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Database Modeling Supporting
Communities

Companies, governments, and organizations around the world turn to entity relationship

diagrams and database modeling tools to help develop their databases.The advantages of

using tools like Sybase PowerDesigner, Microsoft Visio Professional, ERwin Data Modeler,

or Embarcadero ER/Studio significantly outweigh their expense. They improve database

documentation. They facilitate staff communication, helping to ensure that the database

will meet the needs of its users. They reduce development time. All these advantages

translate into significant cost-savings.Yet sometimes this value goes well beyond anything

that can be expressed in a dollar amount.

Rebuilding Together is a national nonprofit organization dedicated to preserving and

revitalizing houses and communities for the elderly, disabled, and families with children.

The national headquarters currently works with 255 affiliates serving over 1,897

communities. Based on the “barn-raising” tradition, local volunteers assemble on Rebuild-

ing Day to help their neighbors. Over 267,000 volunteers have repaired or reconstructed

approximately 9,000 houses and nonprofit facilities.

As the local affiliate in Des Moines, Iowa, founded in 1994, has grown rapidly, the

organization has sought to document and improve their house selection and volunteer

coordination processes. Several sources, including past participants, make referrals for

potential housing projects. Each year, Rebuilding Together needs to evaluate the qualifi-

cations of each candidate, preview the site, select or reject the project, and finally

implement the selected projects. Using modeling software ER/Studio, the staff built a

database to keep track of these stages of the project and manage the volunteers that will

work on each project.

By using the logical view of the data modeling software, the staff was able to understand

the entities, their attributes, and the relationships that they were modeling prior to

building the physical model. They also generated a short report and model diagram to

educate all personnel involved in the project. The end result was that the company was

able to develop an application process that is both more complex and user-friendly. As

the organization continues to grow and the spirit of “barn-raising” spreads, the staff will

be able to modify the design to accommodate its growing needs.
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Preview

The Relational Database Model

In this chapter, you will learn:

� That the relational database model offers a logical view of data

� About the relational model’s basic component: relations

� That relations are logical constructs composed of rows (tuples) and columns (attributes)

� That relations are implemented as tables in a relational DBMS

� About relational database operators, the data dictionary, and the system catalog

� How data redundancy is handled in the relational database model

� Why indexing is important

In Chapter 2, Data Models, you learned that the relational data model’s structural and data

independence allow you to examine the model’s logical structure without considering the

physical aspects of data storage and retrieval. You also learned that entity relationship

diagrams (ERDs) may be used to depict entities and their relationships graphically. In this

chapter, you learn some important details about the relational model’s logical structure and

more about how the ERD can be used to design a relational database.

You learn how the relational database’s basic data components fit into a logical construct

known as a table.You discover that one important reason for the relational database model’s

simplicity is that its tables can be treated as logical rather than physical units.You also learn

how the independent tables within the database can be related to one another.

After learning about tables, their components, and their relationships, you are introduced to

the basic concepts that shape the design of tables. Because the table is such an integral part

of relational database design, you also learn the characteristics of well-designed and poorly

designed tables.

Finally, you are introduced to some basic concepts that will become your gateway to the

next few chapters. For example, you examine different kinds of relationships and the way

those relationships might be handled in the relational database environment.

3
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3.1 A LOGICAL VIEW OF DATA

In Chapter 1, Database Systems, you learned that a database stores and manages both data and metadata. You also
learned that the DBMS manages and controls access to the data and the database structure. Such an arrangement—
placing the DBMS between the application and the database—eliminates most of the file system’s inherent limitations.
The result of such flexibility, however, is a far more complex physical structure. In fact, the database structures required
by both the hierarchical and network database models often become complicated enough to diminish efficient database
design. The relational data model changed all of that by allowing the designer to focus on the logical representation
of the data and its relationships, rather than on the physical storage details. To use an automotive analogy, the
relational database uses an automatic transmission to relieve you of the need to manipulate clutch pedals and
gearshifts. In short, the relational model enables you to view data logically rather than physically.

The practical significance of taking the logical view is that it serves as a reminder of the simple file concept of data
storage. Although the use of a table, quite unlike that of a file, has the advantages of structural and data independence,
a table does resemble a file from a conceptual point of view. Because you can think of related records as being stored
in independent tables, the relational database model is much easier to understand than the hierarchical and network
models. Logical simplicity tends to yield simple and effective database design methodologies.

Because the table plays such a prominent role in the relational model, it deserves a closer look. Therefore, our
discussion begins with an exploration of the details of table structure and contents.

3.1.1 Tables and Their Characteristics

The logical view of the relational database is facilitated by the creation of data relationships based on a logical construct
known as a relation. Because a relation is a mathematical construct, end-users find it much easier to think of a relation
as a table. A table is perceived as a two-dimensional structure composed of rows and columns. A table is also called
a relation because the relational model’s creator, E. F. Codd, used the term relation as a synonym for table. You can
think of a table as a persistent representation of a logical relation, that is, a relation whose contents can be
permanently saved for future use. As far as the table’s user is concerned, a table contains a group of related entity
occurrences, that is, an entity set. For example, a STUDENT table contains a collection of entity occurrences, each
representing a student. For that reason, the terms entity set and table are often used interchangeably.

Note

The relational model, introduced by E. F. Codd in 1970, is based on predicate logic and set theory. Predicate
logic, used extensively in mathematics, provides a framework in which an assertion (statement of fact) can be
verified as either true or false. For example, suppose that a student with a student ID of 12345678 is named
Melissa Sanduski. This assertion can easily be demonstrated to be true or false. Set theory is a mathematical
science that deals with sets, or groups of things, and is used as the basis for data manipulation in the relational
model. For example, assume that set A contains three numbers: 16, 24, and 77. This set is represented as A(16,
24, 77). Furthermore, set B contains four numbers: 44, 77, 90, and 11, and so is represented as B(44, 77, 90,
11). Given this information, you can conclude that the intersection of A and B yields a result set with a single
number, 77. This result can be expressed as A � B = 77. In other words, A and B share a common value, 77.

Based on these concepts, the relational model has three well-defined components:

1. A logical data structure represented by relations (Sections 3.1, 3.2, and 3.5).

2. A set of integrity rules to enforce that the data are and remain consistent over time (Sections 3.3, 3.6, 3.7,
and 3.8).

3. A set of operations that define how data are manipulated (Section 3.4).
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You will discover that the table view of data makes it easy to spot and define entity relationships, thereby greatly
simplifying the task of database design. The characteristics of a relational table are summarized in Table 3.1.

TABLE
3.1

Characteristics of a Relational Table

1 A table is perceived as a two-dimensional structure composed of rows and columns.
2 Each table row (tuple) represents a single entity occurrence within the entity set.
3 Each table column represents an attribute, and each column has a distinct name.
4 Each row/column intersection represents a single data value.
5 All values in a column must conform to the same data format.
6 Each column has a specific range of values known as the attribute domain.
7 The order of the rows and columns is immaterial to the DBMS.
8 Each table must have an attribute or a combination of attributes that uniquely identifies each row.

The tables shown in Figure 3.1 illustrate the characteristics listed in Table 3.1.

Using the STUDENT table shown in Figure 3.1, you can draw the following conclusions corresponding to the points
in Table 3.1:

1. The STUDENT table is perceived to be a two-dimensional structure composed of eight rows (tuples) and twelve
columns (attributes).

2. Each row in the STUDENT table describes a single entity occurrence within the entity set. (The entity set is
represented by the STUDENT table.) Note that the row (entity or record) defined by STU_NUM = 321452
defines the characteristics (attributes or fields) of a student named William C. Bowser. For example, row 4 in
Figure 3.1 describes a student named Walter H. Oblonski. Similarly, row 3 describes a student named Juliette
Brewer. Given the table contents, the STUDENT entity set includes eight distinct entities (rows), or students.

Note

The word relation, also known as a dataset in Microsoft Access, is based on the mathematical set theory from
which Codd derived his model. Because the relational model uses attribute values to establish relationships
among tables, many database users incorrectly assume that the term relation refers to such relationships. Many
then incorrectly conclude that only the relational model permits the use of relationships.

Note

Relational database terminology is very precise. Unfortunately, file system terminology sometimes creeps into
the database environment. Thus, rows are sometimes referred to as records and columns are sometimes labeled
as fields. Occasionally, tables are labeled files. Technically speaking, this substitution of terms is not always
appropriate; the database table is a logical rather than a physical concept, and the terms file, record, and field
describe physical concepts. Nevertheless, as long as you recognize that the table is actually a logical rather than
a physical construct, you may (at the conceptual level) think of table rows as records and of table columns as
fields. In fact, many database software vendors still use this familiar file system terminology.

O n l i n e C o n t e n t

All of the databases used to illustrate the material in this chapter are found in the Student Online Companion
for this book. The database names used in the folder match the database names used in the figures. For
example, the source of the tables shown in Figure 3.1 is the Ch03_TinyCollege database.

