
PART

I
DATABASE CONCEPTS

1Database Systems

2Data Models

C6545_01 5/23/2007 9:50:10 Page 2

B
V

usiness
ignette

The Relational Revolution

Today, we take for granted the benefits brought to us by relational databases: the ability

to store, access, and change data quickly and easily on low-cost computers.Yet, until the

late 1970s, databases stored large amounts of data in a hierarchical structure that was

difficult to navigate and inflexible. Programmers needed to know what clients wanted to

do with the data before the database was designed.Adding or changing the way the data

was analyzed was a time-consuming and expensive process. As a result, you searched

through huge card catalogs to find a library book, you used road maps that didn’t show

changes made in the last year, and you had to buy a newspaper to find information on

stock prices.

In 1970, Edgar “Ted” Codd, a mathematician employed by IBM, wrote an article that

would change all that. At the time, nobody realized that Codd’s obscure theories would

spark a technological revolution on par with the development of personal computers and

the Internet. Don Chamberlin, coinventor of SQL, the most popular computer language

used by database systems today, explains, “There was this guy Ted Codd who had some

kind of strange mathematical notation, but nobody took it very seriously.” Then Ted Codd

organized a symposium, and Chamberlin listened as Codd reduced complicated five-page

programs to one line. “And I said, ‘Wow,’” Chamberlin recalls.

The symposium convinced IBM to fund System R, a research project that built a

prototype of a relational database and that would eventually lead to the creation of SQL

and DB2. IBM, however, kept System R on the back burner for a number of crucial years.

The company had a vested interest in IMS, a reliable, high-end database system that had

come out in 1968. Unaware of the market potential of this research, IBM allowed its staff

to publish these papers publicly.

Among those reading these papers was Larry Ellison, who had just founded a small

company. Recruiting programmers from System R and the University of California, Ellison

was able to market the first SQL-based relational database in 1979, well before IBM. By

1983, the company had released a portable version of the database, grossed over

$5,000,000 annually and changed its name to Oracle. Spurred on by competition, IBM

finally released SQL/DS, its first relational database, in 1980.

By 2007, global sales of database management systems topped $15 billion with Oracle

capturing roughly half of the market share and IBM trailing at under a quarter. Microsoft’s

SQL Server market share grew faster than its competitors, climbing to 14%.

C6545_01 8/14/2007 17:23:51 Page 3

Preview

Database Systems

In this chapter, you will learn:

� The difference between data and information

� What a database is, what the various types of databases are, and why they are valuable assets
for decision making

� The importance of database design

� How modern databases evolved from file systems

� About flaws in file system data management

� What the database system’s main components are and how a database system differs from
a file system

� The main functions of a database management system (DBMS)

Good decisions require good information that is derived from raw facts.These raw facts are

known as data. Data are likely to be managed most efficiently when they are stored in a

database. In this chapter, you learn what a database is, what it does, and why it yields better

results than other data management methods. You also learn about various types of

databases and why database design is so important.

Databases evolved from computer file systems. Although file system data management is

now largely outmoded, understanding the characteristics of file systems is important

because file systems are the source of serious data management limitations. In this chapter,

you also learn how the database system approach helps eliminate most of the shortcomings

of file system data management.

1
O

N
E

C6545_01 5/23/2007 9:50:58 Page 4

1.1 DATA VS. INFORMATION

To understand what drives database design, you must understand the difference between data and information. Data
are raw facts. The word raw indicates that the facts have not yet been processed to reveal their meaning. For example,
suppose that you want to know what the users of a computer lab think of its services. Typically, you would begin by
surveying users to assess the computer lab’s performance. Figure 1.1, Panel A, shows the Web survey form that
enables users to respond to your questions. When the survey form has been completed, the form’s raw data are saved
to a data repository, such as the one shown in Figure 1.1, Panel B. Although you now have the facts in hand, they
are not particularly useful in this format—reading page after page of zeros and ones is not likely to provide much
insight. Therefore, you transform the raw data into a data summary like the one shown in Figure 1.1, Panel C. Now
it’s possible to get quick answers to questions such as “What is the composition of our lab’s customer base?” In this
case, you can quickly determine that most of your customers are juniors (24.59%) and seniors (53.01%). Because
graphics can enhance your ability to quickly extract meaning from data, you show the data summary bar graph in
Figure 1.1, Panel D.

a) Initial Survey Screen b) Raw Data

c) Information in Summary Format d) Information in Graphic Format

FIGURE
1.1

Transforming raw data into information

C6545_01 5/23/2007 11:32:19 Page 5

5D A T A B A S E S Y S T E M S

Information is the result of processing raw data to reveal its meaning. Data processing can be as simple as organizing
data to reveal patterns or as complex as making forecasts or drawing inferences using statistical modeling. To reveal
meaning, information requires context. For example, an average temperature reading of 105 degrees does not mean
much unless you also know its context: Is this in degrees Fahrenheit or Celsius? Is this a machine temperature, a body
temperature, or an outside air temperature? Information can be used as the foundation for decision making. For
example, the data summary for each question on the survey form can point out the lab’s strengths and weaknesses,
helping you to make informed decisions to better meet the needs of lab customers.

Keep in mind that raw data must be properly formatted for storage, processing, and presentation. For example, in
Panel C of Figure 1.1, the student classification is formatted to show the results based on the classifications Freshman,
Sophomore, Junior, Senior, and Graduate Student. The respondents’ yes/no responses might need to be converted
to a Y/N format for data storage. More complex formatting is required when working with complex data types, such
as sounds, videos, or images.

In this “information age,” production of accurate, relevant, and timely information is the key to good decision making.
In turn, good decision making is the key to business survival in a global market. We are now said to be entering the
“knowledge age.”1 Data are the foundation of information, which is the bedrock of knowledge—that is, the body of
information and facts about a specific subject. Knowledge implies familiarity, awareness, and understanding of
information as it applies to an environment. A key characteristic of knowledge is that “new” knowledge can be derived
from “old” knowledge.

Let’s summarize some key points:

� Data constitute the building blocks of information.

� Information is produced by processing data.

� Information is used to reveal the meaning of data.

� Accurate, relevant, and timely information is the key to good decision making.

� Good decision making is the key to organizational survival in a global environment.

Timely and useful information requires accurate data. Such data must be generated properly, and it must be stored in
a format that is easy to access and process. And, like any basic resource, the data environment must be managed
carefully. Data management is a discipline that focuses on the proper generation, storage, and retrieval of data.
Given the crucial role that data plays, it should not surprise you that data management is a core activity for any
business, government agency, service organization, or charity.

1.2 INTRODUCING THE DATABASE AND THE DBMS

Efficient data management typically requires the use of a computer database. A database is a shared, integrated
computer structure that stores a collection of:

� End-user data, that is, raw facts of interest to the end user.

� Metadata, or data about data, through which the end-user data are integrated and managed.

The metadata provide a description of the data characteristics and the set of relationships that link the data found
within the database. For example, the metadata component stores information such as the name of each data element,
the type of values (numeric, dates or text) stored on each data element, whether or not the data element can be left
empty, and so on. Therefore, the metadata provide information that complements and expands the value and use of
the data. In short, metadata present a more complete picture of the data in the database. Given the characteristics of
metadata, you might hear a database described as a “collection of self-describing data.”

