

http://www.cambridge.org/9780521883382

CLOUD AND PRECIPITATION MICROPHYSICS
PRINCIPLES AND PARAMETERIZATIONS

Numerous studies have demonstrated that cloud and precipitation parame-
terizations are essential components for accurate numerical weather predic-
tion and research models on all scales, including the cloud scale, mesoscale,
synoptic scale, and global climate scale.

This book focuses primarily on bin and bulk parameterizations for the
prediction of cloud and precipitation at various scales. It provides a back-
ground to the fundamental principles of parameterization physics, including
processes involved in the production of clouds, ice particles, rain, snow crys-
tals, snow aggregates, frozen drops, graupels and hail. It presents complete
derivations of the various processes, allowing readers to build parameteriza-
tion packages, with varying levels of complexity based on information in this
book. Architectures for a range of dynamical models are also given, in which
parameterizations form a significant tool for investigating large non-linear
numerical systems. Model codes are available online at www.cambridge.org/
straka.

Written for researchers and advanced students of cloud and precipitation
microphysics, this book is also a valuable reference for all atmospheric
scientists involved in models of numerical weather prediction.

JERRY M. STRAKA received a Ph.D. in Meteorology from the University of
Wisconsin, Madison in 1989. He then worked for a short time at the Univer-
sity of Wisconsin’s Space Science and Engineering Center (SSEC) in Madison
before joining the University of Oklahoma in 1990 where he is an Associate
Professor of Meteorology. Dr Straka’s research interests include microphysical
modeling, severe thunderstorm dynamics, numerical prediction, radar meteor-
ology, and computational fluid dynamics. He was co-director of the Verifica-
tions of the Origins of Rotation in Tornadoes Experiment (VORTEX I) and is
a Member of the American Meteorological Society.


http://www.cambridge.org/straka
http://www.cambridge.org/straka




CLOUD AND PRECIPITATION
MICROPHYSICS

Principles and Parameterizations

JERRY M. STRAKA
University of Oklahoma, USA

CAMBRIDGE
UNIVERSITY PRESS




CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,
Sao Paulo, Delhi, Dubai, Tokyo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521883382

© J. Straka 2009

This publication is in copyright. Subject to statutory exception and to the
provision of relevant collective licensing agreements, no reproduction of any part
may take place without the written permission of Cambridge University Press.

First published in print format 2009

ISBN-13 978-0-511-58084-0  eBook (NetLibrary)
ISBN-13 978-0-521-88338-2  Hardback

Cambridge University Press has no responsibility for the persistence or accuracy
of urls for external or third-party internet websites referred to in this publication,
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.


http://www.cambridge.org
http://www.cambridge.org/9780521883382

This book is specially dedicated to Katharine, Karen, and Michael

“All men dream, but not equally. Those who dream by night in the dusty recesses of
their minds wake in the day to find that it was vanity; but dreamers of the day are
dangerous men, for they may act their dream with open eyes, to make it possible.

This I did.”
Seven Pillars of Wisdom (A Triumph) by T. E. Lawrence






Contents

Preface page xiii

1 Introduction
1.1 Cloud and precipitation physics and parameterization perspective
1.2 Types of microphysical parameterization models
1.3 Warm-rain parameterizations
1.4 Cold-rain and ice-phase parameterizations
1.5 Hydrometeor characteristics overview
1.6 Summary

2 Foundations of microphysical parameterizations
2.1 Introduction
2.2 Background
2.3 Power laws
2.4 Spectral density functions
2.5 Gamma distributions
2.6 Log-normal distribution
2.7 Microphysical prognostic equations
2.8 Bin microphysical parameterization spectra
and moments

3 Cloud-droplet and cloud-ice crystal nucleation

3.1 Introduction

3.2 Heterogeneous nucleation of liquid-water droplets
for bulk model parameterizations

3.3 Heterogeneous liquid-water drop nucleation for bin model
parameterizations

3.4 Homogeneous ice-crystal nucleation parameterizations

3.5 Heterogeneous ice-crystal nucleation parameterizations

vil

(O N

19
19
19
21
23
27
42

51

57
59
59
61

68
70
72



viil

Contents

4 Saturation adjustment

4.1
4.2
43
4.4

4.5

4.6

Introduction

Liquid bulk saturation adjustments schemes

Ice and mixed-phase bulk saturation adjustments schemes
A saturation adjustment used in bin microphysical
parameterizations

Bulk model parameterization of condensation from a

bin model with explicit condensation

The saturation ratio prognostic equation

5 Vapor diffusion growth of liquid-water drops

5.1
5.2

Introduction
Mass flux of water vapor during diffusional growth
of liquid-water drops

5.3 Heat flux during vapor diffusional growth of liquid water
5.4 Plane, pure, liquid-water surfaces
5.5 Ventilation effects
5.6 Curvature effects on vapor diffusion and Kelvin’s law
5.7 Solute effects on vapor diffusion and Raoult’s law
5.8 Combined curvature and solute effects and the Kohler curves
5.9 Kinetic effects
5.10 Higher-order approximations to the mass tendency equation
5.11 Parameterizations
5.12 Bin model methods to vapor-diffusion mass gain and loss
5.13 Perspective

6 Vapor diffusion growth of ice-water crystals and particles
6.1 Introduction
6.2 Mass flux of water vapor during diffusional growth

6.3
6.4
6.5
6.6
6.7

of ice water

Heat flux during vapor diffusional growth of ice water
Plane, pure, ice-water surfaces

Ventilation effects for larger ice spheres
Parameterizations

Effect of shape on ice-particle growth

7 Collection growth

7.1
7.2
7.3

Introduction

Various forms of the collection equation

Analysis of continuous, quasi-stochastic, and pure-stochastic
growth models

78
78
81
86

91

97

101
101

102
106
109
116
118
120
121
122
124
129
134
138

139
139

140
141
141
142
143
148

152
152
153

155



7.4
7.5

7.6

7.7

7.8

7.9

7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18

7.19

7.20

Contents

Terminal velocity

Geometric sweep-out area and gravitational sweep-out
volume per unit time

Approximate polynomials to the gravitational collection
kernel

The continuous collection growth equation as a two-body
problem

The basic form of an approximate stochastic

collection equation

Quasi-stochastic growth interpreted by Berry and Reinhardt
Continuous collection growth equation parameterizations
Gamma distributions for the general collection equations
Log-normal general collection equations

Approximations for terminal-velocity differences

Long’s kernel for rain collection cloud

Analytical solution to the collection equation

Long’s kernel self-collection for rain and cloud
Analytical self-collection solution for hydrometeors
Reflectivity change for the gamma distribution owing

to collection

Numerical solutions to the quasi-stochastic collection
equation

Collection, collision, and coalescence efficiencies

Drop breakup

8.1
8.2
8.3

Introduction
Collision breakup of drops
Parameterization of drop breakup

Autoconversions and conversions

9.1
9.2

9.3

9.4

9.5

9.6

Introduction

Autoconversion schemes for cloud droplets to drizzle
and raindrops

Self-collection of drizzle drops and conversion of drizzle
into raindrops

Conversion of ice crystals into snow crystals and

snow aggregates

Conversion of ice crystals and snow aggregates into
graupel by riming

Conversion of graupel and frozen drops into small hail

X

164

165

165

166

168
169
173
177
183
188
191
194
195
196

197

198
222

231
231
232
234

253
253

255

264

264

267
270



10

11

12

Contents

9.7 Conversion of three graupel species and frozen drops
amongst each other owing to changes in density by collection
of liquid particles

9.8 Heat budgets used to determine conversions

9.9 Probabilistic (immersion) freezing

9.10 Immersion freezing

9.11 Two- and three-body conversions

9.12 Graupel density parameterizations and density prediction

9.13 Density changes in graupel and frozen drops collecting
cloud water

9.14 Density changes in graupel and frozen drops collecting
drizzle or rain water

9.15 More recent approaches to conversion of ice

Hail growth

10.1 Introduction

10.2 Wet and spongy hail growth

10.3 Heat-budget equation

10.4 Temperature equations for hailstones

10.5 Temperature equation for hailstones with heat storage
10.6 Schumann Ludlam limit for wet growth

10.7 Collection efficiency of water drops for hail

10.8 Hail microphysical recycling and low-density riming

Melting of ice
11.1 Introduction
11.2 Snowflakes and snow aggregates
11.3 Graupels and hailstones
11.4 Melting of graupel and hail
11.5 Soaking and liquid water on ice surfaces
11.6 Shedding drops from melting hail or hail in wet growth
11.7 Parameterization of shedding by hail particles
of 9 19mm
11.8 Sensitivity tests with a hail melting model

Microphysical parameterization problems and solutions

12.1 Autoconversion of cloud to drizzle or rain development
12.2 Gravitational sedimentation

12.3 Collection and conversions

12.4 Nucleation

12.5 Evaporation

271
272
278
283
283
289

290

290
291

293
293
297
298
301
302
304
306
307

312
312
313
313
315
326
328

330
333

336
336
338
340
343
344



Contents

12.6 Conversion of graupel and frozen drops to hail
12.7 Shape parameter diagnosis from precipitation equations

13 Model dynamics and finite differences
13.1 One-and-a-half-dimensional cloud model
13.2 Two-dimensional dynamical models
13.3 Three-dimensional dynamical model

Appendix
References
Index

X1

344
345

346
346
348
355

367
371
385






Preface

Through the experience of the author and his interaction with others that
teach cloud and precipitation physics at the University of Oklahoma over the
course of at least the past 17 years, it became apparent that there were no
current reference books or textbooks on the specific topic of the principles of
parameterization of cloud and precipitation microphysical processes. This is
despite the knowledge that the research community in numerical simulation
models of clouds regularly uses microphysical parameterizations. Moreover,
the operational community would find that numerical weather prediction
models are not possible without microphysical parameterizations. Therefore,
it is hoped that this book will be one that begins to fill this niche and provides
a reference for the research and operational communities, as well as a text-
book for upper-level graduate students.

Researchers and students should have a prerequisite of a basic graduate-
level course in cloud and precipitation physics before using this book, though
every effort has been made to make the book as self-contained as possible.
The book provides a single source for a combination of the principles and
parameterizations, where possible, of cloud and precipitation microphysics.
It is not intended to be a comprehensive text on microphysical principles
in the spirit of Pruppacher and Klett’s book Microphysics of Clouds and
Precipitation. Not every existing parameterization available is included
in the book, as this would be an overwhelmingly daunting task, though every
effort has been made to include the more common and modern parameter-
izations. There are some elegant, modern parameterizations that are not
covered, though the reader will find references to them. Some simpler early
parameterizations such as those used in one-moment parameterizations
(mixing ratio of vapor or hydrometeor) are omitted for practical reasons,
and because these are quickly becoming outdated. Some operational
numerical weather-prediction modelers cling to these simpler microphysics
parameterizations as their mainstay owing to their low memory overhead,

Xiii



Xiv Preface

and computational cost. Furthermore, an appendix of symbols was deemed
to be essentially impossible to make user-friendly, as characters and symbols
are recycled time and time again throughout the literature, and thus, they are
recycled in this book. Admittedly, this is unfortunate for the reader. Hope-
fully variables are defined in enough detail where used so that what they
represent can be easily understood. Enough material is presented for readers
to make educated choices about the types of parameterizations they might
find necessary for their work or interest. Every attempt has been made to
include state-of-the-art science on the topic by drawing heavily from the peer-
reviewed literature. Each chapter covers specific microphysical processes, and
includes many theoretical principles on which the parameterization designs
are based, where such principles exist. It should be interesting to the reader
just how ad hoc some parameterizations actually are in reality and how
poorly or well some of them perform.

Gratitude is extended to the publishers who have granted permission for
the reproduction of figures throughout the text. Some of my own research is
included in the book, and for the support of this work as well as time spent on
this book, I acknowledge the National Science Foundation in the USA. First
and foremost, however, this book would not have at all been possible without
the contribution of various derivations and the often tedious and repeated
editing provided by my wife and colleague, Dr. Katharine M. Kanak. Next
I would like to thank Dr. Robert Ballentine for trusting in me as an under-
graduate and graduate student and teaching me the finer points of numerical
modeling. 1 also would like to thank my Ph.D. Advisor, Professor Pao
K. Wang for stimulating my initial interest in cloud and precipitation physics,
and in particular research on hail initiation and growth. In addition I extend a
special thanks to Drs. Matthew Gilmore, Erik Rasmussen, Alan Shapiro, and
Ted Mansell for many stimulating conversations about microphysics para-
meterizations, along with many others, too numerous to list, with whom
I had various degrees of complex discussions on the principles and parame-
terizations presented in this book.

Special thanks are owed to Cambridge University Press Syndicate, and
especially Dr. Susan Francis, Commissioning Editor, Earth and Planetary
Science, for her guidance, assistance, and opinions in the production and the
publication of this book. Diya Gupta, the assistant editor, was invaluable for
guidance and help. Eleanor Collins, Production Editor, and Zo& Lewin, Copy
Editor, were a pleasure to work with and helped tremendously with getting
the book in its present form.

J. M. Straka
Norman, Oklahoma
May 2008



1

Introduction

1.1 Cloud and precipitation physics and parameterization perspective

Cloud and precipitation physics is a very broad field encompassing cloud
dynamics, cloud microphysics, cloud optics, cloud electrification, cloud
chemistry, and the interaction of cloud and precipitation particles with elec-
tromagnetic radiation (i.e. radar). The focus of this book is on a very specific
aspect of cloud and precipitation physics: the development of various para-
meterizations of cloud and precipitation microphysical processes; and when
possible the exploration of the basic theories necessary for their development.
In numerical models, based on theory and observations, microphysical para-
meterizations are a means to represent sub-grid-scale microphysical processes
using grid-scale information. Some of the parameterizations are quite com-
plex, whilst others are quite simple. In the realm of the design of parameter-
izations of cloud and precipitation microphysics, complex schemes do not
always provide more accurate results than simple schemes. The parameter-
izations of cloud and precipitation microphysical processes are essential
components to numerical weather prediction and research models on all
scales, including the cloud scale, mesoscale, synoptic scale, global, and cli-
mate scale. In particular, the accuracy of quantitative precipitation forecasts,
as well as the representation of atmospheric and terrestrial radiation physical
processes, depend significantly on the type of cloud and precipitation micro-
physics parameterizations used. More recently cloud models also have been
used to simulate lightning, which depends on an accurate account of micro-
physical processes, hydrometeor amounts and locations.

The scales involved with cloud and precipitation microphysical processes
range from the size of Aitken aerosol particles O(10 ? mm) to giant aerosol
particles O(10° mm) to ultra-giant aerosols and cloud particles O(10' mm) to
drizzle and snow crystal particles O(10> mm) to rain, snow aggregate, and
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graupel particles O(10° to 10* mm) to hail particles O(10* to 10° mm). Thus to
study theories and parameterizations of cloud and precipitation particle
growth, nearly seven orders of magnitude in size must be covered. To put this
in perspective, this is similar to studying the development of small wind swirls
O(10 ' m) to dust devils O(10° to 10" m) to cumulus clouds O(10* to 10° m) to
convective clouds such as thunderstorms O(10° to 10* m) to mesoscale phe-
nomena such as large thunderstorm complexes and hurricanes O(10° m) to
synoptic scale phenomena such as Rossby waves O(10° m) all relative to one
another. With these vast scale differences it is no wonder that theories and
parameterizations of microphysical processes can be so difficult to develop and
be accurate enough for research and operational model usefulness.

This chapter begins with a brief description of the types of cloud and
precipitation parameterization methodologies available. The complexity of
a parameterization is governed by theoretical equations that can be derived
and observations that are used as needed. Descriptions of warm and cold rain
processes for physically consistent and complete microphysical parameteriza-
tions are presented next. Then, hydrometeors and their characteristics such
as phase, size, concentration, content, and structure are discussed. This
information is essential as different parameterizations treat hydrometeors
differently based on these characteristics depending on the complexity
required in a model.

1.2 Types of microphysical parameterization models
1.2.1 Lagrangian trajectory parameterization models

Lagrangian trajectory parameterization models are the type of models that
can incorporate the most detailed microphysical information based on obser-
vations, physical experiments, and theoretical considerations of any parame-
terization model for hydrometeor growth described in this book. Particles
grow following three-dimensional trajectories in a prescribed or radar-
deduced flow field, which can be provided by multiple Doppler radar ana-
lyses. Then with approximations for temperature, vapor, and liquid-water
content and/or ice-water content, growth of individual precipitating hydro-
meteors is predicted using equations of varying complexity as described
throughout the book. Some Lagrangian trajectory models can be quite
comprehensive, whereas others are very simple. In addition to predicting
the growth of individual hydrometeors in Lagrangian trajectory models, the
growth of hydrometeor packets can be predicted, though this is done less
commonly.
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1.2.2 Bin parameterization models

Bin parameterization models are often considered the type of parameterization
most able to represent, for example, rain distribution evolutions in
rain clouds. They have bins (i.e. small divisions) representing the spectrum
of drops from very small cloud droplet sizes (4 um) to larger raindrops (4 to
8 mm) for parameterizations of rain formation. Each bin is usually exponen-
tially larger than the previous size/mass bin owing to the wide spectrum of
liquid-water drops that are possible, which ranges over three orders of
magnitude. For liquid-water drop sizes, bins often will increase by 2, 22,
2153 or 214 times the previous size bin over 36, 72, or 144 bins (or any number
required for a converged solution), starting with particles of about 2 to 8§ um
in diameter and increasing to a size that contains the spectra of rain, ice,
snow, graupel, and hail. Bin parameterization size-spectra can also be made
for other hydrometeor species including ice crystals, snow crystals, snow
aggregates, graupel, frozen drops, and hail with similar bin spacing. Some
models also have bins for aerosols and track solute concentrations.
A shortcoming of bin models is the excessively large computation resources
needed to make use of them [both Computer Processing Unit (CPU) and
memory], except for two-dimensional models (both axisymmetric and slab-
symmetric) as well as smaller-domain three-dimensional models. At a min-
imum, the number concentration must be predicted with these schemes,
though mixing ratio and reflectivity can be predicted or calculated. Consider-
ing number concentration with mixing ratio prediction improves the results
against using just number concentration for analytical test problems as will
be demonstrated in a later chapter.

1.2.3 Bulk parameterization models

Bulk microphysical model parameterizations are some of the most popular
schemes available owing to much reduced computational cost compared to
most bin models for use in three-dimensional models. These microphysical
parameterizations are based on number distribution functions such as mono-
dispersed, negative exponential, gamma, and log-normal distributions, to
name a few, for each hydrometeor species’ size distribution. These distribu-
tions are normalizable and integratable over complete size distributions of
diameter from zero to infinity, or partial distributions (most common with
the gamma distribution) from diameters of 0 to D meters or D, to oo meters
or even D; to D, meters. Typically, mixing ratio and number concentration
are predicted with these parameterizations. Whilst reflectivity can be
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predicted, it can be used to obtain an estimate of the gamma distribution-
shape parameter of the size distribution as a function of time. Some of the
simpler dynamical models also predict two and/or three moments, including
the slope or characteristic diameter of the distributions as well as, or in place
of, number concentration. Most one- through three-dimensional dynamical
models developed during the period from the 1970s through the mid 1980s
generally predicted only hydrometeor mixing ratio for bulk microphysical
parameterizations. As computer power increased in the mid 1980s, the number
of species predicted and the number of moments predicted slowly increased
to the point where most models utilized two moments and eventually some
used three moments (Milbrandt and Yau 2005a, b).

1.2.4 Hybrid bin parameterization models

Hybrid bin parameterizations have many of the qualities of both bulk and
microphysical model parameterizations, however growth and loss parameter-
izations are done differently than direct integration of spectrum interactions
such as, for example, collection of one hydrometeor species by another
species. Instead, the mixing-ratio and number-concentration distribution
functions are converted to bins and computations are done with a bin model;
then results are converted back to bulk microphysical model parameteriza-
tion mixing ratios and number concentrations as described by some distribu-
tion function. Typically, lookup tables are made to reduce the computation
overhead. With these models an attempt is made to capture the “supposed”
accuracy of bin models in a bulk microphysical model parameterization
without the memory storage of the full bin model. One shortcoming with
hybrid bin parameterizations compared to bin parameterizations is that the
bin parameterization solution is not carried from timestep to timestep, in
particular the bin parameterization size spectra.

1.3 Warm-rain parameterizations

Warm-rain processes include the development of precipitating rain without
the presence of ice water. However, clouds can have both warm-rain
processes and cold-rain processes occurring simultaneously, both in the
same and in different locations. Following closely the ideas put forth by
Cotton and Anthes (1989), the basic physics that need to be included in
a warm-rain parameterization are the following in some fashion or other.
These concepts are to some extent based on bin parameterizations of
warm-rain processes, but are quickly becoming more commonplace in bulk



1.4 Cold-rain and ice-phase parameterizations 5

microphysical model parameterizations. The processes are shown in Fig. 1.1
(Braham and Squires 1974):

e The nucleation of droplets on aerosol particles

e Condensation and evaporation of cloud droplets as well as drizzle and raindrops

e The development of a mature raindrop spectrum by collection of other liquid species
(including cloud droplets, drizzle, and raindrops themselves)

e The inclusion of breakup of raindrops

e The occurrence of self-collection in the droplet and drop spectra

e The differential sedimentation of the various liquid drop species within the species,
for example, rain from different sources.

Cotton and Anthes (1989) used some of these concepts, to which some
processes have been added here. They also argue from bin model results, that
a possible and perhaps attractive approach to parameterizing these physics is
to separate the liquid-water spectrum into two separate species: cloud droplets
and raindrops. Others, such as Saleeby and Cotton (2004, 2005), include both
small-cloud droplet (D < 100 pm) and large-cloud droplet (D > 100 pm) species
or liquid-water habits. Similarly, Straka et al. (2009a) include a drizzle species
category between the cloud droplet and rain categories. Straka er al. (2009b)
also include a large raindrop species or category to account for melting graupel
and small hail that become drops that do not immediately break up.

1.4 Cold-rain and ice-phase parameterizations

The microphysical parameterization of cold-rain processes and the ice phase
of water is significantly more difficult than that for warm-rain parameter-
izations, and warm-rain processes. However, for both warm-rain and ice
parameterizations, conversion processes are tremendously burdensome in a
theoretical and parameterization design perspective. Cotton and Anthes
(1989) point out that many of the ice microphysical processes are not para-
meterizable in terms of results from bin models, theoretical consideration, or
empirical fits to observations without considerable uncertainty. Nevertheless,
models continue to grow apace in complexity with more degrees of freedom
to accommodate data as these become available. Again following Cotton and
Anthes (1989), to as reasonable an extent as possible, the following processes
should be included in some fashion or other. In addition, the processes are
shown in Fig. 1.1.

e Homogeneous freezing of cloud drops into ice crystals.
® Primary, heterogeneous ice nucleation mechanism such as contact freezing, depos-
ition, sorption, and immersion freezing nucleation.
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1.5 Hydrometeor characteristics overview 7

e Secondary ice nucleation mechanisms such as rime-splintering ice production and
mechanical fracturing of ice.

Vapor deposition and sublimation of ice particles.

Riming and density changes of ice particles.

Aggregation of ice crystals to form snow aggregates.

Graupel initiation by freezing of drizzle and subsequent heavy riming.

Graupel initiation by heavy riming of ice crystals.

Freezing of raindrops, with smaller particles becoming graupel particle embryos
owing to riming, and larger particles possibly becoming hail embryos.

Graupel and frozen drops becoming hail embryos by collecting rain or heavy
riming.

Wet and dry growth of hail.

Temperature prediction of ice-water particles.

Density changes in graupel and hail.

Shedding from hail during wet growth and melting.

Soaking of hail and graupel particles during wet growth and melting.

Melting of ice-water particles.

Mixed-phase liquid- and ice-water particles.

Differential sedimentation of the various sub-ice species and within a given
species.

Figure 1.1 shows the many possible physical processes hydrometeors can
undergo when they fall to the ground as different types of precipitation.
Continental and maritime nuclei represent different sizes of nuclei and differ-
ent number concentrations. Specifically, continental nuclei exist at smaller
sizes and larger numbers than maritime nuclei, in general.

1.5 Hydrometeor characteristics overview
1.5.1 Hail

List (1986) describes a weak association between hail size and shape. That is,
hail 5 to 10 mm in diameter generally is spherical or conical, although disk
shapes can be observed; hail with 10 < D < 20 mm is ellipsoidal or conical,;
hail with 10 < D < 50 mm is ellipsoidal, with lobes and other protuberances
along the short axis; and hail with 40 < D < 100 mm is spherical with small
and large lobes and other protuberances. However, List (1986) found no
relation when comparing protuberance size and number with hail size, the
only exception being that larger hail tends to be more irregular in shape.
Another observation is that most hailstones are oblate (Barge and Isaac
1973). For example, 83% have axis ratios (axis ratio is a/b, where a is the
minor axis and b is the major axis) between 0.6 and 1.0, 15% have axis
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ratios between 0.4 and 0.6, and less than 2% have axis ratios less than 0.4.
Furthermore, the majority of hailstones observed at the ground have axis
ratios of 0.8 (Knight 1986; Matson and Huggins 1980). Wet hail typically
has an axis ratio of about 0.8, and spongy hail has an axis ratio of 0.6 to 0.8
(Knight 1986).

There is evidence that hailstones fall with their maximum dimensions in
both the horizontal (Knight and Knight 1970; List et al. 1973; Matson and
Huggins 1980) and the vertical (Knight and Knight 1970; Kry and List 1974;
List 1986). List (1986) suggested that ellipsoidal hailstones 10 to 50 mm in
diameter typically fall most stably when oriented in the vertical. Hailstones
also can exhibit gyrating motions (List ef al. 1973; Kry and List 1974; List
1986) and tumbling motions (List et al. 1973; Knight and Knight 1970;
Matson and Huggins 1980). The structure of hail can vary from porous to
solid to spongy. The outer shell can be dry or wet, which is in part related to
the rate at which the hail spins and environmental conditions. Hail density
typically varies from about 400 to 900 kg m * for a hail diameter smaller than
10 mm and from 700 to 900 kg m * for hail that has larger diameter.

Hail distributions can be represented with some form of negative-exponential
(Marshall Palmer) or gamma distribution (Ulbrich and Atlas 1982; Ziegler
et al. 1983). Ziegler et al. (1983) show particularly good matches of hail
number to size for the gamma size distribution, but not for the Marshall
Palmer size distribution for two different datasets (collections A and B) of
observations from a hail collection in Oklahoma (Figs. 1.2, 1.3). In contrast,
Cheng and English (1983) show very good matches to negative-exponential
distributions (Marshall Palmer) for two datasets (July 27, 1980 and July 28,
1980) from Canada (Fig. 1.4). It should be noted that Cheng et al. (1985)
also found an association between observed hail distributions and inverse
exponential fits. Both of these studies were conducted in continental
regimes, so generalities concerning the accuracy of size-distribution functions
should be made with caution. Finally, total hail number concentrations
range from 10 ?to 10' m ? or greater for hail diameters of 5 to 25 mm and
from 10 ®to 10 *m ° for hail diameters larger than 25 to 80 mm (Auer 1972;
Pruppacher and Klett 1981).

Hail usually falls very quickly compared to other hydrometeors with
updraft speed dictating to some degree the maximum hail size. In addition,
in order for hail particles to make it to the ground as hailstones, they must be
larger than about 1 cm at the melting level (Rasmussen and Heymsfield
1987b). Larger hailstones of 3 to 4 cm require so much heat to melt that they
may change only moderately in diameter (<10 to 20%) from their size at the
melting level on the way to the ground.



1.5 Hydrometeor characteristics overview 9

102

3 Collection A
i 17:10-17:25
- —— Observed
L R — — Gamma

s | K A\> 0 Marshall-Palmer

IS L

o

D

E

s2p

§ L

= L

(0]

o L

c

o SN

S8 L

1074 1 1 1 1 \l 1

0 0.5 1.0 15 2.0 25 3.0

Diameter (cm)

Fig. 1.2. The curve of the observed (solid) hail concentration spectra, with
superimposed gamma (long dash) and Marshall-Palmer (short dash) curves
fits to collection A. (From Ziegler et al. 1983; courtesy of the American
Meteorological Society.)

1.5.2 Graupel

Graupel diameters range from 0.5 < D < 5 mm, and very low-density graupel
are sometimes of larger size. The density of graupel can range from 100 to
900 kg m °, and size distributions generally can be represented by negative-
exponential and gamma distributions. Moreover, number concentrations
are on the order of 1 to 10 m > or higher (Auer 1972; Pruppacher and Klett
1981). The shapes of graupel can be spherical, conical, or can be highly irregu-
lar, with axis ratios both larger and smaller than unity (Bringi et al. 1984;
Aydin and Seliga 1984). In a modeling study by Bringi et al. (1984), graupel
less than 1 mm are assumed to be spherical, graupel with 1 < D < 4 mm are
conical with axis ratio, a/b = 0.5, and graupel with 4 < D < 9 mm are conical
with a/b = 0.75. Both smaller and larger particles might be spherical or irregu-
lar in shape (e.g. lump graupel: highly irregular-shaped rimed crystals and
aggregates) based on in situ observations.

Low-density graupel sometimes is conical in shape, which might be
explained by low-density riming of planar, ice-crystal edges (Fig. 1.5; Knight
and Knight 1973). Figure 1.5 shows a planar ice crystal (denoted by a
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Fig. 1.3. The curve of the observed (solid) hail concentration spectra, with
superimposed gamma (long dash) and Marshall-Palmer (short dash) curves
fits to collection B. (From Ziegler er al. 1983; courtesy of the American
Meteorological Society.)

horizontal line) that is riming on its edges. The schematic at the bottom of
Fig. 1.5 shows the resulting conical shapes of the embryonic graupel. In
general though, graupel tend to be relatively smooth in comparison with
some hailstones. The fall orientation of graupel is not known with any
certainty; some hypothesize that the larger of these hydrometeors probably
tumble, though conical graupel may have a preferential fall orientation
(List and Schemenaur 1971; Pruppacher and Klett 1981). Some graupel
may fall with their largest axis in the horizontal, whereas others may fall with
their largest axis in the vertical.

Graupel and small frozen drops generally melt completely as they fall to
the ground (except in mountainous regions, particularly in summer), though
they do not shed any water as they melt and become water drops (Mason
1956; Drake and Mason 1966; and Rasmussen and Pruppacher 1982).
A review of the characteristics of graupel particles in Northeastern Colorado
cumulus congestis clouds is given by Heymsfield (1978).
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Fig. 1.4. Examples of measured hailstone size spectra and approximated
exponential distributions obtained by least-square regression (solid line) and
the method suggested by Federer and Waldvogel (dashed line) for (a) 27
July, (b) 26 July (from Cheng and English 1983; courtesy of the American
Meteorological Society).

1.5.3 Ice crystals and snow aggregates

The density of ice crystals and aggregates varies from 50 to 900 kgm °

depending on habit, size, and riming, with higher-density values expected
for solid ice structures such as plates and wetted particles. Aggregates are
usually two to five millimeters in diameter, whilst ice crystals are typically
50 to 2000 microns in diameter. Fallspeeds asymptote to about 1 ms ' for
aggregates and fallspeed seems to only have a weak dependence on size once
snow aggregates become larger than a couple of millimeters. The size distri-
butions of snow crystals and snow aggregates are well represented by the
negative-exponential distribution (Gunn and Marshall 1958; Fig. 1.6), except
for sizes smaller than about 1 mm in diameter, with total number concen-
trations on the order of 1 to 10* m ? for aggregates, and 10 to 10’ m ° at the
extreme for individual crystals at colder temperatures. However, it should be
noted that snow- and ice-crystal concentrations as large as 10’ m * have been
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Fig. 1.5. Diagram showing the suggested mode of origin of conical graupel.
(From Knight and Knight 1973; courtesy of the American Meteorological
Society.)

found on a regular basis at temperatures of 4 to 25°C (Hobbs 1974), with
no temperature dependence. In recent years, gamma distributions have been
used for parameterization of snow particles (e.g. Schoenberg-Ferrier 1994).
Values of number concentrations of crystals are often as large as 10* m * at
temperatures warmer than 0 to 10°C (Pruppacher and Klett 1981; 1997).
The diameters of large aggregates can be D ~ 20 to 50 mm, whereas the
diameter of large crystals typically can be D ~ 1 to 5 mm. The shapes of
aggregates are nearly spherical to extremely oblate, and the approximate
shapes of crystals can vary from extreme prolates and oblates to spheroids
(Pruppacher and Klett 1981). Typically, thin plates are found at temperatures
of 0 to 4°C (Fig. 1.7b), needles and hollow columns from 4 to 9°C
(Fig. 1.7a), sectors from 5 to 10°C and 16 to 22°C, while dendrites
(Fig. 1.7c) are found at greater than water saturation at temperatures
of 12to 16°C (Cotton 1972b); finally an assortment of columns, side planes,
and other shapes are found from temperatures of 22 to 70°C. General
aspects of ice aggregation are discussed in Hosler and Hallgren (1961), and in
Kajikawa and Heymsfield (1989) for cirrus clouds. Figure 1.8 (Fletcher 1962)
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Fig. 1.6. The size distribution of snowflakes in terms of drops produced by
melting the snowflakes. (From Gunn and Marshall 1958; courtesy of the
American Meteorological Society.)

@) (b) (©)

Fig. 1.7. Schematic representation of the main shapes of ice crystals:
(a) columns, (b) plates, and (c) dendrites. (From Rogers and Yau 1989;
courtesy of Elsevier.)

shows the conditions under which many forms of ice crystal exist. In recent
years, Bailey and Hallet (2004) showed unique ice-crystal forms at temper-
atures colder than 20°C. Most individual crystals fall with their largest
dimension horizontally oriented unless there are pronounced electric fields,
which can orient small crystals vertically. Aggregates can fall in a horizontal
orientation or may tumble. Both above and below the melting layer, aggregates
rarely break up (Otake 1970).
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Fig. 1.8. Kobayashi’s diagram of crystal habit as a function of temperature
and excess vapor density over ice saturation. (From Rogers and Yau 1989;
courtesy of Elsevier.)

1.5.4 Cloud droplets, drizzle, and raindrops

Precipitating liquid particles include cloud droplets, drizzle and raindrops.
Cloud droplets and drizzle are highly spherical, when cloud droplets are
less than 81 pm in diameter and when drizzle has D < 400 um. Larger sized
particles are raindrops. A characteristic that sets raindrops apart from other
liquid precipitating particles is the dependence of the raindrop axis ratio on
diameter. Some models now consider both small and large cloud droplet
modes (Saleeby and Cotton 2005).

Axis ratios commonly are related to drop sizes through equivalent dia-
meter D, (this is the diameter achieved by assuming the particle is a sphere)
(Pruppacher and Klett 1981); several relations exist, including Beard (1976)
where a/b = 1.03 0.062D.; D, is in mm (Pruppacher and Beard 1970;
Pruppacher and Pitter 1971). Studies by Jones (1959), Jameson and Beard
(1982), and Goddard et al. (1982) show that, in heavier rain events, a large
range in axis ratios might be expected with even prolates possible (though the
latter are likely transient shape oscillations). An average of typical rain axis
ratios are given by Andsager et al. (1999) as shown in Fig. 1.9 (note that axis
ratio is given as o in the figure). Recent estimates show that fluctuations in
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Fig. 1.9. Raindrop axis ratios as a function of diameter. Shown are mean axis
ratios (symbols) and standard deviations (vertical lines) from aircraft obser-
vations by Chandrasekar et al. (diamonds), the laboratory measurements of
Beard et al. (1991; triangles), Kubesh and Beard (1993; squares), and present
experiments (circles). Curves are shown for the numerical equilibrium axis
ratio (an) from Beard and Chuang (1987), the radar-disdrometer-derived axis
ratios of Goddard and Cherry (1984), the empirical formula (ow) from the
wind tunnel data of Pruppacher and Beard (1970), and the present fit to axis
ratio measurements (a4). The shaded region covers the range from previous
estimates of the equilibrium axis ratio. (From Andsager et al. 1999; courtesy
of the American Meteorological Society.)

axis ratios are greater than the older empirical data suggest (Fig. 1.9). In
particular, particles are likely to be less oblate, especially for larger diameters,
however this may be due to drop shape oscillations.

Nearly two decades after the empirical data in Fig. 1.9 were obtained,
raindrop axis ratio and its functional form, as well as the importance of drop
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Fig. 1.10. Distribution of number versus diameter for raindrops recorded at
Ottawa, summer 1946. Curve A is for rate of rainfall 1.0 mm hr !, curves B, C,
D, for 2.8, 6.3, 23.0 mm hr '. Np8D is the number of drops per cubic meter,
of diameter between D and D + 6D. (From Marshall and Palmer 1948;
courtesy of the American Meteorological Society.)

oscillations, came under renewed scrutiny in the 1990s (e.g. Feng and Beard
1991; Beard et al. 1991; Tokay and Beard 1996; Bringi et al. 1998; and
Andsager et al. 1999). Nevertheless, for diameters greater than 1 mm, drops
become increasingly oblate with size. Raindrops generally fall with their
minor axis oriented in the vertical, though a rare few drops might be tempor-
arily elongated vertically, possibly because of oscillations, collisions, or both.

Raindrop size distributions can be approximated by negative-exponential
(Marshall and Palmer 1948; Fig. 1.10 and Fig. 1.11 show two datasets) or
gamma distributions (Ulbrich 1983) for mean droplet spectra, but extreme
local variations from these are observed (e.g. Rauber ez al. 1991; Young 1993;
Sauvageot and Lacaux 1995; and Joss and Zawadski 1997). Even though the
negative-exponential distribution functions fit observed raindrop distribu-
tions well, there is indication that gamma distributions may provide a better
fit, especially for raindrops of sizes less than 1 mm in diameter (Fig. 1.10 and
Fig. 1.11). Schoenberg-Ferrier (1994) also noted this and suggested using
gamma distributions for parameterization of raindrop distributions. How-
ever, it should be stated that observations of raindrop distributions are highly
variable (Ulbrich 1983). In general, the largest raindrops have diameters of
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Fig. 1.11. Distribution function (solid straight lines) compared with results
of Laws and Parsons (1943; broken lines) and Ottawa observations (dotted
lines). (From Marshall and Palmer 1948; courtesy of the American Meteoro-
logical Society.)

3 to 5 mm. However, values as large as D = 6 to 8 mm for a very few drops
have been documented in nature (e.g. Rauber er al. 1991). Total number
concentrations of raindrops in general are present in concentrations on the
orders of 10° to 10° m *, but very large drops are usually present in much
lower concentrations. Finally, Gunn and Kinzer (1949) give the terminal
velocity of fall for water droplets in stagnant air, whilst Kinzer and Gunn
(1951) look at terminal velocity with more generality.

1.6 Summary

The book is organized starting with microphysical foundation material,
followed by nucleation, saturation adjustments, vapor diffusion growth,
collection growth, drop breakup, conversion, hail growth, melting, parame-
terization limitations, and various dynamical model designs. It is impossible
to include all of the work in the many thousands of papers in the literature,
though an effort has been made to include in the book some of the most
important developments through the past forty years of microphysical para-
meterization modeling. Not only are new parameterizations discussed, but
also some older ones (Kinzer and Gunn, 1951). Where appropriate the
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chapters start with some basic theoretical considerations before discussion of
the different parameterizations. It should be noted that details of acrosols are
a vast and complex subject that is exceptionally well covered in Pruppacher
and Klett (1981, 1997) and that they will not be covered in this book, except
in developing equations for cloud condensation nuclei and ice nuclei as
needed for heterogeneous nucleation. Ice microdynamics is found in an
information-packed, easy flowing book by Pao K. Wang (2002), with all the
latest on detailed ice-crystal modeling. Aerosol scavenging and riming are
both covered exceedingly well in Pao K. Wang’s book as well as modeling
cirrus clouds.
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Foundations of microphysical
parameterizations

2.1 Introduction

In this chapter the foundations of bulk, bin, and hybrid bulk bin microphysical
parameterizations will be presented with more significant focus on the first.
Many aspects of these microphysical parameterizations require functional
relationships to describe attributes of populations of hydrometeors so that
specific equations for source and sink terms for different hydrometeor species
or habits can be integrated for mixing ratio and concentration. In addition
equations for the prognostication of reflectivity, mass weighted riming rate,
elapsed time of riming, and mass weighted rime density are presented or
derived. In addition a diagnostic equation for the shape parameter in the
gamma distribution is developed. Then number density functions and
moment generators are presented for bin microphysical parameterizations.

2.2 Background

This part of chapter two derives heavily from Flatau et al. (1989) in present-
ing some of the concepts of microphysical parameterization fundamentals.
First the probability density function will be defined and explained. It is
essential for parameterization work that the probability density function be
integratable. We start with f(D) as the probability of number of particles of a
certain size. It is preferred that the degrees of freedom of f(D) be restrained to
a small number of observable quantities. If not, it may be possible or likely
that certain parameterizations cannot be created. Finally it is necessary that
f(D) needs to be readily normalizable.

The spectral number density function n(D) is the concentration of particles
per unit size interval from D to AD. The total number concentration is usually
written as Nt, and results from integrating the spectral density function over
a given size interval such as zero to infinity. But it can, in theory, be any

19
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interval of positive definite numbers. The slope intercept of a spectral number
density function is given as N,. The slope of the particle distribution is 4, and
one over 4 is called the characteristic diameter D,, of the particle distribution.

A mathematical function that is used repeatedly in microphysical parame-
terizations is the gamma function and is the solution to the following integral:

() = Jzﬁ exp( f)dr [Re &> 0]. (2.1)
0

This is the complete gamma function. There are also incomplete gamma
functions given by

p(&y) = }tﬁ Pexp( t)dt [Re &> 0], (2.2)
0
and
L'(¢y) = sz Vexp( 7)dr [Re &> 0]. (2.3)

In this work, x needs to be made non-dimensional, and since y is usually
diameter dependent, the scaling diameter is the characteristic diameter that
is used to normalize y. There are also several special cases of the gamma
distribution, such as what will be called the complete gamma distribution here,

% = 6[1” exp( &r)de, (2.4)

where k is given by
_n+1

=" (2.5)

wheren > 1, u >0, and & > 0.
A number of general relationships need to be considered. These include:

n(D) = N+f (D), (2.6)
n(D)dD = Nyf(D)dD, (2.7)

and
(D) = ) & (2.8)
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f(D)dD = f(x)dx. (2.9)
Now, the derivation of the characteristic diameter is presented. First define,
sz:Dl, (2.10)

D,

where A = 1/D,, is the slope of the distribution.
Next, use (2.8) and (2.10) to write

d(D/D,)

1o)==

f(x), (2.11)

which becomes

f(D) = Dinﬂx). (2.12)

This last relation will be very important later for some derivations with
different spectral density functions.

2.3 Power laws

For bulk microphysical parameterizations it is advantageous to use power
laws for mass, density, terminal velocity, and other necessary variables if
possible, as these are amenable to integration with the various forms of the
gamma function and log-normal spectral density functions. With bin micro-
physical parameterizations, it is not so important that power laws be used
because there are no spectral density functions used.

2.3.1 Mass—diameter (or length)

For many parameterizations (e.g. collection growth) a mass diameter rela-
tionship is needed. A power law relating these quantities is used and is given by

m(D) = aD". (2.13)

Some examples of power laws for mass diameter relationships, in SI units,
from Pruppacher and Klett (1997) are:

Hexagonal plate (Pla)  m(D) = 156.74D33!
Skeleton (Clh) m(D) = 6.08D*8

Sector (P1b) m(D) = 2.898D>%3
Broad branch (Plc) m(D) =1 432D2 7
Stellar (P1d) m(D) =
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Dendrite (Ple) m(D) = 2.37 x 10 *D>?°
Needle (N1a) m(D) = 1.23 x 10 3L'8
Long column (Nle) m(D) = 3.014 x 10 3L'3
Solid column (Cle) m(D) = 4.038L*°
Hollow column (CIf)  m(D) =9.23 x 10 3L!?®

where m(D) is mass of a particle of diameter D; a; is the constant leading
coefficient, which for a sphere is p, /6, where p, is the density of the sphere;
and b; is the power, which is a constant, given as b; = 3 for a sphere. The
variables in parentheses are the Magono and Lee (1966) classification identi-
fier. For columnar-like crystals, a power law for mass length is used in the
same fashion as that for a sphere,

m(L) = a L. (2.14)

2.3.2 Diameter—thickness (or length)

For most observed ice crystals diameter (D) thickness (H) or diameter
(D) length (L) relationships are specified, such as

H(D) = ayD" or D(L) = a;L". (2.15)

Some examples, following Pruppacher and Klett (1997), include, in cm,
Hexagonal plate (Pla) H(D) = 1.41 x 10 2D%474

Broad branches (Plb) H(D) = 1.05 x 10 2p%423

Dendrites ple-r, ple-s (Pld) H(D) =9.96 x 10 3D%413

Solid thick plate (Clg) H(D) = 0.138D%778

Solid columns (Cle) D(L) = 0.578L1.%%%

Hollow columns (CIf) D(L) = 0.422198%2

Needle (Nle) D(L) = 3.527 x 10 2L04%7

2.3.3 Density—diameter (or length)

For most particles, densities are constant (such as for raindrops) or the density
can be written as a power law in terms of diameter. This is particularly true for
ice crystals, with values given in a later chapter. The relationship is simply,

p(D) = eD’. (2.16)

Some examples, following Heymsfield (1972) and Pruppacher and Klett (1997)
include, in CGS units,

Hexagonal plate p(D) = 0.900
Dendrites p(D) = 0.588D 0377
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Stellar with broad branches p(D) = 0.588D %377

Stellar with narrow branches  p(D) = 0.46D 048
Column p(D) = 0.848D 0014
Bullet p(D) = 0.78D 0-0038

2.3.4 Terminal velocity—diameter (or length)

Terminal velocities are also generally given as power-law relationships,
VTX(DX) — CXD;L? (217)

where D, is the diameter of some hydrometeor species of habit, x; V', is the
terminal velocity; c, is the leading coefficient of the power law; and d, is the
power. Some examples of terminal-velocity diameter relationships include
the following, after Heymsfield and Kajikawa (1987), and Pruppacher and
Klett (1997), in cm s ! unless noted,

Hexagonal plate (Pla) Vr(D) = 155.86D°%
Crystal with broad branches (P1b) Vr(D) = 190D
Dendrites (Plc-r, Plc-s, Pld) Vr(D) = 58D%

: i , _(4.p8\”
Sphere (in ms ), such as graupel, and hail V(D) = (3 o Pa) D%
Rain (in ms ') Vr(D) = 842D°8
Snow aggregates (in ms ') Vr(D) = 4.83607122D°2

The terminal velocity used in the microphysical equations and sedimentation
rates equation can be based on the mass weighted mean value for mixing
ratio, Q; number weighted mean for Nt; and reflectivity weighted mean for
reflectivity, Z. Following Milbrandt and Yau (2005a, b), if the reflectivity
overshoots the precipitation front of Q or Nt because the flux of reflectivity is
larger than either that for Q or N, then the Z is set to zero. The same is true if
Nt overshoots Q; Nt is set to zero.

2.4 Spectral density functions
2.4.1 Gamma distribution

One of the most common distribution functions used in microphysical para-
meterizations is what will be called herein the complete gamma distribution,
written as

f(x):%x”“ Lexp( o), (2.18)

where o, v, and u are shape parameters and s is a scaling parameter. Ultim-
ately it is desireable to obtain an equation for n(D) based on this equation.
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First, it will be important to consider the distribution for D over the interval
from zero to infinity, but other intervals could be considered too. These will
be discussed later.

The first concept that must be maintained is that the distribution can be
normalized, or that a scaling factor exists such that

Jf(D)dD =1. (2.19)
0
Recalling (2.10), (2.12), and (2.18), (2.19) can be written as
OO,LL D! 1 1 D n _
J sD. D, exp| « D, dD =1, (2.20)
0

which can be written in a readily integratable form as

[EE) e @) e

The scaling factor, s, for this case can be found by integrating (2.21),

I‘<,uv 1+ 1>
T p
7 = 2.22
s (,uv 1+1) ’ (2.22)
pocH
and solving for s,
5§ = P:f) . (2.23)

Thus, using the scaling factor s, then the function f(D) is written using (2.10),
(2.12) and (2.18) as

F(D) = % (%)vu lDin exp< . [D%] u). (2.24)

Next, incorporating the definition of n(D), (2.6), the following can be written
for the spectral density function for the “complete gamma” distribution
where v# 1, u #1and a # 1,

o (R el o)) e
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Notice now that there are five free parameters in the above. These include D,,,
Nt, 1, o, and v. These values must be estimated from observations or derived
from observations. Often, it is not known what they should be and educated
guesses have to be made. Fortunately, Nt can be observed, diagnosed or
predicted, D, can be diagnosed or predicted, and v can be diagnosed by
predicting reflectivity Z, as is shown later.

Similarly, the “modified gamma” distribution, where v 1, p # l and o = 1
in (2.25), may be expressed as

n(D) = % (l%)w lDinexp[ (z%ﬂ' (2.26)

The “gamma” distribution function can be greatly simplified and made more
useable by assuming v # 1, u = 1 and « = 1 in (2.25), which results in the
gamma function

n(D) = % <D2> lDinexp[ (Dﬂﬂ (2.27)

Many times this will be rewritten, especially in radar meteorology, in terms
of the slope intercept of the distribution, or a quantity related to it, denoted
as Ny,

n(D) = NoD" exp[ (g)] . (2.28)

2.4.2 Exponential distribution

The complete gamma distribution with u = v = o = 1 gives a special form
called the negative-exponential, inverse-exponential, or Marshall and Palmer
(1948) form of the gamma distribution,

n(D) = Z—ICXP [ <D2n):| = Noexp [ (%)] , (2.29)

NT :NODn~ (230)

where,

The distribution given by Laws and Parsons (1943) was made infamous by
Marshall and Palmer (1948) when they showed that rain distributions could
be well defined in the mean by this form of the gamma distribution and later
the same was shown to be true for some cases of snow aggregates.

Finally, Cheng and English (1983) found using observations that, in the
mean, even hail was well described by exponential distributions using the
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following assumptions. First, the slope intercept in units of (m * mm ') is
related to A in units of (mm '), and the equations are written for the slope
intercept as a function of A,

No = 1152393, (2.31)

Therefore, the distribution (2.29) can be written using Ny and using 4 in place
of 1/D,, as

n(D) = Nyoexp( DA2). (2.32)

2.4.3 Half-normal distribution

Next there is a special case of gamma distribution called the half-normal
distribution, where « = 1, u =2, v = 1/2,
D\
(2)]

()

This function is integrated over the interval D(0, oco), thus, half-normal.
Equation (2.33) is required in the derivations using the log-normal
distributions.

2Nt

_ _ 2Nt
~D,r(1/2) -

n(D) D %P

exp (2.33)

2.4.4 Normal distribution

When the gamma probability distribution function is integrated on the inter-
val D € ( 00,00), one can show that

1 (DY

2\D,

which is a normal distribution. This function is not obviously useable owing
to the limits of integration used to derive it. With some algebra, however, it
can be remapped in the interval of D(0, c0).

Nt .
= X
D,\V2n

n(D) , (2.34)

2.4.5 Log-normal distribution

With the log-normal distribution, the natural log of the diameter is normally
distributed. This distribution has been used by a few investigators including
Clark (1976) and Nickerson et al. (1986). To derive the log-normal distribu-
tion start with f,o.(x) for a normal distribution,

furl) = ——exp %2) (235)
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Now let the following transformation hold that maps x € ( o0, 00) into
D e ( 00,00),

x:éln<D2n>, ve ( 50,00) (2.36)

where ¢ is a parameter, x is a function of diameter D, and D,, is a scaling
diameter. Substitution of (2.36) into (2.35), results in

2
Joor(x) = ﬁem < W) : (2.37)

The following can be written according to continuous distribution theory,
which is consistent with (2.8),

d
Froa(D) = foon(5) 35

Taking the derivative of (2.36) with respect to D and multiplying the result by
(2.37) results in the log-normal distribution function,

exp( w) . (2.39)

202

(2.38)

fIOg(D) =

V2neD

Substitution of (2.39) into (2.6) gives the particle distribution spectrum,

:wg;aexp< %) D € (0,00). (2.40)

n(D)

2.5 Gamma distributions

In the rest of this section a detailed examination of the complete gamma
distribution (2.25) with v # 1, u # 1 and « # 1, the modified gamma
distribution (2.26) with v # 1, u # 1 and o = 1, and the gamma distribution
(2.27)ywithv # 1, u =1 and « = 1 is given. The Marshall Palmer distribution
form can be obtained readily by setting v = 1 in (2.27) and thus is not shown.
In the next section, the log-normal distribution will be examined.

