted states.

Measurements of such graded states might either normalize the states to unit
vectors, such as probability distributions, or leave states unnormalized. Such
schemes would use normalization of states to identify position information
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within states. Just as varying the complex phase of a state vector in quantum
mechanics does not change the physical reality of the state represented by the
vector, one might consider the set of conclusions represented by a graded po-
sition vector to be independent of the weights on the conclusions in the vector,
with conclusions being those dimensions with nonzero weight.

Such graded states offer interesting possibilities for constructing more de-
tailed analyses of RMS behavior. Forces would add or remove reasons as be-
fore, but velocities would adds conclusion weights as integers. Abstractly, one
thinks of the conclusion weights as either degrees of strength (perhaps prob-
abilities when normalized), or multiplicities indicating inertia values for each
dimension in D, so that to remove some conclusion one has to remove it once
for each of its supporters. More concretely, one might use the weights to in-
dicate how many reasons support each conclusion. Such measures of support
might be superficial, counting either the number of reasons or number of valid
reasons supporting the conclusion, or they might measure the number of in-
dependent arguments supporting the conclusion. Each of these interpretations
suggests viewing the weights as mass or momentum values of a sort, as indi-
cating how many reasons must be disposed of in order to change a conclusion.
With no normalization, one may think of the weights as representing mass val-
ues for each dimension, thus providing a return to the traditional distinction
between scalar mass and vectorial material.

One might use weights in R to indicate magnitude of forces and certainty
factors or perhaps probability increments that change the weights representing
probability distributions over the conclusions. The weights corresponding to a
given reason might depend on the complexity of the reason itself. For example,
if each reason represents a specific force, then multiple conclusions might be
interpreted as splitting this force, so that a single-conclusion reason offers a
more effective charge for its conclusion than a multiple-conclusion reason.
The force associated with the reason might also vary with the antecedents as
well, especially if one views reasons with many hypotheses as less compelling
than reasons with only one or two hypotheses.

Extending the interpretation of reasons to include real-valued weights might
yield a mechanical theory that comes closer to the traditional mechanics dis-
tinction between massive materials and mass values.

14.3.4.3 States versus actions

Traditional quantum mechanics considers temporal evolution operators as well
as measurement operators, with a Hamiltonian operator specifying the tempo-
ral evolution of a quantum system. As in classical Hamiltonian mechanics, the
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quantum Hamiltonian incorporates all relevant physical laws in a single pack-
age. Quantum Hamiltonian systems thus share the problem noted earlier in
connection with classical Hamiltonian systems, namely that such characteriza-
tions fit poorly with minds and other open, self-acting systems that change the
rules of their behavior as they go along.

This uncomfortable fit shows up in the preceding treatment of reasoning op-
erators as well. One ordinarily regards reasoning operations as forms of mental
action undertaken by the reasoner, not as measurements. The measurements
occurring in reasoning instead take the form of the assessments of attitudes
needed to evaluate the applicability of reasons and to determine the effects of
reason application on states of mind. Rather than thinking of reasons as mea-
surement operators, it is more natural to think of them as evolution operators
that produce later states from earlier ones.

The order dependence of the results of reasoning noted in our earlier dis-
cussions of conservatism and reversibility suggest that for some purposes the
reasoning steps leading up to some instantaneous state represent more fun-
damental information about the agent than does the instantaneous state that
results from these reasoning steps (Doyle 1992b). The reasons contained in
the state are ambiguous and support multiple admissible extensions. The se-
quence of reasoning steps leading up to an instantaneous state does not admit
the same ambiguity.

This observation about reasoning recalls David Finkelstein’s (1996) argu-
ment that quantum states provide only impoverished ways of talking about
quantum behavior, so that one should treat sequences of acts as the primary
units of analysis in quantum mechanics. One can take the same point of view
in the preceding analysis of reasoning by considering serialized application of
reasons or sets of reasons in the tensor composition (11.68).

14.3.5 Simultaneous measurability

The most interesting aspects of quantum-theoretical uncertainty do not con-
cern the measurement issues raised in the preceding section, but instead re-
late to questions of observability and simultaneous observability, since these
questions can bear on what one thinks of existing. Standard quantum theory
finds position and momentum to be complementary quantities; that is, one
can measure position and momentum precisely or simultaneously, but not both
precisely and simultaneously.

Some complementarity relations might arise from fairly general consider-
ations applicable in the discussion of state statistics earlier in this chapter.
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For example, the Cramer–Rao inequality

J · δf ≥ 1 (14.67)

of statistics reveals such uncertainty relations by examination of the properties
of the Fisher information content measure

J =
∫ ∞

−∞
pr (x)

[
d

dx
(ln pr (x))

]2

dx (14.68)

and variance of statistics f , such as the mean

f = x =
∫ ∞

−∞
xpr (x)dx. (14.69)

It is tempting to view some standard quantities from the theory of com-
putation in such terms, interpreting time–space trade-offs as indications of
complementarities between these quantities, especially since at least one of
the founders of the theory explicitly sought to follow the model of physics
in finding quantitative measures for computational effort (Hartmanis 1973,
1994). Such speculations call for some restraint, however, since some com-
putational trade-offs exist only presupposing special circumstances, and do
not represent general measurement incompatibilities of the sort expected of
position and momentum.

We may seek similar sets of complementary quantities in psychology and
economics. If we look at the RMS, we see indeterminism of momentum with
respect to position and vice versa, since a set of base reasons may support
several possible extensions, and two different sets of base reasons may give
rise to the same extension. These indeterminacies, however, do not prevent
simultaneous measurement in all cases.

Numerous other questions about measurement in psychological systems de-
serve attention if the preceding links from reasoned states to quantum theory
prove to be more than mere coincidence. In the RMS, for example, one might
ask about which states are observable by measurement. The original RMS
only made relaxed (integral) states observable to the environment. These re-
laxed states thus constituted eigenstates of the observation operators, giving a
probability distribution over relaxed states. In contrast, the rational distributed
reason maintenance service, RDRMS (Doyle & Wellman 1990; Doyle 1996),
made nonrelaxed states observable to the environment, so that tentative an-
swers might be available for use before the RDRMS finished constructing a
new relaxed labeling (if ever). For such a system, could one prove that the dis-
tribution of answers centers around the equilibrium answer, and that sequential
measurements converge to the equilibrium answer?
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15

Materialism

Science and natural philosophy largely abandoned ideas about parallel worlds
of mind and matter in the years following Descartes and his dualistic philos-
ophy. By the twentieth century, most of science exhibited an unhesitant ma-
terialistic metaphysics. The present investigation occasions an opportunity to
reexamine ideas about materialism.

15.1 What is materialism?

The standard conception of materialism is the thesis that all events in the
world consist of ordinary physical matter, energy, and other physical prop-
erties, denying the existence or causal influence of other things. It does not
deny the possibility of using nonphysical properties to characterize physical
things; civilization’s use of numbers to quantify physical dimensions would
suffer greatly were this so. But it does deny that these nonphysical characteri-
zations play any physical role.

One should note that materialism exhibits an open-ended character. When
philosophers first bruited materialism, it referred to everything being the tangi-
ble, visible stuff of the world. Eventually this conception required enlargement
to include the invisible, intangible stuff—energy, electromagnetic fields, spin,
neutrinos—that later physics developed as physical entities or properties, even
though some of these are far removed from the direct experience characteristic
of the original conceptions of physical materials.

In the current sense of this standard conception, many psychological and
economic entities, such as beliefs, preferences, and strategies, do not count
as material objects, or at best count as alternative ways of referring to conven-
tional physical objects, as in Minsky’s statement that the mind is what the brain
does, or Searle’s statement that brains cause minds, that is, the term mind is
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an alternative term for the activity of the brain, or for some abstraction of the
brain’s activity.

This received sense of materialism clashes with the terminology used in the
present development, in which we speak of classes organizations for minds as
psychological materials. It might be more appropriate to use the term physi-
calism for the doctrine of materialism to dissociate the thesis about physical
properties from the term material. I say more about this clash of terminology
in the following sections.

15.2 Why materialism?

There is no direct scientific evidence for materialism. Indeed, since it denies
the existence of a broad class of things defined only by their difference from
physical things, it has more the character of a thesis that can be falsified but
never proven.

Lack of direct evidence for materialism, and even the impossibility of di-
rect evidence, does not mean no evidence exists. The primary evidence for
materialism is indirect, consisting of the gradual advance of science in finding
physical explanations for many aspects of the world. These many successes,
some coming through an expansion of the conception of the physical, now
appear to explain many of the mechanisms of astronomy, weather, geology,
engineering machines and materials, the biological mechanisms of the body,
and the neuronal mechanisms of the brain. There are still plenty of things not
yet reduced to physical theory at all, such as literature, art, sociology, and pol-
itics. Reductions of other things have been proposed that remain controversial
among society as a whole, such as the origins of species and the operation
of conscious human intelligence. The prevalence of materialist convictions
among scientists makes these reductions much less controversial in scientific
circles.

Compared with prescientific days, in which every ill wind blew by the ac-
tion of a capricious, inexplicable, and invisible spirit, the success of materialist
explanations have been immense. Moreover, though science includes many
competing and clearly imperfect theories, the intellectual coherence and pre-
dictive power of science as a whole forms a stark contrast with the much deeper
disagreements among most theories of everything else, from psychology and
political economy to philosophy and theology. Many materialist convictions
no doubt arise by combining these successes, using repeated successes to jus-
tify expectations of continued and eventual complete success, with a sort of
Ockham’s razor of intelligibility instructing one to adopt the simplest and most
coherent theory.
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15.3 Is materialism true?

The materialist thesis has engendered controversy for thousands of years. The
reality of greed, envy, and intense hatred is obvious to even the dullest observer,
and claims that these obvious realities do not exist or represent only chemical
arrangements strike many as absurd. The courage of heroes, the honor of lead-
ers, and the love of mothers cannot be directly observed, but appear to many as
no less real than particles for which the observations consist of tracks left in a
cloud chamber. Ideas inspire, desires drive, and ferocity frightens in declama-
tory epic and written novel, but physics explains at best how sound travels and
ink adheres, not how these represent human existence. For many, these ap-
pearances lie beyond physical materials but not beyond human knowledge, un-
derstanding, and science (see, e.g., Jackson’s 1986 refutation of physicalism).
Taking overt appearances as a guide, humans live in a world populated by both
physical materials and nonphysical objects. No one knows the boundary be-
tween these types of entities, but the nearly universal recognition given to both
makes a dualist view of the world seem more plausible than either strict physi-
cal materialism or strict physical immaterialism. In this view, the indisputable
advance of science helps illuminate the extent of the physicalist realm, and
comes closer and closer to its boundaries, but has no more chance of extend-
ing the physical realm at will than Knut had of driving the sea from Danish
shores.

Faced with the unverifiable character of the materialist thesis and the obvi-
ous and seemingly ineradicable nonmaterial appearances of human existence,
some have backed away from claiming materialism as a thesis to taking materi-
alism as the methodology of looking for explanations of phenomena supposing
that the materialist thesis is true. Methodological materialism offers some re-
spectable attractions, but in itself no greater attractions than a corresponding
methodological immaterialism that looks for explanations as if immaterialism
were true. Methodological materialism shares most of its attractions with ma-
terialism itself, namely the success of materialist explanations in physics, suc-
cesses generally less forthcoming from methodological immaterialism.

The difficulties with methodological materialism are two. First, it offers
no inbuilt failure criterion. The point of science is to find coherent ways of
understanding experience. Methodological materialism, as usually phrased,
does not say to seek materialist explanations first, and then look for imma-
terial explanations when materialist explanations are not forthcoming, or re-
main less enlightening or become far more complex than dualist explanations.
Methodological materialism just says to keep seeking materialist explanations,
independent of the quality of either the resulting physical explanations or of
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alternative explanations. Without some stopping criterion that recognizes the
ordinary intellectual norms of scientific explanation, methodological material-
ism is hard to distinguish from overt materialism itself. The second difficulty
with methodological materialism relates closely to the first. Scientists are peo-
ple, and people are notoriously (but not necessarily universally) incapable of
living as if something were true without eventually coming to believe it true,
more or less independently of evidence they gain for the truth or falsity of the
belief. Thus methodological materialism is not just methodologically hard to
distinguish from the materialist thesis itself, but pursuing it strongly inclines
one to become a materialist.

15.4 New materials for materialism

The present broadening of mechanics provides a way out of materialist con-
troversies, or at least of converting them to more focused technical questions,
and does this in a fairly traditional way.

One cannot see, taste, feel, hear, or touch broadcast radio waves, but this in-
substantiality did not cause scientists to scrap materialism. Discovering some
intelligible phenomenon outside of the then-current scope of materialism led
physicists to expand the notion of physical events and properties to include
electromagnetic fields as part of the physical universe. This expansion seemed
reasonable because the effects of radio waves were visible (and audible) given
the right physical detecting apparatus, and because these fields had measur-
able effects on indisputably physical materials, these days represented by loud-
speaker cones and the soup in the microwave oven.

