
PART

III
Advanced Design and

Implementation

7Introduction to Structured Query
Language (SQL)

8Advanced SQL

9Database Design

C6545_07 7/23/2007 14:27:23 Page 222

B
V

usiness
ignette

Using Queries to Score Runs

Today, we take for granted the ability to comb through vast amounts of data to find one

item that meets a slew of requirements or to find several items that share common

features. When we go to the library, retrieve bank account records, call Information to

get a phone number, or search for a movie review or restaurant online, we are interacting

with databases that did not exist 40 years ago. The impact of the information revolution

is very apparent in our daily lives. What is less apparent is how this revolution is slowly

changing society by determining who wins and who loses in school, in business, and even

in sports.

In the old days, money was the major factor in establishing which teams went to the World

Series. The rich teams could hunt for and buy the best players. As a result, theYankees have

dominated the event, playing in and winning many more championships than any other team

in the Major League. Today, databases are being used to even the playing field.

In the late 1990s, the Yankees hired E Solutions, a Tampa-based IT company, to complete

a customized software project to analyze scouting reports. E Solutions saw the potential

and developed ScoutAdvisor, a program that runs queries on data on baseball players

collected from many sources. Such sources include the Major League Baseball Scouting

Bureau, which provides psychological profile data on players, while SportsTicker supplies

game reports, and STATS provides game statistics such as where balls land in the field

after being hit or types of pitches.

The ScoutAdvisor database stores information on prospective and current players, such

as running speed, fielding ability, hitting ability, and plate discipline. Team managers can run

queries to find a pitcher with high arm strength, arm accuracy, and pitch speed. They can

check for injuries or discipline problems. They can run queries to determine if a player’s

performance justifies his cost. The database also stores automatic daily player updates.

Managers can run queries to determine whether a pitcher’s fastball speed is increasing or

whether a hitter’s tendency to swing at the first pitch is declining. ScoutAdvisor is

customizable, so managers can also design their own queries.

The result is that more and more baseball teams are signing contracts with E Solutions

as it becomes increasingly apparent that managing information is becoming as important

to team success as managing money or players.

C6545_07 9/6/2007 16:23:31 Page 223

Preview

Introduction to Structured Query Language (SQL)

In this chapter, you will learn:

� The basic commands and functions of SQL

� How to use SQL for data administration (to create tables, indexes, and views)

� How to use SQL for data manipulation (to add, modify, delete, and retrieve data)

� How to use SQL to query a database for useful information

In this chapter, you learn the basics of Structured Query Language (SQL). SQL, pronounced

S-Q-L by some and “sequel” by others, is composed of commands that enable users to

create database and table structures, perform various types of data manipulation and data

administration, and query the database to extract useful information. All relational DBMS

software supports SQL, and many software vendors have developed extensions to the basic

SQL command set.

Because SQL’s vocabulary is simple, the language is relatively easy to learn. Its simplicity is

enhanced by the fact that much of its work takes place behind the scenes. For example, a

single command creates the complex table structures required to store and manipulate data

successfully. Furthermore, SQL is a nonprocedural language; that is, the user specifies what

must be done, but not how it is to be done. To issue SQL commands, end users and

programmers do not need to know the physical data storage format or the complex

activities that take place when a SQL command is executed.

Although quite useful and powerful, SQL is not meant to stand alone in the applications

arena. Data entry with SQL is possible but awkward, as are data corrections and additions.

SQL itself does not create menus, special report forms, overlays, pop-ups, or any of the

other utilities and screen devices that end users usually expect. Instead, those features are

available as vendor-supplied enhancements. SQL focuses on data definition (creating tables,

indexes, and views) and data manipulation (adding, modifying, deleting, and retrieving data);

we cover these basic functions in this chapter. In spite of its limitations, SQL is a powerful

tool for extracting information and managing data.

7
S

E
V

E
N

C6545_07 7/23/2007 14:25:6 Page 224

7.1 INTRODUCTION TO SQL

Ideally, a database language allows you to create database and table structures, to perform basic data management
chores (add, delete, and modify), and to perform complex queries designed to transform the raw data into useful
information. Moreover, a database language must perform such basic functions with minimal user effort, and its
command structure and syntax must be easy to learn. Finally, it must be portable; that is, it must conform to some basic
standard so that an individual does not have to relearn the basics when moving from one RDBMS to another. SQL
meets those ideal database language requirements well.

SQL functions fit into two broad categories:

� It is a data definition language (DDL): SQL includes commands to create database objects such as tables,
indexes, and views, as well as commands to define access rights to those database objects. The data definition
commands you learn in this chapter are listed in Table 7.1.

� It is a data manipulation language (DML): SQL includes commands to insert, update, delete, and retrieve data
within the database tables. The data manipulation commands you learn in this chapter are listed in Table 7.2.

TABLE
7.1

SQL Data Definition Commands

COMMAND OR OPTION DESCRIPTION
CREATE SCHEMA AUTHORIZATION Creates a database schema
CREATE TABLE Creates a new table in the user’s database schema

NOT NULL Ensures that a column will not have null values
UNIQUE Ensures that a column will not have duplicate values
PRIMARY KEY Defines a primary key for a table
FOREIGN KEY Defines a foreign key for a table
DEFAULT Defines a default value for a column (when no value is given)
CHECK Validates data in an attribute

CREATE INDEX Creates an index for a table
CREATE VIEW Creates a dynamic subset of rows/columns from one or more tables
ALTER TABLE Modifies a tables definition (adds, modifies, or deletes attributes or con-

straints)
CREATE TABLE AS Creates a new table based on a query in the user’s database schema
DROP TABLE Permanently deletes a table (and its data)
DROP INDEX Permanently deletes an index
DROP VIEW Permanently deletes a view

TABLE
7.2

SQL Data Manipulation Commands

COMMAND OR OPTION DESCRIPTION
INSERT Inserts row(s) into a table
SELECT Selects attributes from rows in one or more tables or views
WHERE Restricts the selection of rows based on a conditional expression
GROUP BY Groups the selected rows based on one or more attributes
HAVING Restricts the selection of grouped rows based on a condition
ORDER BY Orders the selected rows based on one or more attributes
UPDATE Modifies an attribute’s values in one or more table’s rows
DELETE Deletes one or more rows from a table
COMMIT Permanently saves data changes
ROLLBACK Restores data to their original values

C6545_07 9/4/2007 13:39:48 Page 225

225I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

TABLE
7.2

SQL Data Manipulation Commands (continued)

COMMAND OR OPTION DESCRIPTION
COMPARISON OPERATORS
=, <, >, <=, >=, <> Used in conditional expressions
LOGICAL OPERATORS
AND/OR/NOT Used in conditional expressions
SPECIAL OPERATORS Used in conditional expressions
BETWEEN Checks whether an attribute value is within a range
IS NULL Checks whether an attribute value is null
LIKE Checks whether an attribute value matches a given string pattern
IN Checks whether an attribute value matches any value within a value list
EXISTS Checks whether a subquery returns any rows
DISTINCT Limits values to unique values
AGGREGATE FUNCTIONS Used with SELECT to return mathematical summaries on columns
COUNT Returns the number of rows with non-null values for a given column
MIN Returns the minimum attribute value found in a given column
MAX Returns the maximum attribute value found in a given column
SUM Returns the sum of all values for a given column
AVG Returns the average of all values for a given column

You will be happy to know that SQL is relatively easy to learn. Its basic command set has a vocabulary of fewer than
100 words. Better yet, SQL is a nonprocedural language: you merely command what is to be done; you don’t have
to worry about how it is to be done. The American National Standards Institute (ANSI) prescribes a standard SQL—the
current version is known as SQL-99 or SQL3. The ANSI SQL standards are also accepted by the International
Organization for Standardization (ISO), a consortium composed of national standards bodies of more than 150
countries. Although adherence to the ANSI/ISO SQL standard is usually required in commercial and government
contract database specifications, many RDBMS vendors add their own special enhancements. Consequently, it is
seldom possible to move a SQL-based application from one RDBMS to another without making some changes.

However, even though there are several different SQL “dialects,” the differences among them are minor. Whether you
use Oracle, Microsoft SQL Server, MySQL, IBM’s DB2, Microsoft Access, or any other well-established RDBMS, a
software manual should be sufficient to get you up to speed if you know the material presented in this chapter.

At the heart of SQL is the query. In Chapter 1, Database Systems, you learned that a query is a spur-of-the-moment
question. Actually, in the SQL environment, the word query covers both questions and actions. Most SQL queries are
used to answer questions such as these: “What products currently held in inventory are priced over $100, and what
is the quantity on hand for each of those products?” “How many employees have been hired since January 1, 2006
by each of the company’s departments?” However, many SQL queries are used to perform actions such as adding or
deleting table rows or changing attribute values within tables. Still other SQL queries create new tables or indexes. In
short, for a DBMS, a query is simply a SQL statement that must be executed. But before you can use SQL to query
a database, you must define the database environment for SQL with its data definition commands.

7.2 DATA DEFINITION COMMANDS

Before examining the SQL syntax for creating and defining tables and other elements, let’s first examine the simple
database model and the database tables that will form the basis for the many SQL examples you’ll explore in this
chapter.

C6545_07 7/23/2007 14:33:45 Page 226

226 C H A P T E R 7

7.2.1 The Database Model

A simple database composed of the following tables is used to illustrate the SQL commands in this chapter:
CUSTOMER, INVOICE, LINE, PRODUCT, and VENDOR. This database model is shown in Figure 7.1.

The database model in Figure 7.1 reflects the following business rules:

� A customer may generate many invoices. Each invoice is generated by one customer.

� An invoice contains one or more invoice lines. Each invoice line is associated with one invoice.

� Each invoice line references one product. A product may be found in many invoice lines. (You can sell more
than one hammer to more than one customer.)

� A vendor may supply many products. Some vendors do not (yet?) supply products. (For example, a vendor list
may include potential vendors.)

� If a product is vendor-supplied, that product is supplied by only a single vendor.

� Some products are not supplied by a vendor. (For example, some products may be produced in-house or
bought on the open market.)

As you can see in Figure 7.1, the database model contains many tables. However, to illustrate the initial set of data
definition commands, the focus of attention will be the PRODUCT and VENDOR tables. You will have the opportunity
to use the remaining tables later in this chapter and in the problem section.

So that you have a point of reference for understanding the effect of the SQL queries, the contents of the PRODUCT
and VENDOR tables are listed in Figure 7.2.

FIGURE
7.1

The database model

C6545_07 7/23/2007 14:35:10 Page 227

227I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

Note the following about these tables. (The features correspond to the business rules reflected in the ERD shown in
Figure 7.1.)

� The VENDOR table contains vendors who are not referenced in the PRODUCT table. Database designers note
that possibility by saying that PRODUCT is optional to VENDOR; a vendor may exist without a reference to
a product. You examined such optional relationships in detail in Chapter 4, Entity Relationship (ER) Modeling.

O n l i n e C o n t e n t

The database model in Figure 7.1 is implemented in the Microsoft Access Ch07_SaleCo database located in
the Student Online Companion. (This database contains a few additional tables that are not reflected in Figure
7.1. These tables are used for discussion purposes only.) If you use MS Access, you can use the database
supplied online. However, it is strongly suggested that you create your own database structures so you can
practice the SQL commands illustrated in this chapter.

SQL script files for creating the tables and loading the data in Oracle and MS SQL Server are also located in the
Student Online Companion. How you connect to your database depends on how the software was installed on
your computer. Follow the instructions provided by your instructor or school.

FIGURE
7.2

The VENDOR and PRODUCT tables

Table name: VENDOR

Table name: PRODUCT

Database name: Ch07_SaleCo

C6545_07 7/23/2007 14:35:37 Page 228

228 C H A P T E R 7

� Existing V_CODE values in the PRODUCT table must (and do) have a match in the VENDOR table to ensure
referential integrity.

� A few products are supplied factory-direct, a few are made in-house, and a few may have been bought in a
warehouse sale. In other words, a product is not necessarily supplied by a vendor. Therefore, VENDOR is
optional to PRODUCT.

A few of the conditions just described were made for the sake of illustrating specific SQL features. For example, null
V_CODE values were used in the PRODUCT table to illustrate (later) how you can track such nulls using SQL.

7.2.2 Creating the Database

Before you can use a new RDBMS, you must complete two tasks: first, create the database structure, and second,
create the tables that will hold the end-user data. To complete the first task, the RDBMS creates the physical files that
will hold the database. When you create a new database, the RDBMS automatically creates the data dictionary tables
to store the metadata and creates a default database administrator. Creating the physical files that will hold the database
means interacting with the operating system and the file systems supported by the operating system. Therefore,
creating the database structure is the one feature that tends to differ substantially from one RDBMS to another. The
good news is that it is relatively easy to create a database structure, regardless of which RDBMS you use.

If you use Microsoft Access, creating the database is simple: start Access, select File/New/Blank Database, specify
the folder in which you want to store the database, and then name the database. However, if you work in a database
environment typically used by larger organizations, you will probably use an enterprise RDBMS such as Oracle, SQL
Server, MySQL or DB2. Given their security requirements and greater complexity, those database products require a
more elaborate database creation process. (You will learn how to create and manage an Oracle database structure in
Chapter 15, Database Administration and Security.)

You will be relieved to discover that, with the exception of the database creation process, most RDBMS vendors use
SQL that deviates little from the ANSI standard SQL. For example, most RDBMSs require that each SQL command
ends with a semicolon. However, some SQL implementations do not use a semicolon. Important syntax differences
among implementations will be highlighted in Note boxes.

If you are using an enterprise RDBMS, before you can start creating tables you must be authenticated by the RDBMS.
Authentication is the process through which the DBMS verifies that only registered users may access the database.
To be authenticated, you must log on to the RDBMS using a user ID and a password created by the database
administrator. In an enterprise RDBMS, every user ID is associated with a database schema.

7.2.3 The Database Schema

In the SQL environment, a schema is a group of database objects—such as tables and indexes—that are related to
each other. Usually, the schema belongs to a single user or application. A single database can hold multiple schemas
belonging to different users or applications. Think of a schema as a logical grouping of database objects, such as tables,
indexes, and views. Schemas are useful in that they group tables by owner (or function) and enforce a first level of
security by allowing each user to see only the tables that belong to that user.

ANSI SQL standards define a command to create a database schema:

CREATE SCHEMA AUTHORIZATION {creator};

Therefore, if the creator is JONES, use the command:

CREATE SCHEMA AUTHORIZATION JONES;

C6545_07 7/23/2007 14:39:10 Page 229

229I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

Most enterprise RDBMSs support that command. However, the command is seldom used directly—that is, from the
command line. (When a user is created, the DBMS automatically assigns a schema to that user.) When the DBMS is
used, the CREATE SCHEMA AUTHORIZATION command must be issued by the user who owns the schema. That
is, if you log on as JONES, you can use only CREATE SCHEMA AUTHORIZATION JONES.

For most RDBMSs, the CREATE SCHEMA AUTHORIZATION is optional. That is why this chapter focuses on the
ANSI SQL commands required to create and manipulate tables.

7.2.4 Data Types

After the database schema has been created, you are ready to define the PRODUCT and VENDOR table structures
within the database. The table-creating SQL commands used in the example are based on the data dictionary shown
in Table 7.3.

In the data dictionary in Table 7.3, note particularly the data types selected. Keep in mind that data type selection is
usually dictated by the nature of the data and by the intended use. For example:

� P_PRICE clearly requires some kind of numeric data type; defining it as a character field is not acceptable.

� Just as clearly, a vendor name is an obvious candidate for a character data type. For example, VARCHAR2(35)
fits well because vendor names are “variable-length” character strings, and in this case, such strings may be up
to 35 characters long.

� U.S. state abbreviations are always two characters, so CHAR(2) is a logical choice.

� Selecting P_INDATE to be a (Julian) DATE field rather than a character field is desirable because the Julian
dates allow you to make simple date comparisons and to perform date arithmetic. For instance, if you have
used DATE fields, you can determine how many days are between them.

If you use DATE fields, you can also determine what the date will be in say, 60 days from a given P_INDATE by using
P_INDATE + 60. Or you can use the RDBMS’s system date—SYSDATE in Oracle, GETDATE() in MS SQL Server,
and Date() in Access—to determine the answer to questions such as, “What will be the date 60 days from today?” For
example, you might use SYSDATE + 60 (in Oracle); GETDATE() + 60 (in MS SQL Server) or Date() + 60 (in Access).

Date arithmetic capability is particularly useful in billing. Perhaps you want your system to start charging interest on
a customer balance 60 days after the invoice is generated. Such simple date arithmetic would be impossible if you used
a character data type.

Data type selection sometimes requires professional judgment. For example, you must make a decision about the
V_CODE’s data type as follows:

� If you want the computer to generate new vendor codes by adding 1 to the largest recorded vendor code, you
must classify V_CODE as a numeric attribute. (You cannot perform mathematical procedures on character
data.) The designation INTEGER will ensure that only the counting numbers (integers) can be used. Most SQL
implementations also permit the use of SMALLINT for integer values up to six digits.

� If you do not want to perform mathematical procedures based on V_CODE, you should classify it as a character
attribute, even though it is composed entirely of numbers. Character data are “quicker” to process in queries.
Therefore, when there is no need to perform mathematical procedures on the attribute, store it as a character
attribute.

The first option is used to demonstrate the SQL procedures in this chapter.

C6545_07 7/26/2007 14:1:36 Page 230

230 C H A P T E R 7

TA
BL

E
7.

3
D

at
a

D
ic

tio
na

ry
fo

r
th

e
C

H
07

_S
AL

EC
O

D
at

ab
as

e

TA
BL

E
N

AM
E

AT
TR

IB
U

TE
N

AM
E

C
O

N
TE

N
TS

TY
PE

FO
RM

AT
RA

N
G

E*
RE

Q
U

IR
ED

PK O
R

FK

FK RE
FE

RE
N

C
ED

TA
BL

E
PR

O
D

U
C

T
P_

C
O

D
E

Pr
od

uc
tc

od
e

C
H

AR
(1

0)
XX

XX
XX

XX
XX

N
A

Y
PK

P_
D

ES
C

RI
PT

Pr
od

uc
td

es
cr

ip
tio

n
VA

RC
H

AR
(3

5)
Xx

xx
xx

xx
xx

xx
N

A
Y

P_
IN

D
AT

E
St

oc
ki

ng
da

te
D

AT
E

D
D

-M
O

N
-Y

YY
Y

N
A

Y
P_

Q
O

H
U

ni
ts

av
ai

la
bl

e
SM

AL
LI

N
T

#
#

#
#

0-
99

99
Y

P_
M

IN
M

in
im

um
un

its
SM

AL
LI

N
T

#
#

#
#

0-
99

99
Y

P_
PR

IC
E

Pr
od

uc
tp

ric
e

N
U

M
BE

R(
8,

2)
#

#
#

#
.#

#
0.

00
-9

99
9.

