C6545_07 7/23/2007 14:27:23 Page 222

PART

il

ADVANCED DESIGN AND
IMPLEMENTATION

INTRODUCTION TO STRUCTURED QUERY 7
LANGUAGE (SQL)

ADVANCED SQL 8

DATABASE DESIGN 9

(NPT N W™

USING QUERIES TO SCORE RUNS

Today, we take for granted the ability to comb through vast amounts of data to find one
item that meets a slew of requirements or to find several items that share common
features. When we go to the library, retrieve bank account records, call Information to .
get a phone number, or search for a movie review or restaurant online, we are interacting lgnette
with databases that did not exist 40 years ago. The impact of the information revolution
is very apparent in our daily lives. What is less apparent is how this revolution is slowly

changing society by determining who wins and who loses in school, in business, and even

in sports.

In the old days, money was the major factor in establishing which teams went to the World
Series. The rich teams could hunt for and buy the best players. As a result, the Yankees have
dominated the event, playing in and winning many more championships than any other team

in the Major League. Today, databases are being used to even the playing field.

In the late 1990s, the Yankees hired E Solutions, a Tampa-based IT company, to complete
a customized software project to analyze scouting reports. E Solutions saw the potential
and developed ScoutAdvisor, a program that runs queries on data on baseball players
collected from many sources. Such sources include the Major League Baseball Scouting
Bureau, which provides psychological profile data on players, while SportsTicker supplies
game reports, and STATS provides game statistics such as where balls land in the field

after being hit or types of pitches.

The ScoutAdvisor database stores information on prospective and current players, such
as running speed, fielding ability, hitting ability, and plate discipline. Team managers can run
queries to find a pitcher with high arm strength, arm accuracy, and pitch speed. They can
check for injuries or discipline problems. They can run queries to determine if a player’s
performance justifies his cost. The database also stores automatic daily player updates.
Managers can run queries to determine whether a pitcher’s fastball speed is increasing or
whether a hitter’s tendency to swing at the first pitch is declining. ScoutAdvisor is

customizable, so managers can also design their own queries.

The result is that more and more baseball teams are signing contracts with E Solutions
as it becomes increasingly apparent that managing information is becoming as important

to team success as managing money or players.

C6545_07 7/23/2007 14:3%:6 Page 224

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL)

In this chapter, you will learn:
m The basic commands and functions of SQL
m How to use SQL for data administration (to create tables, indexes, and views)
m How to use SQL for data manipulation (to add, modify, delete, and retrieve data)

How to use SQL to query a database for useful information

In this chapter, you learn the basics of Structured Query Language (SQL). SQL, pronounced
S-Q-L by some and “sequel” by others, is composed of commands that enable users to
create database and table structures, perform various types of data manipulation and data
administration, and query the database to extract useful information. All relational DBMS
software supports SQL, and many software vendors have developed extensions to the basic

SQL command set.

Because SQL’s vocabulary is simple, the language is relatively easy to learn. Its simplicity is
enhanced by the fact that much of its work takes place behind the scenes. For example, a
single command creates the complex table structures required to store and manipulate data
successfully. Furthermore, SQL is a nonprocedural language; that is, the user specifies what

must be done, but not how it is to be done. To issue SQL commands, end users and

programmers do not need to know the physical data storage format or the complex SR\
4 Y
activities that take place when a SQL command is executed. —
)
Although quite useful and powerful, SQL is not meant to stand alone in the applications S

arena. Data entry with SQL is possible but awkward, as are data corrections and additions.
SQL itself does not create menus, special report forms, overlays, pop-ups, or any of the
other utilities and screen devices that end users usually expect. Instead, those features are

available as vendor-supplied enhancements. SQL focuses on data definition (creating tables,

indexes, and views) and data manipulation (adding, modifying, deleting, and retrieving data);

>

we cover these basic functions in this chapter. In spite of its limitations, SQL is a powerful

tool for extracting information and managing data. \

C6545_07 9/4/2007 13:39:48 Page 225 ‘

7.1 INTRODUCTION TO SQL

Ideally, a database language allows you to create database and table structures, to perform basic data management
chores (add, delete, and modify), and to perform complex queries designed to transform the raw data into useful
information. Moreover, a database language must perform such basic functions with minimal user effort, and its
command structure and syntax must be easy to learn. Finally, it must be portable; that is, it must conform to some basic
standard so that an individual does not have to relearn the basics when moving from one RDBMS to another. SQL
meets those ideal database language requirements well.

SQL functions fit into two broad categories:

e It is a data definition language (DDL): SQL includes commands to create database objects such as tables,
indexes, and views, as well as commands to define access rights to those database objects. The data definition
commands you learn in this chapter are listed in Table 7.1.

e [tisadata manipulation language (DML): SQL includes commands to insert, update, delete, and retrieve data
within the database tables. The data manipulation commands you learn in this chapter are listed in Table 7.2.

SQL Data Definition Commands

COMMAND OR OPTION DESCRIPTION
CREATE SCHEMA AUTHORIZATION Creates a database schema
CREATE TABLE Creates a new table in the user’s database schema
NOT NULL Ensures that a column will not have null values
UNIQUE Ensures that a column will not have duplicate values
PRIMARY KEY Defines a primary key for a table
FOREIGN KEY Defines a foreign key for a table
DEFAULT Defines a default value for a column (when no value is given)
CHECK Validates data in an attribute
CREATE INDEX Creates an index for a table
CREATE VIEW Creates a dynamic subset of rows/columns from one or more tables
ALTER TABLE Modifies a tables definition (adds, modifies, or deletes attributes or con-
straints)
CREATE TABLE AS Creates a new table based on a query in the user’s database schema
DROP TABLE Permanently deletes a table (and its data)
DROP INDEX Permanently deletes an index
DROP VIEW Permanently deletes a view

SQL Data Manipulation Commands

COMMAND OR OPTION DESCRIPTION

INSERT Inserts row(s) into a table

SELECT Selects attributes from rows in one or more tables or views
WHERE Restricts the selection of rows based on a conditional expression
GROUP BY Groups the selected rows based on one or more attributes
HAVING Restricts the selection of grouped rows based on a condition
ORDER BY Orders the selected rows based on one or more attributes
UPDATE Modifies an attribute’s values in one or more table’s rows
DELETE Deletes one or more rows from a table

COMMIT Permanently saves data changes

ROLLBACK Restores data to their original values

o

‘ C6545_07 7/23/2007 14:33:45 Page 226

SQL Data Manipulation Commands (continued)

COMMAND OR OPTION DESCRIPTION

COMPARISON OPERATORS
Used in conditional expressions
LOGICAL OPERATORS
Used in conditional expressions
SPECIAL OPERATORS Used in conditional expressions
BETWEEN Checks whether an attribute value is within a range
IS NULL Checks whether an attribute value is null
LIKE Checks whether an attribute value matches a given string pattern
IN Checks whether an attribute value matches any value within a value list
EXISTS Checks whether a subquery returns any rows
DISTINCT Limits values to unique values
Used with SELECT to return mathematical summaries on columns
COUNT Returns the number of rows with non-null values for a given column
MIN Returns the minimum attribute value found in a given column
MAX Returns the maximum attribute value found in a given column
SUM Returns the sum of all values for a given column
AVG Returns the average of all values for a given column

You will be happy to know that SQL is relatively easy to learn. Its basic command set has a vocabulary of fewer than
100 words. Better yet, SQL is a nonprocedural language: you merely command what is to be done; you don’t have
to worry about how it is to be done. The American National Standards Institute (ANSI) prescribes a standard SQL—the
current version is known as SQL-99 or SQL3. The ANSI SQL standards are also accepted by the International
Organization for Standardization (ISO), a consortium composed of national standards bodies of more than 150
countries. Although adherence to the ANSI/ISO SQL standard is usually required in commercial and government
contract database specifications, many RDBMS vendors add their own special enhancements. Consequently, it is
seldom possible to move a SQL-based application from one RDBMS to another without making some changes.

However, even though there are several different SQL “dialects,” the differences among them are minor. Whether you
use Oracle, Microsoft SQL Server, MySQL, IBM’s DB2, Microsoft Access, or any other well-established RDBMS, a
software manual should be sufficient to get you up to speed if you know the material presented in this chapter.

At the heart of SQL is the query. In Chapter 1, Database Systems, you learned that a query is a spur-of-the-moment
question. Actually, in the SQL environment, the word query covers both questions and actions. Most SQL queries are
used to answer questions such as these: “What products currently held in inventory are priced over $100, and what
is the quantity on hand for each of those products?” “How many employees have been hired since January 1, 2006
by each of the company’s departments?” However, many SQL queries are used to perform actions such as adding or
deleting table rows or changing attribute values within tables. Still other SQL queries create new tables or indexes. In
short, for a DBMS, a query is simply a SQL statement that must be executed. But before you can use SQL to query
a database, you must define the database environment for SQL with its data definition commands.

7.2 DATA DEFINITION COMMANDS

Before examining the SQL syntax for creating and defining tables and other elements, let’s first examine the simple
database model and the database tables that will form the basis for the many SQL examples you’ll explore in this
chapter.

—— \

C6545_07 7/23/2007 14:35:10 Page 227

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL)_

THE DATABASE MODEL

A simple database composed of the following tables is used to illustrate the SQL commands in this chapter:
CUSTOMER, INVOICE, LINE, PRODUCT, and VENDOR. This database model is shown in Figure 7.1.

FIGURE
7.1
CUSTOMER INVOICE LINE
PK |CcUS CODE enerates PK |INV_NUMBER contains PK,FK1 |INV_NUMBER
I+ JEET 0€ H € ek LINE_NUMBER
CUS_LNAME FK1 |cus_CODE
CUS_FNAME INV_DATE FK2 P_CODE
CUS_INITIAL LINE_UNITS
CUS_AREACODE LINE_PRICE
CUS_PHONE
CUS_BALANCE
is found in
|
+
1
VENDOR PRODUCT
PK |v_cODE PK |P_CODE
V_NAME supplies P_DESCRIPT
v_conTAacT [HbE-=-= EPZ°S — .0€ P_INDATE
V_AREACODE P_QOH
V_PHONE P_MIN
V_STATE P_PRICE
V_ORDER P_DISCOUNT
FK1 |V_CODE

The database model in Figure 7.1 reflects the following business rules:

A customer may generate many invoices. Each invoice is generated by one customer.

An invoice contains one or more invoice lines. Each invoice line is associated with one invoice.

Each invoice line references one product. A product may be found in many invoice lines. (You can sell more

than one hammer to more than one customer.)

A vendor may supply many products. Some vendors do not (yet?) supply products. (For example, a vendor list

may include potential vendors.)

If a product is vendor-supplied, that product is supplied by only a single vendor.

e Some products are not supplied by a vendor. (For example, some products may be produced in-house or
bought on the open market.)

As you can see in Figure 7.1, the database model contains many tables. However, to illustrate the initial set of data
definition commands, the focus of attention will be the PRODUCT and VENDOR tables. You will have the opportunity
to use the remaining tables later in this chapter and in the problem section.

So that you have a point of reference for understanding the effect of the SQL queries, the contents of the PRODUCT
and VENDOR tables are listed in Figure 7.2.

C6545_07 7/23/2007 14:35:37 Page 228

228

CHAPTER 7

ONLINE CONTENT

The database model in Figure 7.1 is implemented in the Microsoft Access ChQ7_SaleCo database located in
the Student Online Companion. (This database contains a few additional tables that are not reflected in Figure
7.1. These tables are used for discussion purposes only.) If you use MS Access, you can use the database
supplied online. However, it is strongly suggested that you create your own database structures so you can
practice the SQL commands illustrated in this chapter.

SQL script files for creating the tables and loading the data in Oracle and MS SQL Server are also located in the
Student Online Companion. How you connect to your database depends on how the software was installed on
your computer. Follow the instructions provided by your instructor or school.

FIGURE The VENDOR and PRODUCT tables
7.2

Table name: VENDOR Database name: Ch07_SaleCo
| v _corE | 5 MAME | w_COMTACT | %_AREACODE | % _PHOME | +_STATE | %_ORDER |

21225 Bryson, Inc. Smithson E15 223-3234 |TH b

21226 SuperLoo, Inc. Fluzhing Q04 215-8995 |FL M

21231 DEE Supply Singh E15 228-3245 |TM b

21344 Gomez Bros. Ortega E15 §59-2545 WY]

225687 Dome Supply Smith an B78-1419 | GA M

23119 Randsets Lid. Andersan an B78-359958 | GA b

24004 Brackman Bros. | Brovwning E15 228-1410 | TH]

24288 ORDWA | Inc. Hakford E15 598-1234 | TH b

25443 BaK, Inc. Smith an4 227-0093 |FL M

25501 Damal Supplies Smythe E15 §90-3529 |TM]

25595 Rubicon Systems | Orton Q04 456-0092 |FL b

Table name: PRODUCT

| P_corE | F_DESCRIFT P_INDATE | P_@CH | P_MIN | P_PRICE | P_DISCOUNT | v _CODE
11 QERS3 | Powwer painter, 15 psi., 3-nozzle 03-Mare-07 g H) 10999 0.00 25095
13-Q2IP2 | 72540, pvr. savw blade 13-Dec-07 32 15 14.99 005 21344
14-Q1L3 | 900+, prve. sav blade 13-Moy-07 13 12 17 .49 000 21344
1546-0@2 | Hrd. cloth, 1i4-in., 2250 15-Jan-08 15 8 39.95 oo 23119
1558-GW1 | Hrd. clath, 162-in., 3x50 15-Jan-03 23 5 4393 oo 23119
2232007 | BAD jigzaw, 12-in. blade 30-Dec-07 8 s 10992 00s 24283
22320VE | BAD jigzawy, B-in. blade 24-Dec-07 6 5 99 87 00s 24283
223800P0 | BAD cordiess drill, 1/2-in. 20-Jan-03 12 5 38.95 005 25595
23109-HB | Clawy hammer 20-Jan-03 23 10 9.95 010 21225
23114-84 | Sledge hammer, 12 lb. 02-Jan-03 8 5 14.40 0.0s

54778-2T | Rat-tail file, 1/8-in. fine 15-Dec-07 43 20 499 000 21344
89-VWRE-G | Hicut chain saw, 16 in. 07-Feh-03 11 5| 23693 00s 24283
PYWC23DRT PV pipe, 3.54in., 8-ft 20-Feh-03 185 75 587 0.00

SM-18277 | 1.25-in. metal screw, 25 01 -Mar-03 172 75 .99 000 21225
SOZINE | 2,540, wid, screvy, 50 24-Feh-03 237 100 8.45 000 21231
WRHTTS | Steel matting, 4%8%1/8", 5" mesh 17-Jan-03 13 s 119293 010 25595

Note the following about these tables. (The features correspond to the business rules reflected in the ERD shown in
Figure 7.1.)

The VENDOR table contains vendors who are not referenced in the PRODUCT table. Database designers note
that possibility by saying that PRODUCT is optional to VENDOR; a vendor may exist without a reference to
a product. You examined such optional relationships in detail in Chapter 4, Entity Relationship (ER) Modeling.

C6545_07 7/23/2007 14:39:10 Page 229

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL) 229

e Existing V_CODE values in the PRODUCT table must (and do) have a match in the VENDOR table to ensure
referential integrity.

e A few products are supplied factory-direct, a few are made in-house, and a few may have been bought in a
warehouse sale. In other words, a product is not necessarily supplied by a vendor. Therefore, VENDOR is
optional to PRODUCT.

A few of the conditions just described were made for the sake of illustrating specific SQL features. For example, null
V_CODE values were used in the PRODUCT table to illustrate (later) how you can track such nulls using SQL.

CREATING THE DATABASE

Before you can use a new RDBMS, you must complete two tasks: first, create the database structure, and second,
create the tables that will hold the end-user data. To complete the first task, the RDBMS creates the physical files that
will hold the database. When you create a new database, the RDBMS automatically creates the data dictionary tables
to store the metadata and creates a default database administrator. Creating the physical files that will hold the database
means interacting with the operating system and the file systems supported by the operating system. Therefore,
creating the database structure is the one feature that tends to differ substantially from one RDBMS to another. The
good news is that it is relatively easy to create a database structure, regardless of which RDBMS you use.

If you use Microsoft Access, creating the database is simple: start Access, select File/New/Blank Database, specify
the folder in which you want to store the database, and then name the database. However, if you work in a database
environment typically used by larger organizations, you will probably use an enterprise RDBMS such as Oracle, SQL
Server, MySQL or DBZ2. Given their security requirements and greater complexity, those database products require a
more elaborate database creation process. (You will learn how to create and manage an Oracle database structure in
Chapter 15, Database Administration and Security.)

You will be relieved to discover that, with the exception of the database creation process, most RDBMS vendors use
SQL that deviates little from the ANSI standard SQL. For example, most RDBMSs require that each SQL command
ends with a semicolon. However, some SQL implementations do not use a semicolon. Important syntax differences
among implementations will be highlighted in Note boxes.

If you are using an enterprise RDBMS, before you can start creating tables you must be authenticated by the RDBMS.
Authentication is the process through which the DBMS verifies that only registered users may access the database.
To be authenticated, you must log on to the RDBMS using a user ID and a password created by the database
administrator. In an enterprise RDBMS, every user ID is associated with a database schema.

THE DATABASE SCHEMA

In the SQL environment, a schema is a group of database objects—such as tables and indexes—that are related to
each other. Usually, the schema belongs to a single user or application. A single database can hold multiple schemas
belonging to different users or applications. Think of a schema as a logical grouping of database objects, such as tables,
indexes, and views. Schemas are useful in that they group tables by owner (or function) and enforce a first level of
security by allowing each user to see only the tables that belong to that user.

ANSI SQL standards define a command to create a database schema:
CREATE SCHEMA AUTHORIZATION {creator};
Therefore, if the creator is JONES, use the command:

CREATE SCHEMA AUTHORIZATION JONES;

C6545_07 7/26/2007 14:1:36 Page 230

230

CHAPTER 7

Most enterprise RDBMSs support that command. However, the command is seldom used directly—that is, from the
command line. (When a user is created, the DBMS automatically assigns a schema to that user.) When the DBMS is
used, the CREATE SCHEMA AUTHORIZATION command must be issued by the user who owns the schema. That
is, if you log on as JONES, you can use only CREATE SCHEMA AUTHORIZATION JONES.

For most RDBMSs, the CREATE SCHEMA AUTHORIZATION is optional. That is why this chapter focuses on the
ANSI SQL commands required to create and manipulate tables.

DATA TYPES

After the database schema has been created, you are ready to define the PRODUCT and VENDOR table structures
within the database. The table-creating SQL commands used in the example are based on the data dictionary shown

in Table 7.3.

In the data dictionary in Table 7.3, note particularly the data types selected. Keep in mind that data type selection is
usually dictated by the nature of the data and by the intended use. For example:

e P _PRICE clearly requires some kind of numeric data type; defining it as a character field is not acceptable.

e Just as clearly, a vendor name is an obvious candidate for a character data type. For example, VARCHAR2(35)
fits well because vendor names are “variable-length” character strings, and in this case, such strings may be up
to 35 characters long.

e U.S. state abbreviations are always two characters, so CHAR(2) is a logical choice.

e Selecting P_INDATE to be a (Julian) DATE field rather than a character field is desirable because the Julian
dates allow you to make simple date comparisons and to perform date arithmetic. For instance, if you have
used DATE fields, you can determine how many days are between them.

If you use DATE fields, you can also determine what the date will be in say, 60 days from a given P_INDATE by using
P_INDATE + 60. Or you can use the RDBMS'’s system date—SYSDATE in Oracle, GETDATE() in MS SQL Server,
and Date() in Access—to determine the answer to questions such as, “What will be the date 60 days from today?” For
example, you might use SYSDATE + 60 (in Oracle); GETDATE() + 60 (in MS SQL Server) or Date() + 60 (in Access).

Date arithmetic capability is particularly useful in billing. Perhaps you want your system to start charging interest on
a customer balance 60 days after the invoice is generated. Such simple date arithmetic would be impossible if you used
a character data type.

Data type selection sometimes requires professional judgment. For example, you must make a decision about the
V_CODE’s data type as follows:

e If you want the computer to generate new vendor codes by adding 1 to the largest recorded vendor code, you
must classify V_CODE as a numeric attribute. (You cannot perform mathematical procedures on character
data.) The designation INTEGER will ensure that only the counting numbers (integers) can be used. Most SQL
implementations also permit the use of SMALLINT for integer values up to six digits.

e If you do not want to perform mathematical procedures based on V_CODE, you should classify it as a character
attribute, even though it is composed entirely of numbers. Character data are “quicker” to process in queries.
Therefore, when there is no need to perform mathematical procedures on the attribute, store it as a character
attribute.

The first option is used to demonstrate the SQL procedures in this chapter.

ge 231

C6545_07 7/23/2007 14:45:10 Pa

STRUCTURED QUE

INTRODUCTION TO

"SJUIBLSUOD UMO INOA Suntim 2onoeid 0} sjuleIsuod asayl asn ued NoA “1anemop 1aydeypd siyl ul pajensn||l aq [[IM 19y UMOYs Saguel ay} [[e 10N
ANAANW, 10 AMNAANWW, AANOW-AQ, , AMA-NOW-Ad, ‘o4 sjeutio} pajdede Ajuowiwo) Area sjewo) 31va
Ajuo sanjea 1a8ajul [jews = |NITIVINS
Ajuo sanjea 1a8aju| = 1INI
*2dA) 1ep ADNINYND B 10 AANOW ® Jo asn ayy yiwiad
sSINGAY dwos “seoed [ewdap ayy Suipnpul ‘uo| sudip auiu 0y dn pue sede|d [ewidap omy yum siaquinu Ajads 03 pasn st (Z/6)YIGWNN “BIep duawnN = JYIGWNN
9PBIO Ul ZYVHIYVA O} POLSAUOD A|[EDIFBWOINE S| YVHIYVA "SI10eIeyd 000’z 03 | ‘erep yidus| 1ojoeleyd ajqetes = YVHIUVA
s1910BIBYD GG 0} | ‘eyep yidus| Jejoeleyd paxiy = AVED
Aoy Arewnd = Md
A9y ugialo4 = M4
A N 10 A X (LVHD 19pI0 SNoIASId JIAYO A
A VN XX (©¥VYHD 91e]g JLVIS A
A VN 66667666 (8)4VHD Joquinu auoyd INOHd A
A VN 666 (E)VHD °9p0d Ealy JAODVIYY A
A VN XXXXXXXXXXXXXX (STOYVHD uosiad 1eIU0D) L1DVINOD A
A VN XXXXXXXXXXXXXY (SEYVHD QWEU IOpUSA JAVN A
Md A 6666-000 L HHHHH HIDIINI 9POO IOPUSA 3A0D A JOANIA
JOANIA DE| 666-001 #A# AdIDIINI 9P03 I0pUIA 30D A
A 0¢°0-00°0 ##°0 (T'9)¥IgWNN 9jel Junodsi(INNODSIA d
A 00°6666-00°0 HH#E HH#HH (T'8)43dWNN 2oud 1pnpoiy IDIYd d
A 6666-0 HH#H#HH INITIVNS Sjun wnuwiuly NIW d
A 6666-0 #HHHH INITIVWS d|qe|ieae spun HOO d
A VN AAA-NOW-Ad 11vd 1ep SUDDOIS JLVANI d
A VN HHXXXXXXXXXX (SEPIVHIIVA uondudsap 1PNpo.d 1dIRIDS3AA d
Md A VN XXXXXXXXXX (OL)IVHD 9PO0d 1PNpo.d 3d0OD d | 1DONdO¥d

319vL
(€EO/\EREEER]
hE!|

A4
40
Ad

azxinoy

IVWHOA

aseqereq ODITVS LOHD 3y} 10} Areuondiq ejeq

SINIINOD

JWVN
J1NALLVY

‘ C6545_07 9/4/2007 13:40:49 Page 232

CHAPTER 7

When you define the attribute’s data type, you must pay close attention to the expected use of the attributes for sorting
and data retrieval purposes. For example, in a real estate application, an attribute that represents the numbers of
bathrooms in a home (H_BATH_NUM) could be assigned the CHAR(3) data type because it is highly unlikely the
application will do any addition, multiplication, or division with the number of bathrooms. Based on the CHAR(3) data
type definition, valid H_BATH_NUM values would be '2','1','2.5','10". However, this data type decision creates potential
problems. For example, if an application sorts the homes by number of bathrooms, a query would “see” the value '10'
as less than '2', which is clearly incorrect. So you must give some thought to the expected use of the data in order to
properly define the attribute data type.

The data dictionary in Table 7.3 contains only a few of the data types supported by SQL. For teaching purposes, the
selection of data types is limited to ensure that almost any RDBMS can be used to implement the examples. If your
RDBMS is fully compliant with ANSI SQL, it will support many more data types than the ones shown in Table 7.4.
And many RDBMSs support data types beyond the ones specified in ANSI SQL.

Some Common SQL Data Types

DATA TYPE FORMAT COMMENTS
Numeric NUMBER(L,D) The declaration NUMBER(7,2) indicates numbers that will be stored with
two decimal places and may be up to seven digits long, including the sign
and the decimal place. Examples: 12.32, —134.99.

INTEGER May be abbreviated as INT. Integers are (whole) counting numbers, so they
cannot be used if you want to store numbers that require decimal places.

SMALLINT Like INTECER, but limited to integer values up to six digits. If your integer
values are relatively small, use SMALLINT instead of INT.

