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Preface

Through the experience of the author and his interaction with others that

teach cloud and precipitation physics at the University of Oklahoma over the

course of at least the past 17 years, it became apparent that there were no

current reference books or textbooks on the specific topic of the principles of

parameterization of cloud and precipitation microphysical processes. This is

despite the knowledge that the research community in numerical simulation

models of clouds regularly uses microphysical parameterizations. Moreover,

the operational community would find that numerical weather prediction

models are not possible without microphysical parameterizations. Therefore,

it is hoped that this book will be one that begins to fill this niche and provides

a reference for the research and operational communities, as well as a text-

book for upper-level graduate students.

Researchers and students should have a prerequisite of a basic graduate-

level course in cloud and precipitation physics before using this book, though

every effort has been made to make the book as self-contained as possible.

The book provides a single source for a combination of the principles and

parameterizations, where possible, of cloud and precipitation microphysics.

It is not intended to be a comprehensive text on microphysical principles

in the spirit of Pruppacher and Klett’s book Microphysics of Clouds and

Precipitation. Not every existing parameterization available is included

in the book, as this would be an overwhelmingly daunting task, though every

effort has been made to include the more common and modern parameter-

izations. There are some elegant, modern parameterizations that are not

covered, though the reader will find references to them. Some simpler early

parameterizations such as those used in one-moment parameterizations

(mixing ratio of vapor or hydrometeor) are omitted for practical reasons,

and because these are quickly becoming outdated. Some operational

numerical weather-prediction modelers cling to these simpler microphysics

parameterizations as their mainstay owing to their low memory overhead,

xiii



and computational cost. Furthermore, an appendix of symbols was deemed

to be essentially impossible to make user-friendly, as characters and symbols

are recycled time and time again throughout the literature, and thus, they are

recycled in this book. Admittedly, this is unfortunate for the reader. Hope-

fully variables are defined in enough detail where used so that what they

represent can be easily understood. Enough material is presented for readers

to make educated choices about the types of parameterizations they might

find necessary for their work or interest. Every attempt has been made to

include state-of-the-art science on the topic by drawing heavily from the peer-

reviewed literature. Each chapter covers specific microphysical processes, and

includes many theoretical principles on which the parameterization designs

are based, where such principles exist. It should be interesting to the reader

just how ad hoc some parameterizations actually are in reality and how

poorly or well some of them perform.

Gratitude is extended to the publishers who have granted permission for

the reproduction of figures throughout the text. Some of my own research is

included in the book, and for the support of this work as well as time spent on

this book, I acknowledge the National Science Foundation in the USA. First

and foremost, however, this book would not have at all been possible without

the contribution of various derivations and the often tedious and repeated

editing provided by my wife and colleague, Dr. Katharine M. Kanak. Next

I would like to thank Dr. Robert Ballentine for trusting in me as an under-

graduate and graduate student and teaching me the finer points of numerical

modeling. I also would like to thank my Ph.D. Advisor, Professor Pao

K. Wang for stimulating my initial interest in cloud and precipitation physics,

and in particular research on hail initiation and growth. In addition I extend a

special thanks to Drs. Matthew Gilmore, Erik Rasmussen, Alan Shapiro, and

Ted Mansell for many stimulating conversations about microphysics para-

meterizations, along with many others, too numerous to list, with whom

I had various degrees of complex discussions on the principles and parame-

terizations presented in this book.

Special thanks are owed to Cambridge University Press Syndicate, and

especially Dr. Susan Francis, Commissioning Editor, Earth and Planetary

Science, for her guidance, assistance, and opinions in the production and the

publication of this book. Diya Gupta, the assistant editor, was invaluable for

guidance and help. Eleanor Collins, Production Editor, and Zoë Lewin, Copy

Editor, were a pleasure to work with and helped tremendously with getting

the book in its present form.

J. M. Straka

Norman, Oklahoma

May 2008
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1

Introduction

1.1 Cloud and precipitation physics and parameterization perspective

Cloud and precipitation physics is a very broad field encompassing cloud

dynamics, cloud microphysics, cloud optics, cloud electrification, cloud

chemistry, and the interaction of cloud and precipitation particles with elec-

tromagnetic radiation (i.e. radar). The focus of this book is on a very specific

aspect of cloud and precipitation physics: the development of various para-

meterizations of cloud and precipitation microphysical processes; and when

possible the exploration of the basic theories necessary for their development.

In numerical models, based on theory and observations, microphysical para-

meterizations are a means to represent sub-grid-scale microphysical processes

using grid-scale information. Some of the parameterizations are quite com-

plex, whilst others are quite simple. In the realm of the design of parameter-

izations of cloud and precipitation microphysics, complex schemes do not

always provide more accurate results than simple schemes. The parameter-

izations of cloud and precipitation microphysical processes are essential

components to numerical weather prediction and research models on all

scales, including the cloud scale, mesoscale, synoptic scale, global, and cli-

mate scale. In particular, the accuracy of quantitative precipitation forecasts,

as well as the representation of atmospheric and terrestrial radiation physical

processes, depend significantly on the type of cloud and precipitation micro-

physics parameterizations used. More recently cloud models also have been

used to simulate lightning, which depends on an accurate account of micro-

physical processes, hydrometeor amounts and locations.

The scales involved with cloud and precipitation microphysical processes

range from the size of Aitken aerosol particles O(10 2 mm) to giant aerosol

particles O(100 mm) to ultra-giant aerosols and cloud particles O(101 mm) to

drizzle and snow crystal particles O(102 mm) to rain, snow aggregate, and
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graupel particles O(103 to 104 mm) to hail particles O(104 to 105 mm). Thus to

study theories and parameterizations of cloud and precipitation particle

growth, nearly seven orders of magnitude in size must be covered. To put this

in perspective, this is similar to studying the development of small wind swirls

O(10 1 m) to dust devils O(100 to 101 m) to cumulus clouds O(102 to 103 m) to

convective clouds such as thunderstorms O(103 to 104 m) to mesoscale phe-

nomena such as large thunderstorm complexes and hurricanes O(105 m) to

synoptic scale phenomena such as Rossby waves O(106 m) all relative to one

another. With these vast scale differences it is no wonder that theories and

parameterizations ofmicrophysical processes can be so difficult to develop and

be accurate enough for research and operational model usefulness.

This chapter begins with a brief description of the types of cloud and

precipitation parameterization methodologies available. The complexity of

a parameterization is governed by theoretical equations that can be derived

and observations that are used as needed. Descriptions of warm and cold rain

processes for physically consistent and complete microphysical parameteriza-

tions are presented next. Then, hydrometeors and their characteristics such

as phase, size, concentration, content, and structure are discussed. This

information is essential as different parameterizations treat hydrometeors

differently based on these characteristics depending on the complexity

required in a model.

1.2 Types of microphysical parameterization models

1.2.1 Lagrangian trajectory parameterization models

Lagrangian trajectory parameterization models are the type of models that

can incorporate the most detailed microphysical information based on obser-

vations, physical experiments, and theoretical considerations of any parame-

terization model for hydrometeor growth described in this book. Particles

grow following three-dimensional trajectories in a prescribed or radar-

deduced flow field, which can be provided by multiple Doppler radar ana-

lyses. Then with approximations for temperature, vapor, and liquid-water

content and/or ice-water content, growth of individual precipitating hydro-

meteors is predicted using equations of varying complexity as described

throughout the book. Some Lagrangian trajectory models can be quite

comprehensive, whereas others are very simple. In addition to predicting

the growth of individual hydrometeors in Lagrangian trajectory models, the

growth of hydrometeor packets can be predicted, though this is done less

commonly.
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1.2.2 Bin parameterization models

Bin parameterization models are often considered the type of parameterization

most able to represent, for example, rain distribution evolutions in

rain clouds. They have bins (i.e. small divisions) representing the spectrum

of drops from very small cloud droplet sizes (4 mm) to larger raindrops (4 to

8 mm) for parameterizations of rain formation. Each bin is usually exponen-

tially larger than the previous size/mass bin owing to the wide spectrum of

liquid-water drops that are possible, which ranges over three orders of

magnitude. For liquid-water drop sizes, bins often will increase by 2, 21/2,

21/3, or 21/4 times the previous size bin over 36, 72, or 144 bins (or any number

required for a converged solution), starting with particles of about 2 to 8 mm
in diameter and increasing to a size that contains the spectra of rain, ice,

snow, graupel, and hail. Bin parameterization size-spectra can also be made

for other hydrometeor species including ice crystals, snow crystals, snow

aggregates, graupel, frozen drops, and hail with similar bin spacing. Some

models also have bins for aerosols and track solute concentrations.

A shortcoming of bin models is the excessively large computation resources

needed to make use of them [both Computer Processing Unit (CPU) and

memory], except for two-dimensional models (both axisymmetric and slab-

symmetric) as well as smaller-domain three-dimensional models. At a min-

imum, the number concentration must be predicted with these schemes,

though mixing ratio and reflectivity can be predicted or calculated. Consider-

ing number concentration with mixing ratio prediction improves the results

against using just number concentration for analytical test problems as will

be demonstrated in a later chapter.

1.2.3 Bulk parameterization models

Bulk microphysical model parameterizations are some of the most popular

schemes available owing to much reduced computational cost compared to

most bin models for use in three-dimensional models. These microphysical

parameterizations are based on number distribution functions such as mono-

dispersed, negative exponential, gamma, and log-normal distributions, to

name a few, for each hydrometeor species’ size distribution. These distribu-

tions are normalizable and integratable over complete size distributions of

diameter from zero to infinity, or partial distributions (most common with

the gamma distribution) from diameters of 0 to D1 meters or D2 to 1 meters

or even D1 to D2 meters. Typically, mixing ratio and number concentration

are predicted with these parameterizations. Whilst reflectivity can be

1.2 Types of microphysical parameterization models 3



predicted, it can be used to obtain an estimate of the gamma distribution-

shape parameter of the size distribution as a function of time. Some of the

simpler dynamical models also predict two and/or three moments, including

the slope or characteristic diameter of the distributions as well as, or in place

of, number concentration. Most one- through three-dimensional dynamical

models developed during the period from the 1970s through the mid 1980s

generally predicted only hydrometeor mixing ratio for bulk microphysical

parameterizations. As computer power increased in the mid 1980s, the number

of species predicted and the number of moments predicted slowly increased

to the point where most models utilized two moments and eventually some

used three moments (Milbrandt and Yau 2005a, b).

1.2.4 Hybrid bin parameterization models

Hybrid bin parameterizations have many of the qualities of both bulk and

microphysical model parameterizations, however growth and loss parameter-

izations are done differently than direct integration of spectrum interactions

such as, for example, collection of one hydrometeor species by another

species. Instead, the mixing-ratio and number-concentration distribution

functions are converted to bins and computations are done with a bin model;

then results are converted back to bulk microphysical model parameteriza-

tion mixing ratios and number concentrations as described by some distribu-

tion function. Typically, lookup tables are made to reduce the computation

overhead. With these models an attempt is made to capture the “supposed”

accuracy of bin models in a bulk microphysical model parameterization

without the memory storage of the full bin model. One shortcoming with

hybrid bin parameterizations compared to bin parameterizations is that the

bin parameterization solution is not carried from timestep to timestep, in

particular the bin parameterization size spectra.

1.3 Warm-rain parameterizations

Warm-rain processes include the development of precipitating rain without

the presence of ice water. However, clouds can have both warm-rain

processes and cold-rain processes occurring simultaneously, both in the

same and in different locations. Following closely the ideas put forth by

Cotton and Anthes (1989), the basic physics that need to be included in

a warm-rain parameterization are the following in some fashion or other.

These concepts are to some extent based on bin parameterizations of

warm-rain processes, but are quickly becoming more commonplace in bulk
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microphysical model parameterizations. The processes are shown in Fig. 1.1

(Braham and Squires 1974):

� The nucleation of droplets on aerosol particles
� Condensation and evaporation of cloud droplets as well as drizzle and raindrops
� The development of amature raindrop spectrumby collection of other liquid species

(including cloud droplets, drizzle, and raindrops themselves)
� The inclusion of breakup of raindrops
� The occurrence of self-collection in the droplet and drop spectra
� The differential sedimentation of the various liquid drop species within the species,

for example, rain from different sources.

Cotton and Anthes (1989) used some of these concepts, to which some

processes have been added here. They also argue from bin model results, that

a possible and perhaps attractive approach to parameterizing these physics is

to separate the liquid-water spectrum into two separate species: cloud droplets

and raindrops. Others, such as Saleeby and Cotton (2004, 2005), include both

small-cloud droplet (D< 100 mm) and large-cloud droplet (D> 100 mm) species

or liquid-water habits. Similarly, Straka et al. (2009a) include a drizzle species

category between the cloud droplet and rain categories. Straka et al. (2009b)

also include a large raindrop species or category to account formelting graupel

and small hail that become drops that do not immediately break up.

1.4 Cold-rain and ice-phase parameterizations

The microphysical parameterization of cold-rain processes and the ice phase

of water is significantly more difficult than that for warm-rain parameter-

izations, and warm-rain processes. However, for both warm-rain and ice

parameterizations, conversion processes are tremendously burdensome in a

theoretical and parameterization design perspective. Cotton and Anthes

(1989) point out that many of the ice microphysical processes are not para-

meterizable in terms of results from bin models, theoretical consideration, or

empirical fits to observations without considerable uncertainty. Nevertheless,

models continue to grow apace in complexity with more degrees of freedom

to accommodate data as these become available. Again following Cotton and

Anthes (1989), to as reasonable an extent as possible, the following processes

should be included in some fashion or other. In addition, the processes are

shown in Fig. 1.1.

� Homogeneous freezing of cloud drops into ice crystals.
� Primary, heterogeneous ice nucleation mechanism such as contact freezing, depos-

ition, sorption, and immersion freezing nucleation.

1.4 Cold-rain and ice-phase parameterizations 5
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� Secondary ice nucleation mechanisms such as rime-splintering ice production and

mechanical fracturing of ice.
� Vapor deposition and sublimation of ice particles.
� Riming and density changes of ice particles.
� Aggregation of ice crystals to form snow aggregates.
� Graupel initiation by freezing of drizzle and subsequent heavy riming.
� Graupel initiation by heavy riming of ice crystals.
� Freezing of raindrops, with smaller particles becoming graupel particle embryos

owing to riming, and larger particles possibly becoming hail embryos.
� Graupel and frozen drops becoming hail embryos by collecting rain or heavy

riming.
� Wet and dry growth of hail.
� Temperature prediction of ice-water particles.
� Density changes in graupel and hail.
� Shedding from hail during wet growth and melting.
� Soaking of hail and graupel particles during wet growth and melting.
� Melting of ice-water particles.
� Mixed-phase liquid- and ice-water particles.
� Differential sedimentation of the various sub-ice species and within a given

species.

Figure 1.1 shows the many possible physical processes hydrometeors can

undergo when they fall to the ground as different types of precipitation.

Continental and maritime nuclei represent different sizes of nuclei and differ-

ent number concentrations. Specifically, continental nuclei exist at smaller

sizes and larger numbers than maritime nuclei, in general.

1.5 Hydrometeor characteristics overview

1.5.1 Hail

List (1986) describes a weak association between hail size and shape. That is,

hail 5 to 10 mm in diameter generally is spherical or conical, although disk

shapes can be observed; hail with 10 < D < 20 mm is ellipsoidal or conical;

hail with 10 < D < 50 mm is ellipsoidal, with lobes and other protuberances

along the short axis; and hail with 40 < D < 100 mm is spherical with small

and large lobes and other protuberances. However, List (1986) found no

relation when comparing protuberance size and number with hail size, the

only exception being that larger hail tends to be more irregular in shape.

Another observation is that most hailstones are oblate (Barge and Isaac

1973). For example, 83% have axis ratios (axis ratio is a/b, where a is the

minor axis and b is the major axis) between 0.6 and 1.0, 15% have axis

1.5 Hydrometeor characteristics overview 7



ratios between 0.4 and 0.6, and less than 2% have axis ratios less than 0.4.

Furthermore, the majority of hailstones observed at the ground have axis

ratios of 0.8 (Knight 1986; Matson and Huggins 1980). Wet hail typically

has an axis ratio of about 0.8, and spongy hail has an axis ratio of 0.6 to 0.8

(Knight 1986).

There is evidence that hailstones fall with their maximum dimensions in

both the horizontal (Knight and Knight 1970; List et al. 1973; Matson and

Huggins 1980) and the vertical (Knight and Knight 1970; Kry and List 1974;

List 1986). List (1986) suggested that ellipsoidal hailstones 10 to 50 mm in

diameter typically fall most stably when oriented in the vertical. Hailstones

also can exhibit gyrating motions (List et al. 1973; Kry and List 1974; List

1986) and tumbling motions (List et al. 1973; Knight and Knight 1970;

Matson and Huggins 1980). The structure of hail can vary from porous to

solid to spongy. The outer shell can be dry or wet, which is in part related to

the rate at which the hail spins and environmental conditions. Hail density

typically varies from about 400 to 900 kg m 3 for a hail diameter smaller than

10 mm and from 700 to 900 kg m 3 for hail that has larger diameter.

Haildistributionscanberepresentedwith someformofnegative-exponential

(Marshall Palmer) or gamma distribution (Ulbrich and Atlas 1982; Ziegler

et al. 1983). Ziegler et al. (1983) show particularly good matches of hail

number to size for the gamma size distribution, but not for the Marshall

Palmer size distribution for two different datasets (collections A and B) of

observations from a hail collection in Oklahoma (Figs. 1.2, 1.3). In contrast,

Cheng and English (1983) show very good matches to negative-exponential

distributions (Marshall Palmer) for two datasets (July 27, 1980 and July 28,

1980) from Canada (Fig. 1.4). It should be noted that Cheng et al. (1985)

also found an association between observed hail distributions and inverse

exponential fits. Both of these studies were conducted in continental

regimes, so generalities concerning the accuracy of size-distribution functions

should be made with caution. Finally, total hail number concentrations

range from 10 2 to 101 m 3 or greater for hail diameters of 5 to 25 mm and

from 10 6 to 10 2 m 3 for hail diameters larger than 25 to 80 mm (Auer 1972;

Pruppacher and Klett 1981).

Hail usually falls very quickly compared to other hydrometeors with

updraft speed dictating to some degree the maximum hail size. In addition,

in order for hail particles to make it to the ground as hailstones, they must be

larger than about 1 cm at the melting level (Rasmussen and Heymsfield

1987b). Larger hailstones of 3 to 4 cm require so much heat to melt that they

may change only moderately in diameter (<10 to 20%) from their size at the

melting level on the way to the ground.

8 Introduction



1.5.2 Graupel

Graupel diameters range from 0.5 < D < 5 mm, and very low-density graupel

are sometimes of larger size. The density of graupel can range from 100 to

900 kg m 3, and size distributions generally can be represented by negative-

exponential and gamma distributions. Moreover, number concentrations

are on the order of 1 to 10 m 3 or higher (Auer 1972; Pruppacher and Klett

1981). The shapes of graupel can be spherical, conical, or can be highly irregu-

lar, with axis ratios both larger and smaller than unity (Bringi et al. 1984;

Aydin and Seliga 1984). In a modeling study by Bringi et al. (1984), graupel

less than 1 mm are assumed to be spherical, graupel with 1 < D < 4 mm are

conical with axis ratio, a/b ¼ 0.5, and graupel with 4 < D< 9 mm are conical

with a/b¼ 0.75. Both smaller and larger particles might be spherical or irregu-

lar in shape (e.g. lump graupel: highly irregular-shaped rimed crystals and

aggregates) based on in situ observations.

Low-density graupel sometimes is conical in shape, which might be

explained by low-density riming of planar, ice-crystal edges (Fig. 1.5; Knight

and Knight 1973). Figure 1.5 shows a planar ice crystal (denoted by a
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Fig. 1.2. The curve of the observed (solid) hail concentration spectra, with
superimposed gamma (long dash) and Marshall–Palmer (short dash) curves
fits to collection A. (From Ziegler et al. 1983; courtesy of the American
Meteorological Society.)
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horizontal line) that is riming on its edges. The schematic at the bottom of

Fig. 1.5 shows the resulting conical shapes of the embryonic graupel. In

general though, graupel tend to be relatively smooth in comparison with

some hailstones. The fall orientation of graupel is not known with any

certainty; some hypothesize that the larger of these hydrometeors probably

tumble, though conical graupel may have a preferential fall orientation

(List and Schemenaur 1971; Pruppacher and Klett 1981). Some graupel

may fall with their largest axis in the horizontal, whereas others may fall with

their largest axis in the vertical.

Graupel and small frozen drops generally melt completely as they fall to

the ground (except in mountainous regions, particularly in summer), though

they do not shed any water as they melt and become water drops (Mason

1956 ; Drake and Mason 1966; and Rasmussen and Pruppacher 1982).

A review of the characteristics of graupel particles in Northeastern Colorado

cumulus congestis clouds is given by Heymsfield (1978).
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Fig. 1.3. The curve of the observed (solid) hail concentration spectra, with
superimposed gamma (long dash) and Marshall–Palmer (short dash) curves
fits to collection B. (From Ziegler et al. 1983; courtesy of the American
Meteorological Society.)
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1.5.3 Ice crystals and snow aggregates

The density of ice crystals and aggregates varies from 50 to 900 kgm 3

depending on habit, size, and riming, with higher-density values expected

for solid ice structures such as plates and wetted particles. Aggregates are

usually two to five millimeters in diameter, whilst ice crystals are typically

50 to 2000 microns in diameter. Fallspeeds asymptote to about 1 m s 1 for

aggregates and fallspeed seems to only have a weak dependence on size once

snow aggregates become larger than a couple of millimeters. The size distri-

butions of snow crystals and snow aggregates are well represented by the

negative-exponential distribution (Gunn and Marshall 1958; Fig. 1.6), except

for sizes smaller than about 1 mm in diameter, with total number concen-

trations on the order of 1 to 104 m 3 for aggregates, and 10 to 109 m 3 at the

extreme for individual crystals at colder temperatures. However, it should be

noted that snow- and ice-crystal concentrations as large as 107 m 3 have been
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Fig. 1.4. Examples of measured hailstone size spectra and approximated
exponential distributions obtained by least-square regression (solid line) and
the method suggested by Federer and Waldvogel (dashed line) for (a) 27
July, (b) 26 July (from Cheng and English 1983; courtesy of the American
Meteorological Society).
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found on a regular basis at temperatures of 4 to 25 �C (Hobbs 1974), with

no temperature dependence. In recent years, gamma distributions have been

used for parameterization of snow particles (e.g. Schoenberg-Ferrier 1994).

Values of number concentrations of crystals are often as large as 104 m 3 at

temperatures warmer than 0 to 10 �C (Pruppacher and Klett 1981; 1997).

The diameters of large aggregates can be D � 20 to 50 mm, whereas the

diameter of large crystals typically can be D � 1 to 5 mm. The shapes of

aggregates are nearly spherical to extremely oblate, and the approximate

shapes of crystals can vary from extreme prolates and oblates to spheroids

(Pruppacher and Klett 1981). Typically, thin plates are found at temperatures

of 0 to 4 �C (Fig. 1.7b), needles and hollow columns from 4 to 9 �C
(Fig. 1.7a), sectors from 5 to 10 �C and 16 to 22 �C, while dendrites

(Fig. 1.7c) are found at greater than water saturation at temperatures

of 12 to 16 �C (Cotton 1972b); finally an assortment of columns, side planes,

and other shapes are found from temperatures of 22 to 70 �C. General

aspects of ice aggregation are discussed in Hosler and Hallgren (1961), and in

Kajikawa and Heymsfield (1989) for cirrus clouds. Figure 1.8 (Fletcher 1962)

Fig. 1.5. Diagram showing the suggested mode of origin of conical graupel.
(From Knight and Knight 1973; courtesy of the American Meteorological
Society.)
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shows the conditions under which many forms of ice crystal exist. In recent

years, Bailey and Hallet (2004) showed unique ice-crystal forms at temper-

atures colder than 20 �C. Most individual crystals fall with their largest

dimension horizontally oriented unless there are pronounced electric fields,

which can orient small crystals vertically. Aggregates can fall in a horizontal

orientation ormay tumble. Both above and below themelting layer, aggregates

rarely break up (Otake 1970).
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Fig. 1.6. The size distribution of snowflakes in terms of drops produced by
melting the snowflakes. (From Gunn and Marshall 1958; courtesy of the
American Meteorological Society.)

(a) (b) (c)

Fig. 1.7. Schematic representation of the main shapes of ice crystals:
(a) columns, (b) plates, and (c) dendrites. (From Rogers and Yau 1989;
courtesy of Elsevier.)
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1.5.4 Cloud droplets, drizzle, and raindrops

Precipitating liquid particles include cloud droplets, drizzle and raindrops.

Cloud droplets and drizzle are highly spherical, when cloud droplets are

less than 81 mm in diameter and when drizzle has D < 400 mm. Larger sized

particles are raindrops. A characteristic that sets raindrops apart from other

liquid precipitating particles is the dependence of the raindrop axis ratio on

diameter. Some models now consider both small and large cloud droplet

modes (Saleeby and Cotton 2005).

Axis ratios commonly are related to drop sizes through equivalent dia-

meter De (this is the diameter achieved by assuming the particle is a sphere)

(Pruppacher and Klett 1981); several relations exist, including Beard (1976)

where a/b ¼ 1.03 0.062De; De is in mm (Pruppacher and Beard 1970;

Pruppacher and Pitter 1971). Studies by Jones (1959), Jameson and Beard

(1982), and Goddard et al. (1982) show that, in heavier rain events, a large

range in axis ratios might be expected with even prolates possible (though the

latter are likely transient shape oscillations). An average of typical rain axis

ratios are given by Andsager et al. (1999) as shown in Fig. 1.9 (note that axis

ratio is given as a in the figure). Recent estimates show that fluctuations in
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axis ratios are greater than the older empirical data suggest (Fig. 1.9). In

particular, particles are likely to be less oblate, especially for larger diameters,

however this may be due to drop shape oscillations.

Nearly two decades after the empirical data in Fig. 1.9 were obtained,

raindrop axis ratio and its functional form, as well as the importance of drop
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Fig. 1.9. Raindrop axis ratios as a function of diameter. Shown aremean axis
ratios (symbols) and standard deviations (vertical lines) from aircraft obser-
vations by Chandrasekar et al. (diamonds), the laboratory measurements of
Beard et al. (1991; triangles), Kubesh and Beard (1993; squares), and present
experiments (circles). Curves are shown for the numerical equilibrium axis
ratio (aN) from Beard and Chuang (1987), the radar-disdrometer-derived axis
ratios of Goddard and Cherry (1984), the empirical formula (aW) from the
wind tunnel data of Pruppacher and Beard (1970), and the present fit to axis
ratio measurements (aA). The shaded region covers the range from previous
estimates of the equilibrium axis ratio. (From Andsager et al. 1999; courtesy
of the American Meteorological Society.)
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oscillations, came under renewed scrutiny in the 1990s (e.g. Feng and Beard

1991; Beard et al. 1991; Tokay and Beard 1996; Bringi et al. 1998; and

Andsager et al. 1999). Nevertheless, for diameters greater than 1 mm, drops

become increasingly oblate with size. Raindrops generally fall with their

minor axis oriented in the vertical, though a rare few drops might be tempor-

arily elongated vertically, possibly because of oscillations, collisions, or both.

Raindrop size distributions can be approximated by negative-exponential

(Marshall and Palmer 1948; Fig. 1.10 and Fig. 1.11 show two datasets) or

gamma distributions (Ulbrich 1983) for mean droplet spectra, but extreme

local variations from these are observed (e.g. Rauber et al. 1991; Young 1993;

Sauvageot and Lacaux 1995; and Joss and Zawadski 1997). Even though the

negative-exponential distribution functions fit observed raindrop distribu-

tions well, there is indication that gamma distributions may provide a better

fit, especially for raindrops of sizes less than 1 mm in diameter (Fig. 1.10 and

Fig. 1.11). Schoenberg-Ferrier (1994) also noted this and suggested using

gamma distributions for parameterization of raindrop distributions. How-

ever, it should be stated that observations of raindrop distributions are highly

variable (Ulbrich 1983). In general, the largest raindrops have diameters of
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of diameter between D and D þ dD. (From Marshall and Palmer 1948;
courtesy of the American Meteorological Society.)
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3 to 5 mm. However, values as large as D ¼ 6 to 8 mm for a very few drops

have been documented in nature (e.g. Rauber et al. 1991). Total number

concentrations of raindrops in general are present in concentrations on the

orders of 103 to 105 m 3, but very large drops are usually present in much

lower concentrations. Finally, Gunn and Kinzer (1949) give the terminal

velocity of fall for water droplets in stagnant air, whilst Kinzer and Gunn

(1951) look at terminal velocity with more generality.

1.6 Summary

The book is organized starting with microphysical foundation material,

followed by nucleation, saturation adjustments, vapor diffusion growth,

collection growth, drop breakup, conversion, hail growth, melting, parame-

terization limitations, and various dynamical model designs. It is impossible

to include all of the work in the many thousands of papers in the literature,

though an effort has been made to include in the book some of the most

important developments through the past forty years of microphysical para-

meterization modeling. Not only are new parameterizations discussed, but

also some older ones (Kinzer and Gunn, 1951). Where appropriate the
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Fig. 1.11. Distribution function (solid straight lines) compared with results
of Laws and Parsons (1943; broken lines) and Ottawa observations (dotted
lines). (FromMarshall and Palmer 1948; courtesy of the American Meteoro-
logical Society.)
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chapters start with some basic theoretical considerations before discussion of

the different parameterizations. It should be noted that details of aerosols are

a vast and complex subject that is exceptionally well covered in Pruppacher

and Klett (1981, 1997) and that they will not be covered in this book, except

in developing equations for cloud condensation nuclei and ice nuclei as

needed for heterogeneous nucleation. Ice microdynamics is found in an

information-packed, easy flowing book by Pao K. Wang (2002), with all the

latest on detailed ice-crystal modeling. Aerosol scavenging and riming are

both covered exceedingly well in Pao K. Wang’s book as well as modeling

cirrus clouds.
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2

Foundations of microphysical
parameterizations

2.1 Introduction

In this chapter the foundations of bulk, bin, and hybrid bulk bin microphysical

parameterizations will be presented with more significant focus on the first.

Many aspects of these microphysical parameterizations require functional

relationships to describe attributes of populations of hydrometeors so that

specific equations for source and sink terms for different hydrometeor species

or habits can be integrated for mixing ratio and concentration. In addition

equations for the prognostication of reflectivity, mass weighted riming rate,

elapsed time of riming, and mass weighted rime density are presented or

derived. In addition a diagnostic equation for the shape parameter in the

gamma distribution is developed. Then number density functions and

moment generators are presented for bin microphysical parameterizations.

2.2 Background

This part of chapter two derives heavily from Flatau et al. (1989) in present-

ing some of the concepts of microphysical parameterization fundamentals.

First the probability density function will be defined and explained. It is

essential for parameterization work that the probability density function be

integratable. We start with f(D) as the probability of number of particles of a

certain size. It is preferred that the degrees of freedom of f(D) be restrained to

a small number of observable quantities. If not, it may be possible or likely

that certain parameterizations cannot be created. Finally it is necessary that

f(D) needs to be readily normalizable.

The spectral number density function n(D) is the concentration of particles

per unit size interval from D to DD. The total number concentration is usually

written as NT, and results from integrating the spectral density function over

a given size interval such as zero to infinity. But it can, in theory, be any
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interval of positive definite numbers. The slope intercept of a spectral number

density function is given as N0. The slope of the particle distribution is l, and
one over l is called the characteristic diameter Dn of the particle distribution.

A mathematical function that is used repeatedly in microphysical parame-

terizations is the gamma function and is the solution to the following integral:

� xð Þ ¼
ð1
0

tx 1 exp tð Þdt Re x > 0½ �: ð2:1Þ

This is the complete gamma function. There are also incomplete gamma

functions given by

g x; yð Þ ¼
ðx
0

t x 1 exp tð Þdt Re x > 0½ �; ð2:2Þ

and

� x; yð Þ ¼
ð1
x

t x 1 exp tð Þdt Re x > 0½ �: ð2:3Þ

In this work, x needs to be made non-dimensional, and since y is usually

diameter dependent, the scaling diameter is the characteristic diameter that

is used to normalize y. There are also several special cases of the gamma

distribution, such as what will be called the complete gamma distribution here,

� kð Þ
m xk

¼
ð1
0

t n exp xtmð Þdt; ð2:4Þ

where k is given by

k ¼ nþ 1

m
; ð2:5Þ

where n > 1, m > 0, and x > 0.

A number of general relationships need to be considered. These include:

nðDÞ ¼ NTf ðDÞ; ð2:6Þ
nðDÞdD ¼ NTf ðDÞdD; ð2:7Þ

and

f ðDÞ ¼ f ðxÞ dx
dD

; ð2:8Þ
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f ðDÞdD ¼ f ðxÞdx: ð2:9Þ
Now, the derivation of the characteristic diameter is presented. First define,

x ¼ D

Dn
¼ Dl; ð2:10Þ

where l ¼ 1/Dn is the slope of the distribution.

Next, use (2.8) and (2.10) to write

f Dð Þ ¼ d D=Dnð Þ
dD

f ðxÞ; ð2:11Þ

which becomes

f Dð Þ ¼ 1

Dn
f xð Þ: ð2:12Þ

This last relation will be very important later for some derivations with

different spectral density functions.

2.3 Power laws

For bulk microphysical parameterizations it is advantageous to use power

laws for mass, density, terminal velocity, and other necessary variables if

possible, as these are amenable to integration with the various forms of the

gamma function and log-normal spectral density functions. With bin micro-

physical parameterizations, it is not so important that power laws be used

because there are no spectral density functions used.

2.3.1 Mass–diameter (or length)

For many parameterizations (e.g. collection growth) a mass diameter rela-

tionship is needed. A power law relating these quantities is used and is given by

mðDÞ ¼ aDb: ð2:13Þ
Some examples of power laws for mass diameter relationships, in SI units,

from Pruppacher and Klett (1997) are:

Hexagonal plate (Pla) mðDÞ ¼ 156:74D3:31

Skeleton (C1h) mðDÞ ¼ 6:08D2:68

Sector (P1b) mðDÞ ¼ 2:898D2:83

Broad branch (P1c) mðDÞ ¼ 1:432D2:79

Stellar (P1d) mðDÞ ¼ 0:145D2:59
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Dendrite (Ple) mðDÞ ¼ 2:37� 10 2D2:29

Needle (N1a) mðDÞ ¼ 1:23� 10 3L1:8

Long column (N1e) mðDÞ ¼ 3:014� 10 3L1:8

Solid column (Cle) mðDÞ ¼ 4:038L2:6

Hollow column (C1f) mðDÞ ¼ 9:23� 10 3L1:8

where m(D) is mass of a particle of diameter D; aL is the constant leading

coefficient, which for a sphere is rx p/6, where rx is the density of the sphere;

and bL is the power, which is a constant, given as bL ¼ 3 for a sphere. The

variables in parentheses are the Magono and Lee (1966) classification identi-

fier. For columnar-like crystals, a power law for mass length is used in the

same fashion as that for a sphere,

mðLÞ ¼ aLL
bL : ð2:14Þ

2.3.2 Diameter–thickness (or length)

For most observed ice crystals diameter (D) thickness (H) or diameter

(D) length (L) relationships are specified, such as

HðDÞ ¼ aHD
bH or DðLÞ ¼ aLL

bL : ð2:15Þ
Some examples, following Pruppacher and Klett (1997), include, in cm,

Hexagonal plate (Pla) HðDÞ ¼ 1:41� 10 2D0:474

Broad branches (Plb) HðDÞ ¼ 1:05� 10 2D0:423

Dendrites plc-r, plc-s (Pld) HðDÞ ¼ 9:96� 10 3D0:415

Solid thick plate (Clg) HðDÞ ¼ 0:138D0:778

Solid columns (Cle) DðLÞ ¼ 0:578L0:958

Hollow columns (Clf) DðLÞ ¼ 0:422L0:892

Needle (Nle) DðLÞ ¼ 3:527� 10 2L0:437

2.3.3 Density–diameter (or length)

For most particles, densities are constant (such as for raindrops) or the density

can be written as a power law in terms of diameter. This is particularly true for

ice crystals, with values given in a later chapter. The relationship is simply,

rðDÞ ¼ eD f : ð2:16Þ
Some examples, following Heymsfield (1972) and Pruppacher and Klett (1997)

include, in CGS units,

Hexagonal plate rðDÞ ¼ 0:900

Dendrites rðDÞ ¼ 0:588D 0:377
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Stellar with broad branches rðDÞ ¼ 0:588D 0:377

Stellar with narrow branches rðDÞ ¼ 0:46D 0:482

Column rðDÞ ¼ 0:848D 0:014

Bullet rðDÞ ¼ 0:78D 0:0038

2.3.4 Terminal velocity–diameter (or length)

Terminal velocities are also generally given as power-law relationships,

VTxðDxÞ ¼ cxD
dx
x ; ð2:17Þ

where Dx is the diameter of some hydrometeor species of habit, x; VTx is the

terminal velocity; cx is the leading coefficient of the power law; and dx is the

power. Some examples of terminal-velocity diameter relationships include

the following, after Heymsfield and Kajikawa (1987), and Pruppacher and

Klett (1997), in cm s 1 unless noted,

Hexagonal plate (Pla) VTðDÞ ¼ 155:86D0:86

Crystal with broad branches (P1b) VTðDÞ ¼ 190D0:81

Dendrites (Plc-r, Plc-s, Pld) VTðDÞ ¼ 58D0:55

Sphere (in m s 1), such as graupel, and hail VTðDÞ ¼ 4
3

rg
cdro

� �0:5
D0:5

Rain (in m s 1) VTðDÞ ¼ 842D0:8

Snow aggregates (in m s 1) VTðDÞ ¼ 4:83607122D0:25

The terminal velocity used in the microphysical equations and sedimentation

rates equation can be based on the mass weighted mean value for mixing

ratio, Q; number weighted mean for NT; and reflectivity weighted mean for

reflectivity, Z. Following Milbrandt and Yau (2005a, b), if the reflectivity

overshoots the precipitation front of Q or NT because the flux of reflectivity is

larger than either that for Q or NT, then the Z is set to zero. The same is true if

NT overshoots Q; NT is set to zero.

2.4 Spectral density functions

2.4.1 Gamma distribution

One of the most common distribution functions used in microphysical para-

meterizations is what will be called herein the complete gamma distribution,

written as

f xð Þ ¼ m
s
xnm 1 exp axmð Þ; ð2:18Þ

where a, n, and m are shape parameters and s is a scaling parameter. Ultim-

ately it is desireable to obtain an equation for n(D) based on this equation.
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First, it will be important to consider the distribution for D over the interval

from zero to infinity, but other intervals could be considered too. These will

be discussed later.

The first concept that must be maintained is that the distribution can be

normalized, or that a scaling factor exists such that

ð1
0

f Dð ÞdD ¼ 1: ð2:19Þ

Recalling (2.10), (2.12), and (2.18), (2.19) can be written as

ð1
0

m
s

D

Dn

nm 1 1

Dn
exp a

D

Dn

� �m� �
dD ¼ 1; ð2:20Þ

which can be written in a readily integratable form as

ð1
0

m
s

D

Dn

� �nm 1

exp a
D

Dn

� �m� �
d

D

Dn

� �
¼ 1: ð2:21Þ

The scaling factor, s, for this case can be found by integrating (2.21),

m
s

�
mv 1þ 1

m

� �

ma
mv 1þ1

m

� � ¼ 1; ð2:22Þ

and solving for s,

s ¼ �ðvÞ
av

: ð2:23Þ

Thus, using the scaling factor s, then the function f(D) is written using (2.10),

(2.12) and (2.18) as

f Dð Þ ¼ anm
� vð Þ

D

Dn

� �nm 1
1

Dn
exp a

D

Dn

� �m� �
: ð2:24Þ

Next, incorporating the definition of n(D), (2.6), the following can be written

for the spectral density function for the “complete gamma” distribution

where n 6¼ 1, m 6¼ 1 and a 6¼ 1,

n Dð Þ ¼ NTavm
� vð Þ

D

Dn

� �nm 1
1

Dn
exp a

D

Dn

� �m� �
ð2:25Þ
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Notice now that there are five free parameters in the above. These include Dn,

NT, m, a, and n. These values must be estimated from observations or derived

from observations. Often, it is not known what they should be and educated

guesses have to be made. Fortunately, NT can be observed, diagnosed or

predicted, Dn can be diagnosed or predicted, and n can be diagnosed by

predicting reflectivity Z, as is shown later.

Similarly, the “modified gamma” distribution, where n 6¼ 1, m 6¼ 1 and a= 1

in (2.25), may be expressed as

nðDÞ ¼ NTm
�ðnÞ

D

Dn

� �nm 1
1

Dn
exp

D

Dn

� �m� �
: ð2:26Þ

The “gamma” distribution function can be greatly simplified and made more

useable by assuming n 6¼ 1, m ¼ 1 and a ¼ 1 in (2.25), which results in the

gamma function

nðDÞ ¼ NT

�ðnÞ
D

Dn

� �n 1
1

Dn
exp

D

Dn

� �� �
: ð2:27Þ

Many times this will be rewritten, especially in radar meteorology, in terms

of the slope intercept of the distribution, or a quantity related to it, denoted

as N0,

n Dð Þ ¼ N0D
v exp

D

Dn

� �� �
: ð2:28Þ

2.4.2 Exponential distribution

The complete gamma distribution with m ¼ v ¼ a ¼ 1 gives a special form

called the negative-exponential, inverse-exponential, or Marshall and Palmer

(1948) form of the gamma distribution,

nðDÞ ¼ NT

Dn
exp

D

Dn

� �� �
¼ N0 exp

D

Dn

� �� �
; ð2:29Þ

where,

NT ¼ N0Dn: ð2:30Þ
The distribution given by Laws and Parsons (1943) was made infamous by

Marshall and Palmer (1948) when they showed that rain distributions could

be well defined in the mean by this form of the gamma distribution and later

the same was shown to be true for some cases of snow aggregates.

Finally, Cheng and English (1983) found using observations that, in the

mean, even hail was well described by exponential distributions using the

2.4 Spectral density functions 25



following assumptions. First, the slope intercept in units of (m 3 mm 1) is

related to l in units of (mm 1), and the equations are written for the slope

intercept as a function of l,

N0 ¼ 115l3:63: ð2:31Þ
Therefore, the distribution (2.29) can be written using N0 and using l in place

of 1/Dn as

n Dð Þ ¼ N0 exp Dlð Þ: ð2:32Þ

2.4.3 Half-normal distribution

Next there is a special case of gamma distribution called the half-normal

distribution, where a ¼ 1, m ¼ 2, n ¼ 1/2,

n Dð Þ ¼ 2NT

Dn� 1=2ð Þ exp
D

Dn

� �2" #
¼ 2NT

Dnp
exp

D

Dn

� �2" #
: ð2:33Þ

This function is integrated over the interval D(0, 1), thus, half-normal.

Equation (2.33) is required in the derivations using the log-normal

distributions.

2.4.4 Normal distribution

When the gamma probability distribution function is integrated on the inter-

val D 2 ð 1;1Þ; one can show that

n Dð Þ ¼ NT

Dn 2p
p exp

1

2

D

Dn

� �2" #
; ð2:34Þ

which is a normal distribution. This function is not obviously useable owing

to the limits of integration used to derive it. With some algebra, however, it

can be remapped in the interval of D(0, 1).

2.4.5 Log-normal distribution

With the log-normal distribution, the natural log of the diameter is normally

distributed. This distribution has been used by a few investigators including

Clark (1976) and Nickerson et al. (1986). To derive the log-normal distribu-

tion start with fnor(x) for a normal distribution,

fnorðxÞ ¼ 1

2p
p exp

x2

2

� �
: ð2:35Þ
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Now let the following transformation hold that maps x 2 ð 1;1Þ into

D 2 1;1Þð ;

x ¼ 1

s
ln

D

Dn

� �
; x 2 ð 1;1Þ ð2:36Þ

where s is a parameter, x is a function of diameter D, and Dn is a scaling

diameter. Substitution of (2.36) into (2.35), results in

fnorðxÞ ¼ 1

2p
p exp

½lnðD=DnÞ�2
2s2

 !
: ð2:37Þ

The following can be written according to continuous distribution theory,

which is consistent with (2.8),

f logðDÞ ¼ fnorðxÞ dx
dD

: ð2:38Þ

Taking the derivative of (2.36) with respect to D and multiplying the result by

(2.37) results in the log-normal distribution function,

flogðDÞ ¼ 1

2p
p

sD
exp

½lnðD=DnÞ�2
2s2

 !
: ð2:39Þ

Substitution of (2.39) into (2.6) gives the particle distribution spectrum,

nðDÞ ¼ NT

2p
p

sD
exp

½lnðD=DnÞ�2
2s2

 !
; D 2 0;1Þð : ð2:40Þ

2.5 Gamma distributions

In the rest of this section a detailed examination of the complete gamma

distribution (2.25) with n 6¼ 1, m 6¼ 1 and a 6¼ 1, the modified gamma

distribution (2.26) with n 6¼ 1, m 6¼ 1 and a ¼ 1, and the gamma distribution

(2.27) with n 6¼ 1, m ¼ 1 and a ¼ 1 is given. The Marshall Palmer distribution

form can be obtained readily by setting n ¼ 1 in (2.27) and thus is not shown.

In the next section, the log-normal distribution will be examined.

2.5.1 Moments

The moments M can be found with the following relationship where I is the

degree of the moment and subscript x is the hydrometeor species. The

moments for the complete gamma distribution (2.25) where, nx 6¼ 1, mx 6¼ 1

and ax 6¼ 1, are given by
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M Ixð Þ ¼
ð1
0

DIx
anxx mx
�ðnxÞ

D

Dnx

� �nxmx 1

exp ax
Dx

Dnx

� �mx� �
d

Dx

Dnx

� �

¼
anxx �

nxmx þ Ix
mx

� �

a
nxmx þ Ix

mx

� �
x � nxð Þ

DIx
n :

ð2:41Þ

For the modified gamma distribution (2.26), where nx 6¼ 1, mx 6¼ 1 and ax ¼ 1,

the moments are

M Ixð Þ ¼
ð1
0

DIx
1

�ðnxÞ
D

Dnx

� �nxmx 1

exp � Dx

Dnx

� �� �
d

Dx

Dnx

� �
¼

�
nxmx þ Ix

mx

� �
� nxð Þ DIx

nx: ð2:42Þ

For the gamma function (2.27), nx 6¼ 1, mx ¼ 1 and ax ¼ 1, the moments are

M Ixð Þ ¼
ð1
0

DIx
1

�ðnxÞ
D

Dnx

� �nx 1

exp
Dx

Dnx

� �� �
d

Dx

Dnx

� �
¼ � nx þ Ixð Þ

� nxð Þ DIx
nx: ð2:43Þ

For the negative exponential distribution

M Ixð Þ ¼
ð1
0

DIx exp
Dx

Dnx

� �� �
d

Dx

Dnx

� �
¼ � 1þ Ixð ÞDIx

nx: ð2:44Þ

2.5.2 The zeroth moment is number concentration

The zeroth moment (I ¼ 0) is simply the number concentration, but is derived

here,

NTx ¼
ð1
0

n Dxð ÞdDx: ð2:45Þ

Using the complete gamma distribution (2.25) to substitute into (2.45) gives

NTx ¼
ð1
0

NTxanxmx
�ðnxÞ

Dx

Dnx

� �vxmx 1

exp ax
Dx

Dnx

� �mx� �
d

Dx

Dnx

� �
: ð2:46Þ
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Upon integration using (2.4) (2.5) the following is obtained,

NTx ¼
NTxanxmx�

nxmx
mx

� �

�ðnxÞmxa
nxmx
mx

� � ¼ NTx: ð2:47Þ

For the modified gamma function, it can be written,

NTx ¼
NTxmx�

nxmx
mx

� �
�ðnxÞmx

¼ NTx; ð2:48Þ

and for the gamma distribution,

NTx ¼ NTx� nxð Þ
�ðnxÞ ¼ NTx: ð2:49Þ

Finally for the negative-exponential distribution,

NTx ¼ NTx�ð1Þ
�ð1Þ ¼ NTx: ð2:50Þ

Often the zeroth moment is predicted in modern cloud models. In many cloud

models (e.g. Liu and Orville 1969; Lin et al. 1983; Rutledge and Hobbs 1983,

1984; Straka and Mansell 2005), the zeroth moment is diagnosed from Dn and

N0 with Marshall Palmer distributions assumed.

2.5.3 Number-concentration-weighted mean diameter

The number-concentration-weighted mean diameter is a simple measure of

diameter. Assuming a spherical hydrometeor, it is found for the complete

gamma distribution (2.25), where,

DNT
x ¼

Ð1
0

DxnðDxÞdDx

Ð1
0

nðDxÞdDx

: ð2:51Þ

Substitution of (2.25) into (2.51) results in

DNTx
x ¼

Dnx

Ð1
0

Dx

Dnx

� �NTx
avx

x
mx

� vxð Þmx
Dx

Dnx

� �nxmx 1

exp ax D
Dn

h imx� �
d Dx

Dnx

� �
Ð1
0

NTx
avx
x
mx

�ðvxÞmx
Dx

Dnx

� �nxmx 1

exp ax D
Dn

h imx� �
d Dx

Dnx

� � : ð2:52Þ
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Simplifying using (2.4) (2.5) gives

DNTx
x ¼ Dnx

avx
x
�

vxmx þ 1
mx

� �
a

vxmx þ 1
mx

� �
x � vxð Þ

: ð2:53Þ

For the modified gamma distribution (2.26), this can be written as

DNTx
x ¼ Dnx

�
vxmx þ 1

mx

� �
� vxð Þ ; ð2:54Þ

for the gamma distribution (2.27),

DNTx
x ¼ Dnx

� vx þ 1ð Þ
�ðvxÞ ; ð2:55Þ

and lastly for the negative exponential distribution,

DNTx
x ¼ Dnx

� 2ð Þ
�ð1Þ ¼ Dnx: ð2:56Þ

Next, there is a need to find a relation to diagnose Dn. As will be shown

later, Dn can be predicted from the first and second moment in terms of mass.

The method to diagnose Dn is derived later.

2.5.4 Mass-weighted mean diameter

The mass-weighted mean diameter for the complete gamma distribution is

found as follows,

Dm
x ¼

Ð1
0

DxmðDxÞnðDxÞdD
Ð1
0

mðDxÞnðDxÞdD
: ð2:57Þ

Substitution of (2.25) into (2.57) results in

Dm
x ¼

Ð1
0

DxaxD
bx
x

NTxa
nx
x mx

�ðvÞ
Dx

Dnx

� �vxmx 1

exp ax Dx

Dnx

h imx� �
d Dx

Dnx

� �
Ð1
0

axD
bx
x

NTxa
nx
x mx

�ðvÞ
Dx

Dnx

� �vxmx 1

exp ax Dx

Dnx

h imx� �
d Dx

Dnx

� � ; ð2:58Þ

or after dividing by Dnx,

Dm
x ¼

Dbxþ1
nx

Ð1
0

ax
Dx

Dnx

� �bxþ1
NTxa

nx
x mx

�ðvÞ
Dx

Dnx

� �vxmx 1

exp ax Dx

Dnx

h imx� �
d Dx

Dnx

� �

Dbx
nx

Ð1
0

ax
Dx

Dnx

� �bx
NTxa

nx
x mx

�ðvÞ
Dx

Dnx

� �vxmx 1

exp ax Dx

Dnx

h imx� �
d Dx

Dnx

� � : ð2:59Þ
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Applying (2.4) (2.5) results in

Dm
x ¼ Dbx

nx

�
bxþvxmxþ1

mx

� �
ax

bxþvxmxþ1
mxð Þ

2
4

3
5

�
bxþvxmx

mx

� �
ax

bxþvxmx
mxð Þ

2
4

3
5

: ð2:60Þ

For the modified gamma distribution,

Dm
x ¼ Dbx

nx

� bxþvxmxþ1
mx

� �
� bxþvxmx

mx

� � ; ð2:61Þ

for the gamma distribution, the mass-weighted mean is

Dm
x ¼ Dbx

nx

� bx þ vx þ 1ð Þ
� bx þ vxð Þ ; ð2:62Þ

and for the negative exponential distribution,

Dm
x ¼ Dbx

nx

� bx þ 2ð Þ
� bx þ 1ð Þ : ð2:63Þ

2.5.5 Mean-volume diameter

The mean-volume diameter can be shown to be equal to the following for any

distribution,

DMVx ¼ 6rQx

prxNTx

� �1=3
; ð2:64Þ

where r is the density of air, Qx is the mixing ratio of the hydrometeor species,

rx is the density of the hydrometeor species, and NTx is the number concen-

tration of the hydrometeor species.

2.5.6 Effective diameter

The effective diameter is the ratio of the integral of D3n(D) to the integral

of D2n(D), and is primarily used in radiation physics parameterizations and

related calculations and can be expressed as
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Deff ¼

Ð1
0

D3
x
NTxa

nx
x mx

�ðvÞ
Dx

Dnx

� �vxmx 1

exp ax Dx

Dnx

h imx� �
d Dx

Dnx

� �
Ð1
0

D2
x
NTxa

nx
x mx

�ðvÞ
Dx

Dnx

� �vxmx 1

exp ax Dx

Dnx

h imx� �
d Dx

Dnx

� � : ð2:65Þ

After dividing and multiplying through by the appropriate powers of Dnx,

Deff ¼
D3

nx

Ð1
0

Dx

Dnx

� �3
NTxa

nx
x mx

�ðvÞ
Dx

Dnx

� �vxmx 1

exp ax Dx

Dnx

h imx� �
d Dx

Dnx

� �

D2
nx

Ð1
0

Dx

Dnx

� �2
NTxa

nx
x mx

�ðvÞ
Dx

Dnx

� �vxmx 1

exp ax Dx

Dnx

h imx� �
d Dx

Dnx

� � ; ð2:66Þ

which can be integrated and written for the complete gamma distribution to

obtain

Deff ¼ Dnx

�
3þvxmx

mx

� �
a

3þvxmx
mxð Þ

x

2
4

3
5

�
2þvxmx

mx

� �
a

2þvxmx
mxð Þ

x

2
4

3
5
: ð2:67Þ

Now for the modified gamma distribution the effective diameter is

Deff ¼ Dnx

� 3þvxmx
mx

� �
� 2þvxmx

mx

� � ; ð2:68Þ

and for the gamma distribution the effective diameter is

Deff ¼ Dnx

� 3þ vxð Þ
� 2þ vxð Þ : ð2:69Þ

Lastly for the negative-exponential distribution,

Deff ¼ Dnx

� 4ð Þ
� 3ð Þ ¼ Dnx

3!

2!
¼ 3Dnx: ð2:70Þ

2.5.7 Modal diameter

The modal diameter is the diameter for which the distribution has a max-

imum. The modal diameter is found by differentiating f(D), setting the result

equal to zero, and solving for the diameter, which will be the modal diameter.
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The derivative of the complete gamma distribution [(2.25) with nx 6¼ 1, mx 6¼ 1

and ax 6¼ 1] with respect to Dx, is used to begin the derivation of the modal

diameter,

f Dxð Þ ¼ avxx mx
� vxð Þ

Dx

Dnx

� �nxmx 1
1

Dnx
exp ax

Dx

Dnx

� �mx� �
: ð2:71Þ

The derivative is taken with respect to Dx and set equal to zero,

d

dDx
Dnxmx 1

x exp ax
Dx

Dnx

� �mx� �	 

¼ 0: ð2:72Þ

The derivative is expanded:

Dnxmx 1
x exp ax

Dx

Dnx

� �mx� �
axmxD

mx
nx Dmx 1

x

� �
þ nxmx 1ð ÞDnxmx 2

x exp ax
Dx

Dnx

� �mx� �
¼ 0:

ð2:73Þ

To solve for Dx,

Dmod ¼ Dx ¼ Dnx

nxmx 1

axmx

� � mx
: ð2:74Þ

Next the modified gamma distribution [(2.26) with nx 6¼ 1, mx 6¼ 1, ax ¼ 1], can

be used to obtain

Dmod ¼ Dx ¼ Dnx

nxmx 1

mx

� � mx
; ð2:75Þ

and for the gamma distribution [(2.27) with ax ¼ mx ¼ 1], the mode is simply

Dmod ¼ Dx ¼ Dnx vx 1ð Þ: ð2:76Þ
For the negative-exponential distribution,

Dmod ¼ 0: ð2:77Þ

2.5.8 Median diameter

The median diameter is that diameter for which the distribution has half of the

mass at smaller sizes and half the mass at larger sizes. The solution has to be

solved numerically and is a function of the mass,m. The mass can be found from,

mT ¼
ð1
0

m Dxð ÞnðDxÞdDx ð2:78Þ

2.5 Gamma distributions 33



If we start with total mass for a spherical hydrometeor (2.13), the complete

gamma distribution (2.25) and divide through by Dnx, (2.78) becomes

mT ¼ ax
Dbx

nxNTxavxx mx
� vxð Þ

ð1
0

Dx

Dnx

� �nxmx 1 Dx

Dnx

� �bx
exp ax

Dx

Dnx

� �mx� �
d

Dx

Dnx

� �
; ð2:79Þ

which upon integration gives,

mT ¼ axD
bxþ1
nx NTxavxx mx
� vxð Þ

� bxþnxmx
mx

� �
mxa

bxþnxmx
mx

� �
x

2
4

3
5; ð2:80Þ

and for the modified gamma distribution,

mT ¼ axD
bxþ1
nx NTx

� vxð Þ �
bx þ nxmx

mx

� �
: ð2:81Þ

For the gamma distribution, the form is

mT ¼ axD
bxþ1
nx NTx

� bx þ nxð Þ
� vxð Þ ; ð2:82Þ

and for the negative-exponential distribution

mT ¼ axD
bxþ1
nx NT;x� bx þ 1ð Þ: ð2:83Þ

For simplicity, the gamma distribution will be used to find the median diam-

eter,D0. It is found from integrating the equation form (2.79; where ax¼ mx¼ 1)

divided by 2 and with new limits of integration; this is

mT

2
¼
ðD0

0

axD
bx
nxNTx

2� vxð Þ
Dx

Dnx

� �bx þ nx 1

exp
Dx

Dnx

� �� �
d

Dx

Dnx

� �
: ð2:84Þ

Solving this integral numerically gives the median diameter as

D0 ¼ 3:672Dnxðvx 1Þ: ð2:85Þ

2.5.9 The second moment is related to total surface area

The second moment, which is related to total surface area AT of hydrometeors

is often used in models with cloud and precipitation electrification parame-

terizations (e.g. Mansell et al. 2002, 2005). It is found by using the definition

of surface area for a spherical hydrometeor and assuming the complete

gamma distribution,
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AT ¼
ð1
0

pD2
x

NTxanxx mx
�ðvÞ

Dx

Dnx

� �nxmx 1

exp ax
Dx

Dnx

� �mx� �
d

Dx

Dnx

� �
: ð2:86Þ

Dividing by Dnx gives

AT ¼ pD2
nx

NTxanxx mx
�ðvÞ

ð1
0

Dx

Dnx

� �2 Dx

Dnx

� �nxmx 1

exp ax
Dx

Dnx

� �mx� �
d

Dx

Dnx

� �
: ð2:87Þ

Making use of (2.4) (2.5) gives

AT ¼ pavxx D
2
nxNTx

mx
mx

�
vxmx þ 2

mx

� �

� vxð Þa
vxmxþ2

mx

� �
x

¼ pD2
nxNTx

avxx �
vxmx þ 2

mx

� �

a
vxmxþ2

mx

� �
x � vxð Þ

: ð2:88Þ

For the modified gamma distribution the total surface area is simply

AT ¼ pD2
nxNTx

�
vxmx þ 2

mx

� �
� vxð Þ ; ð2:89Þ

whilst that for the gamma distribution is just

AT ¼ pD2
nxNTx

� vx þ 2ð Þ
� vxð Þ ; ð2:90Þ

and for the negative-exponential distribution

AT ¼ pD2
nxNTx� 3ð Þ ¼ pD2

nxNTx2! ¼ 2pD2
nxNTx: ð2:91Þ

2.5.10 Total downward projected area

The total downward projected area Ap is defined as follows for a sphere or

circular disk and assuming the complete gamma distribution

Ap ¼
ð1
0

p
4
D2

x

NTxanxx mx
�ðvxÞ

Dx

Dnx

� �nxmx 1

exp ax
D

Dn

� �mx� �
d

Dx

Dnx

� �
: ð2:92Þ

Dividing by Dnx gives

Ap ¼ D2
nx

ð1
0

p
4

Dx

Dnx

� �2 NTxanxx mx
�ðvxÞmx

Dx

Dnx

� �vxmx 1

exp ax
Dx

Dnx

� �mx� �
d

Dx

Dnx

� �
; ð2:93Þ
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Making use of (2.4) (2.5) gives

Ap ¼ p
4
NTxD

2
nx

avxx �
vxmx þ 2

mx

� �
a

vxmxþ2
mx

� �
� vxð Þ

: ð2:94Þ

The modified gamma distribution projected area is

Ap ¼ p
4
NTxD

2
nx

� vxmx þ 2
mx

� �
� vxð Þ ; ð2:95Þ

and for the gamma distribution the equation is

Ap ¼ p
4
NTxD

2
nx

� vx þ 2ð Þ
� vxð Þ ; ð2:96Þ

and the negative-exponential distribution is

Ap ¼ p
4
NTxD

2
nx� 3ð Þ ¼ p

2
NTxD

2
nx: ð2:97Þ

2.5.11 The third moment, mixing ratio and characteristic diameter

The mixing ratio Qx of a hydrometeor species is related to mass, which is

related to volume, and is written in terms of the third moment. For a spherical

hydrometeor and the complete gamma distribution,

Qx ¼ 1

r

ð1
0

axD
bx
x

NTxanxx mx
�ðnxÞ

Dx

Dnx

� �nxmx 1

exp ax
Dx

Dnx

� �mx� �
d

Dx

Dnx

� �
: ð2:98Þ

Dividing by Dnx produces

Qx ¼ ax
NTxanxx mx
�ðnxÞ

Dbx
nx

r

ð1
0

Dx

Dnx

� �bx Dx

Dnx

� �nxmx 1

exp ax
Dx

Dnx

� �mx� �
d

Dx

Dnx

� �
: ð2:99Þ

Making use of (2.4) (2.5) results in

Qx ¼ ax
NTxanxx
� nxð Þ

mx
mx

Dbx
nx

r

� nxmxþbx
mx

� �
a

nxmxþbx
mx

� � ¼ ax
NTxanx
� nxð Þ

Dbx
nx

r

� nxmxþbx
mx

� �
a

nxmxþbx
mx

� � : ð2:100Þ

The mixing ratio for the modified gamma distribution is

Qx ¼ axNTx
Dbx

nx

r

�
nxmx þ bx

mx

� �
� nxð Þ ; ð2:101Þ
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for the gamma distribution, the mixing ratio is

Qx ¼ axNTx
Dbx

nx

r
� nx þ bxð Þ

� nxð Þ ; ð2:102Þ

and for the negative-exponential distribution,

Qx ¼ axNTx
Dbx

nx

r
� 1þ bxð Þ: ð2:103Þ

Notice that there is a characteristic diameter Dnx to the bx power in the

equations, which for a spherical hydrometeor is equal to three. Thus, in this

way, the mixing ratio is related to the third moment.

Mixing ratios of hydrometeor species are some of the variables that are

almost always predicted in cloud models. From the mixing ratio, the first

moment variable Dnx can be diagnosed with some algebra, for the complete

gamma distribution,

Dnx ¼
Qx� nxð Þ
anxNTx

r
ax

a
nxmxþbx

mx

� �
� nxmxþbx

mx

� �
0
@

1
A
1=bx

: ð2:104Þ

The equation for Dnx for the modified gamma distribution is

Dnx ¼
Qx� nxð Þ
NTx

r
ax

1

� nxmxþbx
mx

� �
0
@

1
A
1=bx

; ð2:105Þ

and for the gamma distribution,

Dnx ¼
Qx� nxð Þ
NTx

r
ax

1

� nx þ bxð Þ
� �1=bx

: ð2:106Þ

Lastly, for the negative-exponential distribution, the characteristic diameter is

Dnx ¼
Qx

NTx

r
ax

1

� 1þ bxð Þ
� �1=bx

: ð2:107Þ

The value l = 1/Dnx is the slope of the distribution for the negative-

exponential distribution.

2.5.12 The sixth moment is related to the reflectivity

The sixth moment is related to radar reflectivity as radar reflectivity is related

to D6 for Rayleigh scatterers in which the diameter is, normally, less than 1/16
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of the radar wavelength, though a length 1/10 of the radar wavelength is often

used. This moment is derived quite simply like the fourth and fifth moments.

Starting with the definition for radar reflectivity, and using the complete

gamma distribution gives

Zx ¼ D6
nx

ð1
0

Dx

Dnx

� �6NTxanxx
�ðnxÞ

Dx

Dnx

� �nxmx 1

exp ax
Dx

Dnx

� �mx� �
d

Dx

Dnx

� �
: ð2:108Þ

Similarly, for the modified gamma distribution,

Zx ¼ D6
nx

ð1
0

Dx

Dnx

� �6 NTx

�ðnxÞ
Dx

Dnx

� �nxmx 1

exp
Dx

Dnx

� �mx� �
d

Dx

Dnx

� �
; ð2:109Þ

and for the gamma distribution,

Zx ¼ D6
nx

ð1
0

Dx

Dnx

� �6 NTx

�ðnxÞ
Dx

Dnx

� �nx 1

exp
Dx

Dnx

� �� �
d

Dx

Dnx

� �
; ð2:110Þ

and for the negative-exponential distribution,

Zx ¼ D6
nx

ð1
0

NTx
Dx

Dnx

� �6
exp

Dx

Dnx

� �� �
d

Dx

Dnx

� �
: ð2:111Þ

The result from integration of (2.108) is the following equation,

Zx ¼ NTxanxx D
6
nx

�
6þ nxmx

mx

� �

� nxð Þa
6þnxmx

mx

� �
x

; ð2:112Þ

and for the modified gamma distribution,

Zx ¼ NTxD
6
nx

� 6 þ nxmx
mx

� �
� nxð Þ ; ð2:113Þ

whilst for the gamma distribution,

Zx ¼ NTxD
6
nx

� 6þ nxð Þ
� nxð Þ : ð2:114Þ

Lastly for the negative-exponential distribution,

Zx ¼ NTxD
6
nx� 7ð Þ ¼ NTxD

6
nx6! ¼ 720NTxD

6
nx: ð2:115Þ

38 Foundations of microphysical parameterizations



The radar reflectivity has generally been a diagnostic variable in cloud

models, but more recently some have predicted radar reflectivity to gain

insight as to the evolution of the shape parameter v as discussed below.

2.5.13 Rainfall rate

The rainfall rate or other hydrometeor fall rate can be computed with

knowledge of particle terminal velocity VT (remembering that dx is the

terminal velocity exponent in the power law for terminal velocity), and the

liquid-water mixing ratio or content as is given below for the complete

gamma function,

Rx ¼ axcxanxx
� nxð Þ NTx

ð1
0

Dx

Dnx

� �bxþdx Dx

Dnx

� �vxmx 1

exp ax
Dx

Dnx

� �mx� �
d

Dx

Dnx

� �
: ð2:116Þ

For the complete gamma distribution, the rate is then

Rx ¼ NTx

axcxD
bxþdx
nx anxx � bxþdxþvxmx

mx

� �
ra

bxþdxþvxmx
mx

� �
x � nxð Þ

: ð2:117Þ

Next for the modified gamma distribution, the rainfall rate is

Rx ¼ NTx

ax cx D
bxþdx
nx � bxþdxþvxmx

mx

� �
r� nxð Þ : ð2:118Þ

Then for the gamma distribution the rainfall rate is

Rx ¼ NTxD
bx þ dx
nx � bx þ dx þ vxð Þ ax

�ðvxÞ ; ð2:119Þ

and for the negative-exponential distribution,

Rx ¼ axNTxD
bx þ dx
nx � bx þ dx þ 1ð Þ: ð2:120Þ

2.5.14 Terminal velocities

The terminal velocity used in the collection equations and sedimentation can

be based on the mass-weighted mean value for Q, number-weighted mean

for NT, and reflectivity-weighted mean for Z. These are all given as follows for

the complete gamma distribution first, the modified gamma distribution

second, and the gamma distribution last.

2.5 Gamma distributions 39



2.5.14.1 Mixing-ratio-weighted terminal velocity

The form for mass-weighted (or mixing-ratio-weighted) mean terminal

velocity is given by

VTQx
¼

Ð1
0

cxD
dx
x mðDxÞnðDxÞdDx

Ð1
0

mðDxÞnðDÞdDx

: ð2:121Þ

For the complete gamma distribution,

VTQx
¼ cxD

dx
nx

� bx þ vxmx þ dx
mx

� �
a

bx þ vxmx þ dx
mx

� �
x

2
4

3
5

� bx þ vxmx
mx

� �
a

bx þ vxmx
mx

� �
x

2
4

3
5

: ð2:122Þ

For the modified gamma distribution,

VTQx
¼ cxD

bx
nx

�
bx þ nxmx þ dx½ �

mx

� �

�
bx þ nxmx½ �

mx

� � ; ð2:123Þ

and for the gamma distribution,

VTQx
¼ cxD

dx
nx

� bx þ nx þ dxð Þ
� bx þ nxð Þ : ð2:124Þ

Lastly for the negative-exponential distribution,

VTQx
¼ cxD

dx
nx

� bx þ dx þ 1ð Þ
� bx þ 1ð Þ : ð2:125Þ

2.5.14.2 Number-concentration-weighted terminal velocity

The equation form for the number-weighted terminal velocity is

VTNx
¼

Ð1
0

cxD
dxnðDxÞdDx

Ð1
0

nðDxÞdDx

: ð2:126Þ
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For the complete gamma distribution the number-weighted terminal velocity is

VTNx
¼ cxD

dx
nx

avx
x
�

vxmx þ dx
mx

� �

a
vxmx þ dx

mx

� �
x � vxð Þ

: ð2:127Þ

For the modified gamma distribution the number-weighted terminal velocity is

VTNx
¼ cxD

dx
nx

�
nxmx þ dx½ �

mx

� �
� nxð Þ ; ð2:128Þ

and for the gamma distribution the number-weighted terminal velocity is

VTNx
¼ cxD

dx
nx

� nx þ dxð Þ
� nxð Þ : ð2:129Þ

For the negative-exponential distribution,

VTNx
¼ cxD

dx
nx� 1þ dxð Þ: ð2:130Þ

2.5.14.3 Reflectivity-weighted terminal velocity

The form for the reflectivity-weighted terminal velocity is

VTZx ¼

Ð1
0

cxD
dx
x D

2bx
x nðDxÞdDx

Ð1
0

D2bx
x nðDxÞdDx

: ð2:131Þ

For the complete gammadistribution the reflectivity-weighted terminal velocity is

VTZx ¼ cxD
dx
nx

a
2bx þ nxmx½ �

mx

� �
�

2bx þ nxmx þ dx½ �
mx

� �

a
2bx þ nxmx þ dx½ �

mx

� �
�

2bx þ nxmx½ �
mx

� � ; ð2:132Þ

and for the modified gamma distribution the reflectivity-weighted terminal

velocity is

VTZx ¼ cxD
dx
nx

�
2bx þ nxmx þ dx½ �

mx

� �

�
2bx þ nxmx½ �

mx

� � : ð2:133Þ
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For the gamma distribution the number-weighted terminal velocity is

VTZx ¼ cxD
dx
nx

� 2bx þ nx þ dxð Þ
� 2bx þ nxð Þ : ð2:134Þ

The expression for the negative-exponential distribution is

VTZx ¼ cxD
dx
nx

� 2bx þ dx þ 1ð Þ
� 2bx þ 1ð Þ : ð2:135Þ

2.6 Log-normal distribution

Historically, the log-normal distribution (2.40) has not been often used (e.g.

Chaumerliac et al. 1991). Therefore, only a subset of the number of quantities

presented for the gamma spectral density function will be presented for the

log-normal distribution. For integration, consult the Appendix.

2.6.1 Number-concentration-weighted mean diameter

The number-weighted mean diameter can be calculated from

DNT
x ¼

Ð1
0

DxnðDxÞdDx

Ð1
0

nðDxÞdDx

¼ 1

NTx

ð1
0

DxnðDxÞdDx: ð2:136Þ

Substitution of (2.40) into (2.116) results in

DNT
x ¼ 1

2p
p

sx

ð1
0

exp
lnðDx=DnxÞ

2
p

sx

� �2
dDx: ð2:137Þ

Division of all Dx terms by Dnx gives

DNT
x ¼ Dnx

2p
p

sx

ð1
0

exp
lnðDx=DnxÞ

2
p

sx

� �2
d

Dx

Dnx

� �
: ð2:138Þ

Now letting u = Dx/Dnx,

DNT
x ¼ Dnx

2p
p

sx

ð1
0

exp
ln u

2
p

sx

� �2
du: ð2:139Þ
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By letting y ¼ ln(u), u ¼ exp(y), du/u ¼ dy, so

DNT
x ¼ Dnx

2p
p

sx

ð1
1
expðyÞ exp y

2
p

sx

� �2
dy; ð2:140Þ

where the limits of the integral change as u approaches zero from positive

values, and ln(u) approaches negative infinity. Likewise, for the upper limit,

as u approaches positive infinity, ln(u) approaches positive infinity.

Now apply the following integral definition to (2.140) (see the appendix):

ð1
1
expð2b0xÞ expð a0x2Þdx ¼ p

a0

r
exp

b02

a0

� �
ð2:141Þ

where y ¼ x, a0 ¼ 1/(2sx
2), b0 ¼ 1/2, and therefore (2.140) becomes the mass-

weighted mean diameter,

DNT
x ¼ Dnx exp

s2x
2

� �
: ð2:142Þ

2.6.2 Effective diameter

The effective diameter is defined as

Deff ¼

Ð1
0

D3
xnðDxÞdDx

Ð1
0

D2
xnðDxÞdDx

: ð2:143Þ

Substitution of (2.40) into (2.143) results in

Deff ¼

Ð1
0

D2
x exp

½lnðDx=DnxÞ�2
2s2x

 !
dDx

Ð1
0

Dx exp
½lnðDx=DnxÞ�2

2s2x

 !
dDx

: ð2:144Þ

Dividing by Dnx gives

Deff ¼ Dnx

Ð1
0

Dx

Dnx

� �2
exp ½lnðDx=DnxÞ�2

2s2x

� �
d Dx

Dnx

� �
Ð1
0

Dx

Dnx
exp ½lnðDx=DnxÞ�2

2s2x

� �
d Dx

Dnx

� � : ð2:145Þ

2.6 Log-normal distribution 43



Now letting u ¼ Dx/Dnx,

Deff ¼ Dnx

Ð1
0

u2 exp ðln uÞ2
2s2x

� �
du

Ð1
0

u exp ðln uÞ2
2s2x

� �
du

: ð2:146Þ

By letting y ¼ ln(u), u ¼ exp(y), du/u ¼ dy, so

Deff ¼ Dnx

Ð1
1

expð3yÞ exp y2

2s2x

� �
dy

Ð1
1

expð2yÞ exp y2

2s2x

� �
dy

; ð2:147Þ

where the limits of the integral change as stated above. Next the integral

(2.141) is applied to both the numerator and the denominator, where y ¼ x,

and for the numerator, a0 ¼ 1=ð2s2xÞ; b0 ¼ 3=2, and for the denominator,

a0 ¼ 1=ð2s2xÞ; b0 ¼ 1: The result is

Deff ¼ Dnx exp
5s2x
2

� �
: ð2:148Þ

2.6.3 Modal diameter

The mode of the distribution is obtained by taking the derivative of n(Dx)/NT,

which is (2.40) divided by NT, setting the result equal to zero, and then solving

for Dx. Thus, making use of (2.40) it can be written

d

dDx

nðDxÞ
NTx

� �
¼ d

dDx

1

2p
p

sxDx

exp
½lnðDx=DnxÞ�2

2s2x

 !" #
¼ 0: ð2:149Þ

The derivative is expanded and simplified such that,

d

dDx

nðDxÞ
NTx

� �
¼ 1

2p
p

sx

1

D2
x

½lnðDx=DnxÞ�2
s2x

þ 1

 !
¼ 0: ð2:150Þ

Rearranging gives,

ln
Dx

Dnx

� �
¼ s2x: ð2:151Þ

Solving for Dx gives the mode of the distribution,

Dmod ¼ Dnx expð s2xÞ: ð2:152Þ
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2.6.4 The second moment is related to total surface area

The second moment is related to the total area,

ATx ¼
ð1
0

pD2
xnðDxÞdDx: ð2:153Þ

Substitution of (2.40) into (2.150) results in

ATx ¼ NTxp

2p
p

sx

ð1
0

Dx exp
lnðDx=DnxÞ

2
p

sx

� �2
dDx: ð2:154Þ

Dividing all Dx terms by Dnx gives

ATx ¼ NTxpD2
nx

2p
p

sx

ð1
0

Dx

Dnx

� �
exp

lnðDx=DnxÞ
2

p
sx

� �2
d

Dx

Dnx

� �
: ð2:155Þ

Now letting u ¼ Dx/Dnx,

ATx ¼ NTxpD2
nx

2p
p

sx

ð1
0

u exp
lnðuÞ
2

p
sx

� �2
du: ð2:156Þ

By letting y ¼ ln(u), u ¼ exp(y), du/u ¼ dy, so

ATx ¼ NTxpD2
nx

2p
p

sx

ð1
1
expð2yÞ exp y

2
p

sx

� �2
dy; ð2:157Þ

where the limits of the integral change as before. If (2.141) is applied with

y ¼ x, a0 ¼ 1/(2sx
2), b0 ¼ 1, (2.157) becomes the total area,

ATx ¼ NTxpD2
nx expð2s2xÞ: ð2:158Þ

2.6.5 Total downward projected area

The total downward projected area can be found from

Apx ¼
ð1
0

p
4
D2

xnðDxÞdDx: ð2:159Þ
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Substitution of (2.40) into (2.159) results in

Apx ¼ NTx

2p
p

sx

p
4

ð1
0

Dx exp
½lnðDx=DnxÞ�2

2s2x

 !
dDx: ð2:160Þ

Dividing all Dx terms by Dnx gives

Apx ¼ NTxD
2
nx

2p
p

sx

p
4

ð1
0

Dx

Dnx

� �
exp

½lnðDx=DnxÞ�2
2s2x

 !
d

Dx

Dnx

� �
: ð2:161Þ

Letting u = Dx/Dnx,

Apx ¼ NTxD
2
nx

2p
p

sx

p
4

ð1
0

u exp
ðln uÞ2
2s2

 !
du: ð2:162Þ

By letting y ¼ ln(u), u ¼ exp(y), du/u ¼ dy, so

Apx ¼ NTxD
2
nx

2p
p

sx

p
4

ð1
1
expð2yÞ exp y2

2s2x

� �
dy; ð2:163Þ

where the limits of the integral change as above. Now the integral (2.138) is

applied to (2.160) where, y ¼ x, a0 ¼ 1/(2sx
2), b0= 1/2, thus, the expression for

the total downward projected area is

Apx ¼ p
4
NTxD

2
nx expð2s2xÞ: ð2:164Þ

2.6.6 The third moment, mixing ratio and characteristic diameter

The third moment or mixing ratio can be found from

Qx ¼ 1

r

ð1
0

mðDxÞnðDxÞdDx; ð2:165Þ

where m(D) can be defined by (2.13), and after substitution of (2.13) and

(2.40) into (2.165) the result is,

Qx ¼ axNTx

r 2p
p

sx

ð1
0

Dbx 1
x exp

½lnðDx=DnxÞ�2
2s2x

 !
dDx: ð2:166Þ

Dividing all Dx terms by Dnx,

Qx ¼ axNTxD
bx
nx

r 2p
p

sx

ð1
0

Dx

Dnx

� �bx 1

exp
½lnðDx=DnxÞ�2

2s2x

 !
d

Dx

Dnx

� �
: ð2:167Þ
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Now letting u = Dx/Dnx,

Qx ¼ axNTxD
bx
nx

r 2p
p

sx

ð1
0

ubx 1 exp
ðln uÞ2
2s2x

 !
du: ð2:168Þ

Letting y ¼ ln(u), u ¼ exp(y), du/u ¼ dy, so

Qx ¼ axNTxD
bx
nx

r 2p
p

sx

ð1
1
expðbxyÞ exp y2

2s2x

� �
dy; ð2:169Þ

where the limits of the integral change as above. Now, by applying the

integral (2.141) with y ¼ x, a0 ¼ 1/(2sx
2), b0 ¼ bx/2, the third moment or

mixing ratio is

Qx ¼ axNTxD
bx
nx

r
exp

b2xs
2
x

2

� �
: ð2:170Þ

2.6.7 The sixth moment is related to the reflectivity

The sixth moment or reflectivity can be expressed as

Zx ¼
ð1
0

D2bx
x nðDxÞdDx: ð2:171Þ

Substituting (2.40) into (2.171),

Zx ¼ NTx

2p
p

sx

ð1
0

D2bx 1
x exp

½lnðDx=DnxÞ�2
2s2x

 !
dDx: ð2:172Þ

Dividing all Dx terms by Dnx,

Zx ¼ NTxD
2bx
nx

2p
p

sx

ð1
0

Dx

Dnx

� �2bx 1

exp
½lnðDx=DnxÞ�2

2s2x

 !
d

Dx

Dnx

� �
: ð2:173Þ

Now letting u ¼ Dx/Dnx

Zx ¼ NTxD
2bx
nx

2p
p

sx

ð1
0

u2bx 1 exp
ðln uÞ2
2s2x

 !
du: ð2:174Þ

2.6 Log-normal distribution 47



By letting y ¼ ln(u), u ¼ exp(y), du/u ¼ dy, so

Zx ¼ NTxD
2bx
nx

2p
p

sx

ð1
1
expð2bxyÞ exp y2

2s2x

� �
dy; ð2:175Þ

where the limits of the integral change as above. Now the integral (2.141) is

applied where y ¼ x, a0 ¼ 1/(2sx
2), b0 ¼ bx, therefore, the expression for the

sixth moment or the reflectivity is

Zx ¼ NTxD
2bx
nx expð2b2xs2xÞ: ð2:176Þ

2.6.8 Terminal velocities

The weighted terminal velocities are given again for Qx, NTx, and Zx, except

this time for the log-normal distribution.