1 Peter Drucker coined the phrase “knowledge worker” in 1959 in his book Landmarks of Tomorrow. In 1994, Ms. Esther Dyson, Mr. George Gilder,
Dr. George Keyworth, and Dr. Alvin Toffler introduced the concept of the “knowledge age.”

C6545_01 7/12/2007 11:36:30 Page 6

6 C H A P T E R 1

A database management system (DBMS) is a collection of programs that manages the database structure and
controls access to the data stored in the database. In a sense, a database resembles a very well-organized electronic
filing cabinet in which powerful software, known as a database management system, helps manage the cabinet’s
contents.

1.2.1 Role and Advantages of the DBMS

The DBMS serves as the intermediary between the user and the database. The database structure itself is stored as a
collection of files, and the only way to access the data in those files is through the DBMS. Figure 1.2 emphasizes the
point that the DBMS presents the end user (or application program) with a single, integrated view of the data in the
database. The DBMS receives all application requests and translates them into the complex operations required to fulfill
those requests. The DBMS hides much of the database’s internal complexity from the application programs and users.
The application program might be written by a programmer using a programming language such as Visual Basic.NET,
Java, or C++, or it might be created through a DBMS utility program.

Having a DBMS between the end user’s applications and the database offers some important advantages. First, the
DBMS enables the data in the database to be shared among multiple applications or users. Second, the DBMS
integrates the many different users’ views of the data into a single all-encompassing data repository.

Because data are the crucial raw material from which information is derived, you must have a good method to manage
such data. As you will discover in this book, the DBMS helps make data management more efficient and effective. In
particular, a DBMS provides advantages such as:

� Improved data sharing. The DBMS helps create an environment in which end users have better access to
more data and better-managed data. Such access makes it possible for end users to respond quickly to changes
in their environment.

� Improved data security. The more users access the data, the greater the risks of data security breaches.
Corporations invest considerable amounts of time, effort, and money to ensure that corporate data are used
properly. A DBMS provides a framework for better enforcement of data privacy and security policies.

End users

End users

Application
request

Data

Application
request Data

Database structure

DBMS
Database

Management System

Customers

Invoices

Products

Metadata

End-user
data

Single

Integrated

http://

FIGURE
1.2

The DBMS manages the interaction between the end user and the database

View of Data

C6545_01 5/23/2007 11:34:27 Page 7

7D A T A B A S E S Y S T E M S

� Better data integration. Wider access to well-managed data promotes an integrated view of the organization’s
operations and a clearer view of the big picture. It becomes much easier to see how actions in one segment
of the company affect other segments.

� Minimized data inconsistency. Data inconsistency exists when different versions of the same data appear
in different places. For example, data inconsistency exists when a company’s sales department stores a sales
representative’s name as “Bill Brown” and the company’s personnel department stores that same person’s
name as “William G. Brown” or when the company’s regional sales office shows the price of a product as
$45.95 and its national sales office shows the same product’s price as $43.95. The probability of data
inconsistency is greatly reduced in a properly designed database.

� Improved data access. The DBMS makes it possible to produce quick answers to ad hoc queries. From a
database perspective, a query is a specific request issued to the DBMS for data manipulation—for example,
to read or update the data. Simply put, a query is a question, and an ad hoc query is a spur-of-the-moment
question. The DBMS sends back an answer (called the query result set) to the application. For example, end
users, when dealing with large amounts of sales data, might want quick answers to questions (ad hoc queries)
such as:

- What was the dollar volume of sales by product during the past six months?

- What is the sales bonus figure for each of our salespeople during the past three months?

- How many of our customers have credit balances of $3,000 or more?

� Improved decision making. Better-managed data and improved data access make it possible to generate better
quality information, on which better decisions are based.

� Increased end-user productivity. The availability of data, combined with the tools that transform data into
usable information, empowers end users to make quick, informed decisions that can make the difference
between success and failure in the global economy.

The advantages of using a DBMS are not limited to the few just listed. In fact, you will discover many more advantages
as you learn more about the technical details of databases and their proper design.

1.2.2 Types of Databases

A DBMS can support many different types of databases. Databases can be classified according to the number of users,
the database location(s), and the expected type and extent of use.

The number of users determines whether the database is classified as single-user or multiuser. A single-user
database supports only one user at a time. In other words, if user A is using the database, users B and C must wait
until user A is done. A single-user database that runs on a personal computer is called a desktop database. In
contrast, a multiuser database supports multiple users at the same time. When the multiuser database supports a
relatively small number of users (usually fewer than 50) or a specific department within an organization, it is called a
workgroup database. When the database is used by the entire organization and supports many users (more than 50,
usually hundreds) across many departments, the database is known as an enterprise database.

Location might also be used to classify the database. For example, a database that supports data located at a single
site is called a centralized database. A database that supports data distributed across several different sites is called
a distributed database. The extent to which a database can be distributed and the way in which such distribution
is managed is addressed in detail in Chapter 12, Distributed Database Management Systems.

The most popular way of classifying databases today, however, is based on how they will be used and on the time
sensitivity of the information gathered from them. For example, transactions such as product or service sales,
payments, and supply purchases reflect critical day-to-day operations. Such transactions must be recorded accurately
and immediately. A database that is designed primarily to support a company’s day-to-day operations is classified as
an operational database (sometimes referred to as a transactional or production database). In contrast, a data
warehouse focuses primarily on storing data used to generate information required to make tactical or strategic

C6545_01 5/23/2007 11:43:27 Page 8

8 C H A P T E R 1

decisions. Such decisions typically require extensive “data massaging” (data manipulation) to extract information to
formulate pricing decisions, sales forecasts, market positioning, and so on. Most decision-support data are based on
historical data obtained from operational databases. Additionally, the data warehouse can store data derived from many
sources. To make it easier to retrieve such data, the data warehouse structure is quite different from that of an
operational or transactional database. The design, implementation, and use of data warehouses are covered in detail
in Chapter 13, Business Intelligence and Data Warehouses.

Databases can also be classified to reflect the degree to which the data are structured. Unstructured data are data that
exist in their original (raw) state, that is, in the format in which they were collected. Therefore, unstructured data exist
in a format that does not lend itself to the processing that yields information. Structured data are the result of taking
unstructured data and formatting (structuring) such data to facilitate storage, use, and the generation of information.
You apply structure (format) based on the type of processing that you intend to perform on the data. Some data might
be not ready (unstructured) for some types of processing, but they might be ready (structured) for other types of
processing. For example, the data value 37890 might refer to a zip code, a sales value, or a product code. If this value
represents a zip code or a product code and is stored as text, you cannot perform mathematical computations with
it. On the other hand, if this value represents a sales transaction, it is necessary to format it as numeric.

To further illustrate the structure concept, imagine a stack of printed paper invoices. If you want to merely store these
invoices as images for future retrieval and display, you can scan them and save them in a graphic format. On the other
hand, if you want to derive information such as monthly totals and average sales, such graphic storage would not be
useful. Instead, you could store the invoice data in a (structured) spreadsheet format so that you can perform the
requisite computations. Actually, most data you encounter is best classified as semistructured. Semistructured data
are data that have already been processed to some extent. For example, if you look at a typical Web page, the data
are presented to you in a prearranged format to convey some information.