2.5.1 Moments

The moments M can be found with the following relationship where I is the
degree of the moment and subscript x is the hydrometeor species. The
moments for the complete gamma distribution (2.25) where, v, # 1, u, # 1
and o, # 1, are given by
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T ot D\ D. 1™\ ./ D,
wiy =[5 (on) oo =] )o(z)
0 X nx nx nx

o+ 1
a?l“(—v’ = '\>
) X /
= a Dk,

- (v; ty + 1y

o >1“(vx)

(2.41)

For the modified gamma distribution (2.26), where v, # 1, . # l and o, = 1,
the moments are

Valty + 1y

M(I,) = I Dl F(le) < Dl?u)"-"“* lexp <_ B;] )d ( gn‘) = F<F(4‘v‘7j)>1)gx. (2.42)

For the gamma function (2.27), v, # 1, u, = 1 and o, = 1, the moments are

i ot () ol [B](82) it oo

For the negative exponential distribution

ity = [oresn( [2])a(2) crannh, e
0

2.5.2 The zeroth moment is number concentration

The zeroth moment (I = 0) is simply the number concentration, but is derived
here,

Ny = J n(Dy)dDs. (2.45)
0

Using the complete gamma distribution (2.25) to substitute into (2.45) gives

o0

NTX oV U, Dx Vit 1 Dx Hy Dx
. x o e , 2.46
A j T'(vy) (D) =p{ *p.| )b, (2:46)
0
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Upon integration using (2.4) (2.5) the following is obtained,

NT,\‘ OCVX ,LLX]._‘ (VXMX>
Nt = B/ — Nr.. (2.47)

L(ve)u,o (%)

For the modified gamma function, it can be written,

N- T)c:uxF <v;ﬂx>
Nty = ————"*% = Nt 2.4
! L (ve)pty ! (2:48)

and for the gamma distribution,

NTXF(VX)
L'(vy)

Finally for the negative-exponential distribution,

Ny = ?(1“1()1) = Ny (2.50)

Nt = = Nty. (2.49)

Often the zeroth moment is predicted in modern cloud models. In many cloud
models (e.g. Liu and Orville 1969; Lin et al. 1983; Rutledge and Hobbs 1983,
1984; Straka and Mansell 2005), the zeroth moment is diagnosed from D,, and
Ny with Marshall Palmer distributions assumed.

2.5.3 Number-concentration-weighted mean diameter

The number-concentration-weighted mean diameter is a simple measure of
diameter. Assuming a spherical hydrometeor, it is found for the complete
gamma distribution (2.25), where,

ofoDm
DVt =2 (2.51)
| n(D,)dD,
0
Substitution of (2.25) into (2.51) results in
Nt oV u, Vel 1 e .
PVt P I (5) FT(vx)ux (3 el l2]")a(®) . (252

! OON X iy .
Freon () el a(8]")a®)
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Simplifying using (2.4) (2.5) gives

OC:X I (L}x tu,\;ux—i— 1 )

DiVT.\’ = an (thr T 1) (253)
ay T (vy)
For the modified gamma distribution (2.26), this can be written as
r <Vx,ux + 1)
, I
DNT.\ :D ) X . 2.54
X nx F(Vx) bl ( )
for the gamma distribution (2.27),
Lve+1)
p\v=p, —>* " _". 2.55
X X F(Vx) ( )
and lastly for the negative exponential distribution,
I'(2)
DY =D, =L =D,,. 2.56
X n F(l) o ( )

Next, there is a need to find a relation to diagnose D,. As will be shown
later, D,, can be predicted from the first and second moment in terms of mass.
The method to diagnose D,, is derived later.

2.5.4 Mass-weighted mean diameter

The mass-weighted mean diameter for the complete gamma distribution is
found as follows,

[ Dum(D,)n(D,)dD
D=2 : (2.57)
6[ m(D,)n(D,)dD

Substitution of (2.25) into (2.57) results in

o0 vx Vit 1 Ky
| D.a.D> NTEO(CQ)“X (5, ) exp < Oty [5;] )d (g;)
D=2 , - - : (2.58)
| a.D¥ N—Tfa((f;)ﬂ"' (l%) exp ( oy [l%} ) d (%)
5 ,
or after dividing by D,,,,
e bx+1 Vx VxHy 1 12
o o) s o <[] ()

O X nx nx nx

00 bx v Vipl, 1 u
bx D X N ‘ax" Hy D,\' e D X * D X
Dy | a <D;.\») T (Dm> exXp ( % [Dm} ) d (D,”>
0 :
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Applying (2.4) (2.5) results in

r (bx“!‘vxﬂx“r 1 )
M
bytvyp+1
‘95,\'( e : )

pr=pht 4 (2.60)

nx - < botvy H.x)
e

(/’x +vxfix )
o e

For the modified gamma distribution,

T <b.\'+".\‘ﬂx+l>
m __ b, Hy
Dx - Dn;

1" bytvalty ’
Ky

for the gamma distribution, the mass-weighted mean is

(2.61)

D" =Dl

—_ 2.62
X nx F(bx_'_vx) ? ( 6 )

and for the negative exponential distribution,

o pp LB +2)

=P 1 0) (2.63)

2.5.5 Mean-volume diameter

The mean-volume diameter can be shown to be equal to the following for any
distribution,

600, \/3
Dmvy = ( P9 > ) (2.64)
TCpXNTx

where p is the density of air, Q, is the mixing ratio of the hydrometeor species,
p. 1s the density of the hydrometeor species, and N, is the number concen-
tration of the hydrometeor species.

2.5.6 Effective diameter

The effective diameter is the ratio of the integral of D’n(D) to the integral
of D*n(D), and is primarily used in radiation physics parameterizations and
related calculations and can be expressed as



32 Foundations of microphysical parameterizations

o0 3 NT {X““’ u D Vil 1 D M D

xSy By P x 2
Joriip(pe) e (= [5]")e(3:)
eff = 5

Vx Vil 1 My ’
2 N0y Ky & . D, D,
o) en( #[2)o(2)

After dividing and multiplying through by the appropriate powers of D,,,,

3 T (Do YN (D) ! D, |* D
X X2y x| Px =X =X
o ()™ ool ] )a(s)

eff = 0

2 N Vel 1 I
2 Dy YNt g Dy N7 D, | D,
D'“'oI (Dni-) 0] (D> exp( o|py| )d(o;

)

which can be integrated and written for the complete gamma distribution to

obtain

_F <3+v,\»,ux) ]
lLt.\

(3+\',\-;LX)
o Hx

X
X _F (2+vxux) ]
lul
)

Der =D,

Now for the modified gamma distribution the effective diameter is

I‘ 3+vapy
A .

Degr =D

nx F (2+V.\Hx> 9
1y
and for the gamma distribution the effective diameter is
L'(3+v,)
Degr=D, ——=.
eff nx F(2 T Vx)
Lastly for the negative-exponential distribution,
r'4) 3!
Defr = Dm‘@ = ani = 3an'

2.5.7 Modal diameter

(2.67)

(2.68)

(2.69)

(2.70)

The modal diameter is the diameter for which the distribution has a max-
imum. The modal diameter is found by differentiating f(D), setting the result
equal to zero, and solving for the diameter, which will be the modal diameter.
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The derivative of the complete gamma distribution [(2.25) with v, # 1, u, # 1
and o, # 1] with respect to D,, is used to begin the derivation of the modal

diameter,
, vt 1 )
o I, Dx My 1 Dx H
D) == — N . 2.71
f(B:) L(vy) <an> Dy eXP( * [an ( )

The derivative is taken with respect to D, and set equal to zero,

d D, 1"
Vet 1 X -
D, {Dx exp < Oy [D,J > } 0. (2.72)

The derivative is expanded:

ety 1 D, 1" 1
Dyt texp( o |=—| (oD, DT
! DHX
(2.73)
v 2 DX e
+ (e DD “exp( o =
To solve for D,,
1 Hy
Dmod = Dy = an <L> . (2.74)
Of,

Next the modified gamma distribution [(2.26) with v, # 1, u, # 1, o, = 1], can
be used to obtain
1

R
Dmoa =Dy =D, (V"“T> : (2.75)

and for the gamma distribution [(2.27) with o, = u, = 1], the mode is simply
Diod = Dy = an(Vx 1) (276)
For the negative-exponential distribution,

Dinoq = 0. (2.77)

2.5.8 Median diameter

The median diameter is that diameter for which the distribution has half of the
mass at smaller sizes and half the mass at larger sizes. The solution has to be
solved numerically and is a function of the mass, m. The mass can be found from,

mr = Jm(Dx)n(Dx)de (2.78)
0



34 Foundations of microphysical parameterizations

If we start with total mass for a spherical hydrometeor (2.13), the complete
gamma distribution (2.25) and divide through by D,,, (2.78) becomes

D };;N Tox0 Ly D\ '/D Y ' D\ " D,
=a " - (=) |d 2.79
S (W) J Do D) P “\D, D) 27
0

which upon integration gives,

b,\»JrV,\,U
by+1 ) ===
_ aan:’( NTXOC;J My < Hx )

mr = _ ; (2.80)
(v ()
:uxOCX
and for the modified gamma distribution,
b+l _
my = P N (b“‘ ks VX“X) . (2.81)
I'(vy) 1y
For the gamma distribution, the form is
L(by + vy)
— Dbx‘+1N X Y. 282
mr = @Dy N R (2.82)
and for the negative-exponential distribution
mr = a, D’ Ny T'(b, +1). (2.83)

For simplicity, the gamma distribution will be used to find the median diam-
eter, Dy. Itis found from integrating the equation for m (2.79; where o, = ., = 1)
divided by 2 and with new limits of integration; this is

Dy
mT_ axDZY Tx Dx CRE Dx Dx
Tl w) el @) ew
0

Solving this integral numerically gives the median diameter as

Do =3.672D,(vy 1) (2.85)

2.5.9 The second moment is related to total surface area

The second moment, which is related to total surface area At of hydrometeors
is often used in models with cloud and precipitation electrification parame-
terizations (e.g. Mansell et al. 2002, 2005). It is found by using the definition
of surface area for a spherical hydrometeor and assuming the complete
gamma distribution,
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T o Npdp (DY ! D"\ ,( Dx
Ar = | naD? 22 == )d . 2.86
! J T (Dn) P ™D D (2.86)
0

Dividing by D,,, gives

Nroru T D, ¥ D, it ! D, H D,
At = nD? — = fx — = = d . (2.87
T= F(V) J(an> <an> P * Dy Dy ( )
0

Making use of (2.4) (2.5) gives

T <Vx.ux + 2) o T (Vx.ux + 2)
X
Ap = m;vpixNTx% “(2) — D2 Nr, =) b /o (2.88)
TT(vooe ™ o T (vx)

For the modified gamma distribution the total surface area is simply

Vilt, + 2>

F <
Ky
AT = TCszNTX W, (289)
whilst that for the gamma distribution is just

(v +2)
T(ve)

and for the negative-exponential distribution

AT == TCDi)LNTx (290)

At = D2 N1,I'(3) = D% N1,2! = 2nD2 Nr,. (2.91)

2.5.10 Total downward projected area

The total downward projected area A, is defined as follows for a sphere or
circular disk and assuming the complete gamma distribution

oon NTXOCV" U, Dx Vifhe 1 D My Dx
A, = | Sp? ™ =l d . 2.92
P J 475 " T(v) (Dm) P\ *b, Do (292)
0

Dividing by D,,, gives

0 (D 2 NT oV U D. Vit 1 D. Hyx D
A.=D*> | Z o) Yy P [ X == * 2.
P " J 4 (DM> L(ve) (an> eXp( § [an] >d<Dm‘>’ (2:93)
0
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Making use of (2.4) (2.5) gives

T X My

av,\'F <v.wur + 2)

_ - P .
Ap = 4NTxDm (M_ﬂ) . (2.94)
a\ /T (vy)
The modified gamma distribution projected area is
Vil + 2
A, = ENpD? M (2.95)
Py " T(vy)
and for the gamma distribution the equation is
n L(ve+2)
Ap = NpD2 ——= 2.96
Py Tl px F(Vx) ) ( )
and the negative-exponential distribution is
n 2 n 2
Ap = ZNTXanF(3) = §NTanx- (2.97)

2.5.11 The third moment, mixing ratio and characteristic diameter

The mixing ratio Q, of a hydrometeor species is related to mass, which is
related to volume, and is written in terms of the third moment. For a spherical
hydrometeor and the complete gamma distribution,

oo
1 Ny, [ Dy N ! D, 1"\ [ Dx
0, =-— J a va“ —r ex Oy | —— d . 2.98
. P 0 X F(VX) an p ' an an ( )

Dividing by D, produces

B NT.\‘OC;X Uy Dﬁ; T Dx by Dx Vel 1 Dx Hy DX
DA LR R J (D_v) p.) P\ =5, )4b.) @
0

Making use of (2.4) (2.5) results in

Vx ,r+b,v ReTur ity "+bx
Ny ﬂXDZ:;F< i ) _ NTX“XDZ}F(V 0 ) 2.100
Qr = dx T(v) e po (o) “TOy) p (ptn) (2100
X o Iy - o Hx

The mixing ratio for the modified gamma distribution is
Vafh, + bx>

r
Db <
0, = axNTXT’“‘T/:X), (2.101)
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for the gamma distribution, the mixing ratio is

Dﬁ} F("X + bX)

Qx = axNTx y 2.102
p () (2.102)
and for the negative-exponential distribution,
D"
Oy = aNtx p”xf(l +by). (2.103)

Notice that there is a characteristic diameter D,, to the b, power in the
equations, which for a spherical hydrometeor is equal to three. Thus, in this
way, the mixing ratio is related to the third moment.

Mixing ratios of hydrometeor species are some of the variables that are
almost always predicted in cloud models. From the mixing ratio, the first
moment variable D, can be diagnosed with some algebra, for the complete
gamma distribution,

F (",r#x*hr) ]/ by
" Hx
- ) p & (2.104)
WNT, arT (Vxﬂ\+b~v>
HA'
The equation for D,,, for the modified gamma distribution is
1/by
(v 1
D, = QL0 o , (2.105)
NTx ar ("Xﬂx+bx>
HX

and for the gamma distribution,

or()p 1\
D = — . 2.1
" ( NTx ay F(Vx + bA) ( 06)

Lastly, for the negative-exponential distribution, the characteristic diameter is
(21 N
" Nrya, (1 + by)

The value 4 = 1/D,, is the slope of the distribution for the negative-
exponential distribution.

(2.107)

2.5.12 The sixth moment is related to the reflectivity

The sixth moment is related to radar reflectivity as radar reflectivity is related
to D® for Rayleigh scatterers in which the diameter is, normally, less than 1/16
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of the radar wavelength, though a length 1/10 of the radar wavelength is often
used. This moment is derived quite simply like the fourth and fifth moments.
Starting with the definition for radar reflectivity, and using the complete
gamma distribution gives

i D 6NT o (' D Vel 1 D. Hy D

Z. =D} N = ). (21

) HXJ <Dmf> I'(vy) (Dmf) eXp( ! [an] >d<DM) (2.108)
0

Similarly, for the modified gamma distribution,

T (DX Npy (D! D™\ /Dy
6 X Tx X X X
Z’K_D”J <an> I'(v) (an> eXp( [Dm} >d<an>’ (109
0

and for the gamma distribution,

T /D Ny (D! D D,
7 x x (Dx x x 211
) MJ <an> L(vy) (Dm> eXp( [D,J>d<an>’ ( 0
0

and for the negative-exponential distribution,

T /DY D.1\ ./ Dx
ZX:DngNTx<D ) exp( {D'Dd(D ) (2.111)
0

The result from integration of (2.108) is the following equation,

(5
Z, = N1,o"DS, % (2.112)

I‘(vx)oc)g -

and for the modified gamma distribution,
(6 + v,\-m)
Ze = Np Db — "2 (2.113)

I'(vy)

whilst for the gamma distribution,

(6 + )

r
Zy = N1uDjy, — o) (2.114)

Lastly for the negative-exponential distribution,

Z, = Np,D8 T'(7) = N1..D° 6! = 720N1.DS . (2.115)
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The radar reflectivity has generally been a diagnostic variable in cloud
models, but more recently some have predicted radar reflectivity to gain
insight as to the evolution of the shape parameter v as discussed below.

2.5.13 Rainfall rate

The rainfall rate or other hydrometeor fall rate can be computed with
knowledge of particle terminal velocity V1 (remembering that d, is the
terminal velocity exponent in the power law for terminal velocity), and the
liquid-water mixing ratio or content as is given below for the complete
gamma function,

oo’ i D be+d, D\ 1 D. " D
Re=—7"="Nrc | |- - =] )d(=5). (2116
T(v) J<D> (an> exP( * [an] > <an> (2:116)
0

For the complete gamma distribution, the rate is then

. Dbxtdy pvy bytdi v,
axchm, oy F(T

R, = N1, (m) (2.117)
pay " T(vy)
Next for the modified gamma distribution, the rainfall rate is
- a,cyDbFET <7”+‘1ﬂ+v”>
« = Nty T (2.118)
Then for the gamma distribution the rainfall rate is
Ry = NpD2 9D (by + dy + ) (2.119)
" L'(vy)
and for the negative-exponential distribution,
R, = a,N1. D" " =T'(b, +d, + 1). (2.120)

2.5.14 Terminal velocities

The terminal velocity used in the collection equations and sedimentation can
be based on the mass-weighted mean value for O, number-weighted mean
for N, and reflectivity-weighted mean for Z. These are all given as follows for
the complete gamma distribution first, the modified gamma distribution
second, and the gamma distribution last.
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2.5.14.1 Mixing-ratio-weighted terminal velocity

The form for mass-weighted (or mixing-ratio-weighted) mean terminal
velocity is given by

X

[ cxD%m(Dy)n(D,)dD;
0

V1o, = —= (2.121)
| m(Dy)n(D)dD,
0
For the complete gamma distribution,
T (bx + st + d\.)
H,‘(
(h,‘, + vy + d.l)
_ dy Oy "
VTQ,r - C)(an I‘(bx + V,x‘l{r) (2122)
Hy
bx + vxpy
)
For the modified gamma distribution,
r ([bx + velly + dx])
Vro. = ¢,D ac : 2.123
TO. X nx - [bx I Vx,ux] ( )
I,
and for the gamma distribution,
L(by + vy +dy)
Vg, = ;D% —2 2 2.124
TO, nx F( by + Vx) ( )
Lastly for the negative-exponential distribution,
D(be +d,+1)
Vg, = ;D% — =~~~ 2.125
TO. nx F(bx—i- 1) ( )
2.5.14.2 Number-concentration-weighted terminal velocity
The equation form for the number-weighted terminal velocity is
oo
[ ¢.D%n(Dy)dD,
Viy, =2 . (2.126)

jﬂo n(D,)dD,
0
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For the complete gamma distribution the number-weighted terminal velocity is

L)(/'t‘ Ci(
O(‘.’,\*I < X «)

(Vx,“,\- +dx

Vv, = eDy; )
oy " T(vy)

For the modified gamma distribution the number-weighted terminal velocity is

F ([vxﬂ,!( + d/\})
A 1
Vin, = e,Dh ——— 2 2.128
TN, Cxllpy F(Vx) ) ( )
and for the gamma distribution the number-weighted terminal velocity is
L(v, +dy)
Vin, = e Db ——= =2 2.129
TN, = Gy F(Vx) ( )
For the negative-exponential distribution,
Vin, = e.DET(1 + d,y). (2.130)
2.5.14.3 Reflectivity-weighted terminal velocity
The form for the reflectivity-weighted terminal velocity is
| exD%“D?+n(D,)dD,
Vig, =3 — . (2.131)
[ D*n(D,)dD,
0

For the complete gamma distribution the reflectivity-weighted terminal velocity is

(26 + v
OC( t )F<[2bx+vxux+dx]>

‘[L "
Viz, = c.D% " 7 o
] (w> r <M>
Hy

and for the modified gamma distribution the reflectivity-weighted terminal
velocity is

P <[2bx + Vx,ux + dx])
VTZX = CXDZ; a

r ( 2b, + vxux]>

My

(2.133)
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For the gamma distribution the number-weighted terminal velocity is

I'(2b, + vy + dy)

V1z, = c.D% 2.134
TZ, Cx nx F(sz + Vx) ( )
The expression for the negative-exponential distribution is
I'(2by+d,+1
Viz, = C,YDZ}—( st dit 1) (2.135)

T(2b, + 1)

2.6 Log-normal distribution

Historically, the log-normal distribution (2.40) has not been often used (e.g.
Chaumerliac et al. 1991). Therefore, only a subset of the number of quantities
presented for the gamma spectral density function will be presented for the
log-normal distribution. For integration, consult the Appendix.

2.6.1 Number-concentration-weighted mean diameter

The number-weighted mean diameter can be calculated from

| Dyn(Dy)dD, L
DVt = ooc =5 JD“""(D")dD"' (2.136)
[ n(D,)dD, 9
0

Substitution of (2.40) into (2.116) results in

o0 2
DVr = ﬂl Jexp[ ln(%’#} dp. (2.137)
o, Oy
0

Division of all D, terms by D,,, gives

Du | 1n<Dx/Dm»)} 2 (Dx>
DNT = J e [ — 7 d . 2.138
* V) 210, P vV 20, D ( )

0

Now letting u = D./D,,,,

phr = D J exp[ Inu ]zdu. (2.139)
V27, ) V20,
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By letting y = In(u), u = exp(y), du/u = dy, so

2
-JL]@, (2.140)

D o
) L — J ex ex [
p p(y) exp T2

- \/Znax

where the limits of the integral change as u approaches zero from positive
values, and In(u) approaches negative infinity. Likewise, for the upper limit,
as u approaches positive infinity, In(x#) approaches positive infinity.

Now apply the following integral definition to (2.140) (see the appendix):

x T b12
J exp(2b'x) exp( a'x*)dx —\/;exp<?> (2.141)

where y = x, d = 1/(2¢2), b’ = 1/2, and therefore (2.140) becomes the mass-
weighted mean diameter,

52
DY' =D, exp <7‘) . (2.142)

2.6.2 Effective diameter

The effective diameter is defined as

[ .

De = %-——————. (2.143)
J
0

202 )
) . (2.144)

00 2 2
(B exe( 2L)a(3)

Detr = Dy > 1 2 : (2.145)
Fpeomn( D)oz
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Now letting u = D,/D,,,,

[ u? exp( (1;;2)2) du
Degr = Dy : (2.146)

[ uexp ( (];32) du
0 X

By letting y = In(u), u = exp(y), du/u = dy, so

| exp(3y) exp( %) dy
Desr = Dy Doz 7 )
| exp(2y) exp ( %) dy

o0

(2.147)

where the limits of the integral change as stated above. Next the integral
(2.141) is applied to both the numerator and the denominator, where y = x,
and for the numerator, @’ = 1/(2¢2),b' = 3/2, and for the denominator,
d =1/(2062),b' = 1. The result is

2

5
Degr = Dy exp <%> . (2.148)

2.6.3 Modal diameter

The mode of the distribution is obtained by taking the derivative of n(D,)/Nr,
which is (2.40) divided by N, setting the result equal to zero, and then solving
for D,. Thus, making use of (2.40) it can be written

2
df)x (n](vli)> :df)x : eXP( M)] —0.  (2.149)

V2n6,D, 203
The derivative is expanded and simplified such that,

d /n(Dy) 11 ([n(Dy/Dp)]’
= — 1]=0. 2.150
de<NTx> \/2710fo< oz (2130
Rearranging gives,
D,
1n<Dm>: o2, (2.151)

Solving for D, gives the mode of the distribution,

Dinod = Dyexp( a?). (2.152)
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2.6.4 The second moment is related to total surface area

The second moment is related to the total area,
Aty = J nD*n(D,)dD,. (2.153)
0

Substitution of (2.40) into (2.150) results in

o[ In(D,/D,,)]?
Aty = N JDX exp[ M] dD,. (2.154)
\2no, ! V20,

Dividing all D, terms by D,,, gives

2 7 2
ATX:]MJ (&) exp[ M} d<DX>_ (2.155)
\/27'[6x 5 an \/20'_)( an

Now letting u = D,/D,,,,

Nr,mD? T [ ln(u)}2
ATy = " uex du. 2.156
T \/27wx ! P \/2@ ( )

By letting y = In(u), u = exp(y), du/u = dy, so

2
o NTXTCDM

A1y =
T \/27r0'x

} exp(2y) exp[ \/%03] 2dy7 (2.157)

o0

where the limits of the integral change as before. If (2.141) is applied with
y=ux,d = 1/Q2c2), b =1, (2.157) becomes the total area,

Aty = N1,mD;, exp(207). (2.158)

2.6.5 Total downward projected area

The total downward projected area can be found from

Ape = J%Din(Dx)de. (2.159)
0
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Substitution of (2.40) into (2.159) results in

Nio | In(D./Du))
Apy = — | D, =2 1dD,. 2.160
" V2o, 4 J ) exp( 202 ( )
0
Dividing all D, terms by D,,, gives
NtD2 [ [ Dy in(D,/Dw)]”\ . { D
Ay = ——2— ———"|d : 2.161
P \/27'C0'x 4 J (an> eXP( 26,25 an ( )
0
Lettingu = D/D,,,,
N1.D>. 7 T (Inu)?
A = nx_ du. 2.162
p. \/27‘[(7)( 4 J uexp( 242 u ( )
0
By letting y = In(u), u = exp(y), du/u = dy, so
Nt.D>. 7 T y2
Ay = ——2— 2 = |dy, 2.1
= el [ expmenn( 5s)d (2163

where the limits of the integral change as above. Now the integral (2.138) is
applied to (2.160) where, y = x, @ = 1/(262), b’ = 1/2, thus, the expression for
the total downward projected area is

T

Ape =7

N1.D? _exp(20?). (2.164)

2.6.6 The third moment, mixing ratio and characteristic diameter

The third moment or mixing ratio can be found from
0, =1 J m(D)n(Dy)dD., (2.165)

where m(D) can be defined by (2.13), and after substitution of (2.13) and
(2.40) into (2.165) the result is,

a.Nr, T b [In(Dy /D))’
= D Texp| 22wl Ngp.. 2.166
¢ p\/27wx0 ! P 202 ( )

Dividing all D, terms by D,,,,

o0

_axNTxDZ} D, b ! [ln(DX/an)]z D,
o=t | (5) el M )e(p) e
0
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Now letting u = D,/D,,,,

Np.DP [ In )’
0, = 7‘;;2%: J b ! exp( ( ;;) )du. (2.168)
X 0 X

Letting y = In(u), u = exp(y), du/u = dy, so

b,
axNt.D nx

Qs = p\/27wx

Jexp(bxy)exp< 222>dy, (2.169)

where the limits of the integral change as above. Now, by applying the
integral (2.141) with y = x, ¢ = 1/Q262), b = b,/2, the third moment or

mixing ratio is

N Db"l b2 2

QX _ AxINTy nx eXp< xzo-x) . (2170)
p

2.6.7 The sixth moment is related to the reflectivity

The sixth moment or reflectivity can be expressed as

JDZb*n - (2.171)
0

Substituting (2.40) into (2.171),

o0 2
Z, = N JD%”-‘ Lexp M dD,. (2.172)
V2no, ) ’

Dividing all D, terms by D,,,,

NrD2: [ /DN ! In(D./Du)l2\ . Ds
7, = 0w PPl ) g (2, 2.1
\/27'[0')( J <an) P 20—)2( d an ( 73)
0

Now letting u = D,/D,,,

Np D2 [ Inu)?
Z, = —ne J u?s 1exp( (Inu) )du. (2.174)
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By letting y = In(u), u = exp(y), du/u = dy, so

2, 7
N TXD n XX

: 2
y
Z, = exp(2b,y) ex dy, 2.175
= e, J p(2b.y) p( 3 2> y ( )

where the limits of the integral change as above. Now the integral (2.141) is
applied where y = x, @’ = 1/(2¢7), b’ = b,, therefore, the expression for the
sixth moment or the reflectivity is

Z, = N1,D* exp(2b%a?). (2.176)

2.6.8 Terminal velocities

The weighted terminal velocities are given again for Q,, Nt,, and Z,, except
this time for the log-normal distribution.

2.6.8.1 Mixing-ratio-weighted terminal velocity

[ cxD%m(Dy)n(D,)dDy
0

Vo, = —= (2.177)
| m(Dy)n(D,)dD,
0
Substitution of (2.13) and (2.40) into (2.177) results in
c Fob 1 mexp(| 10400,
Vrg, = —= 2 . (2.178)
J Dij\ 1 exp( [ln(DéélZ)]”)] )de
0 *
Dividing D, by D,,,,
L
Vrg, = J : (2.179)
o] (8" ol =)
Letting u = D,/D,,,,
ey Dbt s [ b 1+ exp< (1;1:;2) du
Vrg, = = . (2.180)

Dy [ ubr lexp< (Inu) )du
0

202
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By letting y = In(u), u = exp(y), du/u = dy, so

o0 2
C,YDZ}+ dy exp[(bx =+ dx)y] exp< 2{7) dy
00

Vo, = x i (2.181)
) by )
Dy | exp(byy) exp( 7‘3) dy

o0

where the limits of the integral change as above. The integral (2.141) is used
so that in the numerator, @’ = 1/(267), ¥’ = (b, + d,)/2, and in the denomin-
ator, ' = 1/(262), b’ = b,/2, so that the mass-weighted mean terminal velocity
in terms of Q, is

2(b, + d,)?
CXDZ}+(1X eXp[GA( 2+ )

by o2b2
Dni exp (T)

Vg, = (2.182)

2.6.8.2 Number-concentration-weighted terminal velocity

The number-concentration-weighted terminal velocity is given by

| e.D%n(D,)dD,
Vay, = 21— : (2.183)
| n(Dy)dD,
0

Substitution of (2.40) into (2.183) results in

)
202

Vin, = : (2.184)

oo

[D,! exp( w)de
0

)
202

[ 1exp( [ln(D\/Dn.\)Jz) db,
0

D1V1d1ng Dx by an:

on T (2)" oo o))
Vi, = . . (2.185)

o0 1 2
T(3) ewn( Bog)a(z)

Letting u = D,/D,,,,

d. T de 1 (Inu)’
D% u® Texp du
0

2
202

Viy, = ——= 2 . (2.186)
gu 1exp( %)du
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By letting y = In(u), u = exp(y), du/u = dy, so

oo

cxD% [ exp(dyy) exp( 2%) dy
Vin, = — 5 ) (2.187)
| exp(0) exp< 2%) dy

where the limits of the integral change as above. By applying the integral
(2.141) so that in the numerator, a’ = 1/(2¢7), ¥’ = d,/2, and in the denomin-
ator, d = 1/(262), b’ = 0, the mass-weighted mean terminal velocity in terms
of Nt, is

2d2
Vry, = cD% exp (%) (2.188)

2.6.8.3 Reflectivity-weighted terminal velocity
The reflectivity (Z,)-weighted terminal velocity is given by,

| exD%“D?n(D,)dD,
Viz, =2 . (2.189)

[ e.D¥*n(D,)dD,
0

Substituting (2.40) into (2.189),

20
Viz, = —= . (2.190)
i pbe | exp( [ln(Dx/D;x,v)]2> dD,
0

[ e D2+ di 1exp ( M) db,
0 X

202

DlVldlng Dx by ana

00 2b, +d, 1 2
2b, + d, D, In(D, /D,, D,
CXan T <Dm.) eXp( r 2(/72, = )d(Dm)
0 ) ]

Viz, = ] s (2.191)
D J (3)" e[ Mypl)alp)
Letting u=D,D,,,
D2+ dx of uPhe T 1 exp( %) du
Viz = 0 : . (2.192)

o0 2
D2 IR exp( —(136”2) )du
0 X
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By letting y = In(u), u = exp(y), du/u = dy, so
o0 2
cyD2b: +ds 6[ exp[(2b, + d,)y] exp( ;7> dy

Vig, = = , (2.193)
Db | exp(2b,y) exp( %) dy
O X

where the limits of the integral change as above. By applying the integral
(2.141) so that in the numerator, @’ = 1/202), ' = (2b, + d,)/2, and in the
denominator, a = 1/(20,)%, b’ = b,, the mass-weighted mean terminal velocity
in terms of Z, is

2(2b, + dy)?
cXD;jL-;‘C exp [76)‘( 2+ )
Viz, = 2.194
T exp(8a2b2) ( )
2.7 Microphysical prognostic equations
2.7.1 Mixing ratio
A prognostic equation for the mixing ratio may be written as
0. 19puiQ; L Qdpui 9 X, 00
ot p &x,- p 0x; ox; ox;
18( % Q) (2.195)
+ 03 _M + SO,
p 0x;

where K, is the eddy mixing value and SQ, are mixing ratio source terms.

2.7.2 Number concentration

The prognostic equation for number concentration may be written as

oN X au,’N Y au,- d N Y
L L +NTX—+_<K/1 T)

Jat ox; ox;  0x; ox;

(7 (2.196)

+0i3 + SNty

0x i

where SNt, are number concentration source terms.

2.7.3 Characteristic diameter

The goal here is to show the steps that are needed to obtain an expression for
a prognostic equation for the characteristic diameter, dD,,/d¢, which has not
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been well presented in prior works. For brevity, the equation is developed for
the case of the gamma distribution (2.27) with « = u = 0, following Passarelli
(1978).

Having differentiated the definitions of water content y, and reflectivity Z,
with respect to time, #, the following are obtained, respectively,

% - JDﬁ‘n(Dx)de, (2.197)
0
z.
ddi =2 JDf}‘m(Dx)n(Dx)de. (2.198)
0

Also dm(D,)/dt ~ D% has been used.
Dividing (2.198) by (2.197) and (2.197) by (2.198) and rearranging gives

2 d(f; J D¥m(D,)n(D,)dD, = ddZ; J Dn(D,)dD,. (2.199)
0

Substituting (2.27), the gamma distribution, canceling Nt,/I'(v,) from both
sides, and substituting m(D,) = a,D> gives

d;{ o 6 Dx Vy 1 Dx D)c
2 X  + b [ X
o Joor () ool [2])4(z)
0
deoc Ov Dx Dx Dx
-5 [ )l [52])(e2)
0

which, after multiplying the left side by (D./D,)> "’ and the right side by
(Dy/Dyy)’ can be rewritten as

. d o D Oy + b+ v 1 D. D
o o) el [or])(5)
5 X

L dz, [ (DY D D
— (),\‘ X x * X
=Dy J (Dm> eXp( [DJ)d(Dm)'
0

Then (2.201) can be integrated over the interval (0, co), which results in

2a,2% TUT(8, + by + vy) dcf; = 22T (8, + ) %, (2.202)

(2.200)

(2.201)
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which can be rewritten in terms of dZ,/dr as

dz, dy, o L(0y + by + vy)

de — dr 7™ T(6x 4 vy) (2.203)
The term Z, can also be related to y, by dividing by
I J m(Dy)*n(Dy)dD, = Z, J m(Dy)n(D,)dDs. (2.204)
0 0

Then (2.27) and m(D,) = a,D% can be substituted into (2.204). After canceling
Nt,/T'(v,) from both sides, the result is

00 ve 1 ]
e 2 D, \* D, Dy
o J (@Dx) (an> eXp< [an_ >d<Dm~>
0
_ T by [ Dx ! D, D
=4 J (axDX ) (an> eXP( _an] ) d <D”‘> ‘
0

Multiplying the right-hand side by (D,/D,)” and the left-hand side by
(DX/DM)%"’ gives

o0
D\ 1 D. D
2n12b X X X
aDy || =— ex d
Tt OJ <an> p( [D,J) <an>

(2.205)

. (2.206)
Dx bty 1 Dx Dvc
= 20% [ (@t) ( ) exp< [ Dd( | )
! DYLX an DﬂX
0
Integrating (2.206) over the interval (0, co), gives
1D T (2by + vy) = Zua DT (by + vy). (2.207)
Then, solving for Z, gives
'(2b, + vy
7o = 2a,p0 20t v (2.208)

nx F(bx_{_vx) /{)C‘
Differentiating (2.208) by dr gives

dz, T(2b,+v,)d ,
— a2 TV pbey 2.2
dt 4 L(by + vy) dz( ’”‘X*) (2.209)



54 Foundations of microphysical parameterizations
and applying the product rule gives

dz, L(2bx + vi) [ 15, A2, b 1A
=a, Do —£X 4y b D 1 2 2.210
da L(by +vy) [ T T ( )

Rearranging and solving for dD,,./dr gives
dD,,. B DZ} L'(2by + vy + 0,) D(by + vy) dy,
dt  y.b, L0y +ve) T(2by + vy) dr -
The term dy,/dt is, for example, the rate of change of liquid-water content
owing to vapor diffusion growth. By dividing the two y, terms (equivalent to

multiplying by unity) in (2.211) by air density, p, a substitution for the mixing
ratio can be made

(2.211)

anx _ Dﬁ; F<2b’f + Vx + 5‘) F(bf + v«\‘) dQ’f (2 212)
dt Qb | T(0c+v) T(2by+vy) dr '
The term in brackets in (2.212) is defined as H such that
dDb  D,HdQ,
o _ Q (2.213)

dt  bQ, dr’

2.7.4 Reflectivity

Following Milbrandt and Yau (2005b), an equation for the prediction of Z, is
developed and then a diagnostic equation for G(v,) is derived from the
prognostic equation for Z,. The value of v, has been solved by iteration from
G(v,). The derivation of dZ,/dr starts with the definition of D,,,, as

— pr¥F<vx> 1/b¥
D= <NTanF(bX +v)/) (2.214)

Now the definition for reflectivity for a spherical hydrometeor with a, = n/6p,,
and b, = 3, is simply given as

Nr.D¢
Z, = ——m7 ). 2.21
=T T(6 4 %) @215)
Using (2.214) in (2.215) results in
(6 + vv) pO.L (v) )2
Z. = N1, . 2.216
v (et (2:216)

Simplifying,

POJPT6 +v) (00
PG+ 0P T(0) Na(m/6)p2

Z = (2.217)
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The derivative of (2.217) with respect to ¢ is given by the following
relationship,

_T)G+Hr)@ )G+ )T +w) (00
2+ v v))TOITB A+ ) Nig(m/6)2p2]

(2.218)

or

7 _BHw@+)B+r) (p0.) (2.219)

C+v)(+v)() Npy(n/6)7p2
Now defining G(v,),

(54+v)(d+v)(3+v)

G(v,) = 2.220
0= T+ ) (2.220)
thus,
2
Z, = My(6) = Gluy) — P2 (2.221)
Nr.(/6)72
The quotient rule,
d /u 1du wudv
— (Y == === 2.222
dx (v) vdx v2dx’ ( )
is used to derive dZ,/d¢ in terms of G(v,),
2 2
de _ G(VX)ZP 2 Qx de <Qx > dNTx . (2223)
dt (1/6)"p2 Nt, dt N,/ dt

2.7.5 Other prognostic equations

Other prognostic equations include those for the following: tau, t, the time
elapsed for a process; the mean cloud water collected following the motion;
the amount of rime collected by ice; the amount of ice from vapor deposition;
the density of the rime ice collected; and the density of ice.

2.7.5.1 Lagrangian cloud exposure time

The Lagrangian equation for tau, 7, the time elapsed for a process is given by

aTrime,x . 'aTrime,x d <Kl afrime,x) + 053 M + Ty (2 224)
X i rime,x» .

o o ox x; x;

where ¢ is a variable that is 1 if a process is occurring and 0 if it is not.
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2.7.5.2 Lagrangian mean cloud mixing ratio

A variable Q. is the mean cloud water collected following the motion of the
air and is defined by

[ Qcw()d?’ | T
O A— T—JQCW(T')dT', (2.225)
Jaw Ty
0

where 7/ is a temporary variable for integration of the Leibnitz rule. The
prognostic equation is given by

0o d |1 T Cde [ U
dr — dt |tew J Qeu()de'| = dr | tew J Qen(v))dr
¢ 0 (2.226)
— QCW Tgw J ch(fl)dfl — QCW QCW
Tew Tew Tew
0
which allows
anw _ anw anw ) 1 a(VTQCWQCW) ch ch
a T ox; axl <Kh ox; > +os ox; te Tew Tew (2 227)

In the equation above ¢ is the same as in the equation for 7, ¢ = 1 for cloud-
water mixing ratio present, and ¢ = 0 for no cloud-water mixing ratio
present.

2.7.5.3 Mixing ratio of deposition
A prognostic equation for the amount of vapor deposition/condensation
mixing ratio that is collected on, or sublimed/evaporated from, a spectrum
of particles is (Morrison and Grabowski 2008)

anepgc _ lapuiQdepJ_'_Qdepgc ap”i_’_i K, 2Zdepx anepx
ot p o paxi 0 Y ox;

Lol 3 (pV1oQuep.s)
p ox;

(2.228)
+ SQdep,x-

2.7.54 Mixing ratio of rime

Similarly, an equation for the amount of rime mixing ratio that is collected on
a spectrum of particles is given as (Morrison and Grabowski 2008)
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aQrime,x . lapuiQrimex erme x 0pU; + 2 (pKh aQ(;?e,x)
i

o P 0x; P ox;  0x;
(2.229)

1a(pV- ime,x
+ i3 — (p TQerme, ) + SQrimer
p ox;

2.7.5.5 Rime density

An equation for the rime density follows as

+ Sprlme X* (2230)

- 1

aprim&x . aprime.x ad prlme X d (VTQprlme v)
—U K +o3—— =
ot 0x; ax, 0x; 0x;

2.7.5.6 Density

Similarly an equation to predict density is given by,

9Py apx 9p, (VTQPX)
Oy _ 0P 0 (e 0pi) 5 IWVToR) | 2231
o ax, + o i o, + 03 o, 50y ( )

These previous six prognostic equations permit a means to parameterize a
smooth transfer of particles from one density of species to another (e.g low-
density graupel to medium-density graupel, etc.). This process will be discussed
further in Chapter 9.

2.8 Bin microphysical parameterization
spectra and moments

In bin microphysical parameterizations there is a need to find a way to
represent the bin spectrum or number density function n(x) reasonably, where
x is mass. If a linear scale is used to represent the bin spectrum for a typical
droplet and drop spectrum, which spans from 4 microns to 4 millimeters, to
capture the spectrum reasonably, far too many bins would be required to be
economical. Instead, a logarithmic scale can be incorporated, such as the one
presented in Ogura and Takahashi (1973), with sizes closer together at small
particle sizes and wider apart at large sizes. Many, such as Berry and Rein-
hardt (1974a), Farley and Orville (1986), and Farley (1987), use exponential
functions for radius,

r=rpexp (J—J 1) : (2.232)
0
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where ry is the initial radius of the distribution and J is an integer that
determines the spacing of the bins. The corresponding mass is

3 1
X = Xg €Xp (U)) . (2.233)
Jo
In this case for a spherical hydrometeor,
4 3
Xo = 3Py (2.234)

A mass scale that corresponds to the size distribution is given by defining x(J),

x(J) = x2(7), (2.235)

where x, is the smallest mass (2.68 x 10 '* g), with 61 categories, each 2%,
times the mass of the preceding category.

The transformation presents a new number density function given by n(J),
which is related to the original size distribution, n(x), by the following,

n(J) = <m72>n(x). (2.236)

Others such as Tzivion et al. (1987), also use bins in the spectrum that
increase in mass from one bin to the next by factors of p = 2, 2'/2, 2'3 or
214 ete., according to

Xi+1 = DX, (2.237)
where & is the bin index. Following Tzivion et al. (1987), the j-th moments,
M, are given in terms of x for mass and n(x,t) for the number density function,

Xk
M, = J Vg (x, t)dx. (2.238)
Xk

Having laid a theoretical foundation for the bulk and bin parameterization of
microphysical processes, the subject of nucleation of liquid-water droplets
and ice crystals will be discussed in the next chapter.
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Cloud-droplet and cloud-ice crystal nucleation

3.1 Introduction

In this chapter modes of cloud droplet nucleation and ice-crystal nucleation
are examined as well as parameterizations of number concentrations of cloud
condensation nuclei and ice nuclei. The nuclei in general are small aerosols of
various sizes called Aitken aerosols O(10 # pm), large aerosols O(10 ' pm),
giant aerosols O(10° pm), and ultra-giant aerosols O(10' to 10* pm). Nuclea-
tion by cloud condensation nuclei and ice nuclei is called heterogeneous
nucleation as it involves a foreign substance on which cloud water and ice
water can form, compared to homogeneous nucleation, for which no foreign
substance is needed for nucleation. Supersaturations have to exceed values
not found on Earth (e.g. 400%) for homogeneous nucleation of liquid drop-
lets, which is discussed at length in Pruppacher and Klett (1997). An examina-
tion of the Kelvin curve described in the next section shows why this is so.
As homogeneous nucleation does not occur on Earth for liquid particles, it
is not parameterized in models. In general, cloud condensation nuclei made
of some salt compound such as sodium chloride (table salt) are the most
effective for heterogeneous nucleation of liquid droplets. Heterogeneous
nucleation of liquids can be a function of several variables, such as tempera-
ture, vapor pressure or supersaturation, pressure, and factors or activation
coefficients related to the composition of aerosols involved. As a result the
means of expressing heterogeneous nucleation have become more complex
over the years as a result of new observations and new techniques to represent
nuclei numbers. One technique involves the incorporation of the nucleation
activation coefficients in parameterizations.

Homogeneous nucleation of ice occurs in Earth’s atmosphere when tem-
peratures of cloud droplets or larger drops become low enough. In general,
the smaller the droplet, the colder it has to be for homogeneous nucleation to
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Fig. 3.1. Schematic picture of the ways atmospheric ice nucleation can
account for ice formation. (From Rogers and Yau 1989; courtesy of
Elsevier.)

occur. Heterogeneous nucleation of ice can occur in a variety of modes. The
first mode is heterogeneous deposition nucleation (Fig. 3.1). This deposition
mode requires that supersaturation with respect to ice be achieved. The
second kind of nucleation that can occur is condensation-freezing ice nucle-
ation (Fig. 3.1). The condensation-freezing mode requires that at tempera-
tures below freezing the air becomes supersaturated with respect to liquid.
Then one of the aerosols that makes up a water drop activates as an ice
nucleus during condensation. In the third mode, the contact nuclei mode, the
ice nucleation occurs with collision of a supercooled liquid-water droplet
and an ice nucleus (Fig. 3.1), which is generally thought to be some form of
clay, such as kaolinite. Recent evidence points to certain types of bacteria
being very plentiful as nuclei. Last, there is the fourth mode called the
immersion mode of ice nucleation. The immersion mode occurs when a
droplet is nucleated on an aerosol particle at temperatures above freezing.
Then, as the temperature of the droplet falls below freezing sufficiently, the
aerosol activates as an ice nucleus (Fig. 3.1). The ratio of ice-forming nuclei
to liquid-droplet-forming nuclei is usually very small and varies from near nil
at temperatures near freezing to 1000 m > per 1 x 10* m ? aerosol particles
at 20°C. As the temperature gets colder, the number of ice nuclei approxi-
mately increases exponentially.
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The heterogeneous nucleation of ice is a very complex physical process,
and it requires a number of physical conditions to be met. These include first
the insolubility requirement. Ice nuclei almost always are insoluble. For
example, if the nuclei were soluble, the freezing point of the solute could
decrease substantially and thereby prevent nucleation from occurring, more-
over the aerosol could dissolve. Second, there is the size requirement. Large or
giant nuclei make better ice nuclei than Aitken particles because once nucleated
they are at a size at which they can immediately begin collecting much smaller
particles. Third, there is a chemical-bond requirement. That is, if there is a
hydrogen-bond site on the ice nucleus, it provides a location where embryonic
ice crystals can grow. Fourth, there is the crystallographic requirement, which
may be more important than some of the other requirements. This requirement,
simply stated, is that the ice-nuclei aerosol must have a crystalline structure
similar to that of ice water, which means that water molecules can align
themselves in a structure similar to ice, readily permitting nucleation. Fifth,
there is the activation-site requirement. This means that there must be a
site in the ice-nuclei aerosol that is favorable for initiating ice. These five
requirements and the models of ice nucleation are discussed in detail in
Pruppacher and Klett (1997) and the reader is referred to their textbook for a
comprehensive examination. Because these are not included directly in most
parameterizations, they will not be addressed further here.

In the rest of this chapter, cloud condensation nuclei will be examined first
in the context of heterogeneous nucleation of cloud droplets. Then ice crystal
nucleation will be examined, including heterogeneous nucleation, homo-
geneous nucleation, and secondary nucleation of ice crystals.

3.2 Heterogeneous nucleation of liquid-water droplets
for bulk model parameterizations

3.2.1 Nucleation rate as a function of S,w,T

With a detailed, high-resolution, bulk parameterization model it seems more
appropriate to compute nucleation and condensation explicitly and to do
away with the saturation adjustment that was used in Soong and Ogura
(1973); Klemp and Wilhelmson (1978); Tao et al. (1989); Gilmore et al.
(20042); and Straka and Mansell (2005), as well as many other models.
Instead, nucleation can be represented explicitly. For example, a modified
method to that used by Ziegler et al. (1985) can be used. The parameterization
is based on the activation of cloud condensation nuclei Nccn, of which the
number available is at present only based on a power law as a function of the
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saturation ratio (with respect to liquid), Sy, in percent. The equation for cloud
condensation nuclei activated is given as

Ncen = CeenSt (3.1)

where the constant Ccen = 1.26 x 10° m ? and & = 0.308 for continental
conditions (Seifert and Beheng 2005) and Ceen = 1.0 x 105 m ? and k = 0.462
for maritime conditions (Seifert and Beheng 2005 and Khain et al. 2000).
Pruppacher and Klett (1997) put the value of k¥ somewhere between 0.2 and
0.6 with a median value of 0.5. Seifert and Beheng assume all cloud conden-
sation nuclei are activated at a maximum Sy of 1.1% and do not allow any
additional activation. It is not necessary to include this condition; the nuclea-
tion parameterization includes derivatives of Sy in the Z direction. For very
high-resolution models derivatives can be computed in the X and Y direction
as well. The derivatives can be found using the following equation (3.2) by
incorporating centered finite difference schemes. However, one-sided differ-
ences should be used at cloud boundaries,

e[ _ {cCCNks“{maxKu%iL),o} +max | (v5). 0] + max (), 0] } > 0}, (3.2)

ot

nuc otherwise zero

where u is x-directional horizontal velocity, v is y-directional horizontal
velocity, and w is z-directional vertical velocity.

Equations such as this for different aerosol sizes such as Aitken, large, giant,
and ultra-giant cloud condensation nuclei can be developed. However, most of
the time, only one aerosol size, generally unspecified, is used. Saleeby and
Cotton (2008) have attempted to use two aerosol sizes, one of which is a giant
nucleus; and Straka er al. (2009a) used four aerosol sizes in high-resolution
simulations in order to increase the dependence of nucleation on aerosol size.

Note that the local tendency of S, dS/dr, is not explicitly predicted. At
present various investigators assume that advection dominates nucleation
(Ziegler 1985; Seifert and Beheng 2005). The maximum concentration permit-
ted is 1.50 x 10° m  for continental clouds and 1.50 x 10* m * for maritime
clouds (Seifert and Beheng 2005).

Next, a tendency equation for the mixing ratio Q.,, by cloud-water nucleation
is given by

Q0w _ XL,nuc ONTew
ot p ot ’

nuc nuc

(3.3)

where, Xp pue = 5 x 10 3t0 1 x 10 ' kg, which is the minimum mass of
a cloud drop and corresponds to a diameter up to about 5 x 10 ° m.
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3.2.2 Nucleation rate as a function of S,w,T,P,
activation parameters

The process of nucleation of cloud condensation nuclei and their growth by
condensation thereafter into cloud droplets is a particularly challenging
problem. The future of bulk microphysics parameterizations of cloud drop-
lets in cloud-resolving models in particular hinges on the ability to predict
mixing ratio and number concentration of newly nucleated cloud droplets.
The activation of cloud condensation nuclei and subsequent growth controls
the initial production of cloud-droplet mixing ratio Q. and number concen-
tration Nt. In some liquid-cloud nucleation schemes, a prognostic equation
for activated cloud condensation nuclei is used to distinguish them from all
of the cloud condensation nuclei available. One scheme, which will be the
focus here, is that of Cohard et al. (1998, 2000), and Cohard and Pinty (2000).
This scheme is based on cloud condensation nuclei concentrations that are
prognosed with a source term that is a function of temperature 7, pressure P,
and vertical motion w.

Difficulties with these schemes exist as they are based on maximum (cloud
condensation nuclei activation) and mean (condensation) local supersatur-
ation Sy, where the subscript LV means supersaturation of vapor with
respect to liquid. The quantity Sy is dependent on 7, P, w, and Qs;. The
value of Spy generally is not well captured in cloud models and can vary
unphysically when there is non-homogeneous mixing in clouds, near the
physical boundaries of the cloud (Stevens et al. 1996) and owing to its
dependence on the numerical timestep. With these issues duly noted, Cohard
and collaborators looked for a method of computing Sy v at the gridscale. The
smallest cloud condensation nuclei are activated as a function of the Kohler
curve (Pruppacher and Klett 1997) variables such as chemical, hygroscopic,
size criteria, and thermodynamic variables. Owing to the influence on aerosol
size, some bin models predict a bin spectrum of aerosol sizes. This will be
discussed later.