2.6.8.1 Mixing-ratio-weighted terminal velocity

VTQx
¼

Ð1
0

cxD
dx
x mðDxÞnðDxÞdDx

Ð1
0

mðDxÞnðDxÞdDx

: ð2:177Þ

Substitution of (2.13) and (2.40) into (2.177) results in

VTQx
¼

cx
Ð1
0

Dbx 1þ dx
x exp ½lnðDx=DnxÞ�2

2s2x

� �
dDx

Ð1
0

Dbx 1
x exp ½lnðDx=DnxÞ�2

2s2x

� �
dDx

: ð2:178Þ

Dividing Dx by Dnx,

VTQx
¼

cxD
bx þ dx
nx

Ð1
0

Dx

Dnx

� �bx 1 þ dx
exp ½lnðDx=DnxÞ�2

2s2x

� �
d Dx

Dnx

� �

Dbx
nx

Ð1
0

Dx

Dnx

� �bx 1

exp ½lnðDx=DnxÞ�2
2s2x

� �
d Dx

Dnx

� � : ð2:179Þ

Letting u ¼ Dx/Dnx,

VTQx
¼

cxD
bx þ dx
nx

Ð1
0

ubx 1 þ dx exp ðln uÞ2
2s2x

� �
du

Dbx
nx

Ð1
0

ubx 1 exp ðln uÞ2
2s2x

� �
du

: ð2:180Þ
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By letting y ¼ ln(u), u ¼ exp(y), du/u ¼ dy, so

VTQx
¼

cxD
bx þ dx
nx

Ð1
1

exp ðbx þ dxÞy½ � exp y2

2s2x

� �
dy

Dbx
nx

Ð1
1

expðbxyÞ exp y2

2s2x

� �
dy

; ð2:181Þ

where the limits of the integral change as above. The integral (2.141) is used

so that in the numerator, a0 ¼ 1/(2sx
2), b0 ¼ (bx þ dx)/2, and in the denomin-

ator, a0 ¼ 1/(2sx
2), b0 ¼ bx/2, so that the mass-weighted mean terminal velocity

in terms of Qx is

VTQx
¼

cxD
bx þ dx
nx exp

s2xðbx þ dxÞ2
2

h i
Dbx

nx exp
s2xb2x
2

� � : ð2:182Þ

2.6.8.2 Number-concentration-weighted terminal velocity

The number-concentration-weighted terminal velocity is given by

VTNx
¼

Ð1
0

cxD
dx
x nðDxÞdDx

Ð1
0

nðDxÞdDx

: ð2:183Þ

Substitution of (2.40) into (2.183) results in

VTNx
¼

Ð1
0

cxD
dx 1
x exp ½lnðDx=DnxÞ�2

2s2x

� �
dDx

Ð1
0

D 1
x exp ½lnðDx=DnxÞ�2

2s2x

� �
dDx

: ð2:184Þ

Dividing Dx by Dnx,

VTNx
¼

cxD
dx
nx

Ð1
0

Dx

Dnx

� �dx 1

exp ½lnðDx=DnxÞ�2
2s2x

� �
d Dx

Dnx

� �
Ð1
0

Dx

Dnx

� � 1

exp ½lnðDx=DnxÞ�2
2s2x

� �
d Dx

Dnx

� � : ð2:185Þ

Letting u ¼ Dx/Dnx,

VTNx
¼

cxD
dx
nx

Ð1
0

udx 1 exp ðln uÞ2
2s2x

� �
du

Ð1
0

u 1 exp ðln uÞ2
2s2x

� �
du

: ð2:186Þ
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By letting y ¼ ln(u), u ¼ exp(y), du/u ¼ dy, so

VTNx
¼

cxD
dx
nx

Ð1
1

expðdxyÞ exp y2

2s2x

� �
dy

Ð1
1

expð0Þ exp y2

2s2x

� �
dy

; ð2:187Þ

where the limits of the integral change as above. By applying the integral

(2.141) so that in the numerator, a0 ¼ 1/(2sx
2), b0 ¼ dx/2, and in the denomin-

ator, a0 ¼ 1/(2sx
2), b0 ¼ 0, the mass-weighted mean terminal velocity in terms

of NTx is

VTNx
¼ cxD

dx
nx exp

s2xd
2
x

2

� �
: ð2:188Þ

2.6.8.3 Reflectivity-weighted terminal velocity

The reflectivity (Zx)-weighted terminal velocity is given by,

VTZx ¼

Ð1
0

cxD
dx
x D

2bx
x nðDxÞdDx

Ð1
0

cxD
2bx
x nðDxÞdDx

: ð2:189Þ

Substituting (2.40) into (2.189),

VTZx ¼

Ð1
0

cxD
2bx þ dx 1
x exp ½lnðDx=DnxÞ�2

2s2x

� �
dDx

Ð1
0

D2bx 1
x exp ½lnðDx=DnxÞ�2

2s2x

� �
dDx

: ð2:190Þ

Dividing Dx by Dnx,

VTZx ¼
cxD

2bx þ dx
nx

Ð1
0

Dx

Dnx

� �2bx þ dx 1

exp ½lnðDx=DnxÞ�2
2s2x

� �
d Dx

Dnx

� �

D2bx
nx

Ð1
0

Dx

Dnx

� �2bx 1

exp ½lnðDx=DnxÞ�2
2s2x

� �
d Dx

Dnx

� � : ð2:191Þ

Letting u ¼ Dx/Dnx,

VTZx ¼
cxD

2bx þ dx
nx

Ð1
0

u2bx þ dx 1 exp ðln uÞ2
2s2x

� �
du

D2bx
nx

Ð1
0

u2bx 1 exp ðln uÞ2
2s2x

� �
du

: ð2:192Þ
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By letting y ¼ ln(u), u ¼ exp(y), du/u ¼ dy, so

VTZx ¼
cxD

2bx þ dx
nx

Ð1
0

exp ð2bx þ dxÞy½ � exp y2

2s2x

� �
dy

D2bx
nx

Ð1
0

expð2bxyÞ exp y2

2s2x

� �
dy

; ð2:193Þ

where the limits of the integral change as above. By applying the integral

(2.141) so that in the numerator, a0 ¼ 1/(2sx
2), b0 ¼ (2bx þ dx)/2, and in the

denominator, a ¼ 1/(2sx)
2, b0 ¼ bx, the mass-weighted mean terminal velocity

in terms of Zx is

VTZx ¼
cxD

dx
nx exp

s2xð2bx þ dxÞ2
2

" #

expð8s2xb2xÞ
: ð2:194Þ

2.7 Microphysical prognostic equations

2.7.1 Mixing ratio

A prognostic equation for the mixing ratio may be written as

]Qx

]t
¼ 1

r
]ruiQx

]xj
þ Qx

r
]rui
]xi

þ ]

]xi
rKh

]Qx

]xi

� �

þ di3
1

r
] rVTQx

Qx

� �
]xi

þ SQx;

ð2:195Þ

where Kh is the eddy mixing value and SQx are mixing ratio source terms.

2.7.2 Number concentration

The prognostic equation for number concentration may be written as

]NTx

]t
¼ ]uiNTx

]xi
þ NTx

]ui
]xi

þ ]

]xi
Kh

]NTx

]xi

� �

þ di3
] VT

NTxNTx

� �
]xi

þ SNTx;

ð2:196Þ

where SNTx are number concentration source terms.

2.7.3 Characteristic diameter

The goal here is to show the steps that are needed to obtain an expression for

a prognostic equation for the characteristic diameter, dDnx/dt, which has not
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been well presented in prior works. For brevity, the equation is developed for

the case of the gamma distribution (2.27) with a ¼ m ¼ 0, following Passarelli

(1978).

Having differentiated the definitions of water content wx and reflectivity Zx
with respect to time, t, the following are obtained, respectively,

dwx
dt

¼
ð1
0

Ddx
x nðDxÞdDx; ð2:197Þ

dZx
dt

¼ 2

ð1
0

Ddx
x m Dxð ÞnðDxÞdDx: ð2:198Þ

Also dmðDxÞ=dt � Ddx has been used.

Dividing (2.198) by (2.197) and (2.197) by (2.198) and rearranging gives

2
dwx
dt

ð1
0

Ddx
x mðDxÞnðDxÞdDx ¼ dZx

dt

ð1
0

Ddx
x nðDxÞdDx: ð2:199Þ

Substituting (2.27), the gamma distribution, canceling NTx=�ðvxÞ from both

sides, and substituting mðDxÞ ¼ axD
bx
x gives

2
dwx
dt

ð1
0

axD
dx þ bx
x

Dx

Dnx

� �vx 1

exp
Dx

Dnx

� �� �
d

Dx

Dnx

� �

¼ dZx
dt

ð1
0

Ddx
x

Dx

Dnx

� �
exp

Dx

Dnx

� �� �
d

Dx

Dnx

� �
;

ð2:200Þ

which, after multiplying the left side by Dx=Dnxð Þdx þ bx and the right side by

Dx=Dnxð Þdx can be rewritten as

2axD
dx þ bx
nx

dwx
dt

ð1
0

Dx

Dnx

� �dx þ bx þ nx 1

exp
Dx

Dnx

� �� �
d

Dx

Dnx

� �

¼ Ddx
nx

dZx
dt

ð1
0

Dx

Dnx

� �dx þ nx 1

exp
Dx

Dnx

� �� �
d

Dx

Dnx

� �
:

ð2:201Þ

Then (2.201) can be integrated over the interval (0, 1), which results in

2axl
dx þ bx� dx þ bx þ nxð Þ dwx

dt
¼ ldx� dx þ nxð ÞdZx

dt
; ð2:202Þ
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which can be rewritten in terms of dZx/dt as

dZx
dt

¼ dwx
dt

2axD
bx
nx

�ðdx þ bx þ nxÞ
�ðdx þ nxÞ : ð2:203Þ

The term Zx can also be related to wx by dividing by

wx

ð1
0

m Dxð Þ2nðDxÞdDx ¼ Zx

ð1
0

m Dxð ÞnðDxÞdDx: ð2:204Þ

Then (2.27) and mðDxÞ ¼ axD
bx
x can be substituted into (2.204). After canceling

NTx=�ðvxÞ from both sides, the result is

wx

ð1
0

axD
bx
x

� �2 Dx

Dnx

� �nx 1

exp
Dx

Dnx

� �� �
d

Dx

Dnx

� �

¼ Zx

ð1
0

axD
bx
x

� � Dx

Dnx

� �nx 1

exp
Dx

Dnx

� �� �
d

Dx

Dnx

� �
:

ð2:205Þ

Multiplying the right-hand side by ðDx=DnxÞbx and the left-hand side by

ðDx=DnxÞ2bx gives

wxa
2
xD

2bx
nx

ð1
0

Dx

Dnx

� �2bxþnx 1

exp
Dx

Dnx

� �� �
d

Dx

Dnx

� �

¼ ZxD
bx
nx

ð1
0

axD
bx
x

� � Dx

Dnx

� �bxþnx 1

exp
Dx

Dnx

� �� �
d

Dx

Dnx

� �
:

ð2:206Þ

Integrating (2.206) over the interval (0, 1), gives

wxa
2
xD

2bx
nx � 2bx þ nxð Þ ¼ ZxaxD

bx
nx� bx þ nxð Þ: ð2:207Þ

Then, solving for Zx gives

Zx ¼ 2axD
bx
nx

�ð2bx þ nxÞ
�ðbx þ nxÞ wx: ð2:208Þ

Differentiating (2.208) by dt gives

dZx
dt

¼ ax
� 2bx þ nxð Þ
� bx þ nxð Þ

d

dt
Dbx

nxwx
� �

; ð2:209Þ
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and applying the product rule gives

dZx
dt

¼ ax
� 2bx þ nxð Þ
� bx þ nxð Þ Dbx

nx

dwx
dt

þ wxbxD
bx 1
nx

dlx
dt

� �
: ð2:210Þ

Rearranging and solving for dDnx/dt gives

dDnx

dt
¼ Dbx

nx

wxbx

� 2bx þ nx þ dxð Þ
� dx þ nxð Þ

� bx þ nxð Þ
� 2bx þ nxð Þ 1

� �
dwx
dt

: ð2:211Þ

The term dwx/dt is, for example, the rate of change of liquid-water content

owing to vapor diffusion growth. By dividing the two wx terms (equivalent to

multiplying by unity) in (2.211) by air density, r, a substitution for the mixing

ratio can be made

dDnx

dt
¼ Dbx

nx

Qxbx

� 2bx þ nx þ dxð Þ
� dx þ nxð Þ

� bx þ nxð Þ
� 2bx þ nxð Þ 1

� �
dQx

dt
: ð2:212Þ

The term in brackets in (2.212) is defined as H such that

dDbx
nx

dt
¼ DnxH

bxQx

dQx

dt
: ð2:213Þ

2.7.4 Reflectivity

Following Milbrandt and Yau (2005b), an equation for the prediction of Zx is

developed and then a diagnostic equation for G(nx) is derived from the

prognostic equation for Zx. The value of nx has been solved by iteration from

G(nx). The derivation of dZx/dt starts with the definition of Dnx, as

Dnx ¼
rQx�ðnxÞ

NTxax�ðbx þ nxÞ
� �1=bx

: ð2:214Þ

Now the definition for reflectivity for a spherical hydrometeor with ax ¼ p/6rx,
and bx ¼ 3, is simply given as

Zx ¼ NTxD
6
nx

�ðnxÞ �ð6þ nxÞ: ð2:215Þ

Using (2.214) in (2.215) results in

Zx ¼ NTx
�ð6þ nxÞ
�ðnxÞ

rQx�ðnxÞ
NTx p=6ð Þrx�ð3þ nxÞ
� �2

: ð2:216Þ

Simplifying,

Zx ¼ �ðnxÞ½ �2�ð6þ nxÞ
�ð3þ nxÞ½ �2�ðnxÞ

rQxð Þ2
NTxðp=6Þ2r2x

: ð2:217Þ
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The derivative of (2.217) with respect to t is given by the following

relationship,

Zx ¼ �ðnxÞð5þ nxÞð4þ nxÞð3þ nxÞ�ð3þ nxÞ
ð2þ nxÞð1þ nxÞðnxÞ�ðnxÞ�ð3þ nxÞ

rQxð Þ2
NTxðp=6Þ2r2x

; ð2:218Þ

or

Zx ¼ ð5þ nxÞð4þ nxÞð3þ nxÞ
ð2þ nxÞð1þ nxÞðnxÞ

rQxð Þ2
NTxðp=6Þ2r2x

: ð2:219Þ

Now defining G(nx),

G nxð Þ ¼ ð5þ nxÞð4þ nxÞð3þ nxÞ
ð2þ nxÞð1þ nxÞðnxÞ ; ð2:220Þ

thus,

Zx ¼ Mx 6ð Þ ¼ G nxð Þ rQxð Þ2
NTxðp=6Þ2r2x

: ð2:221Þ

The quotient rule,

d

dx

u

v

� �
¼ 1

v

du

dx

u

v2
dv

dx
; ð2:222Þ

is used to derive dZx/dt in terms of G(nx),

dZx
dt

¼ G vxð Þr2
ðp=6Þ2r2x

2
Qx

NTx

dQx

dt

Qx

NTx

� �2
dNTx

dt

" #
: ð2:223Þ

2.7.5 Other prognostic equations

Other prognostic equations include those for the following: tau, t, the time

elapsed for a process; the mean cloud water collected following the motion;

the amount of rime collected by ice; the amount of ice from vapor deposition;

the density of the rime ice collected; and the density of ice.

2.7.5.1 Lagrangian cloud exposure time

The Lagrangian equation for tau, t, the time elapsed for a process is given by

]trime;x

]t
¼ ui

]trime;x

]xi
þ ]

]xi
Kh

]trime;x

]xi

� �
þ di3

] VTQtrime;x

� �
]xi

þ ctrime;x; ð2:224Þ

where c is a variable that is 1 if a process is occurring and 0 if it is not.
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2.7.5.2 Lagrangian mean cloud mixing ratio

A variable Qcw is the mean cloud water collected following the motion of the

air and is defined by

Qcw ¼

Ðt
0

Qcw t0ð Þdt0

Ðt
0

dt0
¼ 1

tcw

ðt
0

Qcw t0ð Þdt0; ð2:225Þ

where t0 is a temporary variable for integration of the Leibnitz rule. The

prognostic equation is given by

dQcw

dt
¼ d

dt

1

tcw

ðtcw
0

Qcw t0ð Þdt0
2
4

3
5 ¼ dtcw

dt

1

tcw

ðtcw
0

Qcw t0ð Þdt0
2
4

3
5

¼ Qcw

tcw
t2cw

ðtcw
0

Qcw t0ð Þdt0 ¼ Qcw

tcw

Qcw

tcw
;

ð2:226Þ

which allows

]Qcw

]t
¼ �ui

]Qcw

]xi
þ ]

]xi
Kh

]Qcw

]xi

� �
þ di3

1

r
] VTQcwQcw

� �
]xi

þ c
Qcw

tcw
� Qcw

tcw

� �
: ð2:227Þ

In the equation above c is the same as in the equation for t, c ¼ 1 for cloud-

water mixing ratio present, and c ¼ 0 for no cloud-water mixing ratio

present.

2.7.5.3 Mixing ratio of deposition

A prognostic equation for the amount of vapor deposition/condensation

mixing ratio that is collected on, or sublimed/evaporated from, a spectrum

of particles is (Morrison and Grabowski 2008)

]Qdep;x

]t
¼ 1

r
]ruiQdep;x

]xi
þ Qdep;x

r
]rui
]xi

þ ]

]xi
rKh

]Qdep;x

]xi

� �

þ di3
1

r
] rVTQQdep;x

� �
]xi

þ SQdep;x:

ð2:228Þ

2.7.5.4 Mixing ratio of rime

Similarly, an equation for the amount of rime mixing ratio that is collected on

a spectrum of particles is given as (Morrison and Grabowski 2008)
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]Qrime;x

]t
¼ 1

r
]ruiQrime;x

]xi
þ Qrime;x

r
]rui
]xi

þ ]

]xi
rKh

]Qrime;x

]xi

� �

þ di3
1

r
] rVTQQrime;x

� �
]xi

þ SQrime;x
:

ð2:229Þ

2.7.5.5 Rime density

An equation for the rime density follows as

]rrime;x

]t
¼ �ui

]rrime;x

]xi
þ ]

]xi
Kh

]rrime;x

]xi

� �
þ di3

] VTQrrime;x

� �
]xi

þ Srrime;x: ð2:230Þ

2.7.5.6 Density

Similarly an equation to predict density is given by,

]rx
]t

¼ ui
]rx
]xi

þ ]

]xi
Kh

]rx
]xi

� �
þ di3

] VTQrx
� �
]xi

þ Srx: ð2:231Þ

These previous six prognostic equations permit a means to parameterize a

smooth transfer of particles from one density of species to another (e.g low-

density graupel to medium-density graupel, etc.). This process will be discussed

further in Chapter 9.

2.8 Bin microphysical parameterization

spectra and moments

In bin microphysical parameterizations there is a need to find a way to

represent the bin spectrum or number density function n(x) reasonably, where

x is mass. If a linear scale is used to represent the bin spectrum for a typical

droplet and drop spectrum, which spans from 4 microns to 4 millimeters, to

capture the spectrum reasonably, far too many bins would be required to be

economical. Instead, a logarithmic scale can be incorporated, such as the one

presented in Ogura and Takahashi (1973), with sizes closer together at small

particle sizes and wider apart at large sizes. Many, such as Berry and Rein-

hardt (1974a), Farley and Orville (1986), and Farley (1987), use exponential

functions for radius,

r ¼ r0 exp
J 1

J0

� �
; ð2:232Þ
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where r0 is the initial radius of the distribution and J is an integer that

determines the spacing of the bins. The corresponding mass is

x ¼ x0 exp
3 J 1ð Þ

J0

� �
: ð2:233Þ

In this case for a spherical hydrometeor,

x0 ¼ 4

3
pr30rL: ð2:234Þ

Amass scale that corresponds to the size distribution is given by defining x(J),

xðJÞ ¼ x02
J 1
2ð Þ; ð2:235Þ

where x0 is the smallest mass (2.68 � 10 10 g), with 61 categories, each 21/2,

times the mass of the preceding category.

The transformation presents a new number density function given by n(J),

which is related to the original size distribution, n(x), by the following,

nðJÞ ¼ ln 2

2

� �
nðxÞ: ð2:236Þ

Others such as Tzivion et al. (1987), also use bins in the spectrum that

increase in mass from one bin to the next by factors of p ¼ 2, 21/2, 21/3, or

21/4, etc., according to

xk þ 1 ¼ pxk; ð2:237Þ
where k is the bin index. Following Tzivion et al. (1987), the j-th moments,

M, are given in terms of x for mass and n(x,t) for the number density function,

Mj
k ¼

ðxkþ1

xk

xjnk x; tð Þdx: ð2:238Þ

Having laid a theoretical foundation for the bulk and bin parameterization of

microphysical processes, the subject of nucleation of liquid-water droplets

and ice crystals will be discussed in the next chapter.
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3

Cloud-droplet and cloud-ice crystal nucleation

3.1 Introduction

In this chapter modes of cloud droplet nucleation and ice-crystal nucleation

are examined as well as parameterizations of number concentrations of cloud

condensation nuclei and ice nuclei. The nuclei in general are small aerosols of

various sizes called Aitken aerosols O(10 2 mm), large aerosols O(10 1 mm),

giant aerosols O(100 mm), and ultra-giant aerosols O(101 to 102 mm). Nuclea-

tion by cloud condensation nuclei and ice nuclei is called heterogeneous

nucleation as it involves a foreign substance on which cloud water and ice

water can form, compared to homogeneous nucleation, for which no foreign

substance is needed for nucleation. Supersaturations have to exceed values

not found on Earth (e.g. 400%) for homogeneous nucleation of liquid drop-

lets, which is discussed at length in Pruppacher and Klett (1997). An examina-

tion of the Kelvin curve described in the next section shows why this is so.

As homogeneous nucleation does not occur on Earth for liquid particles, it

is not parameterized in models. In general, cloud condensation nuclei made

of some salt compound such as sodium chloride (table salt) are the most

effective for heterogeneous nucleation of liquid droplets. Heterogeneous

nucleation of liquids can be a function of several variables, such as tempera-

ture, vapor pressure or supersaturation, pressure, and factors or activation

coefficients related to the composition of aerosols involved. As a result the

means of expressing heterogeneous nucleation have become more complex

over the years as a result of new observations and new techniques to represent

nuclei numbers. One technique involves the incorporation of the nucleation

activation coefficients in parameterizations.

Homogeneous nucleation of ice occurs in Earth’s atmosphere when tem-

peratures of cloud droplets or larger drops become low enough. In general,

the smaller the droplet, the colder it has to be for homogeneous nucleation to
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occur. Heterogeneous nucleation of ice can occur in a variety of modes. The

first mode is heterogeneous deposition nucleation (Fig. 3.1). This deposition

mode requires that supersaturation with respect to ice be achieved. The

second kind of nucleation that can occur is condensation-freezing ice nucle-

ation (Fig. 3.1). The condensation-freezing mode requires that at tempera-

tures below freezing the air becomes supersaturated with respect to liquid.

Then one of the aerosols that makes up a water drop activates as an ice

nucleus during condensation. In the third mode, the contact nuclei mode, the

ice nucleation occurs with collision of a supercooled liquid-water droplet

and an ice nucleus (Fig. 3.1), which is generally thought to be some form of

clay, such as kaolinite. Recent evidence points to certain types of bacteria

being very plentiful as nuclei. Last, there is the fourth mode called the

immersion mode of ice nucleation. The immersion mode occurs when a

droplet is nucleated on an aerosol particle at temperatures above freezing.

Then, as the temperature of the droplet falls below freezing sufficiently, the

aerosol activates as an ice nucleus (Fig. 3.1). The ratio of ice-forming nuclei

to liquid-droplet-forming nuclei is usually very small and varies from near nil

at temperatures near freezing to 1000 m 3 per 1 � 108 m 3 aerosol particles

at 20 �C. As the temperature gets colder, the number of ice nuclei approxi-

mately increases exponentially.

Heterogeneous
deposition

Condensation
followed by
freezing

Contact

Immersion

Ice nucleation mechanisms

Fig. 3.1. Schematic picture of the ways atmospheric ice nucleation can
account for ice formation. (From Rogers and Yau 1989; courtesy of
Elsevier.)
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The heterogeneous nucleation of ice is a very complex physical process,

and it requires a number of physical conditions to be met. These include first

the insolubility requirement. Ice nuclei almost always are insoluble. For

example, if the nuclei were soluble, the freezing point of the solute could

decrease substantially and thereby prevent nucleation from occurring, more-

over the aerosol could dissolve. Second, there is the size requirement. Large or

giant nucleimake better ice nuclei thanAitken particles because once nucleated

they are at a size at which they can immediately begin collecting much smaller

particles. Third, there is a chemical-bond requirement. That is, if there is a

hydrogen-bond site on the ice nucleus, it provides a location where embryonic

ice crystals can grow. Fourth, there is the crystallographic requirement, which

maybemore important than someof the other requirements. This requirement,

simply stated, is that the ice-nuclei aerosol must have a crystalline structure

similar to that of ice water, which means that water molecules can align

themselves in a structure similar to ice, readily permitting nucleation. Fifth,

there is the activation-site requirement. This means that there must be a

site in the ice-nuclei aerosol that is favorable for initiating ice. These five

requirements and the models of ice nucleation are discussed in detail in

Pruppacher and Klett (1997) and the reader is referred to their textbook for a

comprehensive examination. Because these are not included directly in most

parameterizations, they will not be addressed further here.

In the rest of this chapter, cloud condensation nuclei will be examined first

in the context of heterogeneous nucleation of cloud droplets. Then ice crystal

nucleation will be examined, including heterogeneous nucleation, homo-

geneous nucleation, and secondary nucleation of ice crystals.

3.2 Heterogeneous nucleation of liquid-water droplets

for bulk model parameterizations

3.2.1 Nucleation rate as a function of S,w,T

With a detailed, high-resolution, bulk parameterization model it seems more

appropriate to compute nucleation and condensation explicitly and to do

away with the saturation adjustment that was used in Soong and Ogura

(1973); Klemp and Wilhelmson (1978); Tao et al. (1989); Gilmore et al.

(2004a); and Straka and Mansell (2005), as well as many other models.

Instead, nucleation can be represented explicitly. For example, a modified

method to that used by Ziegler et al. (1985) can be used. The parameterization

is based on the activation of cloud condensation nuclei NCCN, of which the

number available is at present only based on a power law as a function of the
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saturation ratio (with respect to liquid), SL, in percent. The equation for cloud

condensation nuclei activated is given as

NCCN ¼ CCCNS
k
L ð3:1Þ

where the constant CCCN ¼ 1.26 � 109 m 3 and k ¼ 0.308 for continental

conditions (Seifert and Beheng 2005) and CCCN ¼ 1.0 � 108 m 3 and k ¼ 0.462

for maritime conditions (Seifert and Beheng 2005 and Khain et al. 2000).

Pruppacher and Klett (1997) put the value of k somewhere between 0.2 and

0.6 with a median value of 0.5. Seifert and Beheng assume all cloud conden-

sation nuclei are activated at a maximum SL of 1.1% and do not allow any

additional activation. It is not necessary to include this condition; the nuclea-

tion parameterization includes derivatives of SL in the Z direction. For very

high-resolution models derivatives can be computed in the X and Y direction

as well. The derivatives can be found using the following equation (3.2) by

incorporating centered finite difference schemes. However, one-sided differ-

ences should be used at cloud boundaries,

]NT

]t






nuc

¼ CCCNkS
k�1 max u ]SL

]x

� �
; 0

� �þmax v ]SL
]y

� �
; 0

h i
þmax w ]SL

]z

� �
; 0

� �n o
> 0

otherwise zero

( )
; ð3:2Þ

where u is x-directional horizontal velocity, v is y-directional horizontal

velocity, and w is z-directional vertical velocity.

Equations such as this for different aerosol sizes such as Aitken, large, giant,

and ultra-giant cloud condensation nuclei can be developed. However, most of

the time, only one aerosol size, generally unspecified, is used. Saleeby and

Cotton (2008) have attempted to use two aerosol sizes, one of which is a giant

nucleus; and Straka et al. (2009a) used four aerosol sizes in high-resolution

simulations in order to increase the dependence of nucleation on aerosol size.

Note that the local tendency of S, ]S=]t, is not explicitly predicted. At

present various investigators assume that advection dominates nucleation

(Ziegler 1985; Seifert and Beheng 2005). The maximum concentration permit-

ted is 1.50 � 109 m 3 for continental clouds and 1.50 � 108 m 3 for maritime

clouds (Seifert and Beheng 2005).

Next, a tendency equation for the mixing ratio Qcw by cloud-water nucleation

is given by

]Qcw

]t






nuc

¼ xL;nuc
r

]NTcw

]t






nuc

; ð3:3Þ

where, xL,nuc ¼ 5 � 10 13 to 1 � 10 12 kg, which is the minimum mass of

a cloud drop and corresponds to a diameter up to about 5 � 10 6 m.
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3.2.2 Nucleation rate as a function of S,w,T,P,

activation parameters

The process of nucleation of cloud condensation nuclei and their growth by

condensation thereafter into cloud droplets is a particularly challenging

problem. The future of bulk microphysics parameterizations of cloud drop-

lets in cloud-resolving models in particular hinges on the ability to predict

mixing ratio and number concentration of newly nucleated cloud droplets.

The activation of cloud condensation nuclei and subsequent growth controls

the initial production of cloud-droplet mixing ratio Qcw and number concen-

tration NT. In some liquid-cloud nucleation schemes, a prognostic equation

for activated cloud condensation nuclei is used to distinguish them from all

of the cloud condensation nuclei available. One scheme, which will be the

focus here, is that of Cohard et al. (1998, 2000), and Cohard and Pinty (2000).

This scheme is based on cloud condensation nuclei concentrations that are

prognosed with a source term that is a function of temperature T, pressure P,

and vertical motion w.

Difficulties with these schemes exist as they are based on maximum (cloud

condensation nuclei activation) and mean (condensation) local supersatur-

ation SLV, where the subscript LV means supersaturation of vapor with

respect to liquid. The quantity SLV is dependent on T, P, w, and QSL. The

value of SLV generally is not well captured in cloud models and can vary

unphysically when there is non-homogeneous mixing in clouds, near the

physical boundaries of the cloud (Stevens et al. 1996) and owing to its

dependence on the numerical timestep. With these issues duly noted, Cohard

and collaborators looked for a method of computing SLV at the gridscale. The

smallest cloud condensation nuclei are activated as a function of the Kohler

curve (Pruppacher and Klett 1997) variables such as chemical, hygroscopic,

size criteria, and thermodynamic variables. Owing to the influence on aerosol

size, some bin models predict a bin spectrum of aerosol sizes. This will be

discussed later.

In the years since the strict use of saturation adjustment schemes, several

of the bulk microphysical models that have been developed with predictive

equations for cloud-droplet mixing ratio and number concentration have

followed these earlier approaches (Cohard and collaborators). It should

be noted that even Twomey’s (1959) full method shown below has received

some criticism for not accommodating all of the most necessary factors in

describing the situation when an aerosol particle will activate as a cloud conden-

sation nucleus. The nucleation of water droplets in bulk parameterization

models is a particularly difficult problem to manage as bulk parameterizations
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need to take into account factors such as temperature, supersaturation,

activation size spectrum, and vertical velocity. As pointed out by Cohard

et al. (1998) and Cohard and Pinty (2000), not only do these factor influence

early cloud growth, they are important factors in radiative properties of

clouds. As a result, it may be questionable to compute gridscale actions of

nucleation and condensation owing to timesteps used in coarser-grid three-

dimensional models such as Global Circulation Models (GCMs), but per-

haps not in cloud-scale models. Pruppacher and Klett (1997) discuss the role

of size (radius of curvature) and solute effects through the Kohler equation

for critical radii, as well as critical supersaturations (Twomey 1959), laying

the foundation for a powerful approach. This involves a power law with

regard to supersaturation, and was derived from a simplified form of the

Kohler equation,

Smax ¼ 1:63� 10 3w
3
2

ckB 3
2 ;

k
2

� �
2
4

3
5

1
kþ2

ð3:4Þ
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3
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3
5

k
kþ2

ð3:5Þ

where NCCN is the number of activated condensation nuclei or number of

cloud condensation nuclei, c is a constant, k is the exponent of Smax, w is the

vertical motion, and B is the Beta function. Note that c and k are parameters

that fit each aerosol type. This equation has its limitations owing to the likely

inability for this method or any similar method to capture all of the possible

nucleation mechanisms owing to limitations mentioned above.

Cohard et al. (1998) devised a more elegant and general method of describ-

ing factors that influence activation of condensation nuclei, namely the

saturation ratio (in percent), size distribution, and solubility of aerosols.

The foundations of their parameterization are based in differences between

maritime and continental sources of aerosols. They begin by exploring how a

modified form of Twomey’s equation performs, but with four activation

spectrum coefficients. They also come to the conclusion that this method

reduces to a simple power law at very large and very small supersaturations.

They begin with the saturation development equation discussed in detail in

Chapter 4, but written here as (3.6) and (3.7), which describe the change

in diameter of a single droplet that includes Kelvin size effect and Raoult’s

solution effects, where both effects are represented by y(T,D)
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dSLV
dt

¼ c1 T;Pð ÞW c2

dQcw

dt
; ð3:6Þ

and

D
dD

dt
¼ 4G T;Pð Þ SLV y T;Dð Þð Þ: ð3:7Þ

Using Pruppacher and Klett (1997) as a guide, the rate of change of Qcw, the

mixing ratio of liquid condensed during nucleation, is given by

dQcw

dt
� 2p

rL
r

2G T;Pð Þð Þ32SLV
ðSLV
0

n S0ð Þ
ðt

t S0ð Þ

Sdt0

0
B@

1
CA

1
2

dS0; ð3:8Þ

where rL is the density of liquid water. The concentration number of nuclei

n(S) active between S and S þ dS is

NCCN SLVð Þ ¼
ðSLV
0

nðSÞdS: ð3:9Þ

The equation for Qcw is very complex. Twomey (1959) suggested that it leads

to a lower-bounds estimation of the integral in time of the saturation develop-

ment equation (3.6) that can be used in the analytical derivation of SLVmax

(Cohard et al. 1998). Thus,

ðt
t S0ð Þ

Sdt0 >
S2LV S02

2c1w
: ð3:10Þ

Combining (3.8) and (3.10) gives a condensation-rate estimation,

dQcw

dt
> 4p

rL
r

G3=2

2 c1wð Þ12
SLV

ð
n S0ð Þ S2LV S02

� �1
2dS0: ð3:11Þ

Twomey took

n S0ð Þ ¼ kcS0k 1; ð3:12Þ
which provides a concise expression for SLVmax.

In the discussion by Cohard et al. (1998), an expression that retains the

behavior of the four activation spectra coefficients is given by

nðS0Þ ¼ kcSk 1 1þ bS02
� � m

; ð3:13Þ
where b, m, c, and k are the activation spectra coefficients.

3.2 Heterogeneous nucleation for bulk models 65



Using the change in variable,

x ¼ S0

SLV

� �2

; ð3:14Þ

so that

SLV
1

2
x

1
2dx ¼ dS0 ð3:15Þ

and integrating (3.11) results in
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Rearrangement gives
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Combining the SLV terms and bringing them outside the integral,

dQcw

dt
> 2p
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3
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and combining the x terms and integrating gives
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Following Cohard et al. (1998), the maximum supersaturation SLVmax, is given

by the saturation development equation (3.6) by setting dSLV/dt ¼ 0. Thus,

c2 T;Pð Þ dQcw

dt
¼ c1 T;Pð Þw: ð3:20Þ

Solving for dQcw/dt gives

dQcw

dt
¼ c1 T;Pð Þw

c2 T;Pð Þ : ð3:21Þ
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Substituting (3.19) for dQcw/dt in (3.21) gives
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The final expression has a form (Cohard et al. 1998) given by
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where the following are defined as

c1 T;Pð Þ ¼ g

RdT

ELv
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; ð3:24Þ
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and
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: ð3:26Þ

Here c, k, b and m are the four activation spectrum coefficients (Cohard et al.

1998) as mentioned earlier; 2F1 and B are the Gauss hypergeometric function

and the Beta function, respectively; see Cohard et al. (1998) or Appendix.

The value for activated NCCN is solved by Cohard et al. (1998) using (3.9)

and (3.13) to obtain,

NCCN ¼ cSkLVmax 2F1 m;
k

2
;
k

2
þ 1; bS2LVmax

� �
: ð3:27Þ

This equation has different values of c and k than Twomey’s expression.

Equation (3.27) has been discussed by Cohard et al. (1998) as having four

previously unused activation coefficients, which can express various aspects

of aerosols involved in nucleation. This makes it possible parameterically to

include the aspects of activation size spectrum, chemical composition, and

solubility into the equation for heterogeneous nucleation (3.27).

An estimate of the maximum number of NCCN that might be activated is

given by (3.27). With this estimate of NCCN, the production rate of nucleated

droplets is given as a comparison to the number of aerosols already activated,

Na. The source term for activated aerosols is in simplified form, with a

centered timestep,
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max 0;NCCN SLVmaxð Þ Na t dtð Þð Þ: ð3:28Þ
Equation (3.28) also dictates whether cloud-drop concentration is permitted

to increase.

Employing the equation from the Kohler curve, (S 1) a/r + b/r3, where

r is radius, a and b are constants, the critical diameter for nucleation with

unstable growth rate is then given by

Dcrit ¼ 4A

3
SLVmax: ð3:29Þ

Lastly, the change of mixing ratio of cloud droplets is given as

max 0;NCCN SLVmaxð Þ Na t dtð Þð ÞrL
r
p
6
D3

crit: ð3:30Þ

3.3 Heterogeneous liquid-water drop nucleation for bin

model parameterizations

The initiation of liquid water in bin parameterization models can be accom-

plished with any number of functions to describe the distribution of newly

nucleated cloud-water droplets in a cloud given that there is supersaturation

at a grid point. Some parameterizations predict cloud condensation nuclei,

whilst others do not. There are normalized functional forms for the distribution

of droplets and usually a prognostic equation of total cloud condensation

nuclei. An approach like this bypasses the need to know any explicit infor-

mation about the makeup of aerosols that are cloud condensation nuclei

in the atmosphere, even if solute effects and curvature effects are ignored.

This was the methodology in many early models, such as those proposed by

Ogura and Takahashi (1973) and Soong (1974) to initialize cloud droplets in

supersaturated regions of the model domain.

In model studies of warm-rain growth, Ogura and Takahashi (1973) com-

pared three different initial droplet distributions in different cloud simula-

tions. Note that it was found by these authors that the distribution choice was

not of major significance (Soong 1974). Soong (1974) found that the choice of

the initial droplet spectra for bin models as given by Ogura and Takahashi

(1973) was not that important in the final solutions. Two of the types of

Ogura and Takahashi’s distributions are discussed below. For example, they

parameterized the condensation process of the initial droplet distribution

with some prescribed form f(x), which is normalized and where x is mass. This

is multiplied by the number of nuclei available x(z, t) for a one-dimensional
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model as a function of height z and time t. The rate of change of the number

concentration of cloud droplets Ncw(x) due to the formation of cloud droplets

about nuclei is written simply as

]Ncw xð Þ
] tð Þ

� �
init

¼ x z; tð Þf xð Þ
dt

: ð3:31Þ

The different normalized forms of f(x) can potentially control different pre-

cipitation evolutions. The distribution called type (1) was used by Twomey

(1966), Warshaw (1967) and Kovetz and Olund (1969). Its form is given by

f xð Þ ¼ 1

xf

x

xf

� �
exp

x

xf

� �
; ð3:32Þ

where xf is a constant in the function defining the spectrum of CCN activated.

According to Scott (1968), it is close to a Gaussian distribution with

respect to radius and has a relative variance of 0.25. Scott also states this

form is easier to work with than a pure Gaussian distribution. In this

distribution, a maritime spectrum results with xf ¼ 1.029 � 10 10 kg.

From (3.32), f(r) is related to f(x) by

f rð Þ ¼ 4pr2f xð Þ: ð3:33Þ
The so-called type (2) distribution was used by Golovin (1963), Berry (1967)

and Soong (1974) and is given as

f xð Þ ¼ x

x
exp

x

x

� �
; ð3:34Þ

where for the mean mass x ¼ 2 � 10 10 kg, the liquid content should be

1 kg kg 1, and the number of nucleated droplets should be 5 � 107 m 3.

In general, most models make the number concentration of cloud conden-

sation nuclei decrease as nucleation of cloud droplets takes place, and the

concentration of cloud condensation nuclei increases as cloud-droplet-sized

particles evaporate below a certain size, nominally a radius of 4 mm. These

can be reactivated if recycled into the cloud’s supersaturated regions. As given

by Ogura and Takahashi (1973) the increase of cloud condensation nuclei by

evaporation is just

]x
]t

� �
evap

¼ NcwðxÞdx
dt






x x0

; ð3:35Þ

or the total change in nuclei owing to initiation of cloud droplets and

evaporation of cloud droplets is
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: ð3:36Þ

Note there are advection and diffusion terms as well for the cloud condensa-

tion nuclei conservation equation (3.36). One problem with this equation is

that while one cloud condensation nucleus is needed to produce a cloud

droplet, and orders of magnitude more cloud droplets are required to make

precipitation-sized particles, when these precipitation particles evaporate,

they reintroduce only one cloud condensation nucleus, which is larger than

the original cloud condensation nucleus. Thus the conservation equation is

somewhat flawed. To overcome this deficiency efforts began to predict a

range of cloud condensation nuclei sizes, as discussed next.

3.3.1 Aerosol size distributions and nucleation for initiation

of liquid-water droplets in bin model parameterizations

The initiation of liquid water in bin parameterization models can be accom-

plished using a spectrum of cloud condensation nuclei, which are in bins

similar to those used for cloud droplets and drops. Usually the range is

smaller than that from the smallest to the largest liquid drop. The conser-

vation equation for including nuclei is given, following Kogan (1991), quite

simply as the advection and diffusion tendencies plus a sink term on cloud

condensation nuclei that results from nucleation. Computing nucleation with

a spectrum of cloud condensation nuclei and a spectrum of liquid droplets

allows a modeler to avoid having two-dimensional cloud-droplet spectra. The

two-dimensional cloud-droplet spectrum has one dimension as the cloud

mass and the other dimension as the salt mass in the case of soluble cloud

condensation nuclei.

When drops evaporate, the cloud condensation nuclei spectrum is returned

to its original size, though washout by drizzle or rain is allowed. More

realistic cloud condensation nuclei redistribution after evaporation is a very

difficult problem and how cloud condensation nuclei actually redistribute in

the size spectrum after evaporation is not known (Khairoutdinov and Kogan

1999).

3.4 Homogeneous ice-crystal nucleation parameterizations

Homogeneous freezing occurs when air temperatures are colder than 40 �C
(233.15 K) and liquid drops freeze instantaneously. Some use 30 �C as the

demarcation temperature for homogeneous freezing, whilst others use values
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as cold as 50 �C. Newer parameterizations have been developed that take

into account not only the temperature, but also the size of the liquid droplet.

At 40 �C clusters of about 200 to 300 water molecules will freeze spontan-

eously. At warmer temperatures the clusters of water molecules have to be

larger for homogeneous freezing, whilst at colder temperatures clusters of

fewer than 200 or so water molecules need to come together for freezing to

take place without the presence of an ice nucleus.

The most recent studies and parameterization of homogeneous freezing

of cloud droplets suggest that this occurs approximately between 30 �C and

50 �C (DeMott et al. 1994). The authors give a number of droplets that

freeze DNfreeze due to homogeneous freezing by the following

DNfreeze ¼
ð1
0

1 exp JVDtð Þ½ �NTcw Dð ÞdD: ð3:37Þ

In this equation, J, the homogeneous freezing rate of cloud drops to frozen

cloud drops, is given by the following, where Tc is temperature in �C,

log10 J ¼ 603:952 52:6611Tc 1:7439T2
c 2:65� 10 2T3

c

1:536� 10 4T4
c :

ð3:38Þ

In (3.37), the volume V is approximated by the mean-droplet diameter in

units of cm by Milbrant and Yau (2005b). Therefore, a fraction of freezing in

one timestep may be written as

Ffreeze ¼ DNfreeze

NTcw
¼ 1 exp J

p
6
D3

cwmvDt
� �h i

; ð3:39Þ

where Dcwmv is the mean volume diameter of cloud droplets.

Based on this rate equation (3.39), equations for mixing ratio and number

concentration are simply

Qfreeze ¼ FfreezeQcw

Dt
ð3:40Þ

and

Nfreeze ¼ FfreezeNTcw

Dt
: ð3:41Þ

As described by DeMott (1994), Ffreeze is 0 at 30 �C and 1 at 50 �C. This
means that many supercooled liquid-cloud drops freeze at temperatures

slightly warmer than the standard homogeneous freezing temperature for

supercooled liquid-cloud drops of 40 �C, but allows some supercooled

liquid-cloud droplets to exist at temperatures as low as 50 �C.
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3.5 Heterogeneous ice-crystal nucleation parameterizations

3.5.1 Early parameterizations

The Fletcher (1962) ice-nucleus curve fit is perhaps one of the most primitive

curves still used in cloud models today. The formula is

Nid ¼ n0 exp a T T0½ �ð Þ; ð3:42Þ
where Nid is the ice deposition number concentration, n0, the number of ice

nuclei that are active ¼ 10 2 m 3, a ¼ 0.6 �C 1, and T0 ¼ 273.15 K. There has

been much discussion about this parameterization in the literature concerning

the over-production of ice nuclei by deposition at very cold temperatures (T<

245 K). Also this parameterization does not take into account the degree of

supersaturation over ice.

An alternative to this was proposed by Cotton et al. (1986) by including

Huffman and Vali’s (1973) equation for relative supersaturation dependence

on ice nucleation, and is given by

Nid ¼ Si 1ð Þ
S0 1ð Þ

� �b
; ð3:43Þ

where Si 1 is the fractional supersaturation with respect to ice and S0 1 is

the fractional ice supersaturation at water saturation, where b ¼ 4.5.

A hybrid parameterization was produced by Cotton et al. (1986) by

combining Huffman and Vali’s (1973) equation with the Fletcher (1962)

parameterization

Nid ¼ n0
Si 1ð Þ
S0 1ð Þ

� �b
exp a T T0½ �ð Þ; ð3:44Þ

where a and b are constants given above. This parameterization underesti-

mates ice nuclei at warmer temperatures.

3.5.2 Explicit cloud ice-crystal nucleation

As carried out by Seifert and Beheng (2005), an ice nucleation mechanism,

following Reisner et al. (1998) and various other authors, is used to make an

ice-crystal number-concentration nucleation source as follows (Meyers et al.

1992),

]NTid

]t
¼ max

NTid NTIð Þ
Dt

� �
otherwise zero

8<
:

9=
;; ð3:45Þ
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where

NTid ¼ 0:001 exp½ 0:639þ 12:96SI�: ð3:46Þ
The subscripts id and I refer to ice deposition and ice, respectively. Meyers

et al. (1992) strictly developed this equation from data between temperatures

of 7 to 20 �C and between ice saturations of 2 to 25% or 5 to 4.5% water

supersaturation. In practice, the use of this equation is usually arbitrarily

limited to temperatures colder than 5 �C. In addition, the value of NTid is

bounded by 10 times and 0.1 times the result from the following equation

(3.47) from Reisner et al. (1998),

NTid ¼ 0:01 expð minðT; 246:15Þ 273:15Þ: ð3:47Þ
Seifert and Beheng (2005) include this as they claim there is an instability with

the Meyers et al. (1992) scheme at very cold temperatures, though this needs

to be investigated further. The maximum number of ice-crystal concentration

is arbitrarily limited to the same number as the maximum number of cloud

drops permitted, which is stated above as 1.5 � 109 m 3.

The nucleation of ice-crystal water and cloud water is integrated using

time-splitting, with small timesteps of between 0.4 and 0.6 s. Thus, for a

model timestep of 5 s, the number of small steps is set to 10 assuming a small

timestep of 0.5 s. This causes some computation increase, but considering the

complexity of some models, it is only a small fractional increase.

3.5.3 Contact nucleation

Next contact nucleation, studied by Young (1974b), is considered and is

governed by

Nic ¼ Na0ð270:15 TcÞ1:3; ð3:48Þ
where Nic is contact nucleation and Na0 ¼ 2 � 105 m 3 at all levels (Cotton

et al. 1986). However, Young proposed that Na0 varies from 2 � 105 m 3 at

MSL (mean sea level) to 106 m 3 at 5000 m MSL. For reference, Na0 is the

aerosol population that can activate to make ice nuclei. Later experiments

showed this relationship to be not very accurate. Therefore, Meyers et al.

(1992) designed a new relationship that was exponential in nature and

given by

Nic ¼ exp½ 2:8þ 0:262ð273:15 TcÞ�; ð3:49Þ
where Nic is in number per liter. Ice is not permitted by this method at

temperatures warmer than 2 �C. The main mechanisms of contact nucleation
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are byBrownian, thermophoretic, anddiffusiophoretic forcing followingYoung

(1974a, b). Contact freezing nuclei are assumed to be 0.2 microns in diameter.

3.5.3.1 Brownian motion

Brownian motion causes contact nucleation of supercooled cloud droplets

from random collisions of cloud drops with aerosols. A highly detailed

discussion of aerosol physics and Brownian motion is found in Pruppacher

and Klett (1997). Brownian-motion-induced contact nucleation has been

parameterized by Young (1974a, b) and others for use in models with complex

ice-nucleation mechanisms using

1

Na

dNa

dt






Br

¼ 4pQcwca 1þ 0:3N1=2
re N1=3

sc

� �
; ð3:50Þ

where Na is the number of aerosols, Qcw is the cloud-water mixing ratio, and

ca is aerosol diffusivity given as

ca ¼
kT1

6pra�1
1þ Nknð Þ: ð3:51Þ

In (3.51), k ¼ 1.38047 � 10 23 JK 1 is the Boltzmann constant, ra is the

aerosol radius, �1 is the viscosity of air, and Nkn is the Knudsen number,

which is defined as,

Nkn ¼ 7:37T

288pra
¼ l

ra
; ð3:52Þ

where l is the mean free path of air and p is the pressure.

A scaled parameterization of contact nucleation owing to Brownian

motion has also been developed by Cotton et al. (1986).

3.5.3.2 Thermophoresis effects

Thermophoresis effects are explained by a dependence on the Knudsen

number Nkn, which is defined by (3.52). The thermophoresis effect is the

motion of an aerosol caused by a radiometric or thermally induced force.

Details of this effect are discussed by Pruppacher and Klett (1997), with key

points repeated here for completeness. This force comes from non-uniform

heating of particles owing to temperature gradients in an aerosol’s suspending

gas. When Nkn 	 1, temperature gradients induce gas molecules to deliver a

greater net impulse on the warm side of a particle than on the cold side, thus

driving the particle in the direction of the cold side of the particle. For Nkn 
 1,

the problem is more complex. Consider a region on the surface layer

around an aerosol which has a larger wavelength than the thermal gradient.
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According to Pruppacher and Klett, the layer of this gas closest to this surface

will acquire a temperature gradient that conforms approximately to that on

the surface of the aerosol. Therefore, gas molecules on the warmer direction

impart a greater impulse force to the surface of the aerosol than those on the

cooler direction. This allows a situation where the particle as a whole can

experience a force along the temperature gradient of the gas. Put plainly,

contact nucleation by thermophoresis effects occurs due to the attraction or

repulsion of aerosol particles to the droplet along the thermal gradients

(Cotton et al. 1986).

A parameterization for contact nucleation by thermophoresis is given by

Young (1974a) as

1

Na

dNa

dt






Th

¼ 4prcwft T1 Twð ÞK
�
g

p
4:185� 104 J k cal 1; ð3:53Þ

where K�
g is the thermal conductivity of air, with influences of convection

on heat diffusion f �1 and molecular boundary layer considerations on heat

diffusion included in f �2 . These are related by

K�
g ¼ Kg f

�
1 f

�
2 ; ð3:54Þ

where

f �1 ¼ 1þ P�

4pC
0:56N1=2

re N1=3
pr

� �
ð3:55Þ

and

f �2 � 1: ð3:56Þ
In f �1 , P

* is the semi-perimeter normal to fall axis, C is the shape parameter for

diffusional processes for ice crystals following McDonald (1963), and Npr is

the Prandtl number. The thermophoretic factor ft is complicated and given by

ft ¼
0:4 1þ 1:45Nkn þ 0:4Nkn exp 1=Nknð Þ½ � Kg þ 2:5NknKa

� �
1þ 3Nknð Þ 2Kg þ 5KaNkn þ Ka

� � ð3:57Þ

where Ka is the aerosol conductivity.

3.5.3.3 Diffusiophoresis effects

Following Pruppacher and Klett (1997), diffusiophoretic effects on aerosol

particle motions refer to concentration gradients in a gaseous medium or

mixture. The motion of aerosol particles is in the direction of the gradient.

For the interested reader Pruppacher and Klett (1997) provide a comprehensive
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discussion of this effect. To make diffusiophoretic effects simpler to under-

stand, a description following Cotton et al. (1986) follows. Diffusiophoresis

is due to attraction and repulsion of aerosol particles to a droplet along

gradients of water vapor. Thermophoresis effects dominate so that the net

effect of thermophoresis and diffusiophoresis is to inhibit contact nucleation

of cloud droplets during supersaturation and enhance contact nucleation

during subsaturation as described by Cotton et al. (1986). The parameteriza-

tion of diffusiophoresis contact nucleation effects is described by Young

(1974a) as follows,

1

Na

dNa

dt






Th

¼ 4prcwgd rv1 rvSLð Þc�
v 3:34� 1022 molecules g 1
� �

; ð3:58Þ

where rv1 is vapor density at infinity and rvSL is the vapor density over the

liquid water droplet’s surface, cv
* is vapor diffusivity influences of convection

on heat diffusion f �1 and molecular boundary layer considerations on heat

diffusion included in f �2 .
The last three variables are defined as

c�
v ¼ cvf

�
1 f

�
2 ; ð3:59Þ

where

f1 ¼ 1þ P�

4pC
0:56N1=2

re N1=3
sc

� �
; ð3:60Þ

and

f2 ¼ rcw

rcw þ cv

b
2p

RvT1

h i1=2 ; ð3:61Þ

where Rv is the gas constant for water vapor and b ¼ 0.4 is the condensation

or deposition coefficient. Also in (3.58), gd is given as

gd ¼ g0d
m

1=2
v

Nvm
1=2
v þ Nam

1=2
a

" #
; ð3:62Þ

where g0d ¼ 0.8 to 1.0, m is mass of a molecule or aerosol, and N is number

concentrations of molecules or aerosols.

3.5.4 Secondary ice nucleation

There are two parameterizations for the ice multiplication hypothesis given

by Hallet and Mossop (1974) and Mossop (1976). The first is the most
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commonly used; in this, approximately 350 splinters are produced for every

milligram of rime collected onto each graupel particle at 5 �C (Hallet and

Mossop 1974). The formulation for this processes is temperature dependent

and given by,

dNTisp

dt
¼ r3:5� 108f1 Tcwð Þ QgwACcw þ QhwACcw

� �
; ð3:63Þ

where the subscripts gw and hw are for graupel and hail, and cw is for cloud

water. The subscript isp stands for ice splintering. The term f1(T) is defined by,

f1ðTÞ ¼
0

T 268:15ð Þ=2½ �
T 268:15ð Þ=3½ �

0

;

T > 270:15
270:15 > T > 268:15
268:15 > T > 265:15

265:15 > T

: ð3:64Þ

A source term in the prognostic equation for the mixing ratio of ice splinters is

dQisp

dt
¼ mi0

r
dNTisp

dt
; ð3:65Þ

where mi0 is the minimum ice crystal mass.

Now that nucleation has been presented, it is possible to explore conden-

sation/evaporation, and deposition/sublimation processes of newly activated

cloud and ice crystals, respectively. Next saturation adjustment schemes will

be discussed, followed by descriptions of explicit condensation/evaporation

and deposition/sublimation by vapor diffusion.
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4

Saturation adjustment

4.1 Introduction

Saturation adjustment schemes are usually designed to bring the relative

humidity back to exactly 100% when supersaturation occurs. In doing so,

the enthalpy of condensation or deposition is released, the temperature is

increased just the right amount for 100% humidity, and the air becomes laden

with condensate in the form of cloud droplets at temperatures warmer than

273.15 K. At temperatures colder than freezing, in order to adjust the relative

humidity to 100% with respect to ice, a mixture of cloud droplets and ice

crystals may be found, and finally at temperatures colder than 233.15 K, only

ice crystals are generally produced. For the case of a mixture of cloud

droplets and ice crystals, the adjustment is made such that the saturation

mixing ratio of each phase, liquid and ice, is weighted in the calculation

of relative humidity (Tao et al. 1989). Some of the earliest adjustment schemes

were described by McDonald (1963), for example, to simulate fog formation.

The adjustment process can be prescribed for a single step as in Rutledge and

Hobbs (1983; 1984), or an iteration process such as that in Bryan and Fritsch

(2002), using potential-temperature, vapor, and mixing ratios. In Tripoli

and Cotton (1981), an ice-liquid potential temperature and vapor are used

to diagnose quickly the cloud-water mixing ratio required to bring a parcel to

100% humidity with an appropriate associated temperature increase (conden-

sation) or temperature decrease (evaporation).

Alternatively, schemes have been developed by Asai (1965), Langlois

(1973), and Soong and Ogura (1973) to adjust potential-temperature fields,

vapor fields, and condensate fields with a single non-iterative step when

supersaturation exists. In addition, a single-step adjustment to capture the

evaporative cooling and loss of cloud particles at subsaturation is built into

these systems of equations. Moreover, equations for change in temperature
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and pressure owing to phase change of water can be computed with the Soong

and Ogura (1973) scheme. Few models actually consider pressure change

following Wilhelmson and Ogura (1972), though Bryan and Fritsch (2002)

claimed notable differences through the inclusion of pressure changes. Finally,

some models predict saturation ratio and this is used to determine how much

condensation/evaporation, and heating/cooling should occur (e.g. Hall 1980). In

addition, the saturation ratio can be expressed as a function of vertical motion.

Many bulk parameterization models, and some bin microphysical models,

use saturation adjustment schemes that exactly eliminate supersaturation

after a timestep to account for some of the nucleation and condensation. Some

bulk parameterization models use both an explicit nucleation scheme, followed

by a saturation adjustment scheme (Seifert and Beheng 2005) to bring about

saturation. Still some bulk and bin microphysical parameterizations only use

explicit nucleation and condensation schemes (Ziegler 1985) to bring about

near saturation in a timestep. In the former of these models, where exact

saturation is brought about, the advection and diffusion of some measure of

temperature, water vapor, cloud water and perhaps cloud ice are computed in

the dynamical part of a model first and then the saturation adjustment

scheme is applied. Supersaturation occurs as the mixing ratio Q0 exceeds

Qs(T) at some pressure. Kogan and Martin (1994) refer to this as dynamical

supersaturation given by the equation,

S0 ¼ Q0 Qs Tð Þ
Qs Tð Þ ; ð4:1Þ

where Q0 and S0 are the actual mixing and saturation ratios; the subscript

s indicates the saturation value.

Then an adjustment is applied to reach zero supersaturation, as shown at

point Pb in Fig. 4.1. In Seifert and Beheng (2005) the advection and diffusion

of some measure of temperature and water vapor are also computed first in

the dynamical part of a model. With both bulk and bin microphysical models,

some form of explicit nucleation and condensation parameterization is used

to determine cloud-droplet or ice-crystal growth (subscript m). As the model

is advanced forward, the final state is rarely ever characterized by zero. This

can be seen at Pm on Fig. 4.1. Here it is seen that the model solution represents

a supersaturated state given by

Sm ¼ Qm Qs Tmð Þ
Qs Tmð Þ ; ð4:2Þ

which is rarely at saturation, but rather it gets close to saturation. The explicit

nucleation schemes were discussed in Chapter 3 and the explicit condensation
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equation is described in Chapter 5. It should be noted that typically the

explicit condensation is solved with a smaller timestep, in time-splitting

fashion, than with the dynamical timestep. Usually the small timestep is on

the order of 0.5 s as described by Clark (1973), Kogan (1991), and Kogan and

Martin (1994), but can range from 0.1 s to 0.5 s depending on vigor of the

updrafts simulated.

The parameters on which the degree of supersaturation depends include

the cloud-drop number concentration NTcw, the average radius ra of cloud

drops in the spectrum, and the diffusivity of water vapor c as discussed by

Kogan and Martin (1994). With these parameters, a phase relaxation time-

scale to zero supersaturation can be written as

tr ¼ 1

4pcNTcwra
; ð4:3Þ

with cloud supersaturations Sm typically ranging from a few tenths of a

percent to several percent in actuality. The error given by Sm/S0 is stated to

be large for weak updrafts or updrafts with small numbers of large cloud
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Fig. 4.1. Conceptual model of the moist saturation adjustment process;
explained in text. (From Kogan and Martin 1994; courtesy of the American
Meteorological Society.)
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condensation nuclei, but is small for large updrafts on the order of 15 m s 1

and for large cloud condensation nuclei concentrations.

4.2 Liquid bulk saturation adjustments schemes

In general, saturation adjustment schemes adjust the potential temperature or

temperature and water-vapor mixing ratio isobarically to near-perfect satur-

ation. If the air is subsaturated, cloud water is evaporated and that can

continue until saturation is reached or all the cloud water is evaporated.

It was shown by Wilhemson and Ogura (1972) that pressure influences could

be neglected. But Bryan and Fritsh (2002) more recently found that perhaps

they should be included for deep vigorous thunderstorms.

4.2.1 A simple liquid saturation adjustment

Perhaps the simplest saturation adjustment strategy is the non-iterative/itera-

tive scheme used by many including Rutledge and Hobbs (1983; 1984) and

Bryan and Fritsch (2002) and given by

dQv

dt
¼ Qv QSL

Dt 1þ L2vQSL

cpRvT2

� � ; ð4:4Þ

where Qv is the vapor mixing ratio, and QSL is the saturation mixing ratio

with respect to the liquid. This equation can be iterated once (Rutledge and

Hobbs 1983; 1984) or several times, typically five or six times, in more

vigorous weather systems such as strong thunderstorms (Bryan and Fritsch

2002) until the newest potential-temperature value converges to the previous

one. The equation for potential temperature follows as

dy
dt

¼ gL
dQv

dt
; ð4:5Þ

where gL is

gL ¼
Lv
cpp

; ð4:6Þ

and Lv is the enthalpy of vaporisation. Care must be taken with this para-

meterization because the timestep Dt appears in the denominator of (4.4)

for dQv/dt. If the timestep is very large (> 5 s) and no iteration is done, the

scheme will artificially overshoot or undershoot saturation. However,

iteration usually solves this problem.
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4.2.2 Soong and Ogura liquid-water saturation adjustment

Perhaps the most popular saturation adjustment scheme as of this writing is

one that has been around for more than thirty years. This scheme is one

proposed by Soong and Ogura (1973). Soong and Ogura start with Teten’s

formula, which is

QSL ¼ a exp
b T T0½ �
T c½ �

� �
ð4:7Þ

where a ¼ 380/p (Pa), b ¼ 17.269 3882, c ¼ 35.86, and T ¼ 273.15 K.

Next, we let Q
�
, and y� be intermediate values of Q and y that exist after all

other forcing besides saturation adjustment (including advection, diffusion,

source and sink terms, etc.) is applied. Then, an expression for dy can be

written,

dy ¼ ytþ1 y� ¼ Lv
cpp

dQSL ¼ Lv
cpp

Qtþ1
v Q�

v

� �
; ð4:8Þ

where p is the Exner function,

p ¼ cp
p

p00

� �Rd=cp

; ð4:9Þ

where Rd is the dry gas constant (¼ 287.04 J kg 1 K 1) and P00 is the reference

pressure equal to 100 000 Pa. Now with

ytþ1 ¼ Dyþ y�; ð4:10Þ
and (4.7) and (4.8) an equation can be written,

Qtþ1
SL ¼ Qtþ1

v ¼ a exp
b DT þ T� T0½ �
DT þ T� c½ �

� �
: ð4:11Þ

The following detailed steps are used to arrive at the final equations for the

saturation adjustment, ignoring pressure adjustments as was shown to be

acceptable by Wilhelmson and Ogura (1972). Multiplying the top and bottom

by T� c DT inside the exponential gives

Qtþ1
SL ¼ a exp

b DT þ T� T0½ �
DT þ T� c½ �

T� c DT½ �
T� c DT½ �

� �
: ð4:12Þ

Letting w ¼ T� c,

Qtþ1
SL ¼ a exp

b DT þ T� T0½ � w DT½ �
w DT½ �2

 !
: ð4:13Þ
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Now simplifying and neglecting terms of higher order than DT gives

Qtþ1
SL ¼ a exp

b T� T0½ �
T� c½ �

� �
exp

bwDT bT�DT þ bT0DT

T� c½ �2
 !

: ð4:14Þ

Next, w is expanded and the terms on the right-hand side inside the exponen-

tial are canceled,

Qtþ1
SL ¼ Q�

SL exp
bT�DT bcDT bT�DT þ bT0DT

T� c½ �2
 !

: ð4:15Þ

Now, using a series expansion to express the exponential, and eliminating all

higher-order terms, (4.15) may be written as

Qtþ1
SL ¼ Q�

SL exp
bDT T0 cð Þ

T� c½ �2
 !

¼ Q�
SL 1þ bDT T0 c½ �

T� c½ �2
 !

: ð4:16Þ

Now R1 and ytþ1 are defined, which are

R1 ¼ 1þ bDT T0 c½ �
T� c½ �2

 ! 1

; ð4:17Þ

and

ytþ1 ¼ y� þ R1Lv
cpp

Q�
v Q�

SL

� �
: ð4:18Þ

Now from (4.10) it can be written

Dy ¼ DQSL
Lvcp
p

: ð4:19Þ

Thus, the following can now be written

Qtþ1
v ¼ Q�

v R1 Q�
v Q�

SL

� �
: ð4:20Þ

A pictorial diagram of this parameterization (Fig. 4.2; reproduced from

Soong and Ogura 1973) shows that the parcel is lifted to saturation and along

the path PSG, which is dry adiabatic to S and moist adiabatic to G. Alterna-

tively Asai (1965) lifts a parcel along the path, PSR, which is dry adiabatic

to R, and then the parcel is adjusted isobarically to G.

4.2.3 The Langlois saturation adjustment scheme

Another liquid-only scheme has been used by Langlois (1973) and adopted

by Cohard and Pinty (2000) as a non-iterative adjustment for liquid-water
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saturation. The scheme is repeated here for completeness following closely

the presentation in Cohard and Pinty (2000). As they pointed out from the

first law of thermodynamics, an estimation of the condensation rate is

given by

T T�ð Þ þ Lv Tð Þ
cp

QSLðTÞ Q�
v

� � ¼ 0: ð4:21Þ

The variables T� and Qv
� are intermediate values obtained after integrating

all other processes and source and sink terms. They also make the condensa-

tion rate equal to

dQ

dt






cond

¼ max Qcw;Q
�
v QSLðTÞ

� �
; ð4:22Þ

where Qcw is the mixing ratio for cloud water. The parameterization details

for evaporation of cloud are discussed in Cohard and Pinty (2000). The

equation,

FðTÞ ¼ T T�ð Þ þ Lv Tð Þ
cp

QSLðTÞ Q�
v

� �
; ð4:23Þ

is solved with the exception of condensation or evaporation of cloud drops

initially. To solve the above equation, Langlois’ (1973) approach is employed

S(   *,Qv
*)

P(   *,Qv
*)

dry adiabatic

D p

pe

moist adiabatic

R(   *,Qv
*,QSL)* G(  t+1,Qv

t+1,QSL )
t+1�

�

�

�

Fig. 4.2. Schematic diagram of the saturation adjustment technique. Con-
sider the following. Lift an air parcel from point P up to point G during time
step t to t þ 1. As the parcel is saturated at G, it must become saturated at a
level (denoted by S) between P and G, inclusive. Along the path PS on the
chart y and Qv take the values y� and Qv

�, respectively, as they are conserved.
Values ytþ1 and Qtþ1

SL are reached directly by going through PSG rather than
PRG as in Asai’s (1965) approach. (From Soong and Ogura 1973; courtesy
of the American Meteorological Society.)
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with a quasi-second-order expansion of F(T) ¼ 0 about T�. The approach

begins using the following equation,

T ¼ T� FðT�Þ
F0ðT�Þ 1þ 1

2

FðT�Þ
F0ðT�Þ

F00ðT�Þ
F0ðT�Þ

	 

; ð4:24Þ

where superscript primes denote first and second derivatives. Next the satur-

ation mixing ratio at temperature T is defined as

QSL ¼ EeSL
P eSL

; ð4:25Þ

where E ¼ Rd/Rv and eSL is the saturation vapor pressure over liquid water

given by the expression

eSLðTÞ ¼ exp av bv=T gv lnðTÞð Þ; ð4:26Þ
which is more complicated than most approaches that are used. Now the

values of av, bv, and gv are defined as

av ¼ ln eSLðT00ÞÞ þ bv=T00 gv lnðT00ð Þ; ð4:27Þ

bv ¼
LvðT00ÞgvT00

Rv
; ð4:28Þ

and

gv ¼
cvv cpv

Rv
; ð4:29Þ

where cvv and cpv are specific heats at constant volume and pressure, respect-

ively, for vapor v and T00 is the temperature at the freezing of water.

Using these expressions, derivatives Q0
SLðT�Þ and Q00

SLðT�Þ are expressed as

Q0
SLðT�Þ ¼ AwQSLðT�Þ 1þ QSLðT�Þ

E

	 

ð4:30Þ

and

Q00
SLðT�Þ ¼ Q0

SLðT�Þ A0
wðT�Þ

AwðT�Þ þ A0
wðT�Þ 1þ 2

QSLðT�Þ
E

� �	 

; ð4:31Þ

where

AwðTÞ ¼ bv
T2

gv
T

ð4:32Þ
and

A0
wðTÞ ¼ 2

bv
T3

þ gv
T2

: ð4:33Þ
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Using the equations above gives

T ¼ T� D1 1þ 1

2
D1D2

� �
; ð4:34Þ

where D1 and D2 are given as

D1 ¼ F T�ð Þ
F0 T�ð Þ ¼

LvðT�Þ
cp þ LvðT�ÞQ0

SLðT�Þ QSLðT�Þ Q�
v

� �
; ð4:35Þ

and

D2 ¼ F00 T�ð Þ
F0 T�ð Þ ¼ LvðT�Þ

cp þ LvðT�ÞQ0
SLðT�ÞQ

00
SLðT�Þ: ð4:36Þ

This ends the saturation adjustment methods presented by Cohard and Pinty

(2000) and Langlois (1973). Compared to the Soong and Ogura (1973)

scheme, which is also non-iterative, this scheme appears to require somewhat

more calculations to be done to obtain approximately the same solution.

4.3 Ice and mixed-phase bulk saturation adjustments schemes

4.3.1 A simple ice saturation adjustment scheme

As with the liquid schemes, the simplest ice scheme is probably similar to that

for liquid by Rutledge and Hobbs (1983) and Bryan and Fritsch (2002) and is

given for ice initiation as

dQv

dt
¼ Qv QSI

Dt 1þ L2sQSI

cpRvT2

� � ; ð4:37Þ

where QSI is the saturation mixing ratio with respect to ice. This equation can

be iterated once (Rutledge and Hobbs 1983) or several times, typically five or

six times in more vigorous systems (Bryan and Fritsch 2002) until the newest

potential-temperature value converges to the previous one. The equation for

potential temperature follows as

dy
dt

¼ gice
dQv

dt
; ð4:38Þ

where gice is

gice ¼
Ls
cpp

; ð4:39Þ

and Ls is the enthalpy of sublimation.
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4.3.2 Soong and Ogura-type ice-water saturation adjustment

An ice-only version of the Soong and Ogura (1973) scheme can be devised by

first defining the saturation vapor mixing ratio for ice using Teten’s formula

for ice,

QSI ¼ a exp
bice T T0½ �
T cice½ �

� �
ð4:40Þ

where a ¼ 380/p (Pa), bice ¼ 21.874 55, cice ¼ 7.66, and T ¼ 273.15 K.

Following the same general steps that were used for the liquid version

of the Soong and Ogura liquid saturation adjustment parameterization, one

arrives at the ice-only saturation adjustment equation.

First R1,ice and ytþ1 are defined:

R1;ice ¼ 1þ biceDT T0 cice½ �
T� cice½ �2

 ! 1

ð4:41Þ

and

ytþ1 ¼ y� þ R1;iceLs
cpp

Q�
v Q�

SI

� �
: ð4:42Þ

Now using (4.10),

Dy ¼ DQSI
Lscp
p

; ð4:43Þ

and the following can be written,

Qtþ1
v ¼ Q�

v R1;ice Q�
v Q�

SI

� �
: ð4:44Þ

4.3.3 Tao et al. saturation adjustment for liquid

and ice mixtures

A mixed-phase saturation adjustment scheme was proposed by Tao et al.

(1989) that adjusts the potential-temperature and water-vapor mixing ratio in

saturation conditions isobarically to 0% supersaturation for ice, liquid, or

mixed-phase clouds. Tao et al. begin with two assumptions. The first assump-

tion is that the saturation mixing ratio with respect to ice and liquid, QSS,

is given as a liquid-cloud mixing-ratio and ice-cloud mixing-ratio-weighted

mean of ice and liquid water saturation values,

QSS ¼ QcwQSL þ QiQSIð Þ
Qcw þ Qið Þ : ð4:45Þ

4.3 Ice and mixed-phase bulk saturation adjustments 87



At temperatures warmer than Tfrz, only liquid water is permitted, and at Thom
only ice water is permitted.

The second assumption is that under super- or sub-saturation conditions

condensation and deposition occur such that they are linearly dependent on

Tfrz ¼ 273.15 K and Thom ¼ 233.15 K. Excess vapor goes into liquid, ice, or a

liquid ice mix for cloud particles. Cloud water (represented by subscript cw)

and cloud ice (subscript ci) evaporate or sublime immediately when sub-

saturation conditions exist. Evaporation or sublimation will continue to occur

to the point of exhaustion of cloud droplets or when enough cloud drops

evaporate such that saturation conditions exist.

With these two assumptions Tao et al. (1989) write that

dQv ¼ Qv QSS; ð4:46Þ

dQ ¼ dQv CND; ð4:47Þ
and

dQice ¼ dQv DEP; ð4:48Þ
where CND and DEP are given by

CND ¼ T Thomð Þ
Tfrz Thomð Þ ; ð4:49Þ

and

DEP ¼ Tfrz Tð Þ
Tfrz Thomð Þ ; ð4:50Þ

where dQv, dQcw, and dQci are the changes in Qv, Qcw, and Qci, respectively.

Following Tao et al. (1989), the procedure for the adjustment is to compute

all sources and sinks of y, Qv, Qcw, and Qci and label them at time t þ Dt as q�,
Qv

�, Qcw,
� and Qci

� . Then the saturation mixing ratios for QSL
� and QSI

� are given

using Teten’s formula as,

Q�
SL ¼ 380

p Pað Þ exp
aliq T� Tfrzð Þ

T� bliq
� �

 !
; ð4:51Þ

and

Q�
SI ¼

380

p Pað Þ exp
aice T� Tfrzð Þ

T� biceð Þ
� �

; ð4:52Þ

where aliq ¼ 17.2693882, bliq ¼ 35.86, aice ¼ 21.8735584, and bice ¼ 7.66.
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The adjustment is toward a moist adiabatic condition, under isobaric

(constant pressure) processes. With liquid only present, the parameterization

adjusts to a moist adiabat for liquid processes only. For ice-only processes,

the parameterization adjusts to a moist adiabat for ice processes only. For

mixed phases, when both liquid and ice are present, the parameterization

adjusts to a moist adiabat for mixed ice and liquid processes. The representa-

tion of this process is not a trivial task and estimations of the amount of ice

and cloud produced during the saturation adjustment unfortunately are

based on inadequate information. The potential temperature is found from

dy ¼ ytþ1 y� ¼ LvdQcw þ LsdQcið Þ
cpp

; ð4:53Þ

and the vapor mixing ratio is

QtþDt
v ¼ Q�

cwQ
tþDt
SL þ Q�

iceQ
tþDt
SI

� �
Q�

cw þ Q�
ci

� � : ð4:54Þ

Now

y tþDt ¼ y� þ dy ð4:55Þ
is substituted into the Teten’s formula for QSL

�
(4.51) and QSI

�
(4.52). The

calculation is made simpler by converting all T� variables into py� or simply y�.
Then following the method of Soong and Ogura (1973) demonstrated above,

the first-order terms in dy are used to write

QtþDt
v ¼ Q�

v R1 þ R2dy; ð4:56Þ
where, according to Tao et al. (1989),

R1 ¼ Q�
v

Q�
SLQ

�
cw þ Q�

ciQ
�
SI

� �
Q�

cw þ Q�
ci

� � ð4:57Þ

R2 ¼
A1Q

�
SLQ

�
cw þ A2Q

�
ciQ

�
SI

� �
Q�

cw þ Q�
i

� � : ð4:58Þ

We now let

A1 ¼
237:3aliqp
� �
T� 35:86ð Þ2 ; ð4:59Þ

A2 ¼ 237:3aicepð Þ
T� 7:66ð Þ2 ; ð4:60Þ
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A3 ¼ Lv CNDþ Ls DEPð Þ
cpp

: ð4:61Þ

Next, using A1, A2, A3, R1, and R2, the changes in y and Qv can be found by the

adjustment,

yt þ Dt ¼ y� þ R1A3

1þ R2A3ð Þ ; ð4:62Þ

Qt þ Dt
v ¼ Q�

v þ
R1

1þ R2A3ð Þ : ð4:63Þ

An interesting concept about this saturation adjustment for mixed-phase

cloud particles is that supersaturation with respect to ice is permitted to

occur. This can happen because the saturation with respect to liquid water

is larger than that with respect to ice water. This allows, in more sophisticated

models, the nucleation of different ice habits that depend on ice- or liquid-

water sub- or super-saturation. It also permits the depositional growth of ice

crystals by explicit means as well as by the adjustment procedure. There have

been a few models that use nucleation methods discussed previously for liquid

water and ice water, and use the saturation adjustment as a proxy for deposi-

tion growth on already nucleated ice particles. It should be noted that the

scheme above does not predict the number concentration of ice- or liquid-

water particles nucleated. Particles nucleated have to be supplied as above; or

by some means that specifies ice concentration by temperature (e.g. Fletcher’s

curve); or some other parameterization based upon temperature and super-

saturation; or constants for liquid-water drop concentrations.

4.3.4 Ice–liquid-water potential-temperature iteration

In this scheme the cloud-water mixing ratio is diagnosed, and if temperatures

are below the homogeneous freezing temperature, the ice-crystal water mixing

ratio is computed. Closely following Flatau et al.’s (1989) explanation of

Cotton and Tripoli’s (1980) and Tripoli and Cotton’s (1981) approach, two

variables are first taken from Chapter 1, including the Exner function (4.9)

and the ice liquid-water potential temperature yil,

y ¼ yil 1þ LvQliq þ LsQci

cpmaxðT; 253:15Þ
� �

: ð4:64Þ

In the first step, the Exner function and potential temperature are computed.

Next the supersaturation is computed to see if any liquid should exist at a
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location. The procedure continues by determining if the vapor and cloud-water

mixing ratios exist from the total water mixing ratio (cloud water plus water

vapor) QT. Cloud water exists if the atmosphere is supersaturated and the

amount is the excess of QT over saturation mixing ratio QVL. To make this

scheme work Qliq needs to be defined,

Qliq ¼ Qcw þ Qrw; ð4:65Þ
where Qcw is the cloud-water mixing ratio and Qrw is rain-water mixing ratio.

If there is ice present, the total ice is computed as the sum of all of the ice

mixing ratios (Qice species),

Qci ¼
X

Qice species: ð4:66Þ
The water-vapor and cloud-water mixing ratios are computed as follows.

First, the water-vapor mixing ratio is computed from

Qv ¼ max 0;QT Qliq Qci

� �
: ð4:67Þ

Then the cloud-water mixing ratio is computed using the above variables and

the saturation mixing ratio over liquid QSL,

Qcw ¼ max 0;QT Qliq Qci QSL

� �
: ð4:68Þ

The above system of equations can be iterated to diagnose T, y, QSL, Qv, and

Qcw, from the predictive equations for yil, p, QT, Qrw, and all the ice mixing

ratio species.