The database types mentioned thus far focus on the storage and management of highly structured data. However,
corporations are not limited to the use of structured data. They also use semistructured and unstructured data. Just
think of the very valuable information that can be found on company e-mails, memos, documents such as procedures
and rules, Web page contents, and so on. Unstructured and semistructured data storage and management needs are
being addressed through a new generation of databases known as XML databases. Extensible Markup Language
(XML) is a special language used to represent and manipulate data elements in a textual format. An XML database
supports the storage and management of semistructured XML data.

Table 1.1 compares features of several well-known database management systems.

TABLE
1.1

Types of Databases

PRODUCT
NUMBER OF USERS DATA LOCATION DATA USAGE XML
SINGLE
USER

MULTIUSER
CENTRALIZED DISTRIBUTED OPERATIONAL

DATA
WAREHOUSEWORK-GROUP ENTER-PRISE

MS Access X X X X
MS SQL
Server

X2 X X X X X X X

IBM DB2 X2 X X X X X X X
MySQL X X X X X X X X*
Oracle
RDBMS

X2 X X X X X X X

* Supports XML functions only. XML data is stored in large text objects.

2 Vendor offers single-user/personal DBMS version.

C6545_01 5/23/2007 11:42:36 Page 9

9D A T A B A S E S Y S T E M S

1.3 WHY DATABASE DESIGN IS IMPORTANT

Database design refers to the activities that focus on the design of the database structure that will be used to store
and manage end-user data. A database that meets all user requirements does not just happen; its structure must be
designed carefully. In fact, database design is such a crucial aspect of working with databases that most of this book
is dedicated to the development of good database design techniques. Even a good DBMS will perform poorly with a
badly designed database.

Proper database design requires the designer to identify precisely the database’s expected use. Designing a
transactional database emphasizes accurate and consistent data and operational speed. The design of a data warehouse
database recognizes the use of historical and aggregated data. Designing a database to be used in a centralized,
single-user environment requires a different approach from that used in the design of a distributed, multiuser database.
This book emphasizes the design of transactional, centralized, single-user, and multiuser databases. Chapters 12 and
13 also examine critical issues confronting the designer of distributed and data warehouse databases.

A well-designed database facilitates data management and generates accurate and valuable information. A poorly
designed database is likely to become a breeding ground for difficult-to-trace errors that may lead to bad decision
making—and bad decision making can lead to the failure of an organization. Database design is simply too important
to be left to luck. That’s why college students study database design, why organizations of all types and sizes send
personnel to database design seminars, and why database design consultants often make an excellent living.

1.4 HISTORICAL ROOTS: FILES AND FILE SYSTEMS

Although managing data through the use of file systems is now largely obsolete, there are several good reasons for
studying them in some detail:

� An understanding of the relatively simple characteristics of file systems makes the complexity of database
design easier to understand.

� An awareness of the problems that plagued file systems can help you avoid those same pitfalls with DBMS
software.

� If you intend to convert an obsolete file system to a database system, knowledge of the file system’s basic
limitations will be useful.

In the recent past, a manager of almost any small organization was (and sometimes still is) able to keep track of
necessary data by using a manual file system. Such a file system was traditionally composed of a collection of file
folders, each properly tagged and kept in a filing cabinet. Organization of the data within the file folders was
determined by the data’s expected use. Ideally, the contents of each file folder were logically related. For example, a
file folder in a doctor’s office might contain patient data, one file folder for each patient. All of the data in that file folder
would describe only that particular patient’s medical history. Similarly, a personnel manager might organize personnel
data by category of employment (for example, clerical, technical, sales, and administrative). Therefore, a file folder

Note

Most of the database design, implementation, and management issues addressed in this book are based on
production (transaction) databases. The focus on production databases is based on two considerations. First,
production databases are the databases most frequently encountered in common activities such as enrolling in
a class, registering a car, buying a product, or making a bank deposit or withdrawal. Second, data warehouse
databases derive most of their data from production databases, and if production databases are poorly
designed, the data warehouse databases based on them will lose their reliability and value as well.

C6545_01 5/23/2007 11:34:40 Page 10

10 C H A P T E R 1

labeled “Technical” would contain data pertaining to only those people whose duties were properly classified as
technical.

As long as a data collection was relatively small and an organization’s managers had few reporting requirements, the
manual system served its role well as a data repository. However, as organizations grew and as reporting requirements
became more complex, keeping track of data in a manual file system became more difficult. In fact, finding and using
data in growing collections of file folders turned into such a time-consuming and cumbersome task that it became
unlikely that such data could generate useful information. Consider just these few questions to which a retail business
owner might want answers:

� What products sold well during the past week, month, quarter, or year?

� What is the current daily, weekly, monthly, quarterly, or yearly sales dollar volume?

� How do the current period’s sales compare to those of last week, last month, or last year?

� Did the various cost categories increase, decrease, or remain stable during the past week, month, quarter,
or year?

� Did sales show trends that could change the inventory requirements?

The list of questions such as these tends to be long and to increase in number as an organization grows.

Unfortunately, generating reports from a manual file system can be slow and cumbersome. In fact, some business
managers faced government-imposed reporting requirements that required weeks of intensive effort each quarter, even
when a well-designed manual system was used. Consequently, necessity called for the design of a computer-based
system that would track data and produce required reports.

The conversion from a manual file system to a matching computer file system could be technically complex. (Because
people are accustomed to today’s relatively user-friendly computer interfaces, they have forgotten how painfully hostile
computers used to be!) Consequently, a new kind of professional, known as a data processing (DP) specialist, had
to be hired or “grown” from the current staff. The DP specialist created the necessary computer file structures, often
wrote the software that managed the data within those structures, and designed the application programs that
produced reports based on the file data. Thus, numerous homegrown computerized file systems were born.

Initially, the computer files within the file system were similar to the manual files. A simple example of a customer
data file for a small insurance company is shown in Figure 1.3. (You will discover later that the file structure shown in
Figure 1.3, although typically found in early file systems, is unsatisfactory for a database.)

C_NAME = Customer name A_NAME = Agent name
C_PHONE = Customer phone A_PHONE = Agent phone
C_ADDRESS = Customer address TP = Insurance type
C_ZIP = Customer zip code AMT = Insurance policy amount, in thousands of $

REN = Insurance renewal date

FIGURE
1.3

Contents of the CUSTOMER file

C6545_01 5/25/2007 10:23:18 Page 11

11D A T A B A S E S Y S T E M S

The description of computer files requires a specialized vocabulary. Every discipline develops its own jargon to enable
its practitioners to communicate clearly. The basic file vocabulary shown in Table 1.2 will help you understand
subsequent discussions more easily.

TABLE
1.2

Basic File Terminology

TERM DEFINITION
Data “Raw” facts, such as a telephone number, a birth date, a customer name, and a year-to-date (YTD)

sales value. Data have little meaning unless they have been organized in some logical manner. The
smallest piece of data that can be “recognized” by the computer is a single character, such as the letter
A, the number 5, or a symbol such as /. A single character requires 1 byte of computer storage.