00
Y

P_
D

IS
C

O
U

N
T

D
isc

ou
nt

ra
te

N
U

M
BE

R(
5,

2)
0.

#
#

0.
00

-0
.2

0
Y

V_
C

O
D

E
Ve

nd
or

co
de

IN
TE

G
ER

#
#

#
10

0-
99

9
FK

VE
N

D
O

R

V
EN

D
O

R
V

_C
O

D
E

Ve
nd

or
co

de
IN

TE
G

ER
#

#
#

#
#

10
00

-9
99

9
Y

PK
V_

N
AM

E
Ve

nd
or

na
m

e
C

H
AR

(3
5)

Xx
xx

xx
xx

xx
xx

xx
N

A
Y

V_
C

O
N

TA
C

T
C

on
ta

ct
pe

rs
on

C
H

AR
(2

5)
Xx

xx
xx

xx
xx

xx
xx

N
A

Y
V

_A
RE

AC
O

D
E

A
re

a
co

de
C

H
AR

(3
)

99
9

N
A

Y
V_

PH
O

N
E

Ph
on

e
nu

m
be

r
C

H
AR

(8
)

99
9-

99
99

N
A

Y
V_

ST
AT

E
St

at
e

C
H

AR
(2

)
XX

N
A

Y
V

_O
RD

ER
Pr

ev
io

us
or

de
r

C
H

AR
(1

)
X

Y
or

N
Y

FK
=

Fo
re

ig
n

ke
y

PK
=

Pr
im

ar
y

ke
y

C
H

A
R

=
Fi

xe
d

ch
ar

ac
te

r
le

ng
th

da
ta

,1
to

25
5

ch
ar

ac
te

rs
VA

RC
H

AR
=

Va
ria

bl
e

ch
ar

ac
te

r
le

ng
th

da
ta

,1
to

2,
00

0
ch

ar
ac

te
rs

.V
AR

C
H

AR
is

au
to

m
at

ic
al

ly
co

nv
er

te
d

to
VA

RC
H

AR
2

in
O

ra
cl

e
N

U
M

BE
R

=
N

um
er

ic
da

ta
.N

U
M

BE
R(

9,
2)

is
us

ed
to

sp
ec

ify
nu

m
be

rs
w

ith
tw

o
de

ci
m

al
pl

ac
es

an
d

up
to

ni
ne

di
gi

ts
lo

ng
,i

nc
lu

di
ng

th
e

de
ci

m
al

pl
ac

es
.S

om
e

RD
BM

Ss
pe

rm
it

th
e

us
e

of
a

M
O

N
EY

or
a

C
U

RR
EN

C
Y

da
ta

ty
pe

.
IN

T
=

In
te

ge
r

va
lu

es
on

ly
SM

A
LL

IN
T

=
Sm

al
li

nt
eg

er
va

lu
es

on
ly

D
AT

E
fo

rm
at

s
va

ry
.C

om
m

on
ly

ac
ce

pt
ed

fo
rm

at
s

ar
e:

‘D
D

-M
O

N
-Y

YY
Y’

,‘
D

D
-M

O
N

-Y
Y’

,‘
M

M
/D

D
/Y

YY
Y’

or
‘M

M
/D

D
/Y

Y’
*

N
ot

al
lt

he
ra

ng
es

sh
ow

n
he

re
w

ill
be

ill
us

tra
te

d
in

th
is

ch
ap

te
r.

H
ow

ev
er

,y
ou

ca
n

us
e

th
es

e
co

ns
tra

in
ts

to
pr

ac
tic

e
w

rit
in

g
yo

ur
ow

n
co

ns
tra

in
ts

.

C6545_07 7/23/2007 14:45:10 Page 231

231I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

When you define the attribute’s data type, you must pay close attention to the expected use of the attributes for sorting
and data retrieval purposes. For example, in a real estate application, an attribute that represents the numbers of
bathrooms in a home (H_BATH_NUM) could be assigned the CHAR(3) data type because it is highly unlikely the
application will do any addition, multiplication, or division with the number of bathrooms. Based on the CHAR(3) data
type definition, valid H_BATH_NUM values would be '2','1','2.5','10'. However, this data type decision creates potential
problems. For example, if an application sorts the homes by number of bathrooms, a query would “see” the value '10'
as less than '2', which is clearly incorrect. So you must give some thought to the expected use of the data in order to
properly define the attribute data type.

The data dictionary in Table 7.3 contains only a few of the data types supported by SQL. For teaching purposes, the
selection of data types is limited to ensure that almost any RDBMS can be used to implement the examples. If your
RDBMS is fully compliant with ANSI SQL, it will support many more data types than the ones shown in Table 7.4.
And many RDBMSs support data types beyond the ones specified in ANSI SQL.

TABLE
7.4

Some Common SQL Data Types

DATA TYPE FORMAT COMMENTS
Numeric NUMBER(L,D)

INTEGER

SMALLINT

DECIMAL(L,D)

The declaration NUMBER(7,2) indicates numbers that will be stored with
two decimal places and may be up to seven digits long, including the sign
and the decimal place. Examples: 12.32, −134.99.

May be abbreviated as INT. Integers are (whole) counting numbers, so they
cannot be used if you want to store numbers that require decimal places.

Like INTEGER, but limited to integer values up to six digits. If your integer
values are relatively small, use SMALLINT instead of INT.

Like the NUMBER specification, but the storage length is a minimum
specification. That is, greater lengths are acceptable, but smaller ones are
not. DECIMAL(9,2), DECIMAL(9), and DECIMAL are all acceptable.

Character CHAR(L)

VARCHAR(L) or
VARCHAR2(L)

Fixed-length character data for up to 255 characters. If you store strings that
are not as long as the CHAR parameter value, the remaining spaces are left
unused. Therefore, if you specify CHAR(25), strings such as Smith and
Katzenjammer are each stored as 25 characters. However, a U.S. area code
is always three digits long, so CHAR(3) would be appropriate if you wanted
to store such codes.

Variable-length character data. The designation VARCHAR2(25) will let you
store characters up to 25 characters long. However, VARCHAR will not leave
unused spaces. Oracle automatically converts VARCHAR to VARCHAR2.

Date DATE Stores dates in the Julian date format.

In addition to the data types shown in Table 7.4, SQL supports several other data types, including TIME, TIMESTAMP,
REAL, DOUBLE, FLOAT, and intervals such as INTERVAL DAY TO HOUR. Many RDBMSs also have expanded the
list to include other types of data, such as LOGICAL, CURRENCY, AutoNumber (Access), and sequence (Oracle).
However, because this chapter is designed to introduce the SQL basics, the discussion is limited to the data types
summarized in Table 7.4.

7.2.5 Creating Table Structures

Now you are ready to implement the PRODUCT and VENDOR table structures with the help of SQL, using the
CREATE TABLE syntax shown next.

C6545_07 9/4/2007 13:40:49 Page 232

232 C H A P T E R 7

CREATE TABLE tablename (
column1 data type [constraint] [,
column2 data type [constraint]] [,
PRIMARY KEY (column1 [, column2])] [,
FOREIGN KEY (column1 [, column2]) REFERENCES tablename] [,
CONSTRAINT constraint]);

To make the SQL code more readable, most SQL programmers use one line per column (attribute) definition. In
addition, spaces are used to line up the attribute characteristics and constraints. Finally, both table and attribute names
are fully capitalized. Those conventions are used in the following examples that create VENDOR and PRODUCT tables
and throughout the book.

CREATE TABLE VENDOR (
V_CODE INTEGER NOT NULL UNIQUE,
V_NAME VARCHAR(35) NOT NULL,
V_CONTACT VARCHAR(15) NOT NULL,
V_AREACODE CHAR(3) NOT NULL,
V_PHONE CHAR(8) NOT NULL,
V_STATE CHAR(2) NOT NULL,
V_ORDER CHAR(1) NOT NULL,
PRIMARY KEY (V_CODE));

O n l i n e C o n t e n t

All the SQL commands you will see in this chapter are located in script files in the Student Online Companion
for this book. You can copy and paste the SQL commands into your SQL program. Script files are provided for
Oracle and SQL Server users.

Note

SQL SYNTAX
Syntax notation for SQL commands used in this book:

CAPITALS Required SQL command keywords

italics An end-user-provided parameter (generally required)

{a | b | ..} A mandatory parameter; use one option from the list separated by |

[��] An optional parameter—anything inside square brackets is optional

Tablename The name of a table

Column The name of an attribute in a table

data type A valid data type definition

constraint A valid constraint definition

condition A valid conditional expression (evaluates to true or false)

columnlist One or more column names or expressions separated by commas

tablelist One or more table names separated by commas

conditionlist One or more conditional expressions separated by logical operators

expression A simple value (such as 76 or Married) or a formula (such as P_PRICE − 10)

C6545_07 9/4/2007 13:41:6 Page 233

233I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

CREATE TABLE PRODUCT (
P_CODE VARCHAR(10) NOT NULL UNIQUE,
P_DESCRIPT VARCHAR(35) NOT NULL,
P_INDATE DATE NOT NULL,
P_QOH SMALLINT NOT NULL,
P_MIN SMALLINT NOT NULL,
P_PRICE NUMBER(8,2) NOT NULL,
P_DISCOUNT NUMBER(5,2) NOT NULL,
V_CODE INTEGER,
PRIMARY KEY (P_CODE),
FOREIGN KEY (V_CODE) REFERENCES VENDOR ON UPDATE CASCADE);

As you examine the preceding SQL table-creating command sequences, note the following features:

� The NOT NULL specifications for the attributes ensure that a data entry will be made. When it is crucial to have
the data available, the NOT NULL specification will not allow the end user to leave the attribute empty (with
no data entry at all). Because this specification is made at the table level and stored in the data dictionary,
application programs can use this information to create the data dictionary validation automatically.

� The UNIQUE specification creates a unique index in the respective attribute. Use it to avoid duplicated values
in a column.

� The primary key attributes contain both a NOT NULL and a UNIQUE specification. Those specifications
enforce the entity integrity requirements. If the NOT NULL and UNIQUE specifications are not supported, use
PRIMARY KEY without the specifications. (For example, if you designate the PK in MS Access, the NOT
NULL and UNIQUE specifications are automatically assumed and are not spelled out.)

� The entire table definition is enclosed in parentheses. A comma is used to separate each table element
(attributes, primary key, and foreign key) definition.

Note

• Because the PRODUCT table contains a foreign key that references the VENDOR table, create the
VENDOR table first. (In fact, the M side of a relationship always references the 1 side. Therefore, in a 1:M
relationship, you must always create the table for the 1 side first.)

• If your RDBMS does not support the VARCHAR2 and FCHAR format, use CHAR.

• Oracle accepts the VARCHAR data type and automatically converts it to VARCHAR2.

• If your RDBMS does not support SINT or SMALLINT, use INTEGER or INT. If INTEGER is not supported,
use NUMBER.

• If you use Access, you can use the NUMBER data type, but you cannot use the number delimiters at the
SQL level. For example, using NUMBER(8,2) to indicate numbers with up to eight characters and two
decimal places is fine in Oracle, but you cannot use it in Access—you must use NUMBER without the
delimiters.

• If your RDBMS does not support primary and foreign key designations or the UNIQUE specification,
delete them from the SQL code shown here.

• If you use the PRIMARY KEY designation in Oracle, you do not need the NOT NULL and UNIQUE
specifications.

• The ON UPDATE CASCADE clause is part of the ANSI standard, but it may not be supported by your
RDBMS. In that case, delete the ON UPDATE CASCADE clause.

C6545_07 9/4/2007 13:41:20 Page 234

234 C H A P T E R 7

� The ON UPDATE CASCADE specification ensures that if you make a change in any VENDOR’s V_CODE,
that change is automatically applied to all foreign key references throughout the system (cascade) to ensure that
referential integrity is maintained. (Although the ON UPDATE CASCADE clause is part of the ANSI standard,
some RDBMSs such as Oracle do not support ON UPDATE CASCADE. If your RDBMS does not support the
clause, delete it from the code shown here.)

� An RDBMS will automatically enforce referential integrity for foreign keys. That is, you cannot have an invalid
entry in the foreign key column; at the same time, you cannot delete a vendor row as long as a product row
references that vendor.

� The command sequence ends with a semicolon. (Remember, your RDBMS may require that you omit the
semicolon.)

7.2.6 SQL Constraints

In Chapter 3, The Relational Model, you learned that adherence to rules on entity integrity and referential integrity is
crucial in a relational database environment. Fortunately, most SQL implementations support both integrity rules.
Entity integrity is enforced automatically when the primary key is specified in the CREATE TABLE command sequence.
For example, you can create the VENDOR table structure and set the stage for the enforcement of entity integrity rules
by using:

PRIMARY KEY (V_CODE)

In the PRODUCT table’s CREATE TABLE sequence, note that referential integrity has been enforced by specifying in
the PRODUCT table:

FOREIGN KEY (V_CODE) REFERENCES VENDOR ON UPDATE CASCADE

Note

If you are working with a composite primary key, all of the primary keys attributes are contained within the
parentheses and are separated with commas. For example, the LINE table in Figure 7.1 has a primary key that
consists of the two attributes INV_NUMBER and LINE_NUMBER. Therefore, you would define the primary key
by typing:

PRIMARY KEY (INV_NUMBER, LINE_NUMBER),

The order of the primary key components is important because the indexing starts with the first-mentioned
attribute, then proceeds with the next attribute, and so on. In this example, the line numbers would be ordered
within each of the invoice numbers:

INV_NUMBER LINE_NUMBER

1001 1
1001 2
1002 1
1003 1
1003 2

Note

NOTE ABOUT COLUMN NAMES
Do not use mathematical symbols such as +, −, and / in your column names; instead, use an underscore to
separate words, if necessary. For example, PER-NUM might generate an error message, but PER_NUM is
acceptable. Also, do not use reserved words. Reserved words are words used by SQL to perform specific functions.
For example, in some RDBMSs, the column name INITIAL will generate the message invalid column name.

C6545_07 7/26/2007 14:2:30 Page 235

235I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

That foreign key constraint definition ensures that:

� You cannot delete a vendor from the VENDOR table if at least one product row references that vendor. This
is the default behavior for the treatment of foreign keys.

� On the other hand, if a change is made in an existing VENDOR table’s V_CODE, that change must be reflected
automatically in any PRODUCT table V_CODE reference (ON UPDATE CASCADE). That restriction makes
it impossible for a V_CODE value to exist in the PRODUCT table pointing to a nonexistent VENDOR table
V_CODE value. In other words, the ON UPDATE CASCADE specification ensures the preservation of
referential integrity. (Oracle does not support ON UPDATE CASCADE.)

In general, ANSI SQL permits the use of ON DELETE and ON UPDATE clauses to cover CASCADE, SET NULL, or
SET DEFAULT.

Note

NOTE TO ORACLE USERS
When you press the Enter key after typing each line, a line number is automatically generated as long as you do
not type a semicolon before pressing the Enter key. For example, Oracles execution of the CREATE TABLE
command will look like this:

CREATE TABLE PRODUCT (

2 P_CODE VARCHAR2(10)
3 CONSTRAINT PRODUCT_P_CODE_PK PRIMARY KEY,
4 P_DESCRIPT VARCHAR2(35) NOT NULL,
5 P_INDATE DATE NOT NULL,
6 P_QOH NUMBER NOT NULL,
7 P_MIN NUMBER NOT NULL,
8 P_PRICE NUMBER(8,2) NOT NULL,
9 P_DISCOUNT NUMBER(5,2) NOT NULL,

10 V_CODE NUMBER,
11 CONSTRAINT PRODUCT_V_CODE_FK
12 FOREIGN KEYV_CODE REFERENCES VENDOR
13

In the preceding SQL command sequence, note the following:

• The attribute definition for P_CODE starts in line 2 and ends with a comma at the end of line 3.

• The CONSTRAINT clause (line 3) allows you to define and name a constraint in Oracle. You can name the
constraint to meet your own naming conventions. In this case, the constraint was named PRODUCT_P_
CODE_PK.

• Examples of constraints are NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY, and CHECK. For
additional details about constraints, see below.

• To define a PRIMARY KEY constraint, you could also use the following syntax: P_CODE VARCHAR2(10)
PRIMARY KEY,.

• In this case, Oracle would automatically name the constraint.

• Lines 11 and 12 define a FOREIGN KEY constraint name PRODUCT_V_CODE_FK for the attribute
V_CODE. The CONSTRAINT clause is generally used at the end of the CREATE TABLE command
sequence.

• If you do not name the constraints yourself, Oracle will automatically assign a name. Unfortunately, the
Oracle-assigned name makes sense only to Oracle, so you will have a difficult time deciphering it later. You
should assign a name that makes sense to human beings!

C6545_07 9/6/2007 16:23:52 Page 236

236 C H A P T E R 7

Besides the PRIMARY KEY and FOREIGN KEY constraints, the ANSI SQL standard also defines the following
constraints:

� The NOT NULL constraint ensures that a column does not accept nulls.

� The UNIQUE constraint ensures that all values in a column are unique.

� The DEFAULT constraint assigns a value to an attribute when a new row is added to a table. The end user may,
of course, enter a value other than the default value.

� The CHECK constraint is used to validate data when an attribute value is entered. The CHECK constraint does
precisely what its name suggests: it checks to see that a specified condition exists. Examples of such constraints
include the following:

- The minimum order value must be at least 10.

- The date must be after April 15, 2008.

If the CHECK constraint is met for the specified attribute (that is, the condition is true), the data are accepted for that
attribute. If the condition is found to be false, an error message is generated and the data are not accepted.

Note that the CREATE TABLE command lets you define constraints in two different places:

� When you create the column definition (known as a column constraint)

� When you use the CONSTRAINT keyword (known as a table constraint)

A column constraint applies to just one column; a table constraint may apply to many columns. Those constraints are
supported at varying levels of compliance by enterprise RDBMSs.