When temperatures are below the homogeneous temperature, the following

procedure is added to the iteration instead of the steps immediately above. First

Qcw ¼ 0, and Q�
rw ¼ 0, where the asterisk denotes the intermediate value

during iteration. Next, Q�
ci, the temporary ice-crystal mixing ratio is defined as

Q�
ci ¼ Qci þ Qrw þmax 0;QT Qci QSLð Þ: ð4:69Þ

When the iteration is done, the temporary values are set to be the new

permanent values. That completes the iteration.

4.4 A saturation adjustment used in bin microphysical parameterizations

Droplet growth by water-vapor diffusion condensation occurs with supersatur-

ation, and evaporation with subsaturation. When drops gain mass or lose

mass, they move to larger or smaller sizes, respectively, with the constraint that

ð1
0

nðxÞdx ¼ C; ð4:70Þ
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where C is a constant. An equation that describes the change in the size

distribution, n(x), with time by condensation and evaporation is given as

]nðxÞ
]t

� �
cond;evap

¼ ]

]x
n xð Þdx

dt

� �
: ð4:71Þ

Following Ogura and Takahashi (1973), first the model variables are all

updated by advection, diffusion, filtering, etc., and advanced to the inter-

mediate values, T
�
, Qv

�
, n

�
, and the number of aerosols x� at t ¼ t þ 1. Then

the saturation mixing ratio is computed with Teten’s formula,

Q�
SL ¼ 380

p
exp aliq

T� 273:15½ �
T� bliq
� �

 !
; ð4:72Þ

where p is the environmental pressure. No supersaturation is allowed at

t ¼ t þ 1. Then, following Asai (1965), if dM > 0,

dM ¼ Q�
v Q�

SL > 0: ð4:73Þ
Then dM1 is computed by

dM1 ¼ dM 1þ L2vQSL

cpRdT2

� � 1

; ð4:74Þ

such that dM1 is condensed, so that air is brought to exact supersaturation

with the water-vapor mixing ratio Qv
� dM1 at temperature T

� þ (Lv/cp) dM1.

First dM1 is allowed to condense on nuclei. The total mass of vapor

condensed per unit mass of air during the time increment Dt is given by

SðtÞ ¼ x
r

XJmax

J 1

x Jð Þf ðJÞ; ð4:75Þ

where f(J) is described as one of the function types for nucleation of cloud

condensation nuclei given by expressions in Chapter 3. When S > dM1, only a

fraction of x� given by x�(dM1 /S) is activated. So x at t ¼ t þ 1 is provided by

the following,

x ¼ x�
dM1

S

� �
x�: ð4:76Þ

In addition, in step 2 of the computation n�� Jð Þ is computed from n� Jð Þ by

n�� Jð Þ ¼ n� Jð Þ þ dM1

S

� �
x�f Jð Þ: ð4:77Þ
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Now, if S < dM1, the remainder of (dM1 S) will be exhausted by allowing

existing droplets and drops to grow by condensation. The change in mass of a

droplet or drop is given by

x0 Jð Þ ¼ x Jð Þ þ dx

dt

� �
J

Dt; ð4:78Þ

where x is mass. The rate of mass growth is given in the next chapter. The

final value of n�� Jð Þ can be computed using the method of Kovetz and Olund

(1969) that is also described in Chapter 5.

Owing to the fact that no supersaturation is allowed, the total condensed

water vapor for each Dt is given by

G tð Þ ¼ Dt
r

XJmax

J 1

n�� Jð Þ dx

dt

� �
J

; ð4:79Þ

and the growth per category by condensation therefore is just

dM1 Sð Þ
G

� �
dx

dt

� �
: ð4:80Þ

For the case of evaporation, when dM < 0, the evaporation rate is computed

by the same equation used to compute condensation growth. The change in

n(J) for evaporation also is similar to that used for condensation, except that

J0 ¼ J to Jmax. According to this method, the number of droplets less than

4 mm are computed and evaporated completely and their cloud condensation

nuclei are added to the number of nuclei x. There are problems with this, in

that a drop that evaporates is made up of many droplets, and thus contains

many cloud condensation nuclei. Therefore the actual number of cloud

condensation nuclei is not conserved.

4.5 Bulk model parameterization of condensation

from a bin model with explicit condensation

The effects of bulk parameterization saturation adjustments versus bin

models with explicit nucleation, which allow supersaturation to exist

(Fig. 4.3) show that errors from the bin model are most significant for the

small cloud condensation nucleation number-concentration case (maritime

environments), but they improve as cloud condensation nuclei numbers

approach values that would be considered average or large (continental

environments).
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Kogan and Martin (1994) did multiple regression analyses on the predicted

variables in a bin microphysical model with explicit condensation to derive

two new bulk microphysical models with bulk condensation parameteriza-

tions. The more accurate of the two formulations is
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Fig. 4.3. Scatterplots of explicit, Ce, versus bulk, Cb, condensation rates at
points in the model with non-zero explicit condensation rates, obtained
every two minutes for cases with cloud condensation nucleation concen-
trations from 25 to 800 cm 3. The difference between this figure and Fig. 4.4
is that the higher-order equation was used to parameterize the bulk conden-
sation. (From Kogan and Martin 1994; courtesy of the American Meteoro-
logical Society.)

94 Saturation adjustment



Crb ¼ b1 þ 2S0b2 þ b3Qcw þ Qcwb4
S0

� �
Cb þ S0b5: ð4:81Þ

The variables of interest include Crb, which is the revised bulk condensation

rate found from the regression coefficients b1, b2, b3, b4 and b5 and Cb, which

is defined as a first-guess bulk condensation rate. The bulk microphysical

model formulation for first-guess bulk condensation rate was computed

following McDonald (1963). The cloud droplet and cloud condensation

nuclei numbers are not usually known in bulk models. In McDonald’s

formulation, exact saturation is achieved using

Qv ¼ Q0
v þ dQ ¼ QSL; ð4:82Þ

LdQ ¼ cpdT; ð4:83Þ
and

T ¼ T 0 þ dT: ð4:84Þ
In the above, Q0

v and T0 are the values of vapor mixing ratio and temperature

before the adjustment. The saturation mixing ratio is QSL. In addition, Qv and

T are the values of vapor mixing ratio and temperature after the adjustment.

Finally dQ and dT are the changes in Q0
v and T0 that are needed to reach

perfect saturation.

The bin microphysical model with explicit condensation that was used is

approximately the same as that given in Chapter 5.

Empirical regression coefficients for various initial total numbers of cloud

condensation nuclei (in cm 3) are given in Table 4.1. The residual error in

Table 4.1 is calculated using

R ¼
P

Exact condensation Crbð Þ2
total points

: ð4:85Þ

Table 4.1

Initial CCN b1 b2 b3 b4 b5 Residual error R

25 0.32 5.2 –0.24 0.028 –0.12 2.7 � 10 4

50 0.45 8.4 –0.36 0.028 –0.18 2.4 � 10 4

100 0.66 11.0 –0.45 0.027 –0.25 2.0 � 10 4

200 0.88 13.0 –0.45 0.022 –0.32 1.5 � 10 4

400 2.10 3.9 –0.12 0.0037 –0.57 0.30 � 10 4

800 2.00 1.2 –0.016 0.00082 –0.52 0.038 � 10 4
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Results from the use of (4.81) to compute bulk microphysical parameter-

izations of condensation are shown in Fig. (4.4) as compared with bin

model solutions. The solutions are remarkably good at reproducing the bin

microphysical parameterization condensation rates, and improve as large

concentrations are used.
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Fig. 4.4. Scatterplots of explicit, Ce, versus bulk, Cb, condensation rates at
points in the model with non-zero explicit condensation rates, obtained
every two minutes for cases with cloud condensation nucleation concen-
trations from 25 to 800 cm 3. (From Kogan and Martin 1994; courtesy of
the American Meteorological Society.)
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4.6 The saturation ratio prognostic equation

Often modelers find convenience in predicting saturation ratio as one of the

prognostic equations they employ. For liquid-phase-only clouds, the satur-

ation development equation is given as

dS

dt
¼ Q1

dz

dt
Q2

dwliq
dt

: ð4:86Þ

In Rogers and Yau (1989) and Pruppacher and Klett (1997) it is explained

that the first term on the right of (4.86) is the change in saturation ratio by

adiabatic ascent or descent. The second term in (4.86) is the change in

saturation ratio by condensation or evaporation of vapor onto or from

droplets. The terms Q1 and Q2 are given following Rogers and Yau (1989),

Pruppacher and Klett (1997) and others as

Q1 ¼ 1

T

ELvg
RdcpT

g

Rd

� �
; ð4:87Þ

and

Q2 ¼ r
RdT

Ees

EL2v
PTcp

� �
; ð4:88Þ

where g is the acceleration due to gravity, 9.8 m s 2. Whilst it may appear

easy to obtain Q1 and Q2, the procedure is sketched out for completeness for

those readers not accustomed to working with these equations. Let us start

with the assumption of no condensation under adiabatic ascent,

dS

dt
¼ Q1

dz

dt
: ð4:89Þ

Let us assume that we can write dS/dt as

dS

dt
¼ d

dt

e

es

� �
¼ 1

es

de

dt

e

e2s

des
dt

� �
: ð4:90Þ

Defining the approximate mixing ratio,

Q ¼ E
e

p
; ð4:91Þ

and differentiating with respect to time, we obtain

dQ

dt
¼ 0 ¼ 1

p

de

dt
¼ e

p2
dp

dt
; ð4:92Þ
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then

1

p

de

dt
¼ e

p2
pg

RdT

dz

dt
; ð4:93Þ

or

de

dt
¼ e

g

RdT

dz

dt
: ð4:94Þ

The next term in Q1 in (4.89) can be found by manipulating the Clausius

Clapeyron equation,

des
dt

¼ esLv
RvT2

dT

dz

dz

dt
¼ esLv

RvT2

g

cp

dz

dt
: ð4:95Þ

Substituting the definition of des/dt into (4.89), results in the following

equation if S ¼ e/es is about O(1) on the right-hand side,

dS

dt
¼ Lv

RvT2

g

cp

dz

dt

g

RdT

dz

dt

� �
; ð4:96Þ

or

dS

dt
¼ Lv

RvT2

g

cp
W

g

RdT
W

� �
: ð4:97Þ

Next a solution for Q2 is sought. This solution is a bit more complex. Starting

with the assumption that there is no vertical motion, (4.86) becomes

dS

dt
¼ Q2

dw
dt

ð4:98Þ

and we know what dS/dt is from above. Next, as before, solving for the

relationship between Q, e, and p,

e ¼ Qsp

E
¼ es ð4:99Þ

and differentiating gives

des
dt

¼ p

E
dQs

dt
þ Qs

E
dp

dt
: ð4:100Þ

Rearranging,

1

es

de

dt
¼ rRdT

Ees

dQs

dt
þ Qs

E
dp

dz

dz

dt
; ð4:101Þ
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where the last term on the right-hand side is assumed to be zero. There is a

somewhat unexpected step that needs to be done to get the solution to des/dt,

des
dt

¼ des
dT

dT

dz

dz

dQs

dQs

dt
¼ des

dT

dT

dQs

dQs

dt
; ð4:102Þ

or, since dz/dt ¼ 0, then

des
dt

¼ des
dT

dQs

dt

dT

dz

dz

dQs

� �
þ des

dT

dT

dQs

dQs

dt

¼ des
dT

dT

dQs

dT

dz

dz

dQs

� �
dQs

dt
:

ð4:103Þ

Then, the following can be written,

des
dt

¼ des
dT

dT

dQs
þ g

cp

dz

dQs

� �
dQs

dt
: ð4:104Þ

Now from the definition of a moist adiabat,

dz

dQs
¼ Lv

g
þ dT

dQs

cp
g
; ð4:105Þ

the following can be written,

Lv
cp

¼ dT

dQs
þ g

cp

dz

dQs
: ð4:106Þ

Rewriting the expression for des/dt, and noting that for an isobaric process

e � es during condensation, the following is obtained,

e

e2s

des
dt

¼ e

e2s

des
dT

Lv
cp

� �
dQs

dt
� 1

es

des
dT

Lv
cp

� �
dQs

dt
: ð4:107Þ

Substituting (4.107) into the Clausius Clapyeron equation (4.95) and remem-

bering that Rv ¼ Rd=E (and using the equation of state for dry air),

des
dT

¼ Lv
Rv

es
T2

: ð4:108Þ

From (4.107),

e

e2s

des
dt

¼ Er
RdpT

L2

cp

� �
dQs

dt
: ð4:109Þ
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Now Q2 can be written as

Q2 ¼ r
RdT

Ees

EL2v
PTcp

� �
: ð4:110Þ

This can be substituted into (4.98) and an equation for liquid-phase saturation

development is found.

Alternatively, Chen (1994) writes the saturation development equation for

mixed-phase processes slightly differently as

dS

dt
¼ Q0

1

dz

dt
Q0

2

dwliq
dt

Q0
3

dwice
dt

; ð4:111Þ

where,

Q0
1 ¼ S

gMa

RdT

Lv
cpT

1

� �
; ð4:112Þ

Q0
2 ¼ S

L2v
cpRdT2

þ P

es

� �
; ð4:113Þ

and

Q0
3 ¼ S

LvLs
cpRdT2

þ P

es

� �
: ð4:114Þ
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5

Vapor diffusion growth of liquid-water drops

5.1 Introduction

Once a cloud droplet is nucleated it can continue to grow by water-vapor

diffusion or condensation, at first rapidly, then slowly as diameter increases,

if supersaturation conditions with respect to liquid water continue to occur

around the droplet or drop. Conversely, a cloud droplet or raindrop will

decrease in diameter by water-vapor diffusion or evaporation, first slowly

when large, then rapidly when small, as diameter decreases, assuming sub-

saturation conditions with respect to liquid water continue to occur around

the cloud droplet or raindrop.

Condensation and evaporation are governed by the same equation, the

water-vapor diffusion equation. To understand condensation and evapora-

tion of some particle, two diffusive processes must be considered. The first of

these includes water-vapor transfer to or from a particle by steady-state

water-vapor diffusion. It is a result of vapor gradients that form around

a particle; thus the particle is not in equilibrium with its environment.

The second of these processes is conduction owing to thermal diffusion

of temperature gradients around a particle that is growing or decreasing in

size. Fick’s law of diffusion describes these diffusion processes. In summary,

consideration must be made for mass and heat flux to and away from

particles. These steady-state diffusion processes are derived independently

and then a net mass change is obtained iteratively, or by a direct method, by

combining the equations with the help of the Clausius Clapyeron equation.

There are several ways to solve the steady-state equations, and two will be

presented. One method includes kinetic effects and one does not. Of these

basic approaches, the one that includes kinetic effects is perhaps 10 percent

more accurate than the other in the early stages of growth. At later times, the

simpler of these methods, which includes just a basic growth equation,
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approximately gives the same basic result as the more accurate method, which

includes several second-order effects that are not in a basic growth equation. The

more accurate equation is primarily valid during the first 5 to 10 seconds after

nucleation. After that time, the two equations basically give the same answers as

other methods. Thus, it probably is not necessary to have this sort of accuracy

for either bulk or bin model parameterizations. Nevertheless, these second-order

effects will be reviewed for completeness as they do become important if

growth after nucleation of aerosols or cloud condensation nuclei is studied.

The basic assumptions that need to be made for vapor diffusion mass

change to a liquid particle include the following:

� the particle is larger than the critical radius with regard to the Kohler curve
� the particle is stationary
� the particle is isolated
� the particle is stationary with surface area 4pr2 where r is radius of the drop
� the vapor field is steady state with infinite extent and supply.

Other first- and second-order effects that can be included in the basic

growth equation are:

� ventilation (advective effects)
� kinetic effects
� competitive effects among particles
� radius and solution effects for very small particles.

This provides a basis to start examinating the basics of vapor diffusional

growth (condensation and evaporation) of liquid-water cloud droplets, drizzle,

and raindrops.

5.2 Mass flux of water vapor during diffusional

growth of liquid-water drops

The diffusional change in mass of liquid-water drops owing to subsaturation

or supersaturation with respect to liquid water primarily depends on thermal

and vapor diffusion. In addition, for larger particles, advective processes are

important, and the influences of advective processes have to be approximated

using data from laboratory experiments. In the following pages, equations

will be derived to arrive at a parameterization equation for diffusional growth

changes in a spherical liquid-water particle that is large enough, on the order

of a few microns in diameter, so that surface curvature effects can be ignored.

Moreover, the liquid-water drops will be assumed to be pure. Later in the

chapter the influence of liquid-water drop size and solutes will be considered.
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First, from the continuity equation for density of water-vapor molecules

the following equation can be written,

]rv
]t

þ u�rrv ¼ cr2rv: ð5:1Þ

The flow is assumed to be non-divergent, and rv is the water-vapor density

given by rv ¼ nm. In this definition, n is the number of molecules and m is the

mass of a water molecule. In addition, c is the vapor diffusivity, given more

precisely as,

c ¼ 2:11� 10 5 T=T0ð Þ1:94 p=p00ð Þm2 s 1; ð5:2Þ
where, T0 = 273.15 K and p00 = 101325 Pa.

If it is assumed that u is zero so the flow is zero or stationary flow (sum of

the air-flow velocity and the vapor-flow velocity) is zero, (5.1) becomes

]rv
]t

¼ cr2rv: ð5:3Þ

With the steady-state assumption, a basic form of Fick’s first law of diffusion

results for the number of molecules, n, where m is a constant (similar to

Rogers and Yau, 1989),

r2rv ¼ r2nm ¼ r2n ¼ 0: ð5:4Þ
Assuming isotropy, which permits the use of spherical coordinates for this

problem, (5.4) becomes

r2n ¼ 1

R2

]

]R
R2 ]n

]R

� �
¼ 0; ð5:5Þ

where R is the distance from the center of the drop.

The product rule is applied to (5.5),

R2

R2

]

]R

]n

]R

� �
þ 1

R2

] R2
� �
]R

]n

]R

� �
¼ 0; ð5:6Þ

which is written more precisely as

]

]R

]n

]R

� �
þ 2

R

]n

]R
¼ 0: ð5:7Þ

Now letting,

x ¼ ]n

]R

� �
; ð5:8Þ
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substitution of (5.8) into (5.7) results in

]x

]R
¼ 2

R
x: ð5:9Þ

Integration of (5.9) over R gives,ð
]x

]R
dR ¼ 2

ð
x

R
dR: ð5:10Þ

Rearranging, ð
d ln x ¼ 2

ð
d lnR; ð5:11Þ

and finally integration gives

lnðxÞ ¼ 2 lnðRÞ þ c0; ð5:12Þ
where c0 is a constant of integration. Taking the exponential of both sides

of (5.12) gives,

x ¼ c00R 2: ð5:13Þ
Now, substituting (5.8) back into (5.13) results in

]n

]R
¼ c00R 2: ð5:14Þ

Integrating (5.14) over dR,

ð
]n

]R
dR ¼

ð
c00R 2dR; ð5:15Þ

results in

n Rð Þ ¼ c00

R
þ c000; ð5:16Þ

where c000 is another constant of integration.
Now, the constants of integration can be determined from the boundary

conditions, which are: as R approaches R1, n approaches n1; and when R

equals the drop radius, Rr, n is equal to nr. Application of these boundary

conditions to (5.16) gives

n1 ¼ c00

R1
þ c000 ¼ c000; ð5:17Þ

where c00=R1 
 c000, so that n1 ¼ c000.
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Next, using the boundary conditions and (5.17), (5.16) is then

nr ¼ c00

Rr
þ c000 ¼ c00

Rr
þ n1: ð5:18Þ

Simplifying,

nr ¼ c00

Rr
þ n1: ð5:19Þ

Solving (5.19) for c00,

c00 ¼ a nr a n1ð Þ: ð5:20Þ
From (5.17) c000 was given by

c000 ¼ n1: ð5:21Þ
Thus (5.16) becomes

n Rð Þ ¼ Rr nr n1ð Þ
R

þ n1: ð5:22Þ

Now the rate of mass increase or decrease at the drop’s surface by way of a

flux of droplets toward or away from the drop can be written as dM/dt, where

M is mass,

dM

dt
¼ c4pR2

rm
]n

]R

� �
R Rr

: ð5:23Þ

Equation (5.22) is used to find the derivative of n with respect to R while

holding R = Rr,

dM

dt
¼ c4pR2m

] Rr nr n1ð Þ=Rþ n1½ �
]R

� �
R Rr

; ð5:24Þ

rearranging,

dM

dt
¼ c4pR2m

]

]R

1

R
Rr nr n1ð Þ

� �
R Rr

þ ]n1
]R

� �
R Rr

( )
: ð5:25Þ

Now by using

]n1
]R

¼ 0 ð5:26Þ

in (5.25), the following is found,

dM

dt
¼ c4pR2m

]

]R

1

R
Rr nr n1ð Þ

� �
R Rr

: ð5:27Þ
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Taking the derivative gives

dM

dt
¼ c4pRr n1 nrð Þm: ð5:28Þ

Now we note that

rv;r ¼ nrm; ð5:29Þ
and

rv;1 ¼ n1m; ð5:30Þ
where rv,r is the vapor density at the drop’s surface, and rv,1 is the uniform

density.

Substitution of (5.29) and (5.30) into (5.28) gives

dM

dt
¼ c4pRr rv;1 rv;r

� �
; ð5:31Þ

which is the mass change owing to vapor gradients.

5.3 Heat flux during vapor diffusional growth of liquid water

An analogous procedure can be followed to get a relationship dq/dt, which is

the heat flux owing to temperature gradients. Based on dq/dt, another equa-

tion for dM/dt, different from (5.31), may be written.

From the continuity equation for temperature T the following equation can

be written, where K is thermal diffusivity,

]T

]t
þ u�rT ¼ Kr2T: ð5:32Þ

Assuming again that the flow is non-divergent, and that u is zero, so the flow

is zero or stationary flow (sum of the air-flow velocity and the vapor-flow

velocity) is zero. Note the value for thermal conductivity k is given as

k ¼ 2:43� 10 2 1:832� 10 5

1:718� 10 5

T

296:0

� �1:5
416:0

T 120:0½ �
� �

Jm 1 s 1 K 1: ð5:33Þ

Next, applying u=0 in (5.32),

]T

]t
¼ Kr2T: ð5:34Þ

With the steady-state assumption a basic Fick’s law of diffusion for T results,

r2T ¼ 0: ð5:35Þ
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The assumption of isotropy permits the use of spherical coordinates for this

problem, so that (5.35) becomes

r2T ¼ 1

R2

]

]R
R2 ]T

]R

� �
¼ 0: ð5:36Þ

Expanding and simplifying gives

R2

R2

]

]R

]T

]R

� �
þ 1

R2

] R2
� �
]R

]T

]R

� �
¼ ]

]R

]T

]R

� �
þ 2

R

]T

]R
¼ 0: ð5:37Þ

Now letting

y ¼ ]T

]R

� �
; ð5:38Þ

and substituting (5.38) into (5.37) gives

]y

]R
¼ 2y

R
: ð5:39Þ

Integration of (5.39) over R is,ð
]y

]R
dR ¼ 2

ð
y

R
dR: ð5:40Þ

Then rewriting gives ð
d ln y ¼ 2

ð
d lnR; ð5:41Þ

and finally integration results in

ln yð Þ ¼ 2 ln Rð Þ þ c0; ð5:42Þ
where c0 is a constant of integration.

Taking the exponential of both sides of (5.42) gives

y ¼ c00R 2; ð5:43Þ
where c00 is a constant.

Substituting (5.38) back into (5.43) results in,

]T

]R
¼ c00R 2: ð5:44Þ

Integration of the (5.44) expression with respect to R gives,ð
]T

]R
dR ¼

ð
c00R 2dR; ð5:45Þ
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and finally,

T Rð Þ ¼ c00

R
þ c000; ð5:46Þ

where c000 is another constant of integration.
Now, the constants of integration can be determined again from the

boundary conditions, which are: as R approaches R1, T approaches T1;

and when R equals the drop radius, Rr, T is equal to Tr. Application of these

boundary conditions to (5.46) gives

T1 ¼ c00

R1
þ c000 ¼ c000; ð5:47Þ

where c00=R1 
 c000, so that c000 ¼ T1.

Next, using the boundary conditions and (5.47), (5.46) becomes

Tr ¼ c00

Rr
þ c000 ¼ c00

Rr
þ T1: ð5:48Þ

Simplifying,

Tr ¼ c00

Rr
þ T1: ð5:49Þ

Now solving for c00,

c00 ¼ Rr T1 Trð Þ; ð5:50Þ
and using (5.47) gives c000 as

c000 ¼ T1; ð5:51Þ
and (5.46) becomes

T Rð Þ ¼ Rr Tr T1ð Þ
R

þ T1: ð5:52Þ

Now we can write an expression for the energy change dq/dt which takes

place at the drop’s surface,

dq

dt
¼ 4pR2

rrKcp
]T

]R

� �
R Rr

: ð5:53Þ

Equation (5.52) is used to find the derivative of T with respect to R while

holding R = Rr,

dq

dt
¼ 4pR2

rrKcp
] Rr Tr T1ð Þ=Rþ T1½ �

]R

� �
R Rr

: ð5:54Þ
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Rearranging gives

dq

dt
¼ 4pR2

rrKcp
]

]R

1

R
Rr Tr T1ð Þ

� �
R Rr

þ ]T1
]R

� �
R Rr

( )
: ð5:55Þ

Now using

]T1
]R

¼ 0; ð5:56Þ

(5.55) becomes,

dq

dt
¼ 4pR2

rrKcp
]

]R

1

R
Rr Tr T1ð Þ

� �
R Rr

: ð5:57Þ

Taking the derivative results in

dq

dt
¼ 4pR2

rrKcp
1

R2
Rr Tr T1ð Þ

� �
R Rr

: ð5:58Þ

Now (5.58) is applied at R = Rr, and simplifing,

dq

dt
¼ 4pR2

rrKcp
Rr

R2
r

Tr T1ð Þ
� �

: ð5:59Þ

Lastly,

dq

dt
¼ 4pRrrKcp Tr T1ð Þ; ð5:60Þ

which is the energy change owing to temperature gradients.

5.4 Plane, pure, liquid-water surfaces

The diffusional change in mass of a liquid-water drop owing to sub- or super-

saturation depends on thermal and vapor diffusion along with advective

processes. In the following, these will be employed to arrive at a parameter-

ization equation for diffusional growth changes in a liquid-water drop, that

are large enough, on the order of a few microns in diameter, so that surface

curvature effects can be ignored. Moreover, the liquid drop is assumed to be

pure. The following derivation closely follows Byers (1965).

The mass flux of vapor to or from a droplet can be written as

1

A

dM

dt
¼ c

drv
dR

� �
; ð5:61Þ
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where A is the surface area of the droplet, M is the mass of the droplet, R at

Rr is radius of the droplet, t is time, c is diffusivity of water vapor in air, and

rv is the water-vapor density.
The following relationship can be written that represents condensation

where the surface area of a sphere has been used,

dM

dt
¼ Ac

drv
dR

� �
¼ 4pR2c

drv
dR

� �
: ð5:62Þ

Now consider a spherical droplet as a discontinuity between two phases, such

as a liquid-water droplet that has a vapor density at its surface rv;r and a

water-vapor field of uniform density, rv;1. The continuous gradient drv;1=dt

is now replaced by the gradient of these two values. It is desirable to have

an expression for the growth rate in terms of radius. The following equation

is obtained by first rearranging (5.62) and then integrating such that the

transport of the vapor to the droplet is

dM

dt

ðR1

Rr

dR

R2
¼ 4pc

ðrv;1
rv;r

drv: ð5:63Þ

Integration gives

dM

dt

1

R1

1

Rr

� �
¼ 4pc rv;1 rv;r

� �
; ð5:64Þ

where,

1

R1
! 0: ð5:65Þ

Thus,

dM

dt
¼ 4pRrc rv;1 rv;r

� �
; ð5:66Þ

and R1 can be considered to be some distance from the droplet, such as one-

half the distance to the next droplet, which is probably 1 � 102 to 1 � 103 of

radii away.

Now the equation in terms of the rate change of the radius of a sphere

in time can be written using the fact that M ¼ rV, where V is the volume of

a sphere, V ¼ 4=3pR3
r ,

dM

dt
¼ rL

dV

dt
¼ rL4pR

2
r

dRr

dt
¼ rL4pRr Rr

dRr

dt

� �
; ð5:67Þ

where rL, the density of water, is assumed to be constant.
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Substitution of (5.66) into (5.67) and solving for RrdRr=dt gives

Rr
dRr

dt
¼ c

rL
rv;1 rv;r
� �

: ð5:68Þ

Now from the equation of state for water vapor, the vapor pressure, e, is

e ¼ RvTrv; ð5:69Þ
and assuming the temperature Tr of the droplet at its surface and the tempera-

ture of the air next to the drop T1 are equal, RrdRr/dt in (5.68) is written as

Rr
dRr

dt
¼ c

rLRvT
e1 erð Þ: ð5:70Þ

Recall that enthalpy is the energy transferred between two phases with no

temperature change occurring in the two phases. Therefore, a balanced state

requires that the enthalpy resulting from condensation must be liberated to

the environment; the opposite is true for evaporation. That is, the enthalpy

must be absorbed from the environment. Now the enthalpy associated with

the phase change (5.66) and (5.68) is Lv. Next, multiplying both left and right

hand sides of (5.66) by the Lv results in

Lv
dM

dt
¼ Lv4pRrc rv;1 rv;r

� �
: ð5:71Þ

It must be remembered that this is a constant-pressure or isobaric process.

An expression of the diffusion of heat energy away from droplets during

condensation is arrived at analogously to that for water vapor toward a drop.

To see this, we first start with

1

A

dq

dt
¼ rKcp

dT

dR
; ð5:72Þ

where q is heat, cp is specific heat for an isobaric process, K is thermal

diffusivity, and r is the density of air. From this, following the steps above,

dq

dt
¼ 4pR2rKcp

dT

dR
: ð5:73Þ

At this point, a discontinuity is assumed for the temperature field between

the drop and its environment. To obtain the expression for the diffusion of

heat away from the drop, rearrange (5.73) and integrate both sides,

dq

dt

ðR1

Rr

dR

R2
¼ 4prKcp

ðT1
Tr

dT; ð5:74Þ
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where Tr is temperature at the drop’s surface. Upon integration, the result is,

dq

dt

1

R1

1

Rr

� �
¼ 4prKcp T1 Trð Þ: ð5:75Þ

Assuming 1/R1 is small,

dq

dt
¼ 4pRrrKcp Tr T1ð Þ: ð5:76Þ

Often thermal conductivity is used instead of thermal diffusivity. The rela-

tionship between these two is

k ¼ rKcp; ð5:77Þ
which makes (5.76) equal to

dq

dt
¼ 4pRrk Tr T1ð Þ: ð5:78Þ

Now to balance the heat diffusion associated with enthalpy and that with

temperature differences between the drop surface and at some distance from

the drop (where influence of the drop is not felt) the following is written,

dq

dt
¼ Lv

dM

dt
: ð5:79Þ

Using (5.70) in (5.67) and (5.78) in (5.79), the following can be written,

4pRrk Tr T1ð Þ ¼ 4pRrLvc e1 erð Þ=RvT: ð5:80Þ
This can be simplified to be

e1 erð Þ
T Tr T1ð Þ ¼

Rvk
Lvc

; ð5:81Þ

which at an equilibrium state is the same as the wet-bulb relationship.

Now substituting (5.70) into (5.81) we obtain the following,

Rr
dRr

dt
¼ k Tr T1ð Þ

rLLv
: ð5:82Þ

So, to summarize so far, when the air is saturated with respect to the droplet,

vapor diffuses toward the droplet surface and heat diffuses away from the

droplet surface. Now if the air is unsaturated with respect to vapor pressure

over the droplet surface, then vapor diffuses away from the droplet surface

and heat diffuses toward the droplet surface.

The goal is to represent both of these processes in one rate equation.

Specifically, all terms are desired to be cast as observables.
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Now the rate equation for diffusion without considering enthalpy is (5.70).

Dividing this equation by es;1, which gives

e1 erð Þ
es;1

¼ 1

c
rLRvT

es;1
Rr

dRr

dt

� �
: ð5:83Þ

Now, following Mason (1957) and Byers (1965), the Clausius Clapeyron

equation is integrated for an ideal vapor between es;1 and er, and T1 to Tr,

resulting in

ln
es;r
es;1

� �
¼ Lv

Rv

1

T1

1

Tr

� �
¼ Lv

RvTrT1
Tr T1ð Þ ¼ Lv

RvT21
Tr T1ð Þ; ð5:84Þ

where for multiplication purposes, in the denominator, the temperatures

at R ¼ 1 and R ¼ Rr can be assumed to be given by temperature at infinity

when multiplied together, but not when differences are taken. Next (5.82) is

rearranged,

Tr T1ð Þ ¼ rLLv
k

Rr
dRr

dt

� �
; ð5:85Þ

and (5.85) is substituted into (5.84) so that

ln
es;r
es;1

� �
¼ L2vrL

kRvT2
Rr

dRr

dt

� �
: ð5:86Þ

Now we want to replace the quantity in the natural logarithm in (5.86).

Rewriting (5.83),

e1
es;1

¼ es;r
es;1

þ rLRvT

ces;1
Rr

dRr

dt

� �
: ð5:87Þ

The exponential of both sides of (5.86) is taken,

es;r
es;1

� �
¼ exp

L2vrL
kRvT2

Rr
dRr

dt

� �
; ð5:88Þ

and substituting (5.88) into the first term on the right-hand side of (5.87) and

letting SL ¼ (e1=es;1) be the ambient saturation ratio,

SL ¼ e1
es;1

¼ exp
L2vrL
kRvT2

Rr
dRr

dt

� �
þ rLRvT

ces;1
Rr

dRr

dt

� �
: ð5:89Þ

Now following Byers (1965) we let

x ¼ Rr
dRr

dt
; ð5:90Þ
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so that (5.89) can now be written as

SL ¼ expða00LxÞ þ b00Lx; ð5:91Þ
where, a00L ¼ L2vrL= kRvT

2
� �

, and b00L ¼ rLRvT= ces;1
� �

.

When a00Lx 
 1, (5.91) can be written approximately as, using the expan-

sion of an exponential,

SL ¼ 1þ a00Lxþ b00Lx ¼ 1þ ða00L þ b00LÞx: ð5:92Þ
Using (5.90) and rearranging (5.92) gives a rate equation,

Rr
dRr

dt
¼ ðSL 1Þ

a00L þ b00L
¼ ðSL 1ÞGLðT;PÞ; ð5:93Þ

where the function GL(T, P) is

GLðT;PÞ ¼ 1

rLL
2
v

RvkT2
þ rLRvT

es;1c

: ð5:94Þ

Now (5.66), (5.68) and (5.93) are used to write a mass change rate as

dM

dt
¼ rL4pRrðSL 1ÞGLðT;PÞ ¼ rL2pDrðSL 1ÞGLðT;PÞ; ð5:95Þ

where Dr is the diameter of the drop in (5.95).

The vapor diffusion, mass growth equation also can be derived following

Rogers and Yau (1989), using a linear function for vapor density put forth by

Mason (1971).We start bywriting the steady-state-diffusionmass rate equation as

dM

dt
¼ 4pRrc rv;1 rv;r

� �
; ð5:96Þ

where rv;1 is the vapor density at the ambient temperature and rv;r is the

vapor density over the drop. The steady-state diffusion of heat toward a

particle is given by

dq

dt
¼ 4pRrk Tr T1ð Þ; ð5:97Þ

where Tr is the temperature at the drop’s radius or surface, and T1 is the

ambient temperature. From (5.96) and (5.97) a rate of change of temperature

at the drop’s surface can be given as

4

3
pR3

rrLcpw
dTr
dt

¼ Lv
dM

dt

dq

dt
; ð5:98Þ

where cpw is the specific heat of water at constant pressure.
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But if a steady-state-diffusion process is assumed, dTr/dt = 0, the result is the

following balance relation between the temperature and density fields,

rv;1 rv;r
� �
Tr T1ð Þ ¼ k

Lvc
: ð5:99Þ

At almost all times, the values of Tr and rv,r are unknown. Incorporating the

solute and surface-tension (curvature) terms and the equation of state for

water vapor, it is found that

rv;r ¼
e0s;r
RvTr

¼ 1þ a

Rr

b

R3
r

� �
es;r
RvTr

: ð5:100Þ

In (5.100) it is important to remember that es,r is the equilibrium vapor

pressure over a pure, plane surface. The value of es,r at Tr then can be found

by the Clausius Clapeyron equation. Using (5.99) and (5.100), which are an

implicit simultaneous system of equations, numerical iterative techniques

can be used to find an exact solution to the mass growth rate of the vapor-

diffusion equation.

Alternatively to the numerical method of solution, following Mason (1971)

and, closely, Rogers and Yau (1989), in a field of saturated vapor, changes in

vapor density can be related to temperature differences,

drv
rv

¼ Lv
Rv

dT1
T21

dT1
T1

: ð5:101Þ

Now integrating this equation from temperature Tr to T1 and, assuming

T1=Tr is approximately unity, gives

ln
rv;s;1
rv;s;r

 !
¼ T1 Trð Þ Lv

RvT1Tr

1

Tr

� �
; ð5:102Þ

where the “s” subscript denotes saturation vapor density.

As the ratio of vapor densities is near unity, an approximation can be made

such that

rv;s;1 rv;s;r
rv;s;r

¼ T1 Tr
T1

� �
Lv

RvT1
1

� �
; ð5:103Þ

where the approximation that T1Tr ¼ T2
1 is also used. Now using (5.97) and

(5.98) and substituting for T1 Trð Þ in (5.103) the following results,

rv;s;1 rv;s;r
rv;s;r

¼ 1
Lv

RvT1

� �
Lv

4pRrkT1

� �
dM

dt
; ð5:104Þ
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and using

rv;1 rv;r
rv;r

¼ 1

4pRrcrv;r

 !
dM

dt
; ð5:105Þ

along with the result of subtracting (5.104) from (5.105), the following

approximate relation can be found, after a bit of algebra, assuming that

rv,r ¼ rv,s,r,

Rr
dRr

dt
¼ SL 1ð Þ

Lv
RvT

1
� �

LvrL
kT þ rLRvT

ces

: ð5:106Þ

Note that compared to the rate equation derived using Byers’ approximation

(5.93) and (5.94), this equation has a correction term in the denominator,

which is small compared to the other two terms, and can be retained or

neglected. The mass growth rate approximation, which is needed to produce

a parameterization, is given by

dM

dt
¼ fv2pDrðSL 1ÞG0

LðT;PÞ; ð5:107Þ

where Dr denotes diameter here, and G0
LðT;PÞ is similar to GL(T, P) except

G0
LðT;PÞ has the correction term,

G0 T;Pð Þ ¼ 1

Lv
RvT

1
� �

LvrL
kT þ rLRvT

ces

: ð5:108Þ

5.5 Ventilation effects

In the derivation of a vapor diffusion equation for a liquid sphere, it was

assumed that the drop was stationary, and that the vapor and thermal

gradients around the sphere were symmetric. This is only accurate for a drop

at rest. For falling drops, or drops moving relative to the flow, the vapor and

temperature gradients around the drop are distorted with steeper gradients in

front of a drop falling vertically relative to the flow and weaker gradients

behind the drop. During condensation, energy is convected away from the

drop more efficiently for a drop in motion relative to the flow, and the vapor

supply is enhanced more efficiently than if the drop were stationary. During

evaporation, energy is convected toward the drop more efficiently and vapor

is removed away from the drop more efficiently, when the drop is in motion.

The influences of the flow relative to the drops for steady-state diffusion,

are represented in the mass-growth and energy-flux equations by modifying
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them using empirical formulas to adjust the equations with coefficients. These

coefficients in the empirical formulas are called the ventilation coefficients for

heat, for the heat-flux equation, and for vapor, for the vapor-flux equation.

These coefficients actually arise from including the influences of advection

that were ignored in deriving the vapor-diffusion equation, e.g.

r2rv ¼ ~u � r!rv: ð5:109Þ
The vapor-diffusion rate equation is modified by a vapor ventilation coefficient

by computing the growth of a droplet at rest and the growth of a droplet in

freefall (flow relative to the drop makes the drop appear to be in freefall); and

taking the ratio of the two with the growth rate of the stationary drop in the

denominator and the rate of the falling drop in the numerator. For the vapor

mass equation, the following mass ventilation coefficient is computed using

fv ¼ dM=dt

dM0=dt
¼ mass rate for a falling drop

mass rate for a stationary drop
: ð5:110Þ

The same is done for the heat-flux equation to arrive at a heat ventilation

coefficient,

fh ¼ dq=dt

dq0=dt
¼ heat flux for a falling drop

heat flux for a stationary drop
: ð5:111Þ

The ventilation coefficients are usually parameterized in terms of the Reynolds

number, the Schmidt number, and the Prandtl number, which are all dimen-

sionless numbers. The Reynolds number is the ratio of the inertial to viscous

terms in the velocity equations. The Reynolds number thus is given as

Nre ¼ U1D

v
; ð5:112Þ

where U1 is the terminal velocity of the drop, D is the characteristic diameter

of the drop and v is the kinematic viscosity of air. The Schmidt number is

used in the equation for the vapor ventilation coefficient and is the ratio of

kinematic viscosity to vapor diffusivity and can be written as

Nsc ¼ v

c
; ð5:113Þ

where c is vapor diffusivity. The Prandtl number is used in the equation for

the heat ventilation,

Npr ¼ v

K
; ð5:114Þ

where K is the thermal diffusivity for dry air.
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From these non-dimensional numbers, the following can be derived for

raindrops and similar-sized and larger-sized spheroidal ice particles (Pruppa-

cher and Klett 1997). For vapor ventilation equations, there are the following

two conditions,

fv ¼ 1þ 0:108 N
1=3
sc N

1=2
re

� �2
for N

1=3
sc N

1=2
re < 1:4

fv ¼ 0:78þ 0:308N
1=3
sc N

1=2
re for N

1=3
sc N

1=2
re > 1:4:

8<
: ð5:115Þ

For heat ventilation equations, there are also the following two conditions,

fh ¼ 1þ 0:108 N
1=3
pr N

1=2
re

� �2
for N

1=3
pr N

1=2
re < 1:4

fh ¼ 0:78þ 0:308N
1=3
pr N

1=2
re for N

1=3
pr N

1=2
re > 1:4:

8<
: ð5:116Þ

When solving for the diffusion-growth equation (5.95) or (5.107), it is

assumed that

fv � fh; ð5:117Þ
which is a reasonably good first guess.

With the ventilation coefficient, the mass growth equations (5.95) or (5.107),

respectively, are written as,

dM

dt
¼ rL2pDrðSL 1ÞGLðT;PÞfv; ð5:118Þ

or

dM

dt
¼ rL2pDrðSL 1ÞG0

LðT;PÞfv: ð5:119Þ

5.6 Curvature effects on vapor diffusion and Kelvin’s law

In this section, curvature effects are considered. Embryonic droplets nucle-

ated on very small aerosols or nucleated homogeneously are small enough

that curvature effects related to the radii of the droplet, and surface tension,

which is a function of temperature, must be included. Forces that bind water

molecules together [O(10 1000) molecules] of newly nucleated embryonic

droplets require higher vapor pressure and thus greater supersaturation

to grow (supersaturation S > 1.5 to 5); they also lose water molecules more

easily than droplets with larger radii owing to weaker net forces of hydrogen

bonds holding the water embryo together. In addition, the higher the surface

tension the more easily molecules may desorb from droplets. Thus, it is found

that the equilibrium saturation vapor pressure over a very small drop is much
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larger than that for bigger droplets for a given surface tension. Droplets

smaller than a critical radius will evaporate or break apart owing to collisions

by other water molecules or clusters of molecules, whilst larger droplets than

this critical radius will continue to grow as the internal forces holding the

droplet together are strong enough to withstand collisions with clusters of

other water molecules.

To account for curvature effects, the surface tension of the particle must

be considered. The rate of growth depends on partial pressure of vapor in

the ambient, which determines the impact rate of vapor molecules on the

droplets. The decay rate is controlled by surface tension and to a greater

degree by the temperature. This is because embryonic droplets that make up

these droplets must contain enough binding energy through hydrogen bonds

to withstand breakup by thermal agitation against the surface tension at the

droplet’s surface. The surface tension is the free energy per unit area of some

substance, such as water, and is also defined as the work per unit area

required to extend the surface of the droplet. Work per unit area is force

times distance per unit area with units of J m 1. The surface tension of droplets,

as given between a water air interface, sL/a, is temperature dependent, and

decreasing with increasing temperature according to

sL=a ¼ 0:0761 0:00155 T 273:15ð ÞNm 1: ð5:120Þ
Other values of surface tension for solutes can be found in Pruppacher and

Klett (1997). Molecules can leave the surface of smaller droplets much more

easily than from larger droplets with smaller droplets thus requiring larger

equilibrium supersaturations with respect to planar surfaces. When a droplet

is in equilibrium with its environment, it is losing as many water molecules as

it is gaining. Critical-sized droplets are formed by random collisions of vapor

molecules, and if they become supercritical they will continue to grow spon-

taneously. If they do not reach a critical size, then they fall apart through

collisions by other vapor molecules (clusters) as the free energy needed from

excess water vapor in the environment is not sufficient to expand the surface

of the droplets. The equilibrium vapor pressure for this state is given by,

es;r ¼ es;1 exp
2sL=a

RRvrLTr

� �
; ð5:121Þ

where es,r is the saturation vapor pressure over a spherical droplet with radius r,

temperature Tr, density rL and surface tension sL/a. The variable es,1 is the

saturation vapor pressure over a bulk planar surface of infinite length and

width. As the droplet size decreases, the supersaturation or vapor pressure for

equilibrium increases and vice versa. From (5.121) a critical radius rcritical for
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equilibrium can be derived for any supersaturation. With St = es,r/es,1, the

critical radius is given by Kelvin’s law, which includes curvature effects,

rcritical ¼
2sL=a

RvrLTr ln SL

� �
: ð5:122Þ

When rcritical is exceeded, then the droplet will grow, and when r is less than

rcritical, the droplet will evaporate as molecules desorb from the surface.

5.7 Solute effects on vapor diffusion and Raoult’s law

The results in previous subsections of this chapter were obtained with the

assumption that planar surfaces were free of solutes, which are substances

dissolved in water.

The presence of solutes generally lowers the equilibrium vapor pressure

over a droplet. The equilibrium vapor pressure occurs in part as a result of

water molecules at the surface of the drop being replaced by molecules of the

solute. For planar water surfaces, we start with the following equation to

estimate the reduction in equilibrium vapor pressure for dilute solutions,

e0r
es;r

¼ n0
n0 þ n

; ð5:123Þ

where e0r is the equilibrium vapor pressure over a solution with n0 molecules

of water and n molecules of a solute (Rogers and Yau 1989). For n 
 n0, or

for dilute solutions, (5.123) reduces to the following,

e0r
es;1

¼ 1
n

n0
: ð5:124Þ

Some solutions break up into ionic components by ionic dissociation.

The effect is that there are more ions than molecules in the solute. As a result,

n in (5.124) needs to be modified by i, the poorly understood van’t Hoff

factor, the number of effective ions, which approximates ionic availability.

For sodium chloride, for example, i is approximately 2 (Low 1969; Rogers

and Yau 1989). For ammonium sulfate, i is approximately 3. For solutes that

do not dissociate, i ¼ 1. So the more a substance dissociates, the lower the

equilibrium vapor pressure for a given droplet size. With i, using Avogadro’s

number N0 (molecules per mole), and solute of mass M and molecular weight

ms, n becomes

n ¼ iN0M

ms
; ð5:125Þ
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and with water spheres with molecular weight mw, and mass Mw, the number

of water molecules n0 can be expressed as

n0 ¼ N0Mw

mw
: ð5:126Þ

Now a factor b0 can be written where,

b0 ¼ 3imvM

4prLms
: ð5:127Þ

An expression can also be written for solute effects using (5.124) (5.127) as

e0r
es;1

¼ 1
b0

R3
r

; ð5:128Þ

which is Raoult’s law.

5.8 Combined curvature and solute effects and the Kohler curves

Both the curvature and solute effects can be combined as the following

families of curves called the Kohler curves,

e0s;r
es;1

¼ 1
b0

R3
r

� �
exp

a0

Rr

� �
; ð5:129Þ

with a0 given as

a0 ¼ 2sL=a
rLRvT

: ð5:130Þ

Using the series approximation for an exponential and neglecting higher-

order terms, the expression given by (5.129) can be reduced to

e0s;r
es;1

¼ 1þ a0

Rr

b0

R3
r

� �
: ð5:131Þ

The curves of this equation show that at small radii, solute effects dominate,

sometimes so much so that equilibrium occurs at S< 1. As the radius increases,

new equilibrium values will be established. This continues until the critical

radius is reached, if it ever is. The critical radius occurs at

rcritical ¼ 3b0

a0

r
: ð5:132Þ

This value is achieved by taking the derivative of (5.131), setting it equal to

zero, and solving for Rr = rcritical. Once the critical radius is reached, the
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smallest amount of increase in S will lead to unstable growth of the droplet

solute. This critical saturation Scritical value also can be written as follows,

SL
critical

¼ 1þ 4a03

27b0

r
: ð5:133Þ

The vapor-diffusion equations with saturation vapor equations adjusted for

curvature and solute effects for liquid water are now given. The vapor-

diffusion equations (5.118) and (5.119) including the Kohler-curve effects

and ventilation effects are

dM

dt
¼ rL2pDr SL 1ð Þ a0

Rr
þ b0

R3
r

� �
GL T;Pð Þfv; ð5:134Þ

or, after Mason (1971) and Rogers and Yau (1989),

dM

dt
¼ rL2pDr SL 1ð Þ a0

Rr
þ b0

R3
r

� �
G0

L T;Pð Þfv: ð5:135Þ

5.9 Kinetic effects

Only the very basics of kinetic effects are covered here. A more complete

discussion would require a more formal analysis in the physics and energetics

of condensation and evaporation (Pruppacher and Klett 1997; Young 1993).

Heat, mass, and momentum transfer between small aerosols, droplets, or

small pristine crystals, and molecules of water vapor in the environment,

depend on the Knudsen number, Nkn; this was defined earlier as the ratio

of the mean free path, l, in the atmosphere, which is about 6 � 10 8 m at sea-

level pressure and temperature, to the radius of the particle. The value of l is

the distance a molecule will travel on average before colliding with another

molecule and exchanging momentum. It also can be written as being depend-

ent upon temperature T and inversely on atmospheric pressure P. For very

small particles such as small aerosols, where, Nkn	 1, the theory of molecular

collisions holds; for larger droplets, when the Nkn 
 1 and the continuum

approximations of Maxwell hold, the heat- and mass-transfer equations

developed earlier for diffusional growth are valid. At the size at which water

droplets are just nucleated, typically radii of 0.1 to 1.0 micron, Nkn is O(1) for

which both previously mentioned theories break down. As a result, approxi-

mate relationships were developed to account for kinetic effects for very small

droplets to be incorporated into the diffusional growth equations.

For mass growth, a factor called the condensation coefficient, b, for vapor
was found experimentally (see Pruppacher and Klett 1997). With a water
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drop in an air and vapor mixture interface environment, a fraction of impinging

molecules actually are incorporated into the drop (condensed). The conden-

sation coefficient is approximately 0.01 to 0.07 with an average of 0.026 to

0.035; a list of experimental results for this coefficient can be found in

Pruppacher and Klett (1997). A length scale lb as a function of b (Rogers

and Yau 1989) was found experimentally to be

lb ¼ c
b

2p
RvT

� �1=2
: ð5:136Þ

This normalization factor can be used to include kinetic effects of vapor

within a distance approximated by the mean free path of air from the droplet,

g bð Þ ¼ Rr

Rr þ lb
; ð5:137Þ

so that the mass-transfer equation including kinetic effects, which holds for

very small drops is given by

dM

dt
¼ 4pRrcg bð Þ rv rv;r

� �
: ð5:138Þ

Notice that this equation reverts back to (5.96) when Rr becomes large

compared to lb. Similarly an accommodation coefficient, a, was developed

and described by Rogers and Yau (1989) and Pruppacher and Klett (1997) as

approximating the fraction of molecules bouncing off the drop and acquiring

the temperature of the drop. The definition of a is given below, and is found

to be approximately unity (or near 0.96),

a ¼ T0
2 T1

T2 T1
; ð5:139Þ

where T0
2 is approximately the temperature of vapor molecules leaving

the surface of the liquid, T2 is the temperature of the liquid, and T1 is the

temperature of the vapor. Similar to the mass-growth rate equation, the

heat-transfer rate can be written in a form such that in the limit when larger

droplets exist the coefficient converges to 1, and the Maxwell continuum

theory prevails. The factor is defined as

f að Þ ¼ Rr

Rr þ la
; ð5:140Þ

and la is given by

la ¼ k
ap

� �
2pRdTð Þ1=2
cv þ Rd=2ð Þ : ð5:141Þ
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In general, most bulk parameterizations do not include kinetic effects; these

are only important for very small droplets, which grow within a very short

period of time, on O(10) s, by diffusional growth, to sizes where the kinetic

effects are very small. If kinetic effects are included, the GL(T, P) and G
0
L(T, P)

are given as,

GLðT;PÞ ¼ 1

rLL
2
v

RvkT21 f að Þ þ
rLRvT1
escg bð Þ

¼ 1

rLL
2
v

RvkT21f að Þ þ
rL

rQSLcg bð Þ
ð5:142Þ

G0
L T;Pð Þ ¼ 1

Lv
RvT

� 1

� �
LvrL
kTf að Þ þ

rLRvT

cesg bð Þ
¼ 1

Lv
RvT

� 1

� �
rLLv
kTf að Þ þ

rLRvT

cesg bð Þ
: ð5:143Þ

Normally GL(T, P) and G0
L(T, P) are multiplied through by rL eliminating it in

the denominator.

5.10 Higher-order approximations to the mass tendency equation

Higher than first-order, linear-function approximations for saturation vapor

density were first used by Srivastava and Coen (1992) under the assumption

of steady-state diffusion conditions, where the rate increase of mass M for a

particle of radius r is

dM

dt
¼ 4pRrcfv rv;1 rv;r

� �
: ð5:144Þ

In (5.144), rv,1 is the ambient vapor density and rv,r is the vapor density at

the particle surface. With steady-state conditions assumed, the rate at which

energy is released or absorbed by condensation/deposition or evaporation/

sublimation is equal to the rate at which it is conducted away from/toward

a particle, which is written as

Lv
dM

dt
¼ 4pRrkfh Tr T1ð Þ ¼ 4pRrkfhDT; ð5:145Þ

where fh is the ventilation for heat.

Similarly to the solution method presented previously, to solve (5.144) and

(5.145), c and k need to be evaluated at appropriate temperatures and pres-

sures; for simplicity this has been done at ambient temperatures (Srivastava

and Coen (1992) and others). Neglecting kinetic effects results in minor short-

comings compared to the improvement of using the higher-order approxi-

mation approach to reduce the error over the traditional linear-difference

approximations. Heat storage and radiative effects are ignored here as well

124 Vapor diffusion growth of liquid-water drops



(Srivastava and Coen 1992). Some debate exists in the literature concerning the

use of simple expressions for thermodynamic functions such asK,c, Lv, etc., but
Srivastava and Coen (1992) showed these errors to be rather insignificant

compared to the improvements made by their higher-order approximations.

As given in Srivastava and Coen (1992), the vapor density at the surface of

a particle is

rr ¼ rs;r 1þ sr½ �; ð5:146Þ

which can be written for sr in terms of the vapor density ratio minus one, i.e.

sr ¼ rr
rs;r

1

" #
ð5:147Þ

where sr is the equilibrium supersaturation over a particle with surface

tension and solute effects included. With iterative numerical techniques the

above three implicit equations (5.144), (5.145), and (5.146) can be solved for

an exact solution. This is an unattractive approach for numerical models, so

modelers usually make vapor-density difference a linear function of tempera-

ture following Fletcher (1962 ), Mason (1971), Pruppacher and Klett ( 1978,

1997), and Rogers and Yau (1993 ),

rs;r � rs;1 þ
] rs;1
� �
]T

DT; ð5:148Þ

in a similar manner to the method presented above.

Using (5.146) and (5.148), the following can be solved for temperature

difference,

DTð Þ1¼
rs

] rs;1
� �
]T

g
1þ g

s srð Þ: ð5:149Þ

The mass-growth rate (5.144) becomes

dM

dt

� �
1

¼ 4pRrcfvrs;1
1þ g

s srð Þ; ð5:150Þ

where the following dimensionless parameter g is defined as

g 
 Lvc
k

fv
fh

] rs;1
� �
]T

: ð5:151Þ
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In the equations above, the variable “s” is the ambient supersaturation given as

s ¼ r1
rs;1

1

" #
; ð5:152Þ

or

r1 ¼ rs;1 1þ sð Þ: ð5:153Þ
In the case of (5.150), “1” denotes a linear function of temperature difference

and is used in approximating the saturation vapor density at a drop’s surface.

The accuracy of (5.150) depends on the accuracy of (5.148). Srivastava and

Coen (1992) show that for very warm and dry conditions, such as those with

dry microbursts, tremendous temperature deficits can occur between particle

and the air around the droplet (Fig. 5.1); the linear function approximation

(5.150) will begin to fail, and will result in even worse errors from the exact

iterative solution (5.144) (5.146) where sr ¼ 0. The curves in Fig. 5.1 are for

the evaporation of raindrops for two ambient pressures. Equation (5.150)

always results in an underestimate of evaporation rate.

To relax this error and obtain a better solution, an additional term is added

to the saturation vapor-density function approximation (5.148) to make it

second order,
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Fig. 5.1. Error in the rate of evaporation of raindrops from the exact solution
as a function of air temperature for selected relative humidities using the
traditional equations (solid lines 1000 mb; dashed lines 600 mb). (From
Srivastava and Coen 1992; courtesy of the American Meterological Society.)
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rs;r � rs;1 þ ] rs;1
� �
]T

DT þ 1

2!

]2 rs;1
� �
]T2

DTð Þ2þ : : : ð5:154Þ

Now, as described by Srivastava and Coen (1992) the dM/dt is eliminated

between (5.144) and (5.145) and (5.146) and (5.154) are used to obtain the

following quadratic for the temperature difference,

1

2rs

]2 rs;1
� �
]T2

DTð Þ2þ 1

rs

1þ g
g

� �
] rs;1
� �
]T

s srð Þ ¼ 0: ð5:155Þ

The solution for the temperature difference is given after some algebra as

DT ¼
] rs;1ð Þ

]T

]2 rs;1ð Þ
]T2

1þ g
g

� �
�1� 1þ g

1þ g

� �2 ]2 rs;1ð Þ
]T2

] rs;1ð Þ
]T

rs;1
� �
] rs;1ð Þ

]T

s� srð Þ
2
4

3
5
1=2

8><
>:

9>=
>;: ð5:156Þ

Now, with a lot of algebra, and expanding the square root to terms of the

order of (s sr)
2, the second-order temperature difference equation is

DTð Þ2 ¼
rs

] rs;1ð Þ
]T

g
1þ g

� �
s srð Þ 1 a s srð Þ½ �

¼ DTð Þ1 1 a s srð Þ½ �;
ð5:157Þ

and the second-order mass rate equation is

dM

dt

� �
2

¼ 4pRrcfv rs;1
� �

1þ g
s srð Þ 1 a s srð Þ½ �

¼ dM

dt

� �
1

1 a s srð Þ½ �:
ð5:158Þ

In (5.157) and (5.158), a is given as

a 
 1

2

g
1þ g

� �2 ]2 rs;1ð Þ
]T2

] rs;1ð Þ
]T

rs;1
� �
] rs;1ð Þ

]T

: ð5:159Þ

Even higher-order equations can be found that are more accurate than

(dM/dt)2 given in (5.158) by expanding the square root to terms of (s sr)
3

and (s sr)
4. These are given by Srivastava and Coen (1992) as

dM

dt

� �
3

¼ dM

dt

� �
1

1 a s srð Þ þ 2a2 s srð Þ2
h i

ð5:160Þ

5.10 Higher-order approximations 127



and

dM

dt

� �
4

¼ dM

dt

� �
1

1 a s srð Þ þ 2a2 s srð Þ2 5a3 s srð Þ3
h i

; ð5:161Þ

for third- and fourth-order expansions. Users of these higher-order expan-

sions should refer to Srivastava and Coen (1992, pp. 1645 1646) for further

information about solutions to the positive root versus the negative root in

(5.156). Under certain conditions (very warm and very dry) the argument of

the square root may be negative.

Figure 5.2 shows the temperature difference between equation (5.158) and

the exact solution (5.144) (5.146) as a function of air temperature for certain

relative humidities and two pressures, 1000 mb and 600 mb. Here the percent

errors are generally much lower than the case in Fig. 5.1 (notice the change in

scale in the ordinate). Again in extremely warm and dry conditions, errors

become large and unacceptable.
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solution as a function of air temperature for selected relative humidities
using the second-order equations (solid lines 1000 mb; dashed lines 600 mb).
(From Srivastava and Coen 1992; courtesy of the American Meteorological
Society.)
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The use of equation (5.160) results in the errors shown in Fig. 5.3 (note that

fourth order doesn’t gain much accuracy over the third order). In this case,

clearly the use of higher-order equations has a significant impact on the percent

errors. Even under the most extreme conditions, errors are 5% or less. There-

fore, the use of equation (5.160) over the equation (5.150) is indicated since it is

only slightly more complex and has significantly more accuracy.

5.11 Parameterizations

5.11.1 Gamma distribution

For the vapor diffusion of liquid water particles, the basic equation that is

solved is

dM

dt
¼ 4pDr SL 1ð Þfv

L2v
krRvT2 þ 1

rcQSL

� � ; ð5:162Þ
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where QSL is the saturation ratio with respect to the liquid. To parameterize

this equation for say, a modified gamma distribution (2.26), the mass change

equation owing to vapor diffusion is written as

1

r

ð1
0

dMðDxÞnðDxÞ
dt

dDx ¼ 1

r

ð1
0

2pDx SL 1ð ÞGLðT;PÞ

� 0:78þ 0:308N1=3
sc N1=2

re

� �
nðDxÞdDx;

ð5:163Þ

where Dx is the diameter of some hydrometeor species x. Substitution of

(2.25), the complete gamma distribution for n(Dx) into (5.163) gives

QxCEv ¼ 1

r0

ð1
0

2pDx SL 1ð ÞGLðT;PÞ

� 0:78þ 0:308N1=3
sc

DxVTx

nx

� �1=2 r0
r

� �1=4" #

� NTxmxa
nx
x

� nxð Þ
Dx

Dnx

� �nxmx 1

exp ax
Dx

Dnx

� �mx� �" #
d

Dx

Dnx

� �
:

ð5:164Þ

Integrating gives the desired generalized gamma distribution parameterization

equation for vapor-diffusion growth, assuming that terminal velocity is given

by the following power law,

VT Dxð Þ ¼ cxD
dx

r0
r

� �1=2
: ð5:165Þ

The complete gamma distribution solution is given by

QxCEv ¼ 1

r0
2p SL � 1ð ÞGLðT;PÞNTxanxx

� nxð Þ

� 0:78
� 1þnxmx

mx

� �
a

1þnxmx
mx

� �
x

Dnx þ 0:308�

3þdx
2mx

þ mxvx
mx

� �
a

3þdx
2mx

þmxvx
mx

� �
x

N1=3
sc n 1=2

x c1=2x D
3þdx
2

nx
r0
r

� �1=42
4

3
5;
ð5:166Þ

whilst the modified gamma distribution solution is

QxCEv ¼ 1

r0
2p SL 1ð ÞGLðT;PÞ NTx

� nxð Þ

� 0:78�
1þ nxmx

mx

� �
Dnx þ 0:308�

3þ dx
2mx

þ mxvx
mx

� �
N1=3
sc n�1=2

x c1=2x D
3þdx
2

nx
r0
r

� �1=4" #
;

ð5:167Þ
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and the gamma distribution solution is

QxCEv ¼ 1

r
2p SL � 1ð ÞGLðT;PÞ NTx

� nxð Þ

� 0:78� 1þ nxð ÞDnx þ 0:308�
3þ dx

2
þ vx

� �
N1=3
sc n 1=2

x c1=2x D
3þdx
2

nx
r0
r

� �1=4" #
;

ð5:168Þ

where CEv is the condensation or evaporation of vapor. After a cloud droplet

is nucleated, it grows by vapor diffusion until it is large enough to grow mostly

by coalescence. For cloud drops with diameters less than 120 microns, the

following parameterized diffusion growth equations can be used (Pruppacher

and Klett 1997) assuming a ventilation coefficient of

fv ¼ 1þ 0:108 N1=3
sc N1=2

re

� �2
: ð5:169Þ

Thus, the complete gamma distribution solution is

QxCEv ¼ 1

r
2p SL � 1ð ÞGLðT;PÞNTxanxx

� vxð Þ

� 1:0
� 1þnxmx

mx

� �

a
1þnxmx

mx

� �
x

Dnx þ 0:108
� 3þdx

mx
þ nxmx

mx

� �

a
3þdx
mx

þ nxmx
mx

� �
x

N2=3
sc n 1

x cxD
3þdx
nx

r0
r

� �1=22
664

3
775;

ð5:170Þ

whilst the modified gamma distribution solution is given by,

QxCEv ¼ 1

r
2p SL � 1ð ÞGLðT;PÞ NTx

� vxð Þ

� 1:0�
1þ nxmx

mx

� �
Dnx þ 0:108�

3þ dx
mx

þ nxmx
mx

� �
N2=3
sc n 1

x cxD
3þdx
nx

r0
r

� �1=2" #
;

ð5:171Þ

and the gamma distribution solution is,

QxCEv ¼ 1

r
2p SL � 1ð ÞGLðT;PÞ NTx

� vxð Þ

� 1:0� 1þ nxð ÞDnx þ 0:108� 3þ dx þ nxð ÞN2=3
sc n 1

x cxD
3þdx
nx

r0
r

� �1=2" #
:

ð5:172Þ

The change in number concentration during evaporation is a complicated

issue in many regards. There is no change in number concentration during

condensation. For simplicity, many assume that the number concentration

change is related to the mixing ratio change as follows,
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NTxCEv ¼ NTx

Qx
QxCEvð Þ; ð5:173Þ

where (QxCE) is found from the above equations.

There are problems with this formulation in that it really does not capture

the nature of the number of droplets that evaporate. An alternative is pre-

sented below. Starting with the equation for rate of change of radius, the

ventilation coefficient is set to one, and it is assumed that only the very

smallest drops are fully evaporating,

Rr
dRr

dt
¼ ðSL 1ÞGLðT;PÞ: ð5:174Þ

From (5.174), it can be written that

ð0
Rmax

Rr
dRr

dt
dt ¼

ðt Dt

t 0

ðSL 1ÞGLðT;PÞdt: ð5:175Þ

Now Rmax is the largest remaining drop after t seconds of evaporation and is

R2
max

2
¼ ðSL 1ÞGLðT;PÞDt; ð5:176Þ

or

Dmax ¼ 8ðSL 1ÞGLðT;PÞDt½ �1=2: ð5:177Þ
With thisDmax, one can integrate the number of particles in the distribution that

will evaporate completely so that a distribution of sizes from0 to1 is recovered,

dNTx;evap

dt
¼ NTx

Dt� vxð Þ� vx;
Dx;max

Dnx

� �
: ð5:178Þ

5.11.2 Log-normal distribution

Start with the vapor diffusion equation for liquid,

1

r

ð1
0

dMðDxÞnðDxÞ
dt

dDx ¼ 1

r

ð1
0

2pDx SL 1ð ÞGLðT;PÞfvnðDxÞdDx: ð5:179Þ

The log-normal distribution spectrum is defined as

nðDxÞ ¼ NTx

2p
p

sxDx

exp
½lnðDx=DnxÞ�2

2s2x

 !
: ð5:180Þ
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The prognostic equation for the mixing ratio, Qx, for vapor diffusion can be

written as

QvCEx ¼ dQx

dt
¼ 1

r

ð1
0

2pðSL 1ÞGLðT;PÞ

� 0:78þ 0:308N1=3
sc

cx
nx

r0
r

� �1=2

Ddxþ1
x

" #1=28<
:

9=
;DxnðDxÞdDx;

ð5:181Þ

where Nsc is the Schmidt number, nx is the viscosity of air, r is the density of

air, and r0 is the mean density at sea level for a standard atmosphere.

Expanding (5.181) results in two integrals,

QvCEx ¼ 2pðSL � 1ÞGLðT;PÞ
r

�
ð1
0

0:78DxnðDxÞdDx þ
ð1
0

0:308N1=3
sc

cx
vx

r0
r

� �1=2

Ddxþ1
x

" #1=2
DxnðDxÞdDx

8<
:

9=
;:

ð5:182Þ

Substituting (5.180) into (5.182) gives

QvCEx ¼ 2pðSL � 1ÞGLðT;PÞ
r

0:78NTx

2p
p

sx

ð1
0

exp � ½lnðDx=DnxÞ�2
2s2x

 !
dDx

8<
:

þ cx
nx

� �1=2 r0
r

� �1=4

0:308N1=3
sc D

dxþ3
2ð Þ

nx

ð1
0

Dx

Dnx

� �dxþ1
2

exp � ½lnðDx=DnxÞ�2
2s2x

 !
dDx

9=
;:

ð5:183Þ

All Dx terms are divided by Dnx for each of the two integrals,

QvCEx ¼ 2pðSL 1ÞGLðT;PÞ
r

NTx

2p
p

sx
0:78Dnx

ð1
0

exp
½lnðDx=DnxÞ�2

2s2x

 !
d

Dx

Dnx

� �8<
:

þ cx
nx

� �1=2 r0
r

� �1=4

0:308N1=3
sc D

dxþ3
2ð Þ

nx

ð1
0

Dx

Dnx

� �dxþ1
2

exp
½lnðDx=DnxÞ�2

2s2x

 !
d

Dx

Dnx

� �9=
;:

ð5:184Þ
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We now let u = Dx/Dnx,

QvCEx ¼ 2pðSL 1ÞGLðT;PÞ
r

NTx

2p
p

sx
0:78Dnx

ð1
0

exp
½ln u�2
2s2x2

 !
du

8<
:

þ cx
nx

� �1=2 r0
r

� �1=4
0:308N1=3

sc D
dxþ3
2ð Þ

nx

ð1
0

u
dxþ1
2ð Þ exp ½ln u�2

2s2x

 !
du

9=
;:

ð5:185Þ

By, letting y = ln(u), u = exp(y), du/u = dy, so,

QvCEx ¼ 2pðSL � 1ÞGLðT;PÞ
r

NTx

2p
p

sx
0:78Dnx

ð1
1
expðyÞ exp � y2

2s2x

� �
dy

8<
:

þ cx
nx

� �1=2 r0
r

� �1=4
0:308N1=3

sc D
dxþ3
2

nx

ð1
1
exp

dx þ 3

2
y

� �
exp � y2

2s2x

� �
dy

9=
;;

ð5:186Þ

where the limits of the integral change as u approaches zero from positive

values, ln(u) approaches negative infinity. Likewise, for the upper limit, as

u approaches positive infinity, ln(u) approaches positive infinity.

Now the following integral definition is applied:ð1
1
expð2b0xÞ expð a0x2Þdx ¼ p

a0

r
exp

b02

a0

� �
; ð5:187Þ

by allowing y= x, and for the first integral, a0 = 1/(2s2), b0 =1/2, and for the

second integral, a0 = 1/(2s2), b0 = (d þ 3)/4. Therefore, (5.186) becomes the

prognostic equation for Qx for the vapor-diffusion process assuming a log-

normal distribution,

QvCEx ¼ 2pðSL 1ÞGLðT;PÞNTx

r

(
0:78Dnx exp

s2x
2

� �

þ cx
nx

� �1=2 r0
r

� �1=4
0:308N1=3

sc D
dxþ3
2ð Þ

nx exp
dx þ 3ð Þ2s2x

8

 !)
:

ð5:188Þ

5.12 Bin model methods to vapor-diffusion mass gain and loss

5.12.1 Kovetz and Olund method

To accommodate the mass transfer with mass gain and loss owing to vapor-

diffusion processes, the constraint is that the mass must be conserved, as

expressed by

134 Vapor diffusion growth of liquid-water drops



ð1
0

nðMÞdM ¼ constant; ð5:189Þ

where accommodations need to be made for complete evaporation.

The general form of the vapor-diffusion gain and loss transfer equation is

given as

]nðMÞ
]t

¼ ]

]M
nðMÞdM

dt

� �
; ð5:190Þ

where, n(M) is the number of particles of mass M. One of the most commonly

used schemes in the 1970s was the Kovetz and Olund (1969) scheme. Gener-

ally, the starting place is to compute the diffusion growth dM/dt as in (5.190).

Then, the following can be written using index J to indicate the bin to which a

droplet belongs, and the mass of droplets M(J) within that bin, to predict an

intermediate value of M,

M0ðJÞ ¼ MðJÞ þ Dt
dM

dt

� �
J

: ð5:191Þ

The new n(J) at t = t þ 1 is computed from the latest n*(J) by

n�� Jð Þ ¼
XJ
J0

R J; J0ð Þn� J0ð Þ; ð5:192Þ

with R J; J0ð Þ defined by

R J; J0ð Þ ¼

M0 Jð Þ MðJ 1Þ
M Jð Þ MðJ 1Þ for M J 1ð Þ < M0 J0ð Þ < M Jð Þ

M J þ 1ð Þ M0ðJÞ
M J þ 1ð Þ MðJÞ for M Jð Þ < M0 J0ð Þ < M J þ 1ð Þ:

0 for all other cases

8>>>>><
>>>>>:

ð5:193Þ

This scheme by Kovetz and Olund satisfies the constraint (5.189).

5.12.2 The Tzivion et al. method

The procedure of Tzivion et al. (1989) begins in a similar manner to the Kovetz

and Olund (1969) method with the general form of the vapor-diffusion mass

gain and loss transfer equation given as

]nðMÞ
]t






evap;cond

¼ ]

]M
nðMÞdM

dt

� �
; ð5:194Þ
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for which there is an analytical solution (see Appendix B of Tzivion et al. 1989).

In (5.194), the following describes the change inmass with time for a single drop,

dM

dt






evap;cond

¼ C P;Tð ÞDSM1=3; ð5:195Þ

where the specific humidity surplus is denoted by DS, and C(P, T) is a known

function of pressure and temperature.

If DS< 0 then evaporation occurs, and if DS> 0, condensation occurs. The

term C(P, T) is similar in many ways to G(T, P) or G0(T, P) in the evaporation

term for bulk parameterization. The analytical solution, presented in Tzivion

et al. (1989) is given without derivation here as

nðM; tÞ ¼ M 1=3 M2=3 2

3
t

� �1=2" #
� nt 0 M2=3 2

3
t

� �3=2" #
; ð5:196Þ

where nt¼ 0 is the initial drop distribution.

The variables t and t* are given by

t ¼
ðt
0

C P; Tð ÞDS tð Þdt ð5:197Þ

and

t� ¼
ðtþD

t

C P;Tð ÞDS tð Þdt: ð5:198Þ

Now following Tzivion et al. (1989) and integrating n(M, t) on the interval

given by xk; xkþ1½ �, the following equations for the zeroth and first moment

can be found,

Nk tþ Dtð Þ ¼
ðykþ1

yk

nk M; tð ÞdM ð5:199Þ

and

Ik tþ Dtð Þ ¼
ðykþ1

yk

M2=3 þ 2

3
t�

� �3=2" #
nk M; tð ÞdM: ð5:200Þ

The variables yk and yk+1 (limits of integration) are defined as

yk ¼ x
2=3
k

2

3
t�

� �3=2
ð5:201Þ
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and

ykþ1 ¼ x
2=3
kþ1

2

3
t�

� �3=2
: ð5:202Þ

Tzivion et al. describe the physical interpretation as the following. Start with

a category (k) with bounds given by xk; xkþ1½ �. Next determine the region

yk; ykþ1½ � that encompasses all of these particle sizes, which will get smaller

by evaporation or get larger by condensation in time increment Dt and fall

into the region xk; xkþ1½ �.
As the integrals for the zeroth and first moments do not span entire

categories xk; xkþ1½ �, the method used for collection is employed. This follows as

Mjnk M; tð Þ ¼ xjk fk tð Þ xkþ1 M

xkþ1 xk

� �
þ x j

kþ1gk tð Þ M xk
xkþ1 xk

� �
; ð5:203Þ

where fk(t) and gk(t) are values of nk atM ¼ xk andM ¼ xk+1, respectively. This

can be substituted directly into the zeroth-moment equation, (5.199). The

first-moment equation above can be solved by multiplying and dividing the

integrand in (5.200) by M, which gives

Ik tþ Dtð Þ ¼
ðykþ1

yk

M2=3 þ 2

3
t�

� �3=2 Mnk M; tð Þ
M

dM: ð5:204Þ

To get the solution, realize that Mnk(M, t) is linear in M, so the following

integrals have to be solved to complete the system of solutions for the first

moment

ðykþ1

yk

M2=3 þ 2
3 t

�� �3=2
M

dM ð5:205Þ

and

ðykþ1

yk

M2=3 þ 2

3
t�

� �3=2
dM: ð5:206Þ

These integrals have analytical solutions given in Tzivion et al. (1989). The

performance of the two-moment scheme in finite difference form (5.199),

(5.203) and (5.204) against the analytical solution (5.196) for an initial gamma

distribution shows excellent agreement (Fig. 5.4) for an environment charac-

terized by 50% relative humidity after 20 minutes.

5.12 Bin model methods to vapor-diffusion mass gain and loss 137



5.13 Perspective

Nearly two decades ago Srivastava (1989) made an argument for not using

macroscale supersaturation as in traditional diffusion theories, such as the

ones explained in this chapter (as in Byers 1965; and Rogers and Yau 1989),

and even in Srivastava and Coen’s (1992) own work. Rather he advocated

using microscale approximations to supersaturations. These are of a form

such that turbulent fluctuations are taken into account. Srivastava (1989) did

realize in the end that his approach of attempting to include microscopic

turbulence would be exceptionally complex to derive and program, but also

exceptionally computationally intensive. It was noted that equations could be

developed for bin microphysical parameterizations and bulk microphysical

parameterizations. He hoped that one day a simpler representation of the

concept of including microscopic supersaturation influences on droplet growth

might be found for both bulk and bin microphysical parameterizations.
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Fig. 5.4. An analytical solution to the evaporation equation as compared
with the proposed approximation after 20 minutes of evaporation in a
subsaturated environment of 50% relative humidity. The category drop
concentration, Nk, is normalized by the initial drop concentration. (From
Tzivion et al. 1989; courtesy of the American Meteorological Society.)
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6

Vapor diffusion growth of ice-water
crystals and particles

6.1 Introduction

After the nucleation of an ice-water particle or crystal, the addition of ice

mass to the particle or crystal owing to supersaturation with respect to ice is

called deposition. Furthermore, the loss of ice mass from an ice-water

particle or crystal owing to subsaturation with respect to ice is called sublim-

ation. Together these are called vapor diffusion of ice-water particles and

crystals that are both governed by the same equation, which is nearly

identical in form to that for diffusion of liquid-water particles except for

some constants and shape parameters. The derivation for the vapor diffusion

equation follows much the same path as that for deriving a basic equation to

represent vapor diffusion for liquid-water particles. The main differences are

related to the enthalpies of heat (enthalpy of sublimation instead of enthalpy

of evaporation), and the particular shape factors for ice crystals, which

include, for example: spheres; plates; needles; dendrites; sectors; stellars;

and bullets and columns that can be either solid or hollow, etc. (see

Pruppacher and Klett 1997 for habits at temperatures between 273.15 and

253.15 K, and Bailey and Hallet 2004 for habits at temperatures colder than

253.15 K).

Typically, for diffusion growth of ice-water particles and crystals, the

electrostatic analog is invoked. This is similar to stating that the vapor

diffusion growth of the various ice-water crystal shapes is related to the

capacitance of the various shapes. The main shapes that are representative

of the various ice-water particles include spheres, thin plates, oblates, and

prolates. Kelvin’s equation is useful for predicting the nucleation of pristine

ice crystals; however, solute effects are usually not considered, as solutes often

do not freeze until the solute reaches rather cold temperatures. Finally,

ventilation effects are included even at small particle sizes just as ventilation
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effects are included for small cloud droplets. Admittedly, though, the

ventilation effects are nearly negligible at the smallest ice-water particle and

crystal sizes.

6.2 Mass flux of water vapor during diffusional

growth of ice water

The diffusional change in mass of ice-water particles owing to subsaturation

or supersaturation with respect to ice water primarily depends on thermal and

vapor diffusion. In addition, for larger particles, advective processes are

important, and have to be approximated from laboratory experiments. In

the following pages equations will be developed to arrive at a parameteriza-

tion equation for diffusional growth changes in a spherical ice-water particle

that is large enough, on the order of a few microns in diameter, that surface

curvature effects can be ignored. Moreover, the ice-water particles will be

assumed tobe pure (non-solutes). Other shapes besides sphereswill be considered

later in this chapter.

Following the same steps as with liquid-water drops, except replacing

variables associated with liquid water with those associated with ice water,

an equation for vapor diffusion growth of ice water can be obtained.

For ice-water particles, the same continuity equation for vapor molecules

can be used as was used for liquid-water particles,

]rv
]t

þ u �rrv ¼ cr2rv: ð6:1Þ

The vapor density is given by rv ¼ nm. In this definition n is the number of

water-vapor molecules and m is the mass of a water molecule. Assume that

the flow is non-divergent, and that u is zero, or stationary flow exists (sum of

the air-flow velocity and the vapor-flow velocity is zero). When the steady-

state assumption is used, as for liquid-water drops, Fick’s first law of

diffusion for n results. The variable c is the vapor diffusivity as given in

Chapter 5. With these assumptions and definitions we can easily arrive at an

expression for dM=dt for ice particles in a similar manner as was done for

liquid-water drops,

dM

dt
¼ 4pR2

rmc
]n

]R
; ð6:2Þ

where R is the distance from the droplet center, and Rr is the radius. The

boundary conditions are as before, as n approaches n1, R approaches infinity
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R1 and as n approaches nr, R approaches Rr, then the following can be

written,

dM

dt
¼ 4pRrmc n1 nrð Þ; ð6:3Þ

or,

dM

dt
¼ 4pRrc rv;1 rv;r

� �
; ð6:4Þ

which is the mass change of ice particles owing to vapor density gradients.