C6545_03 6/20/2007 10:46:52 Page 64

64 C H A P T E R 3



3. Each column represents an attribute, and each column has a distinct name.

4. All of the values in a column match the attribute’s characteristics. For example, the grade point average
(STU_GPA) column contains only STU_GPA entries for each of the table rows. Data must be classified
according to their format and function. Although various DBMSs can support different data types, most
support at least the following:

a. Numeric. Numeric data are data on which you can perform meaningful arithmetic procedures.
For example, STU_HRS and STU_GPA in Figure 3.1 are numeric attributes. On the other hand,
STU_PHONE is not a numeric attribute because adding or subtracting phone numbers does not yield an
arithmetically meaningful result.

b. Character. Character data, also known as text data or string data, can contain any character or symbol not
intended for mathematical manipulation. In Figure 3.1, for example, STU_LNAME, STU_FNAME,
STU_INIT, STU_CLASS, and STU_PHONE are character attributes.

c. Date. Date attributes contain calendar dates stored in a special format known as the Julian date format.
Although the physical storage of the Julian date is immaterial to the user and designer, the Julian date
format allows you to perform a special kind of arithmetic known as Julian date arithmetic. Using Julian
date arithmetic, you can determine the number of days that have elapsed between two dates, such as
12-May-1999 and 20-Mar-2008, by simply subtracting 12-May-1999 from 20-Mar-2008. In Figure 3.1,
STU_DOB can properly be classified as a date attribute. Most relational database software packages
support Julian date formats. While the database’s internal date format is likely to be Julian, many different
presentation formats are available. For example, in Figure 3.1, you could show Mr. Bowser’s date of birth
(STU_DOB) as 2/12/75. Most relational DBMSs allow you to define your own date presentation format.
For instance, Access and Oracle users might specify the “dd-mmm-yyyy” date format to show the first
STU_DOB value in Figure 3.1 as 12-Feb-1975. (As you can tell by examining the STU_DOB values in
Figure 3.1, the “dd-mmm-yyyy” format was selected to present the output.)

Database name: Ch03_TinyCollege

STU_HRS = Credit hours earned STU_GPA    = Grade point average
STU_CLASS = Student classification STU_PHONE    = 4-digit campus phone extension
STU_DOB = Student date of birth PROF_NUM      = Number of the professor

                                                   who is the student’s advisor

STUDENT table,
continued

Table name: STUDENT

FIGURE
3.1

STUDENT table attribute values
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d. Logical. Logical data can have only a true or false (yes or no) condition. For example, is a student a junior
college transfer? In Figure 3.1, the STU_TRANSFER attribute uses a logical data format. Most, but not all,
relational database software packages support the logical data format. (Microsoft Access uses the label
“Yes/No data type” to indicate a logical data type.)

5. The column’s range of permissible values is known as its domain. Because the STU_GPA values are limited
to the range 0–4, inclusive, the domain is [0,4].

6. The order of rows and columns is immaterial to the user.

7. Each table must have a primary key. In general terms, the primary key (PK) is an attribute (or a combination
of attributes) that uniquely identifies any given row. In this case, STU_NUM (the student number) is the primary
key. Using the data presented in Figure 3.1, observe that a student’s last name (STU_LNAME) would not be
a good primary key because it is possible to find several students whose last name is Smith. Even the
combination of the last name and first name (STU_FNAME) would not be an appropriate primary key because,
as Figure 3.1 shows, it is quite possible to find more than one student named John Smith.

3.2 KEYS

In the relational model, keys are important because they are used to ensure that each row in a table is uniquely
identifiable. They are also used to establish relationships among tables and to ensure the integrity of the data.
Therefore, a proper understanding of the concept and use of keys in the relational model is very important. A key
consists of one or more attributes that determine other attributes. For example, an invoice number identifies all of the
invoice attributes, such as the invoice date and the customer name.

One type of key, the primary key, has already been introduced. Given the structure of the STUDENT table shown in
Figure 3.1, defining and describing the primary key seems simple enough. However, because the primary key plays
such an important role in the relational environment, you will examine the primary key’s properties more carefully. In
this section, you also will become acquainted with superkeys, candidate keys, and secondary keys.

The key’s role is based on a concept known as determination. In the context of a database table, the statement “A
determines B” indicates that if you know the value of attribute A, you can look up (determine) the value of attribute
B. For example, knowing the STU_NUM in the STUDENT table (see Figure 3.1) means that you are able to look up
(determine) that student’s last name, grade point average, phone number, and so on. The shorthand notation for “A
determines B” is A → B. If A determines B, C, and D, you write A → B, C, D. Therefore, using the attributes of the
STUDENT table in Figure 3.1, you can represent the statement “STU_NUM determines STU_LNAME” by writing:

STU_NUM → STU_LNAME

In fact, the STU_NUM value in the STUDENT table determines all of the student’s attribute values. For example, you
can write:

STU_NUM → STU_LNAME, STU_FNAME, STU_INIT

and

STU_NUM → STU_LNAME, STU_FNAME, STU_INIT, STU_DOB, STU_TRANSFER

In contrast, STU_NUM is not determined by STU_LNAME because it is quite possible for several students to have the
last name Smith.
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The principle of determination is very important because it is used in the definition of a central relational database
concept known as functional dependence. The term functional dependence can be defined most easily this way: the
attribute B is functionally dependent on A if A determines B. More precisely:

The attribute B is functionally dependent on the attribute A
if each value in column A determines one and only one value in column B.

Using the contents of the STUDENT table in Figure 3.1, it is appropriate to say that STU_PHONE is functionally
dependent on STU_NUM. For example, the STU_NUM value 321452 determines the STU_PHONE value 2134. On
the other hand, STU_NUM is not functionally dependent on STU_PHONE because the STU_PHONE value 2267 is
associated with two STU_NUM values: 324274 and 324291. (This could happen in a dormitory situation, where
students share a phone.) Similarly, the STU_NUM value 324273 determines the STU_LNAME value Smith. But the
STU_NUM value is not functionally dependent on STU_LNAME because more than one student may have the last
name Smith.

The functional dependence definition can be generalized to cover the case in which the determining attribute values
occur more than once in a table. Functional dependence can then be defined this way:1

Attribute A determines attribute B (that is, B is functionally dependent on A) if all of the rows in
the table that agree in value for attribute A also agree in value for attribute B.

Be careful when defining the dependency’s direction. For example, Gigantic State University determines its student
classification based on hours completed; these are shown in Table 3.2.

Therefore, you can write:

STU_HRS → STU_CLASS

But the specific number of hours is not dependent on the
classification. It is quite possible to find a junior with 62
completed hours or one with 84 completed hours. In other
words, the classification (STU_CLASS) does not determine
one and only one value for completed hours (STU_HRS).

Keep in mind that it might take more than a single attribute
to define functional dependence; that is, a key may be composed of more than one attribute. Such a multi-attribute
key is known as a composite key.

Any attribute that is part of a key is known as a key attribute. For instance, in the STUDENT table, the student’s
last name would not be sufficient to serve as a key. On the other hand, the combination of last name, first name, initial,
and home phone is very likely to produce unique matches for the remaining attributes. For example, you can write:

STU_LNAME, STU_FNAME, STU_INIT, STU_PHONE → STU_HRS, STU_CLASS

or

STU_LNAME, STU_FNAME, STU_INIT, STU_PHONE → STU_HRS, STU_CLASS, STU_GPA

or

STU_LNAME, STU_FNAME, STU_INIT, STU_PHONE → STU_HRS, STU_CLASS, STU_GPA, STU_DOB

1 SQL:2003 ANSI standard specification. ISO/IEC 9075-2:2003 - SQL/Foundation.

TABLE
3.2

Student Classification

HOURS COMPLETED CLASSIFICATION
Less than 30 Fr
30−59 So
60−89 Jr
90 or more Sr
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Given the possible existence of a composite key, the notion of functional dependence can be further refined by
specifying full functional dependence:

If the attribute (B) is functionally dependent on a composite key (A) but not on any subset of that
composite key, the attribute (B) is fully functionally dependent on (A).

Within the broad key classification, several specialized keys can be defined. For example, a superkey is any key that
uniquely identifies each row. In short, the superkey functionally determines all of a row’s attributes. In the STUDENT
table, the superkey could be any of the following:

STU_NUM

STU_NUM, STU_LNAME

STU_NUM, STU_LNAME, STU_INIT

In fact, STU_NUM, with or without additional attributes, can be a superkey even when the additional attributes are
redundant.

A candidate key can be described as a superkey without unnecessary attributes, that is, a minimal superkey. Using
this distinction, note that the composite key

STU_NUM, STU_LNAME

is a superkey, but it is not a candidate key because STU_NUM by itself is a candidate key! The combination

STU_LNAME, STU_FNAME, STU_INIT, STU_PHONE

might also be a candidate key, as long as you discount the possibility that two students share the same last name, first
name, initial, and phone number.

If the student’s Social Security number had been included as one of the attributes in the STUDENT table in Figure
3.1—perhaps named STU_SSN—both it and STU_NUM would have been candidate keys because either one would
uniquely identify each student. In that case, the selection of STU_NUM as the primary key would be driven by the
designer’s choice or by end-user requirements. In short, the primary key is the candidate key chosen to be the unique
row identifier. Note, incidentally, that a primary key is a superkey as well as a candidate key.

Within a table, each primary key value must be unique to ensure that each row is uniquely identified by the primary
key. In that case, the table is said to exhibit entity integrity. To maintain entity integrity,a null (that is, no data entry
at all) is not permitted in the primary key.

Nulls can never be part of a primary key, and they should be avoided—to the greatest extent possible—in other
attributes, too. There are rare cases in which nulls cannot be reasonably avoided when you are working with nonkey
attributes. For example, one of an EMPLOYEE table’s attributes is likely to be the EMP_INITIAL. However, some
employees do not have a middle initial. Therefore, some of the EMP_INITIAL values may be null. You will also discover
later in this section that there may be situations in which a null exists because of the nature of the relationship between
two entities. In any case, even if nulls cannot always be avoided, they must be used sparingly. In fact, the existence of
nulls in a table is often an indication of poor database design.

Note

A null is no value at all. It does not mean a zero or a space. A null is created when you press the Enter key or
the Tab key to move to the next entry without making a prior entry of any kind. Pressing the Spacebar creates
a blank (or a space).
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Nulls, if used improperly, can create problems because they have many different meanings. For example, a null can
represent:

� An unknown attribute value.

� A known, but missing, attribute value.

� A “not applicable” condition.