Bringing the stuff of psychology and economics into the realm of mechan-
ical description constitutes a similar expansion of the notion of material, one
that offers some possibility of making the positive content of materialism true.
The idea of radio waves was plausible and even accepted long before one had
mathematical equations characterizing their relation to motion and charges be-
cause people were already very familiar with waves in water, and mathemati-
cal characterizations of these familiar waves made the idea of waves in some
invisible ether seemed just as respectable and ultimately intelligible as their
proven analogs on pond and sea. In the same way, showing that psychological
and economic entities share structural and behavioral axioms with planets and
electrons provides reasonable justification for regarding these additional in-
habitants of the material realm. The lack of proven theories of the behavior of
these new materials does not make this expansion unreasonable. It is true that
our theories of psychological and economic behavior are weaker, more diverse,
and more riddled with yet-unexplained exceptions than is celestial mechanics,
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but natural philosophers considered ethereal waves reasonable objects of inves-
tigation long before Maxwell developed his equations and long before anyone
could explain why some waves passed through a body and why others were
stopped cold (or more correctly, stopped hot).

The nature of interactions between the mental and the physical forms a key
topic relevant to the reasonability of this expansion of materialism. In the
broadened mechanics, one can view people as consisting of both physical and
mental materials. Now it might be that all forces are either ones generated by
and affecting only physical materials or generated by and affecting only mental
materials. This strict independence seems unlikely, as mental events clearly
have physical consequences, as anyone punched in the face by an enraged
playground bully can attest.

It might also be that physical and mental materials move in exact correspon-
dence. When such exact correlations exist, one may suppose that one type of
entity determines the other. Traditionally this has been viewed as the superve-
nience of the mental over the physical; immaterialists might take it just as well
as cases of supervenience of the physical over the mental.

More exciting questions arise as one seeks to identify interactions lacking
both strict independence and exact correspondence. Now while we have clear
evidence of physical changes that leave mental state invariant, as when some-
one lost in thought rides an elevator, and examples of mental changes that
leave physical situations untouched, as when wishing does not make some-
thing come true, we have no clear and repeatable evidence of how physical
matter might exert forces on mental states, perhaps leaving the bodily state
unchanged, or how mental materials might exert forces on physical bodies, as
in psychokinesis. Truesdell’s (1956) Isis query mentioned earlier sought evi-
dence regarding such some types of such forces. Presumably Truesdell would
have said more about it if anyone answered him affirmatively and convincingly.
Yet not all such investigations have failed. Recent experiments conducted us-
ing standard double-blind experimental methodologies have shown improved
medical outcomes for patients when people pray for them over those not re-
ceiving such attentions. Even if one denies all deities and interprets prayer
only as directed mental activity, these results, if true, may identify prayer as
involving nontrivial mental–physical interactions. Experiments studying the
effects of placebos may also shed light here.

It is clear that investigating the properties of mental materials poses great
challenges. Detecting neutrinos is hard, but this difficulty is not enlarged by
attempts of the neutrino to hide from the detector. However, if one asks a
group of teenagers and their parents to raise their hands if they have engaged
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in premarital sex, one faces a different type of observational difficulty, in past
times if not still today.

Even if the broadened mechanics developed here offers a means for enlarg-
ing the scope of materialism so as to convert some points of controversy into
subjects of theoretical and experimental investigation, it may not prove accept-
able to everyone. For some, the negative content of traditional materialism—
the nonexistence of spirits, souls, gods, and the like—might be as important
as the positive content asserting the universal involvement of physical entities.
For some, strict physical materialism might be an essentially religious con-
viction, not a hypothesis subject to scientific disconfirmation. For others, the
expectations of successfully demonstrating mental forces producing physical
effects may seem so remote that any expenditure of effort on attempting such
demonstrations would constitute a waste of effort better spent on more certain
needs.

Such possible rejections of an expanded conception of materialism do not
undercut the central hypothesis of the current investigation. However one
approaches the question of materialism, even a theory in which nonphysical
masses and forces were completely determined by physical ones would still
be of intellectual value in understanding and investigating the nature of mental
processes their limits. These limits might always be traceable back to physical
limitations, but the particular details of how the mental processes are real-
ized in physical systems may obscure the interesting details. Such considera-
tions are familiar in the philosophy of language and logic; while the shape and
strength of a dinner table might derive from its molecular and atomic struc-
ture, those details are essentially irrelevant to the properties of interest to one
contemplating ordinary uses of the table.
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Reductionism

The preceding discussion of materialism raised the issue of the reducibility
of all natural law to the behavior of materials, especially to ordinary physical
materials, concluding that mechanical laws of mental and economic entities
can prove useful whether or not one can reduce such laws to the behavior of
physical materials. This chapter examines the question of reducibility among
natural laws in more detail.

16.1 What is reducibility?

The notion of reducibility of theories in logic means nothing more than the
entailment of one theory by another upon the addition of suitable definitions to
the reduced theory. That is, we say that theory T1 is reducible to theory T2 just
in case there exist definitions D(T1, T2) such that

T2 |= T1 ∪D(T1, T2). (16.1)

For this to make sense, we must assume that the two theories and the definitions
have been expressed in terms of the same language, possibly by extending the
languages of each of the original theories to include both of these and all the
terms introduced in the definitions.

We contrast the logical notion of theoretical reducibility with the thesis of
physical reductionism, which we normally just call reductionism. This thesis,
which has often accompanied materialism, states that one can reduce all behav-
ior of our world and its parts to the pure theory of physical entities. To many
physicists and others, this has driven the search for fundamental particles and
their behavioral laws, on the assumption that knowledge of the laws governing
these fundamental particles and the arrangement of particles at some instant
would determine the behavior of the entire universe, or at least provide all pos-
sible knowledge about it. Most people assume this reduction to fundamental
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particle behaviors proceeds by stages; economics reduces to psychology, psy-
chology reduces to biology, biology reduces to chemistry, chemistry reduces to
nuclear physics, nuclear physics reduces to quarks, and quarks reduce to string
theory.

16.2 Why reducibility?

To the logically minded, the second question for any scientific or mathemati-
cal theory, following the question of truth, is whether the theory already fol-
lows from something else one understands. Nonlogicians, in contrast, often
find questions of the consequences of the theory more interesting than possi-
ble reductions to other things. One must distinguish this common logical and
scientific interest in whether one theory reduces to another from the theory of
physical reducibility, for the standard interest comes to the question looking
for an answer, while the theory of physical reducibility comes to the question
maintaining an answer.

The reasons for physical reducibility have much in common with the rea-
sons for materialism. The aesthetics of science provide some motivation to
hope for reducibility. Scientists look for parsimony in their theories, and many
view a thoroughly reductionist theory as simpler and less presumptuous than
a theory based on different theories for each level, no matter how complicated
the reduction definitions bridging the levels. The main reason, however, stems
from the materialist assumption itself. If everything is composed of pieces of
matter and nothing else, the simplest behavioral expectation takes the behavior
of the complex to consist of the behavior of the pieces and nothing else.

16.3 Is physical reducibility true?

To assess the truth of the hypothesis of physical reducibility, let us examine
some of the successes of reducibility, some of the failures, and considerations
regarding whether we can extrapolate with justification from these successes
and failures to embrace or reject the hypothesis.

16.3.1 Successes of reducibility

The progress of science has provided many reductions, some spectacular, of
phenomena at one level to smaller-scale laws and structural assumptions to
bolster belief in reducibility.

The derivation of the everyday uniform gravity of the Earth from the original
Newtonian theory and the Newtonian theory from the deep geometric theory
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of general relativity provide simple examples. Newtonian gravitation implies
the force of gravity differs between the elevation of one’s feet and one’s head.
Rational mechanics shows this force to vary not with distance from the surface
of the Earth but with distance from the center of mass of the Earth, and a simple
calculation of the difference, given the great distance at which we stand from
the center, shows that the difference in this force lies beyond that which can
be measured without extremely sophisticated apparatus. Similar calculations
show how Newtonian gravitation approximates the more exact calculations of
general relativity, in which variations in the mass composition of nearby por-
tions of the Earth’s interior modulate the primary dependence on distance from
center of mass. Indeed, scientists used this theory to construct intricate devices
for mapping subterranean features by measuring and interpreting these minute
variations in gravitational field.

The example of gravitation illustrates a satisfying and common but mundane
example of successful reduction of one theory to another. The explanation of
the periodic table of the elements in terms of the quantum-mechanical atomic
theory provides a more spectacular example, explaining the primary chemi-
cal properties of pure elements of matter, with decomposition into neutrons,
protons, and electrons explaining relative weights of elements, and the orbital
shell structure of the electrons explaining the chemical valences. This reduc-
tion too involves approximation, but in this case the approximations make no
practical or theoretical difference to the essentially discrete observable features
of the different elements.

Other examples populate many areas of science up to and including the hu-
man level, such as the role of the helical structure of DNA and RNA in medi-
ating production of biological materials.

16.3.2 False successes

These truly successful reductions deserve attention and praise, but not all pu-
tative reductions actually serve as claimed. Indeed, standard scientific edu-
cation enshrines prominent cases of false and unproven reductions involving
mechanics. In the first case, many textbooks claim that continuum mechanics
follows as the limiting case of the particle mechanics of many particles. This
assertion has been known false since the time of Euler, who discovered the
independence of the law of rotational momentum from the law of linear mo-
mentum, but a continuing stream of textbooks propagate the clear falsehood
that this law of rotational momentum follows from the law of linear momen-
tum. This independence does not rear its head in the realm of (nonrelativistic)
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celestial mechanics, because balance of linear momentum does imply balance
of rotational momentum in the special case of particles that move under mu-
tual forces. The independence of linear and rotational balance laws appears
unavoidably in the mechanics of continuous materials, in which this indepen-
dence underlies the fundamental concept of the stress field.

The second case consists of the claim that classical mechanics follows from
quantum mechanics as the limit of the quantum theory as we assign smaller
and smaller values to Planck’s constant. We do not yet know whether this lim-
iting process does yield classical mechanics, only that the putative “proofs”
are either flawed or concern only simple examples that provide little basis
for extrapolation to more complicated systems. Instead of providing con-
vincing arguments, the extant proofs rely on approximation assumptions of
such substantial character as to call the reasonability of the derivation
into question as instances of assuming the hypothesis rather than true reducibil-
ity. One might hope that future theoretical progress will provide the claimed
limit results, but such results lie far beyond current computational
abilities.

16.3.3 Failures of reducibility

As indicated by these examples, while some theoretical reductions are exact,
many involve approximations. What these examples do not illustrate as well is
that almost all these reductions deduce only some of the qualities of the larger
entity from its components and their arrangement. A thoroughly successful re-
duction of scientific laws to laws involving the structure of small bits of matter
and energy must answer many questions left unaddressed by the examples of
reductions we currently possess.

Of the many things left unreduced, we may classify some as cases in which
reductions seem hopeless from a theoretical or computational point of view,
and others as cases in which reductions seem obviously preposterous.

16.3.3.1 Hopeless reductions

Hilary Putnam (1975, pp. 275–276) presents an example involving a small
cube and a board pierced by a round hole and a square hole. Because of the
dimensions of the cube and holes, the cube passes through the square hole
but not through the round hole. Putnam points out this explanation has no
connection with the underlying physical laws; at best one can compute all
possible trajectories of the cube and observe that none pass through the round
hole, a metaphysical explanation rather than a physical one.
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Just as with the lack of connection between physical law and the geometric
properties of the board and cube, the general problem plaguing claims of re-
ducibility is that the definitions on which reductions depend, definitions some
philosophers call bridge laws, offer no easy way of coping with the wide vari-
ety of materials or means of realizing common physical arrangements. Bridge
laws for the holes and cube would seem to require complexity rivaling that
of the universe, which hardly makes them candidates for reasonable physical
laws satisfying the usual criteria of simplicity and intelligibility.

Truesdell (1984c, p. 29) offers additional examples in which we can actu-
ally comprehend something of the complexity and essential irrelevance of the
reduction. Mathematically, we can construct the rational numbers from the in-
tegers, the real numbers from the rationals, and the complex numbers from the
reals. Whitehead and Russell (1910) spend three volumes seeking to develop
arithmetic from logic. No one looks for explanations of the Cauchy–Riemann
equations or other central aspects of the theory of complex functions in terms
of natural numbers. Truesdell likens hypothesized reductions of properties of
fluids to nuclear physics to using only logical concepts to analyze functions
of complex variables. This comparison seems too generous to reductionist
claims, for we actually have the tower of fairly complete mathematical con-
structions of number systems mentioned earlier, but have no comparably com-
plete construction of the viscosity of honey from quantum mechanics.

Gargantuan bridge laws may make some reductions theoretical or computa-
tional intractable, but other reductions go beyond mere theoretical or com-
putational intractability and involve proof-theoretic or computational unde-
cidability. The familiar differential equations of physics generally admit nu-
merical integration, but Pour-El and Richards (1989) and others have shown
that some solutions to these equations are recursively uncomputable (see also
Blum et al. 1998). More generally, Branicky (1994, 1995) and others have
demonstrated simple physical models for which the equations exhibit arbi-
trary behaviors. The complexity of these behaviors goes beyond the merely
chaotic. Merely chaotic systems alone call reductionistic computations into
question even in principle, for solving them to a given level of accuracy may
require computational precision expanding at an exponential rate with the size
of the temporal interval involved. The arbitrarily complex solutions permit
encoding of arbitrary binary sequences in solutions, such as the solution to
the halting problem for Turing machines, which is computationally uncom-
putable. One example consists of a three-body mechanical problem, in which
a minute planetesimal orbits between two very massive bodies. We say that
the altitude of the planetesimal has a zero crossing whenever the planetesimal
passes through the axis connecting the massive bodies. Given any sequence
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of positive numbers, one can find an orbit of the system such that the dura-
tions between zero crossings of the planetesimal correspond to the stipulated
sequence of numbers.