In the years since the strict use of saturation adjustment schemes, several
of the bulk microphysical models that have been developed with predictive
equations for cloud-droplet mixing ratio and number concentration have
followed these earlier approaches (Cohard and collaborators). It should
be noted that even Twomey’s (1959) full method shown below has received
some criticism for not accommodating all of the most necessary factors in
describing the situation when an aerosol particle will activate as a cloud conden-
sation nucleus. The nucleation of water droplets in bulk parameterization
models is a particularly difficult problem to manage as bulk parameterizations
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need to take into account factors such as temperature, supersaturation,
activation size spectrum, and vertical velocity. As pointed out by Cohard
et al. (1998) and Cohard and Pinty (2000), not only do these factor influence
early cloud growth, they are important factors in radiative properties of
clouds. As a result, it may be questionable to compute gridscale actions of
nucleation and condensation owing to timesteps used in coarser-grid three-
dimensional models such as Global Circulation Models (GCMs), but per-
haps not in cloud-scale models. Pruppacher and Klett (1997) discuss the role
of size (radius of curvature) and solute effects through the Kohler equation
for critical radii, as well as critical supersaturations (Twomey 1959), laying
the foundation for a powerful approach. This involves a power law with
regard to supersaturation, and was derived from a simplified form of the
Kohler equation,

1

1.63 x 10 3w% k2
Smax = | ————— (3.4)
ckB3 5]
T
3 k+
k_[1.63 x 10 3w2
Ncen = Canax = ck+2 # (35)

kB[3.3)

where Nccn 18 the number of activated condensation nuclei or number of
cloud condensation nuclei, ¢ is a constant, & is the exponent of S;,,x, W is the
vertical motion, and B is the Beta function. Note that ¢ and k are parameters
that fit each aerosol type. This equation has its limitations owing to the likely
inability for this method or any similar method to capture all of the possible
nucleation mechanisms owing to limitations mentioned above.

Cohard et al. (1998) devised a more elegant and general method of describ-
ing factors that influence activation of condensation nuclei, namely the
saturation ratio (in percent), size distribution, and solubility of aerosols.
The foundations of their parameterization are based in differences between
maritime and continental sources of aerosols. They begin by exploring how a
modified form of Twomey’s equation performs, but with four activation
spectrum coefficients. They also come to the conclusion that this method
reduces to a simple power law at very large and very small supersaturations.
They begin with the saturation development equation discussed in detail in
Chapter 4, but written here as (3.6) and (3.7), which describe the change
in diameter of a single droplet that includes Kelvin size effect and Raoult’s
solution effects, where both effects are represented by y(7,D)
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dSLV o dch

dr _wl(Tvp)W lp2 ds ’ (36)
and

d

=46 RSy (T.D). (37)

Using Pruppacher and Klett (1997) as a guide, the rate of change of Q..,, the
mixing ratio of liquid condensed during nucleation, is given by

¢ 2

SLv

A0y ;

%z 277;%(2G(T,P))3SLV J n(s) J sdr |ds’, (3.8)
0 (")

where py is the density of liquid water. The concentration number of nuclei

n(S) active between S and S 4 dS'is

N
NCCN(SLV) = J I’l(S)dS (39)
0

The equation for Q. is very complex. Twomey (1959) suggested that it leads
to a lower-bounds estimation of the integral in time of the saturation develop-
ment equation (3.6) that can be used in the analytical derivation of St vmax
(Cohard et al. 1998). Thus,

t
SZ S/Z
Sdf >~ 3.10
J ~ 2y w ( )
(")
Combining (3.8) and (3.10) gives a condensation-rate estimation,
d G3/2

Qe > 47t'0—L ,
d P2y w)

Sty Jn(S’) ($3y  §7)%ds’. (3.11)

Twomey took
n(§') = kes* 1, (3.12)

which provides a concise expression for Sy vmax.
In the discussion by Cohard et al. (1998), an expression that retains the
behavior of the four activation spectra coefficients is given by

n(S') = kes* (1 + ps”?) ¥, (3.13)

where f3, i, ¢, and k are the activation spectra coefficients.
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Using the change in variable,
s'\°
X = , 3.14
(5] (3.14)
so that
1
SLVEA:%dx::dS' (3.15)
and integrating (3.11) results in
1
dQ.w k u
fﬁ > 4nPL lchLVL[(éSLV) (1+BSHya) !
P(yyw) (3.16)
1 1 1
X (SZLV XSZLV)ZSLV E)C 2dx.
Rearrangement gives
d 3 l kol
%W > anPl T kesiy J(x%sw) (1+pS3yx)"
! P (yw) ! (3.17)

1
X SLv(l x)%SLVEX %dx

Combining the Sy vy terms and bringing them outside the integral

1
dQcw PL k+2 u 1
> L keSt LB (1 x)tdx, (3.18)

d P (yyw) ! i 9’

and combining the x terms and integrating gives

k3 kk 3
SfJQzB<2 2) 2F <#a2,§+§§ ﬁS2LV>’ (3.19)

dch > 2 pL

dr P (Y w)
Following Cohard et al. (1998), the maximum supersaturation St ymax, 1S given
by the saturation development equation (3.6) by setting dS; v/d¢ = 0. Thus,

dQCW
l/’Z(TaP) ds = l/jl<TaP)W (320)
Solving for dQ.,,/dt gives
(3.21)

dch _ I’DI(T,P)W
dr B l//Z(TaP) .
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Substituting (3.19) for dQ.,/d¢ in (3.21) gives

v (T, P)w oL G a2 k 3 kk 3 5
R 2n— S Bl=,=]Filu,=,=+=;—PS .(3.22
wz(’l 7P> > p (wlw)% kC LV max 272 2171 ’2’2 2’ LV max (3 )

The final expression has a form (Cohard et al. 1998) given by
(%W)S/z

k k 3
S oFi | p=,=+=; pS? = ) 3.23
ach (43 53 Bhm) ey 0
where the following are defined as
g [(€Ly
T,P)=—"- 1); 3.24
nrr =2 (5 1) (3.24)
n(ToP) = (2 g ), (3.25)
20 Nees(T) ' RaT?c,)’ '
and
1/ RT L, (L :
T, P)=—|——+—[— 1 . 3.26
G(T.P) PL (wQS(T)+kaT (RVT >> ( )

Here c, k, f and p are the four activation spectrum coefficients (Cohard et al.
1998) as mentioned earlier; ,F; and B are the Gauss hypergeometric function
and the Beta function, respectively; see Cohard et al. (1998) or Appendix.

The value for activated Nccy is solved by Cohard er al. (1998) using (3.9)
and (3.13) to obtain,

NeeN = €SLy max 2F 1 (#éé +1 ﬂSiVmaX>' (3.27)
This equation has different values of ¢ and k than Twomey’s expression.
Equation (3.27) has been discussed by Cohard et al. (1998) as having four
previously unused activation coefficients, which can express various aspects
of aerosols involved in nucleation. This makes it possible parameterically to
include the aspects of activation size spectrum, chemical composition, and
solubility into the equation for heterogeneous nucleation (3.27).

An estimate of the maximum number of Nccn that might be activated is
given by (3.27). With this estimate of Nccn, the production rate of nucleated
droplets is given as a comparison to the number of aerosols already activated,
N,. The source term for activated aerosols is in simplified form, with a
centered timestep,
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maX(O,NCCN (SLVmax) Na(l 51‘)) (328)

Equation (3.28) also dictates whether cloud-drop concentration is permitted
to increase.
Employing the equation from the Kohler curve, (S 1) a/r + b/r’, where
r is radius, a and b are constants, the critical diameter for nucleation with
unstable growth rate is then given by
4A

Dcrit = TSLVmax- (329)

Lastly, the change of mixing ratio of cloud droplets is given as

max (0, Neon(Stymax)  Na(t  07)) %%3 (3.30)

6 crit*

3.3 Heterogeneous liquid-water drop nucleation for bin
model parameterizations

The initiation of liquid water in bin parameterization models can be accom-
plished with any number of functions to describe the distribution of newly
nucleated cloud-water droplets in a cloud given that there is supersaturation
at a grid point. Some parameterizations predict cloud condensation nuclei,
whilst others do not. There are normalized functional forms for the distribution
of droplets and usually a prognostic equation of total cloud condensation
nuclei. An approach like this bypasses the need to know any explicit infor-
mation about the makeup of aerosols that are cloud condensation nuclei
in the atmosphere, even if solute effects and curvature effects are ignored.
This was the methodology in many early models, such as those proposed by
Ogura and Takahashi (1973) and Soong (1974) to initialize cloud droplets in
supersaturated regions of the model domain.

In model studies of warm-rain growth, Ogura and Takahashi (1973) com-
pared three different initial droplet distributions in different cloud simula-
tions. Note that it was found by these authors that the distribution choice was
not of major significance (Soong 1974). Soong (1974) found that the choice of
the initial droplet spectra for bin models as given by Ogura and Takahashi
(1973) was not that important in the final solutions. Two of the types of
Ogura and Takahashi’s distributions are discussed below. For example, they
parameterized the condensation process of the initial droplet distribution
with some prescribed form f{x), which is normalized and where x is mass. This
is multiplied by the number of nuclei available &(z, ¢) for a one-dimensional
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model as a function of height z and time ¢. The rate of change of the number
concentration of cloud droplets N.,(x) due to the formation of cloud droplets
about nuclei is written simply as

The different normalized forms of f{(x) can potentially control different pre-
cipitation evolutions. The distribution called type (1) was used by Twomey
(1966), Warshaw (1967) and Kovetz and Olund (1969). Its form is given by

0= 32)en( 2)

where x;1s a constant in the function defining the spectrum of CCN activated.
According to Scott (1968), it is close to a Gaussian distribution with
respect to radius and has a relative variance of 0.25. Scott also states this
form is easier to work with than a pure Gaussian distribution. In this
distribution, a maritime spectrum results with x; = 1.029 x 10 0kg.
From (3.32), f(r) is related to f(x) by

f(r) = dnr’f(x). (3.33)

The so-called type (2) distribution was used by Golovin (1963), Berry (1967)
and Soong (1974) and is given as

Flx) = fexp( f), (3.34)

X X

(3.31)

where for the mean mass x = 2 x 10 '° kg, the liquid content should be
1 kg kg ', and the number of nucleated droplets should be 5 x 10" m °.

In general, most models make the number concentration of cloud conden-
sation nuclei decrease as nucleation of cloud droplets takes place, and the
concentration of cloud condensation nuclei increases as cloud-droplet-sized
particles evaporate below a certain size, nominally a radius of 4 um. These
can be reactivated if recycled into the cloud’s supersaturated regions. As given
by Ogura and Takahashi (1973) the increase of cloud condensation nuclei by
evaporation is just

a¢ dx
[5] evap_ NCW(X)ax xo’ (335)

or the total change in nuclei owing to initiation of cloud droplets and
evaporation of cloud droplets is
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0 _ae| o

= . 3.36
at ot ot (3:36)

init

evap

Note there are advection and diffusion terms as well for the cloud condensa-
tion nuclei conservation equation (3.36). One problem with this equation is
that while one cloud condensation nucleus is needed to produce a cloud
droplet, and orders of magnitude more cloud droplets are required to make
precipitation-sized particles, when these precipitation particles evaporate,
they reintroduce only one cloud condensation nucleus, which is larger than
the original cloud condensation nucleus. Thus the conservation equation is
somewhat flawed. To overcome this deficiency efforts began to predict a
range of cloud condensation nuclei sizes, as discussed next.

3.3.1 Aerosol size distributions and nucleation for initiation
of liquid-water droplets in bin model parameterizations

The initiation of liquid water in bin parameterization models can be accom-
plished using a spectrum of cloud condensation nuclei, which are in bins
similar to those used for cloud droplets and drops. Usually the range is
smaller than that from the smallest to the largest liquid drop. The conser-
vation equation for including nuclei is given, following Kogan (1991), quite
simply as the advection and diffusion tendencies plus a sink term on cloud
condensation nuclei that results from nucleation. Computing nucleation with
a spectrum of cloud condensation nuclei and a spectrum of liquid droplets
allows a modeler to avoid having two-dimensional cloud-droplet spectra. The
two-dimensional cloud-droplet spectrum has one dimension as the cloud
mass and the other dimension as the salt mass in the case of soluble cloud
condensation nuclei.

When drops evaporate, the cloud condensation nuclei spectrum is returned
to its original size, though washout by drizzle or rain is allowed. More
realistic cloud condensation nuclei redistribution after evaporation is a very
difficult problem and how cloud condensation nuclei actually redistribute in
the size spectrum after evaporation is not known (Khairoutdinov and Kogan
1999).

3.4 Homogeneous ice-crystal nucleation parameterizations

Homogeneous freezing occurs when air temperatures are colder than 40°C
(233.15 K) and liquid drops freeze instantaneously. Some use 30°C as the
demarcation temperature for homogeneous freezing, whilst others use values
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as cold as 50°C. Newer parameterizations have been developed that take
into account not only the temperature, but also the size of the liquid droplet.
At 40°C clusters of about 200 to 300 water molecules will freeze spontan-
eously. At warmer temperatures the clusters of water molecules have to be
larger for homogeneous freezing, whilst at colder temperatures clusters of
fewer than 200 or so water molecules need to come together for freezing to
take place without the presence of an ice nucleus.
The most recent studies and parameterization of homogeneous freezing
of cloud droplets suggest that this occurs approximately between 30°C and
50°C (DeMott et al. 1994). The authors give a number of droplets that
freeze ANgeere due to homogeneous freezing by the following

ANreore = J (1 exp( JVA)Nrew(D)dD. (3.37)
0

In this equation, J, the homogeneous freezing rate of cloud drops to frozen
cloud drops, is given by the following, where T, is temperature in °C,

log;pJ = 603.952 52.6611T, 1.7439T7 2.65 x 10 *T?

3.38
1.536 x 10 *T7. (3.38)

In (3.37), the volume V is approximated by the mean-droplet diameter in
units of cm by Milbrant and Yau (2005b). Therefore, a fraction of freezing in
one timestep may be written as
AN
Frieeze = Nfreeze = [1 CXp( JED3 Al‘)}, (339)

T 6 cwmyv
cw

where D.ymy is the mean volume diameter of cloud droplets.
Based on this rate equation (3.39), equations for mixing ratio and number
concentration are simply

Ffreezchw
reeze — — 3.40
Or, Ar (3.40)
and
FfreezeNTcw
Ntreeze = ——————. 41
: = (341)

As described by DeMott (1994), Fpeese 18 0 at 30°C and 1 at  50°C. This
means that many supercooled liquid-cloud drops freeze at temperatures
slightly warmer than the standard homogeneous freezing temperature for
supercooled liquid-cloud drops of 40°C, but allows some supercooled
liquid-cloud droplets to exist at temperatures as low as  50°C.
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3.5 Heterogeneous ice-crystal nucleation parameterizations
3.5.1 Early parameterizations

The Fletcher (1962) ice-nucleus curve fit is perhaps one of the most primitive
curves still used in cloud models today. The formula is

Nid = Ny exp( a[T T()]), (3.42)

where N4 is the ice deposition number concentration, ng, the number of ice
nuclei that are active = 10 >m 3, ¢ =0.6°C ', and T, = 273.15 K. There has
been much discussion about this parameterization in the literature concerning
the over-production of ice nuclei by deposition at very cold temperatures (T <
245 K). Also this parameterization does not take into account the degree of
supersaturation over ice.

An alternative to this was proposed by Cotton et al. (1986) by including
Huffman and Vali’s (1973) equation for relative supersaturation dependence
on ice nucleation, and is given by

Nig = {((so 11))]27 (3.43)

where S; 1 1is the fractional supersaturation with respect to ice and S, 1 is
the fractional ice supersaturation at water saturation, where b = 4.5.

A hybrid parameterization was produced by Cotton et al. (1986) by
combining Huffman and Vali’s (1973) equation with the Fletcher (1962)
parameterization

s D]

Nia = no exp(a[T Ty)), (3.44)
(So 1)

where @ and b are constants given above. This parameterization underesti-

mates ice nuclei at warmer temperatures.

3.5.2 Explicit cloud ice-crystal nucleation

As carried out by Seifert and Beheng (2005), an ice nucleation mechanism,
following Reisner ef al. (1998) and various other authors, is used to make an
ice-crystal number-concentration nucleation source as follows (Meyers et al.
1992),

N N-
ONTiq _ ) max {4( Tid A7 TI)}

5 , (3.45)
! otherwise zero
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where

Ntig = 0.001 exp[ 0.639 + 12.965)). (3.46)

The subscripts id and I refer to ice deposition and ice, respectively. Meyers
et al. (1992) strictly developed this equation from data between temperatures
of 7to 20°C and between ice saturations of 2 to 25% or 5 to 4.5% water
supersaturation. In practice, the use of this equation is usually arbitrarily
limited to temperatures colder than 5°C. In addition, the value of Nty is
bounded by 10 times and 0.1 times the result from the following equation
(3.47) from Reisner et al. (1998),

Ntia = 0.01exp( min(T,246.15) 273.15). (3.47)

Seifert and Beheng (2005) include this as they claim there is an instability with
the Meyers et al. (1992) scheme at very cold temperatures, though this needs
to be investigated further. The maximum number of ice-crystal concentration
is arbitrarily limited to the same number as the maximum number of cloud
drops permitted, which is stated above as 1.5 x 10° m °.

The nucleation of ice-crystal water and cloud water is integrated using
time-splitting, with small timesteps of between 0.4 and 0.6 s. Thus, for a
model timestep of 5 s, the number of small steps is set to 10 assuming a small
timestep of 0.5 s. This causes some computation increase, but considering the
complexity of some models, it is only a small fractional increase.

3.5.3 Contact nucleation

Next contact nucleation, studied by Young (1974b), is considered and is
governed by

Nic = Ny(270.15  T.)'", (3.48)

where Nj. is contact nucleation and N,y = 2 x 10° m * at all levels (Cotton
et al. 1986). However, Young proposed that N, varies from 2 x 10° m > at
MSL (mean sea level) to 10° m ? at 5000 m MSL. For reference, N, is the
aerosol population that can activate to make ice nuclei. Later experiments
showed this relationship to be not very accurate. Therefore, Meyers et al.
(1992) designed a new relationship that was exponential in nature and
given by

Nie = exp| 2.840.262(273.15 T.)], (3.49)

where Nj. is in number per liter. Ice is not permitted by this method at
temperatures warmer than 2 °C. The main mechanisms of contact nucleation
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are by Brownian, thermophoretic, and diffusiophoretic forcing following Young
(1974a, b). Contact freezing nuclei are assumed to be 0.2 microns in diameter.

3.5.3.1 Brownian motion

Brownian motion causes contact nucleation of supercooled cloud droplets
from random collisions of cloud drops with aerosols. A highly detailed
discussion of aerosol physics and Brownian motion is found in Pruppacher
and Klett (1997). Brownian-motion-induced contact nucleation has been
parameterized by Young (1974a, b) and others for use in models with complex
ice-nucleation mechanisms using

1 dN,
N, dt

— 470, (1 + 0.3ere/2Nslc/3), (3.50)

Br
where N, is the number of aerosols, Q. is the cloud-water mixing ratio, and
W, 1s aerosol diffusivity given as
kT
lpa = 6 . =
Tra Mo
In (3.51), k = 1.38047 x 10 ** JK ! is the Boltzmann constant, r, is the

aerosol radius, 7., is the viscosity of air, and Ny, is the Knudsen number,
which is defined as,

(1 + Nin). (3.51)

Nip = 50— =—, (3.52)

where 4 is the mean free path of air and p is the pressure.
A scaled parameterization of contact nucleation owing to Brownian
motion has also been developed by Cotton et al. (1986).

3.5.3.2 Thermophoresis effects

Thermophoresis effects are explained by a dependence on the Knudsen
number Ny,, which is defined by (3.52). The thermophoresis effect is the
motion of an aerosol caused by a radiometric or thermally induced force.
Details of this effect are discussed by Pruppacher and Klett (1997), with key
points repeated here for completeness. This force comes from non-uniform
heating of particles owing to temperature gradients in an acrosol’s suspending
gas. When Ny, > 1, temperature gradients induce gas molecules to deliver a
greater net impulse on the warm side of a particle than on the cold side, thus
driving the particle in the direction of the cold side of the particle. For Ny, < 1,
the problem is more complex. Consider a region on the surface layer
around an aerosol which has a larger wavelength than the thermal gradient.
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According to Pruppacher and Klett, the layer of this gas closest to this surface
will acquire a temperature gradient that conforms approximately to that on
the surface of the aerosol. Therefore, gas molecules on the warmer direction
impart a greater impulse force to the surface of the aerosol than those on the
cooler direction. This allows a situation where the particle as a whole can
experience a force along the temperature gradient of the gas. Put plainly,
contact nucleation by thermophoresis effects occurs due to the attraction or
repulsion of aerosol particles to the droplet along the thermal gradients
(Cotton et al. 1980).

A parameterization for contact nucleation by thermophoresis is given by
Young (1974a) as

1 dN,
N, dt |,

K; 4 1
= dnrenfi (T Tw)? 4.185 x 10*Jkcal ', (3.53)

where K is the thermal conductivity of air, with influences of convection
on heat diffusion f; and molecular boundary layer considerations on heat
diffusion included in f;. These are related by

K, = K. fify, (3.54)
where
. P* 1/2p71/3
fi=141= (0.56N2N1?) (3.55)
and
fimll (3.56)

Inf7, P" is the semi-perimeter normal to fall axis, C is the shape parameter for
diffusional processes for ice crystals following McDonald (1963), and Ny, is
the Prandtl number. The thermophoretic factor f; is complicated and given by

f— 0.4[1 + 1.45N + 0.4Nn exp( 1/Nin)] (K, + 2.5N 1K) (3.57)
" (1 4 3Nin) (2K, + 5KoNiw + Ko '

where K, is the aerosol conductivity.

3.5.3.3 Diffusiophoresis effects

Following Pruppacher and Klett (1997), diffusiophoretic effects on aerosol
particle motions refer to concentration gradients in a gaseous medium or
mixture. The motion of aerosol particles is in the direction of the gradient.
For the interested reader Pruppacher and Klett (1997) provide a comprehensive
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discussion of this effect. To make diffusiophoretic effects simpler to under-
stand, a description following Cotton et al. (1986) follows. Diffusiophoresis
is due to attraction and repulsion of aerosol particles to a droplet along
gradients of water vapor. Thermophoresis effects dominate so that the net
effect of thermophoresis and diffusiophoresis is to inhibit contact nucleation
of cloud droplets during supersaturation and enhance contact nucleation
during subsaturation as described by Cotton et al. (1986). The parameteriza-
tion of diffusiophoresis contact nucleation effects is described by Young
(1974a) as follows,

1 dN,
N, dt |,

= dnrewgd(Pyoe PysL )W (3.34 x 102 molecules g '), (3.58)

where p,., is vapor density at infinity and p,g; is the vapor density over the
liquid water droplet’s surface, , is vapor diffusivity influences of convection
on heat diffusion f; and molecular boundary layer considerations on heat
diffusion included in f;".

The last three variables are defined as

v = Ufifs (3.59)
where
P*
fr=l4g— (0.561\/;6/21\/;0/3), (3.60)
and
Few
h= (3.61)

Fow + [Rfi

]1/2’

where R, is the gas constant for water vapor and § = 0.4 is the condensation
or deposition coefficient. Also in (3.58), g4 is given as

8d = &4

i/
v , (3.62)
Nymy/* + Nym)/ 2]

where g, = 0.8 to 1.0, m is mass of a molecule or aerosol, and N is number
concentrations of molecules or aerosols.

3.5.4 Secondary ice nucleation

There are two parameterizations for the ice multiplication hypothesis given
by Hallet and Mossop (1974) and Mossop (1976). The first is the most
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commonly used; in this, approximately 350 splinters are produced for every
milligram of rime collected onto each graupel particle at 5°C (Hallet and
Mossop 1974). The formulation for this processes is temperature dependent
and given by,

dNT;
thSp = p3.5 x 10% (Tew) (QewACew + OnwACey ). (3.63)

where the subscripts gw and hw are for graupel and hail, and cw is for cloud
water. The subscript isp stands for ice splintering. The term f1(7) is defined by,

0 T>270.15

oy (T 268.15)/2] 270,15 > T'> 268.15

AT = (7 28.15)/3]° 26815 > T > 265.15°
0 265.15> T

(3.64)

A source term in the prognostic equation for the mixing ratio of ice splinters is

dQis,  mjo dNTisp
———— 3.65
dr p dr ’ (3.65)

where m;, is the minimum ice crystal mass.

Now that nucleation has been presented, it is possible to explore conden-
sation/evaporation, and deposition/sublimation processes of newly activated
cloud and ice crystals, respectively. Next saturation adjustment schemes will
be discussed, followed by descriptions of explicit condensation/evaporation
and deposition/sublimation by vapor diffusion.
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Saturation adjustment

4.1 Introduction

Saturation adjustment schemes are usually designed to bring the relative
humidity back to exactly 100% when supersaturation occurs. In doing so,
the enthalpy of condensation or deposition is released, the temperature is
increased just the right amount for 100% humidity, and the air becomes laden
with condensate in the form of cloud droplets at temperatures warmer than
273.15 K. At temperatures colder than freezing, in order to adjust the relative
humidity to 100% with respect to ice, a mixture of cloud droplets and ice
crystals may be found, and finally at temperatures colder than 233.15 K, only
ice crystals are generally produced. For the case of a mixture of cloud
droplets and ice crystals, the adjustment is made such that the saturation
mixing ratio of each phase, liquid and ice, is weighted in the calculation
of relative humidity (Tao ez al. 1989). Some of the earliest adjustment schemes
were described by McDonald (1963), for example, to simulate fog formation.
The adjustment process can be prescribed for a single step as in Rutledge and
Hobbs (1983; 1984), or an iteration process such as that in Bryan and Fritsch
(2002), using potential-temperature, vapor, and mixing ratios. In Tripoli
and Cotton (1981), an ice-liquid potential temperature and vapor are used
to diagnose quickly the cloud-water mixing ratio required to bring a parcel to
100% humidity with an appropriate associated temperature increase (conden-
sation) or temperature decrease (evaporation).

Alternatively, schemes have been developed by Asai (1965), Langlois
(1973), and Soong and Ogura (1973) to adjust potential-temperature fields,
vapor fields, and condensate fields with a single non-iterative step when
supersaturation exists. In addition, a single-step adjustment to capture the
evaporative cooling and loss of cloud particles at subsaturation is built into
these systems of equations. Moreover, equations for change in temperature

78
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and pressure owing to phase change of water can be computed with the Soong
and Ogura (1973) scheme. Few models actually consider pressure change
following Wilhelmson and Ogura (1972), though Bryan and Fritsch (2002)
claimed notable differences through the inclusion of pressure changes. Finally,
some models predict saturation ratio and this is used to determine how much
condensation/evaporation, and heating/cooling should occur (e.g. Hall 1980). In
addition, the saturation ratio can be expressed as a function of vertical motion.

Many bulk parameterization models, and some bin microphysical models,
use saturation adjustment schemes that exactly eliminate supersaturation
after a timestep to account for some of the nucleation and condensation. Some
bulk parameterization models use both an explicit nucleation scheme, followed
by a saturation adjustment scheme (Seifert and Beheng 2005) to bring about
saturation. Still some bulk and bin microphysical parameterizations only use
explicit nucleation and condensation schemes (Ziegler 1985) to bring about
near saturation in a timestep. In the former of these models, where exact
saturation is brought about, the advection and diffusion of some measure of
temperature, water vapor, cloud water and perhaps cloud ice are computed in
the dynamical part of a model first and then the saturation adjustment
scheme is applied. Supersaturation occurs as the mixing ratio Q, exceeds
QO4(T) at some pressure. Kogan and Martin (1994) refer to this as dynamical
supersaturation given by the equation,

SO:M, (4.1)

0s(T)
where Qg and S, are the actual mixing and saturation ratios; the subscript
s indicates the saturation value.

Then an adjustment is applied to reach zero supersaturation, as shown at
point Py in Fig. 4.1. In Seifert and Beheng (2005) the advection and diffusion
of some measure of temperature and water vapor are also computed first in
the dynamical part of a model. With both bulk and bin microphysical models,
some form of explicit nucleation and condensation parameterization is used
to determine cloud-droplet or ice-crystal growth (subscript m). As the model
is advanced forward, the final state is rarely ever characterized by zero. This
can be seen at P, on Fig. 4.1. Here it is seen that the model solution represents
a supersaturated state given by

On Os(Tn)
Os(Tw) '

which is rarely at saturation, but rather it gets close to saturation. The explicit
nucleation schemes were discussed in Chapter 3 and the explicit condensation

S = (4.2)
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Fig. 4.1. Conceptual model of the moist saturation adjustment process;
explained in text. (From Kogan and Martin 1994; courtesy of the American
Meteorological Society.)

equation is described in Chapter 5. It should be noted that typically the
explicit condensation is solved with a smaller timestep, in time-splitting
fashion, than with the dynamical timestep. Usually the small timestep is on
the order of 0.5 s as described by Clark (1973), Kogan (1991), and Kogan and
Martin (1994), but can range from 0.1 s to 0.5 s depending on vigor of the
updrafts simulated.

The parameters on which the degree of supersaturation depends include
the cloud-drop number concentration Nt.y, the average radius r, of cloud
drops in the spectrum, and the diffusivity of water vapor i as discussed by
Kogan and Martin (1994). With these parameters, a phase relaxation time-
scale to zero supersaturation can be written as

1

Tt =77 >
4775‘//NTcwra

(4.3)
with cloud supersaturations S, typically ranging from a few tenths of a
percent to several percent in actuality. The error given by S,/Sy is stated to
be large for weak updrafts or updrafts with small numbers of large cloud
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condensation nuclei, but is small for large updrafts on the order of 15m's '

and for large cloud condensation nuclei concentrations.

4.2 Liquid bulk saturation adjustments schemes

In general, saturation adjustment schemes adjust the potential temperature or
temperature and water-vapor mixing ratio isobarically to near-perfect satur-
ation. If the air is subsaturated, cloud water is evaporated and that can
continue until saturation is reached or all the cloud water is evaporated.
It was shown by Wilhemson and Ogura (1972) that pressure influences could
be neglected. But Bryan and Fritsh (2002) more recently found that perhaps
they should be included for deep vigorous thunderstorms.

4.2.1 A simple liquid saturation adjustment

Perhaps the simplest saturation adjustment strategy is the non-iterative/itera-
tive scheme used by many including Rutledge and Hobbs (1983; 1984) and
Bryan and Fritsch (2002) and given by

d'Qv Qv QSL
dr - L20s\’ (44)
At <1 (,',,‘RVTZ)

where Q, is the vapor mixing ratio, and Qg is the saturation mixing ratio
with respect to the liquid. This equation can be iterated once (Rutledge and
Hobbs 1983; 1984) or several times, typically five or six times, in more
vigorous weather systems such as strong thunderstorms (Bryan and Fritsch
2002) until the newest potential-temperature value converges to the previous
one. The equation for potential temperature follows as

do doy
a YL dr (4.5)
where y; is
Ly
= 4.
L CpTC, ( 6)

and L, is the enthalpy of vaporisation. Care must be taken with this para-
meterization because the timestep Af appears in the denominator of (4.4)
for dQ,/dz. If the timestep is very large (> 5 s) and no iteration is done, the
scheme will artificially overshoot or undershoot saturation. However,
iteration usually solves this problem.
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4.2.2 Soong and Ogura liquid-water saturation adjustment

Perhaps the most popular saturation adjustment scheme as of this writing is
one that has been around for more than thirty years. This scheme is one
proposed by Soong and Ogura (1973). Soong and Ogura start with Teten’s
formula, which is

QSL = acxp <%> (47)
where a = 380/p (Pa), b = 17.269 3882, ¢ = 35.86, and T = 273.15 K.

Next, we let O, and 0" be intermediate values of Q and 6 that exist after all
other forcing besides saturation adjustment (including advection, diffusion,
source and sink terms, etc.) is applied. Then, an expression for df can be
written,

N L, L, . .
do = 0" 0" = dQs = " 00, (4.8)
cpm CpT
where 7 is the Exner function,
Rq/cp
p
T=c,| — , 4.9
() 49)

where Ry is the dry gas constant (= 287.04 J kg 'K ') and Py is the reference
pressure equal to 100 000 Pa. Now with

0" = A0 + 07, (4.10)
and (4.7) and (4.8) an equation can be written,

bIAT + T* T0]>

AT T+ (] (4-11)

T+ _ A+l
S —anp<

The following detailed steps are used to arrive at the final equations for the
saturation adjustment, ignoring pressure adjustments as was shown to be
acceptable by Wilhelmson and Ogura (1972). Multiplying the top and bottom
by T* ¢ AT inside the exponential gives

(4.12)

05! = aexp (b[AT +T* To|[T* ¢ AT])
M

[AT+T* «¢| [T* ¢ AT]

Letting y =T* ¢,

ol :aexp<b[AT—|—T Tol[x AT}>‘ @13)

x  ATP
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Now simplifying and neglecting terms of higher order than AT gives

* A *A A
b[T To]> exp VAT BT'AT +BToATY 414
[T (] [T (]

ngl =a exp<

Next, y is expanded and the terms on the right-hand side inside the exponen-
tial are canceled,

: AT BE T,AT
PEAT  beAT  BEAT + b1, ) 4.15)

T+1 *
= X
Os1. Qg1 exXp < s C]z

Now, using a series expansion to express the exponential, and eliminating all
higher-order terms, (4.15) may be written as

St = 05 exp (W) = 05 (1 + W) : (4.16)

Now R, and 6°"! are defined, which are

1
R, = 1+%‘)20] : (4.17)
[T+
and
R(L, , . .
0 =0+ (0F 0%) (4.18)
CPTE

Now from (4.10) it can be written

Lyc,

A0 = AQs (4.19)

T

Thus, the following can now be written

0 =07 RI(Q) 0Ox) (4.20)

A pictorial diagram of this parameterization (Fig. 4.2; reproduced from
Soong and Ogura 1973) shows that the parcel is lifted to saturation and along
the path PSG, which is dry adiabatic to S and moist adiabatic to G. Alterna-
tively Asai (1965) lifts a parcel along the path, PSR, which is dry adiabatic
to R, and then the parcel is adjusted isobarically to G.

4.2.3 The Langlois saturation adjustment scheme

Another liquid-only scheme has been used by Langlois (1973) and adopted
by Cohard and Pinty (2000) as a non-iterative adjustment for liquid-water
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Fig. 4.2. Schematic diagram of the saturation adjustment technique. Con-
sider the following. Lift an air parcel from point P up to point G during time
step 7 to 7 + 1. As the parcel is saturated at G, it must become saturated at a
level (denoted by S) between P and G, inclusive. Along the path PS on the
chart 0 and Q,, take the values 0* and Qy, respectively, as they are conserved.
Values 0°"! and Qgtl are reached directly by going through PSG rather than
PRG as in Asai’s (1965) approach. (From Soong and Ogura 1973; courtesy
of the American Meteorological Society.)

saturation. The scheme is repeated here for completeness following closely
the presentation in Cohard and Pinty (2000). As they pointed out from the
first law of thermodynamics, an estimation of the condensation rate is
given by

Ly(T)

Cp

T 1)+ (OsL(T) ©7) =0. (4.21)
The variables T* and Q} are intermediate values obtained after integrating
all other processes and source and sink terms. They also make the condensa-
tion rate equal to

do

dr = maX[ Ocws Qi QSL(T)] ) (4.22)

cond

where Q.. is the mixing ratio for cloud water. The parameterization details
for evaporation of cloud are discussed in Cohard and Pinty (2000). The
equation,

L,(T)

FI)=(T T)+ (OsL(T)  Q), (4.23)

Cp

is solved with the exception of condensation or evaporation of cloud drops
initially. To solve the above equation, Langlois’ (1973) approach is employed



4.2 Liquid bulk saturation adjustments schemes 85

with a quasi-second-order expansion of F(T) = 0 about T*. The approach
begins using the following equation,

F(T*) {1 L] F(T*) F”(T*)} (4.24)

=T F/(T%) 2F(T%) F(TY)

where superscript primes denote first and second derivatives. Next the satur-
ation mixing ratio at temperature 7 is defined as

€esL
= 4.25
QSL P esL ’ ( )

where ¢ = R4/R, and egy is the saturation vapor pressure over liquid water
given by the expression

es.(T) =exp(ay  f,/T  p,In(T)), (4.26)

which is more complicated than most approaches that are used. Now the
values of a,, f,, and y, are defined as

ay = In(es.(Too)) + By/Too 7y In(Too), (4.27)

Ly (T, T
ﬂv _ ( 00>'})v 007 (428)

R,
and

Cyv  Cpy
—ov O 4.29
Yy R (4.29)

where ¢, and ¢, are specific heats at constant volume and pressure, respect-
ively, for vapor v and Ty is the temperature at the freezing of water.
Using these expressions, derivatives Qg; (T*) and Qg (T*) are expressed as

Qg.(T") = AwQsL(T*){l + QS%(T)} (4.30)
and
051 (T") = Qg1.(T) {f‘:g; + AL (T) (1 +2 QSLS”) } (4.31)
where
Aw(T) = % VT (4.32)
and
A= 2be (4.33)

T3 T
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Using the equations above gives

where A; and A, are given as
F(T7) Ly(T7)
A= = T* § 4.35
TP g L) ) 2 e
and
F// T* LV T* .
A= (") (") 03, (TY). (4.36)

F(T) ¢y + Ly(T") 0 (T)

This ends the saturation adjustment methods presented by Cohard and Pinty
(2000) and Langlois (1973). Compared to the Soong and Ogura (1973)
scheme, which is also non-iterative, this scheme appears to require somewhat
more calculations to be done to obtain approximately the same solution.

4.3 Ice and mixed-phase bulk saturation adjustments schemes
4.3.1 A simple ice saturation adjustment scheme

As with the liquid schemes, the simplest ice scheme is probably similar to that
for liquid by Rutledge and Hobbs (1983) and Bryan and Fritsch (2002) and is
given for ice initiation as

dQV —_ QV QSI (4 37)
oA+ L0s )’ |
cpRVT?

where Qg is the saturation mixing ratio with respect to ice. This equation can
be iterated once (Rutledge and Hobbs 1983) or several times, typically five or
six times in more vigorous systems (Bryan and Fritsch 2002) until the newest
potential-temperature value converges to the previous one. The equation for
potential temperature follows as

do do,
— = Ye— 4.38
dt VICC d[ ) ( )
where y;c. 18
L
=8 4.39
Yice cm ) ( )

and L, is the enthalpy of sublimation.
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4.3.2 Soong and Ogura-type ice-water saturation adjustment

An ice-only version of the Soong and Ogura (1973) scheme can be devised by
first defining the saturation vapor mixing ratio for ice using Teten’s formula

for ice,
bice [T TO])
=aexp| —— 4.40
Osi P( T el (4.40)
where a = 380/p (Pa), bi.e = 21.874 55, ¢jce = 7.66, and T = 273.15 K.
Following the same general steps that were used for the liquid version
of the Soong and Ogura liquid saturation adjustment parameterization, one
arrives at the ice-only saturation adjustment equation.
First R, jc. and 0" are defined:

1
bieAT[Ty) ¢
Rije = [ 14 =BT MT0_ Cis (4.41)
[T* Cice]
and
RijccL
0 = 0"+ (08 Qf) (4.42)
CpT

Now using (4.10),

Lc,

AO = AQs) — (4.43)
and the following can be written,
OV =00 Ruie(Q Qx)- (4.44)

4.3.3 Tao et al. saturation adjustment for liquid
and ice mixtures

A mixed-phase saturation adjustment scheme was proposed by Tao er al.
(1989) that adjusts the potential-temperature and water-vapor mixing ratio in
saturation conditions isobarically to 0% supersaturation for ice, liquid, or
mixed-phase clouds. Tao et al. begin with two assumptions. The first assump-
tion is that the saturation mixing ratio with respect to ice and liquid, QOss,
is given as a liquid-cloud mixing-ratio and ice-cloud mixing-ratio-weighted
mean of ice and liquid water saturation values,

(QewOsL + 0i0s1)

= . 4.45
08 = (0o 1 0) (443)
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At temperatures warmer than T¥.,, only liquid water is permitted, and at Ty,
only ice water is permitted.

The second assumption is that under super- or sub-saturation conditions
condensation and deposition occur such that they are linearly dependent on
T, = 273.15 K and Ty,om = 233.15 K. Excess vapor goes into liquid, ice, or a
liquid ice mix for cloud particles. Cloud water (represented by subscript cw)
and cloud ice (subscript ci) evaporate or sublime immediately when sub-
saturation conditions exist. Evaporation or sublimation will continue to occur
to the point of exhaustion of cloud droplets or when enough cloud drops
evaporate such that saturation conditions exist.

With these two assumptions Tao er al. (1989) write that

dOy =0y Oss, (4.46)
dQ = dQ, CND, (4.47)

and
dQi.. = dQy DEP; (4.48)

where CND and DEP are given by
(T Thom)

CND = —————, 4.49
(Tfrz Thom) ( )

and
DEP = T 1) (4.50)

(Tfrz Thom) ’

where dQ,, dQ..,, and dQ,; are the changes in Q,, Q... and Q;, respectively.

Following Tao et al. (1989), the procedure for the adjustment is to compute
all sources and sinks of 0, Q., O, and Q; and label them at time ¢ + At as ¢*,
0i, 0%, and QF . Then the saturation mixing ratios for Qg; and Qg; are given
using Teten’s formula as,

% 380 Clliq (T* Tfrz)
O = ex , 4.51
SL p(Pa) p ( (T* bliq) ( )
and
380 Aice (T Tfrz)>
* = X 5 452
C51 = b(pa) p( (7" bice) (4.52)

where ajiq = 17.2693882, bjiq = 35.86, ajce = 21.8735584, and bj.. = 7.66.
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The adjustment is toward a moist adiabatic condition, under isobaric
(constant pressure) processes. With liquid only present, the parameterization
adjusts to a moist adiabat for liquid processes only. For ice-only processes,
the parameterization adjusts to a moist adiabat for ice processes only. For
mixed phases, when both liquid and ice are present, the parameterization
adjusts to a moist adiabat for mixed ice and liquid processes. The representa-
tion of this process is not a trivial task and estimations of the amount of ice
and cloud produced during the saturation adjustment unfortunately are
based on inadequate information. The potential temperature is found from

0* _ (Ldecw + LsdQci)

do =o' — , (4.53)
P
and the vapor mixing ratio is
t+Ar (Q:WQ[S{AZ + Q;cngTAt) 4.54
QV - ( * + Q*) : ( '5 )
CcwW Cl1
Now
0" = 0" 4 do (4.55)

is substituted into the Teten’s formula for Qg (4.51) and Qg (4.52). The
calculation is made simpler by converting all T* variables into 70" or simply 6*.
Then following the method of Soong and Ogura (1973) demonstrated above,
the first-order terms in df are used to write

QA = QF Ry + R,d0), (4.56)
where, according to Tao et al. (1989),
Rl _ Qi‘/ (QSLQ:W + Q:iQSI) (457)
( cwW + Qci)
R2 — ( 1QSLch + iQmQSl) ] (458)
( zw + Qi )
We now let
237.3ay
Al = (—‘”q”)z (4.59)
(T 35.86)
237. ice
Azz( 37.3aicem) (4.60)

(T 7.66)"
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L, CND + Ly, DEP
4y = + ) (4.61)
CPTE

Next, using A;, A, Az, R, and R, the changes in 0 and Q, can be found by the
adjustment,

R1A;3

t+Ar __ nx

O =0 A (4.62)
R

t+ At 1

0, _QV+7(1+R2A3). (4.63)

An interesting concept about this saturation adjustment for mixed-phase
cloud particles is that supersaturation with respect to ice is permitted to
occur. This can happen because the saturation with respect to liquid water
is larger than that with respect to ice water. This allows, in more sophisticated
models, the nucleation of different ice habits that depend on ice- or liquid-
water sub- or super-saturation. It also permits the depositional growth of ice
crystals by explicit means as well as by the adjustment procedure. There have
been a few models that use nucleation methods discussed previously for liquid
water and ice water, and use the saturation adjustment as a proxy for deposi-
tion growth on already nucleated ice particles. It should be noted that the
scheme above does not predict the number concentration of ice- or liquid-
water particles nucleated. Particles nucleated have to be supplied as above; or
by some means that specifies ice concentration by temperature (e.g. Fletcher’s
curve); or some other parameterization based upon temperature and super-
saturation; or constants for liquid-water drop concentrations.

4.3.4 Ice-liquid-water potential-temperature iteration

In this scheme the cloud-water mixing ratio is diagnosed, and if temperatures
are below the homogeneous freezing temperature, the ice-crystal water mixing
ratio is computed. Closely following Flatau er al’s (1989) explanation of
Cotton and Tripoli’s (1980) and Tripoli and Cotton’s (1981) approach, two
variables are first taken from Chapter 1, including the Exner function (4.9)
and the ice liquid-water potential temperature 6;,

LyQiiq + LsQei
¢, max(T,253.15) )

0 =0y <1 + (4.64)

In the first step, the Exner function and potential temperature are computed.
Next the supersaturation is computed to see if any liquid should exist at a
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location. The procedure continues by determining if the vapor and cloud-water
mixing ratios exist from the total water mixing ratio (cloud water plus water
vapor) Qr. Cloud water exists if the atmosphere is supersaturated and the
amount is the excess of Ot over saturation mixing ratio Qvy. To make this
scheme work Qi needs to be defined,

Qliq = ch + QrWa (465)

where Q.. is the cloud-water mixing ratio and Q,,, is rain-water mixing ratio.
If there is ice present, the total ice is computed as the sum of all of the ice

miXing ratios (Qice species)s
Qci = Z Qice species (466)

The water-vapor and cloud-water mixing ratios are computed as follows.
First, the water-vapor mixing ratio is computed from

Oy = max (07 Ot Qliq Qci) . (467)

Then the cloud-water mixing ratio is computed using the above variables and
the saturation mixing ratio over liquid Qs; ,

Qcw =max(0,01 QOiq Qd OsL). (4.68)

The above system of equations can be iterated to diagnose 7, 0, Qs , Oy, and
Q.w, from the predictive equations for 6;, 7, Or, Q.w, and all the ice mixing
ratio species.

When temperatures are below the homogeneous temperature, the following
procedure is added to the iteration instead of the steps immediately above. First
QOcw = 0, and Q}, = 0, where the asterisk denotes the intermediate value

during iteration. Next, QF;, the temporary ice-crystal mixing ratio is defined as

in = Q¢ + O + maX(O, Or O QSL)' (469)

When the iteration is done, the temporary values are set to be the new
permanent values. That completes the iteration.

4.4 A saturation adjustment used in bin microphysical parameterizations

Droplet growth by water-vapor diffusion condensation occurs with supersatur-
ation, and evaporation with subsaturation. When drops gain mass or lose
mass, they move to larger or smaller sizes, respectively, with the constraint that

J n(x)dx = C, (4.70)
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where C is a constant. An equation that describes the change in the size
distribution, n(x), with time by condensation and evaporation is given as

SR R

Following Ogura and Takahashi (1973), first the model variables are all
updated by advection, diffusion, filtering, etc., and advanced to the inter-
mediate values, T, Oy, n', and the number of aerosols ¢ at ¢t = v + 1. Then
the saturation mixing ratio is computed with Teten’s formula,

380 T 273.15]
Qg =—exp| aig——— |, 4.72
SL p q [T* bliq] ( )

where p is the environmental pressure. No supersaturation is allowed at
t =1 + 1. Then, following Asai (1965), if 6M > 0,

M =Q: Q% >0. (4.73)

Then dM, is computed by

2 1
LVQSL> , (4.74)

oMy = M| 1
: ( TR

such that dM; is condensed, so that air is brought to exact supersaturation

with the water-vapor mixing ratio Oy  3M, at temperature 7" + (L,/c,) 3M,.
First dM; is allowed to condense on nuclei. The total mass of vapor

condensed per unit mass of air during the time increment Af is given by

éjmax

S(r) = P > x(NF), (4.75)
J 1

where f{J) is described as one of the function types for nucleation of cloud
condensation nuclei given by expressions in Chapter 3. When § > dM;, only a
fraction of & given by ¢"(8M, /S) is activated. So & at t = t + 1 is provided by

the following,
. M\ .
E=¢ <—s 1>5. (4.76)

In addition, in step 2 of the computation n**(J) is computed from »n*(J) by

n*(J)=n"(J)+ (%) Er). (4.77)
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Now, if § < M, the remainder of (6M; S) will be exhausted by allowing
existing droplets and drops to grow by condensation. The change in mass of a
droplet or drop is given by

X(J) = x(J) + <3—):>JAt, (4.78)

where x is mass. The rate of mass growth is given in the next chapter. The
final value of n**(J) can be computed using the method of Kovetz and Olund
(1969) that is also described in Chapter 5.

Owing to the fact that no supersaturation is allowed, the total condensed
water vapor for each Atz is given by

G0 =205 n () %)J, (4.79)

le

and the growth per category by condensation therefore is just

@) (&) w0

For the case of evaporation, when dM < 0, the evaporation rate is computed
by the same equation used to compute condensation growth. The change in
n(J) for evaporation also is similar to that used for condensation, except that
J' = J t0 Jmax. According to this method, the number of droplets less than
4 pm are computed and evaporated completely and their cloud condensation
nuclei are added to the number of nuclei £. There are problems with this, in
that a drop that evaporates is made up of many droplets, and thus contains
many cloud condensation nuclei. Therefore the actual number of cloud
condensation nuclei is not conserved.

4.5 Bulk model parameterization of condensation
from a bin model with explicit condensation

The effects of bulk parameterization saturation adjustments versus bin
models with explicit nucleation, which allow supersaturation to exist
(Fig. 4.3) show that errors from the bin model are most significant for the
small cloud condensation nucleation number-concentration case (maritime
environments), but they improve as cloud condensation nuclei numbers
approach values that would be considered average or large (continental
environments).
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Fig. 4.3. Scatterplots of explicit, C., versus bulk, Cy, condensation rates at
points in the model with non-zero explicit condensation rates, obtained
every two minutes for cases with cloud condensation nucleation concen-
trations from 25 to 800 cm °. The difference between this figure and Fig. 4.4
is that the higher-order equation was used to parameterize the bulk conden-
sation. (From Kogan and Martin 1994; courtesy of the American Meteoro-
logical Society.)

Kogan and Martin (1994) did multiple regression analyses on the predicted
variables in a bin microphysical model with explicit condensation to derive
two new bulk microphysical models with bulk condensation parameteriza-
tions. The more accurate of the two formulations is
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chﬁ4
So

Crb = <ﬁ1 + 2SOﬁ2 + ﬁSch + )Cb + SOﬁS- (481)
The variables of interest include C,,, which is the revised bulk condensation
rate found from the regression coefficients f1, f», 3, f4 and 5 and Cy, which
is defined as a first-guess bulk condensation rate. The bulk microphysical
model formulation for first-guess bulk condensation rate was computed
following McDonald (1963). The cloud droplet and cloud condensation
nuclei numbers are not usually known in bulk models. In McDonald’s
formulation, exact saturation is achieved using

Oy = 0% +380 = Qs1, (4.82)
L3Q = ¢,dT, (4.83)

and
T=T°+3T. (4.84)

In the above, 0% and T° are the values of vapor mixing ratio and temperature
before the adjustment. The saturation mixing ratio is Qg; . In addition, Q, and
T are the values of vapor mixing ratio and temperature after the adjustment.
Finally 8Q and 8T are the changes in Q° and T° that are needed to reach
perfect saturation.

The bin microphysical model with explicit condensation that was used is
approximately the same as that given in Chapter 5.

Empirical regression coefficients for various initial total numbers of cloud
condensation nuclei (in cm *) are given in Table 4.1. The residual error in
Table 4.1 is calculated using

S (Exact condensation  Cpp)?

R = 8 (4.85)
total points

Table 4.1
Initial CCN ,[))1 ,BQ ,83 ,B4 ,85 Residual error R
25 0.32 5.2 -0.24 0.028 -0.12 27 x10%
50 0.45 8.4 -0.36 0.028 -0.18 24x10%
100 0.66 11.0 -0.45 0.027 -0.25 20x10°
200 0.88 13.0 —-0.45 0.022 -0.32 1.5%x10*
400 2.10 3.9 -0.12 0.0037 -0.57 0.30 x 10 *

800 200 12 -0016 000082 -052  0.038 x 10 *
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Fig. 4.4. Scatterplots of explicit, C., versus bulk, Cy, condensation rates at
points in the model with non-zero explicit condensation rates, obtained
every two minutes for cases with cloud condensation nucleation concen-
trations from 25 to 800 cm °. (From Kogan and Martin 1994; courtesy of
the American Meteorological Society.)