Field A character or group of characters (alphabetic or numeric) that has a specific meaning. A field is used to
define and store data.

Record A logically connected set of one or more fields that describes a person, place, or thing. For example,
the fields that constitute a record for a customer named J. D. Rudd might consist of J. D. Rudd's name,
address, phone number, date of birth, credit limit, and unpaid balance.

File A collection of related records. For example, a file might contain data about vendors of ROBCOR Com-
pany, or a file might contain the records for the students currently enrolled at Gigantic University.

Using the proper file terminology given in Table 1.2, you can identify the file components shown in Figure 1.3. The
CUSTOMER file shown in Figure 1.3 contains 10 records. Each record is composed of nine fields: C_NAME,
C_PHONE, C_ADDRESS, C_ZlP, A_NAME, A_PHONE, TP, AMT, and REN. The 10 records are stored in a named
file. Because the file in Figure 1.3 contains customer data for the insurance company, its filename is CUSTOMER.

Using the CUSTOMER file’s contents, the DP specialist wrote programs that produced very useful reports for the
insurance company’s sales department:

� Monthly summaries that showed the types and amounts of insurance sold by each agent. (Such reports might
be used to analyze each agent’s productivity.)

� Monthly checks to determine which customers must be contacted for renewal.

� Reports that analyzed the ratios of insurance types sold by each agent.

� Periodic customer contact letters designed to summarize coverage and to provide various customer relations
bonuses.

As time went on, the insurance company needed additional programs to produce new reports. Although it took some
time to specify the report contents and to write the programs that produced the reports, the sales department manager
did not miss the old manual system—using the computer saved much time and effort. The reports were impressive,
and the ability to perform complex data searches yielded the information needed to make sound decisions.

Then the sales department at the insurance company created a file named SALES, which helped track daily sales
efforts. Additional files were created as needed to produce even more useful reports. In fact, the sales department’s
success was so obvious that the personnel department manager demanded access to the DP specialist to automate
payroll processing and other personnel functions. Consequently, the DP specialist was asked to create the AGENT file
shown in Figure 1.4. The data in the AGENT file were used to write checks, keep track of taxes paid, and summarize
insurance coverage, among other tasks.

O n l i n e C o n t e n t

The databases used in each chapter are available in the Student Online Companion for this book. Throughout
the book, Online Content boxes highlight material related to chapter content located in the Student Online
Companion.

C6545_01 5/25/2007 10:23:54 Page 12

12 C H A P T E R 1

As the number of files increased, a small file system, like the one shown in Figure 1.5, evolved. Each file in the system
used its own application program to store, retrieve, and modify data. And each file was owned by the individual or the
department that commissioned its creation.

As the insurance company’s file system grew, the demand for the DP specialist’s programming skills grew even faster,
and the DP specialist was authorized to hire additional programmers. The size of the file system also required a larger,
more complex computer. The new computer and the additional programming staff caused the DP specialist to spend
less time programming and more time managing technical and human resources. Therefore, the DP specialist’s job
evolved into that of a data processing (DP) manager, who supervised a new DP department. In spite of these
organizational changes, however, the DP department’s primary activity remained programming, and the DP manager
inevitably spent much time as a supervising senior programmer and program troubleshooter.

A_NAME = Agent name YTD_PAY = Year-to-date pay
A_PHONE = Agent phone YTD_FIT = Year-to-date federal income tax paid
A_ADDRESS = Agent address YTD_FICA = Year-to-date Social Security taxes paid
ZIP = Agent zip code YTD_SLS = Year-to-date sales
HIRED = Agent date of hire DEP = Number of dependents

FIGURE
1.4

Contents of the AGENT file

Sales department Personnel department

File
Management

Programs

File
Management

Programs

File
Report

Programs

File
Report

Programs

AGENT
file

SALES
file

CUSTOMER
file

FIGURE
1.5

A simple file system

C6545_01 5/23/2007 11:34:48 Page 13

13D A T A B A S E S Y S T E M S

1.5 PROBLEMS WITH FILE SYSTEM DATA MANAGEMENT

The file system method of organizing and managing data was a definite improvement over a manual system, and the
file system served a useful purpose in data management for over two decades—a very long time in the computer era.
Nonetheless, many problems and limitations became evident in this approach. A critique of the file system method
serves two major purposes:

� Understanding the shortcomings of the file system enables you to understand the development of modern
databases.

� Many of the problems are not unique to file systems. Failure to understand such problems is likely to lead to
their duplication in a database environment, even though database technology makes it easy to avoid them.

The first and most glaring problem with the file system approach is that even the simplest data-retrieval task requires
extensive programming. With the older file systems, programmers had to specify what must be done and how it was
to be done. As you will learn in upcoming chapters, modern databases use a nonprocedural data manipulation
language that allows the user to specify what must be done without specifying how it must be done. Typically, this
nonprocedural language is used for data retrieval (such as query by example and report generator tools), is much faster,
and can work with different DBMSs.

The need to write programs to produce even the simplest reports makes ad hoc queries impossible. Harried DP
specialists and DP managers who work with mature file systems often receive numerous requests for new reports. They
are often forced to say that the report will be ready “next week” or even “next month.” If you need the information
now, getting it next week or next month will not serve your information needs.

Furthermore, making changes in an existing structure can be difficult in a file system environment. For example,
changing just one field in the original CUSTOMER file would require a program that:

1. Reads a record from the original file.

2. Transforms the original data to conform to the new structure’s storage requirements.

3. Writes the transformed data into the new file structure.

4. Repeats steps 2 to 4 for each record in the original file.

In fact, any change to a file structure, no matter how minor, forces modifications in all of the programs that use the
data in that file. Modifications are likely to produce errors (bugs), and additional time is spent using a debugging process
to find those errors.

Another problem related to the need for extensive programming is that as the number of files in the system expands,
system administration becomes more difficult. Even a simple file system with a few files requires the creation and
maintenance of several file management programs (each file must have its own file management programs that allow
the user to add, modify, and delete records, to list the file contents, and to generate reports). Because ad hoc queries
are not possible, the file reporting programs can multiply quickly. The problem is compounded by the fact that each
department in the organization “owns” its data by creating its own files.

Another fault of a file system database is that security features are difficult to program and are, therefore, often omitted
in a file system environment. Such features include effective password protection, the ability to lock out parts of files
or parts of the system itself, and other measures designed to safeguard data confidentiality. Even when an attempt is
made to improve system and data security, the security devices tend to be limited in scope and effectiveness.

To summarize the limitations of file system data management so far:

� It requires extensive programming.

� It can not perform ad hoc queries.

� System administration can be complex and difficult.

C6545_01 8/14/2007 17:24:30 Page 14

14 C H A P T E R 1

� It is difficult to make changes to existing structures.

� Security features are likely to be inadequate.

Those limitations, in turn, lead to problems of structural and data dependency.

1.5.1 Structural and Data Dependence

A file system exhibits structural dependence, which means that access to a file is dependent on its structure. For
example, adding a customer date-of-birth field to the CUSTOMER file shown in Figure 1.3 would require the four steps
described in the previous section. Given this change, none of the previous programs will work with the new
CUSTOMER file structure. Therefore, all of the file system programs must be modified to conform to the new file
structure. In short, because the file system application programs are affected by change in the file structure, they exhibit
structural dependence. Conversely, structural independence exists when it is possible to make changes in the file
structure without affecting the application program’s ability to access the data.