These examples of recursively uncomputable reductions shade off into the
realm of the preposterous because the difficulties generally involve initial con-
ditions of infinite precision, or at least physically infeasible amounts of infor-
mation. Chapter 18 discusses hopes for avoiding these difficulties by positing
a finite universe, in which every initial condition involves only a finite amount
of information.

16.3.3.2 Preposterous reductions

If reduction seems hopeless in these examples, claims of reducibility seem
preposterous in other cases. The obvious cases involve meaning, significance,
and perhaps consciousness. No one expects the physical characteristics of ink
on paper to determine properties of the novel, symphony, or portrait formed
by these elements. One might talk through a causal process by which these
elements have the appropriate effects on persons, but such a process would
exhibit a complexity and specificity to make Putnam’s cube and holes example
seem utterly straightforward.

Even relevance of physical considerations to some aspects of a problem does
not mean that the problem can be reduced to lower levels of physical detail. As
Truesdell (1984c, p. 47) puts it, physicists know better than to tell a psycholo-
gist to solve quantum-mechanical equations to predict the behavior of rats, or
to chastise a traffic engineer for constructing a stochastic model of traffic flow
that ignores the physics and chemistry of individual vehicles.

The impossibility of these reductions is especially clear if one holds to some
traditional nonmaterialist views, according to which some psychological be-
havior proceeds independently of physical laws. But even if one assumes that
such behavior operates in terms of physical materials alone, no plausible story
exists at present in which supposed psychological or economic laws would ap-
pear as consequences of physical laws. On the evidence, psychological and
economic laws could very well represent additional constraints on the universe
beyond those posed by standard physical laws.

In the impoverished subset of psychology addressed by the theory of com-
putation we find a realm of behavior explicitly separated from any means of
realization in matter or persons. Universal machines constitute a somewhat
less problematic case in which reductions simply don’t make sense. As Gandy
(1980) has shown, the notion of universal computation admits a wide range
of variations in the physics of the world. Indeed, the notion of universal ma-
chines is intended to decouple the behavior of the machine from the behavior of
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the materials from which it is constructed. One constructs universal machines
to deliberately foil any reduction of the machine behavior to the underlying
physics; the behavior of the machine reduces entirely to abstract properties of
the initial conditions of the physical realization. This sort of reduction to initial
conditions might be called a reduction, but it certainly is not a very compelling
one.

We think of computation, however, as an essentially mathematical and artifi-
cial subject, not as something existing in nature and exhibiting natural regular-
ities. The case is much less clear regarding psychology, which represents en-
tities occurring naturally and presumably exhibiting regularities of their own.
Suppose that economic rationality, or some restricted version of such, char-
acterizes the behavior of the portions of the universe we call humans. If this
behavioral law does derive from fundamental physical principles, it cannot be
through the received meanings of these principles, which involve utterly dif-
ferent concepts. At best, the limits in laws of limited rationality might owe
some of their shape to physical laws. Even if one expands the conception of
physical laws along lines suggested in the present investigation, laws of ra-
tionality might, as noted earlier, represent additional constraints on behavior
beyond those found in traditional physical laws.

16.3.4 Extrapolation from experience

What can we say about the truth of physical reducibility upon consideration
of these successes and failures? Many people maintain a strong belief in the
continued advance of the reductionist program and in its ultimate success in
what some physicists call a “theory of everything,” a theory of the laws of
the ultimately small particles or physical components, currently thought to be
superstrings. Many take belief in such reducibility as a fundamental tenet ob-
vious to everyone, not as a hope based on evidence or other knowledge. The
many successful reductions of complex system behaviors to behavior of sub-
systems, which underlie a wide range of engineering successes, certainly helps
maintain such belief. We nevertheless cannot view reductionism as guaranteed
of success, for as the preceding discussion has indicated, the success of reduc-
tionism would imply progress beyond all that is currently conceivable.

This is not to say that belief in physical reducibility lacks all justification.
Extrapolation from experience certainly justifies many human expectations,
and the reductionist may well cite the history of successful reductions to ex-
trapolate continuation of such successes. The problem with this argument is
that the progress of scientific reductions is a logical process, not a continuous
process. Indeed, most examples of reductions bridge significant differences of
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levels, as in the case of the quantum-theoretic explanation of the periodic table.
While continuous processes naturally admit extrapolation, at least over short
intervals of time, and continuation of past experience forms a staple of scien-
tific expectations, the logical structures of science offer no notion of continuity
to incur the expectation that reducibility of one theory indicates reducibility of
the next. If physical reducibility were itself some continuous physical process,
it might be reasonable to judge physical reducibility proven by the past history
of examples reductions. Because reducibility is a logical conception, no prin-
ciple exists to justify concluding general physical reducibility on the basis of
some examples.

The plain fact is that one expects laws at one level to have some conse-
quences at higher levels, even many consequences at those levels, so the mere
existence of such reductions and their applications should not surprise anyone
or lead to suppositions that all important facts at the higher levels follow from
those at the lower levels. Indeed, consequences at the higher levels, even if
extremely numerous or infinite, provide little evidence for any assumption of
universal reducibility to laws at any level.

Peano arithmetic, a standard and fairly simple logical theory, illustrates this
point. Peano arithmetic axiomatizes the basic arithmetic operations on nat-
ural numbers in terms of the constant 0 and a successor function. This suc-
cessor function can be considered as existing at a lower level than familiar
arithmetic facts. Indeed, it resembles nothing so much as the finger count-
ing of the very young student. In spite of this low level of expression, one
can prove infinitely many consequences from the axioms of Peano arithmetic,
ranging from many arithmetic facts used every day in commerce and engi-
neering to important number-theoretic generalities, including the principles of
provability in Peano arithmetic captured in Boolos’ (1979) System G. Peano
arithmetic thus exemplifies the low-level theory with a perhaps infinite num-
ber of higher-level consequences. In spite of this plenitude of consequences,
Peano arithmetic does not suffice to demonstrate all important higher-level
arithmetic consequences. The first example of such was identified in a land-
mark paper by Paris and Harrington (1977) showing that a reasonably natural
true assertion about Ramsey functions is expressible but unprovable in Peano
arithmetic. Other logicians have subsequently identified even more natural
arithmetic propositions unprovable in Peano arithmetic. One thus cannot ex-
trapolate the reducibility of many interesting truths of arithmetic to Peano’s
axioms to conclude the reducibility of all interesting truths of arithmetic to this
theory.

The speedup theorem of the theory of automata provides an example of a
somewhat different character. This theorem indicates that computation of any
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function can be sped up arbitrarily much, essentially by reducing computation
of any finite portion of the function to computation by a finite automaton or
lookup table, which reduces the effort in computing values on that finite por-
tion to negligible amounts. Such speedups hold for any recursively computable
function, even though the entire function may lie far beyond the computational
capabilities of finite automata. The speedup does not affect the overall dif-
ficulty of computing the function, of course, for no improvement to a finite
number of input values outweighs the costs incurred on the infinite number of
remaining values.

For another example, consider a thermonuclear bomb. On disassembly, one
can understand a nearly complete succession of its parts in terms of familiar
kinematic or electronic behaviors: switches, wires, levers, and the like. Yet no
matter how numerous these parts, the central functions of nuclear fission and
fusion lie quite outside kinematics and electronics, rendering the extrapolation
to electromechanical reducibility false.

Indeed, if one seeks to extrapolate prospects for reducibility from past expe-
rience, one seems equally justified in expecting failure of reducibility. If one
looks at the history of physics for evidence, relativity and quantum mechanics
show how irrelevant past successful reductions were to expecting the utterly
unexpected phenomena of quantum mechanics and general relativity. New-
ton and his contemporaries could look at the world and see what we now call
electromagnetic forces at work in light, magnets, lightning, and static sparks
and know that they had yet to find a complete theory of such forces. Even
the phenomena suggesting the need for relativistic and quantum laws were un-
seen apart from explaining the solidity of matter. The classical theory of the
electron eventually revealed difficulties seemingly insurmountable within the
framework of this theory; the mass of the electron in motion from cathode
ray tubes revealed problems with the reigning conceptions of conservation of
mass.

Just as uncontroversial axioms of set theory may require augmentation by
special principles, such as the relatively acceptable axiom of choice or more
esoteric axioms found necessary in some specialized studies, the evidential sit-
uation in physics offers no good reason for assuming that the consequences of
the recognized laws explain all experience. When it comes to understanding
scientific structure, not to mention ordinary designs, we enjoy no general prin-
ciple ensuring the existence of reductions or explanations for the entire system
from the existence of partial reductions or explanations.
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16.4 Science without reductionism

The preceding discussion casts strong doubts on the truth of the reductionist
thesis, though not on continued success at finding reductions among theories.
Most of these doubts have existed for some time, however, so it seems unlikely
that reductionists will change their minds soon. The doubts, perhaps strength-
ened by the mechanics presented here, do raise the question of how the outlook
of science changes if it abandons the currently conventional reductionism.

Abandonment of reductionism changes little about the practice of science in
its local details. Scientists still look to understand experience, to generate new
experience (experiments) relevant to theoretical questions or areas of interest,
to detect regularities in this experience, to identify structures, to decompose
and aggregate behaviors. These activities give rise to new laws, and ordinary
scientific prudence seeks to check the logical and mathematical interrelations
of these laws with others. We can expect to see reductions obtained in some
cases, but not in others. Indeed, sometimes conceptual analysis of the new laws
reveals not reductions to laws known earlier, but discovery of better or deeper
conceptualizations of the new laws in isolation, perhaps by separating the force
of the new laws into several aspects that support generalization more easily.
Such reductions represent descents in new directions rather than descents to
lower levels of existing laws.

In contrast, abandonment of reductionism promises to change the global
shape of science. Rather than having a single tree of theories that bottom
out in a fundamental theory of everything, the picture changes to a forest of
intertwined trees and vines sharing some roots and leaves but enjoying sub-
stantially independent existence. This forest of theories restores science to an
open, potentially endless activity as new laws are discovered in each of the
trees, and even as new trees are discovered. In this view, each of the fields
of computation, biology, psychology, and economics represents a significant
scientific discipline, but in each case one must view the laws of the subject,
such as they are, as additional laws constraining the world, not as regularities
derivable from more fundamental physical theories.

This pluralistic view of science turns the conceit of ordinary reductionism on
its head. Conventional reductionism hopes for a fundamental theory of every-
thing, ordinarily viewed as a theory of the smallest particles or elements of the
universe, so that the local laws of these elements capture all of physical law and
determine all behaviors of constructs from these fundamental elements. Re-
cent debates about the “end of science” refer to such a reductionist viewpoint,
since if one determines laws for string theory, then science has done its job and
can retire to let the engineers and computers do the rest. Engineering remains
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because, to paraphrase Dostoyevsky’s character in The Brothers Karamazov,
if there are no other laws, everything else is permissible, and the question is
how to use this freedom to achieve what one wants. Science without reduction-
ism makes the laws of these tiny elements just one source of constraint among
many, and perhaps not even the most constraining when compared with laws at
higher levels that rule out vast areas of the freedoms given by the microscopic
laws. Rather than falling on fundamental laws that provide the sole source of
constraints, the burdens of cutting down possibilities to actualities may fall on
higher-level laws that themselves answer almost all questions about behavior
at the higher levels independent of the fundamental laws. Laws of rational or
bounded rational decisions might determine all we need to know about some
aspects of human behavior, and might still determine these answers even if
some aspect of superstring theory were different.

Abandoning reductionism changes expectations about the content of phys-
ical laws as well. For example, the main reason for the conventional suppo-
sitions that physics is local and reversible is that the laws of some fundamen-
tal particles are local and reversible. If these laws exhaust the constraints on
our world, then physics itself and all that lies above are local and reversible as
well. If laws of biology, psychology, and economics stand independent of laws
of fundamental particles, we find no reason to suppose natural law local and
reversible unless each of these independent sets of laws exhibit the same char-
acteristics. More likely, the larger scale constraints imposed by these higher-
level laws represent nonlocalities and irreversibilities that filter out many of the
natures possible given only the local and reversible microscopic laws.

Abandoning reductionism also changes the value system of science. The
conventional value system of science values deeper and more fundamental
principles more highly than superficial manifestations or phenomena explained
by these principles. The aim of science is understanding, and the deeper princi-
ples explain more. This is not the only reasonable value structure; engineering
often turns this around and values the superficial conclusions more highly than
the underlying explanations when these conclusions provide the immediate
direction or application in practice. The standard consequence of the conven-
tional value system has been to value physics more highly than, say, materials
science. If physics provides the fundamental laws, then it provides the great-
est scientific benefit. Abandoning reductionism changes this value system by
spreading scientific value across independent fields. In each of these fields,
scientists may accord more value to more fundamental areas, but across fields
comparisons would more likely involve opportunities for immediate progress
and impact on technological opportunities.
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16.5 The end(s) of science

Many scientists evince the prejudice that the laws of physics are almost com-
pletely known and that these laws determine all characteristics of the universe
save the initial conditions; and some harbor hopes that these laws also deter-
mine most of the characteristics of the initial conditions as well. Smart and
articulate scientists of this stripe do a good job of convincing many laypeople
and other scientists that we therefore stand close to the end of scientific in-
quiry. This view is as false today as it was a century ago, when scientists made
the same claims and exerted similar persuasion just prior to the discovery of
relativity and quantum theories.