In this chapter, Oracle is used to illustrate SQL constraints. For example, note that the following SQL command
sequence uses the DEFAULT and CHECK constraints to define the table named CUSTOMER.

O n l i n e C o n t e n t

For a more detailed discussion of the options for the ON DELETE and ON UPDATE clauses, see Appendix D,
Converting an ER Model into a Database Structure, Section D.2, General Rules Governing
Relationships Among Tables. Appendix D is in the Student Online Companion.

Note

NOTE ABOUT REFERENTIAL CONSTRAINT ACTIONS
The support for the referential constraints actions varies from product to product. For example:

• MS Access, SQL Server, and Oracle support ON DELETE CASCADE.

• MS Access and SQL Server support ON UPDATE CASCADE.

• Oracle does not support ON UPDATE CASCADE.

• Oracle supports SET NULL.

• MS Access and SQL Server do not support SET NULL.
Refer to your product manuals for additional information on referential constraints.

While MS Access does not support ON DELETE CASCADE or ON UPDATE CASCADE at the SQL
command-line level, it does support them through the relationship window interface. In fact, whenever you try
to establish a relationship between two tables in Access, the relationship window interface will automatically
pop up.

C6545_07 9/4/2007 13:44:55 Page 237

237I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

CREATE TABLE CUSTOMER (
CUS_CODE NUMBER PRIMARY KEY,
CUS_LNAME VARCHAR(15) NOT NULL,
CUS_FNAME VARCHAR(15) NOT NULL,
CUS_INITIAL CHAR(1),
CUS_AREACODE CHAR(3) DEFAULT '615' NOT NULL

CHECK(CUS_AREACODE IN ('615','713','931')),
CUS_PHONE CHAR(8) NOT NULL,
CUS_BALANCE NUMBER(9,2) DEFAULT 0.00,
CONSTRAINT CUS_UI1 UNIQUE (CUS_LNAME, CUS_FNAME));

In this case, the CUS_AREACODE attribute is assigned a default value of '615'. Therefore, if a new CUSTOMER table
row is added and the end user makes no entry for the area code, the '615' value will be recorded. Also note that the
CHECK condition restricts the values for the customer’s area code to 615, 713, and 931; any other values will be
rejected.

It is important to note that the DEFAULT value applies only when new rows are added to a table and then only when
no value is entered for the customer’s area code. (The default value is not used when the table is modified.) In contrast,
the CHECK condition is validated whether a customer row is added or modified. However, while the CHECK
condition may include any valid expression, it applies only to the attributes in the table being checked. If you want to
check for conditions that include attributes in other tables, you must use triggers. (See Chapter 8, Advanced SQL.)
Finally, the last line of the CREATE TABLE command sequence creates a unique index constraint (named CUS_UI1)
on the customer’s last name and first name. The index will prevent the entry of two customers with the same last name
and first name. (This index merely illustrates the process. Clearly, it should be possible to have more than one person
named John Smith in the CUSTOMER table.)

In the following SQL command to create the INVOICE table, the DEFAULT constraint assigns a default date to a new
invoice, and the CHECK constraint validates that the invoice date is greater than January 1, 2008.

CREATE TABLE INVOICE (
INV_NUMBER NUMBER PRIMARY KEY,
CUS_CODE NUMBER NOT NULL REFERENCES CUSTOMER(CUS_CODE),
INV_DATE DATE DEFAULT SYSDATE NOT NULL,
CONSTRAINT INV_CK1 CHECK (INV_DATE > TO_DATE('01-JAN-2008','DD-MON-YYYY')));

In this case, notice the following:

� The CUS_CODE attribute definition contains REFERENCES CUSTOMER (CUS_CODE) to indicate that the
CUS_CODE is a foreign key. This is another way to define a foreign key.

� The DEFAULT constraint uses the SYSDATE special function. This function always returns today’s date.

� The invoice date (INV_DATE) attribute is automatically given today’s date (returned by SYSDATE) when a new
row is added and no value is given for the attribute.

� A CHECK constraint is used to validate that the invoice date is greater than 'January 1, 2008'. When
comparing a date to a manually entered date in a CHECK clause, Oracle requires the use of the TO_DATE
function. The TO_DATE function takes two parameters, the literal date and the date format used.

Note

NOTE TO MS ACCESS USERS
MS Access does not accept the DEFAULT or CHECK constraints. However, MS Access will accept the
CONSTRAINT CUS_UI1 UNIQUE (CUS_LNAME, CUS_FNAME) line and create the unique index.

C6545_07 9/4/2007 13:45:17 Page 238

238 C H A P T E R 7

The final SQL command sequence creates the LINE table. The LINE table has a composite primary key (INV_
NUMBER, LINE_NUMBER) and uses a UNIQUE constraint in INV_NUMBER and P_CODE to ensure that the same
product is not ordered twice in the same invoice.

CREATE TABLE LINE (
INV_NUMBER NUMBER NOT NULL,
LINE_NUMBER NUMBER(2,0) NOT NULL,
P_CODE VARCHAR(10) NOT NULL,
LINE_UNITS NUMBER(9,2) DEFAULT 0.00 NOT NULL,
LINE_PRICE NUMBER(9,2) DEFAULT 0.00 NOT NULL,
PRIMARY KEY (INV_NUMBER, LINE_NUMBER),
FOREIGN KEY (INV_NUMBER) REFERENCES INVOICE ON DELETE CASCADE,
FOREIGN KEY (P_CODE) REFERENCES PRODUCT(P_CODE),
CONSTRAINT LINE_UI1 UNIQUE(INV_NUMBER, P_CODE));

In the creation of the LINE table, note that a UNIQUE constraint is added to prevent the duplication of an invoice line.
A UNIQUE constraint is enforced through the creation of a unique index. Also note that the ON DELETE CASCADE
foreign key action enforces referential integrity. The use of ON DELETE CASCADE is recommended for weak entities
to ensure that the deletion of a row in the strong entity automatically triggers the deletion of the corresponding rows
in the dependent weak entity. In that case, the deletion of an INVOICE row will automatically delete all of the LINE
rows related to the invoice. In the following section, you will learn more about indexes and how to use SQL commands
to create them.

7.2.7 SQL Indexes

You learned in Chapter 3 that indexes can be used to improve the efficiency of searches and to avoid duplicate column
values. In the previous section, you saw how to declare unique indexes on selected attributes when the table is created.
In fact, when you declare a primary key, the DBMS automatically creates a unique index. Even with this feature, you
often need additional indexes. The ability to create indexes quickly and efficiently is important. Using the CREATE
INDEX command, SQL indexes can be created on the basis of any selected attribute. The syntax is:

CREATE [UNIQUE] INDEX indexname ON tablename(column1 [, column2])

For example, based on the attribute P_INDATE stored in the PRODUCT table, the following command creates an
index named P_INDATEX:

CREATE INDEX P_INDATEX ON PRODUCT(P_INDATE);

SQL does not let you write over an existing index without warning you first, thus preserving the index structure within
the data dictionary. Using the UNIQUE index qualifier, you can even create an index that prevents you from using a
value that has been used before. Such a feature is especially useful when the index attribute is a candidate key whose
values must not be duplicated:

CREATE UNIQUE INDEX P_CODEX ON PRODUCT(P_CODE);

If you now try to enter a duplicate P_CODE value, SQL produces the error message “duplicate value in index.” Many
RDBMSs, including Access, automatically create a unique index on the PK attribute(s) when you declare the PK.

A common practice is to create an index on any field that is used as a search key, in comparison operations in a
conditional expression, or when you want to list rows in a specific order. For example, if you want to create a report
of all products by vendor, it would be useful to create an index on the V_CODE attribute in the PRODUCT table.
Remember that a vendor can supply many products. Therefore, you should not create a UNIQUE index in this case.
Better yet, to make the search as efficient as possible, a composite index is recommended.

C6545_07 7/24/2007 9:45:55 Page 239

239I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

Unique composite indexes are often used to prevent data duplication. For example, consider the case illustrated in
Table 7.5, in which required employee test scores are stored. (An employee can take a test only once on a given date.)
Given the structure of Table 7.5, the PK is EMP_NUM + TEST_NUM. The third test entry for employee 111 meets
entity integrity requirements—the combination 111,3 is unique—yet the WEA test entry is clearly duplicated.

TABLE
7.5

A Duplicated Test Record

EMP_NUM TEST_NUM TEST_CODE TEST_DATE TEST_SCORE
110 1 WEA 15-Jan-2008 93
110 2 WEA 12-Jan-2008 87
111 1 HAZ 14-Dec-2007 91
111 2 WEA 18-Feb-2008 95
111 3 WEA 18-Feb-2008 95
112 1 CHEM 17-Aug-2007 91

Such duplication could have been avoided through the use of a unique composite index, using the attributes
EMP_NUM, TEST_CODE, and TEST_DATE:

CREATE UNIQUE INDEX EMP_TESTDEX ON TEST(EMP_NUM, TEST_CODE, TEST_DATE);

By default, all indexes produce results that are listed in ascending order, but you can create an index that yields output
in descending order. For example, if you routinely print a report that lists all products ordered by price from highest
to lowest, you could create an index named PROD_PRICEX by typing:

CREATE INDEX PROD_PRICEX ON PRODUCT(P_PRICE DESC);

To delete an index, use the DROP INDEX command:

DROP INDEX indexname

For example, if you want to eliminate the PROD_PRICEX index, type:

DROP INDEX PROD_PRICEX;

After creating the tables and some indexes, you are ready to start entering data. The following sections use two tables
(VENDOR and PRODUCT) to demonstrate most of the data manipulation commands.

7.3 DATA MANIPULATION COMMANDS

In this section, you will learn how to use the basic SQL data manipulation commands INSERT, SELECT, COMMIT,
UPDATE, ROLLBACK, and DELETE.

7.3.1 Adding Table Rows

SQL requires the use of the INSERT command to enter data into a table. The INSERT command’s basic syntax looks
like this:

INSERT INTO tablename VALUES (value1, value2, ... , valuen)

Because the PRODUCT table uses its V_CODE to reference the VENDOR table’s V_CODE, an integrity violation will
occur if those VENDOR table V_CODE values don’t yet exist. Therefore, you need to enter the VENDOR rows before

C6545_07 7/24/2007 9:46:6 Page 240

240 C H A P T E R 7

the PRODUCT rows. Given the VENDOR table structure defined earlier and the sample VENDOR data shown in
Figure 7.2, you would enter the first two data rows as follows:

INSERT INTO VENDOR
VALUES (21225,'Bryson, Inc.','Smithson','615','223-3234','TN','Y');

INSERT INTO VENDOR
VALUES (21226,'Superloo, Inc.','Flushing','904','215-8995','FL','N');

and so on, until all of the VENDOR table records have been entered.

(To see the contents of the VENDOR table, use the SELECT * FROM VENDOR; command.)

The PRODUCT table rows would be entered in the same fashion, using the PRODUCT data shown in Figure 7.2. For
example, the first two data rows would be entered as follows, pressing the Enter key at the end of each line:

INSERT INTO PRODUCT
VALUES ('11QER/31','Power painter, 15 psi., 3-nozzle','03-Nov-07',8,5,109.99,0.00,25595);

INSERT INTO PRODUCT
VALUES ('13-Q2/P2','7.25-in. pwr. saw blade','13-Dec-07',32,15,14.99, 0.05, 21344);

(To see the contents of the PRODUCT table, use the SELECT * FROM PRODUCT; command.)

In the preceding data entry lines, observe that:

� The row contents are entered between parentheses. Note that the first character after VALUES is a parenthesis
and that the last character in the command sequence is also a parenthesis.

� Character (string) and date values must be entered between apostrophes (').

� Numerical entries are not enclosed in apostrophes.

� Attribute entries are separated by commas.

� A value is required for each column in the table.

This version of the INSERT commands adds one table row at a time.

Inserting Rows with Null Attributes
Thus far, you have entered rows in which all of the attribute values are specified. But what do you do if a product does
not have a vendor or if you don’t yet know the vendor code? In those cases, you would want to leave the vendor code
null. To enter a null, use the following syntax:

INSERT INTO PRODUCT
VALUES ('BRT-345','Titanium drill bit','18-Oct-07', 75, 10, 4.50, 0.06, NULL);

Incidentally, note that the NULL entry is accepted only because the V_CODE attribute is optional—the NOT NULL
declaration was not used in the CREATE TABLE statement for this attribute.

Note

Date entry is a function of the date format expected by the DBMS. For example, March 25, 2008 might be
shown as 25-Mar-2008 in Access and Oracle, or it might be displayed in other presentation formats in another
RDBMS. MS Access requires the use of # delimiters when performing any computations or comparisons based
on date attributes, as in P_INDATE >= #25-Mar-08#.

C6545_07 9/4/2007 13:45:35 Page 241

241I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

Inserting Rows with Optional Attributes
There might be occasions when more than one attribute is optional. Rather than declaring each attribute as NULL in
the INSERT command, you can indicate just the attributes that have required values. You do that by listing the attribute
names inside parentheses after the table name. For the purpose of this example, assume that the only required
attributes for the PRODUCT table are P_CODE and P_DESCRIPT:

INSERT INTO PRODUCT(P_CODE, P_DESCRIPT) VALUES ('BRT-345','Titanium drill bit');

7.3.2 Saving Table Changes

Any changes made to the table contents are not saved on disk until you close the database, close the program you are
using, or use the COMMIT command. If the database is open and a power outage or some other interruption occurs
before you issue the COMMIT command, your changes will be lost and only the original table contents will be retained.
The syntax for the COMMIT command is:

COMMIT [WORK]

The COMMIT command permanently saves all changes—such as rows added, attributes modified, and rows
deleted—made to any table in the database. Therefore, if you intend to make your changes to the PRODUCT table
permanent, it is a good idea to save those changes by using:

COMMIT;

However, the COMMIT command’s purpose is not just to save changes. In fact, the ultimate purpose of the COMMIT
and ROLLBACK commands (see Section 7.3.5) is to ensure database update integrity in transaction management.
(You will see how such issues are addressed in Chapter 10, Transaction Management and Concurrency Control.)

7.3.3 Listing Table Rows

The SELECT command is used to list the contents of a table. The syntax of the SELECT command is as follows:

SELECT columnlist FROM tablename

The columnlist represents one or more attributes, separated by commas. You could use the * (asterisk) as a wildcard
character to list all attributes. A wildcard character is a symbol that can be used as a general substitute for other
characters or commands. For example, to list all attributes and all rows of the PRODUCT table, use:

SELECT * FROM PRODUCT;

Figure 7.3 shows the output generated by that command. (Figure 7.3 shows all of the rows in the PRODUCT table
that serve as the basis for subsequent discussions. If you entered only the PRODUCT table’s first two records, as shown
in the preceding section, the output of the preceding SELECT command would show only the rows you entered. Don’t
worry about the difference between your SELECT output and the output shown in Figure 7.3. When you complete the
work in this section, you will have created and populated your VENDOR and PRODUCT tables with the correct rows
for use in future sections.)

Note

NOTE TO MS ACCESS USERS
MS Access doesn’t support the COMMIT command because it automatically saves changes after the execution
of each SQL command.

C6545_07 7/23/2007 16:38:31 Page 242

242 C H A P T E R 7

Although SQL commands can be grouped together on a single line, complex command sequences are best shown on
separate lines, with space between the SQL command and the command’s components. Using that formatting
convention makes it much easier to see the components of the SQL statements, making it easy to trace the SQL logic,
and if necessary, to make corrections. The number of spaces used in the indention is up to you. For example, note
the following format for a more complex statement:

SELECT P_CODE, P_DESCRIPT, P_INDATE, P_QOH, P_MIN, P_PRICE, P_DISCOUNT, V_CODE
FROM PRODUCT;

When you run a SELECT command on a table, the RDBMS returns a set of one or more rows that have the same
characteristics as a relational table. In addition, the SELECT command lists all rows from the table you specified in the
FROM clause. This is a very important characteristic of SQL commands. By default, most SQL data manipulation
commands operate over an entire table (or relation). That is why SQL commands are said to be set-oriented

FIGURE
7.3

The contents of the PRODUCT table

Note

Your listing may not be in the order shown in Figure 7.3. The listings shown in the figure are the result of
system-controlled primary-key-based index operations. You will learn later how to control the output so that it
conforms to the order you have specified.

Note

NOTE TO ORACLE USERS
Some SQL implementations (such as Oracle’s) cut the attribute labels to fit the width of the column. However,
Oracle lets you set the width of the display column to show the complete attribute name. You can also change
the display format, regardless of how the data are stored in the table. For example, if you want to display dollar
symbols and commas in the P_PRICE output, you can declare:

COLUMN P_PRICE FORMAT $99,999.99

to change the output 12347.67 to $12,347.67.

In the same manner, to display only the first 12 characters of the P_DESCRIPT attribute, use:

COLUMN P_DESCRIPT FORMAT A12 TRUNCATE

C6545_07 9/4/2007 13:46:4 Page 243

243I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

commands. A SQL set-oriented command works over a set of rows. The set may include one or more columns and
zero or more rows from one or more tables.

7.3.4 Updating Table Rows

Use the UPDATE command to modify data in a table. The syntax for this command is:

UPDATE tablename
SET columnname = expression [, columnname = expression]
[WHERE conditionlist];

For example, if you want to change P_INDATE from December 13, 2007, to January 18, 2008, in the second row
of the PRODUCT table (see Figure 7.3), use the primary key (13-Q2/P2) to locate the correct (second) row. Therefore,
type:

UPDATE PRODUCT
SET P_INDATE = '18-JAN-2008'
WHERE P_CODE = '13-Q2/P2';

If more than one attribute is to be updated in the row, separate the corrections with commas:

UPDATE PRODUCT
SET P_INDATE = '18-JAN-2008', P_PRICE = 17.99, P_MIN = 10
WHERE P_CODE = '13-Q2/P2';

What would have happened if the previous UPDATE command had not included the WHERE condition? The
P_INDATE, P_PRICE, and P_MIN values would have been changed in all rows of the PRODUCT table. Remember,
the UPDATE command is a set-oriented operator. Therefore, if you don’t specify a WHERE condition, the UPDATE
command will apply the changes to all rows in the specified table.