Even changes in the characteristics of data, such as changing a field from integer to decimal, require changes in all the
programs that access the file. Because all data access programs are subject to change when any of the file’s data
storage characteristics change (that is, changing the data type), the file system is said to exhibit data dependence.
Conversely, data independence exists when it is possible to make changes in the data storage characteristics without
affecting the application program’s ability to access the data.

The practical significance of data dependence is the difference between the logical data format (how the human
being views the data) and the physical data format (how the computer must work with the data). Any program that
accesses a file system’s file must tell the computer not only what to do, but also how to do it. Consequently, each
program must contain lines that specify the opening of a specific file type, its record specification, and its field
definitions. Data dependence makes the file system extremely cumbersome from the point of view of a programmer
and database manager.

1.5.2 Field Definitions and Naming Conventions

At first glance, the CUSTOMER file shown in Figure 1.3 appears to have served its purpose well: requested reports
usually could be generated. But suppose you want to create a customer phone directory based on the data stored in
the CUSTOMER file. Storing the customer name as a single field turns out to be a liability because the directory must
break up the field contents to list the last names, first names, and initials in alphabetical order.

Similarly, producing a listing of customers by city is a more difficult task than is necessary. From the user’s point of
view, a much better (more flexible) record definition would be one that anticipates reporting requirements by breaking
up fields into their component parts. Thus, the revised customer file fields might be listed as shown in Table 1.3. (Note
that the revised file is named CUSTOMER_V2 to indicate that this is the second version of the CUSTOMER file.)

TABLE
1.3

Sample Fields in the CUSTOMER_V2 File

FIELD CONTENTS SAMPLE ENTRY
CUS_LNAME Customer last name Ramas
CUS_FNAME Customer first name Alfred
CUS_INITIAL Customer initial A
CUS_AREACODE Customer area code 615
CUS_PHONE Customer phone 234-5678
CUS_ADDRESS Customer street address or box number 123 Green Meadow Lane
CUS_CITY Customer city Murfreesboro
CUS_STATE Customer state TN
CUS_ZIP Customer zip code 37130
AGENT_CODE Agent code 502

C6545_01 7/12/2007 11:40:36 Page 15

15D A T A B A S E S Y S T E M S

Selecting proper field names is also important. For example, make sure that the field names are reasonably descriptive.
In examining the file structure shown in Figure 1.3, it is not obvious that the field name REN represents the customer’s
insurance renewal date. Using the field name CUS_RENEW_DATE would be better for two reasons. First, the prefix
CUS can be used as an indicator of the field’s origin, which is the CUSTOMER_V2 file. Therefore, you know that the
field in question yields a customer property. Second, the RENEW_DATE portion of the field name is more descriptive
of the field’s contents. With proper naming conventions, the file structure becomes self-documenting. That is, by
simply looking at a field name, you can determine which file the field belongs to and what information the field is likely
to contain.

Some software packages place restrictions on the length of field names, so it is wise to be as descriptive as possible
within those restrictions. In addition, very long field names make it difficult to fit more than a few fields on a page, thus
making output spacing a problem. For example, the field name CUSTOMER_INSURANCE_RENEWAL_DATE, while
being self-documenting, is less desirable than CUS_RENEW_DATE.

Another problem in Figure 1.3’s CUSTOMER file is the difficulty of finding desired data efficiently. The CUSTOMER
file currently does not have a unique record identifier. For example, it is possible to have several customers named John
B. Smith. Consequently, the addition of a CUS_ACCOUNT field that contains a unique customer account number
would be appropriate.

The criticisms of field definitions and naming conventions shown in the file structure of Figure 1.3 are not unique to
file systems. Because such conventions will prove to be important later, they are introduced early. You will revisit field
definitions and naming conventions when you learn about database design in Chapter 4, Entity Relationship (ER)
Modeling and in Chapter 6, Advanced Data Modeling; when you learn about database implementation issues in
Chapter 9, Database Design; and when you see an actual database design implemented in Appendixes B and C (The
University Lab design and implementation). Regardless of the data environment, the design—whether it involves a file
system or a database—must always reflect the designer’s documentation needs and the end user’s reporting and
processing requirements. Both types of needs are best served by adhering to proper field definitions and naming
conventions.

Note

You might have noticed the addition of the AGENT_CODE field in Table 1.3. Clearly, you must know what agent
represents each customer, so the customer file must include agent data. You will learn in Section 1.5.3 that
storing the agent name, as was done in the original CUSTOMER file shown in Figure 1.3, will yield some major
problems that are eliminated by using a unique code that is assigned to each agent. And you will learn in
Chapter 2, Data Models, what other benefits are obtained from storing such a code in the (revised) customer
table. In any case, because the agent code is an agent characteristic, its prefix is AGENT.

O n l i n e C o n t e n t

Appendixes A through L are available in the Student Online Companion for this book.

C6545_01 7/12/2007 11:41:13 Page 16

16 C H A P T E R 1

1.5.3 Data Redundancy

The file system’s structure makes it difficult to combine data from multiple sources and its lack of security renders the
file system vulnerable to security breaches. The organizational structure promotes the storage of the same basic data
in different locations. (Database professionals use the term islands of information for such scattered data locations.)
Because it is unlikely that data stored in different locations will always be updated consistently, the islands of
information often contain different versions of the same data. For example, in Figures 1.3 and 1.4, the agent names
and phone numbers occur in both the CUSTOMER and the AGENT files. You need only one correct copy of the agent
names and phone numbers. Having them occur in more than one place produces data redundancy. Data
redundancy exists when the same data are stored unnecessarily at different places.

Uncontrolled data redundancy sets the stage for:

� Data inconsistency. Data inconsistency exists when different and conflicting versions of the same data appear
in different places. For example, suppose you change an agent’s phone number or address in the AGENT file.
If you forget to make corresponding changes in the CUSTOMER file, the files contain different data for the
same agent. Reports will yield inconsistent results depending on which version of the data is used.

Data entry errors are more likely to occur when complex entries (such as 10-digit phone numbers) are made
in several different files and/or recur frequently in one or more files. In fact, the CUSTOMER file shown in
Figure 1.3 contains just such an entry error: the third record in the CUSTOMER file has a transposed digit in
the agent’s phone number (615-882-2144 rather than 615-882-1244).

It is possible to enter a nonexistent sales agent’s name and phone number into the CUSTOMER file, but
customers are not likely to be impressed if the insurance agency supplies the name and phone number of an
agent who does not exist. And should the personnel manager allow a nonexistent agent to accrue bonuses and
benefits? In fact, a data entry error such as an incorrectly spelled name or an incorrect phone number yields
the same kind of data integrity problems.