The false view of the end of science starts with a misconception going back
to Leibniz: if everything is constructed out of particles, and the laws governing
the particles are known, then all physical behavior is deducible in principle
from the laws and the initial conditions. This is wrong, in both practical terms
and in principle.

In practice, most ordinary properties of ordinary objects (such as tables and
chairs) are largely independent of the behavior of the particulate materials from
which the tables are constructed, just as properties of computations are mainly
independent of the type of machine conducting the computations.

In principle, initial conditions are unknowable, and important properties of
systems remain uncomputable even if known. We possess no evidence for
the freedom of physical laws from exceptional cases or from higher-level con-
straints that introduce nonlocalities or irreversibilities. As far as we have ob-
servational or experimental evidence, physical laws at one level are generally
independent of laws at lower levels. The higher levels need not be deducible
from the lower. If one can embed Turing machines in physics, as seems likely,
some higher-level questions will be uncomputable from the lower levels. Even
supposing we do complete the so-called theories of everything, we haven’t a
clue as to the initial conditions, especially cosmologically.

Most areas of direct human interest—psychology, biology, sociology, pol-
itics, economics—are utterly independent of familiar physical law, much less
more subtle theories of everything. The same behavior could be realized in
many different ways. Proposed theories of everything do not provide the con-
cepts needed to answer (or even pose) these questions. How can something be
a theory of everything when it cannot even state most interesting questions?
Much of science, even reductionistic science, is trying to find formulations
defining phenomena or concepts in terms of other, perhaps more fundamental,
concepts. Are these scientific problems not scientific problems? As we stand
nowhere near the point at which all scientific questions have been answered in
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principle, formulating and answering questions about the world are problems
that will be with us as far as we can see.

Proposed theories of everything hardly spell the end of science. Virtually
all subjects of scientific or human interest are independent of these theories,
which rather than providing final answers, simply form the theoretical mate-
rials from which we construct objects of interest. Theories of everything end
science just as much as a theory of ink and paper ends literature, music, and
art. These theories remain irrelevant to most of science, and vast vistas of
unknown answers fill the foreseeable future. The end of science is to answer
these questions and understand the world around us; we may rejoice that this
occupation may never end.
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Effectiveness

As was noted earlier, the traditional conception of what we call mechanical
computation or computation by machine relies on a purely kinematical con-
ception of mechanics. It entirely omits any notion of force and focuses atten-
tion only on abstract states and motion between them. In this it follows a trend
in mechanical formalism that moved away from considering forces and spatial
motions to considering mainly Hamiltonian motion through abstract spaces,
with no mention of either the central notion of force or the key notion of mass
(cf. Hermann 1990, Sussman & Wisdom 2001).

This disconnect between mechanical computation and mechanics comes
closest to being bridged in the related field of information theory, in which
some authors have viewed information content as a type of mass measure
(Manthey & Moret 1983) and have produced formal relations between infor-
mation content and thermostatic theories of entropy (Chaitin 1975). These
ropes tossed across the gap lack tether to the notion of force and still leave the
crossing perilous.

Let us now reconsider the notion of computation from the mechanical point
of view, to treat “mechanizability”—viewed in terms of machines—as mech-
anizability—viewed in terms of mechanics. We seek to understand the notion
of effectiveness as involving not just abstract kinematics but also those fun-
damental concepts that distinguish mechanics from geometry, especially the
concepts of rate of motion limited by limits on force and bounds on the rate of
work.

Discussions in previous chapters have touched on these ideas already. We
examined elements of these ideas related to information-theoretic bounds on
communication rates. We also have examined the notion of memory as mass,
and most computational models, especially Turing machines and random ac-
cess machines, involve notions of memory.
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17.1 What is effective computation?

We can formulate the common notion of effective computation in several equiv-
alent ways, but all reduce to computation using a fixed set of simple operations
that we can perform without error.

The theory of computation as we know it today was initiated by Church and
Turing in the mid-1930s. Church’s (1941) theory grew from purely logical
sources, and was phrased in terms of symbolic operations that reflected ele-
mentary logical operations. Though Church himself knew mechanics well, his
theory of computation was not a mechanical one, but a procedural one. Indeed,
Church’s thesis had nothing to do with machines, but with the reducibility of
all “effective” procedures to procedures expressed in terms of his elementary
logical operations of naming, abstraction, application, substitution, and sim-
plification. Today Church’s thesis seems utterly unexceptional, and teachers
may be hard pressed to convey to the student how strong this thesis seemed at
the time, so deeply has the culture absorbed the concept of “a simple matter of
programming” implicit in programs millions of lines long.

Turing (1936), in contrast, viewed mechanical computation in terms of phys-
ical mechanism from the start by focusing attention on the properties and abili-
ties of the computer. At the time, of course, the word computer meant a person
who performed computations. For example, the 1946 resume of one of Trues-
dell’s wartime co-workers at the MIT radiation laboratory listed computer as
her occupation. Only later did the meaning change to refer to the mechanical
or electrical devices called computers today. Turing’s analysis looked to the
visual, cognitive, and manual capabilities of computers to formalize computa-
tion in terms of writing clearly distinguishable marks on regions of paper and
moving of attention to adjacent or nearby regions on the basis of simple rules.
Turing’s analysis argued for finite alphabets on the grounds that infinite alpha-
bets of necessity must have symbols resembling each other arbitrarily closely,
thus violating the requirement of clear distinguishability, and for simple mo-
tion of hand and eye to nearby parts of the paper as representative of clearly
feasible physical motions. He argued for simple rules determining the mark-
ings and motions appropriate to the locally visible markings as the only sort a
person can follow without confusion.

Most regard Turing’s initial arguments as perfectly adequate to demonstrat-
ing that effective computability encompasses at least the operations he formal-
ized in what have since become known as Turing machines, namely machines
with a finite set of tapes, a finite set of heads for reading or writing symbols
from a finite alphabet on the tapes, and a finite-state machine for guiding the
actions of the heads based on the contents of the tape squares underlying them.
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The importance of the class of things computable by Turing machines be-
came clearer with Turing’s proof of the equivalence of his notion of mechanical
computability with Church’s notion of recursive computability. Because these
two very different conceptions of computability produced the same class of
functions, many people at the time and in later years have regarded this class
as capturing the correct or natural notion of effective computability.

Recent years have seen other characterizations of the notion of effective
computation, notably Scott’s (1982) topological characterization in terms of
limits in spaces of finite approximations.

17.2 Why effectiveness?

The initial reason for formulating the notion of effective computation was to
answer a question posed by Hilbert’s (1902, p. 414) second problem, which
asked for direct methods of determining the consistency, consequences, and
truths of logic. It seemed somewhat scandalous that mathematicians had
worked for two millennia trying to prove Euclid’s fifth or parallel postulate
of geometry before Lobachevsky described a non-Euclidean geometry that
demonstrated the independence of the fifth postulate.

Gödel (1931) proved that Hilbert’s request cannot be satisfied in general, as
logical systems expressive enough to include the natural numbers must exhibit
either semantic incompleteness or inconsistency. Incomplete theories lack an-
swers to some questions, and thus preclude mechanical means for answering
all questions. One could still hope to find mechanical means for determining
those answers actually provided by the theory. Church’s notion of effective-
ness and Turing’s notion of mechanical computation both sought to formalize
the notion of mechanical inference precisely enough to respond to Hilbert’s
challenge.

17.3 Is computation effective?

Even though most people accepted computation by Turing machines as a def-
inition of effective computability, Turing clearly did not agree. He knew that
not all functions could be computed by using only these operations; indeed, the
main point of his original paper was to demonstrate that these machines could
not compute all answers to Hilbert’s decision problem. His original analysis
argued that many unproblematic physical operations performable by a (human)
computer could be reduced to the simple set employed by his machines. He
then observed that because of this reducibility, augmenting his machines with
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operations reducible to machine procedures did not expand the range of func-
tions computable by the machines. We now know that additional operations
can change the difficulty of computations even if they do not change what can
be computed. The vector machines of Pratt, Rabin, and Stockmeyer (1974,
1976), for example, reduce nondeterministic polynomial time computability to
polynomial time computability.

Turing knew he had no proof that all physical operations reduce to his ma-
chine operations. Indeed, Turing matched his matchless achievements in the
theory of computation with theories of physical computation in biology and
chemistry, discovering the theory of cell morphogenesis that bears his name
today. He soon promulgated his theory of O-machines, now called oracle ma-
chines, to formalize the notion of mechanical computation over richer sets of
operations, as well as to formalize mechanical computation over arbitrary, pos-
sibly uncomputable starting points (Turing 1939). Oracle machines differed
from his original machines through access to “oracles,” which one can think
of as devices for answering a range of questions. His original reducibility
argument showed that use of oracles answering only questions already com-
putable by Turing machines did not expand the range of computable functions,
but that oracles answering questions uncomputable by unadorned Turing ma-
chines, such as the halting problem for Turing machines, would expand the
range of computable functions.

17.3.1 Physical computability

Turing left open the question of whether any further physical operations avail-
able to humans satisfy the determinateness and definiteness requirements of
his original analysis. This question of physical computability lay dormant for
some time until it was taken up by a variety of people (see Copeland 2002 for
more on the history of this idea).

Pour-El’s and Richards (1981, 1989) concern was to determine if Turing
computation was capable in principle of computing all solutions to the equa-
tions of physics. They showed it was not, in that the wave equation and other
standard physical equations have uncomputable solutions. This uncomputabil-
ity occurs in two different ways. The way Pour-El and Richards discovered is
that while many solutions of the wave equation are computable, one can choose
initial conditions to obtain solutions not Turing computable. Their analysis
has been improved in later years by Blum, Shub, and Smale (1998), and aug-
mented by discoveries in mechanics. I have already mentioned an example of
the latter, in which one can choose the sequence of times at which a planetes-
imal of infinitesimal mass passes between two very massive bodies to encode



396 Effectiveness

the answers to the halting problem, so providing a very traditional and simple
physical system with solutions not computable by Turing machines.

Feynman’s concern was to determine if answers to quantum-mechanical
questions could be computed quickly. The issue here is that indeterminate
quantum-mechanical evolution can be viewed as pursuing many possible de-
terminate paths concurrently. Feynman proposed to use this indeterminism to
effect many determinate computations concurrently, and in particular, to per-
form quantum-mechanical computations directly. This suggestion has been
exploited in subsequent theories of quantum computation. To date, however,
these techniques have only been used to propose means for faster computation
of things already computable by Turing machines.

Although Pour-El, Richards, and Feynman were mainly concerned with
understanding how computation could be used to answer physical questions,
Gandy’s (1980) concern was to reexamine Turing’s original arguments to see
how the nature of physics itself shaped them and to assess the dependence of
the arguments on physical law, ignoring, as usual, questions about the finite-
ness of the physical universe in considering questions about infinite compu-
tations. Gandy attempted to describe ways in which slight variations in the
physics of our world permit the functions computable by Turing’s operations
to include nonrecursive functions, simply by allowing the “same” physical op-
erations to involve more information or information paths than usual. He also
sketched other variations in physical law that would render fewer functions
computable. For example, if physics allowed only light and no matter, or only
gases but no solids, then Turing’s operations would not be physically realiz-
able and hence nothing could be computed using them in such a world. From
such considerations, the coincidence of recursive computability and mechan-
ical computability seems entirely fortuitous. The further coincidence of these
notions matching in extent the things one can compute using determinate phys-
ical operations seems entirely too dubious for ready acceptance.

17.3.2 Effective operations

According to Copeland’s (2002) brief history, people have proposed several
possible physical operations as extensions to Turing’s initial analysis. My own
contribution to the discussion (Doyle 2002b), developed in what now appears
to be ignorance of most of the history, stemmed from applying my studies in
physics to understanding the structure of the RMS, which, as described earlier,
occupies states one can view as equilibria with respect to conditions required
by self-specifications. In numerous physical systems the primary behavior is
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motion toward and occupation of equilibria. The precise equilibria reached
depend on the boundary conditions, and in some cases, such as molecular
states, the possible equilibria form discrete spectra. With this wealth of com-
mon equilibrating systems at hand, it seemed reasonable to ask if one could
compute more in an unproblematic way by augmenting Turing’s operations
with tests based on equilibration. In particular, one might look at setting up
charge distributions and asking if a test particle stayed put or not, or construct-
ing molecules and asking if they folded to a certain shape, or constructing a
molecule and seeing if it has an energy state in a certain interval. Building
devices to perform such operations might require some care and ingenuity in
the engineering, but if possible offers the potential of providing operations not
computable with plain old Turing machines.