Depending on the sophistication of the application development software, nulls can create problems when functions
such as COUNT, AVERAGE, and SUM are used. In addition, nulls can create logical problems when relational tables
are linked.

Controlled redundancy makes the relational database work. Tables within the database share common attributes that
enable the tables to be linked together. For example, note that the PRODUCT and VENDOR tables in Figure 3.2 share
a common attribute named VEND_CODE. And note that the PRODUCT table’s VEND_CODE value 232 occurs more
than once, as does the VEND_CODE value 235. Because the PRODUCT table is related to the VENDOR table
through these VEND_CODE values, the multiple occurrence of the values is required to make the 1:M relationship
between VENDOR and PRODUCT work. Each VEND_CODE value in the VENDOR table is unique—the VENDOR
is the “1” side in the VENDOR-PRODUCT relationship. But any given VEND_CODE value from the VENDOR table
may occur more than once in the PRODUCT table, thus providing evidence that PRODUCT is the “M” side of the
VENDOR-PRODUCT relationship. In database terms, the multiple occurrences of the VEND_CODE values in the
PRODUCT table are not redundant because they are required to make the relationship work. You should recall from
Chapter 2 that data redundancy exists only when there is unnecessary duplication of attribute values.

As you examine Figure 3.2, note that the VEND_CODE value in one table can be used to point to the corresponding
value in the other table. For example, the VEND_CODE value 235 in the PRODUCT table points to vendor Henry
Ortozo in the VENDOR table. Consequently, you discover that the product “Houselite chain saw, 16-in. bar” is
delivered by Henry Ortozo and that he can be contacted by calling 615-899-3425. The same connection can be made
for the product “Steel tape, 12-ft. length” in the PRODUCT table.

Remember the naming convention—the prefix PROD was used in Figure 3.2 to indicate that the attributes “belong”
to the PRODUCT table. Therefore, the prefix VEND in the PRODUCT table’s VEND_CODE indicates that

Database name: Ch03_SaleCo

Table name: VENDOR
Primary key: VEND_CODE
Foreign key: none

Table name: PRODUCT
Primary key: PROD_CODE
Foreign key: VEND_CODE

link

FIGURE
3.2

An example of a simple relational database
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VEND_CODE points to some other table in the database. In this case, the VEND prefix is used to point to the
VENDOR table in the database.

A relational database can also be represented by a relational schema. A relational schema is a textual representation
of the database tables where each table is listed by its name followed by the list of its attributes in parentheses. The
primary key attribute(s) is (are) underlined. You will see such schemas in Chapter 5, Normalization of Database Tables.
For example, the relational schema for Figure 3.2 would be shown as:

VENDOR (VEND_CODE, VEND_CONTACT, VEND_AREACODE, VEND_PHONE)

PRODUCT (PROD_CODE, PROD_DESCRIPT, PROD_PRICE, PROD_ON_HAND, VEND_CODE)

The link between the PRODUCT and VENDOR tables in Figure 3.2 can also be represented by the relational diagram
shown in Figure 3.3. In this case, the link is indicated by the line that connects the VENDOR and PRODUCT tables.

Note that the link in Figure 3.3 is the equivalent of the relationship line in an ERD. This link is created when two tables
share an attribute with common values. More specifically,
the primary key of one table (VENDOR) appears as the
foreign key in a related table (PRODUCT). A foreign key
(FK) is an attribute whose values match the primary key
values in the related table. For example, in Figure 3.2, the
VEND_CODE is the primary key in the VENDOR table, and
it occurs as a foreign key in the PRODUCT table. Because
the VENDOR table is not linked to a third table, the
VENDOR table shown in Figure 3.2 does not contain a
foreign key.

If the foreign key contains either matching values or nulls,
the table that makes use of that foreign key is said to exhibit

referential integrity. In other words, referential integrity means that if the foreign key contains a value, that value
refers to an existing valid tuple (row) in another relation. Note that referential integrity is maintained between the
PRODUCT and VENDOR tables shown in Figure 3.2.

Finally, a secondary key is defined as a key that is used strictly for data retrieval purposes. Suppose customer data
are stored in a CUSTOMER table in which the customer number is the primary key. Do you suppose that most
customers will remember their numbers? Data retrieval for a customer can be facilitated when the customer’s last name
and phone number are used. In that case, the primary key is the customer number; the secondary key is the
combination of the customer’s last name and phone number. Keep in mind that a secondary key does not necessarily
yield a unique outcome. For example, a customer’s last name and home telephone number could easily yield several
matches where one family lives together and shares a phone line. A less efficient secondary key would be the
combination of the last name and zip code; this could yield dozens of matches, which could then be combed for a
specific match.

A secondary key’s effectiveness in narrowing down a search depends on how restrictive that secondary key is. For
instance, although the secondary key CUS_CITY is legitimate from a database point of view, the attribute values “New
York” or “Sydney” are not likely to produce a usable return unless you want to examine millions of possible matches.
(Of course, CUS_CITY is a better secondary key than CUS_COUNTRY.)

Table 3.3 summarizes the various relational database table keys.

FIGURE
3.3

The relational diagram for
the Ch03_SaleCo database
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TABLE
3.3

Relational Database Keys

KEY TYPE DEFINITION
Superkey An attribute (or combination of attributes) that uniquely identifies each row in a table.
Candidate key A minimal (irreducible) superkey. A superkey that does not contain a subset of attributes

that is itself a superkey.
Primary key A candidate key selected to uniquely identify all other attribute values in any given row.

Cannot contain null entries.
Secondary key An attribute (or combination of attributes) used strictly for data retrieval purposes.
Foreign key An attribute (or combination of attributes) in one table whose values must either match the

primary key in another table or be null.

3.3 INTEGRITY RULES

Relational database integrity rules are very important to good database design. Many (but by no means all) RDBMSs
enforce integrity rules automatically. However, it is much safer to make sure that your application design conforms to
the entity and referential integrity rules mentioned in this chapter. Those rules are summarized in Table 3.4.

TABLE
3.4

Integrity Rules

ENTITY INTEGRITY DESCRIPTION
Requirement All primary key entries are unique, and no part of a primary key may be null.
Purpose Each row will have a unique identity, and foreign key values can properly reference

primary key values.
Example No invoice can have a duplicate number, nor can it be null. In short, all invoices are

uniquely identified by their invoice number.
REFERENTIAL INTEGRITY DESCRIPTION
Requirement A foreign key may have either a null entry, as long as it is not a part of its table’s pri-

mary key, or an entry that matches the primary key value in a table to which it is
related. (Every non-null foreign key value must reference an existing primary key value.)

Purpose It is possible for an attribute NOT to have a corresponding value, but it will be impos-
sible to have an invalid entry. The enforcement of the referential integrity rule makes it
impossible to delete a row in one table whose primary key has mandatory matching
foreign key values in another table.

Example A customer might not yet have an assigned sales representative (number), but it will be
impossible to have an invalid sales representative (number).

The integrity rules summarized in Table 3.4 are illustrated in Figure 3.4.

Note the following features of Figure 3.4.

1. Entity integrity. The CUSTOMER table’s primary key is CUS_CODE. The CUSTOMER primary key column
has no null entries, and all entries are unique. Similarly, the AGENT table’s primary key is AGENT_CODE, and
this primary key column also is free of null entries.

2. Referential integrity. The CUSTOMER table contains a foreign key, AGENT_CODE, which links entries in
the CUSTOMER table to the AGENT table. The CUS_CODE row that is identified by the (primary key) number
10013 contains a null entry in its AGENT_CODE foreign key because Mr. Paul F. Olowski does not yet have
a sales representative assigned to him. The remaining AGENT_CODE entries in the CUSTOMER table all
match the AGENT_CODE entries in the AGENT table.
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To avoid nulls, some designers use special codes, known as flags, to indicate the absence of some value. Using Figure
3.4 as an example, the code -99 could be used as the AGENT_CODE entry of the fourth row of the CUSTOMER table
to indicate that customer Paul Olowski does not yet have an agent assigned to him. If such a flag is used, the AGENT
table must contain a dummy row with an AGENT_CODE value of -99. Thus, the AGENT table’s first record might
contain the values shown in Table 3.5.

TABLE
3.5

A Dummy Variable Value Used as a Flag

AGENT_CODE AGENT_AREACODE AGENT_PHONE AGENT_LNAME AGENT_YTD_SALES
-99 000 000-0000 None $0.00

Chapter 4, Entity Relationship (ER) Modeling, discusses several ways in which nulls may be handled.

Other integrity rules that can be enforced in the relational model are the NOT NULL and UNIQUE constraints. The
NOT NULL constraint can be placed on a column to ensure that every row in the table has a value for that column.
The UNIQUE constraint is a restriction placed on a column to ensure that no duplicate values exist for that column.

3.4 RELATIONAL SET OPERATORS

The data in relational tables are of limited value unless the data can be manipulated to generate useful information. This
section describes the basic data manipulation capabilities of the relational model. Relational algebra defines the
theoretical way of manipulating table contents using the eight relational operators: SELECT, PROJECT, JOIN,
INTERSECT, UNION, DIFFERENCE, PRODUCT, and DIVIDE. In Chapter 7, Introduction to Structured Query
Language (SQL), you will learn how SQL commands can be used to accomplish relational algebra operations.

Table name: CUSTOMER
Primary key: CUS_CODE
Foreign key: AGENT_CODE

Database name: Ch03_InsureCo

FIGURE
3.4

An illustration of integrity rules

Table name: AGENT
Primary key: AGENT_CODE
Foreign key: none
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The relational operators have the property of closure; that is, the use of relational algebra operators on existing tables
(relations) produces new relations. There is no need to examine the mathematical definitions, properties, and
characteristics of those relational algebra operators. However, their use can easily be illustrated as follows:

1. UNION combines all rows from two tables, excluding duplicate rows. The tables must have the same attribute
characteristics (the columns and domains must be identical) to be used in the UNION. When two or more tables
share the same number of columns, when the columns have the same names, and when they share the same (or
compatible) domains, they are said to be union-compatible. The effect of a UNION is shown in Figure 3.5.