DECIMAL(L,D) Like the NUMBER specification, but the storage length is a minimum
specification. That is, greater lengths are acceptable, but smaller ones are
not. DECIMAL(9,2), DECIMAL(9), and DECIMAL are all acceptable.
Character CHAR(L) Fixed-length character data for up to 255 characters. If you store strings that
are not as long as the CHAR parameter value, the remaining spaces are left
unused. Therefore, if you specify CHAR(25), strings such as Smith and
Katzenjammer are each stored as 25 characters. However, a U.S. area code
is always three digits long, so CHAR(3) would be appropriate if you wanted
to store such codes.

VARCHAR(L) or | Variable-length character data. The designation VARCHAR2(25) will let you
VARCHAR2(L) store characters up to 25 characters long. However, VARCHAR will not leave
unused spaces. Oracle automatically converts VARCHAR to VARCHAR2.
Date DATE Stores dates in the Julian date format.

In addition to the data types shown in Table 7.4, SQL supports several other data types, including TIME, TIMESTAMP,
REAL, DOUBLE, FLOAT, and intervals such as INTERVAL DAY TO HOUR. Many RDBMSs also have expanded the
list to include other types of data, such as LOGICAL, CURRENCY, AutoNumber (Access), and sequence (Oracle).
However, because this chapter is designed to introduce the SQL basics, the discussion is limited to the data types
summarized in Table 7.4.

CREATING TABLE STRUCTURES

Now you are ready to implement the PRODUCT and VENDOR table structures with the help of SQL, using the
CREATE TABLE syntax shown next.

C6545_07 9/4/2007 13:41:6 Page 233

——

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL)

233

CREATE TABLE tablename (

columnl
column2
PRIMARY KEY
FOREIGN KEY
CONSTRAINT

ONLINE

data type [constraint] |,

data type [constraint]] [,

(columnl [, column2))]|,

(columnl [, columnZ2]) REFERENCES tablename] |,

constraint]);

CONTENT

All the SQL commands you will see in this chapter are located in script files in the Student Online Companion
for this book. You can copy and paste the SQL commands into your SQL program. Script files are provided for
Oracle and SQL Server users.

To make the SQL code more readable, most SQL programmers use one line per column (attribute) definition. In
addition, spaces are used to line up the attribute characteristics and constraints. Finally, both table and attribute names
are fully capitalized. Those conventions are used in the following examples that create VENDOR and PRODUCT tables

and throughout the book.

NOTE

SQL SYNTAX

Syntax notation for SQL commands used in this book:

CAPITALS
jtalics

{albf.}

Tablename
Column
data type
constraint
condition
columnlist
tablelist
conditionlist

expression

CREATE TABLE VENDOR
V_CODE

V_NAME

V_CONTACT
V_AREACODE

V_PHONE

V_STATE

V_ORDER

PRIMARY KEY (V_CODE));

Required SQL command keywords

An end-user-provided parameter (generally required)

A mandatory parameter; use one option from the list separated by |
An optional parameter—anything inside square brackets is optional
The name of a table

The name of an attribute in a table

A valid data type definition

A valid constraint definition

A valid conditional expression (evaluates to true or false)

One or more column names or expressions separated by commas
One or more table names separated by commas

One or more conditional expressions separated by logical operators

A simple value (such as 76 or Married) or a formula (such as P_PRICE — 10)

(

INTEGER NOT NULL UNIQUE,
VARCHAR(35) NOT NULL,
VARCHAR(15) NOT NULL,
CHAR(3) NOT NULL,
CHAR(8) NOT NULL,
CHAR(2) NOT NULL,
CHAR(1) NOT NULL,

o

C6545_07 9/4/2007 13:41:20 Page 234

234

CHAPTER 7

NOTE

* Because the PRODUCT table contains a foreign key that references the VENDOR table, create the
VENDOR table first. (In fact, the M side of a relationship always references the 1 side. Therefore, in a 1:M
relationship, you must always create the table for the 1 side first.)

e If your RDBMS does not support the VARCHAR2 and FCHAR format, use CHAR.

e Oracle accepts the VARCHAR data type and automatically converts it to VARCHAR?2.

e If your RDBMS does not support SINT or SMALLINT, use INTEGER or INT. If INTEGER is not supported,
use NUMBER.

e If you use Access, you can use the NUMBER data type, but you cannot use the number delimiters at the
SQL level. For example, using NUMBER(8,2) to indicate numbers with up to eight characters and two
decimal places is fine in Oracle, but you cannot use it in Access—you must use NUMBER without the
delimiters.

e If your RDBMS does not support primary and foreign key designations or the UNIQUE specification,
delete them from the SQL code shown here.

e If you use the PRIMARY KEY designation in Oracle, you do not need the NOT NULL and UNIQUE
specifications.

* The ON UPDATE CASCADE clause is part of the ANSI standard, but it may not be supported by your
RDBMS. In that case, delete the ON UPDATE CASCADE clause.

CREATE TABLE PRODUCT (

P_CODE VARCHAR(10) NOT NULL UNIQUE,
P_DESCRIPT VARCHAR(35) NOT NULL,

P_INDATE DATE NOT NULL,

P_QOH SMALLINT NOT NULL,

P_MIN SMALLINT NOT NULL,

P_PRICE NUMBER(8,2) NOT NULL,

P_DISCOUNT NUMBER(5,2) NOT NULL,

V_CODE INTEGER,

PRIMARY KEY (P_CODE),
FOREIGN KEY (V_CODE) REFERENCES VENDOR ON UPDATE CASCADE);

As you examine the preceding SQL table-creating command sequences, note the following features:

The NOT NULL specifications for the attributes ensure that a data entry will be made. When it is crucial to have
the data available, the NOT NULL specification will not allow the end user to leave the attribute empty (with
no data entry at all). Because this specification is made at the table level and stored in the data dictionary,
application programs can use this information to create the data dictionary validation automatically.

The UNIQUE specification creates a unique index in the respective attribute. Use it to avoid duplicated values
in a column.

The primary key attributes contain both a NOT NULL and a UNIQUE specification. Those specifications
enforce the entity integrity requirements. If the NOT NULL and UNIQUE specifications are not supported, use
PRIMARY KEY without the specifications. (For example, if you designate the PK in MS Access, the NOT
NULL and UNIQUE specifications are automatically assumed and are not spelled out.)

The entire table definition is enclosed in parentheses. A comma is used to separate each table element
(attributes, primary key, and foreign key) definition.

C6545_07 7/26/2007 14:2:30 Page 235

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL) 235

NOTE

If you are working with a composite primary key, all of the primary keys attributes are contained within the
parentheses and are separated with commas. For example, the LINE table in Figure 7.1 has a primary key that
consists of the two attributes INV_NUMBER and LINE_NUMBER. Therefore, you would define the primary key
by typing:

PRIMARY KEY (INV_NUMBER, LINE_NUMBER),

The order of the primary key components is important because the indexing starts with the first-mentioned
attribute, then proceeds with the next attribute, and so on. In this example, the line numbers would be ordered
within each of the invoice numbers:

INV_NUMBER LINE_NUMBER
1001 1
1001 2
1002 1
1003 1
1003 2

e The ON UPDATE CASCADE specification ensures that if you make a change in any VENDOR'’s V_CODE,
that change is automatically applied to all foreign key references throughout the system (cascade) to ensure that
referential integrity is maintained. (Although the ON UPDATE CASCADE clause is part of the ANSI standard,
some RDBMSs such as Oracle do not support ON UPDATE CASCADE. If your RDBMS does not support the
clause, delete it from the code shown here.)

e An RDBMS will automatically enforce referential integrity for foreign keys. That is, you cannot have an invalid
entry in the foreign key column; at the same time, you cannot delete a vendor row as long as a product row
references that vendor.

e The command sequence ends with a semicolon. (Remember, your RDBMS may require that you omit the
semicolon.)

NOTE

NOTE ABOUT COLUMN NAMES

Do not use mathematical symbols such as +, —, and / in your column names; instead, use an underscore to
separate words, if necessary. For example, PER-NUM might generate an error message, but PER_ NUM is
acceptable. Also, do not use reserved words. Reserved words are words used by SQL to perform specific functions.
For example, in some RDBMSs, the column name INITIAL will generate the message invalid column name.

SQL CONSTRAINTS

In Chapter 3, The Relational Model, you learned that adherence to rules on entity integrity and referential integrity is
crucial in a relational database environment. Fortunately, most SQL implementations support both integrity rules.
Entity integrity is enforced automatically when the primary key is specified in the CREATE TABLE command sequence.
For example, you can create the VENDOR table structure and set the stage for the enforcement of entity integrity rules
by using:

PRIMARY KEY (V_CODE)

In the PRODUCT table’s CREATE TABLE sequence, note that referential integrity has been enforced by specifying in
the PRODUCT table:

FOREIGN KEY (V_CODE) REFERENCES VENDOR ON UPDATE CASCADE

o

C6545_07 9/6/2007 16:23:52 Page 236

236

CHAPTER 7

NOTE

NOTE TO ORACLE USERS

When you press the Enter key after typing each line, a line number is automatically generated as long as you do
not type a semicolon before pressing the Enter key. For example, Oracles execution of the CREATE TABLE
command will look like this:

CREATE TABLE PRODUCT (

2 P_CODE VARCHAR2(10)
3 CONSTRAINT PRODUCT _P_CODE_PK PRIMARY KEY,
4 P_DESCRIPT VARCHAR2(35) NOT NULL,
5 P_INDATE DATE NOT NULL,
6 P_QOH NUMBER NOT NULL,
7 P_MIN NUMBER NOT NULL,
8 P_PRICE NUMBER(8,2) NOT NULL,
9 P_DISCOUNT NUMBER(5,2) NOT NULL,

10 V_CODE NUMBER,

11 CONSTRAINT PRODUCT _V_CODE_FK

12 FOREIGN KEYV_CODE REFERENCES VENDOR

13

In the preceding SQL command sequence, note the following:

e The attribute definition for P_CODE starts in line 2 and ends with a comma at the end of line 3.

e The CONSTRAINT clause (line 3) allows you to define and name a constraint in Oracle. You can name the
constraint to meet your own naming conventions. In this case, the constraint was named PRODUCT_P_
CODE_PK.

Examples of constraints are NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY, and CHECK. For
additional details about constraints, see below.

* To define a PRIMARY KEY constraint, you could also use the following syntax: P_CODE VARCHAR2(10)
PRIMARY KEY,.

In this case, Oracle would automatically name the constraint.

Lines 11 and 12 define a FOREIGN KEY constraint name PRODUCT V_CODE_FK for the attribute

V_CODE. The CONSTRAINT clause is generally used at the end of the CREATE TABLE command
sequence.

e If you do not name the constraints yourself, Oracle will automatically assign a name. Unfortunately, the
Oracle-assigned name makes sense only to Oracle, so you will have a difficult time deciphering it later. You
should assign a name that makes sense to human beings!

That foreign key constraint definition ensures that:

e You cannot delete a vendor from the VENDOR table if at least one product row references that vendor. This

is the default behavior for the treatment of foreign keys.

e On the other hand, if a change is made in an existing VENDOR table’s V_CODE, that change must be reflected
automatically in any PRODUCT table V_CODE reference (ON UPDATE CASCADE). That restriction makes
it impossible for a V_CODE value to exist in the PRODUCT table pointing to a nonexistent VENDOR table
V_CODE value. In other words, the ON UPDATE CASCADE specification ensures the preservation of

I

In general, ANSI SQL permits the use of ON DELETE and ON UPDATE clauses to cover CASCADE, SET NULL, or

eferential integrity. (Oracle does not support ON UPDATE CASCADE.)

SET DEFAULT.

C6545_07 9/4/2007 13:44:55 Page 237

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL)

237

ONLINE CONTENT

For a more detailed discussion of the options for the ON DELETE and ON UPDATE clauses, see Appendix D,
Converting an ER Model into a Database Structure, Section D.2, General Rules Governing
Relationships Among Tables. Appendix D is in the Student Online Companion.

NOTE

NOTE ABOUT REFERENTIAL CONSTRAINT ACTIONS
The support for the referential constraints actions varies from product to product. For example:
* MS Access, SQL Server, and Oracle support ON DELETE CASCADE.
* MS Access and SQL Server support ON UPDATE CASCADE.
* Oracle does not support ON UPDATE CASCADE.
* Oracle supports SET NULL.
* MS Access and SQL Server do not support SET NULL.

Refer to your product manuals for additional information on referential constraints.

While MS Access does not support ON DELETE CASCADE or ON UPDATE CASCADE at the SQL
command-line level, it does support them through the relationship window interface. In fact, whenever you try
to establish a relationship between two tables in Access, the relationship window interface will automatically

RORE

Besides the PRIMARY KEY and FOREIGN KEY constraints, the ANSI SQL standard also defines the following
constraints:

e The NOT NULL constraint ensures that a column does not accept nulls.
e The UNIQUE constraint ensures that all values in a column are unique.

e The DEFAULT constraint assigns a value to an attribute when a new row is added to a table. The end user may,
of course, enter a value other than the default value.

e The CHECK constraint is used to validate data when an attribute value is entered. The CHECK constraint does
precisely what its name suggests: it checks to see that a specified condition exists. Examples of such constraints
include the following:

- The minimum order value must be at least 10.
- The date must be after April 15, 2008.

If the CHECK constraint is met for the specified attribute (that is, the condition is true), the data are accepted for that
attribute. If the condition is found to be false, an error message is generated and the data are not accepted.

Note that the CREATE TABLE command lets you define constraints in two different places:
e When you create the column definition (known as a column constraint)
e When you use the CONSTRAINT keyword (known as a table constraint)

A column constraint applies to just one column; a table constraint may apply to many columns. Those constraints are
supported at varying levels of compliance by enterprise RDBMSs.

In this chapter, Oracle is used to illustrate SQL constraints. For example, note that the following SQL command
sequence uses the DEFAULT and CHECK constraints to define the table named CUSTOMER.

C6545_07 9/4/2007 13:45:17 Page 238

238

CHAPTER 7

CREATE TABLE CUSTOMER (

CUS_CODE NUMBER PRIMARY KEY,

CUS_LNAME VARCHAR(15) NOT NULL,

CUS_FNAME VARCHAR(15) NOT NULL,

CUS_INITIAL CHAR(1),

CUS_AREACODE CHAR(3) DEFAULT '615' NOT NULL
CHECK(CUS_AREACODE IN (615','713',931)),

CUS_PHONE CHAR(8) NOT NULL,

CUS_BALANCE NUMBER(9,2) DEFAULT 0.00,

CONSTRAINT CUS_UI1 UNIQUE (CUS_LNAME, CUS_FNAME));

In this case, the CUS_AREACODE attribute is assigned a default value of '615'". Therefore, if a new CUSTOMER table
row is added and the end user makes no entry for the area code, the '615' value will be recorded. Also note that the
CHECK condition restricts the values for the customer’s area code to 615, 713, and 931; any other values will be
rejected.

It is important to note that the DEFAULT value applies only when new rows are added to a table and then only when
no value is entered for the customer’s area code. (The default value is not used when the table is modified.) In contrast,
the CHECK condition is validated whether a customer row is added or modified. However, while the CHECK
condition may include any valid expression, it applies only to the attributes in the table being checked. If you want to
check for conditions that include attributes in other tables, you must use triggers. (See Chapter 8, Advanced SQL.)
Finally, the last line of the CREATE TABLE command sequence creates a unique index constraint (named CUS_UI1)
on the customer’s last name and first name. The index will prevent the entry of two customers with the same last name
and first name. (This index merely illustrates the process. Clearly, it should be possible to have more than one person
named John Smith in the CUSTOMER table.)

NOTE

NOTE TO MS ACCESS USERS
MS Access does not accept the DEFAULT or CHECK constraints. However, MS Access will accept the
CONSTRAINT CUS_UIT UNIQUE (CUS_LNAME, CUS_FNAME) line and create the unique index.

In the following SQL command to create the INVOICE table, the DEFAULT constraint assigns a default date to a new
invoice, and the CHECK constraint validates that the invoice date is greater than January 1, 2008.

CREATE TABLE INVOICE (

INV_NUMBER NUMBER PRIMARY KEY,
CUS_CODE NUMBER NOT NULL REFERENCES CUSTOMER(CUS_CODE),
INV_DATE DATE DEFAULT SYSDATE NOT NULL,

CONSTRAINT INV_CK1 CHECK (INV_DATE > TO_DATE(01-JAN-2008',DD-MON-YYYY));

In this case, notice the following:
e The CUS_CODE attribute definition contains REFERENCES CUSTOMER (CUS_CODE) to indicate that the
CUS_CODE is a foreign key. This is another way to define a foreign key.
e The DEFAULT constraint uses the SYSDATE special function. This function always returns today’s date.
e The invoice date (INV_DATE) attribute is automatically given today’s date (returned by SYSDATE) when a new
row is added and no value is given for the attribute.

e A CHECK constraint is used to validate that the invoice date is greater than 'January 1, 2008'. When
comparing a date to a manually entered date in a CHECK clause, Oracle requires the use of the TO_DATE
function. The TO_DATE function takes two parameters, the literal date and the date format used.

o

C6545_07 7/24/2007 9:45:55 Page 239

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL) 239

The final SQL command sequence creates the LINE table. The LINE table has a composite primary key (INV_
NUMBER, LINE_NUMBER) and uses a UNIQUE constraint in INV_NUMBER and P_CODE to ensure that the same
product is not ordered twice in the same invoice.

CREATE TABLE LINE (

INV_NUMBER NUMBER NOT NULL,
LINE_NUMBER NUMBER(2,0) NOT NULL,
P_CODE VARCHAR(10) NOT NULL,
LINE_UNITS NUMBER(9,2) DEFAULT 0.00 NOT NULL,
LINE_PRICE NUMBER(9,2) DEFAULT 0.00 NOT NULL,

PRIMARY KEY (INV_NUMBER, LINE_NUMBER),

FOREIGN KEY (INV_NUMBER) REFERENCES INVOICE ON DELETE CASCADE,
FOREIGN KEY (P_CODE) REFERENCES PRODUCT(P_CODE),

CONSTRAINT LINE_UI1 UNIQUE(INV_NUMBER, P_CODE));

In the creation of the LINE table, note that a UNIQUE constraint is added to prevent the duplication of an invoice line.
A UNIQUE constraint is enforced through the creation of a unique index. Also note that the ON DELETE CASCADE
foreign key action enforces referential integrity. The use of ON DELETE CASCADE is recommended for weak entities
to ensure that the deletion of a row in the strong entity automatically triggers the deletion of the corresponding rows
in the dependent weak entity. In that case, the deletion of an INVOICE row will automatically delete all of the LINE
rows related to the invoice. In the following section, you will learn more about indexes and how to use SQL commands
to create them.

SQL INDEXES

You learned in Chapter 3 that indexes can be used to improve the efficiency of searches and to avoid duplicate column
values. In the previous section, you saw how to declare unique indexes on selected attributes when the table is created.
In fact, when you declare a primary key, the DBMS automatically creates a unique index. Even with this feature, you
often need additional indexes. The ability to create indexes quickly and efficiently is important. Using the CREATE
INDEX command, SQL indexes can be created on the basis of any selected attribute. The syntax is:

CREATE [UNIQUE] INDEX indexname ON tablename(columnl [, columnZ2))

For example, based on the attribute P_INDATE stored in the PRODUCT table, the following command creates an
index named P_INDATEX:

CREATE INDEX P_INDATEX ON PRODUCT(P_INDATE);

SQL does not let you write over an existing index without warning you first, thus preserving the index structure within
the data dictionary. Using the UNIQUE index qualifier, you can even create an index that prevents you from using a
value that has been used before. Such a feature is especially useful when the index attribute is a candidate key whose
values must not be duplicated:

CREATE UNIQUE INDEX P_CODEX ON PRODUCT(P_CODE);

If you now try to enter a duplicate P_CODE value, SQL produces the error message “duplicate value in index.” Many
RDBMSs, including Access, automatically create a unique index on the PK attribute(s) when you declare the PK.

A common practice is to create an index on any field that is used as a search key, in comparison operations in a
conditional expression, or when you want to list rows in a specific order. For example, if you want to create a report
of all products by vendor, it would be useful to create an index on the V_CODE attribute in the PRODUCT table.
Remember that a vendor can supply many products. Therefore, you should not create a UNIQUE index in this case.
Better yet, to make the search as efficient as possible, a composite index is recommended.

o

C6545_07 7/24/2007 9:46:6 Page 240

Unique composite indexes are often used to prevent data duplication. For example, consider the case illustrated in
Table 7.5, in which required employee test scores are stored. (An employee can take a test only once on a given date.)
Given the structure of Table 7.5, the PK is EMP_NUM + TEST_NUM. The third test entry for employee 111 meets
entity integrity requirements—the combination 111,3 is unique—vyet the WEA test entry is clearly duplicated.

A Duplicated Test Record

EMP_NUM TEST_NUM TEST_CODE TEST_DATE TEST_SCORE
110 1 WEA 15-Jan-2008 93
110 2 WEA 12-Jan-2008 87
111 1 HAZ 14-Dec-2007 91
111 2 WEA 18-Feb-2008 95
111 3 WEA 18-Feb-2008 95
112 1 CHEM 17-Aug-2007 91

Such duplication could have been avoided through the use of a unique composite index, using the attributes
EMP_NUM, TEST_CODE, and TEST_DATE:

CREATE UNIQUE INDEX EMP_TESTDEX ON TEST(EMP_NUM, TEST_CODE, TEST_DATE);

By default, all indexes produce results that are listed in ascending order, but you can create an index that yields output
in descending order. For example, if you routinely print a report that lists all products ordered by price from highest
to lowest, you could create an index named PROD_PRICEX by typing:

CREATE INDEX PROD_PRICEX ON PRODUCT(P_PRICE DESC);
To delete an index, use the DROP INDEX command:

DROP INDEX indexname

For example, if you want to eliminate the PROD_PRICEX index, type:
DROP INDEX PROD_PRICEX;

After creating the tables and some indexes, you are ready to start entering data. The following sections use two tables
(VENDOR and PRODUCT) to demonstrate most of the data manipulation commands.

7.3 DATA MANIPULATION COMMANDS

In this section, you will learn how to use the basic SQL data manipulation commands INSERT, SELECT, COMMIT,
UPDATE, ROLLBACK, and DELETE.

v/ ADDING TABLE RoOws

SQL requires the use of the INSERT command to enter data into a table. The INSERT command’s basic syntax looks
like this:

INSERT INTO tablename VALUES (valuel, value2, ... , valuen)

Because the PRODUCT table uses its V_CODE to reference the VENDOR table’s V_CODE, an integrity violation will
occur if those VENDOR table V_CODE values don'’t yet exist. Therefore, you need to enter the VENDOR rows before

o

C6545_07 9/4/2007 13:45:35 Page 241

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL) 241

the PRODUCT rows. Given the VENDOR table structure defined earlier and the sample VENDOR data shown in
Figure 7.2, you would enter the first two data rows as follows:

INSERT INTO VENDOR

VALUES (21225, Bryson, Inc.','Smithson','615','223-3234' ' TN',"Y");
INSERT INTO VENDOR

VALUES (21226,'Superloo, Inc.',Flushing','904','215-8995''FL''N);

and so on, until all of the VENDOR table records have been entered.
(To see the contents of the VENDOR table, use the SELECT * FROM VENDOR; command.)

The PRODUCT table rows would be entered in the same fashion, using the PRODUCT data shown in Figure 7.2. For
example, the first two data rows would be entered as follows, pressing the Enter key at the end of each line:

INSERT INTO PRODUCT

VALUES (11QER/31',Power painter, 15 psi., 3-nozzle','03-Nov-07',8,5,109.99,0.00,25595);
INSERT INTO PRODUCT

VALUES (13-Q2/P2','7.25-in. pwr. saw blade','13-Dec-07',32,15,14.99, 0.05, 21344),

(To see the contents of the PRODUCT table, use the SELECT * FROM PRODUCT; command.)

NOTE

Date entry is a function of the date format expected by the DBMS. For example, March 25, 2008 might be
shown as 25-Mar-2008 in Access and Oracle, or it might be displayed in other presentation formats in another
RDBMS. MS Access requires the use of # delimiters when performing any computations or comparisons based
on date attributes, as in P_INDATE >= #25-Mar-08#.

In the preceding data entry lines, observe that:

e The row contents are entered between parentheses. Note that the first character after VALUES is a parenthesis
and that the last character in the command sequence is also a parenthesis.

e Character (string) and date values must be entered between apostrophes ().
e Numerical entries are not enclosed in apostrophes.
e Attribute entries are separated by commas.

e A value is required for each column in the table.

This version of the INSERT commands adds one table row at a time.

Inserting Rows with Null Attributes
Thus far, you have entered rows in which all of the attribute values are specified. But what do you do if a product does
not have a vendor or if you don’t yet know the vendor code? In those cases, you would want to leave the vendor code
null. To enter a null, use the following syntax:

INSERT INTO PRODUCT
VALUES (BRT-345', Titanium drill bit','18-Oct-07', 75, 10, 4.50, 0.06, NULL);

Incidentally, note that the NULL entry is accepted only because the V_CODE attribute is optional—the NOT NULL
declaration was not used in the CREATE TABLE statement for this attribute.

C6545_07 7/23/2007 16:38:31 Page 242

242

CHAPTER 7

Inserting Rows with Optional Attributes
There might be occasions when more than one attribute is optional. Rather than declaring each attribute as NULL in
the INSERT command, you can indicate just the attributes that have required values. You do that by listing the attribute

names inside parentheses after the table name. For the purpose of this example, assume that the only required
attributes for the PRODUCT table are P_CODE and P_DESCRIPT:

INSERT INTO PRODUCT(P_CODE, P_DESCRIPT) VALUES (BRT-345', Titanium drill bit);

SAVING TABLE CHANGES

Any changes made to the table contents are not saved on disk until you close the database, close the program you are
using, or use the COMMIT command. If the database is open and a power outage or some other interruption occurs
before you issue the COMMIT command, your changes will be lost and only the original table contents will be retained.
The syntax for the COMMIT command is:

COMMIT [WORK]

The COMMIT command permanently saves all changes—such as rows added, attributes modified, and rows
deleted—made to any table in the database. Therefore, if you intend to make your changes to the PRODUCT table
permanent, it is a good idea to save those changes by using:

COMMIT;

NOTE

NOTE TO MS ACCESS USERS
MS Access doesn’t support the COMMIT command because it automatically saves changes after the execution
of each SQL command.