Current ideas about hypercomputation, to use Copeland’s term, certainly
provide serious doubts about the traditional interpretations of the Church–
Turing doctrine, even if these doubts eventually prove false. The lesson they
teach remains, however, even if none of the physical approaches pan out, for
broadening of mechanics to cover new mental materials opens the possibility
that one can bring new materials and forces and operations into the service of
computation. In particular, infinite-dimensional discrete spaces offer the pos-
sibility of equilibration tests that answer super-Turing questions. Mechanics
also provides detailed theories of static balance and stress that might be pressed
into computational service even without considering nonphysical mechanical
systems.

17.3.3 Physics of computation

Recent years have seen the growth of a lively study of the physics of computa-
tion. This name covers a good bit of ground, but the core refers to the attempt
to understand the physical realization of and limits on computation. Physics of
computation clearly has points of contact with the mechanical investigations
conducted in the present work, but the aims of the two are largely orthogonal.
Physics of computation seeks to understand and exploit physics in computa-
tional terms. The present investigation seeks to broaden the theories of physics
to cover more of experience than the strictly physical.

In the most straightforward developments, physics of computation includes
work on quantum computing, which holds some promise for speeding cer-
tain sorts of computations by exploiting quantum superposition and probabil-
ity laws. It also includes exploiting molar-scale parallelism through chemical
computing, using nuclear magnetic resonance devices for readouts, and shad-
ing off into computing techniques that use nucleic acids.
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In more speculative developments, the physics of computation includes work
that seeks to develop information-theoretic or computational accounts of phys-
ical law. This ranges from deriving limits on computational abilities through
thermodynamic and energetic laws (Kolmogorov 1969; Chaitin 1975) to con-
structing discrete generators of physical laws by viewing the universe as a vast
cellular automaton (Fredkin & Toffoli 1982; Toffoli & Margolus 1987; Noyes
1996; Frank & Knight 1998). The area also includes studies of reversible com-
puting mechanisms, which now are entering practical applications.
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Finitism

Many should find familiar the notions of materialism and reductionism, and
should recognize that these doctrines enjoy large numbers of adherents. Fewer
need have heard of finitism because of its presently smaller number of adher-
ents, though many should recognize some of its aspects in current scientific
and technological trends. This chapter tries to collect and address some of
these issues as they relate to a broadened mechanics.

18.1 What is finitism?

I use the term finitism to refer to the thesis that the spatial and material world
and its behavior are finite, not just finitely axiomatizable (as are the infinity of
natural and real numbers) but actually finite in the sense of being composed
of a finite number of bits of stuff that may undergo finite numbers of possible
changes at each of a set of discrete temporal instants. The finitistic picture
of the world in some locality thus resembles an enormous, possibly nonde-
terministic or probabilistic finite automaton, or more naturally, as a cellular
automaton.

One can consider strengthenings of this local notion of finiteness to finite-
ness of space and time as well. Finiteness of space means that at each instant
there are only finitely many places at which events may occur, so that the en-
tire universe looks instantaneously like a cellular automaton. Finiteness of time
means that the event world contains only finitely many temporal instants. Thus
the strongest notion of finitism, involving both spatial and temporal finiteness,
views the entire universe as a gigantic finite automaton.
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18.2 Why finitism?

Finitism arises naturally out of several converging trends in the past century,
trends that one may characterize in terms of presumptions of finitude of the
universe and its behavior. Central to this development are the ideas that humans
and their grasp are finite.

The first trend started early in the twentieth century with the Dutch mathe-
matician L. E. J. Brouwer, who grew disenchanted with exotic examples from
the topology he helped create and sought to refound mathematical rigor and
logic on a finitary basis, a project he called intuitionism. The specific focus
of intuitionism was a rejection of the law of the excluded middle as a rigorous
principle of reasoning, in part on the grounds that its most egregious conse-
quences all stem from using it to avoid considering an indefinite and possi-
bly infinite number of cases. The ideas of intuitionism have not conquered
mathematics, much less the rest of science, but they have had great impact on
development of new branches of investigation. One result of this effort has
been to show that most mathematics lies within the bounds of what Brouwer
would have considered indubitable, constructible by definite finite means from
finite bases, with no appeals to arbitrary infinities or even unenumerated sets
of alternatives.

The second trend started not much later with the English mathematician
Alan Turing, who analyzed the notion of computation and developed the no-
tion of mechanical computation that we today know as Turing machines. Tur-
ing’s concerns in this model shared much with those of Brouwer, in that all
mental perceptions and operations of the computer were required to be definite
and finite in nature, with no appeals to infinite powers of perception or infinite
capabilities for action. This model of computation, reformulated by engineers
and by the mathematicians Calvin Elgot and Abraham Robinson (1964), even-
tually became the basis for the artificial computers in common use today.

The third trend started later still with physicists seeking to avoid the infini-
ties of classical and quantum electromagnetism by postulating a finite structure
for the universe, one characterized by a fundamental length at the Planck level
(about 10−35 meters). Not long after, cosmologists found reasons for consider-
ing the universe to have finite extent and contents. While the finite extent of the
universe has become the standard view, the fundamental length theories remain
speculative, though actively pursued by various communities (Margolus 1984;
Toffoli & Margolus 1987; Kauffman & Noyes 1996; Noyes 1996).

These trends remain in force and appear to be increasing at present, espe-
cially with the growing influence of ideas related to machine computation. The
mindset of computer scientists and even mere computer users has encouraged
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views in which the universe is finite, perhaps even a gigantic cellular automa-
ton, and appears continuous only because the finite numbers involved are so
large or small they fall below the resolution of our senses and present measur-
ing apparati. Everyone who has watched television or motion pictures (or even
a computer monitor) has direct experience of the false continuity of experience.
The claims of finitism merely extrapolate this experience to our experience of
the world as a whole.

18.3 Is finitism true?

However true it is that analysis and topology of continua force one to consider
mathematical results that are fairly surprising and possibly implausible or re-
pugnant to normal sensibilities, proving the truth of finitism involves many dif-
ficult conceptual problems. The first of these is that the limited observational
and mental powers of human scientists and mathematicians are ill equipped
to perform the experiments necessary to determine the truth of finitism. Mod-
ern computer technology has accentuated this difficulty, controlling motors and
displays discretely but with swift enough progressions between minute enough
steps that the results appear continuous to humans even after significant mag-
nifications and accelerations of observation frequency. The theory of recursive
functions and of computational complexity has opened eyes to the truly huge
magnitudes of even fairly small finite numbers, with some simply described
numbers, such as Knuth’s (1976) example of 10 ↑↑↑↑ 4, beggaring compre-
hension. These “finite” numbers can induce longing for the radical finiteness
of arithmetic explored by Yessinin-Volpin (1970). Even model theory has con-
tributed to the confusion by proving the existence of countable models of con-
tinuum theories, such as the theory of real numbers. It is thus difficult to see
how observations could prove finiteness false.

One can imagine, however, that theoretical considerations might lead one
toward adopting finitism. If quantum mechanics and general relativity both
appear true and can only find reconciliation in a theory positing discreteness of
space, as some think today, that seems to bolster the case for finiteness. Mere
spatial discreteness, however, does not imply temporal discreteness; but if the
Planck length provides a measure for discreteness of space, then the Planck
time of about 10−43 seconds, the time light takes to traverse the Planck length,
may provide a lower bound on the resolution of transition speeds.

18.3.1 Probabilities

To my mind, the big physical difficulty for finitism concerns probabilities.
Quantum theory makes plausible the idea that each of the Planck-level bits
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of the universe may inhabit only one of finitely many states, though arguing
that requires much more knowledge of physical behavior than we presently
possess. Even if we suppose these fundamental bits to possess only finitely
many states, nothing we know suggests that the transition probabilities must
be restricted to only finitely many values, and if our theories permit arbitrary
probability distributions, then physics maintains its continuous character.

Truesdell and Toupin (1960) point to the work of Noll (1955) extending ear-
lier results (Irving & Kirkwood 1950). Noll proves that classical systems of
discrete particles can exhibit statistical average properties that obey the laws
of continuous mechanical fields, so that even discrete materials will look con-
tinuous at normal levels of inspection.

18.3.2 Initial conditions

We can augment these considerations with Sussman’s (1996) argument that
the universality of computation means we cannot rule out the possibility that
Planck-level cellular automata may consists of minute universal machines with
infinite state spaces and transition tables since universal machines can simulate
the behavior of finite ones. Universal machines might also simulate probabilis-
tic automata to arbitrary levels of precision. All told, even if we assume the
cells to act discretely, nothing constrains them to even appear finite, much less
actually be finite.

If each elementary cell has infinitely many states, then we remain in a situ-
ation in which physical motions depend on initial conditions of infinite preci-
sion. With infinite state spaces for the cells, the numbers of initial conditions
become uncountable, so probability distributions over these may well be con-
tinuous.

18.3.3 Mental materials

Even if quantum mechanics and general relativity imply some measure of lo-
cal discreteness or even finiteness in ordinary matter, broadening the scope to
include mental materials renders arguments for finiteness meaningless unless
augmented with further arguments for the finiteness of these additional mate-
rials and spatial dimensions. We possess no grounds for expecting such finite-
ness at present, except by supposing a strict physical materialism that denies
the existence of such additional dimensions of space and substance.

18.4 Summary

Physics may well imply some granularity in space and time, in addition to
known quantizations of state. Such implications, if true, do not suffice to
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ensure a finite universe, for they include nothing restricting transition probabil-
ity to finitely many values. The physical evidence remains equivocal because
of the limits on human powers to discriminate between the continuous and the
exceedingly fine but discrete. Decisions about finitism thus would seem to
depend on additional sources of evidence not considered herein.

The beauty of continuous mathematics aligns with the aesthetic of scientific
beauty to suggest to some that even though finite structures can approximate
the continuous, lack of reasonably strong evidence for a thoroughgoing finite-
ness covering space, time, state, and probability makes it unreasonable to strive
very hard to make things that look continuous into something discrete. Even
continuous structures provide plenty of roles for discrete properties and quali-
ties. The gardens of continuous analysis may contain some strange creatures,
but, as with Hilbert (1926), these do not repel enough to push one out. Every
life is full of things one cannot expect to understand or fully appreciate, even
after a lifetime of study. Mathematical puzzles provide just one species among
many.





Part V

Conclusion of the Matter
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Reflections

Space and Time! now I see it is true, what I guess’d at,
What I guess’d when I loafed on the grass,
What I guess’d while I lay alone on my bed,
And again as I walk’d alone the beach under the paling stars of the morning.

(Walt Whitman, Song of Myself )

The preceding chapters presented the beginnings of a mathematical and me-
chanical theory of mind.

We began by examining the curious divorce between mechanical under-
standings of mind and nature that occurred when natural philosophy devel-
oped mathematical techniques useful in characterizing physical mechanics but
inapplicable to mental mechanics. The mathematical study of mental materi-
als developed separately, but with the key mathematical theories of logical and
economic rationality lacking any connection to mechanics. The mechanical
reconciliation of mind and nature began to take shape only when the devel-
opment of artificial computers enabled construction of artificial minds precise
and concrete enough to relate to a new rational mechanics broad enough to
encompass mental as well as physical materials. The reconciliation promises
not only to open traditional philosophical questions to new forms of technical
analysis, but also to provide a new formal vocabulary for describing agents of
limited rationality and for engineering computational and social systems based
on such agents.

We then examined two sides of the reconciliation of physical and mental
mechanics. On the physical side, we recast the axioms of modern rational
mechanics so as to cover discrete mechanical systems and their hybrids with
physical mechanical systems. These axioms share almost all important struc-
ture with traditional formulations, differing primarily in the separation of con-
tinuum assumptions from other structural assumptions. Mathematically, the
principal difference comes down to working with algebraic spaces that are
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almost but not quite vector spaces, namely free modules over commutative
rings, formed by taking products of vector spaces over different scalar fields
and regarding these as product modules over the ring product of the scalar
fields. The recasting also provides a different perspective on traditional varia-
tional formulations of mechanics by elevating concepts of conserved quantities
and least action principles into notions of conservative motion.

Turning to the mental side, we sketched the mechanical description of an
important and broad class of mental materials, namely psychologies character-
ized by sets of mental attitudes distributed among mental organs or faculties,
including both short-term and long-term forms of memory. We paid special
attention to the RMS as an important exemplar of numerous mechanical con-
cepts, including kinematic constitutive assumptions and elastic and frictional
behavior. We showed how to interpret inference rules as generators of mental
forces, and characterized sets of such rules in terms of stress tensors that sat-
isfy key mechanical equations. We also showed how to relate the uncertainty
exhibited by sets of nonmonotonic reasoning rules to the subjective uncertainty
of Bayesian decision theory and, in certain ways, to the measurement concepts
of quantum mechanics.

We then reflected on some implications of this reconciliation, especially on
questions of materialism, reductionism, and computability. The broadening of
mechanics explored here would appear to deflate many of the usual claims of
materialism, but adds little to the reasons already present in traditional me-
chanics for rejecting reductionism and computationalism.

Mechanics remains a living subject, not a lifeless tradition. A mechanics
exemplified by minds does not lessen the wonders of the mind or trivialize
mechanics but increases awareness of the awesome magnificence visible in the
world around us, in which such disparate appearances exemplify a common
order.

