
Preview

Normalization of Database Tables

In this chapter, you will learn:

� What normalization is and what role it plays in the database design process

� About the normal forms 1NF, 2NF, 3NF, BCNF, and 4NF

� How normal forms can be transformed from lower normal forms to higher normal forms

� That normalization and ER modeling are used concurrently to produce a good
database design

� That some situations require denormalization to generate information efficiently

Good database design must be matched to good table structures. In this chapter, you learn

to evaluate and design good table structures to control data redundancies, thereby avoiding

data anomalies. The process that yields such desirable results is known as normalization.

In order to recognize and appreciate the characteristics of a good table structure, it is useful

to examine a poor one.Therefore, the chapter begins by examining the characteristics of a

poor table structure and the problems it creates. You then learn how to correct a poor

table structure. This methodology will yield important dividends: you will know how to

design a good table structure and how to repair an existing poor one.

You will discover not only that data anomalies can be eliminated through normalization, but

also that a properly normalized set of table structures is actually less complicated to use

than an unnormalized set. In addition, you will learn that the normalized set of table

structures more faithfully reflects an organization’s real operations.

5
F

I
V

E

C6545_05 7/1/2007 6:5:59 Page 152

5.1 DATABASE TABLES AND NORMALIZATION

Having good relational database software is not enough to avoid the data redundancy discussed in Chapter 1, Database
Systems. If the database tables are treated as though they are files in a file system, the RDBMS never has a chance
to demonstrate its superior data-handling capabilities.

The table is the basic building block in the database design process. Consequently, the table’s structure is of great
interest. Ideally, the database design process explored in Chapter 4, Entity Relationship (ER) Modeling, yields good
table structures. Yet it is possible to create poor table structures even in a good database design. So how do you
recognize a poor table structure, and how do you produce a good table? The answer to both questions involves
normalization. Normalization is a process for evaluating and correcting table structures to minimize data redundan-
cies, thereby reducing the likelihood of data anomalies. The normalization process involves assigning attributes to
tables based on the concept of determination you learned about in Chapter 3, The Relational Database Model.

Normalization works through a series of stages called normal forms. The first three stages are described as first normal
form (1NF), second normal form (2NF), and third normal form (3NF). From a structural point of view, 2NF is better
than 1NF, and 3NF is better than 2NF. For most purposes in business database design, 3NF is as high as you need
to go in the normalization process. However, you will discover in Section 5.3 that properly designed 3NF structures
also meet the requirements of fourth normal form (4NF).

Although normalization is a very important database design ingredient, you should not assume that the highest level
of normalization is always the most desirable. Generally, the higher the normal form, the more relational join
operations required to produce a specified output and the more resources required by the database system to respond
to end-user queries. A successful design must also consider end-user demand for fast performance. Therefore, you will
occasionally be expected to denormalize some portions of a database design in order to meet performance
requirements. Denormalization produces a lower normal form; that is, a 3NF will be converted to a 2NF through
denormalization. However, the price you pay for increased performance through denormalization is greater data
redundancy.

5.2 THE NEED FOR NORMALIZATION

To get a better idea of the normalization process, consider the simplified database activities of a construction company
that manages several building projects. Each project has its own project number, name, employees assigned to it, and
so on. Each employee has an employee number, name, and job classification, such as engineer or computer
technician.

The company charges its clients by billing the hours spent on each contract. The hourly billing rate is dependent on
the employee’s position. For example, one hour of computer technician time is billed at a different rate than one hour
of engineer time. Periodically, a report is generated that contains the information displayed in Table 5.1.

The total charge in Table 5.1 is a derived attribute and, at this point, is not stored in the table.

Note

Although the word table is used throughout this chapter, formally, normalization is concerned with relations. In
Chapter 3 you learned that the terms table and relation are frequently used interchangeably. In fact, you can say
that a table is the “implementation view” of a logical relation that meets some specific conditions (see Table 3.1).
However, being more rigorous, the mathematical relation does not allow duplicate tuples, whereas duplicate
tuples could exist in tables (see Section 5.5).

C6545_05 8/20/2007 9:11:52 Page 153

153N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

TA
BL

E
5.

1
A

Sa
m

pl
e

Re
po

rt
La

yo
ut

PR
O

JE
C

T
N

U
M

BE
R

PR
O

JE
C

T
N

AM
E

EM
PL

O
YE

E
N

U
M

BE
R

EM
PL

O
YE

E
N

AM
E

JO
B

C
LA

SS
C

H
AR

G
E/

H
O

U
R

H
O

U
RS

BI
LL

ED
TO

TA
L

C
H

AR
G

E
15

Ev
er

gr
ee

n
10

3
10

1
10

5
10

6
10

2

Ju
ne

E.
Ar

bo
ug

h
Jo

hn
G

.N
ew

s
Al

ic
e

K.
Jo

hn
so

n
*

W
ill

ia
m

Sm
ith

fie
ld

D
av

id
H

.S
en

io
r

El
ec

.E
ng

in
ee

r
D

at
ab

as
e

D
es

ig
ne

r
D

at
ab

as
e

D
es

ig
ne

r
Pr

og
ra

m
m

er
Sy

st
em

s
An

al
ys

t

$
85

.5
0

$1
05

.0
0

$1
05

.0
0

$
35

.7
5

$
96

.7
5

23
.8

19
.4

35
.7

12
.6

23
.8

$
2,

03
4.

90
$

2,
03

7.
00

$
3,

74
8.

50
$

45
0.

45
$

2,
30

2.
65

Su
bt

ot
al

$1
0,

57
3.

50
18

Am
be

r
W

av
e

11
4

11
8

10
4

11
2

An
ne

lis
e

Jo
ne

s
Ja

m
es

J.
Fr

om
m

er
An

ne
K.

Ra
m

or
as

*
D

ar
le

ne
M

.S
m

ith
so

n

Ap
pl

ic
at

io
ns

D
es

ig
ne

r
G

en
er

al
Su

pp
or

t
Sy

st
em

s
An

al
ys

t
D

SS
An

al
ys

t

$
48

.1
0

$
18

.3
6

$
96

.7
5

$
45

.9
5

25
.6

45
.3

32
.4

45
.0

$
1,

18
3.

26
$

83
1.

71
$

3,
13

4.
70

$
2,

06
7.

75
Su

bt
ot

al
$

7,
26

5.
52

22
Ro

lli
ng

Ti
de

10
5

10
4

11
3

11
1

10
6

Al
ic

e
K.

Jo
hn

so
n

An
ne

K.
Ra

m
or

as
D

el
be

rt
K.

Jo
en

br
oo

d
G

eo
ff

B.
W

ab
as

h
W

ill
ia

m
Sm

ith
fie

ld

D
at

ab
as

e
D

es
ig

ne
r

Sy
st

em
s

An
al

ys
t

Ap
pl

ic
at

io
ns

D
es

ig
ne

r
C

le
ric

al
Su

pp
or

t
Pr

og
ra

m
m

er

$1
05

.0
0

$
96

.7
5

$
48

.1
0

$
26

.8
7

$
35

.7
5

65
.7

48
.4

23
.6

22
.0

12
.8

$
6,

99
8.

50
$

4,
68

2.
70

$
1,

13
5.

16
$

59
1.

14
$

45
7.

60
Su

bt
ot

al
$1

3,
76

5.
10

25
St

ar
fli

gh
t

10
7

11
5

10
1

11
4

10
8

11
8

11
2

M
ar

ia
D

.A
lo

nz
o

Tr
av

is
B.

Ba
w

an
gi

Jo
hn

G
.N

ew
s

*
An

ne
lis

e
Jo

ne
s

Ra
lp

h
B.

W
as

hi
ng

to
n

Ja
m

es
J.

Fr
om

m
er

D
ar

le
ne

M
.S

m
ith

so
n

Pr
og

ra
m

m
er

Sy
st

em
s

An
al

ys
t

D
at

ab
as

e
D

es
ig

ne
r

Ap
pl

ic
at

io
ns

D
es

ig
ne

r
Sy

st
em

s
An

al
ys

t
G

en
er

al
Su

pp
or

t
D

SS
An

al
ys

t

$
35

.7
5

$
96

.7
5

$1
05

.0
0

$
48

.1
0

$
96

.7
5

$
18

.3
6

$
45

.9
5

25
.6

45
.8

56
.3

33
.1

23
.6

30
.5

41
.4

$
91

5.
20

$
4,

43
1.

15
$

5,
91

1.
50

$
1,

59
2.

11
$

2,
28

3.
30

$
55

9.
98

$
1,

90
2.

33
Su

bt
ot

al
$1

7,
59

5.
57

To
ta

l
$4

9,
19

9.
69

N
ot

e:
*

in
di

ca
te

s
pr

oj
ec

tl
ea

de
r

C6545_05 8/20/2007 8:25:5 Page 154

154 C H A P T E R 5

The easiest short-term way to generate the required report might seem to be a table whose contents correspond to
the reporting requirements. See Figure 5.1.

Note that the data in Figure 5.1 reflects the assignment of employees to projects. Apparently, an employee can be
assigned to more than one project. For example, Darlene Smithson (EMP_NUM = 112) has been assigned to two
projects: Amber Wave and Starflight. Given the structure of the data set, each project includes only a single occurrence
of any one employee. Therefore, knowing the PROJ_NUM and EMP_NUM value will let you find the job classification
and its hourly charge. In addition, you will know the total number of hours each employee worked on each project.
(The total charge—a derived attribute whose value can be computed by multiplying the hours billed and the charge per
hour—has not been included in Figure 5.1. No structural harm is done if this derived attribute is included.)

Unfortunately, the structure of the data set in Figure 5.1 does not conform to the requirements discussed in Chapter 3,
nor does it handle data very well. Consider the following deficiencies:

1. The project number (PROJ_NUM) is apparently intended to be a primary key or at least a part of a PK, but it
contains nulls. (Given the preceding discussion, you know that PROJ_NUM + EMP_NUM will define each row.)

2. The table entries invite data inconsistencies. For example, the JOB_CLASS value “Elect. Engineer” might be
entered as “Elect.Eng.” in some cases, “El. Eng.” in others, and “EE” in still others.

3. The table displays data redundancies. Those data redundancies yield the following anomalies:

a. Update anomalies. Modifying the JOB_CLASS for employee number 105 requires (potentially) many
alterations, one for each EMP_NUM = 105.

O n l i n e C o n t e n t

The databases used to illustrate the material in this chapter are found in the Student Online Companion.

FIGURE
5.1

Tabular representation of the report format

Table name: RPT_FORMAT Database name: Ch05_ConstructCo

C6545_05 7/1/2007 6:18:16 Page 155

155N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

b. Insertion anomalies. Just to complete a row definition, a new employee must be assigned to a project. If
the employee is not yet assigned, a phantom project must be created to complete the employee data entry.

c. Deletion anomalies. Suppose that only one employee is associated with a given project. If that employee
leaves the company and the employee data are deleted, the project information will also be deleted. To
prevent the loss of the project information, a fictitious employee must be created just to save the project
information.