� Data anomalies. The dictionary defines anomaly as “an abnormality.” Ideally, a field value change should be
made in only a single place. Data redundancy, however, fosters an abnormal condition by forcing field value
changes in many different locations. Look at the CUSTOMER file in Figure 1.3. If agent Leah F. Hahn decides
to get married and move, the agent name, address, and phone are likely to change. Instead of making just a
single name and/or phone/address change in a single file (AGENT), you also must make the change each time
that agent’s name, phone number, and address occur in the CUSTOMER file. You could be faced with the
prospect of making hundreds of corrections, one for each of the customers served by that agent! The same
problem occurs when an agent decides to quit. Each customer served by that agent must be assigned a new

Note

No naming convention can fit all requirements for all systems. Some words or phrases are reserved for the
DBMSs internal use. For example, the name ORDER generates an error in some DBMSs. Similarly, your DBMS
might interpret a hyphen (-) as a command to subtract. Therefore, the field CUS-NAME would be interpreted
as a command to subtract the NAME field from the CUS field. Because neither field exists, you would get an
error message. On the other hand, CUS_NAME would work fine because it uses an underscore.

Note

Data that display data inconsistency are also referred to as data that lack data integrity. Data integrity is defined
as the condition in which all of the data in the database are consistent with the real-world events and conditions.
In other words, data integrity means that:

• Data are accurate—there are no data inconsistencies

• Data are verifiable—the data will always yield consistent results.

C6545_01 5/23/2007 11:39:28 Page 17

17D A T A B A S E S Y S T E M S

agent. Any change in any field value must be correctly made in many places to maintain data integrity. A data
anomaly develops when all of the required changes in the redundant data are not made successfully. The data
anomalies found in Figure 1.3 are commonly defined as follows:

- Update anomalies. If agent Leah F. Hahn has a new phone number, that number must be entered in each
of the CUSTOMER file records in which Ms. Hahn’s phone number is shown. In this case, only three
changes must be made. In a large file system, such changes might occur in hundreds or even thousands of
records. Clearly, the potential for data inconsistencies is great.

- Insertion anomalies. If only the CUSTOMER file existed, to add a new agent, you would also add a dummy
customer data entry to reflect the new agent’s addition. Again, the potential for creating data inconsistencies
would be great.

- Deletion anomalies. If you delete the customers Amy B. O’Brian, George Williams, and Olette K. Smith,
you will also delete John T. Okon’s agent data. Clearly, this is not desirable.

1.6 DATABASE SYSTEMS

The problems inherent in file systems make using a database system very desirable. Unlike the file system, with its
many separate and unrelated files, the database system consists of logically related data stored in a single logical data
repository. (The “logical” label reflects the fact that, although the data repository appears to be a single unit to the end
user, its contents may actually be physically distributed among multiple data storage facilities and/or locations.) Because
the database’s data repository is a single logical unit, the database represents a major change in the way end-user data
are stored, accessed, and managed. The database’s DBMS, shown in Figure 1.6, provides numerous advantages over
file system management, shown in Figure 1.5, by making it possible to eliminate most of the file system’s data
inconsistency, data anomaly, data dependency, and structural dependency problems. Better yet, the current generation
of DBMS software stores not only the data structures, but also the relationships between those structures and the
access paths to those structures—all in a central location. The current generation of DBMS software also takes care
of defining, storing, and managing all required access paths to those components.

C6545_01 5/23/2007 11:38:31 Page 18

18 C H A P T E R 1

Remember that the DBMS is just one of several crucial components of a database system. The DBMS may even be
referred to as the database system’s heart. However, just as it takes more than a heart to make a human being function,
it takes more than a DBMS to make a database system function. In the sections that follow, you’ll learn what a database
system is, what its components are, and how the DBMS fits into the database system picture.

1.6.1 The Database System Environment

The term database system refers to an organization of components that define and regulate the collection, storage,
management, and use of data within a database environment. From a general management point of view, the database
system is composed of the five major parts shown in Figure 1.7: hardware, software, people, procedures, and data.

A Database System

Personnel dept.

A File System

Sales dept. Accounting dept.

Database

Accounts
Inventory

Sales
Customers
Employees

AccountsEmployees Customers Sales Inventory

DBMS

Personnel dept.

Sales dept.

Accounting dept.

FIGURE
1.6

Contrasting database and file systems

C6545_01 5/23/2007 11:35:4 Page 19

19D A T A B A S E S Y S T E M S

Let’s take a closer look at the five components shown in Figure 1.7:

� Hardware. Hardware refers to all of the system’s physical devices; for example, computers (microcomputers,
workstations, servers, and supercomputers), storage devices, printers, network devices (hubs, switches, routers,
fiber optics), and other devices (automated teller machines, ID readers, and so on).

� Software. Although the most readily identified software is the DBMS itself, to make the database system
function fully, three types of software are needed: operating system software, DBMS software, and application
programs and utilities.

- Operating system software manages all hardware components and makes it possible for all other software
to run on the computers. Examples of operating system software include Microsoft Windows, Linux, Mac
OS, UNIX, and MVS.

- DBMS software manages the database within the database system. Some examples of DBMS software
include Microsoft SQL Server, Oracle Corporation’s Oracle, MySQL AB’s MySQL and IBM’s DB2.

- Application programs and utility software are used to access and manipulate data in the DBMS and to
manage the computer environment in which data access and manipulation take place. Application
programs are most commonly used to access data found within the database to generate reports,
tabulations, and other information to facilitate decision making. Utilities are the software tools used to help
manage the database system’s computer components. For example, all of the major DBMS vendors now
provide graphical user interfaces (GUIs) to help create database structures, control database access, and
monitor database operations.

� People. This component includes all users of the database system. On the basis of primary job functions, five
types of users can be identified in a database system: systems administrators, database administrators, database
designers, systems analysts and programmers, and end users. Each user type, described below, performs both
unique and complementary functions.

- System administrators oversee the database system’s general operations.

- Database administrators, also known as DBAs, manage the DBMS and ensure that the database is
functioning properly. The DBA’s role is sufficiently important to warrant a detailed exploration in Chapter
15, Database Administration and Security.

DBMS

DBMS utilities

Analysts

ProgrammersEnd users

use write

designs

Database
designer

Database
administrator

manages

access

Hardware

System
administrator

writes
and

enforces

Application
programs

Procedures
and standards

Data

supervises

FIGURE
1.7

The database system environment

C6545_01 5/23/2007 11:7:54 Page 20

20 C H A P T E R 1

- Database designers design the database structure. They are, in effect, the database architects. If the
database design is poor, even the best application programmers and the most dedicated DBAs cannot
produce a useful database environment. Because organizations strive to optimize their data resources, the
database designer’s job description has expanded to cover new dimensions and growing responsibilities.

- Systems analysts and programmers design and implement the application programs. They design and
create the data entry screens, reports, and procedures through which end users access and manipulate the
database’s data.

- End users are the people who use the application programs to run the organization’s daily operations. For
example, salesclerks, supervisors, managers, and directors are all classified as end users. High-level end
users employ the information obtained from the database to make tactical and strategic business decisions.

� Procedures. Procedures are the instructions and rules that govern the design and use of the database system.
Procedures are a critical, although occasionally forgotten, component of the system. Procedures play an
important role in a company because they enforce the standards by which business is conducted within
the organization and with customers. Procedures also are used to ensure that there is an organized way to
monitor and audit both the data that enter the database and the information that is generated through the use
of that data.

� Data. The word data covers the collection of facts stored in the database. Because data are the raw material
from which information is generated, the determination of what data are to be entered into the database and
how that data are to be organized is a vital part of the database designer’s job.