19.1 Assessment

I wish you would reserve judgment on that.
J. S. Mac Nerney to a critic of the Moore method (Schatz 2003)

Tolstoy apparently believed the application of mechanical concepts to psy-
chology reasonable because the same concepts prove useful in explaining both
psychological behavior and the motion of inanimate bodies. The existence of
mathematical formalizations of these concepts specifically addressing the inan-
imate motions did not make the notion of inertia in psychology entirely differ-
ent or incomparable with the notion of inertia in ballistics, nor did such ax-
iomatizations disqualify the original broad concepts from their original broad
applications in continuum mechanics. I believe the further broadening of the



19.1 Assessment 409

formal mechanical concepts to cover psychology and economics is reasonable
for much the same reason.

19.1.1 Importance

The present formalization of the mechanical axioms and its application to psy-
chological and economic systems is clearly incomplete, and we can be rea-
sonably confident that some of the present details and speculations will prove
mistaken or misguided. Yet we can also be reasonably confident that many of
these flaws can be remedied, with many of these remediable through improved
treatments bearing much similarity to the present one, even if such remedies
might take a long time to effect. The major question of assessment, however,
is whether the theory makes any difference.

I believe the broadening of mechanical applications to include psychology
and economics has important consequences even if the applications yield no
“new” theoretical conclusions beyond those already known in psychology and
economics. Providing a unified theoretical framework for psychological and
physical theories demonstrates the consistency of these theories and improves
our understanding of the coherence and order of the world.

Even without new results, this unification brings new analytical concepts to
each of the fields involved, and helps different fields share mathematical tools
more easily. If Freud thought that informal hydrodynamic analogies provided
some insight into mental functioning, could detailed formal concepts and the-
orems from fluid dynamics offer more? If quantum theorists find themselves
wanting to talk about uranium atoms “deciding” to decay or electrons “trying”
to move across gaps, can models of these as rational agents add to our un-
derstanding? The answers for these specific questions might all be “no,” but
formal connections between the theories allow us to explore such possibilities
at a technical level, rather than only at the level of cocktail-party speculation.

At a philosophical level, formal unification of the theories offers means
for justifying things “everyone knows,” and helps dispense with some long-
standing arguments against some psychological and physical theories. I do not
expect the discussions given here concerning determinism, materialism, and
the like will settle any issues. I do expect that the formal connections may
enable new progress in understanding these ancient issues.

19.1.2 Interpretation

The specific mechanical interpretations of psychological concepts discussed
in the preceding chapters support enough of the usual mechanical structure to
indicate the reasonability of these interpretations. Advances in mathematics in
some areas might well make other identifications even more reasonable.
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As with all scientific theories, the issue of identification of theoretical terms
is more one of reasonability and comparative reasonability than truth, since
some physical theories admit different interpretations, all simultaneously true.
The Truesdell–Toupin discussion of concepts of mass examined in Section
6.1.4 illustrates this point, identifying different quantities as mass, with dif-
ferent identifications true and useful for different purposes.

I have striven to illustrate these interpretations with positive examples of
systems that exhibit a mechanical character and negative examples of systems
that do not exhibit a mechanical character in order to minimize the dangers of
developing what Truesdell (1984d) has called floating theories. Truesdell used
that adjective to describe a lack of solid connection between theory and reality
that requires different theorists to apply the theory idiosyncratically, in effect,
if not in intent, to reach the conclusions they happen to seek. The catastrophe
theory of Thom (1975) and Zeeman (1977) triggered Truesdell’s denunciation
of such theories, but such theories pervade the social sciences, and had been
denounced earlier by others (Post 1974; Andreski 1972). Incautious floating
theories clearly deserve wariness. We should certainly avoid floating theories
when solid theoretical interpretations exist, and try to anchor attractive floating
theories as rapidly as possible.

That said, one cannot always escape floating theories, at least at the early
stages of formalization. One needs some way of thinking about subjects of
interest, and prior to discovering some obviously reasonable and solidly pro-
ductive theory and interpretation. Students of the area of necessity flounder
around trying out different theories and interpretations. Indeed, the present ef-
fort stands in good company, in that traditional mechanics itself suffered just
such a period of floating theories prior to Newton’s work, which in part gave
the productive theoretical interpretations needed to solidly ground mechanics
in experience. The universal character of mathematics, however, means that
escape from floating theories at one time does not hold them at bay forever,
since newly observed or studied aspects of nature may engender new periods
of theoretical floundering.

Present-day theoretical psychology continues to explore new theoretical pos-
sibilities. We have much knowledge about the structure and function of the
brain and nervous system at the physiological, electrical, and chemical lev-
els, but even disregarding the ambiguities and uncertainties in that knowledge,
the gulf between function at these levels and mental life and behavior remains
nearly as great as during Descartes’s lifetime, or for that matter, when Homer
sang the wars of Greeks and Trojans. This gulf renders most psychological
theories floating theories. We might thus seek to base a mechanical interpre-
tation on more realistic psychologies than the simple one employed here. We
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cannot yet expect such an improvement to remove many of the theoretical am-
biguities unless we seek to use naturalness of the mechanical interpretation as
a criterion for judging candidate psychological theories. Such a criterion may
be justified one day after we better understand the nature of mechanics in this
new setting, but seems premature at present.

19.1.3 Inspiration

I have taken an axiomatic, mathematical approach in the hope that such an
approach offers the best path to identifying a sound theoretical grounding that
avoids the dangers of floating theories.

Newton’s axiomatic mechanics changed the terms of discussion in natural
philosophy from seeking to intuit forces hidden in behavior to stipulating forces
and then solving to see what the behavior would be. Axiomatic characteriza-
tion of theoretical concepts does not remove all ambiguities of interpretation,
but at least it ties theoretical concepts to each other in ways that reduce the
purely theoretical ambiguities. As he does so often, Truesdell puts it well.
Truesdell starts by quoting an observation of André Weil.

Rigor is to the mathematician what morality is to man. It does not consist in proving
everything, but in maintaining a sharp distinction between what is assumed and what is
proved, and in endeavoring to assume as little as possible at every stage. (Weil 1954,
p. 35)

Truesdell then paraphrases Weil’s statement about rigor:

Mathematical discipline is to science what civilization is to man. It does not consist in
replacing all experiment by reasoning, but in making a sharp distinction between what
is measured and what is derived by reason, and in endeavoring to reduce as much as
possible the need for measurement at every stage. (Truesdell 1984e, p. 113)

In a related way, Noll’s axiomatization of mechanics changed the subject
from something like a cult in which the members “got” the notion of force,
energy, and other mechanical concepts. Prior to Noll’s work, one could argue
endlessly about what forces are, for mechanical theories provided only ways of
computing from forces, not any delineation of their nature or properties. Noll’s
axiomatization transformed the discussion by identifying forces as those things
that satisfy his axioms. As in most other areas of mathematics, this move
frees one from continual decisions about whether this entity or the next is a
force; one verifies that the axioms provide a suitable characterization of the
notion of force, and then checks to see what things satisfy them. The axioms
enjoy no magical properties in this process. Even seemingly suitable axioms
may someday seem inadequate as one considers more and more examples of
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things that satisfy or fail to satisfy them. When this happens, one then revises
the axioms or extends them to introduce more restricted notions, but at each
point of time one may answer the question “Is this a force?” by comparing
the properties of the object of the question with the properties required by the
axioms.

19.2 Prospects

Developing the mechanics of psychological materials to levels matching the
mechanics of common physical materials requires substantial advances in math-
ematics, psychology, and economics.

The keenest need for further investigation lies in mathematics. Current
mathematics lacks many of the tools one might want in seeking to understand
the novel structures formalizable in discrete and hybrid mechanical systems.
Although exceedingly rich and deep, the mathematics of today provides the
most leverage on the oldest problems of continuous geometry and motion. I
hope that having mechanical formulations of new psychological and economic
materials will spur mathematical investigation today as much as mechanical
ideas motivated the development of classical mathematics.

In psychology, I look for further progress in artificial intelligence to elabo-
rate precise formal models for thinking. Here the keenest need lies in exploring
psychologies explicitly designed around mechanical notions and principles, as
these offer at least some hope of new means for obtaining intelligible behavior.

I regard the needs in economics as consisting mainly of reworking existing
theories to exploit the structural concepts of both artificial intelligence and
mechanics.

In pursuing completions of the present theory, one should keep in mind that
the principal aim of this effort has not been to provide definitive formulations
or formalizations, much less to rework all standard mechanical theorems in the
new setting and for new materials, but only to provide preliminary formaliza-
tions and identifications suitable for technical investigation and correction. It
might happen, though I doubt it, that a proper development of mechanical the-
ories of psychology and economics will omit almost every formal suggestion
made here. Even though the heavy reliance on sound axioms for traditional
mechanics makes this seem unlikely, debugging a flawed theory usually proves
much easier than debugging a blank sheet of paper. As Minsky (1974) says,
“thinking begins first with suggestive but defective plans and images that are
slowly (if ever) refined and replaced by better ones.” The theory presented
here undoubtedly has its share of defects, but I hope it suggests and motivates
fruitful corrections to these defects.
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19.2.1 Axiomatic psychology

The axiomatic approach may eventually help change the field of psychology in
ways similar to the way it changed mechanics at the times of Newton and Noll.
To date, however, axiomatic approaches have enjoyed primarily theoretical
use in methods of direct formalization that attempt to understand the mind by
taking mental phenomena at face value, to use the terms people ordinarily use
to describe themselves, and to seek formalized theories directly on the basis of
observations interpreted in these formal terms.

The direct analysis of mental phenomena can be viewed as an axiomatic
enterprise in the tradition of Hilbert’s call for mathematical axiomatization of
physics. In this approach, one seeks to axiomatize psychological concepts di-
rectly. One can view much of philosophical logic, some of theoretical artificial
intelligence, and some parts of mathematical economics as embodying just this
approach, and perhaps also the sort of modeling in differential equations ex-
emplified by Rashevsky’s (1938) work. Here one starts with naive or linguistic
expressions of commonsense psychology and seeks to use the terms of these
expressions in developing logics of various attitudes and mental qualities, such
as logics of belief, preferences, and rational choices.

Such direct analyses are based on observations, whether these be the in-
formal observations that inform commonsense theories of behavior, or formal
psychological or economic experiments undertaken to determine the properties
of the attitudes held by people and the way people make choices.

A correct theory of belief, desire, and intention in their own terms is not to
be scorned, and such may be the product of direct analysis and observation.
Nevertheless, direct analysis can leave psychological theories somewhat dis-
connected from rest of the sciences. Indeed, it seems necessary to relate the
overtly psychological level to at least certain aspects of physiology and physics
to obtain a theory of adequate accuracy, for direct analysis produces psycho-
logical theories that, like all theories, have a restricted domain of accuracy.
Classical continuum mechanics, after all, is one of the most successful and ac-
curate scientific theories known, even though some phenomena lie outside its
fairly broad domain of applicability. In the same way, we can expect direct for-
malizations of psychological theories to offer some success, but to leave some
matters requiring other types of formalizations.

Most uses of axiomatics in psychology have sought mainly to better under-
stand or identify theoretical notions rather than to understand particular sys-
tems. The more telling role for axiomatics comes through using the axiomatic
constructs to stipulate the structure of a particular system and then use the the-
oretical concepts to analyze that particular system or its behavior. To date, this
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role for axiomatics has been fairly neglected apart from axiomatic presenta-
tions and analyses of simple examples used to motivate or explicate axiomatic
theories. More significant treatments employ the axiomatic theory to present
formal specifications for a system of interest and then use this formal specifi-
cation either as the basis for analysis, for checking of the specification itself,
or to guide implementation or realization. Formal specification checking plays
an increasingly large role in many engineering disciplines, notably those us-
ing computer-aided design techniques, but it has not yet played a large role in
psychological engineering, in which all artificial psychologies designed to date
have been designed manually by people.

Application of the mechanics presented here to psychology may permit a
similar change of focus from seeking to make sense of the insensibly com-
plex to understanding the behavior of stipulated psychological systems. For
example, debates about consciousness have gone on at least as long as debates
about force. Given the possible relations between mental intentionality and
force and the intimate connections between intentionality and consciousness,
such longevity should surprise no one. Psychology might progress beyond
these debates by identifying axiomatic characterizations of the properties of
consciousness and then using these axioms to judge things conscious or not.
Mere definitions cannot answer the problems of consciousness, any more than
they can answer the question “What is life?” Axiomatic theories, nonethe-
less, might permit delineation of specific classes on which all sides can agree.
The situation regarding consciousness differs from that regarding forces, how-
ever, because few people felt they had some stake riding on the decision about
whether something constituted a force or not, while many people might think
they have some stake in decisions about whether their persons, pets, plants,
particles, and planet satisfy the conditions of consciousness. In spite of dis-
agreements on these questions, a more explicit pursuit of direct axiomatization
and formalization of psychological concepts seems worthwhile.

19.2.2 Psychological engineering

Psychology and economics currently lack consensus on any detailed models
of economic agents of limited rationality. Advances in the formal basis of
the mental and social sciences open the possibility of rigorous engineering
disciplines in mental and social domains.

