C6545_08 8/15/2007 16:13:3 Page 297

ADVANCED SQL

In this chapter, you will learn:
m About the relational set operators UNION, UNION ALL, INTERSECT, and MINUS
m How to use the advanced SQL JOIN operator syntax
m About the different types of subqueries and correlated queries
m How to use SQL functions to manipulate dates, strings, and other data
m How to create and use updatable views
m How to create and use triggers and stored procedures

m How to create embedded SQL

In Chapter 7, Introduction to Structured Query Language (SQL), you learned the basic SQL
data definition and data manipulation commands used to create and manipulate relational
data. In this chapter, you build on what you learned in Chapter 7 and learn how to use more

advanced SQL features.

In this chapter, you learn about the SQL relational set operators (UNION, INTERSECT, and
MINUS) and how those operators are used to merge the results of multiple queries. Joins
are at the heart of SQL, so you must learn how to use the SQL JOIN statement to extract
information from multiple tables. In the previous chapter, you learned how cascading queries
inside other queries can be useful in certain circumstances. In this chapter, you also learn
about the different styles of subqueries that can be implemented in a SELECT statement.
Finally, you learn more of SQLs many functions to extract information from data, including

manipulation of dates and strings and computations based on stored or even derived data.

In the real world, business procedures require the execution of clearly defined actions when
a specific event occurs, such as the addition of a new invoice or a student’s enrollment in
a class. Such procedures can be applied within the DBMS through the use of triggers and
stored procedures. In addition, SQL facilitates the application of business procedures when

it is embedded in a programming language such as Visual Basic .Net, C#, or COBOL.

C6545_08 9/7/2007 8:45:26 Page 298

298 CHAPTER 8

ONLINE CONTENT

Although most of the examples used in this chapter are shown in Oracle, you could also use MS SQL Server. The
Student Online companion provides you with the ADVSQLDBINIT.SQL script file (Oracle and MS SQL
versions) to create the tables and load the data used in this chapter. There you will also find additional SQL script
files to demonstrate each of the commands shown in this chapter.

8.1 RELATIONAL SET OPERATORS

In Chapter 3, The Relational Database Model, you learned about the eight general relational operators. In this section,
you will learn how to use three SQL commands (UNION, INTERSECT, and MINUS) to implement the union,
intersection, and difference relational operators.

In previous chapters, you learned that SQL data manipulation commands are set-oriented; that is, they operate over
entire sets of rows and columns (tables) at once. Using sets, you can combine two or more sets to create new sets (or
relations). That’s precisely what the UNION, INTERSECT, and MINUS statements do. In relational database terms, you
can use the words “sets,” “relations,” and “tables” interchangeably because they all provide a conceptual view of the
data set as it is presented to the relational database user.

NOTE

The SQL standard defines the operations that all DBMSs must perform on data, but it leaves the implementation
details to the DBMS vendors. Therefore, some advanced SQL features might not work on all DBMS
implementations. Also, some DBMS vendors might implement additional features not found in the SQL
standard.

UNION, INTERSECT, and MINUS are the names of the SQL statements implemented in Oracle. The SQL
standard uses the keyword EXCEPT to refer to the difference (MINUS) relational operator. Other RDBMS
vendors might use a different command name or might not implement a given command at all.

To learn more about the ANSI/ISO SQL standards, check the ANSI Web site (www.ansi.org) to find out how
to obtain the latest standard documents in electronic form. As of this writing, the most recent published
standard is SQL-2003. The SQL-2003 standard makes revisions and additions to the previous standard; most
notable is support for XML data.

UNION, INTERSECT, and MINUS work properly only if relations are union-compatible, which means that the
names of the relation attributes must be the same and their data types must be alike. In practice, some RDBMS vendors
require the data types to be “compatible” but not necessarily “exactly the same.” For example, compatible data types
are VARCHAR (35) and CHAR (15). In that case, both attributes store character (string) values; the only difference is
the string size. Another example of compatible data types is NUMBER and SMALLINT. Both data types are used to
store numeric values.

NOTE

Some DBMS products might require union-compatible tables to have identical data types.

C6545_08 9/7/2007 8:48:8 Page 299

ADVANCED SQL 299

ONLINE CONTENT

The Student Online Companion provides you with SQL script files (Oracle and MS SQL Server) to demonstrate
the UNION, INTERSECT, and MINUS commands. It also provides the ChO8_SaleCo MS Access database
containing supported set operator alternative queries.

UNION

Suppose SaleCo has bought another company. SaleCo’s management wants to make sure that the acquired
company’s customer list is properly merged with SaleCo’s customer list. Because it is quite possible that some
customers have purchased goods from both companies, the two lists might contain common customers. SaleCo’s
management wants to make sure that customer records are not duplicated when the two customer lists are merged.
The UNION query is a perfect tool for generating a combined listing of customers—one that excludes duplicate
records.

The UNION statement combines rows from two or more queries without including duplicate rows. The syntax of the
UNION statement is:

query UNION query

In other words, the UNION statement combines the output of two SELECT queries. (Remember that the SELECT
statements must be union-compatible. That is, they must return the same attribute names and similar data types.)

To demonstrate the use of the UNION statement in SQL, let’s use the CUSTOMER and CUSTOMER_2 tables in the
ChO08_SaleCo database. To show the combined CUSTOMER and CUSTOMER_ 2 records without the duplicates, the
UNION query is written as follows:

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE

FROM CUSTOMER

UNION

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER_2;

Figure 8.1 shows the contents of the CUSTOMER and CUSTOMER_2 tables and the result of the UNION query.
Although MS Access is used to show the results here, similar results can be obtained with Oracle.

Note the following in Figure 8.1:
e The CUSTOMER table contains 10 rows, while the CUSTOMER_2 table contains 7 rows.
e Customers Dunne and Olowski are included in the CUSTOMER table as well as in the CUSTOMER_2 table.

e The UNION query yields 15 records because the duplicate records of customers Dunne and Olowski are not
included. In short, the UNION query yields a unique set of records.

NOTE

The SQL standard calls for the elimination of duplicate rows when the UNION SQL statement is used. However,
some DBMS vendors might not adhere to that standard. Check your DBMS manual to see if the UNION
statement is supported and if so, how it is supported.