6.3 Heat flux during vapor diffusional growth of ice water

An analogous procedure to that used to obtain an expression for dM=dt, can

be followed to obtain a relationship dq=dt, which is the heat flux owing to

temperature. From the continuity equation for temperature T, the following

equation can be written,

]T

]t
þ u �rT ¼ kr2T: ð6:5Þ

Again assume that the flow is non-divergent, and that u is zero or stationary

flow exists (sum of the air-flow velocity and the vapor-flow velocity is zero).

When the steady-state assumption is used as with liquid-water drops, Fick’s

law of diffusion for T results. The variable k is the thermal conductivity as

given in Chapter 5. With these assumptions and definitions we can easily

arrive at an expression for dq=dt for vapor diffusion of ice.

Following the method for deriving an equation for diffusion for a liquid-

water drop, an expression for dq=dt results,

dq

dt
¼ 4pR2

rrKcp
]T

]r

� �
R Rr

; ð6:6Þ

where the following can be written for R = Rr,

dq

dt
¼ 4pRrrKcp Tr T1ð Þ; ð6:7Þ

this is the energy exchange owing to thermal gradients.

6.4 Plane, pure, ice-water surfaces

The diffusional change in mass of an ice-water sphere owing to sub- or super-

saturation depends on thermal and vapor diffusion. Next an equation is

found for diffusional growth changes in an ice-water sphere that is large
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enough, on the order of a few microns in diameter, that surface curvature

effects can be ignored. Moreover the ice-water sphere is assumed to be pure.

Following steps used in deriving the vapor diffusion of a liquid-water drop,

but assuming an ice-water sphere, the following can be found as

Rr
dRr

dt
¼ ðSi 1ÞGiðT;PÞ; ð6:8Þ

where Gi(T, P), a thermodynamic variable that is a function of T and P, is

Gi T;Pð Þ ¼ 1
riL2s

RvKT21
þ riRvT1

eSIc

¼ 1
riL2s

RvKT21
þ ri

rQSIc

; ð6:9Þ

where Ls is the enthalpy of sublimation, eSI is the vapor pressure over ice, QSI

is the saturation mixing ratio over ice, and ri is the density of ice. The mass

growth rate approximation, which is needed to develop a parameterization, is

given by the following for an ice sphere as

dM

dt
¼ ri2pD Si 1ð ÞGi T;Pð Þ: ð6:10Þ

The vapor diffusion, mass growth equation for ice-water spheres can also be

derived following Rogers and Yau (1989), using the methods for liquid-water

drops, but replacing variables for the liquid phase with the ice phase,

Rr
dRr

dt
¼ Si 1ð Þ

Ls
RvT

1
� �

Lsri
KT þ riRvT

ceSI Tð Þ
: ð6:11Þ

Note that this equation has a correction term in the denominator, which is

small compared to the other two terms, and can be retained or neglected. The

mass growth rate approximation, which is needed to develop a parameteriza-

tion, is given by

dM

dt
¼ ri2pD Si 1ð ÞG0

i T;Pð Þ; ð6:12Þ

where G0
i T;Pð Þ is similar to Gi T;Pð Þ, except G0

i T;Pð Þ has the correction term as

in the liquid vapor diffusion growth equation,

G0
i T;Pð Þ ¼ 1

Ls
RvT

1
� �

Lsri
KT þ riRvT

ceSI Tð Þ
: ð6:13Þ

6.5 Ventilation effects for larger ice spheres

One aspect we have not considered is ventilation effects. The equation for

vapor diffusion growth derived so far is based on a stationary drop with no
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relative flow past it; that is, advective effects on the vapor density gradients

have been ignored. These effects in general are very difficult to include

explicitly, so they are parameterized in terms of the Schmidt number (Nsc ¼
v/c � 0.71) and the Reynolds number (DVT(D)/n) where VT is terminal

velocity. The ventilation factor used for ice particles is written in the form of

fv ¼ 0:78þ 0:308N1=3
sc N1=2

re : ð6:14Þ
With (6.14), the mass growth equation is written as

dM

dt
¼ 2pD Si 1ð ÞGi T;Pð Þfv; ð6:15Þ

or

dM

dt
¼ 2pD Si 1ð ÞG0

i T;Pð Þfv: ð6:16Þ
Again Gi (T , P ) and G

0
i ( T, P) are multiplied through by r i as in Chapter 5.

6.6 Parameterizations

6.6.1 Generalized gamma distribution

The vapor diffusion of ice-water particles, which can include sublimation and

deposition, can only occur at temperatures below 273.15 K. The basic equa-

tion that is solved is

dMðDÞ
dt

¼ 4pD Si 1ð Þfv
L2s

KRvT2 þ 1
rcQSI

h i ; ð6:17Þ

where D is the capacitance using the electrostatic analog (Pruppacher and

Klett 1997), QSI is the saturation mixing ratio with respect to ice, and the

ventilation coefficient for snow aggregates (Rutledge and Hobbs 1984) is

fv ¼ 0:65þ 0:44N1=3
sc N1=2

re

� �
: ð6:18Þ

For graupel, frozen drops and hail with which D > 120 mm, the ventilation

coefficient is given by

fv ¼ 0:78þ 0:308N1=3
sc N1=2

re

� �
; ð6:19Þ

and for ice particles with D < 120 mm, the ventilation coefficient is given by

fv ¼ 1:00þ 0:108N1=3
sc N1=2

re

h i2� �
: ð6:20Þ
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The form of the equation integrated for larger spherical particles is

1

r

ð1
0

dMðDxÞnðDxÞ
dt

dDx ¼ 1

r

ð1
0

2pDx Si 1ð ÞGiðT;PÞ

� 0:78þ 0:308N1=3
sc N1=2

re

� �
nðDxÞdDx;

ð6:21Þ

where the subscript x denotes any ice habit x. This is then rewritten as

QxDSL ¼ 1

r0

ð1
0

2pDx Si � 1ð ÞGiðT;PÞ 0:78þ 0:308N1=3
sc

DxVTx

nx

� �1=2 r0
r

� �1=4" #

� NTxmx
� nxð Þ

Dx

Dnx

� �nxmx 1

exp � Dx

Dnx

� �mx� �" #
d

Dx

Dnx

� �
;

ð6:22Þ

and

QxDSL ¼ 1

r0

ð1
0

2pDx Si � 1ð ÞGiðT;PÞ 0:78þ 0:308N1=3
sc

DxVTx

nx

� �1=2 r0
r

� �1=4" #

� NTxmxa
nx
x

� nxð Þ
Dx

Dnx

� �nxmx 1

exp �ax
Dx

Dnx

� �mx� �" #
d

Dx

Dnx

� �
;

ð6:23Þ

where SL is the saturation ratio with respect to liquid.

For larger ice particles (D > 120 microns) that are nearly spherical the

following equation can be derived for a modified gamma distribution of

deposition/sublimation. Integrating gives the desired parameterization equa-

tion for vapor diffusion growth, assuming terminal velocity, is

VTx Dxð Þ ¼ cxD
dx
x

r0
r

� �1=2
: ð6:24Þ

The complete gamma distribution solution is then given as

QxDSL ¼ 1

r
2p Si � 1ð ÞGiðT;PÞNTxanxx

� nxð Þ

� 0:78
� 1þnxmx

mx

� �
a

1þnxmx
mx

� �
x

Dnx þ 0:308�

3þdx
2mx

þ mxvx
mx

� �
a

3þdx
2mx

þmxvx
mx

� �
x

N1=3
sc n 1=2

x c1=2x D
3þ dx

2
nx

r0
r

� �1=4
2
4

3
5;
ð6:25Þ
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whereas, the modified gamma distribution solution is

QxDSL ¼ 1

r
2p Si 1ð ÞGiðT;PÞ NTx

� nxð Þ

� 0:78�
1þ nxmx

mx

� �
Dnx þ 0:308�

3þ dx
2mx

þ nxmx
mx

� �
N1=3

sc n�1=2
x c1=2x D

3þ dx
2

nx
r0
r

� �1=4" #
:

ð6:26Þ

The gamma distribution solution is

QxDSL ¼ 1

r
2p Si � 1ð ÞGiðT;PÞ NTx

� nxð Þ

� 0:78� 1þ nxð ÞDnx þ 0:308�
3þ dx

2
þ nx

� �
N1=3
sc n�1=2

x c1=2x D
3þ dx

2
nx

r0
r

� �1=4" #
:

ð6:27Þ

For smaller particles (D < 120 mm) that are nearly spherical, the following

equation has a more appropriate ventilation coefficient. The complete

gamma distribution solution is given by

QxDSL ¼ 1

r
2p Si � 1ð ÞGiðT;PÞNTxanxx

� vxð Þ

� 1:0
� 1þnxmx

mx

� �
a

1þnxmx
mx

� �
x

Dnx þ 0:108
� 3þ dx

mx
þ nxmx

mx

� �
a

3þdx
mx

þnxmx
mx

� �
x

N2=3
sc n 1

x cxD
3þ dx
nx

r0
r

� �1=22
4

3
5;

ð6:28Þ

whereas the modified gamma distribution solution is

QxDSL ¼ 1

r
2p Si 1ð ÞGiðT;PÞ NTx

� nxð Þ

� 1:0�
1þ nxmx

mx

� �
Dnx þ 0:108�

3þ dx
mx

þ nxmx
mx

� �
N2=3

sc n�1
x cxD

3þ dx
nx

r0
r

� �1=2" #
:

ð6:29Þ

The gamma distribution solution is given as

QxDSL ¼ 1

r
2p Si � 1ð ÞGiðT;PÞ NTx

� nxð Þ

� 1:0� 1þ nxð ÞDnx þ 0:108� 3þ dx þ nxð ÞN2=3
sc n 1

x cxD
3þ dx
nx

r0
r

� �1=2" #
:

ð6:30Þ

The change in number concentration during sublimation is a complicated

issue in many regards. There is no change in number concentration during

condensation. For simplicity, many assume that the number-concentration

change is related to the mixing-ratio change as follows,

NTxSBv ¼ QxSBv
NTx

Qx
; ð6:31Þ
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where mixing ratio tendencies for deposition and sublimation are written,

respectively, as

QxDPv ¼ maxðQxDSv; 0:0Þ; ð6:32Þ
and

QxSBv ¼ minðQxDSv; 0:0Þ: ð6:33Þ
There are problems with this formulation in that it really does not capture the

nature of the number of droplets that evaporate. An alternative is to start

with an equation for the rate of change of the radii of the particles; the

ventilation coefficient is set as equal to one, assuming it is only the very

smallest ice particles that are fully subliming,

Rr
dRr

dt
¼ ðSi 1ÞGiðT;PÞ: ð6:34Þ

From (6.34) it can be written that

ð0
Rmax

Rr
dRr

dt
dt ¼

ðt Dt

t 0

ðSi 1ÞGiðT;PÞdt: ð6:35Þ

Now Rmax, the largest remaining drop after Dt seconds of sublimation, is

R2
max

2
¼ ðSi 1ÞGiðT;PÞDt ð6:36Þ

or

Dmax ¼ 8ðSi 1ÞGiðT;PÞDt½ �1=2: ð6:37Þ
With this Dmax one can integrate the number of particles in the distribution

that will evaporate completely so that you return to a distribution of sizes

from 0 to 1,

NxSBv ¼ NTx

Dt� vxð Þ� vx;
Dmax

Dnx

� �
: ð6:38Þ

6.6.2 Log-normal distribution

The log-normal distribution parameterization for a spherical piece of ice is

now given. We start with the vapor diffusion equation for ice,

1

r

ð1
0

dMðDxÞnðDxÞ
dt

dDx ¼ 1

r

ð1
0

2pDx Si 1ð ÞGiðT;PÞfvnðDxÞdDx: ð6:39Þ
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The log-normal distribution spectrum is defined as

nðDxÞ ¼ NTx

2p
p

sxDx

exp
½lnðDx=DnxÞ�2

2s2x

 !
; ð6:40Þ

where s is a distribution parameter. The prognostic equation for Qx for vapor

diffusion of ice can be written as

QvDSx ¼ dQx

dt
¼ 1

r

ð1
0

2pGiðT;PÞðSi 1Þ

� 0:78þ 0:308N1=3
sc

cx
nx

r0
r

� �1=2
Ddxþ1

x

" #1=28<
:

9=
;DxnðDxÞdDx:

ð6:41Þ

Expanding results in two integrals,

QvDSx ¼ 2pGiðT;PÞðSi 1Þ
r

ð1
0

0:78DxnðDxÞdDx

8<
:

þ
ð1
0

0:308N1=3
sc

cx
nx

r0
r

� �1=2
Ddxþ1

x

" #1=2
DxnðDxÞdDx

9=
;:

ð6:42Þ

Substituting (6.40) into (6.42) gives

QvDSx ¼ 2pGiðT;PÞðSi � 1Þ
r

0:78NTx

2p
p

sx

ð1
0

exp � ½lnðDx=DnxÞ�2
2s2x

 !
dDx

8<
:

þ NTx

2p
p

sx

cx
nx

� �1=2 r0
r

� �1=4
0:308N1=3

sc

ð1
0

D
dx þ 1

2
x exp � ½lnðDx=DnxÞ�2

2s2x

 !
dDx

9=
;:

ð6:43Þ

Dividing all Dx terms by Dnx for each of the two integrals gives

QvDSx ¼ 2pGiðT;PÞðSi 1Þ
r

NTx

2p
p

sx
0:78Dnx

ð1
0

exp
½lnðDx=DnxÞ�2

2s2x

 !
d

Dx

Dnx

� �8<
:

þ cx
nx

� �1=2 r0
r

� �1=4
0:308N1=3

sc D
dx þ 3

2ð Þ
nx

ð1
0

Dx

Dnx

� �dx þ 1
2

exp
½lnðDx=DnxÞ�2

2s2x

 !
d

Dx

Dnx

� �9=
;:

ð6:44Þ
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We now let u = Dx/Dnx,

QvDSx ¼ 2pGiðT;PÞðSi � 1Þ
r

NTx

2p
p

sx
0:78Dnx

ð1
0

exp � ½ln u�2
2s2x

 !
du

8<
:

þ cx
nx

� �1=2 r0
r

� �1=4

0:308N1=3
sc D

dxþ3
2ð Þ

nx

ð1
0

u
dxþ1
2ð Þ exp � ½ln u�2

2s2x

 !
du

9=
;;

ð6:45Þ

and letting y ¼ ln(u), u ¼ exp(y), du/u ¼ dy, so,

QvDSx ¼ 2pGiðT;PÞðSi � 1Þ
r

NTx

2p
p

sx
0:78Dnx

ð1
1
expðyÞ exp � y2

2s2x

� �
dy

8<
:

þ a
nx

� �1=2 r0
r

� �1=4

0:308N1=3
sc D

dxþ3
2

nx

ð1
1
exp

dx þ 3

2
y

� �
exp � y2

2s2x

� �
dy

9=
;;

ð6:46Þ

where the limits of the integral change as u approaches zero from positive

values and, ln(u) approaches negative infinity. Likewise, for the upper limit,

as u approaches positive infinity, ln(u) approaches positive infinity.

Now the following integral definition is applied,

ð1
1
expð2b0xÞ expð a0x2Þdx ¼ p

a0

r
exp

b02

a0

� �
; ð6:47Þ

by allowing y ¼ x, and for the first integral, a0 ¼ 1/(2s2), b0 ¼ 1/2; and for the

second integral, a0 ¼ 1/(2s2), b0 ¼ (d+3)/4. Therefore (6.46) becomes the prognos-

tic equation for Qx for the vapor diffusion process,

QvDSx ¼ 2pGiðT;PÞðSi 1ÞNTx

r

(
0:78Dnx exp

s2x
2

� �

þ cx
nx

� �1=2 r0
r

� �1=4

0:308N1=3
sc D

dxþ3
2ð Þ

nx exp
dx þ 3ð Þ2s2x

8

 !)
:

ð6:48Þ

6.7 Effect of shape on ice-particle growth

The electrostatic analog is employed with ice crystals (Pruppacher and Klett

1997) and the following in the subsections are used to represent capacitance

analogs. Hall and Pruppacher (1976) provide the following ventilation

expressions for ice crystals,
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fv ¼ 1þ 0:14X2 for X < 1
fv ¼ 0:86þ 0:28X for X > 1;

	
ð6:49Þ

where X is given by

X ¼ N1=3
sc N1=2

re ; ð6:50Þ

Nsc ¼ v

c
; ð6:51Þ

and

Nre ¼ VTðDÞL�
n

: ð6:52Þ

In (6.52), L* is the ratio of the total surface area,W, to the perimeter, P, of the

crystal.

Wang (1985) was decidedly convincing that simple shape approximations

for crystals are not sufficient for computing ventilation coefficients. Thus

Wang and Ji (1992) derived ventilation coefficients assuming Stokes flow for

columns, plates, and broad branched crystals. These are included below as

they represent the newest values available for research.

6.7.1 Sphere

A sphere is represented by the radius r with a capacitance of

C0 ¼ r ð6:53Þ
and the above ventilation coefficient should be valid, or L* ¼ W/P ¼ 2a, with

P ¼ 2pr and W ¼ 4pr2.

6.7.2 Hexagonal-shaped plate

A hexagonal plate’s capacitance can be well represented by a circular disk and

is the easiest to parameterize,

C0 ¼ 2r

p
; ð6:54Þ

where C0 is the capacitance, and r is the radius of the disk that describes the

hexagonal plate.

The P for a disk is P¼ 2pr for the major axis of the disk falling perpendicu-

lar to the relative flow. The surface area is given by the volume divided by the

height, with values tabulated by Pruppacher and Klett (1997), e.g.

h ¼ 1:41� 10 2D0:474 ð6:55Þ

6.7 Effect of shape on ice-particle growth 149



with height h and circumscribed diameter D in cm. The volume V in cm3 is

V ¼ 9:17� 10 3D2:475: ð6:56Þ

Alternatively, following Wang and Ji (1992), the value of fv is given as

fv ¼ 1 0:06042ðX=10Þ þ 2:79820ðX=10Þ2

0:31933ðX=10Þ3 þ 0:06247ðX=10Þ4;
ð6:57Þ

where X is as defined in (6.50) and is valid for 1 < Nre < 120. For broad

branched crystals, a similar relation can be derived from numerical results as

fv ¼ 1þ 0:35463ðX=10Þ þ 3:55333ðX=10Þ2; ð6:58Þ

and is valid for 1 < Nre < 120.

6.7.3 Simple ice plate shapes of various thickness

Simple plates of various thickness are approximated by oblate spheroids with

major and minor axes lengths of 2a and 2b, respectively. Following Pruppa-

cher and Klett (1997) and McDonald (1963), the equation used for plates of

varying thickness is

C0 ¼ aE

sin 1 Eð Þ ; ð6:59Þ

with E given as

E ¼ 1
b2

a2

� �1=2
: ð6:60Þ

The P for an oblate is P ¼ 2pa for the major axis falling perpendicular to the

relative flow. Alternatively, P can be computed as

P ¼ 2pa2 þ p b2=E
� �

ln 1þ Eð Þ= 1 Eð Þ½ �; ð6:61Þ
where a and b are minor and major axes of an oblate spheroid. The surface

area is given by dividing V by h,

h ¼ 0:138 D0:778; ð6:62Þ
with height h and circumscribed diameter D in cm. The volume V in cm3 is,

V ¼ 8:97� 10 2 D2:778: ð6:63Þ
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6.7.4 Columnar-shaped ice crystals

McDonald (1963) and Pruppacher and Klett (1997) also proposed the

following prolate-spheroid capacitance equation for the capacitance of

columnar crystals,

C0 ¼ A

ln aþ Að Þ=b½ � ; ð6:64Þ

where A is given by

A ¼ a2 b2
� �1=2

: ð6:65Þ
For prolates the value of P is computed as

P ¼ p2a 1� 0:25E2 � 0:0469E4 � 0:0195E6 � 0:0107E8 � 0:0067E10 � . . .
� �

: ð6:66Þ
The surface area is approximated following that for a bullet rosette where w is

the width of the crystal and L is the length of an individual bullet. The surface

area of a column is given by

O ¼ pw2=4
� �þ pwL; ð6:67Þ

where L ¼ 2a. Following Wang and Ji (1992) again, the value of the

ventilation coefficient is

fv ¼ 1� 0:00668ðX=4Þ þ 2:79402ðX=4Þ2 � 0:73409ðX=4Þ3 þ 0:73911ðX=4Þ4; ð6:68Þ
which is valid for 0.2 < Nre < 20.

6.7.5 Needle-like ice-crystal shapes

Needle-like crystals are treated like extreme prolates, where b 
 a; thus the

equation for a prolate given above can be written as

C0 ¼ a

ln 2a=bð Þ : ð6:69Þ

The values of P and L for needle-like crystals could be approximated with

that of extreme prolates.
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7

Collection growth

7.1 Introduction

An issue that has perplexed the minds of great meteorologists for many years

now, and still does, is the determination of the length of time that it takes for

rain to form and fall to the ground (Knight and Miller 1993). This problem

has been the center of much past and present research. First, nucleation

occurs, followed by condensation growth, and finally drops begin to grow

to a size that is large enough that the probability of a collision becomes non-

negligible. This size seems to be around diameters of about 41 mm. Until

drops grow to this size by vapor diffusion and collection from very small

droplets, or if aerosols of the size of ultra-giant cloud condensation nuclei are

available, droplets may not grow to the size necessary for rapid coalescence. If

they do, then rapid coalescence or collection growth begins to dominate. In

general, it takes some time for a few particles finally to reach aboutD¼ 82mm,

a size where more rapid coalescence can take place.

Collection growth can be presented as a relatively straightforward two-

body collection continuous growth problem or a complex, statistical collec-

tion problem. Both of these are included in the discussion that follows.

A primary mode by which hydrometeors come together is by differing fall-

speeds such that particles of different sizes, densities, or shapes fall at

differing speeds, which allows collisions to occur. Furthermore, electrical

forces can act if particles are differentially charged, which may enhance

collection; or collection may decrease if the particles have the same charge

sign. Finally, though there is much debate surrounding this, turbulent forces

may play a role in the collection of droplets. This latter issue will be left to

discussion in periodicals for now. In general, gravitation effects that result in

relative-fallspeed differences between particles dominate over electrical and

turbulent effects.
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When particles begin to collide there are at least two factors that need to

be considered. These are the probability that droplets will collide; and the

probability that collisions will result in coalescence (that particles will stick

together). The product of these two probabilities is called the collection

efficiency.

When two droplets collide, the following are possible outcomes. First,

when particles collide they may coalesce. Second, the particles may collide

and bounce apart (rebound). Third, particles may coalesce and then separate

with original sizes preserved. Fourth, particles coalesce and then separate with

resulting different sizes and may possibly produce additional droplets.

The important variables in collisional growth include; the size of the particles

involved; the fall velocities of the particles; the trajectory of the particles; the

number of collisions; the number of coalescing collisions (collections); elec-

trical effects; and turbulent effects. Finally it is important to understand that

collisional growth goes by several names including collision growth, accretion

growth, coalescence growth, riming growth, and aggregation growth.

7.2 Various forms of the collection equation

There are three models of the collection equations following Gillespie (1975)

and Young (1975 and 1993): the continuous growth model; the quasi-

stochastic or discrete model; and the pure-stochastic, probabilistic, statistical,

or Poisson model. Figure 7.1, reproduced from Young (1975) illustrates these

models well. According to Pruppacher and Klett (1997), the goal of collection

is to describe the growth of N drops in a spectrum of drops. What is needed to

describe this is the collection kernel, which is described by only the drop mass

where Aik approaches A(m). It is important to realize that Aik represents

collection in a well-mixed cloud model. This is really describing collection

as a whole in a very simple, idealized, whole cloud. Nk is the number of

droplets in bin k; Nk ¼ nk times V (volume); Kik is the collection kernel between

drops in bins i and k this describes the rate of i collecting k size droplets; and

Aik is Kik divided by V. The parameter A can be thought of as the probability

per unit time of collections between any pair of i and k size drops or drops of

bin size i and k. This is the so-called “well-mixed” cloud model assumption.

The model for growth is that there are initially N drops in a cloud with mass

M, N0 droplets having mass m, that N 
 N0; coalescences only are possible

between drops and droplets (Pruppacher and Klett 1997). Growth of droplets

by the three models of collection is summarized below.

The continuous growth model predicts that all collector drops of a given

size will collect the same number of smaller droplets and grow to the same size
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as each other after time interval dt (Fig. 7.1). This implies that each collector

drop grows at the same rate. Mathematically, the number dNS (change in

small droplets collected) is interpreted as the fractional number of small

droplets collected by every collector droplet of radius RL in time interval dt.

Or, as described by Gillespie (1975) and Pruppacher and Klett (1997),

A(m)N0dt is the number of droplets of mass m, which any drop of mass M

will collect in time dt.

The quasi-stochastic or discrete model predicts that all clouds will have

the same size distributions after time dt. Mathematically, the number of small

collected droplets dNS is interpreted as the fraction of drops that collect a
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Fig. 7.1. The growth of 10 mm-radius drops collecting 8 mm drops for
the continuous, discrete, and Poisson collection models. The expected
number of collection events within a given timestep 0.5 s. Numbers within
the circles reflect the percentage of drops of that size; arrows show growth
paths. (From Young 1975; courtesy of the American Meteorological
Society.)
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droplet in the interval dt. As the collection is a discrete process, drops do

not collect fractional droplets. Thus, this is interpreted as saying that a

fraction f of drops will grow collecting droplets of a given size, and a fraction

(1 f ) will not. Therefore, drops that are initially the same size may have

different growth histories, which allows a spectrum of drops to develop

(Fig. 7.1). However, only one outcome is permitted for each initial condition.

There are two interpretations that can be made. Droplets may be distributed

uniformly. A drop then either collects a droplet, or it does not collect a

droplet. Secondly, droplets may be randomly distributed. Some droplets

may collect one, two, or more droplets; while others may collect none. As

in the continuous model, in this quasi-stochastic model, A(m)N0dt is

the number of drops of mass M, which will collect a droplet of mass m in

time dt.

The purely stochastic, probabilistic, or Poisson, model predicts that all

clouds will have a unique distribution after a time interval dt. Mathematic-

ally, the number of dNS is interpreted as the probability that a collector

drop will collect a droplet of some size in a time interval dt. In this model

it is assumed that all droplets have positions that are probabilistic in nature

(Fig. 7.1). Moreover, as before, it can be stated that A(m)N0dt is the prob-

ability that any drop of mass M will collect a droplet of mass m in time dt.

Ironically, considering the mathematical differences between the quasi-

stochastic model and the pure-stochastic model (Pruppacher and Klett

1997), they are believed to produce essentially the same result after some

sufficient time interval dt, though this contention is not uniformly accepted

by the community.

7.3 Analysis of continuous, quasi-stochastic,

and pure-stochastic growth models

The purpose here is to explore the theoretical bases and analyses presented by

Gillespie (1975) and summarized by Pruppacher and Klett (1997) of the

continuous, quasi-stochastic, and probabilistic growth models. All three will

be examined in some detail. A discussion will be made of the probabilistic

growth model, though it is not used in bulk or in many bin model parameter-

izations very often, not even very simple bin models. This section hopefully

will provide a background for understanding the three possible consider-

ations of drop droplet collection modes, and how to develop parameteriza-

tions for the continuous growth and quasi-stochastic growth models possible.

The models are analyzed assuming that A(M) ¼ A ¼ constant. Also, it is

assumed that a cloud is well mixed at time t ¼ 0.
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7.3.1 The continuous growth collection equation for a model cloud

With the continuous growth model, all drops start at time t ¼ 0 with the same

mass m0. Each drop of mass m0 also grows at the same rate. Therefore the state

of drops of massm can be described byM(t)¼mass of any drop at time t. Also m
is the size of the drops collected. Thus, for continuous growth, it can be written

dMðtÞ
dt

¼ mAN0; ð7:1Þ
and integrating over time with the initial condition M(0) ¼ m0, is the initial

mass, results in

ðM0ðtÞ

M

dMðtÞ
dt

dt ¼
ðt
t 0

mAN0dt; ð7:2Þ

so that,

M tð Þ ¼ m0 þ mAN0t: ð7:3Þ
This model requires that every drop of mass m0 collect a certain number of

droplet(s) continuously (linearly, in this case) of mass m in time interval dt.

Except for very large drops and hailstones, the restrictive nature of the

continuous growth model that requires that all drops of a given mass grow

at the same continuous rate is unrealistic.

7.3.2 The quasi-stochastic collection equation

for a model cloud

When using the quasi-stochastic model, it must be remembered that only a

fraction of the drops of mass m0 will collect a droplet of mass m in interval dt.

This can be justified by the fact that there are random positions of drops m0

and droplets m; some drops will collect one or more droplets, whilst others

will collect none. From Pruppacher and Klett (1997) and Gillespie (1975) this

means that not all drops of mass m0 will grow at the same rate at the same

time. Now the problem changes from the continuous growth model. The

quasi-stochastic model described here follows very closely the presentation

put forth by Gillespie (1975). The following can be stated as N(m,t) is defined

as the number of drops of mass m0 (or fraction of drops of mass m0) that grow

at time t by collecting a droplet of mass m. This results in

mðtÞ ¼ m0;m0 þ m;m0 þ 2m . . . : ð7:4Þ
Note that this requires drops to be described in terms of discrete sizes, rather

than drops becoming random sizes.
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Now the governing equations for N(m,t) become the following. In time

t; tþ dtð Þ it is found that Nðm m; tÞAN0dt drops of mass m m will each

collect with a droplet to become drops of mass m, and Nðm; tÞAN0dt drops of
mass m will each collect a droplet to reach drops of mass m þ m. Thus,
according to Gillespie (1975), the net increase in number of drops of mass

m in a time interval t; tþ dtð Þ can be written as

dN m; tð Þ ¼ AN0 N m m; tð Þ N m; tð Þ½ �dt; ð7:5Þ
or expressing this as a growth rate equation as given by,

]N m; tð Þ
]t

¼ AN0 N m m; tð Þ N m; tð Þ½ �: ð7:6Þ

Telford (1955) was the first to consider this model as presented in Gillespie

(1972, 1975) and Pruppacher and Klett (1997). This equation is a set of

coupled, linear, first-order differential equations, and can be solved with the

initial conditions,

N m; 0ð Þ ¼ N0; for m ¼ m0

0; for m 6¼ m0

	
: ð7:7Þ

The equation (7.6) is what Gillespie (1975) chooses to call the stochastic

collection equation. It is valid for the simple cloud model he prescribed.

In solving this coupled, linear first-order differential equation, there is no

need to be concerned at the initial time with Nðm0 m; 0Þ as it is zero, because
m0 is the defined smallest drop size (7.4). So, the first three equations describ-

ing initial and subsequent growth of the initial droplet are given as

dN m0; tð Þ
dt

¼ AN0 N m0; tð Þ½ �; ð7:8Þ

dN m0 þ m; tð Þ
dt

¼ AN0 N m0; tð Þ N m0 þ m; tð Þ½ �; ð7:9Þ

and

dN m0 þ 2m; tð Þ
dt

¼ AN0 N m0 þ m; tð Þ N m0 þ 2m; tð Þ½ �; ð7:10Þ

and so on, to as many steps as are needed.

Equation (7.8) is solved with the initial conditions (7.7). Its solution can be

substituted into (7.9), which can be used in (7.10) and so on. This procedure

results in
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N mþ km; tð Þ ¼ N AN0tð Þkexp AN0tð Þ
k!

for k ¼ 0; 1; 2; . . . : ð7:11Þ

Equation (7.11) will give the number of drops of massm¼ m0 þ km, that can be

found at any time t. Also, at t > 0 there is a spectrum of drops of various

masses (i.e. a mass spectrum; Gillespie 1975). This is in contrast to the continu-

ous model where all droplets have the samemass; there is no spectrum of drops.

The total number of drops at time t is found by writing x ¼ AN0t, using
(7.7), and then by inspection,

X1
m m0

N m; tð Þ ¼
X1
k 0

Nxk expð xÞ
k!

¼ N expð xÞ
X1
k 0

xk

k!

¼ N expð xÞ expðxÞ ¼ Nðm0; t ¼ 0Þ:
ð7:12Þ

The normalized power moments are given as the following in order to reveal

features of the mass spectrum (Gillespie 1975),

Mj tð Þ 
 1

N

X1
m m0

mjN m; tð Þ j ¼ 1; 2; 3; . . . : ð7:13Þ

Gillespie notes that Mj(t) is just the average (mass)j of drops at time t. The

average drop mass would be helpful to know. This is found by

M1 tð Þ 
 1

N

X1
m m0

mN m; tð Þ ¼ 1

N

X1
k 0

m0 þ kmð ÞNx
k exp xð Þ

k!
; ð7:14Þ

M1ðtÞ ¼ exp xð Þ m0

X1
k 0

xk

k!
þ mx

X1
k 0

xk 1

k 1ð Þ!

" #
; ð7:15Þ

M1ðtÞ ¼ exp xð Þ m0 exp xð Þ þ mAN0t exp xð Þ½ �; ð7:16Þ
and

M1ðtÞ ¼ m0 þ mAN0t: ð7:17Þ
The quantity, M1(t), is the average drop mass at time t, which is the center of

the mass spectrum or center of the graph of N versus m. This model differs

from the continuous model in thatM(t) represents the mass of all of the drops

of mass m0 that collect droplets of mass m at a certain rate, in other words, the

mass spectrum.

To add more information about the mass spectrum to the average drop

mass, M1(t), the root-mean-square deviation of the spectrum gives the width

of the spectrum of drops (remember there is no width with the continuous

158 Collection growth



model with cloud included). The root-mean-squared deviation is provided by

Gillespie (1975) as

Dt ¼ M2 tð Þ þM1 tð Þ2
h i1

2

: ð7:18Þ

M2(t) is calculated from (7.11) and (7.13) the same way that M1(t) was

calculated using (7.14). Gillespie also writes that the calculation of M2(t) is

facilitated by writing k2 ¼ kðk 1Þ þ k½ �. It is found that the width of the

spectrum is

D tð Þ ¼ m ANtð Þ12: ð7:19Þ
Equation (7.19) shows that while the center of a graph of N versus m grows

linearly with t, the width is proportional to t1/2. There are two important

points to be made from the analyses above. First, using (7.3) and (7.17), it can

be written that M1(t) ¼ M(t), which means that the drops together collect

droplets at the same rate in the continuous growth and quasi-stochastic

model for the cloud model specified. But as D(t) increases with time, the

drops do not all grow at the same rate in the quasi-stochastic model. As

pointed out by Gillespie (1975), some grow slower, and some faster than in

the continuous growth model.

Pruppacher and Klett (1997) hint that the quasi-stochastic model is also

too restrictive. They state that some drops of mass m will collect droplets of

mass m at different rates; i.e., that drops of mass m collect droplets indepen-

dent of other drops of mass m, and that some drop of mass m at the same

starting time as another drop of mass m may collect a different number

of droplets of mass m. From this point onward the probabilistic model is

discussed.

7.3.3 The pure-stochastic collection equation for a model cloud

It has been noted that the quasi-stochastic collection equation is too restric-

tive by Gillespie (1975) and Pruppacher and Klett (1997) as it has the

requirement that all m-drops together collect other drops and droplets at a

definite rate in an idealized cloud. There is no fluctuation in the number of

drops and droplets collected by a given drop as there would be in the real

atmosphere. However, in a pure-stochastic model, such fluctuations in collec-

tion are permitted. As a result, there is no longer a number to associate with the

number of drops and droplets collected by a drop at any time t. However, it is

possible to predict the probability of finding a given number of m-drops of a

particular size at time twith the pure-stochasticmodel.With this noted, there is

a state function in the pure-stochastic model given by the following statement,
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‘‘P n;m; tð Þ 
 probability that exactly n drops have mass m at time t’’; ð7:20Þ
where, n ¼ 0, 1, 2, 3, . . . , N, and m ¼ m0, m0 þ m, m0 þ 2m . . . . Next we want

to compute P(n, m, t), which also requires considering the probability P(k,t)

that any drop will collect exactly k drops and droplets in time t. Pruppacher

and Klett (1997) and Gillespie (1975) note this is just the expression for the

common Poisson distribution,

P k; tð Þ ¼ AN0tð Þkexp AN0tð Þ
k!

: ð7:21Þ

This is derived by starting with the definition of the probabilistic modeled

cloud AN0dt, which is the probability a drop will collect another drop or

droplet in time dt (Gillespie 1975). For k ¼ 0,

P 0; tþ dtð Þ ¼ P 0; tð Þ 1 AN0dtð Þ; ð7:22Þ
or this can be written as

dP 0; tð Þ
P 0; tð Þ ¼ AN0dt: ð7:23Þ

Next, integrating with the initial condition, P 0; 0ð Þ ¼ 1, gives

P 0; tð Þ ¼ exp AN0tð Þ: ð7:24Þ
Therefore, for any k � 1 there is a probability that a drop will collect exactly

k drops or droplets in time (0, t) as denoted by

P k; tð Þ ¼
ðt
0

P k 1; t0ð ÞP 0; t t0ð ÞAN0dt: ð7:25Þ

Gillespie (1975) interprets (7.25) as the product of the

probability that the drop will collect exactly k 1 drops in ð0; t0Þ½ �
� probability that the drop will collect one more drop in dt0 at t0½ �
� probability that the drop will collect no more drops in ðt; t0Þ½ �

ð7:26Þ

and summed over all t0 from 0 to t.

The equation (7.25) is a recursion relation for P(k,t). Using (7.24), formu-

las for P(k, 1), P(k, 2), P(k, t), and so on can be calculated, so that the

following can be written,

P k; tð Þ ¼ AN0tð Þkexp AN0tð Þ
k!

; k ¼ 0; 1; 2; 3; . . . : ð7:27Þ
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Following Pruppacher and Klett (1997) and Gillespie (1975) closely, this

means that as each drop collects droplets independently of other drops, and

the probability is that some of the n drops will all collect exactly k droplets in

time t whilst the other N n drops will not, it can be written

Pn k; tð Þ 1 P k; tð Þ½ �N n: ð7:28Þ
The number of ways of arranging two groups of n drops and N 1 drops

from a set of N drops is given by,

N
n

� �
¼ N!

n! N nð Þ!½ � : ð7:29Þ

The probability that precisely n of the N drops will collect precisely k droplets

in time t is given by the product of (7.28) and (7.29),

N
n

� �
Pn k; tð Þ 1 P k; tð Þ½ �N n: ð7:30Þ

Using (7.30), it is possible to write

P n;m0 þ km; tð Þ ¼ N!

n! N nð Þ!P
n k; tð Þ 1 P k; tð Þ½ �N n

n ¼ 0; 1; 2; 3 . . . and m ¼ 0; 1; 2; 3 . . . :

ð7:31Þ

Equations (7.27) and (7.31) comprise the pure-stochastic solution for P(n,m, t)

for the simple drop and droplet cloud. At any time t, it is possible for there

to be zero drops to N drops of mass m. This is in contrast to the quasi-

stochastic model in which there will be exactly N(m, t) drops of mass m.

The equation for the moments of P(m, n, t) with respect to n, can be written

Nj m; tð Þ ¼
XN
n 0

n jP n;m; tð Þ; j ¼ 1; 2; . . . : ð7:32Þ

Next, the first moment of P(m, n, t) with respect to n has the following

physical meaning. The value of P(m, n, t) is the average of number of N1(m, t)

of m-drops in the cloud at time t (average spectrum) and is given by

N1 m; tð Þ ¼
XN
n 0

nP n;m; tð Þ ¼
XN
n 0

nN!

n! N nð Þ!P
n k; tð Þ 1 P k; tð Þ½ �N n

¼ NP k; tð Þ ¼ Nm tð Þ:
ð7:33Þ
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For the simple cloud, the average spectrum (7.33) is the solution for the

stochastic collection equation. Equation (7.33) is equivalent mathematically

to quasi-stochastic equation (7.11). However, N(m, t) is the number of drops

of mass m at time t, whereas, N1(m, t) is only the average number of drops of

mass m at time t, which is the center of a graph of P(n, m, t) versus n.

Following Pruppacher and Klett (1997), in analogy with the previous

decision to choose D(t) as the width of the quasi-stochastic collection equa-

tion spectrum, the root mean square deviation of stochastic P(m, n, t) is

chosen with respect to n; or in other words, the following is true,

D m; tð Þ 
 N2 m; tð Þ N2
1 m; tð Þ� �1=2

; ð7:34Þ
with N2(m, t) given as the second moment of P(m, n, t) with respect to n. Using

(7.31) and (7.32) to calculate N2(m, t), the following can be written,

D m; tð Þ 
 N1 m; tð Þ½ �1=2 1
N2
1 m; tð Þ
N

� �1=2
: ð7:35Þ

Note that similarly to the quasi-stochastic case and according to Gillespie

(1975), the calculation of N2(m, t), is made easier by using n2 ¼ n n 1ð Þ þ 1½ �.
The second factor on the right-hand side of (7.35) approaches unity as

t ! 1, which can be proved by (7.33). Somewhere between about

N1 m; tð Þ N1 m; tð Þ½ �1=2 and N1 m; tð Þ þ N1 m; tð Þ½ �1=2 ð7:36Þ
drops of mass m in the cloud should be expected to be found at time t.

Gillespie (1972) described an analysis of a cloud strictly from the point of

view of the Poisson model or pure-stochastic model. It was shown in Gillespie

(1975) that if (i) certain correlations between drops and droplets can be

neglected and (ii) coalescences of drops the same size will not occur, then

we can state something about the standard stochastic collection equation, i.e.

that it describes the mean drop-size spectrum N1(m, t). In this case, it can be

shown as in Gillespie (1972) that the function P(n, m, t) tends to the Poisson

form (Gillespie 1975),

lim
t!1P n;m; tð Þ ¼ Nn

1 m; tð Þ exp N1 m; tð Þ½ �
n!

; ð7:37Þ

and the spectrum width approaches the following,

Dðm; tÞ ! N1 m; tð Þ½ �1=2: ð7:38Þ
If the simplifying conditions above, i.e. (i) and (ii) are not met, the situation

becomes unclear. This is a result of the necessity of conditional probabilities

given by: Pð1Þ n;mjn0;m0; tð Þ ¼ probability of having n drops of mass m at time t,
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given that there are n0 drops of mass m0; and Pð2Þ n;mjn0;m0; n00;m00; tð Þ ¼
probability of having n drops of mass m at time t, given that there are n0

drops of mass m0 and n00 drops of mass m00, and so on.

For the drop droplet cloud, Pð1Þ n;mjn0;m0; tð Þ is given by

Pð1Þ n;mjn0;m0; tð Þ ¼ N n0ð Þ!
n! N n0 nð Þ!P

n k; tð Þ 1 P k; tð Þ½ �N n0 n

n ¼ 0; 1; 2; 3; . . . ;N and m ¼ 0; 1; 2; 3 . . . ;

ð7:39Þ

Pð2Þ n;mjn0;m0; n00;m00; tð Þ ¼ N n0 n00ð Þ!
n! N n0 n00 nð Þ!P

n k; tð Þ 1 P k; tð Þ½ �N n0 n00 n

n ¼ 0; 1; 2; 3; . . . ;N and m ¼ 0; 1; 2; 3 . . . ;

ð7:40Þ

and Pð3Þ ¼ . . . etc., and so on.

The no-correlation approximation (i) leads only to an approximation of

the conditional probabilities by P(n, m; t). Unfortunately, there are no ways to

evaluate exactly these probabilities, P, P(1), P(2), P(3), . . . . Gillespie (1972)
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points to Bayewitz et al. (1974) for a possible answer based on the extent of

correlations in a stochastic coalescence process. Some slight amount of infor-

mation is provided in Pruppacher and Klett (1997), but perhaps not enough

to evaluate the probabilities fully.

A comparison of the continuous and statistical (Poisson) growth models

is shown in Fig. 7.2, reproduced here from Twomey (1964). This figure shows

rapid broadening of the drop spectrum after 20 s for the probabilistic model

whereas the continuous model shows only very slow growth of the spectrum.

7.4 Terminal velocity

Essential to understanding the collection growth of a particle is the under-

standing of the terminal velocities of the particles involved in the process.

There are many empirical and derived values for terminal velocity for varying

types of particles. The easiest and simplest description of terminal velocity is

the terminal velocity of a sphere.

The terminal velocity of an object is the maximum speed to which an object

will accelerate in freefall resulting from a balance of drag and gravity forces.

The gravity force accelerates a particle downward, whereas the drag force is

a result of resistance of air molecules to the motion of an object.

The gravity force is

Fg ¼ gm ¼ gV rx rð Þ; ð7:41Þ
where V is volume (for a sphere, V ¼ D3p=6), m is mass, g ¼ 9.8 m s 2 is the

acceleration owing to gravity, rx is the density of the particle, and r is

the density of the air. Typically, the density of the particle is 100 to 1000

times greater than the density of air at mean sea level, so the density of air can

be neglected in this equation. Using this approximation and the definition of

volume for a sphere, the gravitational force is,

Fg ¼ gVrx ¼ g p=6ð ÞD3rx: ð7:42Þ
The drag force is

Fd ¼ Acdru21 ¼ p=8ð ÞD2cdru21; ð7:43Þ
where cd ¼ 0.6 is the drag coefficient, u1 is the terminal velocity, A is the area

(for a sphere, A ¼ p=8ð ÞD2).

The terminal velocity is found by equating the gravity force (7.42) and the

drag force (7.43). Thus, Fg ¼ Fd or,

p=8ð ÞD2cdru21 ¼ g p=6ð ÞD3rx; ð7:44Þ
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which can be solved for u1,

u1 ¼ 4

3

gD

cd

rx
r

� �1
2

: ð7:45Þ

7.5 Geometric sweep-out area and gravitational

sweep-out volume per unit time

Traditionally the gravitational collection kernel for hydrodynamical capture

(Rogers and Yau 1989; Pruppacher and Klett 1997) is defined as being related

to the geometric sweep-out area, which is given as a function of the down-

ward projected area or footprint of the two colliding particles of diameters D1

and D2. This can be written as,

geometric sweep-out area 
 p
4

D1 þ D2ð Þ2; ð7:46Þ

where D1 > D2 is assumed. This equation does not take into account the

deviation of small droplets approaching a larger drop and being pushed away

from the larger drop by dynamic pressure forces such that the droplet is

not captured by or sticks to the larger drop without tearing away. These

influences are usually incorporated in the collision efficiencies (Ecoll) and

coalescence (Ecoal) efficiencies. These are probabilities of a collision, and the

probability of sticking after collision.

Now the collision efficiency and coalescence efficiency together when

multiplied give the collection efficiency (Ecollect). Next the geometric sweep-

out area is multiplied by these efficiencies (Ecoll and Ecoal) or the collection

efficiency (Ecollect) as well as the difference of particle D1’s terminal velocity

VT(D1) and particle D2’s terminal velocity VT(D2) to get the geometric sweep-

out volume per second or the gravitational collection kernel, K,

KðD1;D2Þ ¼ EcollEcoal
p
4

D1 þ D2ð Þ2 VT D1ð Þ VT D2ð Þ½ �: ð7:47Þ

This general form (Rogers and Yau 1989; Pruppacher and Klett 1997) is used

in nearly all models now, with only a few exceptions (e.g. Cohard and Pinty

2000; see next section).

7.6 Approximate polynomials to the gravitational collection kernel

Other models use polynomials for the collection kernel. Long (1974) devised

a number of different polynomials to represent the gravitational collection

kernel in search of analytical solutions to the quasi-stochastic collection
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equation. These have limited usefulness in general. The first step to generating

these polynomials is to calculate the gravitational collection kernel accu-

rately. Then the second step is to fit an approximation to it. Long used the

collision efficiencies of Shafrir and Gal-Chen (1971) to provide the rationale

for developing these polynomials.

Two of Long’s gravitational collection kernels given by Pruppacher and

Klett (1981) are the following in the case where v > u where v and u are

dimensions of D3,

P v; uð Þ ¼ 1:10� 109 v2
� �

for 20 � D � 100 microns
6:33� 103 vð Þ for D > 100 microns

	
ð7:48Þ

and

P v; uð Þ ¼ 9:44� 109 v2 þ u2
� �

for 20 � D � 100 microns
5:78� 103 vþ uð Þ for D > 100 microns:

	
ð7:49Þ

The leading coefficients are derived from minimizing the root mean square

of the logarithm of the approximating polynomial and the collection kernel.

The logarithm is used because of the wide range in values of the gravitational

kernel, and the need for accurate solution over this wide spectrum. Note that

these approximating polynomials do not include the influence of turbulence

or other possible influences. Cohard and Pinty (2000) are the latest group

of investigators to use these polynomials (at least the second set of these

polynomials).

7.7 The continuous collection growth equation

as a two-body problem

In general, collection is a many-body collection problem. However, for larger

drops in a population of much smaller drops, arguments can be made that

collection growth can be simplified to a two-body problem. The justification

for the two-body collection problem is provided by example. If there are

1000 droplets per cm3 (1 � 109 m 3) and the average droplet size is about

10 microns in diameter, then the average spacing of the droplets is on the

order of about 100 droplet diameters. In this case, the droplets can be said to

be relatively sparse in the cloud. Larger drops are found on the order of about

1000 to 10 000 m 3.

For two-body problems it is assumed then that there are two spherical

drops of different sizes and that shape effects are considered to be of secon-

dary importance for the basic problem. A larger drop collecting a smaller

droplet is considered. The drop and droplet are relatively distant from each
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other initially. The droplet and drop are assumed to fall at their terminal

velocities and are widely spaced in the vertical. The air and internal motions

of the drop and droplet are assumed to be calm.

Thebasic physicalmodel is oneof finding the sweep-out areaof the two-body

problem. First the effective cross-sectional area for the drop and droplet must

be found. In the model RL is the radius of the large drop and RS is the radius of

the smaller droplet. The geometric sweep-out area for the drop and droplet is

geometric sweep-out area ¼ p RL þ RSð Þ2: ð7:50Þ
The simple geometric sweep-out volume per second swept out in this two-

body system is given as function of radius R as

geometric sweep-out volume per second ¼ p RL þRSð Þ2 VTL VTSð Þ; ð7:51Þ
which is shown in Fig. 7.3; or the geometric sweep-out volume per second can

be given as a function of diameter D as

geometric sweep-out volume per second ¼ p
4

DL þDSð Þ2 VTL VTSð Þ; ð7:52Þ

where VTL and VTS are the terminal velocities of the larger and smaller drop

and droplet, respectively. The volume increase per unit time of the larger drop

is related to the geometric sweep-out volume per unit time and the number

and size of the smaller droplets in the sweep-out volume (now no longer a

two-body problem),

dVL

dt
¼ p RL þ RSð Þ2 VTL VTSð ÞVSNS

¼ p RL þ RSð Þ2 VTL VTSð Þp 4
3
R3
SNTS:

ð7:53Þ

R

X

r

Fig 7.3. Particle collision geometry, where R is the radius of the collector, r
is the radius of the collected particle, and x is the distance of the collected
particle from the fall line of the larger particle. (From Rogers and Yau 1989;
courtesy of Elsevier.)
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Now, if the increase in the mass of the large drop can also be written by

including the density of the drop the following can be written,

dML

dt
¼ rp RL þ RSð Þ2 VTL VTSð Þp 4

3
R3
SNTS: ð7:54Þ

This is a highly simplified expression of the two-body formulation. In reality,

the geometric sweep-out volume should take into account the aerodynamic

pressure forces that can push a droplet out of the way of a collector drop.

This is done by defining grazing trajectories, which are the trajectories of the

droplets furthest from the fall line of the collector drops that just make

contact with the collector drops. These are found at radius RG from the fall

line of the larger drop.

This growth is often called the continuous growth equation in terms of

change of RL. With some simple algebra, the rate of mass increase of the drop

(7.54) can be written in terms of the rate of increase of the radius of the drop,

dRL

dt
¼ p

NS

3

R3
S

R2
L

� �
RL þ RSð Þ2 VTL VTSð Þ: ð7:55Þ

For a sphere, the mass of the larger drop can be written as

ML ¼ rLVL ¼ rLp
4

3
R3
L: ð7:56Þ

Now using (7.56), (7.54) becomes

dML

dt
¼ rL4pR

2
L

dRL

dt
; ð7:57Þ

which completes the simple two-body problem, except there has been no

consideration for collection efficiencies. The collection efficiency is incorpo-

rated as a factor E(RL,RS), such that

dRL

dt
¼ p

NS

3

R3
S

R2
L

� �
RL þ RSð Þ2 VTL VTSð ÞE RL;RSð Þ: ð7:58Þ

The collection efficiencies are computed with the collision efficiencies multi-

plied by the coalescence efficiencies, and are smaller than either of the

components by up to 30 90 or so percent.

7.8 The basic form of an approximate stochastic collection equation

The basic form of the approximate stochastic collection equation for say,

liquid drops is given as

]Nk

]t
¼ 1

2

Xk 1

i 1

Ki;k iNiNk i Nk

X1
i 1

Ki;kNi; ð7:59Þ
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where N is number concentration times volume and K is related to the

collection kernel. The first sum is called the gain sum for mass bin k. Droplets

of mass k are produced by collisions between droplets of mass bins i, and k i.

The factor of 1/2 prevents double counting. For example if mass bin k ¼ 5 is

in consideration, then droplets in bin k i ¼ 3 (i ¼ 2) plus droplets in bin 2

make drops of the mass of those in bin k ¼ 5. Now, depending on how this

is programmed, droplets in mass bin k i ¼ 2 (i ¼ 3) plus droplets in mass

bin 3 also make droplets of the same mass as those in bin 5. Therefore

double counting occurs. The second sum is a loss term for mass bin k.

Droplets of size k are lost by coalescence with drops of all other sizes.

7.9 Quasi-stochastic growth interpreted by Berry and Reinhardt

In this section the results of Berry and Rienhardt’s (1974a d) studies on

collection are briefly examined. First, their basic definitions must be defined

to understand the processes they explain. A drop spectrum is denoted by the

density function f(x), where f(x) is, as described earlier, the number of drops

per unit volume of air in the size interval x, x þ dx, where x here is the mass of

a drop of any size. Quite simply, it is known that mass and volume are related

by x ¼ rLV where V is volume and rL is the density of water. Moreover the

density functions f(x) and n(V) are related by f(x)dx ¼ n(V)dV. In their work, a

mass density function g(x) ¼ xf(x) was defined. The concentration of droplets

N and liquid-water content L are defined as integrals over the density func-

tions f(x) and g(x) as follows,

N ¼
ð
f ðxÞdx ð7:60Þ

and

L ¼
ð
gðxÞdx: ð7:61Þ

Now the mean mass of a droplet is given simply by xf ¼ L
N or

xf ¼ L

N
¼
Ð
xf ðxÞdxÐ
f ðxÞ : ð7:62Þ

Drops with mean mass xf have mean radius given simply by

rf ¼ 3prL
4

� �1=3

x
1=3
f : ð7:63Þ
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The mean mass of the density function is given as

xg ¼
Ð
xgðxÞdxÐ
gðxÞ ¼

Ð
x2f ðxÞdxÐ
xf ðxÞ : ð7:64Þ

The value of the equivalent radius of xg is given as

rg ¼ 3prL
4

� �1=3

x1=3g : ð7:65Þ

Berry and Reinhardt’s (1974a d) simulations start with an initial distribution

of drops given by a gamma distribution. The relative variance is given by

var x ¼ xg
xf

1: ð7:66Þ

In the problem at hand, the given initial conditions make var x equal to 1.

That is with rf ¼ 12 microns, water content equal to 1 g m 3, and a concen-

tration of 166 drops per cm3. In displaying plots, they present a function best

described as a log-increment mass density function g(ln r), with a design so

that g(ln r)d(ln r) is the mass of cloud drops per unit volume of air with radii

in d(ln r). The reason that this is done is that it de-emphasizes the smallest

drops and emphasizes the drops of interest, which are the large drops. This

results in a density function of g(ln r) ¼ 3x2f(x) (see Berry and Reinhardt

1974a d). Of interest in the results is that if there are drops with initial size

greater than 20 mm in radius, two modes develop from a single mode: the

mode of small drops shortens and the distribution locally widens and follows

rf of the solution closely; whereas large drops increase and follow rg closely.

Various physical processes lead to broadening of the droplet solution,

which are essential to understanding the growth of initial distributions. These

are carefully summarized by Berry and Reinhardt (1974a d) and are repro-

duced here. For brevity’s sake and for clarity, their discussion is followed

closely. Two modes are possible, one called spectrum S1 centered at 10

microns with a water content of 0.8 g m 3, and the spectrum S2 centered at

20 microns with a water content of 0.2 g m 3. The different physical processes

that need to be parameterized in bulk parameterization models are shown in

Figs. 7.4 7.7. Four assumptions are examined:

(a) The first assumption is that collisions between all drop pairs are allowed (Fig. 7.4).

(b) The second assumption is that collisions are only permitted for drops in S1 (Fig. 7.5).

(c) The third assumption is that collisions can only take place between a drop in S2

and one in S1 (Fig. 7.6).

(d) The fourth assumption is that collisions can only take place between drops in S2

(Fig. 7.7).
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In summary, there are three modes in general that lead to large drops or

change the large-drop distribution. These are those processes described by

considering each assumption individually, starting with (b) which is called

autoconversion (care must be taken in understanding what is really
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Fig. 7.4. Time evolution of the initial spectrum composed of 0.8 g m 3 with
small drops centered at radius rf

0 = 10 mm, and 0.2 g m 3 with larger drops
centered at radius rf

0 = 50 mm, both with var x = 1. The variables rf and rg
are the final mean values of the smaller drop and larger drop spectra,
respectively. (From Berry and Reinhardt 1974a; courtesy of the American
Meteorological Society.)
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Fig. 7.5. Time evolution of the initial spectrum given in Fig. 7.4 with only
S1–S1 interactions allowed. The interactions S1–S1 are called autoconversion
and are interactions between small droplets to produce S2 droplets. Only a
small amount of liquid water is converted to S2 droplets. With no growth of
S2 droplets allowed no further growth of the S2 spectrum occurs. (From Berry
and Reinhardt 1974a; courtesy of the American Meteorological Society.)
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S2–S1 interactions allowed. The S2–S1 interactions are called accretion and
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explain the production of much larger drops. (From Berry and Reinhardt
1974a; courtesy of the American Meteorological Society.)
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autoconversion); (c) which is called accretion; and (d) which is called large-

hydrometeor self-collection.

The result from case (a) includes all of these possibilities. In (a) S1 is

depleted but the S1 mode does not change significantly, whilst the S2 mode

changes shape substantially. In case (b), S2 gains only by interaction of S1

drops with S1 drops, and the influence is marginal in producing S2 drops only

on the left side of the S2 distribution. With no S2-drop interactions there is no

significant growth of the S2 spectrum. In case (c) the rate transfer of water to

S2 drops is much faster than the previous cases showing that accretion

between S2 collecting S1 drops is more important than the process called

autoconversion, here in transferring water to S2 drops. Finally, in case (d) it is

seen that the interaction amongst the large S2 drops, leads to distribution

flattening, though this progression is slow.

In Berry and Reinhardt (1974a d) it is stated that it is autoconversion that

begins the process of transferring water from S1 to S2 drops and allows other

mechanisms to operate. Its rate is almost always slower than other rates;

whilst small, it is essential to droplet distribution evolution. It is accretion

that is the primary mechanism for transferring drops from S1 to S2. Though

S1 generally maintains its shape and position during accretion, S1 loses water

to S2. Growth is initially quick for the S2 spectrum; then it slows as all of S1

is consumed by S2. The large-drop self-collection S2 with S2 interactions

makes S2 distribution flatter, though growth of the spectrum by S2 S2 self-

collections tends to be relatively slow. This process is increased as water mass

is added to S2 from S1 drops by accretion, which is the main mechanism of

the growth of the spectrum in general. Without water from S1 drops the S2

distribution just becomes flatter and eventually growth slows. The rate of

growth by S2 S2-drop interactions is initially slow, but as S1 is added to S2

primarily by accretion, it is the S2 S2-drop interactions that cause rapid

growth of the large-drop tail of the spectrum, which means an increasing xg.

7.10 Continuous collection growth equation parameterizations

7.10.1 Gamma distribution function for continuous

collection equation

The continuous collection equation is still used in many models in cases where

larger particles such as rain, snow, graupel, frozen drops, and hail collect

cloud water and cloud ice. In addition, it is used to make quick calculations

to determine if an autoconversion should be activated. This continuous

collection growth equation takes its simple form from roots described in the

earlier part of this chapter, Rogers and Yau (1989), and Pruppacher and Klett
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(1997), among others. The basic equation that is solved is the following where

particle x is collecting particle y,

1

r

ð1
0

dM Dxð Þn Dxð Þ
dt

¼ dQx

dt
¼ QxACy ¼

ð1
0

p
4
D2

xExyQyVTx
r0
r

� �1=2
n Dxð ÞdDx; ð7:67Þ

which can be written for the complete gamma distribution as

QxACy ¼
ð1
0

p
4
D2

xExyQymxa
nx
x cxD

dx
x

r0
r

� �1=2 NTx

� vxð Þ
Dx

Dnx

� �nxmx 1

� exp ax
Dx

Dnx

� �mx� �
d

Dx

Dnx

� �
;

ð7:68Þ

or next the modified gamma distribution

QxACy ¼
ð1
0

p
4
D2

xExyQymxcxD
dx
x

r0
r

� �1=2 NTx

� vxð Þ
Dx

Dnx

� �vxmx 1

� exp
Dx

Dnx

� �mx� �
d

Dx

Dnx

� �
:

ð7:69Þ

Then the gamma distribution is

QxACy ¼
ð1
0

p
4
D2

xExyQycxD
dx
x

r0
r

� �1=2 NTx

� vxð Þ
Dx

Dnx

� �vx 1

� exp
Dx

Dnx

� �� �
d

Dx

Dnx

� �
:

ð7:70Þ

Each can be rewritten; (7.68) using the complete gamma distribution by

choosing appropriate values for a, n, m:

QxACy ¼ D2þdx
nx

ð1
0

p
4
cx

Dx

Dnx

� �2þdx

ExyQymxax
r0
r

� �1=2 NTx

� vxð Þ
Dx

Dnx

� �mxvx 1

� exp ax
Dx

Dnx

� �mx� �
d

Dx

Dnx

� �
;

ð7:71Þ
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(7.69) with the modified gamma distribution,

QxACy ¼D2þdx
nx

ð1
0

p
4
cx

Dx

Dnx

� �2þdx

ExymxQy
r0
r

� �1=2 NTx

� vxð Þ
Dx

Dnx

� �vxmx 1

� exp
Dx

Dnx

� �mx� �
d

Dx

Dnx

� �
;

ð7:72Þ

and (7.70) with the gamma distribution,

QxACy ¼D2þdx
nx

ð1
0

p
4
cx

Dx

Dnx

� �2þdx

ExyQy
r0
r

� �1=2 NTx

� vxð Þ
Dx

Dnx

� �vx 1

� exp
Dx

Dnx
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Dx

Dnx

� �
:

ð7:73Þ

Then each can be simplified to the following final expressions: the continuous

collection equation for the complete gamma distribution,

QxACy ¼ p
4
cxD

2þdx
nx ExyQy

NTxanxx
� vxð Þ

r0
r

� �1=2� 2þdxþmxvx
mx

� �
a

2þdxþmxvx
mx

� �
x

; ð7:74Þ

for the modified gamma distribution,

QxACy ¼ p
4
cxD

2þdx
nx ExyQy

NTx

� vxð Þ
r0
r

� �1=2
�

2þ dx þ vxmx
mx

� �
; ð7:75Þ

and for the gamma distribution,

QxACy ¼ p
4
cxD

2þdx
nx ExyQy

NTx

� vxð Þ
r0
r

� �1=2
� 2þ dx þ vxð Þ: ð7:76Þ

Verlinde et al. (1990) studied the integration of the continuous growth equation

directly and analytically. A figure of terminal velocities used is shown in

Verlinde et al. (1990, their Figure 1). Also in Verlinde et al. (1990, their Figure 2)

errors are plotted on a graph of the diameter of the collectee drop versus

the diameter of the collector drop. For the case when a faster moving particle

is collecting a smaller, much slower moving particle, it is seen that the smallest

errors are in the middle ranges of sizes, the second largest errors are at

all collector sizes for medium-sized collected particles, and the largest errors

(>O[10]), surprisingly, are at the large collector sizes. As discussed by

Twomey (1964) and Verlinde et al. (1990), the largest collectors have the
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largest errors collecting smaller particles as collection efficiencies are not

prescribed, but rather are set to unity. When collector and collectee particles

fall at about the same speed, then significant (>O[0]) errors are incurred at

the smaller collector sizes (< 4 mm) that collect particles of 0.05 to 3 mm.

A region of 40% errors is found diagonally through the mid section of the

plot. The rest of the plot shows generally good agreement with larger-sized

collector particles collecting smaller-sized particles.

7.10.2 Log-normal distribution for continuous collection

The equation for continuous collection, where particle x is collecting particle y is

1

r0

ð1
0

dMðDxÞnðDxÞ
dt

¼ dQx

dt
¼ QxACy

¼
ð1
0

p
4
D2

xExyQycxD
dx
x

r0
r

� �1=2
nðDxÞdDx:

ð7:77Þ

The log-normal number spectral distribution function is defined as

nðDxÞ ¼ NTx

2p
p

sxDx

exp
½lnðDx=DnxÞ�2

2s2x

 !
: ð7:78Þ

Substitution of (7.78) into (7.77) results in

1

r0

ð1
0

dMðDxÞnðDxÞ
dt
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dt
¼ QxACy

¼
ð1
0

p
4
D2

xExyQycxD
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r

� �1=2

nðDxÞdDx:

ð7:79Þ

Dividing all Dx terms by Dnx gives

QxACy ¼ p
4

r0
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� �1=2ExyQycxNTxD
dxþ2
nx

2p
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sx

�
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ð7:80Þ
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Now letting u ¼ Dx/Dnx,

QxACy ¼ p
4

r0
r

� �1=2ExyQycxNTxD
dxþ2
nx

2p
p

sx

ð1
0

udxþ1 exp
½ln u�2
2s2x

 !
du: ð7:81Þ

By letting y ¼ ln(u), u ¼ exp(y), du/u ¼ dy, so,

QxACy ¼ p
4

r0
r

� �1=2ExyQycxNTxD
dxþ2
nx

2p
p

sx

ð1
1
exp ðdx þ 2Þy½ � exp y2

2s2x

� �
dy; ð7:82Þ

where the limits of the integral change as u approaches zero from positive

values, and ln(u) approaches negative infinity. Likewise, for the upper limit,

as u approaches positive infinity, ln(u) approaches positive infinity.

Now the following integral definition is applied:

ð1
1
expð2b0xÞ expð a0x2Þdx ¼ p

a0

r
exp

b02

a0

� �
ð7:83Þ

by allowing y ¼ x, a0 ¼ 1/(2s2), b0 ¼ (dxþ2)/2. Therefore (7.82) becomes the

expression for the continuous collection equation with a log-normal

distribution,

QxACy ¼ p
4

r0
r

� �1=2

ExyQycxNTxD
dxþ2
nx exp

s2xðdx þ 2Þ2
2

 !
: ð7:84Þ

7.11 Gamma distributions for the general

collection equations

A more general collection equation used in models can be represented in

several ways. First the equations can be integrated using the Wisner et al.

(1972) approximation, where [VTx(Dnx) VTy(Dny)] is moved outside of the

double integral in the collection equation (7.85) below and approximated by

DVTxy ¼ jVTðDnxÞ VTðDnyÞj. Verlinde et al. (1990) have already shown the

importance of the errors in using the Wisner et al. (1972) approximation,

especially when terminal velocities are nearly similar; the errors can be several

orders of magnitude. Mizuno (1990) and Murakami (1990) also showed this,

and then made adjustments to the terminal-velocity differences to minimize

errors. Nevertheless, the collection equation for the mixing ratio that is solved

regardless of the approach is given for the complete gamma equation,
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ð7:85Þ

or next for the modified gamma distribution,

QxACy ¼ 1
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ð7:86Þ

and lastly, for the gamma distribution,

QxACy ¼ 1

r

ð1
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dDxdDy:

ð7:87Þ

Now an examination is made of the collection equation in terms of number

concentration for the complete gamma distribution,

NTxACy ¼
ð1
0
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0
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� �2
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r
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ð7:88Þ

the modified gamma distribution,
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ð1
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ð7:89Þ
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and lastly the gamma distribution,

NTxACy ¼
ð1
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ð7:90Þ

The equations (7.85) (7.87) can be written with M(Dy) ¼ ayD
by as the

following, whereM is mass. For the collection equation in terms of the mixing

ratio using the complete gamma distribution the following is found,
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ð7:91Þ

or with the modified gamma distribution,
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and finally the gamma distribution,
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ð7:93Þ
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Then, the collection equation in terms of number concentration (7.88) (7.90)

can be rewritten using a complete gamma distribution,

NTxACy ¼
ð1
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ð7:94Þ

the modified gamma distribution,
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ð7:95Þ

and finally the gamma distribution,
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ð7:96Þ

Integration of (7.91) (7.96) provides expressions directly to compute approxi-

mations to the collection equations in terms of mixing ratio and number

concentration using the gamma distributions.

The parameterization for (7.91) using a complete gamma distribution

function is the following for mixing ratio tendency where Wisner’s approxi-

mation has been used,
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QxACy ¼
0:25panxx a
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ð7:97Þ

Next the modified gamma distribution is given by

QxACy ¼
0:25pExyNTxQyDVTQxy
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Then for the gamma distribution, the following,
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Next the final solution for the growth in terms of number concentration

(7.94) (7.96) using the complete gamma distribution is
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ð7:100Þ

the modified gamma distribution solution is
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and finally the gamma function solution is

NTxACy ¼
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7.12 Log-normal general collection equations

The equation for the general collection is complicated and is given by

QxACy ¼ 1
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; ð7:103Þ

where m(Dy) is as before ayD
by
.

Substitution of (7.78) and m(Dy) into (7.103) gives
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Rearranging,
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Expanding,
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Dividing Dx terms by Dnx and Dy by Dny,
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Now letting u ¼ Dx/Dnx and v ¼ Dy/Dny gives
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ð7:108Þ

By letting j ¼ ln(u), u ¼ exp(j), du/u ¼ dj and k ¼ ln(v); thus v ¼ exp(k),

dv/v ¼ dk, so,
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ð7:109Þ

where the limits of the integral are that as u approaches zero from positive

values, ln(u) approaches negative infinity; and as u approaches positive infin-

ity, ln(u) approaches positive infinity. The same holds for the limits of v.

Now collecting like terms,
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By Applying the integral definition (7.83), (7.110) becomes
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As described previously, the prognostic equation for NT for the general

collection equation is
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Substituting (7.78) into (7.112) results in
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Expanding,
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Dividing Dx by Dnx and Dy by Dny gives

NTxACy
p
4
Exy VTNx VTNy



 

NTNxNTNy

2psxsy

� D2
nx

ð1
0

ð1
0

Dy

Dny

� ��1 Dx

Dnx

� �1
exp

½lnðDx=DnxÞ�2
2s2x

 !
exp

½lnðDy=DnyÞ�2
2s2y

 !
d

Dx

Dnx

� �
d

Dy

Dny

� �8<
:

þ 2D1
nxD

1
ny

ð1
0

ð1
0

exp
½lnðDx=DnxÞ�2

2s2x

 !
exp

½lnðDy=DnyÞ�2
2s2y

 !
d

Dx

Dnx

� �
d

Dy

Dny

� �

þ D2
ny

ð1
0

ð1
0

Dx

Dnx

� ��1 Dy

Dny

� �1

exp
½lnðDx=DnxÞ�2

2s2x

 !
exp

½lnðDy=DnyÞ�2
2s2y

 !
d

Dx

Dnx

� �
d

Dy

Dny

� �9=
;:

ð7:115Þ

186 Collection growth



Letting u ¼ Dx/Dnx and v ¼ Dy/Dny,

NTxACy ¼ p
4
Exy VTNx VTNy



 

NTNxNTNy

2psxsy

� D2
nx

ð1
0

ð1
0

u1v 1 exp
½ln u�2
2s2x

 !
exp

½ln v�2
2s2y

 !
dudv

8<
:

þ 2D1
nxD

1
ny

ð1
0

ð1
0

exp
½ln u�2
2s2x

 !
exp

½ln v�2
2s2y

 !
dudv

þD2
ny

ð1
0

ð1
0

u 1v1 exp
½ln u�2
2s2x

 !
exp

½ln v�2
2s2y

 !
dudv

9=
;:

ð7:116Þ

By letting j ¼ ln(u), u ¼ exp(j), du/u ¼ dj and k ¼ ln(v); thus v ¼ exp(k),

dv/v ¼ dk, so,

NTxACy ¼ p
4
Exy VTNx � VTNy



 

NTNxNTNy

2psxsy

� D2
nx

ð1
1

ð1
1
expð2jÞ exp � j2

2s2x

� �
exp � k2

2s2y

 !
djdk

8<
:

þ 2D1
nxD

1
ny

ð1
1

ð1
1
expðjÞ expðkÞ exp � j2

2s2x

� �
exp � k2

2s2y

 !
djdk

þ D2
ny

ð1
1

ð1
1
expð2kÞ exp � j2

2s2x

� �
exp � k2

2s2y

 !
djdk

9=
;;

ð7:117Þ

where the limits of the integral are that as u approaches zero from positive

values, ln(u) approaches negative infinity; and as u approaches positive infinity,

ln(u) approaches positive infinity. The same holds for v as well.

Collecting like terms,

NTxACy ¼ p
4
Exy VTNx VTNy



 

NTNxNTNy

2psxsy

� D2
nx

ð1
1
expð2jÞ exp j2

2s2x

� �
dj

ð1
1
exp

k2

2s2y

 !
dk

8<
:
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þ 2D1
nxD

1
ny

ð1
1
expðjÞ exp j2

2s2x

� �
dj

ð1
1
expðkÞ exp k2

2s2y

 !
dk

þ D2
ny

ð1
1
exp

j2

2s2x

� �
dj

ð1
1
expð2kÞ exp k2

2s2y

 !
dk

)
:

ð7:118Þ

Now the integral definition (7.83) is applied to (7.118) and the final expres-

sion for collection growth in terms of number concentration is

NTxACy ¼ p
4
Exy VTNx VTNy



 

NTxNTy �
�
D2

nx expð2s2xÞ

þ 2DnxDny exp
s2x
2

� �
exp

s2y
2

 !
þ D2

ny expð2s2yÞ
�
:

ð7:119Þ

7.13 Approximations for terminal-velocity differences

7.13.1 Wisner approximation

The Wisner et al. (1972) approximation, mentioned briefly above, is a means

to simplify the integration of the general collection equation. First, the mass-

or number-weighted means of the terminal velocities for each of species x and

y are computed. Then the absolute value of the difference of mass-weighted

mean terminal velocities is taken and this is assumed to be independent

of diameter. Then this quantity can be moved to outside the integral. The

absolute value of the difference of the mass-weighted means of terminal

velocities of species x and y is

DVTQxy ¼ VTQx VTQy



 

; ð7:120Þ

and the absolute value of the difference of number-weighted means of the

terminal velocities of species x and y is

DVTNTxy ¼ VTNTx VTNTy



 

: ð7:121Þ

Many have found the above approximations to be flawed as pointed out

by Flatau et al. ( 1989), Ferrier (1994), Curic and Janc (1997), etc. and

probably most decisively by Verlinde et al. (1990). The approximation

fails severely when mass- or number-weighted mean terminal velocities of

each species x and y are similar. When the mass- or number-weighted mean
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terminal-velocity differences between the species are large, the Wisner

approximation performs much better. These are well demonstrated in

examples provided by Verlinde et al. (1990) for cases when terminal-velocity

differences are relatively large (e.g. the two species are raindrops and cloud

drops) and relatively small (e.g. the two species are high-density graupel and

raindrops).

7.13.2 Murakami and Mizuno approximations

The modification following Murakami (1990) is given as an approximation to

produce solutions close to the analytical solution to the collection equation,

especially when VTQx is close to VTQy. (Note VTQx is the terminal velocity of

species x in terms of mixing ratio, and VTQy is the terminal velocity of species y

in terms of mixing ratio.) The Murakami (1990) approximation is given as the

following for snow and rain,

DVTQxy ¼ VTQx VTQy



 

 ¼ VTQx VTQy

� �2þ0:04VTQxVTQy

� �1=2
; ð7:122Þ

and it is suggested that in terms of number concentration the same form is

used following Milbrandt and Yau (2005),

DVTNTxy ¼ VTNTx � VTNTy



 

 ¼ VTNTx � VTNTy

� �2þ0:04VTNTxVTNTy

� �1=2
: ð7:123Þ

The Mizuno (1990) approximation is very similar and is given in terms of

mixing ratio as

DVTQxy ¼ VTQx VTQy



 

 ¼ aVTQx bVTQy

� �2þ0:08VTQxVTQy

� �1=2
; ð7:124Þ

where a ¼ 1.2 and b ¼ 0.95.

Again it is suggested that the same form is used for number concentration,

DVTNxy ¼ VTNx VTNy



 

 ¼ aVTNx bVTNy

� �2þ0:08VTNxVTNy

� �1=2
: ð7:125Þ

For the Mizuno (1990), as is for the Murakami (1990), the approximation is

for rain accreting snow and vice versa.

Using the Wisner et al. (1972) approximation for two particles that have

about the same fallspeed distribution, there is a large region of the parameter

space with large errors. A stripe of 40% errors cuts diagonally through the

parameter space, whilst there is a large region of the parameter space with

< 40% errors for larger particles collecting smaller particles.
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7.13.3 Weighted root-mean-square approximation

Next is an examination of the weighted root-mean-square terminal-velocity

approach of Flatau et al. (1989). In this approach the approximation for the

velocity difference is given by the square root of squared mean velocity. The

form of the terminal-velocity equation is usually designed to be as general as

possible through the use of power laws,

DV
2

Txy ¼

Ð1
0

Ð1
0

VT Dxð Þ VT Dy

� �� �2
wxydDxdDy

Ð1
0

Ð1
0

wxydDxdDy

; ð7:126Þ

where wxy is the weighting function given as

wxy ¼ m Dxð Þ Dx þ Dy

� �2
n Dxð Þn Dy

� �
: ð7:127Þ

Integration and algebra lead to the following for the numerator,

ð1
0

ð1
0

VT Dxð Þ VT Dy

� �� �2
wxydDxdDy

¼ NxNym Dnxð Þ C1V
2
T Dnx

� �
2C2VT Dnx

� �
VT Dny

� �
þ V2

TC3 Dny

� �h i
:

ð7:128Þ

The constants are written in vector notation as C = FD or,

F ¼
Fx 2dx þ bx þ 2ð ÞFy 0ð Þ Fx 2dx þ bx þ 1ð ÞFy 1ð Þ Fx 2dx þ bxð ÞFy 2ð Þ
Fx dx þ bx þ 2ð ÞFy dy

� �
Fx dx þ bx þ 1ð ÞFy dy þ 1

� �
Fx dx þ bxð ÞFy dy þ 2

� �
Fx bx þ 2ð ÞFy 2dy

� �
Fx bx þ 1ð ÞFy 2dy þ 1

� �
Fx bxð ÞFy 2dy þ 2

� �
2
664

3
775;ð7:129Þ

where Fx and Fy are related to the type of distribution. In this case, it is the

modified gamma distribution. For example, the liquid-water content, L, for a

spherical particle can be written assuming the gamma distribution as

L ¼ p
6
rNDnF 3ð Þ ¼ p

6
rNDn

� vþ pð Þ
� vð Þ ð7:130Þ

where p ¼ 3 (this is related to the third moment of the distribution from

0 to 1).

To complete the solution, the value of the (3 � 1) column vector D needs to

be defined,

D ¼ D2
nx; 2DnxDny;D

2
ny

� �T
; ð7:131Þ

190 Collection growth



where T denotes the transpose of the matrix. The (1 � 3) row vector VT needs

to be defined,

VT ¼ V2
Tx Dnx

� �
; 2VTx Dnx

� �
VTy Dny

� �
;V2

Ty Dny

� �h i
: ð7:132Þ

Using (7.129) (7.132), the value of DVTxy from (7.128) can be written as

DVTxy ¼ V
!

T �FD
� �1=2 r0

r

� �1=2
; ð7:133Þ

where the typical density correction (r0/r)
(1/2) has been employed and DVTxy

replaces the terminal velocity term in (7.126).

7.14 Long’s kernel for rain collection cloud

Next, Long’s kernel is derived following Cohard and Pinty (2000) for collec-

tion of cloud water by rain for a modified gamma distribution. Long’s kernel

has been used previously in a parameterization numerical model by Ziegler

(1985). First define the kernel, K,

K D1;D2ð Þ ¼ k2 D6
1 þ D6

2

� �
if D1 � 100 microns

k1 D3
1 þ D3

2

� �
if D2 > 100 microns

	
; ð7:134Þ

with k2 ¼ 2.59� 1015 m 3 s 1 for D< 100 microns and k1 ¼ 3.03� 103 m 3 s 1

for D > 100 microns. At present these are considered only approximations of

the kernels but seem to suffice for the problem (Pruppacher and Klett 1997).