Results from the use of (4.81) to compute bulk microphysical parameter-
izations of condensation are shown in Fig. (4.4) as compared with bin
model solutions. The solutions are remarkably good at reproducing the bin
microphysical parameterization condensation rates, and improve as large
concentrations are used.
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4.6 The saturation ratio prognostic equation

Often modelers find convenience in predicting saturation ratio as one of the
prognostic equations they employ. For liquid-phase-only clouds, the satur-
ation development equation is given as

ds diig
de dr -~

In Rogers and Yau (1989) and Pruppacher and Klett (1997) it is explained
that the first term on the right of (4.86) is the change in saturation ratio by
adiabatic ascent or descent. The second term in (4.86) is the change in
saturation ratio by condensation or evaporation of vapor onto or from
droplets. The terms Q; and Q, are given following Rogers and Yau (1989),
Pruppacher and Klett (1997) and others as

d
=0 d_j ) (4.86)

1| ely
QIZT[R 8 é], (4.87)
acpT Ry
and
0, — RiT €L (4.88)
27 P ey PTc,|’ '

where g is the acceleration due to gravity, 9.8 m s 2. Whilst it may appear
easy to obtain Q; and O, the procedure is sketched out for completeness for
those readers not accustomed to working with these equations. Let us start
with the assumption of no condensation under adiabatic ascent,

ds dz
e 0 P (4.89)

Let us assume that we can write dS/dr as

dS d /e 1de e de
L (D)= (=22 ) 4.90
dr  dr <e5> (es dr 2 dt) (4.90)
Defining the approximate mixing ratio,
e
0=c¢c—, 491
5 (4.91)

and differentiating with respect to time, we obtain

do  lde edp

(0= =_—2 4.92
dr 0 pdet  prdt’ (4.92)
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then
lde e pg d:
pdi T PRI (493)
or
de g dz

The next term in Q; in (4.89) can be found by manipulating the Clausius
Clapeyron equation,

des  ellydTdz el gdz
dt  RJT*dzdt  RT?c,dt’

(4.95)

Substituting the definition of deg/dt into (4.89), results in the following
equation if S = e/eg is about O(1) on the right-hand side,

ds (L, gdz g dz

dr (RVT2 c,dt  RqT dt) ’ (4.96)
or

ds Ly g 8

— = wo 2w, 4.

dr (RVT2 c,,W RdTW> (497)

Next a solution for Q5 is sought. This solution is a bit more complex. Starting
with the assumption that there is no vertical motion, (4.86) becomes

ds dy
— 0,4 4.
dr 0 dr (4.98)

and we know what dS/ds is from above. Next, as before, solving for the
relationship between Q, ¢, and p,

_Qsp_
e = =

€

es (4.99)
and differentiating gives

des _pdQs  O.dp
dt ¢ dt € dt’

(4.100)

Rearranging,

lde pR4TAQs Qsdpdz
edi  ce. dr T edzdr (4.101)
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where the last term on the right-hand side is assumed to be zero. There is a
somewhat unexpected step that needs to be done to get the solution to dey/dr,

des desdT dz dQs des AT dQs

el = 4.102
dt dr dzdQ, dt dT dQs dr’ (4.102)
or, since dz/dr = 0, then
% B %dQS d_T dz % dT dO;
dt dT dr dz dQ; dT dQ, dr
(4.103)
B % dr d_T dz \ dOq
N dT dQv dz dQS dr -
Then, the following can be written,
des des /dT g dz \ dQs
—_— = = ) 4.104
4 dr <dQS s dQS> dr (4.104)
Now from the definition of a moist adiabat,
dz L, dT ¢,
=—+ -, 4.105
do, ¢ dQs¢ ( )
the following can be written,
Ly_dI g & (4.106)

¢, d0, ¢, do,

Rewriting the expression for deg/ds, and noting that for an isobaric process
e ~ ey during condensation, the following is obtained,

ede; e de <L> dQ,  1de <L_> dQs (4.107)

ad “edr\e, ) ar Tear\e,) @

Substituting (4.107) into the Clausius Clapyeron equation (4.95) and remem-
bering that R, = Rq4/¢ (and using the equation of state for dry air),

des Ly es
TR (4.108)
From (4.107),
edes ¢p (L% dO
s _F [ . 4.1
e2 dt  RapT (cp> de (4.109)
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Now Q> can be written as

RqT  el?
d EV]. (4.110)

Q2=» Les PTc,

This can be substituted into (4.98) and an equation for liquid-phase saturation
development is found.

Alternatively, Chen (1994) writes the saturation development equation for
mixed-phase processes slightly differently as

ds dz dyy dYice
where,
0, :SiMTa [LT 1], (4.112)
d Cp
Lz P
0, = [s et e—g] : (4.113)
and
L,Lg P
0, = [S R e—s] (4.114)



5
Vapor diffusion growth of liquid-water drops

5.1 Introduction

Once a cloud droplet is nucleated it can continue to grow by water-vapor
diffusion or condensation, at first rapidly, then slowly as diameter increases,
if supersaturation conditions with respect to liquid water continue to occur
around the droplet or drop. Conversely, a cloud droplet or raindrop will
decrease in diameter by water-vapor diffusion or evaporation, first slowly
when large, then rapidly when small, as diameter decreases, assuming sub-
saturation conditions with respect to liquid water continue to occur around
the cloud droplet or raindrop.

Condensation and evaporation are governed by the same equation, the
water-vapor diffusion equation. To understand condensation and evapora-
tion of some particle, two diffusive processes must be considered. The first of
these includes water-vapor transfer to or from a particle by steady-state
water-vapor diffusion. It is a result of vapor gradients that form around
a particle; thus the particle is not in equilibrium with its environment.
The second of these processes is conduction owing to thermal diffusion
of temperature gradients around a particle that is growing or decreasing in
size. Fick’s law of diffusion describes these diffusion processes. In summary,
consideration must be made for mass and heat flux to and away from
particles. These steady-state diffusion processes are derived independently
and then a net mass change is obtained iteratively, or by a direct method, by
combining the equations with the help of the Clausius Clapyeron equation.

There are several ways to solve the steady-state equations, and two will be
presented. One method includes kinetic effects and one does not. Of these
basic approaches, the one that includes kinetic effects is perhaps 10 percent
more accurate than the other in the early stages of growth. At later times, the
simpler of these methods, which includes just a basic growth equation,

101
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approximately gives the same basic result as the more accurate method, which
includes several second-order effects that are not in a basic growth equation. The
more accurate equation is primarily valid during the first 5 to 10 seconds after
nucleation. After that time, the two equations basically give the same answers as
other methods. Thus, it probably is not necessary to have this sort of accuracy
for either bulk or bin model parameterizations. Nevertheless, these second-order
effects will be reviewed for completeness as they do become important if
growth after nucleation of aerosols or cloud condensation nuclei is studied.

The basic assumptions that need to be made for vapor diffusion mass
change to a liquid particle include the following:

the particle is larger than the critical radius with regard to the Kohler curve
the particle is stationary

the particle is isolated

the particle is stationary with surface area 4m> where r is radius of the drop
the vapor field is steady state with infinite extent and supply.

Other first- and second-order effects that can be included in the basic
growth equation are:

ventilation (advective effects)

kinetic effects

competitive effects among particles

radius and solution effects for very small particles.

e o o o

This provides a basis to start examinating the basics of vapor diffusional
growth (condensation and evaporation) of liquid-water cloud droplets, drizzle,
and raindrops.

5.2 Mass flux of water vapor during diffusional
growth of liquid-water drops

The diffusional change in mass of liquid-water drops owing to subsaturation
or supersaturation with respect to liquid water primarily depends on thermal
and vapor diffusion. In addition, for larger particles, advective processes are
important, and the influences of advective processes have to be approximated
using data from laboratory experiments. In the following pages, equations
will be derived to arrive at a parameterization equation for diffusional growth
changes in a spherical liquid-water particle that is large enough, on the order
of a few microns in diameter, so that surface curvature effects can be ignored.
Moreover, the liquid-water drops will be assumed to be pure. Later in the
chapter the influence of liquid-water drop size and solutes will be considered.
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First, from the continuity equation for density of water-vapor molecules
the following equation can be written,

9
6‘ptv +usVp, = YV2p,. (5.1)

The flow is assumed to be non-divergent, and p, is the water-vapor density
given by p, = nm. In this definition, n is the number of molecules and m is the
mass of a water molecule. In addition,  is the vapor diffusivity, given more
precisely as,

Y =211 x10 3(T/To)"**(p/poo) m*s ', (5.2)

where, Ty = 273.15 K and pgp = 101325 Pa.
If it is assumed that u is zero so the flow is zero or stationary flow (sum of
the air-flow velocity and the vapor-flow velocity) is zero, (5.1) becomes

apv _ 2

With the steady-state assumption, a basic form of Fick’s first law of diffusion
results for the number of molecules, n, where m is a constant (similar to
Rogers and Yau, 1989),

V2p, = Vinm = V?n = 0. (5.4)

Assuming isotropy, which permits the use of spherical coordinates for this
problem, (5.4) becomes

1 o on
2 2
=——|(R — )= 5.5
v R28R< aR> 0 (55)
where R is the distance from the center of the drop.
The product rule is applied to (5.5),

R [0 10(R?) [a
RZR \OR R? OR \OR
which is written more precisely as
d [on 2 dn
Y i 2220, 5.7
R <3R> TR (57)

Now letting,

= (g_Z) (5.8)
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substitution of (5.8) into (5.7) results in

3 2
H_ L (5.9)
OR R

Integration of (5.9) over R gives,

x X
JaRdR— 2JRdR. (5.10)
Rearranging,
Jdlnx: 2JdlnR; (5.11)

and finally integration gives
In(x) = 2In(R) +¢, (5.12)

where ¢’ is a constant of integration. Taking the exponential of both sides
of (5.12) gives,

x=c"R 2. (5.13)
Now, substituting (5.8) back into (5.13) results in
on

i 'R 2. (5.14)
Integrating (5.14) over dR,
on "Np 2
ﬁdR: ¢"R “dR, (5.15)
results in
C”
n(R) = =+ ", (5.16)

where ¢’ is another constant of integration.

Now, the constants of integration can be determined from the boundary
conditions, which are: as R approaches R.., n approaches n.,; and when R
equals the drop radius, R,, n is equal to n,.. Application of these boundary
conditions to (5.16) gives

7

Moo = —— " =", (5.17)
Roo

where ¢’ /R, < ", so that n,, = ¢"”.
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Next, using the boundary conditions and (5.17), (5.16) is then

7 S

n, = I%-HWZ ]%Jrnoo. (5.18)
Simplifying,
C”
n, = F+noo. (5.19)
Solving (5.19) for ¢”,
" =aln . ny). (5.20)
From (5.17) ¢ was given by
" = nee. (5.21)
Thus (5.16) becomes
Rl' r oo
n(R) = % + Mo (5.22)

Now the rate of mass increase or decrease at the drop’s surface by way of a
flux of droplets toward or away from the drop can be written as dM/dz, where
M is mass,

M , (on
§, = WAnRIm <6R>R . (5.23)

Equation (5.22) is used to find the derivative of n with respect to R while
holding R = R,,

M Rr r o0 R 00
dt oR R R,
rearranging,
dM » J o |1 N
. — r\'tr o0 . 2
ir = Y4nR {GR [RR (n, n )L R_+<8R>R R} (5.25)
Now by using
on
— =0 5.26
R (5.26)

in (5.25), the following is found,

dm a |1
—— = Y4nR’m— |=R.(n, ny . 2
O v mos [R (n, n )L ) (5.27)
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Taking the derivative gives

dd—Af = Y4nR,(n  ny)m. (5.28)
Now we note that
Py, = N, (5.29)
and
Py.oo = Moo, (5.30)

where p, , is the vapor density at the drop’s surface, and py ., is the uniform
density.
Substitution of (5.29) and (5.30) into (5.28) gives
dm
T V4nR, (Pv,oo pv’,,), (5.31)

which is the mass change owing to vapor gradients.

5.3 Heat flux during vapor diffusional growth of liquid water

An analogous procedure can be followed to get a relationship dg/d¢, which is
the heat flux owing to temperature gradients. Based on dg/dr, another equa-
tion for dM/ds, different from (5.31), may be written.

From the continuity equation for temperature T the following equation can
be written, where K is thermal diffusivity,

T
N WVT = KVT. (5.32)
at

Assuming again that the flow is non-divergent, and that u is zero, so the flow
is zero or stationary flow (sum of the air-flow velocity and the vapor-flow
velocity) is zero. Note the value for thermal conductivity « is given as

1832105/ T \°/ 416.0
243 % 10 2 Jm's 'K 1. (5.33
K T8 % 10 5<296.0> <[T 120.0]) mos (5:33)

Next, applying u = 0 in (5.32),

oT
— = KV°T. (5.34)

With the steady-state assumption a basic Fick’s law of diffusion for T results,

VT = 0. (5.35)
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The assumption of isotropy permits the use of spherical coordinates for this
problem, so that (5.35) becomes

1 9 aT
2 2
T=——(R=)=0. .
\Y R < aR) 0 (5.36)
Expanding and simplifying gives
R> 9 (oT\ 1 0(R*) (9T g (oT\ 24T
€ o (1) o) (or) o giry 2,
R20R \OR R2 OR \OR dR \OR ROR
Now letting
aT
== 5.38
= (5): (5.38)
and substituting (5.38) into (5.37) gives
dy 2y
= =, 5.39
dR R (5.39)
Integration of (5.39) over R is,
dy y
—dR= 2|=dR. 5.4
J R J R (5:40)
Then rewriting gives
Jdlny— ZJdlnR; (5.41)
and finally integration results in
In(y) = 2In(R) + ¢, (5.42)
where ¢’ is a constant of integration.
Taking the exponential of both sides of (5.42) gives
y=c"R ?, (5.43)
where ¢” is a constant.
Substituting (5.38) back into (5.43) results in,
or "p 2
—=c"R ~. 44
R (5.44)

Integration of the (5.44) expression with respect to R gives,

Jz—;dfe = Jc”R 2dR; (5.45)
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and finally,

/!

T(R) = % e, (5.46)

where ¢’ is another constant of integration.

Now, the constants of integration can be determined again from the
boundary conditions, which are: as R approaches R.,, T approaches T;
and when R equals the drop radius, R,, T is equal to T,. Application of these
boundary conditions to (5.46) gives

7
c "

Too: IQ_OC—i_C

where ¢’ /R, < ¢, so that ¢ = T,..
Next, using the boundary conditions and (5.47), (5.46) becomes

=" (5.47)

Tr = IT+C”/ = R—+TOC (548)
Simplifying,
C”
T,= &+Tx (5.49)
Now solving for ¢”,
"=R (T T,), (5.50)
and using (5.47) gives ¢ as
" =Ty, (5.51)
and (5.46) becomes
R.(T, Ty
T(R) = % + T (5.52)

Now we can write an expression for the energy change dg/dr which takes
place at the drop’s surface,

d aT
Lo anRpKe,(Z) (5.53)
dr IR Jp &

Equation (5.52) is used to find the derivative of T with respect to R while
holding R = R,,

NG TLES) R
R R,

dr OR
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Rearranging gives

d a1 T s
ST anRpKe,d = |SRU(T, To)|  +(22 . (5.55)
dr R |R N
Now using
0T 5
—=0 5.56
w0 (5.56)

(5.55) becomes,
2 a 1 T
— = 4nR.pKc, — ER,(T,. Ty) . (5.57)

Taking the derivative results in

% = 47rR]2,chp[ ]%R,.(T,. TOC)_ ) R,.' (5.58)
Now (5.58) is applied at R = R,, and simplifing,
% = 4nR?pKc, LI:—; (T, TOO)] . (5.59)
Lastly,
dg
P 4nR.pKcp(T,  Tw), (5.60)

which is the energy change owing to temperature gradients.

5.4 Plane, pure, liquid-water surfaces

The diffusional change in mass of a liquid-water drop owing to sub- or super-
saturation depends on thermal and vapor diffusion along with advective
processes. In the following, these will be employed to arrive at a parameter-
ization equation for diffusional growth changes in a liquid-water drop, that
are large enough, on the order of a few microns in diameter, so that surface
curvature effects can be ignored. Moreover, the liquid drop is assumed to be
pure. The following derivation closely follows Byers (1965).
The mass flux of vapor to or from a droplet can be written as

1dM dp,
v () S
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where A is the surface area of the droplet, M is the mass of the droplet, R at
R, is radius of the droplet, ¢ is time, ¥ is diffusivity of water vapor in air, and
py 1s the water-vapor density.

The following relationship can be written that represents condensation
where the surface area of a sphere has been used,

Wy (2 =g (). (562

dR dr

Now consider a spherical droplet as a discontinuity between two phases, such
as a liquid-water droplet that has a vapor density at its surface p,, and a
water-vapor field of uniform density, p, .. The continuous gradient dp, ., /d¢
is now replaced by the gradient of these two values. It is desirable to have
an expression for the growth rate in terms of radius. The following equation
is obtained by first rearranging (5.62) and then integrating such that the
transport of the vapor to the droplet is

dM [ dR
T i Jdﬂv- (5.63)
Ry Py
Integration gives
dMm [ 1 1
dr <1§ E) =4 (pyoe  Pur)s (5.64)
where,
Ii -0 (5.65)
Thus,
dm
W = 47Terp(pv7oo pv,,ﬂ), (566)

and R, can be considered to be some distance from the droplet, such as one-
half the distance to the next droplet, which is probably 1 x 10> to 1 x 10° of
radii away.

Now the equation in terms of the rate change of the radius of a sphere
in time can be written using the fact that M = pV, where V is the volume of
a sphere, V = 4/37R,

M dv R 0Rs

dR,
P prAnR: P pLATR, <R,. —>, (5.67)

dr

where p;, the density of water, is assumed to be constant.
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Substitution of (5.66) into (5.67) and solving for R,dR,/dt gives

drR, Y

r dr - E (pvpo pv,r)' (568)

Now from the equation of state for water vapor, the vapor pressure, e, is
e =R,Tp,, (5.69)
and assuming the temperature T, of the droplet at its surface and the tempera-
ture of the air next to the drop T, are equal, R.dR,/d¢ in (5.68) is written as
R, _
"dt  pR,T

(eos  ©r). (5.70)

Recall that enthalpy is the energy transferred between two phases with no
temperature change occurring in the two phases. Therefore, a balanced state
requires that the enthalpy resulting from condensation must be liberated to
the environment; the opposite is true for evaporation. That is, the enthalpy
must be absorbed from the environment. Now the enthalpy associated with
the phase change (5.66) and (5.68) is L,. Next, multiplying both left and right
hand sides of (5.66) by the L, results in

Lvddif = LATR Y (pyoe  Pys)- (5.71)

It must be remembered that this is a constant-pressure or isobaric process.

An expression of the diffusion of heat energy away from droplets during
condensation is arrived at analogously to that for water vapor toward a drop.
To see this, we first start with

1dg dr

—— = pKc,— 5.72

Ad~ PR (5.72)
where ¢ is heat, ¢, is specific heat for an isobaric process, K is thermal
diffusivity, and p is the density of air. From this, following the steps above,

dg dr
dr dR’
At this point, a discontinuity is assumed for the temperature field between

the drop and its environment. To obtain the expression for the diffusion of
heat away from the drop, rearrange (5.73) and integrate both sides,

4nR*pKc, (5.73)

e —  4npKe, J dr, (5.74)

o
=

=

P 2
R, T,
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where T, is temperature at the drop’s surface. Upon integration, the result is,

dg [/ 1 1
Assuming 1/R, is small,
d
d—‘f — 4R, pKcy(T,  Too). (5.76)

Often thermal conductivity is used instead of thermal diffusivity. The rela-
tionship between these two is

K = pKcy, (5.77)
which makes (5.76) equal to
d
d—ct’ — 4R, k(T, To). (5.78)

Now to balance the heat diffusion associated with enthalpy and that with
temperature differences between the drop surface and at some distance from
the drop (where influence of the drop is not felt) the following is written,

dg dm
—=L,—. 5.79
de 7V dr (579)
Using (5.70) in (5.67) and (5.78) in (5.79), the following can be written,
4nR,x(T, Tx)=4nR,LW(ex e)/RT. (5.80)
This can be simplified to be
(e ) R,k
r_— 81
101, 7o) Lo’ 581
which at an equilibrium state is the same as the wet-bulb relationship.
Now substituting (5.70) into (5.81) we obtain the following,
drR, T, Ty
g, IR KT Te) (5.82)

Tde prLy

So, to summarize so far, when the air is saturated with respect to the droplet,
vapor diffuses toward the droplet surface and heat diffuses away from the
droplet surface. Now if the air is unsaturated with respect to vapor pressure
over the droplet surface, then vapor diffuses away from the droplet surface
and heat diffuses toward the droplet surface.

The goal is to represent both of these processes in one rate equation.
Specifically, all terms are desired to be cast as observables.
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Now the rate equation for diffusion without considering enthalpy is (5.70).
Dividing this equation by e, », which gives

(e €) 1pR,T dR,
=— R, . .
€s,00 lﬁ €s,00 dr (5 83)

Now, following Mason (1957) and Byers (1965), the Clausius Clapeyron
equation is integrated for an ideal vapor between es o, and e,, and T to T,
resulting in

m("sﬂ"):ﬂ(i i) b, ro=-21 1), (584)

te) Ry\Tw T,) RTTs TR

where for multiplication purposes, in the denominator, the temperatures
at R = oo and R = R, can be assumed to be given by temperature at infinity
when multiplied together, but not when differences are taken. Next (5.82) is
rearranged,

K " dt

and (5.85) is substituted into (5.84) so that

Es,r szL dR,
1 — ) = R, — ). 5.86
1 <es7oo) KR, T? de (586)
Now we want to replace the quantity in the natural logarithm in (5.86).
Rewriting (5.83),

(1, T.) =Pl <R dRr), (5.85)

o r R,T dR,
b0 _ Cor 4 PL <R > (5.87)

— + L
€500 €500 lpes,oc dr

The exponential of both sides of (5.86) is taken,

e L2p;  dR,
) = =R, — |, .88
<es7oo> Xp <KRVT2 dt (5.88)

and substituting (5.88) into the first term on the right-hand side of (5.87) and
letting S;. = (e~ /e€s.00) be the ambient saturation ratio,

oo L2p;, —dR)\ pR,T [ dR,
S| = = YT R, R, . 5.89
T e exp <KRVT2 dt) * Ves o de (589)

Now following Byers (1965) we let

xX=R,— (5.90)



114 Vapor diffusion growth of liquid-water drops
so that (5.89) can now be written as
Sy = exp(a}x) + b x, (5.91)

where, af = L2py /(kR,T?), and b = p R\T/(Yes0)-
When afx < 1, (5.91) can be written approximately as, using the expan-
sion of an exponential,

SL=1+ajx+blx=1+ (af +b])x. (5.92)
Using (5.90) and rearranging (5.92) gives a rate equation,
dr, 1
g AR _ (5L 1)

a T b =(S. 1)GL(T,P), (5.93)
where the function G (T, P) is
1
GL(T,P)=—————. (5.94)
pLLy | pLRT
RykT?  es ol

Now (5.66), (5.68) and (5.93) are used to write a mass change rate as

dm
W = pL4TCR,-(SL I)GL(T, P) = ,0L27'5Dr(SL 1)GL(T, P), (595)
where D, is the diameter of the drop in (5.95).
The vapor diffusion, mass growth equation also can be derived following
Rogers and Yau (1989), using a linear function for vapor density put forth by

Mason (1971). We start by writing the steady-state-diffusion mass rate equation as

dm
T 4R (Pyoe Pys)s (5.96)

where p, . is the vapor density at the ambient temperature and p,, is the
vapor density over the drop. The steady-state diffusion of heat toward a
particle is given by

i(j =4nR,k(T, Tu), (5.97)

where T, is the temperature at the drop’s radius or surface, and T, is the
ambient temperature. From (5.96) and (5.97) a rate of change of temperature
at the drop’s surface can be given as

4 dT, dM  dgq

7R3 - — == 5.98

37'[ )pLCPW dt th dta ( )

where ¢, 1s the specific heat of water at constant pressure.
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But if a steady-state-diffusion process is assumed, d7,/ds = 0, the result is the
following balance relation between the temperature and density fields,

(i pu) _
(Ti' TOO) LV'vb .
At almost all times, the values of T, and p,, are unknown. Incorporating the

solute and surface-tension (curvature) terms and the equation of state for
water vapor, it is found that

e a b\ e,
= (4 2 G 5.100
Pur =R, < R R§> R.T, (5-100)

(5.99)

In (5.100) it is important to remember that eg, is the equilibrium vapor
pressure over a pure, plane surface. The value of e, at T, then can be found
by the Clausius Clapeyron equation. Using (5.99) and (5.100), which are an
implicit simultaneous system of equations, numerical iterative techniques
can be used to find an exact solution to the mass growth rate of the vapor-
diffusion equation.

Alternatively to the numerical method of solution, following Mason (1971)
and, closely, Rogers and Yau (1989), in a field of saturated vapor, changes in
vapor density can be related to temperature differences,

dp, LydTy dTs

=t . 5.101
p, R, T2 T, (5.101)

Now integrating this equation from temperature T, to T,, and, assuming
T, /T, is approximately unity, gives

pV.S (0.¢] LV 1
(222 ) = (1., T, —), 5.102
! < Pvsr > ( ) (RvTocTr Tr) ( )

where the subscript denotes saturation vapor density.
As the ratio of vapor densities is near unity, an approximation can be made

such that
Pvsoco  Pvsr _ <TOO T") < Ly ])’ (5.103)
pv,s,r TOO RVTOC

where the approximation that T, T, = T2, is also used. Now using (5.97) and
(5.98) and substituting for (T, T,) in (5.103) the following results,

Pusco  Pusr_ (1 _Lv L \dM, (5.104)
Pvsr R\To 4nR,kTo ) dt

e 9
S
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and using

Py, Pvr 1 dm
: L= — 5.105
pv,r (4nR7'lppv.r> dt ’ ( )

along with the result of subtracting (5.104) from (5.105), the following
approximate relation can be found, after a bit of algebra, assuming that

Pv,r = Pv,s,rs

R IR _ (5. 1 (5.106)

dr Ly L, RT'
(m 1) Rk
Note that compared to the rate equation derived using Byers’ approximation
(5.93) and (5.94), this equation has a correction term in the denominator,
which is small compared to the other two terms, and can be retained or
neglected. The mass growth rate approximation, which is needed to produce
a parameterization, is given by
dM
a4 =£2nD,(S.  1)GL(T,P), (5.107)
where D, denotes diameter here, and G (T,P) is similar to G (7, P) except
G (T, P) has the correction term,

1

G'(T,P) = VT
R,T i Wes

(5.108)

5.5 Ventilation effects

In the derivation of a vapor diffusion equation for a liquid sphere, it was
assumed that the drop was stationary, and that the vapor and thermal
gradients around the sphere were symmetric. This is only accurate for a drop
at rest. For falling drops, or drops moving relative to the flow, the vapor and
temperature gradients around the drop are distorted with steeper gradients in
front of a drop falling vertically relative to the flow and weaker gradients
behind the drop. During condensation, energy is convected away from the
drop more efficiently for a drop in motion relative to the flow, and the vapor
supply is enhanced more efficiently than if the drop were stationary. During
evaporation, energy is convected toward the drop more efficiently and vapor
is removed away from the drop more efficiently, when the drop is in motion.

The influences of the flow relative to the drops for steady-state diffusion,
are represented in the mass-growth and energy-flux equations by modifying
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them using empirical formulas to adjust the equations with coefficients. These
coefficients in the empirical formulas are called the ventilation coefficients for
heat, for the heat-flux equation, and for vapor, for the vapor-flux equation.
These coefficients actually arise from including the influences of advection
that were ignored in deriving the vapor-diffusion equation, e.g.

Vi, =ii- Vp,. (5.109)

The vapor-diffusion rate equation is modified by a vapor ventilation coefficient
by computing the growth of a droplet at rest and the growth of a droplet in
freefall (flow relative to the drop makes the drop appear to be in freefall); and
taking the ratio of the two with the growth rate of the stationary drop in the
denominator and the rate of the falling drop in the numerator. For the vapor
mass equation, the following mass ventilation coefficient is computed using

_dM/dr  mass rate for a falling drop
~ dM,/dt  mass rate for a stationary drop

f (5.110)

The same is done for the heat-flux equation to arrive at a heat ventilation
coefficient,

_dg/dt  heat flux for a falling drop

fo= dgo/dt  heat flux for a stationary drop

(5.111)

The ventilation coefficients are usually parameterized in terms of the Reynolds
number, the Schmidt number, and the Prandtl number, which are all dimen-
sionless numbers. The Reynolds number is the ratio of the inertial to viscous
terms in the velocity equations. The Reynolds number thus is given as
UsD
Npe = ——, (5.112)

v

where U, is the terminal velocity of the drop, D is the characteristic diameter
of the drop and v is the kinematic viscosity of air. The Schmidt number is
used in the equation for the vapor ventilation coefficient and is the ratio of
kinematic viscosity to vapor diffusivity and can be written as

v
A
where  is vapor diffusivity. The Prandtl number is used in the equation for
the heat ventilation,

Ny = (5.113)

v
K b
where K is the thermal diffusivity for dry air.

Npr = (5.114)
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From these non-dimensional numbers, the following can be derived for
raindrops and similar-sized and larger-sized spheroidal ice particles (Pruppa-
cher and Klett 1997). For vapor ventilation equations, there are the following
two conditions,

2
fo=1+0.108 (NS‘C“A/J@/2 for NIONY? < 1.4 (5.115)
£ =0.78 + 0.308N.NZ for NIONYZ > 1.4,

For heat ventilation equations, there are also the following two conditions,

2
fu=1+0.108 (N},PNJJZ) for NY>NY? < 1.4

(5.116)
fo = 0.78 +0.308N) N> for NYPNI? > 1.4,

When solving for the diffusion-growth equation (5.95) or (5.107), it is
assumed that

fv = (5.117)

which is a reasonably good first guess.
With the ventilation coefficient, the mass growth equations (5.95) or (5.107),
respectively, are written as,

dM
o = P2DA(SL DGLT, P, (5.118)
or
dM ,
o = P2nDA(SL DGL(T.P)f. (5.119)

5.6 Curvature effects on vapor diffusion and Kelvin’s law

In this section, curvature effects are considered. Embryonic droplets nucle-
ated on very small aerosols or nucleated homogeneously are small enough
that curvature effects related to the radii of the droplet, and surface tension,
which is a function of temperature, must be included. Forces that bind water
molecules together [O(10 1000) molecules] of newly nucleated embryonic
droplets require higher vapor pressure and thus greater supersaturation
to grow (supersaturation S > 1.5 to 5); they also lose water molecules more
easily than droplets with larger radii owing to weaker net forces of hydrogen
bonds holding the water embryo together. In addition, the higher the surface
tension the more easily molecules may desorb from droplets. Thus, it is found
that the equilibrium saturation vapor pressure over a very small drop is much
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larger than that for bigger droplets for a given surface tension. Droplets
smaller than a critical radius will evaporate or break apart owing to collisions
by other water molecules or clusters of molecules, whilst larger droplets than
this critical radius will continue to grow as the internal forces holding the
droplet together are strong enough to withstand collisions with clusters of
other water molecules.

To account for curvature effects, the surface tension of the particle must
be considered. The rate of growth depends on partial pressure of vapor in
the ambient, which determines the impact rate of vapor molecules on the
droplets. The decay rate is controlled by surface tension and to a greater
degree by the temperature. This is because embryonic droplets that make up
these droplets must contain enough binding energy through hydrogen bonds
to withstand breakup by thermal agitation against the surface tension at the
droplet’s surface. The surface tension is the free energy per unit area of some
substance, such as water, and is also defined as the work per unit area
required to extend the surface of the droplet. Work per unit area is force
times distance per unit area with units of Jm . The surface tension of droplets,
as given between a water air interface, oy /,, 1s temperature dependent, and
decreasing with increasing temperature according to

oL/ =0.0761  0.00155(T  273.15)Nm . (5.120)

Other values of surface tension for solutes can be found in Pruppacher and
Klett (1997). Molecules can leave the surface of smaller droplets much more
easily than from larger droplets with smaller droplets thus requiring larger
equilibrium supersaturations with respect to planar surfaces. When a droplet
is in equilibrium with its environment, it is losing as many water molecules as
it is gaining. Critical-sized droplets are formed by random collisions of vapor
molecules, and if they become supercritical they will continue to grow spon-
taneously. If they do not reach a critical size, then they fall apart through
collisions by other vapor molecules (clusters) as the free energy needed from
excess water vapor in the environment is not sufficient to expand the surface
of the droplets. The equilibrium vapor pressure for this state is given by,

2
sy = €500 EXP <RRO—%)’ (5.121)
vPLLr

where ey, is the saturation vapor pressure over a spherical droplet with radius r,
temperature T,, density p; and surface tension oy /,. The variable e, ., is the
saturation vapor pressure over a bulk planar surface of infinite length and
width. As the droplet size decreases, the supersaturation or vapor pressure for
equilibrium increases and vice versa. From (5.121) a critical radius rica for
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equilibrium can be derived for any supersaturation. With S; = e, /es -, the
critical radius is given by Kelvin’s law, which includes curvature effects,

2GL/a
critical = — |- 122
Feritical (RVpLT,,lnSJ (5.122)

When riiical 18 exceeded, then the droplet will grow, and when r is less than
Teritical, the droplet will evaporate as molecules desorb from the surface.

5.7 Solute effects on vapor diffusion and Raoult’s law

The results in previous subsections of this chapter were obtained with the
assumption that planar surfaces were free of solutes, which are substances
dissolved in water.

The presence of solutes generally lowers the equilibrium vapor pressure
over a droplet. The equilibrium vapor pressure occurs in part as a result of
water molecules at the surface of the drop being replaced by molecules of the
solute. For planar water surfaces, we start with the following equation to
estimate the reduction in equilibrium vapor pressure for dilute solutions,

/
oo M (5.123)

- )
ey nNo+n

where ¢/ is the equilibrium vapor pressure over a solution with ny molecules
of water and n molecules of a solute (Rogers and Yau 1989). For n < ng, or
for dilute solutions, (5.123) reduces to the following,
/
R (5.124)

€s.00 no

Some solutions break up into ionic components by ionic dissociation.
The effect is that there are more ions than molecules in the solute. As a result,
n in (5.124) needs to be modified by i, the poorly understood van’t Hoff
factor, the number of effective ions, which approximates ionic availability.
For sodium chloride, for example, i is approximately 2 (Low 1969; Rogers
and Yau 1989). For ammonium sulfate, i is approximately 3. For solutes that
do not dissociate, i = 1. So the more a substance dissociates, the lower the
equilibrium vapor pressure for a given droplet size. With i, using Avogadro’s
number Ny (molecules per mole), and solute of mass M and molecular weight
mg, n becomes

p = NoM (5.125)

s
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and with water spheres with molecular weight m,,, and mass M,,, the number
of water molecules ny can be expressed as
NoM.
no = ——. (5.126)

My

Now a factor b’ can be written where,

B 3im M

b = .
4npyms

(5.127)

An expression can also be written for solute effects using (5.124) (5.127) as

=1 — (5.128)
which is Raoult’s law.

5.8 Combined curvature and solute effects and the Kohler curves

Both the curvature and solute effects can be combined as the following
families of curves called the Kohler curves,

e;,r b dad
O o0 = (1 R_?) exXp (E)’ (5129)

_ 26L/a
pLR.T

with @' given as

/

(5.130)

Using the series approximation for an exponential and neglecting higher-
order terms, the expression given by (5.129) can be reduced to

eé . a/ b/
—=|14+—=— —=]. 5.131
€5 ( + R, R;”) ( )

The curves of this equation show that at small radii, solute effects dominate,
sometimes so much so that equilibrium occurs at S < 1. As the radius increases,
new equilibrium values will be established. This continues until the critical
radius is reached, if it ever is. The critical radius occurs at

3

Feritical = \/ — (5.132)

a
This value is achieved by taking the derivative of (5.131), setting it equal to
zero, and solving for R, = reigea. Once the critical radius is reached, the
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smallest amount of increase in § will lead to unstable growth of the droplet
solute. This critical saturation S¢.i;ca1 Value also can be written as follows,

4a”
SLcrilicul = 1 + \/27b/ (5133)

The vapor-diffusion equations with saturation vapor equations adjusted for
curvature and solute effects for liquid water are now given. The vapor-
diffusion equations (5.118) and (5.119) including the Kohler-curve effects
and ventilation effects are

dm

a == pLZTEDr |:(SL 1)

or, after Mason (1971) and Rogers and Yau (1989),

! b/
;+m:|GL(TaP) \2) (5134)

/ /

b ]G’L(T,P)fv. (5.135)

dM a n
R, R

F = pLszD,- |:(SL 1)

5.9 Kinetic effects

Only the very basics of kinetic effects are covered here. A more complete
discussion would require a more formal analysis in the physics and energetics
of condensation and evaporation (Pruppacher and Klett 1997; Young 1993).
Heat, mass, and momentum transfer between small aerosols, droplets, or
small pristine crystals, and molecules of water vapor in the environment,
depend on the Knudsen number, Ny,; this was defined earlier as the ratio
of the mean free path, 4, in the atmosphere, which is about 6 x 10 8 m at sea-
level pressure and temperature, to the radius of the particle. The value of 4 is
the distance a molecule will travel on average before colliding with another
molecule and exchanging momentum. It also can be written as being depend-
ent upon temperature T and inversely on atmospheric pressure P. For very
small particles such as small aerosols, where, Ny, > 1, the theory of molecular
collisions holds; for larger droplets, when the N, < 1 and the continuum
approximations of Maxwell hold, the heat- and mass-transfer equations
developed earlier for diffusional growth are valid. At the size at which water
droplets are just nucleated, typically radii of 0.1 to 1.0 micron, Ny, is O(1) for
which both previously mentioned theories break down. As a result, approxi-
mate relationships were developed to account for kinetic effects for very small
droplets to be incorporated into the diffusional growth equations.

For mass growth, a factor called the condensation coefficient, f3, for vapor
was found experimentally (see Pruppacher and Klett 1997). With a water
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drop in an air and vapor mixture interface environment, a fraction of impinging
molecules actually are incorporated into the drop (condensed). The conden-
sation coefficient is approximately 0.01 to 0.07 with an average of 0.026 to
0.035; a list of experimental results for this coefficient can be found in
Pruppacher and Klett (1997). A length scale Az as a function of f# (Rogers
and Yau 1989) was found experimentally to be

1/2
iy = % <R2“T>/ . (5.136)
This normalization factor can be used to include kinetic effects of vapor
within a distance approximated by the mean free path of air from the droplet,
— R"
R, + /1[; ’

8(B) (5.137)

so that the mass-transfer equation including kinetic effects, which holds for
very small drops is given by

dm

a7 = ARg(B) oy puy). (5.138)

Notice that this equation reverts back to (5.96) when R, becomes large
compared to Ag. Similarly an accommodation coefficient, o, was developed
and described by Rogers and Yau (1989) and Pruppacher and Klett (1997) as
approximating the fraction of molecules bouncing off the drop and acquiring
the temperature of the drop. The definition of « is given below, and is found
to be approximately unity (or near 0.96),

T
T, T

where T is approximately the temperature of vapor molecules leaving
the surface of the liquid, 7> is the temperature of the liquid, and T, is the
temperature of the vapor. Similar to the mass-growth rate equation, the
heat-transfer rate can be written in a form such that in the limit when larger
droplets exist the coefficient converges to 1, and the Maxwell continuum
theory prevails. The factor is defined as

o

(5.139)

flo) = (5.140)

and A, is given by

(K @rReT)'?
= () e 1
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In general, most bulk parameterizations do not include kinetic effects; these
are only important for very small droplets, which grow within a very short
period of time, on O(10) s, by diffusional growth, to sizes where the kinetic
effects are very small. If kinetic effects are included, the G (T, P) and G1(T, P)
are given as,

GL(T,P) =

5 = 5 (5.142)
pLLY PLRV pLLY PL

RTZf (@) | esg(B) RT2f() | pOsivrs(B)
1 1

( L, > Ly, pRT < L, ) plLy | pRT
R,T KTf(OC) lpesg(ﬁ) R,T KTf(O‘) l//esg(ﬁ>

Normally Gy (T, P) and G' (T, P) are multiplied through by p; eliminating it in
the denominator.

G (T,P) = (5.143)

5.10 Higher-order approximations to the mass tendency equation

Higher than first-order, linear-function approximations for saturation vapor
density were first used by Srivastava and Coen (1992) under the assumption
of steady-state diffusion conditions, where the rate increase of mass M for a
particle of radius r is

dm

? = 4an’wfV (pv,oo pv,r) . (5 144)

In (5.144), py o 1s the ambient vapor density and p, . is the vapor density at
the particle surface. With steady-state conditions assumed, the rate at which
energy is released or absorbed by condensation/deposition or evaporation/
sublimation is equal to the rate at which it is conducted away from/toward
a particle, which is written as

dm

T 4nR kfn (T, To) = 4nRKHAT, (5.145)

where fj, is the ventilation for heat.

Similarly to the solution method presented previously, to solve (5.144) and
(5.145), ¥ and x need to be evaluated at appropriate temperatures and pres-
sures; for simplicity this has been done at ambient temperatures (Srivastava
and Coen (1992) and others). Neglecting kinetic effects results in minor short-
comings compared to the improvement of using the higher-order approxi-
mation approach to reduce the error over the traditional linear-difference
approximations. Heat storage and radiative effects are ignored here as well

Ly
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(Srivastava and Coen 1992). Some debate exists in the literature concerning the
use of simple expressions for thermodynamic functions such as K, , L,, etc., but
Srivastava and Coen (1992) showed these errors to be rather insignificant
compared to the improvements made by their higher-order approximations.

As given in Srivastava and Coen (1992), the vapor density at the surface of
a particle is

pr = ps, 1 + 5], (5.146)

which can be written for s, in terms of the vapor density ratio minus one, i.e.

5 = [p" 1] (5.147)

ps,r

where s, is the equilibrium supersaturation over a particle with surface
tension and solute effects included. With iterative numerical techniques the
above three implicit equations (5.144), (5.145), and (5.146) can be solved for
an exact solution. This is an unattractive approach for numerical models, so
modelers usually make vapor-density difference a linear function of tempera-
ture following Fletcher (1962), Mason (1971), Pruppacher and Klett (1978,
1997), and Rogers and Yau (1993),

8(/)500)
~ — 2 AT .148
Psr ™ Pso T —p : (5.148)
in a similar manner to the method presented above.

Using (5.146) and (5.148), the following can be solved for temperature
difference,

(AT),= a(p’;) 1 1y (s s). (5.149)
oT

The mass-growth rate (5.144) becomes

dM 47[1?)'vag 00
- = % ), 1

where the following dimensionless parameter 7y is defined as

L £, 9(Ps0)
K fh oT

y = (5.151)
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cc E3]

In the equations above, the variable is the ambient supersaturation given as

Pos
s= |, 5.152
[ps,oo ] ( )
or
Poc = Psoc(l +5). (5.153)

In the case of (5.150), “1” denotes a linear function of temperature difference
and is used in approximating the saturation vapor density at a drop’s surface.
The accuracy of (5.150) depends on the accuracy of (5.148). Srivastava and
Coen (1992) show that for very warm and dry conditions, such as those with
dry microbursts, tremendous temperature deficits can occur between particle
and the air around the droplet (Fig. 5.1); the linear function approximation
(5.150) will begin to fail, and will result in even worse errors from the exact
iterative solution (5.144) (5.146) where s, = 0. The curves in Fig. 5.1 are for
the evaporation of raindrops for two ambient pressures. Equation (5.150)
always results in an underestimate of evaporation rate.

To relax this error and obtain a better solution, an additional term is added
to the saturation vapor-density function approximation (5.148) to make it
second order,

| I
= = I
ol o o

Error (%)
N
o

35} 1000 mb S

40t
—201510 -5 0 5 10152025303540
Air temperature (°C)

Fig. 5.1. Error in the rate of evaporation of raindrops from the exact solution
as a function of air temperature for selected relative humidities using the
traditional equations (solid lines 1000 mb; dashed lines 600 mb). (From
Srivastava and Coen 1992; courtesy of the American Meterological Society.)
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(5.154)

0(Psoc) pp o L8 (Posc) o
Par B Psoe + o D AT 45— (AT) - -

Now, as described by Srivastava and Coen (1992) the dM/dt is eliminated
between (5.144) and (5.145) and (5.146) and (5.154) are used to obtain the

following quadratic for the temperature difference,
1 (pso 1 /1 (P oo
o (psz ) (AT)2+— + V (pS, ) (S Sr) — O
2pg OT ps \ 7 ar
The solution for the temperature difference is given after some algebra as

?(ponc) 12
)2 (Pucc) ( s,A)} . (5.156)

(5.155)

oT?

3(pso) (psnc)
aT T

3(psoc)
AT = T (ﬂ) —1i[1+( y
147y

Plo) \
oT?

Now, with a lot of algebra, and expanding the square root to terms of the

s,)%, the second-order temperature difference equation is

order of (s

p y
—(—— (s s)[1 oals )]
o) (1 * V> (5.157)

oT

(AT)z =

= (AT)[1 a(s s)];

and the second-order mass rate equation is

dM 4 Rr \% $.00
(8 =" (g a0
: | (5.158)
M
= (E)[l als )]
In (5.157) and (5.158), « is given as
RYERE IS
() e e 513
oT oT

Even higher-order equations can be found that are more accurate than
3
5,)

(dM/dt), given in (5.158) by expanding the square root to terms of (s
s,)*. These are given by Srivastava and Coen (1992) as

and (s
B e

(5.160)

dr )y \de
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Fig. 5.2. Error in the rate of evaporation of raindrops from the exact
solution as a function of air temperature for selected relative humidities
using the second-order equations (solid lines 1000 mb; dashed lines 600 mb).
(From Srivastava and Coen 1992; courtesy of the American Meteorological
Society.)

and

for third- and fourth-order expansions. Users of these higher-order expan-
sions should refer to Srivastava and Coen (1992, pp. 1645 1646) for further
information about solutions to the positive root versus the negative root in
(5.156). Under certain conditions (very warm and very dry) the argument of
the square root may be negative.

Figure 5.2 shows the temperature difference between equation (5.158) and
the exact solution (5.144) (5.146) as a function of air temperature for certain
relative humidities and two pressures, 1000 mb and 600 mb. Here the percent
errors are generally much lower than the case in Fig. 5.1 (notice the change in
scale in the ordinate). Again in extremely warm and dry conditions, errors
become large and unacceptable.
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Fig. 5.3. Error in the rate of evaporation of raindrops from the exact solution
as a function of air temperature for selected relative humidities using the third-
order equations (solid lines 1000 mb; dashed lines 600 mb). (From Srivastava
and Coen 1992; courtesy of the American Meteorological Society.)

The use of equation (5.160) results in the errors shown in Fig. 5.3 (note that
fourth order doesn’t gain much accuracy over the third order). In this case,
clearly the use of higher-order equations has a significant impact on the percent
errors. Even under the most extreme conditions, errors are 5% or less. There-
fore, the use of equation (5.160) over the equation (5.150) is indicated since it is
only slightly more complex and has significantly more accuracy.

5.11 Parameterizations
5.11.1 Gamma distribution

For the vapor diffusion of liquid water particles, the basic equation that is
solved is

d_M o 47'ED (SL l)fv
dr a L2
R T PlPQSL

: (5.162)
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where Qg is the saturation ratio with respect to the liquid. To parameterize
this equation for say, a modified gamma distribution (2.26), the mass change
equation owing to vapor diffusion is written as

P

1 T dM(D,)n(D,)
) dr o

de :l J 27'EDX(SL I)GL(T,P)
) (5.163)
x (0.78 + 0.308N51C/3ere/2)n(DX)de,

where D, is the diameter of some hydrometeor species x. Substitution of
(2.25), the complete gamma distribution for n(D,) into (5.163) gives

1 o
0.CE, =— J 2iD,(S. 1)GL(T,P)
Po 0
[ 1/2 1/4
x 10.78 + 0.308N/3 <Dvi> (%) ] (5.164)

I N i /'D ety 1 D Ry D.
g ELL L < X) exp< Oy [—X] > d( ").
i F(Vx) Dm( an DIL‘(

Integrating gives the desired generalized gamma distribution parameterization
equation for vapor-diffusion growth, assuming that terminal velocity is given
by the following power law,

1/2
Vi(Dy) = D% <@> . (5.165)
P
The complete gamma distribution solution is given by
B 1 NTXOC;"‘
QXCEV = p—02n(SL — I)GL(T,P) F(VX)

(5.166)

3+d, Vs

T (-1+".«'FLA') (— + —> 34dy 1/4
o |:()787Dn\' + 0308F MNSIC/3VX |/2cl/2DK <@> )
: p

Iy
1tvypy 3+d LV
(52) (5+2)
Olx Ox

whilst the modified gamma distribution solution is

Nty
'(vy)

QXCEV = —pl 27'C(SL l)GL(T,P)
0
(5.167)

2p, .

X

1+ vep, 3+d, . s (o \/4
x {O.78F(M>D,L\.+O.308F< i ’+&)N:C/3v;1/zcl/2Dn§ (ﬁ) ,
v P
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and the gamma distribution solution is

1 NTx
CE, = —2n(SL — 1)GL(T,P) —=
Q C P TC(SL )GL( )F(Vx)
— ) 4 (5.168)
0.781“(1Jrvx)Dm+0.3081“<2'4r >N1/3 1/2 1/2D z <po> 7

where CE, is the condensation or evaporation of vapor. After a cloud droplet
is nucleated, it grows by vapor diffusion until it is large enough to grow mostly
by coalescence. For cloud drops with diameters less than 120 microns, the
following parameterized diffusion growth equations can be used (Pruppacher
and Klett 1997) assuming a ventilation coefficient of

2
fo=1+0.108 (N;C/3ere/2) . (5.169)

Thus, the complete gamma distribution solution is

NTXOC}"
L(vy)

1
QXCEV = ;27‘6(SL — 1)G]_(T7 P)

F(H'Vxﬂx) F(ﬁ‘i‘ ‘) 12 (5170)
10—~ /2p, +0.108—" N3y ¢ pitd: (PO

v Shd | iy Ve P ’
e Iy iy
Olx Oy

X

whilst the modified gamma distribution solution is given by,

NTx
F(VX)

1
QXCEV = _277:(SL - I)GL(T7P)
p
171
1+ v, 3+de v o\ G170)
X 1.or( > e+ 0. 108F< X)Nfcﬁ v, e, D3 ( 0) :
K My My P
and the gamma distribution solution is,

N Tx
L'(vy)

1
0.CE, = ;271(SL — 1)GL(T,P)

Ly (5.172)
X ll-OF(l +V)Dpy + 0.1080(3 4 d, + v, )Ny e D3 (p0> 1 .
! p

The change in number concentration during evaporation is a complicated
issue in many regards. There is no change in number concentration during
condensation. For simplicity, many assume that the number concentration
change is related to the mixing ratio change as follows,
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NTx

X

NTxCEV = (QXCEV)7 (5173)

where (Q,CE) is found from the above equations.