In spite of those structural deficiencies, the table structure appears to work; the report is generated with ease.
Unfortunately, the report might yield varying results depending on what data anomaly has occurred. For example, if
you want to print a report to show the total “hours worked” value by the job classification “Database Designer,” that
report will not include data for “DB Design” and “Database Design” data entries. Such reporting anomalies cause a
multitude of problems for managers—and cannot be fixed through applications programming.

Even if very careful data entry auditing can eliminate most of the reporting problems (at a high cost), it is easy to
demonstrate that even a simple data entry becomes inefficient. Given the existence of update anomalies, suppose
Darlene M. Smithson is assigned to work on the Evergreen project. The data entry clerk must update the PROJECT
file with the entry:

15 Evergreen 112 Darlene M. Smithson DSS Analyst $45.95 0.0

to match the attributes PROJ_NUM, PROJ_NAME, EMP_NUM, EMP_NAME, JOB_CLASS, CHG_HOUR, and
HOURS. (When Ms. Smithson has just been assigned to the project, she has not yet worked, so the total number of
hours worked is 0.0.)

Each time another employee is assigned to a project, some data entries (such as PROJ_NAME, EMP_NAME, and
CHG_HOUR) are unnecessarily repeated. Imagine the data entry chore when 200 or 300 table entries must be made!
Note that the entry of the employee number should be sufficient to identify Darlene M. Smithson, her job description,
and her hourly charge. Because there is only one person identified by the number 112, that person’s characteristics
(name, job classification, and so on) should not have to be typed in each time the main file is updated. Unfortunately,
the structure displayed in Figure 5.1 does not make allowances for that possibility.

The data redundancy evident in Figure 5.1 leads to wasted disk space. What’s more, data redundancy produces data
anomalies. For example, suppose the data entry clerk had entered the data as:

15 Evergeen 112 Darla Smithson DCS Analyst $45.95 0.0

At first glance, the data entry appears to be correct. But is Evergeen the same project as Evergreen? And is DCS
Analyst supposed to be DSS Analyst? Is Darla Smithson the same person as Darlene M. Smithson? Such confusion
is a data integrity problem that was caused because the data entry failed to conform to the rule that all copies of
redundant data must be identical.

The possibility of introducing data integrity problems caused by data redundancy must be considered when a database
is designed. The relational database environment is especially well suited to help the designer overcome those
problems.

Note

Remember that the naming convention makes it easy to see what each attribute stands for and what its likely
origin is. For example, PROJ_NAME uses the prefix PROJ to indicate that the attribute is associated with the
PROJECT table, while the NAME component is self-documenting, too. However, keep in mind that name length
is also an issue, especially in the prefix designation. For that reason, the prefix CHG was used rather than
CHARGE. (Given the database’s context, it is not likely that that prefix will be misunderstood.)

C6545_05 8/20/2007 8:26:20 Page 156

156 C H A P T E R 5

5.3 THE NORMALIZATION PROCESS

In this section, you learn how to use normalization to produce a set of normalized tables to store the data that will be
used to generate the required information. The objective of normalization is to ensure that each table conforms to the
concept of well-formed relations, that is, tables that have the following characteristics:

� Each table represents a single subject. For example, a course table will contain only data that directly pertains
to courses. Similarly, a student table will contain only student data.

� No data item will be unnecessarily stored in more than one table (in short, tables have minimum controlled
redundancy). The reason for this requirement is to ensure that the data are updated in only one place.

� All nonprime attributes in a table are dependent on the primary key—the entire primary key and nothing but
the primary key. The reason for this requirement is to ensure that the data are uniquely identifiable by a primary
key value.

� Each table is void of insertion, update, or deletion anomalies. This is to ensure the integrity and consistency
of the data.

To accomplish the objective, the normalization process takes you through the steps that lead to successively higher
normal forms. The most common normal forms and their basic characteristic are listed in Table 5.2. You will learn the
details of these normal forms in the indicated sections.

TABLE
5.2

Normal Forms

NORMAL FORM CHARACTERISTIC SECTION
First normal form (1NF) Table format, no repeating groups, and PK identified 5.3.1
Second normal form (2NF) 1NF and no partial dependencies 5.3.2
Third normal form (3NF) 2NF and no transitive dependencies 5.3.3
Boyce-Codd normal form (BCNF) Every determinant is a candidate key (special case of 3NF) 5.6.1
Fourth normal form (4NF) 3NF and no independent multivalued dependencies 5.6.2

From the data modeler’s point of view, the objective of normalization is to ensure that all tables are at least in third
normal form (3NF). Even higher-level normal forms exist. However, normal forms such as the fifth normal form (5NF)
and domain-key normal form (DKNF) are not likely to be encountered in a business environment and are mainly of
theoretical interest. More often than not, such higher normal forms usually increase joins (slowing performance)
without adding any value in the elimination of data redundancy. Some very specialized applications, such as statistical
research, might require normalization beyond the 4NF, but those applications fall outside the scope of most business
operations. Because this book focuses on practical applications of database techniques, the higher-level normal forms
are not covered.

Functional Dependency
Before outlining the normalization process, it’s a good idea to review the concepts of determination and functional
dependency that were covered in detail in Chapter 3. Table 5.3 summarizes the main concepts.

C6545_05 8/20/2007 8:27:44 Page 157

157N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

TABLE
5.3

Functional Dependency Concepts

CONCEPT DEFINITION
Functional dependency The attribute B is fully functionally dependent on the attribute A if each value of A

determines one and only one value of B.
Example: PROJ_NUM → PROJ_NAME
(read as “PROJ_NUM functionally determines PROJ_NAME)
In this case, the attribute PROJ_NUM is known as the “determinant” attribute

and the attribute PROJ_NAME is known as the “dependent” attribute.
Functional dependency
(generalized definition)

Attribute A determines attribute B (that is, B is functionally dependent on A) if all
of the rows in the table that agree in value for attribute A also agree in value for
attribute B.

Fully functional dependency
(composite key)

If attribute B is functionally dependent on a composite key A but not on any sub-
set of that composite key, the attribute B is fully functionally dependent on A.

It is crucial to understand these concepts because they are used to derive the set of functional dependencies for a given
relation. The normalization process works one relation at a time, identifying the dependencies on that relation and
normalizing the relation. As you will see in the following sections, normalization starts by identifying the dependencies
of a given relation and progressively breaking up the relation (table) into a set of new relations (tables) based on the
identified dependencies.

5.3.1 Conversion to First Normal Form

Because the relational model views data as part of a table or a collection of tables in which all key values must be
identified, the data depicted in Figure 5.1 might not be stored as shown. Note that Figure 5.1 contains what is known
as repeating groups. A repeating group derives its name from the fact that a group of multiple entries of the same
type can exist for any single key attribute occurrence. In Figure 5.1, note that each single project number
(PROJ_NUM) occurrence can reference a group of related data entries. For example, the Evergreen project
(PROJ_NUM = 15) shows five entries at this point—and those entries are related because they each share the
PROJ_NUM = 15 characteristic. Each time a new record is entered for the Evergreen project, the number of entries
in the group grows by one.

A relational table must not contain repeating groups. The existence of repeating groups provides evidence that the
RPT_FORMAT table in Figure 5.1 fails to meet even the lowest normal form requirements, thus reflecting data
redundancies.

Normalizing the table structure will reduce the data redundancies. If repeating groups do exist, they must be eliminated
by making sure that each row defines a single entity. In addition, the dependencies must be identified to diagnose the
normal form. Identification of the normal form will let you know where you are in the normalization process. The
normalization process starts with a simple three-step procedure.

Step 1: Eliminate the Repeating Groups
Start by presenting the data in a tabular format, where each cell has a single value and there are no repeating groups.
To eliminate the repeating groups, eliminate the nulls by making sure that each repeating group attribute contains an
appropriate data value. That change converts the table in Figure 5.1 to 1NF in Figure 5.2.

C6545_05 7/1/2007 6:22:9 Page 158

158 C H A P T E R 5

Step 2: Identify the Primary Key
The layout in Figure 5.2 represents more than a mere cosmetic change. Even a casual observer will note that
PROJ_NUM is not an adequate primary key because the project number does not uniquely identify all of the remaining
entity (row) attributes. For example, the PROJ_NUM value 15 can identify any one of five employees. To maintain a
proper primary key that will uniquely identify any attribute value, the new key must be composed of a combination
of PROJ_NUM and EMP_NUM. For example, using the data shown in Figure 5.2, if you know that PROJ_NUM =
15 and EMP_NUM = 103, the entries for the attributes PROJ_NAME, EMP_NAME, JOB_CLASS, CHG_HOUR, and
HOURS must be Evergreen, June E. Arbough, Elect. Engineer, $84.50, and 23.8, respectively.

Step 3: Identify All Dependencies
The identification of the PK in Step 2 means that you have already identified the following dependency:

PROJ_NUM, EMP_NUM → PROJ_NAME, EMP_NAME, JOB_CLASS, CHG_HOUR, HOURS

That is, the PROJ_NAME, EMP_NAME, JOB_CLASS, CHG_HOUR, and HOURS values are all dependent on—that
is, they are determined by—the combination of PROJ_NUM and EMP_NUM. There are additional dependencies. For
example, the project number identifies (determines) the project name. In other words, the project name is dependent
on the project number. You can write that dependency as:

PROJ_NUM → PROJ_NAME

Also, if you know an employee number, you also know that employee’s name, that employee’s job classification, and
that employee’s charge per hour. Therefore, you can identify the dependency shown next:

EMP_NUM → EMP_NAME, JOB_CLASS, CHG_HOUR

FIGURE
5.2

A table in first normal form

Table name: DATA_ORG_1NF Database name: Ch05_ConstructCo

C6545_05 7/1/2007 6:22:28 Page 159

159N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

However, given the previous dependency components, you can see that knowing the job classification means knowing
the charge per hour for that job classification. In other words, you can identify one last dependency:

JOB_CLASS → CHG_HOUR

The dependencies you have just examined can also be depicted with the help of the diagram shown in Figure 5.3.
Because such a diagram depicts all dependencies found within a given table structure, it is known as a dependency
diagram. Dependency diagrams are very helpful in getting a bird’s-eye view of all of the relationships among a table’s
attributes, and their use makes it less likely that you will overlook an important dependency.

As you examine Figure 5.3, note the following dependency diagram features:

1. The primary key attributes are bold, underlined, and shaded in a different color.

2. The arrows above the attributes indicate all desirable dependencies, that is, dependencies that are based on the
primary key. In this case, note that the entity’s attributes are dependent on the combination of PROJ_NUM
and EMP_NUM.