Cohard and Pinty write the following for part of the stochastic collection

equation that is important and maintains mass conservation,

I ¼ Cn

ðDm

0

Dn ]Ncw Dð Þ
]t

dD: ð7:135Þ

Substituting for the rate term,

I � Cn

ðDm

0

DnAC Ncw Dð Þð ÞdD; ð7:136Þ

where I is the integral, AC is accretion, Cn is a constant in the collection

equation. Substituting for the accretion term,

I � Cn

ð1
0

Dn Ncw D1; tð Þð Þ
ð1
0

K D1;D2ð ÞNrwðD2; tÞdD1dD2: ð7:137Þ
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Now based on (7.137), the tendency equation for any moment can be

developed,

IAC ¼
ð1
0

Dn
1 Ncw D1; tð Þð Þ

ð1
0

Ki D
3i
1 ;D

3i
2

� �
NrwðD2; tÞdD2dD1; ð7:138Þ

where the index i ¼ 0 for the zeroth moment and i ¼ 3 for the third moment;

AC is the accretion rate. In (7.138) the D2 integral, following Cohard and

Pinty, is the sum of moments Mrw(0) and Mrw(3i),

IAC ¼
ð1
0

Dn
1 Ncw D1; tð Þð ÞKiNrw D3i

1 Mrw 0ð Þ þMrw 3ið Þ� �
NrwdD1: ð7:139Þ

This leads to a generalized gamma function solution for Ncw that is an n-order

and n þ 3i moment scheme.

IAC ¼ KiNrw Mrw 0ð ÞMcw nþ 3ið Þ þMrw 3ið ÞMcw nð Þ½ �: ð7:140Þ
For small raindrops with D < 100 microns, from the general accretion

formula from Appendix B of Cohard and Pinty (2000),

IAC ¼
ð1
0

Dn
1ncw D1; tð Þ

ð1
0

K2 D6
1 þ D6

2

� �
nrw D2; tð ÞdD2dD1: ð7:141Þ

Then the modified gamma function

nðDÞ ¼ NT

�ðnrwÞ
1

Dn

D

Dn

� �nrw 1

exp
D

Dn

� �
ð7:142Þ

is substituted into (7.141),

IAC ¼K2
NTcw

�ðncwÞ
NTrw

�ðnrwÞ
ð1
0

D

Dncw

� �ncw 1

exp
Dcw

Dncw

� �(

�
ð1
0

D6
cwD

0
nrw

Drw

Dnrw

� �nrw 1þ0

þD6
nrw

Drw

Dnrw

� �nrw 1þ6

exp
D

Dn

� �)

� d
Drw

Dnrw

� �
d

Dcw

Dncw

� �
;

ð7:143Þ

where Dn is the characteristic diameter.
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Using the definition of the gamma function gives

IAC ¼ K2NTrwNTcw

�ðnrwÞ�ðncwÞ
ð1
0

D

Dncw

� �ncw 1

exp
D

Dncw

� �
D6

cwD
0
nrw�ðnrwÞ þ D6

nr�ðnrw þ 6Þ� �
d

Dcw

Dncw

� �
:

ð7:144Þ

Expanding,

IAC ¼ K2NTrwNTcw

�ðnrwÞ�ðncwÞ
ð1
0

D6
ncwD

0
nrw�ðnrwÞ

Dcw

Dncw

� �ncw 1þ6
 

þ D6
nrwD

0
ncw�ðnrw þ 6Þ Dcw

Dncw

� �ncw 1þ0
!
exp

D

Dncw

� �
d

Dcw

Dncw

� �
:

ð7:145Þ

Then integrating,

IAC ¼ K2NTrwNTcw
�ðncw þ 6ÞD6

ncw�ðnrwÞ
�ðnrwÞ�ðncwÞ þ �ðnrw þ 6ÞD6

nrw�ðncwÞ
�ðnrwÞ�ðncwÞ

� �
: ð7:146Þ

Thus the collection equation in terms of number concentration using the

modified gamma distribution is

NrwACcw ¼ K2NTrwNTcw
�ðncw þ 6ÞD6

ncw

�ðncwÞ þ �ðnrw þ 6ÞD6
nrw

�ðnrwÞ
� �

: ð7:147Þ

For the prediction of mixing ratio, Q (setting n ¼ 3; third moment), following

similar procedures, the following collection equation using the modified

gamma distribution is obtained,

QrwACcw ¼ p
6

rcw
r

K2NTrwNTcwD
3
ncw

� � ncw þ 9ð ÞD6
ncw

� ncwð Þ þ � ncw þ 3ð Þ� nrw þ 6ð ÞD6
nrw

� nrwð Þ� ncwð Þ
� �

:

ð7:148Þ

For larger raindrops with D > 100 microns, also from the general accretion

formula from Appendix B of Cohard and Pinty, it can be written

NrwACcw ¼ K1NTrwNTcw
� ncw þ 3ð ÞD3

ncw

� ncwð Þ þ � nrw þ 3ð ÞD3
nrw

� nrwð Þ
� �

: ð7:149Þ

For the prediction of mixing ratio (setting n ¼ 3; third moment), following

similar procedures as above, the following is obtained
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QrwACcw ¼ p
6

rcw
r

K2NTrwNTcwD
3
ncw

� � ncw þ 6ð ÞD3
ncw

� ncwð Þ þ � ncw þ 3ð Þ� nrw þ 3ð ÞD3
nrw

� nrwð Þ� ncwð Þ
� �

:

ð7:150Þ

7.15 Analytical solution to the collection equation

Flatau et al. (1989) and Verlinde et al. (1990) present an analytical solution to

the collection equation. Lookup tables as a function of Dnx, Dny, VTx, and VTy

can be built and bilinear interpolation in Dnx and Dny can be used to obtain a

very accurate solution using the analytical solutions of Verlinde et al. (1990)

or numerical integration as discussed later.

Let us first assume that the terminal velocities are represented by simple

power laws,

DV ¼ V Dxð Þ V Dy

� �� � ð7:151Þ
which change sign when

cxD
dx
x ¼ cyD

dy
y ; ð7:152Þ

where dx and dy are the ratios of terminal-velocity powers. With some algebra

this can be rewritten as

Dxy ¼ fxyD
dxy
y ; ð7:153Þ

where,

fxy ¼ cx
cy

� �ð1=dxyÞ
ð7:154Þ

and

dxy ¼ dx
dy

: ð7:155Þ

Following Flatau et al. (1989) and Verlinde et al. (1990), using piecewise

integration with regard to Dy of the collection equation such that the velocity

difference has the same sign over each part, the following equation in terms of

the mixing ratio using the gamma distribution can be written,

QyACx ¼ 1

r0

p
4
ExyJ

r0
r

� �1=2
: ð7:156Þ
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Now defining the variable J as the integral is simple, as it is just

J ¼
ð1
0

m Dxð Þ J1 J2ð Þn Dxð ÞdDx: ð7:157Þ

The integrals represented by J1 and J2 are given as

J1 ¼
ðDxy

0

Dx þ Dy

� �2
VT Dxð Þ VT Dy

� �� �
n Dy

� �
dDy ð7:158Þ

and

J2 ¼
ð1
Dxy

Dx þ Dy

� �2
VT Dxð Þ VT Dy

� �� �
n Dy

� �
dDy: ð7:159Þ

Again, following Flatau et al. (1989), integrating for J1 gives,

J1 ¼ NTy

� vy
� � VT Dxð Þ D2

xG1 0;Dxy

� �þ 2DxDnyG1 1;Dxy

� �
G1 0;Dxy

� �þ D2
nyG1 2;Dxy

� �h in

�VT Dny

� �
D2

xG1 by;Dxy

� �þ 2DxDnyG1 by þ 1;Dxy

� �
G1 0;Dxy

� �þ D2
nyG1 by þ 2;Dxy

� �h io
;

ð7:160Þ

where

G1 p; qð Þ ¼ gðpþ 1; qÞ �ðpþ 1; qÞ; ð7:161Þ
where g and Г are partial gamma functions. Flatau et al. (1989) explains that

the integral for J2 is similar to J1 and G2 is similar to G1.

The remaining integral over Dx (the definition of J) is quite difficult to

solve. The possibilities for finding a solution for the collection equation are

(i) to follow Verlinde et al. (1990) for an analytical solution, or (ii) to integrate

numerically following Flatau et al. (1989). It seems that because of some of

the difficulties with solving this equation, scientists have opted for using a

hybrid bin model for solutions and storing them in lookup tables at the start of

a model simulation. This procedure has been called the hybrid parameteriza-

tion or the hybrid bin model approach by some. It is very efficient and easier

to utilize.

7.16 Long’s kernel self-collection for rain and cloud

Cohard and Pinty (2000) incorporate Long’s kernel to find a solution that is

straightforward to derive and apply from equations given earlier in this
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chapter. They make use of the modified gamma distribution with v 6¼ 1, m¼ 1,

a ¼ 1. For cloud droplets where D < 100 microns,

CcwSCcw ¼ k2N
2
Tcw

� vcw þ 6ð ÞD6
ncw

� vcwð Þ ; ð7:162Þ

where SC is the self-collection rate. For drizzle and for raindrops where

D > 100 microns,

CrwSCrw ¼ k1N
2
Trw

� vrw þ 3ð ÞD3
nrw

� vrwð Þ : ð7:163Þ

7.17 Analytical self-collection solution for hydrometeors

Verlinde and Cotton’s (1993) analytical solution is not extremely difficult, but

requires the hyper-geometric function, 2F1. The formulation of Verlinde and

Cotton’s (1993) self-collection equation for change in number concentration,

which is a loss term for raindrops in this example, is given by

CrwSCrw ¼ p
8
crwD

bþ2
nrwN

2
TrwErwrw

�
X2
n 0

2

vþ n
� �ð Þ2F1 vþ n; �; vþ nþ 1; 1ð Þ � vþ nð Þ

�

� � d þ v nþ 2ð Þ
�

þ
X2
n 0

2

vþ d þ n
� �ð Þ2F1 vþ d þ n; �; vþ d þ nþ 1; 1ð Þ

�

� vþ d þ nð Þ� v nþ 2ð Þ
�
;

ð7:164Þ

where Erwrw is the collection efficiency of rain water collecting rain water, c is

the leading coefficient for the power law for terminal velocity, and d is the

power. In addition, � ¼ d+2v+2.

In their earlier paper, Verlinde et al. (1990) showed that H was derived

from the special case of self-collection for the general case of two-body

interactions. In that case, they showed,

dQ

dt
¼ p

4r
ExxJ; ð7:165Þ

where

J ¼ 1

2
mðDnÞVTðDnÞN2

TD
2
nHmass: ð7:166Þ
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Also note VT ¼ cDd
n. Substitution of (7.166) into (7.165) gives

dQ

dt
¼ p

8r
ExxcD

dþ2
n aDb

nN
2
THmass; ð7:167Þ

where Hmass represents the summation for mass changes by self-collection. This

equation is very similar to the equation in terms of number concentration,

dNT

dt
¼ p

8r
cDdþ2

n N2
TExxHnumber; ð7:168Þ

such that

dm

dt
� mðDnÞdNT

dt
; ð7:169Þ

where,

Hmass ¼
X2
n¼0

2

nþ n
� �ð Þ2F1 nþ n; �; nþ nþ 1;�1ð Þ � � nþ nð Þ� bþ d þ n� nþ 2ð Þ

� �

þ
X2
n¼0

2
nþdvþn� �ð Þ2F1 nþ d þ n; �; nþ d þ nþ 1;�1ð Þ

�� nþ dv þ nð Þ� bþ n� nþ 2ð Þ

2
4

3
5;

ð7:170Þ

and where,

� ¼ bþ d þ 2nþ 2: ð7:171Þ
Note that there are two different exponents from the power law in this case.

One, b, is from the mass power law whereas, d is from the velocity power law.

Verlinde et al. (1990) claim that this form is used for the mass computation

(i.e. the amount of total mass involved in self-collection).

7.18 Reflectivity change for the gamma distribution

owing to collection

The reflectivity owing to collection can be approximated following Milbrandt

and Yau (2005b) by

ZxACy ¼ G vxð Þ
p
6
rx

r2 2
Qx

NTx
QxACy

Qx

NTx

� �2
NTxACy

" #
; ð7:172Þ

where G(vx) is given in Chapter 2 as is the derivation of this equation.

Alternative forms including a and m for the gamma distribution can be

derived as well as for the log-normal distribution.
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7.19 Numerical solutions to the quasi-stochastic collection equation

As pointed out by Pruppacher and Klett (1981, 1997) there is a plethora of

numerical approximation techniques to solve the approximate stochastic

collection equation. Herein, we will cover two numerical interpolation

approaches including one by Berry (1967) and Berry and Reinhardt (1974a d),

and the simple and fast Kovetz and Olund (1969) method and attempts to

modify it. Then the “method of moments” techniques by Bleck (1970) and

Danielsen et al. (1972), which are single-moment approximations, and that

by Tzivion et al. (1987), which is a multiple-moment approximation, will be

covered. Pruppacher and Klett (1981, 1997) write that these are some of the

most widely used techniques in the literature; that is the reason they will

be covered here. Finally, Bott’s (1998) flux method for solving the stochastic

collection equation will be examined.

It is interesting to see what type of solution can be parameterized from bin

model results. Khairoutdinov and Kogan (2000) ran a bin model and com-

puted the collection rates for rain as a function of Qcw and Qrw and found that

the explicit bin model results for drizzling stratocumulus could be well

represented by two parameterized functions, one slightly better than the other

(Fig. 7.8). This should be tried for deeper convection and for ice clouds to see

if bin model results could be used for collection of cloud, rain and crystals by

other hydrometeors.
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Fig. 7.8. Scatterplots of the bulk accretion rates given by the x–y axes versus
the corresponding rates obtained from the explicit mode. Note that only
every twentieth data point is shown. (From Khairoutdinov and Kogan 2000;
courtesy of the American Meteorological Society.)
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7.19.1 Methods of interpolation for the stochastic collection equation

7.19.1.1 The Kovetz and Olund method for the stochastic

collection equation

Though hardly used any more, the Kovetz and Olund (1969) scheme is a

simple and efficient interpolation method to study the collision coalescence

of particles. It has received criticism for being too diffusive a scheme. More-

over, it is claimed that the Kovetz and Olund method is not a true stochastic

collection scheme. Though Scott and Levin (1975) argued that all schemes are

approximations to true stochastic collection equations. The author of this

book agrees with the opinion that the Kovetz and Olund scheme is too

diffusive a scheme compared to several newer modern schemes; however, it

is presented here for completeness. Moreover the Kovetz and Olund scheme

is a mass-conserving scheme, which is a desirable quality.

The stochastic collection equation for the Kovetz and Olund scheme is

written such that

NT ri; tþ Dtð Þ ¼ NT ri; tð Þ þ
Xi 1

n 1

Xi
m nþ1

B n;m; ið ÞP n;mð ÞNT rn; tð ÞNT rm; tð Þ

XM
n 1

P i; nð ÞNT ri; tð ÞNT rn; tð Þ;
ð7:173Þ

where P(n, m) is the coalescence probability for particles with radii rn and rm.

The term B is an exchange coefficient to move particles from one bin to

another and is given by

B n;m; ið Þ ¼

r3n þ r3m r3i 1

� �
= r3i r3i 1

� �
for r3i 1 � r3n þ r3m � r3i

r3iþ1 r3n r3m
� �

= r3iþ1 r3i
� �

for r3i � r3n þ r3m � r3iþ1

0 for r3n þ r3m � r3i 1

or r3iþ1 < r3n þ r3m

8>>>>><
>>>>>:

: ð7:174Þ

This scheme for B(n, m, i) preserves the mass of water. A brief discussion

comparing the Kovetz and Olund (1969) scheme to Golovin’s analytical

solution and the Berry and Reinhardt (1974a d) scheme is given below

(Fig. 7.9) from Scott and Levin (1975). They claim that the Kovetz and

Olund (1969) solutions are not prohibitively erroneous and that neither the

Kovetz and Olund nor the Berry and Reinhardt scheme are perfect at repre-

senting the true stochastic collection process. In the first example, Golovin’s

analytical solution is compared to the Kovetz and Olund scheme. The peaks

in the Kovetz and Olund scheme are slightly lower than with Golovin’s
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solution, whereas the tails at large drop sizes are slightly longer indicating

the known spreading by the Kovetz and Olund scheme. In the comparison

with the Berry and Reinhardt (1974a d) scheme, there is a larger difference

between the solutions, with shallower peaks for the Kovetz and Olund scheme

and more prominent undesirable spreading at 600 and 1200 seconds at the

large drop tails.

7.19.1.2 Berry and Reinhardt method for the stochastic

collection equation

The method of interpolation is quite useful if high-order interpolation poly-

nomials are used for accuracy and enough bin categories cover the spectrum

adequately. Unfortunately, given their accuracy [at least the Berry (1967), and

Berry and Reinhardt (1974a d) methods], interpolation methods do not
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Fig. 7.9. Comparison of Kovetz and Olund’s (1969) results with (a) Golovin’s
analytical solution and (b) Berry and Reinhardt’s (1974a–d) gamma distri-
bution. The graphs plot number concentration versus the drop radius.
See text for details. (From Scott and Levin 1975; courtesy of the American
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200 Collection growth



preserve any mass moments including the zeroth (number concentration) and

first (water content). A practical problem with any method is determining the

number of bin categories, and spacing the bin categories to have enough

resolution at both small and large sizes. Linearly spaced bins over four orders

of magnitude in diameter would be prohibitively expensive if enough reso-

lution for the small-sized end of the spectrum were covered and these small

bin category sizes were used throughout the spectrum for the larger end of the

spectrum. On the other hand, use of coarser bin category sizes would give

poor solutions. At least somewhere around 40 or more bin category sizes

are required for accurate solutions (Pruppacher and Klett 1997 and many

others). In recent years all interpolation methods have been abandoned as

they do not handle sharp discontinuities with the high-order polynomials

needed for accurate smooth solutions.

One of the most common solutions to the problem of bin category size

resolution was proposed by Berry (1967) by using an exponential subdivision

method. For bin category J the sizes range as

rðJÞ ¼ r0 exp
J 1

JR

� �
; ð7:175Þ

where J ¼ 1, 2, 3 . . . Jmax, r0 is the smallest radius, and JR is a distribution

spacing parameter typically between 3 and 7 or so depending on r0 and the

size range to be covered. The mass coordinates given by this bin category

division method are given as

mðJÞ ¼ m0 exp
3 J 1½ �

JR

� �
; ð7:176Þ

where m0 is the smallest mass corresponding to the smallest radius by

m0 ¼ 4

3
prLr

3
0; ð7:177Þ

where rL is the density of liquid water (though any density of any particle

could be inserted). Note that the lower limit of integration is now no longer 0

but m0 in the stochastic collection equation (and later in the stochastic

breakup equation).

The following closely follows Pruppacher and Klett (1997) and Berry and

Reinhardt (1974a d). First the stochastic collection equation given by

dNk

dt
¼ 1

2

Xk 1

i 1

Ai;k iNiNk i Nk

X1
i 1

AikNi ð7:178Þ
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is rewritten as

]nðm; tÞ
]t

� �
C

¼
ðm=2
0

K mc;m
0ð Þn mc; tð Þn m0; tð Þ½ �dm0

nðm; tÞ
ð1
0

K m;m0ð Þn m0; tð Þ½ �dm0;

ð7:179Þ

where m, m0 and mc are different masses, n is the number of droplets, t is the

time, and C means collection. Symmetry of the collection kernel K allows the

first integral to be written as a single integral rather than a double integral,

and m/2 in the first integral is an integer Jup (upper limit), following Pruppacher

and Klett’s (1997) convention, where

mðJupÞ ¼ mðJ=2Þ; ð7:180Þ
or

Jup ¼ J ½JR lnð2Þ�=3; ð7:181Þ
where JR is a parameter to control the size of the exponential. Therefore, each

drop mass is 21=JR times the preceding mass category or

mðJÞ ¼ m02
J 1½ �
JR

� �
; ð7:182Þ

or each mass category is twice the mass of the previous two mass categories;

i.e. mass doubles every two mass categories.

This results in a new distribution function for number concentration bin

categories n(J) so that

nðJ; tÞdJ ¼ nðm; tÞdm: ð7:183Þ
Note also that, mc ¼ m m0, so that we can write Jc, which is not an integer

and corresponds to mc,

Jc ¼ J þ JR
ln 2ð Þ ln 1 2 J0 Jð Þ=JR

h i
: ð7:184Þ

With these definitions, the above equations result in a time-dependent equation

for n(J),

]nðJ; tÞ
]t

� �
C

¼ m Jð Þ
ðJ JR

1

K mc;m
0ð Þ

m Jcð Þ n Jc; tð Þn J0; tð Þ
� �

dJ0

nðJ; tÞ
ðJmax

1

K J; J0ð Þn J0; tð Þ½ �dJ0:
ð7:185Þ
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Ogura and Takahashi (1973) solved this equation using a variety of different

interpolating polynomials for finding n(Jc) by interpolating on n(J). By defin-

ition, remember that J 2< Jc < J. These interpolation polynomials included

the following five examples, with (3) and (5) behaving equally well:

(1) three-point interpolation using n(J� 2), n(J� 1), and n(J);

(2) three-point interpolation using n(J� 2), n(J� 1), and n(J) for J� 2 < Jc < J� 1,

n(J� 1), n(J) and n(Jþ 1) for J� 1 < Jc < J;

(3) four-point interpolation using n(J� 2), n(J� 1), n(J), and n(Jþ 1);

(4) three-point interpolation using n(J� 2), n(J� 1), and n(J) for J� 2 < Jc < J� 1,

and four-point interpolation using n(J� 1), n(J), n(Jþ 1), and n(Jþ 2) for J� 1 <

Jc < J;

(5) three-point interpolation using n(J� 2), n(J� 1), and n(J) for J� 2 < Jc < J� 1,

and four-point interpolation using n(J� 2), n(J� 1), n(J), and n(Jþ 1) for J� 1 <

Jc < J.

The accuracy of using method (5) is shown for the Golovin kernel and

initial condition in Fig. 7.10, where there is only 6% loss in mass after 60 min

(Ogura and Takahashi 1973).
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Fig. 7.10. Drop-size distribution as a function of the drop radius and time:
solid lines, numerical solution; dashed lines, analytical solution. (From Ogura
and Takahashi 1973; courtesy of the American Meteorological Society.)
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For reasons found in Berry and Reinhardt (1974a d) and Pruppacher and

Klett (1997) to use (7. 185) more effectively it is advantageous to work with a

water content per unit ln(r) interval, which is related to n(m, t) by

gðln rÞdðln rÞ ¼ mnðm; tÞdm ð7:186Þ
or,

gðln rÞ ¼ 3m2nðm; tÞ: ð7:187Þ
(Note, though, that the author finds (7.185) even more accurate with higher-

order interpolating polynomials.) Now defining G(J),

G Jð Þ 
 gðln rÞ; ð7:188Þ
the following is found,

G Jð Þ 
 JRmnðJ; tÞ: ð7:189Þ
Now the equation for G(J) follows directly from the above definitions as

]GðJ; tÞ
]t

� �
C

¼ m Jð Þ
JR

� �
m Jð Þ

ðJ JR

0

K mc;m
0ð ÞGðJc; tÞGðJ0; tÞ

m2 Jcð Þm J0ð Þ dJ0

2
4

GðJ; tÞ
m Jð Þ

ðJmax

1

K J; J0ð ÞG J0; tð Þ
m J0ð Þ dJ0

#
:

ð7:190Þ

To employ this equation two types of numerical calculations need to be

carried out. As Jc is not an integer, the values of G(Jc) must be found from

interpolation [these are described below using Lagrange polynomials from

Berry and Reinhardt (1974a d)]. In addition, integration must be carried out

by numerical quadrature. Reinhardt (1972) devised adequate schemes for this

purpose, and these are given in Berry and Reinhardt (1974a d) as well.

We begin with the interpolation. As Jc is not an integer G(Jc) is not known.

A six-point Lagrange interpolation formula is employed in natural log space.

The coefficients A1 through A6 are given by

A1 ¼ A5 4Aþ 5A2
� �

=120

A2 ¼ A4 7A3 þ A5 A2 þ 6A
� �� �

=24

A3 ¼ A5 þ 8A2 12A 2A4 7A3
� �� �

=12

A4 ¼ 3A4 5A3 12þ A5 15A2 þ 4A
� �� �

=12

A5 ¼ 5A5 þ 16A2 4A4 A3 12A
� �� �

=24

A6 ¼ 5A4 6Aþ A5 þ 5A3 5A2
� �� �

=120;

ð7:191Þ
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where

A ¼ Jc J ¼ 2

ln 2
ln 1 2 J0 Jð Þ=2
h i

: ð7:192Þ

The following example shows how the Lagrange interpolation formula is

used. First, G(J) in terms of natural logarithms is given by

G Jcð Þ ¼ exp
A1 lnG J 3ð Þ þ A2 lnG J 2ð Þ þ A3 lnG J 1ð Þ
þA4 lnG J 0ð Þ þ A5 lnG J þ 1ð Þ þ A6 lnG J þ 2ð Þ

" #
: ð7:193Þ

These coefficients are valid when J J0ð Þ � 4: When J J0ð Þ ¼ 3; the

following set of coefficients must be used,

A1 ¼ B= 120 Aþ 4ð Þ½ �
A2 ¼ þB= 24 Aþ 3ð Þ½ �
A3 ¼ B= 12 Aþ 2ð Þ½ �
A4 ¼ þB= 12 Aþ 1ð Þ½ �
A5 ¼ B= 24 Að Þ½ �
A6 ¼ B= 120 A 1ð Þ½ �;

ð7:194Þ

where

B ¼ A 1ð Þ Að Þ Aþ 1ð Þ Aþ 2ð Þ Aþ 3ð Þ Aþ 4ð Þ ð7:195Þ
and

A ¼ Jc J: ð7:196Þ
The interpolation formula in natural log space becomes,

G Jcð Þ ¼ exp
A1 lnG J 4ð Þ þ A2 lnG J 3ð Þ þ A3 lnG J 2ð Þ
þA4 lnG J 1ð Þ þ A5 lnG J þ 0ð Þ þ A6 lnG J þ 1ð Þ

" #
: ð7:197Þ

There are two sets of interpolating formula because of the following two

ranges for Jc:

(1) when J � J0ð Þ � 4, J � 1ð Þ < Jc < J;

(2) when J � J0ð Þ ¼ 3, J � 2ð Þ < Jc < J � 1ð Þ.
Also, note that when J J0ð Þ ¼ 2; Jc ¼ J 2ð Þ ¼ J0; andwhen J J0ð Þ ¼ 3,

the polynomial format need not be used, i.e.

A ¼ Jc J ¼ 2

ln 2
ln 1 2 J0 Jð Þ=2
h i

¼ 1:258793747: ð7:198Þ
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The results of integrating the stochastic collection equation with the Berry

and Reinhardt scheme are very accurate and compare very favorably with

analytical solutions, though this method does not conserve any integral

properties. Moreover, the method does not permit use of empirical collisional

breakup functions specified by Low and List (1982a, b).

Now for integration, three Lagrange integration coefficients are used. How-

ever, there are intervals where these will not work because the integrand becomes

zero at certain values of J. So special methods are put in place near the zeros.

The zeros occur when like-sized drops collide J ¼ J0ð Þ, as the collection kernel

then includes the fall-velocity difference. Consider the following special cases,

where “aint” is a function that creates an integer from a real number.

(1) Even number of points: gain integral, Jd ¼ 8

ð8
1

aint J0ð ÞdJ0 ¼ 1=3ð Þaintð1Þ þ 4=3ð Þaintð2Þ þ 2=3ð Þaintð3Þ

þ 4=3ð Þaintð4Þ þ 1=3ð Þaintð5Þ þ 3=8ð Þaintð5Þ
þ 9=8ð Þaintð6Þ þ 9=8ð Þaintð7Þ þ 3=8ð Þaintð8Þ:

ð7:199Þ

(2) Odd number of points: gain integral, Jd ¼ 9

ð9
1

aint J0ð ÞdJ0 ¼ 1=3ð Þaintð1Þ þ 4=3ð Þaintð2Þ þ 2=3ð Þaintð3Þ

þ 4=3ð Þaintð4Þ þ 1=3ð Þaintð5Þ þ 14=45ð Þaintð5Þ
þ 64=15ð Þaintð6Þ þ 24=45ð Þaintð7Þ
þ 64=45ð Þaintð8Þ þ 14=45ð Þaintð9Þ:

ð7:200Þ

(3) Even number of points through zero integrand: loss integral, J ¼ 8, Jm ¼ 15

ð15
1

aint J0ð ÞdJ0 ¼ 1=3ð Þaintð1Þ þ 4=3ð Þaintð2Þ þ 2=3ð Þaintð3Þ

þ 4=3ð Þaintð4Þ þ 1=3ð Þaintð5Þ þ 3=8ð Þaintð5Þ
þ 9=8ð Þ aintð6Þ þ 9=8ð Þ aintð7Þ þ 3=8ð Þaintð8Þ
þ 3=8ð Þaintð8Þ þ 9=8ð Þaintð9Þ þ 9=8ð Þaintð10Þ
þ 3=8ð Þaintð11Þ þ 1=3ð Þaintð11Þ þ 4=3ð Þaintð12Þ
þ 2=3ð Þaintð13Þ þ 4=3ð Þaintð14Þ þ 1=3ð Þaintð15Þ:

ð7:201Þ
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(4) Odd number of points through zero integrand: loss integral, J ¼ 9, Jm ¼ 16

ð16
1

aint J0ð ÞdJ0 ¼ 1=3ð Þaintð1Þ þ 4=3ð Þaintð2Þ þ 2=3ð Þaintð3Þ

þ 4=3ð Þaintð4Þ þ 1=3ð Þaintð5Þ þ 14=45ð Þaintð5Þ
þ 64=45ð Þaintð6Þ þ 24=45ð Þaintð7Þ þ 64=45ð Þaintð8Þ
þ 14=45ð Þaintð9Þ þ 3=8ð Þaintð9Þ þ 9=8ð Þaintð10Þ
þ 9=8ð Þaintð11Þ þ 3=8ð Þaintð12Þ þ 1=3ð Þaintð12Þ
þ 4=3ð Þaintð13Þ þ 2=3ð Þaintð14Þ þ 4=3ð Þaintð15Þ
þ 1=3ð Þ aintð16Þ:

ð7:202Þ

For further details the reader should see Berry and Reinhardt (1974a).

7.19.2 Method of moments for the stochastic collection equation

7.19.2.1 A one-moment method for the stochastic collection equation

The one-moment method of Bleck (1970) and Danielsen et al. (1972) has

received considerable use in meteorology, as it is relatively simple and inex-

pensive to utilize. It does have its limitations as noted toward the end of this

presentation of the method.

First, consider the equation written in (7.203) regarding the consideration

of the completeness of the stochastic collection equation,

dNTk

dt
¼ 1

2

Xk 1

i 1

Ki;k iNTiNTk i NTk

X1
i 1

KikNTi: ð7:203Þ

Bleck (1970) and Danielsen et al. (1972) considered a drop spectrum

described by Berry and Reinhardt (1974a d), and later in discussion of

multi-moment methods, so did Tzivion et al. (1987),

mkþ1 ¼ pkmk; ð7:204Þ
where k is the bin category index, mk and mkþ1 are the lower and upper

bounds of the category, and pk is a parameter describing the category width.

This usually is given in terms of 2 to some power, such as

pk ¼ 21=J: ð7:205Þ
Alternatively, it was seen for the Berry and Reinhardt (1974a d) method that

mðJÞ ¼ m0 exp
3 J 1½ �

JR

� �
; ð7:206Þ
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with m0 given as the smallest mass,

m0 ¼ 4

3
prLr

3
0; ð7:207Þ

and where r0 is the smallest radius.

Now to obtain the solution more easily, (7.203) can be written in the

following form,

]nðm; tÞ
]t

� �
C

¼
ðm=2
0

K mc;m
0ð Þn mc; tð Þn m0; tð Þdm0 nðm; tÞ

�
ð1
0

K m;m0ð Þn m0; tð Þdm0;

ð7:208Þ

where C denotes collection, and m/2 in the first integral is an integer Jup,

following Pruppacher and Klett’s (1997) convention, where mðJupÞ ¼ mðJ=2Þ:
Note also that

mc ¼ m m0: ð7:209Þ
As before, symmetry of the collection kernel K allows the first integral to be

written as a single integral rather than a double integral.

To solve the stochastic collection equation with the one-moment method,

Bleck and Danielson et al. both used subcategories to describe the spectrum

defined by a mass-weighted mean value for the number density of the hydro-

meteor species in each mass category, given by

nk tð Þ ¼
ðmkþ1

mk

n m; tð Þmdm
ðmkþ1

mk

mdm

2
4

3
5

1

¼ 2

m2
kþ1 m2

k

ðmkþ1

mk

n m; tð Þmdm: ð7:210Þ

To find an equation for dnk=dt; both sides of (7.208) are multiplied by mdm

and the resultant between mk and mkþ 1, is integrated; using (7.210) gives

]nkðtÞ
]t

� �
C

¼ 2

m2
kþ1 � m2

k

" # ðmkþ1

mk

mdm

ðm=2
0

K m� m0;m0ð Þn m� m0; tð Þn m0; tð Þdm0

2
64

3
75

� 2

m2
kþ1 � m2

k

" # ðmkþ1

mk

mdm

ð1
0

K m;m0ð Þn m0; tð Þn m; tð Þdm0

2
4

3
5:

ð7:211Þ
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Given the definition

Jc 
 ]nðm; tÞ
]t

� �
C

; ð7:212Þ

there is also the definition that

]nkðtÞ
]t

� �
C

¼ 2

m2
kþ1 m2

k

" # ðmkþ1

mk

Jc m; tð Þmdm: ð7:213Þ

Now Bleck made the approximation

n m; tð Þ ¼ nk tð Þ; ð7:214Þ
where k is such that,

mk < m < mkþ1: ð7:215Þ
Now the continuous size distribution is replaced by a piecewise constant

function with discontinuities at mk k ¼ 0; 1; 2; 3 . . .ð Þ;

]nðmÞ
]t

� �
C

¼ 2

m2
kþ1 m2

k

ðmkþ1

mk

Jc m; tð Þmdm
2
4

3
5: ð7:216Þ

Graphically, Bleck demonstrated that the term in square brackets in (7.216)

could be given by

ðmkþ1

mk

Jc m; tð Þmdm �
Xk
j k 1

Xk 1

i 1

aijknjni nk
XI
i 1

bikni; ð7:217Þ

so that

]nðmÞ
]t

� �
C

� 2

m2
kþ1 m2

k

" # Xk
j k 1

Xk 1

i 1

aijknjni nk
XI
i 1

bikni; ð7:218Þ

where I is the total number of bins or categories, and definitions for aijk and

bik are given by Danielsen et al. (1972) and Brown (1983, 1985).

As this equation is normalized by the mass density distribution function, it

does not conserve any other moments but the first one, mixing ratio or mass,

M1
k ¼

ðmkþ1

mk

mn m; tð Þdm: ð7:219Þ
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The method has received perhaps unfair criticism, though it does accelerate

larger particle drop growth (Tzivion et al. 1987). It does have an advantage

over the Berry scheme in that various breakup parameterizations can easily

be incorporated (e.g. Low and List 1982a, b; and Brown 1988).

7.19.2.2 A multi-moment method for the stochastic collection equation

Next the discussion turns to Tzivion et al.’s (1987) multi-moment or n-moment

approximation method where n is the nth moment. The categories are defined

as with the one-moment method,

mkþ1 ¼ pkmk ð7:220Þ
and

pk ¼ 21=J: ð7:221Þ
As noted above, n is the nth moment of the distribution function n(m, t) in

category k,

Mv
k ¼

ðmkþ1

mk

mvn m; tð Þdm: ð7:222Þ

Application of

ðmKþ1

mk

mvdm ð7:223Þ

to

]nðmÞ
]t

� �
C

¼
ðm=2
0

K mc;m
0ð Þn mcð Þn m0ð Þdm0 nðmÞ

ð1
0

K m;m0ð Þn m0ð Þdm0 ð7:224Þ

gives the following equations with respect to the moments in each category.

The result is a system of equations, given by

]Mv
k

]t

� �
¼ 1

2

ðmkþ1

mk

mvdm

ðm
m0

K m m0;m0ð Þn m m0; tð Þn m0; tð Þdm0

XI
i 1

ðmkþ1

mk

mvnk m; tð Þdm
ðmiþ1

mi

K m;m0ð Þni m0; tð Þdm0

ð7:225Þ
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and

]Mv
k tð Þ
]t

¼
Xk 1

i 1

ðmiþ1

mi

ni m
0; tð Þdm0

ðmkþ1 m0

mk

mþ m0ð ÞvKk;i m;m
0ð Þnk m; tð Þdm

þ
Xk 2

i 1

ðmkþ1

mk

ni m
0; tð Þdm0

ðmiþ1

mk 1 m0

mþ m0ð ÞvKk 1;i m;m
0ð Þnk 1 m; tð Þdm

þ 1

2

ðmk

mk 1

nk 1 m; tð Þdm0
ðmk

mk 1

mþ m0ð Þvnk 1 m; tð ÞKk 1;k 1 m;m0ð Þdm

XI
i 1

ðmkþ1

mk

mvnk m; tð Þdm
ðmiþ1

mk 1 m0

nk m; tð ÞKk;i m;m
0ð Þdm0;

ð7:226Þ

where K is the collection kernel. Now we let,

xp ¼

Ðmkþ1

mk

mvþ1nk m; tð Þdm0 Ðmiþ1

mi

mv 1nk m; tð Þdm

Ðmkþ1

mk

mvnk m; tð Þdm
" #2 ; ð7:227Þ

where

1 � xp �
pk þ 1ð Þ2
4pk

; ð7:228Þ

and where pk is a parameter describing the category width. Now using the

mean value of xp xp
� �

the connection “between three neighboring moments”

can be expressed as

Mvþ1
k ¼ xpm

v
kM

v
k: ð7:229Þ

Now the zeroth moment, or number concentration, can be presented as

]Nk tð Þ
]t

¼
þ 1

2

Ðmk

mk 1

nk 1 m0; tð Þdm0 Ðmk

mk 1

Kk 1;k 1 m;m0ð Þnk 1 m; tð Þdm

þPk 2

i 1

Ðmiþ1

mi

ni m
0; tð Þdm0 Ðmiþ1

mk m0
Kk 1;i m;m

0ð Þnk 1 m; tð Þdm

2
6664

3
7775
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þ 1
2

Ðmkþ1

mk

nk m0; tð Þdm0 Ðmkþ1

mk

Kk;k m;m0ð Þnk m; tð Þdm

þPk 1

i 1

ni m
0; tð Þdm0 Ðmiþ1

mkþ1 m0
Kk;i m;m

0ð Þnk m; tð Þdm

2
66664

3
77775

1
2

Ðmkþ1

mk

nk m0; tð Þdm0 Ðmkþ1

mk

Kk;k m;m0ð Þnk m; tð Þdm

þ PI
i kþ1

Ðmkþ1

mk

ni m
0; tð Þdm Ðmkþ1

mk

Kk;i m;m
0ð Þnk m; tð Þdm0

2
666664

3
777775

ð7:230Þ

and the first moment, or water content, as

]Mk tð Þ
]t

¼

1
2

Ðmk

mk 1

nk 1 m0; tð Þdm0 Ðmk

mk 1

mþ m0ð ÞKk 1;k 1 m;m0ð Þnk 1 m; tð Þdm

þPk 2

i¼1

Ðmiþ1

mi

ni m
0; tð Þdm0 Ðmiþ1

mk m0
mþ m0ð ÞKi;k 1 m;m0ð Þnk 1 m; tð Þdm

2
66664

3
77775

�

1
2

Ðmkþ1

mk

nk m0; tð Þdm0 Ðmkþ1

mk

mþ m0ð ÞKi;k m;m0ð Þnk m; tð Þdm

þPk 1

i¼1

Ðmiþ1

mi

ni m
0; tð Þdm0 Ðmiþ1

mkþ1 m0
mþ m0ð ÞKi;k m;m0ð Þnk m; tð Þdm

2
66664

3
77775

�

P Ðmkþ1

mk

m0nk m0; tð Þdm0 Ðmk

mkþ1 m0
mþ m0ð ÞKi;k m;m0ð Þnk m; tð Þdm

� PI
i¼kþ1

Ðmiþ1

mi

ni m
0; tð Þdm Ðmkþ1

mk

mKi;k m;m0ð Þni m; tð Þdm0

2
66664

3
77775:

ð7:231Þ

These two equations (7.230) and (7.231) were derived by Tzivion et al. (1987)

to be interpreted as easily as possible in a physical sense. The autoconversion

of the number of particles to category k as the result of coalescence between

the number of particles in category k 1 with one another (term 1) and with

the number of particles in the categories less than categories k 1 (term two)

are the first two terms. The third and fourth terms represent the autoconver-

sion of the number of particles to category k as the result of coalescence

between the number of particles in category k with one another (term 3) and

with the number of particles in categories less than k (term 4). The last two

terms represent the loss in particles in category k during collisions with one

another (term 5) and with the particles in categories larger than k (term 6).
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In the mass equation (7.231) it is mass that is transferred rather than number

concentration.

Tests with a constant kernel show general agreement between the one-

moment Bleck scheme and two-moment Tzivion et al. scheme (Fig. 7.11)

starting with an inverse exponential profile for the size distribution. There is
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Fig. 7.11. A comparison of stochastic collection computations for the con-
stant collection kernel [K(x, y) = 1.1 � 10 4 cm 3 s 1] after 60 min of
collection for (a) a fractional mass (Mk/LWC), where LWC is liquid-water
content and (b) category number concentrations (Nk). The analytical solu-
tions are represented by solid lines, Bleck’s method by long dashed lines, and
the proposed method by short dashed lines. The initial exponential distribu-
tion is indicated at the left by a solid line. (Tzivion et al. 1987; courtesy of the
American Meteorological Society.)
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some error with Bleck’s method with the fractional mass. Also shown is

Fig. 7.12 using the initial inverse exponential distribution that shows the

failure of the one-moment scheme that occurs with rapid acceleration of larger

drops (large dashed lines) as compared to Tzivion et al.’s method. Finally, the

most enlightening result is found using a realistic kernel. In this case, the Tzivion

et al. method considerably out-performs the Bleck method (Fig. 7.13). (Note

number concentrations are not shown for Bleck’s one-moment scheme, as it
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Fig. 7.12. A comparison of stochastic collection computations for the
constant collection kernel [K(x, y) ¼ 1500(x+y) cm 3 s 1] for (a) a fractional
mass (Mk/LWC) and (b) category number concentrations (Nk). The analyt-
ical solutions are represented by solid lines, Bleck’s method by long dashed
lines, and the proposed method by short dashed lines. The initial Golovin’s
distribution is indicated at left by a solid line. Solutions are shown at 30 and
50 min collection time. Note the excellent fit obtained for the proposed
method for both mass and number concentration and the tendency for the
Bleck solution to accelerate the collection process. (From Tzivion et al. 1987;
courtesy of the American Meteorological Society.)
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does not solve a solution for the zeroth moment, which is the number concen-

tration. It only solves for mass.)

To solve the equations, Long’s kernel with integer-order polynomials is

used to solve the integrals such as
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Fig. 7.13. A comparison of stochastic collection computations for a
real collection kernel (see Long 1974) for (a) a fractional mass (Mk/LWC)
and (b) category number concentrations (Nk). The analytical solutions
are represented by solid lines, Bleck’s method by long dashed lines, and
the proposed method by short dashed lines. Evidently, the Bleck method
enhances collection by a factor of about two compared with the proposed
method. (From Tzivion et al. 1987; courtesy of the American Meteorological
Society.)
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ðmkþ1

mkþ1 m0

mvnk m; tð Þdm: ð7:232Þ

Using a linear distribution to approximate the integrand,

mvnk m; tð Þ ¼ mv
kfk

mkþ1 m

mk

� �
þ mv

kþ1ck

m mk

mk

� �
; ð7:233Þ

the integral can be solved as the following,

ðmkþ1

mkþ1 m0

mvnk m; tð Þdm ¼ mv
kþ1ckm

0 mv
k

2mk

2vck fkð Þm0: ð7:234Þ

The functions for fk and ck, used to describe the transfer of particles from one

bin to another, have to be given in terms of the moments Mv
k.

Substitution of (7.233) into the definition for the moments allows the

following to be written,

Mv
k ¼

ðmkþ1

mk

mvn m; tð Þdm; ð7:235Þ

where

fk ¼ 2Nk

mk
2

mk

mk

� �
; ð7:236Þ

and

ck ¼
2Nk

mk

mk

mk
1

� �
: ð7:237Þ

Tzivion et al. note that the proposed approximate distribution function is

positive definite on mk;mkþ1ð Þ as long as the following is true,

mk � mk � mkþ1: ð7:238Þ
If this does not hold because of truncation error, it is required that

fk ¼ 0; cðkÞ ¼ 2
Nk

mk
if mk > mkþ1 ð7:239Þ

and

fk ¼ 2
Nk

mk
; cðkÞ ¼ 0 if mk < mk: ð7:240Þ
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Higher-order polynomials can be used, but are not really deemed necessary

for typical high-resolution modeling with small timesteps. Nevertheless,

though not presented here, a cubic approximation that performs well can

be found in Tzivion et al. (1987).

7.19.2.3 The flux method for the stochastic

collection equation

Bott (1998) introduced a new method for solving the stochastic collection

equation. It conserves mass exactly, and is computationally very efficient

compared to other methods. Bott’s method is a two-step procedure. In step

one, drops with mass m0 that have been just formed by collision, are entirely

added to grid box k of the numerical grid mesh with mk � m0 � mkþ1. In step

two, a certain fraction of the water mass in box k is transported to box kþ1.

This transport is carried out as an advection procedure, which is unique to the

method.

First Bott (1998) starts off with Pruppacher and Klett’s (1997) definition of

the stochastic collection equation written slightly differently,

]nðmÞ
]t

� �
C

¼
ðm=2
0

K mc;m
0ð Þn mcð Þn m0ð Þdm0

ð1
0

K m;m0ð ÞnðmÞn m0ð Þdm0: ð7:241Þ

Here, remember that n is the number concentration, K is the collection kernel

describing the rate that a drop of mass

mc ¼ m m0 ð7:242Þ
is collected by a particle of mass m0 forming a drop of mass m. Now,

m0 is the mass of the smallest particle involved in the collection process and

m1 is = m/2.

Following Berry (1967) a mass distribution function g(y, t) is employed

with

g y; tð Þdy ¼ mn m; tð Þdm ð7:243Þ
and

n m; tð Þ ¼ 1

3m2
g y; tð Þ: ð7:244Þ

The following definitions are made including y = ln r where r is particle

radius with mass m. Substituting these into the modified Pruppacher and Klett

(1997) description of the stochastic collection equation gives a somewhat

7.19 Numerical solutions 217



familiar equation from the earlier discussion of the Berry and Reinhardt

method,

]gðy; tÞ
]t

� �
C

¼
ðy1
y0

m2 K yc; y
0ð Þgðyc; tÞgðy0; tÞ
m2

cm
0 dy0 �

ð1
y0

K y; y0ð Þgðy; tÞgðy0; tÞ
m0 dy0

2
64

3
75: ð7:245Þ

As usual, the first integral is the gain of a particle by collection between two

particles, and the second integral is loss of particles with mass m owing to

collection with particles of other sizes.

For a numerical solution, Bott uses a logarithmically equidistant mass grid

mesh, where

mkþ1 ¼ amk k ¼ 1; 2; 3 . . . l; ð7:246Þ
where l is the total number of grid points. This gives a grid mesh in y that is

equally spaced such that

Dyk ¼ Dy ¼ ln a=3ð Þ; ð7:247Þ
where a ¼ 2(1/2). This represents a doubling of the particle mass with every

two grid cells. Different values of a can be used. Discretizing the collision of

particles of mass mi with drops of mass mj gives a change in the mass

distributions gi and gj, such that

giði; jÞ ¼ gi gigj
Kði; jÞ
mj

DyDt ð7:248Þ

and

gjðj; iÞ ¼ gj gigj
Kðj; iÞ
mi

DyDt: ð7:249Þ

The variables gi and gj are described as the mass distributions before colli-

sions at grid points i and j, whilst gi(i,j) and gj(j,i) are the new mass distribu-

tions after collisions. In addition, Kði; jÞ is an average value of the collection

kernel found by bilinear interpolation such that

Kði; jÞ ¼ 1

8
K i� 1; jð Þ þ K i; j� 1ð Þ þ 4K i; jð Þ þ K iþ 1; jð Þ þ K i; jþ 1ð Þ½ �: ð7:250Þ

As occasionally is the case, the collection kernel is symmetric in i and j so that

Kð j; iÞ ¼ Kði; jÞ ð7:251Þ
and

gð j; iÞ ¼ gði; jÞ: ð7:252Þ
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Owing to collisions in box j new particles with mass m0ði; jÞ ¼ mi þ mj are

formed, so that the following is written,

giði; jÞ ¼ gigjKði; jÞm
0ði; jÞ
mimj

DyDt: ð7:253Þ

As with most schemes the mass x0ði; jÞ differs from the grid mesh xk, as

xk � x0ði; jÞ � xkþ1: ð7:254Þ
As a result, the mass density needs to be split up into grid cells k and kþ1.

This is where Bott (1998) uses a two-step procedure. In the first step, g0ði; jÞ is
added in its entirety to grid box k,

g0k i; jð Þ ¼ gk þ g0ði; jÞ: ð7:255Þ
Now comes the tricky part. In step two, a fraction of the new mass, g0kði; jÞ is
transported into grid box kþ1 by advection through the boundary k þ (1/2)

between boxes k and kþ1. Bott’s schematic of this is shown in Fig. 7.14.

More formally, the advection step is given as

gk i; jð Þ ¼ g0k i; jð Þ fkþ1=2 i; jð Þ

gkþ1 i; jð Þ ¼ g0k i; jð Þ þ fkþ1=2 i; jð Þ;

8<
: ð7:256Þ

where the mass flux through the boundary k þ (1/2) is

fkþ1=2 i; jð ÞDy
Dt

: ð7:257Þ

Now the upstream approach can be used to find fkþ1=2 i; jð Þ;
fkþ1=2 i; jð Þ ¼ ckg

0
k i; jð Þwði; jÞ; ð7:258Þ

where ck is like the Courant number and is calculated by

ck ¼ x0k i; jð Þ xk
xkþ1 xk

; ð7:259Þ

xi xj xk xk+jx �

Fig. 7.14. Schematic of the flux method. Details in the text. (From Bott
1998; courtesy of the American Meteorological Society.)
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and the weighting function is

wði; jÞ ¼ g0 i; jð Þ
g0k i; jð Þ : ð7:260Þ

Substituting (7.260) into (7.258) shows that the value of fkþ1=2 i; jð Þ is just,
fkþ1=2 i; jð Þ ¼ ckg

0 i; jð Þ; ð7:261Þ
resulting in the same partitioning of g0 i; jð Þ as in Kovetz and Olund (1969);

but where they solved the stochastic collection equation for number distribu-

tion n(m, t) instead of the mass distribution. This method has been called the

upstream flux method by Bott (1998). Unfortunately the upstream flux

method produces broad distributions, which, however, can be remedied by

using higher-order advection schemes that are also positive definite like the

upstream flux method.

To begin, consider grid box k, where the constant value of g0k i; jð Þ is

replaced by a higher-order polynomial of order L,

gk;LðzÞ ¼
XL
s 0

ak;sz
s; ð7:262Þ

where

z ¼ y ykð Þ=Dy; ð7:263Þ
and 1/2 � z � 1/2.

Next ckg
0
k i; jð Þ is replaced by the integral relation

ð1=2
1=2 ck

gz;L zð Þdz ¼
XL
s 0

ak;s
sþ 1ð Þ2sþ1

1 1 2ckð Þsþ1
h i

: ð7:264Þ

This gives the mass flux through k þ (1/2) as

fkþ1=2 i; jð Þ ¼ w i; jð Þ
XL
s 0

ak;s
sþ 1ð Þ2sþ1

1 1 2ckð Þsþ1
h i

: ð7:265Þ

For the upstream flux method, with L ¼ 0,

ak;0 ¼ g0k i; jð Þ: ð7:266Þ
For the linear flux method, with L ¼ 1,

ak;1 ¼ gkþ1 g0k i; jð Þ: ð7:267Þ
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Finally for the parabolic method, with L ¼ 2,

ak;0 ¼ 1=24 gkþ1 26g0k i; jð Þ þ gk 1

� �
ak;1 ¼ þ1=2 gkþ1 gk 1½ �
ak;2 ¼ 1=2 gkþ1 2g0k i; jð Þ þ gk 1

� �
:

8><
>: ð7:268Þ

For positive definiteness to be guaranteed the following simple flux limiter is

applied,

0 � fkþ2 i; jð Þ � g0 i; jð Þ: ð7:269Þ
Now all the possible collisions need to be treated in timestep Dt. To do so, an

iterative procedure is used. To start, the smallest particle involved in colli-

sions is defined by index i ¼ i0, and the largest particle by i ¼ i1. In step one,

following Bott (1998) closely, collisions between the smallest particle with

particles of grid box j ¼ i0 þ 1 are found using new values from calculating

gi0 (i0,i0 þ 1), gi0 þ 1(i0,i0 þ 1), and gk(i0,i0 þ 1).

In the following steps the collision of the remaining particles in i ¼ i0
having new mass distribution gi0 (i0,i0 þ 1) with particles in grid box j¼ i0 þ 2

are calculated. To complete the iteration this is continued until all collisions

of particles in grid box i ¼ i0 with particles in j ¼ i0 þ 1, i0 þ 2, i0 þ 3, . . . , i1
are completed.

The next step starts with particles in i ¼ i0 þ 1 colliding with particles in

i0 þ 2, i0 þ 3, . . . , i1 until all are completed.

Owing to the iterative approach after each collision process, the drop

distribution is updated before the next collision process is calculated (Bott

1998). According to Bott, at least analytically, this is done by replacing

(7.253) (7.256) after the first collision process, gi, gj, gk, and gkþ1 with gi(i,j 1),

gj(i,j 1), gk(i,j 1), and gkþ1(i,j 1).

The timestep must be limited for positive definiteness by

Dt � xj
gj i; j 1ð ÞK i; jð ÞDy ; ð7:270Þ

and for j 6¼ k by

Dt � xi
gi i; j 1ð ÞK i; jð ÞDy : ð7:271Þ

The results of integrating show a definite improvement in solutions using the

Bott (1998) method when using higher-and-higher-order polynomials for the

advection with the parabolic flux method performing the best of the schemes

tried, as shown below for Golovin’s kernel and distribution. Other adjust-

ments can be made to the linear flux method to improve its performance as
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described by Bott by using a different flux limiter resulting in the modified

flux method. Moreover, Bott shows solutions from several different initial

conditions that could be used for benchmarks for other methods (Fig. 7.15) in

Bott (2000). Also, a flux method for the numerical solution of the stochastic

collection equation extended for two-dimensional distribution is developed.

7.20 Collection, collision, and coalescence efficiencies

7.20.1 Rain collecting cloud water

Collection efficiencies, which are the product of collision efficiencies and

coalescence efficiencies, have been studied for decades by many investigators.

Cloud-drop and raindrop collection efficiencies seem to be those most com-

monly studied. This may be because wind tunnels for cloud drops and

raindrops are easier to construct than those for other particles, which in

turbulent free air do not tumble or follow irregular trajectories.

Possibilities when raindrops collide with cloud drops or other raindrops

are coalescence, rebounding, and tearing away after coalescence, and finally

drop breakup for raindrop raindrop collisions between certain sizes of rain-

drops. Typically, for bulk parameterization, the collection efficiencies for rain

collecting cloud range from the order of 0.55 in some models to as high as 1.0

in other models.

Some, such as Proctor (1987) have computed polynomials for raindrops

(subscript rw) collecting cloud drops (subscript cw). Proctor’s polynomial is

given by

Erwcw ¼ min acw þ rcw bcw þ rcw ccw þ rcw dcwð Þð Þð Þð Þ; 1:0½ �; ð7:272Þ
where rcw is the radius of the cloud drop and the coefficients for the collision

efficiency are given as

acw ¼ �0.27544

bcw ¼ 0.26249 � 106

ccw ¼ �1.8896 � 1010

dcw ¼ 4.4626 � 1014.

This polynomial (7.272) works remarkably well when compared to the efficien-

cies given in Rogers and Yau (1989; Fig. 7.16), especially for medium-sized

cloud drops. Figure 7.17 shows coalescence efficiencies from Low and List

(1982a). A comprehensive figure of self-collection, breakup, and accretion

probabilities is shown in Fig. 7.18.

For bin models, Cooper et al. (1997) came up with collection efficiencies

for all sizes of drops up to about 5 mm in diameter, collecting all sizes of

drops up to about 5 mm in diameter (Fig. 7.19). The collection efficiencies are
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Fig. 7.15. (a) Solution to the stochastic collection equation for L = 2 g m 3

and r = 15 mm, with different versions of the flux method in comparison to
the BRM (full curve). Short dashed curve: LFM; long dashed curve: MFM.
Curves shown after 10 and 20 min. BRM is the Berry and Reinhardt
method. LFM is the linear flux method; MFM is the modified linear flux
method. (FromBott 1998; courtesy of the AmericanMeteorological Society.)
(b) Same as (a) except with a logarithmic scale of the ordinate. (From Bott
1998; courtesy of the American Meteorological Society.)
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shown as two lobes of values higher than about 0.6 and then much smaller

values for like-sized particles and small particles collecting small particles.

In addition, very small particles are difficult for any sized particle to collect.

7.20.2 Larger ice hydrometeors collecting cloud water

Cloud water collection efficiencies for larger ice hydrometeors are difficult to

measure, so researchers often resort to numerical techniques. For graupel and

hail, values are either set to one, or to a function developed by Milbrandt and

Yau (2005b) using data from Macklin and Bailey (1962),

Excw ¼ exp 8:68� 10 7D 1:6
cwmvDxmv

� �
; ð7:273Þ

where Dcwmv and Dxmv are the mean-mass diameters of cloud water and

graupel or hail, respectively, in meters. For example if Dcwmv and Dhwmv are

2.5 � 10 5 m and 9 � 10 3 m, respectively, then the collection efficiency is

0.835. For snow collecting cloud water collection efficiencies are usually

taken to be about one.

7.20.3 Ice crystals collecting cloud water

Pruppacher and Klett (1997) show the onset size that various ice crystals must

achieve before they can collect cloud drops, as seen by observing the size of

the rimed ice crystal. Plates start readily collecting cloud droplets at about

200mm, sectors at about 300 400 mm, and dendrites at about 800 mm. The size

of cloud droplets collected by plates between about 1000 and 1600 mm ranges

from 10 < D < 42 mm, where D is diameter, with a peak number between

20 < D < 30 mm. The size of cloud droplets collected by dendrites with sizes

of between 2900 mm and 4650 mm ranges from 10 < D < 78 mm with a peak

number for the smaller of these dendrites near 20 < D < 40 mm; for the larger

of these dendrites, the peak numbers occur for sizes of cloud drops that are

around D ≈ 50 mm. A summary is shown in Fig. 7.20. Pruppacher and Klett

(1997) also present some graphs from Wang (2002) of different sizes of

different types of ice crystals and the efficiencies with which they collect cloud

drops. These are rather preliminary results, though they could be made into

lookup tables for bin or bulk microphysical parameterizations. Saleeby and

Cotton (2008) have done this, as have Straka et al. ( 2009b). A comparison

between an infinite column and a finite column (Fig. 7.21) is unique in that

most early calculations employed infinite columns. The results in Fig. 7.21

show that collection of D ¼ 10 to 15 micron cloud droplets is best for all sizes
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of columns, and infinite and finite at the columns’ smaller sizes. The collection

efficiencies for finite columns collecting cloud droplets are summarized in

Fig. 7.22, broad-branched plate crystals collecting cloud droplets in Fig. 7.23,

and plates collecting cloud droplets are shown in Fig. 7.24. These are only the

collision efficiencies, but what Wang and Ji showed is really a first step

forward after many years of attempts to describe collision efficiencies of ice

crystals collecting cloud droplets.

7.20.4 Ice particles collecting ice particles

Ice particles collecting ice particles are probably the most difficult to measure

in any manner and the functions researchers use are only loose approxima-

tions. One measurement that stands out is that dendrites collect other dendrites

with collection efficiencies of about 140 percent. Cotton et al. (1986) also

present a function from Hallgren and Hosler’s (1960) results for other types

of crystals collecting crystals as well as other ice hydrometeors; it is given by

Eix ¼ min 10 0:035 T 273:15f g 0:7ð Þ; 0:2
h i

; ð7:274Þ
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where x is ice, snow, graupel, or hail, and the temperature used is that of the

warmer particle. Besides this function, Milbrandt and Yau (2005b) and others

use the following functions for dry collection as given by,

Ecisw ¼ min 0:05 exp T 273:15Kð Þ; 1:0½ �; ð7:275Þ
where subscripts ci and sw denote ice crystals and snow aggregates,

respectively.

For larger ice particles collecting ice crystals, the following is used,

Ecigw ¼ Esgw ¼ Ecihw ¼ Eshw ¼ min 0:01 T 273:15Kð Þ; 1:0½ �: ð7:276Þ
Lin et al. (1983) used slightly different numbers for these collection efficien-

cies, including

Ecisw ¼ min 0:025 exp T 273:15Kð Þ; 1:0½ � ð7:277Þ
and

Ecihw ¼ Eswhw ¼ min 0:09 T 273:15Kð Þ; 1:0½ �: ð7:278Þ
During wet growth of hail, the collection of ice crystals and snow aggregates

is set to one. Many of these originated with Lin et al. (1983) who used these

functional forms.
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8

Drop breakup

8.1 Introduction

The characteristics of hydrodynamic instability are called bag breakup.

A very large raindrop (D ¼ 8 to 9 mm) accelerates, and a concave region

forms on the underside of the drop, which amplifies with time. At some

critical diameter the concave region grows explosively. An annular ring of

water at its base supports the bag of liquid water. As the bag grows, it thins

and bursts and many small droplet fragments are formed. A few larger

droplets or drops may form from breakup of the annular ring. The maximum

size a drop can achieve before bag breakup occurs under conditions where

drag forces exceed surface-tension forces. The drag force or stress is

Fd ¼ cdru21; ð8:1Þ
where cd is the drag coefficient, r is the density of air, and u1 is the fallspeed

at terminal velocity; whereas the surface-tension stress is

Ft ¼ 4s
D

: ð8:2Þ

The scales of the variables are, cd ¼ 0.85, s ¼ 7.6 � 10 2 J m 2, r ¼ 1 kg m 3,

u1 ¼ 9 m s 1. With these Dmax can be defined as

Dmax ¼ 8s
cdru21

¼ 8:8� 10 3 m; ð8:3Þ

or about 8 to 9 mm depending on the values used for Cd, r, and values used

for u1.

Liquid raindrops generally are not observed to be this size. In addition,

raindrops are rarely larger than 3 to 5 mm in diameter. The reason for these

conditions is that collisional breakup occurs much more frequently than bag

breakup.
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8.2 Collision breakup of drops

There are three primary forms of collisional breakup. These include neck or

filament breakup (27%), sheet breakup (55%), and disk breakup (18%).

Schematics of each type of breakup are shown in Fig. 8.1.

8.2.1 Neck or filament breakup

Neck or filament breakup occurs by glancing collisions between a smaller

and a larger drop. As the smaller drop makes contact with the larger drop and

the large drop falls away a neck or filament of water keeps the two drops

momentarily attached. Eventually, the filament breaks and the two drops retain

much of their original mass. However, two to ten fragments usually form,

with five the most common number (including the original drops).

The number of drops formed by filament, sheet, and disk breakup increases

with the increasing collisional kinetic ECKE energy or larger differences in

sizes of drops. These types of breakup occur over a wide range of drop pair

sizes. Schematics of the various forms of breakup are shown in Fig. 8.2 and

discussed below.

(a)
Neck

(b)
Sheet

(c)
Disk

(d)
Bag

Fig. 8.1. Schematic of the common types of breakup. (From McTaggert-
Cowan and List 1975; courtesy of the American Meteorological Society.)

232 Drop breakup



8.2.2 Sheet breakup

Sheet breakup occurs when a smaller drop is impinged upon by a much faster

falling large drop such that the larger drop is broken up into primarily two

pieces or a sheet of water is ripped off. The onset of sheet breakup occurs at

larger small-drop sizes of the drop-size pairs than with filament breakup.

After breakup, the small drop is usually indistinguishable from the original

small drop that caused sheet breakup. The large drop is severely distorted

from its original size. With sheet breakup two to ten fragments form, with

High ECKE

A

B1
B2

Low ECKE

C2

D2

E2

DL> DS

DL>> DS

C1

D1

E1

Breakup Coalescence

Fig. 8.2. “Collision with DS (small drop) hitting DL (large drop) in the
center. The left branch in the schematic shows disk formation with liquid
flowing radially outward; the right branch shows collapse of the cavity to
form a surface wave traveling to the top of the DL drop.” (From Low and
List 1982b; courtesy of the American Meteorological Society.)
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eight the most common number, including the original drops. The number of

drops formed by sheet breakup increases with the increasing collisional

energy or larger differences in sizes of drops.

8.2.3 Disk breakup

Disk breakup occurs when the smaller drop strikes the larger drop along its

center line (Fig. 8.2). After collision, a disk forms and extends the original

drop to two to three times its original diameter. The aerodynamic forces then

act to form a bowl-shaped particle, which sheds droplets. Few fragments are

formed if the collisional energy is low. If the collisional energy is high, then up

to 50 fragments may form.

8.3 Parameterization of drop breakup

The breakup of raindrops plays an important role in describing the hydro-

meteor distribution in the real atmosphere and can lead to the so-called

Marshall Palmer distribution or negative-exponential distribution, in the

mean over the number of collision events during the experiment. However,

two to three modes in the distribution can develop in as little as five to

ten minutes owing to breakup by particles 1 to 2 mm in diameter colliding

with larger particles 3 to 5 mm in diameter. One of the most common

types of breakup is sheet breakup, followed by filament breakup, and

lastly, disk breakup (Low and List 1982a). A starting place for parameter-

ization of one of these is presented by Brown (1997), though it is too

complicated to consider for bulk microphysical parameterizations. Hydro-

dynamic breakup (Pruppacher and Klett 1997) is rare (Rogers and Yau

1989; Pruppacher and Klett 1997) as few, if any, drops ever get large

enough for this mechanism to operate. However, in models without provi-

sions for other forms of breakup, there is nothing to limit the size of the

particles and they are able to reach sizes at which hydrodynamic breakup

becomes important. Again this parameterization is most appropriate for

bin model parameterizations, as it is too difficult to parameterize for bulk

model parameterizations.

Rather than include the net effect of all the drop-breakup mechanisms

in the stochastic collection equation, they are interpreted as a perturbation

in the self-collection equation (Cohard and Pinty 2000). Therefore, we follow

the simple formulation by Verlinde and Cotton (1993) to describe the
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breakup, which is designed to represent the most common breakup mechan-

isms. This parameterization limits the mean drop diameter of Dm ¼ vDn to

900 microns, and does so based on adjusting the self-collection efficiency for

distributions when collection occurs. In other words, the application of the

parameterization is an adjustment to the collection efficiency in the self-

collection calculation,

Exx ¼
1 Dm < 600 microns

2 exp 2300 Dm Dcut½ �ð Þ Dm > 600 microns: ð8:4Þ

(

For example, with the cut-off diameter Dcut ¼ 6 � 10 4 m, Exx ¼ 1.0 for

Dm < 6 � 10 4 m, then as the mean drop size increases, Exx decreases to 0.0 at

Dm ¼ 9 � 10 4 m. At particle sizes larger than 9 � 10 4 m, the efficiency

exponentially becomesmore negative,which implies quickbreakup.For example:

with Dm ¼ 1 � 10 3 m, Exx ¼ 0.51; with Dm ¼ 1.1 � 10 3 m, Exx ¼ 1.16;

with Dm ¼ 1.2 � 10 3 m, Exx ¼ 1.97. These numbers show the quick

breakup of large drops and produce a number concentration source for

rain. Breakup of particles other than rain is not permitted. Melting aggre-

gates that are to a large extent liquid (>50%) might break up too, but these

particles become redefined as melt rain in the model and then breakup can

occur if they are large enough. Note that the parameterization of Exx also

can force the self-collection equation to act as a number concentration sink

causing smaller drops to coalesce and number concentration to decrease as

described above.

There are other similar formulations for drop breakup that are worth

mentioning; they follow the same philosophy as above. The first of these is

by Ziegler (1985) whose parameterization is similar to Verlinde and Cotton’s

(1993), but has a zero Exx at diameters greater than 1000 microns.

Another drop breakup formulation is by Cohard and Pinty (2000), where

the self-collection efficiency is adjusted when Dm > 600 microns,

1 if Dm < 600 microns

exp 2:5� 103 Dm 6� 10 4
� �� �

if 600 � Dm � 2000 microns

0 if Dm > 2000 microns: (8.5)

8>>><
>>>:
This scheme does not have the feature of relaxing drops back to the equilib-

rium or largest permitted mean diameter when drops get very large, as in the

Verlinde and Cotton formulation.
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8.3.1 Stochastic breakup equations

8.3.1.1 Hydrodynamic instability

If stochastic collection equations are integrated indefinitely they generate

drops which are far too large compared to what is generally observed.

A mean steady rain spectrum such as the Marshall and Palmer (1948) type

is not possible. In general, it is possible to understand only the physics of the

early development of the first raindrops. Beyond the initial period of signifi-

cant growth, the stochastic collection equation alone begins to fail. In order

to accommodate more reality in understanding precipitation development,

stochastic breakup equations have been developed.

As raindrops grow they usually break up by collisions. However, if there

are no collisions (Rauber et al. 1991), then when aerodynamic forces exceed

surface-tension forces typically around drop diameters of 8 to 9 mm, they

break up spontaneously. This has been studied in the laboratory and the results

have been repeated numerous times by Blanchard (1950) and Komabayasi

et al. (1964), among others. Komabayasi et al. (1964) proposed the following

parameterizations for bin models based on empirical evidence and came

up with one parameterization where the probability that a drop of mass m,

has the probability of breaking up, PB(m), which is described by the

following,

PBðmÞ ¼ 2:94� 10 7 exp 34rmð Þ; ð8:6Þ
where the units of PB(m) are s 1, rm is radius in cm of the drop of mass m.

A second term given by QB(m
0,m) is defned so that QB(m

0,m) is the number

of drops of mass m to m þ dm formed by the breakup of one large drop of

mass m0. Komabayasi et al. (1964) defined QB(m
0,m) as

QB m0;mð Þ ¼ 10 1r03m exp 15:6rmð Þ ð8:7Þ
where r 0m is in cm and is the size of the drop of m0 and rm again is the size in cm

of the drop of mass m.

Equations (8.6) and (8.7) can be used to write the breakup equation which

represents the case where drag forces exceed surface-tension forces as

]N m; tð Þ
]t






B

¼ N m; tð ÞPB mð Þ þ
ð1
m

N m0; tð ÞQB m0;mð ÞPB m0ð Þdm: ð8:8Þ

Unfortunately Srivastava (1971) found that this parameterization for

QB(m
0,m) fails to conserve liquid water, which renders it not useful for

numerical models and theoretical work. Therefore, he took the data given
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by Komabayasi et al. (1964) and reanalyzed them to develop a new parameteri-

zation given by

QB m0;mð Þ ¼ ab

3m

rm
rm0

� �
exp b

rm
rm0

� �
; ð8:9Þ

where b ¼ 7 fits the data reasonably well and some algebra gives a ¼ 62.3.

Srivastava (1971) then made adequate simulations of drop breakup using

initially the Marshall Palmer distribution with various initial rain rates.

Kogan (1991) also successfully used this parameterization.

Spontaneous breakup is useful, but not the complete answer. First, rarely,

if ever, do drops reach spontaneous or hydrodynamic breakup sizes.

In addition, the drop-size spectrum that results from the stochastic collection

equation and the stochastic breakup equation for spontaneous/hydrodynamic

breakup is unrealistically flat with a bias toward large drops, found first by

Srivastava (1971) as described by Pruppacher and Klett (1997).

8.3.2 Parameterization of collisional breakup by Low and List

The following is a description of the parameterization of the collisional

breakup of water drops including sheet, bag, filament or neck, and disk

breakup described by Low and List (1982b) using the data of Low and List

(1982a). This parameterization is for bin models and a similar formulation is

impossible in all likelihood for bulk parameterizations. Brown (1986) noted

that the parameterization is very difficult to implement and requires very

careful programming. The scheme was implemented by Hu and Srivastava

(1995) who found that it might be deficient in several ways in that it produces

multiple peaks in the size-distribution spectrum. The scheme was followed

up in part by an attempt at mass conservation by Brown (1997) using the

histograms of larger-drop breakups. Brown’s (1997) parameterization also

is appropriate for bin models. McFarguhar (2004) also developed an updated

version of the parameterization.

The variable Pi Dið Þ is used to give the average number of fragments of

diameter Di on the interval Di � DDi=2 for a collision between a small drop

of diameter, DS, and one large drop of diameter, DL, as averaged over at least

100 collisions according to Low and List (1982b). In other words, this can be

stated with the equation,

Pi Dið Þ ¼ Total number of fragments of size Di ¼ Nið Þ
Total number of collisions

� 1

DDi
: ð8:10Þ

The continuous fragment number Pi(Di) is a number density function. The

fragment number distribution is given by
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P Dið Þ ¼
ðDi

1
PidD: ð8:11Þ

Now, Pfi(Di), Psi(Di), and Pdi(Di) represent the fragment number density

functions for filament, sheet, and disk breakup, respectively, whilst the vari-

able Cb equals the total number of breakups by collisions; it follows that, Cf, Cs,

and Cd are each the total number of breakups for filaments, sheets, and disks,

which when summed is Cb. Next NfiD is the number of fragments per size

interval of filament breakups, NsiD is the number of fragments per size interval

of sheet breakups, and NdiD is the number of fragments per size interval of

disk breakup; the sum of breakups can be subdivided as

Pfi Dið Þ ¼ NfiDC
1

f ; ð8:12Þ

Psi Dið Þ ¼ NsiDC
1

s ; ð8:13Þ
and

Pdi Dið Þ ¼ NdiDC
1

d : ð8:14Þ
Now an expression of the contribution of each density function to the total

breakup density function is desired. Thus the fraction Rj (j ¼ f, s, d) of the

total of each type of breakup can be written as

Rf ¼ Total number of filament breakups

Total number of breakup collisions
¼ Cf

Cb
; ð8:15Þ

as well as

Rs ¼ Cs

Cb

ð8:16Þ

and

Rd ¼ Cd

Cb

: ð8:17Þ

The sum of the breakup number distribution functions is given as follows,

Pbi ¼ RfPfi þ RsPsi þ RdPdi: ð8:18Þ
Then empirical fits must be found defined for each type of breakup, such as

F ¼ 1

C

X
i

Ni ¼
X
i

Pi Dið ÞDDi; ð8:19Þ
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or

F ¼
X
j

RjFj ¼RfFf þ RsFs þ RdFd: ð8:20Þ

The average number of breakups Fj is now expressed in functional form from

data collected given by Low and List (1982a). In addition, the values of Pj are

given.

8.3.2.1 Filament breakup

The empirical fit for filament breakups includes the large drop and small

drop, with the small drop having limits described after the empirical fit. The

two empirical fits are given for filament breakups as follows, for large small

drops and smaller small drops. For larger small drops, the following fit is

considered,

Ff1 ¼ �2:25� 104 DL � 0:403ð Þ2�37:9
h i

D2:5
S þ 9:67 DL � 0:170ð Þ2 þ 4:95; ð8:21Þ

where diameters are in centimeters. This equation is valid for DS > DS0,

assuming that each breakup produces a minimum of two fragments. For

DS < DS0, the following is given,

Ff2 ¼ a00Db00
S þ 2; ð8:22Þ

where a00 = 1.02 � 104 and b00 ¼ 2.83.

The limit of DS (i.e. DS0) is computed as the intersection of Ff1 and Ff2, or

DS 0 ¼ Ff1=b
00ð Þ1=a00 : ð8:23Þ

Now the density functions for filament breakup need to be developed. They

are given in Low and List (1982a). These have to be computed for all modes

to give a complete tally of the number occurring in any mode, be it filament,

sheet, or disk breakup.

The density function Pf1 is given as

Pf1 Dið Þ ¼ Hf1 exp 0:5
Di m
sf1

� �2" #
; ð8:24Þ

where

Hf1 ¼ 50:8D 0:718
L : ð8:25Þ

The value of m is equal to the mode of distribution given by DL. The value of

sf1 is the standard deviation, which is a dependent variable found by iteration

described by Low and List (1982b).
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AGaussian curve similar to that used for the large drop is used for the small

drop so that the density function component for the small drop, Pf2, is given as

Pf2 Dið Þ ¼ Hf2 exp 0:5
Di m
sf2

� �2
" #

; ð8:26Þ

where Hf2 is given as the following with DS the mode,

Hf2 ¼ 4:18D 1:17
S ; ð8:27Þ

and

sf2 ¼ 2p
p

Hf2

� � 1

: ð8:28Þ

The third component to the total filament number density function, Pf3(Di),

results from disintegration of a bridge of water that connects the two main

fragments of the collision pair. Given a log-normal density function, Pf3(Di) is

the following,

Pf3 Dið Þ ¼ Hf3

Di
exp 0:5

lnDi mf3
sf3

� �2
" #

; ð8:29Þ

where Hf3 is a constant, mf3 is the natural log of the mode; sf3 is related to the

mode by

mf3 ¼ ln Dff3ð Þ þ s2f3; ð8:30Þ
where sf3 is found by iteration (see Low and List 1982b). The value of Dff3 is

related to the small-drop diameter DS as given by

Dff3 ¼ 0:241DS þ 0:0129; ð8:31Þ
and is also the modal diameter.

Further details on the three local maximum values in the curves are

discussed in Low and List (1982b) and are included briefly here. The Gauss-

ian function (8.29) above represents the maximum value Pf3,0 of the density

curve which depends on both DL and DS. The variable Pf3,0 is composed of

three parts. The first, Pf3,01, is given as

Pf3;01 ¼ 1:68� 105D2:33
S ð8:32Þ

for DS < DS0.

The second, Pf3,02, is given as

Pf3;02 ¼ 43:4 DL þ 1:81ð Þ2 159
h i

D 1
S 3870 DL 0:285ð Þ2

h i
58:1 ð8:33Þ

for DS > 1.2 DS0.
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Finally, the third, Pf3,03, is given as

Pf3;03 ¼ aPf3;01 þ 1 að ÞPf3;02; ð8:34Þ
where

a ¼ DS DS;0

� �� 0:2DS0ð Þ 1: ð8:35Þ
The drops that remain after filament breakup are shown schematically in

Fig. 8.1.

8.3.2.2 Sheet breakup

Low and List (1982b) note that to determine the average fragment number,

the area under the curve given by Psi needs to be computed from the experi-

mental data (Fig. 8.4). The area is said to be equal to Fs or the average

number of fragments. The value Fs is found to be a function of the total

surface energy ST, with sL/A ¼ 7.28 � 10 2 N m 1 as the surface tension of

liquid in air (which is really a function of temperature, Pruppacher and Klett

1997) as follows,

ST ¼ psL=A D2
L þ D2

S

� �
: ð8:36Þ

The limiting value of fragments on the small end is two, and the value of Fs is

Fs ¼ 5erf
ST 2:53� 10 6

1:85� 10 6

� �
þ 6: ð8:37Þ

The density function for sheet breakup is given in two parts. The part Ps1(Di)

gives the distribution of the large fragment around DL, and one other func-

tion Ps2(Di) represents the rest of the fragments as the initial small drop is no

longer recognizable. A Gaussian represents Ps1(Di) as

Ps1 ¼ Hs1 exp 0:5
Di DLð Þ

sS1

� �
; ð8:38Þ

which is centered at DL, with height of Hs1 and a spread of ss1. The value of
Hs1 is given by

Hs1 ¼ 100:0 exp 3:25DSð Þ: ð8:39Þ
The fragment number of the cloud-droplet part of the breakup is given by

a log-normal function with a peak at

Dss2 ¼ 0:254D0:413
S exp 3:53D 2:51

S DL DSð Þ� �
; ð8:40Þ
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with

Ps2 ¼ 0:23D 3:93
S Db�

L ; ð8:41Þ
and b� given by,

b� ¼ 14:2 exp 17:2DSð Þ: ð8:42Þ
The drops that remain after sheet breakup are shown schematically in Fig. 8.1.

8.3.2.3 Disk breakup

The number of fragments from disk breakups is most numerous compared to

other means of breakup. Again the minimum number of fragments is two.

The number of fragments for disk breakups is found to be closely related to

the collision kinetic energy ECKE (in joules) and given by

Fd ¼ 297:5þ 23:7 lnECKE: ð8:43Þ
The density function for disk breakup is given in two parts and is similar

to sheet breakup with many small fragments. First, the large drop may

break into several drops with the large drop often no longer recognizable.

The fragment density around DL is given as Pd1(Di), after definitions in

(8.44) (8.47). The mode for the Gaussian is given as

Ddd1 ¼ DL 1 exp 3:70 3:10 W1ð Þ½ �f g; ð8:44Þ
where, in joules, the Weber number of energies is used,

W1 ¼ ECKE

Sc
; ð8:45Þ

and Sc is given as the surface energy of the coalesced drops,

Sc ¼ psL=A D3
L þ D3

S

� �2=3
: ð8:46Þ

Finally the height of the distribution is

Hd1 ¼ 1:58� 10 5E 1:22
CKE : ð8:47Þ

The number density function is given as,

Pd1 ¼ Hd1 exp 0:5
Di Ddd1ð Þ2

sd1

" #
; ð8:48Þ

where sd1 is found by iteration as described in Low and List (1982b).