There are problems with this formulation in that it really does not capture
the nature of the number of droplets that evaporate. An alternative is pre-
sented below. Starting with the equation for rate of change of radius, the
ventilation coefficient is set to one, and it is assumed that only the very
smallest drops are fully evaporating,

dR,

P (S DHGL(T,P). (5.174)
From (5.174), it can be written that
0 t At
dR,
J RS r = J (S 1)GL(T,P)dt. (5.175)
Rumax t 0

Now Ry 18 the largest remaining drop after ¢ seconds of evaporation and is

R2

= (S DGL(T,P)A, (5.176)
or

Dmax = [ 8(SL  1)GL(T,P)A1">. (5.177)

With this D,,,«, one can integrate the number of particles in the distribution that
will evaporate completely so that a distribution of sizes from 0 to co is recovered,

dNTx.evap NTx Dx max
= (v, ——]. 5.178
dr Al (vy) Y Dy ( )
5.11.2 Log-normal distribution
Start with the vapor diffusion equation for liquid,
1 [ dM(Dy)n(D, 1T
; [ %wx - J 2D(S. VGL(T, PYfn(Dy)dD,.  (5.179)
0 0

The log-normal distribution spectrum is defined as

Ntv In(D,/D,.)]?
n(D.) :mn—;Dxexp< w> (5.180)
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The prognostic equation for the mixing ratio, Q,, for vapor diffusion can be
written as

do, 1|
QVCEx = th = ; J 27‘E(SL I)GL(T, P)
0
(5.181)
12 1/2
x ¢ 0.78 4+ 0.308N!/3 i—(%) D& D.n(D,)dDy,

where N is the Schmidt number, v, is the viscosity of air, p is the density of
air, and pq is the mean density at sea level for a standard atmosphere.
Expanding (5.181) results in two integrals,

27I(SL — 1)GL(T,P)

QVCE,\' =
o
N . s (5.182)
X J0.78Dxn(DX)de+ J0.308Nslc/3 9(@> D& Don(D,)dD, b
0 0 FeAp
Substituting (5.180) into (5.182) gives
2n(SL— DGL(T,P) [ 0.78Nw [ [ [In(Dy/Du))
Och= p V2na, i P 202 dbx
(5.183)

(e (o) 3°8N”3D(%T DY (- @D
Vx P ' * " Dy P 20—% gt
0

All D, terms are divided by D,,, for each of the two integrals,

2n(S. 1)GL(T,P) Nr T In(Dy/Dw)) . { Ds
O\CE, = p Voo 0.78Dm,'0 exp 207 d Do

(5.184)

() ()" 308N1/3DW)T D) I0(De/Dul") 4 (D
w) \p) T ) \p,) TP 207 D.) [

0
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We now let u = D,/D,,,

2n(S.  1)GL(T,P) Nr T (I u)?
vCE, = 0.78D,, | ex du
© p \/271'0} P 2073,
(5.185)
N2 1/4 i [ - 1o ul?
+<ﬁ> <@> 0.308N'/3D{,T) Ju(‘z )exp< [n”z] )du
Vx 1Y 26}(
0
By, letting y = In(u), u = exp(y), du/u = dy, so,
_ 2n(Sy — 1)GL(T,P) Nr. T s
O.CE, = ; = 0.78D,, | exp(y)exp 207 dy
> (5.186)

1/2 1/4 wir [ 2
+ <Cx> <p0> 0.308NS'C/3D,,§ J exp (dx 3 y> exp <— yz> dy} ,
Vy 0 2 20%

where the limits of the integral change as u approaches zero from positive
values, In(x) approaches negative infinity. Likewise, for the upper limit, as
u approaches positive infinity, In(x#) approaches positive infinity.

Now the following integral definition is applied:

0 b/Z

J exp(2b'x) exp( d'x*)dx :\/gexp (7>, (5.187)
by allowing y = x, and for the first integral, @’ = 1/(2¢6%), ¥’ = 1/2, and for the
second integral, @ = 1/(26%), ¥ = (d + 3)/4. Therefore, (5.186) becomes the
prognostic equation for Q, for the vapor-diffusion process assuming a log-
normal distribution,

2
o.cp. 8L DGL(T, PN+, { 0.78D,. exp <62>

o

1/2 1/4 4yt d. - 3)252
+<i—> (%) 0.308N2D5 ) exp <%>}

5.12 Bin model methods to vapor-diffusion mass gain and loss
5.12.1 Kovetz and Olund method

(5.188)

To accommodate the mass transfer with mass gain and loss owing to vapor-
diffusion processes, the constraint is that the mass must be conserved, as
expressed by
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oo
J n(M)dM = constant, (5.189)
0

where accommodations need to be made for complete evaporation.
The general form of the vapor-diffusion gain and loss transfer equation is
given as

an(M) d dm

ey [n(M)E], (5.190)
where, n(M) is the number of particles of mass M. One of the most commonly
used schemes in the 1970s was the Kovetz and Olund (1969) scheme. Gener-
ally, the starting place is to compute the diffusion growth dM/dr as in (5.190).
Then, the following can be written using index J to indicate the bin to which a
droplet belongs, and the mass of droplets M(J) within that bin, to predict an
intermediate value of M,

M) = M(J) +Az<i1if>J. (5.191)

The new n(J) att = 7 + 1 is computed from the latest n*(J) by
J
n(J) =Y RU,JI (), (5.192)
jl

with R(J,J') defined by

for M(J 1)< M'(J')) < M(J)

(5.193)

M
R(J,J") = M(Jill) M) gor M(1) < W) < MU +1).

0 for all other cases

This scheme by Kovetz and Olund satisfies the constraint (5.189).

5.12.2 The Tzivion et al. method

The procedure of Tzivion et al. (1989) begins in a similar manner to the Kovetz
and Olund (1969) method with the general form of the vapor-diffusion mass
gain and loss transfer equation given as

an(M)
ot

a9
oM

[n(M) ddiﬂ , (5.194)

evap,cond
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for which there is an analytical solution (see Appendix B of Tzivion et al. 1989).
In (5.194), the following describes the change in mass with time for a single drop,

dm

b = C(P,T)ASM'/3, (5.195)

evap,cond
where the specific humidity surplus is denoted by AS, and C(P, T) is a known
function of pressure and temperature.

If AS < 0 then evaporation occurs, and if AS > 0, condensation occurs. The
term C(P, T) is similar in many ways to G(T, P) or G'(T, P) in the evaporation
term for bulk parameterization. The analytical solution, presented in Tzivion
et al. (1989) is given without derivation here as

3/2
7:) ] , (5.196)

5 \I2
n(M,t) =M 1/3[<M2/3 §r> ]xn, 0[<M2/3

where n,_ ¢ is the initial drop distribution.
The variables T and t* are given by

[SSI \S]

t

T = JC(P, T)AS()dt (5.197)
0
and
tHA
= j C(P, T)AS(1)dr. (5.198)

t
Now following Tzivion et al. (1989) and integrating n(M, ) on the interval
given by [xt;xx11], the following equations for the zeroth and first moment
can be found,
YVi+1
Nelt+ Af) = J ne(M, 1)dM (5.199)
Yk
and
YVi+1 ) 3/2
L(t + At) = J [<M2/3 +§r*> ]nk(M, t)dM. (5.200)
Yk
The variables y; and y;,; (limits of integration) are defined as

7 32
yk:<x,§/3 §T*> (5.201)
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and

Ly 2 VP
yk+1:<xk-/4—l gf*> : (5.202)

Tzivion et al. describe the physical interpretation as the following. Start with
a category (k) with bounds given by [x;x;.1]. Next determine the region
[ yk; yi+1] that encompasses all of these particle sizes, which will get smaller
by evaporation or get larger by condensation in time increment At and fall
into the region [x; X1

As the integrals for the zeroth and first moments do not span entire
categories [xz; x¢+1], the method used for collection is employed. This follows as

4 : M ; M x;
Mn (M, t) = X fi(t <xk“7> +x/ t <—>, 5.203
(M0 =Xl () a0 () (5209)
where fi(¢) and g.(¢) are values of n; at M = x; and M = x;, , respectively. This
can be substituted directly into the zeroth-moment equation, (5.199). The
first-moment equation above can be solved by multiplying and dividing the
integrand in (5.200) by M, which gives

Yi+1

2 N Mn (M,
Li(t+ Ar) = J M2 MM 1) . (5.204)
3 M
Yk
To get the solution, realize that Mn (M, ¢) is linear in M, so the following
integrals have to be solved to complete the system of solutions for the first
moment

Y+l

o+ 30)

dm (5.205)
M

Yk
and

Yk+1 5 3/2
J <M2/3 +§r*) dMm. (5.206)

Yk
These integrals have analytical solutions given in Tzivion et al. (1989). The
performance of the two-moment scheme in finite difference form (5.199),
(5.203) and (5.204) against the analytical solution (5.196) for an initial gamma

distribution shows excellent agreement (Fig. 5.4) for an environment charac-
terized by 50% relative humidity after 20 minutes.
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Fig. 5.4. An analytical solution to the evaporation equation as compared
with the proposed approximation after 20 minutes of evaporation in a
subsaturated environment of 50% relative humidity. The category drop
concentration, Ny, is normalized by the initial drop concentration. (From
Tzivion et al. 1989; courtesy of the American Meteorological Society.)

5.13 Perspective

Nearly two decades ago Srivastava (1989) made an argument for not using
macroscale supersaturation as in traditional diffusion theories, such as the
ones explained in this chapter (as in Byers 1965; and Rogers and Yau 1989),
and even in Srivastava and Coen’s (1992) own work. Rather he advocated
using microscale approximations to supersaturations. These are of a form
such that turbulent fluctuations are taken into account. Srivastava (1989) did
realize in the end that his approach of attempting to include microscopic
turbulence would be exceptionally complex to derive and program, but also
exceptionally computationally intensive. It was noted that equations could be
developed for bin microphysical parameterizations and bulk microphysical
parameterizations. He hoped that one day a simpler representation of the
concept of including microscopic supersaturation influences on droplet growth
might be found for both bulk and bin microphysical parameterizations.



6

Vapor diffusion growth of ice-water
crystals and particles

6.1 Introduction

After the nucleation of an ice-water particle or crystal, the addition of ice
mass to the particle or crystal owing to supersaturation with respect to ice is
called deposition. Furthermore, the loss of ice mass from an ice-water
particle or crystal owing to subsaturation with respect to ice is called sublim-
ation. Together these are called vapor diffusion of ice-water particles and
crystals that are both governed by the same equation, which is nearly
identical in form to that for diffusion of liquid-water particles except for
some constants and shape parameters. The derivation for the vapor diffusion
equation follows much the same path as that for deriving a basic equation to
represent vapor diffusion for liquid-water particles. The main differences are
related to the enthalpies of heat (enthalpy of sublimation instead of enthalpy
of evaporation), and the particular shape factors for ice crystals, which
include, for example: spheres; plates; needles; dendrites; sectors; stellars;
and bullets and columns that can be either solid or hollow, etc. (see
Pruppacher and Klett 1997 for habits at temperatures between 273.15 and
253.15 K, and Bailey and Hallet 2004 for habits at temperatures colder than
253.15 K).

Typically, for diffusion growth of ice-water particles and crystals, the
electrostatic analog is invoked. This is similar to stating that the vapor
diffusion growth of the various ice-water crystal shapes is related to the
capacitance of the various shapes. The main shapes that are representative
of the various ice-water particles include spheres, thin plates, oblates, and
prolates. Kelvin’s equation is useful for predicting the nucleation of pristine
ice crystals; however, solute effects are usually not considered, as solutes often
do not freeze until the solute reaches rather cold temperatures. Finally,
ventilation effects are included even at small particle sizes just as ventilation

139
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effects are included for small cloud droplets. Admittedly, though, the
ventilation effects are nearly negligible at the smallest ice-water particle and
crystal sizes.

6.2 Mass flux of water vapor during diffusional
growth of ice water

The diffusional change in mass of ice-water particles owing to subsaturation
or supersaturation with respect to ice water primarily depends on thermal and
vapor diffusion. In addition, for larger particles, advective processes are
important, and have to be approximated from laboratory experiments. In
the following pages equations will be developed to arrive at a parameteriza-
tion equation for diffusional growth changes in a spherical ice-water particle
that is large enough, on the order of a few microns in diameter, that surface
curvature effects can be ignored. Moreover, the ice-water particles will be
assumed to be pure (non-solutes). Other shapes besides spheres will be considered
later in this chapter.

Following the same steps as with liquid-water drops, except replacing
variables associated with liquid water with those associated with ice water,
an equation for vapor diffusion growth of ice water can be obtained.

For ice-water particles, the same continuity equation for vapor molecules
can be used as was used for liquid-water particles,

d
% +ueVp, =yV?p,. (6.1)

The vapor density is given by p, = nm. In this definition » is the number of
water-vapor molecules and m is the mass of a water molecule. Assume that
the flow is non-divergent, and that u is zero, or stationary flow exists (sum of
the air-flow velocity and the vapor-flow velocity is zero). When the steady-
state assumption is used, as for liquid-water drops, Fick’s first law of
diffusion for n results. The variable ¥ is the vapor diffusivity as given in
Chapter 5. With these assumptions and definitions we can easily arrive at an
expression for dM/dr for ice particles in a similar manner as was done for
liquid-water drops,

‘L—Af = 4nR,2.m!,b§—Z, (6.2)
where R is the distance from the droplet center, and R, is the radius. The
boundary conditions are as before, as n approaches n.,, R approaches infinity
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R, and as n approaches n,, R approaches R,, then the following can be
written,

dm
— =4aR.my(n  n,), (6.3)
dr
or,
dm
@ = 4nRr‘p(pv,oc pV,r)? (64)

which is the mass change of ice particles owing to vapor density gradients.

6.3 Heat flux during vapor diffusional growth of ice water

An analogous procedure to that used to obtain an expression for dM/dt, can
be followed to obtain a relationship dg/dr, which is the heat flux owing to
temperature. From the continuity equation for temperature T, the following
equation can be written,

aT
VT = KV°T. (6.5)

Again assume that the flow is non-divergent, and that u is zero or stationary
flow exists (sum of the air-flow velocity and the vapor-flow velocity is zero).
When the steady-state assumption is used as with liquid-water drops, Fick’s
law of diffusion for T results. The variable x is the thermal conductivity as
given in Chapter 5. With these assumptions and definitions we can easily
arrive at an expression for dg/dr for vapor diffusion of ice.

Following the method for deriving an equation for diffusion for a liquid-
water drop, an expression for dg/dr results,

d aT
=T — 47R?pKe, (—> , (6.6)
dr ar)r &
where the following can be written for R = R,,
dg
i 4nR.pKe,(T,  Tx); (6.7)

this is the energy exchange owing to thermal gradients.

6.4 Plane, pure, ice-water surfaces

The diffusional change in mass of an ice-water sphere owing to sub- or super-
saturation depends on thermal and vapor diffusion. Next an equation is
found for diffusional growth changes in an ice-water sphere that is large
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enough, on the order of a few microns in diameter, that surface curvature
effects can be ignored. Moreover the ice-water sphere is assumed to be pure.

Following steps used in deriving the vapor diffusion of a liquid-water drop,
but assuming an ice-water sphere, the following can be found as

dR,
R, o (Si  DGi(T,P), (6.8)
where Gi(T, P), a thermodynamic variable that is a function of T and P, is
1 1
Gi(T,P) = = , (6.9)

piLs 4 PR T piLs 4 _h
R.KT?, ety RKTZ ' pOsty

where L is the enthalpy of sublimation, egy is the vapor pressure over ice, Qsy
is the saturation mixing ratio over ice, and p; is the density of ice. The mass
growth rate approximation, which is needed to develop a parameterization, is
given by the following for an ice sphere as

dm
dr
The vapor diffusion, mass growth equation for ice-water spheres can also be
derived following Rogers and Yau (1989), using the methods for liquid-water
drops, but replacing variables for the liquid phase with the ice phase,
(R _ (5 1 . (6.11)
dr <L 1) Ly, | piRT
R.T KT " Yesi(T)
Note that this equation has a correction term in the denominator, which is
small compared to the other two terms, and can be retained or neglected. The
mass growth rate approximation, which is needed to develop a parameteriza-
tion, is given by

= p21D(S;  1)G(T,P). (6.10)

dm

T pi2aD(S;  1)Gi(T,P), (6.12)
where G/(T, P) is similar to G;(T, P), except G;(T, P) has the correction term as
in the liquid vapor diffusion growth equation,

1

G{(T’ P) = Ly L | pRT -
(W 1) kT T Yesi(T)

(6.13)

6.5 Ventilation effects for larger ice spheres

One aspect we have not considered is ventilation effects. The equation for
vapor diffusion growth derived so far is based on a stationary drop with no
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relative flow past it; that is, advective effects on the vapor density gradients
have been ignored. These effects in general are very difficult to include
explicitly, so they are parameterized in terms of the Schmidt number (N, =
vy = 0.71) and the Reynolds number (DV1(D)/v) where Vt is terminal
velocity. The ventilation factor used for ice particles is written in the form of

fy = 0.78 4+ 0.308N N 1/2. (6.14)

With (6.14), the mass growth equation is written as

(L—Af =2zD(S;  1)Gi(T,P)f., (6.15)
or

M

CL—I =2zD(S;  1)G(T,P)f,. (6.16)

Again Gi(T, P) and G/ (T, P) are multiplied through by p; as in Chapter 5.

6.6 Parameterizations
6.6.1 Generalized gamma distribution

The vapor diffusion of ice-water particles, which can include sublimation and
deposition, can only occur at temperatures below 273.15 K. The basic equa-
tion that is solved is

dM(D)  4xD(S; 1)f,

dr _{LE

T (6.17)
KR, T prsJ

where D is the capacitance using the electrostatic analog (Pruppacher and
Klett 1997), Qgp is the saturation mixing ratio with respect to ice, and the
ventilation coefficient for snow aggregates (Rutledge and Hobbs 1984) is

fi = (0.65+ 044NN ). (6.18)

For graupel, frozen drops and hail with which D > 120 mm, the ventilation
coefficient is given by

fo= <0.78 + 0.308N;C/3N§g2), (6.19)

and for ice particles with D < 120 mm, the ventilation coefficient is given by

2
fo= (1.00 + [0.108N§C/3N3€/2} ) (6.20)
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The form of the equation integrated for larger spherical particles is

LTMOOAD) ) VT b G
pl & pl (6.21)

X <0.78 + 0.308N;C/3N§e/2)n(px)dpx,
where the subscript x denotes any ice habit x. This is then rewritten as

1 o D.Vr, 1/2 1/4
0.DS; =— J 21Dx(S; — 1)Gi(T, P)|0.78 + 0.308N,/’ (V—T> <@>

Po v 0
0 (6.22)
NTx,ux D, vk | D, H Dy

T () <Dm-> P\~ b, )|*\Don)

and
1 o D Vi, 1/2 1/4
Q0.DS. - J 27D, (S; — 1)Gi(T, P)|0.78 + 0.308N/3 (\}‘/T) <pp°>

1] X

0 (6.23)

NTxﬂxa;X Dx Vil lex D,x e q Dx
F(Vx) D}L\’ P e an an ’

where Sy is the saturation ratio with respect to liquid.

For larger ice particles (D > 120 microns) that are nearly spherical the
following equation can be derived for a modified gamma distribution of
deposition/sublimation. Integrating gives the desired parameterization equa-
tion for vapor diffusion growth, assuming terminal velocity, is

1/2
Vre(Dy) = cD% (%) . (6.24)
The complete gamma distribution solution is then given as
N 1 o ] NTXOC;*
0.DS. = p27r(Sl 1)Gi(T, P) —F(vx)

(6.25)

I+vep, 3+dy | PaVx

p () ) N
x 0.78$Dm+0.308F<2M7“N§c/3vx'/ZCi/zD,ﬂ? <%) ,

1+v.\‘u,\—) (3+d\‘ /l,\‘i\‘)
( ¢ 2uy + iy

a)( Hx ax
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whereas, the modified gamma distribution solution is

N Tx
L'(vy)

L+ v, 3+d, v -
x [0,73r (M) D, + 0.308F( 2+ | Vil ) Nyl 1/2D
e X Hy

1
0.DS. = ;27T(Sl 1)G1(T7P)

e (6.26)
()]

The gamma distribution solution is

N Tx
T(vy)

iy 1/4
x [0-78F(1 +v)D m+0308F(3+d vv)zvlc/3 212D, <p0) }
2 ‘ p

0.DS. :%271(51 — 1)G{(T, P)
(6.27)

For smaller particles (D < 120 mm) that are nearly spherical, the following
equation has a more appropriate ventilation coefficient. The complete
gamma distribution solution is given by

1 NTXO(V.‘
0.DS. = —2n(S; — 1)Gy(T, P) —"x
L= Son(S = NG P) T
r(5e) () G
x 1.0]7_"‘1),ML0.108"‘71\12/3 eD} ( 0) ,
(52) (5+52) p
Oy Oy
whereas the modified gamma distribution solution is
_ 1 X X NTX
0:DSL = 2n(S: NG(TP) e
1+ vt 34d, | v, oo\ (6.29)
X 1.01“(%) w4+ 0. 1ogr< 4+ >N2/3 Tl D3+d< 0) .
My x Hy ! P
The gamma distribution solution is given as
1 NTx
QXDS :—27Z Si — 1 Gi T,P
L= 2n(S ~ NG P g
(6.30)

12
X [1.or(1 +V)Dpe + 0.108T(3 + d, + v, )Ny le, D3+ <pp°) 1 .

The change in number concentration during sublimation is a complicated
issue in many regards. There is no change in number concentration during
condensation. For simplicity, many assume that the number-concentration
change is related to the mixing-ratio change as follows,

Nt

N1SBy = Q.SB, Q— (6.31)
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where mixing ratio tendencies for deposition and sublimation are written,
respectively, as

Q.DP, = max(Q,DS,,0.0), (6.32)
and

0.SBy, = min(Q,DS,,0.0). (6.33)
There are problems with this formulation in that it really does not capture the
nature of the number of droplets that evaporate. An alternative is to start
with an equation for the rate of change of the radii of the particles; the

ventilation coefficient is set as equal to one, assuming it is only the very
smallest ice particles that are fully subliming,

R,
"dd—t =(Si DGi(T,P). (6.34)
From (6.34) it can be written that
0 t At
dR,
J R,Edt = J (Si  1)Gi(T,P)dr. (6.35)
Rimax t 0

Now R,ax, the largest remaining drop after Ar seconds of sublimation, is

R2
D= (S 1)G(T,P)AY (6.36)
or
Dmax = [ 8(51 I)Gl(T7 P)At]l/z' (637)

With this D, one can integrate the number of particles in the distribution
that will evaporate completely so that you return to a distribution of sizes
from 0 to oo,

NTX Dmax
N,SB, = (v, . 6.38
g () (639

6.6.2 Log-normal distribution

The log-normal distribution parameterization for a spherical piece of ice is
now given. We start with the vapor diffusion equation for ice,

dD, = % J 2aD(Si DGi(T,P)fon(D)dD..  (6.39)
0

0 dr

| T dM(D.)n(Dy)
P 0
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The log-normal distribution spectrum is defined as

N1, In(D./Dy))’
n(Dy) :mexp< %), (6.40)

where ¢ is a distribution parameter. The prognostic equation for Q. for vapor
diffusion of ice can be written as

QVDSx = =
P

do, 1(, . |
s J271G,(T,P)(S1 1)
0

6.41
2 (6.41)

: 1/2
x ¢ 0.78 + 0.308N'/3 li— <@> D D,n(Dy)dD,.

x \ P

Expanding results in two integrals,

o0

2nGi(T, P)(Si 1) J0.780.n(D )dD,

P

QVDSX =
6.42
[ . 12 1/2 ( )
+ J 0.308N./3 [—X (@> D' D.n(D,)dD,
Ve \ P

X

Substituting (6.40) into (6.42) gives

QVDS-“ = ZnGi(T’P) (Si - 1) {078NT‘ J eXp <_ M) de

p V2no, 203
0
(6.43)

Nre (e (o) "* P [In(D, /D))
o <7) " 0.308N./ JDX- exp| — = dp, §.
0

Dividing all D, terms by D,,, for each of the two integrals gives

_ 2nGi(T,P)(S; 1) Nr« T [ln(DX/DM)]Z D,
0\DS, = p NG {0.78Dm l exp< By~ R )d <an>

X

(6.44)

N2 \1/4 weny | at 2
Cx pO 1/3 ( 5 ) J DX [ln(D,r/an)] Dx
— — | 0.308N /"Dy —_— ————"|d(= ;-
" (Vx) ( p ) * Dn) P 202 Dy
0
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We now let u = D,/D,,.,

27Gi(T,P)(Si — 1) Nro 1 In u]?
0.DS, = nGi(T, P)(S ) Nt {O.78DmJexp (_[nu} )du
0

o \/2710,(

(6.45)
1/2 1/4 an f - 2
L) (20 o308n 3D ) Ju( ) exp [ ) g, U
Vx P ¢ 20’3
0
and letting y = In(u), u = exp(y), du/u = dy, so,
 20Gi(T,P)(Si — 1) Ny T ¥
o.DS, = 5 Vo 0.78D,; J exp(y) exp 72#‘)2( dy
(6.46)

1/2 1/4 S b
o Po 1/3 5252 di+3 y
+(g> <;> 0.308NSC/ Dyi J exp( 5V exp _2_0)2( dy »,

where the limits of the integral change as u approaches zero from positive
values and, In(u«) approaches negative infinity. Likewise, for the upper limit,
as u approaches positive infinity, In(x#) approaches positive infinity.

Now the following integral definition is applied,

iy B bl2
J exp(2b'x) exp( a’x2)dx:\/gexp <7>, (6.47)

by allowing y = x, and for the first integral, @’ = 1/(26°), b’ = 1/2; and for the
second integral, &’ = 1/(26?), b’ = (d+3)/4. Therefore (6.46) becomes the prognos-
tic equation for Q, for the vapor diffusion process,

. . 2
oups, - ZEGI(T-P) p(sl DN, { 0.78D,, xp <%>

N 12 1/4 i3 2 9
o)) oot

6.7 Effect of shape on ice-particle growth

(6.48)

The electrostatic analog is employed with ice crystals (Pruppacher and Klett
1997) and the following in the subsections are used to represent capacitance
analogs. Hall and Pruppacher (1976) provide the following ventilation
expressions for ice crystals,
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fo=1+0.14x> for X <1 (6.49)
fv=0.864+0.28X forX > 1, '
where X is given by
X =NLNS, (6.50)
Nse = i (6.51)
and
Vr(D)L*
Nie = % (6.52)

In (6.52), L* is the ratio of the total surface area, W, to the perimeter, P, of the
crystal.

Wang (1985) was decidedly convincing that simple shape approximations
for crystals are not sufficient for computing ventilation coefficients. Thus
Wang and Ji (1992) derived ventilation coefficients assuming Stokes flow for
columns, plates, and broad branched crystals. These are included below as
they represent the newest values available for research.

6.7.1 Sphere

A sphere is represented by the radius r with a capacitance of
C() =r (653)

and the above ventilation coefficient should be valid, or L* = W/P = 2a, with
P =2nr and W = 4m°.

6.7.2 Hexagonal-shaped plate

A hexagonal plate’s capacitance can be well represented by a circular disk and
is the easiest to parameterize,
2 .
Co=2. (6.54)

T

where Cy is the capacitance, and r is the radius of the disk that describes the
hexagonal plate.

The P for a disk is P = 2nr for the major axis of the disk falling perpendicu-
lar to the relative flow. The surface area is given by the volume divided by the
height, with values tabulated by Pruppacher and Klett (1997), e.g.

h=1.41x 10 2D+ (6.55)
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with height 4 and circumscribed diameter D in cm. The volume V in cm? is

V =917 x 10 D>, (6.56)

Alternatively, following Wang and Ji (1992), the value of f, is given as

fo=1 0.06042(X/10) + 2.79820(X/10)*

; s (6.57)
0.31933(X/10)* + 0.06247(X /10)*,

where X is as defined in (6.50) and is valid for 1 < N, < 120. For broad
branched crystals, a similar relation can be derived from numerical results as

£, = 140.35463(X/10) + 3.55333(X/10)?, (6.58)

and is valid for 1 < N,. < 120.

6.7.3 Simple ice plate shapes of various thickness

Simple plates of various thickness are approximated by oblate spheroids with
major and minor axes lengths of 2a and 2b, respectively. Following Pruppa-
cher and Klett (1997) and McDonald (1963), the equation used for plates of
varying thickness is

ae
Co = , 6.59
* sin e (6.59)
with ¢ given as
b2 1/2
€= (1 az> . (6.60)

The P for an oblate is P = 2na for the major axis falling perpendicular to the
relative flow. Alternatively, P can be computed as

P =2na*+n(b*/e)In[(1+¢)/(1 )], (6.61)

where a and b are minor and major axes of an oblate spheroid. The surface
area is given by dividing V by #,

h=0.138 D778 (6.62)
with height 4 and circumscribed diameter D in cm. The volume V in cm® is,

V=897 x10 > D*'"8, (6.63)
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6.7.4 Columnar-shaped ice crystals

McDonald (1963) and Pruppacher and Klett (1997) also proposed the
following prolate-spheroid capacitance equation for the capacitance of
columnar crystals,

A
Co=———"7"", 6.64
"7 Inf(a+A)/b] (6.64)
where A is given by
A=(@ )" (6.65)

For prolates the value of P is computed as
P =n2a(l —0.25¢ — 0.0469¢* — 0.0195¢° — 0.0107¢* — 0.0067¢'" — ). (6.66)

The surface area is approximated following that for a bullet rosette where w is
the width of the crystal and L is the length of an individual bullet. The surface
area of a column is given by

Q= (nw2/4) + nwL, (6.67)
where L = 2a. Following Wang and Ji (1992) again, the value of the
ventilation coefficient is
fo=1—0.00668(X/4) +2.79402(X /4)* — 0.73409(X /4)* 4+ 0.73911(X/4)*, (6.68)
which is valid for 0.2 < N,. < 20.

6.7.5 Needle-like ice-crystal shapes
Needle-like crystals are treated like extreme prolates, where b < a; thus the
equation for a prolate given above can be written as
a

Co = TntaTb)” (6.69)

The values of P and L for needle-like crystals could be approximated with
that of extreme prolates.
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Collection growth

7.1 Introduction

An issue that has perplexed the minds of great meteorologists for many years
now, and still does, is the determination of the length of time that it takes for
rain to form and fall to the ground (Knight and Miller 1993). This problem
has been the center of much past and present research. First, nucleation
occurs, followed by condensation growth, and finally drops begin to grow
to a size that is large enough that the probability of a collision becomes non-
negligible. This size seems to be around diameters of about 41 um. Until
drops grow to this size by vapor diffusion and collection from very small
droplets, or if aerosols of the size of ultra-giant cloud condensation nuclei are
available, droplets may not grow to the size necessary for rapid coalescence. If
they do, then rapid coalescence or collection growth begins to dominate. In
general, it takes some time for a few particles finally to reach about D = 82 mm,
a size where more rapid coalescence can take place.

Collection growth can be presented as a relatively straightforward two-
body collection continuous growth problem or a complex, statistical collec-
tion problem. Both of these are included in the discussion that follows.
A primary mode by which hydrometeors come together is by differing fall-
speeds such that particles of different sizes, densities, or shapes fall at
differing speeds, which allows collisions to occur. Furthermore, electrical
forces can act if particles are differentially charged, which may enhance
collection; or collection may decrease if the particles have the same charge
sign. Finally, though there is much debate surrounding this, turbulent forces
may play a role in the collection of droplets. This latter issue will be left to
discussion in periodicals for now. In general, gravitation effects that result in
relative-fallspeed differences between particles dominate over electrical and
turbulent effects.

152
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When particles begin to collide there are at least two factors that need to
be considered. These are the probability that droplets will collide; and the
probability that collisions will result in coalescence (that particles will stick
together). The product of these two probabilities is called the collection
efficiency.

When two droplets collide, the following are possible outcomes. First,
when particles collide they may coalesce. Second, the particles may collide
and bounce apart (rebound). Third, particles may coalesce and then separate
with original sizes preserved. Fourth, particles coalesce and then separate with
resulting different sizes and may possibly produce additional droplets.

The important variables in collisional growth include; the size of the particles
involved; the fall velocities of the particles; the trajectory of the particles; the
number of collisions; the number of coalescing collisions (collections); elec-
trical effects; and turbulent effects. Finally it is important to understand that
collisional growth goes by several names including collision growth, accretion
growth, coalescence growth, riming growth, and aggregation growth.

7.2 Various forms of the collection equation

There are three models of the collection equations following Gillespie (1975)
and Young (1975 and 1993): the continuous growth model; the quasi-
stochastic or discrete model; and the pure-stochastic, probabilistic, statistical,
or Poisson model. Figure 7.1, reproduced from Young (1975) illustrates these
models well. According to Pruppacher and Klett (1997), the goal of collection
is to describe the growth of N drops in a spectrum of drops. What is needed to
describe this is the collection kernel, which is described by only the drop mass
where A;; approaches A(m). It is important to realize that A; represents
collection in a well-mixed cloud model. This is really describing collection
as a whole in a very simple, idealized, whole cloud. N; is the number of
droplets in bin k; N, = n; times V (volume); Kj; is the collection kernel between
drops in bins i and k£ this describes the rate of i collecting & size droplets; and
Ajx 1s K, divided by V. The parameter A can be thought of as the probability
per unit time of collections between any pair of i and k size drops or drops of
bin size i and k. This is the so-called “well-mixed” cloud model assumption.
The model for growth is that there are initially N drops in a cloud with mass
M, N' droplets having mass m, that N < N'; coalescences only are possible
between drops and droplets (Pruppacher and Klett 1997). Growth of droplets
by the three models of collection is summarized below.

The continuous growth model predicts that all collector drops of a given
size will collect the same number of smaller droplets and grow to the same size
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Fig. 7.1. The growth of 10 mm-radius drops collecting 8 mm drops for
the continuous, discrete, and Poisson collection models. The expected
number of collection events within a given timestep 0.5 s. Numbers within
the circles reflect the percentage of drops of that size; arrows show growth
paths. (From Young 1975; courtesy of the American Meteorological
Society.)

as each other after time interval dr (Fig. 7.1). This implies that each collector
drop grows at the same rate. Mathematically, the number dNg (change in
small droplets collected) is interpreted as the fractional number of small
droplets collected by every collector droplet of radius Ry in time interval dr.
Or, as described by Gillespie (1975) and Pruppacher and Klett (1997),
A(m)N'dt is the number of droplets of mass m, which any drop of mass M
will collect in time dr.

The quasi-stochastic or discrete model predicts that all clouds will have
the same size distributions after time ds. Mathematically, the number of small
collected droplets dNg is interpreted as the fraction of drops that collect a
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droplet in the interval dz. As the collection is a discrete process, drops do
not collect fractional droplets. Thus, this is interpreted as saying that a
fraction f of drops will grow collecting droplets of a given size, and a fraction
(1 f) will not. Therefore, drops that are initially the same size may have
different growth histories, which allows a spectrum of drops to develop
(Fig. 7.1). However, only one outcome is permitted for each initial condition.
There are two interpretations that can be made. Droplets may be distributed
uniformly. A drop then either collects a droplet, or it does not collect a
droplet. Secondly, droplets may be randomly distributed. Some droplets
may collect one, two, or more droplets; while others may collect none. As
in the continuous model, in this quasi-stochastic model, A(m)N'd: is
the number of drops of mass M, which will collect a droplet of mass m in
time dr.

The purely stochastic, probabilistic, or Poisson, model predicts that all
clouds will have a unique distribution after a time interval dz. Mathematic-
ally, the number of dNg is interpreted as the probability that a collector
drop will collect a droplet of some size in a time interval dz. In this model
it is assumed that all droplets have positions that are probabilistic in nature
(Fig. 7.1). Moreover, as before, it can be stated that A(m)N'dr is the prob-
ability that any drop of mass M will collect a droplet of mass m in time dr.

Ironically, considering the mathematical differences between the quasi-
stochastic model and the pure-stochastic model (Pruppacher and Klett
1997), they are believed to produce essentially the same result after some
sufficient time interval d¢, though this contention is not uniformly accepted
by the community.

7.3 Analysis of continuous, quasi-stochastic,
and pure-stochastic growth models

The purpose here is to explore the theoretical bases and analyses presented by
Gillespie (1975) and summarized by Pruppacher and Klett (1997) of the
continuous, quasi-stochastic, and probabilistic growth models. All three will
be examined in some detail. A discussion will be made of the probabilistic
growth model, though it is not used in bulk or in many bin model parameter-
izations very often, not even very simple bin models. This section hopefully
will provide a background for understanding the three possible consider-
ations of drop droplet collection modes, and how to develop parameteriza-
tions for the continuous growth and quasi-stochastic growth models possible.
The models are analyzed assuming that A(M) = A = constant. Also, it is
assumed that a cloud is well mixed at time ¢t = 0.



156 Collection growth

7.3.1 The continuous growth collection equation for a model cloud

With the continuous growth model, all drops start at time r = 0 with the same
mass myg. Each drop of mass m also grows at the same rate. Therefore the state
of drops of mass m can be described by M(r) = mass of any drop at time ¢. Also u
is the size of the drops collected. Thus, for continuous growth, it can be written
dM () /

G = kAN (7.1)
and integrating over time with the initial condition M(0) = my, is the initial
mass, results in

M'(1) t
J dﬂdlt(t)dt = J pAN'dt, (7.2)
M t 0
so that,
M(t) = myp + pAN't. (7.3)

This model requires that every drop of mass mg collect a certain number of
droplet(s) continuously (linearly, in this case) of mass u in time interval dz.
Except for very large drops and hailstones, the restrictive nature of the
continuous growth model that requires that all drops of a given mass grow
at the same continuous rate is unrealistic.

7.3.2 The quasi-stochastic collection equation
Jor a model cloud

When using the quasi-stochastic model, it must be remembered that only a
fraction of the drops of mass m will collect a droplet of mass y in interval dr.
This can be justified by the fact that there are random positions of drops m1g
and droplets m; some drops will collect one or more droplets, whilst others
will collect none. From Pruppacher and Klett (1997) and Gillespie (1975) this
means that not all drops of mass m, will grow at the same rate at the same
time. Now the problem changes from the continuous growth model. The
quasi-stochastic model described here follows very closely the presentation
put forth by Gillespie (1975). The following can be stated as N(m,f) is defined
as the number of drops of mass my (or fraction of drops of mass my) that grow
at time ¢ by collecting a droplet of mass u. This results in

m(t) = mo,mo+ u,mo+24u. ... (7.4)

Note that this requires drops to be described in terms of discrete sizes, rather
than drops becoming random sizes.
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Now the governing equations for N(m,t) become the following. In time
(t,t 4+ dr) it is found that N(m  u,7)AN'dt drops of mass m  p will each
collect with a droplet to become drops of mass m, and N(m, t)AN'dr drops of
mass m will each collect a droplet to reach drops of mass m + u. Thus,
according to Gillespie (1975), the net increase in number of drops of mass
m in a time interval (7,7 + dr) can be written as

dN(m,t) = AN'[N(m  w;t) N(m;t)]dr, (7.5)
or expressing this as a growth rate equation as given by,

ON (m, 1)
ot

=AN'[N(m w;t) N(m;1)). (7.6)

Telford (1955) was the first to consider this model as presented in Gillespie
(1972, 1975) and Pruppacher and Klett (1997). This equation is a set of
coupled, linear, first-order differential equations, and can be solved with the
initial conditions,

| N, for m=my
N(m,0) = {O, for m 2 my (7.7)

The equation (7.6) is what Gillespie (1975) chooses to call the stochastic
collection equation. It is valid for the simple cloud model he prescribed.

In solving this coupled, linear first-order differential equation, there is no
need to be concerned at the initial time with N(my  u,0) as it is zero, because
myg 1s the defined smallest drop size (7.4). So, the first three equations describ-
ing initial and subsequent growth of the initial droplet are given as

) _ AN N ), (7.8)
dN(m(é—:_'u’t) :AN,[N(I’I’[();I) N(mO + l)]? (79)

and
dNGmo +2u,1) _ AN'[N(mo + p;t)  N(mo + 2u;1)], (7.10)

dr

and so on, to as many steps as are needed.

Equation (7.8) is solved with the initial conditions (7.7). Its solution can be
substituted into (7.9), which can be used in (7.10) and so on. This procedure
results in
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N(AN't) exp( AN'r)
k!
Equation (7.11) will give the number of drops of mass m = my + ku, that can be
found at any time z. Also, at t > 0 there is a spectrum of drops of various
masses (i.e. a mass spectrum; Gillespie 1975). This is in contrast to the continu-
ous model where all droplets have the same mass; there is no spectrum of drops.

The total number of drops at time ¢ is found by writing x = AN’t, using
(7.7), and then by inspection,

2\ Nxkexp( x) > xk

= Nexp( x) exp(x) = N(myg,t =0).

N(m+kp,t) = fork=0,1,2,.... (7.11)

The normalized power moments are given as the following in order to reveal
features of the mass spectrum (Gillespie 1975),
I &K
Mj(t)ENZmJN(m,Z) j=1,2,3.... (7.13)
m my
Gillespie notes that M(f) is just the average (mass) of drops at time ¢. The
average drop mass would be helpful to know. This is found by

o) o0 k
Ml(t)E]lVZmNm,t —IZ (mo + kp) Nxe;;{il')(x), (7.14)
m mg k 0 ’
0k 0 k1
M, (1) = exp( Z——i—,uxz ik (7.15)
£ k! £ 0( 1)!
My(1) = exp( x)[mo exp(x) + uAN'texp(x)], (7.16)
and
M](l) =my + ,uAN/t. (717)

The quantity, M (¢), is the average drop mass at time ¢, which is the center of
the mass spectrum or center of the graph of N versus m. This model differs
from the continuous model in that M(r) represents the mass of all of the drops
of mass m that collect droplets of mass u at a certain rate, in other words, the
mass spectrum.

To add more information about the mass spectrum to the average drop
mass, M(t), the root-mean-square deviation of the spectrum gives the width
of the spectrum of drops (remember there is no width with the continuous
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model with cloud included). The root-mean-squared deviation is provided by
Gillespie (1975) as

1

At = [Mz(t) + M (07 (7.18)

M(¢) is calculated from (7.11) and (7.13) the same way that M,(r) was
calculated using (7.14). Gillespie also writes that the calculation of M»(f) is
facilitated by writing k> = [k(k 1) + k. It is found that the width of the
spectrum is

A(f) = u(AN?)?. (7.19)

Equation (7.19) shows that while the center of a graph of N versus m grows
linearly with ¢, the width is proportional to /2. There are two important
points to be made from the analyses above. First, using (7.3) and (7.17), it can
be written that M;(r) = M(f), which means that the drops together collect
droplets at the same rate in the continuous growth and quasi-stochastic
model for the cloud model specified. But as A(r) increases with time, the
drops do not all grow at the same rate in the quasi-stochastic model. As
pointed out by Gillespie (1975), some grow slower, and some faster than in
the continuous growth model.

Pruppacher and Klett (1997) hint that the quasi-stochastic model is also
too restrictive. They state that some drops of mass m will collect droplets of
mass m at different rates; i.e., that drops of mass m collect droplets indepen-
dent of other drops of mass m, and that some drop of mass m at the same
starting time as another drop of mass m may collect a different number
of droplets of mass m. From this point onward the probabilistic model is
discussed.

7.3.3 The pure-stochastic collection equation for a model cloud

It has been noted that the quasi-stochastic collection equation is too restric-
tive by Gillespie (1975) and Pruppacher and Klett (1997) as it has the
requirement that all m-drops together collect other drops and droplets at a
definite rate in an idealized cloud. There is no fluctuation in the number of
drops and droplets collected by a given drop as there would be in the real
atmosphere. However, in a pure-stochastic model, such fluctuations in collec-
tion are permitted. As a result, there is no longer a number to associate with the
number of drops and droplets collected by a drop at any time z. However, it is
possible to predict the probability of finding a given number of m-drops of a
particular size at time ¢ with the pure-stochastic model. With this noted, there is
a state function in the pure-stochastic model given by the following statement,
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“P(n,m,t) = probability that exactly n drops have mass m at time ¢, (7.20)

where,n=0,1,2,3,...,N, and m = mg, mg + p, mg + 2u . . . . Next we want
to compute P(n, m, t), which also requires considering the probability P(k,?)
that any drop will collect exactly k drops and droplets in time ¢. Pruppacher
and Klett (1997) and Gillespie (1975) note this is just the expression for the
common Poisson distribution,

(AN't)*exp( AN'r)
k! ’
This is derived by starting with the definition of the probabilistic modeled

cloud AN’d¢, which is the probability a drop will collect another drop or
droplet in time dr (Gillespie 1975). For k = 0,

TI(k,7) = (7.21)

I1(0,7 +dr) = T1(0,¢)(1  AN'dr), (7.22)
or this can be written as
dI1(0, 7) ,
= AN'd:. 2
I1(0, 1) dr (7.:23)

Next, integrating with the initial condition, I1(0,0) = 1, gives
I1(0,¢) = exp( AN'?). (7.24)
Therefore, for any k > 1 there is a probability that a drop will collect exactly
k drops or droplets in time (0, ¢) as denoted by
t
M(k, 1) = JH(k 1;/)I1(0,¢  ¢)AN'dr. (7.25)
0

Gillespie (1975) interprets (7.25) as the product of the

[probability that the drop will collect exactly & 1 drops in (0,7)]
x [probability that the drop will collect one more drop in d¢ at /] (7.26)
x [probability that the drop will collect no more drops in (¢,7)]

and summed over all ¥ from 0 to .

The equation (7.25) is a recursion relation for I1(k,7). Using (7.24), formu-
las for II(k, 1), I1(k, 2), II(k, ¢), and so on can be calculated, so that the
following can be written,

(AN'H)*exp( AN'r)

(k1) = 7

k=0,1,2,3,.... (7.27)
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Following Pruppacher and Klett (1997) and Gillespie (1975) closely, this
means that as each drop collects droplets independently of other drops, and
the probability is that some of the n drops will all collect exactly k droplets in
time 7 whilst the other N n drops will not, it can be written

(k01 Tk, 0N " (7.28)

The number of ways of arranging two groups of n drops and N 1 drops
from a set of N drops is given by,

(Z) - m (7.29)

The probability that precisely n of the N drops will collect precisely k£ droplets
in time ¢ is given by the product of (7.28) and (7.29),

<ZZ>H”(k,t)[1 i, ) " (7.30)

Using (7.30), it is possible to write
N! N n
Plnymo + kit 1) = TP (k,0)[1 TI(k, 1)

n=20,1,2,3... and m=0,1,2,3....

Equations (7.27) and (7.31) comprise the pure-stochastic solution for P(n, m, t)
for the simple drop and droplet cloud. At any time ¢, it is possible for there
to be zero drops to N drops of mass m. This is in contrast to the quasi-
stochastic model in which there will be exactly N(m, t) drops of mass m.
The equation for the moments of P(m, n, t) with respect to n, can be written

N
Ni(m,t) =Y " n/P(n,m,1),j=1,2,.... (7.32)
n 0

Next, the first moment of P(m, n, t) with respect to n has the following
physical meaning. The value of P(m, n, ¢t) is the average of number of N;(m, t)
of m-drops in the cloud at time ¢ (average spectrum) and is given by

N
Ny(m,t) :;nP(n,m,t) = ;n!(lgi]v!n)!nn(k’ H Mk " (733)
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For the simple cloud, the average spectrum (7.33) is the solution for the
stochastic collection equation. Equation (7.33) is equivalent mathematically
to quasi-stochastic equation (7.11). However, N(m, t) is the number of drops
of mass m at time z, whereas, N;(m, ¢t) is only the average number of drops of
mass m at time ¢, which is the center of a graph of P(n, m, t) versus n.

Following Pruppacher and Klett (1997), in analogy with the previous
decision to choose A(¢) as the width of the quasi-stochastic collection equa-
tion spectrum, the root mean square deviation of stochastic P(m, n, f) is
chosen with respect to n; or in other words, the following is true,

A(m,1) = [Na(m,1) - N3(m,0)]"*, (7.34)
with N,(m, f) given as the second moment of P(m, n, t) with respect to n. Using
(7.31) and (7.32) to calculate N»(m, t), the following can be written,
N2(m, z)} 12

A(m, 1) = [Ny (m, 1))/ [1 Sy

€ (7.35)

Note that similarly to the quasi-stochastic case and according to Gillespie
(1975), the calculation of N»(m, t), is made easier by using n> = [n(n 1) + 1].

The second factor on the right-hand side of (7.35) approaches unity as
t — oo, which can be proved by (7.33). Somewhere between about

Ni(m,1)  [Ni(m,0)]"* and Ny(m,1) + [N1(m,1)]"/ (7.36)

drops of mass m in the cloud should be expected to be found at time ¢.

Gillespie (1972) described an analysis of a cloud strictly from the point of
view of the Poisson model or pure-stochastic model. It was shown in Gillespie
(1975) that if (i) certain correlations between drops and droplets can be
neglected and (ii) coalescences of drops the same size will not occur, then
we can state something about the standard stochastic collection equation, i.e.
that it describes the mean drop-size spectrum N;(m, f). In this case, it can be
shown as in Gillespie (1972) that the function P(n, m, ) tends to the Poisson
form (Gillespie 1975),

N?(m7 t) CXp[ Ni (mv t)}

tlirgloP(n,m; 1) = o , (7.37)
and the spectrum width approaches the following,
A(m, 1) — [Ny (m,1)]">. (7.38)

If the simplifying conditions above, i.e. (1) and (ii) are not met, the situation
becomes unclear. This is a result of the necessity of conditional probabilities
given by: P\ (n, m|n’, m'; t) = probability of having n drops of mass m at time ¢,
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Fig. 7.2. The initial distribution and distribution after 20 s (on a cube root
scale for number concentration per micron). (From Twomey 1964; courtesy
of the American Meteorological Society.)

given that there are ' drops of mass m'; and P® (n,m|n',m';n", m";1)
probability of having n drops of mass m at time #, given that there are n
drops of mass m' and n” drops of mass »”, and so on.

For the drop droplet cloud, P!V (n, m|n’, m'; ) is given by

~

l ”ﬂ|nw@u ok, " "

(1) T, _
P (n,m|n,m,t)——n!(N p—

(7.39)
n=0,1,2,3,...,Nand m=0,1,2,3...,

(N A n")
n(N n n"

PO (', m'sn 1) = ol e "

(7.40)
n=20,1,2,3,...,.N and m=0,1,2,3...,

and P®) = .. . etc., and so on.

The no-correlation approximation (i) leads only to an approximation of
the conditional probabilities by P(n, m; f). Unfortunately, there are no ways to
evaluate exactly these probabilities, P, PV, P@, P, . .. Gillespie (1972)
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points to Bayewitz et al. (1974) for a possible answer based on the extent of
correlations in a stochastic coalescence process. Some slight amount of infor-
mation is provided in Pruppacher and Klett (1997), but perhaps not enough
to evaluate the probabilities fully.

A comparison of the continuous and statistical (Poisson) growth models
is shown in Fig. 7.2, reproduced here from Twomey (1964). This figure shows
rapid broadening of the drop spectrum after 20 s for the probabilistic model
whereas the continuous model shows only very slow growth of the spectrum.

7.4 Terminal velocity

Essential to understanding the collection growth of a particle is the under-
standing of the terminal velocities of the particles involved in the process.
There are many empirical and derived values for terminal velocity for varying
types of particles. The easiest and simplest description of terminal velocity is
the terminal velocity of a sphere.

The terminal velocity of an object is the maximum speed to which an object
will accelerate in freefall resulting from a balance of drag and gravity forces.
The gravity force accelerates a particle downward, whereas the drag force is
a result of resistance of air molecules to the motion of an object.

The gravity force is

Fg=gm=gV(p, p) (7.41)

where V is volume (for a sphere, V = D*r/6), m is mass, g = 9.8 m s 2 is the
acceleration owing to gravity, p, is the density of the particle, and p is
the density of the air. Typically, the density of the particle is 100 to 1000
times greater than the density of air at mean sea level, so the density of air can
be neglected in this equation. Using this approximation and the definition of
volume for a sphere, the gravitational force is,

Fg=gVp, = g(n/6)D’p,. (7.42)
The drag force is
Fq = Acqpu’, = (n/8)D*cqpu’., (7.43)

where ¢4 = 0.6 is the drag coefficient, u,, is the terminal velocity, A is the area
(for a sphere, A = (n/8)D?).

The terminal velocity is found by equating the gravity force (7.42) and the
drag force (7.43). Thus, Fy = F4 or,

(n/8)Dcapii, = g(n/6)D’p,, (7.44)
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which can be solved for u.,

1
4¢Dp.\?
= (=X ) 7.45
o <3 cd P) (7:43)

7.5 Geometric sweep-out area and gravitational
sweep-out volume per unit time

Traditionally the gravitational collection kernel for hydrodynamical capture
(Rogers and Yau 1989; Pruppacher and Klett 1997) is defined as being related
to the geometric sweep-out area, which is given as a function of the down-
ward projected area or footprint of the two colliding particles of diameters D,
and D,. This can be written as,

geometric sweep-out area = %(Dl +D5)%, (7.46)

where D; > D, is assumed. This equation does not take into account the
deviation of small droplets approaching a larger drop and being pushed away
from the larger drop by dynamic pressure forces such that the droplet is
not captured by or sticks to the larger drop without tearing away. These
influences are usually incorporated in the collision efficiencies (E..;) and
coalescence (E.oq1) efficiencies. These are probabilities of a collision, and the
probability of sticking after collision.

Now the collision efficiency and coalescence efficiency together when
multiplied give the collection efficiency (Eopect). Next the geometric sweep-
out area is multiplied by these efficiencies (E oy and E.oq) or the collection
efficiency (E.oneet) as well as the difference of particle Dy’s terminal velocity
V(D) and particle D,’s terminal velocity V1(D,) to get the geometric sweep-
out volume per second or the gravitational collection kernel, K,

K(D1,D;) = Ecochoalg(Dl + D, [Ve(D1)  Vr(Dy)). (7.47)

This general form (Rogers and Yau 1989; Pruppacher and Klett 1997) is used
in nearly all models now, with only a few exceptions (e.g. Cohard and Pinty
2000; see next section).