3. The arrows below the dependency diagram indicate less desirable dependencies. Two types of such
dependencies exist:

a. Partial dependencies. You need to know only the PROJ_NUM to determine the PROJ_NAME; that is, the
PROJ_NAME is dependent on only part of the primary key. And you need to know only the EMP_NUM
to find the EMP_NAME, the JOB_CLASS, and the CHG_HOUR. A dependency based on only a part of
a composite primary key is called a partial dependency.

b. Transitive dependencies. Note that CHG_HOUR is dependent on JOB_CLASS. Because neither
CHG_HOUR nor JOB_CLASS is a prime attribute—that is, neither attribute is at least part of a key—the
condition is known as a transitive dependency. In other words, a transitive dependency is a dependency
of one nonprime attribute on another nonprime attribute. The problem with transitive dependencies is that
they still yield data anomalies.

TRANSITIVE DEPENDENCY:
(JOB CLASS CHG_HOUR)

PARTIAL DEPENDENCIES:
(PROJ_NUM PROJ_NAME)
(EMP_NUM EMP_NAME, JOB_CLASS, CHG_HOUR)

EMP_NUM EMP_NAMEPROJ_NUM PROJ_NAME CHG_HOURJOB_CLASS HOURS

Transitive
dependency

Partial dependency

Partial dependencies

1NF (PROJ_NUM, EMP_NUM, PROJ_NAME, EMP_NAME, JOB_CLASS, CHG_HOURS, HOURS)

FIGURE
5.3

First normal form (1NF) dependency diagram

C6545_05 7/1/2007 7:8:0 Page 160

160 C H A P T E R 5

Note that Figure 5.3 includes the relational schema for the table in 1NF and a textual notation for each identified
dependency.

All relational tables satisfy the 1NF requirements. The problem with the 1NF table structure shown in Figure 5.3 is that
it contains partial dependencies—that is, dependencies based on only a part of the primary key.

While partial dependencies are sometimes used for performance reasons, they should be used with caution. (If the
information requirements seem to dictate the use of partial dependencies, it is time to evaluate the need for a data
warehouse design, discussed in Chapter 13, Business Intelligence and Data Warehouses.) Such caution is warranted
because a table that contains partial dependencies is still subject to data redundancies, and therefore, to various
anomalies. The data redundancies occur because every row entry requires duplication of data. For example, if Alice
K. Johnson submits her work log, then the user would have to make multiple entries during the course of a day. For
each entry, the EMP_NAME, JOB_CLASS, and CHG_HOUR must be entered each time even though the attribute
values are identical for each row entered. Such duplication of effort is very inefficient. What’s more, the duplication
of effort helps create data anomalies; nothing prevents the user from typing slightly different versions of the employee
name, the position, or the hourly pay. For instance, the employee name for EMP_NUM = 102 might be entered as
Dave Senior or D. Senior. The project name also might be entered correctly as Evergreen or misspelled as Evergeen.
Such data anomalies violate the relational database’s integrity and consistency rules.

5.3.2 Conversion to Second Normal Form

Converting to 2NF is done only when the 1NF has a composite primary key. If the 1NF has a single attribute primary
key, then the table is automatically in 2NF. The 1NF-to-2NF conversion is simple. Starting with the 1NF format
displayed in Figure 5.3, you do the following:

Step 1: Write Each Key Component on a Separate Line
Write each key component on a separate line; then write the original (composite) key on the last line. For example:

PROJ_NUM

EMP_NUM

PROJ_NUM EMP_NUM

Each component will become the key in a new table. In other words, the original table is now divided into three tables
(PROJECT, EMPLOYEE, and ASSIGNMENT).

Step 2: Assign Corresponding Dependent Attributes
Use Figure 5.3 to determine those attributes that are dependent on other attributes. The dependencies for the original
key components are found by examining the arrows below the dependency diagram shown in Figure 5.3. In other
words, the three new tables (PROJECT, EMPLOYEE, and ASSIGNMENT) are described by the following relational
schemas:

PROJECT (PROJ_NUM, PROJ_NAME)

Note

The term first normal form (1NF) describes the tabular format in which:

• All of the key attributes are defined.

• There are no repeating groups in the table. In other words, each row/column intersection contains one and
only one value, not a set of values.

• All attributes are dependent on the primary key.

C6545_05 7/1/2007 7:8:12 Page 161

161N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

EMPLOYEE (EMP_NUM, EMP_NAME, JOB_CLASS, CHG_HOUR)

ASSIGNMENT (PROJ_NUM, EMP_NUM, ASSIGN_HOURS)

Because the number of hours spent on each project by each employee is dependent on both PROJ_NUM and
EMP_NUM in the ASSIGNMENT table, you place those hours in the ASSIGNMENT table as ASSIGN_HOURS.

The results of Steps 1 and 2 are displayed in Figure 5.4. At this point, most of the anomalies discussed earlier have
been eliminated. For example, if you now want to add, change, or delete a PROJECT record, you need to go only to
the PROJECT table and make the change to only one row.

Because a partial dependency can exist only when a table’s primary key is composed of several attributes, a table
whose primary key consists of only a single attribute is automatically in 2NF once it is in 1NF.

Figure 5.4 still shows a transitive dependency, which can generate anomalies. For example, if the charge per hour
changes for a job classification held by many employees, that change must be made for each of those employees. If
you forget to update some of the employee records that are affected by the charge per hour change, different
employees with the same job description will generate different hourly charges.

Note

The ASSIGNMENT table contains a composite primary key composed of the attributes PROJ_NUM and
EMP_NUM. Any attribute that is at least part of a key is known as a prime attribute or a key attribute.
Therefore, both PROJ_NUM and EMP_NUM are prime (or key) attributes. Conversely, a nonprime attribute,
or a nonkey attribute, is not part of any key.

TRANSITIVE DEPENDENCY
(JOB_CLASS CHG_HOUR)

EMPLOYEE (EMP_NUM, EMP_NAME, JOB_CLASS, CHG_HOUR)

PROJECT (PROJ_NUM, PROJ_NAME)

ASSIGNMENT (PROJ_NUM, EMP_NUM, ASSIGN_HOURS)

FIGURE
5.4

Second normal form (2NF) conversion results

Table name: ASSIGNMENT

Table name: EMPLOYEE

PROJ_NUM PROJ_NAME

Table name: PROJECT

PROJ_NUM EMP_NUM ASSIGN_HOURS

EMP_NUM EMP_NAME CHG_HOURJOB_CLASS

Transitive
dependency

C6545_05 8/20/2007 8:56:49 Page 162

162 C H A P T E R 5

5.3.3 Conversion to Third Normal Form

The data anomalies created by the database organization shown in Figure 5.4 are easily eliminated by completing the
following three steps:

Step 1: Identify Each New Determinant
For every transitive dependency, write its determinant as a PK for a new table. A determinant is any attribute whose
value determines other values within a row. If you have three different transitive dependencies, you will have three
different determinants. Figure 5.4 shows only one table that contains a transitive dependency. Therefore, write the
determinant for this transitive dependency as:

JOB_CLASS

Step 2: Identify the Dependent Attributes
Identify the attributes that are dependent on each determinant identified in Step 1 and identify the dependency. In this
case, you write:

JOB_CLASS → CHG_HOUR

Name the table to reflect its contents and function. In this case, JOB seems appropriate.

Step 3: Remove the Dependent Attributes from Transitive Dependencies
Eliminate all dependent attributes in the transitive relationship(s) from each of the tables that have such a transitive
relationship. In this example, eliminate CHG_HOUR from the EMPLOYEE table shown in Figure 5.4 to leave the
EMPLOYEE table dependency definition as:

EMP_NUM → EMP_NAME, JOB_CLASS

Note that the JOB_CLASS remains in the EMPLOYEE table to serve as the FK.

Draw a new dependency diagram to show all of the tables you have defined in Steps 1−3. Check the new tables as
well as the tables you modified in Step 3 to make sure that each table has a determinant and that no table contains
inappropriate dependencies.

When you have completed Steps 1–3, you will see the results in Figure 5.5. (The usual procedure is to complete Steps 1–3
by simply drawing the revisions as you make them.)

Note

A table is in second normal form (2NF) when:

• It is in 1NF.
and

• It includes no partial dependencies; that is, no attribute is dependent on only a portion of the primary key.
Note that it is still possible for a table in 2NF to exhibit transitive dependency; that is, one or more attributes

may be functionally dependent on nonkey attributes.

C6545_05 7/1/2007 7:10:46 Page 163

163N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

In other words, after the 3NF conversion has been completed, your database contains four tables:

PROJECT (PROJ_NUM, PROJ_NAME)

EMPLOYEE (EMP_NUM, EMP_NAME, JOB_CLASS)

JOB (JOB_CLASS, CHG_HOUR)

ASSIGNMENT (PROJ_NUM, EMP_NUM, ASSIGN_HOURS)

Note that this conversion has eliminated the original EMPLOYEE table’s transitive dependency; the tables are now said
to be in third normal form (3NF).

5.4 IMPROVING THE DESIGN

The table structures are cleaned up to eliminate the troublesome partial and transitive dependencies. You can now
focus on improving the database’s ability to provide information and on enhancing its operational characteristics. In
the next few paragraphs, you will learn about the various types of issues you need to address to produce a good
normalized set of tables. Please note that for space issues, each section presents just one example—the designer must
apply the principle to all remaining tables in the design. Remember that normalization cannot, by itself, be relied on
to make good designs. Instead, normalization is valuable because its use helps eliminate data redundancies.

FIGURE
5.5

Third normal form (3NF) conversion results

Table name: JOB

JOB (JOB_CLASS, CHG_HOUR)

JOB_CLASS CHG_HOUR

Table name: PROJECT

PROJECT (PROJ_NUM, PROJ_NAME)

PROJ_NUM PROJ_NAME EMP_NUM EMP_NAME JOB_CLASS

Table name: EMPLOYEE

EMPLOYEE (EMP_NUM, EMP_NAME, JOB_CLASS)

PROJ_NUM EMP_NUM ASSIGN_HOURS

Table name: ASSIGNMENT

ASSIGNMENT (PROJ_NUM, EMP_NUM, ASSIGN_HOURS)

Note

A table is in third normal form (3NF) when:

• It is in 2NF.
and

• It contains no transitive dependencies.

C6545_05 7/1/2007 7:10:57 Page 164

164 C H A P T E R 5

Evaluate PK Assignments
Each time a new employee is entered into the EMPLOYEE table, a JOB_CLASS value must be entered. Unfortunately,
it is too easy to make data-entry errors that lead to referential integrity violations. For example, entering DB Designer
instead of Database Designer for the JOB_CLASS attribute in the EMPLOYEE table will trigger such a violation.
Therefore, it would be better to add a JOB_CODE attribute to create a unique identifier. The addition of a JOB_CODE
attribute produces the dependency:

JOB_CODE → JOB_CLASS, CHG_HOUR

If you assume that the JOB_CODE is a proper primary key, this new attribute does produce the transitive dependency:

JOB_CLASS → CHG_HOUR

A transitive dependency exists because a nonkey attribute—the JOB_CLASS—determines the value of another nonkey
attribute—the CHG_HOUR. However, that transitive dependency is an easy price to pay; the presence of JOB_CODE
greatly decreases the likelihood of referential integrity violations. Note that the new JOB table now has two candidate
keys—JOB_CODE and JOB_CLASS. In this case, JOB_CODE is the chosen primary key as well as a surrogate key.
A surrogate key is an artificial PK introduced by the designer with the purpose of simplifying the assignment of
primary keys to tables. Surrogate keys are usually numeric, they are often automatically generated by the DBMS, they
are free of semantic content (they have no special meaning), and they are usually hidden from the end users. You will
learn more about PK characteristics and assignment in Chapter 6, Advanced Data Modeling.