Confirm the correction(s) by using this SELECT command to check the PRODUCT table’s listing:

SELECT * FROM PRODUCT;

7.3.5 Restoring Table Contents

If you have not yet used the COMMIT command to store the changes permanently in the database, you can restore
the database to its previous condition with the ROLLBACK command. ROLLBACK undoes any changes since the
last COMMIT command and brings the data back to the values that existed before the changes were made. To restore
the data to their “pre-change” condition, type

ROLLBACK;

and then press the Enter key. Use the SELECT statement again to see that the ROLLBACK did, in fact, restore the
data to their original values.

COMMIT and ROLLBACK work only with data manipulation commands that are used to add, modify, or delete table
rows. For example, assume that you perform these actions:

1. CREATE a table called SALES.

2. INSERT 10 rows in the SALES table.

3. UPDATE two rows in the SALES table.

4. Execute the ROLLBACK command.

C6545_07 9/4/2007 13:46:16 Page 244

244 C H A P T E R 7

Will the SALES table be removed by the ROLLBACK command? No, the ROLLBACK command will undo only the
results of the INSERT and UPDATE commands. All data definition commands (CREATE TABLE) are automatically
committed to the data dictionary and cannot be rolled back. The COMMIT and ROLLBACK commands are examined
in greater detail in Chapter 10.

Some RDBMSs, such as Oracle, automatically COMMIT data changes when issuing data definition commands. For
example, if you had used the CREATE INDEX command after updating the two rows in the previous example, all
previous changes would have been committed automatically; doing a ROLLBACK afterward wouldn’t have undone
anything. Check your RDBMS manual to understand these subtle differences.

7.3.6 Deleting Table Rows

It is easy to delete a table row using the DELETE statement; the syntax is:

DELETE FROM tablename
[WHERE conditionlist];

For example, if you want to delete from the PRODUCT table the product that you added earlier whose code (P_CODE)
is 'BRT-345', use:

DELETE FROM PRODUCT
WHERE P_CODE = 'BRT-345';

In that example, the primary key value lets SQL find the exact record to be deleted. However, deletions are not limited
to a primary key match; any attribute may be used. For example, in your PRODUCT table, you will see that there are
several products for which the P_MIN attribute is equal to 5. Use the following command to delete all rows from the
PRODUCT table for which the P_MIN is equal to 5:

DELETE FROM PRODUCT
WHERE P_MIN = 5;

Check the PRODUCT table’s contents again to verify that all products with P_MIN equal to 5 have been deleted.

Finally, remember that DELETE is a set-oriented command. And keep in mind that the WHERE condition is optional.
Therefore, if you do not specify a WHERE condition, all rows from the specified table will be deleted!

7.3.7 Inserting Table Rows with a Select Subquery

You learned in Section 7.3.1 how to use the INSERT statement to add rows to a table. In that section, you added rows
one at a time. In this section, you learn how to add multiple rows to a table, using another table as the source of the
data. The syntax for the INSERT statement is:

INSERT INTO tablename SELECT columnlist FROM tablename;

In that case, the INSERT statement uses a SELECT subquery. A subquery, also known as a nested query or an
inner query, is a query that is embedded (or nested) inside another query. The inner query is always executed first by
the RDBMS. Given the previous SQL statement, the INSERT portion represents the outer query, and the SELECT
portion represents the subquery. You can nest queries (place queries inside queries) many levels deep; in every case,

Note

NOTE TO MS ACCESS USERS
MS Access doesn’t support the ROLLBACK command.

C6545_07 7/26/2007 14:3:28 Page 245

245I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

the output of the inner query is used as the input for the outer (higher-level) query. In Chapter 8 you will learn more
about the various types of subqueries.

The values returned by the SELECT subquery should match the attributes and data types of the table in the INSERT
statement. If the table into which you are inserting rows has one date attribute, one number attribute, and one
character attribute, the SELECT subquery should return one or more rows in which the first column has date values,
the second column has number values, and the third column has character values.

Populating the VENDOR and PRODUCT Tables
The following steps guide you through the process of populating the VENDOR and PRODUCT tables with the data
to be used in the rest of the chapter. To accomplish that task, two tables named V and P are used as the data source.
V and P have the same table structure (attributes) as the VENDOR and PRODUCT tables.

Use the following steps to populate your VENDOR and PRODUCT tables. (If you haven’t already created the
PRODUCT and VENDOR tables to practice the SQL commands in the previous sections, do so before completing
these steps.)

1. Delete all rows from the PRODUCT and VENDOR tables.

- DELETE FROM PRODUCT;

- DELETE FROM VENDOR;

2. Add the rows to VENDOR by copying all rows from V.

- If you are using MS Access, type:

INSERT INTO VENDOR SELECT * FROM V;

- If you are using Oracle, type:

INSERT INTO VENDOR SELECT * FROM TEACHER.V;

3. Add the rows to PRODUCT by copying all rows from P.

- If you are using MS Access, type:

INSERT INTO PRODUCT SELECT * FROM P;

- If you are using Oracle, type:

INSERT INTO PRODUCT SELECT * FROM TEACHER.P;

- Oracle users must permanently save the changes by issuing the COMMIT; command.

If you followed those steps correctly, you now have the VENDOR and PRODUCT tables populated with the data that
will be used in the remaining sections of the chapter.

O n l i n e C o n t e n t

Before you execute the following commands, you MUST do the following:

• If you are using Oracle, run the create_P_V.sql script file in the Online Student Companion to create
the V and P tables used in the example below. To connect to the database, follow the instructions specific
to your school’s setup provided by your instructor.

• If you are using Access, copy the original Ch07_SaleCo.mbd file from the Online Student Companion.

C6545_07 9/6/2007 16:24:52 Page 246

246 C H A P T E R 7

7.4 SELECT QUERIES

In this section, you will learn how to fine-tune the SELECT command by adding restrictions to the search criteria. SELECT,
coupled with appropriate search conditions, is an incredibly powerful tool that enables you to transform data into
information. For example, in the following sections, you will learn how to create queries that can be used to answer
questions such as these: “What products were supplied by a particular vendor?” “Which products are priced below $10?”
“How many products supplied by a given vendor were sold between January 5, 2008 and March 20, 2008?”

7.4.1 Selecting Rows with Conditional Restrictions

You can select partial table contents by placing restrictions on the rows to be included in the output. This is done by
using the WHERE clause to add conditional restrictions to the SELECT statement. The following syntax enables you
to specify which rows to select:

SELECT columnlist
FROM tablelist
[WHERE conditionlist];

The SELECT statement retrieves all rows that match the specified condition(s)—also known as the conditional
criteria—you specified in the WHERE clause. The conditionlist in the WHERE clause of the SELECT statement is
represented by one or more conditional expressions, separated by logical operators. The WHERE clause is optional.
If no rows match the specified criteria in the WHERE clause, you see a blank screen or a message that tells you that
no rows were retrieved. For example, the query:

SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE
FROM PRODUCT
WHERE V_CODE = 21344;

returns the description, date, and price of products with a vendor code of 21344, as shown in Figure 7.4.

MS Access users can use the Access QBE (query by example)
query generator. Although the Access QBE generates its
own “native” version of SQL, you can also elect to type
standard SQL in the Access SQL window, as shown at the
bottom of Figure 7.5. Figure 7.5 shows the Access QBE
screen, the SQL window’s QBE-generated SQL, and the
listing of the modified SQL.

Numerous conditional restrictions can be placed on the
selected table contents. For example, the comparison opera-
tors shown in Table 7.6 can be used to restrict output.

O n l i n e C o n t e n t

Before you execute the commands in the following sections, you MUST do the following:

• If you are using Oracle, run the sqlintrodbinit.sql script file in the Online Student Companion to
create all tables and load the data in the database. To connect to the database, follow the instructions
specific to your school’s setup provided by your instructor.

• If you are using Access, copy the original Ch07_SaleCo.mbd file from the Online Student Companion.

FIGURE
7.4

Selected PRODUCT table
attributes for vendor
code 21344

C6545_07 9/14/2007 9:21:25 Page 247

247I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

The following example uses the “not equal to” operator:

SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE
FROM PRODUCT
WHERE V_CODE <> 21344;

The output, shown in Figure 7.6, lists all of the rows for
which the vendor code is not 21344.

Note that in Figure 7.6, rows with nulls in the V_CODE
column (see Figure 7.3) are not included in the SELECT
command’s output.

FIGURE
7.5

The Microsoft Access QBE and its SQL

Microsoft Access-generated SQL User-entered SQL

Query options

Note

NOTE TO MS ACCESS USERS
The MS Access QBE interface automatically designates the data source by using the table name as a prefix. You
will discover later that the table name prefix is used to avoid ambiguity when the same column name appears
in multiple tables. For example, both the VENDOR and the PRODUCT tables contain the V_CODE attribute.
Therefore, if both tables are used—as they would be in a join—the source of the V_CODE attribute must be
specified.

TABLE
7.6

Comparison Operators

SYMBOL MEANING
= Equal to
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
<> or != Not equal to

C6545_07 7/23/2007 16:59:25 Page 248

248 C H A P T E R 7

The command sequence:

SELECT P_DESCRIPT, P_QOH, P_MIN, P_PRICE
FROM PRODUCT
WHERE P_PRICE <= 10;

yields the output shown in Figure 7.7.

Using Comparison Operators on Character
Attributes
Because computers identify all characters by their (numeric)
American Standard Code for Information Interchange
(ASCII) codes, comparison operators may even be used to
place restrictions on character-based attributes. Therefore,
the command:

SELECT P_CODE, P_DESCRIPT, P_QOH, P_MIN,
P_PRICE

FROM PRODUCT
WHERE P_CODE < '1558-QW1';

would be correct and would yield a list of all rows in which the
P_CODE is alphabetically less than 1558-QW1. (Because the
ASCII code value for the letter B is greater than the value of
the letter A, it follows that A is less than B.) Therefore, the
output will be generated as shown in Figure 7.8.

String (character) comparisons are made from left to right.
This left-to-right comparison is especially useful when
attributes such as names are to be compared. For example,
the string “Ardmore” would be judged greater than the
string “Aarenson” but less than the string “Brown”; such
results may be used to generate alphabetical listings like
those found in a phone directory. If the characters 0−9 are

stored as strings, the same left-to-right string comparisons can lead to apparent anomalies. For example, the ASCII
code for the character “5” is, as expected, greater than the ASCII code for the character “4.” Yet the same “5” will
also be judged greater than the string “44” because the first character in the string “44” is less than the string “5.”
For that reason, you may get some unexpected results from comparisons when dates or other numbers are stored in
character format. This also applies to date comparisons. For example, the left-to-right ASCII character comparison
would force the conclusion that the date “01/01/2008” occurred before “12/31/2007.” Because the leftmost
character “0” in “01/01/2008” is less than the leftmost character “1” in “12/31/2007,” “01/01/2008” is less than
“12/31/2007.” Naturally, if date strings are stored in a yyyy/mm/dd format, the comparisons will yield appropriate
results, but this is a nonstandard date presentation. That’s why all current RDBMSs support “date” data types; you
should use them. In addition, using “date” data types gives you the benefit of date arithmetic.

Using Comparison Operators on Dates
Date procedures are often more software-specific than other SQL procedures. For example, the query to list all of the
rows in which the inventory stock dates occur on or after January 20, 2008 will look like this:

SELECT P_DESCRIPT, P_QOH, P_MIN, P_PRICE, P_INDATE
FROM PRODUCT
WHERE P_INDATE >= '20-Jan-2008';

FIGURE
7.6

Selected PRODUCT table
attributes for vendor codes
other than 21344

FIGURE
7.7

Selected PRODUCT table
attributes with a P_PRICE
restriction

FIGURE
7.8

Selected PRODUCT table
attributes: the ASCII code
effect

C6545_07 7/23/2007 16:59:26 Page 249

249I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

(Remember that MS Access users must use the # delimiters for dates. For example, you would use #20-Jan-08# in the
above WHERE clause.) The date-restricted output is shown in Figure 7.9.

Using Computed Columns and Column
Aliases
Suppose you want to determine the total value of each of the
products currently held in inventory. Logically, that determi-
nation requires the multiplication of each product’s quantity
on hand by its current price. You can accomplish this task
with the following command:

SELECT P_DESCRIPT, P_QOH, P_PRICE, P_QOH *
P_PRICE

FROM PRODUCT;

Entering that SQL command in Access generates the output
shown in Figure 7.10.

SQL accepts any valid expressions (or formulas) in the
computed columns. Such formulas can contain any valid
mathematical operators and functions that are applied to
attributes in any of the tables specified in the FROM clause
of the SELECT statement. Note also that Access automati-
cally adds an Expr label to all computed columns. (The first
computed column would be labeled Expr1; the second,
Expr2; and so on.) Oracle uses the actual formula text as the
label for the computed column.

To make the output more readable, the SQL standard
permits the use of aliases for any column in a SELECT
statement. An alias is an alternative name given to a
column or table in any SQL statement.

For example, you can rewrite the previous SQL state-
ment as:

SELECT P_DESCRIPT, P_QOH, P_PRICE, P_QOH *
P_PRICE AS TOTVALUE

FROM PRODUCT;

The output of that command is shown in Figure 7.11.

You could also use a computed column, an alias, and date
arithmetic in a single query. For example, assume that you
want to get a list of out-of-warranty products that have been
stored more than 90 days. In that case, the P_INDATE is at
least 90 days less than the current (system) date. The MS
Access version of this query is shown as:

SELECT P_CODE, P_INDATE, DATE() - 90 AS CUTDATE
FROM PRODUCT
WHERE P_INDATE <= DATE() - 90;

FIGURE
7.9

Selected PRODUCT table
attributes: date restriction

FIGURE
7.10

SELECT statement with a
computed column

FIGURE
7.11

SELECT statement with a
computed column and an alias

C6545_07 9/14/2007 9:22:2 Page 250

250 C H A P T E R 7

The Oracle version of the same query is shown below:

SELECT P_CODE, P_INDATE, SYSDATE - 90 AS CUTDATE
FROM PRODUCT
WHERE P_INDATE <= SYSDATE - 90;

Note that DATE() and SYSDATE are special functions that return today’s date in MS Access and Oracle, respectively.
You could use the DATE() and SYSDATE functions anywhere a date literal is expected, such as in the value list of an
INSERT statement, in an UPDATE statement when changing the value of a date attribute, or in a SELECT statement
as shown here. Of course, the previous query output would change based on today’s date.

Suppose a manager wants a list of all products, the dates they were received, and the warranty expiration date (90 days
from when the product was received). To generate that list, type:

SELECT P_CODE, P_INDATE, P_INDATE + 90 AS EXPDATE
FROM PRODUCT;

Note that you can use all arithmetic operators with date attributes as well as with numeric attributes.

7.4.2 Arithmetic Operators: The Rule of Precedence

As you saw in the previous example, you can use arithmetic operators with table attributes in a column list or in a
conditional expression. In fact, SQL commands are often used in conjunction with the arithmetic operators shown in
Table 7.7.

Do not confuse the multiplication symbol (*) with the wildcard
symbol used by some SQL implementations such as MS
Access; the latter is used only in string comparisons, while
the former is used in conjunction with mathematical
procedures.

As you perform mathematical operations on attributes,
remember the rules of precedence. As the name suggests,
the rules of precedence are the rules that establish the
order in which computations are completed. For example,
note the order of the following computational sequence:

1. Perform operations within parentheses.

2. Perform power operations.

3. Perform multiplications and divisions.

4. Perform additions and subtractions.

The application of the rules of precedence will tell you that 8 + 2 * 5 = 8 + 10 = 18, but (8 + 2) * 5 = 10 * 5 = 50.
Similarly, 4 + 5^2 * 3 = 4 + 25 * 3 = 79, but (4 + 5)^2 * 3 = 81 * 3 = 243, while the operation expressed by
(4 + 5^2) * 3 yields the answer (4 + 25) * 3 = 29 * 3 = 87.

7.4.3 Logical Operators: AND, OR, and NOT

In the real world, a search of data normally involves multiple conditions. For example, when you are buying a new
house, you look for a certain area, a certain number of bedrooms, bathrooms, stories, and so on. In the same way,
SQL allows you to have multiple conditions in a query through the use of logical operators. The logical operators are

TABLE
7.7

The Arithmetic Operators

ARITHMETIC
OPERATOR

DESCRIPTION

+ Add
- Subtract
* Multiply
/ Divide
^ Raise to the power of (some

applications use ** instead
of ^)

C6545_07 7/27/2007 11:51:57 Page 251

251I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

AND, OR, and NOT. For example, if you want a list of the table contents for either the V_CODE = 21344 or the
V_CODE = 24288, you can use the OR operator, as in the following command sequence:

SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE
FROM PRODUCT
WHERE V_CODE = 21344 OR V_CODE = 24288;

That command generates the six rows shown in Figure 7.12 that match the logical restriction.

The logical AND has the same SQL syntax requirement.
The following command generates a list of all rows for which
P_PRICE is less than $50 and for which P_INDATE is a date
occurring after January 15, 2008:

SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE
FROM PRODUCT
WHERE P_PRICE < 50
AND P_INDATE > '15-Jan-2008';

This command will produce the output shown in Figure 7.13.

You can combine the logical OR with the logical AND to
place further restrictions on the output. For example, sup-
pose you want a table listing for the following conditions:

� The P_INDATE is after January 15, 2008, and the
P_PRICE is less than $50.

� Or the V_CODE is 24288.

The required listing can be produced by using:

SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE
FROM PRODUCT
WHERE (P_PRICE < 50 AND

P_INDATE > '15-Jan-2008')
OR V_CODE = 24288;

Note the use of parentheses to combine logical restrictions.
Where you place the parentheses depends on how you want
the logical restrictions to be executed. Conditions listed
within parentheses are always executed first. The preceding
query yields the output shown in Figure 7.14.

Note that the three rows with the V_CODE = 24288 are
included regardless of the P_INDATE and P_PRICE entries
for those rows.

The use of the logical operators OR and AND can become quite complex when numerous restrictions are placed on
the query. In fact, a specialty field in mathematics known as Boolean algebra is dedicated to the use of logical
operators.