A database system adds a new dimension to an organization’s management structure. Just how complex this
managerial structure is depends on the organization’s size, its functions, and its corporate culture. Therefore, database
systems can be created and managed at different levels of complexity and with varying adherence to precise standards.
For example, compare a local movie rental system with a national insurance claims system. The movie rental system
may be managed by two people, the hardware used is probably a single microcomputer, the procedures are probably
simple, and the data volume tends to be low. The national insurance claims system is likely to have at least one systems
administrator, several full-time DBAs, and many designers and programmers; the hardware probably includes several
servers at multiple locations throughout the United States; the procedures are likely to be numerous, complex, and
rigorous; and the data volume tends to be high.

In addition to the different levels of database system complexity, managers must also take another important fact into
account: database solutions must be cost-effective as well as tactically and strategically effective. Producing a
million-dollar solution to a thousand-dollar problem is hardly an example of good database system selection or of good
database design and management. Finally, the database technology already in use is likely to affect the selection of a
database system.

1.6.2 DBMS Functions

A DBMS performs several important functions that guarantee the integrity and consistency of the data in the database.
Most of those functions are transparent to end users, and most can be achieved only through the use of a DBMS. They
include data dictionary management, data storage management, data transformation and presentation, security
management, multiuser access control, backup and recovery management, data integrity management, database
access languages and application programming interfaces, and database communication interfaces. Each of these
functions is explained below.

� Data dictionary management. The DBMS stores definitions of the data elements and their relationships
(metadata) in a data dictionary. In turn, all programs that access the data in the database work through the
DBMS. The DBMS uses the data dictionary to look up the required data component structures and
relationships, thus relieving you from having to code such complex relationships in each program. Additionally,
any changes made in a database structure are automatically recorded in the data dictionary, thereby freeing you
from having to modify all of the programs that access the changed structure. In other words, the DBMS

C6545_01 5/23/2007 11:35:10 Page 21

21D A T A B A S E S Y S T E M S

provides data abstraction, and it removes structural and data dependency from the system. For example, Figure
1.8 shows how Microsoft SQL Server Express presents the data definition for the CUSTOMER table.

� Data storage management. The DBMS creates and manages the complex structures required for data storage,
thus relieving you from the difficult task of defining and programming the physical data characteristics. A
modern DBMS provides storage not only for the data, but also for related data entry forms or screen
definitions, report definitions, data validation rules, procedural code, structures to handle video and picture
formats, and so on. Data storage management is also important for database performance tuning.
Performance tuning relates to the activities that make the database perform more efficiently in terms of
storage and access speed. Although the user sees the database as a single data storage unit, the DBMS actually
stores the database in multiple physical data files. (See Figure 1.9.) Such data files may even be stored on
different storage media. Therefore, the DBMS doesn’t have to wait for one disk request to finish before the
next one starts. In other words, the DBMS can fulfill database requests concurrently. Data storage management
and performance tuning issues are addressed in Chapter 11, Database Performance Tuning and Query
Optimization.

FIGURE
1.8

Illustrating metadata with Microsoft SQL Server Express

Metadata

C6545_01 5/23/2007 11:35:14 Page 22

22 C H A P T E R 1

� Data transformation and presentation. The DBMS transforms entered data to conform to required data
structures. The DBMS relieves you of the chore of making a distinction between the logical data format and
the physical data format. That is, the DBMS formats the physically retrieved data to make it conform to the
user’s logical expectations. For example, imagine an enterprise database used by a multinational company. An
end user in England would expect to enter data such as July 11, 2008 as “11/07/2008.” In contrast, the same
date would be entered in the United States as “07/11/2008.” Regardless of the data presentation format, the
DBMS must manage the date in the proper format for each country.

� Security management. The DBMS creates a security system that enforces user security and data privacy.
Security rules determine which users can access the database, which data items each user can access, and
which data operations (read, add, delete, or modify) the user can perform. This is especially important in
multiuser database systems. Chapter 15, Database Administration and Security, examines data security and
privacy issues in greater detail. All database users may be authenticated to the DBMS through a username and
password or through biometric authentication such as a fingerprint scan. The DBMS uses this information to
assign access privileges to various database components such as queries and reports.

� Multiuser access control. To provide data integrity and data consistency, the DBMS uses sophisticated
algorithms to ensure that multiple users can access the database concurrently without compromising the
integrity of the database. Chapter 10, Transaction Management and Concurrency Control, covers the details
of the multiuser access control.

� Backup and recovery management. The DBMS provides backup and data recovery to ensure data safety and
integrity. Current DBMS systems provide special utilities that allow the DBA to perform routine and special
backup and restore procedures. Recovery management deals with the recovery of the database after a failure,
such as a bad sector in the disk or a power failure. Such capability is critical to preserving the database’s
integrity. Chapter 15 covers backup and recovery issues.

FIGURE
1.9

Illustrating data storage management with Oracle

The ORALAB database is
actually stored in nine
datafiles located on the C:
drive of the database server
computer.

The Oracle DBA Studio
Management interface also
shows the amount of space
used by each of the datafiles
that comprise the single
logical database.

Database Name: ORALAB.MTSU.EDU

The Oracle DBA Studio Administrator GUI shows the data storage
management characteristics for the ORALAB database.

C6545_01 5/23/2007 11:11:19 Page 23

23D A T A B A S E S Y S T E M S

� Data integrity management. The DBMS promotes and enforces integrity rules, thus minimizing data
redundancy and maximizing data consistency. The data relationships stored in the data dictionary are used to
enforce data integrity. Ensuring data integrity is especially important in transaction-oriented database systems.
Data integrity and transaction management issues are addressed in Chapter 7, Introduction to Structured
Query Language (SQL), and Chapter 10, Transaction Management and Concurrency Control.

� Database access languages and application programming interfaces. The DBMS provides data access
through a query language. A query language is a nonprocedural language—one that lets the user specify
what must be done without having to specify how it is to be done. Structured Query Language (SQL) is
the de facto query language and data access standard supported by the majority of DBMS vendors. Chapter
7, Introduction to Structured Query Language (SQL), and Chapter 8, Advanced SQL, address the use of SQL.
The DBMS also provides application programming interfaces to procedural languages such as COBOL, C,
Java, Visual Basic.NET, and C++. In addition, the DBMS provides administrative utilities used by the DBA and
the database designer to create, implement, monitor, and maintain the database.

� Database communication interfaces. Current-generation DBMSs accept end-user requests via multiple,
different network environments. For example, the DBMS might provide access to the database via the Internet
through the use of Web browsers such as Mozilla Firefox or Microsoft Internet Explorer. In this environment,
communications can be accomplished in several ways:

- End users can generate answers to queries by filling in screen forms through their preferred Web browser.

- The DBMS can automatically publish predefined reports on a Web site.

- The DBMS can connect to third-party systems to distribute information via e-mail or other productivity
applications.

Database communication interfaces are examined in greater detail in Chapter 12, Distributed Database Management
Systems, in Chapter 14, Database Connectivity and Web Technologies, and in Appendix I, Databases in Electronic
Commerce. (Appendixes are found in the Student Online Companion.)