Evaluate Naming Conventions
It is best to adhere to the naming conventions outlined in Chapter 2, Data Models. Therefore, CHG_HOUR will be
changed to JOB_CHG_HOUR to indicate its association with the JOB table. In addition, the attribute name JOB_CLASS
does not quite describe entries such as Systems Analyst, Database Designer, and so on; the label JOB_DESCRIPTION fits
the entries better. Also, you might have noticed that HOURS was changed to ASSIGN_HOURS in the conversion from
1NF to 2NF. That change lets you associate the hours worked with the ASSIGNMENT table.

Refine Attribute Atomicity
It generally is good practice to pay attention to the atomicity requirement. An atomic attribute is one that cannot
be further subdivided. Such an attribute is said to display atomicity. Clearly, the use of the EMP_NAME in the
EMPLOYEE table is not atomic because EMP_NAME can be decomposed into a last name, a first name, and an initial.
By improving the degree of atomicity, you also gain querying flexibility. For example, if you use EMP_LNAME,
EMP_FNAME, and EMP_INITIAL, you can easily generate phone lists by sorting last names, first names, and initials.
Such a task would be very difficult if the name components were within a single attribute. In general, designers prefer
to use simple, single-valued attributes as indicated by the business rules and processing requirements.

Identify New Attributes
If the EMPLOYEE table were used in a real-world environment, several other attributes would have to be added. For
example, year-to-date gross salary payments, Social Security payments, and Medicare payments would be desirable.
Adding an employee hire date attribute (EMP_HIREDATE) could be used to track an employee’s job longevity and serve
as a basis for awarding bonuses to long-term employees and for other morale-enhancing measures. The same principle
must be applied to all other tables in your design.

Identify New Relationships
The system’s ability to supply detailed information about each project’s manager is ensured by using the EMP_NUM
as a foreign key in PROJECT. That action ensures that you can access the details of each PROJECT’s manager data
without producing unnecessary and undesirable data duplication. The designer must take care to place the right
attributes in the right tables by using normalization principles.

C6545_05 7/1/2007 6:26:53 Page 165

165N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

Refine Primary Keys as Required for Data Granularity
Granularity refers to the level of detail represented by the values stored in a table’s row. Data stored at their lowest
level of granularity are said to be atomic data, as explained earlier. In Figure 5.5, the ASSIGNMENT table in 3NF
uses the ASSIGN_HOURS attribute to represent the hours worked by a given employee on a given project. However,
are those values recorded at their lowest level of granularity? In other words, do the ASSIGN_HOURS represent the
hourly total, daily total, weekly total, monthly total, or yearly total? Clearly, ASSIGN_HOURS requires more careful
definition. In this case, the relevant question would be as follows: For what time frame—hour, day, week, month, and
so on—do you want to record the ASSIGN_HOURS data?

For example, assume that the combination of EMP_NUM and PROJ_NUM is an acceptable (composite) primary key
in the ASSIGNMENT table. That primary key is useful in representing only the total number of hours an employee
worked on a project since its start. Using a surrogate primary key such as ASSIGN_NUM provides lower granularity
and yields greater flexibility. For example, assume that the EMP_NUM and PROJ_NUM combination is used as the
primary key, and then an employee makes two “hours worked” entries in the ASSIGNMENT table. That action violates
the entity integrity requirement. Even if you add the ASSIGN_DATE as part of a composite PK, an entity integrity
violation is still generated if any employee makes two or more entries for the same project on the same day. (The
employee might have worked on the project a few hours in the morning and then worked on it again later in the day.)
The same data entry yields no problems when ASSIGN_NUM is used as the primary key.

Maintain Historical Accuracy
Writing the job charge per hour into the ASSIGNMENT table is crucial to maintaining the historical accuracy of the
data in the ASSIGNMENT table. It would be appropriate to name this attribute ASSIGN_CHG_HOUR. Although this
attribute would appear to have the same value as JOB_CHG_HOUR, that is true only if the JOB_CHG_HOUR value
remains forever the same. However, it is reasonable to assume that the job charge per hour will change over time. But
suppose that the charges to each project were figured (and billed) by multiplying the hours worked on the project, found
in the ASSIGNMENT table, by the charge per hour, found in the JOB table. Those charges would always show the
current charge per hour stored in the JOB table, rather than the charge per hour that was in effect at the time of the
assignment.

Evaluate Using Derived Attributes
Finally, you can use a derived attribute in the ASSIGNMENT table to store the actual charge made to a project. That
derived attribute, to be named ASSIGN_CHARGE, is the result of multiplying the ASSIGN_HOURS by the
ASSIGN_CHG_HOUR. From a strictly database point of view, such derived attribute values can be calculated when
they are needed to write reports or invoices. However, storing the derived attribute in the table makes it easy to write
the application software to produce the desired results. Also, if many transactions must be reported and/or
summarized, the availability of the derived attribute will save reporting time. (If the calculation is done at the time of
data entry, it will be completed when the end user presses the Enter key, thus speeding up the process.)

The enhancements described in the preceding sections are illustrated in the tables and dependency diagrams shown
in Figure 5.6.

Note

In an ideal (database design) world, the level of desired granularity is determined at the conceptual design or at
the requirements gathering phase. However, as you have already seen in this chapter, many database designs
involve the refinement of existing data requirements, thus triggering design modifications. In a real-world
environment, changing granularity requirements might dictate changes in primary key selection, and those
changes might ultimately require the use of surrogate keys.

C6545_05 7/1/2007 7:10:13 Page 166

166 C H A P T E R 5

Table name: PROJECT Table name: JOB

Database name: Ch05_ConstructCo

Table name: JOB

Table name: ASSIGNMENT

ASSIGN_NUM ASSIGN_DATE PROJ_NUM EMP_NUM ASSIGN_HOURS ASSIGN_CHG_HOUR ASSIGN_CHARGE

Table name: ASSIGNMENT

FIGURE
5.6

The completed database

Table name: PROJECT

PROJ_NUM PROJ_NAME EMP_NUM JOB_CODE JOB_DESCRIPTION JOB_CHG_HOUR

C6545_05 7/1/2007 6:29:32 Page 167

167N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

Figure 5.6 is a vast improvement over the original database design. If the application software is designed properly,
the most active table (ASSIGNMENT) requires the entry of only the PROJ_NUM, EMP_NUM, and ASSIGN_HOURS
values. The values for the attributes ASSIGN_NUM and ASSIGN_DATE can be generated by the application. For
example, the ASSIGN_NUM can be created by using a counter, and the ASSIGN_DATE can be the system date read
by the application and automatically entered into the ASSIGNMENT table. In addition, the application software can
automatically insert the correct ASSIGN_CHG_HOUR value by writing the appropriate JOB table’s JOB_CHG_
HOUR value into the ASSIGNMENT table. (The JOB and ASSIGNMENT tables are related through the JOB_CODE
attribute.) If the JOB table’s JOB_CHG_HOUR value changes, the next insertion of that value into the ASSIGNMENT
table will reflect the change automatically. The table structure thus minimizes the need for human intervention. In fact,
if the system requires the employees to enter their own work hours, they can scan their EMP_NUM into the
ASSIGNMENT table by using a magnetic card reader that enters their identity. Thus, the ASSIGNMENT table’s
structure can set the stage for maintaining some desired level of security.

5.5 SURROGATE KEY CONSIDERATIONS

Although this design meets the vital entity and referential integrity requirements, the designer still must address some
concerns. For example, a composite primary key might become too cumbersome to use as the number of attributes
grows. (It becomes difficult to create a suitable foreign key when the related table uses a composite primary key. In
addition, a composite primary key makes it more difficult to write search routines.) Or a primary key attribute might
simply have too much descriptive content to be usable—which is why the JOB_CODE attribute was added to the JOB

FIGURE
5.6

The completed database (continued)

Table name: EMPLOYEE

EMP_NUM EMP_LNAME EMP_FNAME EMP_INITIAL EMP_HIREDATE JOB_CODE

Table name: EMPLOYEE

C6545_05 8/20/2007 8:58:45 Page 168

168 C H A P T E R 5

table to serve as that table’s primary key. When, for whatever reason, the primary key is considered to be unsuitable,
designers use surrogate keys.

At the implementation level, a surrogate key is a system-defined attribute generally created and managed via the
DBMS. Usually, a system-defined surrogate key is numeric, and its value is automatically incremented for each new
row. For example, Microsoft Access uses an AutoNumber data type, Microsoft SQL Server uses an identity column,
and Oracle uses a sequence object.

Recall from Section 5.4 that the JOB_CODE attribute was designated to be the JOB table’s primary key. However,
remember that the JOB_CODE does not prevent duplicate entries from being made, as shown in the JOB table in
Table 5.4.

TABLE
5.4

Duplicate Entries in the Job Table

JOB_CODE JOB_DESCRIPTION JOB_CHG_HOUR
511 Programmer $35.75
512 Programmer $35.75

Clearly, the data entries in Table 5.4 are inappropriate because they duplicate existing records—yet there has been no
violation of either entity integrity or referential integrity. This “multiple duplicate records” problem was created when
the JOB_CODE attribute was added as the PK. (When the JOB_DESCRIPTION was initially designated to be the PK,
the DBMS would ensure unique values for all job description entries when it was asked to enforce entity integrity. But
that option created the problems that caused use of the JOB_CODE attribute in the first place!) In any case, if
JOB_CODE is to be the surrogate PK, you still must ensure the existence of unique values in the JOB_DESCRIPTION
through the use of a unique index.

Note that all of the remaining tables (PROJECT, ASSIGNMENT, and EMPLOYEE) are subject to the same limitations.
For example, if you use the EMP_NUM attribute in the EMPLOYEE table as the PK, you can make multiple entries
for the same employee. To avoid that problem, you might create a unique index for EMP_LNAME, EMP_FNAME, and
EMP_INITIAL. But how would you then deal with two employees named Joe B. Smith? In that case, you might use
another (preferably externally defined) attribute to serve as the basis for a unique index.

It is worth repeating that database design often involves trade-offs and the exercise of professional judgment. In a
real-world environment, you must strike a balance between design integrity and flexibility. For example, you might
design the ASSIGNMENT table to use a unique index on PROJ_NUM, EMP_NUM, and ASSIGN_DATE if you want
to limit an employee to only one ASSIGN_HOURS entry per date. That limitation would ensure that employees
couldn’t enter the same hours multiple times for any given date. Unfortunately, that limitation is likely to be undesirable
from a managerial point of view. After all, if an employee works several different times on a project during any given
day, it must be possible to make multiple entries for that same employee and the same project during that day. In that
case, the best solution might be to add a new externally defined attribute—such as a stub, voucher, or ticket
number—to ensure uniqueness. In any case, frequent data audits would be appropriate.