The logical operator NOT is used to negate the result of a conditional expression. That is, in SQL, all conditional
expressions evaluate to true or false. If an expression is true, the row is selected; if an expression is false, the row is

FIGURE
7.12

Selected PRODUCT table
attributes: the logical OR

FIGURE
7.13

Selected PRODUCT table
attributes: the logical AND

FIGURE
7.14

Selected PRODUCT table
attributes: the logical AND
and OR

C6545_07 9/14/2007 9:22:35 Page 252

252 C H A P T E R 7

not selected. The NOT logical operator is typically used to find the rows that do not match a certain condition. For
example, if you want to see a listing of all rows for which the vendor code is not 21344, use the command sequence:

SELECT *
FROM PRODUCT
WHERE NOT (V_CODE = 21344);

Note that the condition is enclosed in parentheses; that practice is optional, but it is highly recommended for clarity.
The logical NOT can be combined with AND and OR.

7.4.4 Special Operators

ANSI-standard SQL allows the use of special operators in conjunction with the WHERE clause. These special operators
include:

BETWEEN—Used to check whether an attribute value is within a range.

IS NULL—Used to check whether an attribute value is null.

LIKE—Used to check whether an attribute value matches a given string pattern.

IN—Used to check whether an attribute value matches any value within a value list.

EXISTS—Used to check whether a subquery returns any rows.

The BETWEEN Special Operator
If you use software that implements a standard SQL, the operator BETWEEN may be used to check whether an
attribute value is within a range of values. For example, if you want to see a listing for all products whose prices are
between $50 and $100, use the following command sequence:

SELECT *
FROM PRODUCT
WHERE P_PRICE BETWEEN 50.00 AND 100.00;

If your DBMS does not support BETWEEN, you can use:

SELECT *
FROM PRODUCT
WHERE P_PRICE > 50.00 AND P_PRICE < 100.00;

Note

If your SQL version does not support the logical NOT, you can generate the required output by using the
condition:

WHERE V_CODE <> 21344

If your version of SQL does not support <>, use:

WHERE V_CODE != 21344

Note

NOTE TO ORACLE USERS
When using the BETWEEN special operator, always specify the lower range value first. If you list the higher range
value first, Oracle will return an empty result set.

C6545_07 9/14/2007 9:22:59 Page 253

253I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

The IS NULL Special Operator
Standard SQL allows the use of IS NULL to check for a null attribute value. For example, suppose you want to list all
products that do not have a vendor assigned (V_CODE is null). Such a null entry could be found by using the command
sequence:

SELECT P_CODE, P_DESCRIPT, V_CODE
FROM PRODUCT
WHERE V_CODE IS NULL;

Similarly, if you want to check a null date entry, the command sequence is:

SELECT P_CODE, P_DESCRIPT, P_INDATE
FROM PRODUCT
WHERE P_INDATE IS NULL;

Note that SQL uses a special operator to test for nulls. Why? Couldn’t you just enter a condition such as "V_CODE
= NULL"? No. Technically, NULL is not a “value” the way the number 0 (zero) or the blank space is, but instead a
NULL is a special property of an attribute that represents precisely the absence of any value.

The LIKE Special Operator
The LIKE special operator is used in conjunction with wildcards to find patterns within string attributes. Standard SQL
allows you to use the percent sign (%) and underscore (_) wildcard characters to make matches when the entire string
is not known:

� % means any and all following or preceding characters are eligible. For example,

'J%' includes Johnson, Jones, Jernigan, July, and J-231Q.

'Jo%' includes Johnson and Jones.

'%n' includes Johnson and Jernigan.

� _ means any one character may be substituted for the underscore. For example,

'_23-456-6789' includes 123-456-6789, 223-456-6789, and 323-456-6789.

'_23-_56-678_' includes 123-156-6781, 123-256-6782, and 823-956-6788.

'_o_es' includes Jones, Cones, Cokes, totes, and roles.

For example, the following query would find all VENDOR rows for contacts whose last names begin with Smith.

SELECT V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM VENDOR
WHERE V_CONTACT LIKE 'Smith%';

If you check the original VENDOR data in Figure 7.2 again, you’ll see that this SQL query yields three records: two
Smiths and one Smithson.

Keep in mind that most SQL implementations yield case-sensitive searches. For example, Oracle will not yield a return
that includes Jones if you use the wildcard search delimiter 'jo%' in a search for last names. The reason is because
Jones begins with a capital J and your wildcard search starts with a lowercase j. On the other hand, MS Access
searches are not case sensitive.

Note

Some RDBMSs, such as Microsoft Access, use the wildcard characters * and ? instead of % and _.

C6545_07 9/4/2007 13:58:9 Page 254

254 C H A P T E R 7

For example, suppose you typed the following query in Oracle:

SELECT V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM VENDOR
WHERE V_CONTACT LIKE 'SMITH%';

No rows will be returned because character-based queries may be case sensitive. That is, an uppercase character has
a different ASCII code than a lowercase character, thus causing SMITH, Smith, and smith to be evaluated as different
(unequal) entries. Because the table contains no vendor whose last name begins with (uppercase) SMITH, the
(uppercase) 'SMITH%' used in the query cannot make a match. Matches can be made only when the query entry is
written exactly like the table entry.

Some RDBMSs, such as Microsoft Access, automatically make the necessary conversions to eliminate case sensitivity.
Others, such as Oracle, provide a special UPPER function to convert both table and query character entries to
uppercase. (The conversion is done in the computer’s memory only; the conversion has no effect on how the value
is actually stored in the table.) So if you want to avoid a no-match result based on case sensitivity, and if your RDBMS
allows the use of the UPPER function, you can generate the same results by using the query:

SELECT V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM VENDOR
WHERE UPPER(V_CONTACT) LIKE 'SMITH%';

The preceding query produces a list including all rows that contain a last name that begins with Smith, regardless of
uppercase or lowercase letter combinations such as Smith, smith, and SMITH.

The logical operators may be used in conjunction with the special operators. For instance, the query:

SELECT V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM VENDOR
WHERE V_CONTACT NOT LIKE 'Smith%';

will yield an output of all vendors whose names do not start with Smith.

Suppose you do not know whether a person’s name is spelled Johnson or Johnsen. The wildcard character _ lets you
find a match for either spelling. The proper search would be instituted by the query:

SELECT *
FROM VENDOR
WHERE V_CONTACT LIKE 'Johns_n';

Thus, the wildcards allow you to make matches when only approximate spellings are known. Wildcard characters may
be used in combinations. For example, the wildcard search based on the string '_l%' can yield the strings Al, Alton,
Elgin, Blakeston, blank, bloated, and eligible.

The IN Special Operator
Many queries that would require the use of the logical OR can be more easily handled with the help of the special
operator IN. For example, the query:

SELECT *
FROM PRODUCT
WHERE V_CODE = 21344
OR V_CODE = 24288;

C6545_07 9/4/2007 13:58:31 Page 255

255I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

can be handled more efficiently with:

SELECT *
FROM PRODUCT
WHERE V_CODE IN (21344, 24288);

Note that the IN operator uses a value list. All of the values in the list must be of the same data type. Each of the values
in the value list is compared to the attribute—in this case, V_CODE. If the V_CODE value matches any of the values
in the list, the row is selected. In this example, the rows selected will be only those in which the V_CODE is either
21344 or 24288.

If the attribute used is of a character data type, the list values must be enclosed in single quotation marks. For instance,
if the V_CODE had been defined as CHAR(5) when the table was created, the preceding query would have read:

SELECT *
FROM PRODUCT
WHERE V_CODE IN ('21344', '24288');

The IN operator is especially valuable when it is used in conjunction with subqueries. For example, suppose you want
to list the V_CODE and V_NAME of only those vendors who provide products. In that case, you could use a subquery
within the IN operator to automatically generate the value list. The query would be:

SELECT V_CODE, V_NAME
FROM VENDOR
WHERE V_CODE IN (SELECT V_CODE FROM PRODUCT);

The preceding query will be executed in two steps:

1. The inner query or subquery will generate a list of V_CODE values from the PRODUCT tables. Those
V_CODE values represent the vendors who supply products.

2. The IN operator will compare the values generated by the subquery to the V_CODE values in the VENDOR
table and will select only the rows with matching values—that is, the vendors who provide products.

The IN special operator will receive additional attention in Chapter 8, where you will learn more about subqueries.

The EXISTS Special Operator
The EXISTS special operator can be used whenever there is a requirement to execute a command based on the result
of another query. That is, if a subquery returns any rows, run the main query; otherwise, don’t. For example, the
following query will list all vendors, but only if there are products to order:

SELECT *
FROM VENDOR
WHERE EXISTS (SELECT * FROM PRODUCT WHERE P_QOH <= P_MIN);

The EXISTS special operator is used in the following example to list all vendors, but only if there are products with
the quantity on hand, less than double the minimum quantity:

SELECT *
FROM VENDOR
WHERE EXISTS (SELECT * FROM PRODUCT WHERE P_QOH < P_MIN * 2);

The EXISTS special operator will receive additional attention in Chapter 8, where you will learn more about
subqueries.

C6545_07 9/4/2007 13:58:45 Page 256

256 C H A P T E R 7

7.5 ADVANCED DATA DEFINITION COMMANDS

In this section, you learn how to change (alter) table structures by changing attribute characteristics and by adding
columns. Then you will learn how to do advanced data updates to the new columns. Finally, you will learn how to copy
tables or parts of tables and how to delete tables.

All changes in the table structure are made by using the ALTER TABLE command, followed by a keyword that
produces the specific change you want to make. Three options are available: ADD, MODIFY, and DROP. You use
ADD to add a column, MODIFY to change column characteristics, and DROP to delete a column from a table. Most
RDBMSs do not allow you to delete a column (unless the column does not contain any values) because such an action
might delete crucial data that are used by other tables. The basic syntax to add or modify columns is:

ALTER TABLE tablename
{ADD | MODIFY} (columnname datatype [{ADD | MODIFY} columnname datatype]) ;

The ALTER TABLE command can also be used to add table constraints. In those cases, the syntax would be:

ALTER TABLE tablename
ADD constraint [ADD constraint] ;

where constraint refers to a constraint definition similar to those you learned in Section 7.2.6.

You could also use the ALTER TABLE command to remove a column or table constraint. The syntax would be as follows:

ALTER TABLE tablename
DROP{PRIMARY KEY | COLUMN columnname | CONSTRAINT constraintname };

Notice that when removing a constraint, you need to specify the name given to the constraint. That is one reason why
you should always name your constraints in your CREATE TABLE or ALTER TABLE statement.

7.5.1 Changing a Column’s Data Type

Using the ALTER syntax, the (integer) V_CODE in the PRODUCT table can be changed to a character V_CODE
by using:

ALTER TABLE PRODUCT
MODIFY (V_CODE CHAR(5));

Some RDBMSs, such as Oracle, do not let you change data types unless the column to be changed is empty. For
example, if you want to change the V_CODE field from the current number definition to a character definition, the
above command will yield an error message, because the V_CODE column already contains data. The error message
is easily explained. Remember that the V_CODE in PRODUCT references the V_CODE in VENDOR. If you change
the V_CODE data type, the data types don’t match, and there is a referential integrity violation, thus triggering the
error message. If the V_CODE column does not contain data, the preceding command sequence will produce
the expected table structure alteration (if the foreign key reference was not specified during the creation of the
PRODUCT table).

7.5.2 Changing a Column’s Data Characteristics

If the column to be changed already contains data, you can make changes in the column’s characteristics if those
changes do not alter the data type. For example, if you want to increase the width of the P_PRICE column to nine
digits, use the command:

ALTER TABLE PRODUCT
MODIFY (P_PRICE DECIMAL(9,2));

C6545_07 7/26/2007 14:7:0 Page 257

257I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

If you now list the table contents, you see that the column width of P_PRICE has increased by one digit.

7.5.3 Adding a Column

You can alter an existing table by adding one or more columns. In the following example, you add the column named
P_SALECODE to the PRODUCT table. (This column will be used later to determine whether goods that have been
in inventory for a certain length of time should be placed on special sale.)

Suppose you expect the P_SALECODE entries to be 1, 2, or 3. Because there will be no arithmetic performed with
the P_SALECODE, the P_SALECODE will be classified as a single-character attribute. Note the inclusion of all
required information in the following ALTER command:

ALTER TABLE PRODUCT
ADD (P_SALECODE CHAR(1));

When adding a column, be careful not to include the NOT NULL clause for the new column. Doing so will cause an
error message; if you add a new column to a table that already has rows, the existing rows will default to a value of
null for the new column. Therefore, it is not possible to add the NOT NULL clause for this new column. (You can, of
course, add the NOT NULL clause to the table structure after all of the data for the new column have been entered
and the column no longer contains nulls.)

7.5.4 Dropping a Column

Occasionally, you might want to modify a table by deleting a column. Suppose you want to delete the V_ORDER
attribute from the VENDOR table. To accomplish that, you would use the following command:

ALTER TABLE VENDOR
DROP COLUMN V_ORDER;

Again, some RDBMSs impose restrictions on attribute deletion. For example, you may not drop attributes that are
involved in foreign key relationships, nor may you delete an attribute of a table that contains only that one attribute.

Note

Some DBMSs impose limitations on when it’s possible to change attribute characteristics. For example, Oracle
lets you increase (but not decrease) the size of a column. The reason for this restriction is that an attribute
modification will affect the integrity of the data in the database. In fact, some attribute changes can be done only
when there are no data in any rows for the affected attribute.

O n l i n e C o n t e n t

If you are using the MS Access databases provided in the Student Online Companion, you can track each of the
updates in the following sections. For example, look at the copies of the PRODUCT table in the Ch07_
SaleCo database, one named Product_2 and one named PRODUCT_3. Each of the two copies includes the
new P_SALECODE column. If you want to see the cumulative effect of all UPDATE commands, you can
continue using the PRODUCT table with the P_SALECODE modification and all of the changes you will make
in the following sections. (You might even want to use both options, first to examine the individual effects of the
update queries and then to examine the cumulative effects.)

C6545_07 7/23/2007 17:23:41 Page 258

258 C H A P T E R 7

7.5.5 Advanced Data Updates

To make data entries in an existing row’s columns, SQL allows the UPDATE command. The UPDATE command
updates only data in existing rows. For example, to enter the P_SALECODE value '2' in the fourth row, use the
UPDATE command together with the primary key P_CODE '1546-QQ2'. Enter the value by using the command
sequence:

UPDATE PRODUCT
SET P_SALECODE = '2'
WHERE P_CODE = '1546-QQ2';

Subsequent data can be entered the same way, defining each entry location by its primary key (P_CODE) and its
column location (P_SALECODE). For example, if you want to enter the P_SALECODE value '1' for the P_CODE
values '2232/QWE' and '2232/QTY', you use:

UPDATE PRODUCT
SET P_SALECODE = '1'
WHERE P_CODE IN ('2232/QWE', '2232/QTY');

If your RDBMS does not support IN, use the following command:

UPDATE PRODUCT
SET P_SALECODE = '1'
WHERE P_CODE = '2232/QWE' OR P_CODE = '2232/QTY';

The results of your efforts can be checked by using:

SELECT P_CODE, P_DESCRIPT, P_INDATE, P_PRICE, P_SALECODE
FROM PRODUCT;

Although the UPDATE sequences just shown allow you to enter values into specified table cells, the process is very
cumbersome. Fortunately, if a relationship can be established between the entries and the existing columns, the
relationship can be used to assign values to their appropriate slots. For example, suppose you want to place sales codes
based on the P_INDATE into the table, using the following schedule:

P_INDATE P_SALECODE

before December 25, 2007 2

between January 16, 2008, and February 10, 2008 1

Using the PRODUCT table, the following two command sequences make the appropriate assignments:

UPDATE PRODUCT
SET P_SALECODE = '2'
WHERE P_INDATE < '25-Dec-2007';

UPDATE PRODUCT
SET P_SALECODE = '1'
WHERE P_INDATE >= '16-Jan-2008'

AND P_INDATE <='10-Feb-2008';

To check the results of those two command sequences, use:

SELECT P_CODE, P_DESCRIPT, P_INDATE, P_PRICE, P_SALECODE
FROM PRODUCT;

C6545_07 9/4/2007 13:59:52 Page 259

259I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

If you have made all of the updates shown in this section using Oracle, your PRODUCT table should look like
Figure 7.15. Make sure that you issue a COMMIT statement to save these changes.

The arithmetic operators are particularly useful in data updates. For example, if the quantity on hand in your
PRODUCT table has dropped below the minimum desirable value, you’ll order more of the product. Suppose, for
example, you have ordered 20 units of product 2232/QWE. When the 20 units arrive, you’ll want to add them to
inventory, using:

UPDATE PRODUCT
SET P_QOH = P_QOH + 20
WHERE P_CODE = '2232/QWE';

If you want to add 10 percent to the price for all products that have current prices below $50, you can use:

UPDATE PRODUCT
SET P_PRICE = P_PRICE * 1.10
WHERE P_PRICE < 50.00;

If you are using Oracle, issue a ROLLBACK command to undo the changes made by the last two UPDATE statements.

FIGURE
7.15

The cumulative effect of the multiple updates in the PRODUCT table (Oracle)

Note

If you fail to roll back the changes of the preceding UPDATE queries, the output of the subsequent queries will
not match the results shown in the figures. Therefore:

• If you are using Oracle, use the ROLLBACK command to restore the database to its previous state.

• If you are using Access, copy the original Ch07_SaleCo.mdb file from the Student Online Companion.

C6545_07 7/26/2007 14:7:36 Page 260

260 C H A P T E R 7

7.5.6 Copying Parts of Tables

As you will discover in later chapters on database design, sometimes it is necessary to break up a table structure into
several component parts (or smaller tables). Fortunately, SQL allows you to copy the contents of selected table columns
so that the data need not be reentered manually into the newly created table(s). For example, if you want to copy
P_CODE, P_DESCRIPT, P_PRICE, and V_CODE from the PRODUCT table to a new table named PART, you create
the PART table structure first, as follows:

CREATE TABLE PART(
PART_CODE CHAR(8) NOT NULL UNIQUE,
PART_DESCRIPT CHAR(35),
PART_PRICE DECIMAL(8,2),
V_CODE INTEGER,
PRIMARY KEY (PART_CODE));

Note that the PART column names need not be identical to those of the original table and that the new table need not
have the same number of columns as the original table. In this case, the first column in the PART table is PART_CODE,
rather than the original P_CODE found in the PRODUCT table. And the PART table contains only four columns rather
than the seven columns found in the PRODUCT table. However, column characteristics must match; you cannot copy
a character-based attribute into a numeric structure and vice versa.