2. INTERSECT yields only the rows that appear in both tables. As was true in the case of UNION, the tables must
be union-compatible to yield valid results. For example, you cannot use INTERSECT if one of the attributes is
numeric and one is character-based. The effect of an INTERSECT is shown in Figure 3.6.

3. DIFFERENCE yields all rows in one table that are not found in the other table; that is, it subtracts one table
from the other. As was true in the case of UNION, the tables must be union-compatible to yield valid results.

Note

The degree of relational completeness can be defined by the extent to which relational algebra is supported. To
be considered minimally relational, the DBMS must support the key relational operators SELECT, PROJECT, and
JOIN. Very few DBMSs are capable of supporting all eight relational operators.

UNION

yields

FIGURE
3.5

UNION

INTERSECT
yields

FIGURE
3.6

INTERSECT
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The effect of a DIFFERENCE is shown in Figure 3.7. However, note that subtracting the first table from the
second table is not the same as subtracting the second table from the first table.

4. PRODUCT yields all possible pairs of rows from two tables—also known as the Cartesian product. Therefore,
if one table has six rows and the other table has three rows, the PRODUCT yields a list composed of 6 × 3
= 18 rows. The effect of a PRODUCT is shown in Figure 3.8.

5. SELECT, also known as RESTRICT, yields values for all rows found in a table that satisfy a given condition.
SELECT can be used to list all of the row values, or it can yield only those row values that match a specified
criterion. In other words, SELECT yields a horizontal subset of a table. The effect of a SELECT is shown in
Figure 3.9.

DIFFERENCE
yields

FIGURE
3.7

DIFFERENCE

PRODUCT

yields

FIGURE
3.8

PRODUCT
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6. PROJECT yields all values for selected attributes. In other words, PROJECT yields a vertical subset of a table.
The effect of a PROJECT is shown in Figure 3.10.

7. JOIN allows information to be combined from two or more tables. JOIN is the real power behind the relational
database, allowing the use of independent tables linked by common attributes. The CUSTOMER and AGENT
tables shown in Figure 3.11 will be used to illustrate several types of joins.

Original table New table or list

SELECT ALL yields

SELECT only PRICE less than $2.00 yields

SELECT only P_CODE = 311452 yields

FIGURE
3.9

SELECT

Original table New table or list

PROJECT PRICE yields

PROJECT P_DESCRIPT and PRICE yields

PROJECT P_CODE and PRICE yields

FIGURE
3.10

PROJECT
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A natural join links tables by selecting only the rows with common values in their common attribute(s). A
natural join is the result of a three-stage process:

a. First, a PRODUCT of the tables is created, yielding the results shown in Figure 3.12.

b. Second, a SELECT is performed on the output of Step a to yield only the rows for which the
AGENT_CODE values are equal. The common columns are referred to as the join columns. Step b yields
the results shown in Figure 3.13.

Table name: CUSTOMER Table name: AGENT

FIGURE
3.11

Two tables that will be used in join illustrations

FIGURE
3.12

Natural join, Step 1: PRODUCT

C6545_03 6/20/2007 15:30:43 Page 76

76 C H A P T E R 3



c. A PROJECT is performed on the results of Step b to yield a single copy of each attribute, thereby
eliminating duplicate columns. Step c yields the output shown in Figure 3.14.

The final outcome of a natural join yields a table that does
not include unmatched pairs and provides only the copies of
the matches.

Note a few crucial features of the natural join operation:

� If no match is made between the table rows, the new
table does not include the unmatched row. In that
case, neither AGENT_CODE 421 nor the customer
whose last name is Smithson is included. Smithson’s
AGENT_CODE 421 does not match any entry in
the AGENT table.

� The column on which the join was made—that is, AGENT_CODE—occurs only once in the new table.

� If the same AGENT_CODE were to occur several times in the AGENT table, a customer would be listed for
each match. For example, if the AGENT_CODE 167 were to occur three times in the AGENT table, the
customer named Rakowski, who is associated with AGENT_CODE 167, would occur three times in the
resulting table. (A good AGENT table cannot, of course, yield such a result because it would contain unique
primary key values.)

Another form of join, known as equijoin, links tables on the basis of an equality condition that compares specified
columns of each table. The outcome of the equijoin does not eliminate duplicate columns, and the condition or
criterion used to join the tables must be explicitly defined. The equijoin takes its name from the equality comparison
operator (=) used in the condition. If any other comparison operator is used, the join is called a theta join.

In an outer join, the matched pairs would be retained and any unmatched values in the other table would be left null.
More specifically, if an outer join is produced for tables CUSTOMER and AGENT, two scenarios are possible:

A left outer join yields all of the rows in the CUSTOMER
table, including those that do not have a matching value in
the AGENT table. An example of such a join is shown in
Figure 3.15.

A right outer join yields all of the rows in the AGENT
table, including those that do not have matching values in
the CUSTOMER table. An example of such a join is shown
in Figure 3.16.

FIGURE
3.13

Natural join, Step 2: SELECT

FIGURE
3.14

Natural join, Step 3: PROJECT

FIGURE
3.15

Left outer join
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Outer joins are especially useful when you are trying
to determine what value(s) in related tables cause(s)
referential integrity problems. Such problems are
created when foreign key values do not match the
primary key values in the related table(s). In fact, if
you are asked to convert large spreadsheets or other
nondatabase data into relational database tables, you
will discover that the outer joins save you vast
amounts of time and uncounted headaches when
you encounter referential integrity errors after the
conversions.

You may wonder why the outer joins are labeled left and right. The labels refer to the order in which the tables
are listed in the SQL command. Chapter 7 explores such joins.

8. The DIVIDE operation uses one single-column table (i.e. column “a”) as the divisor and one 2-column table (i.e.
columns “a” and “b”) as the dividend. The tables must have a common column (i.e. column “a”.) The output
of the DIVIDE operation is a single column with the values of column “a” from the dividend table rows where
the value of the common column (i.e. column “a”) in both tables match. Figure 3.17 shows a DIVIDE.

Using the example shown in Figure 3.17, note that:

a. Table 1 is “divided” by Table 2 to produce Table 3. Tables 1 and 2 both contain the column CODE but do
not share LOC.

b. To be included in the resulting Table 3, a value in the unshared column (LOC) must be associated (in the
dividing Table 2) with every value in Table 1.

c. The only value associated with both A and B is 5.

3.5 THE DATA DICTIONARY AND THE SYSTEM CATALOG

The data dictionary provides a detailed description of all tables found within the user/designer-created database.
Thus, the data dictionary contains at least all of the attribute names and characteristics for each table in the system.
In short, the data dictionary contains metadata—data about data. Using the small database presented in Figure 3.4,
you might picture its data dictionary as shown in Table 3.6.

FIGURE
3.16

Right outer join

DIVIDE
yields

FIGURE
3.17

DIVIDE
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The data dictionary is sometimes described as “the database designer’s database” because it records the design
decisions about tables and their structures.

Like the data dictionary, the system catalog contains metadata. The system catalog can be described as a detailed
system data dictionary that describes all objects within the database, including data about table names, the table’s
creator and creation date, the number of columns in each table, the data type corresponding to each column, index
filenames, index creators, authorized users, and access privileges. Because the system catalog contains all required data
dictionary information, the terms system catalog and data dictionary are often used interchangeably. In fact, current
relational database software generally provides only a system catalog, from which the designer’s data dictionary
information may be derived. The system catalog is actually a system-created database whose tables store the
user/designer-created database characteristics and contents. Therefore, the system catalog tables can be queried just
like any user/designer-created table.

In effect, the system catalog automatically produces database documentation. As new tables are added to the database,
that documentation also allows the RDBMS to check for and eliminate homonyms and synonyms. In general terms,
homonyms are similar-sounding words with different meanings, such as boar and bore, or identically spelled words
with different meanings, such as fair (meaning “just”) and fair (meaning “festival”). In a database context, the word
homonym indicates the use of the same attribute name to label different attributes. For example, you might use
C_NAME to label a customer name attribute in a CUSTOMER table and also use C_NAME to label a consultant name
attribute in a CONSULTANT table. To lessen confusion, you should avoid database homonyms; the data dictionary is
very useful in this regard.

In a database context, a synonym is the opposite of a homonym and indicates the use of different names to describe
the same attribute. For example, car and auto refer to the same object. Synonyms must be avoided. You will discover
why using synonyms is a bad idea when you work through Problem 33 at the end of this chapter.

3.6 RELATIONSHIPS WITHIN THE RELATIONAL DATABASE

You already know that relationships are classified as one-to-one (1:1), one-to-many (1:M), and many-to-many (M:N or
M:M). This section explores those relationships further to help you apply them properly when you start developing
database designs, focusing on the following points:

� The 1:M relationship is the relational modeling ideal. Therefore, this relationship type should be the norm in
any relational database design.

� The 1:1 relationship should be rare in any relational database design.

� M:N relationships cannot be implemented as such in the relational model. Later in this section, you will see
how any M:N relationships can be changed into two 1:M relationships.

3.6.1 The 1:M Relationship

The 1:M relationship is the relational database norm. To see how such a relationship is modeled and implemented,
consider the PAINTER paints PAINTING example that was used in Chapter 2. Compare the data model in Figure 3.18
with its implementation in Figure 3.19.