5.6 HIGHER-LEVEL NORMAL FORMS

Tables in 3NF will perform suitably in business transactional databases. However, there are occasions when higher
normal forms are useful. In this section, you learn about a special case of 3NF, known as Boyce-Codd normal form
(BCNF), and about fourth normal form (4NF).

C6545_05 7/1/2007 6:30:0 Page 169

169N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

5.6.1 The Boyce-Codd Normal Form (BCNF)

A table is in Boyce-Codd normal form (BCNF) when every determinant in the table is a candidate key. (Recall from
Chapter 3 that a candidate key has the same characteristics as a primary key, but for some reason, it was not chosen
to be the primary key.) Clearly, when a table contains only one candidate key, the 3NF and the BCNF are equivalent.
Putting that proposition another way, BCNF can be violated only when the table contains more than one
candidate key.

Most designers consider the BCNF to be a special case of the 3NF. In fact, if the techniques shown here are used, most
tables conform to the BCNF requirements once the 3NF is reached. So how can a table be in 3NF and not be in
BCNF? To answer that question, you must keep in mind that a transitive dependency exists when one nonprime
attribute is dependent on another nonprime attribute.

In other words, a table is in 3NF when it is in 2NF and there are no transitive dependencies. But what about a case
in which a nonkey attribute is the determinant of a key attribute? That condition does not violate 3NF, yet it fails to
meet the BCNF requirements because BCNF requires that every determinant in the table be a candidate key.

The situation just described (a 3NF table that fails to meet BCNF requirements) is shown in Figure 5.7.

Note these functional dependencies in Figure 5.7:

A + B → C, D

C → B

The table structure shown in Figure 5.7 has no partial
dependencies, nor does it contain transitive dependencies.
(The condition C → B indicates that a nonkey attribute
determines part of the primary key—and that dependency
is not transitive!) Thus, the table structure in Figure 5.7
meets the 3NF requirements. Yet the condition C → B
causes the table to fail to meet the BCNF requirements.

To convert the table structure in Figure 5.7 into table
structures that are in 3NF and in BCNF, first change the
primary key to A + C. That is an appropriate action because
the dependency C → B means that C is, in effect, a superset
of B. At this point, the table is in 1NF because it contains a
partial dependency C → B. Next, follow the standard decom-
position procedures to produce the results shown in
Figure 5.8.

Note

A table is in BCNF when every determinant in the table is a candidate key.

A B C D

FIGURE
5.7

A table that is in 3NF but not
in BCNF

C6545_05 7/1/2007 6:32:23 Page 170

170 C H A P T E R 5

To see how this procedure can be applied to an actual problem, examine the sample data in Table 5.5.

TABLE
5.5

Sample Data for a BCNF Conversion

STU_ID STAFF_ID CLASS_CODE ENROLL_GRADE
125 25 21334 A
125 20 32456 C
135 20 28458 B
144 25 27563 C
144 20 32456 B

Table 5.5 reflects the following conditions:

� Each CLASS_CODE identifies a class uniquely. This condition illustrates the case in which a course might
generate many classes. For example, a course labeled INFS 420 might be taught in two classes (sections), each
identified by a unique code to facilitate registration. Thus, the CLASS_CODE 32456 might identify INFS 420,
class section 1, while the CLASS_CODE 32457 might identify INFS 420, class section 2. Or the
CLASS_CODE 28458 might identify QM 362, class section 5.

A B C D

A C B D

A C D C B

3NF, but not BCNF

1NF

Partial dependency

3NF and BCNF 3NF and BCNF

FIGURE
5.8

Decomposition to BCNF

C6545_05 7/1/2007 6:32:55 Page 171

171N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

� A student can take many classes. Note, for example, that student 125 has taken both 21334 and 32456,
earning the grades A and C, respectively.

� A staff member can teach many classes, but each class is taught by only one staff member. Note that staff
member 20 teaches the classes identified as 32456 and 28458.

The structure shown in Table 5.5 is reflected in Panel A of Figure 5.9:

STU_ID + STAFF_ID → CLASS_CODE, ENROLL_GRADE

CLASS_CODE → STAFF_ID

Panel A of Figure 5.9 shows a structure that is clearly in 3NF, but the table represented by this structure has a major
problem, because it is trying to describe two things: staff assignments to classes and student enrollment information.
Such a dual-purpose table structure will cause anomalies. For example, if a different staff member is assigned to teach
class 32456, two rows will require updates, thus producing an update anomaly. And if student 135 drops class 28458,
information about who taught that class is lost, thus producing a deletion anomaly. The solution to the problem is to
decompose the table structure, following the procedure outlined earlier. Note that the decomposition of Panel B shown
in Figure 5.9 yields two table structures that conform to both 3NF and BCNF requirements.

Remember that a table is in BCNF when every determinant in that table is a candidate key. Therefore, when a table
contains only one candidate key, 3NF and BCNF are equivalent.

CLASS_CODE STAFF_IDSTU_ID CLASS_CODE ENROLL_GRADE

STU_ID STAFF_ID CLASS_CODE ENROLL_GRADE

Panel A: 3NF, but not BCNF

Panel B: 3NF and BCNF

FIGURE
5.9

Another BNCF decomposition

C6545_05 7/1/2007 6:33:14 Page 172

172 C H A P T E R 5

5.6.2 Fourth Normal Form (4NF)

You might encounter poorly designed databases, or you might be asked to convert spreadsheets into a database format
in which multiple multivalued attributes exist. For example, consider the possibility that an employee can have multiple
assignments and can also be involved in multiple service organizations. Suppose employee 10123 does volunteer work
for the Red Cross and United Way. In addition, the same employee might be assigned to work on three projects: 1,
3, and 4. Figure 5.10 illustrates how that set of facts can be recorded in very different ways.

There is a problem with the tables in Figure 5.10. The attributes ORG_CODE and ASSIGN_NUM each may have
many different values. That is, the tables contain two sets of independent multivalued dependencies. (One employee
can have many service entries and many assignment entries.) The presence of multiple sets of independent multivalued
dependencies means that if versions 1 and 2 are implemented, the tables are likely to contain quite a few null values;
in fact, the tables do not even have a viable candidate key. (The EMP_NUM values are not unique, so they cannot be
PKs. No combination of the attributes in table versions 1 and 2 can be used to create a PK because some of them
contain nulls.) Such a condition is not desirable, especially when there are thousands of employees, many of whom
may have multiple job assignments and many service activities. Version 3 at least has a PK, but it is composed of all
of the attributes in the table. In fact, version 3 meets 3NF requirements, yet it contains many redundancies that are
clearly undesirable.

The solution is to eliminate the problems caused by independent multivalued dependencies. You do this by creating the
ASSIGNMENT and SERVICE_V1 tables depicted in Figure 5.11. Note that in Figure 5.11, neither the ASSIGNMENT
nor the SERVICE_V1 table contains independent multivalued dependencies. Those tables are said to be in 4NF.

If you follow the proper design procedures illustrated in this book, you shouldn’t encounter the previously described
problem. Specifically, the discussion of 4NF is largely academic if you make sure that your tables conform to the
following two rules:

1. All attributes must be dependent on the primary key, but they must be independent of each other.

2. No row may contain two or more multivalued facts about an entity.

Table name: VOLUNTEER_V1

Database name: Ch05_Service

Table name: VOLUNTEER_V3

Table name: VOLUNTEER_V2

FIGURE
5.10

Tables with multivalued dependencies

C6545_05 7/1/2007 6:34:4 Page 173

173N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

5.7 NORMALIZATION AND DATABASE DESIGN

The tables shown in Figure 5.6 illustrate how normalization procedures can be used to produce good tables from poor
ones. You will likely have ample opportunity to put this skill into practice when you begin to work with real-world
databases. Normalization should be part of the design process. Therefore, make sure that proposed entities meet
the required normal form before the table structures are created. Keep in mind that if you follow the design procedures
discussed in Chapter 3 and Chapter 4 the likelihood of data anomalies will be small. But even the best database
designers are known to make occasional mistakes that come to light during normalization checks. However, many of
the real-world databases you encounter will have been improperly designed or burdened with anomalies if they were

The relational diagram

FIGURE
5.11

A set of tables in 4NF

Table name: EMPLOYEE Database name: Ch05_Service

Table name: PROJECT Table name: ORGANIZATION

Table name: ASSIGNMENT Table name: SERVICE_V1

Note

A table is in fourth normal form (4NF) when it is in 3NF and has no multiple sets of multivalued dependencies.

C6545_05 7/1/2007 7:9:27 Page 174

174 C H A P T E R 5

improperly modified during the course of time. And that means you might be asked to redesign and modify existing
databases that are, in effect, anomaly traps. Therefore, you should be aware of good design principles and procedures
as well as normalization procedures.

First, an ERD is created through an iterative process. You begin by identifying relevant entities, their attributes, and
their relationships. Then you use the results to identify additional entities and attributes. The ERD provides the big
picture, or macro view, of an organization’s data requirements and operations.

Second, normalization focuses on the characteristics of specific entities; that is, normalization represents a micro view
of the entities within the ERD. And as you learned in the previous sections of this chapter, the normalization process
might yield additional entities and attributes to be incorporated into the ERD. Therefore, it is difficult to separate the
normalization process from the ER modeling process; the two techniques are used in an iterative and incremental
process.

To illustrate the proper role of normalization in the design process, let’s reexamine the operations of the contracting
company whose tables were normalized in the preceding sections. Those operations can be summarized by using the
following business rules:

� The company manages many projects.

� Each project requires the services of many employees.

� An employee may be assigned to several different projects.

� Some employees are not assigned to a project and perform duties not specifically related to a project. Some
employees are part of a labor pool, to be shared by all project teams. For example, the company’s executive
secretary would not be assigned to any one particular project.

� Each employee has a single primary job classification. That job classification determines the hourly billing rate.

� Many employees can have the same job classification. For example, the company employs more than one
electrical engineer.

Given that simple description of the company’s operations, two entities and their attributes are initially defined:

� PROJECT (PROJ_NUM, PROJ_NAME)

� EMPLOYEE (EMP_NUM, EMP_LNAME, EMP_FNAME, EMP_INITIAL, JOB_DESCRIPTION,
JOB_CHG_HOUR)

Those two entities constitute the initial ERD shown in Figure 5.12.

After creating the initial ERD shown in Figure 5.12, the
normal forms are defined:

� PROJECT is in 3NF and needs no modification at
this point.

� EMPLOYEE requires additional scrutiny. The JOB_
DESCRIPTION attribute defines job classifications
such as Systems Analyst, Database Designer, and
Programmer. In turn, those classifications determine
the billing rate, JOB_CHG_HOUR. Therefore,
EMPLOYEE contains a transitive dependency.