C6545_08 8/15/2007 16:14:31 Page 300

300 CHAPTER 8

FIGURE UNION query results

8.1
Database name: CH08_SaleCo
Table name: CUSTOMER Query name: qryUNION-of-CUSTOMER-and-CUSTOMER _2
| SUS_CODE | CUS_LNSME | CUS_FNAME | CUS_INTIAL | CUS_ARESCODE | CUS_PHOME | CUS_BALANCE | CUS_LMAME | CUS_FNAME | CUS_INTIAL [CUS_AREACODE | CLUS_PHONE |
10010/ Ramas Blfred 2 15 8442573 0.00 ; James = 15 2471225
10011 | Dunne Ledna K 713 8941238 0.00 Dunne Leona 3 713 534-1235
10012 Smith Fathy W 615 8942285 345.86 Farriss Anne < T3 352-T185
10013 Dloweski Paul F 615 g94-2180 536.75 Hernandez | Carlos J 23 123-T654
10014 Orlando yron B15 2221672 0.00 Lewis harie J 734 332-1739
10015 O'Brian Ay B 713 442-3351 0.00 McDowel | George 723 1237765
10016 Brown James G 615 2971228 22119 O'Brian Amy B T3 4423351
10017 | willliams George 615 290-2556 766.93 Olorweski Pal F 615 534-2180
10018 Farriss Anne G 713 382-7185 21655 Orlanda Myron 615 2221672
10019 Smith Olette K 615 297-3809 0.00 Ramas Alfred Ly 615 544-2573
Smith Kathy W 615 894-2285
Smith Olette K 615 207-3800
Table name. CUSTOMER—2 Terrell Justing H E15 322-9570
CUS_CODE | CUS_LNAME | CUS_FNAME [CUS_INTIAL | CUS_AREACODE | CUS_PHONE Tirpin Hhaleed G 723 123-9575
343 Terrel Justine H 515 322-9670 Hilizms Gearge 813 280-2558
347 Cloweski Paul F 515 594-2180
351 |Hernandez | Carlos J 723 123-T654
352 MoDowell FEOrgs 723 123-7T65
365 Tirgin Khaleed G 723 123-9876
368 Lewis Marie J 734 3321739
369 Dunne Leona K 713 894-1238

The UNION statement can be used to unite more than just two queries. For example, assume that you have four
union-compatible queries named T1, T2, T3, and T4. With the UNION statement, you can combine the output of all
four queries into a single result set. The SQL statement will be similar to this:

SELECT column-list FROM T1
UNION
SELECT column-list FROM T2
UNION
SELECT column-list FROM T3
UNION
SELECT column-list FROM T4;

UNION ALL

If SaleCo’s management wants to know how many customers are on both the CUSTOMER and CUSTOMER_2 lists,
a UNION ALL query can be used to produce a relation that retains the duplicate rows. Therefore, the following query
will keep all rows from both queries (including the duplicate rows) and return 17 rows.

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE

FROM CUSTOMER

UNION ALL

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER_2;

Running the preceding UNION ALL query produces the result shown in Figure 8.2.

Like the UNION statement, the UNION ALL statement can be used to unite more than just two queries.

C6545_08 9/13/2007 15:26:38 Page 301

ADVANCED SQL 301

FIGURE UNION ALL query results

8.2
Database name: CH08_SaleCo
Table name: CUSTOMER Query name: qryUNION-ALL-of-CUSTOMER-and-CUSTOMER_2
[CUS_coDE | cUS_LNAME | CUS_FNAME | CUS_IMTIAL | CUS_AREACODE | CUS_PHOME | CUS_BALANCE | CUS_LNAME [CUS_FNAME | CUS_MITIAL | CUS_AREACODE | CUS_PHONE |
10010/ Ramas Alfred A 615 844-2573 0.00 2amias] Alfred A 515 894-2573
10011 Dunne Leona K T3 894-1238 0.00 Leona K 713 834-1238
10012/ Smith Kathy W 615 §94-2285 345.86 Smith Kathy W 515 894-2285
10013 | Olowski Paul F 615 894-2180 536.75 Olowski Paul F 615 834-2180
10014 Orlando Myron E15 2221672 0.00 Orlando Myron E15 2221672
10015 | O'Brian Amy B 713 442-3351 0.00 O'Brian sy B 713 442.3381
100ME | Brown James L] E15 2071223 22119 Brown James G B15 2071228
1001 7 | willizms Gearge B15 280-2556 FEE.93 Williams George B15 280-2556
100183 | Farriss Anne L] T3 362-7183 216.55 Farrizs Anne G 713 302-T163
10018 Smith Clette 3 615 297-3809 0.00 Smith Olette K 615 297-3809
Terrell Justing H 613 F22-9670
. Clowski Paul F 615 534-2150
Table dInce CUSTOMER—2 Hernander Carloz il 723 123-T654
CUS_CODE | CUS_LNAME | CUS_FMAME | CUS_NITIAL | CUS_AREACODE | CUS_PHOKE MeDovwvel George Ers] 123-7768
345 Terrel Justine H B15 3229570 Tirpin Khaleed G T 123-3876
347 Oloweski Paul F 15 594-2150 Lewis Marie Ll 734 3321789
351 Hernander Carlos J 723 123-7654 Dunne Leona K 3 884-1238
352 McDoweell Georye 723 123-7768
385 Tirpin Khaleed G 723 123-9576
388 Lewis Marie I 734 332-1789
369 Dunne Leons K T3 5941235

INTERSECT

If SaleCo’s management wants to know which customer records are duplicated in the CUSTOMER and
CUSTOMER_2 tables, the INTERSECT statement can be used to combine rows from two queries, returning only the
rows that appear in both sets. The syntax for the INTERSECT statement is:

query INTERSECT query
To generate the list of duplicate customer records, you can use:

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE

FROM CUSTOMER

INTERSECT

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER_2;

The INTERSECT statement can be used to generate additional useful customer information. For example, the
following query returns the customer codes for all customers who are located in area code 615 and who have made
purchases. (If a customer has made a purchase, there must be an invoice record for that customer.)

SELECT CUS_CODE FROM CUSTOMER WHERE CUS_AREACODE = '615'
INTERSECT
SELECT DISTINCT CUS_CODE FROM INVOICE;

Figure 8.3 shows both sets of SQL statements and their output.