However, the COMMIT command’s purpose is not just to save changes. In fact, the ultimate purpose of the COMMIT
and ROLLBACK commands (see Section 7.3.5) is to ensure database update integrity in transaction management.
(You will see how such issues are addressed in Chapter 10, Transaction Management and Concurrency Control.)

LISTING TABLE Rows

The SELECT command is used to list the contents of a table. The syntax of the SELECT command is as follows:
SELECT columnlist FROM tablename

The columnlist represents one or more attributes, separated by commas. You could use the * (asterisk) as a wildcard
character to list all attributes. A wildcard character is a symbol that can be used as a general substitute for other
characters or commands. For example, to list all attributes and all rows of the PRODUCT table, use:

SELECT * FROM PRODUCT;

Figure 7.3 shows the output generated by that command. (Figure 7.3 shows all of the rows in the PRODUCT table
that serve as the basis for subsequent discussions. If you entered only the PRODUCT table’s first two records, as shown
in the preceding section, the output of the preceding SELECT command would show only the rows you entered. Don’t
worry about the difference between your SELECT output and the output shown in Figure 7.3. When you complete the
work in this section, you will have created and populated your VENDOR and PRODUCT tables with the correct rows
for use in future sections.)

C6545_07 9/4/2007 13:46:4 Page 243

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL) 243

FIGURE The contents of the PRODUCT table

7.3
P_CODE P_DESCRIPT P_INDATE | P_@OH| P_hiM | P_PRICE | P_DISCOUNT | % _CODE
T1QERSH | Povver painter, 15 psi., 3-nozzle 03-Mow-07 3 5 10999 0.o0 25585
13-02P2 | 7.25-in. pwr. savw blade 13-Dec-07 32 15 14939 005 21344
14-G10L3 | 9.00-in. pawer. savw blade 13-Mow-07 18 12 17439 0.00 21344
1546-052 | Hrd. cloth, 1/4-in., 2x50 15-Jan-03 15 8 3945 0.00 23118
1555-001 | Hrd. cloth, 1/2-in., 3x50 15-Jan-03 23 5 43499 0.00 23118
2XI2ATY BAD jigzary, 12-in. blade 30-Dec-07 8 5 109.92 005 24288
2XI2CNE | BAD jigzavy, 8-in. blade 24-Dec-07 5} 5 39387 005 24288
2235/0PD | BAD cordless drill, 1/2-in. 20-Jan-03 12 5 3845 005 25595
2309-HB | Claww hammer 20-Jan-03 23 10 945 010 21225
23114-28 | Sledye hammer, 12 b, 02-Jan-03 8 5 14 .40 005
54778-2T | Rat-tail file, 1/5-in. fine 15-Dec-07 43 20 499 0.00 21344
B9WWRE-Q | Hicut chain savwe, 16 in. 07-Feh-08 11 5 256.99 005 24288
PWC2Z3DRT PWC pipe, 3.5-in., 8-t 20-Feh-08 188 75 587 0.00
SM-18277 | 1.25-in. metal screw, 25 01-Mar-08 172 75 5.99 0.00 21225
SW-23116 | 2.5-in. wid. screwy, 50 24-Feh-08 237 100 845 0.00 21231
WRITTI | Steel matting, 4'«8"<18", 5" mesh 17-Jan-08 18 5 119.95 010 25595

NOTE

Your listing may not be in the order shown in Figure 7.3. The listings shown in the figure are the result of
system-controlled primary-key-based index operations. You will learn later how to control the output so that it
conforms to the order you have specified.

NOTE

NOTE TO ORACLE USERS

Some SQL implementations (such as Oracle’s) cut the attribute labels to fit the width of the column. However,
Oracle lets you set the width of the display column to show the complete attribute name. You can also change
the display format, regardless of how the data are stored in the table. For example, if you want to display dollar
symbols and commas in the P_PRICE output, you can declare:

COLUMN P_PRICE FORMAT $99,999.99

to change the output 12347.67 to $12,347.67.
In the same manner, to display only the first 12 characters of the P_DESCRIPT attribute, use:
COLUMN P_DESCRIPT FORMAT A12 TRUNCATE

Although SQL commands can be grouped together on a single line, complex command sequences are best shown on
separate lines, with space between the SQL command and the command’s components. Using that formatting
convention makes it much easier to see the components of the SQL statements, making it easy to trace the SQL logic,
and if necessary, to make corrections. The number of spaces used in the indention is up to you. For example, note
the following format for a more complex statement:

SELECT P_CODE, P_DESCRIPT, P_INDATE, P_QOH, P_MIN, P_PRICE, P_DISCOUNT, V_CODE
FROM PRODUCT;

When you run a SELECT command on a table, the RDBMS returns a set of one or more rows that have the same
characteristics as a relational table. In addition, the SELECT command lists all rows from the table you specified in the
FROM clause. This is a very important characteristic of SQL commands. By default, most SQL data manipulation
commands operate over an entire table (or relation). That is why SQL commands are said to be set-oriented

o

C6545_07 9/4/2007 13:46:16 Page 244

244

CHAPTER 7

commands. A SQL set-oriented command works over a set of rows. The set may include one or more columns and
zero or more rows from one or more tables.

UPDATING TABLE Rows
Use the UPDATE command to modify data in a table. The syntax for this command is:
UPDATE tablename

SET columnname = expression [, columnname = expression]
[WHERE conditionlist |;

For example, if you want to change P_INDATE from December 13, 2007, to January 18, 2008, in the second row
of the PRODUCT table (see Figure 7.3), use the primary key (13-Q2/P2) to locate the correct (second) row. Therefore,

type:

UPDATE PRODUCT
SET P_INDATE = '18-JAN-2008'
WHERE P_CODE = '13-Q2/P2}

If more than one attribute is to be updated in the row, separate the corrections with commas:

UPDATE PRODUCT
SET P_INDATE = '18-JAN-2008', P_PRICE = 17.99, P_MIN = 10
WHERE P_CODE = '13-Q2/P2';

What would have happened if the previous UPDATE command had not included the WHERE condition? The
P_INDATE, P_PRICE, and P_MIN values would have been changed in all rows of the PRODUCT table. Remember,
the UPDATE command is a set-oriented operator. Therefore, if you don’t specify a WHERE condition, the UPDATE
command will apply the changes to all rows in the specified table.

Confirm the correction(s) by using this SELECT command to check the PRODUCT table’s listing:

SELECT * FROM PRODUCT;

RESTORING TABLE CONTENTS

If you have not yet used the COMMIT command to store the changes permanently in the database, you can restore
the database to its previous condition with the ROLLBACK command. ROLLBACK undoes any changes since the
last COMMIT command and brings the data back to the values that existed before the changes were made. To restore
the data to their “pre-change” condition, type

ROLLBACK;

and then press the Enter key. Use the SELECT statement again to see that the ROLLBACK did, in fact, restore the
data to their original values.

COMMIT and ROLLBACK work only with data manipulation commands that are used to add, modify, or delete table
rows. For example, assume that you perform these actions:

1. CREATE a table called SALES.

2. INSERT 10 rows in the SALES table.

3. UPDATE two rows in the SALES table.

4. Execute the ROLLBACK command.

C6545_07 7/26/2007 14:3:28 Page 245

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL) 245

Will the SALES table be removed by the ROLLBACK command? No, the ROLLBACK command will undo only the
results of the INSERT and UPDATE commands. All data definition commands (CREATE TABLE) are automatically
commiitted to the data dictionary and cannot be rolled back. The COMMIT and ROLLBACK commands are examined
in greater detail in Chapter 10.

NOTE

NOTE TO MS ACCESS USERS
MS Access doesn‘t support the ROLLBACK command.

Some RDBMSs, such as Oracle, automatically COMMIT data changes when issuing data definition commands. For
example, if you had used the CREATE INDEX command after updating the two rows in the previous example, all
previous changes would have been committed automatically; doing a ROLLBACK afterward wouldn’t have undone
anything. Check your RDBMS manual to understand these subtle differences.

DELETING TABLE RoOws

It is easy to delete a table row using the DELETE statement; the syntax is:

DELETE FROM tablename
[WHERE conditionlist |;

For example, if you want to delete from the PRODUCT table the product that you added earlier whose code (P_CODE)
is BRT-345', use:

DELETE FROM PRODUCT
WHERE P_CODE = 'BRT-345';

In that example, the primary key value lets SQL find the exact record to be deleted. However, deletions are not limited
to a primary key match; any attribute may be used. For example, in your PRODUCT table, you will see that there are
several products for which the P_MIN attribute is equal to 5. Use the following command to delete all rows from the
PRODUCT table for which the P_MIN is equal to 5:

DELETE FROM PRODUCT
WHERE P_MIN = 5;

Check the PRODUCT table’s contents again to verify that all products with P_MIN equal to 5 have been deleted.

Finally, remember that DELETE is a set-oriented command. And keep in mind that the WHERE condition is optional.
Therefore, if you do not specify a WHERE condition, all rows from the specified table will be deleted!

INSERTING TABLE ROWS WITH A SELECT SUBQUERY

You learned in Section 7.3.1 how to use the INSERT statement to add rows to a table. In that section, you added rows
one at a time. In this section, you learn how to add multiple rows to a table, using another table as the source of the
data. The syntax for the INSERT statement is:

INSERT INTO tablename SELECT columnlist FROM tablename;

In that case, the INSERT statement uses a SELECT subquery. A subquery, also known as a nested query or an
inner query, is a query that is embedded (or nested) inside another query. The inner query is always executed first by
the RDBMS. Given the previous SQL statement, the INSERT portion represents the outer query, and the SELECT
portion represents the subquery. You can nest queries (place queries inside queries) many levels deep; in every case,

o

C6545_07 9/6/2007 16:24:52 Page 246

246

CHAPTER 7

the output of the inner query is used as the input for the outer (higher-level) query. In Chapter 8 you will learn more
about the various types of subqueries.

The values returned by the SELECT subquery should match the attributes and data types of the table in the INSERT
statement. If the table into which you are inserting rows has one date attribute, one number attribute, and one
character attribute, the SELECT subquery should return one or more rows in which the first column has date values,
the second column has number values, and the third column has character values.

Populating the VENDOR and PRODUCT Tables

The following steps guide you through the process of populating the VENDOR and PRODUCT tables with the data
to be used in the rest of the chapter. To accomplish that task, two tables named V and P are used as the data source.
V and P have the same table structure (attributes) as the VENDOR and PRODUCT tables.

ONLINE CONTENT

Before you execute the following commands, you MUST do the following:

* If you are using Oracle, run the create_P_V.sql script file in the Online Student Companion to create
the V and P tables used in the example below. To connect to the database, follow the instructions specific
to your school’s setup provided by your instructor.

¢ If you are using Access, copy the original Ch07_SaleCo.mbd file from the Online Student Companion.

Use the following steps to populate your VENDOR and PRODUCT tables. (If you haven't already created the
PRODUCT and VENDOR tables to practice the SQL commands in the previous sections, do so before completing
these steps.)
1. Delete all rows from the PRODUCT and VENDOR tables.
- DELETE FROM PRODUCT;
- DELETE FROM VENDOR;
2. Add the rows to VENDOR by copying all rows from V.
- If you are using MS Access, type:
INSERT INTO VENDOR SELECT * FROM V;
- If you are using Oracle, type:
INSERT INTO VENDOR SELECT * FROM TEACHER.V;
3. Add the rows to PRODUCT by copying all rows from P.
- If you are using MS Access, type:
INSERT INTO PRODUCT SELECT * FROM P;
- If you are using Oracle, type:
INSERT INTO PRODUCT SELECT * FROM TEACHER.P;

- Oracle users must permanently save the changes by issuing the COMMIT; command.

If you followed those steps correctly, you now have the VENDOR and PRODUCT tables populated with the data that
will be used in the remaining sections of the chapter.

C6545_07 9/14/2007 9:21:25 Page 247

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL) 247

ONLINE CONTENT

Before you execute the commands in the following sections, you MUST do the following:

e If you are using Oracle, run the sqlintrodbinit.sql script file in the Online Student Companion to
create all tables and load the data in the database. To connect to the database, follow the instructions
specific to your school’s setup provided by your instructor.

e If you are using Access, copy the original Ch07_SaleCo.mbd file from the Online Student Companion.

7.4 SELECT QUERIES

In this section, you will learn how to fine-tune the SELECT command by adding restrictions to the search criteria. SELECT,

coupled with appropriate search conditions, is an incredibly powerful tool that enables you to transform data into
information. For example, in the following sections, you will learn how to create queries that can be used to answer
questions such as these: “What products were supplied by a particular vendor?” “Which products are priced below $10?”
“How many products supplied by a given vendor were sold between January 5, 2008 and March 20, 2008?”

SELECTING ROws WITH CONDITIONAL RESTRICTIONS

You can select partial table contents by placing restrictions on the rows to be included in the output. This is done by
using the WHERE clause to add conditional restrictions to the SELECT statement. The following syntax enables you
to specify which rows to select:

SELECT columnlist
FROM tablelist
[WHERE conditionlist];

The SELECT statement retrieves all rows that match the specified condition(s)—also known as the conditional
criteria—you specified in the WHERE clause. The conditionlist in the WHERE clause of the SELECT statement is
represented by one or more conditional expressions, separated by logical operators. The WHERE clause is optional.
If no rows match the specified criteria in the WHERE clause, you see a blank screen or a message that tells you that
no rows were retrieved. For example, the query:

SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE
FROM PRODUCT
WHERE V_CODE = 21344,

returns the description, date, and price of products with a vendor code of 21344, as shown in Figure 7.4.

MS Access users can use the Access QBE (query by example)

FIGURE Selected PRODUCT table query generator. Although the Access QBE generates its

7.4 attributes for vendor G]
code 21344 own “native” version of SQL, you can also elect to type
standard SQL in the Access SQL window, as shown at the
P_DESCRIPT | P_MDATE | P_PRICE [v_cODE bottom of Figure 7.5. Figure 7.5 shows the Access QBE
7.254in. puvr . sen blace 13-Dec-07| 1483 21344 screen, the SQL window’s QBE-generated SQL, and the
9.00-in. pwvr. save blade 13-Mov-07 17.49 21344 .. ofe
Rat-tail file, 1/8-in. fine 15-Dec-07 488 21344 listing of the modified SQL.

Numerous conditional restrictions can be placed on the
selected table contents. For example, the comparison opera-
tors shown in Table 7.6 can be used to restrict output.

o

‘ C6545_07 7/23/2007 16:59:25 Page 248

FIGURE
7.5

qryFig7-04 - Microsoft Access a == X
g rion G Za % Insert Columns operty She 4 uery optuons
%! +! 4 % x' a us n:(f:j %' Insert Col ‘z@wpm—sntg)’ P . .

® @ PassThrough = W Detete Columns
Vi Ru Make A d Update Cr tab Delets =17 Totals '
e L Tm: el Ol T 7, Data Definition Tam SN 5 Return: Al - ,‘ S Sy Parameters
== . QuenyType i i _ QueySetup || ShowHide
5 || =
|
| | P_DISCOUNT
& — o
£ | »
8
oy Fl_l!i_l* P_DESCRIPT P_INDATE]P_F’RICE & [V CODE]
o Table: |PRODUCT PRODUCT PRODUCT |PRDDUCI' I% |
=l s
| show | O [x]
| Criteria: 21344
or
-
I 4 i) 2 |
Form View EE
.
Microsoft Access-generated SQL User-entered SQL

q . i) - anyFig7-04 - Micrasaft Access Query Tools B ’9 0‘ J = mrﬂg?m Microsoft Access :

Ui r D Union || =
EE %H'f"%x'“’““ R %H'A%x' |8
® @ PassThrough P | @ Pass-Through |
View Run || Make Append Update Crosstab Delete Show ‘ V'E‘W Make Append Update Crosstab Delete how
- Table W, Data Definition || Table Table 1, Data Definition | Tame
:,%I! Queny Tye | sl Resuits || i BT BB sadescsssescmsaeisssicl) o=

5 | [SELECT P_DESCRIPT, P_INDATE, P_FRICE_ V_CDDE
-~ |lrrom PRODUCT
\WHERE [([PRODUCT.[V_CODE]|=21344)}; \WHERE V_CODE=21344;

NOTE TO MS ACCESS USERS

The MS Access QBE interface automatically designates the data source by using the table name as a prefix. You
will discover later that the table name prefix is used to avoid ambiguity when the same column name appears
in multiple tables. For example, both the VENDOR and the PRODUCT tables contain the V_CODE attribute.
Therefore, if both tables are used—as they would be in a join—the source of the V_CODE attribute must be

specified.
Comparison Operators The following example uses the “not equal to” operator:
SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE

SYMBOL MEANING FROM PRODUCT
= Equal to WHERE ~ V_CODE <> 21344;
< Less than
<= Less than or equal to The output, shown in Figure 7.6, lists all of the rows for
> Greater than which the vendor code is not 21344.
>= Greater th [t

reaer nanorequa o Note that in Figure 7.6, rows with nulls in the V_CODE
<>or!= Not equal to

column (see Figure 7.3) are not included in the SELECT
command’s output.

o

C6545_07 7/23/2007 16:59:26 Page 249

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL) 249
The command sequence:
FIGURE Selected PRODUCT table d
7.6 attributes for vendor codes
other than 21344 SELECT P_DESCRIPT, P_QOH, P_MIN, P_PRICE
FROM PRODUCT
P_DESCRIPT | P_MDATE [P_PRICE | ¥_CODE WHERE P_PRICE <= 10;
Poweer painter, 15 psi., 3-nozzle 03-Mow-07 109.99 25535
Hrd. cloth, 1644, 2x50 15-.Jan03 3985 23119 yields the output shown in Figure 7.7.
Hrd. clath, 1/2-in., 350 15-Jan-03 4383 23119
BED jigsaw, 1 2-in. blade 30-Dec07 10992 24288
BAD jigsaw, G-n. blade 24-Dec-07 9987 24285 . .
B&D cordless dril, 1/2-n. 20-Jan03 3695 25395 USlng Comparlson OperatOl‘S on Character
Clatw hammer 20-Jan-08 0os 21225 Attributes
Hicut chain saw, 16 in. 07-Feb-08| 25699 24288) .))
1 25-in. metal screw, 25 01 -Mar 05 Bon 21225 Because computers identify all characters by their (numeric)
2.5-in. wd. sorew, 50 24-Feb-08 85| 21231 American Standard Code for Information Interchange
Steel matting, 4'<8"%1 /8", 5" mesh 17-Jan-03 119.95 25595

(ASCII) codes, comparison operators may even be used to
place restrictions on character-based attributes. Therefore,

FIGURE Selected PRODUCT table the command:
7.7 attributes with a P_PRICE
restriction - SELECT P_CODE, P_DESCRIPT, P_QOH, P_MIN,
P_PRICE
P_DESCRIPT | P_@oH [P_tin | P_PRICE FROM PRODUCT
Clarwy hammer 23 10 9435 WHERE P_CODE < '1558-QW1';
Rat-tail file, 1/5-in. fine 43 20 4.99
?\;(;'I:p?n .:j:cr :\:It P 1?2 ;: gg; would be correct and would yield a list of all rows in which the
2 5-in. wl. screw, 50 237 100 8.45 P_CODE is alphabetically less than 1558-QW1. (Because the

ASCII code value for the letter B is greater than the value of
the letter A, it follows that A is less than B.) Therefore, the

FIGURE Selected PRODUCT table output will be generated as shown in Figure 7.8.

7.8 attributes: the ASCII code
effect i i .

String (character) comparisons are made from left to right.
This left-to-right comparison is especially useful when

P_CODE | P_DESCRIFT | P_aoH | P_MIN | P_PRICE

T1QER/A | Power pairter, 15 psi,, 3-nozzle B 5 10009 attributes such as names are to be compared. For example,

13-22P2 | 7.25-in. pwr. saw blade 52 15 14.99 . « » .

146115 [3.000n, powr. 5w blacks T T YT the string “Ardmore” would be judged greater than the

1546-Q02 [Hrd. cloth, 1/4-in., 250 15| 8 3995 string “Aarenson” but less than the string “Brown”; such

results may be used to generate alphabetical listings like

those found in a phone directory. If the characters 0-9 are
stored as strings, the same left-to-right string comparisons can lead to apparent anomalies. For example, the ASCII
code for the character “5” is, as expected, greater than the ASCII code for the character “4.” Yet the same “5” will
also be judged greater than the string “44” because the first character in the string “44” is less than the string “5.”
For that reason, you may get some unexpected results from comparisons when dates or other numbers are stored in
character format. This also applies to date comparisons. For example, the left-to-right ASCII character comparison
would force the conclusion that the date “01/01/2008” occurred before “12/31/2007.” Because the leftmost
character “0” in “01/01/2008” is less than the leftmost character “1” in “12/31/2007,” “01/01/2008” is less than
“12/31/2007.” Naturally, if date strings are stored in a yyyy/mm/dd format, the comparisons will yield appropriate
results, but this is a nonstandard date presentation. That’s why all current RDBMSs support “date” data types; you
should use them. In addition, using “date” data types gives you the benefit of date arithmetic.

Using Comparison Operators on Dates
Date procedures are often more software-specific than other SQL procedures. For example, the query to list all of the
rows in which the inventory stock dates occur on or after January 20, 2008 will look like this:

SELECT P_DESCRIPT, P_QOH, P_MIN, P_PRICE, P_INDATE
FROM PRODUCT
WHERE P_INDATE >= '20-Jan-2008’;

C6545_07 9/14/2007 9:22:2 Page 250

250 CHAPTER 7

(Remember that MS Access users must use the # delimiters for dates. For example, you would use #20-Jan-08# in the
above WHERE clause.) The date-restricted output is shown in Figure 7.9.

FIGURE Selected PRODUCT table

7.9 attributes: date restriction
P_DESCRIPT | P_GOH | P_MIN | P_PRICE | P_INDATE
BAD cordiess drill, 1/2-in. 12 5 3885 20-Jan-08
Clawwy hatmmer 23 10 995 20-Jan-03
Hicut chain saw 16in. 11 5 25699 07-Feb-05
PYC pipe, 3.5-in., 8-t 188 75 587 20-Feb-08
1.25-in. metal screwy, 25 172 75 £.99 01-Mar-05
2.5-in. wd. screwy, 50 237 100 845 24-Feb-05

FIGURE SELECT statement with a

7.10 computed column
F_DEZCRIPT P_@0H | P_PRICE | Expri
Povver pairter, 15 psi., 3-nozzle g 109.99 57992
7 .254n. pwer. zaw hlade 32 1499 479 65
9.00-in. pwwr. savwe hlade 18 17.49 314.52
Hrd. eloth, 1/4-in., 2x50 15 33895 53925
Hrd. eloth, 1/2-in., 3=50 23 4399 101177
BAD jigzaw, 1 2-in. blade g 10982 87936
BED jigzaw, 8-in. blade E 99.57 59922
BED cordless dril, 1/72-in. 12 3595 457 .40
Clawy hammer 23 985 22585
Sledge hammer, 12 lh. g 14.40 115.20
Feat-tail file, 145-in. fine 43 4.99 214 .57
Hicut chain saw, 16 in. 11 25699 232689
PY'C pipe, 3.5-in., 8-t 188 587 1103.56
1.25-in. metal scresy, 25 172 99 120228
2.5-in. wed. scresy S0 237 .45 200265
Steel matting, 4'8%18", 5" mesh 15 11995 215910

FIGURE SELECT statement with a

7.11 computed column and an alias
P_DESCRIPT [P_aoH | P_PRICE | TOTWALUE
Powver painter, 15 psi., 3-nozzle i 109.93 579492
T.25-in. pwer. @y blade 32 1493 47965
9.00-in. puer . savy blade 15 17.43 31452
Hrd. cloth, 1/8-in., 2x350 13 3985 59925
Hrd. clath, 1/£2-in., 3x350 23 4385 101177
BED jinzawy, 12-in. hiade i) 109492 7856
BED jigzany, S-in. blade -] 9957 29922
BED cordless drill, 102-in. 12 3585 467 40
Clawy harmimer 23 985 2885
Sledye hammer, 12 b, g 14.40 115.20
Reat-tail file, 1/5-in. fine 43 485 21457
Hicut chain saw, 16 in. 11 25699 252659
P pipe, 3 .5-in., G-1t 185 [=rd 1103 56
1.25-in. metal scresy, 25 172 5.93 120225
2.5-in. wed. screw, 30 25T] 2002 65
Steel matting, 4'xd'x18", 5" mesh 18 11983 213810

Using Computed Columns and Column
Aliases

Suppose you want to determine the total value of each of the
products currently held in inventory. Logically, that determi-
nation requires the multiplication of each product’s quantity
on hand by its current price. You can accomplish this task
with the following command:

SELECT P_DESCRIPT, P_QOH, P_PRICE, P_QOH *
P_PRICE
FROM PRODUCT;

Entering that SQL command in Access generates the output
shown in Figure 7.10.

SQL accepts any valid expressions (or formulas) in the
computed columns. Such formulas can contain any valid
mathematical operators and functions that are applied to
attributes in any of the tables specified in the FROM clause
of the SELECT statement. Note also that Access automati-
cally adds an Expr label to all computed columns. (The first
computed column would be labeled Exprl; the second,
Expr2; and so on.) Oracle uses the actual formula text as the
label for the computed column.