Next, you need to add the rows to the new PART table, using the PRODUCT table rows. To do that, you use the
INSERT command you learned in Section 7.3.7. The syntax is:

INSERT INTO target_tablename[(target_columnlist)]
SELECT source_columnlist
FROM source_tablename;

Note that the target column list is required if the source column list doesn’t match all of the attribute names and
characteristics of the target table (including the order of the columns). Otherwise, you do not need to specify the target
column list. In this example, you must specify the target column list in the INSERT command below because the
column names of the target table are different:

INSERT INTO PART (PART_CODE, PART_DESCRIPT, PART_PRICE, V_CODE)
SELECT P_CODE, P_DESCRIPT, P_PRICE, V_CODE FROM PRODUCT;

The contents of the PART table can now be examined by using the query:

SELECT * FROM PART;

to generate the new PART table’s contents, shown in Figure 7.16.

SQL also provides another way to rapidly create a new table based on selected columns and rows of an existing table.
In this case, the new table will copy the attribute names, data characteristics, and rows of the original table. The Oracle
version of the command is:

CREATE TABLE PART AS
SELECT P_CODE AS PART_CODE, P_DESCRIPT AS PART_DESCRIPT,

P_PRICE AS PART_PRICE, V_CODE
FROM PRODUCT;

If the PART table already exists, Oracle will not let you overwrite the existing table. To run this command, you must
first delete the existing PART table. (See Section 7.5.8.)

C6545_07 9/4/2007 14:1:39 Page 261

261I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

The MS Access version of this command is:

SELECT P_CODE AS PART_CODE, P_DESCRIPT AS
PART_DESCRIPT,
P_PRICE AS PART_PRICE,
V_CODE INTO PART

FROM PRODUCT;

If the PART table already exists, MS Access will ask if you
want to delete the existing table and continue with the
creation of the new PART table.

The SQL command just shown creates a new PART table
with PART_CODE, PART_DESCRIPT, PART_PRICE, and
V_CODE columns. In addition, all of the data rows (for the
selected columns) will be copied automatically. But note that
no entity integrity (primary key) or referential integrity
(foreign key) rules are automatically applied to the new

table. In the next section, you will learn how to define the PK to enforce entity integrity and the FK to enforce
referential integrity.

7.5.7 Adding Primary and Foreign Key Designations

When you create a new table based on another table, the new table does not include integrity rules from the old table.
In particular, there is no primary key. To define the primary key for the new PART table, use the following command:

ALTER TABLE PART
ADD PRIMARY KEY (PART_CODE);

Aside from the fact that the integrity rules are not automatically transferred to a new table that derives its data from
one or more other tables, several other scenarios could leave you without entity and referential integrity. For example,
you might have forgotten to define the primary and foreign keys when you created the original tables. Or if you
imported tables from a different database, you might have discovered that the importing procedure did not transfer the
integrity rules. In any case, you can reestablish the integrity rules by using the ALTER command. For example, if the
PART table’s foreign key has not yet been designated, it can be designated by:

ALTER TABLE PART
ADD FOREIGN KEY (V_CODE) REFERENCES VENDOR;

Alternatively, if neither the PART table’s primary key nor its foreign key has been designated, you can incorporate both
changes at once, using:

ALTER TABLE PART
ADD PRIMARY KEY (PART_CODE)
ADD FOREIGN KEY (V_CODE) REFERENCES VENDOR;

Even composite primary keys and multiple foreign keys can be designated in a single SQL command. For example,
if you want to enforce the integrity rules for the LINE table shown in Figure 7.1, you can use:

ALTER TABLE LINE
ADD PRIMARY KEY (INV_NUMBER, LINE_NUMBER)
ADD FOREIGN KEY (INV_NUMBER) REFERENCES INVOICE
ADD FOREIGN KEY (PROD_CODE) REFERENCES PRODUCT;

FIGURE
7.16

PART table attributes copied
from the PRODUCT table

C6545_07 9/4/2007 14:2:18 Page 262

262 C H A P T E R 7

7.5.8 Deleting a Table from the Database

A table can be deleted from the database using the DROP TABLE command. For example, you can delete the PART
table you just created with:

DROP TABLE PART;

You can drop a table only if that table is not the “one” side of any relationship. If you try to drop a table otherwise,
the RDBMS will generate an error message indicating that a foreign key integrity violation has occurred.

7.6 ADVANCED SELECT QUERIES

One of the most important advantages of SQL is its ability to produce complex free-form queries. The logical operators
that were introduced earlier to update table contents work just as well in the query environment. In addition, SQL
provides useful functions that count, find minimum and maximum values, calculate averages, and so on. Better yet,
SQL allows the user to limit queries to only those entries that have no duplicates or entries whose duplicates can be
grouped.

7.6.1 Ordering a Listing

The ORDER BY clause is especially useful when the listing order is important to you. The syntax is:

SELECT columnlist
FROM tablelist
[WHERE conditionlist]
[ORDER BY columnlist [ASC | DESC]] ;

Although you have the option of declaring the order type—ascending or descending—the default order is ascending.
For example, if you want the contents of the PRODUCT table listed by P_PRICE in ascending order, use:

SELECT P_CODE, P_DESCRIPT, P_INDATE, P_PRICE
FROM PRODUCT
ORDER BY P_PRICE;

The output is shown in Figure 7.17. Note that ORDER BY yields an ascending price listing.

Comparing the listing in Figure 7.17 to the actual table
contents shown earlier in Figure 7.2, you will see that in
Figure 7.17, the lowest-priced product is listed first, followed
by the next lowest-priced product, and so on. However,
although ORDER BY produces a sorted output, the actual
table contents are unaffected by the ORDER command.

To produce the list in descending order, you would enter:

SELECT P_CODE, P_DESCRIPT, P_INDATE,
P_PRICE

FROM PRODUCT
ORDER BY P_PRICE DESC;

FIGURE
7.17

Selected PRODUCT table
attributes: ordered by
(ascending) P_PRICE

C6545_07 7/24/2007 9:47:59 Page 263

263I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

Ordered listings are used frequently. For example, suppose you want to create a phone directory. It would be helpful
if you could produce an ordered sequence (last name, first name, initial) in three stages:

1. ORDER BY last name.

2. Within the last names, ORDER BY first name.

3. Within the first and last names, ORDER BY middle initial.

Such a multilevel ordered sequence is known as a cascading order sequence, and it can be created easily by listing
several attributes, separated by commas, after the ORDER BY clause.

The cascading order sequence is the basis for any telephone directory. To illustrate a cascading order sequence, use
the following SQL command on the EMPLOYEE table:

SELECT EMP_LNAME, EMP_FNAME, EMP_INITIAL, EMP_AREACODE, EMP_PHONE
FROM EMPLOYEE
ORDER BY EMP_LNAME, EMP_FNAME, EMP_INITIAL;

That command yields the results shown in Figure 7.18.

The ORDER BY clause is useful in many applications, especially because the DESC qualifier can be invoked. For
example, listing the most recent items first is a standard procedure. Typically, invoice due dates are listed in descending
order. Or if you want to examine budgets, it’s probably useful to list the largest budget line items first.

You can use the ORDER BY clause in conjunction with other SQL commands, too. For example, note the use of
restrictions on date and price in the following command sequence:

SELECT P_DESCRIPT, V_CODE, P_INDATE, P_PRICE
FROM PRODUCT
WHERE P_INDATE < '21-Jan-2008' AND

P_PRICE <= 50.00
ORDER BY V_CODE, P_PRICE DESC;

The output is shown in Figure 7.19. Note that within each V_CODE, the P_PRICE values are in descending order.

FIGURE
7.18

Telephone list query results

C6545_07 9/4/2007 14:3:4 Page 264

264 C H A P T E R 7

7.6.2 Listing Unique Values

How many different vendors are currently represented in
the PRODUCT table? A simple listing (SELECT) is not very
useful if the table contains several thousand rows and you
have to sift through the vendor codes manually. Fortunately,
SQL’s DISTINCT clause produces a list of only those values
that are different from one another. For example, the
command:

SELECT DISTINCT V_CODE
FROM PRODUCT;

yields only the different (distinct) vendor codes (V_CODE)
that are encountered in the PRODUCT table, as shown in
Figure 7.20. Note that the first output row shows the null.

(By default, Access places the null V_CODE at the top of the list, while Oracle places it at the bottom. The placement
of nulls does not affect the list contents. In Oracle, you could use ORDER BY V_CODE NULLS FIRST to place nulls
at the top of the list.)

7.6.3 Aggregate Functions

SQL can perform various mathematical summaries for
you, such as counting the number of rows that contain a
specified condition, finding the minimum or maximum
values for some specified attribute, summing the values in
a specified column, and averaging the values in a speci-
fied column. Those aggregate functions are shown in
Table 7.8.

To illustrate another standard SQL command format,
most of the remaining input and output sequences are
presented using the Oracle RDBMS.

FIGURE
7.19

A query based on multiple
restrictions

Note

If the ordering column has nulls, they are listed either first or last, depending on the RDBMS.

The ORDER BY clause must always be listed last in the SELECT command sequence.

FIGURE
7.20

A listing of distinct (different)
V_CODE values in the
PRODUCT table

TABLE
7.8

Some Basic SQL Aggregate
Functions

FUNCTION OUTPUT
COUNT The number of rows containing

non-null values
MIN The minimum attribute value

encountered in a given column
MAX The maximum attribute value

encountered in a given column
SUM The sum of all values for a given

column
AVG The arithmetic mean (average) for

a specified column

C6545_07 9/4/2007 14:4:5 Page 265

265I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

COUNT
The COUNT function is used to tally the number of non-null values of an attribute. COUNT can be used in conjunction
with the DISTINCT clause. For example, suppose you want to find out how many different vendors are in the
PRODUCT table. The answer, generated by the first SQL code set shown in Figure 7.21, is 6. The answer indicates
that six different VENDOR codes are found in the PRODUCT table. (Note that the nulls are not counted as V_CODE
values.)

The aggregate functions can be combined with the SQL commands explored earlier. For example, the second SQL
command set in Figure 7.21 supplies the answer to the question, “How many vendors referenced in the PRODUCT
table have supplied products with prices that are less than or equal to $10?” The answer is three, indicating that three
vendors referenced in the PRODUCT table have supplied products that meet the price specification.

The COUNT aggregate function uses one parameter within parentheses, generally a column name such as
COUNT(V_CODE) or COUNT(P_CODE). The parameter may also be an expression such as COUNT(DISTINCT
V_CODE) or COUNT(P_PRICE+10). Using that syntax, COUNT always returns the number of non-null values in the
given column. (Whether the column values are computed or show stored table row values is immaterial). In contrast,
the syntax COUNT(*) returns the number of total rows returned by the query, including the rows that contain nulls. In
the example in Figure 7.21, SELECT COUNT(P_CODE) FROM PRODUCT and SELECT COUNT(*) FROM
PRODUCT will yield the same answer because there are no null values in the P_CODE primary key column.

Note that the third SQL command set in Figure 7.21 uses the COUNT(*) command to answer the question, “How
many rows in the PRODUCT table have a P_PRICE value less than or equal to $10?” The answer, five, indicates that
five products have a listed price that meets the price specification. The COUNT(*) aggregate function is used to count
rows in a query result set. In contrast, the COUNT(column) aggregate function counts the number of non-null values
in a given column. For example, in Figure 7.20, the COUNT(*) function would return a value of 7 to indicate seven
rows returned by the query. The COUNT(V_CODE) function would return a value of 6 to indicate the six non-null
vendor code values.

FIGURE
7.21

COUNT function output examples

C6545_07 7/24/2007 8:47:3 Page 266

266 C H A P T E R 7

MAX and MIN
The MAX and MIN functions help you find answers to problems such as the:

� Highest (maximum) price in the PRODUCT table.

� Lowest (minimum) price in the PRODUCT table.

The highest price, $256.99, is supplied by the first SQL command set in Figure 7.22. The second SQL command set
shown in Figure 7.22 yields the minimum price of $4.99.

The third SQL command set in Figure 7.22 demonstrates that the numeric functions can be used in conjunction with
more complex queries. However, you must remember that the numeric functions yield only one value based on all
of the values found in the table: a single maximum value, a single minimum value, a single count, or a single average
value. It is easy to overlook this warning. For example, examine the question, “Which product has the highest price?”

Although that query seems simple enough, the SQL command sequence:

SELECT P_CODE, P_DESCRIPT, P_PRICE
FROM PRODUCT
WHERE P_PRICE = MAX(P_PRICE);

does not yield the expected results. This is because the use of MAX(P_PRICE) to the right side of a comparison
operator is incorrect, thus producing an error message. The aggregate function MAX(columnname) can be used only
in the column list of a SELECT statement. Also, in a comparison that uses an equality symbol, you can use only a single
value to the right of the equals sign.

To answer the question, therefore, you must compute the maximum price first, then compare it to each price returned
by the query. To do that, you need a nested query. In this case, the nested query is composed of two parts:

� The inner query, which is executed first.

� The outer query, which is executed last. (Remember that the outer query is always the first SQL command you
encounter—in this case, SELECT.)

Note

NOTE TO MS ACCESS USERS
MS Access does not support the use of COUNT with the DISTINCT clause. If you want to use such queries in
MS Access, you must create subqueries with DISTINCT and NOT NULL clauses. For example, the equivalent
MS Access queries for the first two queries shown in Figure 7.21 are:

SELECT COUNT(*)
FROM (SELECT DISTINCT V_CODE FROM PRODUCT WHERE V_CODE IS NOT NULL)

and

SELECT COUNT(*)
FROM (SELECT DISTINCT(V_CODE)

FROM
(SELECT V_CODE, P_PRICE FROM PRODUCT
WHERE V_CODE IS NOT NULL AND P_PRICE < 10))

Those two queries can be found in the Student Online Companion in the Ch07_SaleCo (Access) database. MS
Access does add a trailer at the end of the query after you have executed it, but you can delete that trailer the
next time you use the query.

C6545_07 9/14/2007 9:23:18 Page 267

267I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

Using the following command sequence as an example, note that the inner query first finds the maximum price value,
which is stored in memory. Because the outer query now has a value to which to compare each P_PRICE value, the
query executes properly.

SELECT P_CODE, P_DESCRIPT, P_PRICE
FROM PRODUCT
WHERE P_PRICE = (SELECT MAX(P_PRICE) FROM PRODUCT);

The execution of that nested query yields the correct answer shown below the third (nested) SQL command set in
Figure 7.22.

The MAX and MIN aggregate functions can also be used with date columns. For example, to find out the product that
has the oldest date, you would use MIN(P_INDATE). In the same manner, to find out the most recent product, you
would use MAX(P_INDATE).

FIGURE
7.22

MAX and MIN function output examples

Note

You can use expressions anywhere a column name is expected. Suppose you want to know what product has
the highest inventory value. To find the answer, you can write the following query:

SELECT *
FROM PRODUCT
WHERE P_QOH * P_PRICE = (SELECT MAX(P_QOH * P_PRICE) FROM PRODUCT);

C6545_07 9/14/2007 9:23:33 Page 268

268 C H A P T E R 7

SUM
The SUM function computes the total sum for any specified attribute, using whatever condition(s) you have imposed.
For example, if you want to compute the total amount owed by your customers, you could use the following command:

SELECT SUM(CUS_BALANCE) AS TOTBALANCE
FROM CUSTOMER;
You could also compute the sum total of an expression. For example, if you want to find the total value of all items
carried in inventory, you could use:

SELECT SUM(P_QOH * P_PRICE) AS TOTVALUE
FROM PRODUCT;
because the total value is the sum of the product of the quantity on hand and the price for all items. See Figure 7.23.

AVG
The AVG function format is similar to that of MIN and MAX and is subject to the same operating restrictions. The first
SQL command set shown in Figure 7.24 shows how a simple average P_PRICE value can be generated to yield the
computed average price of 56.42125. The second SQL command set in Figure 7.24 produces five output lines that
describe products whose prices exceed the average product price. Note that the second query uses nested SQL
commands and the ORDER BY clause examined earlier.

FIGURE
7.23

The total value of all items in the PRODUCT table

C6545_07 7/24/2007 8:51:17 Page 269

269I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

7.6.4 Grouping Data

Frequency distributions can be created quickly and easily using the GROUP BY clause within the SELECT statement.
The syntax is:

SELECT columnlist
FROM tablelist
[WHERE conditionlist]
[GROUP BY columnlist]
[HAVING conditionlist]
[ORDER BY columnlist [ASC | DESC]] ;

The GROUP BY clause is generally used when you have attribute columns combined with aggregate functions in the
SELECT statement. For example, to determine the minimum price for each sales code, use the first SQL command
set shown in Figure 7.25.

The second SQL command set in Figure 7.25 generates the average price within each sales code. Note that the
P_SALECODE nulls are included within the grouping.

The GROUP BY clause is valid only when used in conjunction with one of the SQL aggregate functions, such as
COUNT, MIN, MAX, AVG, and SUM. For example, as shown in the first command set in Figure 7.26, if you try to
group the output by using:

SELECT V_CODE, P_CODE, P_DESCRIPT, P_PRICE
FROM PRODUCT
GROUP BY V_CODE;

you generate a “not a GROUP BY expression” error. However, if you write the preceding SQL command sequence
in conjunction with some aggregate function, the GROUP BY clause works properly. The second SQL command
sequence in Figure 7.26 properly answers the question, “How many products are supplied by each vendor?,” because
it uses a COUNT aggregate function.

FIGURE
7.24

AVG function output examples

C6545_07 7/24/2007 8:52:11 Page 270

270 C H A P T E R 7

Note that the last output line in Figure 7.26 shows a null for the V_CODE, indicating that two products were not
supplied by a vendor. Perhaps those products were produced in-house, or they might have been bought via a
nonvendor channel, or the person making the data entry might have merely forgotten to enter a vendor code.
(Remember that nulls can be the result of many things.)

FIGURE
7.25

GROUP BY clause output examples

FIGURE
7.26

Incorrect and correct use of the GROUP BY clause

C6545_07 7/24/2007 8:52:11 Page 271

271I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

The GROUP BY Feature's HAVING Clause
A particularly useful extension of the GROUP BY feature is the HAVING clause. The HAVING operates very much
like the WHERE clause in the SELECT statement. However, the WHERE clause applies to columns and expressions
for individual rows, while the HAVING clause is applied to the output of a GROUP BY operation. For example,
suppose you want to generate a listing of the number of products in the inventory supplied by each vendor. But this
time you want to limit the listing to products whose prices average below $10. The first part of that requirement is
satisfied with the help of the GROUP BY clause, as illustrated in the first SQL command set in Figure 7.27. Note that
the HAVING clause is used in conjunction with the GROUP BY clause in the second SQL command set in Figure 7.27
to generate the desired result.