MINUS

The MINUS statement in SQL combines rows from two queries and returns only the rows that appear in the first set
but not in the second. The syntax for the MINUS statement is:

query MINUS query

C6545_08 8/15/2007 16:14:48 Page 302

302 CHAPTER 8

FIGURE INTERSECT query results

Oracle SOL*Plus M =] E3
File Edit Search Options Help
SOL> SELECT CUS_LMAME, CUS_FHAME, CUS_IMITIAL, CUS_AREACODE, CUS_PHOME FROM CUSTOHMER -
2 INWTERSECT
3 SELECT CUS_LMHAME, CUS_FMHAME, CUS_INITIAL, CUS_AREACODE, CUS_PHOME FROM CUSTOMER_2;
CUS_LMHAME CUS_FHAKHE C CUS CUS_PHOHN
Dunne Leona K 713 894-1238
01owski Paul F 615 894-2188
SQL> SELECT CUS_CODE FROM CUSTOMER WHERE CUS_AREACODE = ‘615°
2 INTERSECT
3 SELECT DISTINCT CUS_CODE FROM INUODICE;
CUS_CODE
18812
10814
sqL> -
Jel M 4
NOTE

MS Access does not support the INTERSECT query, nor does it support other complex queries you will explore
in this chapter. At least in some cases, Access might be able to give you the desired results if you use an
alternative query format or procedure. For example, although Access does not support SQL triggers and stored
procedures, you can use Visual Basic code to perform similar actions. However, the objective here is to show
you how some important standard SQL features may be used.

For example, if the SaleCo managers want to know what customers in the CUSTOMER table are not found in the
CUSTOMER _2 table, they can use:

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE

FROM CUSTOMER

MINUS

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER_2;

If the managers want to know what customers in the CUSTOMER_2 table are not found in the CUSTOMER table,
they merely switch the table designations:

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE

FROM CUSTOMER_2

MINUS

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE
FROM CUSTOMER;

You can extract much useful information by combining MINUS with various clauses such as WHERE. For example, the
following query returns the customer codes for all customers located in area code 615 minus the ones who have made
purchases, leaving the customers in area code 615 who have not made purchases.

SELECT CUS_CODE FROM CUSTOMER WHERE CUS_AREACODE = '615'
MINUS
SELECT DISTINCT CUS_CODE FROM INVOICE;

4

C6545_08 8/15/2007 16:14:48 Page 303

ADVANCED

S© L

303

Figure 8.4 shows the preceding three SQL statements and their output.

FIGURE MINUS query results

#+ Oracle S0L=Plus _ (O]

H

[--N-rN-T]

EE =

H

J
J

H
G

CUS_INITIAL, CUS_AREACODE, CUS_PHOME FROM CUSTOMER
CUS_INITIAL, CUS_AREACODE, CUS_PHOME FROM CUSTOMER_2Z2;

CUS CUS_PHON
615 297-1228
713 382-7185%
713 442-3381
615 222-1672
615 844-2573
615 894-2285
615 297-3809
615 298-25%56

CUS_INITIAL, CUS_AREACODE, CUS_PHOME FROM CUSTOMER_2
CUS_INITIAL, CUS_AREACODE, CUS_PHOME FROM CUSTOMER;

CUS CUS_PHON
723 123-7654
734 332-1789
723 123-7768
615 322-9870
723 123-9876

SQL> SELECT CUS_CODE FROM CUSTOMER WHERE CUS_AREACODE = '61%°

-

File Edit Search Options Help
SOL> SELECT CUS_LHNAHME, CUS_FHAME,
2 HIHU3
3 SELECT CUS_LHAKME, CUS_FHAME,
CUS_LHAME CUS_FHAME
Brown James
Farriss Anne
0'Brian Amy
Orlando Hyron
Ramas Alfred
Smith Kathy
Smith Dlette
Williams George
8 rows selected.
SQL> SELECT CUS_LHNAHWE, CUS_FHAME,
2 HMIHUS
3 SELECT CUS_LHAHME, CUS_FHAME,
CUS_LHAME CU3S_FHAME
Hernandez Carlos
Lewis Harie
McDowell George
Terrell Justine
Tirpin Khaleed
2 HMIHUS
3 SELECT DISTINCT CUS_CODE FROM INUDICE;
CUsS_CODE
108818
186813
10816
108817
18819
SQL>
|
NOTE

Some DBMS products do not support the INTERSECT or MINUS statements, while others might implement the
difference relational operator in SQL as EXCEPT. Consult your DBMS manual to see if the statements illustrated
here are supported by your DBMS.

SYNTAX ALTERNATIVES

If your DBMS doesn’t support the INTERSECT or MINUS statements, you can use the IN and NOT IN subqueries to
obtain similar results. For example, the following query will produce the same results as the INTERSECT query shown

in Section 8.1.3.

SELECT CUS_CODE FROM CUSTOMER
WHERE CUS_AREACODE = '615' AND
CUS_CODE IN (SELECT DISTINCT CUS_CODE FROM INVOICE);

Figure 8.5 shows the use of the INTERSECT alternative.

4

C6545_08 9/7/2007 8:48:44 Page 304

304 CHAPTER 8

FIGURE INTERSECT alternative

8.5
Database name: CH08_SaleCo
Table name: CUSTOMER Table name: INVOICE
| CUS_CODE | cUS_LNAME | CUS_FNAME | CUS_INITIAL | CUS_AREACODE | CUS_PHOME | CUS_BALSNCE [I _NUMBER | CUS_CODE | INW_DATE
10010 Ramas alfred A 615 844-2573 0.00 1001 10014 16-Jan-08
10011 | Durine Leona K RE 894-1238 0.00 1002 10011 16-Jan-08
1001 2] Smith Kathry W 615 894-2285 345 86 1003 10012 16-Jan-08
10013 Clowski Paul F 615 834-2180 536.75 1004 10011| 17-Jan-08
10014 Orlando hyron 615 2221672 0.00 1005 10018 17-Jan-08
10015 O'Brian Ay B KE 442-3381 0.00 1006 10014 17-Jan-08
10016 Brown James G 615 2071228 22119 1007 10015 17-Jan-08
10017 williams George B15 290-2556 76393 1008 10011 17-Jan-08
10018 Farriss Anne G KE 382-7185 21655
10019)] Smith Olette K 615 247-3809 0.00
Query name: qry-INTERSECT-Alternative
CUS_CODE
10012
10014
NOTE

MS Access will generate an input request for the CUS_AREACODE if you use apostrophes around the area code.
(If you supply the 615 area code, the query will execute properly.) You can eliminate that problem by using standard
double quotation marks, writing the WHERE clause in the second line of the preceding SQL statement as:

WHERE CUS_AREACODE = “615” AND

MS Access will also accept single quotation marks.