The rest of the disk breakup fragments can be described by a log-normal

distribution, as with sheet breakup. The mode Ddd2 of Pd2(Di) is dependent on

drop sizes that collide and is to the left of DS as given by
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Caption for Fig. 8.3. (cont.)
collision/breakup configurations for all 10 drop sizes used in the experiments
of Low and List (1982a). The solid lines represent the parameterized
approximation of the whole data set; Cj represents the number of collisions
of each type.” (From Low and List 1982b; courtesy of the American
Meteorological Society.)
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Ddd2 ¼ exp 17:4DS 0:671 DL DSð Þ� �
DS: ð8:49Þ

The height therefore is as before found from

Pd2 Ddd2ð Þ ¼ Hd2

Ddd2
exp 0:5s2d1
� � ¼ 0:0884D 2:52

S DL DSð Þb� ; ð8:50Þ

where b� is given by

b� ¼ 0:007D 2:54
S : ð8:51Þ

A schematic of low collisional kinetic energy and high collisional kinetic

energy breakups for the disk breakup is shown in Fig. 8.2. The types of

distributions found in disk breakup are given in Fig. 8.5.

8.3.2.4 Overall breakup

The fraction of breakups that occur as filament breakups (in all of the

breakups) is given as follows,

Rf ¼
1:11� 10 4E 0:654

CKE for ECKE � ECKE0 ¼ 0:893mJ

1:0 for ECKE < ECKE0

:

(
ð8:52Þ

There is a specific number of breakups given by overall sheet breakups. The

fraction is a function of the ratio W2 of the ECKE to the sum of surface

energies of two original drops, given as

W2 ¼ ECKE

ST
: ð8:53Þ

The fraction of breakups that occur as sheets in all of the breakups is given as

follows,

Rs ¼ 0:685

	
1 exp 1:63 W2 W0ð Þ½ �



for W � W0 ¼ 0:86

1:0 for W < W0:
ð8:54Þ

With the values for Rf and Rs defined then that for Rd can be defined simply as

Rd ¼ 1:0 Rf þ Rsð Þ for Rf þ Rs � 1
0:0 for Rf þ Rs > 1:

	
ð8:55Þ

To get the overall fragment number distribution for an average collision the

values of Pb(Di) must be adjusted by the fraction of the sum of collisions that

make twoormore fragments. LowandList (1982b) give the breakup efficiencyby

1 Ecoal½ � ð8:56Þ
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where Ecoal is the coalescence efficiency given in parameterized form in List

and Low (1982a) so that an overall equation is parameterized as

Pi Dið Þ ¼ RfPf Dið Þ þ RsPs Dið Þ þ RdPd Dið Þ½ � 1 Ecoal½ � þ d Dcoalð ÞEcoal; ð8:57Þ
and

d Dcoalð Þ ¼ 1 for Di ¼ Dcoal

¼ 0 otherwise:
ð8:58Þ

Hu and Srivastava (1995) modeled these breakup mechanisms and found the

resultant distributions for an initial gamma distribution shown in Fig. 8.6a,

and an initial negative-exponential distribution (Fig. 8.6b). For the gamma
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Fig. 8.6. Evolution of drop-size distribution by coalescence and breakup for
(a) initial exponential in mass distribution, and (b) initial Marshall–Palmer
distribution. The initial distributions (A) and the distributions for 10 (B) 40
(C), and 60 (D) min are shown. (From Hu and Srivastava 1995; courtesy of
the American Meteorological Society.)
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distribution disk breakup (curve D) seems to dominate over the other breakup

mechanisms. In tests with single distributions acting, disk and filament seem to

be most important (see Fig. 8.7a), where mixed pairs of breakup occur, disk

and filament together show the most dramatic changes in the initial distribu-

tion (Fig. 8.7b).

8.3.3 Mass conservation with the collisional breakup parameterization

8.3.3.1 One-moment method of collisional breakup

From the initial stochastic collection experiments realistic distributions did not

develop. It was decided by investigators that breakup into drop fragments by

collisions was missing from the stochastic breakup equation. The experimental

results of McTaggert-Cowan and List (1975) were first used for more realistic

breakup frequencies. Later others such as Brown (1983, 1985, 1986, 1987,

1988, 1991, 1997, 1999), Tzivion et al. (1987, 1989), Feingold et al. (1988), and

Hu and Srivastava (1995) used more up-to-date experimental results of List

and Low (1982b) to describe various forms of drop breakup as described

earlier, as well as different formulations to represent breakup. For collision

breakup using the stochastic breakup equation, the form given below is used,

]n m; tð Þ
]t

� �
B

¼ 1

2

ð1
0

n m0; tð Þdm0
ð1
0

K m0;m00ð Þ 1� Ec m0;m00ð Þ½ �Q m;m0;m00ð Þn m00ð Þdm00

0 < m < m0 þ m00ð Þ

�n m; tð Þ
ð1
0

n m00; tð ÞK m;m00ð Þ 1� Ec m;m00ð Þ½ �
mþ m00

ðmþm00

0

m0Q m0;m;m00ð Þdm0

0 < m < 1ð Þ:

ð8:59Þ

In this equation K m0;m00ð Þ is the collision kernel of anm0-drop with anm00-drop,
and Ec m0;m00ð Þ is the coalescence efficiency for the kernel. Furthermore

[1 Ec m;m00ð Þ] ¼ p m;m00ð Þ is the breakup probability for an m-drop that

collides with an m00-drop. In this equation Q m;m0;m00ð Þ is the mean number

of fragments of m-drops produced by a collision between an m0-drop and an

m00-drop. As described by Pruppacher and Klett (1997) the first term on the

right-hand side of (8.59) is the gain of m-drops generated by collision of all

masses m0 and m00. The 1/2 factor keeps from double counting the same m;m00ð Þ
pair twice. The second term on the right-hand side of (8.59) is loss of m-drops

resulting from collision and then breakup of drops of mass m and m00. For
mass conservation (Pruppacher and Klett 1997) it is required that
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ðmþm00

0

mQ m;m0;m00ð Þdm ¼ m0 þ m00: ð8:60Þ

Bleck’s (1970) one-moment method can be applied to the stochastic breakup

equation following the procedure used for the one-moment method for the

stochastic collection equation (List and Gillespie 1976). First, the mass coord-

inate is separated into bins as with the stochastic collection equation (in the

same form as the stochastic collection equation if used with the stochastic

collection equation). The subcategories are defined as before and appliedðmkþ1

mk

mdm; ð8:61Þ

to both sides of (8.59). The number density mean in each mass category is

defined, according to Bleck and Danielson et al. to get a stochastic collection

equation with drop breakup,

nk tð Þ ¼
ðmkþ1

mk

n m; tð Þmdm
ðmkþ1

mk

mdm

2
4

3
5

1

ð8:62Þ

and

nk tð Þ ¼ 2

m2
kþ1 m2

k

ðmkþ1

mk

n m; tð Þmdm: ð8:63Þ

The result then is given quite simply by

]nkðtÞ
]t

� �
B

¼ 2

m2
kþ1 m2

k

" # ðmkþ1

mk

B m; tð Þmdm; ð8:64Þ

where B is the breakup probability for a particle at mass m and time t.

Following List and Gillespie (1976) the integral is just

ðmkþ1

mk

B m; tð Þmdm �
XI
j 1

Xj
i 1

pijknjni nk
XI
i 1

qikni: ð8:65Þ

Caption for Fig. 8.7. (cont.)
of breakup and coalescence operating. The equilibrium distribution with all
three types of breakup and coalescence operating is marked “equilibrium”.
The water content is 1 g m 3. (From Hu and Srivastava 1995; courtesy of the
American Meteorological Society.)
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Then, following the procedure used again,

]nðmÞ
]t

� �
B

� 2

m2
kþ1 m2

k

" #XI
j 1

Xj
i 1

pijknjni nk
XI
i 1

qikni: ð8:66Þ

The coefficients for pijk and qik are given by List and Gillespie (1976) and

Brown (1983).

8.3.3.2 Multi-moment method of collisional breakup

The multi-moment method of breakup was generalized by Feingold et al.

(1988) and Tzivion et al. (1989). This was done by taking multiple moments of

the stochastic breakup equation. First, applying the following,

ðmkþ1
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mvdm ð8:67Þ

to both sides of (8.59), gives
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where Mv
k is the mass of moment v for bin k.

Following Feingold et al. (1988), Tzivion et al. (1989), Pruppacher and

Klett (1997), and the steps made by Bleck, a transformation results so that
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for which Q m;m0;m00ð Þ ¼ 0 for m > m0 þ m00, and Q m0;m;m00ð Þ ¼ 0 for

m0 > mþ m00. This equation is different from the stochastic collection equa-

tion in its application, as the integrals are complete over the categories so no

approximations to nk need to be made. Kernels are approximated using

polynomials to close the system. This equation can be written for the two

moments simply by making v ¼ 0 for the dNk(t)/dt equation and making v ¼ 1

for the dMk(t)/dt. Making these approximations are left to the reader.

A surprising finding using this equation is that the one-moment stochastic

breakup equation and the two-moment stochastic breakup equation provide

essentially the same solutions for breakup only. The formula (Feingold

et al. 1988; Tzivion et al. 1989) used for Q m;m0;m00ð Þ ¼ 0 is given by

Q m0;m;m00ð Þ ¼ g2 m0 þ m00ð Þ expð gmÞ. This permits an analytical solution

when g ¼ nN0
=M0, where n is the integer number of fragments. The values

of N0 and M0 are the initial drop number concentration and liquid-water

content. The reason an analytical solution is possible with g defined as above

is that the stochastic breakup equation is a forward-progressing model.
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9

Autoconversions and conversions

9.1 Introduction

An autoconversion or conversion scheme represents hydrometeors changing

from one species/habit to another. The change could be a phase change such

as homogeneous freezing of water drops. Or it could be a change within a

phase, but a change of species dependent on diameter, such as cloud droplets

to drizzle or raindrops. It also could be a graupel of one density becoming

more or less dense and subsequently reclassified as a different density owing

to the riming it experienced.

One reason that autoconversions and conversions are so difficult to

parameterize is that autoconversions and conversions are not well-observed

processes, though they can be simulated approximately using a hybrid bin

model (see Feingold et al. 1998). Furthermore, conversions of ice crystals or

snow aggregates to graupels of particular densities are terribly difficult to

parameterize, as there are few accurate measurements in nature or from the

laboratory on this topic.

Multi-dimensional, Eulerian models incorporate autoconversion and con-

version schemes of varying complexity to try to capture the physics changes

on the sub-grid scale in terms of grid-scale quantities, much the way turbu-

lence is parameterized (Stull 1988). This has been done for cloud, mesoscale,

synoptic, and global models with complexity usually decreasing with increas-

ing scale (Wisner et al. 1972; Koenig and Murray 1976; Cotton et al. 1982;

Cotton et al. 1986; Cotton et al. 2001; Lin et al. 1983; Farley et al. 1989;

Ferrier 1994, Straka and Mansell 2005 among many others) (this is the nature

of microphysical parameterizations).

An unsolved problem in applying these types of parameterizations is that

autoconversion or conversion often does not commence, at least in nature,

until a sufficient “aging” period has passed such that the actual physics occurs
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based on its trajectory and time along that trajectory. This means that for

autoconversions and conversions in bulk models to occur some local natured

physical process needs to be active for more than a model timestep. Unfortu-

nately the nature of microphysics is generally anything but local at a grid

point. With vertical and horizontal drafts in model flow fields this means

that to truly capture an accurate estimate of autoconversion or conversion

along a trajectory requires keeping track of the process. This could involve

releasing trajectories every timestep at each grid point in a model. Embarking

on the use of Lagrangian trajectories in Eulerian-based microphysical models

is, quite frankly, out of the question for long-term, or even short-term,

simulations for significant use. The result is that many microphysical para-

meterizations in Eulerian models, especially autoconversion and conversion

processes, fail to capture explicitly the Lagrangian history of the growth of

cloud and precipitation particles.

An example of a microphysical process that depends on an aging period is

the conversion of cloud into drizzle or cloud into rain (Cotton 1972; Cotton

and Anthes 1989). The need to account for the relevant physics including

diffusional growth and collection growth for a cloud droplet to become

a drizzle or a rain particle is never truly captured in Eulerian-model para-

meterizations. Cotton (1972a) and Cotton and Anthes (1989) note that all

the conversion and autoconversion schemes developed thus far have neg-

lected the Lagrangian “aging” period. As a result, models produce drizzle or

raindrops far too quickly and at too low an altitude in simulated clouds

(Simpson and Wiggert 1969; Cotton 1972a; Cotton and Anthes 1989). In a

seemingly successful attempt to account for the Lagrangian aging of a par-

ticle, Cotton (1972a) used a one-dimensional, Lagrangian model to develop

an autoconversion parameterization scheme that includes the age of a parcel

with cloud drops in it to determine when autoconversion should occur.

However, this parameterization by Cotton has not been implemented in

two- or three-dimensional models that are Eulerian in nature (Cotton and

Tripoli 1978; Tripoli and Cotton 1980; Cotton et al. 1982; among many,

many others). Tripoli and Cotton noted that failure to account for this aging

might make it difficult to simulate certain storm phenomena such as a

thunderstorm’s weak echo region.

Then Straka and Rasmussen (1997) came up with a methodology to predict

the age of a process starting at some grid point, as well as where the parcel

started and where it presently is; finally, they determined how to find time

weight mean exposures to the variables allowed in the process. For example,

the mean cloud content a parcel has experienced at any time or location may be

useful for autoconversion. The breakthrough by Straka and Rasmussen (1997)
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might someday lead to better autoconversion and conversion parameteriza-

tions. The methodology of this proposed scheme is presented in Chapter 2

(sections 2.7.5.1 and 2.7.5.2). Results with Lagrangian-determined positions

of a parcel, and mean mixing ratios of cloud water, are shown to be exception-

ally well simulated by the Eulerian model with the Straka and Rasmussen

method accounting for the Lagrangian nature of autoconversion physics

(Straka and Rasmussen 1997). The parcels exiting the cloud are where the

solutions diverge between the true Lagrangian- and Eulerian-based-Lagran-

gian predicted values.

9.2 Autoconversion schemes for cloud droplets to drizzle and raindrops

Autoconversion schemes for cloud droplets to rain droplets ideally encom-

pass the growth of cloud drops by diffusion until they are large enough to

grow predominately by collection into embryonic precipitation particles.

From theoretical modeling, the size necessary for collection growth was

found to be about 81 microns (Berry 1967; Berry 1968b; Berry and Reinhardt

1974a d; and others). It can be argued that the most troubling aspects of

essentially all autoconversion schemes are that they develop unrealistically

mature rain spectra immediately after the autoconversion schemes activate;

and that numerical models do not represent embryonic precipitation particles

well, if at all. After all, an embryonic precipitation particle is more likely to be

10 6

10 7

10 8

10 9

10 10

10 10 10 9

Explicit autoconversion rate (s 1) Explicit autoconversion rate (s 1) Explicit autoconversion rate (s 1)

B
ul

k 
au

to
co

nv
er

si
on

 r
at

e(
s−1

)

10 8 10 7 10 6
10 11

10 11 10 10 10 9 10 8 10 7 10 610 11 10 10 10 9 10 8 10 7 10 610 11

(dQZW/dt)auto= 1350 QCW  NTCW
2.47 1.79 (dQZW/dt)auto= 4.1×10 15 rCWMV

5.67
(dQZW/dt)auto= 2.2×QCW NTCW

1/3

(a) (b) (c)

7/3

Fig. 9.1. Scatterplots of the bulk autoconversion rates or conversions from
cloud drops, which grow by collection to become drizzle drops, given by
the x–y (or z) axes versus the corresponding rates obtained from the
explicit mode. The dashed line represents a factor of two deviations from
the perfect match. Note that only every twentieth data point is shown.
(From Khairoutdinov and Kogan 1994; courtesy of the American Meteoro-
logical Society.)
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more akin to a drizzle drop than a raindrop. First, the history of the develop-

ment of cloud to rain autoconversion schemes of varying complexity will be

examined. In some of the more recent models, drizzle is predicted (Straka

et al. 2009a) along with rain, so that the conversion from cloud drops to

drizzle is possible, not necessarily cloud drops to raindrops. For raindrops to

grow, drizzle drops need to grow to 500 microns in radius.

Described below are some of the more popular autoconversion and

“so-called autoconversion” schemes developed in the late 1960s, 1970s, and

1980s. (Some of these are “so-called autoconversion” schemes, as they were

not true autoconversion schemes. Based on timescale analyses, they con-

tained accretion and self-collection processes.) Later in the 2000s there was

another wave of attempts at autoconversion-scheme development.

The Berry (1967, 1968b) scheme was one of the first autoconversion

schemes introduced and is based on the time for the sixth moment of the

diameter to reach a size of 80 microns, which is about the size of an embry-

onic precipitation particle, that is, a drizzle particle. The equation that Berry

presented is

QrwCNcw ¼ Q2
cw

60
2þ 0:266

gcw

NTcw

Qcw

� � 1

; ð9:1Þ

where QrwCNcw is the conversion of mixing ratio of bulk cloud water con-

verted to rain water. The CN is used to denote conversion. The Q represents

mixing ratio and subscript cw represents cloud water. The number concen-

tration of cloud droplets is NTcw, and, gcw, is the dispersion of the cloud

droplet size distribution, which can range from 0.1 to 0.2 for continental

clouds to 0.3 to 0.4 for maritime clouds. As pointed out by Cotton and

Anthes (1989) this scheme has a cubic dependence of cloud-water mixing

ratio making it fairly non-linear. The scheme does embody some desirable

features of the warm-rain process that includes the use of a specified number

concentration to represent the number of drops nucleated for a given environ-

ment. Notice that when cloud water forms it is rapidly converted to rain.

A lack of a so-called “aging” (Cotton 1972a; and Straka and Rasmussen 1997)

of cloud droplets causes this scheme to very rapidly and very unrealistically

convert cloud drops to embryonic raindrops. Moreover, some have argued

that this scheme, based on timescale arguments, contains accretion and self-

collection processes as well as autoconversion processes.

One of the most widely used autoconversion schemes still in use is the

simple Kessler (1969) formulation,

QrwCNcw ¼ K1HðQcw Qcw0Þ: ð9:2Þ
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In this scheme, K1 is a rate constant and H is the Heaviside step function.

However this scheme suffers from the inability to distinguish types of

initial aerosol or cloud condensation nuclei concentrations, but does account

for the broadening of cloud-drop spectra to raindrop spectra. Without fine-

tuning this scheme, it is impossible to distinguish maritime from continental

regimes. Initially, values of the constants were assigned as K1 ¼ 1 � 10 3 s 1,

and Qcw0 ¼ 5 � 10 4 to 1 � 10 3 kg kg 1. Note that Cotton and Anthes

(1989) found that this scheme has some possible non-linear behavior. It

is unfortunate that so many choose this scheme for autoconversion as it

produces embryonic precipitation particles at far too low an altitude in

continental clouds for the given constant values; it may be difficult for

embryonic precipitation particles to form drizzle as very often cloud-droplet

mixing ratios do not exceed 5 � 10 4 kg kg 1 in maritime boundary layers.

It should be noted that Kessler developed this scheme apparently with deep

convective clouds in tropical regions in mind. Thus, without modification it

is probably not appropriate for continental clouds. Nevertheless, it has

been employed in numerous models, from that of Klemp and Wilhelmson

(1978) to Reisner et al. (1998), for example.

Gilmore and Straka (2008) examined the Berry and Reinhardt (1974b)

scheme very carefully and found some mistakes and misconceptions about

the scheme. They corrected typographical errors in terms of equations and

units of terms to reconcile the scheme’s behavior in numerous models.

The Berry and Reinhardt (1974b) scheme has been widely adopted as a

parameterization of rain production as derived from a bin model (described

in Berry and Reinhardt 1974a). The Berry and Reinhardt (1974b) scheme was

not originally intended to be a parameterization of smaller cloud drops

becoming raindrops. The investigation by Gilmore and Straka (2008) dem-

onstrates how differences in the Berry and Reinhardt (1974b) formulation

influence initial rain development. These authors show differences between

versions that result from typesetting errors (some from the original Berry

and Reinhardt (1974b) paper), derivation errors, and methodology. The

differences are important to point out as they influence the initiation of rain.

The Berry and Reinhardt (1974b) scheme is a more complex scheme when

compared to others because it embeds details about the cloud-droplet distri-

bution that can affect collision/coalescence, which leads cloud droplets to

form raindrops. These distribution attributes are mean cloud-droplet size and

dispersion. The Berry and Reinhardt (1974b) scheme also has an equation

to approximate rain number-concentration rates, whilst some new schemes

(e.g. Liu and Daum 2004) do not. It is common knowledge that the scheme

incorporates autoconversion rain production via collision coalescence of
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cloud droplets (e.g. Berry and Reinhardt 1974a). Although Pruppacher and

Klett (1981) and most subsequent authors loosely referred to this entire

parameterization as “autoconversion”, the scheme also includes the further

accretion of cloud water by those growing small raindrops and the collision

coalescence (or self-collection) of the growing small raindrops (Berry and

Reinhardt 1974b).

Whilst the Berry and Reinhardt (1974b) parameterization has been around

for over 30 years, it is still the mainstay of many models owing to its relative

completeness, yet minimal cost. This scheme is utilized in the Weather

Research and Forecast (WRF) Model (Thompson et al. 2004) and the

Regional Atmospheric Modeling System (RAMS; Version 3b). Versions of

the Berry and Reinhardt (1974b) parameterization have been presented and

used by Nickerson et al. (1986); Proctor (1987); Verlinde and Cotton (1993);

Walko et al. (1995); Meyers et al. (1997); Carrió and Nicolini (1999); Cohard

and Pinty (2000); Thompson et al. (2004); and Milbrandt and Yau (2005b).

Berry and Reinhardt (1974b) presented curve fits that related mean mass

and mass-relative variance of an initial S1 distribution to the mean mass and

number concentration of an S2 distribution that resulted from all accretion

and self-collection processes during a characteristic timescale. The character-

istic timescale T2 is defined as the time when the radius of the predominant

rain mass, rgr, of the developing S2 distribution first reaches 50 microns in the

bin model (Berry and Reinhardt 1974b; their Table 1). This definition was

made so that Berry and Reinhardt (1974b) could establish mass and number

concentrations for the S1 and S2 distributions.

The following are other important properties valid at time T2 (from Berry

and Reinhardt 1974b):

� L02 and N0
2 are S2’s total mass and number concentration, respectively;

� S2 first attains a Golovin shape;
� S2’s relative mass variance is 1 (increasing from prior smaller values);
� S2 obtains a mean-mass radius of �41 mm; and
� r(gm) is the threshold radius corresponding to the minimum in the mass between

the two modes of the total liquid spectrum.

The determination of T2 is important to modelers because T2 was the only

time for which Berry and Reinhardt (1974b) tabulated both the rain mass and

rain number concentration from a bin model. The other timescales defined

by Berry and Reinhardt (1974b) are: TH (�1.1T2), which denotes the time

at which the developing S2 mass distribution curve forms a hump; and

T (�1.25T2), which denotes the time at which the radius of the predominant

mass of the joint S1+S2 (bimodal) distribution first reaches a radius of 50mm.
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The focus first will be on the earliest timescale presented in Berry and

Reinhardt (1974b), T2, as both mass and number concentration are defined.

After converting to SI units, making some corrections to typesetting errors

in Berry and Reinhardt, and converting radius to diameter, the resulting

timescale is given as

T̂2 sf g ¼ 3:72 s kg m 3 mm
� �

� 0:5� 106
mm
m

n o
D0

b mf g 7:5 mmf gL0 kg m 3
� �h i 1

:

ð9:3Þ

The second equation involved in the Berry and Reinhardt (1974b) scheme is

shown in their Eq. 18, Fig. 9, as the following for total mass,

L̂2 gm 3
� � ¼ 10 4 104

� �4 mm
cm

n o 1

r0b
� �3

cmf g3 r0f
� �

cmf g 0:4 mmf g4
� �

� 2:7� 10 2
� �

mmf g 4L0 g m 3
� �

:

ð9:4Þ

Pruppacher and Klett (1981) were perhaps first to suggest that (9.3) and (9.4)

could be combined to obtain an average rate of change in rain mixing ratio

during T̂2 for a bulk microphysics model:

QzwCNcw ¼ dQzw

dt
kg kg 1 s 1
� � ¼ 1

r

max L̂
0
2; 0

� �
max T̂

0
2; 0

� � : ð9:5Þ

Berry and Reinhardt (1974b) do not propose this average mixing ratio rate;

this is probably because they only consider those curve fits to data as an

intermediate step (Berry and Reinhardt 1974b, p. 1825) to their parameter-

ization, and because these authors (Berry and Reinhardt 1974c,d) present a

way to evaluate precise rates at any arbitrary time (rather than average rates

via a characteristic timescale). Nevertheless, the simple form is what all

subsequent bulk microphysics modelers have used and what is herein desig-

nated as the “Berry and Reinhardt (1974b) parameterization” or “Berry and

Reinhardt (1974b) scheme”.

There are some limitations to the Berry and Reinhardt (1974b) scheme.

First, it unfortunately does not give the remaining cloud-water number

concentration NTcw at T2, and therefore an average dNTcw/dt (owing to S1

self-collection and S1 accretion by S2) cannot be derived. Next, adequate

mass and number concentration rates are difficult to define since the S1 and

S2 distributions overlap. Also, Cohard and Pinty (2000) have noted that

cloud accretion by rain and rain self-collection both appear twice for some
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size ranges: once implicitlywithin theBerry andReinhardt (1974b) scheme, and

again when explicitly parameterized. This results in double counting of

particles. Finally, Berry andReinhardt (1974b) write that the parameterization

is based upon initial values of cloud droplets only in the range from

20 � D0
f � 36mm; ð9:6Þ

where f ¼ L/Z (L is the liquid-water content, Z is the reflectivity); and only

with the relative variance var M given as lying between

0:25 � var M � 1; ð9:7Þ
which corresponds to a Golovin-distribution shape parameter with limits

0 < vcw < 3.

Cohard and Pinty’s (2000) formulation is given as

T̂zw;inv s 1
� � ¼ 106

1

2
Dcw var Mð Þ1=6 7:5

� �
Qcwr=3:72; ð9:8Þ

L̂zw kgm 3
� � ¼ 1020

16
D4

cw var Mð Þ1=2 0:4

� �
� 2:7� 10 2Qcwr; ð9:9Þ

and

dqzw
dt

kg kg 1 s 1
� � ¼ max L̂zw; 0

� ��max T̂zw;inv; 0
� �

=r; ð9:10Þ

where r is the density of air; and where

Dcw mf g ¼ 6rQcw=prcwNTcwð Þ1=3; ð9:11Þ
is the mean volume diameter of the cloud water, and

var M no dimf g ¼ �ðncwÞ� ncw þ 6=xcwð Þ
�ðncw þ 3=xcwÞ2

1; ð9:12Þ

is the mass-relative variance of the generalized gamma distribution of cloud

water.

The distribution parameters ncw and xcw are typically chosen such that the

value of var M is kept within the 0.25 to 1 range that Berry and Reinhardt

(1974b) empirically tested. The reduction of the cloud mixing ratio is equal to

the drizzle gain,

dQcw

dt
kg kg 1 s 1
� � ¼ dQzw

dt
; ð9:13Þ
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where the subscript zw denotes drizzle. Note that this Berry and Reinhardt

(1974b) autoconversion scheme implicitly includes autoconversion, accretion

of cloud by drizzle, and drizzle self-collection, but such double counting is

typically ignored by modelers.

For number concentration, Cohard and Pinty (2000) as well as Milbrandt

and Yau (2005b) used the diameter D̂H (corresponding to the hump in the S2

mass distribution, which was found at the later time, TH) instead of the time

used by Berry and Reinhardt (1974b),

D̂H ¼ 1:26� 10 3 m mmf g
0:5� 106 mm

m

� �
D0

b mf g 3:5 mmf g : ð9:14Þ

This equation has been converted to SI units. In addition, a factor number of

10 is included for a correction to the Berry and Reinhardt (1974b) equation.

To get the number concentration, the following equation is used,

Dx ¼ max max 82� 10 6; D̂H

� �
;Dzw

� �
; ð9:15Þ

where Dzw is drizzle mean volume diameter. Then mass Mzw is defined

Mzw ¼ p
6
rLD

3
zw; ð9:16Þ

where rL is the density of liquid, from which the rate of drizzle or raindrop

production can be found using QzwCNcw,

CzwCNcw ¼ rQzwCNcw

Mzw
: ð9:17Þ

The Berry and Reinhardt (1974a,b) scheme is an excellent one to get started

with but ultimately there are better ways to approach autoconversion, with

the best perhaps the hybrid-bin approach.

In an attempt to represent different continental as well as maritime

regimes, Manton and Cotton (1977) and Tripoli and Cotton (1980) developed

a scheme given as

QzwCNcw ¼ fcwQcwH Qcw Qcw0ð Þ: ð9:18Þ
The factor, fcw, is related to the collection frequency among cloud drops,

which become raindrops. As collection is largely responsible for the auto-

conversion of cloud drops to embryonic raindrops, the development of this

scheme was an attempt to bring some of this information into the formula-

tion. The threshold value of Qcw0 is given as

Qcw0 ¼ p
6
Dcw0

rLNTcw

r
; ð9:19Þ
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where Dcw0 is approximately 40 microns. The mean frequency of collisions

among cloud drops is approximated by

fcw ¼ p
4
D2

cwEcwVTcwNTcw; ð9:20Þ

where the collection efficiency is Ecw ¼ 0.55, VTcw can be found from Stokes’

law. The diameter Dcw is given as

Dcw ¼ pQcwr
4rLNTcw

� �1=3

: ð9:21Þ

As noted in Cotton and Anthes (1989) care must be taken in choosing the

appropriate mean Qcw.

In an apparent attempt to correct the problem of producing too much rain

too fast, Lin et al. (1983) represented the Berry (1967) scheme with changes to

delay the production of raindrops. However, their tests have shown that rain

still unrealistically forms too fast for continental clouds. Nevertheless, as the

Berry scheme is often used in this modified form it is presented (e.g. Ferrier

1994 and Straka and mansell 2005) in CGS units as

QrwCNcw ¼ r Qcw Qcw0ð Þ2
1:2�10 4þ1:569�10 12NTcw

gcw Qcw Qcw0ð Þ
h i ; ð9:22Þ

where Qcw0 is the cloud-water mixing ratio present before rain can develop.

In addition to Lin et al. (1983), Orville and Kopp (1977) also made modifica-

tions to Berry’s original scheme (Berry 1968b) in an attempt to capture better

the development of first echoes in simulations, though they note that even this

modification does not suppress raindrop development when it should. For

example, Lin et al. (1983) note that Dye et al. (1974) stated from observations

that cloud-droplet collision coalescence rarely leads to the formation of rain

on the high plains of the United States. For this reason Lin et al. (1983)

actually turned off the autoconversion model process for cold-based, contin-

ental-type, high-plains storm simulations. Typical values of Qcw0, NTcw, and

gcw used by modelers of continental clouds are 2� 10 3 g g 1, 1000 cm 3, and

0.15, respectively. Other values can be used to simulate other types of clouds

in different climatic regimes. Some of these values are presented in Proctor’s

(1987) discussion of the various uses of the Berry andReinhardt (1974b) scheme.

Using large eddy simulations of stratocumulus clouds, Khairoutdinov

and Kogan (2000) developed a two-moment autoconversion scheme for cloud

water into drizzle particles. This is one of the few schemes where conversion

is explicitly stated to go from cloud water to drizzle. The form of the equation
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is determined from a least-squares fit for parameters a, b, and c from bin

model information,

dQzw

dt
¼ cfacb: ð9:23Þ

The best-fit autoconversion scheme was found to be

dQzw

dt
¼ 1350Q2:47

cw N 1:79
Tcw : ð9:24Þ

A one-parameter form was also presented in terms of the drop mean volume

radius rcwmv

dQzw

dt
¼ 4:1� 10 15r5:67cwmv; ð9:25Þ

where rcwmv is in terms of microns. With this scheme, autoconversion occurs

when the mean volume radius is between 7 and 19 microns.

When Khairoutdinov and Kogan went further and did a regression

analysis of their model information they found another representation for

autoconversion,

dQzw

dt
¼ 2:2Q7=3

cw N
1=3

Tcw : ð9:26aÞ

With this expression they conclude that the average collision efficiency is

about 0.04. Two other forms include,

dQzw

dt
¼ 1350Q2:47

cw N 1:79
Tcw ð9:26bÞ

dQzw

dt
¼ 4:1� 10 15r5:67cwmv ð9:26cÞ

were rcwmv is the radius of the mean volume cloud water droplet in microns at

a grid point (Fig. 9.1 shows the bulk autoconversion rates plotted against the

explicit autoconversion rates from the Kogan bin microphysics parameteriza-

tion model).

In order to use these schemes, an equation for number concentration

tendency is required. By assuming all newly formed drizzle particles have a

radius rcw0 ¼ 25 microns the number concentration rate is given as

dNTzw

dt






auto

¼
dQzw

dt




auto

4prLr
3
cw0

3r0

� � : ð9:27Þ
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9.3 Self-collection of drizzle drops

and conversion of drizzle into raindrops

Drizzle enters the liquid-drop spectrum from autoconversion of cloud drop-

lets at a diameter of about 82 microns via the Berry and Reinhardt (1974b)

autoconversion parameterization. It then experiences self-collection via

Long’s kernel (see Cohard and Pinty 2000) or by the analytical solution by

Verlinde and Cotton (1993) and Flatau et al. (1989) as well as by accretion of

cloud water (Mizuno 1990 approach).

The conversion of drizzle to rain water occurs after sufficient broadening

of the distribution via the warm-rain process (diffusion and coalescence). The

amount of mass transferred to the warm-rain distribution from the drizzle

distribution is computed using the Farley et al. (1989) approach. The mass

and number concentration of drizzle particles with diameters greater than

500 microns are transferred using (9.28) and (9.29). The equations for mixing

ratio and number concentration (assuming limits from Dmin ¼ 500 microns

(5� 10 4m) to infinity) are given as

QrwCNzw ¼ D3
nzw

przNTzw

6Dtr
g bz þ vzmz½ �=mz;Dmin=Dnzwð Þ

� vzð Þ
	 


ð9:28Þ

and

NrwCNzw ¼ NTzw

Dt
� vz;Dmin=Dnzwð Þ

� vzð Þ
	 


: ð9:29Þ

Alternatively, with a hybrid-bin approach, a similar procedure could be carried

out as for the conversion of cloud droplets to drizzle as mentioned earlier.

9.4 Conversion of ice crystals into snow crystals

and snow aggregates

Autoconversion and conversion of ice crystals and snow aggregates is one

of the more severe cruxes of cloud modeling. The conditions under which

autoconversion and conversion occur can make the difference between a

realistic simulation or not (e.g. Cotton et al. 1986; DeMott et al. 1994).

A simple autoconversion parameterization for cloud ice crystals to snow

aggregates is given by Lin et al. (1983) and Rutledge and Hobbs (1983).

In their formulations, cloud ice crystals are converted to snow aggregates

when the snow mixing ratios exceed a certain threshold much like the Kessler

autoconversion scheme. The equation given by Lin et al. (1983) appears as

QswCNci ¼ 0:001Eii max Qci Qci0; 0ð Þ; ð9:30Þ
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where Qci0 is = 0.001 kg kg 1 and Eii ¼ exp[0.025(T 273.15)]. This equation

does not show well the dependence of aggregation efficiency on crystal

structure, which is dependent on temperature (Lin et al. 1983).

The Cotton et al. (1986) scheme was presented a few years later and took

into account the self-collection occurring between ice crystals to produce

snow aggregates. The equation for number tendency takes the form,

dNTci

dt






auto

¼ KiN
2
Tci; ð9:31Þ

where Ki is the collection cross-section,

Ki ¼ pDi

6
VTciEiiw; ð9:32Þ

where VTci is the terminal velocity for cloud ice, and w ¼ 0.25 is proportional

to the variance in particle fallspeed. Or, as Cotton et al. put it, it represents the

dispersion of the fallspeed spectrum.

The conversion rate of ice-crystal mixing ratio to snow aggregates is given

simply as

QciCNsw ¼ mci

r
dNTci

dt






auto

¼ þKiNTciQci; ð9:33Þ

where

mci ¼ Qcir
NTci

; ð9:34Þ

and Eii can be chosen to be that used by Lin et al. or an approximation to

Hallgren and Hosler (1960) by Cotton et al., given as

Eii ¼ min 100:035 T 273:15ð Þ 0:7; 0:2
h i

: ð9:35Þ

This representation does not allow the coalescence efficiency to exceed

0.2, whereas the Lin et al. scheme approaches 1.0 at temperatures of about

273.15 K. Cotton et al. note that Pruppacher and Klett (1981) only show

Rogers (1973) efficiencies at values as high as 0.6. It should be noted that

Passarelli and Srivastava (1979) inferred from aircraft measurements collec-

tion efficiencies as high as 140% in temperature ranges of 12 to 15 �C.
Presumably this has to do with the predominance of the production

of dendrites in this temperature range. To summarize quickly, very little is

known about collection efficiencies among ice-crystal particles.

An alternate form for aggregation among ice crystals to form snow aggre-

gates is given by Murakami (1990) as the following
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NTciACsw ¼ Qci

Dt1
; ð9:36Þ

where Dt1 is given as

Dt1 ¼ 2

C1
log

rci
rsw0

� �3
; ð9:37Þ

with rci equal to radius of ice given by

rci ¼ 3rQci

4prciNTci

� �1=3
: ð9:38Þ

Also, C1 is given as

C1 ¼ rQciaciEiiw; ð9:39Þ
with aci ¼ 700, Eii ¼ 0.1, and w ¼ 0.25.

One of the more complex conversion schemes of ice crystals converted into

snow aggregates is based on the length of time, Dt, it takes for an ice crystal to

grow from a mass mci to a mass msw0 through riming and vapor deposition

growth (Reisner et al. 1998), which is given by the following,

Dt ¼ NTci msw0 mcið Þ
QciDPsw þ QiiACcwð Þ ; ð9:40Þ

where msw0 is the mass of the smallest snow particle given by

msw0 ¼ p
6
rswD

3
sw0; ð9:41Þ

with Dsw0 ¼ 1.5 � 10 4 m. In this equation QciACcw is given by

QciACcw ¼ min QciACcw;QciDPcwð Þ: ð9:42Þ
Now the amount of cloud ice converted to snow aggregates is defined when

mci < 0.5msw0, and the equation used is

QswCNci ¼ 1

Dt
rQci ¼ mci

msw0 mci
QciDPv þ QciACcið Þ; ð9:43Þ

and when mci > 0.5msw0 the equation used is

QswCNci ¼ Qci

2Dt
¼ 1

0:5msw0

mci

� �
QciDPv þ QciACcið Þ: ð9:44Þ
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9.5 Conversion of ice crystals and snow aggregates

into graupel by riming

Perhaps the simplest conversion rate of snow aggregates into graupel is that

used by Lin et al. (1983) and Rutledge and Hobbs (1983) and again is similar

to Kessler (1969). Again, in their formulations, snow is converted to graupel

when the snow content exceeds a certain mixing-ratio threshold. The equation

given by Lin et al. appears as

QgwCNsw ¼ 0:001amax Qsw Qsw0; 0ð Þ; ð9:45Þ
where Qsw0 is ¼ 0.0006 kg kg 1 and a ¼ exp[0.09(T 273.15)].

Another method for conversion of ice crystals or snow aggregates into

graupel at temperatures < 273.15 K during riming is to assume that the

production rate is related to the vapor deposition rate and riming rate as

follows. First, the vapor deposition rate and riming rate are computed for

snow aggregates. The conversion rate is equal to the difference of the riming

rate and the vapor deposition rate when the riming rate is the larger of the two,

QgwCNsw ¼ max QswACcw QswDPv; 0ð Þ: ð9:46Þ
The same approach can be used with ice crystals,

QgwCNci ¼ max QciACcw QciDPv; 0ð Þ: ð9:47Þ
More complicated forms of the above equations were proposed by Murakami

(1990) for the production of graupel from riming ice and snow aggregates,

respectively.

Murakami’s (1990) formulation for the production of graupel from riming

ice crystals is

QgwCNci ¼ rQci

Dmgi
max

QgwACci QciDPv; 0:0

NTci

� �
; ð9:48Þ

where

Dmgi ¼ mg0 mci; ð9:49Þ
and mg0 ¼ 1.6 � 10 10 kg is the mass of the smallest graupel particle. The

number-concentration change of ice crystals converted to graupel is given by

NgwCNci ¼ rmax
QgwCNci þ QgiACcw

mg0

� �
: ð9:50Þ

The number conversion rate is given by Milbrandt and Yau (2005b) as

NgwCNci ¼ r
Mgw0

� �
QgwCNci; ð9:51Þ
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where

Mgw0 ¼ 1:6� 10 10 kg: ð9:52Þ
Murakami (1990) proposed an equation for conversion to graupel from

riming snow aggregates,

QgwCNsw ¼ max
rsw

rgw rsw
QgwswACcw; 0:0

 !
: ð9:53Þ

The number conversion rate given by Milbrandt and Yau (2005b) is

NgwCNsw ¼ r
Mgw0

� �
QgwCNsw; ð9:54Þ

where again (9.52) holds.

It is also noted that the riming for the growth of snow aggregates during

this three-body process is

QswswACcw ¼ QswACcw QgwswACcw; ð9:55Þ
where QswACcw can be from any of the forms of the collection equation

presented in Chapter 7.

Cotton et al. (1986) devised a parameterization for the conversion of snow

aggregates to graupel that was activated when the mixing ratio of rimed

aggregates is the same as the mixing ratio of a population of graupel particles.

Then the tendency difference between the aggregate riming tendency and the

growth tendency of the graupel (where the former is greater than the latter),

when the temperature is colder than 273.15 K, can be written as

QgwCNsw ¼ max QswACcw QgwACcw Qgw ¼ Qsw

� �
; 0

� �
: ð9:56Þ

Another conversion scheme of snow aggregates to graupel follows that of

Farley et al. (1989). In this scheme a three-body procedure is developed where

some of the rimed snow aggregates remain as snow aggregates and some are

converted to graupel depending on the amount of riming. The amount of

cloud water that is rimed by snow aggregates and converted to graupel is

given by

QgwswACcw ¼ 1

4
pEswcwQcwNTswD

2þbsw
nsw asw

r0
r

� �1=2
g 2þ bsw þ v;

D0

Dnsw

� �
; ð9:57Þ

with g the partial gamma function, and

QswswACcw ¼ QswACcw QgwswACcw: ð9:58Þ
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The amount of snow aggregates converted to the new particle gw can be

written from the definition of mixing ratio of sw as

QgwcwACsw ¼
prswNTswD

3
nsw� bsw þ nsw; Dswmin

Dnsw

� �
6rDt� nswð Þ ; ð9:59Þ

where Eswcw is the collection efficiency of cloud water by snow and r is

the reference density of air; where subscript cw represents the sum of all

the liquid that collects snow sw. Here G is the partial gamma function. The

corresponding equation for NT is given as,

NgwcwACsw ¼ NTsw� nsw;Dswmin=Dnswð Þ
Dt� nswð Þ : ð9:60Þ

Seifert and Beheng (2005) developed parameterizations for conversion of

cloud ice to graupel when ice crystals and snow aggregates rime sufficiently.

The conversion of cloud ice to graupel occurs when plate-like crystals are

> 500 microns in diameter, column-like crystals are > 50 microns, and snow

aggregates > 250 microns (along the a-axis for ice crystals). The critical

amount of rime can be written as

Xcritical rime ¼ spacefill rL max
p
6
D3

ni

Xi

ri

� �
; ð9:61Þ

where Xi is given by

Xi ¼ r
qi
NTi

: ð9:62Þ

The parameter spacefill is from Beheng (1981) and Seifert and Beheng (2005)

is equal to 0.68 for ice crystals and 0.01 for snow for rapid conversion of snow

to graupel when riming occurs. The value of tau, t, for conversion is

Xtau conv ¼ Xcritical rimeNTi

rQciACcw
; ð9:63Þ

which gives mixing-ratio and number-concentration rates of

QgiACcw ¼ Qci

Xtau conv
ð9:64Þ

and

NgiACcw ¼ r
Xi

QgiACcw: ð9:65Þ

This process is a three-body interaction, so not all ice crystals or snow

aggregates are converted to graupel, and some of the ice crystals and snow
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aggregates are left behind with some riming. The equations for the increase of

mass of ice crystals and snow aggregates then become

QciACcw ¼ QciACcw QgiACcw ð9:66Þ
and

NciACcw ¼ NciACcw NgiACcw: ð9:67Þ

9.6 Conversion of graupel and frozen drops into small hail

The conversion of graupel and frozen drops into small hail also can be cast as

a three-body interaction following Farley et al. (1989).

There is no corresponding number change. The amount of ice y converted

to the new particle z can be written from the definition of mixing ratio of y as,

QzLACy ¼
pryNTyD

3
ny� by þ ny;

Dymin

Dny

� �
6r0Dt� ny

� � ; ð9:68Þ

where subscript L represents the sum of all the liquid that collects ice y. The

corresponding equation for NT is given as,

NzLACy ¼
NTy� ny;Dymin=Dny

� �
Dt� ny

� � : ð9:69Þ

In some models (Straka et al. 2009b) a particle is initiated at the mean volume

diameter and the continuous growth equation is integrated to see if the

particle grows by the time-weighted mean water content estimate and the

Lagrangian time estimate (see Chapter 2). If a particle reaches a minimum

diameter by continuous collection growth with the procedure above the

conversion occurs.

Ziegler (1985) used the model of Nelson (1983) to derive a variable Dw to

indicate the onset of wet growth. He showed that when D < Dw, then dry

growth continued. However when D > Dw, wet growth began.

Dw ¼ exp
T �Cð Þ

1:1� 107rQcw 1:3� 106rQci þ 1

� �
1: ð9:70Þ

Ziegler’s wet- and dry-growth equations involved using incomplete gamma

functions, with hail designated by particle size with D > Dw and graupel

particles defined as size D < Dw, both represented by the same size distribu-

tion. The same scheme was implemented by Milbrandt and Yau (2005b),

though they used a similar equation [in SI units and included collection of
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rain, (9.71)] to determine when a particle would become hail or remain as

graupel. Unlike Ziegler, they carried prognostic equations for both graupel

and hail particles.

Dw ¼ 0:01 exp
T �Cð Þ

1:1� 104ðQcw þ QrwÞ � 1:3� 103Qci þ 1� 10 3

� �
� 1

� �
: ð9:71Þ

The conversion rate that Milbrandt and Yau use, incorporating (9.71) to

delineate graupel from hail, is given as

QhwCNgw ¼ Dmvgw

Dhw0
QgwACcw þ QgwACrw þ QgwACci

� �
: ð9:72Þ

Milbrandt and Yau note that Dhw0 ¼ Dw can sometimes be smaller than the

mean volume diameter of graupel Dmvgw. This can happen with high liquid

water contents at relatively high temperatures. To prevent the total mass

converted to hail from becoming larger than the total graupel mass plus the

mass of liquid and ice that graupel collects, the following is incorporated,

though it is somewhat artificial,

QhwCNgw ¼ min QhwCNgw;Qgw þ QgwACcw þ QgwACrw þ QgwACci

� �� �
: ð9:73Þ

Other limits are needed when wet growth is not expected, and graupel does

not convert to hail. This occurs at relatively cold temperatures and low liquid-

water contents. Thus, a lower limit is placed upon the ratio Dgwmv/Dw such

that it does not go below 0.1. When it does go below 0.1, the conversion rate

is set to zero. The number conversion rate is then given by

NhwCNgw ¼ r
Mhw0

� �
QhwCNgw; ð9:74Þ

where

Mhw0 ¼ cxD
dx
hw0: ð9:75Þ

9.7 Conversion of three graupel species and frozen drops

amongst each other owing to changes in density by

collection of liquid particles

9.7.1 Graupel and frozen drops collecting cloud water

For snow aggregates, graupel, and frozen drops collecting cloud water,

a simplified approach somewhat like Ferrier (1994 ) can be used. First, the

amount of riming that takes place is computed as QxACcw. Next the rime

density of cloud water collected is computed following data archived by

Pflaum [1980; (9.76a,b)] and Heymsfield and Pflaum [1985; (9.76c)] as
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rx;rime ¼ 261
0:5DcwVT;impact;x

T �Cð Þ
� �0:38

; ð9:76aÞ

rx;rime ¼ 110
0:5DcwVT;impact;x

T �Cð Þ
� �0:76

; ð9:76bÞ

or

rx;rime ¼ 300
0:5DcwVT;impact;x

T �Cð Þ
� �0:44

; ð9:76cÞ

where the value of VT,impact,x is the impact velocity of cloud drops on the ice

and is given as approximately 0.6 VTx after Pflaum and Pruppacher (1979).

The new density of the ice particle undergoing collection of cloud water after

a 90 s (60 to 120 s) period Dtrime is given by

rx;new ¼ Qxrx þ DtrimeQxACcw

Qx þ DtrimeQxACcw

� �
: ð9:77Þ

Consider medium-density graupel collecting cloud water. Low-density rime

can be added to become low-density graupel if rgm,rime < 0.5(rgl + rgm);
remain added to medium-density graupel if 0.5(rgl + rgm) < rgm,rime

< 0.5(rgm + rgh); can be added to high-density graupel if 0.5(rgm + rgh)
< rgm,rime< 0.5(rgh+rfw); or added to frozen drops if 0.5(rgh+rfw)< rgm,rime.

This can be done for all three graupel species and frozen drops. Any species

can be converted to one of the other by either low- or high-density riming.

9.7.2 Graupel and frozen drops collecting drizzle or rain water

Consider low-density graupel collecting drizzle or rain water. The particle

source can collect drizzle or rain and remain as low-density graupel if rgl,rime <

0.5(rgl + rgm); become medium-density graupel if 0.5(rgl + rgm) < rgl,rime <

0.5(rgm+rgh); high-density graupel if 0.5(rgm+rgh)< rgl,rime< 0.5(rgh+rfw);
and frozen drops if 0.5(rgh + rfw) < rgl,rime. This can be done for all

three graupel species and frozen drops. Any particle can be converted to the

other by high-density riming owing to the collection of drizzle and rain.

In general particles do not have their densities reduced by collection of drizzle

and rain.

9.8 Heat budgets used to determine conversions

From Walko et al.’s (2000) extensive work, an implicit system of each equa-

tion of each species to close the system of diffusive fluxes together with

272 Autoconversions and conversions



a temperature equation for hydrometeor surfaces are derived. The diffusive

flux of heat and vapor between hydrometeor species and the air depends on

differences in the vapor and temperature over the surfaces of hydrometeor

species and the air (Walko et al. 2000). It is noted that all the hydrometeors

must be treated interactively as all the hydrometeor categories compete for

excess moisture. Walko et al.’s (2000) method is similar to Hall’s (1980)

implicit, iterative approach; but with some algebra, the implicit approach

can be transformed so that it can be solved directly.

The values of Qm and Tm represent the mixing ratio and temperature of any

hydrometeor species indexed by m. Each step of this approach is started with

updated values of temperature for air Ta, vapor in air Qv owing to advection

and diffusion etc. Hydrometeor temperature and mixing ratios are all

updated by all other processes from advection and diffusion to accretion

and freezing or melting.

The Walko et al. (2000) approach makes use of the ice liquid potential

temperature yil system that the CSU RAMS (Colorado State University

Regional Area Modeling System) model uses (Cotton et al. 2003). The yil
system was developed by Tripoli and Cotton (1981) and has been re-examined

by Bryan and Fritsch (2004). An advantage of the yil system is that yil is
conserved following adiabatic motion with or without internal phase changes

of water. With this system the air temperature is given,

Ta ¼ Til 1þ qlat
cp max Ta; 253ð Þ

� �
; ð9:78Þ

where Til is given by

Til ¼ yil
p0
p

� �Rd
cp

; ð9:79Þ

following Tripoli and Cotton (1981) and Walko et al. (2000). The value of qlat
is the enthalpy released in the conversion from vapor to all ice and liquid in

a parcel, and Lv and Ls are enthalpies of vaporization and sublimation,

qlat ¼
X
l

Ql þ
X
i

1 fr;i
� �

Ql

" #
Lv þ

X
i

fr;iQi

" #
Ls; ð9:80Þ

where fr,i is the fraction of ice. The equation for Ta above can be rewritten

with the variable Al by linearizing as follows,

T tþdT
a ð�CÞ T�

að�CÞ ¼ Al Q
�
v QtþdT

v

� �
; ð9:81Þ
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where Al is given by,

Al ¼
Til �L
cp253

T�
að�CÞ < 20�C

Til �L

cp 2T�
a Tilð Þ T�

að�CÞ > 20�C
: ð9:82Þ

According to Walko et al. (2000) the total loss of water vapor by diffusion is

the total gain of water mass over all species,

Q�
v Qtþdt

v ¼
X
m

Q�
m Qtþdt

m

� �
: ð9:83Þ

The change in mixing ratio of any species m over a model step is

Qtþdt
m Q�

m ¼ Um Qtþdt
v Qtþdt

sm

� �
VmQ

�
m; ð9:84Þ

where Qt
sm is the saturation mixing ratio over a particle at its temperature. The

Um term describes the vapor diffusion growth or evaporation of some hydro-

meteor species. To keep from evaporating more water vapor than is present

in the system, it switches to using a Um and a Vm to prevent over-depletion;

Um and Vm are given below as the following,

Um ¼ 4pDtcNm Nreð Þm if species m is not depleted

0 if species m is depleted;

	
ð9:85Þ

and

Vm ¼ 0 if species m is not depleted
1 if species m is depleted:

	
ð9:86Þ

Next the term Qsm is defined. When m is hydrometeor species vapor, its

elimination needs to be accounted for using a linearized form of the Clausius

Clapeyron equation,

Qtþdt
sm ¼ QsRm Tsmð Þ þ dQsRm

dTRm
Ttþdt
m TRm

� �
; ð9:87Þ

where TRm is a reference temperature close to the final temperature T of species

m. The reference temperature is approximated by Walko et al. (2000) using the

following,

TRm ¼ Tað�CÞ min 25; 700 Qsm Qv½ �ð Þ: ð9:88Þ
Note that TRm is limited to a maximum of 0 �C for ice species hydrometeors.

Now the following can be written with simple substitution of (9.87) and (9.88)

into (9.84) as

Qtþdt
m Q�

m ¼ Um Qtþdt
v QsRm

dQsRm

dTRm
Ttþdt
sm TRm

� �� �
VmQ

�
m: ð9:89Þ
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Making the substitution of (9.89) into (9.83) gives

Qtþdt
v ¼

Q�
v þ

P
m
Um QsRm þ dQsRm

dTRm
Ttþdt
sm TRm

� �� � P
m
VmQ

�
m

1þP
m
Um

: ð9:90Þ

Now if the future temperature is to be obtained, a “hydrometeor energy

equation” is needed for each species. Walko et al. (2000) give the internal

energy of hydrometeor species m as,

Im ¼ fr;mciTm þ 1 fr;m
� �

cLTm þ Lfð Þ; ð9:91Þ

where Im is the internal energy of hydrometeor species m and ci and cL are

the specific heat with respect to ice and liquid, respectively. In addition, the

terms fr,m are fractions of ice. At 0 �C for pure ice, the internal energy is

specified to be zero. To get the internal energy of each of the hydrometeor

species m the following is written, ImQm; which is internal energy per kilogram

of air.

The heat budget for each hydrometeor species m is written in terms of Im as

Itþdt
m Qtþdt

m � I�mQ
�
m ¼ 4pDtNTm Nreð ÞmK Ttþdt

a � Ttþdt
m

� �þ leftðQtþdt
m � Q�

mÞ Lj � Itþdt
m

� �
; ð9:92Þ

where NTm is the number concentration, K is thermal conductivity of air,

(Nre)m is the product of the ventilation coefficient, shape factor, and hydro-

meteor diameter integrated over the hydrometeor species m size spectrum,

and Lj is the enthalpy of phase change j. Rearranging gives

Itþdt
m I�m

� �
Q�

m ¼ 4pDtNTm Nreð Þm K Ttþdt
a Ttþdt

m

� �þ Qtþdt
m Q�

m

� �
Lj: ð9:93Þ

Walko et al. (2000) note that as hydrometeors like rain, graupel, frozen drops,

and hail can come out of equilibrium with the environment, the value of the

predicted internal energy is stored for the next timestep. Cloud droplets and

ice crystals come into equilibrium temperature-wise with the environment

nearly immediately and have essentially no heat storage; so it is up to the

modeler whether to store the predicted internal energy for them. This

implies that there is a balance between sensible and latent-heat diffusion

for these smaller hydrometeors at temperatures below 0 �C. This means that

the terms of (9.93) on the right-hand side are equal to zero for the small

negligible heat-storage particles. Melting ice hydrometeor species m have

an internal energy at the start of the process that is zero and the internal

energy at the end of the step for these hydrometeor species can be evaluated

with (9.93).
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Using the right case for each hydrometeor species, and substituting (9.81)

into (9.93) to eliminate the new air temperature in �C, and substituting

(9.83) into (9.93) to eliminate the new rj results in

Itþdt
m Dm þ Ttþdt

m Em ¼ Qtþdt
v Fm þ Gm: ð9:94Þ

Mixed-phase particles have a new temperature equal to 0 �C. All-liquid and

all-ice particles have a temperature predicted from

Itþdt
m ¼ cmT

tþdt
m þ Lilm; ð9:95Þ

where here Lilm is the enthalpy of fusion for ice liquid mixtures, and for all-

liquid particles Lil 6¼ 0 and for ice while cm ¼ cl and cL are specific heats for

liquid and ice particles, respectively.

The goal is to find a temperature equation for each of the hydrometeor

species. The short number of steps for this is found in Walko et al. (2000).

After some algebra, a temperature equation is found that is explicit,

Ttþdt
m ¼ SmQ

tþdt
v þWm

� �
Mm; ð9:96Þ

where the Heaviside step function Mm ¼ 0 for mixed-phase particles, or

Mm ¼ 1 for all-liquid or all-ice particles. To choose the right Mm, start by

setting it to 1 and assume the old and new Qv are equal. If the new Tm > 0,

then Mm ¼ 0, and Tm ¼ 0. For low-heat-storage hydrometeor species such

as ice or snow, then the test is done with Hm ¼ 0. If the value of Tm ¼ 0, then

Hm ¼ 1. Further details on choosing Mm can be found in Walko et al. (2000).

The following are variables in the temperature budget,

Sm ¼ Fm

CmDm þ Emð Þ ð9:97Þ

and

Wm ¼ Gm KmDmð Þ
CmDm þ Emð Þ ; ð9:98Þ

where

Cm ¼ cL; cl; ð9:99Þ
whereKm¼ Lil for all liquid species, and 0 for all ice species, and the variable to

be used is the one that is appropriate for each of the ice and liquid phases. Next,

Dm ¼ HjQ
�
m; ð9:100Þ
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where H is a factor of 1 or 0 for hydrometeors such as ice and aggregates at

T < 0 �C and for cloud water, 1 for ice, aggregates at T ¼ 0 �C, and rain,

graupel, frozen drops, and hail. Now we define

Fm ¼ UmLm 4pDtNTm freð ÞmKAl; ð9:101Þ

Em ¼ UmLm
dQsRm

dTRm
BmK; ð9:102Þ

where Bm ¼ 4pdtNTm and

Gm ¼ UmLm
dQsRm

dTRm
TRm QsRm

� �
þ BmK T�

a
�Cð Þ þ A1Q

�
v

� �
þ JmI

�
mQ

�
m VmLmQ

�
m;

ð9:103Þ

where Jm¼ 0 for cloud water, ice, or aggregates, and 1 for rain, graupel, or hail.

Finally a closed solution for Qv is found from

Qtþdt
v ¼

Q�
v þ

P
m
UmYm þP

m
VmQ

�
m

1þP
m
UmZm

; ð9:104Þ

where

Ym ¼ dQsRm

dTRm

Gm KmHmQ
�
m

� �
CmHmQ�

m þ UmLm
dQsRm

dTRm
þ KBm

� �
2
4

3
5; ð9:105Þ

and

Zm ¼ 1
dQsRm

dTRm
SmMm: ð9:106Þ

Once the new vapor mixing ratio is updated, then the new hydrometeor

species m temperatures are calculated. In addition, each new mixing ratio of

hydrometeor species m is then solved.

In computing (9.104) it is assumed that no hydrometeor evaporates or

sublimes completely and therefore that Um 6¼ 0, and Vm ¼ 0. Now if a hydro-

meteor species m completely evaporates/sublimes, then Um and Vm are changed

to their alternate values and (9.104) is evaluated and Qm is set to zero. Walko

et al. (2000) do the above in the order: first cloud droplets; then ice crystals;

snow aggregates; rain; graupel; and hail. Then the temperature equation (9.94)

is evaluated. This requires Im to be evaluated from (9.93) if Mm ¼ 1 or (9.91) if

Mm ¼ 0. Walko et al. (2000) state that it is Im that is used to determine how

much mass and number concentration is transferred between species in colli-

sions, melting, and shedding of rain by hail. The air temperature is then
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evaluated by (9.96). Usually the trial Mm is used if the temperature equation is

correct. Walko et al. (2000) explain that when an ice species hydrometeor has

an Im value that is very near to zero, a slight error can be found, and forMm ¼ 1

whenMm ¼ 0 the temperature from (9.96) will be a bit above 0 �C. In this case

the value of Im for ice will be too low, so Im is bound by the value zero.

9.9 Probabilistic (immersion) freezing

The probabilistic freezing of liquid-water drops forms high-density ice-water

particles (Bigg 1953; Wisner et al. 1972; Lin et al. 1983; Ferrier 1994; and

others) and is a heterogeneous freezing process owing to the presence of

freezing nuclei in the liquid-water drops. Frozen cloud drops are assumed

to begin immediately developing into the crystal habit representative of the

supersaturation and temperature regime where they form. Frozen drizzle and

raindrops are a source for lower- and higher-density graupel, through rapid

low- to high-density riming, respectively, or into frozen drizzle and frozen

rain if high-density riming occurs. As pointed out by Wisner et al., laboratory

experiments suggest that drop freezing is likely a stochastic process, and a

function of the volume of the liquid-water particle and the number of ice

nuclei that can activate in droplets or drops at a given temperature. Following

Bigg (1953) and Wisner et al. (1972), an equation can be derived for the

probability, r, of freezing of a drop with volume V and temperature T,

ln 1 Pð Þ ¼ B0Vt exp A0 T0 Tð Þ 1½ �f g; ð9:107Þ
where T0 is the freezing temperature (273.15K), t is the time, and A0 and B0 are
coefficients, A0 ¼ 0.60 and B0 ¼ 0.01.

9.9.1 Parameterization for Bigg freezing of raindrops

Bigg first published his design of the basics of the data fit for the freezing of

raindrops in 1953. Subsequently Wisner et al. (1972) considered an equation

for the number of drops of diameter D that are frozen considering only

differentials with time t and number of drops N varying. The following

equation then can be given,

d nðDÞdD½ �
dt

¼ pB0NTD
3

6
exp A0 T0 Tð Þ 1½ �f g: ð9:108Þ

Parameterizing the equation over the complete distribution can be done to give

NTfwFZx ¼
ð1
0

d nðDÞdD½ �
dt

; ð9:109Þ

where FZx is the freezing of a species x, where x ¼ cw, or rw.
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The tendency equation for mixing ratio is simply given as

QfwFZx ¼
ð1
0

d nðDÞdD½ �
dt

p
6
D3rx: ð9:110Þ

9.9.1.1 Gamma distribution parameterization for Bigg freezing

To obtain the generalized gamma distribution parameterization, the minus

sign in (9.109) is removed, and integration gives,

NTfwFZx ¼
ð1
0

pB0NTxD
3
x

6
exp A0 T0 Tð Þ 1½ �f g 1

� nxð Þ
Dx

Dnx

� �nx 1

� exp
Dx

Dn

� �� �
d

Dx

Dnx

� �
: ð9:111Þ

The complete gamma distribution equation is

NTfwFZx ¼
ð1
0

(
pmxa

nx
x B

0NTxD
3
x

6
exp A0 T0 Tð Þ 1½ �f g

� 1

� nxð Þ
Dx

Dnx

� �nxmx 1

exp ax
D

Dn

� �mx� �
d

Dx

Dnx

� �)
;

ð9:112Þ

which upon integration gives

NTfwFZx ¼ � 3þ nxð ÞpB0NTxD
2þnx
nx

6�ðnxÞ exp A0 max T0 T½ �; 0:0ð Þ 1f g ð9:113Þ

or

NTfwFZx ¼

� 3þnxmx
mx

� �
a

3þnxmx
mx

� �
x

anxx pB
0NTxD

2þnxmx
mx

nx

6�ðnxÞ exp A0 max T0 T½ �; 0:0ð Þ 1f g: ð9:114Þ

Similarly the mixing ratio equation can be parameterized as the following by

removing the minus sign in (9.110) and integrating,

QfwFZx ¼
ð1
0

p2B0NTxD
6
x

36

rL
r0

exp A0 T0 Tð Þ 1½ �f g

� 1

� nxð Þ
Dx

Dnx

� �nx 1

exp
Dx

Dnx

� �� �
d

Dx

Dnx

� �
:

ð9:115Þ

9.9 Probabilistic (immersion) freezing 279



For the complete gamma distribution,

QfwFZx ¼
ð1
0

p2mxa
nx
x B

0NTxD
6
x

36

rL
r

exp A0 T0 Tð Þ 1½ �f g

� 1

� nxð Þ
Dx

Dnx

nxmx 1

exp ax
Dx

Dnx

� �mx� �
d

Dx

Dnx

� �
;

ð9:116Þ

which upon integration gives

QfwFZx ¼
� 6þnxmx

mx

� �
anxx p

2B0NTxD
5þnxmx

mx
nx

36a
6þnxmx

mx

� �
x �ðnxÞ

rL
r

� �
exp A0max T0 � T½ �; 0:0ð Þ � 1f g: ð9:117Þ

The modified gamma distribution is

QfwFZx ¼
� 6þnxmx

mx

� �
p2B0NTxD

5þnxmx
mx

nx

36�ðnxÞ
rL
r

� �
exp A0max T0 � T½ �; 0:0ð Þ � 1f g: ð9:118Þ

Finally, the gamma distribution form is

QfwFZx ¼ � 6þ nxð Þp2B0NTxD
5þnx
nx

36�ðnxÞ
rL
r

� �
exp A0max T0 � T½ �; 0:0ð Þ � 1f g: ð9:119Þ

In these equations, the subscript L denotes liquid cloud droplets, drizzle, or

any of the possible raindrop categories that might be used.

9.9.1.2 Log-normal distribution for Bigg freezing

For the log-normal distribution, we first start out with the definition of

the freezing equation for number concentration, as was carried out for the

gamma function. The prognostic equation for NT for Bigg freezing can be

written as

NTxFZy ¼
ð1
0

mðDÞB0 exp A0ðT0 TÞ 1½ �nðDÞdD; ð9:120Þ

where A0 and B0 are constants and m(D) can be expressed as,

mðDxÞ ¼ axD
bx
x : ð9:121Þ

The log-normal distribution can be written,

nðDxÞ ¼ NTx

2p
p

sxDx

exp
lnðDx=DnxÞ

2
p

sx

� �2
; ð9:122Þ

280 Autoconversions and conversions



where s controls the nature of the log-normal curve and is typically set to 0.5.

Substituting (9.121) and (9.122) into (9.120) gives

NTxFZy ¼ NTxaxB
0 exp A0ðT0 � TÞ � 1½ �

2p
p

sx

ð1
0

Dbx 1 exp � ½lnðDx=DnxÞ�2
2s2x

 !
dDx: ð9:123Þ

Dividing all Dx terms by Dnx gives

NTxFZy ¼NTxaxB
0 exp A0ðT0 TÞ 1½ �Dbx

nx

2p
p

sx

�
ð1
0

Dx

Dnx

� �bx 1

exp
½lnðDx=DnxÞ�2

2s2x

 !
d

Dx

Dnx

� �
:

ð9:124Þ

Now letting u ¼ Dx/Dnx,

NTxFZy ¼ NTxaxB
0 exp A0ðT0 TÞ 1½ �Dbx

nx

2p
p

sx

ð1
0

ubx 1 exp
½ln u�2
2s2x

 !
du: ð9:125Þ

By letting y ¼ ln(u), u ¼ exp(y), du/u ¼ dy, so

dNTx

dt
¼ NTxaxB

0 exp A0ðT0 TÞ 1½ �Dbx
nx

2p
p

sx

ð1
1
expðbxyÞ exp y2

2s2x

� �
dy; ð9:126Þ

where the limits of the integral are that as u approaches zero from positive

values, ln(u) approaches negative infinity, and as u approaches positive infinity,

ln(u) approaches positive infinity.

Now the following integral definition is applied:

ð1
1
expð2b0xÞ expð a0x2Þdx ¼ p

a0

r
exp

b02

a0

� �
; ð9:127Þ

by allowing y ¼ x, a0 ¼ 1/(2sx
2), b0 ¼ bx/2; therefore (9.126) becomes the

prognostic equation for NTx for the freezing process,

NTxFZy ¼ NTxaxB
0 exp A0ðT0 TÞ 1½ �Dbx

nx exp
b2xs

2
x

2

� �
: ð9:128Þ

The prognostic equation for mixing ratio for Bigg freezing can be written as

QxFZy ¼ 1

r0

ð1
0

B0 exp A0ðT0 TÞ 1½ � mðDÞ½ �2nðDÞdD ð9:129Þ
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where A0 and B0 are constants and m(D) is as in (9.121). The log-normal

distribution is given in (9.122). Substituting (9.121) and (9.122) into (9.129)

results in

QxFZy ¼ NTxB
0 exp A0ðT0 � TÞ � 1½ �a2x

r0 2p
p

sx

ð1
0

D2bx 1 exp � ½lnðDx=DnxÞ�2
2s2x

 !
dDx: ð9:130Þ

Dividing all Dx terms by Dnx,

QxFZy ¼NTxB
0 exp A0ðT0 TÞ 1½ �a2xD2bx

nx

r0 2p
p

sx

�
ð1
0

Dx

Dnx

� �2bx 1

exp
½lnðDx=DnxÞ�2

2s2x

 !
d

Dx

Dnx

� �
:

ð9:131Þ

Now letting u ¼ Dx/Dnx,

QxFZy ¼ NTxB
0 exp A0ðT0 TÞ 1½ �a2xD2bx

nx

r0 2p
p

sx

ð1
0

u2bx 1 exp
½ln u�2
2s2x

 !
du: ð9:132Þ

By letting y ¼ ln(u), u ¼ exp(y), du/u ¼ dy, so

QxFZy ¼ NTxB
0 exp A0ðT0 � TÞ � 1½ �a2xD2bx

nx

r0 2p
p

sx

ð1
1
expð2bxyÞ exp � y2

2s2x

� �
dy; ð9:133Þ

where the limits of the integral change as u approaches zero from positive

values, ln(u) approaches negative infinity. Likewise, the upper limit, as u

approaches positive infinity, ln(u) approaches positive infinity.

Now the following integral definition (9.127) is applied, where y ¼ x, a0 ¼
1/(2sx

2), b0 ¼ b; therefore (9.133) becomes the prognostic equation for Q for the

Bigg freezing process,

QxFZy ¼ 1

r0
NTxB

0 exp A0ðT0 TÞ 1½ �a2xD2bx
nx expð2b2xs2xÞ: ð9:134Þ

With Bigg freezing, Khain et al. (2000) showed that at 20 �C, 2 s, 2 � 103 s,

and 2 � 106 s were required using the Bigg data to freeze drops with radii of

1000 µm, 100 µm, and 10 µm, respectively thus leaving many small unfrozen

drops at 20 �C. At 30 �C, the times reduce to 2 � 10 3 s, 2 s, 2 � 103 s for

drops 1000 µm, 100 µm, and 10 µm.
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9.10 Immersion freezing

Another form of immersion freezing is that proposed by Vali (1975) that also

is temperature dependent, and similar to Bigg freezing,

Nim ¼ Nim0 0:1 T 273:15½ �ð Þg;
where Nim0 ¼ 1 � 107 m 3, and g ¼ 4.4 for cumulus clouds. More recently,

Vali (1994) came up with a time-dependent form of an equation for freezing

rates. However it is severely limited by lack of actual knowledge of the

content of the freezing nuclei. The Straka and Rasmussen (1997) method

can provide the Lagrangian age or time with this scheme.

9.11 Two- and three-body conversions

A two-body interaction is, for example, as simple as hail collection of cloud

water. A three-body interaction is a bit more complex. It involves (i) two

bodies interacting and producing one hydrometeor or another type of hydro-

meteor altogether; or (ii) as described later, the production of more of the

same collector body, plus another body. An example of the former type of

three-body interaction is described as one hydrometeor, such as rain, collect-

ing snow. If the raindrops are very small (the raindrop amount is very small in

some models and does not exceed a threshold), then only rimed snow may be

produced. However, if the rain is large (the raindrop amount exceeds some

threshold) then perhaps graupel or a frozen drop might be formed.

Several methods have been developed for models to decide how much mass

should transfer from one ice category to another ice category during riming

or collection of rain. First Ferrier’s (1994) model is examined. The larger ice

habits that are allowed are snow, graupel, and frozen drops. Ferrier assumes

that there is a transfer of mixing ratio and number concentration of a given

hydrometeor based upon a riming age, nominally chosen as 120 s. To put that

into perspective, in a thunderstorm with an average updraft of 30 to 40 m s 1,

the particle might rise 3600 to 4800 m! This certainly complicates the problem

as a particle’s temperature environment might change on the order of 20 �C or

more, which is a huge change when considering rime density changes. Ferrier’s

model can permit the following changes of snow to snow (i.e. no change), snow

to graupel, and snow to hail, all in one timestep, owing to riming. Ferrier (1994)

argues that precipitation particles should be categorized by their new densities

upon riming cloud drops for a period of time or collecting raindrops over a

timestep. For example, snow aggregates collecting small raindrops might

remain as snow aggregates, though they might become graupel or frozen

drops if they collect more massive raindrops. Similarly he argues that graupel
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collecting small drops should be characterized as graupel, or classified as

frozen drops if it collides with a similar-sized or larger raindrop, as follows

p
6

rxD
3
x þ rrwD

3
rw

� � ¼ p
6
ryD

3
x: ð9:135Þ

In Ferrier’s (1994) parameterization, liquid collected is evenly distributed

throughout an ice particle before freezing to ice. First, equating masses of the

ice particle is done where rx is the density of the original ice, rL is the density

of liquid and ry is the new density of the mixture. This is categorized as snow

if ry < 0.5(rsw+rgw), graupel if 0.5(rsw+rgw) < ry < 0.5(rgw+rfw), or frozen
drops if ry > 0.5(rgw+rfw). Now these values are substituted into (9.135) to

give a range from D1 < Drw < D2 as a function of the colliding particle Dx.

Ferrier (1994) has perhaps one of the more elaborate schemes to handle

riming of snow, graupel, and frozen drops for particles to either lose or retain

their species. For example, the following are possible: for snow to remain as

snow or become graupel or frozen rain; graupel to remain as graupel or

become frozen rain; and frozen rain to become graupel or remain as frozen

rain. A sufficient amount of riming must occur at a different density than the

density of the riming particle for a species conversion to occur. There are two

diameters involved: D1xy is the minimum size of the converted species; and D2xy

is the size at which the particle mass doubles in the time interval Dtrime ¼ 60 to

180 s (120 s in Ferrier) such that only smaller particles have their densities

sufficiently altered. For rime collected on particles smaller than D1xy and

larger than D2xy the particles do not change into other species. However, for

D1xy < D< D2xy, riming is a means by which the species in question becomes a

different species. Partial gamma functions need to be used to define Qycw ACx

and Nycw ACx along with limits defined as the diameters D1xy and D2xy. Now

the key is to obtain the two diameters D1xy and D2xy. The diameter of D1xy

needs to be solved by numerical iteration, and lookup tables are made for

efficiency. The minimum diameter threshold is 0.0005 m, which is a function

of mean cloud droplet diameter, cloud temperature, and height. The particle

diameter D2xy is solved in a different manner than that for D1xy. (Remember-

ing that this diameter is the size that the mass doubles in time Dtrime and that

is by using a simplified continuous collection equation). Rime densities come

from Heymsfield and Pflaum (1985) and impact velocities from Rasmussen

and Heymsfield (1985). The continuous collection equation is fairly straight-

forward, starting with,

dmx

dt
¼ 0:25pr0Qcwax

r0
r

� �1=2
D2þbx

x : ð9:136Þ
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Now making the assumption that the density of the rime that has been

accreted is that of the converted particle with density of rx,

dmx

dt
¼

d p=6ryD
3
x

� �
dt

; ð9:137Þ
where ry is the mixture of density of rime ice and the density of the particle

experiencing riming.

Combining (9.136) and (9.137), integrating over the rime time interval Dtrime,

and specifying the final size of the particle by Df, gives

D1 bx
fxy ¼ D1 bx

2xy ¼
1 bxð ÞExcwrQcwax

r0
r

� �1=2
Dtrime

ry
; ð9:138Þ

where Excw is the collection efficiency of x accreting cloud water.

If the mass has doubled in time Dtrime, then

p
6
ry D3

fxy D3
2xy

� �
¼ p

6
rxD

3
2xy: ð9:139Þ

The equation for D2xy can be solved by combining the equations above, which

gives an equation as a function of water content and height (the density factor

multiplied by the terminal velocity),

D2xy ¼ txyDtrimerQcw
r0
r

� �1=2 !1= 1 bxð Þ
; ð9:140Þ

where the variable txy is given by the constant

txy ¼ 1 bxð ÞExcwax
2ry

1þ rx=ry
� � 1 bxð Þ=3

1

� � 1

: ð9:141Þ

By this method, riming conversion only occurs when D1xy < D2xy and D2xy >

0.0002 m.

Milbrandt and Yau (2005b) simplified this parameterization somewhat for

a faster, more simple model. They decide that raindrops freeze when they

come into contact with ice particles. But first they assume, like Ferrier ( 1994),

that during particle contact the liquid is uniformly dispersed throughout the

particle and increases in its mass, but does not change its bulk volume.

Equation (9.142) is used and the destinations are as given above, except that

mass-weighted mean diameters are used,

p
6

rxD
3
mx þ rrwD

3
mrw

� � ¼ p
6
rzD

3
mz; ð9:142Þ

9.11 Two- and three-body conversions 285



and Dmz ¼ max(Dmx, Dmr). The destination category for number concentration

of the new particle is a mass-weighted sum given by

NzxCLrw ¼ rdzxrw QxACrw þ QrwACxð Þ
p
6

� �
rzmax Dmrw;Dmxð Þ3 ; ð9:143Þ

where rz is the density of the actual density of the species z, not the density

computed from (9.142) above.

This methodology is used in our model for transfers among snow, low-

density, medium-density and high-density graupel, and frozen drops, which

all can collect rain water of various types, and drizzle. For larger ice particles

collecting cloud water a riming time Dtrime is chosen (60 120 s) and a rime

amount and rime density are computed using (2.229) and (9.76) or prognosed

from (2.231).

The conversion from one hydrometeor species to two different hydrometeor

species is also called a three-body interaction or three-component interaction,

and was re-examined by Farley et al. (1989). Their approach takes into account

the amount lost of the particle collected Qy that is gained by the two other

different bodies Qx and Qz. Farley et al. (1989) consider the transfer from snow

to graupel/hail by riming of snow, which is a bit unrealistic when it is con-

sidered that the conversion size threshold is 7 mm. This is larger than almost

all graupel particles and is the size of embryonic hail particles (Pruppacher

and Klett 1997). It is not clear that snow actually rimes to become hail

without becoming graupel first. In the example herein, let us consider rain

collected by graupel, and conversion of the graupel to hail, with a conversion

size threshold of 5 mm.

The collection equation for Q and N of the collector (graupel) collecting the

collectee (rain) is given by a partial gamma distribution (with c ¼ 1) for the

graupel part of the double integral,

QzxACy ¼
0:25pExyNTxQyDVTxyQ

r0
r

� �1=2
� nxð Þ� By þ ny

� �

�

� 2þ nx; HdiathDnx

� �
� 3þ ny
� �

D2
nx

þ2� 1þ nx; HdiathDnx

� �
� 4þ ny
� �

DnxDny

þ � 0þ nx; HdiathDnx

� �
� 5þ ny
� �

D2
ny

2
6666664

3
7777775
;

ð9:144Þ
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and

NzxACy ¼
0:25pExyNTxNTyDVTxyN

r0
r

� �1=2
� nxð Þ� ny

� �

�

� 2þ nx; HdiathDnx

� �
� 0þ ny
� �

D2
nx

þ2� 1þ nx; HdiathDnx

� �
� 1þ ny
� �

DnxDny

þ � 0þ nx; HdiathDnx

� �
� 2þ ny
� �

D2
ny

2
66666664

3
77777775
; ð9:145Þ

where Hdiath is the cut-off threshold, z is hail, x is graupel and y is rain. The

ratio of Hdiath to Dnx can be stored in a lookup table for the partial gamma

function, or it can be computed, which is expensive. Alternatively, a numer-

ical approach using bins and integrating using Simpson’s one-third rule as

suggested by Farley et al. (1989) could be incorporated. For example, using

the gamma distribution with m and a ¼ 1,

QzxACy ¼
0:25pExyNTxQyDVTxyQ

r0
r

� �1=2
� nxð Þ� By þ ny

� �

�

PD1

Dhail;0

D2þvx
x exp Dx=Dnx

� �
DDx

� �( )
� 3þ ny
� �

þ2
PD1

Dhail;0

D1þvx
x exp Dx=Dnx

� �
DDx

� �( )
� 4þ ny
� �

Dny

þ PD1

Dhail;0

Dvx
x exp Dx=Dnx

� �
DDx

� �( )
� 5þ ny
� �

D2
ny

2
6666666666664

3
7777777777775
: ð9:146Þ

These equations are not activated unless graupel and frozen drops grow

for two minutes by riming, starting from the mass-weighted mean diameter

to a diameter of 5 mm via the continuous growth collection equation for a

gamma distribution.