Note

The data dictionary in Table 3.6 is an example of the human view of the entities, attributes, and relationships. The
purpose of this data dictionary is to ensure that all members of database design and implementation teams use the
same table and attribute names and characteristics. The DBMS’s internally stored data dictionary contains
additional information about relationship types, entity and referential integrity checks and enforcement, and index
types and components. This additional information is generated during the database implementation stage.
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As you examine the PAINTER and PAINTING table contents
in Figure 3.19, note the following features:

� Each painting is painted by one and only one
painter, but each painter could have painted many
paintings. Note that painter 123 (Georgette P. Ross)
has three paintings stored in the PAINTING table.

� There is only one row in the PAINTER table for any
given row in the PAINTING table, but there may be
many rows in the PAINTING table for any given row
in the PAINTER table.

The 1:M relationship is found in any database environment. Students in a typical college or university will discover that
each COURSE can generate many CLASSes but that each CLASS refers to only one COURSE. For example, an
Accounting II course might yield two classes: one offered on Monday, Wednesday, and Friday (MWF) from 10:00 a.m.
to 10:50 a.m. and one offered on Thursday (Th) from 6:00 p.m. to 8:40 p.m. Therefore, the 1:M relationship
between COURSE and CLASS might be described this way:

� Each COURSE can have many CLASSes, but each
CLASS references only one COURSE.

� There will be only one row in the COURSE table for
any given row in the CLASS table, but there can be
many rows in the CLASS table for any given row in
the COURSE table.

Figure 3.20 maps the ERM for the 1:M relationship between
COURSE and CLASS.

Database name: Ch03_Museum

Table name: PAINTING
Primary key: PAINTING_NUM
Foreign key: PAINTER_NUM

Table name: PAINTER
Primary key: PAINTER_NUM
Foreign key: none

FIGURE
3.19

The implemented 1:M relationship between PAINTER and PAINTING

FIGURE
3.18

The 1:M relationship between
PAINTER and PAINTING

Note

The one-to-many (1:M) relationship is easily implemented in the relational model by putting the primary key of
the “1” side in the table of the “many” side as a foreign key.

FIGURE
3.20

The 1:M relationship between
COURSE and CLASS
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The 1:M relationship between COURSE and CLASS is further illustrated in Figure 3.21.

Using Figure 3.21, take a minute to review some important terminology. Note that CLASS_CODE in the CLASS table
uniquely identifies each row. Therefore, CLASS_CODE has been chosen to be the primary key. However, the
combination CRS_CODE and CLASS_SECTION will also uniquely identify each row in the class table. In other words,
the composite key composed of CRS_CODE and CLASS_SECTION is a candidate key. Any candidate key must have
the not null and unique constraints enforced. (You will see how this is done when you learn SQL in Chapter 7.)

For example, note in Figure 3.19 that the PAINTER table’s primary key, PAINTER_NUM, is included in the PAINTING
table as a foreign key. Similarly, in Figure 3.21, the COURSE table’s primary key, CRS_CODE, is included in the
CLASS table as a foreign key.

3.6.2 The 1:1 Relationship

As the 1:1 label implies, in this relationship, one entity can be related to only one other entity, and vice versa. For
example, one department chair—a professor—can chair only one department and one department can have only one
department chair. The entities PROFESSOR and DEPARTMENT thus exhibit a 1:1 relationship. (You might argue that
not all professors chair a department and professors cannot be required to chair a department. That is, the relationship
between the two entities is optional. However, at this stage of the discussion, you should focus your attention on the
basic 1:1 relationship. Optional relationships will be addressed in Chapter 4.) The basic 1:1 relationship is modeled
in Figure 3.22, and its implementation is shown in Figure 3.23.

As you examine the tables in Figure 3.23, note that there are several important features:

� Each professor is a Tiny College employee. Therefore, the professor identification is through the EMP_NUM.
(However, note that not all employees are professors—there’s another optional relationship.)

Database name: Ch03_TinyCollege

Table name: CLASS
Primary key: CLASS_CODE
Foreign key: CRS_CODE

Table name: COURSE
Primary key: CRS_CODE
Foreign key: none

FIGURE
3.21

The implemented 1:M relationship between COURSE and CLASS
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� The 1:1 PROFESSOR chairs DEPARTMENT rela-
tionship is implemented by having the EMP_NUM
foreign key in the DEPARTMENT table. Note that the
1:1 relationship is treated as a special case of the 1:M
relationship in which the “many” side is restricted to a
single occurrence. In this case, DEPARTMENT con-
tains the EMP_NUM as a foreign key to indicate that
it is the department that has a chair.

FIGURE
3.22

The 1:1 relationship between
PROFESSOR and DEPARTMENT

Table name: DEPARTMENT
Primary key: DEPT_CODE
Foreign key: EMP_NUM

Table name: PROFESSOR
Primary key: EMP_NUM
Foreign key: DEPT_CODE

Database name: Ch03_TinyCollege

FIGURE
3.23

The implemented 1:1 relationship between PROFESSOR and DEPARTMENT

The 1:M DEPARTMENT employs PROFESSOR relationship is implemented through
the placement of the DEPT_CODE foreign key in the PROFESSOR table.

The 1:1 PROFESSOR chairs DEPARTMENT relationship
is implemented through the placement of the
EMP_NUM foreign key in the DEPARTMENT table.
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� Also note that the PROFESSOR table contains the DEPT_CODE foreign key to implement the 1:M
DEPARTMENT employs PROFESSOR relationship. This is a good example of how two entities can participate
in two (or even more) relationships simultaneously.

The preceding “PROFESSOR chairs DEPARTMENT” example illustrates a proper 1:1 relationship. In fact, the use
of a 1:1 relationship ensures that two entity sets are not placed in the same table when they should not be.
However, the existence of a 1:1 relationship sometimes means that the entity components were not defined properly.
It could indicate that the two entities actually belong in the same table!

As rare as 1:1 relationships should be, certain conditions absolutely require their use. For example, suppose you
manage the database for a company that employs pilots, accountants, mechanics, clerks, salespeople, service
personnel, and more. Pilots have many attributes that the other employees don’t have, such as licenses, medical
certificates, flight experience records, dates of flight proficiency checks, and proof of required periodic medical checks.
If you put all of the pilot-specific attributes in the EMPLOYEE table, you will have several nulls in that table for all
employees who are not pilots. To avoid the proliferation of nulls, it is better to split the pilot attributes into a separate
table (PILOT) that is linked to the EMPLOYEE table in a 1:1 relationship. Because pilots have many attributes that are
shared by all employees—such as name, date of birth, and date of first employment—those attributes would be stored
in the EMPLOYEE table.

3.6.3 The M:N Relationship

A many-to-many (M:N) relationship is not supported directly in the relational environment. However, M:N relationships
can be implemented by creating a new entity in 1:M relationships with the original entities.

To explore the many-to-many (M:N) relationship, consider a
rather typical college environment in which each STUDENT
can take many CLASSes, and each CLASS can contain
many STUDENTs. The ER model in Figure 3.24 shows this
M:N relationship.

Note the features of the ERM in Figure 3.24.

O n l i n e C o n t e n t

If you open the Ch03_TinyCollege database in the Student Online Companion, you’ll see that the
STUDENT and CLASS entities still use PROF_NUM as their foreign key. PROF_NUM and EMP_NUM are labels
for the same attribute, which is an example of the use of synonyms—different names for the same attribute.
These synonyms will be eliminated in future chapters as the Tiny College database continues to be improved.

O n l i n e C o n t e n t

If you look at the Ch03_AviaCo database in the Student Online Companion, you will see the implementation
of the 1:1 PILOT to EMPLOYEE relationship. This type of relationship will be examined in detail in Chapter 6,
Advanced Data Modeling.

FIGURE
3.24
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� Each CLASS can have many STUDENTs, and each STUDENT can take many CLASSes.

� There can be many rows in the CLASS table for any given row in the STUDENT table, and there can be many
rows in the STUDENT table for any given row in the CLASS table.

To examine the M:N relationship more closely, imagine a small college with two students, each of whom takes three
classes. Table 3.7 shows the enrollment data for the two students.

TABLE
3.7

Sample Student Enrollment Data

STUDENT’S LAST NAME SELECTED CLASSES
Bowser Accounting 1, ACCT-211, code 10014

Intro to Microcomputing, CIS-220, code 10018
Intro to Statistics, QM-261, code 10021

Smithson Accounting 1, ACCT-211, code 10014
Intro to Microcomputing, CIS-220, code 10018
Intro to Statistics, QM-261, code 10021

Although the M:N relationship is logically reflected in Figure 3.24, it should not be implemented as shown in Figure
3.25 for two good reasons:

� The tables create many redundancies. For example, note that the STU_NUM values occur many times in the
STUDENT table. In a real-world situation, additional student attributes such as address, classification, major,
and home phone would also be contained in the STUDENT table, and each of those attribute values would be
repeated in each of the records shown here. Similarly, the CLASS table contains many duplications: each
student taking the class generates a CLASS record. The problem would be even worse if the CLASS table
included such attributes as credit hours and course description. Those redundancies lead to the anomalies
discussed in Chapter 1.

� Given the structure and contents of the two tables, the relational operations become very complex and are
likely to lead to system efficiency errors and output errors.

Database name: Ch03_CollegeTry
Table name: STUDENT
Primary key: STU_NUM
Foreign key: none

Table name: CLASS
Primary key: CLASS_CODE
Foreign key: STU_NUM

FIGURE
3.25

The M:N relationship between STUDENT and CLASS
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Fortunately, the problems inherent in the many-to-many (M:N) relationship can easily be avoided by creating a
composite entity (also referred to as a bridge entity or an associative entity). Because such a table is used to link
the tables that originally were related in a M:N relationship, the composite entity structure includes—as foreign
keys—at least the primary keys of the tables that are to be linked. The database designer has two main options when
defining a composite table’s primary key: use the combination of those foreign keys or create a new primary key.