C6545_01 7/12/2007 11:44:45 Page 24

24 C H A P T E R 1

1.6.3 Managing the Database System: A Shift in Focus

The introduction of a database system over the file system provides a framework in which strict procedures and
standards can be enforced. Consequently, the role of the human component changes from an emphasis on
programming (in the file system) to a focus on the broader aspects of managing the organization’s data resources and
on the administration of the complex database software itself.

The database system makes it possible to tackle far more sophisticated uses of the data resources as long as the
database is designed to make use of that available power. The kinds of data structures created within the database and
the extent of the relationships among them play a powerful role in determining the effectiveness of the database
system.

Although the database system yields considerable advantages over previous data management approaches, database
systems do carry significant disadvantages. For example:

� Increased costs. Database systems require sophisticated hardware and software and highly skilled personnel.
The cost of maintaining the hardware, software, and personnel required to operate and manage a database
system can be substantial. Training, licensing, and regulation compliance costs are often overlooked when
database systems are implemented.

� Management complexity. Database systems interface with many different technologies and have a significant
impact on a company’s resources and culture. The changes introduced by the adoption of a database system
must be properly managed to ensure that they help advance the company’s objectives. Given the fact that
databases systems hold crucial company data that are accessed from multiple sources, security issues must be
assessed constantly.

� Maintaining currency. To maximize the efficiency of the database system, you must keep your system current.
Therefore, you must perform frequent updates and apply the latest patches and security measures to all
components. Because database technology advances rapidly, personnel training costs tend to be significant.

� Vendor dependence. Given the heavy investment in technology and personnel training, companies might be
reluctant to change database vendors. As a consequence, vendors are less likely to offer pricing point
advantages to existing customers, and those customers might be limited in their choice of database system
components.

� Frequent upgrade/replacement cycles. DBMS vendors frequently upgrade their products by adding new
functionality. Such new features often come bundled in new upgrade versions of the software. Some of these
versions require hardware upgrades. Not only do the upgrades themselves cost money, but it also costs money
to train database users and administrators to properly use and manage the new features.

C6545_01 7/12/2007 11:44:45 Page 25

25D A T A B A S E S Y S T E M S

S u m m a r y

◗ Data are raw facts. Information is the result of processing data to reveal its meaning. Accurate, relevant, and timely
information is the key to good decision making, and good decision making is the key to organizational survival in
a global environment.

◗ Data are usually stored in a database. To implement a database and to manage its contents, you need a database
management system (DBMS). The DBMS serves as the intermediary between the user and the database. The
database contains the data you have collected and “data about data,” known as metadata.

◗ Database design defines the database structure. A well-designed database facilitates data management and
generates accurate and valuable information. A poorly designed database can lead to bad decision making, and bad
decision making can lead to the failure of an organization.

◗ Databases evolved from manual and then computerized file systems. In a file system, data are stored in independent
files, each requiring its own data management programs. Although this method of data management is largely
outmoded, understanding its characteristics makes database design easier to understand. Awareness of the
problems of file systems can help you avoid similar problems with DBMSs.

◗ Some limitations of file system data management are that it requires extensive programming, system administration
can be complex and difficult, making changes to existing structures is difficult, and security features are likely to be
inadequate. Also, independent files tend to contain redundant data, leading to problems of structural and data
dependency.

◗ Database management systems were developed to address the file system’s inherent weaknesses. Rather than
depositing data in independent files, a DBMS presents the database to the end user as a single data repository. This
arrangement promotes data sharing, thus eliminating the potential problem of islands of information. In addition,
the DBMS enforces data integrity, eliminates redundancy, and promotes data security.

K e y T e r m s

ad hoc query, 8

centralized database, 8

data, 8

data anomaly, 18

data dependence, 15

data dictionary, 21

data inconsistency, 8

data independence, 15

data integrity, 17

data management, 6

data redundancy, 17

data warehouse, 9

database, 6

database design, 10

database management system
(DBMS), 7

database system, 19

desktop database, 8

distributed database, 8

enterprise database, 8

extensible markup language
(XML), 9

field, 12

file, 12

information, 6

islands of information, 17

knowledge, 17

logical data format, 15

metadata, 15

multiuser database, 8

operational database, 8

performance tuning, 22

physical data format, 15

production database, 8

query, 9

query language, 8

query result set, 8

record, 8

single-user database, 8

structural dependence, 15

structural independence, 15

structured data, 9

Structured Query Language
(SQL), 9

transactional database, 8

unstructured data, 9

workgroup database, 8

XML, 9

XML database, 9

C6545_01 5/23/2007 11:43:32 Page 26

26 C H A P T E R 1

R e v i e w Q u e s t i o n s

1. Discuss each of the following terms:

a. data

b. field

c. record

d. file

2. What is data redundancy, and which characteristics of the file system can lead to it?

3. What is data independence, and why is it lacking in file systems?

4. What is a DBMS, and what are its functions?

5. What is structural independence, and why is it important?

6. Explain the difference between data and information.

7. What is the role of a DBMS, and what are its advantages? What are its disadvantages?

8. List and describe the different types of databases.

9. What are the main components of a database system?

10. What is metadata?

11. Explain why database design is important.

12. What are the potential costs of implementing a database system?

13. Use examples to compare and contrast unstructured and structured data. Which type is more prevalent in a
typical business environment?

P r o b l e m s

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the Student OnlineCom-
panion for this book.

O n l i n e C o n t e n t

The file structures you see in this problem set are simulated in a Microsoft Access database named Ch01_
Problems, available in the Student Online Companion for this book.

C6545_01 5/23/2007 11:22:10 Page 27

27D A T A B A S E S Y S T E M S

Given the file structure shown in Figure P1.1, answer Problems 1−4.

1. How many records does the file contain? How many fields are there per record?

2. What problem would you encounter if you wanted to produce a listing by city? How would you solve this problem
by altering the file structure?

3. If you wanted to produce a listing of the file contents by last name, area code, city, state, or zip code, how would
you alter the file structure?

4. What data redundancies do you detect? How could those redundancies lead to anomalies?

5. Identify and discuss the serious data redundancy problems exhibited by the file structure shown in Figure P1.5.

6. Looking at the EMP_NAME and EMP_PHONE contents in Figure P1.5, what change(s) would you recommend?

7. Identify the various data sources in the file you examined in Problem 5.

8. Given your answer to Problem 7, what new files should you create to help eliminate the data redundancies found
in the file shown in Figure P1.5?

FIGURE
P1.1

The file structure for Problems 1–4

FIGURE
P1.5

The file structure for Problems 5–8

C6545_01 7/12/2007 11:45:53 Page 28

28 C H A P T E R 1

9. Identify and discuss the serious data redundancy problems exhibited by the file structure shown in Figure P1.9.
(The file is meant to be used as a teacher class assignment schedule. One of the many problems with data
redundancy is the likely occurrence of data inconsistencies—two different initials have been entered for the
teacher named Maria Cordoza.)

10. Given the file structure shown in Figure P1.9, what problem(s) might you encounter if building KOM were
deleted?

FIGURE
P1.9

The file structure for Problems 9–10

C6545_01 7/12/2007 11:46:9 Page 29

29D A T A B A S E S Y S T E M S