Although newspapers today readily discuss social engineering and economic
fine-tuning as if they were secure human capabilities, these activities differ
little from the usual floundering people do in circumstances beyond their un-
derstanding, for there is no way known to precisely describe situations or the
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effects of actions, and so no way known to calculate and compare with any
confidence the consequences of alternative actions. To aim for psychological,
economic, social, or political engineering, one must first aim for the tools of
the engineer—sound theories, good data, and effective methods of calculation.

For example, philosophers have long debated the merits of various political,
social, and economic organizations, comparing different organizations in best
and worst cases, and arguing about how different theories about human nature
(as individuals and in groups) support different social, political, or economic
ideals, and vice versa. While opinions and intuitions abound, few sound results
have been secured because most such claims lack mathematical substantiation
or refinement. One long-range hope motivating this book is that with proper
formalizations, various organizations for political economies may be mathe-
matically analyzed and compared, to determine not just their best case and
worst case, but also their expected case performance; their best-, expected-,
and worst-case evolution over time; and the sensitivity of their performance
and evolution to the qualities of their members. Of course, the theories of
welfare economics and public choice treat some of these issues, but under the
assumption that people are ideally rational. In some cases this “locally false”
assumption correctly yields “globally true” conclusions, and so is a useful tool
of analysis. But current economics has no principled way to vary this assump-
tion formally to consider more realistic agents and to ask if any conclusions
must then be changed. To overcome this limitation, theories like that devel-
oped in this book should offer more realistic formal assumptions about the
people making up the world. How to live is perhaps the most important choice
a people may make. It is desirable that the natures of the alternatives be clearly
understood.

19.2.3 Is intelligence intelligible?

We view intelligence as involving rationality, knowledge, habits, and skills.
Although people fancy their intelligence as what sets them apart from mere
beasts, much of intelligence consists of good habits, both mental and physi-
cal, rather than rational calculation. Rationality plays a large role in guiding
our habitual behavior base into productive paths. At the same time we rely
on habits of thought to efficiently determine rational actions. In this way ra-
tionality shapes the bounds on rationality, and bounds on rationality shape the
character of rationality.

The preceding chapters have raised but not answered the question of whether
intelligence is intelligible. The application of mechanics to psychology aims
to aid the intelligibility of the subject by providing a language for describing
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and analyzing psychologies that offers compact descriptions and intuitive un-
derstandings of the limitations of psychological systems. I hope that at least
some of the progress made in the rational mechanics of physical systems will
carry over to offer simpler understandings of the more complicated systems
studied in psychology and economics. Nevertheless, all these considerations
only represent hopes, not demonstrated results.

The fundamental hurdle in understanding the mind is the limited capacity
of the mind itself. The sheer complexity of the mind poses its own barrier
no matter what kind of finite mind seeks the understanding. The problem at
hand is whether the human mind, even the spectacular examples represented by
Newton, Euler, and others, has the capacity to understand nontrivial fractions
of its own complexity.

We see this question clearly in the experience of artificial intelligence in at-
tempting to formalize the large body of knowledge humanity possesses about
the world in which we live. This knowledge includes innumerable facts, and
many generalities. It varies, at least in some respects, from person to person,
culture to culture, discipline to discipline, task to task, and time to time. Arti-
ficial intelligence has sought many different ways of representing this knowl-
edge, trying to simplify the process in many ways, but so far has kept running
up against the sheer magnitude of the body of knowledge, an enormity quite
at odds with the subjective perspective reflective people have on how little we
know.

All efforts to simplify the task of understanding intelligence founder on the
question of how complex the subject really is. Can one reduce all knowledge
to some very simple basis? As Chapter 16 has suggested, this seems unlikely,
though perhaps many subjects that seem large today might seem small with full
knowledge. Until then, however, psychology and artificial intelligence might
be doomed to proceed as a sort of Ptolemaic science, with a practical the-
ory dominated by specification of initial conditions, rather than reduction to
small set of simple principles. For example, in standard approaches to repre-
senting commonsense knowledge, almost all “facts” admit exceptions, which
one formalizes in terms of defeasible properties and exceptionalizable catego-
rizations. As one learns of new exceptions, one adds the corresponding rule.
Exception rules constitute a wonderful device for making simple corrections
simply, and might be the best possible approach to the task, but it certainly
reeks of post-Ptolemaic compounding of epicycles. The question is whether
these corrections to corrections serve to approximate some simpler structure.

Can we do better? Maybe, but almost all experience to date suggests that
true progress in simplifying bodies of knowledge comes about only when one
individual manages to comprehend the body of knowledge to be simplified.
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This is difficult, and ordinarily must proceed in a cascade of partial simplifi-
cations as different people each spend a lifetime understanding one portion or
another until these partial simplifications shrink the overall theory to a size that
will fit in the mind of a single person.

One can hope that automation of reasoning might eventually yield machines
with greater capacities for comprehension than humans. To the extent that one
has to know a lot to be able to comprehend more, this hope promises a long
wait as mere people understand enough using the old, slow processes to con-
struct such comprehension. In such a setting, acceleration follows numbers; as
Whitman says, “Produce great people, the rest follows.”

19.2.4 Additional applications

The extension of mechanics need not stop with minds and economies.
In particular, recent years have seen numerous projects applying economic

ideas to understanding the nature of cultural change in anthropology (Boyd &
Richerson 1985). Popular language might apply mechanical concepts to cul-
tural statements less often than in discussing psychology and economics, but
mechanical formalization might naturally carry over from understanding eco-
nomic change to shed light on anthropological questions as well. We might
also expect such carry-over from the psychological perspective, as we char-
acterize cultures in terms of cultural norms, habits, and values, much as we
characterize individuals with these concepts. Of course, we typically do not
think of a culture as a person in the same way we think of people as persons.
Like people, cultures exhibit a degree of self-awareness in the sense of hold-
ing norms and values that indicate what practices and things stand outside the
culture, and what stand within. Unlike people, cultures might lack the sort
of second-order desires that Frankfurt (1971) uses to identify persons. But a
difference with respect to personhood need not matter to understanding the
genesis and difficulty of cultural change.

One might also examine biology for unappreciated mechanical structure.
Molecular genetics, whether of the individual or of a population, provides one
obvious starting point, with the genotype of an individual constituting its bio-
logical mass and the phenotype constituting its biological position.

Genetic algorithms interpret simple types of computational memories as ge-
netic information that determines constructed states. The preceding mechani-
cal interpretation of constructive reasoners might thus prove readily adaptable
to constructing mechanical interpretations of artificial genetic reproduction
and variation, and so extend to interpreting actual genetic processes. In this
view, biological mutation, recombination, and reproduction possibly constitute
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mechanical actions in biological space. Admissible chemical processes of
molecular constitution might then provide limits on the magnitudes of forces
exerted in natural genetic processes.

At the individual level, one would look to formulate environmental and or-
ganic forces related to reproduction, nutrition, and defense. At the population
level, one would look to formulate environmental forces related to survival and
selection.

At the level of evolutionary history, one might distinguish changes occurring
through mutation and selection as small steps moving between equilibrium
states, obtaining a theory of punctuated equilibria corresponding to integral
motion.

19.3 Perspective

One can expect that working out the mathematical, computational, and psy-
chological advances needed to realize the promise of the extended mechanics
and its application to psychology and economics will require decades, if not
centuries. Why pay attention to ideas when their coming to fruition, if it occurs
at all, lies so far in the future? No author can demand patience of his readers,
but a bit of history might put this task in perspective.

Abraham Robinson (1974, p. x) once remarked on the surprising delay be-
tween the invention of infinitesimal analysis and its establishment as a proper
part of mathematics. In fact, this delay forms just one part of three similar and
related delayed developments.

About three and a half centuries ago, Descartes formulated a dualistic theory
of mind, Newton and Leibniz invented the infinitesimal calculus, and Newton
propounded axioms for mechanics and gravitation. These ideas suffered a sim-
ilar fate: natural philosophy abandoned the initial form of each of these contri-
butions, made much progress for 300 years, and then returned to the ideas in
curiously related ways a half century ago.

19.3.1 Mathematics

Consider first the mathematical idea of the infinitesimal calculus. Although
this idea solved problems plaguing mathematicians from Zeno to Galileo, math-
ematicians abandoned infinitesimals because they seemed to obey no set rules,
and introduced errors into mathematics and applications when people used in-
finitesimals in ways chosen to obtain the results desired. Cauchy and Weier-
strass brought great relief by showing how to develop analysis without infini-
tesimals, using notions of limits and convergence to obtain reliable definitions
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of mathematical objects. Mathematicians quickly abandoned infinitesimals to
the realm of mythology, an idea useful once but now seen as merely misguided
intuition.

The late nineteenth century saw the discovery of non-Euclidean geometries
in mathematics, and Hilbert’s shocking methods in algebra that introduced the
idea that axiomatic consistency sufficed to define a subject and result, indepen-
dent of computation from familiar numbers or worldly objects. On this basis he
recast geometry in modern axiomatic form. He challenged mathematicians to
pursue the axiomatic approach in other areas, claiming this would provide the
basis for solving all mathematical problems. This challenge helped stimulate
research in mathematical logic, including Gödel’s proof of the incompleteness
of Peano arithmetic, Turing’s proof of the undecidability of number theory, and
Tarski’s proof of the decidability of real arithmetic. These results represented
fruits of much work in model and proof theory.

Attitudes toward infinitesimals began to change about half a century ago
when Abraham Robinson, simultaneously a leading mathematical aerodynam-
icist and logician, realized that algebraic model theory provided means to make
a proper mathematical theory of infinitesimals, and showed how to redevelop
much of classical mathematics within nonstandard analysis, a result that then
led to proofs of some new results that had seemed too difficult to obtain in
standard models of the real numbers.

19.3.2 Mechanics

Newton transformed mechanics from a descriptive, philosophical subject to a
mathematical subject based on an axiomatic perspective. It was not long, how-
ever, before mathematicians and physicists abandoned Newton’s axioms as
vague and informal, especially after Euler invented what we now call Newton’s
equations to use in practical computations, and Cauchy discovered the concept
of stress that forms the basis of most of continuum mechanics. The achieve-
ments of Euler and Cauchy represented merely the most visible elements of
the thoroughgoing mathematization of mechanics in subsequent years.

Seeds of change began to stir with David Hilbert’s (1902) call to action in
1900. Hilbert’s Sixth Problem asked for an axiomatic basis for physics. The
call was first answered by Georg Hamel (1908), who made good progress but
did not find a suitable way of axiomatizing the key mechanical notion of force.

Relativity and quantum mechanics intervened, which further lessened the
interest in and attention available to pursue mechanics as a subject in its own
right. Physicists took these new theories to mean that mechanics was both
wrong and useless as a subject of investigation, quickly abandoning mechanics
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as a subject of scientific study in favor of a reductionistic focus on field theories
of smaller and smaller particles. “Classical mechanics” became a background
course with no research potential to the physics student, and physicists left
mechanics to the mechanical engineers.

Although these new mechanics engaged the imaginations of many physi-
cists, they also returned physics to a state of confusion not seen since the early
troubles with infinitesimals (cf. Streater & Wightman 1964, p. 31 and Jost
1965, pp. xii-xiii). Indeed, to try to restore some order to the subject, von Neu-
mann (1932) sought to set quantum mechanics on a firm mathematical basis,
but it remained until the axiomatic work of Wightman (1956), Glimm and Jaffe
(1981), and others to provide a respectable basis.

At about the same time as the beginnings of axiomatic quantum mechanics,
Clifford Truesdell recruited Walter Noll to undertake to axiomatize mechanics.
Noll (1958) succeeded in producing the first true axiomatization of mechanics,
and improved his initial axiomatization over the following decade or two into
an axiomatic theory of great beauty and generality that revolutionized the the-
ory and practice of mechanics.

It seems somewhat remarkable that mathematics required about the same
length of time to establish both infinitesimals and mechanics on proper math-
ematical bases. In fact, Noll’s accomplishment was much greater than that of
filling out some list of axioms. Noll transcended centuries of specious rigor
in physical theorizing to construct a systematic mathematical axiomatization
of mechanical concepts that point the way to ranges of future research well
beyond what he may have imagined. Truesdell made the following remarks
about Cauchy, but one might say similar things about Noll’s contributions to
mechanics.

From the above account, it is clear that every conceptual element in CAUCHY’S theory
was to be found in one or another of the special theories constructed in the previous cen-
tury. Moreover, in researches of FRESNEL done in 1821–1822, with which CAUCHY

must certainly have been familiar, many of CAUCHY’S results are more or less implied,
although in FRESNEL’S work the concepts of stress and strain are always connected
through a presumed linearly elastic response.

Thus it might seem that CAUCHY’S achievement in formulating and developing the
general theory of stress was an easy one. It was not. CAUCHY’S concept has the
simplicity of genius. Its deep and thorough originality is fully outlined only against
the background of the century of achievement by the brilliant geometers who preceded,
treating the special kinds and cases of deformable bodies by complicated and sometimes
incorrect ways without ever hitting upon this basic idea, which immediately became and
has remained the foundation of the mechanics of gross bodies.

Nothing is harder to surmount than a corpus of true but too special knowledge; to re-
forge the tradition of his forebears is the greatest originality a man can have. (Truesdell
1968a, pp. 236–238)
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Perhaps Noll would disavow comparison with Cauchy’s achievement, and per-
haps it remains to some future peer of Cauchy to provide correct mathematical
concepts, whether of stress or of some other concept, appropriate to the broad-
ened mechanics that will provide similar insight and power. Even if so, one
cannot help but appreciate how far Noll’s achievements have brought us in
preparing the ground for these future achievements.