7.6 Approximate polynomials to the gravitational collection kernel

Other models use polynomials for the collection kernel. Long (1974) devised
a number of different polynomials to represent the gravitational collection
kernel in search of analytical solutions to the quasi-stochastic collection
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equation. These have limited usefulness in general. The first step to generating
these polynomials is to calculate the gravitational collection kernel accu-
rately. Then the second step is to fit an approximation to it. Long used the
collision efficiencies of Shafrir and Gal-Chen (1971) to provide the rationale
for developing these polynomials.

Two of Long’s gravitational collection kernels given by Pruppacher and
Klett (1981) are the following in the case where v > u where v and u are
dimensions of D,

_ [ 110 x 10°(v*) for 20 < D < 100 microns
Plv,u) = {6.33 x 103(v) for D > 100 microns (7.48)
and
_ [9.44%x10°(v* +u*) for 20 < D < 100 microns
Plv,u) = { 5.78 x 10’(v +u) ~ for D > 100 microns. (7.49)

The leading coefficients are derived from minimizing the root mean square
of the logarithm of the approximating polynomial and the collection kernel.
The logarithm is used because of the wide range in values of the gravitational
kernel, and the need for accurate solution over this wide spectrum. Note that
these approximating polynomials do not include the influence of turbulence
or other possible influences. Cohard and Pinty (2000) are the latest group
of investigators to use these polynomials (at least the second set of these
polynomials).

7.7 The continuous collection growth equation
as a two-body problem

In general, collection is a many-body collection problem. However, for larger
drops in a population of much smaller drops, arguments can be made that
collection growth can be simplified to a two-body problem. The justification
for the two-body collection problem is provided by example. If there are
1000 droplets per cm® (1 x 10° m ?) and the average droplet size is about
10 microns in diameter, then the average spacing of the droplets is on the
order of about 100 droplet diameters. In this case, the droplets can be said to
be relatively sparse in the cloud. Larger drops are found on the order of about
1000 to 10000 m °.

For two-body problems it is assumed then that there are two spherical
drops of different sizes and that shape effects are considered to be of secon-
dary importance for the basic problem. A larger drop collecting a smaller
droplet is considered. The drop and droplet are relatively distant from each
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Fig 7.3. Particle collision geometry, where R is the radius of the collector, r
is the radius of the collected particle, and x is the distance of the collected

particle from the fall line of the larger particle. (From Rogers and Yau 1989;
courtesy of Elsevier.)

other initially. The droplet and drop are assumed to fall at their terminal
velocities and are widely spaced in the vertical. The air and internal motions
of the drop and droplet are assumed to be calm.

The basic physical modelis one of finding the sweep-out area of the two-body
problem. First the effective cross-sectional area for the drop and droplet must
be found. In the model Ry is the radius of the large drop and Ry is the radius of
the smaller droplet. The geometric sweep-out area for the drop and droplet is

geometric sweep-out area = (R + Rs)’. (7.50)

The simple geometric sweep-out volume per second swept out in this two-
body system is given as function of radius R as

geometric sweep-out volume per second = (R + Rs)*(Vr  Vrs), (7.51)

which is shown in Fig. 7.3; or the geometric sweep-out volume per second can
be given as a function of diameter D as

geometric sweep-out volume per second = %(DL +Ds)*(VrL  Vrs), (7.52)

where V11 and Vg are the terminal velocities of the larger and smaller drop
and droplet, respectively. The volume increase per unit time of the larger drop
is related to the geometric sweep-out volume per unit time and the number
and size of the smaller droplets in the sweep-out volume (now no longer a
two-body problem),

dv;
d—L — n(RL 4+ Rs)* (Vi Vrs)VsNs
t (7.53)
o 2 4 3
= 7'C(RL +Rs) (VTL VTS)TCgRSNTS-
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Now, if the increase in the mass of the large drop can also be written by
including the density of the drop the following can be written,

dm 4
dtL = pﬂf(RL +Rs) (VTL VTs)ﬂnggNTs. (754)

This is a highly simplified expression of the two-body formulation. In reality,
the geometric sweep-out volume should take into account the aerodynamic
pressure forces that can push a droplet out of the way of a collector drop.
This is done by defining grazing trajectories, which are the trajectories of the
droplets furthest from the fall line of the collector drops that just make
contact with the collector drops. These are found at radius Rg from the fall
line of the larger drop.

This growth is often called the continuous growth equation in terms of
change of Ry. With some simple algebra, the rate of mass increase of the drop
(7.54) can be written in terms of the rate of increase of the radius of the drop,

dRL  Ns (R}
— = R R V Vrs). 7.55
5 n3<R2 (RL+Rs)* (Vi Vrs) (7.55)
For a sphere, the mass of the larger drop can be written as
4
My =p VL = angRi. (7.56)
Now using (7.56), (7.54) becomes
—— = py4nR] 7.57
dr pLAT ar ( )

which completes the simple two-body problem, except there has been no
consideration for collection efficiencies. The collection efficiency is incorpo-
rated as a factor E(RL,RS), such that

dR N,

—L_ T— 5 2 (RL +Rs) (VL V1s)E(RL,Rs). (7.58)
dr 3 \R{

The collection efficiencies are computed with the collision efficiencies multi-

plied by the coalescence efficiencies, and are smaller than either of the

components by up to 30 90 or so percent.

7.8 The basic form of an approximate stochastic collection equation

The basic form of the approximate stochastic collection equation for say,
liquid drops is given as

oN, INi

k 1
- 2ZK,k iNiNg i NkZK,kN,, (7.59)
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where N is number concentration times volume and K is related to the
collection kernel. The first sum is called the gain sum for mass bin k. Droplets
of mass k are produced by collisions between droplets of mass bins i, and £ i.
The factor of 1/2 prevents double counting. For example if mass bin k = 5 is
in consideration, then droplets in bin ki = 3 (i = 2) plus droplets in bin 2
make drops of the mass of those in bin £ = 5. Now, depending on how this
is programmed, droplets in mass bin k& i = 2 (i = 3) plus droplets in mass
bin 3 also make droplets of the same mass as those in bin 5. Therefore
double counting occurs. The second sum is a loss term for mass bin £.
Droplets of size k are lost by coalescence with drops of all other sizes.

7.9 Quasi-stochastic growth interpreted by Berry and Reinhardt

In this section the results of Berry and Rienhardt’s (1974a d) studies on
collection are briefly examined. First, their basic definitions must be defined
to understand the processes they explain. A drop spectrum is denoted by the
density function f{x), where f{x) is, as described earlier, the number of drops
per unit volume of air in the size interval x, x + dx, where x here is the mass of
a drop of any size. Quite simply, it is known that mass and volume are related
by x = pLV where V is volume and p; is the density of water. Moreover the
density functions f{x) and n(V) are related by f(x)dx = n(V)dV. In their work, a
mass density function g(x) = xf(x) was defined. The concentration of droplets
N and liquid-water content L are defined as integrals over the density func-
tions f{x) and g(x) as follows,

N = Jf(x)dx (7.60)
and
L= Jg(x)dx. (7.61)
Now the mean mass of a droplet is given simply by x; = £ or
L [xf(x)dx

Drops with mean mass x; have mean radius given simply by
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The mean mass of the density function is given as

 [edx [ er(ode
N T R TR

The value of the equivalent radius of x, is given as

- (3TEPL> 1/3X1/3 (7 65)
g - 4 g . .

Berry and Reinhardt’s (1974a d) simulations start with an initial distribution
of drops given by a gamma distribution. The relative variance is given by

(7.64)

varx =% 1. (7.66)
Xf

In the problem at hand, the given initial conditions make var x equal to 1.
That is with 7, = 12 microns, water content equal to 1 g m ?, and a concen-
tration of 166 drops per cm®. In displaying plots, they present a function best
described as a log-increment mass density function g(In r), with a design so
that g(In r)d(In r) is the mass of cloud drops per unit volume of air with radii
in d(In r). The reason that this is done is that it de-emphasizes the smallest
drops and emphasizes the drops of interest, which are the large drops. This
results in a density function of g(In r) = 3x*f(x) (see Berry and Reinhardt
1974a d). Of interest in the results is that if there are drops with initial size
greater than 20 mm in radius, two modes develop from a single mode: the
mode of small drops shortens and the distribution locally widens and follows
ry of the solution closely; whereas large drops increase and follow r, closely.
Various physical processes lead to broadening of the droplet solution,
which are essential to understanding the growth of initial distributions. These
are carefully summarized by Berry and Reinhardt (1974a d) and are repro-
duced here. For brevity’s sake and for clarity, their discussion is followed
closely. Two modes are possible, one called spectrum S1 centered at 10
microns with a water content of 0.8 g m °, and the spectrum S2 centered at
20 microns with a water content of 0.2 gm °. The different physical processes
that need to be parameterized in bulk parameterization models are shown in

Figs. 7.4 7.7. Four assumptions are examined:

(a) The first assumption is that collisions between all drop pairs are allowed (Fig. 7.4).

(b) The second assumption is that collisions are only permitted for drops in S1 (Fig. 7.5).

(¢c) The third assumption is that collisions can only take place between a drop in S2
and one in S1 (Fig. 7.6).

(d) The fourth assumption is that collisions can only take place between drops in S2
(Fig. 7.7).
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N
T

g(nr)yingm=(nr*
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Fig. 7.4. Time evolution of the initial spectrum composed of 0.8 g m * with
small drops centered at radius r}) = 10um, and 0.2 g m > with larger drops
centered at radius 7f = 50 um, both with var x = 1. The variables ryand r,
are the final mean values of the smaller drop and larger drop spectra,
respectively. (From Berry and Reinhardt 1974a; courtesy of the American
Meteorological Society.)
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Fig. 7.5. Time evolution of the initial spectrum given in Fig. 7.4 with only
S1-S1 interactions allowed. The interactions S1-S1 are called autoconversion
and are interactions between small droplets to produce S2 droplets. Only a
small amount of liquid water is converted to S2 droplets. With no growth of
S2 droplets allowed no further growth of the S2 spectrum occurs. (From Berry
and Reinhardt 1974a; courtesy of the American Meteorological Society.)

In summary, there are three modes in general that lead to large drops or
change the large-drop distribution. These are those processes described by
considering each assumption individually, starting with (b) which is called
autoconversion (care must be taken in understanding what is really
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Fig. 7.6. Time evolution of the initial spectrum given in Fig. 7.4 with only
S2-S1 interactions allowed. The S2-S1 interactions are called accretion and
involve the collection of small S1 droplets by larger S2 drops. This mode
adds liquid water to S2 but at a rate much larger than the S1-S1 autocon-
version rates. The mode acts quickly at first but then depletes the S1 droplets
and the growth of the S2 drops stabilizes. Still some reason must be found to
explain the production of much larger drops. (From Berry and Reinhardt
1974a; courtesy of the American Meteorological Society.)

5

0
92 107 107! 10°
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107 107

Fig. 7.7. Time evolution of the initial spectrum given in Fig. 7.4 with
only S2-S2 interactions allowed. The S2-S2 interactions are called large-
hydrometeor self-collection and involve the collection of large S2 drops by
large S2 drops. With S2-S2 self-collection interactions only the S2 drops
grow. The process here is slow as the liquid water in S2 is small. Ultimately it
is this mode that produces large drops quickly. (From Berry and Reinhardt
1974a; courtesy of the American Meteorological Society.)
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autoconversion); (c) which is called accretion; and (d) which is called large-
hydrometeor self-collection.

The result from case (a) includes all of these possibilities. In (a) S1 is
depleted but the S1 mode does not change significantly, whilst the S2 mode
changes shape substantially. In case (b), S2 gains only by interaction of S1
drops with S1 drops, and the influence is marginal in producing S2 drops only
on the left side of the S2 distribution. With no S2-drop interactions there is no
significant growth of the S2 spectrum. In case (c) the rate transfer of water to
S2 drops is much faster than the previous cases showing that accretion
between S2 collecting S1 drops is more important than the process called
autoconversion, here in transferring water to S2 drops. Finally, in case (d) it is
seen that the interaction amongst the large S2 drops, leads to distribution
flattening, though this progression is slow.

In Berry and Reinhardt (1974a d) it is stated that it is autoconversion that
begins the process of transferring water from S1 to S2 drops and allows other
mechanisms to operate. Its rate is almost always slower than other rates;
whilst small, it is essential to droplet distribution evolution. It is accretion
that is the primary mechanism for transferring drops from S1 to S2. Though
S1 generally maintains its shape and position during accretion, S1 loses water
to S2. Growth is initially quick for the S2 spectrum; then it slows as all of S1
is consumed by S2. The large-drop self-collection S2 with S2 interactions
makes S2 distribution flatter, though growth of the spectrum by S2 S2 self-
collections tends to be relatively slow. This process is increased as water mass
is added to S2 from S1 drops by accretion, which is the main mechanism of
the growth of the spectrum in general. Without water from S1 drops the S2
distribution just becomes flatter and eventually growth slows. The rate of
growth by S2 S2-drop interactions is initially slow, but as S1 is added to S2
primarily by accretion, it is the S2 S2-drop interactions that cause rapid
growth of the large-drop tail of the spectrum, which means an increasing x,.

7.10 Continuous collection growth equation parameterizations

7.10.1 Gamma distribution function for continuous
collection equation

The continuous collection equation is still used in many models in cases where
larger particles such as rain, snow, graupel, frozen drops, and hail collect
cloud water and cloud ice. In addition, it is used to make quick calculations
to determine if an autoconversion should be activated. This continuous
collection growth equation takes its simple form from roots described in the
earlier part of this chapter, Rogers and Yau (1989), and Pruppacher and Klett
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(1997), among others. The basic equation that is solved is the following where
particle x is collecting particle y,

12
2Ex QyVTX (/;0) n(D)L)dD‘, (767)

which can be written for the complete gamma distribution as

0 1/2 vept, 1
Po NTx Dx !
VAC, = | < D’E, Ve, D%
e l“ e (p) () <D>

(7.68)
X e D" d Dx
X Oy |5 — )
EANR N B A Vo
or next the modified gamma distribution
o 1/2 ve, 1
T Po Nty D, !
AC, = | =D’E, D& (22
Q y J4 X «yQyﬂ,xC« X <,0> F(Vx) (Dn\>
0 (7.69)

<ol [o] )¢(5:)
ex .

P\ Dul )" \Du
Then the gamma distribution is

i 1/2 v 1
T 2 a. [ Po Nty ( Dy
Y = | wD.E, D | —
0ac, = [ioiEeeet () 1135 (57)
0 (7.70)

<o (o] )a(5s)

Each can be rewritten; (7.68) using the complete gamma distribution by
choosing appropriate values for o, v, u:

o0 2+4-d, 1/2 wevy 1
D, 1% Nty D,
xA y:D2+dAJ\E. - E . ro
QuAG =D | 3o\ p,.) B0 () 50,5 \ Do
0 (7.71)

X € D, 1" d D..
Xp Oy D, Do 5
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(7.69) with the modified gamma distribution,

0 2+d, 1/2 v, 1
2 . T D pO NT D(» N
QAC, =Dy J at (0) Fo XQ’(p) T (an>
0

(7.72)
X ex D, 1" d bay.
P\ b D)’
and (7.70) with the gamma distribution,
b D \2H: 12 N R
)CA :D2+d/‘ E v _/\ X Tx _X
0uc, =0 [Ge(p) Ever (% () \Du
0 (7.73)

X exp < [ﬂ > ‘ <11>)> |

Then each can be simplified to the following final expressions: the continuous
collection equation for the complete gamma distribution,

2+d, + vy
K

Nrat oo\ T (
QAC :—CxDerd nyy L <_O>

T(v) \p W, (7.74)
for the modified gamma distribution,
24d Nt (po 1/2 24dy +veu,
0AC) = 4 exDy M EyQy T(vy) <F> P(T)’ (7.75)
and for the gamma distribution,
T 2+d Nie (po\"
0,ACy = ZCXD’M, -‘E,WQ),TVX) (;) L2 +di+v). (7.76)

Verlinde et al. (1990) studied the integration of the continuous growth equation
directly and analytically. A figure of terminal velocities used is shown in
Verlinde et al. (1990, their Figure 1). Also in Verlinde et al. (1990, their Figure 2)
errors are plotted on a graph of the diameter of the collectee drop versus
the diameter of the collector drop. For the case when a faster moving particle
is collecting a smaller, much slower moving particle, it is seen that the smallest
errors are in the middle ranges of sizes, the second largest errors are at
all collector sizes for medium-sized collected particles, and the largest errors
(> O[10]), surprisingly, are at the large collector sizes. As discussed by
Twomey (1964) and Verlinde er al. (1990), the largest collectors have the
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largest errors collecting smaller particles as collection efficiencies are not
prescribed, but rather are set to unity. When collector and collectee particles
fall at about the same speed, then significant (> O[0]) errors are incurred at
the smaller collector sizes (<4 mm) that collect particles of 0.05 to 3 mm.
A region of 40% errors is found diagonally through the mid section of the
plot. The rest of the plot shows generally good agreement with larger-sized
collector particles collecting smaller-sized particles.

7.10.2 Log-normal distribution for continuous collection

The equation for continuous collection, where particle x is collecting particle y is

1 T dM(D)n(D,) _dO,

= Q.AC
o dr 4~ 246
‘ (7.77)
o0 . ) 1/2
— J ZDﬁEnyychjx <—°) n(D,)dD;.
0 p
The log-normal number spectral distribution function is defined as
N1 (In(D,/D,y))?
n(D,) = —ex — ], 7.78
D)= p( 5 (1.78)
Substitution of (7.78) into (7.77) results in
1 [dM(Dn(Dy)  dO;
R _ = = XAC "
Po J de a ~ @AG
’ (7.79)
o0 . ) 1/2
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0
Dividing all D, terms by D,,, gives
1/2
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Now letting u = D,/D,,,,

1/2 a2 % 2
T ([P0 ExQycxNt D% J At [In u]
AC, =— [ — u™"tex du. 7.81
Ay 4<P> V2na, P (7:81)

By letting y = In(u), u = exp(y), du/u = dy, so,

1/2 X d+2 F 2
T [Py EnynyNTxD,LX‘( J y
VAC, == (2 de+2 Z_)dy, (7.82
OACy 4< ) V2o exp|(dy + 2)y| exp 20 y, (7.82)

where the limits of the integral change as u approaches zero from positive
values, and In(u«) approaches negative infinity. Likewise, for the upper limit,
as u approaches positive infinity, In(u#) approaches positive infinity.

Now the following integral definition is applied:

< T b/2
J exp(2b'x) exp( a’xz)dx:\/—/exp<—,> (7.83)
a a

by allowing y = x, @’ = 1/(26%), b’ = (d,+2)/2. Therefore (7.82) becomes the
expression for the continuous collection equation with a log-normal
distribution,

1/2 2 d -2 2
0.AC, = % (%) EyyQyceN: TxDZ}+2 eXp <%+)> . (7.84)

7.11 Gamma distributions for the general
collection equations

A more general collection equation used in models can be represented in
several ways. First the equations can be integrated using the Wisner et al.
(1972) approximation, where [V1(D,.) V1uD,y)] is moved outside of the
double integral in the collection equation (7.85) below and approximated by
AVty = V(D)  Vr(Dyy)l|. Verlinde et al. (1990) have already shown the
importance of the errors in using the Wisner er al. (1972) approximation,
especially when terminal velocities are nearly similar; the errors can be several
orders of magnitude. Mizuno (1990) and Murakami (1990) also showed this,
and then made adjustments to the terminal-velocity differences to minimize
errors. Nevertheless, the collection equation for the mixing ratio that is solved
regardless of the approach is given for the complete gamma equation,
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or next for the modified gamma distribution,
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and lastly, for the gamma distribution,
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Now an examination is made of the collection equation in terms of number
concentration for the complete gamma distribution,
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the modified gamma distribution,
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and lastly the gamma distribution,
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The equations (7.85) (7.87) can be written with M(D,) = ayDby as the
following, where M is mass. For the collection equation in terms of the mixing
ratio using the complete gamma distribution the following is found,
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or with the modified gamma distribution,

(vl (Vy)

D\’ D, D, Dy’ 12(7.92)
D2 ‘ 2DnV(Dn D2 Yy . —
" ( " <Dm> i "DyDyy " <Dny> ) Ve = Ve (p)

1 1 D . Vit 1 D vyt 1 D . M D Hy
x . 2 exp| — = exp| — | == dD.dD;
Dy, Dny Dy, Dny D, Dny

and finally the gamma distribution,
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Then, the collection equation in terms of number concentration (7.88) (7.90)
can be rewritten using a complete gamma distribution,

0. ZSREX\NT\NT} oyl
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the modified gamma distribution,
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and finally the gamma distribution,
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Integration of (7.91) (7.96) provides expressions directly to compute approxi-
mations to the collection equations in terms of mixing ratio and number
concentration using the gamma distributions.
The parameterization for (7.91) using a complete gamma distribution

function is the following for mixing ratio tendency where Wisner’s approxi-
mation has been used,
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Next the modified gamma distribution is given by
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Then for the gamma distribution, the following,
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Next the final solution for the growth in terms of number concentration
(7.94) (7.96) using the complete gamma distribution is
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the modified gamma distribution solution is
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and finally the gamma function solution is
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7.12 Log-normal general collection equations

The equation for the general collection is complicated and is given by
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where m(D,) is as before ayD”y .
Substitution of (7.78) and m(D,) into (7.103) gives
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Dividing D, terms by D, and D, by D,,,,
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By letting j = In(u), u = exp(j), du/u = dj and k = In(v); thus v = exp(k),
dv/v = dk, so,
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where the limits of the integral are that as u approaches zero from positive
values, In(u) approaches negative infinity; and as u approaches positive infin-
ity, In(u) approaches positive infinity. The same holds for the limits of v.

Now collecting like terms,
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By Applying the integral definition (7.83), (7.110) becomes
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As described previously, the prognostic equation for Nt for the general

collection equation is
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Substituting (7.78) into (7.112) results in
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NTXACy = ZExy’VTNx - VTNy| ZZGXU;W
00 * i’
(7.114)

+2 J J exp (— w> exp (— W) dD.dD,
00 y

T In(D. /Dy )]? In(D, /D)
+ ! b[DX 1D; exp <_ %) exp <_ %) dD,\dDy}.

Dividing D, by D,,, and D, by D, gives

N1neNTNy
2no.0,

16 Geel Yol B )GIG)
00

1 (D, /Dy in(D,/Dw)2\ . /D.\ ./ D (7.115)

+2D,.D), J J exp( 363 “ > eXp( 50_3 Ll )d (D,:) d (D,L)

o[ Gl g )ool P (3)}

N1,ACy gExy|VTN1 VTN)’|

X
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Letting u = D,/D,,, and v = D,/D,,,,

N TNxN TNy

N1,AC, 1% Vray
Tx 4 xy‘ TNx TN)} 27T6X0'y

+D? JJu ylexp [lnu]z exp [lnv]2 dudv
w 20?2 20}
00

By letting j = In(u), u = exp(j), du/u = dj and k = In(v); thus v = exp(k),
dv/v = dk, so,

Nty V- TNy

Vs
NTxACy = ZE,\'y|VTNx - VTNy| 27'50}(0'})

. . (7.117)
2p! p! N exp(k 7 k—2 didk
+ nx™~ ny CXp(]) exp( )exp 252 exXp 2 J)

where the limits of the integral are that as u approaches zero from positive
values, In(«) approaches negative infinity; and as u approaches positive infinity,
In(u) approaches positive infinity. The same holds for v as well.

Collecting like terms,

N TNxN TNy
2no.0y

x { D? Tex (2)) ex i d'Tex k—z dk
p P exp( 5 )di Pl 53

NTXAC 4 )ay ‘ Vng vTNy|
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o T 7 T 2
+2D,.D,, J exp(/) exp( 27‘%) dj J exp(k) exp 27‘5 dk

(7.118)
i P\ [ 5
+D;, J exp( 2#‘%> dj J exp(2k) exp 27‘5 dk

Now the integral definition (7.83) is applied to (7.118) and the final expres-
sion for collection growth in terms of number concentration is

T
N1,AC, = ZEW\VTNX Viny[NTxNty X [Dix exp(20?)
11
2 2 (7.119)
+2D,.D,, exp (3)() exp 7) + D,zly exp(2a§)] .

7.13 Approximations for terminal-velocity differences
7.13.1 Wisner approximation

The Wisner et al. (1972) approximation, mentioned briefly above, is a means
to simplify the integration of the general collection equation. First, the mass-
or number-weighted means of the terminal velocities for each of species x and
y are computed. Then the absolute value of the difference of mass-weighted
mean terminal velocities is taken and this is assumed to be independent
of diameter. Then this quantity can be moved to outside the integral. The
absolute value of the difference of the mass-weighted means of terminal
velocities of species x and y is

AVTQ}cy = |VTQx VTQy 5 (7120)

and the absolute value of the difference of number-weighted means of the
terminal velocities of species x and y is

AVTNTxy = |VTNTX VTNTy‘- (7121)

Many have found the above approximations to be flawed as pointed out
by Flatau er al. (1989), Ferrier (1994), Curic and Janc (1997), etc. and
probably most decisively by Verlinde er al. (1990). The approximation
fails severely when mass- or number-weighted mean terminal velocities of
each species x and y are similar. When the mass- or number-weighted mean
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terminal-velocity differences between the species are large, the Wisner
approximation performs much better. These are well demonstrated in
examples provided by Verlinde et al. (1990) for cases when terminal-velocity
differences are relatively large (e.g. the two species are raindrops and cloud
drops) and relatively small (e.g. the two species are high-density graupel and
raindrops).

7.13.2 Murakami and Mizuno approximations

The modification following Murakami (1990) is given as an approximation to
produce solutions close to the analytical solution to the collection equation,
especially when Vg, is close to Vrp,. (Note Vrp, is the terminal velocity of
species x in terms of mixing ratio, and Vo, is the terminal velocity of species y
in terms of mixing ratio.) The Murakami (1990) approximation is given as the
following for snow and rain,

5 1/2
AVigy = |Vigy  Vigy| = ({VTQA. Vrgy} +o.o4vTQXVTQy) ,(7.122)

and it is suggested that in terms of number concentration the same form is
used following Milbrandt and Yau (2005),

1/2
AVingy = [Ving: — Vv | = ({VTNN. - VTNTy}2+O.04VTNTXVTNU,> . (7.123)

The Mizuno (1990) approximation is very similar and is given in terms of
mixing ratio as

1/2
AVigy = |Vige  Vrgy| = ({avTQx ﬁvTQy}2+0.08vTvaTQy) . (7.124)

where « = 1.2 and § = 0.95.
Again it is suggested that the same form is used for number concentration,

_ 12
AVing = |[Vine  Vin| = ({avm ﬁVTNy}2+0.O8VTNXVTNy> . (7.125)

For the Mizuno (1990), as is for the Murakami (1990), the approximation is
for rain accreting snow and vice versa.

Using the Wisner et al. (1972) approximation for two particles that have
about the same fallspeed distribution, there is a large region of the parameter
space with large errors. A stripe of 40% errors cuts diagonally through the
parameter space, whilst there is a large region of the parameter space with
< 40% errors for larger particles collecting smaller particles.
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7.13.3 Weighted root-mean-square approximation

Next is an examination of the weighted root-mean-square terminal-velocity
approach of Flatau ef al. (1989). In this approach the approximation for the
velocity difference is given by the square root of squared mean velocity. The
form of the terminal-velocity equation is usually designed to be as general as
possible through the use of power laws,

j“o T [Ve(D,)  Vr(Dy)]*wyydD,dD,
0 0

AVTW = , (7.126)
| [ wydD,dD,
00
where w,, is the weighting function given as
Wy = m(Dy) (D, + Dy)*n(D)n(Dy). (7.127)
Integration and algebra lead to the following for the numerator,
J J (D) Vi(Dy)]*wndD.dD,
00 (7.128)

= NXN)’m(DnX) [Clv% (an) 2C2VT (an) VT (Dny> + V%C3 (Dny>:| .
The constants are written in vector notation as C = FD or,

Fo(2d, + b, +2)F,(0)  Fo(2d, + by + 1)F,(1) F.(2d, + b,)Fy(2)
F = | Fo(di+ b+ 2)Fy(dy)  Fu(de+ by + 1)Fy(dy+1)  Fy(de + bo)Fy(dy +2) |,(7.129)
Fy(b, + 2)Fy(2d,) Fy(by + 1)Fy(2d, + 1) Fy(b,)Fy(2dy, +2)

where F, and F, are related to the type of distribution. In this case, it is the
modified gamma distribution. For example, the liquid-water content, L, for a
spherical particle can be written assuming the gamma distribution as

r
L= oND,F(3) = = pnp, LU EP)

g 6"ND s (7.130)

where p = 3 (this is related to the third moment of the distribution from
0 to o0).

To complete the solution, the value of the (3 x 1) column vector D needs to
be defined,

nx’ nx~ ny’

D= (1)2 2D, D D2>T, (7.131)
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where T denotes the transpose of the matrix. The (1 x 3) row vector V1 needs
to be defined,

Vi = [V%X(Dm), 2V, (D) Vi, (Dny),v%y (Dny)]. (7.132)
Using (7.129) (7.132), the value of TVTxy from (7.128) can be written as
_ _ 12 ( po 1/2
AV, = (VToFD> <;> , (7.133)

where the typical density correction (po/p)"/? has been employed and WTxy
replaces the terminal velocity term in (7.126).

7.14 Long’s kernel for rain collection cloud

Next, Long’s kernel is derived following Cohard and Pinty (2000) for collec-
tion of cloud water by rain for a modified gamma distribution. Long’s kernel
has been used previously in a parameterization numerical model by Ziegler
(1985). First define the kernel, K,

6 6 . .
kng1 +D2; if Dy < 100 microns (7.134)

K(Dy,D;) = {kl D3} +D3) if D, > 100 microns ’

with k» = 2.59 x 10 m *s !for D < 100 microns and k; =3.03 x 10°m °s !
for D > 100 microns. At present these are considered only approximations of
the kernels but seem to suffice for the problem (Pruppacher and Klett 1997).
Cohard and Pinty write the following for part of the stochastic collection
equation that is important and maintains mass conservation,

Dm

I=C, J D" aN°8LI<D)(1D. (7.135)
0
Substituting for the rate term,
Dy,
I~C, J D"AC(New(D))dD, (7.136)

0

where [ is the integral, AC is accretion, C,, is a constant in the collection
equation. Substituting for the accretion term,

I ~ Cn JDH(NCW(Dla l)) JK(Dl,Dz)Nrw(Dz,l‘)ledDz. (7137)
0 0
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Now based on (7.137), the tendency equation for any moment can be
developed,

IAC = J D} (New(Dy, 1)) J K;(D{', DY )N;w (D2, 1)dD,dDy, (7.138)
0 0

where the index i = 0 for the zeroth moment and i = 3 for the third moment;
AC is the accretion rate. In (7.138) the D, integral, following Cohard and
Pinty, is the sum of moments M, (0) and M (3i),

[0.¢]
IAC = JD’{ (New(D1,8))KiNrw [D7' M1y (0) + My (31) | NrwdD;. (7.139)
0
This leads to a generalized gamma function solution for N, that is an n-order
and n + 3/ moment scheme.

TAC = KiNpw [Mroo(0)Mey (1t 4 30) + My, (31) Moy (1)]. (7.140)

For small raindrops with D < 100 microns, from the general accretion
formula from Appendix B of Cohard and Pinty (2000),

(o]

IAC:J

D'new (D1, 1) J K> (DS + D3)nyw (D>, t)dD,dD,. (7.141)
0 0

Then the modified gamma function

n(D) = %Di <D2> 1exp< l%) (7.142)

is substituted into (7.141),
Ntew Nrrw Jm ( D )Vcw : ( Dcw>
IAC =K ex
? I‘(Vcw) F(er) 0 Diew P Dyew
00 D Viw 140 D Viw 1406 D
DS D° w D° ™ LU (7.143)
) L vy (me TP Do “P\ D,

X d(DI‘W>d<DCW>’
Dan DHCW

where D, is the characteristic diameter.
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Using the definition of the gamma function gives

1ac — FoNmNTew Jw ( D ) !

L) T (vew) Jo \Diew (7.144)
D 6 0 6 Dy
0| ) PDhT () + DT+ ) ().
Expanding,
KoNrralNtew [* Dew \™ 1
ne =], (protaron ()
- . i . (7.145)
+ DS DY T (v + 6) (Dncw> )eXp< Dncw>d<DTw>'
Then integrating,
6 6
R T T s o el AT

Thus the collection equation in terms of number concentration using the
modified gamma distribution is

(7.147)

r 6)D° r 6)D°
NrwAch = K2NTrwNTcw |: (VCW * ) e + (vrw + ) an:| .

r (Vcw) F(VFW)

For the prediction of mixing ratio, Q (setting n = 3; third moment), following
similar procedures, the following collection equation using the modified
gamma distribution is obtained,

Y
QrwAch = g p% K2NTrwNTcwD3

ncw

(7.148)

% [ (vew + 9)D20w 4 ['(vew + 3)T (v + 6)D2rw
[ (vew) T'(vew)T (Vew) '

For larger raindrops with D > 100 microns, also from the general accretion
formula from Appendix B of Cohard and Pinty, it can be written

(7.149)

r 3)D} r 3)D3
NrwAch = KINTrwNTcw|: (VCW * ) e (er + ) an:| .

I'(vew) L'(vew)

For the prediction of mixing ratio (setting n = 3; third moment), following
similar procedures as above, the following is obtained
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P
;W KoNtiwN1ewD:

new

T
rWACCW ==
Q 6

(7.150)
F(VCW + 6)D3 + F(VCW + 3)F(er + 3)D3

ncw nrw

T'(vew) L(vew)T (Vew)

7.15 Analytical solution to the collection equation

Flatau ez al. (1989) and Verlinde ez al. (1990) present an analytical solution to
the collection equation. Lookup tables as a function of D,,, D,,, V1, and Vr,
can be built and bilinear interpolation in D, and D,,, can be used to obtain a
very accurate solution using the analytical solutions of Verlinde et al. (1990)
or numerical integration as discussed later.

Let us first assume that the terminal velocities are represented by simple
power laws,

AV = V(D) V(Dy)] (7.151)
which change sign when
D¢ = e,DY, (7.152)

where d, and d, are the ratios of terminal-velocity powers. With some algebra
this can be rewritten as

Dy, = fyD}, (7.153)
where,
o\ (1/ds)
fo= <—) (7.154)
Cy
and
dy
dy = . 7.155
a, (7.155)

Following Flatau et al. (1989) and Verlinde et al. (1990), using piecewise
integration with regard to D, of the collection equation such that the velocity
difference has the same sign over each part, the following equation in terms of
the mixing ratio using the gamma distribution can be written,

1 1/2
0,AC, = p—O%EXyJ (%) . (7.156)
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Now defining the variable J as the integral is simple, as it is just

oo

J= Jm(DX)(Jl J2)n(D,)dDs. (7.157)
0

The integrals represented by J; and J, are given as

I = J (D. +D,)’[V(Dy)  Vz(D,)]n(D,)dD, (7.158)
0
and
Jy = J (D. +D,)’[Vr(D,) Vz(D,)]n(D,)dD,. (7.159)

Again, following Flatau et al. (1989), integrating for J; gives,

Ji = % {VT (Dx) [D,%Gl (0,Dyy) +2D,D, Gi(1,D.,)G(0,Dy) + D;,G1 (2, ny)}
(7.160)
~Vr(Diy) [D2G1 by, Dyy) +2D,D,,Gi (by + 1,D)G1 (0,Dyy) + DLGi (b, +2,D)] },
where
Gi(p,q) =70+ 1lq) Tp+14q), (7.161)

where y and T are partial gamma functions. Flatau et al. (1989) explains that
the integral for J, is similar to J; and G5 is similar to Gj.

The remaining integral over D, (the definition of J) is quite difficult to
solve. The possibilities for finding a solution for the collection equation are
(1) to follow Verlinde ez al. (1990) for an analytical solution, or (ii) to integrate
numerically following Flatau er al. (1989). It seems that because of some of
the difficulties with solving this equation, scientists have opted for using a
hybrid bin model for solutions and storing them in lookup tables at the start of
a model simulation. This procedure has been called the hybrid parameteriza-
tion or the hybrid bin model approach by some. It is very efficient and easier
to utilize.

7.16 Long’s kernel self-collection for rain and cloud

Cohard and Pinty (2000) incorporate Long’s kernel to find a solution that is
straightforward to derive and apply from equations given earlier in this
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chapter. They make use of the modified gamma distribution withv # 1, u =1,
o = 1. For cloud droplets where D < 100 microns,

[ (Vew + 6)DS,
W T new 7.162
T'(vew) ’ ( )

where SC is the self-collection rate. For drizzle and for raindrops where
D > 100 microns,

CewSCow = koN7,

F(er + 3)D3

CrwSCry = kIN2,, Ty (7.163)

7.17 Analytical self-collection solution for hydrometeors

Verlinde and Cotton’s (1993) analytical solution is not extremely difficult, but
requires the hyper-geometric function, »F;. The formulation of Verlinde and
Cotton’s (1993) self-collection equation for change in number concentration,
which is a loss term for raindrops in this example, is given by

Y
CI'WSCI'W = gcerbJ’_zAj2 Erwrw

nrw ' Trw

2
2
X;L+nF(n)zF1(v+n,n;v+n+1; 1) T(v+n)

xT'(d+v n+2)} (7.164)

2
2
§ ————T'(n)>F d v+d 1; 1
+no[v+d+” mMaF1(v+d+nmv+d+n+1; 1)

F'v+d+nI'(v n +2)},

where E .. is the collection efficiency of rain water collecting rain water, c is
the leading coefficient for the power law for terminal velocity, and d is the
power. In addition, n = d+2v+2.

In their earlier paper, Verlinde er al. (1990) showed that H was derived
from the special case of self-collection for the general case of two-body
interactions. In that case, they showed,

do i
5= %EXXJ, (7.165)
where
1
J = =m(D,)V1(D,)N3D? Hipss. (7.166)

2
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Also note V1 = cDZ. Substitution of (7.166) into (7.165) gives

do =

de 8p
where H .. represents the summation for mass changes by self-collection. This
equation is very similar to the equation in terms of number concentration,

E.cD*2aDP N3 H s, (7.167)

—— = DY N2E Hpumber 7.168
dr 8pC n T ber» ( )
such that
dm dNT
— =~ m(D,)—, N
ar m(D,) i (7.169)
where,

2
2
Hinass = { L(n),Fi(v+nmv+n+1;,-1)—Thv+n)l'b+d+v—n+2)
=0

n v+tn
(7.170)
2 | P0aF (v +d +npy+d+n+ 1;-1)
+n:o —I'(v+d,+n)l(b+v—n+2) }’
and where,
n=b+d+2v+2. (7.171)

Note that there are two different exponents from the power law in this case.
One, b, is from the mass power law whereas, d is from the velocity power law.
Verlinde et al. (1990) claim that this form is used for the mass computation
(i.e. the amount of total mass involved in self-collection).

7.18 Reflectivity change for the gamma distribution
owing to collection

The reflectivity owing to collection can be approximated following Milbrandt
and Yau (2005b) by

G X X X 2
Z,AC, = n.(v ) 2122 040, (L) Nrac, |, (7.172)
pr NTx NTx

where G(v,) is given in Chapter 2 as is the derivation of this equation.
Alternative forms including « and u for the gamma distribution can be
derived as well as for the log-normal distribution.
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7.19 Numerical solutions to the quasi-stochastic collection equation

As pointed out by Pruppacher and Klett (1981, 1997) there is a plethora of
numerical approximation techniques to solve the approximate stochastic
collection equation. Herein, we will cover two numerical interpolation
approaches including one by Berry (1967) and Berry and Reinhardt (1974a d),
and the simple and fast Kovetz and Olund (1969) method and attempts to
modify it. Then the “method of moments” techniques by Bleck (1970) and
Danielsen et al. (1972), which are single-moment approximations, and that
by Tzivion et al. (1987), which is a multiple-moment approximation, will be
covered. Pruppacher and Klett (1981, 1997) write that these are some of the
most widely used techniques in the literature; that is the reason they will
be covered here. Finally, Bott’s (1998) flux method for solving the stochastic
collection equation will be examined.

It is interesting to see what type of solution can be parameterized from bin
model results. Khairoutdinov and Kogan (2000) ran a bin model and com-
puted the collection rates for rain as a function of Q., and Q,,, and found that
the explicit bin model results for drizzling stratocumulus could be well
represented by two parameterized functions, one slightly better than the other
(Fig. 7.8). This should be tried for deeper convection and for ice clouds to see
if bin model results could be used for collection of cloud, rain and crystals by
other hydrometeors.
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Fig. 7.8. Scatterplots of the bulk accretion rates given by the x—y axes versus
the corresponding rates obtained from the explicit mode. Note that only
every twentieth data point is shown. (From Khairoutdinov and Kogan 2000;
courtesy of the American Meteorological Society.)
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7.19.1 Methods of interpolation for the stochastic collection equation

7.19.1.1 The Kovetz and Olund method for the stochastic
collection equation

Though hardly used any more, the Kovetz and Olund (1969) scheme is a
simple and efficient interpolation method to study the collision coalescence
of particles. It has received criticism for being too diffusive a scheme. More-
over, it 18 claimed that the Kovetz and Olund method is not a true stochastic
collection scheme. Though Scott and Levin (1975) argued that all schemes are
approximations to true stochastic collection equations. The author of this
book agrees with the opinion that the Kovetz and Olund scheme is too
diffusive a scheme compared to several newer modern schemes; however, it
is presented here for completeness. Moreover the Kovetz and Olund scheme
is a mass-conserving scheme, which is a desirable quality.

The stochastic collection equation for the Kovetz and Olund scheme is
written such that

Nr(ri,t + At) = Nrt(ri, ) +Z Z (n,m,i)P(n,m)Nt(ry, t)N1(rp, t)
n 1 m n+l (7173)

M
ZPlnNT I’,, NT(rn»)
n 1

where P(n, m) is the coalescence probability for particles with radii r,, and r,,,.
The term B is an exchange coefficient to move particles from one bin to
another and is given by

(F4r, )/ ) forr <4 <i}

(2 n )/l ) forRsnen s

7.174
0 for 7 +r31 <1y (T

3 3 3
orri, <r,+r,

This scheme for B(n, m, i) preserves the mass of water. A brief discussion
comparing the Kovetz and Olund (1969) scheme to Golovin’s analytical
solution and the Berry and Reinhardt (1974a d) scheme is given below
(Fig. 7.9) from Scott and Levin (1975). They claim that the Kovetz and
Olund (1969) solutions are not prohibitively erroneous and that neither the
Kovetz and Olund nor the Berry and Reinhardt scheme are perfect at repre-
senting the true stochastic collection process. In the first example, Golovin’s
analytical solution is compared to the Kovetz and Olund scheme. The peaks
in the Kovetz and Olund scheme are slightly lower than with Golovin’s
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Fig. 7.9. Comparison of Kovetz and Olund’s (1969) results with (a) Golovin’s
analytical solution and (b) Berry and Reinhardt’s (1974a—d) gamma distri-
bution. The graphs plot number concentration versus the drop radius.
See text for details. (From Scott and Levin 1975; courtesy of the American
Meteorological Society.)

solution, whereas the tails at large drop sizes are slightly longer indicating
the known spreading by the Kovetz and Olund scheme. In the comparison
with the Berry and Reinhardt (1974a d) scheme, there is a larger difference
between the solutions, with shallower peaks for the Kovetz and Olund scheme
and more prominent undesirable spreading at 600 and 1200 seconds at the
large drop tails.

7.19.1.2 Berry and Reinhardt method for the stochastic
collection equation

The method of interpolation is quite useful if high-order interpolation poly-
nomials are used for accuracy and enough bin categories cover the spectrum
adequately. Unfortunately, given their accuracy [at least the Berry (1967), and
Berry and Reinhardt (1974a d) methods], interpolation methods do not
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preserve any mass moments including the zeroth (number concentration) and
first (water content). A practical problem with any method is determining the
number of bin categories, and spacing the bin categories to have enough
resolution at both small and large sizes. Linearly spaced bins over four orders
of magnitude in diameter would be prohibitively expensive if enough reso-
lution for the small-sized end of the spectrum were covered and these small
bin category sizes were used throughout the spectrum for the larger end of the
spectrum. On the other hand, use of coarser bin category sizes would give
poor solutions. At least somewhere around 40 or more bin category sizes
are required for accurate solutions (Pruppacher and Klett 1997 and many
others). In recent years all interpolation methods have been abandoned as
they do not handle sharp discontinuities with the high-order polynomials
needed for accurate smooth solutions.

One of the most common solutions to the problem of bin category size
resolution was proposed by Berry (1967) by using an exponential subdivision
method. For bin category J the sizes range as

r(J) = roexp <J 1), (7.175)
Jr

where J =1, 2, 3 .. . Jmax 7o 1S the smallest radius, and Jg is a distribution

spacing parameter typically between 3 and 7 or so depending on ry and the

size range to be covered. The mass coordinates given by this bin category

division method are given as

m(J) = mg exp <3[JJR ”), (7.176)

where myg is the smallest mass corresponding to the smallest radius by

4
my = ganrg, (7.177)

where pp is the density of liquid water (though any density of any particle
could be inserted). Note that the lower limit of integration is now no longer 0
but mg in the stochastic collection equation (and later in the stochastic
breakup equation).

The following closely follows Pruppacher and Klett (1997) and Berry and
Reinhardt (1974a d). First the stochastic collection equation given by

dn, 14! >
WZEZAM iNiNi i Ny ZAikNi (7178)
i1l il
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1s rewritten as

m/2
<%>C: J [K(mc‘vm/)l’l(mc, t)n(m/, t)]dm/
0 (7.179)

n(m, ) J[K(m,m')n(m’,t)]dm’,
0

where m, m' and m, are different masses, n is the number of droplets, 7 is the
time, and C means collection. Symmetry of the collection kernel K allows the
first integral to be written as a single integral rather than a double integral,
and m/2 in the first integral is an integer J,,, (upper limit), following Pruppacher
and Klett’s (1997) convention, where

m(Jwp) =m(J/2), (7.180)
or
Ju =J  [rIn(2)]/3, (7.181)

where Jp is a parameter to control the size of the exponential. Therefore, each
drop mass is 2'//¢ times the preceding mass category or

m(J) = m02<wj_kl]), (7.182)

or each mass category is twice the mass of the previous two mass categories;
1.e. mass doubles every two mass categories.

This results in a new distribution function for number concentration bin
categories n(J) so that

n(J,t)dJ = n(m, t)dm. (7.183)

Note also that, m¢ =m n/, so that we can write J,., which is not an integer
and corresponds to me,

_ TR U D)k
L_J+m0ﬂﬂ1 2 }. (7.184)

With these definitions, the above equations result in a time-dependent equation
for n(J),
T Tk

<an(J’t)>C: m(J) J [Mn(fc,t)n(fl,t)}dj'

ot m(-]c)
(7.185)

Jmax

n(J,1) J K(J,J)n(J", 0] dJ.
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Fig. 7.10. Drop-size distribution as a function of the drop radius and time:
solid lines, numerical solution; dashed lines, analytical solution. (From Ogura
and Takahashi 1973; courtesy of the American Meteorological Society.)

Ogura and Takahashi (1973) solved this equation using a variety of different
interpolating polynomials for finding n(J.) by interpolating on n(J). By defin-
ition, remember thatJ 2 < J,. < J. These interpolation polynomials included
the following five examples, with (3) and (5) behaving equally well:

(1) three-point interpolation using n(J — 2), n(J — 1), and n(J);

(2) three-point interpolation using n(J —2), n(/ — 1), and n(J) forJ -2 < J. < J —1,
nJ—1),n(J)yand n(J+ 1) forJ—1 < J. < J;

(3) four-point interpolation using n(J — 2), n(J — 1), n(J), and n(J + 1);

(4) three-point interpolation using n(J — 2), n(J — 1), and n(J) forJ -2 < J. <J—1,
and four-point interpolation using n(J — 1), n(J), n(J + 1), and n(J +2) forJ — 1 <
J. < J;

(5) three-point interpolation using n(J — 2), n(J — 1), and n(J) forJ -2 < J. <J—1,
and four-point interpolation using n(J — 2), n(J — 1), n(J), and n(J + 1) forJ — 1 <
J. < J.

The accuracy of using method (5) is shown for the Golovin kernel and
initial condition in Fig. 7.10, where there is only 6% loss in mass after 60 min
(Ogura and Takahashi 1973).
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For reasons found in Berry and Reinhardt (1974a d) and Pruppacher and
Klett (1997) to use (7. 185) more effectively it is advantageous to work with a
water content per unit In(r) interval, which is related to n(m, ) by

g(lnr)d(Inr) = mn(m,t)dm (7.186)
or,
g(Inr) = 3mn(m, ). (7.187)

(Note, though, that the author finds (7.185) even more accurate with higher-
order interpolating polynomials.) Now defining G(J),

G(J) = g(Inr), (7.188)
the following is found,
G(J) = Jgmn(J,1). (7.189)

Now the equation for G(J) follows directly from the above definitions as

(aG(J, r))C: <m(])> [mw g J’ K(me,m)GUe NGU'1)

ot JRr m?(J)m(J")
(7.190)

‘ln]'dX
6.0 T KW.NGU 1) d,] |

To employ this equation two types of numerical calculations need to be
carried out. As J. is not an integer, the values of G(J.) must be found from
interpolation [these are described below using Lagrange polynomials from
Berry and Reinhardt (1974a d)]. In addition, integration must be carried out
by numerical quadrature. Reinhardt (1972) devised adequate schemes for this
purpose, and these are given in Berry and Reinhardt (1974a d) as well.

We begin with the interpolation. As J. is not an integer G(J..) is not known.
A six-point Lagrange interpolation formula is employed in natural log space.
The coefficients A; through Ag are given by

Ay =( A 4A+54%)/120

Ay= (A" TA 4+ [A AT +6A])/24

Ay=( A’+84% 124 [24* 7A%))/12
Ay = (34" 547 124 [A° 1547 +44])/12
As = (
Ag = (

(7.191)

SA° 4+ 1647 [4A* A’ 124])/24
5A  6A+ [A°+54°  5A%])/120,
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where

2 ,
_7 4 o /2
A=J, J= ln2ln[1 2 } (7.192)

The following example shows how the Lagrange interpolation formula is
used. First, G(J) in terms of natural logarithms is given by

AilnG(J 3)+A,InG(J 2)+A3InG(J 1)
p
YA NG 0) +AsInG(J + 1) + AgInG(J +2)

These coefficients are valid when (/ J')>4. When (J J')=3, the
following set of coefficients must be used,

G(J.) =ex (7.193)

Ay = B/[120(A +4)]

[
+B/[24(A + 3)]
As = B/[12(A +2)]
(7.194)
Ay = +B/[12(A +1)]
As = B/[24(A)]
Ag = B/[120(A 1)},
where
B=(A 1HAMA+1)A+2)(A+3)(A+4) (7.195)
and
A=J. J. (7.196)

The interpolation formula in natural log space becomes,

AilnG(J 4)+AInG(J 3)+A3InG(J  2)
G(J.) = exp . (7.197)
+AsInG(J 1)+ AsInG(J +0) +AsInG(J + 1)
There are two sets of interpolating formula because of the following two
ranges for J:

(1) when (J =J) >4, (J-1) < J. < J;
(2) when (J —=J) =3, (J-2)<J. < (J—1).

Also,note thatwhen (J  J')=2,J.=(J 2)=J',andwhen(/ J')=3,
the polynomial format need not be used, i.e.

2 ,
A=, J—mln[l 2 -’W} —  1.258793747. (7.198)
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The results of integrating the stochastic collection equation with the Berry
and Reinhardt scheme are very accurate and compare very favorably with
analytical solutions, though this method does not conserve any integral
properties. Moreover, the method does not permit use of empirical collisional
breakup functions specified by Low and List (1982a, b).

Now for integration, three Lagrange integration coefficients are used. How-
ever, there are intervals where these will not work because the integrand becomes
zero at certain values of J. So special methods are put in place near the zeros.
The zeros occur when like-sized drops collide (J = J'), as the collection kernel
then includes the fall-velocity difference. Consider the following special cases,
where “aint” is a function that creates an integer from a real number.

(1) Even number of points: gain integral, J; = 8

8
Jaint(]’)d]’ = (1/3)aint(1) + (4/3)aint(2) + (2/3)aint(3)

! (7.199)
+ (4/3)aint(4) + (1/3)aint(5) + (3/8)aint(5)
+ (9/8)aint(6) + (9/8)aint(7) + (3/8)aint(8).
(2) Odd number of points: gain integral, J; =9
9
Jaint(]’)dJ’ =(1/3)aint(1) + (4/3)aint(2) 4 (2/3)aint(3)
+ (4/3)aint(4) + (1/3)aint(5) + (14/45)aint(s) (7.200)

+ (64/15)aint(6) + (24/45)aint(7)
+ (64/45)aint(8) + (14/45)aint(9).