Using the same alternative to the MINUS statement, you can generate the output for the third MINUS query shown
in Section 8.1.4 by using:

SELECT CUS_CODE FROM CUSTOMER
WHERE CUS_AREACODE = '615' AND
CUS_CODE NOT IN (SELECT DISTINCT CUS_CODE FROM INVOICE);

The results of that query are shown in Figure 8.6. Note that the query output includes only the customers in area code
615 who have not made any purchases and, therefore, have not generated invoices.

8.2 SQL JOIN OPERATORS

The relational join operation merges rows from two tables and returns the rows with one of the following conditions:
e Have common values in common columns (natural join).
e Meet a given join condition (equality or inequality).

e Have common values in common columns or have no matching values (outer join).

In Chapter 7, you learned how to use the SELECT statement in conjunction with the WHERE clause to join two or more
tables. For example, you can join the PRODUCT and VENDOR tables through their common V_CODE by writing:

SELECT P_CODE, P_DESCRIPT, P_PRICE, V_NAME
FROM PRODUCT, VENDOR
WHERE PRODUCT.V_CODE = VENDOR.V_CODE;

4

C6545_08 9/13/2007 15:27:36 Page 305

ADVANCED SQL

305

FIGURE MINUS alternative

8.6
Database name: CH08_SaleCo

Table name: CUSTOMER Table name: INVOICE

| CUS_CODE | cUS_LNAME | CUS_FNAME | CUS_INTIAL | CUS_AREACODE | CUS_PHONE | CUS_BALANCE | MY _MUMBER | CUS_CODE | INY_DATE
10010 Ramas alfred A 615 844-2573 0.00 1001 10014 16-Jan-08
10011 | Durine Leona K 713 394-1238 0.00 1002 10011 16-Jar-08
1001 2] Smith Kathy W 615 894-2285 345 .86 1003 10012 16-Jan-08
10013 Clowski Paul F 615 834-2180 536.75 1004 10011 17-Jan-08
10014 Orlando Myron 515 2221672 0.00 1005 10018 17-Jan-08
10015 O'Brian Ay B KE 442-3381 0.00 1006 10014 17-Jan-08
10016 Brown James G 615 2071228 22119 1007 10015 17-Jan-08
10017 williams George 615 290-2556 765,93 1008 10011 17-Jan-08
10018 Farriss Anne G KE 382-7185 21655
10018 Smith Olette K 615 287-3809 0.00

Query name: qry-MINUS-Alternative

CUS_CODE

0010
10013
10016
10017
100149

The preceding SQL join syntax is sometimes referred to as an “old-style” join. Note that the FROM clause contains

the tables being joined and that the WHERE clause contains the condition(s) used to join the tables.

Note the following points about the preceding query:

The FROM clause indicates which tables are to be joined. If three or more tables are included, the join
operation takes place two tables at a time, starting from left to right. For example, if you are joining tables T1,
T2, and T3, the first join is table T1 with T2; the results of that join are then joined to table T3.

The join condition in the WHERE clause tells the SELECT statement which rows will be returned. In this case,
the SELECT statement returns all rows for which the V_CODE values in the PRODUCT and VENDOR tables
are equal.

The number of join conditions is always equal to the number of tables being joined minus one. For example,
if you join three tables (T1, T2, and T3), you will have two join conditions (j1 and j2). All join conditions are
connected through an AND logical operator. The first join condition (j1) defines the join criteria for T1 and T2.
The second join condition (j2) defines the join criteria for the output of the first join and T3.

Generally, the join condition will be an equality comparison of the primary key in one table and the related
foreign key in the second table.

Join operations can be classified as inner joins and outer joins. The inner join is the traditional join in which only rows

that meet a given criteria are selected. The join criteria can be an equality condition (also called a natural join or an

equijoin) or an inequality condition (also called a theta join). An outer join returns not only the matching rows, but

also the rows with unmatched attribute values for one table or both tables to be joined. The SQL standard also

introduces a special type of join that returns the same result as the Cartesian product of two sets or tables.

In this section, you will learn various ways to express join operations that meet the ANSI SQL standard. These are

outlined in Table 8.1. It is useful to remember that not all DBMS vendors provide the same level of SQL support and

that some do not support the join styles shown in this section. Oracle 10g is used to demonstrate the use of the

following queries. Refer to your DBMS manual if you are using a different DBMS.

C6545_08 9/13/2007 15:27:52 Page 306

SQL Join Expression Styles

JOIN JOIN SQL
CLASSIFICATION TYPE SYNTAX EXAMPLE DESCRIPTION
CROSS SELECT * Returns the Cartesian product of T1 and
JOIN FROM T1, T2 T2 (old style).
SELECT * Returns the Cartesian product of T1
FROM T1 CROSS JOIN T2 and T2.
INNER Old-Style | SELECT * Returns only the rows that meet the join
JOIN FROM T1, T2 condition in the WHERE clause (old
WHERE T1.C1=T2.C1 style). Only rows with matching values
are selected.
NATURAL | SELECT * Returns only the rows with matching
JOIN FROM T1 NATURAL JOIN T2 values in the matching columns. The
matching columns must have the same
names and similar data types.
JOIN SELECT * Returns only the rows with matching
USING FROM T1 JOIN T2 USING (CT) values in the columns indicated in the
USING clause.
JOIN SELECT * Returns only the rows that meet the join
ON FROM T1 JOIN T2 condition indicated in the ON clause.
ON T1.C1=T2.C1
OUTER LEFT SELECT * Returns rows with matching values and
JOIN FROM T1 LEFT OUTER JOIN T2 includes all rows from the left table (T1)
ON T1.C1=T2.C1 with unmatched values.
RIGHT SELECT * Returns rows with matching values and
JOIN FROM T1 RIGHT OUTER JOIN T2 | includes all rows from the right table
ON T1.C1=T2.C1 (T2) with unmatched values.
FULL SELECT * Returns rows with matching values and
JOIN FROM T1 FULL OUTER JOIN T2 includes all rows from both tables (T1
ON T1.C1=T2.C1 and T2) with unmatched values.

I:EI CROSsS JOIN

A cross join performs a relational product (also known as the Cartesian product) of two tables. The cross join

syntax is:

SELECT column-list FROM tablel CROSS JOIN table2

For example,

SELECT * FROM INVOICE CROSS JOIN LINE;

performs a cross join of the INVOICE and LINE tables. That CROSS JOIN query generates 144 rows. (There were
8 invoice rows and 18 line rows, thus yielding 8 x 18 = 144 rows.)