Remember that each entity in the ERM is represented by a table. Therefore, you can create the composite ENROLL
table shown in Figure 3.26 to link the tables CLASS and STUDENT. In this example, the ENROLL table’s primary key
is the combination of its foreign keys CLASS_CODE and STU_NUM. But the designer could have decided to create
a single-attribute new primary key such as ENROLL_LINE, using a different line value to identify each ENROLL table
row uniquely. (Microsoft Access users might use the Autonumber data type to generate such line values automatically.)

Because the ENROLL table in Figure 3.26 links two tables, STUDENT and CLASS, it is also called a linking table.
In other words, a linking table is the implementation of a composite entity.

The linking table (ENROLL) shown in Figure 3.26 yields the required M:N to 1:M conversion. Observe that the
composite entity represented by the ENROLL table must contain at least the primary keys of the CLASS and

Table name: ENROLL
Primary key: CLASS_CODE + STU_NUM
Foreign key: CLASS_CODE, STU_NUM

Table name: STUDENT
Primary key: STU_NUM
Foreign key: none

Database name: Ch03_CollegeTry2

Table name: CLASS
Primary key: CLASS_CODE
Foreign key: CRS_CODE

FIGURE
3.26

Converting the M:N relationship into two 1:M relationships

Note

In addition to the linking attributes, the composite ENROLL table can also contain such relevant attributes as the
grade earned in the course. In fact, a composite table can contain any number of attributes that the designer
wants to track. Keep in mind that the composite entity, although it is implemented as an actual table, is
conceptually a logical entity that was created as a means to an end: to eliminate the potential for multiple
redundancies in the original M:N relationship.
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STUDENT tables (CLASS_CODE and STU_NUM, respectively) for which it serves as a connector. Also note that the
STUDENT and CLASS tables now contain only one row per entity. The linking ENROLL table contains multiple
occurrences of the foreign key values, but those controlled redundancies are incapable of producing anomalies as long
as referential integrity is enforced. Additional attributes may be assigned as needed. In this case, ENROLL_GRADE is
selected to satisfy a reporting requirement. Also note that the ENROLL table’s primary key consists of the two
attributes CLASS_CODE and STU_NUM because both the class code and the student number are needed to define
a particular student’s grade. Naturally, the conversion is reflected in the ERM, too. The revised relationship is shown
in Figure 3.27.

As you examine Figure 3.27, note that the composite entity named ENROLL represents the linking table between
STUDENT and CLASS.

The 1:M relationship between COURSE and CLASS was first illustrated in Figure 3.20 and Figure 3.21. With the help
of this relationship, you can increase the amount of available information even as you control the database’s
redundancies. Thus, Figure 3.27 can be expanded to include the 1:M relationship between COURSE and CLASS
shown in Figure 3.28. Note that the model is able to handle multiple sections of a CLASS while controlling
redundancies by making sure that all of the COURSE data common to each CLASS are kept in the COURSE table.

The relational diagram that corresponds to the ERD in Figure 3.28 is shown in Figure 3.29.

FIGURE
3.27

Changing the M:N relationship
to two 1:M relationships

FIGURE
3.28

The expanded entity
relationship model

FIGURE
3.29

The relational diagram for the Ch03_TinyCollege database
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The ERD will be examined in greater detail in Chapter 4 to show you how it is used to design more complex databases.
The ERD will also be used as the basis for the development and implementation of a realistic database design in
Appendixes B and C (see the Student Online Companion Web site) for a university computer lab.

3.7 DATA REDUNDANCY REVISITED

In Chapter 1 you learned that data redundancy leads to data anomalies. Those anomalies can destroy the effectiveness
of the database. You also learned that the relational database makes it possible to control data redundancies by using
common attributes that are shared by tables, called foreign keys.

The proper use of foreign keys is crucial to controlling data redundancy. Although the use of foreign keys does not
totally eliminate data redundancies because the foreign key values can be repeated many times, the proper use of
foreign keys minimizes data redundancies, thus minimizing the chance that destructive data anomalies will develop.

You will learn in Chapter 4 that database designers must reconcile three often contradictory requirements: design
elegance, processing speed, and information requirements. And you will learn in Chapter 13, Business Intelligence and
Data Warehouses, that proper data warehousing design requires carefully defined and controlled data redundancies to
function properly. Regardless of how you describe data redundancies, the potential for damage is limited by proper
implementation and careful control.

As important as data redundancy control is, there are times when the level of data redundancy must actually be
increased to make the database serve crucial information purposes. You will learn about such redundancies in Chapter
13. There are also times when data redundancies seem to exist to preserve the historical accuracy of the data. For
example, consider a small invoicing system. The system includes the CUSTOMER, who may buy one or more
PRODUCTs, thus generating an INVOICE. Because a customer may buy more than one product at a time, an invoice
may contain several invoice LINEs, each providing details about the purchased product. The PRODUCT table should
contain the product price to provide a consistent pricing input for each product that appears on the invoice. The tables
that are part of such a system are shown in Figure 3.30. The system’s relational diagram is shown in Figure 3.31.

As you examine the tables in the invoicing system in Figure 3.30 and the relationships depicted in Figure 3.31, note
that you can keep track of typical sales information. For example, by tracing the relationships among the four tables,
you discover that customer 10014 (Myron Orlando) bought two items on March 8, 2006 that were written to invoice
number 1001: one Houselite chain saw with a 16-inch bar and three rat-tail files. (Note: Trace the CUS_CODE
number 10014 in the CUSTOMER table to the matching CUS_CODE value in the INVOICE table. Next, take the
INV_NUMBER 1001 and trace it to the first two rows in the LINE table. Finally, match the two PROD_CODE values
in LINE with the PROD_CODE values in PRODUCT.) Application software will be used to write the correct bill by
multiplying each invoice line item’s LINE_UNITS by its LINE_PRICE, adding the results, applying appropriate taxes,
etc. Later, other application software might use the same technique to write sales reports that track and compare sales
by week, month, or year.

Note

The real test of redundancy is not how many copies of a given attribute are stored, but whether the elimination
of an attribute will eliminate information. Therefore, if you delete an attribute and the original information can
still be generated through relational algebra, the inclusion of that attribute would be redundant. Given that view
of redundancy, proper foreign keys are clearly not redundant in spite of their multiple occurrences in a table.
However, even when you use this less restrictive view of redundancy, keep in mind that controlled redundancies
are often designed as part of the system to ensure transaction speed and/or information requirements. Exclusive
reliance on relational algebra to produce required information may lead to elegant designs that fail the test of
practicality.

C6545_03 6/20/2007 10:6:30 Page 88

88 C H A P T E R 3



As you examine the sales transactions in Figure 3.30, you might reasonably suppose that the product price billed to
the customer is derived from the PRODUCT table because that’s where the product data are stored. But why does that
same product price occur again in the LINE table? Isn’t that a data redundancy? It certainly appears to be. But this
time, the apparent redundancy is crucial to the system’s success. Copying the product price from the PRODUCT table

Database name: Ch03_SaleCo
Table name:  CUSTOMER
Primary key: CUS_CODE
Foreign key: none

Table name:   LINE
Primary key:  INV_NUMBER + LINE_NUMBER
Foreign keys: INV_NUMBER, PROD_CODE

Table name:  INVOICE
Primary key: INV_NUMBER
Foreign key: CUS_CODE

Table name: PRODUCT
Primary key: PROD_CODE
Foreign key: none

FIGURE
3.30

A small invoicing system

FIGURE
3.31

The relational diagram for the invoicing system
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to the LINE table maintains the historical accuracy of the transactions. Suppose, for instance, that you fail to write
the LINE_PRICE in the LINE table and that you use the PROD_PRICE from the PRODUCT table to calculate the sales
revenue. Now suppose that the PRODUCT table’s PROD_PRICE changes, as prices frequently do. This price change
will be properly reflected in all subsequent sales revenue calculations. However, the calculations of past sales revenues
will also reflect the new product price that was not in effect when the transaction took place! As a result, the revenue
calculations for all past transactions will be incorrect, thus eliminating the possibility of making proper sales
comparisons over time. On the other hand, if the price data are copied from the PRODUCT table and stored with the
transaction in the LINE table, that price will always accurately reflect the transaction that took place at that time. You
will discover that such planned “redundancies” are common in good database design.

Finally, you might wonder why the LINE_NUMBER attribute was used in the LINE table in Figure 3.30. Wouldn’t the
combination of INV_NUMBER and PROD_CODE be a sufficient composite primary key—and, therefore, isn’t the
LINE_NUMBER redundant? Yes, the LINE_NUMBER is redundant, but this redundancy is quite commonly created by
invoicing software that generates such line numbers automatically. In this case, the redundancy is not necessary. But
given its automatic generation, the redundancy is not a source of anomalies. The inclusion of LINE_NUMBER also
adds another benefit: the order of the retrieved invoicing data will always match the order in which the data were
entered. If product codes are used as part of the primary key, indexing will arrange those product codes as soon as
the invoice is completed and the data are stored. You can imagine the potential confusion when a customer calls and
says, “The second item on my invoice has an incorrect price” and you are looking at an invoice whose lines show a
different order from those on the customer’s copy!

3.8 INDEXES

Suppose you want to locate a particular book in a library. Does it make sense to look through every book in the library
until you find the one you want? Of course not; you use the library’s catalog, which is indexed by title, topic, and
author. The index (in either a manual or a computer system) points you to the book’s location, thereby making retrieval
of the book a quick and simple matter. An index is an orderly arrangement used to logically access rows in a table.

Or suppose you want to find a topic, such as “ER model,” in this book. Does it make sense to read through every page
until you stumble across the topic? Of course not; it is much simpler to go to the book’s index, look up the phrase ER
model, and read the page references that point you to the appropriate page(s). In each case, an index is used to locate
a needed item quickly.