An identical set of procedures is used to grow hail from graupel and hail

from frozen drops into large hail (D > 20 mm). The equations above (9.145)

and (9.146) are not activated unless hail from graupel or hail from frozen

drops grows for 2 min by riming, starting from the mass-weighted mean
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diameter to a diameter of 20 mm via the continuous growth collection

equation for a gamma distribution,

NzxACy ¼
0:25pExyNTxNTyDVTxyN

r0
r

� �1=2
� nxð Þ� ny

� �

�

PD1

Dhail;0

D2þvx
x exp Dx=Dnx

� �
DDx

� �( )
� 0þ ny
� �

þ2
PD1

Dhail;0

D1þvx
x exp Dx=Dnx

� �
DDx

� �( )
� 1þ ny
� �

Dny

þ PD1

Dhail;0

Dvx
x exp Dx=Dnx

� �
DDx

� �( )
� 2þ ny
� �

D2
ny

2
6666666666664

3
7777777777775
: ð9:147Þ

The amount of the rain that stays with graupel instead of being transferred

to hail is

QgwgwACrw ¼ QgwACrw QhwgwACrw: ð9:148Þ
Next the question is howmuch of the graupel stays with graupel and howmuch

graupel is transferred to hail in this three-body interaction. First, take the

definition of the mixing ratio of graupel, using integration by parts to find the

solution as in Farley et al. (1989), and divide the timestep to get a rate equation,

QrwACgw ¼ Qgw

Dt
¼

ðD1

Dhail;0

NTgw

Dt� vxð Þ
p
6

rsw
r

D

Dnx

� �3þvx

exp
D

Dnx

� �
d

D

Dnx
ð9:149Þ

or simply employ the use of a partial gamma function for the integration

solution,

QrwACgw ¼ Qgw

Dt
¼ NTgw

Dt� vxð Þ
p
6

rsw
r

D3þvx
ng � 3þ vx;

Hdiath
Dngw

� �
: ð9:150Þ

The same procedure is done for number concentration,

NrwACgw ¼ NTgw

Dt
¼ NTgw

Dt� vxð Þ
p
6

rsw
r

� vx;
Hdiath
Dngw

� �
: ð9:151Þ

Farley et al. (1989) require the collector mixing ratio (snow) to be > 1 � 10 4

kg kg 1 and the collectee mixing ratio threshold (cloud water) to be> 1� 10 3

kg kg 1. For a three-body interaction between graupel or frozen drops and

raindrops, perhaps similar thresholds might be used. Alternatively, rain
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thresholds reduced to a range between 1� 10 4 kg kg 1 and 5� 10 4 kg kg 1

might be more appropriate as there is very little rain above the 10 �C
to 15 �C levels.

9.12 Graupel density parameterizations and density prediction

Very little is actually known about graupel growth as it is not readily amen-

able to studies by remote-sensing polarimetric radar, and as aircraft can only

make limited observations. Although these observations are useful, wind

tunnels in laboratories remain the best observational tool (Heymsfield

1978). For graupel, and probably equally valid for frozen drops, Pflaum

and Pruppacher (1979) suggest the following empirical equation for graupel-

rime density, which is somewhat larger than expected when compared to

Macklin and Bailey’s (1962) equation,

rrime ¼ 261
rVT;impact

Ts

� �0:38
: ð9:152Þ

In this equation r is the mean volume cloud droplet radius in microns,

VT,impact is the impact velocity in m s 1, and Ts is surface temperature of the

hailstone. At this time, the best approximation for impact velocity for bulk

microphysical models is represented by 0.6 times the terminal velocity.

A set of prognostic equations can be developed for variable density growth

for graupel and frozen drops. The general form of the equations is the same as

that in Chapter 13 for hail-rime density and variable density growth of hail

and the procedure is to use appropriate densities and mass weight sources/

sinks with mixing ratio tendencies times time,

rnþ1
gw

rngwQ
n
gw þ Dtrngw;conv

dQgw

dt




n
conv

Dtrngw;rime
dQgw

dt




n
rime

þDtr900
dQgw

dt




n
rain

þDtrgw
dQgw

dt




n
sub=dep

Qn
gw þ Dt dQgw

dt




n
conv

þDt dQgw

dt




n
rime

Dt dQgw

dt




n
rain

þDt dQgw

dt




n
sub=dep

; ð9:153Þ

where n and n + 1 are time level t and t + dt, and the subscript gw refers to

graupel of any density. This equation can be expanded to accommodate the

source and sink terms in the mass or mixing ratio budget equations. The new

density can be used to determine if the particle should be transferred from a

low-density particle to a high-density particle in a bulk microphysical model,

or just tracked in a bin model to compute terminal velocity, diameters, etc.,

for a given mass representing a bin. Notice in (9.153) above that the density of

the budget related to accreting rain is that of frozen ice, i.e. approximately

900 kg m 3, and that for sublimation and deposition the particle density does

not change.
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Some models have exchanges across lines of density for different hydro-

meteors. For example, Schoenberg-Ferrier’s model uses very low-density

snow, medium-density graupel, and high-density frozen drops. Similarly,

Milbrandt and Yau (2005b) use very low-density snow, medium-density

graupel, and high-density hail. In another case, Straka and Mansell (2005)

and Straka et al. ( 2009b) employ very low-density snow, low-density graupel,

medium-density graupel, high-density graupel, and frozen drops. In addition,

Straka et al. (2007) include lower-density hail from graupel origins and

higher-density hail from frozen-drop origins, slushy hail, and large hail.

9.13 Density changes in graupel and frozen drops

collecting cloud water

For snow aggregates, graupel, and frozen drops collecting cloud water a

simplified approach somewhat like Schoenberg-Ferrier (1994) is used. First

the amount of riming that takes place is computed as QxACcw. Next, the rime

density of cloud water collected is computed following Heymsfield and

Pflaum (1985) as

rx;rime ¼ 300
0:5DcwVT;impact

T �Cð Þ
� �0:44

; ð9:154Þ

where the value of VT,impact is the impact velocity of cloud drops on the ice

and is given as approximately 0.6 VT,x in Pflaum and Pruppacher (1980). Here

Dcw is in microns. The new density of the ice particle undergoing collection of

cloud water after a 90 s period (Dtrime) is given by

rx;new ¼ Qxrx þ DtrimeQxACcw

Qx þ DtrimeQxACcw

� �
: ð9:155Þ

Now consider medium-density graupel collecting cloud water. Its source can

collect low-density rime to become low-density graupel if rgm,rime < 0.5(rgl +
rgm); remain added to medium-density graupel if 0.5(rgl + rgm) < rgm,rime

< 0.5(rgm + rgh); can be added to high-density graupel if 0.5(rgm+ rgh)
< rgm,rime< 0.5(rgh+ rfw); or added to frozen drops if 0.5(rgh+ rfw)< rgm,rime.

This can be done for all three graupel species and frozen drops. Any species

can be converted to one of the other by either low- or high-density riming.

9.14 Density changes in graupel and frozen drops collecting

drizzle or rain water

Now consider medium-density graupel collecting drizzle or rain water.

Its new density can be determined following Milbrandt and Yau (2005b) as,
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rx;new ¼ Qxrx þ DtQxACz

Qx þ DtQxACz

� �
: ð9:156Þ

As an example a particle source can collect rain and stay as medium-density

graupel if rgm,rime < 0.5(rgl + rgm); remain as medium-density graupel if

0.5(rgl + rgm) < rgm,rime < 0.5(rgm + rgh); remain as high-density graupel

if 0.5(rgm+ rgh)< rgm,rime< 0.5(rgh+ rfw); and frozen drops if 0.5(rgh+ rfw)
< rgm,rime. This can be done for all three graupel species and frozen drops.

Almost any can be converted to the other by either sufficient low- or high-

density riming. However, in collecting drizzle and rain, the collected water

probably freezes solid and most changes are to high densities.

9.15 More recent approaches to conversion of ice

One of the newest approaches to conversion of ice from one species to

another is one developed by Morrison and Grabowski (in press), where the

amount of rime collected, and the amount of vapor deposited are predicted.

The benefit of this new method is that it does not need any thresholds per

se, like many older methods previously discussed. Rather it allows particles to

be exchanged with a rather smooth transition over a wide range of rimed

fractions collected. It can be applied to bin or bulk parameterization models.

For a bulk model the equations predicted are for NT, Qrime, and Qdep,

]NTm

]t
¼ ]uiNTm

]xi
þ NT;m

]ui
]xi

þ ]

]xi
Kh

]NTm

]xi

� �
þ ] VT;NTNTmð Þ

]x3
þ SNm; ð9:157Þ

where SNm is given by

SNm ¼ ]NTm

]t

� �
nuc

þ ]NTm

]t

� �
sub

þ ]NTm

]t

� �
frz

þ ]NTm

]t

� �
col

þ ]NTm

]t

� �
mlt

þ ]NTm

]t

� �
mltc

þ ]NTm

]t

� �
mult

ð9:158Þ

and

]Qrime;m

]t
¼ 1

r
]ruiQrime;m

]xi
þ Qrime;m

r
]rui
]xi

þ ]

]xi
rKh

]Qrime;m

]xi

� �
;

þ 1

r
] rVTQQrime;m

� �
]x3

þ SQrime;m;

ð9:159Þ
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where SQrime,m is given by

SQrime;m ¼ ]Qrime;m

]t

� �
frz

þ ]Qrime;m

]t

� �
mlt

þ ]Qrime;m

]t

� �
sub

þ ]Qrime;m

]t

� �
colc

þ ]Qrime;m

]t

� �
colr

þ ]Qrime;m

]t

� �
mltc

ð9:160Þ

and

]Qdep;m

]t
¼ 1

r
]ruiQdep;m

]xi
þ Qdep;m

r
]rui
]xi

þ ]

]xi
rKh

]Qdep;m

]xi

� �

þ 1

r
] rVTQQdep;m

� �
]x3

þ SQdep;m;

ð9:161Þ

where SQdep,m is given by

SQdep;m ¼ ]Qdep;m

]t

� �
nuc

þ ]Qdep;m

]t

� �
dep

þ ]Qdep;m

]t

� �
sub

þ ]Qdep;m

]t

� �
frz

þ ]Qdep;m

]t

� �
mlt

þ ]Qdep;m

]t

� �
mltc

:

ð9:162Þ

The subscripts are defined as follows: nuc is nucleation, dep is deposition, sub

is sublimation, frz is drop freezing, mlt is meltwater, mltc is meltwater that is

recaptured, mult is ice multiplication, and col is accretion or collection of

cloud (colc) or rain (colr).

In addition to these approaches, prediction of rime density and particle

density discussed earlier can be used to make transformations smooth. These

are expensive to use for numerical weather prediction but soon the cost may

become minimized by petaflop machines in the near future.

Straka et al. (2009b) took a slightly different approach and predicted just

the rime collected along with the rime’s density, but also the total mixing ratio

of the particle, number concentration, and, if desired, reflectivity. This too

allowed for smoother transitions from one graupel type to another of snow

to graupel. Ice crystals were not assumed to grow into graupel in their model

unless particles had a mean volume diameter greater than 500 mm for planar-

type crystals and 50 mm for columnar-type crystals. These conditions are not

often met except perhaps in the upper reaches of intense convection.
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10

Hail growth

10.1 Introduction

The formation of hailstones is an intriguing aspect of precipitation develop-

ment studies owing to the unique cloud systems in which hailstones form. As

equal amounts are added of hailstones, for a given density the shells of equal

mass will be of different thickness (Fig. 10.1). In particular, the formation of

very large hailstones, some of which are greater than 51 mm in diameter, is of

great interest. Models of hail growth can be very simple or imply very detailed

processes (Takahashi 1976 and Fig. 10.2).

Hailstones are typically defined as solid or nearly solid ice particles that

are greater than 5 mm in diameter. The National Weather Service in the

United States classifies hailstones as constituting severe hail if they are larger

than 19 mm (3/400) in diameter, and constituting very severe hail if the

hailstones are larger than 51 mm (200). These larger hailstones develop most

frequently from rapid riming of higher-density graupel particles and/or large

frozen drops. Studies suggest that high-plains storms produce most of their

hail from graupel, and Southern Plains storms produce most from frozen

drops (Fig. 10.3). It is not known exactly why this is so, but some have

speculated that high-plains storms do not produce large water drops above

the freezing level because they have cold cloud bases cooler than 5 �C (278.15 K)

(Fig. 10.3) and the 500 mb temperature in the updraft core is perhaps 260.15

to 263.15 K. Thus, many of the hailstone embryos are perhaps formed from

graupel. On the other hand, Southern Plains storms produce many large

drops owing to an active collision and coalescence regime in the storm in

the warm, cloud-water laden updraft, where cloud bases are typically warmer

than 15 to 20 �C (288.15 to 293.15 K) and temperatures at 500 mb in the

updraft core may be close to about 270.15 to 273.15 K.
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The growth of a hailstone can be thought of in very simple terms with

a simple continuous equation to gauge the hailstone growth by riming.

Hail growth models also can be very detailed considering low-density growth

(Fig. 10.4) leading to smaller terminal velocity for the same mass. In addition,

drag coefficient values can play a role in hail growth (Fig. 10.5).

Primary hydrometeor growth

Condensation

Coalescence
Cloud droplets

Freezing

Riming
Graupel

Accretion

D – 5mm

Aggregation

Riming

Snowflakes

Small collectors

Collectors

Snow crystals

Freezing
riming

Raindrops

Collection
Freezing,
accretion

Hail

Hail

Fig. 10.2. Flow-chart showing hailstones growing from freezing of rain-
drops and from production graupel. (Knight and Knight 2001; courtesy of
the American Meteorological Society.)

r1

m1 = m2 = m3 = m4

r1 > r2 > r3 > r4

r2 r3 r4

Fig. 10.1. Concentric layers of equal mass (m) illustrating thinning of layer
thickness (r is radius). (Pflaum 1980; courtesy of the American Meteoro-
logical Society.)
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The hailstone definition may be related to the smallest size an ice particle

can grow by wet growth, which means not all of the collected liquid freezes

immediately upon contact. This results in hailstones almost always being

warmer than the environmental temperature where the hail is found at

temperatures below freezing. To find the growth rate of a hailstone, along

with its temperature and fraction of liquid that freezes, a heat budget and

temperature equation must be solved. When all collected liquid water freezes

instantaneously upon contact the growth is said to be dry growth. These and

other examples are covered in detail below. A special example of wet growth

is in a mixed-phase cloud, where cloud water and snow crystals coexist. In

this case, snow particles that would normally bounce off a hailstone because

they are dry would stick upon collision during wet growth owing to the

liquid-water presence on the hailstone’s surface.

As mentioned above another interesting aspect about hail growth that is

covered in this chapter is low-density riming. If a hailstone’s rime is small

compared to solid ice water, then its size will increase with a smaller increase

in terminal velocity, which would permit weaker updraft requirements to

keep a hailstone lofted. This idea has yet to have been proven well enough

to be accepted, though it is logically and pragmatically based.

Nelson (1987) wrote that hailstorms that produce many hailstones differ

kinematically and microphysically from hailstorms that produce fewer very

large hailstones. The microphysics and kinematic aspects of these different
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Fig. 10.5. Growth of hailstones from 5 mm to 8 cm assuming different
terminal velocity drag coefficients (Cd). (From Knight and Knight 1981;
courtesy of the American Meteorological Society.)
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systems are summarized in Table 10.1 with references for each of the findings

where appropriate. Notice that both storms that produce large hail and large

amounts of hail require strong updrafts of 20 to 40 m s 1 and optimal

trajectories (though different types of trajectories from each other). It may

be safe to state that at this time we do not know if microphysical variability

plays a significant role in modeling microphysics of hail growth. However,

there seems to be a growing consensus that just the right trajectories need to

be followed for very large hail to form. Bulk microphysical models can even

make distinctions between non-severe, severe, and giant hailstones with

appropriate number concentrations in simulations (e.g. Straka et al. 2009b).

10.2 Wet and spongy hail growth

Wet growth of a hailstone occurs when the accreted liquid cannot all freeze

immediately, that is, part of it remains unfrozen. There are two modes of

wet growth. Following Rasmussen and Heymsfield (1987a), there is high-

density wet growth, as well as spongy wet growth, both of which are defined

below. The modes are relevant to modeling hail for detailed models of hail

growth and radar calculations as well as some of the newer multi-class bulk

parameterizations.

Table 10.1. Microphysics and kinematic aspects of different hailstorms Nelson (1987)

Large hail Large amounts of hail

Microphysics Kinematics Microphysics Kinematics

Large values of super-
cooled liquid water

Light horizontal
flow across the
updraft

High embryo
concentration

Large contiguous
updraft area with
w ¼ 20 to 40 m
s 1 (a, c, d, f, h)

Wet growth in mixed
phase region (b, f)

Large contiguous
updraft area with
w ¼ 20 to 40 m
s 1 (c, d, f, h)

Ample super-
cooled liquid
water

Flow field that
injects embryos
across a broad
updraft front (f)

Low-density growth
(c, g)

Optimal trajectories
(including embryo
trajectories; a, c,
d, e, f, h)

Large embryos (c, d, f) Favorable updraft
gradients (f)

References:

(a) Danielson et al. (1972); (b) Dennis and Musil (1973); (c) English (1973); (d) Foote (1984);

(e) Heymsfield et al. (1980); (f ) Nelson (1983); (g) Pflaum (1980); (h) Ziegler et al. (1983).
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With high-density wet growth, all frozen water has a density of 910 kg m 3.

The unfrozen portion, or liquid portion, may remain on the surface much as

it does during melting of solid ice. At diameters of less than 20 mm the same

mixed-phase morphology and shedding physics occurs as with melting ice.

Spongy wet growth occurs when the liquid water collected in part freezes

and in part remains liquid. The factors that influence spongy wet growth and

inherent shedding include icing conditions, rotation rates, and nutation pre-

cession rate for a sphere (Pruppacher and Klett 1997). The liquid-water part

freezes in a dendritic structure with a density of 450 to 750 kg m 3. The

remaining liquid part fills the spaces between this dendritic structure like a

sponge at the freezing temperature (Pruppacher and Klett 1997). If more

liquid is accreted than can be absorbed by the spongy-like dendritic structure

then it may remain on the surface much like a solid ice particle. Rasmussen

and Heymsfield (1987a) parameterized the minimum amount of liquid water

that could be shed by a hailstone formed by spongy wet growth. To do so, the

ice fraction of liquid frozen was reduced for a rotation rate of 0.5 Hz by 0.2.

This allowed the spongy hailstones to behave like a particle with a rotation

rate of 5 to 7 Hz as observed. At this rotation rate, the ice fraction and

shedding both reached a minimum. This is because this rotation rate allowed

more liquid to be in the spongy dendritic ice and less to accumulate on the

bulge of water near the equatorial region of the hailstone. The details of wet-

growth parameters for spongy wet-growth particles, such as the density and

the ice fraction of the particle, are found in Rasmussen and Heymsfield

(1987a), and are reproduced below,

rspongy ¼ 1 0:08Ficeð ÞFice; ð10:1Þ
where rspongy is the density of spongy-growth particles (in CGS units) and Fice

is the fraction of ice. The fraction of ice for Qcw � 2 g m 3 is given by,

Fice ¼ 0:25þ 1 0:25ð Þ= 1þ 0:1789 g m 3 Qcw 2:0 g m 3
� �� �� �

; ð10:2Þ
otherwise,

Fice ¼ 1: ð10:3Þ

10.3 Heat-budget equation

The heat budget for an ice particle, used to determine melting or wet growth,

is based on a balance of heat budget. Here, a heat budget for ice crystals

represents primarily graupel, frozen drops, or hail. The heat budget accounts

for heating by conduction, vapor deposition, sensible heat, and enthalpy of
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freezing of rain or riming of cloud drops, and sensible heat with collection of

ice crystals (Dennis and Musil 1973). The budget equation is given as,

dqcond
dt

þ dqdiff
dt

þ dqrime

dt
þ dqice

dt
¼ 0: ð10:4Þ

The first term is the heating by conduction and is given by

dq cond

dt
¼ 2pDK Tice Tð Þfh; ð10:5Þ

where Tice is the surface temperature of hail, k is the thermal conductivity and

fh is the heat ventilation coefficient. This term and the next may have ventila-

tion coefficients greater than reported below as heat transfer is enhanced on

the frontal laminar flow side and the rearward turbulent wake. Expressions

for the heat and vapor ventilation coefficients are

fh ¼ 0:78þ 0:308N1=3
pr N1=2

re ð10:6Þ
and

fv ¼ 0:78þ 0:308N1=3
sc N1=2

re ; ð10:7Þ
respectively, where Nsc is the Schmidt number and Nre the Reynolds number.

The second term is the heating by deposition/sublimation and is given as

dqdiff
dt

¼ 2pDLscr Qv Qs0ð Þ fv; ð10:8Þ

where Qv is the vapor mixing ratio of air, Qs0 is the saturation mixing ratio

at 0 �C, Ls is the enthalpy of sublimation, r is the density of air, D is the

diameter, and c is water-vapor diffusivity. Next the third term is the heating

with freezing of supercooled water and sensible heat transfer between the

water and ice particle. The third term is

dqrime

dt
¼ dMliquid

dt
FfLf þ cL T Tice½ �ð Þ; ð10:9Þ

where cL is the specific heat of liquid, Lf is the enthalpy of freezing, and Ff is the

fraction of liquid frozen. This term may need modification on more than one

occasion. Such an occasion occurs when some liquid is retained in the interior of

the hailstone or as its shell; then an appropriateFf must be chosen. If some of the

liquid accreted by the hailstone is shed by a fraction Eshed, then the liquid may

extract some heat when leaving the hailstone and the equation above becomes

dq0rime

dt
¼ dMliquid

dt
FfLf þ cL T Tice½ � þ EshedcL TL T0½ �ð Þ; ð10:10Þ
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where TL is the temperature of the water shed, T0 is T ¼ 0 �C, and Eshed is

1 Eretain, where Eshed is the fraction of collected drop mass shed in the

geometric sweep-out volume per second.

Finally the last term is given as the heat change owing to collisions with ice

of different temperatures and sticking,

dqice
dt

¼ dMice

dt
ci T Tice½ �ð Þ: ð10:11Þ

This term accounts for the energy exchange associated with hail collecting ice.

dqice
dt

1
ci T Tice½ �

Lf þ cL T Tice½ �
� �

: ð10:12Þ

Setting the sum of (10.8), (10.10), (10.11), and (10.12) to zero and solving

for dQwet/dt, the wet-growth mixing ratio rate can be found. In practice, the

ice particle is assumed to be at temperature of 273.15 K, and the vapor pressure

over the ice particle corresponds to that of a wet surface at 273.15 K, which

requires using Lv instead of Ls in dqdiff/dt.

After some algebra, an equation for Tice can be derived from the above heat

terms summed to zero following Nelson’s (1980) procedure. This equation

gives the temperature of a hailstone, assuming no heat storage.

Making these assumptions results in the following for a sphere, which is

assumed to represent the shape of graupel, frozen drops, and hailstone particles.

For the complete gamma distribution,

Qxwet ¼
2pNTxavxx rLvc Qv;ice � Qs0

� �� K T � Tice½ �� �
r Lf þ cL T � Tice½ �ð Þ

� 0:78Dnx

� 1þvxmx
mx

� �
a

1þvxmx
mx

� �
x

þ 0:308N1=3
sc n 1=2D

3þdx
2

nx c1=2x

� 3þdx
2mx

þ vxmx
mx

� �
a

3þdx
2mx

þ vxmx
mx

� �
x

r0
r

� �1=4
2
4

3
5

þ 1� ci T � Tice½ �
Lf þ cL T � Tice½ �

� �
dQ

dt






ice;snow

:

ð10:13Þ

The modified gamma distribution form is the following,

Qxwet ¼
2pNTx rLvc Qv;ice Qs0

� �
K T Tice½ �� �

r Lf þ cL T Tice½ �ð Þ

� 0:78Dnx�
1þ vxmx

mx

� �
þ 0:308N1=3

sc n�1=2D
3þdx
2

nx c1=2x �
3þ dx
2mx

þ vxmx
mx

� �
r0
r

� �1=4
" #

þ 1
ci T Tice½ �

Lf þ cL T Tice½ �
� �

dQ

dt






ice;snow

:

ð10:14Þ
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Finally, the gamma distribution gives

Qxwet ¼
2pNTx rLvc Qv;ice � Qs0

� �� K T � Tice½ �� �
r Lf þ cL T � Tice½ �ð Þ

� 0:78Dnx� 1þ vxð Þ þ 0:308N1=3
sc n 1=2D

3þdx
2

nx c1=2x �
3þ dx

2
þ vx

� �
r0
r

� �1=4
" #

þ 1� ci T � Tice½ �
Lf þ cL T � Tice½ �

� �
dQ

dt






ice;snow

:

ð10:15Þ

The inverse-exponential version of (10.15) has vx ¼ 0.

10.4 Temperature equations for hailstones

As stated above, an equation for Tice can be derived following Nelson (1980).

This equation gives the temperature of a hailstone assuming no heat storage,

Tice ¼
2pDfhKT 2pDfvLvr Qvhx Qvð Þ þ ciT

dMice

dt þ Lf þ cLTð Þ dMliquid

dt

2pDfhK þ ciT
dMice

dt þ cL
dMliquid

dt

; ð10:16Þ

where Qvhx is the vapor mixing ratio over hail of various types. As the

equation is implicit in the term Tice, it can be solved easily by iteration using

the Newton Raphson technique with convergence in three to five iterations.

This procedure is given below for completeness.

First some variable definitions are set,

H0 ¼ 2pDfhK; ð10:17Þ
H1 ¼ 2pDT; ð10:18Þ

H2 ¼ ciT
dMice

dt
þ dMliquid

dt
Lf þ cL T T0ð Þ þ ciT0½ �

� �
; ð10:19Þ

H3 ¼ 2pDfhKþ ci
dMliquid

dt
þ dMice

dt

� �
; ð10:20Þ

H4 ¼ 2pDfvcLvr; ð10:21Þ

and

H5 ¼ 17:27H4

H3
: ð10:22Þ
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Now the following iteration loop is executed,

Tice;old ¼ Tice; ð10:23Þ
T1 ¼ Tice;old 273:15; ð10:24Þ
T2 ¼ Tice;old 35:86; ð10:25Þ

Qvhx ¼ 380

p
exp

17:27 T 273:15½ �
T 35:86½ �

� �
; ð10:26Þ

where p is pressure (Pa), and

H6 ¼ H4 Qvhx Qvð Þ: ð10:27Þ
For the Newton Raphson iteration loop the parameters f and f 0 are needed,

f ¼ Tice;old H1 þ H2 þ H6ð Þ
H3

; ð10:28Þ

f 0 ¼ 1þ H5 T2 T1½ �=T2
2

� �
Qvhx ; ð10:29Þ

and

Tice ¼ Tice;old
f

f 0
: ð10:30Þ

If Tice is less than 273.15 K then the hail growth is computed using dMice/dt

and dMliquid/dt. If not, then the fraction of liquid frozen Ff needs to be

computed; this can be done following Nelson (1980) as well,

Ff

2pDfhK Tice Tað Þ þ 2pDfvLvr Qvhx Qvð Þ þ ci Tice Tð Þ dMice

dt þ cL Tice Tað Þ½ � dMliquid

dt

Lf
dMliquid

dt

: ð10:31Þ

Once Ff is calculated the growth rate is computed from Ff dMl/dt and dMi/dt.

10.5 Temperature equation for hailstones with heat storage

Of interest in modeling hailstone growth is the prediction of their temperature

to determine if they are growing by dry, spongy, or wet growth. This section

establishes equations associated with the temperature change of individual

dry and wet hailstones. Following Dennis and Musil (1973), the heat content

of a dry hailstone is given by

MTsci; ð10:32Þ
where ci is the specific heat of dry ice and Ts the surface temperature of the

hailstone, which is always negative (�C). The mass of the hailstone is given

by M. This can be written as a heat-budget equation,
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d

dt
MTscið Þ ¼ dqT

dt
: ð10:33Þ

From (10.32) above the following can be written,

dTs
dt

¼ Ts
M

dM

dt
þ 1

Mci

dqT
dt

: ð10:34Þ

The total heat budget for wet and dry hailstones was given previously as

dqT
dt

¼ dqcond
dt

þ dqdiff
dt

þ dqrime

dt
þ dqice

dt
; ð10:35Þ

where the heat with conduction is qcond, heat with sublimation/deposition or

evaporation/condensation is qdiff, heat with accretion of liquid qrime and ice qice.

Let us first consider dry hailstones. By substituting in the heat-transfer

terms, the following temperature equation is found

dTs
dt

¼ Ts
M

dM

dt
þ 1

Mci
2pDf K T Tsf g LvcrðQv Qs0Þ½ �ð Þ

þ dMliquid

dt
Lf þ cLTð Þ þ dMi

dt
ciT ¼ T Ts

M

� �
dM

dt

þ Lf þ cL cið ÞT
Mci

dMliquid

dt
þ 2pDf

Mci
K T Tsf g LvcrðQv Qs0Þ½ �:

ð10:36Þ

For wet hailstones the temperature change is dTs/dt ¼ 0 as liquid- and ice-

water mixtures have a temperature of 0 �C. But the fraction of liquid water is

often desired. When a hailstone is at the freezing temperature, all the liquid

water accreted cannot freeze and some of the mass remains as liquid.

The heat content for a wet hailstone, is written similarly to that for the dry

hailstone, with the exception that the fraction of liquid water by mass FL and

the enthalpy of freezing Lf are included and ci and T are omitted,

MLfFL: ð10:37Þ
Differentiation of this equation results in

d

dt
MLfFLð Þ ¼ dqT

dt
; ð10:38Þ

or upon applying the chain rule, the fraction of the mass of the liquid can be

obtained from

dFL

dt
¼ FL

M

dM

dt
þ 1

MLf

dqT
dt

: ð10:39Þ
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Now substituting the terms on the right-hand side of the heat-budget equa-

tion, and with Ts ¼ 0 �C, the following equation for the liquid fraction of the

mass of a hailstone is found for wet growth,

dFL

dt
¼ FL

M

dM

dt
þ 1

MLf
2pDf K T Tsf g LvcrðQv Qs0Þ½ �ð Þ

þ dMliquid

dt
Lf þ cLTð Þ þ dMice

dt
ciT:

ð10:40Þ

Simulations with a prognostic hail temperature equation show a very fast

relaxation time to the 0 �C spongy or wet growth regime; it was found to be

on the order of 10 s (Pellett and Dennis 1974) with conditions rapidly

approaching equilibrium temperature conditions for hail temperature (using

an iterative technique for the solution). Differences in final sizes of an initial

1 cm hailstone at 500 mb, 20 �C, and 3 g m 3 of liquid are only 1.1% different

as found from the prognostic and iterative methods, with the hail-temperature

prediction case producing only slightly larger hail of about 1.55 cm after a

nominal 150 s. Whilst the prognosis of hail temperature is cheaper to compute

than the iteration procedure of the equilibrium temperature method, it

requires extra memory storage for a temperature variable that the equilibrium

temperature method does not need to retain. It should be noted that Hitch-

field and Stauder (1967) found that a 1.1 cm hailstone may be up to 12 �C
colder than the freezing temperature. Wet growth may be delayed by falling

as much as 2 km vertically in a cloud using a prognostic equation for

temperature of a hailstone. On the other hand, large hailstones were found

to produce very similar solutions for either the equilibrium temperature

method or the temperature prognosis method. Therefore, it seems that either

method is acceptable to use to determine spongy wet growth conditions, with

timing differences on actual temperatures of hailstones of order of 10 s or so

for large cloud contents.

Little information was given in either study for conditions of small water

contents< 1 g m 3. Interestingly, in Johnson and Rasmussen’s (1992) modeling

study of wet and dry growth of hail, it was found that there is a hysteresis

associated with the onset of wet growth that was possibly related to the drag

and heat transfer. The effect of this was to make the onset of wet growth slightly

more difficult to achieve and the cessation of wet growth easier to reach.

10.6 Schumann–Ludlam limit for wet growth

The Schumann (1938) and Ludlam (1958) limit is the demarcation between

dry growth and wet growth and is based on the temperature and liquid-water
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content available for growth of a hailstone of a given size. The smallest

particle that can grow by wet growth is typically less than 5 mm in diameter,

and thus 5 mm diameter is the threshold size between graupel and hail.

Lesins and List (1986) studied nutation/precession and spinning frequency

of 5 Hz and > 20 Hz of hailstones. They found that for 5 Hz five growth

modes for hail existed (Fig. 10.6).

The first of the five modes is the dry regime where the water collected freezes

on contact, and the ice fraction is unity. The surface is completely dry and

deposit temperatures are less than 0 �C. No shedding occurs, and the net

collection efficiency is essentially unity. The deposit is opaque indicating that

there is air encapsulated below the outer ice surface. This is because cloud drops

freeze nearly instantaneously upon contact, which leaves air spaces. Thus, there

is no equator-to-pole water movement on the surface, which may have milli-

meter-sized blobs and lobes where water makes contact at an oblique angle.

The moist regime is somewhat similar to the dry regime as the net collection

efficiency and ice fraction are essentially unity. No shedding is observed. The

difference between the moist and dry regime is that a band of transparent ice

exists around the equatorial region of the ice. There are no surface-roughness
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Fig. 10.6. The five observed hailstone growth regimes as a function of liquid-
water content (LWC) and air temperature; regimes: dry, moist, spongy,
spongy–shedding, and soaked–shedding, based on 28 experiments at labora-
tory pressure (100.5 kPa) and nutation/precession and spin frequencies of
5 Hz. The dotted line is the theoretically derived Schumann–Ludlam limit
(SLL). (From Lesins and List 1986; courtesy of the AmericanMeteorological
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elements in this band. The ice temperature of the liquid that is accreted is

approximately 0 �C. Moreover, in the equatorial zone, the liquid collected

is freezing at the slowest rate of any part of the hailstone. The moist regime is

the narrow transition region between solid ice deposits and spongy ice deposits.

It formally is most consistent with the Schumann Ludlam limit. At this limit,

the ice fraction is still unity and the temperature of the ice deposit is 0 �C.
Next is the spongy–no-shedding regime. The ice fraction is finally less than

unity and this regime is split into three parts, one without shedding, which is

discussed here, and two with shedding, which are discussed below. For

spongy ice, a no-shedding regime exists toward temperatures closer to 0 �C
or at warmer temperatures, and a collection efficiency of one is found after

passing the Schumann Ludlam limit. Heat transfer is not adequate to freeze

all of the liquid collected, and instead of liquid water being shed, it is trapped

into air spaces of ice deposits where it produces spongy ice. The original oblate

spheroid of the hailstone changes now with ridges from pole to pole. The

shape change results from mobile liquid water on the surface and prevents

liquid from building up near the equator where shedding would occur if it

accumulated there, but it does not in this mode. This is because of the net

transfer of ice toward the pole regions. In this regime the ice fraction is 0.8 to

1.0 and most of the sponginess is found in pole-to-pole ridges on the surfaces.

The second spongy regime is the spongy–shedding regime. In this regime, the

ice fraction is 0.5 to 0.7, and collection efficiencies are less than unity. The spongy

deposit is unable to incorporate all of the liquid collected and excess water is shed

as 1-mm-sized drops. These shed drops originate from the back half of the

hailstone with respect to the flow and pass through the wake zone of the flow

past the hailstone. Another zone of shedding is the torus near the equatorial

region. This type of hailstone appears similar to that of the spongy regime.

The third spongy regime is the soaked–shedding regime where ice fractions

are less than 0.5, a minimum value. If the temperature is increased all the

collected water is shed.

Finally there is a sixth regime only for very high rotation rates (> 20 Hz),

the dry–shedding regime (Fig. 10.7). Centrifugal forces cause all unfrozen

liquid to be shed as 1-mm liquid drops. The ice fraction is unity and the net

collection efficiency is less than unity.

10.7 Collection efficiency of water drops for hail

Very few studies of collection efficiencies have been carried out between hail

and cloud drops. Probably the data that most are familiar with, and perhaps

from the only study, are those by Macklin and Bailey (1966).
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A simple parameterization for these data was developed by Milbrandt and

Yau (2005b), and can be used for graupel and hail,

Ehwcw ¼ exp 8:68� 10 7DmcwDmgw;hw

� �
; ð10:41Þ

where Ehwcw is the collection efficiency of cloud water by hail water.

Certainly future experiments to measure collection efficiencies more effec-

tively for hailstones collecting cloud water and raindrops would be very useful.

10.8 Hail microphysical recycling and low-density riming

Researchers have been examining hail growth for many years, trying to find

ways in which hail often can get very large (> 50 mm in diameter), and what

causes repeating layers of apparently low- and high-density ice. One attempt

to explain the growth of large hail is particularly interesting and is the focus

of a method put forth by Pflaum and Pruppacher (1979). In this method,

hailstones grow by switching back and forth between low-density riming and

wet growth; together this is called microphysical recycling.
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Fig. 10.7. Observed hailstone growth regimes as a function of liquid-water
contentWf and air temperature, for high rotation rates (> 20 Hz); experiments
at laboratory pressure (100.5 kPa) and spin frequency equal to nutation/
precession frequencies. All ice fractions are unity and the deposit tempera-
tures were probably < 0 �C. (From Lesins and List 1986; courtesy of the
American Meteorological Society.)
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The mode of operation of microphysical recycling is that first nascent

hailstones on the order of 5 mm in diameter grow via low-density dry growth.

This often results from some or all of the following including small cloud-

droplet size, cold hailstone temperatures, and small cloud-droplet impact

velocities, which correspond to lower terminal velocities. The density of

accreted cloud water, which then freezes to ice water or rather hail rime,

has been empirically fitted to data by Macklin and Bailey (1962) and Pflaum

and Pruppacher (Fig. 10.8) to be

rrime ¼ 110
rVT;impact

Ts

� �0:76
; ð10:42Þ

rrime ¼ 261
rVT;impact

Ts

� �0:76
ð10:43Þ

or empirically fitted by Heymsfield and Pflaum (1985) to be

rrime ¼ 300
rVimpact

Ts

� �0:44
: ð10:44Þ

Only rarely does rrime fall below 170 kg m 3, and has an upper limit of

900 kg m 3. Pflaum and Pruppacher (1979) note that smaller rime densities
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Pruppacher 1979; courtesy of the American Meteorological Society.)
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might be possible if electrical effects are responsible. In these equations r is

the mean volume cloud-droplet radius in microns, Vt0 is the impact velocity

in m s 1, and Ts is surface temperature of the hailstone. The impact velocity is

the velocity component of the hail relative to the cloud drop when they make

contact. A head-on collision between hailstone and cloud-water droplet

would make a large impact velocity close to the terminal velocity of a

hailstone. On the other hand, a cloud droplet making an off-center or

glancing strike with a hailstone produces a smaller impact velocity with a

hailstone. Impact velocities can vary substantially from the typical factor of

0.6 times the terminal velocity. In a bulk microphysical parameterization it is

most prudent to use an impact velocity of 0.6 times terminal velocity.

Low-density hailstones can grow rapidly given sufficient liquid water, as

they become larger more quickly with reduced requirements for updraft

strength; therefore, they can have longer growth times compared to otherwise
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an ambient pressure of 500 mb have been used in the calculations. Rime
density acquired (units of kg m 3): (1) 50; (2) 100; (3) 200; (4) 300; (5) 400;
(6) 500; (7) 600; (8) 700; (9) 900. The dashed line provides a reference for
constant terminal velocity. (From Pflaum 1980; courtesy of the American
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high-density hail growth modes that often are used to explain hail growth.

Even though low-density hailstones have a slower fallspeed for a given mass

compared to their high-density counterparts, the diameter for a given low-

density hailstone mass has a wider sweep-out cross-section (D2). This makes

up for the smaller fall velocity (cD1/2) through the lower particle density

contained in the constant c. After a period, the low-density hailstone is

advected or falls back into a zone of high liquid-water contents and grows by

high-density wet growth. The high water contents result in unfrozen liquid that

soaks the porous ice particle and its surface. This increases the density of the

porous pockets and produces a layer of frozen liquid water on the surface of

the hailstone, as it is re-advected to colder temperatures; then the low-density

growth, high-density/re-densification wet-growth process is repeated. Exami-

nation of this problem by Pflaum (1980) gave some spectacular results and they

are shown in Figs. 10.9 and 10.10 below. In response to these conclusions
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by Pflaum (1980), Farley (1987) included 20 variable-density bins representing

the spectrum of ice particles from snow, graupel, and hail. The results of the

research by Pflaum and Pruppacher (1979) and Pflaum (1980) suggest that

models should include variable-density growth for graupel and hailstones, as

has been carried out by Farley (1987), Straka and Mansell (2005), and Straka

et al . (20 09 b).

To take into account variable-density hail growth, a set of prognostic

equations can be developed. Usage comes down to applying appropriate

densities and mass weight sources/sinks with mixing ratio tendencies times

the time,

rnþ1
hx ¼

rnhxQ
n
hx þ Dtrnhx;conv

dQhx

dt



n
conv

þDtrnhx;rime
dQhx

dt




n
rime

þDtrn900
dQhx

dt



n
rain

þDtrnhx
dQhx

dt



n
sub=dep

Qn
hx þ Dt dQhx

dt



n
conv

þDt dQhx

dt



n
rime

þDt dQhx

dt



n
rain

þDt dQhx

dt



n
sub=dep

ð10:45Þ

where n and n þ 1 are time levels t and t þ dt. This equation can be expanded

to accommodate the source and sink terms in the mass or mixing-ratio budget

equations. The new density can be used to determine if the particle should be

transferred from a low-density particle to a high-density particle in a bulk

microphysical model, or just tracked in a bin model to compute terminal

velocity, diameters, etc., for a given mass representing a bin. Notice in (10.45)

that the density related to accreting rain is that of frozen ice, approximately

900 kg m 3, and that the particle density related to sublimation and deposi-

tion does not change.
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11

Melting of ice

11.1 Introduction

A heat budget is used to derive the melting equation; this accounts for heating

owing to conduction, vapor diffusion, and sensible heat from the collection

of rain, drizzle, and cloud drops that might be warmer than the collector

ice-water particle. The collection process is complicated in most models if the

temperature of any of the hydrometeor types is not predicted. In this case,

the temperature of liquid hydrometeors is assumed to relax to the environmental

temperature instantaneously. In the case where hydrometeor temperatures

are predicted, the rate of condensation or evaporation on a melting ice-water

particle can be more accurately computed (Walko et al. 2000). Diagnosing the

instantaneous hydrometeor-species’ temperature can lessen the accuracy of

melting computations as compared to predicting hydrometeor temperatures.

The influence of energy storage and the relaxation times of the hydrometeor-

species’ temperature to the temperature of the environment will be investigated

later in the chapter.

Melting of ice-water hydrometeors can be made very simplistic; or for the

case of particle trajectory models, hybrid-bin models and bin models, can

be quite sophisticated. For parameterizations, difficulties arise when the

Reynolds number of a particle is taken into account. The equations from

Rasmussen and Heymsfield (1987a) generally cannot be used for bulk para-

meterization models whereas they can be used for bin-type models where each

bin has its own characteristics. For bulk parameterization models, melting

can be treated with one set of equations, say for frozen drizzle, which has a

small Reynolds number Nre compared to larger particles. For larger particles,

another equation for particle species such as snow aggregates, graupel, frozen

drops, or hail, which have larger Reynolds numbers, a different variant of

the melting equation should be used. For Lagrangian trajectory-type models,
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and various sorts of bin-type models, the more sophisticated equations for

melting should be incorporated if at all possible, as they take into account

the internal circulations of liquid water in smaller ice-water liquid-water

mixtures, such as melting graupel and frozen drops. It should be noted that

particle transfer from bin to bin must explicitly be taken into account with

any particle bin-type model.

Finally, the issue of porous graupel, frozen drops, hailstones soaking liquid

water, and shedding liquid-water drops (for at least some sizes of hailstone)

needs to be taken into account. In the past, collected cloud water and rain

water were just shed from graupel, frozen drops, and hailstones. More

recently attempts to incorporate all these effects have been tried in various

forms, from the very simplistic to the very complex for use in bulk parame-

terization models. However, the procedure is fairly standard for particle bin

trajectory and various types of bin models.

11.2 Snowflakes and snow aggregates

Mitra et al. (1990) identified a common pattern in the melting of snowflakes.

First, small droplets form on the tips of the crystal. Second, these drops move

by capillary forces and by surface-tension effects to the central part of the

flake or to linkages. The branches tend to remain basically liquid-water free.

Third, the central region of the crystal begins to melt and cause structural

distortions in the branches. The many small openings in the flake lose

definition and only a few larger openings remain. Fourth, the ice frame

collapses and becomes a water drop (Knight 1979; Fig. 11.1). Interestingly,

breakup was not observed (Mitra et al. 1990).

Snow aggregates of 5 to 11 mm in diameter have been observed to melt into

raindrops of 1.1 to 2.6 mm in diameter and fall at 4.3 to 7.6 m s 1 (Locetalli

and Hobbs 1974; Stewart et al. 1984). Melting generally occurs at temperatures

between 0 and 5 �C. The formation of liquid-water drops from melting of snow

aggregates can produce various rain size distribution changes. Melting snow

aggregates do not shed drops if there are no collisions. Rather, they first soak

liquid water in their ice lattices and then become liquid-water-coated until

their ice cores melt substantially and completely collapse (Knight 1979).

Low relative humidities can substantially slow the melting of ice. This is

shown well in Fig. 11.2.

11.3 Graupels and hailstones

For larger ice-water particles, such as the various forms of hail, melt water

can both soak into the ice lattice and exist at the surface, just as with graupels
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(a)

(b)

Fig. 11.1. Schematic representation of a stage of melting, which is prelimin-
ary to breakup of an aggregate or dendrite: (a) before melting and (b) during
melting. (From Knight 1979; courtesy of the American Meteorological
Society.)
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Fig. 11.2. Conditions (relative humidity of air and air temperature) at which
an ice sphere does/does not melt due to evaporation cooling of the ice-sphere
surface. Comparison with theory of Mason (1957). (From Rasmussen and
Pruppacher 1982; courtesy of the American Meteorological Society.)
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and aggregates. For diameters between about 9 and 19 mm, hailstones shed

drops of 0.5 to 2 mm with a mode of 1 mm. This also has been inferred by

polarimetric radar (Hubbert et al. 1998; Straka et al. 2000; Loney et al. 2002).

The melting of smaller hailstones can result in very large raindrops as often

inferred at the leading edges of thunderstorms using polarimetric radar [van

den Broeke et al. (2008) and Kumjian and Ryzhkov (2008)]. Therefore a

separate category is recommended for liquid-water drops shed from hail-

stones where the mode is constrained by values of sizes observed in the

laboratory (Rasmussen et al. 1984; Rasmussen and Heymsfield 1987a).

Melting graupels do not shed drops if there are few or no collisions between

each other or with melting hail. As a result these graupels also can result in

large raindrops if the graupels have large diameters (3 to 5 mm).

11.4 Melting of graupel and hail

The heat budget used to determine melting for ice particles is similar to that

for wet growth. Here ice particles represent primarily ice crystals, snow

aggregates, graupel, frozen drizzle or drops, or hail (Fig. 11.3). The heat

budget accounts for heating by conduction, vapor deposition, and sensible

heat from the collection of rain, drizzle, and cloud drops. Sensible heat with

collection of ice crystals is ignored. The heat-budget equation terms are

written as follows,

dqcond
dt

þ dqdiff
dt

þ dqliquid
dt

¼ 0: ð11:1Þ

The first term is the heating by conduction and is given by

dqcond
dt

¼ 2pDK T Ticeð Þfh; ð11:2Þ

where Tice is the surface temperature of ice, K is the thermal conductivity of

air, and fh is the heat ventilation for conduction.

The second term is the heating by condensation/evaporation and is given by

dqdiff
dt

¼ 2pDLscr Qv Qs0ðT ¼ 273:15Þð Þfv ð11:3Þ

where Qv is the mixing ratio, Ls is the enthalpy of sublimation, c is water

vapor diffusivity. The Qs0 is the saturation mixing ratio at 273.15 K.

Next, the third term, is the sensible heating associated with the collection of

cloud, drizzle, and rain, which are assumed to be at the ambient temperature

(unless temperature is predicted, then that temperature is used).
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dqliquid
dt

¼ dMliq

dt
cL T Tice½ �ð Þ; ð11:4Þ

where cL is the specific heat of liquid.

Setting the sum of these equations (11.2) (11.4) equal to dq/dt = 0, and

solving for dQmelt/dt, the melting mixing ratio rate can be found. What is

done in practice is that the ice particle is assumed to be at temperature of

273.15K, and the vapor pressure over the ice particle corresponds to that for

a wet surface at 273.15K, which requires using the enthalpy of vaporization

Lv instead of Ls in dqdiff/dt, (11.3). The vapor ventilation coefficient is given in

terms of the Schmidt number Nsc for both conduction and diffusion terms,

fv ¼ 0:78þ 0:308N1=3
sc N1=2

re : ð11:5Þ

Transitions during melting; melting proceeds left to right.

Dry
hailstone

A B C D E

Just
wet

Just
soaked

Equilibrium mass
of water on surface
(shedding of water
occurs to maintain
equilibrium as ice
core gets smaller)

Soaking
of water

N/AN/A

- High-density ice (ri = 0.91 g cm−3)

- Low-density ice (ri < 0.91 g cm−3)

- Low-density ice soaked with water

- Water

High-
density

hailstone

Low-
density

hailstone

Fig. 11.3. Schematic diagram showing the stages of melting experienced by
high- and low-density particles. The left-most panel shows a dry particle;
panels progressively to the right show stages encountered with increasing
melting. The density of the particle refers to the initial ice density. Columns
D and E represent hailstones with a density between ice and liquid. (From
Rasmussen and Heymsfield 1987a; courtesy of the American Meteorological
Society.)

316 Melting of ice



Thus, melting of ice water involves three terms in general, including thermal

conduction, vapor diffusion, and sensible heat transfer. These are all incorp-

orated in the following equation, which is from the heat-budget equation for

an ice-water particle that is melting. It should be noted that this is very similar

to the heat budget used in wet growth, as we will see later. Also, for extremely

dry conditions, freezing can be predicted owing to evaporation at tempera-

tures above 273.15 K if the evaporation overcomes the conduction and

sensible heat terms. At present this is not permitted in any models to the

author’s knowledge and in this case the melting term is set to zero. With the

above heat-budget equation, the melting equation can be written as

]MðDxÞ
]t

¼ 2pDx K T T0ð Þ þ rcLv Qv Qs0ð Þ½ �fv
Lf

cL T T0ð Þ
Lf

dMðDxÞ
dt

� �




ACL

;

ð11:6Þ

where Lf is the enthalpy of freezing.

This equation for melting is a generic one that generally works well and is

based on work by Mason (1957). This equation was based on studies of

graupel and larger hail. Moreover, the particles considered were not falling

at terminal velocity in the studies [Rasmussen and Heymsfield (1987a)].

Still (11.6) represents the most widely used equation in bulk parameterization

models. More detailed work on the melting of large ice particles (0.3 < D <

2.5 cm) that incorporates the set of heat-transfer equations set forth by

Rasmussen and Heymsfield (1987a) is summarized below for use in many

models types, although they are difficult to incorporate in bulk parameteriza-

tion models.

To begin, Rasmussen and Heymsfield consider particles with a Reynolds

number range of Nre < 250,

dq

dt
¼ �2pDk T1 � T0ð Þfh � 2pDcLvr Qv;1 � Qs0

� �
fv

� �
2� cL T1 � T0ð Þ dm

dt ACL

;ð11:7Þ

where T1 is the temperature at an infinite distance from the particle,

T0 ¼ 273.15K, Qv,1 is the mixing ratio of vapor at an infinite distance from

the particle; for Reynolds number range of 250 < Nre < 3000,

dq

dt
¼ �2pDk T1 � T0ð Þfh � 2pDcLvr Qv;1 � Qs0

� �
fv � cL T1 � T0ð Þdm

dt ACL

; ð11:8Þ

and for Reynolds number range of 3000 < Nre < 6000, the equation needs

to be solved iteratively,
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dq

dt
¼ 2pDdDikw T0 Ta Di½ �ð Þfh

Dd Dið Þ
¼ 2pDk T1 Ta Di½ �ð Þfh 2pDcLvr

� Qv;1 Qs0

� �
fv cL T1 Trð Þ dm

dt ACL

;

ð11:9Þ

where Ta is the temperature at radius r = a, Dd is the overall diameter of the

ice-liquid mixture, Di is the diameter of ice, and kw is the thermal conductivity

of water.

Now for the Reynolds number range of 6000 < Nre < 20 000,

dq

dt
¼ 0:76 2pDik T1 T0ð Þfh 2pDicLvr Qv;1 Qs0

� �
fv

� �
cL T1 T0ð Þ dm

dt ACL

ð11:10Þ

and for the Reynolds number range of Nre > 20 000,

dq

dt
¼ w 2pDik T1 T0ð Þfh 2pDicLvr Qv;1 Qs0

� �
fv

� �
cL T1 T0ð Þdm

dt ACL

;

ð11:11Þ

where w is 0.57 + 9 � 10 6 Nre.

11.4.1 Melting of small spherical ice particles with diameter

greater than one thousand microns

The melting of a small spherical ice-water particle (D < 1000 mm) requires

solving Fick’s second generalized law for temperature. The equation starts

with an equation proposed by Mason (1957) and used by Rasmussen and

Pruppacher (1982). The temperature equation will depend upon the liquid

water that is shed (if any, at ice sizes < 9 mm), the geometric arrangement of

melt liquid water around the melting ice core, and internal circulations in the

melt water surrounding the ice core. Bulk density of the ice water and its

structural makeup will be important too. Important variables are T, T0, TT(ai),

and aT. The starting equation given by Mason (1957) is

]T

]t
þ~u �rT ¼ kr2T; ð11:12Þ

where k is the conductivity of heat through the liquid water, and the advective

term is to account for internal circulations. By first assuming steady state, and
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no internal circulations, then the remaining term is the diffusion term written

using spherical symmetry as

r2T ¼ d2T

dr2
þ 2

r

dT

dr
¼ d2 rTð Þ

dr2
¼ 0: ð11:13Þ

Integration of the diffusion term gives

T ¼ c1
r
þ c2; ð11:14Þ

where the constants of integration are found using T= T0 at r= ai (radius of

ice core) and T = TT at r = aT, which is the radius of the ice-water liquid-

water mixture. Note that T0 = 273.15 K= 0 �C. By making substitutions, the

following can be found for the constants c1 and c2,

c1 ¼ T0 TTð ÞaiaT
aT aið Þ ; ð11:15Þ

and

c2 ¼ aiT0 aTTT
ai aTð Þ : ð11:16Þ

Now from (11.14) (11.16), T can be obtained with relative ease,

T ¼ T0 TTð ÞaiaT
r aT aið Þ þ aiT0 aTTT

ai aTð Þ : ð11:17Þ

Now ]T=]r r aij can be solved,

]T

]r

� �
r ai

¼ T0 TTð ÞaTai
a2i aT aið Þ : ð11:18Þ

The next goal is to find dai/dt. The primary assumptions are that (i) the

melting proceeds in steady-state conditions, (ii) the overall radius aT remains

constant, (iii) the ice-water particle that is melting is approximately spherical,

(iv) the ice core and liquid coating remain spherical for all the time, and that

internal circulations can be neglected and (v) and that the heat transfer occurs

by molecular conduction. With these assumptions, it can be written, with

some algebra that

dai
dt

¼ kw T0 TT aið Þ½ �aT
riLf aT ai½ �ai ; ð11:19Þ

where kw is the thermal conductivity of water. From these relations Drake

and Mason (1966) and Rasmussen and Pruppacher (1982) give the total melt

time as
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tm ¼
ðtm
0

dt ¼ riLf
kwaT

ðai aT

ai 0

aT ai½ �ai
T0 TT aið Þ½ �dai: ð11:20Þ

To solve for tm, it is necessary to find TT(ai), which can be found from an

equation given by Pruppacher and Klett (1981) as

4pkw T0 TT aið Þ½ �aTai
aT ai½ � ¼ 4paTkw T1 TT aið Þ½ � fh

4paTLvc r1 rvaT

h i
fv;

ð11:21Þ

where c is the vapor diffusivity, rvaT is the vapor density at the surface of the

ice-liquid water mix, and r1 is the vapor density at some infinite distance

(large distance) from the surface in effect the environmental vapor density.

Note that the typical time taken for a 700- to 900-mm-diameter-sized particle

to melt is approximately 50 to 70 s.

Laboratory experiments suggest considerable disagreement with the times

predicted by Mason (1957); the particles in the laboratory melted more

quickly than he predicted. This is perhaps primarily a result of the asymmetry

of the melting and internal circulations in the melt water, which were not

considered by Mason (1957). Figure 11.4 shows an idealization of what was

observed in the wind-tunnel experiment. Internal water circulations owing to

drag of the surface water as the particle falls demonstrate the importance of

advective/convective influences on small-ice-particle melting. Rasmussen and

Heymsfield (1987a) include a correction factor to make predicted melting

times in better agreement with observations.

11.4.2 Melting equation for snowflakes and snow aggregates

Based on observations of aggregates of crystals including dendrites, Mitra

et al. (1990) found that aggregates are typically more planar or oblate than

spherical in shape, and thus applied the electrostatic analog in developing a

melting equation. The authors started with the standard heat-budget equation,

stated as

dq

dt
¼ Lf

dMice

dt
Lv

dMliq

dt
: ð11:22Þ

The collection of water was not considered as a heat source. Then Mitra et al.

(1990) considered a melting snowflake or snow aggregate to have a tempera-

ture of 0 �C. The resulting equation, assuming the electrostatic analog for an

oblate spheroid, is
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dMice

dt
¼ � 4pfC

Lf
K T1 tð Þ � T0½ � þ cLv

Rv

RH=100ð ÞeSL T1 tð Þð Þ
T1 tð Þ � eSL T0ð Þ

T0

� �� �
: ð11:23Þ

In this equation, C is the capacitance, f is the ventilation coefficient, eSL is the

saturation vapor pressure over liquid, RH is the relative humidity, T1(t) is the

Spinning motion

Frozen
drop

Helical motion

Spinning
helical

motions stopped

Ice particle falls steadily
or “sails”
erratically

Internal circulation
develops 

Internal circulation
fully developed

Particle falls steadily
Sailing stopped

(2)

(1)

Thin layer
of water

(3)

Water

Water

(4)

(5)

F
al

l d
ire

ct
io

n

All ice
melted

Ice

Ice

Ice

Fig. 11.4. Schematic of the melting of a spherical ice particle, as revealed
by motion pictures. (From Rasmussen and Pruppacher 1982; courtesy of the
American Meteorological Society.)
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temperature of air which varies with time and T0 = 273.15 K is the temperature

of the snow.

The ventilation coefficient is based on a length scale given by surface area,

O, divided by the perimeter P,

L ¼ O
P
; ð11:24Þ

where L is the length scale of the snow. The perimeter is given by

P ¼ 2pa; ð11:25Þ
where a is the major axis radius of the particle. The surface area for an oblate

spheroid is given as

O ¼ pa2 2þ p
b

aE
ln

1þ E
1 E

� �� �
; ð11:26Þ

with b given as the minor axis radius and E given by

E ¼ 1
b

a

� �2
" #1=2

: ð11:27Þ

The ventilation coefficient is given for the assumed length scale L by

fL ¼ 1þ 0:14w2 w < 1
0:86þ 0:28w w ¼ 1

	
; ð11:28Þ

where,

w ¼ N1=3
sc N

1=2
re;L: ð11:29Þ

The capacitance is taken from Pruppacher and Klett (1997) as

C0 ¼ ae

sin 1 E
; ð11:30Þ

using the value of a given by Mitra et al. (1990) as

a ¼ 3Mice

4priceb=a

� �1=3
: ð11:31Þ

Mitra et al. (1990) assumed that the mass of the ice varied linearly with

Mliq/Msw where Msw is the mass of the initial snowflake or snow aggregate

and Mliq is the mass of the liquid. The density of a dry snowflake or

snow aggregate was assumed to be 20 kg m 3, whilst that for a melted particle

was assumed to be 1000 kg m 3. The axis ratio b/a was assumed to vary

linearly from 0.3 for a dry snowflake or snow aggregate to 1.0 for a
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completely melted particle or raindrop. Furthermore, the capacitance was

assumed to vary linearly with Mliq/Msw from an initial value of C/C0 = 0.8 to

C/C0 = 1.0 for Mliq/Msw = 1.0.

11.4.3 Melting equation parameterizations

11.4.3.1 Gamma distribution parameterization

The melting equation is parameterized as follows for the complete gamma

distribution

1

r0

ð1
0

dMðDxÞnðDxÞdDx

dt

¼ � 1

r0

ð1
0

2pDxNTxmxa
nx
x

�ðvxÞ
K T � T0ð Þ þ rcLv Qv � Qs0ð Þ½ � 0:78þ 0:308N

1=3
sc

DxVTx

n

� �1=2h i
Lf

� Dx

Dnx

� �vxmx 1

exp �ax
Dx

Dnx

� �mx� �
d

Dx

Dnx

� �

� cl T � T0ð Þ
Lf

1

r0

ð1
0

dMðDxÞnðDxÞdDx

dt

� �




xACL

;

ð11:32Þ

for the modified gamma distribution,

1

r0

ð1
0

dMðDxÞnðDxÞdDx

dt

¼ � 1

r0

ð1
0

2pDxNTxmx
�ðvxÞ

K T � T0ð Þ þ r0cLv Qv � Qs0ð Þ½ � 0:78þ 0:308N
1=3
sc

DxVTx

n

� �1=2h i
Lf

� Dx

Dnx

� �vxmx 1

exp � Dx

Dnx

� �mx� �
d

Dx

Dnx

� �

� cL T � T0ð Þ
Lf

1

r0

ð1
0

dMðDxÞnðDxÞdDx

dt

� �




xACL

:

ð11:33Þ

The complete integrated gamma distribution parameterization form then is

generally written for snow, graupel, frozen drops, and hail as
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QxMLrw
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; ð11:34Þ

where cx is the coefficient for terminal velocity and dx is the exponent for

terminal velocity, and the summation term is the total number of particle

types (rain, drizzle, cloud); r0 is the reference density.
The modified gamma distribution form is

QxMLrw

2pNTx K T T0ð Þ þ rcLv Qv Qs0ð Þ½ �
r� nxð ÞLf

� 0:78�
1þ nxmx

mx

� �
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sc D 3þdxð Þ=2
nx �

3þ dx
2mx

þ nxmx
mx

� �
r0
r

� �1=4
" #

cL T T0ð Þ
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>>>>>>>>>>:
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ð11:35Þ

and the gamma distribution is given as

QxMLrw

2pNTx K T T0ð Þ þ rcLv Qv Qs0ð Þ½ �
r� nxð ÞLf

� 0:78� 1þ nxð ÞDnx þ 0:308c1=2x n�1=2N1=3
sc D 3þdxð Þ=2
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� �
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rLf
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QxACL

 !

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
; ð11:36Þ

where

QxMLrw ¼ minðQxMLrw; 0:0Þ: ð11:37Þ
The number concentration change owing to melting can be approximated by

NTxMLrw ¼ QxMLrw
NTx

Qx
: ð11:38Þ

11.4.3.2 Log-normal parameterization

Let’s start with the melting equation in mass change form for diameter Dx,

]MðDxÞ
]t

¼ 2pDx K T T0ð Þ þ rcLv Qv Qs0ð Þ½ �fv
Lf

cL T T0ð Þ
Lf

dMðDxÞ
dt

� �




xACL

:

ð11:39Þ
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Now the spectral density function for a log-normal distribution is also

incorporated,

n Dxð Þ ¼ NTx

2p
p

sxDx

exp
½ln Dx=Dnxð Þ�2

2s2x

 !
: ð11:40Þ

The melting equation for mass (11.39) is expanded in terms of mixing ratio

(see Chapter 7 on diffusional growth for methodology) and (11.40) is used to

obtain

QxMLrw ¼� 1

r0

ð1
0

2pDx K T � T0ð Þ þ rcLv Qv � Qs0ð Þ½ �fv
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The integral is split to obtain,

QxMLrw ¼ 2pDx K T T0ð Þ þ rcLv Qv Qs0ð Þ½ �fv
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Now the first integral is
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and the second integral is
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So the final parameterization is

QxMLrw ¼ 2pDnx K T T0ð Þ þ rcLv Qv Qs0ð Þ½ �fv
r0Lf
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11.5 Soaking and liquid water on ice surfaces

Here a parameterization is discussed to permit liquid water, from hailstone

accretion of liquid water during wet growth or from hailstone melting, to

soak the porous ice, and thus cause the hailstone to become a mixed-phase

particle. Upon further accretion of liquid water or melting, the hailstone may

acquire liquid on its surface that may eventually be shed when it reaches a

critical mass for the ice-water particle diameter. Reviews of soaking of liquid

water as well as liquid water on ice-water surfaces are given by Rasmussen

et al. (1984) and Rasmussen and Heymsfield (1987a).

Water on surfaces, and water soaked into graupel and hail, in bulk para-

meterization cloud models are discussed by Meyers et al. (1997). The amount

of soaking allowed is such that the density of the ice particle in mixed phase

reaches 910 kg m 3 for a hailstone. Liquid water accreted by graupel also

should be allowed to soak, as graupel is often of lower density before melting.

Once a hailstone soaks liquid water to the maximum extent possible so that

the density of the particle is at least 910 kg m 3, liquid water then can exist on

the hailstone surface during melting (or wet growth). Liquid water can exist

on the surface of graupel and frozen drops, but this is generally from melting

and not wet growth as they are too small for wet growth. Rasmussen et al.

(1984) present two possibilities of the amount of water that can exist on
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a hailstone surface before being shed from the surface (Fig. 11.5). One of the

methods is by Chong and Chen (1974), shows that liquid water on the surface

of a hailstone decreases as the hail increases in size, and is based on theoret-

ical consideration. The other method by Rasmussen and Heymsfield (1987a)

uses data from Rasmussen et al. (1984) to show that the mass of liquid water

that can exist on the surface of a hailstone increases with increasing hailstone

size. From the data of Rasmussen et al. (1984) a critical amount of water

can exist on the surface of an ice-water particle before shedding occurs; the

amount of this liquid water increases with hail size. The equation for the

amount of liquid-water mass that can exist on an ice-water particle of diameter

Dice is given by Rasmussen and Heymsfield (1987a). The mass of ice water can

be written in terms of density and diameter of ice,

Mliq;crit Dð Þ ¼ aþ b
p
6
riceD

3
ice; ð11:46Þ

where the excess of the critical water soaked into low-density graupel and

low-density hail is then shed from hail with D > 9 mm, when particle densities

reach or initially are at values of 900 kg m 3. In the derivation of (11.46), it is

assumed that particles are spherical. Also, a¼ 0.000268 and b¼ 0.1389.
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Fig. 11.5. Experimental (Rasmussen et al. 1984) and theoretical (Chong and
Chen 1974) predictions of equilibrium mass of liquid-water coating for given
mass of a spherical, 910 kg m 3 density ice core during melting or wet
growth. By equilibrium we are referring to the maximum amount of
liquid-water mass that can coat the ice core before shedding occurs. Above
the respective lines water is shed, while below the respective lines liquid water
is retained. (From Rasmussen and Heymsfield 1987a; courtesy of the Ameri-
can Meteorological Society.)
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11.6 Shedding drops from melting hail or hail in wet growth

Rasmussen et al. (1984) studied the melting of ice particles in the range 3 to 20

mm in diameter at a constant ambient wind tunnel of temperature T = 20 �C
and a relative humidity of 40%. They showed that shedding or lack of

shedding occurred for different sized particles (see Fig. 11.6). Note also the
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Fig. 11.6. Schematic of melting modes of an initial 2-cm diameter spherical
hailstone. Discussion of the modes is given in the text. (From Rasmussen
et al. 1984; courtesy of the American Meteorological Society.)
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slope in the terminal velocity (Fig. 11.7) of an initial 2-cm melting hailstone,

and a flat zone in the terminal velocity as shedding begins.

For ice particles of D ’ 20 mm (Nre > 18 000), Rasmussen et al. describe

what they call mode-1 melting. When melting in this mode begins, a small

torus or ring of liquid begins to form about the equatorial region of the ice

particle and small drops are shed from the torus.

At diameters of 19 < D < 20 mm (15 000 > Nre > 18 000), a torus forms

owing to melting primarily on the bottom of the ice particle (mode-2 melting).

A subsequent tangential stress on the ice bottom allows advection of liquid

upward with the flow of meltwater on the ice surface, and then flow separ-

ation near the equator, which permits gravity to act downward, keeping

the torus at the equatorial region. The torus formation has a profound effect

on reducing the terminal velocity of the ice particle. Intermittent shedding

of small drops continues.

When 20% of the ice particle’s mass has melted larger drops of about

1.5 mm in diameter are shed continuously from the torus, which eventually

becomes unstable as it moves downstream (upward) on the ice-particle sur-

face. The instability in the torus results in part from velocity shear and high

turbulence very near the surface of the ice particle. Melting continues to occur

primarily on the bottom half of the ice particle and results in the ice particle
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Fig. 11.7. Change in terminal velocity (cm s 1) of a melting ice sphere with
an initial diameter of 2 cm, as a function of non-dimensional mass melted;
Mmelt = mass of meltwater. (From Rasmussen et al. 1984; courtesy of the
American Meteorological Society.)
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becoming somewhat oblate in shape. As noted by Rasmussen et al. this is

similar to what Macklin (1963) and Mossop and Kidder (1962) observed on

larger ice particles that were melting. Once shedding begins the terminal

velocity of the ice particle stabilizes to a near-constant value for liquid

fractions of 0.15 and 0.30.

For ice particles of diameter 16 < D < 19 mm (10 000 < Nre < 15 000)

mode-3 melting begins. With the ice particle falling at a slower speed, the

stress on the ice particle is reduced and the torus slides down the surface

(upstream) of the more oblate ice particle. Drops that are as large as 3 mm are

sheared off from the torus in mode-3 melting, and the shedding becomes

intermittent. This is because it takes time for meltwater to build up on the ice-

particle surface.

As particles continue to melt and become smaller with diameters between

9 < D < 16 mm (6000 < Nre < 10 000), mode-4 melting ensues. In this case,

the torus loses its distinction and a water cap forms near the top of the ice

particle (pill shaped), from which drops as large as 3 mm are shed. An ice

liquid mixed-phase drop of 10 mm in equivalent diameter may have an

equatorial diameter of 14 mm owing to the loss of instability and the initi-

ation of a stabilizing effect on the mixed-phase particle by the meltwater at

about Nre = 8500. Shedding in this smaller size range occurs primarily by bag

breakup (Rasmussen et al. 1984) producing drops of 4.5 mm in diameter.

Collisions with the mixed-phase particles may produce a burst of 300- to 400-

micron droplets.

Smaller particles of 5 � D � 9 mm (Nre ¼ 6500) no longer shed drops

(mode-5 melting). Blanchard (1950) noted from observations that particles

smaller than 9 mm do not shed drops. Melting modes 6 and 7, as shown in

Fig. 11.6, do not shed water. They can lose liquid water by collisions with

other particles.

The axis ratios for initial sphere diameters of 6.4 mm, 7.7 mm, and 9.2 mm

show that as the fraction of ice melts, these ratios quickly decrease to values

as small as 0.8 for 9.2-mm particles that have 10% meltwater (Rasmussen

et al. 1984). For 50% meltwater, the particles have axis ratios of about 0.75

for the smaller initial sizes, and 0.65 for the 9.2 mm particle. Notice that as the

particles continue to melt, axis ratios approach 0.55 for all mixed-phase

particles.

11.7 Parameterization of shedding by hail particles of 9–19mm

When the amount of water that exists on the ice surface exceeds the 9 19-mm

threshold, water drops are shed with sizes of approximately 0.5 to 2 mm with
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a mode of around 1 mm. Note that shedding does not occur until hailstone

sizes exceed 9 mm. So graupel and frozen drops do not shed drops unless they

undergo collisions or accrete enough liquid that they become larger than

9 mm. For this type of parameterization this condition is not permitted.

When the liquid-water mass of graupel and frozen drops exceeds 50 percent

of the total liquid- and ice-water mass, the particles become melted graupel

and frozen drops with ice-water cores until the ice water completely melts.

At this point, they are transferred to the meltwater species of rain from

graupel and frozen drops. This can be described for a gamma distribution by
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Assuming a gamma distribution, (11.47) becomes
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The amount of liquid water on the surface is given by the sum of the water

species collected by hail D > 0.009 m plus the amount melted on particles

larger than 0.009 m plus what was present on the surface from the previous

step. This is written in equation form as

Qnþ1
h1;9 ¼ Qn

h1;9 þ Dt Qh9MLm þ
X
m

Qh9ACL

" #
; ð11:49Þ
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where the subscripts hl9 and h9 represent large hail (h1) greater than 9 mm

and large hail or hail water (hw) greater than 9 mm, respectively; the subscript

h is generic for h1 or hw.

Next, the hail spectrum is broken up into 50 bins that are DDh = 0.0005 m

wide. Computing the number concentrations of the bins at each point that

has hail using the following (11.50) generates the spectrum of bins,

Nh;i ¼ NThx

Dnh�ðvÞ
Dh

Dnh

� �vx 1

exp
Dh

Dnh

� �� �
DDh: ð11:50Þ

The critical mass Mcrit,liq (D) for each bin is given as

Mcrit;liqðDÞ ¼ 0:000 268þ 0:1389ahD
bh
h;i; ð11:51Þ

following Rasmussen and Heymsfield (1987a). In (11.50) (11.51), the index i

on D is the bin size index.

For bins with i < 18 (D < 0.009 m), the liquid remains on the surface

until ice reaches 9 mm in diameter and until the maximum allowable liquid

has been soaked into the porous ice, if it in fact does. The equation to

determine how much new mass is taken on by these smaller hailstones and

graupel is

Qh;kept ¼
X18
i

Nh;iMcrit;i

r
; ð11:52Þ

where Qh,kept is the mixing ratio for hailstones retained, where the subscript h

is generic for hw or hl. If the particle size becomes larger than D= 0.009 m, it

loses drops that are 0.001 mm in diameter until it returns to D= 0.009 m. For

bins with i > 18 (D > 0.009 m), the mixing ratio becomes

Qh;kept ¼
X51
i 18

Nh;iMcrit;i

r
: ð11:53Þ

The mixing ratio of water collected and previously stored on the ice particles

with D > 0.009 m is first examined to see if the liquid water can be stored

in the ice lattice. If the density is 900 kg m 3, then the amount of mass

collected and previously stored is checked to see how much can be stored on

the ice particle’s surface (11.53). The remainder is shed as 0.001m diameter

drops,

Qh;shed ¼ max Qnþ1
h19 Qh;kept; 0:0

� �
: ð11:54Þ
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At this point any mass that can be shed is done so using the following steps.

First Qhl9, the amount of liquid on the surface, is updated; to its maximum if

possible. Second, the remainder, if there is mixing ratio, is computed using the

mixing ratio and the concentration numbers are given by

Nh;shed ¼ 6Qh;shedr0
prL 0:001ð Þ3

 !
: ð11:55Þ

The rates for Qh,shed and Nh,shed are the values given by (11.54) and (11.55)

divided by dt.

11.8 Sensitivity tests with a hail melting model

Rasmussen and Heymsfield (1987b) did sensitivity tests on the melting of hail.

The environment is given in Fig. 11.8 with 100% relative humidity at the 0 �C
level just above 5 km. Hailstones were “dropped” with initial densities of

450 and 910 kg m 3. Diameters of different hailstones ranged from 0.5 to 3.0

cm (Fig. 11.9a). The rest of Fig. 11.9 pertains to a stone initially 2 cm in

diameter. In Fig. 11.9b, from just below the melting level to the ground the axis

ratio decreases steadily to nearly 0.6 for the higher-density particle. The lower-

density particle does not experience a change in axis ratio until almost 2 km

above ground. Presumably the particle is soaking melted liquid-water

mass. Figure 11.9c shows the terminal velocities, the lower-density particle
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Fig. 11.8. Constant air-temperature (�C) and relative-humidity profiles used
in one-dimensional sensitivity runs. The 0 �C level is at 5.2 km above mean
sea level at 525 mb, while the ground is at 0.8 km above mean sea level at
920 mb. (From Rasmussen and Heymsfield 1987b; courtesy of the American
Meteorological Society.)

11.8 Sensitivity tests with a hail melting model 333



6.0

5.0

4.0

3.0

H
ei

gh
t (

km
)

2.0

1.0

0
0

(a)

1.2
Diameter ice (cm)

2.4

Ground

3.0

6.0

5.0 0 �C

4.0

3.0

Initial diameter = 2 cm

H
ei

gh
t (

km
)

2.0

1.0

0
0

(b)

0.2 0.4 0.6 0.8
Axis ratio

24 �C

1.0

6.0

5.0 0 �C

4.0

3.0

Initial diameter = 2 cm
H

ei
gh

t (
km

)

2.0

1.0

0
0

(d)

1000 2000 3000 4000
Number of 1 mm drops shed/km

24 �C24 �C

24 �C

5000

6.0

5.0

4.0

3.0

Initial diameter = 2 cm

D
ia

m
et

er
 ic

e 
(c

m
)

2.0

1.0

0
0

(f)

Time (s)
1200600

6.0

5.0

4.0

3.0

Initial diameter = 2 cm

H
ei

gh
t (

km
)

2.0

1.0

0
0

(e)

Mean density of particle (g cm−3)
1200600

6.0

5.0 0 �C

0 �C

4.0

3.0

Ini ial diameter = 2 cm

H
ei

gh
t (

km
)

2.0

1.0

0
0

(c)

1200 2400
Terminal velocity (cm s−1)

3600

Initial ice density = 0.45 g cm−3

Initial ice density = 0.91 g cm−3

Fig. 11.9. Melting and shedding behavior of spherical ice particles with
initial ice densities of 0.450 g cm 3 (dashed line) and 0.910 g cm 3 (solid
line) falling through temperature and relative humidity profiles shown in
Fig. 11.8, with updraft/downdraft liquid-water contents set to zero. Plot (a)
represents particles with initial diameters of 0.5, 1.0, 2.0, and 3.0 cm, while
plots (b)�(f) depict results for particles with 2-cm initial diameter. Plots
(a)–(e) show the variation with height of (a) ice diameter cm, (b) axis ratio,
minor axis/major axis, (c) terminal velocity (cm s 1), (d) number of 1-mm
diameter drops shed per km during melting, and (e) mean density of the
particle (g cm 3). Plot (f) shows the diameter of ice (cm) versus time (s) (from
the start of melting). (From Rasmussen and Heymsfield 1987b; courtesy of
the American Meteorological Society.)
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experiencing a transition in the terminal-velocity behavior when its axis ratio

begins to change. In Fig. 11.9d the depth of shedding drops starts at 3 km

for the higher-density particle, whereas it starts at just below 2 km for the

lower-density one. Densification of the low-density hailstone is relatively

rapid and begins at the 5.2 km level (Fig. 11.9e). Finally, when the two

hailstones reach the ground, their sizes are 1.7 cm for the solid ice particle,

and 0.8 cm for the low-density ice (Fig. 11.9f).
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12

Microphysical parameterization problems
and solutions

12.1 Autoconversion of cloud to drizzle or rain development

Over the past four decades, autoconversion schemes have changed very little.

Starting back in the late 1960s two forms emerged, from Berry (1968b) and

Kessler (1969). The Berry scheme converted cloud water to rain water, but it

did this far too quickly. In fact as soon as cloud was formed the initial Berry

(1968b) scheme produced raindrops, which then grew by accretion of cloud

drops. Kessler (1969) had a scheme that was designed primarily for warm-

rain processes, and was different from the Berry (1968b) scheme in design.

The Kessler scheme required that cloud-content amounts reached a certain

value before rain was produced. The Kessler was and is still used to an

amazingly large extent in cloud models.