To make the output more readable, the SQL standard
permits the use of aliases for any column in a SELECT
statement. An alias is an alternative name given to a
column or table in any SQL statement.

For example, you can rewrite the previous SQL state-
ment as:

SELECT P_DESCRIPT, P_QOH, P_PRICE, P_QOH *
P_PRICE AS TOTVALUE
FROM PRODUCT;

The output of that command is shown in Figure 7.11.

You could also use a computed column, an alias, and date
arithmetic in a single query. For example, assume that you
want to get a list of out-of-warranty products that have been
stored more than 90 days. In that case, the P_INDATE is at
least 90 days less than the current (system) date. The MS
Access version of this query is shown as:

SELECT P_CODE, P_INDATE, DATE() - 90 AS CUTDATE

FROM PRODUCT
WHERE P_INDATE <= DATE() - 90;

C6545_07 7/27/2007 11:51:57 Page 251

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL) 251

The Oracle version of the same query is shown below:

SELECT P_CODE, P_INDATE, SYSDATE - 90 AS CUTDATE
FROM PRODUCT
WHERE P_INDATE <= SYSDATE - 90;

Note that DATE() and SYSDATE are special functions that return today’s date in MS Access and Oracle, respectively.
You could use the DATE() and SYSDATE functions anywhere a date literal is expected, such as in the value list of an
INSERT statement, in an UPDATE statement when changing the value of a date attribute, or in a SELECT statement
as shown here. Of course, the previous query output would change based on today’s date.

Suppose a manager wants a list of all products, the dates they were received, and the warranty expiration date (90 days
from when the product was received). To generate that list, type:

SELECT P_CODE, P_INDATE, P_INDATE + 90 AS EXPDATE
FROM PRODUCT;

Note that you can use all arithmetic operators with date attributes as well as with numeric attributes.

ARITHMETIC OPERATORS: THE RULE OF PRECEDENCE

As you saw in the previous example, you can use arithmetic operators with table attributes in a column list or in a
conditional expression. In fact, SQL commands are often used in conjunction with the arithmetic operators shown in
Table 7.7.

Do not confuse the multiplication symbol (*) with the wildcard

T7A B7LE The Arithmetic Operators symbol used by some SQL implementations such as MS

Access; the latter is used only in string comparisons, while

ARITHMETIC DESCRIPTION the former is used in conjunction with mathematical
OPERATOR procedures.
+ Add
_ SulsirEct As you perform mathematical operations on attributes,
* Multiply remember the rules of precedence. As the name suggests,
/ Dividke the rules of precedence are the rules that establish the
~ Raise to the power of (some order in which computations are completed. For example,
applications use ** instead note the order of the following computational sequence:
of ™) 1. Perform operations within parentheses.

2. Perform power operations.
3. Perform multiplications and divisions.
4. Perform additions and subtractions.
The application of the rules of precedence will tell you that 8 + 2*5 =8 + 10 = 18, but (8 + 2) *5 =10 * 5 = 50.

Similarly, 4 + 522 *3 =4 + 25*3 =79, but @ + 572 * 3 = 81 * 3 = 243, while the operation expressed by
(4 + 572) * 3 yields the answer (4 + 25) * 3 =29 * 3 = 87.

LoGICcAL OPERATORS: AND, OR, AND NOT

In the real world, a search of data normally involves multiple conditions. For example, when you are buying a new
house, you look for a certain area, a certain number of bedrooms, bathrooms, stories, and so on. In the same way,
SQL allows you to have multiple conditions in a query through the use of logical operators. The logical operators are

C6545_07 9/14/2007 9:22:35 Page 252

252 CHAPTER 7

AND, OR, and NOT. For example, if you want a list of the table contents for either the V_CODE = 21344 or the
V_CODE = 24288, you can use the OR operator, as in the following command sequence:

SELECT
FROM
WHERE

P_DESCRIPT, P_INDATE, P_PRICE, V_CODE
PRODUCT
V_CODE = 21344 OR V_CODE = 24288;

That command generates the six rows shown in Figure 7.12 that match the logical restriction.

FIGURE
7.12

Selected PRODUCT table
attributes: the logical OR

P_DESCRIPT

P_NDATE | P_PRICE ['/_CODE

FIGURE
7.13

72540, pvr . savw blade
9.00-in. pwver. saw blade
BED jigzawy, 12-in. blade
BED jig=ana, 5-in. blade
Fiat-tail file, 1/8-in. fine
Hicut chain saw, 16in.

13-Dec-07 1483 21544
13-Now-07 1748 21344
30-Lec-07 109.92 24285
24-Dec-07 9957 242465
15-Dec-07 485 21344
07-Feh-05 23688 242465

Selected PRODUCT table
attributes: the logical AND

P_DESCRIPT

Clawy hammer

FIGURE
7.14

BAD cordless drill, 1/:2-in.

P pipe, 35400, 8-1t
1.25-in. metal screw, 25
2.5-in. wed. screwy, S0

P_INDATE | P_PRICE | '_CODE
20-Jan-08) 3805 25595
20-Jan-08 985 21225
20-Feh-08 587
01-htar-08 goa 21225
24.Feh-08 645 21231

Selected PRODUCT table
attributes: the logical AND
and OR

P_DESCRIPT

| P_NDATE [P_PRICE [v_CODE

Clarae hammer

BAD jigsaw, 12-in. blade
B&D jigsaw, 5-in. blade
BAD cordless dril, 172-in.

Hicut chain saw, 16 in.
PVC pipe, 3.5-in., 8-t
1.25-in. metal screws, 25
2.5-in. wed. gcrevy, S0

30-Dec-07 10992 24285
24-Dec-07 9987 242488
20-Jan-08 385 255935

20-Jan-05 9485 21223
07 -Feb-0& 23688 24255
20-Feb-03 587

01 -har-0& G585 21223
24-Feb-0& 45 2123

The logical AND has the same SQL syntax requirement.
The following command generates a list of all rows for which
P_PRICE is less than $50 and for which P_INDATE is a date
occurring after January 15, 2008:

SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE

FROM PRODUCT
WHERE P_PRICE < 50
AND P_INDATE > '15-Jan-2008';

This command will produce the output shown in Figure 7.13.

You can combine the logical OR with the logical AND to
place further restrictions on the output. For example, sup-
pose you want a table listing for the following conditions:

e The P_INDATE is after January 15, 2008, and the
P_PRICE is less than $50.

e Or the V_CODE is 24288.
The required listing can be produced by using:

SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE

FROM PRODUCT

WHERE (P_PRICE < 50 AND
P_INDATE > '15-Jan-2008))

OR V_CODE = 24288;

Note the use of parentheses to combine logical restrictions.
Where you place the parentheses depends on how you want
the logical restrictions to be executed. Conditions listed
within parentheses are always executed first. The preceding
query vields the output shown in Figure 7.14.

Note that the three rows with the V_CODE = 24288 are
included regardless of the P_INDATE and P_PRICE entries
for those rows.

The use of the logical operators OR and AND can become quite complex when numerous restrictions are placed on

the query. In fact, a specialty field in mathematics known as Boolean algebra is dedicated to the use of logical

operators.

The logical operator NOT is used to negate the result of a conditional expression. That is, in SQL, all conditional

expressions evaluate to true or false. If an expression is true, the row is selected; if an expression is false, the row is

o

C6545_07 9/14/2007 9:22:59 Page 253 ‘

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (S_

not selected. The NOT logical operator is typically used to find the rows that do not match a certain condition. For
example, if you want to see a listing of all rows for which the vendor code is not 21344, use the command sequence:

SELECT *
FROM PRODUCT
WHERE NOT (V_CODE = 21344),

Note that the condition is enclosed in parentheses; that practice is optional, but it is highly recommended for clarity.
The logical NOT can be combined with AND and OR.

If your SQL version does not support the logical NOT, you can generate the required output by using the
condition:

WHERE V_CODE <> 21344
If your version of SQL does not support <>, use:

WHERE V_CODE != 21344

SPECIAL OPERATORS

ANSI-standard SQL allows the use of special operators in conjunction with the WHERE clause. These special operators
include:

BETWEEN—Used to check whether an attribute value is within a range.

IS NULL—Used to check whether an attribute value is null.

LIKE—Used to check whether an attribute value matches a given string pattern.
IN—Used to check whether an attribute value matches any value within a value list.
EXISTS—Used to check whether a subquery returns any rows.

The BETWEEN Special Operator

If you use software that implements a standard SQL, the operator BETWEEN may be used to check whether an
attribute value is within a range of values. For example, if you want to see a listing for all products whose prices are
between $50 and $100, use the following command sequence:

SELECT *
FROM PRODUCT
WHERE P_PRICE BETWEEN 50.00 AND 100.00;

NOTE TO ORACLE USERS
When using the BETWEEN special operator, always specify the lower range value first. If you list the higher range
value first, Oracle will return an empty result set.

If your DBMS does not support BETWEEN, you can use:

SELECT *
FROM PRODUCT
WHERE P_PRICE > 50.00 AND P_PRICE < 100.00;

o

C6545_07 9/4/2007 13:58:9 Page 254

254

CHAPTER 7

The IS NULL Special Operator

Standard SQL allows the use of IS NULL to check for a null attribute value. For example, suppose you want to list all
products that do not have a vendor assigned (V_CODE is null). Such a null entry could be found by using the command
sequence:

SELECT P_CODE, P_DESCRIPT, V_CODE
FROM PRODUCT
WHERE V_CODE IS NULL;

Similarly, if you want to check a null date entry, the command sequence is:

SELECT P_CODE, P_DESCRIPT, P_INDATE
FROM PRODUCT
WHERE P_INDATE IS NULL;

Note that SQL uses a special operator to test for nulls. Why? Couldn’t you just enter a condition such as "V_CODE
= NULL"? No. Technically, NULL is not a “value” the way the number O (zero) or the blank space is, but instead a
NULL is a special property of an attribute that represents precisely the absence of any value.

The LIKE Special Operator

The LIKE special operator is used in conjunction with wildcards to find patterns within string attributes. Standard SQL
allows you to use the percent sign (%) and underscore (_) wildcard characters to make matches when the entire string
is not known:

e % means any and all following or preceding characters are eligible. For example,
'J%' includes Johnson, Jones, Jernigan, July, and J-231Q.
'Jo%' includes Johnson and Jones.
'%n' includes Johnson and Jernigan.

e _ means any one character may be substituted for the underscore. For example,
' 23-456-6789" includes 123-456-6789, 223-456-6789, and 323-456-67809.
' 23-_56-678_" includes 123-156-6781, 123-256-6782, and 823-956-6788.

1

_o_es' includes Jones, Cones, Cokes, totes, and roles.

NOTE

Some RDBMSs, such as Microsoft Access, use the wildcard characters * and ? instead of % and _.

For example, the following query would find all VENDOR rows for contacts whose last names begin with Smith.

SELECT V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM VENDOR
WHERE V_CONTACT LIKE 'Smith%;

If you check the original VENDOR data in Figure 7.2 again, you'll see that this SQL query yields three records: two
Smiths and one Smithson.

Keep in mind that most SQL implementations vield case-sensitive searches. For example, Oracle will not yield a return
that includes Jones if you use the wildcard search delimiter j0%' in a search for last names. The reason is because
Jones begins with a capital J and your wildcard search starts with a lowercase j. On the other hand, MS Access
searches are not case sensitive.

C6545_07 9/4/2007 13:58:31 Page 255

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL) 255

For example, suppose you typed the following query in Oracle:

SELECT V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM VENDOR
WHERE V_CONTACT LIKE 'SMITH%';

No rows will be returned because character-based queries may be case sensitive. That is, an uppercase character has
a different ASCII code than a lowercase character, thus causing SMITH, Smith, and smith to be evaluated as different
(unequal) entries. Because the table contains no vendor whose last name begins with (uppercase) SMITH, the
(uppercase) 'SMITH%' used in the query cannot make a match. Matches can be made only when the query entry is
written exactly like the table entry.

Some RDBMSs, such as Microsoft Access, automatically make the necessary conversions to eliminate case sensitivity.
Others, such as Oracle, provide a special UPPER function to convert both table and query character entries to
uppercase. (The conversion is done in the computer’s memory only; the conversion has no effect on how the value
is actually stored in the table.) So if you want to avoid a no-match result based on case sensitivity, and if your RDBMS
allows the use of the UPPER function, you can generate the same results by using the query:

SELECT V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM VENDOR
WHERE UPPER(V_CONTACT) LIKE 'SMITH%;

The preceding query produces a list including all rows that contain a last name that begins with Smith, regardless of
uppercase or lowercase letter combinations such as Smith, smith, and SMITH.

The logical operators may be used in conjunction with the special operators. For instance, the query:

SELECT V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM VENDOR
WHERE V_CONTACT NOT LIKE 'Smith%/

will yield an output of all vendors whose names do not start with Smith.

Suppose you do not know whether a person’s name is spelled Johnson or Johnsen. The wildcard character _ lets you
find a match for either spelling. The proper search would be instituted by the query:

SELECT *
FROM VENDOR
WHERE V_CONTACT LIKE 'Johns_n';

Thus, the wildcards allow you to make matches when only approximate spellings are known. Wildcard characters may
be used in combinations. For example, the wildcard search based on the string '_1%' can vield the strings Al, Alton,
Elgin, Blakeston, blank, bloated, and eligible.

The IN Special Operator
Many queries that would require the use of the logical OR can be more easily handled with the help of the special
operator IN. For example, the query:

SELECT *

FROM PRODUCT
WHERE V_CODE = 21344
OR V_CODE = 24288;

C6545_07 9/4/2007 13:58:45 Page 256

256

CHAPTER 7

can be handled more efficiently with:

SELECT *
FROM PRODUCT
WHERE V_CODE IN (21344, 24288);

Note that the IN operator uses a value list. All of the values in the list must be of the same data type. Each of the values
in the value list is compared to the attribute—in this case, V_CODE. If the V_CODE value matches any of the values
in the list, the row is selected. In this example, the rows selected will be only those in which the V_CODE is either

21344 or 24288.

If the attribute used is of a character data type, the list values must be enclosed in single quotation marks. For instance,
if the V_CODE had been defined as CHAR(5) when the table was created, the preceding query would have read:

SELECT *
FROM PRODUCT
WHERE V_CODE IN (21344, '24288);

The IN operator is especially valuable when it is used in conjunction with subqueries. For example, suppose you want
to list the V_CODE and V_NAME of only those vendors who provide products. In that case, you could use a subquery
within the IN operator to automatically generate the value list. The query would be:

SELECT V_CODE, V_NAME
FROM VENDOR
WHERE V_CODE IN (SELECT V_CODE FROM PRODUCT);

The preceding query will be executed in two steps:

1. The inner query or subquery will generate a list of V_CODE values from the PRODUCT tables. Those
V_CODE values represent the vendors who supply products.

2. The IN operator will compare the values generated by the subquery to the V_CODE values in the VENDOR
table and will select only the rows with matching values—that is, the vendors who provide products.

The IN special operator will receive additional attention in Chapter 8, where you will learn more about subqueries.

The EXISTS Special Operator

The EXISTS special operator can be used whenever there is a requirement to execute a command based on the result
of another query. That is, if a subquery returns any rows, run the main query; otherwise, don’t. For example, the
following query will list all vendors, but only if there are products to order:

SELECT *
FROM VENDOR
WHERE EXISTS (SELECT * FROM PRODUCT WHERE P_QOH <= P_MIN);

The EXISTS special operator is used in the following example to list all vendors, but only if there are products with
the quantity on hand, less than double the minimum quantity:

SELECT *
FROM VENDOR
WHERE EXISTS (SELECT * FROM PRODUCT WHERE P_QOH < P_MIN * 2);

The EXISTS special operator will receive additional attention in Chapter 8, where you will learn more about
subqueries.

C6545_07 7/26/2007 14:7:0 Page 257

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL) 257

7.5 ADVANCED DATA DEFINITION COMMANDS

In this section, you learn how to change (alter) table structures by changing attribute characteristics and by adding
columns. Then you will learn how to do advanced data updates to the new columns. Finally, you will learn how to copy
tables or parts of tables and how to delete tables.

All changes in the table structure are made by using the ALTER TABLE command, followed by a keyword that
produces the specific change you want to make. Three options are available: ADD, MODIFY, and DROP. You use
ADD to add a column, MODIFY to change column characteristics, and DROP to delete a column from a table. Most
RDBMSs do not allow you to delete a column (unless the column does not contain any values) because such an action
might delete crucial data that are used by other tables. The basic syntax to add or modify columns is:

ALTER TABLE tablename
{ADD | MODIFY} (columnname datatype [{ADD | MODIFY} columnname datatype]) ;

The ALTER TABLE command can also be used to add table constraints. In those cases, the syntax would be:

ALTER TABLE tablename
ADD constraint [ADD constraint | ;

where constraint refers to a constraint definition similar to those you learned in Section 7.2.6.

You could also use the ALTER TABLE command to remove a column or table constraint. The syntax would be as follows:

ALTER TABLE tablename
DROP{PRIMARY KEY | COLUMN columnname | CONSTRAINT constraintname };

Notice that when removing a constraint, you need to specify the name given to the constraint. That is one reason why
you should always name your constraints in your CREATE TABLE or ALTER TABLE statement.

CHANGING A COLUMN’s DATA TYPE

Using the ALTER syntax, the (integer) V_CODE in the PRODUCT table can be changed to a character V_CODE
by using:

ALTER TABLE PRODUCT
MODIFY (V_CODE CHAR(b));

Some RDBMSs, such as Oracle, do not let you change data types unless the column to be changed is empty. For
example, if you want to change the V_CODE field from the current number definition to a character definition, the
above command will yield an error message, because the V_CODE column already contains data. The error message
is easily explained. Remember that the V_CODE in PRODUCT references the V_CODE in VENDOR. If you change
the V_CODE data type, the data types don’t match, and there is a referential integrity violation, thus triggering the
error message. If the V_CODE column does not contain data, the preceding command sequence will produce
the expected table structure alteration (if the foreign key reference was not specified during the creation of the
PRODUCT table).

CHANGING A COLUMN’S DATA CHARACTERISTICS

If the column to be changed already contains data, you can make changes in the column’s characteristics if those
changes do not alter the data type. For example, if you want to increase the width of the P_PRICE column to nine
digits, use the command:

ALTER TABLE PRODUCT
MODIFY (P_PRICE DECIMAL(9,2));

C6545_07 7/23/2007 17:23:41 Page 258

258

CHAPTER 7

If you now list the table contents, you see that the column width of P_PRICE has increased by one digit.

NOTE

Some DBMSs impose limitations on when it’s possible to change attribute characteristics. For example, Oracle
lets you increase (but not decrease) the size of a column. The reason for this restriction is that an attribute
modification will affect the integrity of the data in the database. In fact, some attribute changes can be done only
when there are no data in any rows for the affected attribute.

ADDING A COLUMN

You can alter an existing table by adding one or more columns. In the following example, you add the column named
P_SALECODE to the PRODUCT table. (This column will be used later to determine whether goods that have been
in inventory for a certain length of time should be placed on special sale.)

Suppose you expect the P_SALECODE entries to be 1, 2, or 3. Because there will be no arithmetic performed with
the P_SALECODE, the P_SALECODE will be classified as a single-character attribute. Note the inclusion of all
required information in the following ALTER command:

ALTER TABLE PRODUCT
ADD (P_SALECODE CHAR(1));

ONLINE CONTENT

If you are using the MS Access databases provided in the Student Online Companion, you can track each of the
updates in the following sections. For example, look at the copies of the PRODUCT table in the ChQ7_
SaleCo database, one named Product 2 and one named PRODUCT 3. Each of the two copies includes the
new P_SALECODE column. If you want to see the cumulative effect of all UPDATE commands, you can
continue using the PRODUCT table with the P_SALECODE modification and all of the changes you will make
in the following sections. (You might even want to use both options, first to examine the individual effects of the
update queries and then to examine the cumulative effects.)

When adding a column, be careful not to include the NOT NULL clause for the new column. Doing so will cause an
error message; if you add a new column to a table that already has rows, the existing rows will default to a value of
null for the new column. Therefore, it is not possible to add the NOT NULL clause for this new column. (You can, of
course, add the NOT NULL clause to the table structure after all of the data for the new column have been entered
and the column no longer contains nulls.)

DROPPING A COLUMN

Occasionally, you might want to modify a table by deleting a column. Suppose you want to delete the V_ORDER
attribute from the VENDOR table. To accomplish that, you would use the following command:

ALTER TABLE VENDOR
DROP COLUMN V_ORDER,;

Again, some RDBMSs impose restrictions on attribute deletion. For example, you may not drop attributes that are
involved in foreign key relationships, nor may you delete an attribute of a table that contains only that one attribute.

C6545_07 9/4/2007 13:59:52 Page 259

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL) 259

ADVANCED DATA UPDATES

To make data entries in an existing row’s columns, SQL allows the UPDATE command. The UPDATE command
updates only data in existing rows. For example, to enter the P_SALECODE value '2' in the fourth row, use the
UPDATE command together with the primary key P_CODE '1546-QQZ2'. Enter the value by using the command

sequence:

UPDATE PRODUCT
SET P_SALECODE = '2'
WHERE P_CODE = '1546-QQ2}

Subsequent data can be entered the same way, defining each entry location by its primary key (P_CODE) and its
column location (P_SALECODE). For example, if you want to enter the P_SALECODE value '1' for the P_CODE
values '2232/QWE' and '2232/QTY’", you use:

UPDATE PRODUCT
SET P_SALECODE =T’
WHERE P_CODE IN (2232/QWE', '2232/QTY);

If your RDBMS does not support IN, use the following command:

UPDATE PRODUCT
SET P_SALECODE =T’
WHERE P_CODE = '2232/QWE' OR P_CODE = '2232/QTY";

The results of your efforts can be checked by using:

SELECT P_CODE, P_DESCRIPT, P_INDATE, P_PRICE, P_SALECODE
FROM PRODUCT;

Although the UPDATE sequences just shown allow you to enter values into specified table cells, the process is very
cumbersome. Fortunately, if a relationship can be established between the entries and the existing columns, the
relationship can be used to assign values to their appropriate slots. For example, suppose you want to place sales codes
based on the P_INDATE into the table, using the following schedule:

P_INDATE P_SALECODE

before December 25, 2007 2

between January 16, 2008, and February 10, 2008 1

Using the PRODUCT table, the following two command sequences make the appropriate assignments:

UPDATE PRODUCT
SET P_SALECODE = '2'
WHERE P_INDATE < '25-Dec-2007;

UPDATE PRODUCT

SET P_SALECODE = 'T'

WHERE P_INDATE >= '16-Jan-2008'
AND P_INDATE <="'10-Feb-2008;

To check the results of those two command sequences, use:

SELECT P_CODE, P_DESCRIPT, P_INDATE, P_PRICE, P_SALECODE
FROM PRODUCT;

o

C6545_07 7/26/2007 14:7:36 Page 260

260 CHAPTER 7

If you have made all of the updates shown in this section using Oracle, your PRODUCT table should look like
Figure 7.15. Make sure that you issue a COMMIT statement to save these changes.

FIGURE The cumulative effect of the multiple updates in the PRODUCT table (Oracle)
7.15

& Oracle SQL*Plus b =10l x|
File Edit Search Options Help
SOQL> SELECT P_CODE, P_DESCRIPT, P_INDATE, P_PRICE, P_SALECODE FROM PRODUCT; ﬂ

P_CODE P_DESCRIPT P_INDATE P_PRICE P_SALECODE
11QER/31 Power painter, 15 psi., 3-nozzle @3-NOU-87 109.99 2
13-02/P2 7.25-in. pwr. saw blade 13-DEC-87 14.99 2
14-01/L3 9.88-in. pwr. saw blade 13-HOU- @87 17.49 2
1546-Q02 Hrd. cloth, 1/4-in., 2x58 15-JAN- 88 39.95 2
1558-0W1 Hrd. cloth, 1/2-in., 3x58 15-JAN- 088 43.99
2232/0TY B&D jigsaw, 12-in. blade 30-DEC-87 189.92 1
2232/0UE B&D jigsaw, 8-in. blade 24-DEC- 87 99_87 2
2238/7QPD B&D cordless drill, 1/2-in. 28-JAN-88 38.95 1
23189-HB Claw hammer 28-JAN- 088 9.95 1
23114-AA S$ledge hammer, 12 1b. 82-JAN- 88 1448
SL778-2T Rat-tail file, 1/8-in. fine 15-DEC- @87 4.99 2
89-URE-Q Hicut chain saw, 16 in. B7-FEB-88 256.99 1
PUC23DRT PUC pipe, 3.5-in., B-ft 28-FEB- 88 .87
SH-18277 1.25-in. metal screw, 25 81-HAR- B8 6.99
SU-23116 2.5-in. wd. screw, 58 24-FEB-08 8.45

WR3/TT3 Steel matting, 4'x8'x1/6", .5" mesh 17-JAN-88 119.95 1
16 rows selected.

SOL> -

Al H

The arithmetic operators are particularly useful in data updates. For example, if the quantity on hand in your
PRODUCT table has dropped below the minimum desirable value, you'll order more of the product. Suppose, for
example, you have ordered 20 units of product 2232/QWE. When the 20 units arrive, you'll want to add them to
inventory, using:

UPDATE PRODUCT
SET P_QOH = P_QOH + 20
WHERE P_CODE = '2232/QWE;

If you want to add 10 percent to the price for all products that have current prices below $50, you can use:

UPDATE PRODUCT
SET P_PRICE = P_PRICE * 1.10
WHERE P_PRICE < 50.00;

If you are using Oracle, issue a ROLLBACK command to undo the changes made by the last two UPDATE statements.