19.3.3 Mind

Although Descartes’ skepticism provoked much controversy and imitation as
the burgeoning Enlightenment sought to distance itself from Christianity, his
dualism fared less well as philosophers discarded dualism for materialism and
idealism. Descartes’ successors thought mind–body interactions nonsensical,
or at best inconsistent with Newtonian physics and the rapidly advancing sci-
ences. With physicists seeming to find more and more of nature falling under
materialist characterizations, idealism eventually gave way to materialist psy-
chology and neurophysiological reductionism.

Discordant notes entered the materialist picture after Gödel’s results on the
incompleteness of Peano arithmetic. Developed in response to Hilbert’s call
to action, Gödel’s results stimulated Alonzo Church (1941) and Alan Turing
(1936) to look more closely at the nature of mechanism and so lay the founda-
tions for the modern theory of computation.

Though many regard the theories of Church and Turing as representing the
same result because they yield the same set of computable functions, this as-
sessment misrepresents the situation. Church’s purely symbolic, formal, and
mathematical theory involves a very different set of concepts than does Tur-
ing’s theory based on mechanistic, physical operations. In Church’s frame-
work, recursive functions arise as naturally and as (non)uniquely as do the
natural numbers in set theory. They suggest no obvious way of varying the
construction to obtain other sets of functions. Turing’s framework, in contrast,
makes it obvious that different classes of functions might arise through similar
constructions, as it bases these functions on a notion of physical computabil-
ity. Turing argues convincingly (and correctly, given subsequent engineering
achievements) that the simple operations embodied in his notional computing
machines represent mechanizable physical operations. He does not demon-
strate that the identified operations suffice to represent all possible mechaniz-
able operations. On the contrary, his later theory of oracle machines seems
clearly aimed at making the available physical operations a parameter of his
machines in anticipation of later physical or engineering discoveries.

Turing’s work on computation inspired his psychological speculations on
intelligent machines, which in turn helped inspire the modern field of artificial
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intelligence. Indeed, Turing was not alone in turning his attentions in this
direction; von Neumann, one of the architects of economic game theory and
developer of electronic computing machinery, also began thinking about the
structure of the brain and its relation to thinking. These represented serious
investigations of computational embodiments of thought, embodiments that at
least superficially exhibited the Cartesian dissimilarity from physical materials.

Church’s influence on the convergence of physics and psychology was less
direct, though perhaps no less important. Church’s lambda calculus, widely
used in modern artificial intelligence through its reflection in Lisp, the pro-
gramming language invented by Church’s student John McCarthy (1965), con-
stitutes the most obvious but perhaps not the most important influence. Church,
far more than Turing, was a logician, with a logician’s interest in formulating
and studying systems of axioms. This concern with axiomatics also character-
izes McCarthy’s artificial intelligence work, in which he proposed an axiom-
accepting “advice taker” that eventually inspired much work, including rea-
soning systems like the RMS.

19.3.4 Merging

These histories of mathematics, mechanics, and mind have connections more
amazing than the coincidence of starting in the mid-seventeenth century and
flowering in the mid-twentieth century.

The principal upshot of work in artificial intelligence was the production of
precise, concrete models of rational thought and their embodiment in physical
mechanisms of the sort envisaged by Turing. These models exploited logic di-
rectly in models of thinking, in the language of thought, and in identification of
mental spaces of a kind denied to Descartes. These models of thought not only
furthered the automation of human knowledge and activity, but also provided
the first analyses of thinking detailed and precise enough to enable the present
analysis in terms of mechanics. Indeed, these precise models of thought also
came to involve Newton’s infinitesimal analysis, first in formal psychological
theories of belief, in which infinitesimal probabilities of all orders characterize
comparative strength of conclusions and enter into rules of plausible reasoning
(Pearl 1990), and then reintroduced into theories of mechanical systems to an-
alyze hybrid systems, in which one can view some transitions of the discrete
component of the system as occurring in infinitesimal time steps between real
instants of continuous motion of the continuous system component.

This dovetailing of ideas is not the only convergence represented in this
history; von Neumann himself represented a convergence of mathematics,
quantum mechanics, and the mind of economics not seen since, and provided



19.3 Perspective 423

inspiration and support to Marvin Minsky, who along with McCarthy counts
as a founder of artificial intelligence and the theory of computation. But the
most surprising convergence concerns Alonzo Church. We already noted his
relations with Turing and his influence on his student McCarthy. Yet if we look
at the first edition of Church’s (1944) textbook, we find it constitutes the notes
taken by another student who Church infected with a concern for axiomatics
and conceptual beauty: Clifford Truesdell, who in later years championed the
axiomatic and mathematical renewal of rational mechanics that provided the
axiomatic basis for mechanics from which the present work derives both con-
ceptual and technical inspiration.

Should it seem curious that Turing, who openly considered physical prob-
lems also directly addressed psychological issues, while Church, who confined
his attention to logical matters, indirectly stimulated work on both psychology
and physics?

19.3.5 Moral

If reconnecting infinitesimals to mathematics alone took three centuries, per-
haps one should thus not find it too surprising that three centuries were needed
to rejoin mechanics proper, and not just its mathematical tools, to the study
of mind. And if this is the time scale along which important ideas develop,
it may well take time to see how to apply mechanical concepts to obtain im-
provements in scientific understanding and engineering power in psychology
and economics. The centuries separating the original invention and recent for-
malization of ideas in mathematics, mechanics, and mind should give us mo-
tivation to continue these investigations even if we do not yet see clearly how
or whether the present ideas will bear fruit. Hilbert said it well, regardless of
subsequent discoveries that showed his conviction requires minor modification
unrelated to the present application:

This conviction of the solvability of every mathematical problem is a powerful incentive
to the worker. We hear within us the perpetual call: There is the problem. Seek its
solution. You can find it by pure reason, for in mathematics there is no ignorabimus.
(Hilbert 1902, p. 412)





System of Notation

I write “iff” as shorthand for “if and only if.”

I use an overline or superposed bar both to
denote closures of sets and systems, and
to denote negations or complements of
propositions. The context of usage generally
indicates which interpretation is intended,
and I indicate the intended interpretation
when any potential for confusion exists.

Some symbols appear more than once in the
table that follows to avoid confusion about
ambiguities of classification.

Mathematics

N the natural numbers
Z the integers
Z2 the binary field of integers mod-

ulo 2
Zk the ring of integers modulo k
Q the rational numbers
R the real numbers
R+ the nonnegative real numbers
∗R the nonstandard real numbers
R a commutative ring
∅ the empty set
⊆ subset
∩ intersection
∪ union
X complement of the set X
\ or − set difference (asymmetric)
P powerset function
� restriction of a relation or func-

tion
◦ composition of relations or

functions
× or

�
Direct (Cartesian) product

�
Direct (disjoint) sum, coproduct

I an index set
i an index in I
[ ]i ith component of a product ele-

ment
∧ logical conjunction of two

propositions
∨ logical disjunction of two

propositions
Th deductive closure
� or + lattice join (least upper bound)
	 lattice meet (greatest lower

bound)

 top element of a lattice
⊥ bottom element of a lattice
[A,B] interval between A and B in an

ordered set
Θ a topology (set of open sets)
X closure of a set X in a topology
intX interior of the set X
Xe exterior of the set X
+ vector and set addition
d a distance or metric function
| | absolute value

Bodies

B the material universe
B the closed material universe in-

cluding O and U
G a great system or locality
O the null body
U the universal body
UB the universal body in universe B
U set of all atomic bodies, identi-

fied with U
b,X atomic body points
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A,B, C,D various bodies
Be exterior or environment of the

body B
intB interior of the body B
B

� subbody or part relation
B≺ proper part relation
(B× B)0 pairs of separate bodies

Events

W the event world
e an event in W
φ a framing or section
Φ the set of all framings

Time

T the set of times or temporal in-
dices

t a time in T, a function repre-
senting instants with temporal
indices

Γ the set of instants
τ an instant in Γ
�τ a hybrid vector of instants
t̂ a time-lapse function on events
t̄ a time-lapse function on instants
T≈ or ≈ the simultaneity relation on

events
T

� or � the temporal order
T
< or < the strict temporal order
I an interval of time
[t, t′] interval of time starting at t and

ending at t′

Space

S the set of spatial locations
Sp the set of physical locations
Sp the set of nonphysical locations
Λ the set of spatial locations
λ a location in Λ

d̂ distance function on events

d̂τ distance function on instant τ
σ a separation function on loca-

tions

V the translation space of loca-
tions

V∗ the dual of the translation space
v a translation vector
vφ value of vector v in framing φ
v� value of vector v in framing φ�

s a scalar multiplier in a vector
space

sφ value of s in framing φ
0V null or identity translation
x, v, w vectors, module elements, or

points on a manifold
φ an isometry of places or loca-

tions
V isometries of V
Vd isometries of V with respect to

metric d
Vσ isometries of V with respect to

separation σ
Q orthogonal transformation (ro-

tation)
⊗ tensor product of vectors or

module elements
∧ wedge (alternating, symplectic)

product
〈, 〉 or • inner product
q a quadratic form
× cross product
div divergence of a tensor
M a manifold or premanifold
φ a local chart on a manifold
U the domain of local chart
A an atlas of charts on a manifold
A∗ an atlas structure on a manifold
TxM tangent space to M at x
TM tangent bundle of M
T ∗M cotangent bundle of M
ψ section of tangent space
Mφ module for premanifold chart φ
RMφ

scalar ring of chart module Mφ

χ placement of a body
χ(b) placement of a body point b
χ(B) shape of body B in placement χ
χB placement of the material uni-

verse
BS universe of shapes
dχ distance in a placement χ
κ the configuration mapping
BC the universe of configurations
C the set of all configurations
C(B) the set of allowed configuration

of body B
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Motion

χt placement at time t
χ(b, t) or placement of b at time t
χb(t)
χ̇ the spatial velocity
χ̈ the spatial acceleration
χr a reference motion or observer

frame
h a history
H a set of histories over the same

interval
∆H correspondence for histories H
H∆ histories with respect to corre-

spondence ∆
g discrete dynamical map
πSi

projection onto Si component
of hybrid space

x the position vector
ẋ the velocity vector
ẍ the acceleration vector

Mass

m a mass function, mass variation,
or mass configuration

mt mass at time t
m a mass vector
ṁ massing or mass flux
ρ the spatial mass density
Bm the massy universe
M the space of mass values
RM the ring of module scalars
0M the null mass
1M the unit mass
Cm the set of mass configurations

Momentum

P space of momentum vectors
p linear momentum map or mo-

mentum value
ṗ momentum flux
p∗ dual momentum map
p× enlarged momentum map
p⊗ bilinear momentum map
L rotational momentum
Lx0 rotational momentum about x0

L̇ rotational momentum flux

Force

F space of force values
f force system, force value, force

variation, force configuration
f(B, C) force of C on B
f⇒ force exerted on
f⇐ force exerted by
Cf set of force configurations
fB body force
fC contact force
b body force density
t traction (contact force density)
T the stress tensor
F a torque, torque system, or

torque configuration
L set of all torque values
F⇐B torque resulting from B
Fx0 torque about location x0

θ(h) response functional giving
stress from h

Energy

W working
Be the energetic universe
E the space of energy values
E internal energy function; energy

value; energy configuration
RE the ring of energy scalars
≺ the energy order
CE the set of energy configurations
E internal energy
Ė change in internal energy
K kinetic energy
K̇ change in kinetic energy
Q a heating function

Variational formalism

H Hamiltonian function
L Lagrangian function
U potential function
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Mechanical processes

Σ the set of all mechanical states
σ a mechanical state

Conservatism

≺ conservatism comparison rela-
tion

≺σ state-based comparison relation
ν nearest-state function

Psychology and RMS

D set of mental attitudes or ele-
ments

d, e individual state components or
dimensions

D binary vector space ZD
2 over Z2

0 binary all-zeros vector in D

1 binary all-ones vector in D

In Label of elements in a mental
state

Out Label of elements not in a men-
tal state

Nyl Indicator of elements not yet la-
beled

r a reason
R a set of reasons
A \\ B sets with A but without items B
X ‖− Y Y holds if X holds
α Admissible extension relation

Uncertainty

pr a probability distribution
µH probability measure on histories
µΣ probability density measure
µ a measure function
µ† counting measure
µ∗ specificity measure
〈f〉 expected value of function f
〈x | y〉 Dirac bracket of vectors
〈x| bra covector
|y〉 ket vector

Decision theory

∼ Indifference relation
≺ Strict preference relation
� Weak preference relation
A Set of decision alternatives
Ω Set of decision outcomes
ω Individual decision outcome
u Utility function
û Expected utility function

Information systems

I information system (D,Con,�)
D domain of propositions
e an atomic proposition in D
PD domain powerset
Con set of consistent finite sets
� entailment relation
Th entailment closure operator
Elt(I) closed and consistent elements
Elt+(I) total elements

Satisfaction systems

S satisfaction system (D, [[ ]])
[[ ]] meaning function
Sat(S) satisfying sets
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