(3) Even number of points through zero integrand: loss integral, J =8, J,, = 15

15
J aint(J")dJ' = (1/3)aint(1) + (4/3)aint(2) + (2/3)aint(3)

1

(4/3)aint(4) + (1/3)aint(5) + (3/8)aint(5)

9/8) aint(6) + (9/8) aint(7) + (3/8)aint(8) (7.201)
3/8)aint(8) 4 (9/8)aint(9) + (9/8)aint(10)

3/8)aint(11) 4 (1/3)aint(11) + (4/3)aint(12)

2/3)aint(13) + (4/3)aint(14) + (1/3)aint(15).

—~



7.19 Numerical solutions 207

(4) Odd number of points through zero integrand: loss integral, J =9, J,, = 16

16

Jaint(]’)d]’ =(1/3)aint(1) + (4/3)aint(2) + (2/3)aint(3)

1
+ (4/3)aint(4) + (1/3)aint(5) + (14/45)aint(5)
+ (64/45)aint(6) + (24/45)aint(7) + (64/45)aint(8) (7.202)
+ (14/45)aint(9) + (3/8)aint(9) + (9/8)aint(10)
+ (9/8)aint(11) + (3/8)aint(12) + (1/3)aint(12)
+ (4/3)aint(13) + (2/3)aint(14) + (4/3)aint(15)
+ (1/3) aint(16).

For further details the reader should see Berry and Reinhardt (1974a).

7.19.2 Method of moments for the stochastic collection equation

7.19.2.1 A one-moment method for the stochastic collection equation

The one-moment method of Bleck (1970) and Danielsen et al. (1972) has
received considerable use in meteorology, as it is relatively simple and inex-
pensive to utilize. It does have its limitations as noted toward the end of this
presentation of the method.

First, consider the equation written in (7.203) regarding the consideration
of the completeness of the stochastic collection equation,

dNTx
dr

2Zsz iNTiNTk i Ntk ZszNTz (7.203)
il

Bleck (1970) and Danielsen et al. (1972) considered a drop spectrum
described by Berry and Reinhardt (1974a d), and later in discussion of
multi-moment methods, so did Tzivion et al. (1987),

M1 = prMiy, (7‘204)

where k is the bin category index, m; and my; are the lower and upper
bounds of the category, and p; is a parameter describing the category width.
This usually is given in terms of 2 to some power, such as

=2, (7.205)
Alternatively, it was seen for the Berry and Reinhardt (1974a d) method that

m(J) = mo exp <3VJR ”), (7.206)
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with mq given as the smallest mass,

4
my = ganrS, (7.207)

and where r is the smallest radius.
Now to obtain the solution more easily, (7.203) can be written in the
following form,

m/2

(i) JK(mc,mommc,r)n(mcr>dm' n(m, 1)

ot
(7.208)

X J K(m,m' )n(m', t)dm’,
0

where C denotes collection, and m/2 in the first integral is an integer Jyp,
following Pruppacher and Klett’s (1997) convention, where m(J,,) = m(J/2).
Note also that

me=m m. (7.209)

As before, symmetry of the collection kernel K allows the first integral to be
written as a single integral rather than a double integral.

To solve the stochastic collection equation with the one-moment method,
Bleck and Danielson et al. both used subcategories to describe the spectrum
defined by a mass-weighted mean value for the number density of the hydro-
meteor species in each mass category, given by

1

M4 Myt M1
2
n(t) = J n(m,t)mdm J mdm| =-——— [ n(m, t)mdm. (7.210)
" " M My ks

To find an equation for dn;/dz, both sides of (7.208) are multiplied by mdm
and the resultant between my; and my |, is integrated; using (7.210) gives

m/2

<ank(t)>czl - 2 2] ”Tl mdm J K(m— ', )n(m — m, O)n(ni’, £)dmd
iy 0

ot My — M
(7.211)
2 i T / ’ ’
ol B — J mdeK(m,m)n(m ,Hn(m, t)dm’ | .

M — My
my 0
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Given the definition

J.= (an(m”)> , (7.212)
there is also the definition that
9 2 M1
t
me(t) - 5 J Jo(m, tymdm. (7.213)
o ) |my  mg
my
Now Bleck made the approximation
n(m,t) = n (1), (7.214)
where & 1s such that,
mp <m < Mpyq. (7.215)

Now the continuous size distribution is replaced by a piecewise constant
function with discontinuities at my(k = 0,1,2,3...),

M1

<8n(m)> _ 2 2 J Jo(m. ymdm| (7.216)

>
o Jo my  my

my.

Graphically, Bleck demonstrated that the term in square brackets in (7.216)
could be given by

Myt
kok1 J
J Jo(m, t)mdm =~ Z Zaijknjni nkZbikni, (7.217)
Jj k i1 i1
my
so that
an(m) 2 k1
or ) \md m Z Z“uk”ﬂ% nkzbzknu (7.218)
C k41 k| ik 1

where [ is the total number of bins or categories, and definitions for a;; and
bj; are given by Danielsen et al. (1972) and Brown (1983, 1985).

As this equation is normalized by the mass density distribution function, it
does not conserve any other moments but the first one, mixing ratio or mass,

M1
M] = [ mn(m, t)dm. (7.219)

s
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The method has received perhaps unfair criticism, though it does accelerate
larger particle drop growth (Tzivion et al. 1987). It does have an advantage
over the Berry scheme in that various breakup parameterizations can easily
be incorporated (e.g. Low and List 1982a, b; and Brown 1988).

7.19.2.2 A multi-moment method for the stochastic collection equation

Next the discussion turns to Tzivion et al.’s (1987) multi-moment or v-moment
approximation method where v is the vth moment. The categories are defined
as with the one-moment method,

M1 = Prmy (7220)
and
=2, (7.221)

As noted above, v is the vth moment of the distribution function n(m, ) in
category k,

Myt

M, = [ m’n(m,t)dm. (7.222)
Application of
mg+1
J ' dm (7.223)

N
to

m/2

(an(m)>cz J K (ome, m)n(me)n(od )t ”<m>IK(m,M’)n(m’)dm/ (7.224)

ot

gives the following equations with respect to the moments in each category.
The result is a system of equations, given by

M1 m

oM 1 .

< Btk> =3 J m"dmjK(m m' ,m )n(m  m', t)n(m, t)dm’
my, mo

;M My (7'225)

121: J m"ng(m, t)dm J K(m,m)ni(nd’, t)dm!

my m;



7.19 Numerical solutions 211

and
miy] mygy
oM (t K1 v
8kt( ) = J ni(m', t)dm'’ J (m+m') Ky ;(m,m")ni(m, t)dm
i k4
o M mit
- J ni(m', t)dm’ J (m+m')'K, | (m,m )y 1(m, 1)dm
i1 )
t (7.226)
1 my my
+5 J ny 1(m,t)dm’ J (m+m') ne 1(m,0)K; |, (m,m")dm
my | my |
I My mit|
Z J m"ni(m, t)dm J ni(m, )K, (m,m’)dm’,
il my mp 1 om'
where K is the collection kernel. Now we let,
Myet-1 M1
[ m e (m, )dm’ [ m" 'ng(m, )dm
g = LR , (7.227)
[ | m'ni(m, t)dm]
my
where
(P +1)°
1<, <——~—, 7.228
g 4py ( )

and where p; is a parameter describing the category width. Now using the
mean value of ¢, (ép) the connection “between three neighboring moments”
can be expressed as

M = EmiMy. (7.229)

Now the zeroth moment, or number concentration, can be presented as

my niy
+3 [ moa(d,0dm [ Koy (mom )y (m,t)dm
aNk(t) my Mg 1

ot - k2 miy mi1
+>° [ om0 dm’ [ K (mom ) 1(m,t)dm

i1 m my m'
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r Myt1 Myt-1
—i—% | m(md t)dm’ | Kk7k(m,m’)nk(m,t)dm

my my

k 1 mi41
+ 3 m(m )dm [ K, (mym)ng(m, t)dm
L il My m' '

(7.230)

Myt mi+1
% | () dm’ | Kka(m,m’)nk(m,t)dm

my my

1 Mg Myt 1
+ > [ m@d,0)dm [ K, (m,m)n(m, t)dm!

i k+1 my my

and the first moment, or water content, as

my my
P oo ndm [ (m+m)K o (mom g 1 (m, t)dm
aMk(t) mp 1 mi 1
ot k2 miy M
+>0 | m(m,dm’ [ (mA-m)K  (mm )y 1 (m1)dm

=1 m; my n'

M. "M+l Mj+] 7
I om(ml 0dm' [ (m 4 m)K;  (m,m)ng(m, t)dm
my my

_ (7.231)

k1 mip Mt

+ Z [ n m [ (m+m)K,  (m,m)n(m,t)dm

=1 m; My m

r Miey1 my e
> mw(m dm [ (mA- K (mym Y (my 1) dm

my mypr nm'

1 miy Myt

- > | m(m,t)dm [ mK, (m,m')n;(m,t)dm’

L i=k+1 m; my

These two equations (7.230) and (7.231) were derived by Tzivion et al. (1987)
to be interpreted as easily as possible in a physical sense. The autoconversion
of the number of particles to category k as the result of coalescence between
the number of particles in category & 1 with one another (term 1) and with
the number of particles in the categories less than categories & 1 (term two)
are the first two terms. The third and fourth terms represent the autoconver-
sion of the number of particles to category k as the result of coalescence
between the number of particles in category k£ with one another (term 3) and
with the number of particles in categories less than k (term 4). The last two
terms represent the loss in particles in category k during collisions with one
another (term 5) and with the particles in categories larger than k£ (term 6).
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Fig. 7.11. A comparison of stochastic collection computations for the con-
stant collection kernel [K(x, y) = 1.1 x 10 * cm * s '] after 60 min of
collection for (a) a fractional mass (M;/LWC), where LWC is liquid-water
content and (b) category number concentrations (N;). The analytical solu-
tions are represented by solid lines, Bleck’s method by long dashed lines, and
the proposed method by short dashed lines. The initial exponential distribu-
tion is indicated at the left by a solid line. (Tzivion et al. 1987; courtesy of the
American Meteorological Society.)

In the mass equation (7.231) it is mass that is transferred rather than number
concentration.

Tests with a constant kernel show general agreement between the one-
moment Bleck scheme and two-moment Tzivion ef al. scheme (Fig. 7.11)
starting with an inverse exponential profile for the size distribution. There is
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Fig. 7.12. A comparison of stochastic collection computations for the
constant collection kernel [K(x, y) = 1500(x+y) cm *s '] for (a) a fractional
mass (M;/LWC) and (b) category number concentrations (N;). The analyt-
ical solutions are represented by solid lines, Bleck’s method by long dashed
lines, and the proposed method by short dashed lines. The initial Golovin’s
distribution is indicated at left by a solid line. Solutions are shown at 30 and
50 min collection time. Note the excellent fit obtained for the proposed
method for both mass and number concentration and the tendency for the
Bleck solution to accelerate the collection process. (From Tzivion et al. 1987,
courtesy of the American Meteorological Society.)

some error with Bleck’s method with the fractional mass. Also shown is
Fig. 7.12 using the initial inverse exponential distribution that shows the
failure of the one-moment scheme that occurs with rapid acceleration of larger
drops (large dashed lines) as compared to Tzivion et al.’s method. Finally, the
most enlightening result is found using a realistic kernel. In this case, the Tzivion
et al. method considerably out-performs the Bleck method (Fig. 7.13). (Note
number concentrations are not shown for Bleck’s one-moment scheme, as it
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Fig. 7.13. A comparison of stochastic collection computations for a
real collection kernel (see Long 1974) for (a) a fractional mass (M;/LWC)
and (b) category number concentrations (N;). The analytical solutions
are represented by solid lines, Bleck’s method by long dashed lines, and
the proposed method by short dashed lines. Evidently, the Bleck method
enhances collection by a factor of about two compared with the proposed
method. (From Tzivion et al. 1987; courtesy of the American Meteorological
Society.)

does not solve a solution for the zeroth moment, which is the number concen-
tration. It only solves for mass.)

To solve the equations, Long’s kernel with integer-order polynomials is
used to solve the integrals such as
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M1
m’ni(m, t)dm. (7.232)

mgpy m

Using a linear distribution to approximate the integrand,

m'ng(m,t) = myfi <%> + my Vi (m mkmk> ) (7.233)
the integral can be solved as the following,
M1 )
J m’m(m, t)dm = mj__p,m’ 2’7’:’];/( 2", fom'. (7.234)
My m'

The functions for f; and y, used to describe the transfer of particles from one
bin to another, have to be given in terms of the moments M.

Substitution of (7.233) into the definition for the moments allows the
following to be written,

My
M, = J m’n(m,t)dm, (7.235)
where
2N, m
fi="2 (2 @> (7.236)
ny ny
and
2N, (m
W, =k <@ 1). (7.237)
my \my

Tzivion et al. note that the proposed approximate distribution function is
positive definite on (my, my 1) as long as the following is true,

my < my < Ngy. (7238)

If this does not hold because of truncation error, it is required that

N,
fo=0; y(k) =222 if m > mys (7.239)
my,

and

fo= 2%; Y(k) = 0 if 7, < my. (7.240)
k
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Higher-order polynomials can be used, but are not really deemed necessary
for typical high-resolution modeling with small timesteps. Nevertheless,
though not presented here, a cubic approximation that performs well can
be found in Tzivion et al. (1987).

7.19.2.3 The flux method for the stochastic
collection equation

Bott (1998) introduced a new method for solving the stochastic collection
equation. It conserves mass exactly, and is computationally very efficient
compared to other methods. Bott’s method is a two-step procedure. In step
one, drops with mass m' that have been just formed by collision, are entirely
added to grid box k of the numerical grid mesh with m, < m’ < my. In step
two, a certain fraction of the water mass in box k is transported to box k+1.
This transport is carried out as an advection procedure, which is unique to the
method.

First Bott (1998) starts off with Pruppacher and Klett’s (1997) definition of
the stochastic collection equation written slightly differently,

m/2

<8n(m)>cz JK(mmml)n(mc)n(m')dm’ TK(m,m')n(m)n(m’)dm’. (7.241)

ot

Here, remember that 7 is the number concentration, K is the collection kernel
describing the rate that a drop of mass

me=m m (7.242)

is collected by a particle of mass »’' forming a drop of mass m. Now,
myg is the mass of the smallest particle involved in the collection process and
my is = m/2.

Following Berry (1967) a mass distribution function g(y, ¢) is employed
with

g(y,t)dy = mn(m,t)dm (7.243)

and

n(m,t) = #g(y,t). (7.244)

The following definitions are made including y = In r where r is particle
radius with mass m. Substituting these into the modified Pruppacher and Klett
(1997) description of the stochastic collection equation gives a somewhat
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familiar equation from the earlier discussion of the Berry and Reinhardt
method,

(120:2) _ yJ'mzmyc,y/)g(yc,r)g(y',o dy,_TK(»y’)g(y,r)g(y:r)dy,. (7.245)
C

ot m2m’ m'

Yo
As usual, the first integral is the gain of a particle by collection between two
particles, and the second integral is loss of particles with mass m owing to
collection with particles of other sizes.
For a numerical solution, Bott uses a logarithmically equidistant mass grid
mesh, where

My =omy k=1,2,3...1, (7.246)

where / is the total number of grid points. This gives a grid mesh in y that is
equally spaced such that

Ay = Ay = In(a/3), (7.247)

where o = 21/2. This represents a doubling of the particle mass with every
two grid cells. Different values of o can be used. Discretizing the collision of
particles of mass m; with drops of mass m; gives a change in the mass
distributions g; and g;, such that

. K(i,j
i) =8 &g fn >AyAt (7.248)
)
and
- K(j,i
gUsi) =g &g ,(7/1 )AyAt- (7.249)

1

The variables g; and g; are described as the mass distributions before colli-
sions at grid points i and j, whilst g,(i,/) and g;(j,i) are the new mass distribu-
tions after collisions. In addition, K(i,j) is an average value of the collection
kernel found by bilinear interpolation such that

K(i,)) :é[[((i— 1,)) +K(@i,j— 1) +4K(i,)) + K(i+ 1,j) + K(i,j + 1)]. (7.250)

As occasionally is the case, the collection kernel is symmetric in i and j so that
K(j.i) = K(i.j) (7.251)
and

8(J,i) = g(i,J). (7.252)
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Xk+j

Fig. 7.14. Schematic of the flux method. Details in the text. (From Bott
1998; courtesy of the American Meteorological Society.)

Owing to collisions in box j new particles with mass m/(i,j) = m; + m; are
formed, so that the following is written,

)

m'(i, ]

lmj

gi(i,)) = gigiK(i,j) = AyAt. (7.253)
As with most schemes the mass x’(i, /) differs from the grid mesh x;, as
X < X(i,)) < Xppa- (7.254)

As a result, the mass density needs to be split up into grid cells ¥ and k+1.
This is where Bott (1998) uses a two-step procedure. In the first step, g'(i,/) is
added in its entirety to grid box &,

& (i) = e + &' (i,))- (7.255)
Now comes the tricky part. In step two, a fraction of the new mass, g (i,/) is
transported into grid box k+1 by advection through the boundary & + (1/2)
between boxes k£ and k+1. Bott’s schematic of this is shown in Fig. 7.14.
More formally, the advection step is given as

gk(la.]) :g;c(lv.]) fk+l/2(l’])

(7.256)
8k+1 (l7.]) = g;c(l7]) +fk+l/2(i7j)7
where the mass flux through the boundary & + (1/2) is
Ay
,])—. 7.257
Jies1/2(1,)) Ar ( )
Now the upstream approach can be used to find fi,1/2(i, ),
fk+1/2(i7j) = Ckg;c(lv.])w(la])7 (7258)
where ¢; is like the Courant number and is calculated by
P
= w, (7.259)

Xk+1 Xk
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and the weighting function is

N A
w(i,j) = -, 7.260
) 8 (i) (7:260)
Substituting (7.260) into (7.258) shows that the value of fi1 (i, /) is just,
fk+1/2(iaj) = Ckg,(i?j)v (7261)

resulting in the same partitioning of ¢'(i,j) as in Kovetz and Olund (1969);
but where they solved the stochastic collection equation for number distribu-
tion n(m, t) instead of the mass distribution. This method has been called the
upstream flux method by Bott (1998). Unfortunately the upstream flux
method produces broad distributions, which, however, can be remedied by
using higher-order advection schemes that are also positive definite like the
upstream flux method.

To begin, consider grid box k, where the constant value of g;(i,j) is
replaced by a higher-order polynomial of order L,

i (z Z k52’ (7.262)

where

2= w)/Ay, (7.263)

and 1/2<z<1)2.
Next cig;(i,/) is replaced by the integral relation

1/2

L
Af.s s+
J D ey m[ (1 2¢) } (7.264)
1/2 Cr ’

This gives the mass flux through &k + (1/2) as

L
[ s
Jier12(i,) = w(i,)) Z L 12 [ (1 2¢) H] (7.265)
K 0

For the upstream flux method, with L = 0,
aro = g (i,))- (7.266)
For the linear flux method, with L = 1,

ar1 = g1 g (i,)). (7.267)
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Finally for the parabolic method, with L = 2,

aro = 1/24[grp1 26g.(i,)) + & 1]
ar = +1/2[gk1 gk 1] (7.268)
ara = 1/2[gee1 284(0,)) + gk 1]-

For positive definiteness to be guaranteed the following simple flux limiter is
applied,

0 ka—&-Z(i’j) < g/(iaj)' (7269)
Now all the possible collisions need to be treated in timestep Az. To do so, an
iterative procedure is used. To start, the smallest particle involved in colli-
sions is defined by index i = iy, and the largest particle by i = i;. In step one,
following Bott (1998) closely, collisions between the smallest particle with
particles of grid box j = iy + 1 are found using new values from calculating
gio (io,io + 1), gio + 1(i0si0 + 1), and gy(in,io + 1).

In the following steps the collision of the remaining particles in i = i
having new mass distribution giq (io,io + 1) with particles in grid box j =iy + 2
are calculated. To complete the iteration this is continued until all collisions
of particles in grid box i = iy with particlesinj=iy+ 1,ig+ 2,ip+ 3, ..., 1;
are completed.

The next step starts with particles in i = iy 4+ 1 colliding with particles in
iop + 2,09+ 3,...,i until all are completed.

Owing to the iterative approach after each collision process, the drop
distribution is updated before the next collision process is calculated (Bott
1998). According to Bott, at least analytically, this is done by replacing
(7.253) (7.256) after the first collision process, g;, g, 8x, and g1 with gi(i,j 1),
gy 1, gy 1), and grn(y D).

The timestep must be limited for positive definiteness by

.
At ———
~gii,j 1K, j)Ay

(7.270)

and for j # k by

At < AL
The results of integrating show a definite improvement in solutions using the
Bott (1998) method when using higher-and-higher-order polynomials for the
advection with the parabolic flux method performing the best of the schemes
tried, as shown below for Golovin’s kernel and distribution. Other adjust-
ments can be made to the linear flux method to improve its performance as

(7.271)
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described by Bott by using a different flux limiter resulting in the modified
flux method. Moreover, Bott shows solutions from several different initial
conditions that could be used for benchmarks for other methods (Fig. 7.15) in
Bott (2000). Also, a flux method for the numerical solution of the stochastic
collection equation extended for two-dimensional distribution is developed.

7.20 Collection, collision, and coalescence efficiencies
7.20.1 Rain collecting cloud water

Collection efficiencies, which are the product of collision efficiencies and
coalescence efficiencies, have been studied for decades by many investigators.
Cloud-drop and raindrop collection efficiencies seem to be those most com-
monly studied. This may be because wind tunnels for cloud drops and
raindrops are easier to construct than those for other particles, which in
turbulent free air do not tumble or follow irregular trajectories.

Possibilities when raindrops collide with cloud drops or other raindrops
are coalescence, rebounding, and tearing away after coalescence, and finally
drop breakup for raindrop raindrop collisions between certain sizes of rain-
drops. Typically, for bulk parameterization, the collection efficiencies for rain
collecting cloud range from the order of 0.55 in some models to as high as 1.0
in other models.

Some, such as Proctor (1987) have computed polynomials for raindrops
(subscript rw) collecting cloud drops (subscript cw). Proctor’s polynomial is
given by

Erwew = min[(acw + "cw(bcw + rcw(ccw + rCW(dCW)))>7 10]7 (7272)

where r., is the radius of the cloud drop and the coefficients for the collision
efficiency are given as

Aoy = —0.27544
bew = 0.26249 x 10°
Cow = —1.8896 x 10'°
dey = 4.4626 x 10,

This polynomial (7.272) works remarkably well when compared to the efficien-
cies given in Rogers and Yau (1989; Fig. 7.16), especially for medium-sized
cloud drops. Figure 7.17 shows coalescence efficiencies from Low and List
(1982a). A comprehensive figure of self-collection, breakup, and accretion
probabilities is shown in Fig. 7.18.

For bin models, Cooper et al. (1997) came up with collection efficiencies
for all sizes of drops up to about 5 mm in diameter, collecting all sizes of
drops up to about 5 mm in diameter (Fig. 7.19). The collection efficiencies are
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Fig. 7.15. (a) Solution to the stochastic collection equation for L = 2 gm °*

and 7 = 15 pm, with different versions of the flux method in comparison to
the BRM (full curve). Short dashed curve: LFM; long dashed curve: MFM.
Curves shown after 10 and 20 min. BRM is the Berry and Reinhardt
method. LFM is the linear flux method; MFM is the modified linear flux
method. (From Bott 1998; courtesy of the American Meteorological Society.)
(b) Same as (a) except with a logarithmic scale of the ordinate. (From Bott
1998; courtesy of the American Meteorological Society.)
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Fig. 7.16. Collision efficiencies for larger particle collecting smaller particles;
R is the radius of the drop doing the collecting, and r is the radius of the drop
collected. (From Rogers and Yau 1989; courtesy of Elsevier.)
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Fig. 7.17. Empirical coalescence efficiencies. (From Low and List 1982a;
courtesy of the American Meterological Society.)
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shown as two lobes of values higher than about 0.6 and then much smaller
values for like-sized particles and small particles collecting small particles.
In addition, very small particles are difficult for any sized particle to collect.

7.20.2 Larger ice hydrometeors collecting cloud water

Cloud water collection efficiencies for larger ice hydrometeors are difficult to
measure, so researchers often resort to numerical techniques. For graupel and
hail, values are either set to one, or to a function developed by Milbrandt and
Yau (2005b) using data from Macklin and Bailey (1962),

Eyw = exp| 8.68 x 10 "D\ Dy, (7.273)

cwmyv

where D.ymy and D,,, are the mean-mass diameters of cloud water and
graupel or hail, respectively, in meters. For example if Dy and Dyymy are
2.5 % 10 >mand 9 x 10 * m, respectively, then the collection efficiency is
0.835. For snow collecting cloud water collection efficiencies are usually
taken to be about one.

7.20.3 Ice crystals collecting cloud water

Pruppacher and Klett (1997) show the onset size that various ice crystals must
achieve before they can collect cloud drops, as seen by observing the size of
the rimed ice crystal. Plates start readily collecting cloud droplets at about
200 mm, sectors at about 300 400 mm, and dendrites at about 800 mm. The size
of cloud droplets collected by plates between about 1000 and 1600 mm ranges
from 10 < D < 42 mm, where D is diameter, with a peak number between
20 < D < 30 mm. The size of cloud droplets collected by dendrites with sizes
of between 2900 mm and 4650 mm ranges from 10 < D < 78 mm with a peak
number for the smaller of these dendrites near 20 < D < 40 mm; for the larger
of these dendrites, the peak numbers occur for sizes of cloud drops that are
around D = 50 mm. A summary is shown in Fig. 7.20. Pruppacher and Klett
(1997) also present some graphs from Wang (2002) of different sizes of
different types of ice crystals and the efficiencies with which they collect cloud
drops. These are rather preliminary results, though they could be made into
lookup tables for bin or bulk microphysical parameterizations. Saleeby and
Cotton (2008) have done this, as have Straka et al. (2009b). A comparison
between an infinite column and a finite column (Fig. 7.21) is unique in that
most early calculations employed infinite columns. The results in Fig. 7.21
show that collection of D = 10 to 15 micron cloud droplets is best for all sizes
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cooled water drops. The last data points (at the large drop-size end) for N,
0 to 20 are extrapolated. (From Wang 2002; courtesy of Elsevier.)

of columns, and infinite and finite at the columns’ smaller sizes. The collection
efficiencies for finite columns collecting cloud droplets are summarized in
Fig. 7.22, broad-branched plate crystals collecting cloud droplets in Fig. 7.23,
and plates collecting cloud droplets are shown in Fig. 7.24. These are only the
collision efficiencies, but what Wang and Ji showed is really a first step
forward after many years of attempts to describe collision efficiencies of ice
crystals collecting cloud droplets.

7.20.4 Ice particles collecting ice particles

Ice particles collecting ice particles are probably the most difficult to measure
in any manner and the functions researchers use are only loose approxima-
tions. One measurement that stands out is that dendrites collect other dendrites
with collection efficiencies of about 140 percent. Cotton et al. (1986) also
present a function from Hallgren and Hosler’s (1960) results for other types
of crystals collecting crystals as well as other ice hydrometeors; it is given by

Eyy = min[ 10003517 21315} 07) 0 5], (7.274)
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where x is ice, snow, graupel, or hail, and the temperature used is that of the
warmer particle. Besides this function, Milbrandt and Yau (2005b) and others
use the following functions for dry collection as given by,

Esw = min[0.05exp(T  273.15K), 1.0], (7.275)

where subscripts ci and sw denote ice crystals and snow aggregates,
respectively.
For larger ice particles collecting ice crystals, the following is used,

Ecigw = Esgw = Ecihw = Eshw = mm[OOl(T 273.15K), 10] (7.276)

Lin et al. (1983) used slightly different numbers for these collection efficien-
cies, including

Egsw = min[0.025exp(T  273.15K), 1.0] (7.277)
and
Ecihw = Eswnw = min[0.09(T  273.15K), 1.0]. (7.278)

During wet growth of hail, the collection of ice crystals and snow aggregates
is set to one. Many of these originated with Lin er al. (1983) who used these
functional forms.
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Drop breakup

8.1 Introduction

The characteristics of hydrodynamic instability are called bag breakup.
A very large raindrop (D = 8 to 9 mm) accelerates, and a concave region
forms on the underside of the drop, which amplifies with time. At some
critical diameter the concave region grows explosively. An annular ring of
water at its base supports the bag of liquid water. As the bag grows, it thins
and bursts and many small droplet fragments are formed. A few larger
droplets or drops may form from breakup of the annular ring. The maximum
size a drop can achieve before bag breakup occurs under conditions where
drag forces exceed surface-tension forces. The drag force or stress is

Fq :Cdpuio, (81)

where cq is the drag coefficient, p is the density of air, and u., is the fallspeed
at terminal velocity; whereas the surface-tension stress is
40
Ft _ .
D

The scales of the variables are, cq = 0.85, 0 = 7.6 x 10 2Jm 2, p=1lkgm 3
U, =9 ms ' With these D,,., can be defined as

8o
Dmax = >
cdpu,

(8.2)

=88 x 10 *m, (8.3)

or about 8 to 9 mm depending on the values used for Cy, p, and values used
for u,.

Liquid raindrops generally are not observed to be this size. In addition,
raindrops are rarely larger than 3 to 5 mm in diameter. The reason for these
conditions is that collisional breakup occurs much more frequently than bag
breakup.

231
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8.2 Collision breakup of drops

There are three primary forms of collisional breakup. These include neck or
filament breakup (27%), sheet breakup (55%), and disk breakup (18%).
Schematics of each type of breakup are shown in Fig. 8.1.

8.2.1 Neck or filament breakup

Neck or filament breakup occurs by glancing collisions between a smaller
and a larger drop. As the smaller drop makes contact with the larger drop and
the large drop falls away a neck or filament of water keeps the two drops
momentarily attached. Eventually, the filament breaks and the two drops retain
much of their original mass. However, two to ten fragments usually form,
with five the most common number (including the original drops).
The number of drops formed by filament, sheet, and disk breakup increases
with the increasing collisional kinetic Ecxg energy or larger differences in
sizes of drops. These types of breakup occur over a wide range of drop pair
sizes. Schematics of the various forms of breakup are shown in Fig. 8.2 and
discussed below.

() (b) (c) (d)
Neck Sheet Disk Bag
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Fig. 8.1. Schematic of the common types of breakup. (From McTaggert-
Cowan and List 1975; courtesy of the American Meteorological Society.)
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Fig. 8.2. “Collision with Dg (small drop) hitting Dy (large drop) in the
center. The left branch in the schematic shows disk formation with liquid
flowing radially outward; the right branch shows collapse of the cavity to
form a surface wave traveling to the top of the Dy drop.” (From Low and
List 1982b; courtesy of the American Meteorological Society.)

8.2.2 Sheet breakup

Sheet breakup occurs when a smaller drop is impinged upon by a much faster
falling large drop such that the larger drop is broken up into primarily two
pieces or a sheet of water is ripped off. The onset of sheet breakup occurs at
larger small-drop sizes of the drop-size pairs than with filament breakup.
After breakup, the small drop is usually indistinguishable from the original
small drop that caused sheet breakup. The large drop is severely distorted
from its original size. With sheet breakup two to ten fragments form, with
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eight the most common number, including the original drops. The number of
drops formed by sheet breakup increases with the increasing collisional
energy or larger differences in sizes of drops.

8.2.3 Disk breakup

Disk breakup occurs when the smaller drop strikes the larger drop along its
center line (Fig. 8.2). After collision, a disk forms and extends the original
drop to two to three times its original diameter. The acrodynamic forces then
act to form a bowl-shaped particle, which sheds droplets. Few fragments are
formed if the collisional energy is low. If the collisional energy is high, then up
to 50 fragments may form.

8.3 Parameterization of drop breakup

The breakup of raindrops plays an important role in describing the hydro-
meteor distribution in the real atmosphere and can lead to the so-called
Marshall Palmer distribution or negative-exponential distribution, in the
mean over the number of collision events during the experiment. However,
two to three modes in the distribution can develop in as little as five to
ten minutes owing to breakup by particles 1 to 2 mm in diameter colliding
with larger particles 3 to 5 mm in diameter. One of the most common
types of breakup is sheet breakup, followed by filament breakup, and
lastly, disk breakup (Low and List 1982a). A starting place for parameter-
ization of one of these is presented by Brown (1997), though it is too
complicated to consider for bulk microphysical parameterizations. Hydro-
dynamic breakup (Pruppacher and Klett 1997) is rare (Rogers and Yau
1989; Pruppacher and Klett 1997) as few, if any, drops ever get large
enough for this mechanism to operate. However, in models without provi-
sions for other forms of breakup, there is nothing to limit the size of the
particles and they are able to reach sizes at which hydrodynamic breakup
becomes important. Again this parameterization is most appropriate for
bin model parameterizations, as it is too difficult to parameterize for bulk
model parameterizations.

Rather than include the net effect of all the drop-breakup mechanisms
in the stochastic collection equation, they are interpreted as a perturbation
in the self-collection equation (Cohard and Pinty 2000). Therefore, we follow
the simple formulation by Verlinde and Cotton (1993) to describe the
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breakup, which is designed to represent the most common breakup mechan-
isms. This parameterization limits the mean drop diameter of D,, = vD,, to
900 microns, and does so based on adjusting the self-collection efficiency for
distributions when collection occurs. In other words, the application of the
parameterization is an adjustment to the collection efficiency in the self-
collection calculation,

1 Dy, < 600 microns
Exx -
2 exp(2300[Dy Deut]) Dpm > 600 microns. (8.4)

For example, with the cut-off diameter Dy = 6 x 10 * m, E,, = 1.0 for
D, < 6 x 10 *m, then as the mean drop size increases, E, decreases to 0.0 at
Dm =9 x 10 * m. At particle sizes larger than 9 x 10 * m, the efficiency
exponentially becomes more negative, which implies quick breakup. For example:
withD,=1x10 *m, E,, = 0.51;withD,=1.1x10 *m, E,,= 1.16;
with D, = 1.2 x 10 * m, E.,, = 1.97. These numbers show the quick
breakup of large drops and produce a number concentration source for
rain. Breakup of particles other than rain is not permitted. Melting aggre-
gates that are to a large extent liquid (>50%) might break up too, but these
particles become redefined as melt rain in the model and then breakup can
occur if they are large enough. Note that the parameterization of E,, also
can force the self-collection equation to act as a number concentration sink
causing smaller drops to coalesce and number concentration to decrease as
described above.

There are other similar formulations for drop breakup that are worth
mentioning; they follow the same philosophy as above. The first of these is
by Ziegler (1985) whose parameterization is similar to Verlinde and Cotton’s
(1993), but has a zero E,, at diameters greater than 1000 microns.

Another drop breakup formulation is by Cohard and Pinty (2000), where
the self-collection efficiency is adjusted when D, > 600 microns,

1 if D, < 600 microns
exp{ 2.5x10°(Dn 6x10 %)} if 600 < Dy, <2000 microns
0 if Dy, > 2000 microns. (8.5)

This scheme does not have the feature of relaxing drops back to the equilib-
rium or largest permitted mean diameter when drops get very large, as in the
Verlinde and Cotton formulation.
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8.3.1 Stochastic breakup equations

8.3.1.1 Hydrodynamic instability

If stochastic collection equations are integrated indefinitely they generate
drops which are far too large compared to what is generally observed.
A mean steady rain spectrum such as the Marshall and Palmer (1948) type
is not possible. In general, it is possible to understand only the physics of the
early development of the first raindrops. Beyond the initial period of signifi-
cant growth, the stochastic collection equation alone begins to fail. In order
to accommodate more reality in understanding precipitation development,
stochastic breakup equations have been developed.

As raindrops grow they usually break up by collisions. However, if there
are no collisions (Rauber ef al. 1991), then when aerodynamic forces exceed
surface-tension forces typically around drop diameters of 8 to 9 mm, they
break up spontaneously. This has been studied in the laboratory and the results
have been repeated numerous times by Blanchard (1950) and Komabayasi
et al. (1964), among others. Komabayasi er al. (1964) proposed the following
parameterizations for bin models based on empirical evidence and came
up with one parameterization where the probability that a drop of mass m,
has the probability of breaking up, Pg(m), which is described by the
following,

Pg(m) = 2.94 x 10 "exp(34r,,), (8.6)

where the units of Pg(m) are s ', r,, is radius in cm of the drop of mass m.
A second term given by Qg(m’, m) is defned so that Qg(m’, m) is the number
of drops of mass m to m + dm formed by the breakup of one large drop of
mass m’. Komabayasi et al. (1964) defined Qg(m’, m) as

Qp(m',m) =10 ' exp( 15.6r,) (8.7)

where r;,is in cm and is the size of the drop of m’ and r,, again is the size in cm
of the drop of mass m.

Equations (8.6) and (8.7) can be used to write the breakup equation which
represents the case where drag forces exceed surface-tension forces as

ON (m, 1)
a |y

— N(m, )Py(m) + JN(m’, NOs(nl, m)Py(m)dm.  (8.8)

Unfortunately Srivastava (1971) found that this parameterization for
QOg(m',m) fails to conserve liquid water, which renders it not useful for
numerical models and theoretical work. Therefore, he took the data given
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by Komabayasi et al. (1964) and reanalyzed them to develop a new parameteri-

zation given by
oy = 2B (T 'm
Op(m',m) = I <"m/) exp< brm/>’ (8.9)

where b = 7 fits the data reasonably well and some algebra gives a = 62.3.
Srivastava (1971) then made adequate simulations of drop breakup using
initially the Marshall Palmer distribution with various initial rain rates.
Kogan (1991) also successfully used this parameterization.

Spontaneous breakup is useful, but not the complete answer. First, rarely,
if ever, do drops reach spontaneous or hydrodynamic breakup sizes.
In addition, the drop-size spectrum that results from the stochastic collection
equation and the stochastic breakup equation for spontaneous/hydrodynamic
breakup is unrealistically flat with a bias toward large drops, found first by
Srivastava (1971) as described by Pruppacher and Klett (1997).

8.3.2 Parameterization of collisional breakup by Low and List

The following is a description of the parameterization of the collisional
breakup of water drops including sheet, bag, filament or neck, and disk
breakup described by Low and List (1982b) using the data of Low and List
(1982a). This parameterization is for bin models and a similar formulation is
impossible in all likelihood for bulk parameterizations. Brown (1986) noted
that the parameterization is very difficult to implement and requires very
careful programming. The scheme was implemented by Hu and Srivastava
(1995) who found that it might be deficient in several ways in that it produces
multiple peaks in the size-distribution spectrum. The scheme was followed
up in part by an attempt at mass conservation by Brown (1997) using the
histograms of larger-drop breakups. Brown’s (1997) parameterization also
is appropriate for bin models. McFarguhar (2004) also developed an updated
version of the parameterization.

The variable P;(D;) is used to give the average number of fragments of
diameter D; on the interval D; +£ AD;/2 for a collision between a small drop
of diameter, Dg, and one large drop of diameter, Dy, as averaged over at least
100 collisions according to Low and List (1982b). In other words, this can be
stated with the equation,

_ Total number of fragments of size D;(=N;) 1

Pi(Di) = Total number of collisions % AD;’ (8.10)

The continuous fragment number P«D,) is a number density function. The
fragment number distribution is given by
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D;
P(D;) = J P;dD. (8.11)

Now, Pg(D)), Py(D;), and Pqi(D,) represent the fragment number density
functions for filament, sheet, and disk breakup, respectively, whilst the vari-
able Cy, equals the total number of breakups by collisions; it follows that, Cy, C,
and C4 are each the total number of breakups for filaments, sheets, and disks,
which when summed is C,. Next Npa is the number of fragments per size
interval of filament breakups, Ny is the number of fragments per size interval
of sheet breakups, and Ngy;s is the number of fragments per size interval of
disk breakup; the sum of breakups can be subdivided as

Pgi(Di) = NiiaCy (8.12)

Pg(D;) = NaC, ', (8.13)
and

Pai(D;) = NaiaCy - (8.14)

Now an expression of the contribution of each density function to the total
breakup density function is desired. Thus the fraction R; (j = f, s, d) of the
total of each type of breakup can be written as

Total number of filament breakups Gy

R = =— 8.15
£~ Total number of breakup collisions Cp’ (8.15)
as well as
Cs
R, =— 8.16
=g (8.16)
and
Ca
Ry =—. 8.17
1=C, (8.17)

The sum of the breakup number distribution functions is given as follows,
Py = RtPgi + RsPg; + RyPy;. (8.18)

Then empirical fits must be found defined for each type of breakup, such as

F:éZN,- :Z:P,»(D,-)AD,-, (8.19)
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or

F =Y RiF; =RF;+ RF; + RyFq. (8.20)
J

The average number of breakups F; is now expressed in functional form from
data collected given by Low and List (1982a). In addition, the values of P; are
given.

8.3.2.1 Filament breakup

The empirical fit for filament breakups includes the large drop and small
drop, with the small drop having limits described after the empirical fit. The
two empirical fits are given for filament breakups as follows, for large small
drops and smaller small drops. For larger small drops, the following fit is
considered,

Fp = [—2.25 x 104(Dy — 0.403)2—37.9} D33 +9.67(Dy. — 0.170)* + 4.95, (8.21)

where diameters are in centimeters. This equation is valid for Dg > Dsgy,
assuming that each breakup produces a minimum of two fragments. For
Dg < Dg, the following is given,

Fp=d"Df +2, (8.22)

where @’ = 1.02 x 10* and »” = 2.83.
The limit of Dg (i.e. Dgp) is computed as the intersection of Fg and Fyy, or

Dso = (Fp /0" (8.23)

Now the density functions for filament breakup need to be developed. They
are given in Low and List (1982a). These have to be computed for all modes
to give a complete tally of the number occurring in any mode, be it filament,
sheet, or disk breakup.

The density function Py is given as

2
P11 (D;) = Hp exp [ 0.5<Di H)] , (8.24)

of]

where

Hpy = 50.8D *7'8. (8.25)

The value of u is equal to the mode of distribution given by D; . The value of
ary 1s the standard deviation, which is a dependent variable found by iteration
described by Low and List (1982b).
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A Gaussian curve similar to that used for the large drop is used for the small
drop so that the density function component for the small drop, Py, is given as

D, 2
P (D;) = Hp exp [ 0.5( ,u) ] ) (8.26)
ofn
where Hp, is given as the following with Dg the mode,
Hp = 418D "7 (8.27)
and
1
o = (Janfz) . (8.28)

The third component to the total filament number density function, Pg(D)),
results from disintegration of a bridge of water that connects the two main
fragments of the collision pair. Given a log-normal density function, Pg(D;) is
the following,

i g

H InD; ?
Pu(D;) = Fﬁexp [ 0.5 <u> ] , (8.29)
3

where Hp is a constant, e is the natural log of the mode; oy is related to the
mode by

s = In(Di) + o, (8.30)
where o3 is found by iteration (see Low and List 1982b). The value of D¢ is
related to the small-drop diameter Dg as given by

D3 = 0.241Dg 4 0.0129, (8.31)

and is also the modal diameter.

Further details on the three local maximum values in the curves are
discussed in Low and List (1982b) and are included briefly here. The Gauss-
ian function (8.29) above represents the maximum value Py of the density
curve which depends on both Dy and Dg. The variable P o is composed of
three parts. The first, Pg; o, 1S given as

P01 = 1.68 x 10°Dg™ (8.32)

for Dg < Dgg.
The second, Py 2, is given as

Pros = |43.4(Dy + 1.81) 159}1351 [387O(DL 0.285)2} 58.1 (8.33)

for Dg > 1.2 Dg.
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Finally, the third, P o3, is given as

P303 = P31 + (1 o)Pr3 00, (8.34)

where
o= (DS DS,O) X (0.2D50) l. (835)

The drops that remain after filament breakup are shown schematically in
Fig. 8.1.

8.3.2.2 Sheet breakup

Low and List (1982b) note that to determine the average fragment number,
the area under the curve given by P; needs to be computed from the experi-
mental data (Fig. 8.4). The area is said to be equal to F or the average
number of fragments. The value F; is found to be a function of the total
surface energy St, with g1/4 = 7.28 x 10 2N m ! as the surface tension of
liquid in air (which is really a function of temperature, Pruppacher and Klett
1997) as follows,

St = noy/a (D} + D3). (8.36)

The limiting value of fragments on the small end is two, and the value of F is

Sr 2.53%10 6
F, = Serf< = . > +6. (8.37)

85x 10 ¢

The density function for sheet breakup is given in two parts. The part Py (D;)
gives the distribution of the large fragment around D;, and one other func-
tion Py (D;) represents the rest of the fragments as the initial small drop is no
longer recognizable. A Gaussian represents Py (D;) as

(DiUSIDL)} ’

Psl :Hsl CXp|: 0.5 (838)

which is centered at Dy, with height of Hy; and a spread of g;. The value of
Hg; is given by
Hg = 100.0exp( 3.25Dg). (8.39)

The fragment number of the cloud-droplet part of the breakup is given by
a log-normal function with a peak at

Dy = 0.254D%*% exp[3.53Ds >3 (Dy. Ds)], (8.40)
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with
Py = 0.23Dg*% DY, (8.41)
and b" given by,
b* =142exp( 17.2Ds). (8.42)

The drops that remain after sheet breakup are shown schematically in Fig. 8.1.

8.3.2.3 Disk breakup

The number of fragments from disk breakups is most numerous compared to
other means of breakup. Again the minimum number of fragments is two.
The number of fragments for disk breakups is found to be closely related to
the collision kinetic energy Eckg (in joules) and given by

Fq =297.5+23.7In Eckg. (8.43)

The density function for disk breakup is given in two parts and is similar
to sheet breakup with many small fragments. First, the large drop may
break into several drops with the large drop often no longer recognizable.
The fragment density around D; is given as Pgqi(D;), after definitions in
(8.44) (8.47). The mode for the Gaussian is given as

Dga1 =Dr{1 exp[ 3.70(3.10 W,)]}, (8.44)
where, in joules, the Weber number of energies is used,
E
W, = —KE (8.45)
Se
and S, is given as the surface energy of the coalesced drops,
S = noya (D} + D). (8.46)
Finally the height of the distribution is
Hgi = 1.58 x 10 *Eq¢#. (8.47)
The number density function is given as,
D; Dgal)’
Py = Hyg exp[ 0.5(0_7(1(“) , (8.48)
d1

where o4; is found by iteration as described in Low and List (1982b).

The rest of the disk breakup fragments can be described by a log-normal
distribution, as with sheet breakup. The mode Dgq4, of P4»(D;) is dependent on
drop sizes that collide and is to the left of Dg as given by
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(1982a). The solid lines represent the parameterized approximation of the
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Low and List 1982b; courtesy of the American Meteorological Society.)

Caption for Fig. 8.3. (cont.)

collision/breakup configurations for all 10 drop sizes used in the experiments
of Low and List (1982a). The solid lines represent the parameterized
approximation of the whole data set; C; represents the number of collisions
of each type.” (From Low and List 1982b; courtesy of the American
Meteorological Society.)
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Ddd2 = exp[ 17'4DS 0.671(DL Ds)]Ds. (849)

The height therefore is as before found from
H "
Pg>(Dyq>) :DTddZexp[ 0.50%,] = 0.0884Ds>*(Dy  Ds)”, (8.50)
where b" is given by

b* = 0.007Dg>>*. (8.51)

A schematic of low collisional kinetic energy and high collisional kinetic
energy breakups for the disk breakup is shown in Fig. 8.2. The types of
distributions found in disk breakup are given in Fig. §.5.

8.3.2.4 Overall breakup

The fraction of breakups that occur as filament breakups (in all of the
breakups) is given as follows,

1.11 x 10 4E 0.654 for ECKE ZE —
Ri— { CKE CKEy = 0.893u) (8.52)

1.0 for Eckg < Eckg,

There is a specific number of breakups given by overall sheet breakups. The
fraction is a function of the ratio W, of the Eckxg to the sum of surface
energies of two original drops, given as

E
Wy = —KE (8.53)
St
The fraction of breakups that occur as sheets in all of the breakups is given as
follows,

_ 0.685{1 exp[ 1.63(W; Wo)]} for W > Wy = 0.86 (
1.0 for W < W.

R, 8.54)

With the values for Ry and R, defined then that for R4 can be defined simply as

R {1.0 (Re+Rs) for Rp+R <1
d:

0.0 for Ry + Rs > 1. (8.55)

To get the overall fragment number distribution for an average collision the
values of Py(D;) must be adjusted by the fraction of the sum of collisions that
make two or more fragments. Low and List (1982b) give the breakup efficiency by

[1 Ecoal] (8.56)



(-£39100§ [BOISO[0I0I UBILIUWIY ) JO ASAINOD {q7]G] ISIT PUB MO WOI)
*ad£} yora jo suoIsi[od jo requnu oy} syussardar /) s viep sjoym oy jo uonewrxoidde pazivjowrered oy) jussardar
sour] p1ios YL, (BZ86) ISI'T PUR MOT JO sjuawiradxa oyj ur pasn sazis doIp aa1j 10j suoneIndijuod dnyearq/uoIsijjod ysip
103 “(wd 1(°0) [eatolur 9zis Judwdey 1od sroqunu ut (‘q)Pg SUOHNQLIISIP 9ZIS JUAWT LI 93 BIOAR [IIM SWRISOISTH '¢'§ SI1

(wo)!g 1e12wWelp uswbeiq

0S'0 ov'0 0€'0 02’0
T - . ; : : T 00
0
67 TF89°€="y o
22=Po =
=
u0e 0= g dnxealq ysia ot
wooT'0="d
©)
(wo)!g 1e12Wwelp Juswbelq
050 ov'0 0€0 0c0 0T'0 .
T T T T 00
20
S
9zeFeg L=y ot
zz=Po
woge 0="q
wooT' 0= dnyealq xsia
(9]
(wo)!g 1e12welp uswbeiq

0S'0 or'o 0€'0
I

0€ 0T F85¥T=Po

wogz=Pg
wogy'0="a
wooT' 0=
dnyjealq ysia —-0¢€
©)

(wo)!g 1e12wWelp swbeiq

050 (o140] 00
r T T === 00
10T
L
1 3
68 L Hmm‘mmumm =
WaST'0 HJQ oz
wo9g0="q
wogT 0=
dnyjealq ysia
-o¢€
(@
(wo)!g 1e12welp uswbeiq
050 (0/40) 0€0 0z'0 0T'0
e 00
—0T
| 2
G
doz =
9ELT¥.2'82=" |
wo9z'0="g
=1
woor0="q doe
wogT'0=5q
dnyealq ysia J

(e)

246



8.3 Parameterization of drop breakup 247
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Fig. 8.6. Evolution of drop-size distribution by coalescence and breakup for
(a) initial exponential in mass distribution, and (b) initial Marshall-Palmer
distribution. The initial distributions (A) and the distributions for 10 (B) 40
(C), and 60 (D) min are shown. (From Hu and Srivastava 1995; courtesy of
the American Meteorological Society.)

where E.,; is the coalescence efficiency given in parameterized form in List
and Low (1982a) so that an overall equation is parameterized as

Pi(Di) - [RfPf(Di) +RsPs(Di) +Rde(Di)][1 Ecoal] + 5(Dcoal)Ecoala (857)
and

5(Dcoal) =1 for Di = Dcoal

=0 otherwise. (8.58)

Hu and Srivastava (1995) modeled these breakup mechanisms and found the
resultant distributions for an initial gamma distribution shown in Fig. §.6a,
and an initial negative-exponential distribution (Fig. 8.6b). For the gamma
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distribution disk breakup (curve D) seems to dominate over the other breakup
mechanisms. In tests with single distributions acting, disk and filament seem to
be most important (see Fig. 8.7a), where mixed pairs of breakup occur, disk
and filament together show the most dramatic changes in the initial distribu-
tion (Fig. 8.7b).

8.3.3 Mass conservation with the collisional breakup parameterization

8.3.3.1 One-moment method of collisional breakup

From the initial stochastic collection experiments realistic distributions did not
develop. It was decided by investigators that breakup into drop fragments by
collisions was missing from the stochastic breakup equation. The experimental
results of McTaggert-Cowan and List (1975) were first used for more realistic
breakup frequencies. Later others such as Brown (1983, 1985, 1986, 1987,
1988, 1991, 1997, 1999), Tzivion et al. (1987, 1989), Feingold et al. (1988), and
Hu and Srivastava (1995) used more up-to-date experimental results of List
and Low (1982b) to describe various forms of drop breakup as described
earlier, as well as different formulations to represent breakup. For collision
breakup using the stochastic breakup equation, the form given below is used,

(811(;7;, 0) = % [ n(m', t)dm' JK(m/, m")[1 — Ec(m',m")]Q(m;m’,m" )n(m")dm"
0

O0<m<m+m")
(8.59)

m+m"

—n(m,t)Jn(mﬂ’t)K(m;:?:_)E;u_EC(m’m”” J m' Q(m'; m, m")dn!
0

0

(0 <m < ).