NOTE

If you fail to roll back the changes of the preceding UPDATE queries, the output of the subsequent queries will
not match the results shown in the figures. Therefore:

* If you are using Oracle, use the ROLLBACK command to restore the database to its previous state.

* If you are using Access, copy the original Ch07_SaleCo.mdb file from the Student Online Companion.

C6545_07 9/4/2007 14:1:39 Page 261

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL) 261

COPYING PARTS OF TABLES

As you will discover in later chapters on database design, sometimes it is necessary to break up a table structure into
several component parts (or smaller tables). Fortunately, SQL allows you to copy the contents of selected table columns
so that the data need not be reentered manually into the newly created table(s). For example, if you want to copy
P_CODE, P_DESCRIPT, P_PRICE, and V_CODE from the PRODUCT table to a new table named PART, you create
the PART table structure first, as follows:

CREATE TABLE PART(

PART_CODE CHAR(8) NOT NULL UNIQUE,
PART_DESCRIPT CHAR(35),

PART_PRICE DECIMAL(S,2),

V_CODE INTEGER,

PRIMARY KEY (PART_CODE));

Note that the PART column names need not be identical to those of the original table and that the new table need not
have the same number of columns as the original table. In this case, the first column in the PART table is PART_CODE,
rather than the original P_CODE found in the PRODUCT table. And the PART table contains only four columns rather
than the seven columns found in the PRODUCT table. However, column characteristics must match; you cannot copy
a character-based attribute into a numeric structure and vice versa.

Next, you need to add the rows to the new PART table, using the PRODUCT table rows. To do that, you use the
INSERT command you learned in Section 7.3.7. The syntax is:

INSERT INTO target_tablenamel(target_columnlist)]
SELECT source_columnlist
FROM source_tablename;

Note that the target column list is required if the source column list doesn’t match all of the attribute names and
characteristics of the target table (including the order of the columns). Otherwise, you do not need to specify the target
column list. In this example, you must specify the target column list in the INSERT command below because the
column names of the target table are different:

INSERT INTO PART (PART_CODE, PART_DESCRIPT, PART_PRICE, V_CODE)
SELECT P_CODE, P_DESCRIPT, P_PRICE, V_CODE FROM PRODUCT;

The contents of the PART table can now be examined by using the query:
SELECT * FROM PART;
to generate the new PART table’s contents, shown in Figure 7.16.

SQL also provides another way to rapidly create a new table based on selected columns and rows of an existing table.
In this case, the new table will copy the attribute names, data characteristics, and rows of the original table. The Oracle
version of the command is:

CREATE TABLE PART AS

SELECT P_CODE AS PART_CODE, P_DESCRIPT AS PART_DESCRIPT,
P_PRICE AS PART_PRICE, V_CODE
FROM PRODUCT;

If the PART table already exists, Oracle will not let you overwrite the existing table. To run this command, you must
first delete the existing PART table. (See Section 7.5.8.)

C6545_07 9/4/2007 14:2:18 Page 262

262

CHAPTER 7

FIGURE PART table attributes Copie d The MS Access version of this command is:

7.16 from the PRODUCT table SELECT P _CODE AS PART CODE, P_DESCRIPT AS
PART_DESCRIPT,

PART_CODE PART_DESCRIPT PART_PRICE | %_CODE P_PRICE AS PART_PRICEa
11 2ERIF Powver painter, 15 psi., 3-nozzle 109.99 25585 V CODE INTO PART
13-G2P2 7254, pwvr. sawy blade 14.99 21344 -
14213 | 9.00-n. puvr. saw blade 17439 21344 FROM PRODUCT;
1546-GG2 Hrd. clath, 1/4-in., 2x50 3985 23119
;iiiﬁ}"ﬂ ;r&d[;jcilg‘::{,:ﬁ;;_aézze 1;3:22 2312132 If the PART table already exists, MS Access will ask if you
2292NE BED jigsaw, 8-in. biade 9957 24268 want to delete the existing table and continue with the
2238MPD BaD cordless drill, 1/2-in. 3895 25585
23108-H8 | Claw hammer 995 21225 creation of the new PART table.
23114-28 Sledge hammer, 12 b, 14.4
24778-2T Rat-tail file, 158-in. fi 489 21344
S9MRE.Q Hicmaéhl;n Sa\.\in1én.; 25599 24288 The SQL command just shown creates a new PART table
PYC23DRT | PVC pipe, 3.5-in., 8-t 587 .
05T 2o aote seew 55 R with PART_CODE, PART_DESCRIPT, PART_PRICE, and
SW-23118 | 2.54n. wal. screw, 50 845 21231 V_CODE columns. In addition, all of the data rows (for the
WWRITTS Steel matting, 4'x58%1/8", 5" mesh 11995 25585

selected columns) will be copied automatically. But note that

no entity integrity (primary key) or referential integrity

(foreign key) rules are automatically applied to the new
table. In the next section, you will learn how to define the PK to enforce entity integrity and the FK to enforce
referential integrity.

ADDING PRIMARY AND FOREIGN KEY DESIGNATIONS

When you create a new table based on another table, the new table does not include integrity rules from the old table.
In particular, there is no primary key. To define the primary key for the new PART table, use the following command:

ALTER TABLE PART
ADD PRIMARY KEY (PART_CODE);

Aside from the fact that the integrity rules are not automatically transferred to a new table that derives its data from
one or more other tables, several other scenarios could leave you without entity and referential integrity. For example,
you might have forgotten to define the primary and foreign keys when you created the original tables. Or if you
imported tables from a different database, you might have discovered that the importing procedure did not transfer the
integrity rules. In any case, you can reestablish the integrity rules by using the ALTER command. For example, if the
PART table’s foreign key has not yet been designated, it can be designated by:

ALTER TABLE PART
ADD FOREIGN KEY (V_CODE) REFERENCES VENDOR,;

Alternatively, if neither the PART table’s primary key nor its foreign key has been designated, you can incorporate both
changes at once, using:

ALTER TABLE PART
ADD PRIMARY KEY (PART_CODE)
ADD FOREIGN KEY (V_CODE) REFERENCES VENDOR;

Even composite primary keys and multiple foreign keys can be designated in a single SQL command. For example,
if you want to enforce the integrity rules for the LINE table shown in Figure 7.1, you can use:

ALTER TABLE LINE
ADD PRIMARY KEY (INV_NUMBER, LINE_NUMBER)
ADD FOREIGN KEY (INV_NUMBER) REFERENCES INVOICE
ADD FOREIGN KEY (PROD_CODE) REFERENCES PRODUCT;

o

C6545_07 7/24/2007 9:47:59 Page 263

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL) 263

DELETING A TABLE FROM THE DATABASE

A table can be deleted from the database using the DROP TABLE command. For example, you can delete the PART
table you just created with:

DROP TABLE PART;

You can drop a table only if that table is not the “one” side of any relationship. If you try to drop a table otherwise,
the RDBMS will generate an error message indicating that a foreign key integrity violation has occurred.

7.6 ADVANCED SELECT QUERIES

One of the most important advantages of SQL is its ability to produce complex free-form queries. The logical operators
that were introduced earlier to update table contents work just as well in the query environment. In addition, SQL
provides useful functions that count, find minimum and maximum values, calculate averages, and so on. Better yet,
SQL allows the user to limit queries to only those entries that have no duplicates or entries whose duplicates can be
grouped.

ORDERING A LISTING

The ORDER BY clause is especially useful when the listing order is important to you. The syntax is:

SELECT columnlist

FROM tablelist

[WHERE conditionlist |

[ORDER BY columnlist [ASC | DESC] | ;

Although you have the option of declaring the order type—ascending or descending—the default order is ascending.
For example, if you want the contents of the PRODUCT table listed by P_PRICE in ascending order, use:

SELECT P_CODE, P_DESCRIPT, P_INDATE, P_PRICE
FROM PRODUCT
ORDER BY P_PRICE;

The output is shown in Figure 7.17. Note that ORDER BY vyields an ascending price listing.

Comparing the listing in Figure 7.17 to the actual table

FIGURE Selected PRODUCT table contents shown earlier in Figure 7.2, you will see that in

717 attributes: ordered by . _ e _
(ascending) P_PRICE Figure 7.17, the lowest-priced product is listed first, followed
by the next lowest-priced product, and so on. However,

P_CODE | P_DESCRIPT [P_mMDATE | P_PRICE although ORDER BY produces a sorted output, the actual

FEEEER] | Rat-tail file, 1/5-n. fine 15Dec07 439

PV CISDRTIFVC pige, 35.n. 3.1 o Feb0s e table contents are unaffected by the ORDER command.

SM-18277 | 1.25-in. metal screv, 25 01-Mar-03 599

SW-23116 | 2.5-in. wd. screw, 50 24-Feb-08 B.45 To produce the list in descending order, you would enter:

23109-HE | Claw hammer 20-Jan-08 9.95

23114-A4 Sledge hammer, 12 b, 02-Jan-03 14.40

13:Q2F2 | 7.25-in. pwr. s blads 13-Dec-07 1493 SELECT P_CODE, P_DESCRIPT, P_INDATE,

14-01L3 | 9.00-in. puvr. saw blade 13-Mow-07 17.49

2238/GPD | BAD cordless drill, 1/2-n. 20-Jan-08 38.95 P_PRICE

1546-QQ2 | Hrd. cloth, 1/4-in., 2x50 15-Jan-08 39.95 FROM PRODUCT

15580 | Hrd. cloth, 1/2-in., 3x50 15-Jan-08 4399

Z2T2IGNE | BAD jigsaw, B-n. biade 24-Dec-07 99 87 ORDER BY P_PRICE DESC;

2232/QTY | BAD jigsaw, 12-in. blade 30Dec-07| 109.82

1M1@ERSIT Powver painter, 15 psi., 3-nozzle 03-Mow-07 109.99

WR3TT3 | Steel matting, 4%@x1/6", 5" mesh | 17-Jan-08| 11995

BI-WRE-Q | Hicut chain saw, 16 in. 07Feb08 25699

C6545_07 9/4/2007 14:3:4 Page 264

264 CHAPTER 7

Ordered listings are used frequently. For example, suppose you want to create a phone directory. It would be helpful
if you could produce an ordered sequence (last name, first name, initial) in three stages:

1. ORDER BY last name.
2. Within the last names, ORDER BY first name.
3. Within the first and last names, ORDER BY middle initial.

Such a multilevel ordered sequence is known as a cascading order sequence, and it can be created easily by listing
several attributes, separated by commas, after the ORDER BY clause.

The cascading order sequence is the basis for any telephone directory. To illustrate a cascading order sequence, use
the following SQL command on the EMPLOYEE table:

SELECT EMP_LNAME, EMP_FNAME, EMP_INITIAL, EMP_AREACODE, EMP_PHONE
FROM EMPLOYEE
ORDER BY EMP_LNAME, EMP_FNAME, EMP_INITIAL;

That command yields the results shown in Figure 7.18.

FIGURE Telephone list query results

7.18
EMP_LMAME | EMP_FMAME | EMP_IMITIAL | EMP_AREACODE | EMP_PHORE

Mlarie G q01 GE2-0545
Diante Jorge [u] E15 S90-4567
Genkazi Leighla W 301 SE9-0093
John=on Edavard E E15 S95-4357
Jones Anne 1 g15 S95-3436
Holmycz Gearge [u] B135 324-5456
Lange Jahin P 901 S04-4430
Lewis Rhonda G 615 F24-4472
Saranda Hermine R E15 F24-5505
Smith Gearge A B15 590-2954
Smith Gearge H 901 504-3339
Smith Jeanine K 615 F24-TEHES
Smythe Melanie P G615 F24-9006
W ancdam Rhett 301 E75-5993
Washingtan Rupert E E15 590-4925
Wiesenhach | Paul R g15 S97-4355
Willisms Rokert] 615 90-3220

The ORDER BY clause is useful in many applications, especially because the DESC qualifier can be invoked. For
example, listing the most recent items first is a standard procedure. Typically, invoice due dates are listed in descending
order. Or if you want to examine budgets, it's probably useful to list the largest budget line items first.

You can use the ORDER BY clause in conjunction with other SQL commands, too. For example, note the use of
restrictions on date and price in the following command sequence:

SELECT P_DESCRIPT, V_CODE, P_INDATE, P_PRICE
FROM PRODUCT
WHERE P_INDATE < '21-Jan-2008' AND
P_PRICE <= 50.00
ORDER BY V_CODE, P_PRICE DESC;

The output is shown in Figure 7.19. Note that within each V_CODE, the P_PRICE values are in descending order.

o

C6545_07 9/4/2007 14:4:5 Page 265 ‘

FIGURE
7.19
P_DESCRIPT W_CODE| P_IMDATE | P_PRICE

HE0 5 rill, 152-in | 25595 20-Jan-05 3595
Hrd. cloth, 1.2-in., 3x50 23119 15-Jan-05 43.99
Hrid. cloth, 1/4-in., 2«50 23119) 15-Jan-08 39.95
9.00-in. pwr . saw blade 21344 13-Mov-07 17.49
¥ 2540 pwer . zawy blade 21344 13-Dec-07 1499
Fiat-tail file, 1/8-in. fine 21344 15-Dec-07 4499
Clawy hammer 21225 20-Jan-08 9485
Sledge hammer, 12 Ib. 02-Jan-05 14.40

If the ordering column has nulls, they are listed either first or last, depending on the RDBMS.
The ORDER BY clause must always be listed last in the SELECT command sequence.

LISTING UNIQUE VALUES
How many different vendors are currently represented in

FIGURE the PRODUCT table? A simple listing (SELECT) is not very
7.20 useful if the table contains several thousand rows and you

have to sift through the vendor codes manually. Fortunately,
SQL’s DISTINCT clause produces a list of only those values

% _CODE
that are different from one another. For example, the
25 command:
21231
e SELECT DISTINCT V_CODE
24788 FROM PRODUCT;
25595

yields only the different (distinct) vendor codes (V_CODE)

that are encountered in the PRODUCT table, as shown in

Figure 7.20. Note that the first output row shows the null.
(By default, Access places the null V_CODE at the top of the list, while Oracle places it at the bottom. The placement
of nulls does not affect the list contents. In Oracle, you could use ORDER BY V_CODE NULLS FIRST to place nulls
at the top of the list.)

TABLE
7.8

FUNCTION

"/ =1 <. AGGREGATE FUNCTIONS

Some Basic SQL Aggregate
Functions

SQL can perform various mathematical summaries for
you, such as counting the number of rows that contain a

OUTPUT

COUNT The number of rows containing specified condition, finding the minimum or maximum
non-null values values for some specified attribute, summing the values in
MIN The minimum attribute value a specified column, and averaging the values in a speci-
encountered in a given column fied column. Those aggregate functions are shown in
MAX The maximum attribute value Table 7.8.
encountered in a given column
SUM The sum of all values for a given To illustrate another standard SQL command format,
column most of the remaining input and output sequences are
AVG The arithmetic mean (average) for presented using the Oracle RDBMS.
a specified column

C6545_07 7/24/2007 8:47:3 Page 266

266

CHAPTER 7

COUNT

The COUNT function is used to tally the number of non-null values of an attribute. COUNT can be used in conjunction
with the DISTINCT clause. For example, suppose you want to find out how many different vendors are in the
PRODUCT table. The answer, generated by the first SQL code set shown in Figure 7.21, is 6. The answer indicates
that six different VENDOR codes are found in the PRODUCT table. (Note that the nulls are not counted as V_CODE
values.)

FIGURE COUNT function output examples

Dracle SQL*Plus o 1] 4

File Edit Search Options Help

SQL> SELECT COUNT{DISTIHNCT U_CODE} -
2 FROM PRODUCT;

COUNT(DISTINCTU_CODE)

SQL> SELECT COUNT(DISTINCT U_CODE)
2 FROHW PRODUCT
3 UWHERE P_PRICE <= 18.88;

COUNT(DISTINCTU_CODE)

SOQL> SELECT COUNT (%)
2 FROHW PRODUCT
3 UWHERE P_PRICE <= 18.88;

COUNT (%)
5

soL> | -

B oy

The aggregate functions can be combined with the SQL commands explored earlier. For example, the second SQL
command set in Figure 7.21 supplies the answer to the question, “How many vendors referenced in the PRODUCT
table have supplied products with prices that are less than or equal to $10?” The answer is three, indicating that three
vendors referenced in the PRODUCT table have supplied products that meet the price specification.

The COUNT aggregate function uses one parameter within parentheses, generally a column name such as
COUNT(V_CODE) or COUNT(P_CODE). The parameter may also be an expression such as COUNT(DISTINCT
V_CODE) or COUNT(P_PRICE+10). Using that syntax, COUNT always returns the number of non-null values in the
given column. (Whether the column values are computed or show stored table row values is immaterial). In contrast,
the syntax COUNT(*) returns the number of total rows returned by the query, including the rows that contain nulls. In
the example in Figure 7.21, SELECT COUNT(P_CODE) FROM PRODUCT and SELECT COUNT(*) FROM
PRODUCT will yield the same answer because there are no null values in the P_CODE primary key column.

Note that the third SQL command set in Figure 7.21 uses the COUNT(*) command to answer the question, “How
many rows in the PRODUCT table have a P_PRICE value less than or equal to $10?” The answer, five, indicates that
five products have a listed price that meets the price specification. The COUNT(*) aggregate function is used to count
rows in a query result set. In contrast, the COUNT(column) aggregate function counts the number of non-null values
in a given column. For example, in Figure 7.20, the COUNT(*) function would return a value of 7 to indicate seven
rows returned by the query. The COUNT(V_CODE) function would return a value of 6 to indicate the six non-null
vendor code values.

C6545_07 9/14/2007 9:23:18 Page 267

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL) 267

NOTE

NOTE TO MS ACCESS USERS

MS Access does not support the use of COUNT with the DISTINCT clause. If you want to use such queries in
MS Access, you must create subqueries with DISTINCT and NOT NULL clauses. For example, the equivalent
MS Access queries for the first two queries shown in Figure 7.21 are:

SELECT COUNT(¥*)
FROM (SELECT DISTINCT V_CODE FROM PRODUCT WHERE V_CODE IS NOT NULL)
and
SELECT COUNT(¥*)
FROM (SELECT DISTINCT(V_CODE)
FROM

(SELECT V_CODE, P_PRICE FROM PRODUCT
WHERE V_CODE IS NOT NULL AND P_PRICE < 10))

Those two queries can be found in the Student Online Companion in the Ch07_SaleCo (Access) database. MS
Access does add a trailer at the end of the query after you have executed it, but you can delete that trailer the
next time you use the query.

MAX and MIN

The MAX and MIN functions help you find answers to problems such as the:
e Highest (maximum) price in the PRODUCT table.
e Lowest (minimum) price in the PRODUCT table.

The highest price, $256.99, is supplied by the first SQL command set in Figure 7.22. The second SQL command set
shown in Figure 7.22 yields the minimum price of $4.99.

The third SQL command set in Figure 7.22 demonstrates that the numeric functions can be used in conjunction with
more complex queries. However, you must remember that the numeric functions yield only one value based on all
of the values found in the table: a single maximum value, a single minimum value, a single count, or a single average
value. It is easy to overlook this warning. For example, examine the question, “Which product has the highest price?”

Although that query seems simple enough, the SQL command sequence:

SELECT P_CODE, P_DESCRIPT, P_PRICE
FROM PRODUCT
WHERE P_PRICE = MAX(P_PRICE);

does not yield the expected results. This is because the use of MAX(P_PRICE) to the right side of a comparison
operator is incorrect, thus producing an error message. The aggregate function MAX(columnname) can be used only
in the column list of a SELECT statement. Also, in a comparison that uses an equality symbol, you can use only a single
value to the right of the equals sign.

To answer the question, therefore, you must compute the maximum price first, then compare it to each price returned
by the query. To do that, you need a nested query. In this case, the nested query is composed of two parts:
e The inner query, which is executed first.

e The outer query, which is executed last. (Remember that the outer query is always the first SQL command you
encounter—in this case, SELECT.)

‘ C6545_07 9/14/2007 9:23:33 Page 268

FIGURE
7.22

+ Oracle SQL*Plus

SQL> SELEGCT MAX(P_PRICE)
2 FROHM PRODUCT ;

MAX(P_PRICE)

SQL> SELECT MIH{P_PRICE})
2 FROH PRODUGT ;

MIN{P_PRICE})

SQL> SELECT P_CODE, P_DESCRIPT, P_PRICE
2 FROH PRODUCT
3 WHERE P_PRICE = (SELECT HMAX{P_PRICE) FROM PRODUCT};

P_CODE P_DESCRIPT P_PRICE
89-WRE-0Q Hicut chain saw, 16 in. 256.99
sqoL>

1 o]

Using the following command sequence as an example, note that the inner query first finds the maximum price value,

which is stored in memory. Because the outer query now has a value to which to compare each P_PRICE value, the
query executes properly.

SELECT P_CODE, P_DESCRIPT, P_PRICE
FROM PRODUCT
WHERE P_PRICE = (SELECT MAX(P_PRICE) FROM PRODUCT);

The execution of that nested query vields the correct answer shown below the third (nested) SQL command set in
Figure 7.22.

The MAX and MIN aggregate functions can also be used with date columns. For example, to find out the product that
has the oldest date, you would use MIN(P_INDATE). In the same manner, to find out the most recent product, you
would use MAX(P_INDATE).

You can use expressions anywhere a column name is expected. Suppose you want to know what product has
the highest inventory value. To find the answer, you can write the following query:

SELECT *
FROM PRODUCT
WHERE P_QOH * P_PRICE = (SELECT MAX(P_QOH * P_PRICE) FROM PRODUCT);

C6545_07 7/24/2007 8:51:17 Page 269 ‘

SUM

The SUM function computes the total sum for any specified attribute, using whatever condition(s) you have imposed.
For example, if you want to compute the total amount owed by your customers, you could use the following command:

SELECT SUM(CUS_BALANCE) AS TOTBALANCE

FROM CUSTOMER,;

You could also compute the sum total of an expression. For example, if you want to find the total value of all items
carried in inventory, you could use:

SELECT SUM(P_QOH * P_PRICE) AS TOTVALUE
FROM PRODUCT;
because the total value is the sum of the product of the quantity on hand and the price for all items. See Figure 7.23.

FIGURE
7.23

+ Dracle SQL*Plus B [] 4
File Edit Search Options Help
S0QL> SELECT SUM{CUS_BALANCE) AS TOTBALANCE FROM CUSTOMER; ﬂ

TOTBALANMCE

2089.28 [y

SQL> SELECT SUM({P_QOH=P_PRICE} A3 TOTUVALUE
2 FROH PRODUGT ;

TOTUALUE

15884 .52

sQL> -

[H 4

AVG

The AVG function format is similar to that of MIN and MAX and is subject to the same operating restrictions. The first
SQL command set shown in Figure 7.24 shows how a simple average P_PRICE value can be generated to yield the
computed average price of 56.42125. The second SQL command set in Figure 7.24 produces five output lines that
describe products whose prices exceed the average product price. Note that the second query uses nested SQL
commands and the ORDER BY clause examined earlier.

C6545_07 7/24/2007 8:52:11 Page 270

270 CHAPTER 7

FIGURE AVG function output examples
7.24

4 oracle SQL*Plus -3 -13] x|
jle | Edit Search Options Help
SgL) SELECT AUG{P_PRICE) FROM PRODUCT; fi

AVGE(P_PRICE)

5642125

SQL> SELECT P_CODE, P_DESCRIPT, P_QOH, P_PRICE, V_CODE
2 FROH PRODUCT
3 WHERE P_PRICE > (SELECT AUG(P_PRICE) FROM PRODUCT)
4 ORDER BY P_PRICE DESC;

P_GODE P_DESCRIPT P_OOH FP_PRICE U_CODE
89-URE-Q Hicut chain saw, 16 in. hh! 256.99 24288
WR3/TT3 Steel matting, 4'x8'x1/6™, .5" mesh 18 119.95% 25505
110ER/31 Power painter, 15 psi., 3-nozzle 8 189 .99 25595
2232/0TY% B&D jigsaw, 12-in. blade 8 189._.92 24288
2232/NUE B&D jigsaw, 8-in. blade 1] 99_87 24288
soL> | -
A | H o

GROUPING DATA

Frequency distributions can be created quickly and easily using the GROUP BY clause within the SELECT statement.
The syntax is:

SELECT columnlist

FROM tablelist

[WHERE conditionlist]

[GROUP BY columnlist]

[HAVING conditionlist]

[ORDER BY columnlist [ASC | DESC] | ;

The GROUP BY clause is generally used when you have attribute columns combined with aggregate functions in the
SELECT statement. For example, to determine the minimum price for each sales code, use the first SQL command
set shown in Figure 7.25.

The second SQL command set in Figure 7.25 generates the average price within each sales code. Note that the
P_SALECODE nulls are included within the grouping.

The GROUP BY clause is valid only when used in conjunction with one of the SQL aggregate functions, such as
COUNT, MIN, MAX, AVG, and SUM. For example, as shown in the first command set in Figure 7.26, if you try to
group the output by using:

SELECT V_CODE, P_CODE, P_DESCRIPT, P_PRICE
FROM PRODUCT
GROUP BY V_CODE;

you generate a “not a GROUP BY expression” error. However, if you write the preceding SQL command sequence
in conjunction with some aggregate function, the GROUP BY clause works properly. The second SQL command
sequence in Figure 7.26 properly answers the question, “How many products are supplied by each vendor?,” because
it uses a COUNT aggregate function.