Indexes in the relational database environment work like the indexes described in the preceding paragraphs. From a
conceptual point of view, an index is composed of an index key and a set of pointers. The index key is, in effect, the
index’s reference point. More formally, an index is an ordered arrangement of keys and pointers. Each key points to
the location of the data identified by the key.

For example, suppose you want to look up all of the paintings created by a given painter in the Ch03_Museum
database in Figure 3.19. Without an index, you must read each row in the PAINTING table and see if the
PAINTER_NUM matches the requested painter. However, if you index the PAINTER table and use the index key
PAINTER_NUM, you merely need to look up the appropriate PAINTER_NUM in the index and find the matching
pointers. Conceptually speaking, the index would resemble the presentation depicted in Figure 3.32.

As you examine Figure 3.32 and compare it to the Ch03_Museum database tables shown in Figure 3.19, note that
the first PAINTER_NUM index key value (123) is found in records 1, 2, and 4 of the PAINTING table in Figure 3.19.
The second PAINTER_NUM index key value (126) is found in records 3 and 5 of the PAINTING table in Figure 3.19.

DBMSs use indexes for many different purposes. You just learned that an index can be used to retrieve data more
efficiently. But indexes can also be used by a DBMS to retrieve data ordered by a specific attribute or attributes. For
example, creating an index on a customer’s last name will allow you to retrieve the customer data alphabetically by the
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customer’s last name. Also, an index key can be composed of one or more attributes. For example, in Figure 3.30,
you can create an index on VEND_CODE and PROD_CODE to retrieve all rows in the PRODUCT table ordered by
vendor, and within vendor, ordered by product.

Indexes play an important role in DBMSs for the implementation of primary keys. When you define a table’s primary
key, the DBMS automatically creates a unique index on the primary key column(s) you declared. For example, in Figure
3.30, when you declare CUS_CODE to be the primary key of the CUSTOMER table, the DBMS automatically creates
a unique index on that attribute. A unique index, as its name implies, is an index in which the index key can have
only one pointer value (row) associated with it. (The index in Figure 3.32 is not a unique index because the
PAINTER_NUM has multiple pointer values associated with it. For example, painter number 123 points to three
rows—1, 2, and 4—in the PAINTING table.)

A table can have many indexes, but each index is associated with only one table. The index key can have multiple
attributes (composite index). Creating an index is easy. You learn in Chapter 7 that a simple SQL command produces
any required index.

3.9 CODD’S RELATIONAL DATABASE RULES

In 1985, Dr. E. F. Codd published a list of 12 rules to define a relational database system.2 The reason Dr. Codd
published the list was his concern that many vendors were marketing products as “relational” even though those
products did not meet minimum relational standards. Dr. Codd’s list, shown in Table 3.8, serves as a frame of reference
for what a truly relational database should be. Bear in mind that even the dominant database vendors do not fully
support all 12 rules.

2 Codd, E., “Is Your DBMS Really Relational?” and “Does Your DBMS Run by the Rules?” Computerworld, October 14 and October 21, 1985.

Components of an index

PAINTER_NUM
(index key)

126

Pointers to the
PAINTING
table rows

3, 5

FIGURE
3.32

Painting Table

123 1, 2, 4

Painting Table Index
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TABLE
3.8

Dr. Codd’s 12 Relational Database Rules

RULE RULE NAME DESCRIPTION
1 Information All information in a relational database must be logically rep-

resented as column values in rows within tables.
2 Guaranteed Access Every value in a table is guaranteed to be accessible through a

combination of table name, primary key value, and column
name.

3 Systematic Treatment of Nulls Nulls must be represented and treated in a systematic way,
independent of data type.

4 Dynamic On-Line Catalog Based on
the Relational Model

The metadata must be stored and managed as ordinary data,
that is, in tables within the database. Such data must be avail-
able to authorized users using the standard database relational
language.

5 Comprehensive Data Sublanguage The relational database may support many languages. How-
ever, it must support one well defined, declarative language
with support for data definition, view definition, data manipu-
lation (interactive and by program), integrity constraints,
authorization, and transaction management (begin, commit,
and rollback).

6 View Updating Any view that is theoretically updatable must be updatable
through the system.

7 High-Level Insert, Update and Delete The database must support set-level inserts, updates, and
deletes.

8 Physical Data Independence Application programs and ad hoc facilities are logically unaf-
fected when physical access methods or storage structures are
changed.

9 Logical Data Independence Application programs and ad hoc facilities are logically unaf-
fected when changes are made to the table structures that
preserve the original table values (changing order of column or
inserting columns).

10 Integrity Independence All relational integrity constraints must be definable in the rela-
tional language and stored in the system catalog, not at the
application level.

11 Distribution Independence The end users and application programs are unaware and
unaffected by the data location (distributed vs. local
databases).

12 Nonsubversion If the system supports low-level access to the data, there must
not be a way to bypass the integrity rules of the database.

Rule Zero All preceding rules are based on the notion that in order for a
database to be considered relational, it must use its relational
facilities exclusively to manage the database.
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S u m m a r y

◗ Tables are the basic building blocks of a relational database. A grouping of related entities, known as an entity set,
is stored in a table. Conceptually speaking, the relational table is composed of intersecting rows (tuples) and
columns. Each row represents a single entity, and each column represents the characteristics (attributes) of the
entities.

◗ Keys are central to the use of relational tables. Keys define functional dependencies; that is, other attributes are
dependent on the key and can, therefore, be found if the key value is known. A key can be classified as a superkey,
a candidate key, a primary key, a secondary key, or a foreign key.

◗ Each table row must have a primary key. The primary key is an attribute or a combination of attributes that uniquely
identifies all remaining attributes found in any given row. Because a primary key must be unique, no null values are
allowed if entity integrity is to be maintained.

◗ Although the tables are independent, they can be linked by common attributes. Thus, the primary key of one table
can appear as the foreign key in another table to which it is linked. Referential integrity dictates that the foreign
key must contain values that match the primary key in the related table or must contain nulls.

◗ The relational model supports relational algebra functions: SELECT, PROJECT, JOIN, INTERSECT, UNION,
DIFFERENCE, PRODUCT, and DIVIDE. A relational database performs much of the data manipulation work
behind the scenes. For example, when you create a database, the RDBMS automatically produces a structure to
house a data dictionary for your database. Each time you create a new table within the database, the RDBMS
updates the data dictionary, thereby providing the database documentation.

◗ Once you know the relational database basics, you can concentrate on design. Good design begins by identifying
appropriate entities and their attributes and then the relationships among the entities. Those relationships (1:1,
1:M, and M:N) can be represented using ERDs. The use of ERDs allows you to create and evaluate simple logical
design. The 1:M relationship is most easily incorporated in a good design; you just have to make sure that the
primary key of the “1” is included in the table of the “many.”
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R e v i e w Q u e s t i o n s

1. What is the difference between a database and a table?

2. What does it mean to say that a database displays both entity integrity and referential integrity?

3. Why are entity integrity and referential integrity important in a database?

4. A database user manually notes that “The file contains two hundred records, each record containing nine fields.”
Use appropriate relational database terminology to “translate” that statement.

5. Use the small database shown in Figure Q3.5 to illustrate the difference between a natural join, an equijoin, and
an outer join.

6. Create the basic ERD for the database shown in Figure
Q3.5.

7. Create the relational diagram for the database shown
in Figure Q3.5.

8. Suppose you have the ERM shown in Figure Q3.8.
How would you convert this model into an ERM that
displays only 1:M relationships? (Make sure you create
the revised ERM.)

9. What are homonyms and synonyms, and why should
they be avoided in database design?

10. How would you implement a l:M relationship in a
database composed of two tables? Give an example.

11. Identify and describe the components of the table
shown in Figure Q3.11, using correct terminology.
Use your knowledge of naming conventions to identify
the table’s probable foreign key(s).

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the Student Online
Companion for this book.

Database name: Ch03_CollegeQue

Table name: PROFESSOR

Table name: STUDENT

FIGURE
Q3.5

The Ch03_CollegeQue
database tables

O n l i n e C o n t e n t

All of the databases used in the questions and problems are found in the Student Online Companion for this
book. The database names used in the folder match the database names used in the figures. For example, the
source of the tables shown in Figure Q3.5 is the Ch03_CollegeQue database.
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Use the database composed of the two tables shown in Figure Q3.12 to answer Questions 12-17.

12. Identify the primary keys.

13. Identify the foreign keys.

14. Create the ERM.

15. Create the relational diagram to show the relationship
between DIRECTOR and PLAY.

16. Suppose you wanted quick lookup capability to get a
listing of all plays directed by a given director. Which
table would be the basis for the INDEX table, and what
would be the index key?

17. What would be the conceptual view of the INDEX table
that is described in Question 16? Depict the contents
of the conceptual INDEX table.

FIGURE
Q3.8

The Crow’s Foot ERM for Question 8

Table name: EMPLOYEE Database name: Ch03_NoComp

FIGURE
Q3.11

The Ch03_NoComp database EMPLOYEE table

Database name: Ch03_Theater

Table name: PLAY

Table name: DIRECTOR

FIGURE
Q3.12

The Ch03_Theater database
tables
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P r o b l e m s

Use the database shown in Figure P3.1 to work Problems 1−7. Note that the database is composed of four tables that
reflect these relationships:

� An EMPLOYEE has only one JOB_CODE, but a JOB_CODE can be held by many EMPLOYEEs.

� An EMPLOYEE can participate in many PLANs, and any PLAN can be assigned to many EMPLOYEEs.

Note also that the M:N relationship has been broken down into two 1:M relationships for which the BENEFIT table
serves as the composite or bridge entity.

1. For each table in the database, identify the primary key and the foreign key(s). If a table does not have a foreign
key, write None in the space provided.