The removal of EMPLOYEE’s transitive dependency yields three entities:

� PROJECT (PROJ_NUM, PROJ_NAME)

� EMPLOYEE (EMP_NUM, EMP_LNAME, EMP_FNAME, EMP_INITIAL, JOB_CODE)

� JOB (JOB_CODE, JOB_DESCRIPTION, JOB_CHG_HOUR)

FIGURE
5.12

Initial contracting company
ERD

C6545_05 7/1/2007 6:35:0 Page 175

175N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

Because the normalization process yields an additional entity (JOB), the initial ERD is modified as shown in Figure 5.13.

To represent the M:N relationship between EMPLOYEE and PROJECT, you might think that two 1:M relationships
could be used—an employee can be assigned to many projects, and each project can have many employees assigned
to it. See Figure 5.14. Unfortunately, that representation yields a design that cannot be correctly implemented.

Because the M:N relationship between EMPLOYEE and PROJECT cannot be implemented, the ERD in Figure 5.14
must be modified to include the ASSIGNMENT entity to track the assignment of employees to projects, thus yielding
the ERD shown in Figure 5.15. The ASSIGNMENT entity in Figure 5.15 uses the primary keys from the entities
PROJECT and EMPLOYEE to serve as its foreign keys. However, note that in this implementation, the ASSIGNMENT
entity’s surrogate primary key is ASSIGN_NUM, to avoid the use of a composite primary key. Therefore, the “enters”

FIGURE
5.13

Modified contracting company ERD

FIGURE
5.14

Incorrect M:N relationship representation

C6545_05 7/1/2007 6:35:14 Page 176

176 C H A P T E R 5

relationship between EMPLOYEE and ASSIGNMENT and the “requires” relationship between PROJECT and
ASSIGNMENT are shown as weak or nonidentifying.

Note that in Figure 5.15, the ASSIGN_HOURS attribute is assigned to the composite entity named ASSIGNMENT.
Because you will likely need detailed information about each project’s manager, the creation of a “manages”
relationship is useful. The “manages” relationship is implemented through the foreign key in PROJECT. Finally, some
additional attributes may be created to improve the system’s ability to generate additional information. For example,
you may want to include the date on which the employee was hired (EMP_HIREDATE) to keep track of worker
longevity. Based on this last modification, the model should include four entities and their attributes:

PROJECT (PROJ_NUM, PROJ_NAME, EMP_NUM)

EMPLOYEE (EMP_NUM, EMP_LNAME, EMP_FNAME, EMP_INITIAL, EMP_HIREDATE, JOB_CODE)

JOB (JOB_CODE, JOB_DESCRIPTION, JOB_CHG_HOUR)

ASSIGNMENT (ASSIGN_NUM, ASSIGN_DATE, PROJ_NUM, EMP_NUM, ASSIGN_HOURS, ASSIGN_CHG_
HOUR, ASSIGN_CHARGE)

The design process is now on the right track. The ERD represents the operations accurately, and the entities now
reflect their conformance to 3NF. The combination of normalization and ER modeling yields a useful ERD, whose
entities may now be translated into appropriate table structures. In Figure 5.15, note that PROJECT is optional to
EMPLOYEE in the “manages” relationship. This optionality exists because not all employees manage projects. The
final database contents are shown in Figure 5.16.

FIGURE
5.15

Final contracting company ERD

C6545_05 7/1/2007 6:35:38 Page 177

177N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

5.8 DENORMALIZATION

It’s important to remember that the optimal relational database implementation requires that all tables be at least in
third normal form (3NF). A good relational DBMS excels at managing normalized relations; that is, relations void of
any unnecessary redundancies that might cause data anomalies. Although the creation of normalized relations is an
important database design goal, it is only one of many such goals. Good database design also considers processing (or
reporting) requirements and processing speed. The problem with normalization is that as tables are decomposed to
conform to normalization requirements, the number of database tables expands. Therefore, in order to generate
information, data must be put together from various tables. Joining a large number of tables takes additional

Table name: EMPLOYEE

Table name: JOB

Table name: ASSIGNMENT

Database name: Ch05_ConstructCo

Table name: PROJECT

FIGURE
5.16

The implemented database

C6545_05 8/20/2007 9:0:24 Page 178

178 C H A P T E R 5

input/output (I/O) operations and processing logic, thereby reducing system speed. Most relational database systems
are able to handle joins very efficiently. However, rare and occasional circumstances may allow some degree of
denormalization so processing speed can be increased.

Keep in mind that the advantage of higher processing speed must be carefully weighed against the disadvantage of data
anomalies. On the other hand, some anomalies are of only theoretical interest. For example, should people in a
real-world database environment worry that a ZIP_CODE determines CITY in a CUSTOMER table whose primary key
is the customer number? Is it really practical to produce a separate table for

ZIP (ZIP_CODE, CITY)

to eliminate a transitive dependency from the CUSTOMER table? (Perhaps your answer to that question changes if you
are in the business of producing mailing lists.) As explained earlier, the problem with denormalized relations and
redundant data is that the data integrity could be compromised due to the possibility of data anomalies (insert, update,
and deletion anomalies.) The advice is simple: use common sense during the normalization process.

Furthermore, the database design process could, in some cases, introduce some small degree of redundant data in the
model (as seen in the previous example). This, in effect, creates “denormalized” relations. Table 5.6 shows some
common examples of data redundancy that are generally found in database implementations.

TABLE
5.6

Common Denormalization Examples

CASE EXAMPLE RATIONALE AND CONTROLS
Redundant data Storing ZIP and CITY attributes in the CUS-

TOMER table when ZIP determines CITY. (See
Table 1.3.)

• Avoid extra join operations
• Program can validate city (drop-down

box) based on the zip code.
Derived data Storing STU_HRS and STU_CLASS (student

classification) when STU_HRS determines
STU_CLASS. (See Figure 3.29.)

• Avoid extra join operations
• Program can validate classification

(lookup) based on the student hours
Pre-aggregated
data (also
derived data)

Storing the student grade point average (STU_
GPA) aggregate value in the STUDENT table
when this can be calculated from the ENROLL
and COURSE tables. (See Figure 3.29.)

• Avoid extra join operations
• Program computes the GPA every time a

grade is entered or updated.
• STU_GPA can be updated only via

administrative routine.
Information
requirements

Using a temporary denormalized table to hold
report data. This is required when creating a
tabular report in which the columns represent
data that is stored in the table as rows. (See
Figure 5.17 and Figure 5.18.)

• Impossible to generate the data required
by the report using plain SQL.

• No need to maintain table. Temporary
table is deleted once report is done.

• Processing speed is not an issue.

A more comprehensive example of the need for denormalization due to reporting requirements is the case of a faculty
evaluation report in which each row list the scores obtained during the last four semesters taught. See Figure 5.17.

C6545_05 8/20/2007 9:1:17 Page 179

179N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

Although this report seems simple enough, the problem arises from the fact that the data are stored in a normalized
table in which each row represents a different score for a given faculty in a given semester. See Figure 5.18.

The difficulty of transposing multirow data to multicolumnar data is compounded by the fact that the last four semesters
taught are not necessarily the same for all faculty members (some might have taken sabbaticals, some might have had
research appointments, some might be new faculty with only two semesters on the job, etc.) To generate this report,
the two tables you see in Figure 5.18 were used. The EVALDATA table is the master data table containing the
evaluation scores for each faculty member for each semester taught; this table is normalized. The FACHIST table
contains the last four data points—that is, evaluation score and semester—for each faculty member. The FACHIST
table is a temporary denormalized table created from the EVALDATA table via a series of queries. (The FACHIST table
is the basis for the report shown in Figure 5.17.)

FIGURE
5.17

The faculty evaluation report

FIGURE
5.18

The EVALDATA and FACHIST tables

Table name: FACHIST Database name: Ch05_EVALTable name: EVALDATA

Denormalized

Normalized

Repeating Group

C6545_05 7/1/2007 6:39:27 Page 180

180 C H A P T E R 5

As seen in the faculty evaluation report, the conflicts between design efficiency, information requirements, and
performance are often resolved through compromises that may include denormalization. In this case and assuming
there is enough storage space, the designer’s choices could be narrowed down to:

� Store the data in a permanent denormalized table. This is not the recommended solution, because the
denormalized table is subject to data anomalies (insert, update, and delete.) This solution is viable only if
performance is an issue.

� Create a temporary denormalized table from the permanent normalized table(s). Because the denormalized
table exists only as long as it takes to generate the report, it disappears after the report is produced. Therefore,
there are no data anomaly problems. This solution is practical only if performance is not an issue and there
are no other viable processing options.

As shown, normalization purity is often difficult to sustain in the modern database environment. You will learn
in Chapter 13, Business Intelligence and Data Warehouses, that lower normalization forms occur (and are even
required) in specialized databases known as data warehouses. Such specialized databases reflect the ever-growing
demand for greater scope and depth in the data on which decision support systems increasingly rely. You will discover
that the data warehouse routinely uses 2NF structures in its complex, multilevel, multisource data environment. In
short, although normalization is very important, especially in the so-called production database environment, 2NF is
no longer disregarded as it once was.

Although 2NF tables cannot always be avoided, the problem of working with tables that contain partial and/or
transitive dependencies in a production database environment should not be minimized. Aside from the possibility of
troublesome data anomalies being created, unnormalized tables in a production database tend to suffer from these
defects:

� Data updates are less efficient because programs that read and update tables must deal with larger tables.

� Indexing is more cumbersome. It simply is not practical to build all of the indexes required for the many
attributes that might be located in a single unnormalized table.

� Unnormalized tables yield no simple strategies for creating virtual tables known as views. You will learn how
to create and use views in Chapter 7, Introduction to Structured Query Language (SQL).

Remember that good design cannot be created in the application programs that use a database. Also keep in mind that
unnormalized database tables often lead to various data redundancy disasters in production databases such as the ones
examined thus far. In other words, use denormalization cautiously and make sure that you can explain why the
unnormalized tables are a better choice in certain situations than their normalized counterparts.

C6545_05 7/1/2007 6:39:27 Page 181

181N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

S u m m a r y

◗ Normalization is a technique used to design tables in which data redundancies are minimized. The first three normal
forms (1NF, 2NF, and 3NF) are most commonly encountered. From a structural point of view, higher normal forms
are better than lower normal forms because higher normal forms yield relatively fewer data redundancies in the
database. Almost all business designs use 3NF as the ideal normal form. A special, more restricted 3NF known as
Boyce-Codd normal form, or BCNF, is also used.

◗ A table is in 1NF when all key attributes are defined and when all remaining attributes are dependent on the primary
key. However, a table in 1NF can still contain both partial and transitive dependencies. (A partial dependency is one
in which an attribute is functionally dependent on only a part of a multiattribute primary key. A transitive
dependency is one in which one attribute is functionally dependent on another nonkey attribute.) A table with a
single-attribute primary key cannot exhibit partial dependencies.

◗ A table is in 2NF when it is in 1NF and contains no partial dependencies. Therefore, a 1NF table is automatically
in 2NF when its primary key is based on only a single attribute. A table in 2NF may still contain transitive
dependencies.