In this equation K(m', m") is the collision kernel of an m’-drop with an m”-drop,
and E.(m',m") is the coalescence efficiency for the kernel. Furthermore
[1  E.(m,m")] = p(m,m") is the breakup probability for an m-drop that
collides with an m”-drop. In this equation Q(m;m’, m") is the mean number
of fragments of m-drops produced by a collision between an m’-drop and an
m"-drop. As described by Pruppacher and Klett (1997) the first term on the
right-hand side of (8.59) is the gain of m-drops generated by collision of all
masses m’ and m”. The 1/2 factor keeps from double counting the same (m, m")
pair twice. The second term on the right-hand side of (8.59) is loss of m-drops
resulting from collision and then breakup of drops of mass m and m”. For
mass conservation (Pruppacher and Klett 1997) it is required that



@

1072

n(D,t) [cm—4]

[y
<
EN

(0) 100

1072

n(D,t) [cm—4]

)
L

1076

8.3 Parameterization of drop breakup

t=60 min

1 2 .3 A4 5
Drop diameter (cm)

t=60 min

Drop diameter (cm)

249

Fig. 8.7. (a) Equilibrium distribution with only one type of breakup and
coalescence operating, and (b) equilibrium distributions with only two types
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m+m"

J mQ(m;m’ ,m")Ydm = m’ + m". (8.60)
0

Bleck’s (1970) one-moment method can be applied to the stochastic breakup
equation following the procedure used for the one-moment method for the
stochastic collection equation (List and Gillespie 1976). First, the mass coord-
inate is separated into bins as with the stochastic collection equation (in the
same form as the stochastic collection equation if used with the stochastic
collection equation). The subcategories are defined as before and applied

M1
J mdm, (8.61)
ny
to both sides of (8.59). The number density mean in each mass category is
defined, according to Bleck and Danielson et al. to get a stochastic collection
equation with drop breakup,
1

My M1
ni(t) = J n(m, t)ymdm J mdm (8.62)
my my
and
Myt 1
ni (1) :% [ n(m,t)mdm. (8.63)
M1 My

my

The result then is given quite simply by

M1
2
(ank(t)> = |5 JB(m,t)mdm, (8.64)
a Jg |mi . my
my.

where B is the breakup probability for a particle at mass m and time t.
Following List and Gillespie (1976) the integral is just

Myt

J B(m, t)ymdm ~ Z Zp,jknjn, ny Zq,kn, (8.65)

my

Caption for Fig. 8.7. (cont.)

of breakup and coalescence operating. The equilibrium distribution with all
three types of breakup and coalescence operating is marked “equilibrium”.
The water content is 1 gm *. (From Hu and Srivastava 1995; courtesy of the
American Meteorological Society.)
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Then, following the procedure used again,

(anf;;n)> ~ [ ] Zzp’/k”/”l ”kZsznz (8.66)
B |[Mia

J

The coefficients for p;; and g; are given by List and Gillespie (1976) and
Brown (1983).

8.3.3.2 Multi-moment method of collisional breakup

The multi-moment method of breakup was generalized by Feingold et al.
(1988) and Tzivion et al. (1989). This was done by taking multiple moments of
the stochastic breakup equation. First, applying the following,

M1
J m’dm (8.67)

to both sides of (8.59), gives
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where M is the mass of moment v for bin .
Following Feingold et al. (1988), Tzivion et al. (1989), Pruppacher and
Klett (1997), and the steps made by Bleck, a transformation results so that
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for which Q(m;m',m") =0 for m >m' +m", and Q(m';m,m") =0 for
m’ > m + m". This equation is different from the stochastic collection equa-
tion in its application, as the integrals are complete over the categories so no
approximations to n; need to be made. Kernels are approximated using
polynomials to close the system. This equation can be written for the two
moments simply by making v = 0 for the dN,(¢)/dr equation and making v = 1
for the dM(r)/dt. Making these approximations are left to the reader.
A surprising finding using this equation is that the one-moment stochastic
breakup equation and the two-moment stochastic breakup equation provide
essentially the same solutions for breakup only. The formula (Feingold
et al. 1988; Tzivion et al. 1989) used for Q(m;m',m") =0 is given by
Q(m';m,m") = g*(m' +m")exp( gm). This permits an analytical solution
when g = ny,/M,, where n is the integer number of fragments. The values
of Ny and M, are the initial drop number concentration and liquid-water
content. The reason an analytical solution is possible with g defined as above
is that the stochastic breakup equation is a forward-progressing model.



9

Autoconversions and conversions

9.1 Introduction

An autoconversion or conversion scheme represents hydrometeors changing
from one species/habit to another. The change could be a phase change such
as homogeneous freezing of water drops. Or it could be a change within a
phase, but a change of species dependent on diameter, such as cloud droplets
to drizzle or raindrops. It also could be a graupel of one density becoming
more or less dense and subsequently reclassified as a different density owing
to the riming it experienced.

One reason that autoconversions and conversions are so difficult to
parameterize is that autoconversions and conversions are not well-observed
processes, though they can be simulated approximately using a hybrid bin
model (see Feingold et al. 1998). Furthermore, conversions of ice crystals or
snow aggregates to graupels of particular densities are terribly difficult to
parameterize, as there are few accurate measurements in nature or from the
laboratory on this topic.

Multi-dimensional, Eulerian models incorporate autoconversion and con-
version schemes of varying complexity to try to capture the physics changes
on the sub-grid scale in terms of grid-scale quantities, much the way turbu-
lence is parameterized (Stull 1988). This has been done for cloud, mesoscale,
synoptic, and global models with complexity usually decreasing with increas-
ing scale (Wisner et al. 1972; Koenig and Murray 1976; Cotton et al. 1982;
Cotton et al. 1986; Cotton et al. 2001; Lin et al. 1983; Farley et al. 1989;
Ferrier 1994, Straka and Mansell 2005 among many others) (this is the nature
of microphysical parameterizations).

An unsolved problem in applying these types of parameterizations is that
autoconversion or conversion often does not commence, at least in nature,
until a sufficient “aging” period has passed such that the actual physics occurs

253
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based on its trajectory and time along that trajectory. This means that for
autoconversions and conversions in bulk models to occur some local natured
physical process needs to be active for more than a model timestep. Unfortu-
nately the nature of microphysics is generally anything but local at a grid
point. With vertical and horizontal drafts in model flow fields this means
that to truly capture an accurate estimate of autoconversion or conversion
along a trajectory requires keeping track of the process. This could involve
releasing trajectories every timestep at each grid point in a model. Embarking
on the use of Lagrangian trajectories in Eulerian-based microphysical models
is, quite frankly, out of the question for long-term, or even short-term,
simulations for significant use. The result is that many microphysical para-
meterizations in Eulerian models, especially autoconversion and conversion
processes, fail to capture explicitly the Lagrangian history of the growth of
cloud and precipitation particles.

An example of a microphysical process that depends on an aging period is
the conversion of cloud into drizzle or cloud into rain (Cotton 1972; Cotton
and Anthes 1989). The need to account for the relevant physics including
diffusional growth and collection growth for a cloud droplet to become
a drizzle or a rain particle is never truly captured in Eulerian-model para-
meterizations. Cotton (1972a) and Cotton and Anthes (1989) note that all
the conversion and autoconversion schemes developed thus far have neg-
lected the Lagrangian “aging” period. As a result, models produce drizzle or
raindrops far too quickly and at too low an altitude in simulated clouds
(Simpson and Wiggert 1969; Cotton 1972a; Cotton and Anthes 1989). In a
seemingly successful attempt to account for the Lagrangian aging of a par-
ticle, Cotton (1972a) used a one-dimensional, Lagrangian model to develop
an autoconversion parameterization scheme that includes the age of a parcel
with cloud drops in it to determine when autoconversion should occur.
However, this parameterization by Cotton has not been implemented in
two- or three-dimensional models that are Eulerian in nature (Cotton and
Tripoli 1978; Tripoli and Cotton 1980; Cotton et al. 1982; among many,
many others). Tripoli and Cotton noted that failure to account for this aging
might make it difficult to simulate certain storm phenomena such as a
thunderstorm’s weak echo region.

Then Straka and Rasmussen (1997) came up with a methodology to predict
the age of a process starting at some grid point, as well as where the parcel
started and where it presently is; finally, they determined how to find time
weight mean exposures to the variables allowed in the process. For example,
the mean cloud content a parcel has experienced at any time or location may be
useful for autoconversion. The breakthrough by Straka and Rasmussen (1997)
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Fig. 9.1. Scatterplots of the bulk autoconversion rates or conversions from
cloud drops, which grow by collection to become drizzle drops, given by
the x—y (or z) axes versus the corresponding rates obtained from the
explicit mode. The dashed line represents a factor of two deviations from
the perfect match. Note that only every twentieth data point is shown.
(From Khairoutdinov and Kogan 1994; courtesy of the American Meteoro-
logical Society.)

might someday lead to better autoconversion and conversion parameteriza-
tions. The methodology of this proposed scheme is presented in Chapter 2
(sections 2.7.5.1 and 2.7.5.2). Results with Lagrangian-determined positions
of a parcel, and mean mixing ratios of cloud water, are shown to be exception-
ally well simulated by the Eulerian model with the Straka and Rasmussen
method accounting for the Lagrangian nature of autoconversion physics
(Straka and Rasmussen 1997). The parcels exiting the cloud are where the
solutions diverge between the true Lagrangian- and Eulerian-based-Lagran-
gian predicted values.

9.2 Autoconversion schemes for cloud droplets to drizzle and raindrops

Autoconversion schemes for cloud droplets to rain droplets ideally encom-
pass the growth of cloud drops by diffusion until they are large enough to
grow predominately by collection into embryonic precipitation particles.
From theoretical modeling, the size necessary for collection growth was
found to be about 81 microns (Berry 1967; Berry 1968b; Berry and Reinhardt
1974a d; and others). It can be argued that the most troubling aspects of
essentially all autoconversion schemes are that they develop unrealistically
mature rain spectra immediately after the autoconversion schemes activate;
and that numerical models do not represent embryonic precipitation particles
well, if at all. After all, an embryonic precipitation particle is more likely to be
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more akin to a drizzle drop than a raindrop. First, the history of the develop-
ment of cloud to rain autoconversion schemes of varying complexity will be
examined. In some of the more recent models, drizzle is predicted (Straka
et al. 2009a) along with rain, so that the conversion from cloud drops to
drizzle is possible, not necessarily cloud drops to raindrops. For raindrops to
grow, drizzle drops need to grow to 500 microns in radius.

Described below are some of the more popular autoconversion and
“so-called autoconversion” schemes developed in the late 1960s, 1970s, and
1980s. (Some of these are “so-called autoconversion” schemes, as they were
not true autoconversion schemes. Based on timescale analyses, they con-
tained accretion and self-collection processes.) Later in the 2000s there was
another wave of attempts at autoconversion-scheme development.

The Berry (1967, 1968b) scheme was one of the first autoconversion
schemes introduced and is based on the time for the sixth moment of the
diameter to reach a size of 80 microns, which is about the size of an embry-
onic precipitation particle, that is, a drizzle particle. The equation that Berry
presented is

0> 0.266 New )
WCNey = 2 (9 4 7222 : 9.1
OrCNew =0 2 F s Oen 6.1)

where Q,CN,.y is the conversion of mixing ratio of bulk cloud water con-
verted to rain water. The CN is used to denote conversion. The Q represents
mixing ratio and subscript cw represents cloud water. The number concen-
tration of cloud droplets is Nt.w, and, 7., is the dispersion of the cloud
droplet size distribution, which can range from 0.1 to 0.2 for continental
clouds to 0.3 to 0.4 for maritime clouds. As pointed out by Cotton and
Anthes (1989) this scheme has a cubic dependence of cloud-water mixing
ratio making it fairly non-linear. The scheme does embody some desirable
features of the warm-rain process that includes the use of a specified number
concentration to represent the number of drops nucleated for a given environ-
ment. Notice that when cloud water forms it is rapidly converted to rain.
A lack of a so-called “aging” (Cotton 1972a; and Straka and Rasmussen 1997)
of cloud droplets causes this scheme to very rapidly and very unrealistically
convert cloud drops to embryonic raindrops. Moreover, some have argued
that this scheme, based on timescale arguments, contains accretion and self-
collection processes as well as autoconversion processes.

One of the most widely used autoconversion schemes still in use is the
simple Kessler (1969) formulation,

QerNcw = KIH(QCW chO)- (92)
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In this scheme, K; is a rate constant and H is the Heaviside step function.
However this scheme suffers from the inability to distinguish types of
initial aerosol or cloud condensation nuclei concentrations, but does account
for the broadening of cloud-drop spectra to raindrop spectra. Without fine-
tuning this scheme, it is impossible to distinguish maritime from continental
regimes. Initially, values of the constants were assigned as K; =1 x 10 *s !,
and Qewo = 5 x 10 “to 1 x 10 * kg kg '. Note that Cotton and Anthes
(1989) found that this scheme has some possible non-linear behavior. It
is unfortunate that so many choose this scheme for autoconversion as it
produces embryonic precipitation particles at far too low an altitude in
continental clouds for the given constant values; it may be difficult for
embryonic precipitation particles to form drizzle as very often cloud-droplet
mixing ratios do not exceed 5 x 10 * kg kg ' in maritime boundary layers.
It should be noted that Kessler developed this scheme apparently with deep
convective clouds in tropical regions in mind. Thus, without modification it
is probably not appropriate for continental clouds. Nevertheless, it has
been employed in numerous models, from that of Klemp and Wilhelmson
(1978) to Reisner et al. (1998), for example.

Gilmore and Straka (2008) examined the Berry and Reinhardt (1974b)
scheme very carefully and found some mistakes and misconceptions about
the scheme. They corrected typographical errors in terms of equations and
units of terms to reconcile the scheme’s behavior in numerous models.

The Berry and Reinhardt (1974b) scheme has been widely adopted as a
parameterization of rain production as derived from a bin model (described
in Berry and Reinhardt 1974a). The Berry and Reinhardt (1974b) scheme was
not originally intended to be a parameterization of smaller cloud drops
becoming raindrops. The investigation by Gilmore and Straka (2008) dem-
onstrates how differences in the Berry and Reinhardt (1974b) formulation
influence initial rain development. These authors show differences between
versions that result from typesetting errors (some from the original Berry
and Reinhardt (1974b) paper), derivation errors, and methodology. The
differences are important to point out as they influence the initiation of rain.

The Berry and Reinhardt (1974b) scheme is a more complex scheme when
compared to others because it embeds details about the cloud-droplet distri-
bution that can affect collision/coalescence, which leads cloud droplets to
form raindrops. These distribution attributes are mean cloud-droplet size and
dispersion. The Berry and Reinhardt (1974b) scheme also has an equation
to approximate rain number-concentration rates, whilst some new schemes
(e.g. Liu and Daum 2004) do not. It is common knowledge that the scheme
incorporates autoconversion rain production via collision coalescence of
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cloud droplets (e.g. Berry and Reinhardt 1974a). Although Pruppacher and
Klett (1981) and most subsequent authors loosely referred to this entire
parameterization as “autoconversion”, the scheme also includes the further
accretion of cloud water by those growing small raindrops and the collision
coalescence (or self-collection) of the growing small raindrops (Berry and
Reinhardt 1974b).

Whilst the Berry and Reinhardt (1974b) parameterization has been around
for over 30 years, it is still the mainstay of many models owing to its relative
completeness, yet minimal cost. This scheme is utilized in the Weather
Research and Forecast (WRF) Model (Thompson et al. 2004) and the
Regional Atmospheric Modeling System (RAMS; Version 3b). Versions of
the Berry and Reinhardt (1974b) parameterization have been presented and
used by Nickerson et al. (1986); Proctor (1987); Verlinde and Cotton (1993);
Walko et al. (1995); Meyers et al. (1997); Carridé and Nicolini (1999); Cohard
and Pinty (2000); Thompson et al. (2004); and Milbrandt and Yau (2005b).

Berry and Reinhardt (1974b) presented curve fits that related mean mass
and mass-relative variance of an initial S1 distribution to the mean mass and
number concentration of an S2 distribution that resulted from all accretion
and self-collection processes during a characteristic timescale. The character-
istic timescale T, is defined as the time when the radius of the predominant
rain mass, 7, of the developing S2 distribution first reaches 50 microns in the
bin model (Berry and Reinhardt 1974b; their Table 1). This definition was
made so that Berry and Reinhardt (1974b) could establish mass and number
concentrations for the S1 and S2 distributions.

The following are other important properties valid at time T, (from Berry
and Reinhardt 1974b):

L) and N; are S2’s total mass and number concentration, respectively;

S2 first attains a Golovin shape;

S2’s relative mass variance is 1 (increasing from prior smaller values);

S2 obtains a mean-mass radius of ~41 mm; and

r(gm) is the threshold radius corresponding to the minimum in the mass between
the two modes of the total liquid spectrum.

The determination of T, is important to modelers because T, was the only
time for which Berry and Reinhardt (1974b) tabulated both the rain mass and
rain number concentration from a bin model. The other timescales defined
by Berry and Reinhardt (1974b) are: Ty (~1.1T5), which denotes the time
at which the developing S2 mass distribution curve forms a hump; and
T (~1.25T5), which denotes the time at which the radius of the predominant
mass of the joint S1 + S2 (bimodal) distribution first reaches a radius of 50 mm.
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The focus first will be on the earliest timescale presented in Berry and
Reinhardt (1974b), T,, as both mass and number concentration are defined.
After converting to SI units, making some corrections to typesetting errors
in Berry and Reinhardt, and converting radius to diameter, the resulting
timescale is given as

To{s} =3.72{s kg m 3 pm}
(9.3)
6 fHMY o 0 ]!

X [0.5 x 10 {H}Db{m} 7.5{pm}L’{kg m }} :
The second equation involved in the Berry and Reinhardt (1974b) scheme is
shown in their Eq. 18, Fig. 9, as the following for total mass,

Lr{gm 3 :<10 4[104]4{5_2} l(rg)3{0m}3(r?){0m} O.4{um}4> 9.4

x (2.7 %10 2){um} *L°{gm 3*}.
Pruppacher and Klett (1981) were perhaps first to suggest that (9.3) and (9.4)

could be combined to obtain an average rate of change in rain mixing ratio
during T, for a bulk microphysics model:

N
{kekg 's ) ;m 9.5)
29

dQyw
dr

QZWCN cw —

Berry and Reinhardt (1974b) do not propose this average mixing ratio rate;
this is probably because they only consider those curve fits to data as an
intermediate step (Berry and Reinhardt 1974b, p. 1825) to their parameter-
ization, and because these authors (Berry and Reinhardt 1974c,d) present a
way to evaluate precise rates at any arbitrary time (rather than average rates
via a characteristic timescale). Nevertheless, the simple form is what all
subsequent bulk microphysics modelers have used and what is herein desig-
nated as the “Berry and Reinhardt (1974b) parameterization™ or “Berry and
Reinhardt (1974b) scheme”.

There are some limitations to the Berry and Reinhardt (1974b) scheme.
First, it unfortunately does not give the remaining cloud-water number
concentration Nt at T, and therefore an average dNt.,/df (owing to S1
self-collection and S1 accretion by S2) cannot be derived. Next, adequate
mass and number concentration rates are difficult to define since the S1 and
S2 distributions overlap. Also, Cohard and Pinty (2000) have noted that
cloud accretion by rain and rain self-collection both appear twice for some
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size ranges: once implicitly within the Berry and Reinhardt (1974b) scheme, and
again when explicitly parameterized. This results in double counting of
particles. Finally, Berry and Reinhardt (1974b) write that the parameterization
is based upon initial values of cloud droplets only in the range from

20 < DY < 36 um, (9.6)

where f = L/Z (L is the liquid-water content, Z is the reflectivity); and only
with the relative variance var M given as lying between

0.25 <var M <1, (9.7)

which corresponds to a Golovin-distribution shape parameter with limits
0 <vew < 3.
Cohard and Pinty’s (2000) formulation is given as

. 1
Tovinv{s '} = <106§DCW(VCZV m)'s 7.5>chp/3.72, (9.8)
. 1020
L, {kgm 3} = (%D“ (var M)/ 0.4) x 2.7 % 10 2Qewp, (9.9)
and
d W
" “ {kekg 's '} = max(L,,,0) x max(Toiny, 0)/p. (9.10)

where p is the density of air; and where

Dew{m} = (6pQcw/TPpeyNrew)'”, (9.11)

is the mean volume diameter of the cloud water, and

T'(vew)T'(Vew + 6/Xcw)
L (Vew + 3/Xew)”

is the mass-relative variance of the generalized gamma distribution of cloud
water.

The distribution parameters vy, and x., are typically chosen such that the
value of var M is kept within the 0.25 to 1 range that Berry and Reinhardt
(1974b) empirically tested. The reduction of the cloud mixing ratio is equal to
the drizzle gain,

var M{nodim} =

1, (9.12)

dQCW [kekg 's 1} = 99, (9.13)

dr
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where the subscript zw denotes drizzle. Note that this Berry and Reinhardt
(1974b) autoconversion scheme implicitly includes autoconversion, accretion
of cloud by drizzle, and drizzle self-collection, but such double counting is
typically ignored by modelers.

For number concentration, Cohard and Pinty (2000) as well as Milbrandt
and Yau (2005b) used the diameter Dy (corresponding to the hump in the S2
mass distribution, which was found at the later time, Ty) instead of the time
used by Berry and Reinhardt (1974b),

. 1.26 x 10 *{mpm}
Dy = . 9.14
1705 % 106501 p0m}  3.5{um} ©.14)

This equation has been converted to SI units. In addition, a factor number of
10 is included for a correction to the Berry and Reinhardt (1974b) equation.
To get the number concentration, the following equation is used,

D, = max|[max (82 x 10 6,ﬁH),DZW], (9.15)

where D,,, is drizzle mean volume diameter. Then mass M,,, is defined

M,y = g p D3 (9.16)

AR

where py is the density of liquid, from which the rate of drizzle or raindrop
production can be found using Q,,CN.,

POwCNew
MZW ’

The Berry and Reinhardt (1974a,b) scheme is an excellent one to get started
with but ultimately there are better ways to approach autoconversion, with
the best perhaps the hybrid-bin approach.

In an attempt to represent different continental as well as maritime
regimes, Manton and Cotton (1977) and Tripoli and Cotton (1980) developed
a scheme given as

CpwCNey = (9.17)

QZWCNCW :fchcwH(ch QCWO)' (918)

The factor, f.,, is related to the collection frequency among cloud drops,
which become raindrops. As collection is largely responsible for the auto-
conversion of cloud drops to embryonic raindrops, the development of this
scheme was an attempt to bring some of this information into the formula-
tion. The threshold value of Qo is given as

pLNTCW

s
cw :_Dcw 5 1
Ouun = 5 Do 22 9.19)
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where Do is approximately 40 microns. The mean frequency of collisions
among cloud drops is approximated by
T

4 DszCWVTCWNTCW7 (920)

f oW —
where the collection efficiency is E.,, = 0.55, V1, can be found from Stokes’
law. The diameter Dy, is given as

1/3
Doy = (M) , (9.21)
4pLNTCW

As noted in Cotton and Anthes (1989) care must be taken in choosing the
appropriate mean Q...

In an apparent attempt to correct the problem of producing too much rain
too fast, Lin ef al. (1983) represented the Berry (1967) scheme with changes to
delay the production of raindrops. However, their tests have shown that rain
still unrealistically forms too fast for continental clouds. Nevertheless, as the
Berry scheme is often used in this modified form it is presented (e.g. Ferrier
1994 and Straka and mansell 2005) in CGS units as

P (ch QCWO ) :

[1.2><10 411.569% 10 12NTCW] ’

O CNey = (9.22)

Vew (ch QCWO)

where Q..o is the cloud-water mixing ratio present before rain can develop.
In addition to Lin et al. (1983), Orville and Kopp (1977) also made modifica-
tions to Berry’s original scheme (Berry 1968b) in an attempt to capture better
the development of first echoes in simulations, though they note that even this
modification does not suppress raindrop development when it should. For
example, Lin et al. (1983) note that Dye et al. (1974) stated from observations
that cloud-droplet collision coalescence rarely leads to the formation of rain
on the high plains of the United States. For this reason Lin er al. (1983)
actually turned off the autoconversion model process for cold-based, contin-
ental-type, high-plains storm simulations. Typical values of Qcwo, Ntew, and
7ew Used by modelers of continental clouds are 2 x 10 *gg ', 1000 cm 3, and
0.15, respectively. Other values can be used to simulate other types of clouds
in different climatic regimes. Some of these values are presented in Proctor’s
(1987) discussion of the various uses of the Berry and Reinhardt (1974b) scheme.

Using large eddy simulations of stratocumulus clouds, Khairoutdinov
and Kogan (2000) developed a two-moment autoconversion scheme for cloud
water into drizzle particles. This is one of the few schemes where conversion
is explicitly stated to go from cloud water to drizzle. The form of the equation
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is determined from a least-squares fit for parameters a, b, and ¢ from bin
model information,

ClQZW
dr

The best-fit autoconversion scheme was found to be

= coy’. (9.23)

d yAYS
gt = 135005 N LD (9.24)

A one-parameter form was also presented in terms of the drop mean volume
radius 7ewmy

On _ 41 s 10 15,507 (9.25)

dt cwmy?

where 7.wmy 18 In terms of microns. With this scheme, autoconversion occurs
when the mean volume radius is between 7 and 19 microns.

When Khairoutdinov and Kogan went further and did a regression
analysis of their model information they found another representation for
autoconversion,

dQZW
dr

With this expression they conclude that the average collision efficiency is
about 0.04. Two other forms include,

dQ,w 2.47

=22013N 3. (9.26a)

cw ' Tew

S = 135005 Ny T (9.26b)
dgfw =4.1x10 5287 (9.26¢)

WEre r'ewmy 1S the radius of the mean volume cloud water droplet in microns at
a grid point (Fig. 9.1 shows the bulk autoconversion rates plotted against the
explicit autoconversion rates from the Kogan bin microphysics parameteriza-
tion model).

In order to use these schemes, an equation for number concentration
tendency is required. By assuming all newly formed drizzle particles have a
radius r.wo = 25 microns the number concentration rate is given as

40
— dr lauto . (927)

4 -3
auto P ewo
3po

dn: Tzw
dr
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9.3 Self-collection of drizzle drops
and conversion of drizzle into raindrops

Drizzle enters the liquid-drop spectrum from autoconversion of cloud drop-
lets at a diameter of about 82 microns via the Berry and Reinhardt (1974b)
autoconversion parameterization. It then experiences self-collection via
Long’s kernel (see Cohard and Pinty 2000) or by the analytical solution by
Verlinde and Cotton (1993) and Flatau ez al. (1989) as well as by accretion of
cloud water (Mizuno 1990 approach).

The conversion of drizzle to rain water occurs after sufficient broadening
of the distribution via the warm-rain process (diffusion and coalescence). The
amount of mass transferred to the warm-rain distribution from the drizzle
distribution is computed using the Farley er al. (1989) approach. The mass
and number concentration of drizzle particles with diameters greater than
500 microns are transferred using (9.28) and (9.29). The equations for mixing
ratio and number concentration (assuming limits from D,,;, = 500 microns
(5% 10 *m) to infinity) are given as

TP, NTzw V([bz + v ]/M §Dmin/Dnzw)
wCNyy = D3 : z 9.28
0 o] = (9.28)
and
Ntw F(V23Dmin/DnzW>
NiwCN,y = 9.29
c { At L(v,) (9:29)

Alternatively, with a hybrid-bin approach, a similar procedure could be carried
out as for the conversion of cloud droplets to drizzle as mentioned earlier.

9.4 Conversion of ice crystals into snow crystals
and snow aggregates

Autoconversion and conversion of ice crystals and snow aggregates is one
of the more severe cruxes of cloud modeling. The conditions under which
autoconversion and conversion occur can make the difference between a
realistic simulation or not (e.g. Cotton et al. 1986; DeMott et al. 1994).

A simple autoconversion parameterization for cloud ice crystals to snow
aggregates is given by Lin er al. (1983) and Rutledge and Hobbs (1983).
In their formulations, cloud ice crystals are converted to snow aggregates
when the snow mixing ratios exceed a certain threshold much like the Kessler
autoconversion scheme. The equation given by Lin et al. (1983) appears as

QswCN¢ = 0.001E;; max(Qs  Qcio, 0), (9.30)
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where Qg is = 0.001 kg kg ' and E; = exp[0.025(T 273.15)]. This equation
does not show well the dependence of aggregation efficiency on crystal
structure, which is dependent on temperature (Lin et al. 1983).

The Cotton et al. (1986) scheme was presented a few years later and took
into account the self-collection occurring between ice crystals to produce
snow aggregates. The equation for number tendency takes the form,

dnN Tei

dr = KiN%civ (9.31)

auto

where K; is the collection cross-section,

_ mh;
6
where V1 is the terminal velocity for cloud ice, and y = 0.25 is proportional
to the variance in particle fallspeed. Or, as Cotton et al. put it, it represents the
dispersion of the fallspeed spectrum.

The conversion rate of ice-crystal mixing ratio to snow aggregates is given
simply as

K; VreiEiiy, (9.32)

ci dn: ci
QciCNsw = m_ T = +KiNTCiQCi7 (933)
p dt auto
where
Qcip
[ = KdP 9.34
e N Tci ( )

and Ej;; can be chosen to be that used by Lin ef al. or an approximation to
Hallgren and Hosler (1960) by Cotton et al., given as

Eii — min 100.035(T 273.15) 0.770.2 ) (935)

This representation does not allow the coalescence efficiency to exceed
0.2, whereas the Lin er al. scheme approaches 1.0 at temperatures of about
273.15 K. Cotton et al. note that Pruppacher and Klett (1981) only show
Rogers (1973) efficiencies at values as high as 0.6. It should be noted that
Passarelli and Srivastava (1979) inferred from aircraft measurements collec-
tion efficiencies as high as 140% in temperature ranges of 12 to 15 °C.
Presumably this has to do with the predominance of the production
of dendrites in this temperature range. To summarize quickly, very little is
known about collection efficiencies among ice-crystal particles.

An alternate form for aggregation among ice crystals to form snow aggre-
gates is given by Murakami (1990) as the following
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Qci

N1iACsy = —, 9.36
Tc Cs A‘El ( )
where At is given as
2 Tei 3
Aty =—1lo , 9.37
: Cy g(rsw0> ( )
with r; equal to radius of ice given by
3pQci )1/3
ri=———1] . 9.38
(4TCPC1NTci ( )
Also, C; is given as
C1 = pQ.iacEiiy, (9.39)

with dci — 700, Eii = 01, and 1= 0.25.

One of the more complex conversion schemes of ice crystals converted into
snow aggregates is based on the length of time, Az, it takes for an ice crystal to
grow from a mass m; to a mass mgy, through riming and vapor deposition
growth (Reisner et al. 1998), which is given by the following,

Nt (mswo mci)

At = , 9.40
(QciDP SW + QiiAch) ( )
where my,o i1s the mass of the smallest snow particle given by
i
Mswo = gpSWDSWO’ (941)
with Dgywo = 1.5 x 10 * m. In this equation Q4AC, is given by
QciAch = min(QciACCW7 QciDPcw)- (942)

Now the amount of cloud ice converted to snow aggregates is defined when
me; < 0.5mgy0, and the equation used is

e

1
OswCN¢; = A_‘chCi = (QciDPv + QciACci)a (943)

Mswo  Mgj

and when mg; > 0.5mg,( the equation used is

ci ) SW
QSWCNci:Q = <1 0.5m 0

2_Al‘ o mei > (QciDPv + QciACCi)' (944)
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9.5 Conversion of ice crystals and snow aggregates
into graupel by riming

Perhaps the simplest conversion rate of snow aggregates into graupel is that
used by Lin et al. (1983) and Rutledge and Hobbs (1983) and again is similar
to Kessler (1969). Again, in their formulations, snow is converted to graupel
when the snow content exceeds a certain mixing-ratio threshold. The equation
given by Lin ef al. appears as

QewCNgy = 0.00lcmax(Qsw  Oswo, 0), (9.45)

where Qqwo is = 0.0006 kg kg ' and & = exp[0.09(T  273.15)].

Another method for conversion of ice crystals or snow aggregates into
graupel at temperatures < 273.15 K during riming is to assume that the
production rate is related to the vapor deposition rate and riming rate as
follows. First, the vapor deposition rate and riming rate are computed for
snow aggregates. The conversion rate is equal to the difference of the riming
rate and the vapor deposition rate when the riming rate is the larger of the two,

QewCNgy = max(QswACew  QswDPy,0). (9.46)
The same approach can be used with ice crystals,
QwCNg = max(Q¢ACey  QuDPy,0). (9.47)

More complicated forms of the above equations were proposed by Murakami
(1990) for the production of graupel from riming ice and snow aggregates,
respectively.

Murakami’s (1990) formulation for the production of graupel from riming
ice crystals is

pQci QowACi  QcDPy,0.0
W ci = s 9.4
QgwCN, Amg max< Mo (9.48)
where
Amgi = myy  mei, (9.49)

and my = 1.6 x 10 10 kg is the mass of the smallest graupel particle. The
number-concentration change of ice crystals converted to graupel is given by

ngCNci + QgiAch)
L) '

NgwCNg = p max( (9.50)

The number conversion rate is given by Milbrandt and Yau (2005b) as

NgWCNci = <L> QgWCNci> (951)
Mng
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where
Mgyo = 1.6 x 10 kg, (9.52)

Murakami (1990) proposed an equation for conversion to graupel from
riming snow aggregates,

Psw

W SW

QuwCNyy = max( QuwswACoy, o.o) . (9.53)

The number conversion rate given by Milbrandt and Yau (2005b) is

NgwCNay = (L> QewCNaw, (9.54)
M gw0
where again (9.52) holds.
It is also noted that the riming for the growth of snow aggregates during
this three-body process is

QSWSWACCW = QSWACCW QgWSWACCW7 (955)

where Q,,AC., can be from any of the forms of the collection equation
presented in Chapter 7.

Cotton et al. (1986) devised a parameterization for the conversion of snow
aggregates to graupel that was activated when the mixing ratio of rimed
aggregates is the same as the mixing ratio of a population of graupel particles.
Then the tendency difference between the aggregate riming tendency and the
growth tendency of the graupel (where the former is greater than the latter),
when the temperature is colder than 273.15 K, can be written as

ngCNsw = max [QSWACCW QgWACCW (ng = QSW) ) 0] : (956)

Another conversion scheme of snow aggregates to graupel follows that of
Farley et al. (1989). In this scheme a three-body procedure is developed where
some of the rimed snow aggregates remain as snow aggregates and some are
converted to graupel depending on the amount of riming. The amount of
cloud water that is rimed by snow aggregates and converted to graupel is
given by

1 1/2 D
ngswAch = _ﬂEswchchTstixswasw (%) Y (2 + bew + V;D 0 ) ) (957)

4 nsw
with y the partial gamma function, and

QSWSWACCW = QSWACCW QgWSWACCW' (958)
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The amount of snow aggregates converted to the new particle gw can be
written from the definition of mixing ratio of sw as

AC npszTSWDgsWF (ﬁsw + Vsw, %) 959
QgWCW SW T 6pAIF(VSW) I ( * )
where Eg,., 1S the collection efficiency of cloud water by snow and p is
the reference density of air; where subscript cw represents the sum of all
the liquid that collects snow sw. Here I is the partial gamma function. The
corresponding equation for Nt is given as,

NrswI’ D - /'D
NgWCwACSW — Tsw (VZ;%(:Wm)m/ nsw) '
sw

(9.60)

Seifert and Beheng (2005) developed parameterizations for conversion of
cloud ice to graupel when ice crystals and snow aggregates rime sufficiently.
The conversion of cloud ice to graupel occurs when plate-like crystals are
> 500 microns in diameter, column-like crystals are > 50 microns, and snow
aggregates > 250 microns (along the a-axis for ice crystals). The critical
amount of rime can be written as

Xeritical _rime = spacefill pL max <gD?n %)a (961)

1

where X; is given by
qi
Xi=p—. 9.62
1 Nri ©-62)
The parameter spacefill is from Beheng (1981) and Seifert and Beheng (2005)
is equal to 0.68 for ice crystals and 0.01 for snow for rapid conversion of snow
to graupel when riming occurs. The value of tau, 7, for conversion is

X critical_rimeN Ti

Xtau_conv - pQCiTCW, (963)
which gives mixing-ratio and number-concentration rates of
QuiACey = X—Qd (9.64)
tau_conv
and
NgACey = )%QgiACCW. (9.65)
1

This process is a three-body interaction, so not all ice crystals or snow
aggregates are converted to graupel, and some of the ice crystals and snow
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aggregates are left behind with some riming. The equations for the increase of
mass of ice crystals and snow aggregates then become

OACew = QciACcw QgiAch (966)
and

NeACey = NiACey  NgACey. (9.67)

9.6 Conversion of graupel and frozen drops into small hail

The conversion of graupel and frozen drops into small hail also can be cast as
a three-body interaction following Farley et al. (1989).

There is no corresponding number change. The amount of ice y converted
to the new particle z can be written from the definition of mixing ratio of y as,

D 'ymin

npyNTyDzyF (ﬂy + vy, D—ny)
6poAT (vy) ’

Q.1AC, = (9.68)

where subscript L represents the sum of all the liquid that collects ice y. The
corresponding equation for Nt is given as,

NTyF (Vy, Dy min/Dny)
AT (vy)

N1 AC, = (9.69)
In some models (Straka ez al. 2009b) a particle is initiated at the mean volume
diameter and the continuous growth equation is integrated to see if the
particle grows by the time-weighted mean water content estimate and the
Lagrangian time estimate (see Chapter 2). If a particle reaches a minimum
diameter by continuous collection growth with the procedure above the
conversion occurs.

Ziegler (1985) used the model of Nelson (1983) to derive a variable Dy, to
indicate the onset of wet growth. He showed that when D < D,,, then dry
growth continued. However when D > D,,, wet growth began.

T(°C)

D, =
P T X 107000 1.3 x 109904 + 1

1. (9.70)

Ziegler’s wet- and dry-growth equations involved using incomplete gamma
functions, with hail designated by particle size with D > D, and graupel
particles defined as size D < Dy, both represented by the same size distribu-
tion. The same scheme was implemented by Milbrandt and Yau (2005b),
though they used a similar equation [in SI units and included collection of
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rain, (9.71)] to determine when a particle would become hail or remain as
graupel. Unlike Ziegler, they carried prognostic equations for both graupel
and hail particles.

_ T(°C)
Dw _0‘01<6Xp[1.1 % 10 (Qcw + Ory) — 1.3 x 10304 + 1 x 10 3] N 1>' (71)

The conversion rate that Milbrandt and Yau use, incorporating (9.71) to
delineate graupel from hail, is given as

Dyew
QthNgw = Dh gO (ngAch + ngACrw + ngACci)- (972)

Milbrandt and Yau note that Dy, = D,, can sometimes be smaller than the
mean volume diameter of graupel Dy, . This can happen with high liquid
water contents at relatively high temperatures. To prevent the total mass
converted to hail from becoming larger than the total graupel mass plus the
mass of liquid and ice that graupel collects, the following is incorporated,
though it is somewhat artificial,

QhWCNgW = min [QhWCNgW; ng + (QgWAch + ngACrw + ngACci)] . (973)

Other limits are needed when wet growth is not expected, and graupel does
not convert to hail. This occurs at relatively cold temperatures and low liquid-
water contents. Thus, a lower limit is placed upon the ratio Dgymy/Dy, such
that it does not go below 0.1. When it does go below 0.1, the conversion rate
is set to zero. The number conversion rate is then given by

NinwCNy = ( P )Qhwczvgw, (9.74)
thO
where
Mo = D . (9.75)

9.7 Conversion of three graupel species and frozen drops
amongst each other owing to changes in density by
collection of liquid particles

9.7.1 Graupel and frozen drops collecting cloud water

For snow aggregates, graupel, and frozen drops collecting cloud water,
a simplified approach somewhat like Ferrier (1994) can be used. First, the
amount of riming that takes place is computed as Q,AC.,. Next the rime
density of cloud water collected is computed following data archived by
Pflaum [1980; (9.76a,b)] and Heymsfield and Pflaum [1985; (9.76¢)] as
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0.5D ey VT impacta |
Py rime = 261 < (ir(oplé) pact, ) ) (9763_)
O'SDCWV impact,x 076
px,rime = 110< T(OE) ) ty) ) (976b)
or
0.5D WV im X 044
Prrime = 300( CT(OE) e > : (9.76¢)

where the value of V impact,» 18 the impact velocity of cloud drops on the ice
and is given as approximately 0.6 Vr, after Pflaum and Pruppacher (1979).
The new density of the ice particle undergoing collection of cloud water after
a 90 s (60 to 120 s) period At ime 1S given by

p — (prx + Al‘rimeQxACCW>
e Qx + AZ‘rimeQxAch ’

Consider medium-density graupel collecting cloud water. Low-density rime
can be added to become low-density graupel if pgm rime < 0.5(Pg1 + Pom);
remain added to medium-density graupel if 0.5(pg + pom) < Pem.rime
< 0.5(pgm T pgn); can be added to high-density graupel if 0.5(pgm + pgn)
< Pem rime < 0.5(pgh + prw); or added to frozen drops if 0.5(pgn + Prw) < Pem,rime-
This can be done for all three graupel species and frozen drops. Any species
can be converted to one of the other by either low- or high-density riming.

(9.77)

9.7.2 Graupel and frozen drops collecting drizzle or rain water

Consider low-density graupel collecting drizzle or rain water. The particle
source can collect drizzle or rain and remain as low-density graupel if pgj rime <
0.5(pg1 + pem); become medium-density graupel if 0.5(pg1 + Pem) < Pelrime <
0.5(pgm + pgn); high-density graupelif 0.5(pgm + Pen) < Pelrime < 0.5(Pgh T Prw);
and frozen drops if 0.5(pgn + prw) < Pelrime- This can be done for all
three graupel species and frozen drops. Any particle can be converted to the
other by high-density riming owing to the collection of drizzle and rain.
In general particles do not have their densities reduced by collection of drizzle
and rain.

9.8 Heat budgets used to determine conversions

From Walko et al.’s (2000) extensive work, an implicit system of each equa-
tion of each species to close the system of diffusive fluxes together with



9.8 Heat budgets used to determine conversions 273

a temperature equation for hydrometeor surfaces are derived. The diffusive
flux of heat and vapor between hydrometeor species and the air depends on
differences in the vapor and temperature over the surfaces of hydrometeor
species and the air (Walko er al. 2000). It is noted that all the hydrometeors
must be treated interactively as all the hydrometeor categories compete for
excess moisture. Walko et al.’s (2000) method is similar to Hall’s (1980)
implicit, iterative approach; but with some algebra, the implicit approach
can be transformed so that it can be solved directly.

The values of Q,, and T,,, represent the mixing ratio and temperature of any
hydrometeor species indexed by m. Each step of this approach is started with
updated values of temperature for air T,, vapor in air Q, owing to advection
and diffusion etc. Hydrometeor temperature and mixing ratios are all
updated by all other processes from advection and diffusion to accretion
and freezing or melting.

The Walko et al. (2000) approach makes use of the ice liquid potential
temperature 0; system that the CSU RAMS (Colorado State University
Regional Area Modeling System) model uses (Cotton et al. 2003). The 6;
system was developed by Tripoli and Cotton (1981) and has been re-examined
by Bryan and Fritsch (2004). An advantage of the 0, system is that 0; is
conserved following adiabatic motion with or without internal phase changes
of water. With this system the air temperature is given,

qlat
T,=Ty|1l+———|, 9.78

¢ l [ * cp max(Ty, 253)} (®-78)
where Ty is given by

Ry
T = 0y <@> ; (9.79)
p
following Tripoli and Cotton (1981) and Walko et al. (2000). The value of ¢,

is the enthalpy released in the conversion from vapor to all ice and liquid in
a parcel, and L, and L are enthalpies of vaporization and sublimation,

Glat = !Z O+ Z (1 £i)Q
1 i

where f,; is the fraction of ice. The equation for T, above can be rewritten
with the variable A; by linearizing as follows,

L+

Zfr,iQi] Ly, (9.80)

THT(C)  TI(°C)=A(Q; 0.7, (9.81)
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where A; is given by,

L. ws TlO< 2 052,
1= Til: * o :
ey T(C)> 20

According to Walko et al. (2000) the total loss of water vapor by diffusion is
the total gain of water mass over all species,

Q; o= > (0, Q.. (9.83)

m

The change in mixing ratio of any species m over a model step is

oLt Qr = U, (05 QL) V00, (9.84)

where Q' is the saturation mixing ratio over a particle at its temperature. The
U,, term describes the vapor diffusion growth or evaporation of some hydro-
meteor species. To keep from evaporating more water vapor than is present
in the system, it switches to using a U,, and a V,,, to prevent over-depletion;
U,, and V,, are given below as the following,

4nAtYN,,(Nye),, if species m is not depleted
U, = . . . (9.85)
0 if species m is depleted,
and
| 0 if species m is not depleted
Vin = {1 if species m is depleted. (9.86)

Next the term Q,, is defined. When m is hydrometeor species vapor, its
elimination needs to be accounted for using a linearized form of the Clausius
Clapeyron equation,

QsRm
dTr,»

where Ty,, is a reference temperature close to the final temperature T of species
m. The reference temperature is approximated by Walko et al. (2000) using the
following,

QH_(S[ QsRm( sm) +

(T Tra), (9.87)

Trm = To(°C)  min(25, 700[Qsn  O]). (9.88)

Note that Tg,, is limited to a maximum of 0 °C for ice species hydrometeors.
Now the following can be written with simple substitution of (9.87) and (9.88)
into (9.84) as

dQSRm
dTRm

0" 0, =Un <Q’V+(” Osrm 75, TRm]) Vi, (9:89)
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Making the substitution of (9.89) into (9.83) gives

0+ Y Un(Qurn + 522 [T57 Tra]) XV
m m
14> Uy

Qi,+(5t — (990)

Now if the future temperature is to be obtained, a “hydrometeor energy
equation” is needed for each species. Walko et al. (2000) give the internal
energy of hydrometeor species m as,

Iy :f;‘.mciTm + (1 fr,m) (CLTm +Lf)7 (991)

where /,, is the internal energy of hydrometeor species m and ¢; and ¢, are
the specific heat with respect to ice and liquid, respectively. In addition, the
terms f,,, are fractions of ice. At 0°C for pure ice, the internal energy is
specified to be zero. To get the internal energy of each of the hydrometeor
species m the following is written, 7,,Q,,, which is internal energy per kilogram
of air.

The heat budget for each hydrometeor species m is written in terms of /,, as

]I+(5tQt+()t Q _ 4nAtNTm(Nrc) K(T;+Of Tr+5r) +left( 140t _Qm)( [r+6r) (992)

where Nt,, is the number concentration, K is thermal conductivity of air,
(Nye)m 1s the product of the ventilation coefficient, shape factor, and hydro-
meteor diameter integrated over the hydrometeor species m size spectrum,
and L; is the enthalpy of phase change j. Rearranging gives

(I 15) Q7 = 4nANT, (Nre),, K (T THO) 4 (@5 Q5L (9.93)

Walko et al. (2000) note that as hydrometeors like rain, graupel, frozen drops,
and hail can come out of equilibrium with the environment, the value of the
predicted internal energy is stored for the next timestep. Cloud droplets and
ice crystals come into equilibrium temperature-wise with the environment
nearly immediately and have essentially no heat storage; so it is up to the
modeler whether to store the predicted internal energy for them. This
implies that there is a balance between sensible and latent-heat diffusion
for these smaller hydrometeors at temperatures below 0°C. This means that
the terms of (9.93) on the right-hand side are equal to zero for the small
negligible heat-storage particles. Melting ice hydrometeor species m have
an internal energy at the start of the process that is zero and the internal
energy at the end of the step for these hydrometeor species can be evaluated
with (9.93).
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Using the right case for each hydrometeor species, and substituting (9.81)
into (9.93) to eliminate the new air temperature in °C, and substituting
(9.83) into (9.93) to eliminate the new r; results in

IFD,, + THE, = QU F, + G,. (9.94)

Mixed-phase particles have a new temperature equal to 0 °C. All-liquid and
all-ice particles have a temperature predicted from

10F00 = ¢, T 4 Ligy, (9.95)

where here L;,, is the enthalpy of fusion for ice liquid mixtures, and for all-
liquid particles L; # 0 and for ice while c,, = ¢; and ¢ are specific heats for
liquid and ice particles, respectively.

The goal is to find a temperature equation for each of the hydrometeor
species. The short number of steps for this is found in Walko ef al. (2000).
After some algebra, a temperature equation is found that is explicit,

T3 = (SwQy™ + W) My, (9.96)

where the Heaviside step function M,, = 0 for mixed-phase particles, or
M,, = 1 for all-liquid or all-ice particles. To choose the right M,,, start by
setting it to 1 and assume the old and new Q, are equal. If the new T,, > 0,
then M,, = 0, and T,, = 0. For low-heat-storage hydrometeor species such
as ice or snow, then the test is done with H,, = 0. If the value of T,, = 0, then
H,, = 1. Further details on choosing M,, can be found in Walko et al. (2000).
The following are variables in the temperature budget,

Fy,
Sm = m (9.97)
and
Wy =7+, 9.98
(CnDm + En) 5-98)
where
Cn =cr, 015 (9.99)

where K,,, = L;; for all liquid species, and 0 for all ice species, and the variable to
be used is the one that is appropriate for each of the ice and liquid phases. Next,

D,, = H;Q,,, (9.100)
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where H is a factor of 1 or 0 for hydrometeors such as ice and aggregates at
T < 0°C and for cloud water, 1 for ice, aggregates at T = 0°C, and rain,
graupel, frozen drops, and hail. Now we define

Fp=UnLy 41AtNp,(fre), KA, (9.101)
dQsRm
E, = UyL,—X" B K, 9.102
T, (9.102)
where B,, = 4ndtNt,, and
dOsrm * (o0 .
Gm = (UmLm d%-,iSRTRm QSRm) + BmK(Ta( C) + AIQV)
Rm

(9.103)
+ -]mI;,Q; VmLmQ:;u

where J,, = 0 for cloud water, ice, or aggregates, and 1 for rain, graupel, or hail.
Finally a closed solution for Q, is found from

Oy + 2 UnYu + 32V,

+or — 9.104
oy 1+> UnZy ’ ( )
where
v, — 908 (G Knlin;) (9.105)
oo | (CppH0;, + Unln G + KB, )
and
dQsRm
dTx,, ( )

Once the new vapor mixing ratio is updated, then the new hydrometeor
species m temperatures are calculated. In addition, each new mixing ratio of
hydrometeor species m is then solved.

In computing (9.104) it is assumed that no hydrometeor evaporates or
sublimes completely and therefore that U,, # 0, and V,, = 0. Now if a hydro-
meteor species m completely evaporates/sublimes, then U,, and V,, are changed
to their alternate values and (9.104) is evaluated and Q,, is set to zero. Walko
et al. (2000) do the above in the order: first cloud droplets; then ice crystals;
snow aggregates; rain; graupel; and hail. Then the temperature equation (9.94)
is evaluated. This requires /,, to be evaluated from (9.93) if M,, = 1 or (9.91) if
M,, = 0. Walko et al. (2000) state that it is /,, that is used to determine how
much mass and number concentration is transferred between species in colli-
sions, melting, and shedding of rain by hail. The air temperature is then
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evaluated by (9.96). Usually the trial M,, is used if the temperature equation is
correct. Walko et al. (2000) explain that when an ice species hydrometeor has
an [,, value that is very near to zero, a slight error can be found, and for M, = 1
when M,, = 0 the temperature from (9.96) will be a bit above 0 °C. In this case
the value of I, for ice will be too low, so I,, is bound by the value zero.

9.9 Probabilistic (immersion) freezing

The probabilistic freezing of liquid-water drops forms high-density ice-water
particles (Bigg 1953; Wisner et al. 1972; Lin et al. 1983; Ferrier 1994; and
others) and is a heterogeneous freezing process owing to the presence of
freezing nuclei in the liquid-water drops. Frozen cloud drops are assumed
to begin immediately developing into the crystal habit representative of the
supersaturation and temperature regime where they form. Frozen drizzle and
raindrops are a source for lower- and higher-density graupel, through rapid
low- to high-density riming, respectively, or into frozen drizzle and frozen
rain if high-density riming occurs. As pointed out by Wisner et al., laboratory
experiments suggest that drop freezing is likely a stochastic process, and a
function of the volume of the liquid-water particle and the number of ice
nuclei that can activate in droplets or drops at a given temperature. Following
Bigg (1953) and Wisner et al. (1972), an equation can be derived for the
probability, p, of freezing of a drop with volume V and temperature 7,

In(1 P)=BVi{explA'(Ty T) 1]}, (9.107)

where T is the freezing temperature (273.15K), 7 is the time, and A’ and B’ are
coefficients, A’ = 0.60 and B’ = 0.01.

9.9.1 Parameteri