2. Create the ERD to show the relationship between EMPLOYEE and JOB.

3. Create the relational diagram to show the relationship between EMPLOYEE and JOB.

4. Do the tables exhibit entity integrity? Answer yes or no, and then explain your answer.

Database name: Ch03_BeneCo
Table name: EMPLOYEE

Table name: JOB

Table name: BENEFIT

Table name: PLAN

FIGURE
P3.1

The Ch03_BeneCo database tables

TABLE PRIMARY KEY FOREIGN KEY(S)
EMPLOYEE
BENEFIT
JOB
PLAN

TABLE ENTITY INTEGRITY EXPLANATION
EMPLOYEE
BENEFIT
JOB
PLAN
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5. Do the tables exhibit referential integrity? Answer yes or no, and then explain your answer. Write NA (Not
Applicable) if the table does not have a foreign key.

6. Create the ERD to show the relationships among EMPLOYEE, BENEFIT, JOB, and PLAN.

7. Create the relational diagram to show the relationships among EMPLOYEE, BENEFIT, JOB, and PLAN.

Use the database shown in Figure P3.8 to answer Problems 8−16.

TABLE REFERENTIAL INTEGRITY EXPLANATION
EMPLOYEE
BENEFIT
JOB
PLAN

Table name: EMPLOYEE Database name: Ch03_StoreCo

Table name: STORE

Table name: REGION

FIGURE
P3.8

The Ch03_StoreCo database tables
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8. For each table, identify the primary key and the foreign key(s). If a table does not have a foreign key, write None
in the space provided.

9. Do the tables exhibit entity integrity? Answer yes or no, and then explain your answer.

10. Do the tables exhibit referential integrity? Answer yes or no, and then explain your answer. Write NA (Not
Applicable) if the table does not have a foreign key.

11. Describe the type(s) of relationship(s) between STORE and REGION.

12. Create the ERD to show the relationship between STORE and REGION.

13. Create the relational diagram to show the relationship between STORE and REGION.

14. Describe the type(s) of relationship(s) between EMPLOYEE and STORE. (Hint: Each store employs many
employees, one of whom manages the store.)

15. Create the ERD to show the relationships among EMPLOYEE, STORE, and REGION.

16. Create the relational diagram to show the relationships among EMPLOYEE, STORE, and REGION.

TABLE PRIMARY KEY FOREIGN KEY(S)
EMPLOYEE
STORE
REGION

TABLE ENTITY INTEGRITY EXPLANATION
EMPLOYEE
STORE
REGION

TABLE REFERENTIAL INTEGRITY EXPLANATION
EMPLOYEE
STORE
REGION
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Use the database shown in Figure P3.17 to answer Problems 17−22.

17. For each table, identify the primary key and the foreign key(s). If a table does not have a foreign key, write None
in the space provided.

18. Do the tables exhibit entity integrity? Answer yes or no, and then explain your answer.

19. Do the tables exhibit referential integrity? Answer yes or no, and then explain your answer. Write NA (Not
Applicable) if the table does not have a foreign key.

20. Create the ERD for this database.

Database name: Ch03_CheapCoTable name: PRODUCT
Primary key: PROD_CODE
Foreign key: VEND_CODE

Table name: VENDOR
Primary key: VEND_CODE
Foreign key: none

FIGURE
P3.17

The Ch03_CheapCo database tables

TABLE PRIMARY KEY FOREIGN KEY(S)
PRODUCT
VENDOR

TABLE ENTITY INTEGRITY EXPLANATION
PRODUCT
VENDOR

TABLE REFERENTIAL INTEGRITY EXPLANATION
PRODUCT
VENDOR
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21. Create the relational diagram for this database.

22. Create the data dictionary for this database.

Use the database shown in Figure P3.23 to answer Problems 23−29.

23. For each table, identify the primary key and the foreign key(s). If a table does not have a foreign key, write None
in the space provided.

24. Do the tables exhibit entity integrity? Answer yes or no, and then explain your answer.

25. Do the tables exhibit referential integrity? Answer yes or no, and then explain your answer. Write NA (Not
Applicable) if the table does not have a foreign key.

Database name: Ch03_TransCoTable name: TRUCK
Primary key: TRUCK_NUM
Foreign key: BASE_CODE, TYPE_CODE

Table name: BASE
Primary key: BASE_CODE
Foreign key: none

Table name: TYPE
Primary key: TYPE_CODE
Foreign key: none

FIGURE
P3.23

The Ch03_TransCo database tables

TABLE PRIMARY KEY FOREIGN KEY(S)
TRUCK
BASE
TYPE

TABLE ENTITY INTEGRITY EXPLANATION
TRUCK
BASE
TYPE
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26. Identify the TRUCK table’s candidate key(s).

27. For each table, identify a superkey and a secondary key.

28. Create the ERD for this database.

29. Create the relational diagram for this database.

Use the database shown in Figure P3.30 to answer Problems 30−34. ROBCOR is an aircraft charter company that
supplies on-demand charter flight services using a fleet of four aircraft. Aircrafts are identified by a unique registration
number. Therefore, the aircraft registration number is an appropriate primary key for the AIRCRAFT table.

TABLE REFERENTIAL INTEGRITY EXPLANATION
TRUCK
BASE
TYPE

TABLE SUPERKEY SECONDARY KEY
TRUCK
BASE
TYPE

Table name: CHARTER Database name: Ch03_AviaCo

FIGURE
P3.30

The Ch03_AviaCo database tables

The destinations are indicated by standard three-letter airport codes. For example,
STL = St. Louis, MO ATL = Atlanta, GA BNA = Nashville, TN

AC-TTAF = Aircraft total time, airframe (hours)
AC-TTEL = Total time, left engine (hours)
AC_TTER = Total time, right engine (hours)

In a fully developed system, such attribute values
would be updated by application software when the
CHARTER table entries are posted.

Table name: MODEL

Table name: AIRCRAFT

Customers are charged per round-trip mile, using the MOD_CHG_MILE rate. The MOD_SEAT gives the total number of
seats in the airplane, including the pilot and copilot seats. Therefore, a PA31-350 trip that is flown by a pilot and a copilot
has six passenger seats available.
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The nulls in the CHARTER table’s CHAR_COPILOT column indicate that a copilot is not required for some charter
trips or for some aircraft. Federal Aviation Administration (FAA) rules require a copilot on jet aircraft and on aircraft
having a gross take-off weight over 12,500 pounds. None of the aircraft in the AIRCRAFT table are governed by this
requirement; however, some customers may require the presence of a copilot for insurance reasons. All charter trips
are recorded in the CHARTER table.

Table name: PILOT

Table name: EMPLOYEE

Table name: CUSTOMER

Database name: Ch03_AviaCo

FIGURE
P3.30

The Ch03_AviaCo database tables (continued)

The pilot licenses shown in the PILOT table include the ATP = Airline Transport Pilot and COM = Commercial Pilot.
Businesses that operate on-demand air services are governed by Part 135 of the Federal Air Regulations (FARs) that are
enforced by the Federal Aviation Administration (FAA). Such businesses are known as “Part 135 operators.” Part 125
operations require that pilots successfully complete flight proficiency checks every six months. The “Part 135” flight
proficiency check data is recorded in PIL_PT135_DATE. To fly commercially, pilots must have at least a commercial
license and a second-class medical certificate (PIL_MED_TYPE = 2).

The PIL_RATINGS include
SEL = Single Engine, Land MEL = Multiengine, Land
SES = Single Engine, Sea Instr. = Instrument
CFI = Certified Flight Instructor CFII = Certified Flight Instructor, Instrument
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30. For each table, where possible, identify:

a. The primary key.

b. A superkey.

c. A candidate key.

d. The foreign key(s).

e. A secondary key.

31. Create the ERD. (Hint: Look at the table contents. You will discover that an AIRCRAFT can fly many CHARTER
trips but that each CHARTER trip is flown by one AIRCRAFT, that a MODEL references many AIRCRAFT but
that each AIRCRAFT references a single MODEL, etc.)

32. Create the relational diagram.

33. Modify the ERD you created in Problem 31 to eliminate the problems created by the use of synonyms. (Hint:
Modify the CHARTER table structure by eliminating the CHAR_PILOT and CHAR_COPILOT attributes; then
create a composite table named CREW to link the CHARTER and EMPLOYEE tables. Some crew members,
such as flight attendants, may not be pilots. That’s why the EMPLOYEE table enters into this relationship.)

34. Create the relational diagram for the design you revised in Problem 33. (After you have had a chance to revise
the design, your instructor will show you the results of the design change, using a copy of the revised database
named Ch03_AviaCo_2.)

Note

Earlier in the chapter, it was stated that it is best to avoid homonyms and synonyms. In this problem, both the
pilot and the copilot are pilots in the PILOT table, but EMP_NUM cannot be used for both in the CHARTER
table. Therefore, the synonyms CHAR_PILOT and CHAR_COPILOT were used in the CHARTER table.

Although the solution works in this case, it is very restrictive and it generates nulls when a copilot is not
required. Worse, such nulls proliferate as crew requirements change. For example, if the AviaCo charter
company grows and starts using larger aircraft, crew requirements may increase to include flight engineers and
load masters. The CHARTER table would then have to be modified to include the additional crew assignments;
such attributes as CHAR_FLT_ENGINEER and CHAR_LOADMASTER would have to be added to the CHARTER
table. Given this change, each time a smaller aircraft flew a charter trip without the number of crew members
required in larger aircraft, the missing crew members would yield additional nulls in the CHARTER table.

You will have a chance to correct those design shortcomings in Problem 33. The problem illustrates two
important points:

1. Don’t use synonyms. If your design requires the use of synonyms, revise the design!

2. To the greatest possible extent, design the database to accommodate growth without requiring structural
changes in the database tables. Plan ahead and try to anticipate the effects of change on the database.
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