C6545_07 7/24/2007 8:52:11 Page 271 ‘

FIGURE
7.25

+ Dracle SOL*Plus

SOL> SELECT P_SALECODE, MIN{P_PRICE)
2 FROH PRODUCT
3 GROUP BY P_SALECODE;

1 9.9%
2 4.99
.87

SQL> SELECT P_SALECODE, AUG{P_PRICE)
2 FROHW PRODUGCT
3 GROUP BY P_SALECODE;

1 187 .152
2 L4L7.88
15.94

soL> |

st o]

FIGURE
7.26

+ Oracle SOL*Plus

SQL> SELECT V_CODE, P_CODE, P_DESCRIPT, P_PRICE
2 FROH PRODUCT
3 GROUP BY U_CODE;
SELECT U_CODE, P_CODE, P_DESCRIPT, P_PRICE
*

ERROR at line 1:
ORA-B@8979: not a GROUF BY expression

SOL> SELECT V_CODE, COUNT{DISTIMCT {P_CODE})
2 FROH PRODUCT
3 GROUP BY U_CODE;

U_CODE COUNT{DISTINCT{P_CODE})

21225 2
21231 1
21344 3
23119 2
24288 3
25595 3

2

7 rows selected.

soL> |
Lous o]

Note that the last output line in Figure 7.26 shows a null for the V_CODE, indicating that two products were not
supplied by a vendor. Perhaps those products were produced in-house, or they might have been bought via a
nonvendor channel, or the person making the data entry might have merely forgotten to enter a vendor code.
(Remember that nulls can be the result of many things.)

o

C6545_07 9/4/2007 14:7:21 Page 272

272

CHAPTER 7

NOTE

When using the GROUP BY clause with a SELECT statement:

e The SELECT's columnlist must include a combination of column names and aggregate functions.

* The GROUP BY clauses columnlist must include all nonaggregate function columns specified in the
SELECTs columnlist. If required, you could also group by any aggregate function columns that appear in the

SELECT’s columnlist.

* The GROUP BY clause columnlist can include any columns from the tables in the FROM clause of the
SELECT statement, even if they do not appear in the SELECT’s columnlist.

The GROUP BY Feature's HAVING Clause

A particularly useful extension of the GROUP BY feature is the HAVING clause. The HAVING operates very much
like the WHERE clause in the SELECT statement. However, the WHERE clause applies to columns and expressions
for individual rows, while the HAVING clause is applied to the output of a GROUP BY operation. For example,
suppose you want to generate a listing of the number of products in the inventory supplied by each vendor. But this
time you want to limit the listing to products whose prices average below $10. The first part of that requirement is
satisfied with the help of the GROUP BY clause, as illustrated in the first SQL command set in Figure 7.27. Note that
the HAVING clause is used in conjunction with the GROUP BY clause in the second SQL command set in Figure 7.27

to generate the desired result.

FIGURE An application of the HAVING clause

7.27

Using the WHERE clause instead of the HAVING clause— the second SQL command set in Figure 7.27 will produce

an error message.

#+ Oracle SQL*Plus
File Edit Search Option: Help

SQL> SELECT U_CODE, COUNT(DISTINCT (P_CODE)}), AUG(P_PRICE)

2 FROHW PRODUCT
3 GROUP BY U_CODE;

U_CODE COUNT(DISTIMCT{P_GODE}) AVUG{P_PRICE}

21225 2 8.47
21231 1 8.45
21344 3 12.49
23119 2 41.97
24288 3 155.593333
25505 3 89.63

2 18.135

7 rows selected.

SQL> SELECT U_CODE, COUNT(DISTINCT (P_CODE)}), AUG(P_PRIGCE)

2 FROHW PRODUCT
3 GROUP BY U_CODE
4 HAVING AUG{P_PRICE) < 18;

U_CODE COUNT(DISTIMCT(P_CODE}) AUG{P_PRICE})

21225 2 847
21231

Y
-]
=
w1

sqQL>

T

M[=1E3

M 4

C6545_07 7/26/2007 14:11:7 Page 273

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL) 273

You can also combine multiple clauses and aggregate functions. For example, consider the following SQL statement:

SELECT V_CODE, SUM(P_QOH * P_PRICE) AS TOTCOST
FROM PRODUCT

GROUP BY V_CODE

HAVING (SUM(P_QOH * P_PRICE) > 500)

ORDER BY SUM(P_QOH * P_PRICE) DESC;

This statement will do the following:
e Aggregate the total cost of products grouped by V_CODE.
e Select only the rows having totals that exceed $500.

e List the results in descending order by the total cost.

Note the syntax used in the HAVING and ORDER BY clauses; in both cases, you must specify the column expression
(formula) used in the SELECT statement’s column list, rather than the column alias (TOTCOST). Some RDBMS:s allow
you to substitute the column expression with the column alias, while others do not.

7.7 VIRTUAL TABLES: CREATING A VIEW

As you learned earlier, the output of a relational operator such as SELECT is another relation (or table). Suppose that
at the end of every day, you would like to get a list of all products to reorder, that is, products with a quantity on hand
that is less than or equal to the minimum quantity. Instead of typing the same query at the end of every day, wouldn’t
it be better to permanently save that query in the database? That’s the function of a relational view. A view is a virtual
table based on a SELECT query. The query can contain columns, computed columns, aliases, and aggregate functions
from one or more tables. The tables on which the view is based are called base tables.

You can create a view by using the CREATE VIEW command:
CREATE VIEW viewname AS SELECT query

The CREATE VIEW statement is a data definition command that stores the subquery specification—the SELECT
statement used to generate the virtual table—in the data dictionary.

The first SQL command set in Figure 7.28 shows the syntax used to create a view named PRICEGT50. This view
contains only the designated three attributes (P_DESCRIPT, P_QOH, and P_PRICE) and only rows in which the price
is over $50. The second SQL command sequence in Figure 7.28 shows the rows that make up the view.

NOTE

NOTE TO MS ACCESS USERS
The CREATE VIEW command is not directly supported in MS Access. To create a view in MS Access, you just
need to create a SQL query and then save it.

C6545_07 9/4/2007 14:8:39 Page 274

274

CHAPTER 7

FIGU
7.28

RE Creating a virtual table with the CREATE VIEW command
% 0Oracle SQL*Plus -3l -13] x|
File Edit Search Options Help
SQL> CREATE UIEW PRICEGTSO AS N
2 SELECT P_DESGRIPT, P_QOH, P_PRICE
3 FROM PRODUCT
4 WHERE P_PRICE > 50.00;

View created.

SQL> SELECT = FROM PRICEGTS@;

P_DESCRIPT P_OOH P_PRICE
Power painter, 15 psi., 3-nozzle 8 189 .99
B&D jigsaw, 12-in. blade g8 1089.92
B&D jigsaw, &-in. blade 3 99 .87
Hicut chain saw, 16 in. 11 256.99
Steel matting, 4'x8'x1/6", .5 mesh 18 119.95
sqL> | -
KT o

A relational view has several special characteristics:

You can use the name of a view anywhere a table name is expected in a SQL statement.

Views are dynamically updated. That is, the view is re-created on demand each time it is invoked. Therefore,
if new products are added (or deleted) to meet the criterion P_PRICE > 50.00, those new products will
automatically appear (or disappear) in the PRICEGT50 view the next time the view is invoked.

Views provide a level of security in the database because the view can restrict users to only specified columns
and specified rows in a table. For example, if you have a company with hundreds of employees in several
departments, you could give the secretary of each department a view of only certain attributes and for the
employees that belong only to that secretary’s department.

Views may also be used as the basis for reports. For example, if you need a report that shows a summary
of total product cost and quantity-on-hand statistics grouped by vendor, you could create a PROD_STATS
view as:

CREATE VIEW PROD_STATS AS

SELECT V_CODE, SUM(P_QOH*P_PRICE) AS TOTCOST,
MAX(P_QOH) AS MAXQTY, MIN(P_QOH) AS MINQTY,
AVG(P_QOH) AS AVGQTY

FROM PRODUCT

GROUP BY V_CODE;

In Chapter 8, you will learn more about views and, in particular, about updating data in base tables through views.

7.8 JOINING DATABASE TABLES

The ability to combine (join) tables on common attributes is perhaps the most important distinction between a relational
database and other databases. A join is performed when data are retrieved from more than one table at a time. (If
necessary, review the join definitions and examples in Chapter 3, The Relational Database Model.)

To join

tables, you simply list the tables in the FROM clause of the SELECT statement. The DBMS will create the

Cartesian product of every table in the FROM clause. (Review Chapter 3 to revisit these terms, if necessary.) However,

o

C6545_07 7/24/2007 8:58:19 Page 275 ‘

to get the correct result—that is, a natural join—you must select only the rows in which the common attribute values
match. To do this, use the WHERE clause to indicate the common attributes used to link the tables (this WHERE clause
is sometimes referred to as the join condition).

The join condition is generally composed of an equality comparison between the foreign key and the primary key of
related tables. For example, suppose you want to join the two tables VENDOR and PRODUCT. Because V_CODE is
the foreign key in the PRODUCT table and the primary key in the VENDOR table, the link is established on V_CODE.
(See Table 7.9.)

Creating Links Through Foreign Keys

ATTRIBUTES TO BE SHOWN LINKING ATTRIBUTE
PRODUCT P_DESCRIPT, P_PRICE V_CODE
VENDOR V_COMPANY, V_PHONE V_CODE

When the same attribute name appears in more than one of the joined tables, the source table of the attributes listed
in the SELECT command sequence must be defined. To join the PRODUCT and VENDOR tables, you would use the
following, which produces the output shown in Figure 7.29:

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, V_AREACODE, V_PHONE

FROM PRODUCT, VENDOR
WHERE PRODUCT.V_CODE = VENDOR.V_CODE;
FIGURE

7.29
P_DESCRIPT P_PRICE W _NAME W_COMNTACT | W_AREACODE | %_PHOMNE
Clawy hatmimer 985 Bryson, Inc. Smith=on 615 F23-3234
1.25-in. metal scresw, 25 5.893 Bryson, Inc. Smith=on 615 F23-3234
2540 wed. scresw, 50 345 DAE Supply Singh 615 228-3245
T 25-n. prvr . saw blade 14 89| Gomez Bros. Ortega 615 589-2546
9.00-in. prvr. s@w blade 17 49| Gomez Bros. Ortega 615 389-2546
Rat-tail file, 1/8-in. fine 4 89 Gomez Bros. Ortega 615 389-2546
Hrd. cloth, 1/4-in., 2x50 3895 |Randsets Lid. Ancerson 01 G75-3993
Hed. cloth, 1/2-in., 3x50 43 89| Randsets Lid. Ancerson 01 G75-3993
BAD jigsary, 12-in. blade 108.92 ORDYA, Inc. Hakford G615 895-1234
BAD jigsary, S-in. blade 9987 ORDWA, Inc. Hakford G615 895-1234
Hicut chain save, 16 in. 25699 ORDYA, Inc. Hakford G615 895-1234
Poveer painter, 15 pei., 3-nozzle 109 98 Rubicon Systems | Orton 904 436-0092
BAD cordless drill, 142-in. 38 .95|Rubicon Systems | Orton 904 436-0092
Steel matting, 4'=8'<1 8", 5" mesh 11995 Rubicon Systems | Orton 904 436-0092

Your output might be presented in a different order because the SQL command produces a listing in which the order
of the columns is not relevant. In fact, you are likely to get a different order of the same listing the next time you
execute the command. However, you can generate a more predictable list by using an ORDER BY clause:

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM PRODUCT, VENDOR

WHERE PRODUCT.V_CODE = VENDOR.V_CODE

ORDER BY P_PRICE;

In that case, your listing will always be arranged from the lowest price to the highest price.

o

C6545_07 9/4/2007 14:9:3 Page 276

276 CHAPTER 7

NOTE

Table names were used as prefixes in the preceding SQL command sequence. For example, PRODUCT.P_
PRICE was used rather than P_PRICE. Most current-generation RDBMSs do not require table names to be used
as prefixes unless the same attribute name occurs in several of the tables being joined. In that case, V_CODE is
used as a foreign key in PRODUCT and as a primary key in VENDOR; therefore, you must use the table names
as prefixes in the WHERE clause. In other words, you can write the previous query as:

SELECT P_DESCRIPT, P_PRICE, V_.NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM PRODUCT, VENDOR WHERE PRODUCT.V_CODE = VENDOR.V_CODE;

Naturally, if an attribute name occurs in several places, its origin (table) must be specified. If you fail to
provide such a specification, SQL will generate an error message to indicate that you have been ambiguous
about the attributes origin.

The preceding SQL command sequence joins a row in the PRODUCT table with a row in the VENDOR table in which
the V_CODE values of these rows are the same, as indicated in the WHERE clause’s condition. Because any vendor
can deliver any number of ordered products, the PRODUCT table might contain multiple V_CODE entries for each
V_CODE entry in the VENDOR table. In other words, each V_CODE in VENDOR can be matched with many
V_CODE rows in PRODUCT.

If you do not specify the WHERE clause, the result will be the Cartesian product of PRODUCT and VENDOR. Because
the PRODUCT table contains 16 rows and the VENDOR table contains 11 rows, the Cartesian product would produce
a listing of (16 x 11) = 176 rows. (Each row in PRODUCT would be joined to each row in the VENDOR table.)

All of the SQL commands can be used on the joined tables. For example, the following command sequence is quite
acceptable in SQL and produces the output shown in Figure 7.30:

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, V_AREACODE, V_PHONE

FROM PRODUCT, VENDOR
WHERE PRODUCT.V_CODE = VENDOR.V_CODE
AND P_INDATE > '15-Jan-2008';

FIGURE An ordered and limited listing after a join

7.30
P_DESCRIPT P_PRICE W _MNAME W_COMTACT | %_AREACODE | W_PHOME
1.25-in. metal screw, 25 £.99 Bryson, Inc. Smithson E15 223-3234
2 5-in. wed. scresw, 50 .45 DEE Supply Singh E15 228-3245
Claw hammer 995 Bryson, Inc. Smithson E15 223-3234
B&D cordless drill, 142-in. 35.95| Rubicon Systems | Orton Q04 456-0092
Steel matting, 4'=8"x18", 5" mesh 119.95 Rubicon Systems | Crion Q04 456-0092
Hicut chain sav, 16 in. 25699 ORDYA Inc. Hakfaord E15 595-1234

When joining three or more tables, you need to specify a join condition for each pair of tables. The number of join
conditions will always be N-1, where N represents the number of tables listed in the FROM clause. For example, if you have
three tables, you must have two join conditions; if you have five tables, you must have four join conditions; and so on.

C6545_07 7/24/2007 9:1:21 Page 277

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL) 277

Remember, the join condition will match the foreign key of a table to the primary key of the related table. For example,
using Figure 7.1, if you want to list the customer last name, invoice number, invoice date, and product descriptions for
all invoices for customer 10014, you must type the following:

SELECT CUS_LNAME, INV_NUMBER, INV_DATE, P_DESCRIPT

FROM CUSTOMER, INVOICE, LINE, PRODUCT
WHERE CUSTOMER.CUS_CODE = INVOICE.CUS_CODE
AND INVOICE.INV_NUMBER = LINE.INV_NUMBER
AND LINE.P_CODE = PRODUCT.P_CODE

AND CUSTOMER.CUS_CODE = 10014

ORDER BY INV_NUMBER,;

Finally, be careful not to create circular join conditions. For example, if Table A is related to Table B, Table B is related
to Table C, and Table C is also related to Table A, create only two join conditions: join A with B and B with C. Do
not join C with Al

JOINING TABLES WITH AN ALIAS

An alias may be used to identify the source table from which the data are taken. The aliases P and V are used to label
the PRODUCT and VENDOR tables in the next command sequence. Any legal table name may be used as an alias.
(Also notice that there are no table name prefixes because the attribute listing contains no duplicate names in the
SELECT statement.)

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM PRODUCT P, VENDOR V

WHERE P.V_CODE = V.V_CODE

ORDER BY P_PRICE;

RECURSIVE JOINS

An alias is especially useful when a table must be joined to itself in a recursive query. For example, suppose you are
working with the EMP table shown in Figure 7.31.

FIGURE The contents of the EMP table

7.31

ErP_MLIK | EMP_TITLE | EMP_LMAME | EMP_FMAME | EMP_IMITIAL | EMP_DOB | EMP_HRE_DATE | EMP_AREACCDE | EMP_PHOME | EMP_MGR
100 kr. Kolmycz George o 15-Jun-42 15-Mar-85| 615 324-5456
101 | Ms. Leswvis Fhonda G 19-Mar-65 25-Apr-66 615 324-4472 100
102 . Wandam Fihett 14-Mow-55 20-Dec-80| 901 6735-83993 100
103 Ms. Jones Anne h 16-0ct-74 28-Aug-94 613 595-3426 100
104 hdr. Lange Jokin P 05-kow-11 20-0ct-94| 901 S04-4430 105
105 M. Willistns Fobert o 14-Mar-75 08-Mow-258| 615 890-3220
106 Mrs. Smith Jeanine K 12-Feh-68 05-Jan-89 E15 3247883 105
107 Mr. Diarte Jorge o 21-Aug-74 02-Jul-34 6135 890-4567 105
1065 My Wiesenbach | Paul R 14-Feh-66 16-Mow-92| 615 897-4355
109 M. Smith George K 15-Jun-61 14-Apr-59| 90 S04-3339 108
110 Wrs. Genkazi Leighla W 19-May-70 01-Dec-20| 901 SE9-0093 108
111 e Wiashington | Rupett E 03-Jan-66 21-Jun-33 B15 590-4923 105
112 hir. Johngon Echovard E 1 4-hbay -6 01-Dec-53| 615 G95-4387 100
113 Ms=. Simythe Melanie P 15-Sep-70 11 -May-09 B15 324-9006 105
114 Ms. Brandan Warie & 02-Maw-56 15-Mow-79 901 G52-0545 108
115 Mrs. Saranda Hermine R 25-Jul-72 23-Apr-93| 615 324-5303 105
116 M. Smith George A 05-Mow-65 10-Dec-55|615 890-2954 108

C6545_07 7/24/2007 9:5:9 Page 278

278

CHAPTER 7

Using the data in the EMP table, you can generate a list of all employees with their managers’ names by joining the
EMP table to itself. In that case, you would also use aliases to differentiate the table from itself. The SQL command

sequence would look like this:

SELECT E.EMP_MGR, M.EMP_LNAME, E.EMP_NUM, E.EMP_LNAME

FROM EMP E, EMP M
WHERE E.EMP_MGR=M.EMP_NUM
ORDER BY E.EMP_MGR;

The output of the above command sequence is shown in Figure 7.32.

FIGURE Using an alias to join a table
7.32 to itself

ERAP_RJLIM | A EMP_LMNAME | EMP_MGR | BEMP_LMAME
m Johnzon 100 Kolmycz
103 Jones 100 Kolmycz
102 YWandam 100 Kolmycz
101 Lewvis 100 Kolmycz
115 Saranda 105 williams
113 Smythe 105 villiams
111 | Washington 105 willizms
107 | Diante 103 villiams
106 Smith 105 whilliams
104 Lange 105 williams
116 Smith 108 Wiesenbach
114 Brandan 108 wiesenbach
110| Genkazi 108 Wwiesenbach
108 Smith 108 Wiesenbach

NOTE

OUTER JOINS

Figure 7.29 showed the results of joining the PRODUCT
and VENDOR tables. If you examine the output, note that
14 product rows are listed. Compare the output to the
PRODUCT table in Figure 7.2, and note that two products
are missing. Why? The reason is that there are two products
with nulls in the V_CODE attribute. Because there is no
matching null “value” in the VENDOR table’s V_CODE
attribute, the products do not show up in the final output
based on the join. Also, note that in the VENDOR table in
Figure 7.2, several vendors have no matching V_CODE in
the PRODUCT table. To include those rows in the final join
output, you must use an outer join.

In MS Access, add AS to the previous SQL command sequence, making it read:

SELECT E.EMP_MGCR,M.EMP_LNAME, E.EMP_NUM,E.EMP_LNAME

FROM EMP AS E, EMP AS M
WHERE E.EMP_MCR = M.EMP_NUM
ORDER BY E.EMP_MCR;

C6545_07 9/4/2007 14:11:25 Page 279

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL)

279

There are two types of outer joins: left and right. (See Chapter 3.) Given the contents of the PRODUCT and VENDOR
tables, the following left outer join will show all VENDOR rows and all matching PRODUCT rows:

SELECT P_CODE, VENDOR.V_CODE, V_NAME
FROM VENDOR LEFT JOIN PRODUCT
ON VENDOR.V_CODE = PRODUCT.V_CODE;

Figure 7.33 shows the output generated by the left outer join command in MS Access. Oracle yields the same result,
but shows the output in a different order.

The right outer join will join both tables and show all product rows with all matching vendor rows. The SQL command
for the right outer join is:

SELECT PRODUCT.P_CODE, VENDOR.V_CODE, V_NAME
FROM VENDOR RIGHT JOIN PRODUCT
ON VENDOR.V_CODE = PRODUCT.V_CODE;

Figure 7.34 shows the output generated by the right outer join command sequence in MS Access. Again, Oracle yields
the same result, but shows the output in a different order.

In Chapter 8, you will learn more about joins and how to use the latest ANSI SQL standard syntax.

FIGURE The left outer FIGURE The right outer
7.33 join results 7.34 join results
P_CODE [%_CODE| W _MAME P CODE |¥ CODE| MAME
23109-HB 21225 Bry=on, Inc. 23114-4.4
SM-18277 21225 Bryson, Inc. PYC23DRT
21226 SuperLoo, Inc. 231035-HB 21225 Bry=on, Inc.
SM-23116 21231 D&E Supply SM-18277 21225 Bryson, Inc.
13-02P2 21344| Gomez Bros. SWZ3ME 21231 | DEE Supply
14-211L3 21344| Gomez Bros. 130202 21344 Gomez Bros.
5477827 21 344| Gomez Bros. 140103 21344 Gomez Bros.
22567 | Dome Supply 54778-2T 21344 Gomez Bros,
1546-QG12 23119| Randzets Ltd. 1546-Q02 23119 Randsets Ltd.
1558-GA1 23119 Randssts Ltd. 1558y 23119| Randzets Ltd,
24004 Brackman Bros. 22INATY 24288 ORDWA, InG.
2AI2ATY 24285 ORDYA, Inc. 22TINTIE 24288 ROV, N,
2RI2NNE 24258 ORDVA, Inc. B9RE-C 24288 ORD\-"."—‘«.: Inc.
83-MWRE-Q | 24268 ORDYA, Inc. 11QER/31 25595 Rubican Systems
25443 BEK, Inc. 2238/QPD 25585 | Rubicon Systems
25501 | Damal Supplies WRITTS 25595 | Rubicon Systems
11GER 25595| Rubicon Systems
2238I0RPD 25595 Rubicon Systems
VWRSTTS 25595 Rubicon Systems

ONLINE CONTENT

For a complete walk-through example of converting an ER model into a database structure and using SQL
commands to create tables, sce Appendix D, Converting an ER Model into a Database
Structure, in the Student Online Companion.

C6545_07 9/4/2007 14:12:45 Page 280

280

CHAPTER 7

S UMMARY

The SQL commands can be divided into two overall categories: data definition language (DDL) commands and data
manipulation language (DML) commands.

The ANSI standard data types are supported by all RDBMS vendors in different ways. The basic data types are
NUMBER, INTEGER, CHAR, VARCHAR, and DATE.

The basic data definition commands allow you to create tables, indexes, and views. Many SQL constraints can be
used with columns. The commands are CREATE TABLE, CREATE INDEX, CREATE VIEW, ALTER TABLE,
DROP TABLE, DROP VIEW, and DROP INDEX.

DML commands allow you to add, modify, and delete rows from tables. The basic DML commands are SELECT,
INSERT, UPDATE, DELETE, COMMIT, and ROLLBACK.

The INSERT command is used to add new rows to tables. The UPDATE command is used to modify data values
in existing rows of a table. The DELETE command is used to delete rows from tables. The COMMIT and
ROLLBACK commands are used to permanently save or roll back changes made to the rows. Once you COMMIT
the changes, you cannot undo them with a ROLLBACK command.

The SELECT statement is the main data retrieval command in SQL. A SELECT statement has the following syntax:

SELECT columnlist

FROM tablelist

[WHERE conditionlist]

[GROUP BY columnlist]

[HAVING conditionlist]

[ORDER BY columnlist [ASC | DESC] | ;

The column list represents one or more column names separated by commas. The column list may also include
computed columns, aliases, and aggregate functions. A computed column is represented by an expression or
formula (for example, P_PRICE * P_QOH). The FROM clause contains a list of table names or view names.

The WHERE clause can be used with the SELECT, UPDATE, and DELETE statements to restrict the rows affected
by the DDL command. The condition list represents one or more conditional expressions separated by logical
operators (AND, OR, and NOT). The conditional expression can contain any comparison operators (=, >, <, >=,
<=, and <>) as well as special operators (BETWEEN, IS NULL, LIKE, IN, and EXISTS).

Aggregate functions (COUNT, MIN, MAX, and AVG,) are special functions that perform arithmetic computations
over a set of rows. The aggregate functions are usually used in conjunction with the GROUP BY clause to group
the output of aggregate computations by one or more attributes. The HAVING clause is used to restrict the output
of the GROUP BY clause by selecting only the aggregate rows that match a given condition.

The ORDER BY clause is used to sort the output of a SELECT statement. The ORDER BY clause can sort by one
or more columns and can use either ascending or descending order.

You can join the output of multiple tables with the SELECT statement. The join operation is performed every time
you specify two or more tables in the FROM clause and use a join condition in the WHERE clause to match the
foreign key of one table to the primary key of the related table. If you do not specify a join condition, the DBMS
will automatically perform a Cartesian product of the tables you specify in the FROM clause.

The natural join uses the join condition to match only rows with equal values in the specified columns. You could
also do a right outer join and left outer join to select the rows that have no matching values in the other
related table.