You can also perform a cross join that yields only specified attributes. For example, you can specify:

SELECT
FROM

INVOICE.INV_NUMBER, CUS_CODE, INV_DATE, P_CODE
INVOICE CROSS JOIN LINE;

The results generated through that SQL statement can also be generated by using the following syntax:

SELECT
FROM

INVOICE.INV_NUMBER, CUS_CODE, INV_DATE, P_CODE

INVOICE, LINE;

C6545_08 8/15/2007 16:14:49 Page 307

ADVANCED SQL

307

NATURAL JOIN

Recall from Chapter 3 that a natural join returns all rows with matching values in the matching columns and eliminates
duplicate columns. That style of query is used when the tables share one or more common attributes with common
names. The natural join syntax is:

SELECT column-list FROM tablel NATURAL JOIN table2

The natural join will perform the following tasks:
e Determine the common attribute(s) by looking for attributes with identical names and compatible data types.
e Select only the rows with common values in the common attribute(s).

e If there are no common attributes, return the relational product of the two tables.

The following example performs a natural join of the CUSTOMER and INVOICE tables and returns only selected
attributes:

SELECT CUS_CODE, CUS_LNAME, INV_NUMBER, INV_DATE
FROM CUSTOMER NATURAL JOIN INVOICE;

The SQL code and its results are shown at the top of Figure 8.7.

FIGURE NATURAL JOIN results
8.7

SQL) SELECT CUS_CODE, CUS_LHAME, INV_HUMBER, INU_DATE
2 FROHW CUSTOMER MATURAL JOIN INUVOICE;

CUS_CODE CUS_LNAME INU_NUMBER INU_DATE
18811 Dunne 1888 17-JAN-88
18811 Dunne 1084 17-JAN-68
18811 Dunne 1882 16-JAN-88
18812 Smith 1883 16-JAN-88
18814 Orlando 1886 17-JAN-88
18814 Orlando 1881 16-JAN-88
18815 0'Brian 1887 17-JAN-88
18818 Farriss 1885 17-JAN-88

8 rows selected.

SOL> SELECT INU_MHUMBER, P_CODE, P_DESCRIPT, LINE_UNITS, LIMNE_PRICE
2 FROW INUDICE HATURAL JOIN LINE HATURAL JOIN PRODUCT;

IHU_NUMBER P_CODE P_DESCRIPT LINE_UNITS LIME_PRICE
1881 13-02/P2 7.25-in. pwr. saw blade 1 14.99
18681 23189-HB Claw hammer 1 9.9%
1882 S4778-2T Rat-tail file, 1/8-in. fine 2 4.99
1883 2238/0PD B&D cordless drill, 1/2-in. 1 38.95
1883 1546-002 Hrd. cloth, 1/4%-in., 2x58 1 39.95
1883 13-0Q2/P2 7.25-in. pwr. saw blade 5 14.99
1804 S4778-2T Rat-tail file, 1/8-in. fine 3 4.99
1884 23189-HB Claw hammer 2 9.95
1885 PUCZ3DRT PUC pipe, 3.5-in., B-ft 12 .87
1886 SM-18277 1.25%-in. metal screw, 25 3 6.99
1886 2232/0TY B&D jigsaw, 12-in. blade 1 189.92
1886 23189-HB Claw hammer 1 9.95
1886 89-WRE-Q Hicut chain saw, 16 in. 1 256 .99
1887 13-02/P2 7.25-in. pwr. saw blade 2 14.99
18087 S4778-2T Rat-tail file, 1/8-in. fine 1 4.99
1888 PUC23DRT PUC pipe, 3.5-in., B-ft 5 ;.87
1888 WR3/TT3 Steel matting, 4'x8'x1/6", .5" mesh 3 119.95
1888 23189-HB Claw hammer 1 9.95

18 rows selected.

C6545_08 8/15/2007 16:14:50 Page 308

308

CHAPTER 8

You are not limited to two tables when performing a natural join. For example, you can perform a natural join of the
INVOICE, LINE, and PRODUCT tables and project only selected attributes by writing:

SELECT INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS, LINE_PRICE
FROM INVOICE NATURAL JOIN LINE NATURAL JOIN PRODUCT;

The SQL code and its results are shown at the bottom of Figure 8.7.

One important difference between the natural join and the “old-style” join syntax is that the natural join does not
require the use of a table qualifier for the common attributes. In the first natural join example, you projected
CUS_CODE. However, the projection did not require any table qualifier, even though the CUS_CODE attribute
appeared in both CUSTOMER and INVOICE tables. The same can be said of the INV_NUMBER attribute in the
second natural join example.

JOIN USING CLAUSE

A second way to express a join is through the USING keyword. That query returns only the rows with matching values
in the column indicated in the USING clause—and that column must exist in both tables. The syntax is:

SELECT column-list FROM tablel JOIN table2 USING (common-column)
To see the JOIN USING query in action, let’s perform a join of the INVOICE and LINE tables by writing:

SELECT INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS, LINE_PRICE
FROM INVOICE JOIN LINE USING (INV_NUMBER) JOIN PRODUCT USING (P_CODE);

The SQL statement produces the results shown in Figure 8.8.

FIGURE JOIN USING results

8.8
Oracle SOL*Plus M=l E3
File Edit Search Options Help
SOL> SELECT INU_MNUMBER, P_CODE, P_DESCRIPT, LINE_UNITS, LINE_PRICE -
2 FROM INUVDICE JOIN LIHE USIHG (IHU_NUMBER})
3 JOIN PRODUCT USING (P_CODE);
INU_HUMBER P_CODE P_DESCRIPT LINE_UNITS LINE_PRICE
1881 13-02/P2 7.25-in. pwr. saw blade 1 14.99
16881 23189-HB Claw hammer 1 9.95
1082 Su778-2T Rat-tail file, 1/8-in. fine 2 4.99
1883 2238/0FPD B&D cordless drill, 1/2-in. 1 38.95
16883 1546-002 Hrd. cloth, 1/4%in., 2x58 1 39.95
1883 13-02/P2 7.25-in. pwr. saw blade 5 14.99
1084 Su778-2T Rat-tail file, 1/8-in. fine 3 4.99
1884 23109-HBE Claw hammer 2 9.95
1885 PUC23DRT PUC pipe, 3.5-in., B-ft. 12 5.87
1886 SM-18277 1.25-in. metal screw, 25 3 6.99
1086 2232/QTY B&D jigsaw, 12-in. blade 1 1689 .92
1886 23109-HBE Claw hammer 1 9.95
1886 89-WRE-Q Hicut chain saw, 16 in. 1 256 .99
1887 13-02/P2 7.25-in. pwr. saw blade 2 14.99
1087 Su778-2T Rat-tail file, 1/8-in. fine 1 4.99
1888 PUCZ23DRT PUC pipe, 3.5-in., B-ft 5 .87
16888 WR3/TT3 Steel matting, 4'x8'x1/6™, .5" mesh 3 119.95
1088 231089-HB Claw hammer 1 9.95
18 rows selected.
soL> | -
el M