Later, some started using a modified form of the Berry 1968 scheme again,

but this time with a 2 kg kg 1 cut-off value for the cloud-water mixing ratio

after which rain would form. However, it had no equation for number

concentration and was used in models that only permitted prediction of the

third moment, i.e. the mixing ratio (e.g. Lin et al. 1983; Ferrier 1994; Gilmore

et al. 2004a; and Straka and Mansell 2005). After correcting for errors the

Berry and Reinhardt (1974b) method became popular in some groups to

predict mixing ratio and number-concentration conversion. Cohard and

Pinty (2000) showed that, when programmed correctly, this scheme produced

reasonable results against quasi-stochastic-growth-equation results. However,

most schemes lacked an ability to distinguish between low cloud condensation

numbers associated with maritime clouds and high cloud condensation numbers

associated with continental clouds without modification. Many have tried to

overcome this shortcoming without predicting the number of aerosols. By the

2000s bulk microphysical models had begun to predict aerosols (e.g. Cohard

and Pinty 2000 ; Saleeby and Cotton 2004; Straka et al. 2009a).
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Nevertheless, with all the efforts put forth none could accomplish what

Cotton (1972a) found to be essential; he suggested that there was an “aging”

time associated with autoconversion and the clouds with different numbers of

cloud condensation nuclei would have different “aging” times for cloud drops

to reach what was called raindrop size. Not until Straka and Rasmussen

(1997) developed their methodology, was the aging of a parcel of cloudy air

known from an Eulerian prognostic equation rather than Lagrangian parcels

such as those used by Cotton (1972a). This aging time allows cloud droplets

to grow to near to, or larger than, drizzle drop sizes, which would then be the

appropriate state for cloud drops to become drizzle drops, or in many models,

raindrops. An example of Lagrangian aging time versus actual time is shown

in Fig. 12.1a. In addition the Lagrangian distance from an initial location can

be predicted as shown in Fig. 12.1b,c,d. The distances are predicted with

acceptable accuracy. When the parcel leaves the cloud there is a significant

divergence from numerical solutions, as there should be.
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Fig. 12.1. Values of t, Qcw x, and z, computed along trajectories (solid lines)
and values of these variables integrated by equations for the above variables.
The lines with circles correspond to one of the test trajectories, and those
through the triangles correspond to the other test trajectory. Where these
lines separate from the bold lines the trajectory has left the cloud. (Straka
and Rasmussen 1997; courtesy of the American Meteorological Society.)
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Another problem that has hindered the development of the cloud auto-

conversion scheme is that all of the associated physical processes needed to be

accounted for, such as self-collection and accretion. Manton and Cotton

(1977), Beheng and Doms (1986), Doms and Beheng (1986), Cohard and

Pinty ( 2000), and Seifert and Beheng ( 2001), to name a few, have tried to

incorporate these influences in some fashion or other, but still there has

been no explicit aging time associated with the growth of various types of

cloud condensation number spectra. The challenge here is the following.

Researchers might be advised to try out other methods, rather than using

the long-standing parameterizations of Berry (1968b) and Kessler (1969),

among numerous others. For example, Straka and Rasmussen (1997) showed

what could be done with autoconversion and self-collection processes, along

with the mean cloud-water exposure a parcel experienced. In addition

the challenge is to be able to adjust the cloud condensation nuclei related

to different atmospheric conditions by prognosing aerosols, perhaps by

using aerosol bins such as Aitken, large, giant, and ultra-giant nuclei (Straka

et al. 2009a).

Another challenge is that often autoconversion never does lead to rain,

rather it produces what just should be drizzle, but this is treated as raindrops.

This is a crucial problem for stratocumulus over oceanic areas in the eastern

Pacific Ocean, for example. Thus the author suggests that the models should

be able to convert cloud droplets into drizzle drops. Then, when the drizzle

drops grow large enough they can be put into a rain category in a bulk

microphysical model that uses cloud, drizzle, and rain categories (Straka

et al. unpublished work; and to some extent Saleeby and Cotton 2004). Bulk

microphysical models still have a long way to go in adapting the aging

problem solution, and to having a model that uses the appropriate spectrum

of cloud condensation nuclei.

12.2 Gravitational sedimentation

The accurate gravitational sedimentation of hydrometeors is a difficult task

to undertake. With bulk microphysics parameterizations many different vari-

ables might need to have their vertical flux computed, including the mixing

ratio, number concentration, and reflectivity (Fig. 12.2). Other variables

include some of the many prognostic variables mentioned earlier in the book

such as particle density, ‘aging’ time, etc. There are a couple of approaches that

can be taken. First, the variable weighted mean velocity is computed together

with the vertical flux with any number of finite difference schemes. The more

moments that are predicted usually the more accurate the gravitational
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Fig. 12.2. Vertical profiles of (first row) Qhx, (second row) NThx, (third row)
Zehx, and (fourth row) Dhxmv resulting from the sedimentation of hail. The
columns are as follows: (1) a one-moment scheme, (2) a two-moment scheme
with fixed shape parameter equal to zero (inverse exponential with their
equations), (3) a two-moment scheme with fixed shape parameter equal
to three, (4) a two-moment scheme with functional shape parameter,
(5) a three-moment scheme, and (6) a bin model solution. Profiles in each
pane are every 5 minutes between 0 and 20 minutes. The ordinate of each is
height above ground level. The abscissa for each panel is indicated under
each row. Note the scale changes in n, s, and t. (From Milbrandt and Yau
2005a; courtesy of the American Meteorological Society.)

12.2 Gravitational sedimentation 339



sedimentation will be (Fig. 12.2; Milbrandt and Yau 2005a). With a three-

moment scheme where the shape parameter is computed the most accurate

solutions are obtained compared to a bin model. This is well demonstrated by

Milbrandt and Yau (2005a). However with this number of moments, at the

edges of the precipitation there are often mismatches between the quantities of

the moments. These mismatches, or more precisely, errors, occur in the hydro-

meteor distribution characteristics when computing the vertical flux and advec-

tion. Some researchers prefer to just let the mismatches occur, whereas others

“clip” or set the variable to zero at locations that out ran the other moment.

Alternatively, one could make bins out of the spectrum of a category of

some hydrometeor and compute the vertical flux as described below as would

be done for a bin model. Then add up the fluxes of all the bins in a grid zone

and add the vertical flux tendency back to the bulk quantity of the category

computed in the hybrid bin microphysical model approach. The shortcoming

with this method is that each moment may not have any bin model information

in it. For example, while the vertical flux is computed with a bin microphysical

parameterization, the memory of that bin microphysical parameterization

calculation perhaps is lost after each step. The author has found though that

this not the case for fallout.

In a bin microphysical model, the gravitational sedimentation is straight-

forward. First the terminal velocity of each mass/size bin is computed; then

the vertical flux, where VT is positive downward. Next the vertical flux is

finite-differenced with one of any number of finite difference schemes. With

more than one moment it is difficult to guarantee that some grid points or

grid zones will always match at the boundaries and have values for vertical-

flux computation. In the case where, for example, there is mixing ratio of

some category x and no number concentration for the bin for category x then

it is suggested that the computation not be made.

12.3 Collection and conversions

Collection has been covered substantially in Chapter 7. However, a few

researchers have addressed some ubiquitous and perplexing problems over

the past forty years. The problems with bulk hydrometeor microphysics

include (a) what to do when number-concentration parameterizations grossly

overestimate the number of hydrometeors exchanged; (b) how to include

collection efficiencies for known quantities; (c) how to inexpensively solve

the Wisner et al. (1972) terminal-velocity difference or the |DVT| problem; and

(d) how to better solve the collection equation when it has a lower size end

cut-off or an upper size cut-off.
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With (a) the state-of-the-art procedure is really quite a simple one, which

preserves the slope of the distribution,

dNTxACy

dt
¼ dQxACy

dt

Nx

Qx
: ð12:1Þ

A significant problem still exists, and that is to decide when this equation

should be used or some other parameterization previously presented.

For collection efficiencies, raindrops collecting cloud droplets is pretty

well handled with a polynomial proposed by Proctor (1987) as described in

Chapter 7. Alternatively the collision efficiencies proposed by Rogers and

Yau (1989) give similar numbers as the polynomial when mean-volume

diameters of raindrops and cloud droplets are considered. Alternatively the

collection efficiencies developed by Cooper et al. (1997) also are very accur-

ate. Cooper et al. (1997) multiplied known collision efficiencies and coales-

cence values. These same values for collection efficiencies can be used for rain

collecting snow, and rain collecting graupel. For hail collecting cloud water

values from Macklin and Bailey (1966) can be used. There are no known

values for hail collecting rain so efficiencies of 1.0 are usually used, but this

does not account for splashing, rebounding, or drop breakup. Moreover,

hail, graupel, and snow aggregates collecting other ice particles are very

poorly known as are ice aggregation efficiencies. Interestingly the values of

ice crystals riming cloud droplets are known fairly well owing to the numer-

ical simulation work by Wang and Ji (1992). An excellent discussion of these

can be found in Pao K. Wang’s (2002) book on Ice Microdynamics. One thing

is certain, that much wind-tunnel work needs to be done to find the poorly

known collection efficiencies.

Next the Wisner et al. (1972) velocity-difference problem in the collection

equation is questioned. In the early 1990s Verlinde et al. (1990) derived

analytical equations for continuous collection, general collection, and self-

collection. These are expensive to use and it is usually necessary to design

lookup tables. Other ways of getting around the zone where terminal veloci-

ties of different particles have nearly the same terminal velocity have been

devised that reduce errors to some acceptable amount. Collection still occurs

in nature, but the equation for |DVT| still is in some error (Mizuno 1990;

Murakami 1990). These methods are formulated in Chapter 7 and prevent

zeros from occurring when they shouldn’t. Unfortunately these are only given

for a couple of particle-type interactions. Moreover, substantial errors

can occur in zones on either side of zero where terminal velocities match.

Milbrandt and Yau (2005b) used the formula of Murakami (1990) with all

collection interactions. Gaudet and Schmidt (2005) and Seifert and Beheng
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(2005) have developed collection schemes that approximately take care of the

zero-velocity difference-zone problems. Ultimately hybrid-bin microphysical

models may be the best way to handle the collection equations, along with

autoconversion and some conversions. But whether this is warranted before

more advanced collection efficiencies are developed is of some concern.

Then there is Gaudet and Schmidt’s (2007) concern about violating the

criteria for numerical stability of various microphysical processes, especially

during collection. They advanced the use of numerical bounding of the collec-

tion equation solutions. There are many problems with criteria for stability for

various microphysical processes. One is checking for over-depletion of a

hydrometeor sink; if there is over-depletion, to renormalize the sinks so that

they do not over-deplete the collected hydrometeor, for example. A problem

that still stands is that if one process overwhelmingly depletes a hydrometeor

species, the renormalizing can make other processes essentially zero.

A serious problem is making a decision on how many particles are trans-

ferred during a collection process (or any process for that matter). Number

concentrations seem horribly difficult to get right without resorting to just

preserving the slope of hydrometeors. Perhaps two-moment, hybrid-bin

models that incorporate a scheme such as that of Tzivion et al. (1987) should

be incorporated with solutions made into lookup tables.

Finally, some modelers have made attempts to integrate hail from 5 mm to

1 rather than from 0 mm to 1. The purpose is to improve accuracy in

collection rates as hail really starts at 5 mm. Some substantial differences, and

perhaps improvements, have been claimed by Curic and Janc (1997) concern-

ing collection. Differences in amounts of hail produced using their proposed

scheme may be as large as factor of 3 from traditional methods. It is claimed

that using the mass-weighted mean terminal velocity proportional to D1/2

underpredicts hail terminal velocities by no more than 12% using a density of

900 kg m 3 and a drag coefficient of 0.6, which is valid for oblate hail. First

the terminal velocity is redefined using partial gamma functions, as given by

VThw ¼

R1
Dhw�

VThwQhwdDhw

R1
Dhw�

QhwdDhw

ð12:2Þ

where Dhw� is 0:005 m and VThw is given by

VThw ¼ 4grhwDhw

3Cdr

� �0:5

; ð12:3Þ
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where Cd is the drag coefficient. Now with the incomplete gamma functions

for an inverse exponential the equation VThw is given by

VThw ¼ � 4:5ð Þ
� 4:0ð ÞD

0:5
hw

1 a1
1 a2

4grhw
3cdr

� �
ð12:4Þ

where a1 and a2 are given by

a1 ¼
� 4:5; Dhw�

Dnhw

� �
� 4:5ð Þ ð12:5Þ

and

a2 ¼
� 4:0; Dhw�

Dnhw

� �
� 4:0ð Þ : ð12:6Þ

In addition Dnhw and Dnhw0 are given by

Dnhw ¼ Dnhw0 f
0:25 ð12:7Þ

and

Dnhw ¼ Dnhw0
rQhw

prNThw

� �
ð12:8Þ

and

f ¼ 1
� 4:0; Dhw�

Dnhw

� �
� 4:0ð Þ : ð12:9Þ

Together the equations above are used to redesign the collection equations

of hail collecting, for example, cloud water. The effect is more aggressive

hail collection of cloud water, and other hydrometeors for that matter.

This occurs by the terminal velocity being some 20 to 40% larger with the

proposed technique.

12.4 Nucleation

A significant problem is that few models predict aerosols or more specifically

cloud condensation nuclei and ice nuclei. At present bin microphysical

models seem to be more likely to predict these nuclei. This probably is

because bin microphysical models already predict individual spectral hydro-

meteor characteristics at each grid point, and the spectral nature of the

distributions can easily adapt to different-sized nuclei. Of particular interest
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are the roles of giant and ultra-giant nuclei in different cloud situations. Thus

far bulk microphysical parameters have been able to account for one size of

aerosols. However, Saleeby and Cotton (2004) used one model that may be

thought of as considering two sizes of cloud-drop aerosols. These then

interacted accordingly to their likely physics. In addition the model by Straka

et al. (unpublished work) predicts four aerosol sizes; however, at present this

only has one cloud-droplet size and thus this cannot easily interact physically

in a correct way with other hydrometeors. In general, any impact aerosols

have on cloud model results, whether bin or bulk microphysical in nature, is

probably very important. There are dynamical effects, such as mixing different

parcels of air; microphysical effects, such as turbulence influence of droplet

growth; or autoconversion for the bulk models. For ice nuclei, bin microphy-

sical models will probably lead the way in first predicting the number of ice

nuclei, removing used ice nuclei, and how ice nuclei will nucleate. For both

bulk and bin models perhaps an unsolvable problem is how to redistribute ice

nuclei and cloud condensation sizes upon complete sublimation and evapor-

ation. In many cases much larger nuclei will be generated, but howmuch bigger

is a major problem to be tackled.

12.5 Evaporation

Some problems appear with evaporation of rain. One is that the calculation

of the number concentration in multi-moment models typically employs

slope-preserving parameterizations, which are an oversimplification of what

happens in nature when compared to bin models. A solution was provided in

Chapter 5 where only the droplets that can completely evaporate will do so,

whilst all droplets and drops evaporate according to the vapor diffusion

equation. Recently, Seifert (2008) reinvestigated the evaporation equation,

in particular the use of Lin et al.’s (1983) method; he approached the problem

using the gamma distribution, and designed an approach based upon the

mean-volume diameter of raindrops. Seifert’s results were founded upon

empirical fits to bin model results similar to those of Hu and Srivastava (1995).

12.6 Conversion of graupel and frozen drops to hail

Another problem is attempting to decide algorithmically when graupel and

frozen drops should be converted to hail. The author proposes that using the

results of Straka and Rasmussen (1997) to get the aging time, and time-

weighted mass exposure and collection of graupel to hail, or frozen drops to

hail, seems to be a reasonable means to start a new solution to this problem.
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This has its roots in Schoenberg-Ferrier (1994) integrating the continuous

growth equation for larger particles for say 120 s and seeing how the spectra

of graupel and frozen drops are distributed. The particles larger than 5 mm

and 20 mm could be converted to hail, and large hail. The mass and numbers

were found using Farley et al. (1989).

12.7 Shape parameter diagnosis from precipitation equations

Milbrandt and Yau (2005a,b) used a variable shape parameter that is either

determined from an empirical fit or from the growth equations including

mixing ratio, number concentration, and reflectivity. More recently Seifert

(2008, personal communication) used two moments, mixing ratio and number

concentration, to determine the shape parameter or prediction of evapor-

ation. As was seen early in this chapter, the use of the variable shape

parameter by Milbrandt and Yau (2005a,b) readily produced more accurate

solutions for fallout results from a bin model than either the one-moment or

two-moment model. In tests with an empirical form of the shape parameter

the results were nearly as good as with prediction of three moments. It is

uncertain still how the variable shape parameter influences the accuracy of

other microphysical parameterizations.
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13

Model dynamics and finite differences

13.1 One-and-a-half-dimensional cloud model

The one-and-a-half-dimensional cloud model has been used by many over the

years (e.g. Ogura and Takahashi 1973), in particular to study precipitation

processes. Today, testing is the main reason for using this model. The one-

and-a-half-dimensional cloud is assumed to be cylindrical with a time-

independent updraft radius, a. All variables are assumed to be a function of

the vertical coordinate, z, only. The environmental values do not change,

whereas those in the cloud do change by advection, mixing, entrainment, and

microphysical-related processes.

First, the vertical momentum equation is given following Ogura and

Takahashi (1973) as the following, with advection, mixing, and entrainment

and buoyancy terms,

]w

]t
¼ w

]w

]z

2a2w
a

wj j þ 2

a
ua w wað Þ

þ g
y y
y

þ 0:608 Qv Qv

� � XM
m 1

Qm

 !
:

ð13:1Þ

Here t is the time, g is gravity, ua is the radial component of velocity, w is the

vertical velocity, y is the potential temperature, subscript e means environment,

a2 is the coefficient for lateral eddymixing at the perimeter of the cloud,Qv is the

vapor mixing ratio, and Qm is the hydrometeor mixing ratio. The overbars

denote environment values. In (13.1) ua is determined fromcontinuity as givenby

2

a
ua þ 1

r
] rwð Þ
]t

¼ 0; ð13:2Þ

where r denotes the air density.
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Next it is assumed that for any variable A, that

Aa ¼ A for ua < 0
Aa ¼ A for ua > 0;

	
ð13:3Þ

where Aa is the value of a at the edge of the updraft. The first three terms on

the right-hand side of (13.1) are the vertical advection, lateral eddy mixing

between the cloud and the environment, the dynamic entrainment required to

satisfy continuity (13.2) between the cloud and environment. The last term on

the right-hand side of (13.1) is the buoyancy term, that includes within it

virtual potential-temperature differences between the cloud and environment,

and drag by the weight of hydrometeors.

Next the thermodynamic equation is given as follows where the terms on

the right-hand side of (13.4) are advection, mixing, entrainment, and micro-

physical source terms (enthalpy of vaporization, freezing, and sublimation as

required).

]y
]t

¼ w
]y
]z

2a2

a
wj j y y
� �þ 2

a
ua y yað Þ þ Lv

cpp
dM
dt

; ð13:4Þ

where, p is the Exner function, ya is the potential temperature at the edge of

the updraft, and dM/dt is the condensation/evaporation rate for liquid or the

deposition/sublimation rate for ice. Freezing and melting are also accounted

for by this term. The vapor mixing ratio rate equation is given as

]Qv

]t
¼ w

]Qv

]z

2a2

a
wj j Qv Qv

� �þ 2

a
ua Qv Qv;a

� � dM
dt

; ð13:5Þ
where Qv,a is the mixing ratio at the edge of the updraft. Similarly, the

hydrometeor equations are

]Qm

]t
¼ w

]Qm

]z
þ 1

r
] rVTmQmð Þ

]z

2a2

a
wj j Qm Qm

� �
þ 2

a
ua Qm Qm;a

� �þ SQm

ð13:6Þ

where VTm is the terminal velocity of species or bin m and SQm
is the source

sink term for the hydrometeor species m. The zeroth- and third-moment

equations can be prognosed using the equation for number concentration

NT, or mixing ratio Q, as a template,

] NTmð Þ
]t

¼ w
] NTmð Þ

]z
þ ] VTmNTmð Þ

]z

2a2

a
wj j NTm NTmð Þ

þ 2

a
ua NTm NTm;a

� �þ SNm
:

ð13:7Þ
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13.1.1 Finite differences for the one-and-a-half-dimensional model

First a staggered grid is established. The vertical velocity equation is centered

by using second-order quadratic conserving inspace leapfrog differences in

time. The overbars denote averages for the finite-difference expressions. This

is written as the following,

d2tw
t ¼ wdzw

z 2a2w
a

þ 2

a
uza w wað Þ

þ g
yz y
y

� �
1þ 0:608 Qz

v Qv

� � XM
1

Qz
m

" #
:

ð13:8Þ

The first term on the left-hand side is expressed with centered second-order

finite-difference approximations. The first and last term on the right are

also expressed assuming centered second-order approximations at time t.

The mixing and entrainment terms are represented in time with forward time

differences from t ¼ t Dt. The following equations for those variables

defined at theta points (e.g. y, Qv, Qm, NTm, etc.) are approximated with the

same difference techniques, except the vertical flux which is differenced with

a forward-in-time, upstream scheme, and the source and sink terms with

forward-in-time differences from t ¼ t Dt.
The other equations all are expressed in finite-difference form as shown below,

df
t

m;2t ¼ wdzfm;x

z þ dzVTmfm;x

2a2

a
wzj j fm;x fm;x

� �

þ 2

a
ua fm;x fm;x

� �þ Sfm;x
:

ð13:9Þ

13.2 Two-dimensional dynamical models

13.2.1 Slab-symmetric model

The slab-symmetric model is a two-dimensional x z plane or y z plane model

that has been widely used in cloud modeling of squall lines, single-cell

convection, and orographic precipitation. The biggest problem with the

slab-symmetric model is that the energy can cascade upscale because of the

lack of the third dimension. Vortex pairing can generate large-scale vortices

on the plane of the model that can be strong enough to make the compen-

sating subsidence more warm than the updraft. This produces warming more

strongly than that resulting from enthalpy of vaporization, freezing, and

deposition with the associated convective updraft.
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The u-momentum equation is given by

]u

]t
¼ u

]u

]x
w
]u

]z

1

r
]p0

]x
þ Du; ð13:10Þ

where Du is the diffusion term. Similarly the vertical momentum equation is

given as follows, where Dw is the diffusion term.

]w

]t
¼ u

]w

]x
w
]w

]z
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]p0

]z

þ g
y y
� �

y
þ 0:61 Qv Qv
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p0

p

XM
m 1

Qm

 !
þ Dw:

ð13:11Þ

Here the overbars denote the base state and primes denote perturbations

from the base state.

Next is the continuity equation in anelastic form,

] ruð Þ
]x

þ ] rwð Þ
]z

¼ 0: ð13:12Þ
Then there is the thermodynamic equation, where Dy is the diffusion and Sy
denotes the source and sink terms,

]y
]t

¼ u
]y
]x

w
]y
]z

þ Dy þ Sy: ð13:13Þ

The moisture equations include the vapor equation, and any number of

mixing-ratio and number-concentration equations to represent any number

of species or other aspects of microphysics (i.e. source and sink terms).

]Qv

]t
¼ u

]Qv

]x
w
]Qv

]z
þ DQv

þ SQv
; ð13:14Þ

]Qx

]t
¼ u

]Qx

]x
w
]Qx

]z

1

r
] rVTQx

� �
]z

þ DQx
þ SQx

; ð13:15Þ

and

]NTx

]t
¼ u

]NTx

]x
w
]NTx

]z
þ ] VNT

NTxð Þ
]z

þ DNTx
þ SNTx

: ð13:16Þ

13.2.1.1 Finite differences for slab-symmetric models

The horizontal- and vertical-velocity equations, and other equations are

discretized with centered second-order quadratic differences in space for the

advection terms, and lagged forward-in-time differences for the diffusion

equations. These are done on an Arakawa-C grid,
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d2tu
t ¼ uxdxu

x
wxzdzu

z 1

r
dxp0 þ Du; ð13:17Þ
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ð13:18Þ

and

d2ty
t ¼ udxy

x
wdzy

z þ Dy þ Sy: ð13:19Þ

The diffusion terms for the velocity and scalar equations are shown next, where

K is the eddy mixing coefficient, defined at the scalar points, and A is

described in Chapter 13.3.

For unsaturated conditions

Ri ¼ g

yv
dzyvð ÞS 2; ð13:20Þ

and for saturated conditions

Ri ¼ Adzye g
XM
m 1

dzQm

 !
S 2; ð13:21Þ

S2 ¼ 2 dxuð Þ2þ dzwð Þ2
n o

þ ðdxuþ dzwÞ2
xz

; ð13:22Þ

Du ¼ dx Kdxuð Þ þ dz Kxz dzuþ dxw½ �
�
; ð13:23Þ

�

Dv ¼ dx Kxdxvð Þ þ dz Kz½dzv�ð Þ; ð13:24Þ
Dw ¼ dx Kxz dzuþ dxw½ �ð Þ þ dz Kdzwð Þ; ð13:25Þ
DQv

¼ dx KxdxQvð Þ þ dz KzdzQvð Þ; ð13:26Þ
DQm

¼ dx KxdxQmð Þ þ dz KzdzQmð Þ; ð13:27Þ
DNm

¼ dx KxdxNmð Þ þ dz KzdzNmð Þ: ð13:28Þ
where,

K ¼ L2ð1 RiÞ1=2S
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13.2.2 Axisymmetric model

Assuming cylindrical coordinates (r, ’, z) with the Coriolis parameter (on the

f-plane) the three momentum equations are given as

]u

]t
¼ u

]u

]r
w
]u

]z
þ f þ v

r

� �
v

1

r
]p0

]r
þ Du; ð13:29Þ

]v

]t
¼ u

]v

]r
w
]v

]z
f þ v

r

� �
u þ Dv; ð13:30Þ

and

]w

]t
¼ u

]w

]r
w
]w

]z
þ g

y y
y

þ 0:608 Qv Qv

� � Xm
i 1

Qm

 !
þ Dw: ð13:31Þ

The mass continuity is given by

]p0

]t
¼ c2s

] urð Þ
]r

þ ] wrð Þ
]z

� �
; ð13:32Þ

the first law of thermodynamics by

]y
]t

¼ u
]y
]r

w
]y
]z

þ Dy þ Sy þ Ry; ð13:33Þ

and the conservation mixing ratio of water vapor is given by

]Qv

]t
¼ u

]Qv

]r
w
]Qv

]z
þ DQv

þMQv
: ð13:34Þ

The conservation mixing ratio of condensate is given by

]Qm

]t
¼ u

]Qm

]r
w
]Qm

]z
þ 1

r
] rVTQmð Þ

]z
þ DQm

þ SQm
; ð13:35Þ

and the number concentration of condensed particles by

]Nm

]t
¼ u

]Nm

]r
w
]Nm

]z
þ ] VTNmð Þ

]z
þ DNm

þ SNm
: ð13:36Þ

The following equations are a closed set of primitive equations to describe

fluid flow and its energetics. The diffusion terms, D, are given as

Du ¼ 1

r

] rtrrð Þ
]r

þ ] rtrzð Þ
]z

tff
r

; ð13:37Þ

Dv ¼ 1

r2
] r2trf
� �
]r

þ ] rtzf
� �
]z

; ð13:38Þ
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Dw ¼ 1

r

] rtrzð Þ
]r

þ ] rtzzð Þ
]z

; ð13:39Þ

Dy ¼ 1

r

] rFy
r

� �
]r

þ ]Fy
z

]z
ð13:40Þ

DQv
¼ 1

r

] rFQv
r

� �
]r

þ ]FQv
z

]z
; ð13:41Þ

and

DQm
¼ 1

r

] rFQm
r

� �
]r

þ ]FQm
z

]z
: ð13:42Þ

The stress tensors are given by the following equations:

trr ¼ 2K
]u

]r
; ð13:43Þ

tff ¼ 2K
u

r

� �
; ð13:44Þ

tzz ¼ 2K
]w

]r
; ð13:45Þ

trf ¼ Kr
]

]r

v

r

� �
; ð13:46Þ

trz ¼ K
]u

]z
þ ]w

]r

� �
; ð13:47Þ

tzf ¼ 2K
]v

]r
; ð13:48Þ

twr ¼ K
]w
]r

; ð13:49Þ

twz ¼ K
]w
]z

; ð13:50Þ
and

S2 ¼ 2
]u

]r

� �2

þ u

r

� �2
þ ]w

]z

� �2
" #

þ ]u

]z
þ ]w

]r

� �2

þ ]v

]r

v

r

� �2

þ ]v

]z

� �2

; ð13:51Þ

where S is the deformation (stress/strain) (Smagorinski 1963), which is a

kinematic quantity that describes flow features. The buoyancy term for

unsaturated conditions is

Fy
z ¼ K

g

yv

]yv
]z

; ð13:52Þ
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whilst for saturated conditions it is

Fy
z ¼ K A

]ye
]z

g
]QT

]z

� �
; ð13:53Þ

where

A ¼ g

y

1þ LvQv

RdT

1þ 0:622
L2vQv

cpRdT2

0
@

1
A; ð13:54Þ

and

K ¼ L2 1 Rið Þ1=2S; ð13:55Þ
and where K is equal to zero when Ri > 1. The Richardson number Ri for

unsaturated conditions is given by

Ri ¼ g

yv

]yv
]z

S 2; ð13:56Þ

and for saturated conditions by

Ri ¼ A
]ye
]z

g
]QT

]z

� �
S 2: ð13:57Þ

where ye is equivalent potential temperature.

13.2.2.1 Finite differences for axisymmetric models

The continuous form of the equations written in finite-difference form follows

fu ¼ 1

r
ur rdru

r 1

rr
rrwrdzu

z þ v

r

2 þ fv

� � r

; ð13:58Þ

fv ¼ 1

r
urdrv

r 1

r
rwdzv

z v

r
þ fv

� � ru
r

r

; ð13:59Þ

fw ¼ � 1

r
ur zdrw

r � 1

r
rwzdzw

z þ g
y0

y

z

� 1þ 0:608 Qz
v � Qv

� ��XM
1

Qz
m

 !
; ð13:60Þ

Ri ¼ g

yv
dzyvð ÞS 2; ð13:61Þ

Ri ¼ Adzye g
XM
m 1

dzQm

 !
S 2; ð13:62Þ
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S2 ¼ 2 druð Þ2
z

þ u

r

� �r2z
þ dzwð Þ2

z
( )

þ dzuþ drwð Þ2
rz

þ drv
v

r

� �2rz
þ dzvð Þ2;

ð13:63Þ

Du ¼ 1

r
dr 2rKzdruð Þ þ dz Kz dzuþ drw½ �ð Þ 2Krz u

r2
; ð13:64Þ

Dv ¼ 1

r2
dr r2Krzdrv

v

r

� �
þ dz Kdzuð Þ; ð13:65Þ

Dw ¼ 1

r
dr rKr dzuþ drw½ �ð Þ þ dz 2Kzdzuð Þ; ð13:66Þ

Dy ¼ 1

r
dr rKrzdryð Þ þ dz Kdzyð Þ; ð13:67Þ

DQv
¼ 1

r
dr rKrzdrQvð Þ þ dz KdzQvð Þ; ð13:68Þ

DQm
¼ dr rKdrQmð Þ þ dz KdzQmð Þ; ð13:69Þ

and

DNm
¼ dr rKdrNmð Þ þ dz KdzNmð Þ; ð13:70Þ

where K is defined by 13.55 at the w points on a staggered c-grid.

13.2.2.2 Lower boundary conditions for axisymmetric models

One of the more simplistic lower boundary conditions is suggested to capture

the influence of the Earth’s surface on momentum and heat flux. The lower

boundary conditions presented are given by Rotunno and Emanuel (1987) for

a hurricane environment. Other formulas are more appropriate for land

lower boundaries. The Rotunno and Emanuel (1987) conditions are given

for the wind at height z = Dz/2 by the following relationships

trz ¼ cdu u2 þ v2
� �1=2 ð13:71Þ

and

tzf ¼ cdv u2 þ v2
� �1=2

: ð13:72Þ
For heat flux (sensible and latent), the following bulk aerodynamical formulas

are used,

Fy
z ¼ cd u2 þ v2

� �1=2
ysfc ydz=2
� � ð13:73Þ
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and

FQv
z ¼ cd u2 þ v2

� �1=2
Qv;sfc Qv;dz=2

� �
; ð13:74Þ

where the subscripts sfc and dz/2 refer to the surface value and the ½ grid

point above the surface; the value of the drag coefficient cd ¼ 1.1�10 3 þ
4�10 5 (u2 þ v2)1/2 (see Moss and Rosenthal 1975 as suggested by Rotunno

and Emanuel 1987).

More complicated, and perhaps better, formulas based on observed fluxes

are included in many models (see Stull 1988 for listings of these equations).

13.3 Three-dimensional dynamical model

13.3.1 Theoretical formulation of a three-dimensional dynamical model

The example used here is the Straka Atmospheric Model (SAM) (Straka and

Mansell 2005), which is a non-hydrostatic model based on the compressible

Navier Stokes equations for fluid flow. A terrain-following coordinate

system is employed. In addition, a three-dimension map factor is used for

grid stretching. The model can be applied to flows of air on scales of fractions

of meters to hundreds of meters or more. Other physical processes are taken

into account such as radiation and microphysics. The latter of these are a

primary topic of this book. Parameterizations for other processes can be

found in Stensrud (2007).

13.3.2 Analytical equations for the orthogonal

Cartesian dynamical model

To begin with, the equations for compressible fluid flow can be written as

]ui
]t

¼ 1

r
] rujui
� �
]xj

þ ui
r
]uj
]xj

1

r
]p

]xi
þ 1

r
]tij
]xi

þ Eijkujf þ di3g ð13:75Þ

where the product rule has been used on the advective term to write it in flux

form. The orthogonal Cartesian velocity components ui = (1, 2, 3) are the

velocity components in the x-, y-, and z-directions, g=9.8 m s 2 is gravitational

acceleration, r is the density, and p is the pressure. In addition, f ¼ 2O sinðfÞ,
and f 0 ¼ 2O cosðfÞ, where O is the angular frequency of the Earth, which is

7.29 � 10 5 s 1, and f is the latitude. The subgrid stress tensor is given as

tij ¼ r Km Dij and the eddy-mixing coefficient for momentum Km is defined

later. The deformation tensor Dij is defined as

Dij ¼ ]ui
]xj

þ ]uj
]xi

2

3
dij

]uk
]xk

� �
: ð13:76Þ
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The continuity equation can be written as

]r
]t

¼ ] ruj
� �
]xj

ð13:77Þ

and the ideal gas equation is

P ¼ rRdTv: ð13:78Þ
Lastly, the Poisson equation will be used,

yv ¼ Tv
p0
p

� �R=cp

; ð13:79Þ

where p0 is a reference pressure that is 100 000 Pa, cp = 1004 J kg 1 K 1, and

cv = 717 J kg 1 K 1. This fully compressible system permits both acoustic and

gravity wave solutions.

Since the thermodynamic quantities vary more rapidly in the vertical than

the horizontal direction, they may be written as a sum of a base-state variable

which is a function of z only and a perturbation from the base state,

p ¼ p zð Þ þ p0

r ¼ r zð Þ þ r0

y ¼ y zð Þ þ y0

8><
>: : ð13:80Þ

Also, the base state is hydrostatic,

]p

]z
¼ rg: ð13:81Þ

Now (13.80) is substituted into (13.75), using a binomial expansion and

neglecting higher-order terms and making use of (13.81) results in

]ui
]t

¼ 1

r
] rujui
� �
]xj

þ ui
r
]uj
]xj

1

r
]p0

]xi
þ 1

r
]tij
]xi

þ Eijkujf di3g
r0

r
ð13:82Þ

and the moist Poisson equation holds for the mean state,

yv ¼ Tv
p0
p

� �R=cp
: ð13:83Þ

Now (13.79) is used, the natural logarithm taken, and using (13.80), the mean

terms are subtracted, resulting in

r0

r
’ y0v

yv

cv
cp

p0

p
: ð13:84Þ
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Substituting (13.84) into (13.82),

]ui
]t

¼ 1

r
] rujui
� �
]xj

þ ui
r
]uj
]xj

1

r
]p0

]xi
þ 1

r
]tij
]xi

þ Eijkujf þ di3g
y0v
yv

cv
cp

p0

p

� �
: ð13:85Þ

Now the buoyancy term can be rewritten to account for liquid- and ice-water

effects (Bannon 2002),

]ui
]t

¼ 1

r
] rujui
� �
]xj

þ ui
r
]uj
]xj

1

r
]p0

]xi
þ 1

r
]tij
]xi

þ Eijkujf

þ di3g
y0

y
þ Q0

v

0:608þ Qv

Q0
v þ

PM
m 1

Qliqþice

1þ Qv

cv
cp

p0

p

2
6664

3
7775:

ð13:86Þ

13.3.2.1 Pressure equation

Next, an equation is derived for the perturbation pressure. The total deriva-

tive of (13.84) is taken

d

dt

r0

r

� �
¼ d

dt

y0v
yv

� �
cv
cp

d

dt

p0

p

� �
: ð13:87Þ

Expanding,

r0
1

r2
dr
dt

1

r
dr0

dt
¼ y0

1

y2
dy
dt

1

y
dy0

dt

cv
cp

p0
1

p2
dp

dt

cv
cp

1

p

dp0

dt
: ð13:88Þ

Now the terms where the mean variable squared is much, much larger than the

perturbation terms are neglected and the equation is solved for the pressure term,

dp0

dt
¼ cp

cv

p

yv

dy0v
dt

þ cp
cv

p

r
dr0

dt
: ð13:89Þ

Now a conservation equation for yv is linearized,

]yv
]t

¼ uj
]yv
]xj

þ ]

]xi
Kh

]yv
]xi

� �
þ Syv ð13:90Þ

to get an expression for the perturbation quantity,

dy0v
dt

¼ uj
]yv
]xj

þ ]

]xi
Kh

] yv þ y0v
� �

]xi

� �
þ S yv þ y0v
� �

; ð13:91Þ

where Kh is the mixing coefficient for temperature and moisture, along with

other scalars.
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Also the continuity equation (13.77) is linearized to obtain

dr0

dt
¼ uj

]r
]xj

ðrþ r0Þ ]uj
]xj

: ð13:92Þ

Substituting (13.91) and (13.92) into (13.88) gives

dp0

dt
¼ cp
cv

p

yv
uj
]yv
]xj

þ ]

]xi
Kh

] yv þ y0
� �

v

]xi

 !
þ S yv þ y0v
� �" #

þ cp
cv

p

r
] ruj
� �
]xj

r0
]uj
]xj

� �
:

ð13:93Þ

The definition of the sound speed is introduced,

c2s ¼ RdT
cp
cv

¼ p

r
cp
cv
: ð13:94Þ

Substituting this into (13.93) gives

dp0

dt
¼ r
yv

c2s uj
]yv
]xj

þ ]

]xi
Kh

] yv þ y0
� �

v

]xi

 !
þ S yv þ y0v
� �" #

þ c2s
] ruj
� �
]xj

r0
]uj
]xj

� �
:

ð13:95Þ

Expanding the total derivative of perturbation pressure, moving the advective

term to the right-hand side, and rearranging gives

]p0

]t
þ c2s

] ruj
� �
]xj

¼� uj
]p0

]xj
þ c2s

r
yv

�uj
]yv
]xj

þ ]

]xi
Kh

] yv þ y0v
� �

]xi

� �
þ S yv þ y0v
� �� �

� c2s r0
]uj
]xj

� �
:

ð13:96Þ

Now, the terms on the right-hand side of (13.96) have been shown to be small

(Klemp and Wilhelmson 1978) and can be neglected for cloud models. Thus,

(13.95) becomes the prognostic equation for perturbation pressure,

]p0

]t
¼ c2s

] ruj
� �
]xj

: ð13:97Þ

13.3.2.2 Density equation

The density of moist air is given by Proctor (1987) approximately as

r ¼ P

RdT
1

Qv

0:608þ Qv

� �
1þ Qv þ Qliq þ Qice

� �
; ð13:98Þ
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and the hydrostatic equation is given by

]p

]z
¼ rg: ð13:99Þ

13.3.2.3 Thermodynamic energy (potential-temperature) equation

The thermodynamic energy equation is represented by an equation for poten-

tial temperature, and is given by

]y
]t

¼ 1

r
] ruiyð Þ
]xj

þ y
r
] ruið Þ
]xi

þ ]

]xi

1

r
Kh

]y
]xi

� �
þ Sy: ð13:100Þ

The eddy-mixing coefficient for scalars is described later. The last term

starting with Sy is a heating/cooling term for potential temperature.

13.3.2.4 Turbulent kinetic energy equation

The one-and-a-half-order turbulence closure is given by the turbulent kinetic

energy equation,

]E1=2

]t
¼ 1

r
] ruiE1=2
� �

]xj
þ E1=2

r
] ruið Þ
]xj

þ Km

2E1=2

]ui
]xj

þ ]uj
]xi

� �

1

3
dijE1=2 g

y0
AKh

]y
]xi

þ BKh
]qw
]xi

� �
þ ]

]xi
2Km

]E1=2

]xi

� �
E:

ð13:101Þ

The use of this equation is equivalent to predicting Km = cm LE1/2 (where cm is

a coefficient ranging from 0.1 to 0.2) as in Klemp and Wilhelmson (1978),

except that the mixing length is not specified to be constant. Rather it is a

function of stability as follows. First, the sub-grid coefficients are given

following Deardorff (1980) as

Km ¼ cmLE
1=2; ð13:102Þ

and

Kh ¼ ð1þ 2L=DsÞKm; ð13:103Þ
where,

Ds ¼ DxDyDzð Þ1=3: ð13:104Þ
Then the mixing length is calculated from,

L ¼ 0:76E1=2 ]yil
]z

� � 1=2

ð13:105Þ

13.3 Three-dimensional dynamical model 359



when

]yil
]z

� �
> 0; ð13:106Þ

where yil is the potential temperature of ice liquid; otherwise,

L ¼ Ds: ð13:107Þ
The dissipation term is given as

E ¼ cEE
3=2

L
; ð13:108Þ

where cE, a coefficient in turbulent dissipation, goes to 0.19 in the stable limit,

with cE otherwise given by,

cE ¼ 0:19þ 0:51L=Ds: ð13:109Þ
It has been suggested that cE ¼ 3.9 to create a “wall effect” to prevent E1/2

from becoming too large near the surface (Deardorff 1980). The terms A and

B in (13.101) are given, following Klemp and Wilhelmson (1978), as

A ¼ 1

y
1þ 1:608ELvQvð Þ= RdTð Þ½ �

1þ 0:608L2vQv

� �
= cpRdT2
� �� �

( )
; ð13:110Þ

and if Qice > 0

di3g
u00i y

00
v

yv
� u00i Q

00
T

 !
¼ di3g

BKh

yv

� �
]ye;ice
]xi

� LsP

cpT

]Qice

]xi

� �
þ di3gKh

]QT

]xi
; ð13:111Þ

where ye,ice is the ice equivalent potential temperature and where

B ¼
1þ 0:608

0:622LvQv

RdT

1þ 0:622L2vQv

cpRdT2

: ð13:112Þ

13.3.2.5 Moisture equations

There are three variables related to three different moments predicted in this

model; the concentration NT, mixing ratio Q, and reflectivity Z, which are

related to the zeroth, third and sixth moments, respectively. The purpose of

using three different moments is to be able to diagnose the shape parameter at

each grid point for each hydrometeor species following Milbrandt and Yau

(2005a, b), as explained in Chapter 2. This adds greater freedom for the model
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to represent real cloud processes that might occur in the atmosphere as shown

in solutions of tests compared to analytical solutions and other comparisons

by Milbrandt and Yau (2005a, b). They show that the best solutions among

single-, double-, and triple-moment schemes are obtained by using these three

different moments for predictive equations, and diagnosing, though they call

it prognosing, the shape parameter. The continuity equations for NT, Q, and Z

are given as

]NTx

]t
¼ ui

]NTx

]xi
þ ]

]xi
Kh

]NTx

]xi

� �
þ ] VTNTx

NTxð Þ
]x3

þ SNTx
ð13:113Þ

]Qx

]t
¼ � 1

r
]r uiQð Þx

]xi
þ Qx

r
] ruið Þ
]xi

þ ]

]xi
rKh

]Qx

]xi

� �
þ 1

r
] rVTQx

Qx

� �
]x3

þ SQx
ð13:114Þ

]Zx
]t

¼ ui
]Zx
]xi

þ ]

]xi
Kh

]Zx
]xi

� �
þ ] VTZxZxð Þ

]x3
þ SZx ; ð13:115Þ

where the “S” terms are source and sink terms.

13.3.3 Equations for the non-orthogonal terrain-following system

The orthogonal Cartesian system is transformed into a non-orthogonal ter-

rain-following system for flow over topography. The vertical coordinate is

often called the sigma-z coordinate system owing to similarities to the sigma-p

coordinate system. The z coordinate is transformed into a new coordinate, h,

where,

� ¼ z h

1 h=H
¼ z h

G
p : ð13:116Þ

In this equation the Jacobian of the transformation is given by G
p ¼ 1 h/H,

where h is the height of the topography and h(x, y) and H is the height of the

top of the domain. At h ¼ 0 the transformed vertical velocity normal to the

terrain is Wc ¼ 0. In other words where h ¼ 0 ¼ constant surface Wc ¼ 0.

The terrain-following coordinate system can be derived using the chain rule

to come up with the following definitions such as

]

]x






z

¼ ]

]x






�

þ G13 ]

]�

]

]y






z

¼ ]

]y






�

þ G23 ]

]�

ð13:117Þ

with the values of G13 and G23 given by
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G13 ¼ ]�

]x
¼ 1

G
p �

H
1

h i ]h
]x

G23 ¼ ]�

]y
¼ 1

G
p �

H
1

h i ]h
]y

:

ð13:118Þ

As pointed out by Clark and Hall (1979) all conservation equations of the form

]f
]t

þ 1

r
] rufð Þ

]x
þ 1

r
] rvfð Þ
]y

þ 1

r
] rwfð Þ

]z
¼ Sf ð13:119Þ

in the non-orthogonal terrain-following system transform into the following in

the terrain-following system,

]f
]t

þ 1

G
p

r

] G
p

ruf
� �

]x
þ 1

G
p

r

] G
p

rvf
� �

]y
þ 1

G
p

r

] G
p

rWcf
� �

]z
¼ Sf ð13:120Þ

where Wc is given by

Wc ¼
wþ G

p
G13uþ G

p
G23v

� �
G

p : ð13:121Þ

13.3.4 Second-order finite differences

For completeness, the finite-difference forms for the system of equations used

are given, similar to that in Clark (1977) and Clark and Hall (1979), but using

Schumann operators for differences and derivatives, and noting r is defined

for simplicity as r G
p

. First the u-velocity equation with second-order differ-

ences (all differencing is second order) is

d2tu
t þ 1

rx
dx rxuxux
� �þ 1

rx
dy rxvxuy
� �þ 1

rx
dy r�Wc

x
u�

� �
¼ 1

rx
dx p0ð Þ 1

rx
d� G13p0

x�� �þ 1

rx
dx G

p
t11

� �
þ 1

rx
dy G

p xy

t12
� �

þ 1

rx
d� t13 þ G

p
G13t11x� þ G

p
G13

x

t�12
y� �

:

ð13:122Þ

The v-velocity equation is differenced as

d2tv
t þ 1

ry
dx rxuyvx
� �þ 1

ry
dy ryv

y
vy

� �þ 1

ry
dy r�Wc

y
v�

� �
¼ 1

ry
dy p0ð Þ 1

ry
d� G13p0

y�� �þ 1

ry
dx G

p xy

t12
� �

þ 1

ry
dy G

p
t22

� �

þ 1

ry
d� t23 þ G

p
G13

y

t�12
x

þ G
p

G23t22x�
� �

:

ð13:123Þ
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The w-velocity equation is differenced as

d2tw
t þ 1

r�
dx rxu�wx
� �þ 1

r�
dy ryv�wy
� �þ 1

r�
d� r�Wc

�
w�

� �

¼ � 1

r�
d� p0ð Þ � 1

r�
di3g

y0

y
þ Q0

v

0:608þ Qv

� cv
cp

p0

p
�
Q0

v þ
PM
m¼1

Qm

1þ Qv

2
6664

3
7775

þ 1

r�
dx G

p x

t13
� �

þ 1

r�
dy G

p y

t23
� �

þ 1

r�
d� t33 þ G

p
G13

�

t�13
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p
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�
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y� �

:

ð13:124Þ

First the divergence, and then deformation tensors are discretized as follows,

d ¼ 1

G
p dx G

p x
uþ dy G

p y
vþ d� G

p �
Wc

h i
; ð13:125Þ

D11 ¼ 2

G
p dx G

p x

u
� �

þ d� G13u�
x

� �h i
; ð13:126Þ

D22 ¼ 2

G
p dy G

p y

v
� �

þ d� G23v�
y

� �h i
; ð13:127Þ

D33 ¼ 2

G
p d�ðwÞ

� �
; ð13:128Þ

D12 ¼ 1

G
p xy dy G

p x
u

� �
þ dx G

p y
v

� �
þ d� G23

x
u�y þ G13

y
v�x

� �h i
; ð13:129Þ

D13 ¼ 1

G
p x� dx G

p
w

� �
þ d� uþ G13wx

�
� �h i

; ð13:130Þ

D23 ¼ 1

G
p y� dy G

p
w

� �
þ d� vþ G23wy

�
� �h i

; ð13:131Þ

Then the Reynolds stress tensors are given as

T11 ¼ rKmD11
2

3

r

G
p d2

2

3

r

G
p Km

cmL

� �2

; ð13:132Þ

T12 ¼ rKm
xy
D12; ð13:133Þ

T13 ¼ rKm
x�
D13; ð13:134Þ

T23 ¼ rKm
y�
D23; ð13:135Þ
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T22 ¼ rKmD22
2

3

r

G
p d2

2

3

r

G
p Km

cmL

� �2

; ð13:136Þ

T33 ¼ rKmD33
2

3

r

G
p d2

2

3

r

G
p Km

cmL

� �2

; ð13:137Þ

The finite-difference form of the pressure equation is

d2tp0
t

uxd2xp0 þ vyd2yp0 þW
�
cd2�p

0� �þ rgw

rc2s dxuþ dyvþ d�Wc

� �
þ rc2s

1
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1

E

dE

dt

� �
:

ð13:138Þ

where E is the sum of the mixing ratios or 1+0.608qv þ PM
m 1

Qm

The discretized form of the scalar f equations is

d2tf
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ry
dy ryf
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þ 1
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p y

H2

� �
þ 1

r �
d� H3 þ G

p
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p
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2
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;

ð13:139Þ

where H1, H2 and H3 are defined as

H1 ¼ rKh

G
p
� �x

dxfþ d�ðG13f
x�Þ� �

; ð13:140Þ

H2 ¼ rKh

G
p
� �y

dyfþ d�ðG23f
y�Þ� �

; ð13:141Þ

H3 ¼ rKh

G
p
� ��

d�f
� �

; ð13:142Þ

with Kh ¼ 3Km

Note that the approximation for Wc is given as

Wc ¼ 1

G
p

r�
r�wþ G

p
G13rxu

�x þ G
p

G23ryv
�y

h in o
: ð13:143Þ

13.3.5 Boundary conditions

In three dimensions with and without a terrain-following coordinate model

we have to apply various boundary conditions at z ¼ 0 and H the ground and
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top of the model, respectively. The conditions apply especially to the stress

tensors. Also at � ¼ 0 and H the following applies,

Wc ¼ d� rxuð Þ ¼ d� ryvð Þ ¼ 0 ð13:144Þ

which approximates a free slip condition and simplifies the finite differencing

of the pressure equation tremendously.

r�W�
cw�

�
� �

¼ 0 at � ¼ 0;H: ð13:145Þ

The boundary conditions for tij at � ¼ 0 and H are

t�11 ¼ t�22 ¼ t�33 ¼ t�12 ¼ 0 at � ¼ 0

t13 ¼ t23 ¼ d�t22 ¼ t�33 ¼ d�t12 at � ¼ H
ð13:146Þ

and the simple drag laws can be incorporated for semi-slip boundary condi-

tions (though more complex, and simpler ones are possible),

t13 ¼ 0:5ðr=G1=2Þ½u cosðlxÞ þ w sinðlxÞ�0 � ¼ 0

t23 ¼ 0:5ðr=G1=2Þ½v cosðlyÞ þ w sinðlyÞ�0 � ¼ 0:
ð13:147Þ

In the equations just given lx and ly are the angles of inclination of the

topography in the x and y directions.

For the turbulent heat and moisture flux terms

H1
� ¼ H2

� ¼ 0 � ¼ 0;H

H3 ¼ 0 � ¼ 0:
ð13:148Þ

Though flux terms with bulk aerodynamic parameterizations (see Section

13.2.2.2) can be applied here for H3 at � ¼ 0.

13.3.6 Lateral boundary conditions for slab-symmetric models

and three-dimensional models

For slab-symmetric models and three-dimensional models, an equation nearly

identical to that proposed by Klemp and Wilhelmson (1978) is suggested

for un,

]un
]t

¼ un þ c�ð Þ ]un
]n

ð13:149Þ

where ]n is the distance in the normal direction, again calculations are

made using forward-upstream finite-difference schemes. In addition, that is

if un þ c� < 0, the advection term is set to zero. Similarly, for all other

variables, if un < 0 then the advection is again set to zero. In this equation
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c� is the intrinsic phase velocity of the dominant gravity wave mode moving

out through the normal boundary. Clark (1979) wrote that the Klemp and

Wilhelmson (1978) scheme led to an increase in the mean vertical velocity in

the domain, and proposed an alternative scheme first used by Orlanski

(1976). The Orlanski (1976) scheme is an extrapolation method and a mean

normal outflow velocity is computed for each layer at each normal boundary.

Interestingly, Tripoli and Cotton (1981) did not find this mean vertical velocity

drift reported by Clark (1979).

13.3.7 Lateral boundary conditions for axisymmetric models

The normal, lateral boundary condition for axisymmetric models is given

below. This equation replaces the equation of motion for un,

]un
]t

¼ un þ c�ð Þ ]un
]n

f þ v

r

� �
v; ð13:150Þ

where un is the normal outflow wind component and c� is the normal intrinsic

gravity wave phase speed. Calculations are made using forward-upstream

finite-difference techniques. That is, if un þ c� < 0, then the advection term is

set to zero. Similarly, for all other variables if un < 0 then the advection is

again set to zero. This is a variant of the Klemp and Wilhemson (1978)

version suggested by Rotunno and Emanuel (1987).
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Appendix

A. Identity proof for integrating log-normal distribution

In this first section we want to find a proof of identity that

ð1
1
exp 2b0xð Þ exp a0x2

� �
dx ¼ �

a0

r
exp

b02

a0

� �

We begin with the left-hand side and rearrange,

exp 2b0xð Þ exp a0x2
� � ¼ exp a0x2 þ 2b0x

� � ðA1Þ

¼ exp a0 x2
2b0

a0
x

� �� �
ðA2Þ

¼ exp a0 x2
2b0

a0
x

� �� �
ðA3Þ

¼ exp
b02

a0

� �
exp a0 x

b0

a0

� �2 !
: ðA4Þ

Now taking the integral from 1 to þ 1,

I ¼
ð1
1
exp 2b0xð Þ exp �a0x2

� �
dx ¼

ð1
1
exp

b02

a0

� �
exp �a0 x� b0

a0

� �2 !
dx ðA5Þ

I ¼
ð1
1
exp 2b0xð Þ exp �a0x2

� �
dx ¼ exp

b02

a0

� � ð1
1
exp �a0 x� b0

a0

� �2 !
dx ðA6Þ
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let p ¼ a0
p

x
b0

a0

� �

; dp ¼ a0
p

dx

or dx ¼ dp

a0
p

ðA7Þ

; I ¼ 1

a0
p exp

b02

a0

� � ð1
1
exp p2
� �

dp: ðA8Þ

Now we use a trick with dummy variables p and q

I2 ¼ II ¼ 1

a0
exp

2b02

a0

� � ð1
1
exp p2
� �

dp

ð1
1
exp q2
� �

dq; ðA9Þ

or

I2 ¼ 1

a0
exp

2b02

a0

� � ð1
1
exp p2 þ q2

� �� �
dpdq: ðA10Þ

We then switch to polar coordinates with

p ¼ r cos �

q ¼ r sin �
; ðA11Þ

so that it can be written that

r2 ¼ p2 þ q2

and

dpdq ¼ rdrd�;

ðA12Þ

where the limits on r and y are

r : 0 ! 1
� : 0 ! 2�:

ðA13Þ

Now it can be stated that

I2 ¼ 1

a0
exp

2b02

a0

� � ð1
0

ð2�
0

exp r2
� �� �

d�dr ðA14Þ
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or

I2 ¼ 2�

a0
exp

2b02

a0

� � ð1
0

exp r2
� �� �

dr; ðA15Þ

and with

u ¼ r2

du ¼ 2rdr

; rdr ¼ du

2
;

ðA16Þ

I2 ¼ 2�

a0
exp

2b02

a0

� � ð1
0

ð2�
0

exp r2
� �� �

dr; ðA17Þ

I2 ¼ 2�

a0
exp

2b02

a0

� � ð1
0

exp uð Þdu
2
; ðA18Þ

I2 ¼ �

a0
exp

2b02

a0

� �
exp uð Þ½ � 1

0 ; ðA19Þ

taking the root of (A19) to get I,

I ¼ �

a0

r
exp

b02

a0

� �
: ðA20Þ

Therefore,

ð1
1
exp 2b0xð Þ exp a0x2

� �
dx ¼ �

a0

r
exp

b02

a0

� �
; ðA21Þ

which proves the identity.

B. Gamma function

The gamma function is given from Gradshteyn and Ryzhik (1980) and

Abramowitz and Stegun (1964) such that

�ðxÞ ¼
ð1
0

tx 1 exp tð Þdt ðB1Þ

where Re x > 0.
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C. Incomplete gamma functions

The formulas for defining the incomplete gamma functions g(a,x) and G(a,x)
are the following,

� �; xð Þ ¼
ðx
0

t� 1 exp tð Þdt ðC1Þ

� �; xð Þ ¼
ð1
x

t� 1 exp tð Þdt ðC2Þ

where Re a > 0. The series approximations for these are usually stored in

lookup tables in models that use them by the following formulas (though care

must be taken at large n so G(nþ 1) does not get too large),

� �; xð Þ ¼
X1
n 0

1ð Þnx�þn

� nþ 1ð Þ �þ nð Þ; ðC3Þ

� �; xð Þ ¼ � �ð Þ
X1
n 0

1ð Þnx�þn

n! �þ nð Þ � 6¼ 0; 1; 2; :::½ �: ðC4Þ

We note also that

� �; xð Þ þ � �; xð Þ ¼ � �ð Þ: ðC5Þ
Finally, the derivatives are given as

d

dx
� �; xð Þ ¼ d

dx
� �; xð Þ ¼ x� 1 exp xð Þ: ðC6Þ

Other integrals that occasionally are used in microphysical parameterizations

can be found in Gradshteyn and Ryzhik (1980).
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Index

aerosols 5, 18, 343
prediction, of 343
riming 18
scavenging 18
sizes,
Aitken 1, 59
giant 1, 59, 344
large 59
ultra giant 1, 59, 344

sources of aerosols,
continental 64
maritime 64

aggregation 7
Aitken aerosols 1
atmospheric radiation 1
autoconversion 253, 254, 255, 336

aging period 253, 254
model timestep
parcel 254
trajectory 254; Eularian based 254;

Lagrangian 254, 337; mean cloud
content 254; time along trajectory 254

cloud drops 255
conversion 254
embryonic precipitation 255
ice crystals and snow aggregates riming to

graupel 267 270
Kessler et al. scheme 267; Lin et al. 267;

Rutledge and Hobbs 267
vapor deposition rate exceeding by riming rate

267, 268, 269; Cotton et al. scheme 268;
Farley et al. scheme 268; Milbrandt and
Yau scheme 267; Murakami scheme 267;
Seifert and Beheng scheme 269

ice crystals to form snow aggregates 264 266
Cotton et al. scheme 264 265; dispersion of

the fallspeed spectrum 265 266; variance
in particle fallout 265

Kessler scheme 264 265; Lin et al. 264;
Rutledge and Hobbs 264

Murakami scheme 265; length of time
265 266; mass of smallest snow
particle 266

parameterization, bulk ice
graupel and frozen drops into hail 270 271;

Farley et al. scheme 270; frozen drops to
small hail 270; graupel to small hail 270

Ziegler 270; dry growth 270; number
concentration conversion rate 271;
wet growth 270

parameterizations, bulk liquid, four
decades 336

accretion 338
aerosols, predict 336
Berry scheme 256; accretion 256;

autoconversion 256; Berry 262; dispersion
of cloud droplet size distribution 256;
Lin et al. 262; self collection 256; turn off
the autoconversion 262

Berry and Reinhardt scheme 257
characteristic timescale 258
cloud accretion by rain 259
cloud droplet distributions 257
dispersion 257
drizzle mean volume diameter 261
Golovin distribution shape parameter 260
hybrid bin approach 261
initial cloud droplet diameters 260
mass relative variance 258
mean mass 258
mean cloud drop sizes 257
misconceptions 257
number concentration rates 257
rain mass 258
rain number concentration 258; hump

258 259, 261
rain self collection 258 259
timescale 258

Kessler scheme 256; broadening of cloud
droplet spectrum 257; cloud condensation
nuclei 257; deep convection in the tropics
257; fine tuning 257; maritime boundary
layers 257

Khairoutdinov and Kogan scheme 262; large
eddy simulations of stratocumulus clouds
262; mean volume radius 263; number
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concentration rate 263; two moment
parameterization 262

Manton and Cotton scheme 261; collisional
frequency, cloud drops 261; continental
regimes 261; maritime regimes 261; rain
and drizzle 338; self collection 338

raindrops 255

beta function 64, 67
breakup 5, 17

characteristic diameter 4, 20, 21
cirrus clouds 18
Clausius Clapeyron equation 101, 113, 115
cloud chemistry 1
cloud condensation nuclei 18, 59

parameterization 59
activation spectrum coefficients, four 64,

65, 67; activation size spectrum 67;
chemical composition 67; Kelvin’s size
effect 64; Raoult’s solution effect 64;
solubility 67

advection terms 70
diffusion terms 70
number activated 62, 63, 69; continental 62;

derivatives of supersaturation 62;
Gaussian distribution 69; maritime 62

number concentration 59, 64; available 63;
factors that influence activation 64;
spectrum of cloud condensation nuclei 70

salt compounds 59
cloud dynamics 1
cloud electrification 1
cloud microphysics 1
cloud optics 1
cloud particles 1
coalescence efficiency 153
cold rain processes 4
collection efficiency 153
collection growth 4, 17, 152, 340

collision, possibilities
coalescence 153
rebound 153
separation 153

collection kernel 153
collection efficiency 165
geometric sweep out area 165
geometric sweep out volume per

second 165, 167
gravitational 165
hydrodyamical capture 165

polynomials 165
probability of collision 165
probability of sticking 165

ice crystals collecting cloud water 226 228
ice crystals collecting ice crystals 228 230
large ice hydrometeors collecting cloud

water 226
rain collecting cloud water 217

cloud drop and raindrop collection efficiencies
222; coalescence efficiency 222; collection

efficiency 222; polynomials 166;
probabilities 222

three models of 153
continuous growth 152, 153, 156, 166 168;

parameterization: gamma distribution
173 176; large drop 166; log normal
distribution 176 177; small droplet 166;
sweep out area 167, 174, 175; two body
problem 166

general collection equation 177; gamma
distribution 177, 178, 179, 180, 181, 182;
hybrid parameterization bin model 195;
log normal distribution 183 188; Long’s
kernel 191 194; Mizuno approximation
189; Murakami approximation 189;
parameterization: analytical solution
194 195; self collection 196 197;
weighted root mean square
approximation 190 191; Wisner
approximation 177, 188 189

numerical approximation techniques,
198; method of fluxes 217 222; method of
moments 207 210, 210 217; methods of
interpolation 199 207, 200 207; quasi
stochastic growth equations 198

pure stochastic growth 153, 155, 159; Poisson
153, 155; probabilistic 153, 155; root
mean square deviation 162; statistical 152

quasi stochastic growth 153, 154, 156, 168;
approximate 168; Berry and Reinhardt
interpretation 169, 170, 171, 173;
collection kernel 169; discrete 153, 154; gain
sum 169; loss sum 169; root mean square
deviation 158; width of spectrum 158

reflectivity changes 197
self collection: analytical solution 195 196,

196 197
collision efficiency 153
collisional growth 153

electrical effects 153
fall velocities 153
names
accretion growth 153
aggregation growth 153
coalescence growth 153
collision growth 153
riming growth 153

number of coalescing collisions 153
size 153
trajectory of particles 153
turbulent effects 153

computational cost 3
computational resources 3
condensation 5, 101, 102, 111
conversion 253

aging period 253
bin model 253
grid scale 253
homogeneous freezing of liquid 253
measurements, few 253
sub grid scale 253
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conversion processes 5, 17
cloud droplets to rain droplets 264
broadening of distribution 264
Farley et al. type approach 264; mixing ratio

264; number concentration 264
conversion of graupel and frozen drops to hail

344 345
heat budgets used to determine conversion

272 278
diffusive fluxes 272
implicit system of equations 272
temperature equation 273; hydrometeor

surfaces 273
ice particles collecting cloud water 271 272
Ferrier et al. like scheme 271; frozen drops

272; graupel: high density graupel 272;
low density graupel 272; medium density
graupel 272

ice particles collecting rain water 272
frozen drops 272
graupel: high density graupel 272; low density

graupel 272; medium density graupel 272
probabilistic (immersion) freezing 278
heterogeneous freezing process 278; Bigg

scheme 278, 279, 280 282; freezing nuclei
278; high density ice water particles 278;
Vali scheme 279 280, 283

two and three body 283
Milbrandt and Yau scheme 285
rime densities, 1961; impact velocity 284
riming age 283
Straka model 286; Farley et al. like scheme 286
sufficient amount of riming 284
three body interactions 283
two body interactions 283
variable density 284

curvature 109

degrees of freedom 5
density changes 7
density changes in graupel and frozen drops

collecting cloud water 290
density changes in graupel and frozen drops

collecting drizzle or rain water 286
density parameterizations and prediction,

graupel 289 290
deposition 139
differential fallspeeds 152

densities 152
shapes 152
sizes 152

differential sedimentation 5, 7
diffusivity of water vapor 80, 103, 140
distribution shape parameter 4
distributions 3

diameter 3
gamma 23
partial 3
rain 3
size 3

drizzle 102

drop size 102
droplets 102
dry growth of hail 7

effective diameter 31 32
gamma distribution

complete gamma distribution 32
gamma distribution 32
log normal distribution 42 43
modified gamma distribution 32
negative exponential distribution 32

radiation physics 31
empirical fits 5
evaporation 5, 101, 102, 344

freezing of raindrops 7
frozen drops 7
functional relationships 19

gamma function
complete 20
incomplete 20

Gauss’ hypergeometric function 67, 196
giant aerosols 1
gravitational effects 152

hail embryos 7
hail growth 17, 293
collection efficiencies of cloud water 306
large amounts of hail 297
large hail 297
microphysical recycling 307 311

explanation for high and low density
ice layers 307

microphysical variability 297
models 293

detailed 293
low density growth 294; drag coefficients 294
low density riming 296
simple 293

trajectories, right 297
very large hail 297

variable density hail growth 307
densities 307
mass weighted sources and sinks 311
mixing ratio tendencies 311

wet growth 296, 297, 298
definition of ice particle classified as hail 296
heat budget equation 298, 303; melting 298;

terms: conduction 298, 299; enthalpy of
freezing 298, 299, 300; sensible heat 298;
vapor deposition 298, 299; growth modes,
six 305, 306; hysteresis 304; mixing ratio
equation 300, 301; Schumann Ludlam
limit 303, 304, 305; temperature equation
ofhailstone301, 302, 303;wetgrowth:mixed
phase growth 296, spongy wet growth 298

heterogeneous nucleation 18
ice

Brownian motion 74; contact nucleation 73;
diffusiophoresis 75, 76;
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Fletcher ice nucleus curve fit 72; ice
deposition number concentration 59, 72;
secondary ice nucleation 76; size 74;
thermophoresis 74, 75

liquid, of 59
bin parameterization models 68
function, of: activation coefficients 59

homogeneous freezing 5, 70
cloud drops 71

fraction of freezing 71
supercooled liquid drops freeze 71

hydrodynamic instability 231
bag breakup 231, 234

aerodynamical forces 234; collisional energy
234; drag force 231; stochastic
breakup 236, 237; surface tension
stress 231

collisional breakup 231, 232
disk 232, 234; aerodynamical forces 234;

collisional energy 234
filament or neck 232; glancing collisions 232
sheet 232, 233 234
parameterization: bin model 237,

239 241, 241 242; method of moments:
one moment 248 251; multiple moments
251 252

hydrometeor packets 2
hydrometeors 2

ice microdynamics 18
ice nuclei 18, 59

parameterization 59
number concentration 59

Kelvin curves 59
Kelvin’s law 118 120

critical radius 119
curvature effects 118, 120
droplet radii 118
ice 139
surface tension of liquid water 118, 119

free energy per unit area 119
hydrogen bonds 119
supercritical radius 119
temperature 119; function of 118
thermal agitation 119

kinetic effects 101, 122
accommodation coefficient 123
condensation coefficient 122
Knudsen number 122
mean free path 122
particle radius 122

Kohler curves 63, 64, 121
dependent on,

chemical nature of CCN, 63
critical radius 121
critical saturation ratio 122
curvature effects 121
hygroscopic behavior 63
Knudsen number 74
size criteria (critical diameter) 63, 64, 68

solute effects 64, 121
supersaturation criteria met 64
thermodynamic variables 63

lightning 1
lookup tables 4

mass weighted mean diameter 30 31
gamma distribution 30
complete gamma distribution 30
gamma distribution 31
modified gamma distribution 31
negative exponential distribution 31

mean volume diameter 31
median diameter 33, 33 34

gamma distribution 34
complete gamma distribution 34
gamma distribution 34
modified gamma distribution 34
negative exponential distribution 34

melting 7, 17, 312
graupels and hailstones 313 315
graupel: do not shed 315

heat budget terms 312, 315
conduction 312, 315
sensible heat 312, 315
vapor diffusion 312, 315; ventilation

coefficient 316
mass melting equation 317
mixed phase particle 326
amount of liquid 326; Chong and Chen

scheme 327; Rasmussen and Heymsfield
scheme 326

parameterizations 323
bin 312, 313
bulk 312; complete 323; gamma distributions

323 324: gamma 324; modified 324;
number concentration 324

log normal 324
Lagrangian 312

porous ice soaking liquid water
graupel 313
frozen drops 313
hailstones 313; shedding liquid water 313

Reynolds number dependent 312
simple 312
shedding hail 328 330
parameterization 330 333; critical mass 332;

gamma distribution 331; graupel and
frozen drops 331; mixing ratio 333;
number concentration 333; torus 329

small ice particles 318
Fick’s first law for temperature 318
internal circulations 318, 320

snow aggregates, flakes 313, 320 323
electrostatic analog 320
low relative humidities 313
no shedding 313
oblate spheroid 320
ventilation coefficient 322

sophisticated 312
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microphysical parameterization 1
microphysical prognostic equations 51 57

characteristic diameter 51 54
density, particle 22
Lagrangian cloud exposure time 55
Lagrangian equation 55

Lagrangian mean cloud mixing ratio 56
mean cloud water 56

mixing ratio 49
deposition, of 19
rime, of 21
rime density 20

number concentration 51
reflectivity 51

mixed phase 7
mixing ratio 3
modal diameter 32 33

gamma distribution
complete gamma distribution 33
gamma distribution 33
log normal distribution 44
modified gamma distribution 33
negative exponential 33

models
Weather Research and Forecast model

(WRF), 258
Regional Atmospheric Modeling System

V.3.b 258
moment 4, 19

bin models 19, 58
gamma distribution 27 28
complete gamma distribution 27
gamma distribution 28
modified gamma distribution 28
negative exponential distribution 28

log normal distribution 42
mixing ratio 2, 46 47
third moment 36 37, 46

number concentration 28
prediction in cloud models 29
zeroth moment, 28 29; complete gamma

distribution 28; gamma distribution 29;
modified gamma distribution 29; negative
exponential 29

reflectivity 37 39, 47 48; sixth moment
34 35, 38, 47 48; shape parameter 39

surface area, total 34 35, 45
second moment 34 35; complete gamma

distribution 34; electrification
parameterizations 34; gamma distribution
35; log normal distribution 45; modified
gamma distribution 35; negative
exponential 35

nucleation 5, 17, 343 344
heterogeneous 59
ice 59; ice nuclei versus cloud condensation

nuclei 60; requirements 61
liquid parameterizations 63; activation

coefficients 59, 64; supersaturations 64;
temperatures 64; vertical velocities 64

homogeneous 59
ice 59
supersaturations 59

primary ice nucleation mechanism 5
contact 5, 60; bacteria 60; clay 60
deposition 5, 60
freezing 5, 60
immersion 5, 60
sorption 5, 60

secondary ice nucleation mechanisms 7
mechanical fracturing 7
rime splintering 7

nuclei 7
continental 3, 7
maritime 7

number concentration 3, 4, 7
activated condensation nuclei 64
cloud condensation nuclei 64
prediction of aerosols 343
total 19

number concentration weighted mean
diameter 29 30

spherical hydrometeor 29; complete gamma
distribution 29; gamma distribution 30;
log normal distribution 42 43; modified
gamma distribution 30; negative
exponential 30

number concentration weighted mean
diameter 29 30

spherical hydrometeor 29
complete gamma distribution 29
gamma distribution 30
modified gamma distribution 30
negative exponential 30

number density function 19
number distribution functions 3
bin models 57

exponential functions 57
logarithmic scales 57
mass scale 58

gamma distribution 3, 20, 23, 26
complete gamma distribution 20, 23, 27
gamma distribution 25, 27
modified gamma distribution 25, 27
negative exponential distribution 27;

Marshall Palmer distribution 27
spectral gamma distribution density function 24

half normal 26
log normal 3, 26 27

scaling diameter 27
mono dispersed 3
negative exponential 3, 25 26
normal 26

numerical model
axisymmetric models 3, 350 353

cylindrical coordinates 350
equations: buoyancy, diffusion 351; horizontal

momentum equations 350; mixing ratio
351; number concentration 351; quasi
compressible continuity equation,
anelastic 351; Richardson number 353;
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saturated 353; stress tensors 352;
thermodynamic equation 351;
unsaturated 352; vapor mixing ratio 351;
vertical momentum equation 350

finite differences 353
dynamical 17
one and a half dimensional model 346 348

cylindrical coordinate 346
equations: continuity equation 346; mixing

ratio 347; number concentration 347;
thermodynamic equation 347; vapor
mixing ratio 347; vertical momentum
equation 346

finite differences: second order 348
one dimensional models 4, 68
slab symmetric models 3, 348 349

equations, continuity equation, anelastic 349;
horizontal momentum equation 349;
mixing ratio 349; number concentration
349; thermodynamic equation 349; vapor
mixing ratio 349; vertical momentum
equation 349

finite differences, 349 350; diffusion 350;
scalars 350; second order 349; velocity 350

three dimension models 3, 355
equations, buoyancy 357; continuity equation,

compressible 355, 356, 357 358;
deformation tensor 355; horizontal
momentum 349; ideal gas 356; moisture
360 361; Poisson’s 356; speed of sound;
terrain following coordinate system 355;
thermodynamic equation 359; turbulent
kinetic energy 359 360; vapor mixing
ratio 349; vertical momentum
equation 349

finite differences, non orthogonal terrain
following system 361 362; boundary
conditions 363 364; lateral boundary
conditions, 364, 365; lower and
upper boundary conditions 354 355;
second order finite differences 362 355

two dimensional models 3
numerical weather prediction 1

observations 25

parameterizations 2
bin 3, 19, 21, 57 58
bulk 3, 19, 21
cold rain 2
hybrid bin 61, 19
Lagrangian trajectory 2
warm rain 4

partial vapor pressure 119
particle embryos 7
power laws 21

diameter
diameter 22
length 22
thickness 22

density 21, 22 23

mass 21 22
terminal velocity 21, 23

probability density function 19
normalizable 19
parameterizations 19
degrees of freedom 19
integratable 19

prognostic equations
rime density equation 292
Straka approach 292

rime equation
Morrison and Grabowski scheme 291
Straka approach 292

vapor deposition equation 291
Morrison and Grabowski scheme 291

pure 109

quantitative precipitation forecasts 1

radar 1
raindrops 102
rainfall rate 39

gamma distribution function 39
complete 39
distribution 39
modified 39
negative exponential 39

Raoult’s law
Avogadro’s number 120
equilibrium vapor pressure 119
ice, for 139
ionic dissociation 120
solutes 120
Van’t Hoff factor 120
ionic availability 120; ammonium sulfate 120;

sodium chloride 120
reflectivity 3, 37 39

prediction 345
shape parameter, variable diagnosed 345

riming 7

saturation 112
saturation ratio, ambient 113

saturation adjustments 17
bin parameterization models 79
bulk parameterization models 79
condensation 79
explicit schemes: time splitting 80

nucleation 79
explicit schemes 79
multiple regression 93 94; bulk condensation

rate, first guess 95; regression coefficients
95; revised bulk condensation rate 93

ratio prediction 86
liquid and ice mixture 100

schemes 78
cloud droplets 78; ice crystals, mixtures

with 78
enthalpy of condensation/evaporation 78
enthalpy of deposition/sublimation 78
ice crystals 78
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ice saturation adjustment 86; non iterative:
Rutledge and Hobbs type 86; Soong and
Ogura type 87

iteration 78
liquid saturation adjustment 81

bin models 81, 93 94; cloud condensation
nuclei 92

iterative 81; Bryan and Fritsch 81
Langlois type 78; condensation rate 84;
first law of thermodynamics 84

non iterative 81
Rutledge and Hobbs 81
Soong and Ogura type 82 83; pressure
adjustments 82

liquid ice mixtures
ice liquid water potential temperature 90 91
Tao type 87; mixed phase saturation

adjustment 87; supersaturation with
respect to ice permitted 90

non iterative 78
phase relaxation timescale 80
supersaturation 78
degree of 80; cloud drop number

concentration 80; radius, average cloud
droplet 80

dynamical 79
prediction of 79

scale factor 24
scaling diameter 20
self collection 5
shape parameter 19
shedding 7
size spectrum 3
slope 4, 20

distribution, of 21
intercept 20

soaking 7
solute concentrations 3
solutes 102
species 4

cloud droplets 5, 14 17
drizzle 1, 14 17
frozen drops, from 293; warm cloud bases 293;

warm rain process 293
graupel 7, 9 10
graupel, from 293; cold cloud bases 293
hail 2, 7 8, 293
National Weather Service 293; severe weather

293; very severe weather 293
ice crystals 7, 11 13
rain 1, 5, 14 17
snow aggregate 1, 7, 10
snow crystals 1

specific heat 111
spectral number density function 19, 20, 21

gamma 21
log normal 21

steady state diffusion processes 101
sublimation 7, 139

enthalpy 139
subsaturation with respect to ice 139

subsaturation with respect to liquid 101
supersaturation with respect to ice 139
supersaturation with respect to liquid 63, 101
dependent on

non homogeneous mixing 63
pressure 63
saturation mixing ratio with respect to

liquid 63
temperature 63
vertical motion 63

terminal velocity 23, 42, 48, 164
collection equation 23
equations,

derived 164; sphere 164
empirical 164

sedimentation 23
hybrid bin model 340
mass/mixing ratio weighted mean 23, 40;

gamma distribution function 39, 40, 48 49
number weighted mean 23, 40 41, 49 50;

gamma distribution function 41
reflectivity weighted mean 23, 25, 41 42;

gamma distribution function 41, 42
three moment scheme 340; shape parameter,

diagnose 340
terrestrial radiation 1
thermal diffusion 101, 102, 109, 140
continuity equation for temperature 106, 141
energy change owing to temperature

gradients 109
energy transfer

Fick’s first law of diffusion 101
non divergent 106
temperature change 111
temperature gradients 106
thermal conductivity 106, 112
thermal diffusivity 111
thermal effects 106 109

timestep 4
total downward projected area 35 36
complete gamma distribution 35,
gamma distribution 36
log normal distribution 45 46
modified gamma distribution 36
negative exponential 36

ultra giant aerosols 1
unsaturated 112

vapor deposition 7
vapor diffusion 17, 101, 102, 109, 114, 139, 140
advective effects 102, 109, 140

laboratory experiments 140
basic assumptions 102

competitive effects 102
critical radius 102
isolated 102
kinetic effects 102
solution effects 102
stationary 102, 103, 140
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vapor diffusion (cont.)
steady state 102
ventilation coefficient 102; air flow velocity

103, 140; vapor flow velocity 103, 140
bin parameterization model 102

Kovetz and Olund method 135
Tzivion et al. method 102, 135

bulk parameterizations 124
gamma distribution; complete gamma

distribution 130, 131, 144, 145;
gamma distribution 131, 145; modified
gamma distribution 130, 131, 145;
number concentration change 131, 145

higher order functions 124; first order 124;
fourth order mass rate equation 128;
second order mass rate equation 127;
third order mass rate equation 128

log normal distribution 132, 146
Byers 116, 142
continuity equation 103, 140
electrostatic analog 139

shapes, general: oblates 139; prolates 139;
sphere 139; thin plates 139

Fick’s law of diffusion 103, 140
ice shapes

bullets 139
columns 139
dendrites 139
needles 139
plates 139
sectors 139
spheres 139
stellars 139

ideal vapor 113
isotropy 103
kinetic effects 101
non divergent 103, 140
plane, pure liquid water surfaces 109 116
mass change rate 114

mass flux 102 106, 109
microscale approximations 138

turbulent fluctuations 138
Rogers and Yau 115, 142

correction term 116, 142 143
shape factors for ice crystals 139
spherical coordinates 103
steady state 101
surface curvature 102

vapor gradients 106
ventilation effect 116 118
condensation 116
drops moving relative to flow 116
evaporation
falling drops 116
heat 116
heat convected 116
ice 139, 148; extreme prolate spheroids 151;

hexagonal plate 149; oblate spheroids
150; prolate spheroids 151; sphere 149

vapor 116
vapor supply enhanced 116
ventilation coefficients 117

heat flux equation 117
heat ventilation coefficient 117
heat ventilation equations 118
mass ventilation coefficient 117
vapor flux equation 117
vapor ventilation equations 118, 143
Prandtl number 117; Reynolds number
117, 143; Schmidt number 117, 142 143;
vapor diffusivity 117

warm rain 2
water vapor density 103
wet bulb relationship 112

implicit system of equations 115
numerical iterative techniques 115

wet growth of hail 7
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