Using the WHERE clause instead of the HAVING clause— the second SQL command set in Figure 7.27 will produce
an error message.

Note

When using the GROUP BY clause with a SELECT statement:

• The SELECT’s columnlist must include a combination of column names and aggregate functions.

• The GROUP BY clauses columnlist must include all nonaggregate function columns specified in the
SELECTs columnlist. If required, you could also group by any aggregate function columns that appear in the
SELECT’s columnlist.

• The GROUP BY clause columnlist can include any columns from the tables in the FROM clause of the
SELECT statement, even if they do not appear in the SELECT’s columnlist.

FIGURE
7.27

An application of the HAVING clause

C6545_07 9/4/2007 14:7:21 Page 272

272 C H A P T E R 7

You can also combine multiple clauses and aggregate functions. For example, consider the following SQL statement:

SELECT V_CODE, SUM(P_QOH * P_PRICE) AS TOTCOST
FROM PRODUCT
GROUP BY V_CODE
HAVING (SUM(P_QOH * P_PRICE) > 500)
ORDER BY SUM(P_QOH * P_PRICE) DESC;

This statement will do the following:

� Aggregate the total cost of products grouped by V_CODE.

� Select only the rows having totals that exceed $500.

� List the results in descending order by the total cost.

Note the syntax used in the HAVING and ORDER BY clauses; in both cases, you must specify the column expression
(formula) used in the SELECT statement’s column list, rather than the column alias (TOTCOST). Some RDBMSs allow
you to substitute the column expression with the column alias, while others do not.

7.7 VIRTUAL TABLES: CREATING A VIEW

As you learned earlier, the output of a relational operator such as SELECT is another relation (or table). Suppose that
at the end of every day, you would like to get a list of all products to reorder, that is, products with a quantity on hand
that is less than or equal to the minimum quantity. Instead of typing the same query at the end of every day, wouldn’t
it be better to permanently save that query in the database? That’s the function of a relational view. A view is a virtual
table based on a SELECT query. The query can contain columns, computed columns, aliases, and aggregate functions
from one or more tables. The tables on which the view is based are called base tables.

You can create a view by using the CREATE VIEW command:

CREATE VIEW viewname AS SELECT query

The CREATE VIEW statement is a data definition command that stores the subquery specification—the SELECT
statement used to generate the virtual table—in the data dictionary.

The first SQL command set in Figure 7.28 shows the syntax used to create a view named PRICEGT50. This view
contains only the designated three attributes (P_DESCRIPT, P_QOH, and P_PRICE) and only rows in which the price
is over $50. The second SQL command sequence in Figure 7.28 shows the rows that make up the view.

Note

NOTE TO MS ACCESS USERS
The CREATE VIEW command is not directly supported in MS Access. To create a view in MS Access, you just
need to create a SQL query and then save it.

C6545_07 7/26/2007 14:11:7 Page 273

273I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

A relational view has several special characteristics:

� You can use the name of a view anywhere a table name is expected in a SQL statement.

� Views are dynamically updated. That is, the view is re-created on demand each time it is invoked. Therefore,
if new products are added (or deleted) to meet the criterion P_PRICE > 50.00, those new products will
automatically appear (or disappear) in the PRICEGT50 view the next time the view is invoked.

� Views provide a level of security in the database because the view can restrict users to only specified columns
and specified rows in a table. For example, if you have a company with hundreds of employees in several
departments, you could give the secretary of each department a view of only certain attributes and for the
employees that belong only to that secretary’s department.

� Views may also be used as the basis for reports. For example, if you need a report that shows a summary
of total product cost and quantity-on-hand statistics grouped by vendor, you could create a PROD_STATS
view as:

CREATE VIEW PROD_STATS AS
SELECT V_CODE, SUM(P_QOH*P_PRICE) AS TOTCOST,

MAX(P_QOH) AS MAXQTY, MIN(P_QOH) AS MINQTY,
AVG(P_QOH) AS AVGQTY

FROM PRODUCT
GROUP BY V_CODE;

In Chapter 8, you will learn more about views and, in particular, about updating data in base tables through views.

7.8 JOINING DATABASE TABLES

The ability to combine (join) tables on common attributes is perhaps the most important distinction between a relational
database and other databases. A join is performed when data are retrieved from more than one table at a time. (If
necessary, review the join definitions and examples in Chapter 3, The Relational Database Model.)

To join tables, you simply list the tables in the FROM clause of the SELECT statement. The DBMS will create the
Cartesian product of every table in the FROM clause. (Review Chapter 3 to revisit these terms, if necessary.) However,

FIGURE
7.28

Creating a virtual table with the CREATE VIEW command

C6545_07 9/4/2007 14:8:39 Page 274

274 C H A P T E R 7

to get the correct result—that is, a natural join—you must select only the rows in which the common attribute values
match. To do this, use the WHERE clause to indicate the common attributes used to link the tables (this WHERE clause
is sometimes referred to as the join condition).

The join condition is generally composed of an equality comparison between the foreign key and the primary key of
related tables. For example, suppose you want to join the two tables VENDOR and PRODUCT. Because V_CODE is
the foreign key in the PRODUCT table and the primary key in the VENDOR table, the link is established on V_CODE.
(See Table 7.9.)

TABLE
7.9

Creating Links Through Foreign Keys

TABLE ATTRIBUTES TO BE SHOWN LINKING ATTRIBUTE
PRODUCT P_DESCRIPT, P_PRICE V_CODE
VENDOR V_COMPANY, V_PHONE V_CODE

When the same attribute name appears in more than one of the joined tables, the source table of the attributes listed
in the SELECT command sequence must be defined. To join the PRODUCT and VENDOR tables, you would use the
following, which produces the output shown in Figure 7.29:

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM PRODUCT, VENDOR
WHERE PRODUCT.V_CODE = VENDOR.V_CODE;

Your output might be presented in a different order because the SQL command produces a listing in which the order
of the columns is not relevant. In fact, you are likely to get a different order of the same listing the next time you
execute the command. However, you can generate a more predictable list by using an ORDER BY clause:

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM PRODUCT, VENDOR
WHERE PRODUCT.V_CODE = VENDOR.V_CODE
ORDER BY P_PRICE;

In that case, your listing will always be arranged from the lowest price to the highest price.

FIGURE
7.29

The results of a join

C6545_07 7/24/2007 8:58:19 Page 275

275I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

The preceding SQL command sequence joins a row in the PRODUCT table with a row in the VENDOR table in which
the V_CODE values of these rows are the same, as indicated in the WHERE clause’s condition. Because any vendor
can deliver any number of ordered products, the PRODUCT table might contain multiple V_CODE entries for each
V_CODE entry in the VENDOR table. In other words, each V_CODE in VENDOR can be matched with many
V_CODE rows in PRODUCT.

If you do not specify the WHERE clause, the result will be the Cartesian product of PRODUCT and VENDOR. Because
the PRODUCT table contains 16 rows and the VENDOR table contains 11 rows, the Cartesian product would produce
a listing of (16 × 11) = 176 rows. (Each row in PRODUCT would be joined to each row in the VENDOR table.)

All of the SQL commands can be used on the joined tables. For example, the following command sequence is quite
acceptable in SQL and produces the output shown in Figure 7.30:

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM PRODUCT, VENDOR
WHERE PRODUCT.V_CODE = VENDOR.V_CODE
AND P_INDATE > '15-Jan-2008';

When joining three or more tables, you need to specify a join condition for each pair of tables. The number of join
conditions will always be N-1, where N represents the number of tables listed in the FROM clause. For example, if you have
three tables, you must have two join conditions; if you have five tables, you must have four join conditions; and so on.

Note

Table names were used as prefixes in the preceding SQL command sequence. For example, PRODUCT.P_
PRICE was used rather than P_PRICE. Most current-generation RDBMSs do not require table names to be used
as prefixes unless the same attribute name occurs in several of the tables being joined. In that case, V_CODE is
used as a foreign key in PRODUCT and as a primary key in VENDOR; therefore, you must use the table names
as prefixes in the WHERE clause. In other words, you can write the previous query as:

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM PRODUCT, VENDOR WHERE PRODUCT.V_CODE = VENDOR.V_CODE;

Naturally, if an attribute name occurs in several places, its origin (table) must be specified. If you fail to
provide such a specification, SQL will generate an error message to indicate that you have been ambiguous
about the attributes origin.

FIGURE
7.30

An ordered and limited listing after a join

C6545_07 9/4/2007 14:9:3 Page 276

276 C H A P T E R 7

Remember, the join condition will match the foreign key of a table to the primary key of the related table. For example,
using Figure 7.1, if you want to list the customer last name, invoice number, invoice date, and product descriptions for
all invoices for customer 10014, you must type the following:

SELECT CUS_LNAME, INV_NUMBER, INV_DATE, P_DESCRIPT
FROM CUSTOMER, INVOICE, LINE, PRODUCT
WHERE CUSTOMER.CUS_CODE = INVOICE.CUS_CODE
AND INVOICE.INV_NUMBER = LINE.INV_NUMBER
AND LINE.P_CODE = PRODUCT.P_CODE
AND CUSTOMER.CUS_CODE = 10014
ORDER BY INV_NUMBER;

Finally, be careful not to create circular join conditions. For example, if Table A is related to Table B, Table B is related
to Table C, and Table C is also related to Table A, create only two join conditions: join A with B and B with C. Do
not join C with A!

7.8.1 Joining Tables with an Alias

An alias may be used to identify the source table from which the data are taken. The aliases P and V are used to label
the PRODUCT and VENDOR tables in the next command sequence. Any legal table name may be used as an alias.
(Also notice that there are no table name prefixes because the attribute listing contains no duplicate names in the
SELECT statement.)

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM PRODUCT P, VENDOR V
WHERE P.V_CODE = V.V_CODE
ORDER BY P_PRICE;

7.8.2 Recursive Joins

An alias is especially useful when a table must be joined to itself in a recursive query. For example, suppose you are
working with the EMP table shown in Figure 7.31.

FIGURE
7.31

The contents of the EMP table

C6545_07 7/24/2007 9:1:21 Page 277

277I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

Using the data in the EMP table, you can generate a list of all employees with their managers’ names by joining the
EMP table to itself. In that case, you would also use aliases to differentiate the table from itself. The SQL command
sequence would look like this:

SELECT E.EMP_MGR, M.EMP_LNAME, E.EMP_NUM, E.EMP_LNAME
FROM EMP E, EMP M
WHERE E.EMP_MGR=M.EMP_NUM
ORDER BY E.EMP_MGR;

The output of the above command sequence is shown in Figure 7.32.

7.8.3 Outer Joins

Figure 7.29 showed the results of joining the PRODUCT
and VENDOR tables. If you examine the output, note that
14 product rows are listed. Compare the output to the
PRODUCT table in Figure 7.2, and note that two products
are missing. Why? The reason is that there are two products
with nulls in the V_CODE attribute. Because there is no
matching null “value” in the VENDOR table’s V_CODE
attribute, the products do not show up in the final output
based on the join. Also, note that in the VENDOR table in
Figure 7.2, several vendors have no matching V_CODE in
the PRODUCT table. To include those rows in the final join
output, you must use an outer join.

FIGURE
7.32

Using an alias to join a table
to itself

Note

In MS Access, add AS to the previous SQL command sequence, making it read:

SELECT E.EMP_MGR,M.EMP_LNAME,E.EMP_NUM,E.EMP_LNAME
FROM EMP AS E, EMP AS M
WHERE E.EMP_MGR = M.EMP_NUM
ORDER BY E.EMP_MGR;

C6545_07 7/24/2007 9:5:9 Page 278

278 C H A P T E R 7

There are two types of outer joins: left and right. (See Chapter 3.) Given the contents of the PRODUCT and VENDOR
tables, the following left outer join will show all VENDOR rows and all matching PRODUCT rows:

SELECT P_CODE, VENDOR.V_CODE, V_NAME
FROM VENDOR LEFT JOIN PRODUCT

ON VENDOR.V_CODE = PRODUCT.V_CODE;

Figure 7.33 shows the output generated by the left outer join command in MS Access. Oracle yields the same result,
but shows the output in a different order.

The right outer join will join both tables and show all product rows with all matching vendor rows. The SQL command
for the right outer join is:

SELECT PRODUCT.P_CODE, VENDOR.V_CODE, V_NAME
FROM VENDOR RIGHT JOIN PRODUCT

ON VENDOR.V_CODE = PRODUCT.V_CODE;

Figure 7.34 shows the output generated by the right outer join command sequence in MS Access. Again, Oracle yields
the same result, but shows the output in a different order.

In Chapter 8, you will learn more about joins and how to use the latest ANSI SQL standard syntax.

FIGURE
7.33

The left outer
join results

FIGURE
7.34

The right outer
join results

O n l i n e C o n t e n t

For a complete walk-through example of converting an ER model into a database structure and using SQL
commands to create tables, see Appendix D, Converting an ER Model into a Database
Structure, in the Student Online Companion.

C6545_07 9/4/2007 14:11:25 Page 279

279I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

S u m m a r y

◗ The SQL commands can be divided into two overall categories: data definition language (DDL) commands and data
manipulation language (DML) commands.

◗ The ANSI standard data types are supported by all RDBMS vendors in different ways. The basic data types are
NUMBER, INTEGER, CHAR, VARCHAR, and DATE.

◗ The basic data definition commands allow you to create tables, indexes, and views. Many SQL constraints can be
used with columns. The commands are CREATE TABLE, CREATE INDEX, CREATE VIEW, ALTER TABLE,
DROP TABLE, DROP VIEW, and DROP INDEX.

◗ DML commands allow you to add, modify, and delete rows from tables. The basic DML commands are SELECT,
INSERT, UPDATE, DELETE, COMMIT, and ROLLBACK.

◗ The INSERT command is used to add new rows to tables. The UPDATE command is used to modify data values
in existing rows of a table. The DELETE command is used to delete rows from tables. The COMMIT and
ROLLBACK commands are used to permanently save or roll back changes made to the rows. Once you COMMIT
the changes, you cannot undo them with a ROLLBACK command.

◗ The SELECT statement is the main data retrieval command in SQL. A SELECT statement has the following syntax:

SELECT columnlist
FROM tablelist
[WHERE conditionlist]
[GROUP BY columnlist]
[HAVING conditionlist]
[ORDER BY columnlist [ASC | DESC]] ;

◗ The column list represents one or more column names separated by commas. The column list may also include
computed columns, aliases, and aggregate functions. A computed column is represented by an expression or
formula (for example, P_PRICE * P_QOH). The FROM clause contains a list of table names or view names.

◗ The WHERE clause can be used with the SELECT, UPDATE, and DELETE statements to restrict the rows affected
by the DDL command. The condition list represents one or more conditional expressions separated by logical
operators (AND, OR, and NOT). The conditional expression can contain any comparison operators (=, >, <, >=,
<=, and <>) as well as special operators (BETWEEN, IS NULL, LIKE, IN, and EXISTS).

◗ Aggregate functions (COUNT, MIN, MAX, and AVG) are special functions that perform arithmetic computations
over a set of rows. The aggregate functions are usually used in conjunction with the GROUP BY clause to group
the output of aggregate computations by one or more attributes. The HAVING clause is used to restrict the output
of the GROUP BY clause by selecting only the aggregate rows that match a given condition.

◗ The ORDER BY clause is used to sort the output of a SELECT statement. The ORDER BY clause can sort by one
or more columns and can use either ascending or descending order.

◗ You can join the output of multiple tables with the SELECT statement. The join operation is performed every time
you specify two or more tables in the FROM clause and use a join condition in the WHERE clause to match the
foreign key of one table to the primary key of the related table. If you do not specify a join condition, the DBMS
will automatically perform a Cartesian product of the tables you specify in the FROM clause.

◗ The natural join uses the join condition to match only rows with equal values in the specified columns. You could
also do a right outer join and left outer join to select the rows that have no matching values in the other
related table.

C6545_07 9/4/2007 14:12:45 Page 280

280 C H A P T E R 7

K e y T e r m s

alias, 250

ALTER TABLE, 257

AND, 252

authentication, 229

AVG, 269

base tables, 273

BETWEEN, 253

Boolean algebra, 252

cascading order sequence, 264

COMMIT, 242

COUNT, 266

CREATE INDEX, 239

CREATE TABLE, 232

CREATE VIEW, 273

DELETE, 245

DISTINCT, 265

DROP INDEX, 240

DROP TABLE, 263

EXISTS, 253

GROUP BY, 270

HAVING, 272

IN, 253

inner query, 245

INSERT, 240

IS NULL, 253

LIKE, 253

MAX, 267

MIN, 267

nested query, 245

NOT, 252

OR, 252

ORDER BY, 263

recursive query, 277

reserved words, 235

ROLLBACK, 244

rules of precedence, 251

schema, 229

SELECT, 242

subquery, 245

SUM, 269

UPDATE, 244

view, 273

wildcard character, 242

R e v i e w Q u e s t i o n s

The Ch07_Review database stores data for a consulting company that tracks all charges to projects. The charges are
based on the hours each employee works on each project. The structure and contents of the Ch07_Review database
are shown in Figure Q7.1.

Note that the ASSIGNMENT table in Figure Q7.1 stores the JOB_CHG_HOUR values as an attribute (ASSIGN_
CHG_HR) to maintain historical accuracy of the data. The JOB_CHG_HOUR values are likely to change over time.
In fact, a JOB_CHG_HOUR change will be reflected in the ASSIGNMENT table. And, naturally, the employee primary
job assignment might change, so the ASSIGN_JOB is also stored. Because those attributes are required to maintain
the historical accuracy of the data, they are not redundant.

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the Student Online
Companion for this book.

O n l i n e C o n t e n t

The Review Questions in this chapter are based on the Ch07_Review database located in the Student Online
Companion. This database is stored in Microsoft Access format. If you use another DBMS such as Oracle, SQL
Server, MySQL, or DB2, use its import utilities to move the Access database contents. The Student Online
Companion provides Oracle and SQL script files.

C6545_07 9/4/2007 14:13:4 Page 281

281I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

Given the structure and contents of the Ch07_Review database shown in Figure Q7.1, use SQL commands to answer
Questions 1–25.