◗ A table is in 3NF when it is in 2NF and contains no transitive dependencies. Given that definition of 3NF, the
Boyce-Codd normal form (BCNF) is merely a special 3NF case in which all determinant keys are candidate keys.
When a table has only a single candidate key, a 3NF table is automatically in BCNF.

◗ A table that is not in 3NF may be split into new tables until all of the tables meet the 3NF requirements. The process
is illustrated in Figures 5.19 to 5.21.

FIGURE
5.19

The initial 1NF structure

A B C D E F

A

B

A B

Partial
dependency

Transitive dependency

Step 1: Write each PK component on a separate
line; then write the original (composite)
PK on the last line.

The Initial 1NF Structure

C6545_05 7/1/2007 6:41:6 Page 182

182 C H A P T E R 5

◗ Normalization is an important part—but only a part—of the design process. As entities and attributes are defined
during the ER modeling process, subject each entity (set) to normalization checks and form new entity (sets) as
required. Incorporate the normalized entities into the ERD and continue the iterative ER process until all entities
and their attributes are defined and all equivalent tables are in 3NF.

◗ A table in 3NF might contain multivalued dependencies that produce either numerous null values or redundant data.
Therefore, it might be necessary to convert a 3NF table to the fourth normal form (4NF) by splitting the table to

FIGURE
5.20

Identifying possible PK attributes

Step 2: Place all dependent attributes with the PK
attributes identified in Step 1.

No attributes are dependent on A. Therefore, A does not
become a PK for a new table structure.

This table is in 3NF because it is in 2NF
(no partial dependencies) and it contains
no transitive dependencies.

This table is in 2NF
because it contains a
transitive dependency.

A B D E F

Transitive dependency

B C

A

FIGURE
5.21

Table structures based on the selected PKs

B

Step 3: Remove all transitive dependencies identified in Step 2
and retain all 3NF structures.

A B D E
Attribute D is retained in this
table structure to serve as the
FK to the second table.

C

D F

All tables are in 3NF because they are in 2NF
(no partial dependencies) and they do not contain
transitive dependencies.

C6545_05 7/1/2007 6:41:6 Page 183

183N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

remove the multivalued dependencies. Thus, a table is in 4NF when it is in 3NF and contains no multivalued
dependencies.

◗ The larger the number of tables, the more additional I/O operations and processing logic required to join them.
Therefore, tables are sometimes denormalized to yield less I/O in order to increase processing speed. Unfortu-
nately, with larger tables, you pay for the increased processing speed by making the data updates less efficient, by
making indexing more cumbersome, and by introducing data redundancies that are likely to yield data anomalies.
In the design of production databases, use denormalization sparingly and cautiously.

K e y T e r m s

atomic attribute, 165

atomicity, 165

Boyce-Codd normal form
(BCNF), 170

denormalization, 153

dependency diagram, 160

determinant, 163

first normal form (1NF), 161

fourth normal form (4NF), 174

granularity, 166

key attribute, 162

nonkey attribute, 162

nonprime attribute, 162

normalization, 153

partial dependency, 160

prime attribute, 162

repeating group, 158

second normal form (2NF), 163

surrogate key, 165

third normal form (3NF), 164

transitive dependency, 160

R e v i e w Q u e s t i o n s

1. What is normalization?

2. When is a table in 1NF?

3. When is a table in 2NF?

4. When is a table in 3NF?

5. When is a table in BCNF?

6. Given the dependency diagram shown in Figure Q5.6, answer Items 6a−6c.

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the Student Online
Companion for this book.

C1 C2 C3 C4 C5

FIGURE
Q5.6

Dependency diagram for Question 6

C6545_05 7/1/2007 7:11:4 Page 184

184 C H A P T E R 5

a. Identify and discuss each of the indicated dependencies.

b. Create a database whose tables are at least in 2NF, showing the dependency diagrams for each table.

c. Create a database whose tables are at least in 3NF, showing the dependency diagrams for each table.

7. What is a partial dependency? With what normal form is it associated?

8. What three data anomalies are likely to be the result of data redundancy? How can such anomalies be eliminated?

9. Define and discuss the concept of transitive dependency.

10. What is a surrogate key, and when should you use one?

11. Why is a table whose primary key consists of a single attribute automatically in 2NF when it is in 1NF?

12. How would you describe a condition in which one attribute is dependent on another attribute, when neither
attribute is part of the primary key?

13. Suppose that someone tells you that an attribute that is part of a composite primary key is also a candidate key.
How would you respond to that statement?

14. A table is in ___________ normal form when it is in __________ and there are no transitive dependencies.

P r o b l e m s

1. Using the INVOICE table structure shown below, write the relational schema, draw its dependency diagram, and
identify all dependencies, including all partial and transitive dependencies. You can assume that the table does not
contain repeating groups and that an invoice number references more than one product. (Hint: This table uses
a composite primary key.)

2. Using the answer to Problem 1, remove all partial dependencies, write the relational schema, and draw the new
dependency diagrams. Identify the normal forms for each table structure you created.

3. Using the answer to Problem 2, remove all transitive dependencies, write the relational schema, and draw the
new dependency diagrams. Also identify the normal forms for each table structure you created.

4. Using the results of Problem 3, draw the Crow’s Foot ERD.

TABLE
P5.1

ATTRIBUTE NAME SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE
INV_NUM 211347 211347 211347 211348 211349
PROD_NUM AA-E3422QW QD-300932X RU-995748G AA-E3422QW GH-778345P
SALE_DATE 15-Jan-2008 15-Jan-2008 15-Jan-2008 15-Jan-2008 16-Jan-2008
PROD_LABEL Rotary sander 0.25-in. drill bit Band saw Rotary sander Power drill
VEND_CODE 211 211 309 211 157
VEND_NAME NeverFail, Inc. NeverFail, Inc. BeGood, Inc. NeverFail, Inc. ToughGo, Inc.
QUANT_SOLD 1 8 1 2 1
PROD_PRICE $49.95 $3.45 $39.99 $49.95 $87.75

Note

You can assume that any given product is supplied by a single vendor, but a vendor can supply many products.
Therefore, it is proper to conclude that the following dependency exists:

PROD_NUM → PROD_DESCRIPTION, PROD_PRICE, VEND_CODE, VEND_NAME

(Hint: Your actions should produce three dependency diagrams.)

C6545_05 8/20/2007 9:2:37 Page 185

185N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

5. Using the STUDENT table structure shown in Table P5.5, write the relational schema and draw its dependency
diagram. Identify all dependencies, including all transitive dependencies.

6. Using the answer to Problem 5, write the relational schema and draw the dependency diagram to meet the 3NF
requirements to the greatest practical extent possible. If you believe that practical considerations dictate using a
2NF structure, explain why your decision to retain 2NF is appropriate. If necessary, add or modify attributes to
create appropriate determinants and to adhere to the naming conventions.

7. Using the results of Problem 6, draw the Crow’s Foot ERD.

8. To keep track of office furniture, computers, printers, and so on, the FOUNDIT company uses the table structure
shown in Table P5.8.

TABLE
P5.5

ATTRIBUTE NAME SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE
STU_NUM 211343 200128 199876 199876 223456
STU_LNAME Stephanos Smith Jones Ortiz McKulski
STU_MAJOR Accounting Accounting Marketing Marketing Statistics
DEPT_CODE ACCT ACCT MKTG MKTG MATH
DEPT_NAME Accounting Accounting Marketing Marketing Mathematics
DEPT_PHONE 4356 4356 4378 4378 3420
COLLEGE_NAME Business Admin Business Admin Business Admin Business Admin Arts & Sciences
ADVISOR_LNAME Grastrand Grastrand Gentry Tillery Chen
ADVISOR_OFFICE T201 T201 T228 T356 J331
ADVISOR_BLDG Torre Building Torre Building Torre Building Torre Building Jones Building
ADVISOR_PHONE 2115 2115 2123 2159 3209
STU_GPA 3.87 2.78 2.31 3.45 3.58
STU_HOURS 75 45 117 113 87
STU_CLASS Junior Sophomore Senior Senior Junior

Note

Although the completed student hours (STU_HOURS) do determine the student classification (STU_CLASS),
this dependency is not as obvious as you might initially assume it to be. For example, a student is considered a
junior if that student has completed between 61 and 90 credit hours. Therefore, a student who is classified as
a junior may have completed 66, 72, or 87 hours or any other number of hours within the specified range of
61−90 hours. In short, any hour value within a specified range will define the classification.

Note

This ERD constitutes a small segment of a university’s full-blown design. For example, this segment might be
combined with the Tiny College presentation in Chapter 4.

C6545_05 8/20/2007 9:3:0 Page 186

186 C H A P T E R 5

Given that information, write the relational schema and draw the dependency diagram. Make sure that you label
the transitive and/or partial dependencies.

9. Using the answer to Problem 8, write the relational schema and create a set of dependency diagrams that meet
3NF requirements. Rename attributes to meet the naming conventions and create new entities and attributes as
necessary.

10. Using the results of Problem 9, draw the Crow’s Foot ERD.

11. The table structure shown in Table P5.11 contains many unsatisfactory components and characteristics. For
example, there are several multivalued attributes, naming conventions are violated, and some attributes are not
atomic.

Given the structure shown in Table P5.11, write the relational schema and draw its dependency diagram. Label
all transitive and/or partial dependencies.

12. Using the answer to Problem 11, draw the dependency diagrams that are in 3NF. (Hint: You might have to create
a few new attributes. Also make sure that the new dependency diagrams contain attributes that meet proper

TABLE
P5.8

ATTRIBUTE NAME SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE
ITEM_ID 231134-678 342245-225 254668-449
ITEM_LABEL HP DeskJet 895Cse HP Toner DT Scanner
ROOM_NUMBER 325 325 123
BLDG_CODE NTC NTC CSF
BLDG_NAME Nottooclear Nottoclear Canseefar
BLDG_MANAGER I. B. Rightonit I. B. Rightonit May B. Next

Note

Problems 11−14 may be combined to serve as a case or a miniproject.

TABLE
P5.11

EMP_NUM 1003 1018 1019 1023
EMP_LNAME Willaker Smith McGuire McGuire
EMP_EDUCATION BBA, MBA BBA BS, MS, Ph.D.
JOB_CLASS SLS SLS JNT DBA
EMP_DEPENDENTS Gerald (spouse),

Mary (daughter),
John (son)

JoAnne (spouse) George (spouse)
Jill (daughter)

DEPT_CODE MKTG MKTG SVC INFS
DEPT_NAME Marketing Marketing General Service Info. Systems
DEPT_MANAGER Jill H. Martin Jill H. Martin Hank B. Jones Carlos G. Ortez
EMP_TITLE Sales Agent Sales Agent Janitor DB Admin
EMP_DOB 23-Dec-1968 28-Mar-1979 18-May-1982 20-Jul-1959
EMP_HIRE_DATE 14-Oct-1997 15-Jan-2006 21-Apr-2003 15-Jul-1999
EMP_TRAINING L1, L2 L1 L1 L1, L3, L8, L15
EMP_BASE_SALARY $38,255.00 $30,500.00 $19,750.00 $127,900.00
EMP_COMMISSION_RATE 0.015 0.010

C6545_05 8/20/2007 9:3:33 Page 187

187N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

design criteria; that is, make sure that there are no multivalued attributes, that the naming conventions are met,
and so on.)