C6545_08 8/15/2007 16:14:50 Page 309

ADVANCED

S© L

309

As was the case with the NATURAL JOIN command, the JOIN USING operand does not require table qualifiers. As
a matter of fact, Oracle will return an error if you specify the table name in the USING clause.

JOIN ON CLAUSE

The previous two join styles used common attribute names in the joining tables. Another way to express a join when
the tables have no common attribute names is to use the JOIN ON operand. That query will return only the rows that
meet the indicated join condition. The join condition will typically include an equality comparison expression of two
columns. (The columns may or may not share the same name but, obviously, must have comparable data types.) The

syntax is:

SELECT column-list FROM tablel JOIN table2 ON join-condition

The following example performs a join of the INVOICE and LINE tables, using the ON clause. The result is shown in

Figure 8.9.

SELECT
FROM

FIGURE
8.9

Oracle SALPlus
File Edit Search Options Help
SOL> SELECT INUOICE.INU_HUMBER, P_CODE, P_DESCRIPT, LINE_UNITS, LINE_PRICE

2 FROHM INUDICE
3

JOIN ON results

JOIN LINE DN IHUDICE.INU_MUMBER = LINE.INU_NUMBER
JOIN PRODUCT OH LINE.P_CODE = PRODUCT.P_CODE;

INVOICE.INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS, LINE_PRICE
INVOICE JOIN LINE ON INVOICE.INV_NUMBER = LINE.INV_NUMBER
JOIN PRODUCT ON LINE.P_CODE = PRODUCT.P_CODE;

IHU_NUMBER P_CODE P_DESCRIPT LINE_UNITS LINME_PRICE
1881 13-02/P2 7.25-in. pwr. saw blade 1 14 .99
18681 23189-HE Claw hammer 1 9.9%
1882 S4778-2T Rat-tail file, 1/8-in. fine 2 4.99
1882 2238/0PD B&D cordless drill, 1/2-in. 1 38.95
1883 1546-002 Hrd. cloth, 174-in., 2x58 1 39.95
1883 13-02/pP2 7.25-in. pwr. saw blade 5 14.99
1804 S4778-2T Rat-tail file, 1/8-in. fine 3 4.99
1884 23189-HB Claw hammer 2 9.95
1885 PUCZ23DRT PUC pipe, 2.5-in., B-Ft. 2 .87
1886 SM-18277 1.25%-in. metal screw, 2% 3 6.99
1886 2232/0TY B&D jigsaw, 12-in. blade 1 189.92
1886 23189-HB Claw hammer 1 9.95
1886 89-WRE-Q Hicut chain saw, 16 in. 1 256 .99
1887 13-02/P2 7.25-in. pwr. saw blade 2 14.99
1887 S4778-2T Rat-tail file, 1/8-in. fine 1 4.99
1888 PUC23DRT PUC pipe, 3.5-in., B-ft 5 ;.87
1888 WR3/TT3 Steel matting, 4 'x8'x1/76™, .5" mesh 3 119.95
18688 23109-HE Claw hammer 1 9.9%

18 rows selected.

sQL>

Jai [

I[=] E3

M 4

Note that unlike the NATURAL JOIN and the JOIN USING operands, the JOIN ON clause requires a table qualifier
for the common attributes. If you do not specify the table qualifier, you will get a “column ambiguously defined” error

message.

C6545_08 8/15/2007 16:14:50 Page 310

310

CHAPTER 8

Keep in mind that the JOIN ON syntax lets you perform a join even when the tables do not share a common
attribute name. For example, to generate a list of all employees with the managers’ names, you can use the following
(recursive) query:

SELECT E.EMP_MGR, M.EMP_LNAME, E. EMP_NUM, E.EMP_LNAME
FROM EMP E JOIN EMP M ON E.EMP_MGR = M.EMP_NUM
ORDER BY E.EMP_MGR;

OUTER JOINS

An outer join returns not only the rows matching the join condition (that is, rows with matching values in the common
columns), but also the rows with unmatched values. The ANSI standard defines three types of outer joins: left, right,
and full. The left and right designations reflect the order in which the tables are processed by the DBMS. Remember
that join operations take place two tables at a time. The first table named in the FROM clause will be the left side, and
the second table named will be the right side. If three or more tables are being joined, the result of joining the first two
tables becomes the left side, and the third table becomes the right side.

The left outer join returns not only the rows matching the join condition (that is, rows with matching values in the
common column), but also the rows in the left side table with unmatched values in the right side table. The syntax is:

SELECT column-list
FROM tablel LEFT [OUTER] JOIN table2 ON join-condition

For example, the following query lists the product code, vendor code, and vendor name for all products and includes
those vendors with no matching products:

SELECT P_CODE, VENDOR.V_CODE, V_NAME
FROM VENDOR LEFT JOIN PRODUCT ON VENDOR.V_CODE = PRODUCT.V_CODE;

The preceding SQL code and its results are shown in Figure 8.10.