C6545_07 9/4/2007 14:13:4 Page 281

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL)

28I

K EY T ER M S

alias, 250 DISTINCT, 265 NOT, 252

ALTER TABLE, 257 DROP INDEX, 240 OR, 252

AND, 252 DROP TABLE, 263 ORDER BY, 263
authentication, 229 EXISTS, 253 recursive query, 277
AVG, 269 GROUP BY, 270 reserved words, 235
base tables, 273 HAVING, 272 ROLLBACK, 244
BETWEEN, 253 IN, 253 rules of precedence, 251
Boolean algebra, 252 inner query, 245 schema, 229

cascading order sequence, 264 INSERT, 240 SELECT, 242
COMMIT, 242 IS NULL, 253 subquery, 245
COUNT, 266 LIKE, 253 SUM, 269

CREATE INDEX, 239 MAX, 267 UPDATE, 244
CREATE TABLE, 232 MIN, 267 view, 273

CREATE VIEW, 273 nested query, 245 wildcard character, 242
DELETE, 245

ONLINE CONTENT

Answers to selected Review Questions and Problems for this chapter are contained in the Student Online
Companion for this book.

ONLINE CONTENT

The Review Questions in this chapter are based on the ChQ7_Review database located in the Student Online
Companion. This database is stored in Microsoft Access format. If you use another DBMS such as Oracle, SQL
Server, MySQL, or DB2, use its import utilities to move the Access database contents. The Student Online
Companion provides Oracle and SQL script files.

R E VI EW QUESTI ON S

The Ch07_Review database stores data for a consulting company that tracks all charges to projects. The charges are
based on the hours each employee works on each project. The structure and contents of the ChO7_Review database
are shown in Figure Q7.1.

Note that the ASSIGNMENT table in Figure Q7.1 stores the JOB_CHG_HOUR values as an attribute (ASSIGN_
CHG_HR) to maintain historical accuracy of the data. The JOB_CHG_HOUR values are likely to change over time.
In fact, a JOB_CHG_HOUR change will be reflected in the ASSIGNMENT table. And, naturally, the employee primary
job assignment might change, so the ASSIGN_JOB is also stored. Because those attributes are required to maintain
the historical accuracy of the data, they are not redundant.

o

C6545_07 7/24/2007 9:13:58 Page 282

282

CHAPTER 7

FIGURE

Q7.1

Relational diagram

Table name: JOB

‘JOELCODEl JOB_DESCRIPTION |JOELCHG7HOUR JOB_LAST_UPDATE

S00 Programmer

a1 Systems Analyst
502 Database Designer
03 Electrical Enginger
S04 Mechanicsl Enginesr
05 Civil Engineer

506 Clerical Support

07 DSE Analyat

S08 Applications Designer
509 Biio Technician

510 Zeneral Support

Table name: PROJECT

35875 20-Mov-07
9675 20-Moy-07
125.00 24-Mar-06
84.50 20-Moy-07
67.40 20-Mov-07
5578 20-Moy-07
2687 20-Mow-07
4595 20-Moy-07
4510 24-Mar-05
34.55 20-Moy-07
1636 20-Mow-07

[PROJ_MUM | PROJ_NAME | PROJ_VALUE | PROJ_BALANCE | EMP_HUM

18 Evergreen
18 Amber Wave
22 Rolling Ticke:
25 Starflight

1002350.00 103
2110346.00/ 108
500345.20 102
2309330.00/107

Structure and contents of the Ch07_Review database

Database name: Ch07_Review

Table name: EMPLOYEE

| EMP_HUM | EMP_LNAME | EMP_FNAME | EMP_IMTIAL | EMP_HIREDATE | JOB_CODE | EMP_VEARS |

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
17
118

lwes John <} 0-hlore-00) 502 4
Senior Diawicl H 1 2-Jul-88| 501 15
Arbough June E 01-Dec-96 503 il
Ramoras Anne K 15-hlov-87 | 501 7
Johnson Alice K 01-Feb-93 502 12
Smithfielcd Willizm 22-Jun-04 500 a
Alonza Maria 5] 10-0ct-53| 500 i
washington Ralph B 22-Aug-31 501 13
Smith Larry Wy 4 8-Jul-97 501 7
Clenka Gerald A 11-Dec-95 505]
wWabazh Geoff B 04-2pr-91| 506 14/
Smithson Darlene tl 23-0ct-94| 507 10
Joenbrood Delbert K 15-hlov-96) 508 g
Jones Annelise 20-2ug-93 505 i
Bawangi Travis B 25-Jan-92| 501 13
Pratt Gerald L 05-hdar-97 510 g
wiilismson Angie H 18-Jun-96| 509 &
Frommer James J 04-Jan-05| 510 a

Table name: ASSIGNMENT

ASSIGN_NUM | ASSIGN_DATE | PROJ_NUM | EMP_NUM [ASSIGN_IOR | ASSIGN_CHG_HR | ASSIGN_HOURS | ASSIGN_CHARGE

1001
1002
1003
1004
1005
1008
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1018
1020
1021
1022
1023
1024
1025

22-Mar-08 18 103 503 B84 .50 35 28575
22-Mar-05 22 7 503 3455 4.2 145.11
22-Mar-08 18 7 509 3455 20 6910
22-Mar-08 18 103 503 B84 .50 59 498 55
22-Mar-08 25 108 a01 9675 2.2 21285
22-Mar-08 22 104 501 9675 4.2 406.35
22-Mar-08 25 M3 508 5075 38 192385
22-Mar-05 16 103 503 8450 0.8 76.05
23-Mar-08 15 118 501 9675 56 541.50
25-Mar-08 15 "7 509 3455 24 5292
23-Mar-08 25 103 S0z 105.00 4.3 451.50
23-Mar-08 18 108 501 9675 3.4 32595
25-Mar-05 25 s 501 8675 20 18350
23-Mar-08 22 104 501 9675 28 270,80
23-Mar-08 15 103 503 8450 61 51545
25-Mar-05 22 105 502 10500 47 489350
23-Mar-05 16 7 503 3455 38 131.29
23-Mar-08 25 7 509 3455 2.2 7E.01
24-Mar-05 25 104 501 1050 49 54145
24-Mar-08 15 101 a0z 125.00 3 387.50
24-Mar-08 22 108 501 110,50 27 295.35
24-Mar-05 22 s 501 1050 49 54145
24-Mar-05 22 103 a0z 125.00 3.3 437.50
24-Mar-08 15 103 503 8450 33 27585
24-Mar-05 18 ki 509 3455 42 14511

Given the structure and contents of the ChO7_Review database shown in Figure Q7.1, use SQL commands to answer
Questions 1-25.

1. Write the SQL code that will create the table structure for a table named EMP_1. This table is a subset of the
EMPLOYEE table. The basic EMP_1 table structure is summarized in the table below. (Note that the JOB_CODE

is the FK to JOB.)

EMP_NUM CHAR(3)
EMP_LNAME VARCHAR(15)
EMP_FNAME VARCHAR(15)
EMP_INITIAL CHAR(T)
EMP_HIREDATE DATE
JOB_CODE CHAR(3)

Having created the table structure in Question 1, write
the SQL code to enter the first two rows for the table
shown in Figure Q7.2.

Assuming the data shown in the EMP_1 table have
been entered, write the SQL code that will list all
attributes for a job code of 502.

Wirite the SQL code that will save the changes made to
the EMP_1 table.

Write the SQL code to change the job code to 501 for
the person whose employee number (EMP_NUM) is
107. After you have completed the task, examine the
results, and then reset the job code to its original value.

o

C6545_07 9/14/2007 9:23:52 Page 283

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL)

283

FIGURE The contents of the EMP_1 table

Q7.2

EMP_MUM | EMP_LMAME | EMP_FNAME | EMP_IMITIAL | EMP_HREDATE | JOB_CODE
101 Mews John & 08-Mare-00) 502
102 Senior Diavicl H 12-Jul-39 501
103 Arbough June E 01 -Dec-96 500
104 Famaraz Anne K 15-More-57 | 501
105 Johnsaon Alice K 01 -Feh-93 502
106 Smithfield il 22-Jun-04 | 500
107 Alonzo Maria o 10-Cct-93 500
108 viashington |Ralph B 22-Aug-91 501
109 Smith Larry W 18-Jul-97 | 501

Write the SQL code to delete the row for the person named William Smithfield, who was hired on June 22,
2004, and whose job code classification is 500. (Hint: Use logical operators to include all of the information
given in this problem.)

Write the SQL code that will restore the data to its original status; that is, the table should contain the data that
existed before you made the changes in Questions 5 and 6.

Write the SQL code to create a copy of EMP_1, naming the copy EMP_2. Then write the SQL code that will
add the attributes EMP_PCT and PROJ_NUM to its structure. The EMP_PCT is the bonus percentage to be paid
to each employee. The new attribute characteristics are:

EMP_PCTNUMBER(4,2)
PROJ_NUMCHAR(3)
(Note: If your SQL implementation allows it, you may use DECIMAL(4,2) rather than NUMBER(4,2).)

Write the SQL code to change the EMP_PCT value to 3.85 for the person whose employee number (EMP_NUM)
is 103. Next, write the SQL command sequences to change the EMP_PCT values as shown in Figure Q7.9.

FIGURE The contents of the EMP_2 table

Q7.9

10.

11.

EbP_MUN | EMP_LMNAME | EMP_FHAME | EMP_IMITIAL | EMP_HIREDATE | JOB_CODE | EMP_PCT | PROJ_MUM

101 Mers John G 05-Mow-00| 502 5.00
102 Seniar Dravicd H 12-Jul-55 | 501 5.00
103 Arbough June E 1 -Dec-96 200 385
104 Famoras Anne K 15-Mow-57 | 501 10,00
105 Johnzon Alice i 01-Feh-93 502 5.00
106 Smithfield Willizm 22-Jun-04 500 5.20
107 Alonzo haria] 10-Oct-93) 500 515
108 Washington | Ralph B 22-80g-91 501 10.00
109 Smith Larry W 15-Jul-97 | 501 2.00

Using a single command sequence, write the SQL code that will change the project number (PROJ_NUM) to 18
for all employees whose job classification (JOB_CODE) is 500.
Using a single command sequence, write the SQL code that will change the project number (PROJ_NUM) to 25
for all employees whose job classification (JOB_CODE) is 502 or higher. When you finish Questions 10 and 11,
the EMP_2 table will contain the data shown in Figure Q7.11.

(You may assume that the table has been saved again at this point.)

C6545_07 7/26/2007 14:13:29 Page 284

284

CHAPTER 7

FIGURE The EMP_2 table contents after the modifications

Q7.11
| EMP_NUM | EMP_LNAME | EMP_FNAME | EMP_INITIAL | EMP_HIREDATE | JOB_CODE | EMP_PCT | PROJ_NUM
101 Mervs Jotin [05-koy-00] 502 500
102 Senior Diarvicl H 12-Ju-89| 501 &.00
103 Arbough June E 1 -Dec-96 200 385
104 Ramaras Anne K 15-Mow-57 501 10.00
105 Johnzan Alice K 01-Fek-93 502 500
108 Stithfield William 22-Jun-04 | 500 .20
107 &lonzo Maris o 10-0ct-33 | 500 515
108 Washington | Ralgh B 22-Ag-31 | 501 10,00
109 Stk Latry w 15-Ju-37 | 501 200
12. Write the SQL code that will change the PROJ_NUM to 14 for those employees who were hired before

13.

14.
15.

16.

January 1, 1994 and whose job code is at least 501. (You may assume that the table will be restored to its
condition preceding this question.)

Write the two SQL command sequences required to:

a. Create a temporary table named TEMP_1 whose structure is composed of the EMP_2 attributes EMP_NUM
and EMP_PCT.

b. Copy the matching EMP_2 values into the TEMP_1 table.

Write the SQL command that will delete the newly created TEMP_1 table from the database.

Write the SQL code required to list all employees whose last names start with Smith. In other words, the rows
for both Smith and Smithfield should be included in the listing. Assume case sensitivity.

Using the EMPLOYEE, JOB, and PROJECT tables in the Ch07_Review database (see Figure Q7.1), write the
SQL code that will produce the results shown in Figure Q7.16.

FIGURE The query results for Question 16
Q7.16

17.

18.
19.

20.
21.

22.

PROJ_NAME' PROJ_WALUE | PROJ_BALAMNCE [EMP_LMAME [EMP_FMAKME | EMP_IRITIAL | JOB_CODE | JOB_DESCRIPTION | JOB_CHG_HOUR

Rolling Tide 305000.00 20034520 Seniar Dravicd H S0 Systems Analyst 9675
Evergreen 1453500.00 100235000 Arbough June E 500 Programimner 3575
Starflight 2B50500.00 230853000 Alonza Iiaria] 500 Programmer 3375
Armber YWave 3500500.00 211034600 Wiashington | Ralph B S0 Systems Analyst 9575
Write the SQL code that will produce a virtual table named REP_1. The virtual table should contain the same

information that was shown in Question 16.

Write the SQL code to find the average bonus percentage in the EMP_2 table you created in Question 8.
Write the SQL code that will produce a listing for the data in the EMP_2 table in ascending order by the bonus
percentage.

Write the SQL code that will list only the distinct project numbers found in the EMP_2 table.

Write the SQL code to calculate the ASSIGN_CHARGE values in the ASSIGNMENT table in the ChO7_Review

database. (See Figure Q7.1.) Note that ASSIGN_CHARGE is a derived attribute that is calculated by multiplying
ASSIGN_CHG_HR by ASSIGN_HOURS.

Using the data in the ASSIGNMENT table, write the SQL code that will yield the total number of hours worked
for each employee and the total charges stemming from those hours worked. The results of running that query
are shown in Figure Q7.22.

o

C6545_07 7/24/2007 9:18:9 Page 285

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL) 285

FIGURE Total hours and charges by employee

Q7.22

ERP_MUIM | EMP_LMAME | SumOfASSIGH_HOURS | SumOfASSIGH_CHARGE

h 1] Mews 3.4 387,50
103 Arbough 19.7 1664 55
104 Famaraz 11.9 1215870
105 Johnson 125 135250
105 Washington 8.3 4015
113 Joenkrood 3.8 19283
115 Bawangi 125 127675
M7 Williamson 188 E49.54

23. Write a query to produce the total number of hours and charges for each of the projects represented in the
ASSIGNMENT table. The output is shown in Figure Q7.23.

24. Write the SQL code to generate the total hours worked

FIGURE Total hour and charges by and the total charges made by all employees. The

Q7.23 project results are shown in Figure Q7.24. (Hint: This is a

nested query. If you use Microsoft Access, you can

generate the result by using the query output shown in

FROJ_MUM | SumCTASSIGHN_HOURS | SumOfASSIGH_CHARGE

E 05 160652 Figure Q7.22 as the basis for the query that will
18 237 1544.80 produce the output shown in Figure Q7.24.)

2 70 259316

25 19.4 16E516 25. Write the SQL code to generate the total hours worked

and the total charges made to all projects. The results
should be the same as those shown in Figure Q7.24.
Hint: This is a nested query. If you use Microsoft
FIGURE Total hours and charges, all ; n qh v 1 i -
Q7-2 4 employees ccess, you can generate the result by using the query

output shown in Figure Q7.23 as the basis for

this query.)

SumOfSumOfASSIGN_HOLIRS| SumCtSumOTASSIGN_CHARGE

761264

P R OB L E M S

ONLINE CONTENT

Problems 1-15 are based on the Ch07_AviaCo database located in the Student Online Companion. This
database is stored in Microsoft Access format. If you use another DBMS such as Oracle, SQL Server, MySQL, or
DB2, use its import utilities to move the Access database contents. The Student Online Companion provides
Oracle and SQL script files.

Before you attempt to write any SQL queries, familiarize yourself with the Ch07_AviaCo database structure and
contents shown in Figure P7.1. Although the relational schema does not show optionalities, keep in mind that all pilots
are employees, but not all employees are flight crew members. (Although in this database, the crew member
assignments all involve pilots and copilots, the design is sufficiently flexible to accommodate crew member

o

C6545_07 9/14/2007 9:24:22 Page 286

286 CHAPTER 7

assignments—such as loadmasters and flight attendants—of people who are not pilots. That’s why the relationship
between CHARTER and EMPLOYEE is implemented through CREW.) Note also that this design implementation does
not include multivalued attributes. For example, multiple ratings such as Instrument and Certified Flight Instructor
ratings are stored in the (composite) EARNEDRATINGS table. Nor does the CHARTER table include multiple crew

assignments, which are properly stored in the CREW table.

FIGURE
P7.1

The Ch07_AviaCo database

Relational diagram

¥ G oot

—

Table name: CUSTOMER

[[Cus_CODE| cuS LNAME | CUS FNAME | CUS_ IMITIAL | CUS_AREACODE | CUS_ PHONE [CUS BALANCE

10010 Ramas Alfred A 615 844-2573 0.00
10011 Dunne Leona K 3 894-1238 0.00
10012 Smith Wattry w 815 894-2285 836.54
10013 Olowski Paul F 815 294-2180 128519
10014 Orlando Myron 815 2221672 673.21
10015 O'Brian Amy [} 3 442-3381 101456
10016 Brown James G 815 2871228 0.00
10017 Wiliams George 815 280-2556 0.00
10018 Farriss Anne G 3 3827185 0.00
10019 Smith Olette K 615 287-3309 453.98

Table name: CHARTER

Table name: CREW

Database name: Ch7_AviaCo

Table name: RATING

CraR TR
10001 1041 Pict |_RTG_CoDE | RTG_NAME |
1333? 13; E:E Rl Certiied Flight Instructor
o 08| Copit CFI Certiied Flight Instructor, Instrument
o T INSTR Instrumert
oS o1 it WEL Mutiengine Land
b ol it SEL Single Encire, Land
o ol it SES Single Encine, Sea
10007 108 Copilot
10008 106 Filot
10003 105 Filot
10010 108 Piot Table name: EMPLOYEE
10011 101 pilnt
EMP_NUM | EMP_TITLE | EMP_LNAME | EMP_FNAME | EMP_NTIAL | EMP_DOB | EMP_HIRE_DATE
100 Kobmyez George 3 15-Jun-1342 15-Mar-1387
101 Lewis Rhonda [19-Mar-1985 25-Apr1338
102 andam Rhett 14-Now-1358 20.Dec-1392
103 M Jdanes fnne [1B-Oct1974 26 Aug-2005
1104 Lange John 3 08-NowA 371 20-0ct.1995
108 wiliams Robert 3 14-Mar-1975 (8-Jan- 2006
1108 s Duzak Jesrine K 12-Feh1988 05-Jan-1391
107 Diarte Jorge 3 21-hugA974 021995
1108 . wiesenbach Paul R 14-Feh 1986 18-Now-1394
109 M Trevis Eizaheth K 18-dun-1361 14-AprAa9t
110/ s Genkazi Leighla W 16 Way-1970 01.Dec-1392
Table name: PILOT
EMP_NUM [PIL_LICENSE | PIL_RATNGS | PIL_MED_TYPE | PIL_MED_DATE | PIL_PT135 DATE
101 ATP SELMELnstr/cFI 1 12-A1-2008 15-Jun-2007
104 ATP SELMELfnstr 1 10-un-2007 23-Mar-2008
105 COM SELMELAnstrICF| 2 25-Fen-2008 12-Feh-2008
106 COM SELMELfnstr 2 02-Ap1-2008 24-Dec-2007
109 COM SELMEL/SESINSIrCFI |1 14-801-2008 21-#pr-2008

CHAR_TRIP | CHAR_DATE | AC_NUMBER | CHAR_DESTMATION | CHAR_DISTANCE

CHAR_HOLRS_IWAIT

CHAR_FUEL_GALLONS

CHAR_OIL_QTS | cLIS_CODE |

CHAR_HOLRS_FLOWH
5.1

10001 05-Feb-08 22891 ATL 936.0/ 22 3541

10002 05-Feb-08 2778Y BMA 3200 16 o 726

10003 05-Feh-08 4278Y GhY 15740 78 o 3398

10004 06-Feh-0G 1434P STL 4720 23 49 97.2

10005 06-Feh-08 22391 ATL 10230 57 35 3977

10006 0B-Feh-05 4278Y STL 4720 28 52 1171

10007 0B-Feh-08 2778 GhY 15740 74 0 3484

10003 07-Feb-08 1434P TYS £44.0 41 0 140 6

10009 07 -Feb-0& 22301 GV 1574.0 [:1:] 234 4599

10010 07 -Feb-08 4278Y ATL 9950/ 6.2 32 2797

10011 07-Feb-08 1434P BHA 3520 19 53 EE.4

10M2 08-Feh-08 2778Y MOB 8340 48 42 21151

10M3 08-Feb-08 4278Y s B44.0 39 45 1743

10014 08-Feb-06 4278Y ATL 9360 B.1 21 3026

10M5 08-Feb-06 22891 GV 1645.0 B.7 0 4585

10ME 09-Feb-08 2778Y MaY 20 1.5 o 57.2

10M7 10-Feb-08 1484P STL S08.0 31 o 1055

108 10-Feb-03 4278Y s 5440 38 45 167 .4,
Table name: AIRCRAFT Table name: MODEL

AC_NUMBER | MOD_CODE | AC_TTAF | AC_TTEL | AC_TTER [MOD_CODE | MOD_MANUFACTURER | MOD_NAME | MOD_SEATS [MOD_CHG_MLE

1484P PA23-250 1833.1 18331 M8 C908 Beschcrat Kingir & 267
22091 c-ana 42438 760.9 11234 PA23-250 Piger Azter 3 193
2r7ey PAZ1-350 79929 15131 7895 PA31-350 Piper Mavajo Chieftain 10 2.3
4278 PAZ1-350 21473 6221 2432

10011

10016
10014
10013
10011

10017
10012
10014
10017
10016
10012
10010
10011

10017
10016
10011

10014
10017

coamao=alralo=wen2ne

Table name: EARNEDRATING

1. Write the SQL code that will list the values for the first four attributes in the CHARTER table.

2. Using the contents of the CHARTER table, write the SQL query that will produce the output

EMP_NUM | RTG_CODE | EARNRTG_DATE |
101 CRl 18-Feh 58
101 CFIl 15-Dec-05
101 INSTR 08-hov-93
101 | MEL 25-Jun-94
101 SEL 21-Apr93
104 NSTR 15-Jul-98
104 MEL 28-Jan-97
104/ SEL 12-Mear-85
108 CFl 18-hov-57
105/ INSTR 17-Apr5
108 MEL 12-Aug-95
108 SEL 23-Sep-94
108/ NSTR 20-Dec-95
08| MEL 02-Apr-96
108 SEL 10-Mar-94
108 CFl 05-hov-98
108/ CFIl 21-un-03
109 INSTR 23-Jul-95
10| MEL 15-Mar-57
109 SEL 05-Feh 95
109/ sES 12-May-95

shown in

Figure P7.2. Note that the output is limited to selected attributes for aircraft number 2778V.

C6545_07 7/24/2007 9:18:48 Page 287 ‘

FIGURE
P7.2
CHAR_DATE| AC_MUMBER | CHAR_DESTIMATION | CHAR_DISTAMCE | CHAR_HOURS _FLOWN
03-Feh-058| 2778Y Bl 320 16
06-Feh-058| 27758Y G 1574 74
08-Feh-05| 2778Y MOB G54 4.8
09-Feh-05| 27758Y hAGHY 312 1.5

3. Create a virtual table (named AC2778V) containing the output presented in Problem 2.

4. Produce the output shown in Figure P7.4 for aircraft 2778V. Note that this output includes data from the
CHARTER and CUSTOMER tables. (Hint: Use a JOIN in this query.)

FIGURE
P7.4
CHAR_DATE| AC_MUMBER | CHAR_DESTINATION | CUS_LMAME | CUS_AREACODE | CUS_PHOMNE
05-Feh-05 2775% [lel=] Ramas 615 G44-2573
09-Feh-05 2775Y MY Dunre 713 §94-1235
O6-Feh-05 2775% R Smith 615 §94-2285
05-Feh-05 2775% B, Browen 615 2971225

5. Produce the output shown in Figure P7.5. The output, derived from the CHARTER and MODEL tables, is limited
to February 6, 2008. (Hint: The join passes through another table. Note that the “connection” between
CHARTER and MODEL requires the existence of AIRCRAFT because the CHARTER table does not contain a
foreign key to MODEL. However, CHARTER does contain AC_NUMBER, a foreign key to AIRCRAFT, which
contains a foreign key to MODEL.)

FIGURE
P7.5

CHAR_DATE | CHAR_DESTIMNATION | AC_MUMBER WCD_MAME MO0 _CHG_MILE
06-Feh-0&8 STL 1454P Artec 193
06-Feb-03 ATL 22890 KinoAir 267
06-Feh-08 STL 4278 Mavajo Chieftain 235
06-Feh-03| GMNY 277y Mavajo Chieftain 235

6. Modify the query in Problem 5 to include data from the CUSTOMER table. This time the output is limited to
charter records generated since February 9, 2008. (The query results are shown in Figure P7.6.)

C6545_07 9/14/2007 9:24:42 Page 288

FIGURE
P7.6
CHAR_DATE | CHAR_DESTIMATION | &2 _MUMBER MCD_MAME MOD_CHG_MILE | CUS_LMAKME

09-Feb-03 ATL 4278y Mawsjo Chieftain 2.35 Wiliams
08-Fehb-05 Moy 2TTa Mawajo Chieftain 2.35 Dunne
09-Fehb-03| GHY 2288L KingAir 267 Browwn
10-Feb-03 TYS 4278y Mawsjo Chieftain 2.35 Wiliams
10-Feh-08 STL 1454P Artec 1.83 Orlando

7. Modify the query in Problem 6 to produce the output shown in Figure P7.7. The date limitation in Problem 6
applies to this problem, too. Note that this query includes data from the CREW and EMPLOYEE tables. (Note:
You might wonder why the date restriction seems to generate more records than it did in Problem 6. Actually,
the number of (CHARTER) records is the same, but several records are listed twice to reflect a crew of two: a pilot
and a copilot. For example, the record for the 09-Feb-2008 flight to GNV, using aircraft 2289L, required a crew
consisting of a pilot (Lange) and a copilot (Lewis).)