13. Using the results of Problem 12, draw the relational diagram.

14. Using the results of Problem 13, draw the Crow’s Foot ERD.

15. Suppose you are given the following business rules to form the basis for a database design. The database must
enable the manager of a company dinner club to mail invitations to the club’s members, to plan the meals, to
keep track of who attends the dinners, and so on.

� Each dinner serves many members, and each member may attend many dinners.

� A member receives many invitations, and each invitation is mailed to many members.

� A dinner is based on a single entree, but an entree may be used as the basis for many dinners. For example,
a dinner may be composed of a fish entree, rice, and corn. Or the dinner may be composed of a fish entree,
a baked potato, and string beans.

� A member may attend many dinners, and each dinner may be attended by many members.

Because the manager is not a database expert, the first attempt at creating the database uses the structure shown
in Table P5.15.

Given the table structure illustrated in Table P5.15, write the relational schema and draw its dependency diagram.
Label all transitive and/or partial dependencies. (Hint: This structure uses a composite primary key.)

16. Break up the dependency diagram you drew in Problem 15 to produce dependency diagrams that are in 3NF and
write the relational schema. (Hint: You might have to create a few new attributes. Also make sure that the new
dependency diagrams contain attributes that meet proper design criteria; that is, make sure that there are no
multivalued attributes, that the naming conventions are met, and so on.)

Note

Problems 15-17 may be combined to serve as a case or a miniproject.

TABLE
P5.15

ATTRIBUTE NAME SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE
MEMBER_NUM 214 235 214
MEMBER_NAME Alice B. VanderVoort Gerald M. Gallega Alice B. VanderVoort
MEMBER_ADDRESS 325 Meadow Park 123 Rose Court 325 Meadow Park
MEMBER_CITY Murkywater Highlight Murkywater
MEMBER_ZIPCODE 12345 12349 12345
INVITE_NUM 8 9 10
INVITE_DATE 23-Feb-2008 12-Mar-2008 23-Feb-2008
ACCEPT_DATE 27-Feb-2008 15-Mar-2008 27-Feb-2008
DINNER_DATE 15-Mar-2008 17-Mar-2008 15-Mar-2008
DINNER_ATTENDED Yes Yes No
DINNER_CODE DI5 DI5 DI2
DINNER_DESCRIPTION Glowing Sea Delight Glowing Sea Delight Ranch Superb
ENTREE_CODE EN3 EN3 EN5
ENTREE_DESCRIPTION Stuffed crab Stuffed crab Marinated steak
DESSERT_CODE DE8 DE5 DE2
DESSERT_DESCRIPTION Chocolate mousse

with raspberry sauce
Cherries jubilee Apple pie with

honey crust

C6545_05 8/20/2007 9:5:23 Page 188

188 C H A P T E R 5

17. Using the results of Problem 16, draw the Crow’s Foot ERD.

18. The manager of a consulting firm has asked you to evaluate a database that contains the table structure shown
in Table P5.18.

Table P5.18 was created to enable the manager to match clients with consultants. The objective is to match
a client within a given region with a consultant in that region and to make sure that the client’s need for specific
consulting services is properly matched to the consultant’s expertise. For example, if the client needs help with
database design and is located in the Southeast, the objective is to make a match with a consultant who is
located in the Southeast and whose expertise is in database design. (Although the consulting company manager
tries to match consultant and client locations to minimize travel expense, it is not always possible to do so.) The
following basic business rules are maintained:

� Each client is located in one region.

� A region can contain many clients.

� Each consultant can work on many contracts.

� Each contract might require the services of many consultants.

� A client can sign more than one contract, but each contract is signed by only one client.

� Each contract might cover multiple consulting classifications. (For example, a contract may list
consulting services in database design and networking.)

� Each consultant is located in one region.

Note

Problems 18−20 may be combined to serve as a case or a miniproject.

TABLE
P5.18

ATTRIBUTE NAME SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE
CLIENT_NUM 298 289 289
CLIENT_NAME Marianne R. Brown James D. Smith James D. Smith
CLIENT_REGION Midwest Southeast Southeast
CONTRACT_DATE 10-Feb-2008 15-Feb-2008 12-Mar-2008
CONTRACT_NUMBER 5841 5842 5843
CONTRACT_AMOUNT $2,985,000.00 $670,300.00 $1,250,000.00
CONSULT_CLASS_1 Database Administration Internet Services Database Design
CONSULT_CLASS_2 Web Applications Database Administration
CONSULT_CLASS_3 Network Installation
CONSULT_CLASS_4
CONSULTANT_NUM_1 29 34 25
CONSULTANT_NAME_1 Rachel G. Carson Gerald K. Ricardo Angela M. Jamison
CONSULTANT_REGION_1 Midwest Southeast Southeast
CONSULTANT_NUM_2 56 38 34
CONSULTANT_NAME_2 Karl M. Spenser Anne T. Dimarco Gerald K. Ricardo
CONSULTANT_REGION_2 Midwest Southeast Southeast
CONSULTANT_NUM_3 22 45
CONSULTANT_NAME_3 Julian H. Donatello Geraldo J. Rivera
CONSULTANT_REGION_3 Midwest Southeast
CONSULTANT_NUM_4 18
CONSULTANT_NAME_4 Donald Chen
CONSULTANT_REGION_4 West

C6545_05 8/20/2007 9:4:5 Page 189

189N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

� A region can contain many consultants.

� Each consultant has one or more areas of expertise (class). For example, a consultant might be classified
as an expert in both database design and networking.

� Each area of expertise (class) can have many consultants in it. For example, the consulting company
might employ many consultants who are networking experts.

Given that brief description of the requirements and the business rules, write the relational schema and draw the
dependency diagram for the preceding (and very poor) table structure. Label all transitive and/or partial
dependencies.

19. Break up the dependency diagram you drew in Problem 18 to produce dependency diagrams that are in 3NF and
write the relational schema. (Hint: You might have to create a few new attributes. Also make sure that the new
dependency diagrams contain attributes that meet proper design criteria; that is, make sure that there are no
multivalued attributes, that the naming conventions are met, and so on.)

20. Using the results of Problem 19, draw the Crow’s Foot ERD.

21. Given the sample records in the CHARTER table shown in Table P5.21, write the relational schema and draw
the dependency diagram for the table structure. Make sure that you label all dependencies. CHAR_PAX indicates
the number of passengers carried. The CHAR_MILES entry is based on round-trip miles, including pickup points.
(Hint: Look at the data values to determine the nature of the relationships. For example, note that employee
Melton has flown two charter trips as pilot and one trip as copilot.)

22. Decompose the dependency diagram you drew to solve Problem 21 to create table structures that are in 3NF and
write the relational schema. Make sure that you label all dependencies.

23. Draw the Crow’s Foot ERD to reflect the properly decomposed dependency diagrams you created in Problem 22.
Make sure that the ERD yields a database that can track all of the data shown in Problem 21. Show all entities,
relationships, connectivities, optionalities, and cardinalities.

TABLE
P5.21

ATTRIBUTE NAME SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE
CHAR_TRIP 10232 10233 10234 10235
CHAR_DATE 15-Jan-2008 15-Jan-2008 16-Jan-2008 17-Jan-2008
CHAR_CITY STL MIA TYS ATL
CHAR_MILES 580 1,290 524 768
CUST_NUM 784 231 544 784
CUST_LNAME Brown Hanson Bryana Brown
CHAR_PAX 5 12 2 5
CHAR_CARGO 235 lbs. 18,940 lbs. 348 lbs. 155 lbs.
PILOT Melton Chen Henderson Melton
COPILOT Henderson Melton
FLT_ENGINEER O’Shaski
LOAD_MASTER Benkasi
AC_NUMBER 1234Q 3456Y 1234Q 2256W
MODEL_CODE PA31-350 CV-580 PA31-350 PA31-350
MODEL_SEATS 10 38 10 10
MODEL_CHG_MILE $2.79 $23.36 $2.79 $2.79

Note

Use the dependency diagram shown in Figure P5.24 to work Problems 24−26.

C6545_05 8/20/2007 9:4:19 Page 190

190 C H A P T E R 5

24. Break up the dependency diagram shown in Figure P5.24 to create two new dependency diagrams, one in 3NF
and one in 2NF.

25. Modify the dependency diagrams you created in Problem 24 to produce a set of dependency diagrams that are
in 3NF. To keep the entire collection of attributes together, copy the 3NF dependency diagram from Problem 24;
then show the new dependency diagrams that are also in 3NF. (Hint: One of your dependency diagrams will be
in 3NF but not in BCNF.)

26. Modify the dependency diagrams you created in Problem 25 to produce a collection of dependency diagrams that
are in 3NF and BCNF. To ensure that all attributes are accounted for, copy the 3NF dependency diagrams from
Problem 25; then show the new 3NF and BCNF dependency diagrams.

A B C D E F G

FIGURE
P5.24

C6545_05 7/1/2007 7:4:39 Page 191

191N O R M A L I Z A T I O N O F D A T A B A S E T A B L E S

27. Suppose you have been given the table structure and data shown in Table P5.27, which was imported from an
Excel spreadsheet. The data reflect that a professor can have multiple advisees, can serve on multiple committees,
and can edit more than one journal.

Given the information in Table P5.27:

a. Draw the dependency diagram.

b. Identify the multivalued dependencies.

c. Create the dependency diagrams to yield a set of table structures in 3NF.

d. Eliminate the multivalued dependencies by converting the affected table structures to 4NF.

e. Draw the Crow’s Foot ERD to reflect the dependency diagrams you drew in Part c. (Note: You might have
to create additional attributes to define the proper PKs and FKs. Make sure that all of your attributes conform
to the naming conventions.)

TABLE
P5.27

ATTRIBUTE NAME SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE SAMPLE VALUE
EMP_NUM 123 104 118
PROF_RANK Professor Asst. Professor Assoc. Professor Assoc. Professor
EMP_NAME Ghee Rankin Ortega Smith
DEPT_CODE CIS CHEM CIS ENG
DEPT_NAME Computer Info.

Systems
Chemistry Computer Info.

Systems
English

PROF_OFFICE KDD-567 BLF-119 KDD-562 PRT-345
ADVISEE 1215, 2312, 3233,

2218, 2098
3102, 2782, 3311,
2008, 2876, 2222,
3745, 1783, 2378

2134, 2789, 3456,
2002, 2046, 2018,
2764

2873, 2765, 2238,
2901, 2308

COMMITTEE_CODE PROMO, TRAF,
APPL, DEV

DEV SPR, TRAF PROMO, SPR,
DEV

JOURNAL_CODE JMIS, QED,
JMGT

JCIS, JMGT

C6545_05 8/20/2007 9:4:39 Page 192

192 C H A P T E R 5