The right outer join returns not only the rows matching the join condition (that is, rows with matching values in the
common column), but also the rows in the right side table with unmatched values in the left side table. The syntax is:

SELECT column-list
FROM tablel RIGHT [OUTER] JOIN table2 ON join-condition

For example, the following query lists the product code, vendor code, and vendor name for all products and also
includes those products that do not have a matching vendor code:

SELECT P_CODE, VENDOR.V_CODE, V_NAME
FROM VENDOR RIGHT JOIN PRODUCT ON VENDOR.V_CODE = PRODUCT.V_CODE;

C6545_08 8/15/2007 16:14:51 Page 311

ADVANCED SQL

FIGURE LEFT JOIN results

8.10
#+ Oracle SOL*Plus _ (O] =]
File Edit Search Options Help
SQL> SELECT P_CODE, VEHDOR.VU_CODE, U_HAHE -
2 FROH VENDOR LEFT JOIHN PRODUCT OH VENDOR.U_CODE = PRODUCT.U_CODE;
P_CODE U_CODE VU_HAHE
110ER/ 31 25595 Rubicon Systems
13-027pP2 21344 Gomez Bros.
14-017L3 21344 Gomez Bros.
1546002 23119 Randsets Ltd.
1558-0W1 23119 Randsets Ltd.
2232701 24288 ORDVA, Inc.
2232/70ME 24288 ORDVA, Inc.
2238/QPD 25595 Rubicon Systems
23109-HB 21225 Bryson, Inc.
S4FFR-2T 21344 Gomez Bros.
80-URE-Q 24288 ORDVA, Inc.
SH-18277 21225 Bryson, Inc.
SW-23116 21231 D&E Supply
WR3/TT3 25505 Rubicon Systems

22567 Dome Supply
21226 SuperlLoo, Inc.
24004 Brackman Bros.
25581 Damal Supplies
25443 B&K, Inc.

19 rows selected.

sqL> -

Jeil =])

The SQL code and its output are shown in Figure 8.11.

The full outer join returns not only the rows matching the join condition (that is, rows with matching values in the
common column), but also all of the rows with unmatched values in either side table. The syntax is:

SELECT column-list
FROM tablel FULL [OUTER] JOIN table2 ON join-condition

For example, the following query lists the product code, vendor code, and vendor name for all products and includes
all product rows (products without matching vendors) as well as all vendor rows (vendors without matching products).

SELECT P_CODE, VENDOR.V_CODE, V_NAME
FROM VENDOR FULL JOIN PRODUCT ON VENDOR.V_CODE = PRODUCT.V_CODE;

The SQL code and its results are shown in Figure 8.12.

C6545_08 8/15/2007 16:14:51 Page 312

312 CHAPTER 8

FIGURE RIGHT JOIN results

8.11
File Edit Search Options Help
SQL> SELECT P_CODE, VEHDOR.VU_CODE, U_HAHE -

2 FROH VENDOR RIGHT JOIN PRODUCT OH VEHDOR.U_CODE = PRODUCT.U_CODE;

P_CODE U_CODE VU_HAHE
SH-18277 21225 Bryson, Inc.
23109-HB 2122% Bryson, Inc.
SW-23116 21231 D&E Supply
SL477R-2T 21344 Gomez Bros.
14-017L3 21344 Gomez Bros.
13-027pP2 21344 Gomez Bros.
1558-0W 23119 Randsets Ltd.
1546002 23119 Randsets Ltd.
89-URE-Q 24288 ORDVA, Inc.
2232/QWE 24288 ORDVA, Inc.
2232/0TY 24288 ORDVA, Inc.
WR3/TT3 25595 Rubicon Systems
2238/70PD 25595 Rubicon Systems
110ER/31 25595 Rubicon Systems
PUC23DRT
23114-AA

16 rows selected.

sqQL>

1 H

FIGURE FULL JOIN results

8.12
File Edit Search Options Help
SOL> SELECT P_CODE, VEHDOR.U_CODE, U_HNAHE -
2 FROM VENDOR FULL JOIH PRODUCT OH VEHDOR.U_CODE = PRODUCT.U_CODE;
P_CODE U_CODE VU_NAHE
11QER/31 25505 Rubicon Systems
13-02/7pP2 21344 Gomez Bros.
14-01/7L3 21344 Gomez Bros.
1546-002 23119 Randsets Ltd.
1558-0QW1 23119 Randsets Ltd.
2232701 24288 ORDVA, Inc.
223270ME 24288 ORDVA, Inc.
2238/70PD 25595 Rubicon Systems
23109-HB 21225 Bryson, Inc.
SHFFR-2T 21344 Gomez Bros.
80-URE-0 24288 ORDVA, Inc.
SH-18277 2122% Bryson, Inc.
SU-23116 21231 D&E Supply
WR3/TT3 25595 Rubicon Systems

22567 Dome Supply
212246 SuperlLoo, Inc.
24884 Brackman Bros.
25581 Damal Supplies
25443 B&K, Inc.
23114-an
PUC23DRT

21 rows selected.

sqQL> =

A 37|

C6545_08 9/7/2007 9:2:57 Page 313

ADVANCED SQL 313

8.3 SUBQUERIES AND CORRELATED QUERIES

The use of joins in a relational database allows you to get information from two or more tables. For example, the
following query allows you to get the customers’ data with their respective invoices by joining the CUSTOMER and
INVOICE tables.

SELECT INV_NUMBER, INVOICE.CUS_CODE, CUS_LNAME, CUS_FNAME
FROM CUSTOMER, INVOICE
WHERE CUSTOMER.CUS_CODE = INVOICE.CUS_CODE;

In the previous query, the data from both tables (CUSTOMER and INVOICE) are processed at once, matching rows
with shared CUS_CODE values.

However, it is often necessary to process data based on other processed data. Suppose, for example, you want to
generate a list of vendors who provide products. (Recall that not all vendors in the VENDOR table have provided
products—some of them are only potential vendors.) In Chapter 7, you learned that you could generate such a list by
writing the following query:

SELECT V_CODE, V_NAME FROM VENDOR
WHERE V_CODE NOT IN (SELECT V_CODE FROM PRODUCT);

Similarly, to generate a list of all products with a price greater than or equal to the average product price, you can write
the following query:

SELECT P_CODE, P_PRICE FROM PRODUCT
WHERE P_PRICE >= (SELECT AVG(P_PRICE) FROM PRODUCT);

In both of those cases, you needed to get information that was not previously known:
e What vendors provide products?

e What is the average price of all products?

In both cases, you used a subquery to generate the required information that could then be used as input for the
originating query.

You learned how to use subqueries in Chapter 7; let’s review their basic characteristics:
e A subquery is a query (SELECT statement) inside a query.
e A subquery is normally expressed inside parentheses.
e The first query in the SQL statement is known as the outer query.
e The query inside the SQL statement is known as the inner query.
e The inner query is executed first.
e The output of an inner query is used as the input for the outer query.

e The entire SQL statement is sometimes referred to as a nested query.