FIGURE
P7.7

CHAR_DATE | CHAR_DESTIMATION | AC_NUMBER | MOD_CHG_MILE | CHAR_DISTANCE| EMP_NUM | CREW _JOB | EMP_LNAME
09-Feh-08| GNY 22890 267 1,645 104 Pilot Lange
09-Feh-08| GNY 22890 267 1,645 1071 Copilot Lewvis
09-Feh-08| MGy 2778V 233 2 109 Pilot Traviz
09-Feh-08| MGy 2778V 233 2 103 Copilot Williams
09-Feh-08| ATL 4278y 233 936 106 Pilot Duzak
10-Feh-058 STL 1434F 1.93 05 101 Pilot Lewis
10-Feh-08|TYS 4278y 233 G44 103 Pilot Williams
10-Feh-08|TYS 4278y 233 G44 104 Copilot Lange

8. Modify the query in Problem 5 to include the computed (derived) attribute “fuel per hour.” (Hint: It is possible to
use SQL to produce computed “attributes” that are not stored in any table. For example, the SQL query:

SELECT CHAR_DISTANCE, CHAR_FUEL_GALLONS/CHAR_DISTANCE

FROM CHARTER;

is perfectly acceptable. The above query produces the “gallons per mile flown” value.) Use a similar technique on
joined tables to produce the “gallons per hour” output shown in Figure P7.8. (Note that 67.2 gallons/1.5 hours
produces 44.8 gallons per hour.)

FIGURE
P7.8

CHAR_DATE | AC_NUMBER MOD_MAME | CHAR_HOURS_FLOWWH | CHAR_FUEL _GALLONS Expr1
09-Feh-08 27758Y Mawajo Chieftain 145 Br.2 44.8
09-Feh-08| 22551 KingAir 6.7 459.5) 63.5820895522388
09-Feb-05| 4275Y Mawajo Chieftain 5.1 3026 496068557577 0492
10-Feb-05| 4275Y MNawajo Chieftain 348 1674 44 0526315739474
10-Feh-05| 1454F Axtec 31 105.5) 34.0322380645161

C6545_07 7/26/2007 14:14:15 Page 289

——

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL)

289

Query output such as the “gallons per hour” result shown in Figure P7.8 provide managers with very important
information. In this case, why is the fuel burn for the Navajo Chieftain 4278Y flown on 9-Feb-08 so much higher
than the fuel burn for that aircraft on 10-Feb-08? Such a query result might lead to additional queries to find out
who flew the aircraft or what special circumstances might have existed. Is the fuel burn difference due to poor
fuel management by the pilot, does it reflect an engine fuel metering problem, or was there an error in the fuel
recording? The ability to generate useful query output is an important management asset.

NOTE

The output format is determined by the RDBMS you use. In this example, the Access software defaulted to an
output heading labeled Expr1 to indicate the expression resulting from the division:

[CHARTER]![CHAR_FUEL_GALLONS]/[CHARTER]![CHAR _HOURS]

created by its expression builder. Oracle defaults to the full division label. You should learn to control the output
format with the help of your RDBMSs utility software.

Create a query to produce the output shown in Figure P7.9. Note that, in this case, the computed attribute
requires data found in two different tables. (Hint: The MODEL table contains the charge per mile, and the
CHARTER table contains the total miles flown.) Note also that the output is limited to charter records generated
since February 9, 2008. In addition, the output is ordered by date and, within the date, by the customer’s

last name.

FIGURE Problem 9 query results

P7.9
CHAR_DATE | CUS_LNAME | CHAR_DISTANCE | MOD_CHG_MILE | Mieage Charge
09-Feb-05 | Brown 1645 267 439215
09-Feb-05 | Dunne 32 235 733.20
09-Feb-05 | wiliams 936 235 2199 60
10-Feb-05| Orlando 505 143 930,44
10-Feb-05 | wiliams B4 235 151340

10. Use the techniques that produced the output in Problem 9 to produce the charges shown in Figure P7.10. The

total charge to the customer is computed by:
e Miles flown * charge per mile.

e Hours waited * $50 per hour.

The miles flown (CHAR_DISTANCE) value is found in the CHARTER table, the charge per mile (MOD_CHG_
MILE) value is found in the MODEL table, and the hours waited (CHAR_HOURS_WAIT) value is found in the

CHARTER table.

FIGURE Problem 10 query results

P7.10
CHAR_DATE| CUS_LMWAME | Mileage Charge |VWalting Charge | Total Charge
09-Feh-05 | Brown 439215 0.00 439215
09-Feh-05 | Dunne 73320 0.00 73320
09-Feb-03 Wiliams 2199 60 105.00 2304 O
10-Feb-05 Orlando 95044 0.00 95044
10-Feb-05 Wiliams 1513540 225.00 173540

o

C6545_07 7/24/2007 9:24:29 Page 290

11. Create the SQL query that will produce a list of customers who have an unpaid balance. The required output is

shown in Figure P7.11. Note that the balances are listed in descending order.

12. Find the average customer balance, the minimum bal-
FIGURE ance, the maximum balance, and the total of the
P7.11 unpaid balances. The resulting values are shown in
Figure P7.12.
TR [T TR (R T e EOLTEE 13. Using the CHARTER table as the source, group the
Clowski Paul F 128514 aircraft data. Then use the SQL functions to produce
rBrian Ay B 1014 56 the output shown in Figure P7.13. (Utility software was
Srmith Kathy W 596,54
Orlanda Myron 75 o used to modify the headers, so your headers might look
Srmith Olette K 45398 different.)

FIGURE
P7.12

minimum Balance

Mazimum Balance

Total Unpaid Bills

0.00

126518

432345

Average Balance

FIGURE
P7.13

AC NMUMBER | Wumber of Trips | Total Distance | Awerage Distance | Total Hours | Average Hours
454F 4 1976 43940 12.0 30
22890 4 2178 1294 .5 241 5.0
2778 4 3090 7725 15.8 4.0
4278y 5 5265 g75.0 0.4 5.1

14. Write the SQL code to generate the output shown in Figure P7.14. Note that the listing includes all CHARTER
flights that did not include a copilot crew assignment. (Hint: The crew assignments are listed in the CREW table.
Also note that the pilot’s last name requires access to the EMPLOYEE table, while the MOD_CODE requires
access to the MODEL table.)

FIGURE
P7.14

CHAR_TRIP (CHAR_DATE| AC_MUMBER MCD_MAME CHAR_HOURS_FLCWM | EMP_LMAME | CREW_JOB
10001, 05-Feb-03) 22591 i Air 5.1 | Lange Pilct
10002 05-Feb-03| 2778 Marvajo Chieftain 1.6 Lewis Pilot
10004, 06-Feb-03 1454P Artec 2.8 Duzak Pilct
10005 0B-Feb-03 2259L i Air 5.7 | Lewis Pilot
10006 0B-Feb-03| 4278 Marvajo Chieftain 26 Travis Pilct
10008 O7-Feb-03)1454F Artec 41| Duzak Pilct
10008 0O7-Feb-03) 2259L HirgAir 6.6 Willistms Pilct
10010 O7-Feb-08 4278Y Marvajo Chieftain 6.2 Wiesenbach | Pilat
10012 08-Feb-03| 2778% Marvajo Chieftain 4 8 Lewis Pilct
10013 08-Feb-03| 4278 Marvajo Chieftain 3.9 Willistms Pilot
10014 09-Feb-03| 4278 Marvajo Chieftain 5.1 Duzak Pilct
10017, 10-Feb-03 1454P Artec 3.1 | Lewis Pilct

o

C6545_07 7/24/2007 9:25:46 Page 291

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL) 291

15. Write a query that will list the ages of the employees and the date the query was run. The required output is shown
in Figure P7.15. (As you can tell, the query was run on May 16, 2007, so the ages of the employees are current
as of that date.)

FIGURE Employee ages and date of query

P7.15
EmP_MUM | EMP_LMAME | EMP_FMAME | EMP_HIRE_DATE | EMP_DOB | Are | Query Date
100 Kolmycz Gearge 15-Mar-1987 15-Jun-1942 =) 15-&pr-07
101 Lewviz Rhanda 25-Apr-1988 0 19-Mar-1965 42 15-&pr-07
102 Wandam Fhett 20-Dec-1992) 14-Mov-1955 43 15-&pr-07
103 Jones Anne 28-Aug-2005 16-0ct-1974 32 15-&pr-07
104 Lange Jahn 20-Cct-1996) 0F-how-1571 35 15-&pr-07
105 williams Fobert 05-Jan-2006 14-Mar-1975 32 15-4Apr-07
106 Duzak Jeanine 05-Jan-1991 12-Feh-1968 39 15-&pr-07
107 Diarte Jorge 02-Jul-1996 21-Aug-1974 32 15-Apr-07
108 wyiesenbach Paul 18-Mow-1994 14-Feh-15966 41 15-&pr-07
109 Travis Elizaheth 14-4pr-1991) 18-Jun-1961 45 15-4Apr-07
110 Genkazi Leighla 01 -Dec-1992) 19-May-1570 36 15-&pr-07

ONLINE CONTENT

Problems 16—33 are based on the ChO7_SaleCo database located in the Student Online Companion. This
database is stored in Microsoft Access format. If you use another DBMS such as Oracle, SQL Server, MySQL, or
DB2, use its import utilities to move the Access database contents. The Student Online Companion provides
Oracle and SQL script files.

The structure and contents of the ChQ07_SaleCo database are shown in Figure P7.16. Use this database to
answer the following problems. Save each query as QXX, where XX is the problem number.

C6545_07 7/24/2007 9:26:6 Page 292

292

CHAPTER 7

FIGURE
P7.16

The Ch07_SaleCo database

Relational diagram

CUSTOMER

INVOICE

LINE

PRODUCT VENDOR

cus_CoDE = ? INV_NUMBER =22 ¥ INV_NUMBER Ll ¥ pcope 7 v_CcoDE
CUS_LNAME CUS_CODE ¥ LINE_NUMBER P_DESCRIPT V_NAME
CUS_FNAME INV_DATE P_CODE P_INDATE _CONTACT
CUS_INITIAL LINE_UNITS P_QOH _AREACODE
CUS_AREACODE LINE_PRICE P_MIN _PHONE
CUS_PHONE P_PRICE _STATE
CUS_BALANCE P_DISCOUNT _ORDER

_CODE

Table name: VENDOR
Table name: CUSTOMER

[¥COoDE[v NAME [V_CONTACT | Y_AREACODE [¥_PHONE | W_STATE [¥_ORDER
[[CUS_CODE [US_LNAME [cUS_FNAME [CUS_INTIAL | CUS_AREACODE | CUS_PHONE | CUS_BALANCE 21225 Bryson, Inc Srithson 615 223.3234 | TN i
10010 Ramas Alfred A 615 044-2573 000 21226 SuperLoo, . Flushing 04 2158995 |FL n
10011 Dunne Leona K 713 594-12368 0.00 21231| D2E Supply Singh 515 228.3245 |TM v
10012/ Smith Kethy W E15 §94-2285 34588 21344 Gomez Bros. Ortega 615 689-2546 |KY il
10013 Olowski Paul F 615 094-2180 53575 22567 | Dome Supgly Smith a0t 6781419 | GA N
10014) Oriandn Miron 615 2221672 000 23118| Randsets Ltd Anderson o1 678-3998 | GA b
10015]0'Brien Amy B 3 442.3381 0.00 24004 Brackmen Bros. Browning | 615 281410 | TN N
133:5 S\;T”‘;“r;; ::e":;e G E:: igzzgg 5@;;2 24288 ORDVA, Inc. Halkfardl 815 8981234 TN v
10M3| Farriss Anne G T3 382.7185 21655 25443 BAK, Ine._ Smith 04 2270005 IFL il
10019 Smith Olette K 515 2873609 000 25501 | Damal Supplies Srmythe 6135 §90-3529 TN N
25585 Rubicon Systems Orton 04 4550082 |FL i
Table name: INVOICE Table name: LINE Table name: PRODUCT
[v _WUMBER | CUS_CODE | Iv_DATE | INY_NUMEER | LINE_NUMEER: | P_CODE | LINE_UNITS | LINE_PRICE | | P_copE | P_DESCRIPT [P NDATE [P_@OH[P_MIN | P_PRICE | P_DISCOUNT | ¥_CODE
1001 10014 16-Mar-08 1001 1 13-G2F2 1 1499 11QER/N_ Fower paiter, 15 psi., 3-nozzle 03-Nov-07 8 5| 10338 000 25585
1002 10011 16-Mar-08 1001 2 23108-HB 1 995 13-02F2 | 72510 pyer. saw blade 13-Dec-07 32 15 1483 005 21344
1003 10012 16-Mar-08 1002 1 8477821 2 4.98 14-010L3 | 3.00qn. pyer. saw blade 13-Nov-07 18 12 1748 000 21344
1004 10011 17-bar-08 1003 1 22361PD 1 .95 1546-Q02 | Hrd, cloth, 1/4-in., 2%50 15-Jan-08 15 8 3985 000, zH19
1008 10018 17-Mar-08 1003 2/1546-0a2 1 3885 1558-QW Hrd, cloth, 1/2-in., 3x50 15-Jan-08 23 5 4399 000 23119
1006 10014 1A7-Mar-05 1003 3 13-0202 5 1499 2232/QTYV | BAD jigsaw, 12-in. blade 30-Dec-07 B 5 109.92 005 24288
1007 10015 17-Mar-08) 1004 1 54778-27 3 4.99 2232UCWE | BAD jigsawy, B-in. blade 24-Dec-07 5 5 9987 005 24288
1008 10011] 17-Mar-08 1004 2/ 23108-HB 2 385 2238/GPD | BED cordiess dril, 112-in 20-Jan-08 12 5 3885 005 25535
1005 1|PWC23DRT 12 87 23108-HB | Claw hammer 20-J5n-08 23 10 285 010 21225
1008 1] Sh18277 3 599 23114-A8, Sledge hammer, 12 b 02-Jan-06 8 5 1440 0.05
123? i ;;35;?;; 1 mi gi S47TE-2T Rel-tail fle, 1/8-in. fne 15-Dec-07 FE 490 000 2344
BIWWRE-Q | Hicul chain saw, 16 n. 07-Feh-08 1 5| 2s689 005 24288
lgg: : fgt‘g’;;‘f ; 2152'32 PVC23DRT PYC pipe, 3.5-in., 81t 20Feb-08 188 75 587 000
o7 oot : Yoo SW-18277 1250, metel screw, 25 M-Mer-08 172 75 699 000 21225
1008 - TovezamT s Sar SW-23116 25n wil screw, 50 24Feb-0a 237 100 845 ooo 2123
1008 S ST 3 1895 WRIMT3 | Stesl matting, 4x6'%1/6", 5" mesh | 17-Jan-08 18 5| 11385 010, 25585
1008 3 23109-HB 1 995

16.
17.
18.

Write a query to count the number of invoices.

Write a query to count the number of customers with a customer balance over $500.

(Hint: Use the ORDER BY clause to order the resulting rows shown in Figure P7.18.)

Generate a listing of all purchases made by the customers, using the output shown in Figure P7.18 as your guide.

C6545_07 7/24/2007 9:26:38 Page 293

——

INTRODUCTION TO

STRUCTURED QUERY

LANGUAGE

(sQtL)

293

FIGURE List of customer purchases
P7.18
CUS_CODE| IMY_MUMBER | I _DATE P_DESCRIPT LINE_UMITS | LINE_PRICE
' 1002 16-Mar-05 Rat-tai file, 1/5-in. fine 2 4.33
10011 1004 17-Mar-05 | Claw hammer 2 995
10011 1004 17-Mar-05 Rat-tai file, 1/5-in. fine 3 4.33
10011 1008 17-Mar-05| Claw hammer 1 995
10011 1008 17-Mar-08 PYC pipe, 3.5-in., 8-t 5 5.87
10011 1008 17-Mar-05 Steel matting, 4'«<8%1/8", 5" mesh 3 119.95
10012 1003| 16-Mar-08 T 25-in. pwvr . zavy blade 5 14 .99
10012 1003 16-Mar-03 BAD cordless drill, 1/2-in. 1 35395
10012 1003 16-Mar-058 Hrd. cloth, 1i4-in., 2x50 1 3985
10014 1001 | 16-Mar-08 T 25-in. povr . zavy blade 1 14 .99
10014 1001 16-Mar-05| Claw hammer 1 995
10014 1006, 17-Mar-058 1.25-in. metal screvy, 25 3 5.39
10014 1006 17-Mar-08 BAD jigzaw, 12-in. blade 1 10892
10014 1006 17-Mar-05 | Claw hammer 1 995
10014 1006 17-Mar-05 Hicut chain saw, 16 in. 1 25699
10015 1007F| 17-Mar-08 T 25-in. povr . zavy blade 2 14 .99
10015 1007 17-Mar-05 Rat-tai file, 1/5-in. fine 1 4.39
10018 1005, 17-Mar-08 PYC pipe, 3.5-in., 8-t 12 5.87

19. Using the output shown in Figure P7.19 as your guide, generate a list of customer purchases, including the
subtotals for each of the invoice line numbers. (Hint: Modify the query format used to produce the list of customer
purchases in Problem 18, delete the INV_DATE column, and add the derived (computed) attribute LINE_UNITS

* LINE_PRICE to calculate the subtotals.)

FIGURE Summary of customer purchases with subtotals
P7.19
CUS_CODE [IV _NUMEER P_DESCRIPT Units Bought | Unit Price | Subtatal
0011 1002 | Rat-tail file, 1/8-in. fine 2 438 a9
10011 1004 | Claw hammer 2 ags 18.90
10011 1004 | Rat-tail file, 1/8-in. fine 3 499 1497
10011 1008 | Claw hammer 1 ags .95
10011 1008 | PYC pipe, 3.5, 8-t 5 557 2835
10011 1008 Steel matting, 481 6", 5" mesh 3 11995 35985
10012 1003|725+ . saw blade 5 14.99 7495
10012 1003 BAD cordiess dril, 1/2-n. 1 3595 38.95
10012 1003 | Hrd. cloth, 1/-in., 2%50 1 3095 3895
10014 1001 | 7.25-n. vt saw blade 1 14.99 1499
10014 1001 | Clawy hammer 1 a5 .95
10014 10061 25-in. metal screw, 25 3 £.99 2097
10014 1006 BAD jigzav, 12-in. blade 1 10992 10942
10014 1006 Claw hammer 1 ags 995
10014 1006/ Hicut chain sawe, 16 in. 1 25699 25694
10015 1007 | 7.25-n. v saw blade 2 14.99 2093
10015 1007 | Rat-tail file, 1/8-in. fine 1 499 499
10018 1005 PYC pipe, 3.5, 8-t 12 557 70.44

20. Modify the query used in Problem 19 to produce the summary shown in Figure P7.20.

C6545_07 7/26/2007 14:14:39 Page 294

294 CHAPTER 7

21. Modify the query in Problem 20 to include the number of individual
product purchases made by each customer. (In other words, if the
customer’s invoice is based on three products, one per LINE_
NUMBER, you would count three product purchases. Note that in
the original invoice data, customer 10011 generated three invoices,

FIGURE
P7.20

Customer purchase
summary

CUS_CODEl CUS_BALANCE | Total Purchases

10012 34?32 :g;gg which contained a total of six lines, each representing a product
1331; ggg ‘Ei;; purchase.) Your output values must match those shown in
10018 21655 70.44 Figure P7.21.
22. Use a query to compute the average purchase amount per product
made by each customer. (Hint: Use the results of Problem 21 as the
basis for this query.) Your output values must match
FIGURE Customer total purchase those shown in Figure P7.22. Note that the average
P7.21 amounts and number of purchase amount is equal to the total purchases divided

purchases

CUS_CODE| CUS_BALAMCE | Total Purchases | Mumber of Purchaszes

0012
10014
10015
10018

0.00
34556
0.00
0.00
216.55

44400
15385
42277
34.97
T0.44

B

=k m

by the number of purchases.

23. Create a query to produce the total purchase per
invoice, generating the results shown in Figure P7.23.

The invoice total is the sum of the product purchases in
the LINE that corresponds to the INVOICE.

FIGURE Average purchase amount by customer
P7.22
CUS_CODE| CUS_BALAMCE | Tatal Purchases | Mumber of Purchases | Average Purchase Amount
10011 0.00 444.00 B 7400
10012 34586 153.35 3 51.23
10014 0.0 42277 B 7048
10015 0.0 3497 2 17.48
10018 216.55 7044 1 7044
" q 24. Use a query to show the
FIGURE Invoice totals FIGURE Invoice totals by S EE o
P7.23 P7.24 customer invoices and invoice
totals as shown in Figure
P7.24. (Hint: Group by
INY_MUMBER | Invoice Total CUS_CODE | INY_NUMEER | Invoice Total the CUS_CODE.)
fi 0o 2494 10011 1002 9438 .
1002 895 10011 1004 3487 25. Write a query to produce
1003 153.85 10011 1008 399.15 the number of invoices
1004 34 67 10012 1003 153,85
1005 o 10014 100 2484 and the total purchase
1005 307 &3 10014 1006 307 83 amounts by customer,
1007 3487 10015 1007 34.97 using the output shown
1005 39315 10015 1005 7044 o
in Figure P7.25 as your
guide. (Compare this

summary to the results
shown in Problem 24.)

26. Using the query results in Problem 25 as your basis, write a query to generate the total number of invoices, the
invoice total for all of the invoices, the smallest invoice amount, the largest invoice amount, and the average of
all of the invoices. (Hint: Check the figure output in Problem 25.) Your output must match Figure P7.26.

——

C6545_07 7/24/2007 9:42:22 Page 295

INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL) 295
FIGURE Number of invoices and total FIGURE Number of invoices; invoice
P7.25 purchase amounts by customer P7.26 totals; minimum, maximum,

and average sales

CUS_CODE | Mumber of Invoices | Total Customer Purchazes | Total Invoices | Total Sales | Minimum Sale | Largest Sale | Average Sale
0011 3 444 00 | @ 1126.03 3487 444.00 2251
10012 1 153.85
10014 2 42277
10015 1 3487
10015 1 7044

27. List the balance characteristics of the customers who have made purchases during the current invoice cycle—that
is, for the customers who appear in the INVOICE table. The results of this query are shown in Figure P7.27.

28. Using the results of the query created in Problem 27, provide a summary of the customer balance characteristics

as shown in Figure P7.28.

FIGURE Balances of FIGURE Balance summary for customers
P7.27 customers who P7.28 who made purchases
made purchases
CUS_CODE | CUS_BALANCE | Minimum Balance | Maximum Balance | Averags Balance
0.00] 345.56 11248

10012 345 86

10014 0.00

10015 0.00

10018 21655

29. Create a query to find the customer balance characteristics for all customers, including the total of the outstanding
balances. The results of this query are shown in Figure P7.29.
30. Find the listing of customers who did not make purchases during the invoicing period. Your output must match

the output shown in Figure P7.30.

FIGURE Balance summary for all FIGURE Balances of

P7.29 customers P7.30 customers who did
not make purchases

|Total Balances | Minimum Balance | Maximum Balance | Average Balance cus CODEl CIIS BALAMCE |

D 0.00 TEG.93 20583 _1 010 = ooo

10013 536.75

10016 221148

10017 76393

100189 0.o0

C6545_07 7/26/2007 14:15:13 Page 296

296 CHAPTER 7

31. Find the customer balance summary for all customers who have not made purchases during the current invoicing
period. The results are shown in Figure P7.31.

FIGURE Balance summary for customers who did not make purchases

P7.31

Total Balance Minitnum Balance | Maximum Balance | Average Balance
0.00 765393 30537

32. Create a query to produce the summary of the value of products currently in inventory. Note that the value of
each product is produced by the multiplication of the units currently in inventory and the unit price. Use the
ORDER BY clause to match the order shown in Figure P7.32.

FIGURE Value of products currently in inventory

P7.32
P_DESCRIPT P_Q0OH | P_PRICE Subtatal
WL Forver psinter, 15 Zle| =] 109.99 g879.92
T.25-in. pavr. saw blade 32 14.99 479 65
9.00-in. pavr. saw blade 158 17.49 31452
| [Hrd. cloth, 1/4-in., 2x50 15 39.95 599.25
Hrdl. cloth, 1/2-in., 3x50 23 43.99 1011.77
B&D jiggawy, 12-in. blade g 109.92 879.36
B&D jiggawy, S-in. blade -] 99.57 599.22
B&D cordless drill, 1/2-in. 12 35.95 457.40
Claw hammer 23 9.95 22885
| |Sledge hammer, 12 lb. =] 14 .40 115.20
Rat-tail file, 1/5-in. fine 43 4.99 21457
Hicut chain sav, 16 in. 11 256.99 2826.89
PV C pipe, 3.5-in., 8-t 185 5.87 1103.56
1.25-in. metal screw, 25 172 £.99 1202.25
2.5-in. wed, screw 50 237 .45 2002 .65
Steel matting, 4'=58'=1/&", 5" mesh 15 119.95 215910

33. Using the results of the query created in Problem 32, find the total value of the product inventory. The results
are shown in Figure P7.33.

FIGURE Total value of all
P7.33 products in
inventory

Total Yalue of Inventary