1. Write the SQL code that will create the table structure for a table named EMP_1. This table is a subset of the
EMPLOYEE table. The basic EMP_1 table structure is summarized in the table below. (Note that the JOB_CODE
is the FK to JOB.)

2. Having created the table structure in Question 1, write
the SQL code to enter the first two rows for the table
shown in Figure Q7.2.

3. Assuming the data shown in the EMP_1 table have
been entered, write the SQL code that will list all
attributes for a job code of 502.

4. Write the SQL code that will save the changes made to
the EMP_1 table.

5. Write the SQL code to change the job code to 501 for
the person whose employee number (EMP_NUM) is
107. After you have completed the task, examine the
results, and then reset the job code to its original value.

FIGURE
Q7.1

Structure and contents of the Ch07_Review database

Relational diagram Table name: EMPLOYEE

Table name: JOB

Table name: PROJECT

Table name: ASSIGNMENT

 Database name: Ch07_Review

ATTRIBUTE
(FIELD) NAME

DATA
DECLARATION

EMP_NUM CHAR(3)
EMP_LNAME VARCHAR(15)
EMP_FNAME VARCHAR(15)
EMP_INITIAL CHAR(1)
EMP_HIREDATE DATE
JOB_CODE CHAR(3)

C6545_07 7/24/2007 9:13:58 Page 282

282 C H A P T E R 7

6. Write the SQL code to delete the row for the person named William Smithfield, who was hired on June 22,
2004, and whose job code classification is 500. (Hint: Use logical operators to include all of the information
given in this problem.)

7. Write the SQL code that will restore the data to its original status; that is, the table should contain the data that
existed before you made the changes in Questions 5 and 6.

8. Write the SQL code to create a copy of EMP_1, naming the copy EMP_2. Then write the SQL code that will
add the attributes EMP_PCT and PROJ_NUM to its structure. The EMP_PCT is the bonus percentage to be paid
to each employee. The new attribute characteristics are:

EMP_PCTNUMBER(4,2)

PROJ_NUMCHAR(3)

(Note: If your SQL implementation allows it, you may use DECIMAL(4,2) rather than NUMBER(4,2).)

9. Write the SQL code to change the EMP_PCT value to 3.85 for the person whose employee number (EMP_NUM)
is 103. Next, write the SQL command sequences to change the EMP_PCT values as shown in Figure Q7.9.

10. Using a single command sequence, write the SQL code that will change the project number (PROJ_NUM) to 18
for all employees whose job classification (JOB_CODE) is 500.

11. Using a single command sequence, write the SQL code that will change the project number (PROJ_NUM) to 25
for all employees whose job classification (JOB_CODE) is 502 or higher. When you finish Questions 10 and 11,
the EMP_2 table will contain the data shown in Figure Q7.11.

(You may assume that the table has been saved again at this point.)

FIGURE
Q7.2

The contents of the EMP_1 table

FIGURE
Q7.9

The contents of the EMP_2 table

C6545_07 9/14/2007 9:23:52 Page 283

283I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

12. Write the SQL code that will change the PROJ_NUM to 14 for those employees who were hired before
January 1, 1994 and whose job code is at least 501. (You may assume that the table will be restored to its
condition preceding this question.)

13. Write the two SQL command sequences required to:

a. Create a temporary table named TEMP_1 whose structure is composed of the EMP_2 attributes EMP_NUM
and EMP_PCT.

b. Copy the matching EMP_2 values into the TEMP_1 table.

14. Write the SQL command that will delete the newly created TEMP_1 table from the database.

15. Write the SQL code required to list all employees whose last names start with Smith. In other words, the rows
for both Smith and Smithfield should be included in the listing. Assume case sensitivity.

16. Using the EMPLOYEE, JOB, and PROJECT tables in the Ch07_Review database (see Figure Q7.1), write the
SQL code that will produce the results shown in Figure Q7.16.

17. Write the SQL code that will produce a virtual table named REP_1. The virtual table should contain the same
information that was shown in Question 16.

18. Write the SQL code to find the average bonus percentage in the EMP_2 table you created in Question 8.

19. Write the SQL code that will produce a listing for the data in the EMP_2 table in ascending order by the bonus
percentage.

20. Write the SQL code that will list only the distinct project numbers found in the EMP_2 table.

21. Write the SQL code to calculate the ASSIGN_CHARGE values in the ASSIGNMENT table in the Ch07_Review
database. (See Figure Q7.1.) Note that ASSIGN_CHARGE is a derived attribute that is calculated by multiplying
ASSIGN_CHG_HR by ASSIGN_HOURS.

22. Using the data in the ASSIGNMENT table, write the SQL code that will yield the total number of hours worked
for each employee and the total charges stemming from those hours worked. The results of running that query
are shown in Figure Q7.22.

FIGURE
Q7.11

The EMP_2 table contents after the modifications

FIGURE
Q7.16

The query results for Question 16

C6545_07 7/26/2007 14:13:29 Page 284

284 C H A P T E R 7

23. Write a query to produce the total number of hours and charges for each of the projects represented in the
ASSIGNMENT table. The output is shown in Figure Q7.23.

24. Write the SQL code to generate the total hours worked
and the total charges made by all employees. The
results are shown in Figure Q7.24. (Hint: This is a
nested query. If you use Microsoft Access, you can
generate the result by using the query output shown in
Figure Q7.22 as the basis for the query that will
produce the output shown in Figure Q7.24.)

25. Write the SQL code to generate the total hours worked
and the total charges made to all projects. The results
should be the same as those shown in Figure Q7.24.
(Hint: This is a nested query. If you use Microsoft
Access, you can generate the result by using the query
output shown in Figure Q7.23 as the basis for
this query.)

P r o b l e m s

Before you attempt to write any SQL queries, familiarize yourself with the Ch07_AviaCo database structure and
contents shown in Figure P7.1. Although the relational schema does not show optionalities, keep in mind that all pilots
are employees, but not all employees are flight crew members. (Although in this database, the crew member
assignments all involve pilots and copilots, the design is sufficiently flexible to accommodate crew member

FIGURE
Q7.22

Total hours and charges by employee

FIGURE
Q7.23

Total hour and charges by
project

FIGURE
Q7.24

Total hours and charges, all
employees

O n l i n e C o n t e n t

Problems 1-15 are based on the Ch07_AviaCo database located in the Student Online Companion. This
database is stored in Microsoft Access format. If you use another DBMS such as Oracle, SQL Server, MySQL, or
DB2, use its import utilities to move the Access database contents. The Student Online Companion provides
Oracle and SQL script files.

C6545_07 7/24/2007 9:18:9 Page 285

285I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

assignments—such as loadmasters and flight attendants—of people who are not pilots. That’s why the relationship
between CHARTER and EMPLOYEE is implemented through CREW.) Note also that this design implementation does
not include multivalued attributes. For example, multiple ratings such as Instrument and Certified Flight Instructor
ratings are stored in the (composite) EARNEDRATINGS table. Nor does the CHARTER table include multiple crew
assignments, which are properly stored in the CREW table.

1. Write the SQL code that will list the values for the first four attributes in the CHARTER table.

2. Using the contents of the CHARTER table, write the SQL query that will produce the output shown in
Figure P7.2. Note that the output is limited to selected attributes for aircraft number 2778V.

FIGURE
P7.1

The Ch07_AviaCo database

Relational diagram

Table name: CUSTOMER

Table name: RATING
Table name: CREW

Table name: EMPLOYEE

Table name: PILOT

Table name: CHARTER

Table name: AIRCRAFT Table name: MODEL

Table name: EARNEDRATING

Database name: Ch7_AviaCo

C6545_07 9/14/2007 9:24:22 Page 286

286 C H A P T E R 7

3. Create a virtual table (named AC2778V) containing the output presented in Problem 2.

4. Produce the output shown in Figure P7.4 for aircraft 2778V. Note that this output includes data from the
CHARTER and CUSTOMER tables. (Hint: Use a JOIN in this query.)

5. Produce the output shown in Figure P7.5. The output, derived from the CHARTER and MODEL tables, is limited
to February 6, 2008. (Hint: The join passes through another table. Note that the “connection” between
CHARTER and MODEL requires the existence of AIRCRAFT because the CHARTER table does not contain a
foreign key to MODEL. However, CHARTER does contain AC_NUMBER, a foreign key to AIRCRAFT, which
contains a foreign key to MODEL.)

6. Modify the query in Problem 5 to include data from the CUSTOMER table. This time the output is limited to
charter records generated since February 9, 2008. (The query results are shown in Figure P7.6.)

FIGURE
P7.2

Problem 2 query results

FIGURE
P7.4

Problem 4 query results

FIGURE
P7.5

Problem 5 query results

C6545_07 7/24/2007 9:18:48 Page 287

287I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

7. Modify the query in Problem 6 to produce the output shown in Figure P7.7. The date limitation in Problem 6
applies to this problem, too. Note that this query includes data from the CREW and EMPLOYEE tables. (Note:
You might wonder why the date restriction seems to generate more records than it did in Problem 6. Actually,
the number of (CHARTER) records is the same, but several records are listed twice to reflect a crew of two: a pilot
and a copilot. For example, the record for the 09-Feb-2008 flight to GNV, using aircraft 2289L, required a crew
consisting of a pilot (Lange) and a copilot (Lewis).)

8. Modify the query in Problem 5 to include the computed (derived) attribute “fuel per hour.” (Hint: It is possible to
use SQL to produce computed “attributes” that are not stored in any table. For example, the SQL query:

SELECT CHAR_DISTANCE, CHAR_FUEL_GALLONS/CHAR_DISTANCE
FROM CHARTER;

is perfectly acceptable. The above query produces the “gallons per mile flown” value.) Use a similar technique on
joined tables to produce the “gallons per hour” output shown in Figure P7.8. (Note that 67.2 gallons/1.5 hours
produces 44.8 gallons per hour.)

FIGURE
P7.6

Problem 6 query results

FIGURE
P7.7

Problem 7 query results

FIGURE
P7.8

Problem 8 query results

C6545_07 9/14/2007 9:24:42 Page 288

288 C H A P T E R 7

Query output such as the “gallons per hour” result shown in Figure P7.8 provide managers with very important
information. In this case, why is the fuel burn for the Navajo Chieftain 4278Y flown on 9-Feb-08 so much higher
than the fuel burn for that aircraft on 10-Feb-08? Such a query result might lead to additional queries to find out
who flew the aircraft or what special circumstances might have existed. Is the fuel burn difference due to poor
fuel management by the pilot, does it reflect an engine fuel metering problem, or was there an error in the fuel
recording? The ability to generate useful query output is an important management asset.

9. Create a query to produce the output shown in Figure P7.9. Note that, in this case, the computed attribute
requires data found in two different tables. (Hint: The MODEL table contains the charge per mile, and the
CHARTER table contains the total miles flown.) Note also that the output is limited to charter records generated
since February 9, 2008. In addition, the output is ordered by date and, within the date, by the customer’s
last name.

10. Use the techniques that produced the output in Problem 9 to produce the charges shown in Figure P7.10. The
total charge to the customer is computed by:

� Miles flown * charge per mile.

� Hours waited * $50 per hour.

The miles flown (CHAR_DISTANCE) value is found in the CHARTER table, the charge per mile (MOD_CHG_
MILE) value is found in the MODEL table, and the hours waited (CHAR_HOURS_WAIT) value is found in the
CHARTER table.

Note

The output format is determined by the RDBMS you use. In this example, the Access software defaulted to an
output heading labeled Expr1 to indicate the expression resulting from the division:

[CHARTER]![CHAR_FUEL_GALLONS]/[CHARTER]![CHAR_HOURS]

created by its expression builder. Oracle defaults to the full division label. You should learn to control the output
format with the help of your RDBMSs utility software.

FIGURE
P7.9

Problem 9 query results

FIGURE
P7.10

Problem 10 query results

C6545_07 7/26/2007 14:14:15 Page 289

289I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

11. Create the SQL query that will produce a list of customers who have an unpaid balance. The required output is
shown in Figure P7.11. Note that the balances are listed in descending order.

12. Find the average customer balance, the minimum bal-
ance, the maximum balance, and the total of the
unpaid balances. The resulting values are shown in
Figure P7.12.

13. Using the CHARTER table as the source, group the
aircraft data. Then use the SQL functions to produce
the output shown in Figure P7.13. (Utility software was
used to modify the headers, so your headers might look
different.)

14. Write the SQL code to generate the output shown in Figure P7.14. Note that the listing includes all CHARTER
flights that did not include a copilot crew assignment. (Hint: The crew assignments are listed in the CREW table.
Also note that the pilot’s last name requires access to the EMPLOYEE table, while the MOD_CODE requires
access to the MODEL table.)

FIGURE
P7.11

A list of customers with
unpaid balances

FIGURE
P7.12

Customer balance summary

FIGURE
P7.13

The AIRCRAFT data summary statement

FIGURE
P7.14

Charter flights that did not use a copilot

C6545_07 7/24/2007 9:24:29 Page 290

290 C H A P T E R 7

15. Write a query that will list the ages of the employees and the date the query was run. The required output is shown
in Figure P7.15. (As you can tell, the query was run on May 16, 2007, so the ages of the employees are current
as of that date.)

The structure and contents of the Ch07_SaleCo database are shown in Figure P7.16. Use this database to
answer the following problems. Save each query as QXX, where XX is the problem number.

FIGURE
P7.15

Employee ages and date of query

O n l i n e C o n t e n t

Problems 16−33 are based on the Ch07_SaleCo database located in the Student Online Companion. This
database is stored in Microsoft Access format. If you use another DBMS such as Oracle, SQL Server, MySQL, or
DB2, use its import utilities to move the Access database contents. The Student Online Companion provides
Oracle and SQL script files.

C6545_07 7/24/2007 9:25:46 Page 291

291I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

16. Write a query to count the number of invoices.

17. Write a query to count the number of customers with a customer balance over $500.

18. Generate a listing of all purchases made by the customers, using the output shown in Figure P7.18 as your guide.
(Hint: Use the ORDER BY clause to order the resulting rows shown in Figure P7.18.)

FIGURE
P7.16

The Ch07_SaleCo database

Relational diagram

Table name: VENDOR
Table name: CUSTOMER

Table name: PRODUCTTable name: INVOICE Table name: LINE

C6545_07 7/24/2007 9:26:6 Page 292

292 C H A P T E R 7

19. Using the output shown in Figure P7.19 as your guide, generate a list of customer purchases, including the
subtotals for each of the invoice line numbers. (Hint: Modify the query format used to produce the list of customer
purchases in Problem 18, delete the INV_DATE column, and add the derived (computed) attribute LINE_UNITS
* LINE_PRICE to calculate the subtotals.)

20. Modify the query used in Problem 19 to produce the summary shown in Figure P7.20.

FIGURE
P7.18

List of customer purchases

FIGURE
P7.19

Summary of customer purchases with subtotals

C6545_07 7/24/2007 9:26:38 Page 293

293I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

21. Modify the query in Problem 20 to include the number of individual
product purchases made by each customer. (In other words, if the
customer’s invoice is based on three products, one per LINE_
NUMBER, you would count three product purchases. Note that in
the original invoice data, customer 10011 generated three invoices,
which contained a total of six lines, each representing a product
purchase.) Your output values must match those shown in
Figure P7.21.

22. Use a query to compute the average purchase amount per product
made by each customer. (Hint: Use the results of Problem 21 as the

basis for this query.) Your output values must match
those shown in Figure P7.22. Note that the average
purchase amount is equal to the total purchases divided
by the number of purchases.

23. Create a query to produce the total purchase per
invoice, generating the results shown in Figure P7.23.
The invoice total is the sum of the product purchases in
the LINE that corresponds to the INVOICE.

24. Use a query to show the
invoices and invoice
totals as shown in Figure
P7.24. (Hint: Group by
the CUS_CODE.)

25. Write a query to produce
the number of invoices
and the total purchase
amounts by customer,
using the output shown
in Figure P7.25 as your
guide. (Compare this
summary to the results
shown in Problem 24.)

26. Using the query results in Problem 25 as your basis, write a query to generate the total number of invoices, the
invoice total for all of the invoices, the smallest invoice amount, the largest invoice amount, and the average of
all of the invoices. (Hint: Check the figure output in Problem 25.) Your output must match Figure P7.26.

FIGURE
P7.20

Customer purchase
summary

FIGURE
P7.21

Customer total purchase
amounts and number of
purchases

FIGURE
P7.22

Average purchase amount by customer

FIGURE
P7.23

Invoice totals FIGURE
P7.24

Invoice totals by
customer

C6545_07 7/26/2007 14:14:39 Page 294

294 C H A P T E R 7

27. List the balance characteristics of the customers who have made purchases during the current invoice cycle—that
is, for the customers who appear in the INVOICE table. The results of this query are shown in Figure P7.27.

28. Using the results of the query created in Problem 27, provide a summary of the customer balance characteristics
as shown in Figure P7.28.

29. Create a query to find the customer balance characteristics for all customers, including the total of the outstanding
balances. The results of this query are shown in Figure P7.29.

30. Find the listing of customers who did not make purchases during the invoicing period. Your output must match
the output shown in Figure P7.30.

FIGURE
P7.25

Number of invoices and total
purchase amounts by customer

FIGURE
P7.26

Number of invoices; invoice
totals; minimum, maximum,
and average sales

FIGURE
P7.27

Balances of
customers who
made purchases

FIGURE
P7.28

Balance summary for customers
who made purchases

FIGURE
P7.29

Balance summary for all
customers

FIGURE
P7.30

Balances of
customers who did
not make purchases

C6545_07 7/24/2007 9:42:22 Page 295

295I N T R O D U C T I O N T O S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

31. Find the customer balance summary for all customers who have not made purchases during the current invoicing
period. The results are shown in Figure P7.31.

32. Create a query to produce the summary of the value of products currently in inventory. Note that the value of
each product is produced by the multiplication of the units currently in inventory and the unit price. Use the
ORDER BY clause to match the order shown in Figure P7.32.

33. Using the results of the query created in Problem 32, find the total value of the product inventory. The results
are shown in Figure P7.33.

FIGURE
P7.31

Balance summary for customers who did not make purchases

FIGURE
P7.32

Value of products currently in inventory

FIGURE
P7.33

Total value of all
products in
inventory

C6545_07 7/26/2007 14:15:13 Page 296

296 C H A P T E R 7