In this section, you learn more about the practical use of subqueries. You already know that a subquery is based on the
use of the SELECT statement to return one or more values to another query. But subqueries have a wide range of uses.
For example, you can use a subquery within an SQL data manipulation language (DML) statement (such as INSERT,
UPDATE, or DELETE) where a value or a list of values (such as multiple vendor codes or a table) is expected. Table 8.2
uses simple examples to summarize the use of SELECT subqueries in DML statements.

‘ C6545_08 9/13/2007 15:28:9 Page 314

SELECT Subquery Examples

SELECT SUBQUERY EXAMPLES EXPLANATION
INSERT INTO PRODUCT Inserts all rows from Table P into the PRODUCT table.
SELECT * FROM P; Both tables must have the same attributes. The sub-
query returns all rows from Table P

UPDATE PRODUCT Updates the product price to the average product price,

SET P_PRICE = (SELECT AVG(P_PRICE) but only for the products that are provided by vendors
FROM PRODUCT) who have an area code equal to 615. The first subquery

WHERE V_CODE IN (SELECT V_CODE returns the average price; the second subquery returns
FROM VENDOR the list of vendors with an area code equal to 615.
WHERE V_AREACODE = '615')

DELETE FROM PRODUCT Deletes the PRODUCT table rows that are provided by

WHERE V_CODE IN (SELECT V_CODE vendors with area code equal to 615. The subquery
FROM VENDOR returns the list of vendors codes with an area code
WHERE V_AREACODE = '615') equal to 615.

Using the examples shown in Table 8.2, note that the subquery is always at the right side of a comparison or assigning
expression. Also, a subquery can return one value or multiple values. To be precise, the subquery can return:

e One single value (one column and one row). This subquery is used anywhere a single value is expected, as
in the right side of a comparison expression (such as in the preceding UPDATE example when you assign the
average price to the product’s price). Obviously, when you assign a value to an attribute, that value is a single
value, not a list of values. Therefore, the subquery must return only one value (one column, one row). If the
query returns multiple values, the DBMS will generate an error.

e A list of values (one column and multiple rows). This type of subquery is used anywhere a list of values is
expected, such as when using the IN clause (that is, when comparing the vendor code to a list of vendors).
Again, in this case, there is only one column of data with multiple value instances. This type of subquery is used
frequently in combination with the IN operator in a WHERE conditional expression.

e A virtual table (multicolumn, multirow set of values). This type of subquery can be used anywhere a table
is expected, such as when using the FROM clause. You will see this type of query later in this chapter.

It's important to note that a subquery can return no values at all; it is a NULL. In such cases, the output of the outer
query might result in an error or a null empty set, depending where the subquery is used (in a comparison, an
expression, or a table set).

In the following sections, you will learn how to write subqueries within the SELECT statement to retrieve data from
the database.

[EX] wrerE susaueries

The most common type of subquery uses an inner SELECT subquery on the right side of a WHERE comparison
expression. For example, to find all products with a price greater than or equal to the average product price, you write
the following query:

SELECT P_CODE, P_PRICE FROM PRODUCT
WHERE P_PRICE >= (SELECT AVG(P_PRICE) FROM PRODUCT);

The output of the preceding query is shown in Figure 8.13. Note that this type of query, when used in a >, <, =, >=,
or <= conditional expression, requires a subquery that returns only one single value (one column, one row). The value
generated by the subquery must be of a “comparable” data type; if the attribute to the left of the comparison symbol
is a character type, the subquery must return a character string. Also, if the query returns more than a single value,
the DBMS will generate an error.

4

C6545_08 8/15/2007 16:14:52 Page 315

ADVANCED SQL 315
FIGURE WHERE subquery example

X Oracle 5Qc¥ =] fm] e
File Edit Search Options Help

SQL> SELECT P_CODE, P_PRICE FROM PRODUCT -

2 WHERE P_PRICE >= (SELECT AUG(P_PRICE) FROH PRODUCT);

P_CODE P_PRICE

11QER/31 18999

2232/QTY 189.92

2232/Q0ME 99.87

80-URE-Q 25699

WR3/TT3 119.95

SOL> SELECT DISTINCT CUS_CODE, CUS_LNAME, CUS_FNAME
2 FROM CUSTOMER JOIN INUOICE USING {(CUS_CODE)
3 JOIN LINE USING (IHU_NUMBER)
4 JOIN PRODUCT USING (P_CODE)
5 WHERE P_CODE IN (SELECT P_CODE FROM PRODUCT WHERE P_DESCRIPT = 'Claw hammer');

CUS_CODE CUS_LHAME CUS_FHAME
18811 Dunne Leona
18814 0Orlando Hyron
R H 4

Subqueries can also be used in combination with joins. For example, the following query lists all of the customers who
ordered the product “Claw hammer”:

SELECT DISTINCT CUS_CODE, CUS_LNAME, CUS_FNAME
FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)
JOIN LINE USING (INV_NUMBER)
JOIN PRODUCT USING (P_CODE)
WHERE P_CODE = (SELECT P_CODE FROM PRODUCT WHERE P_DESCRIPT = ‘Claw hammer’);

The result of that query is also shown in Figure 8.13.

In the preceding example, the inner query finds the P_CODE for the product “Claw hammer.” The P_CODE is then
used to restrict the selected rows to only those where the P_CODE in the LINE table matches the P_CODE for “Claw
hammer.” Note that the previous query could have been written this way:

SELECT DISTINCT CUS_CODE, CUS_LNAME, CUS_FNAME
FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)
JOIN LINE USING (INV_NUMBER)
JOIN PRODUCT USING (P_CODE)
WHERE P_DESCRIPT = ‘Claw hammer’;

But what happens if the original query encounters the “Claw hammer” string in more than one product description?
You get an error message. To compare one value to a list of values, you must use an IN operand, as shown in the next
section.

IN SUBQUERIES

What would you do if you wanted to find all customers who purchased a “hammer” or any kind of saw or saw blade?
Note that the product table has two different types of hammers: “Claw hammer” and “Sledge hammer.” Also note that
there are multiple occurrences of products that contain “saw” in their product descriptions. There are saw blades,
jigsaws, and so on. In such cases, you need to compare the P_CODE not to one product code (single value), but to

4

C6545_08 8/15/2007 16:14:53 Page 316

316 CHAPTER 8

a list of product code values. When you want to compare a single attribute to a list of values, you use the IN operator.
When the P_CODE values are not known beforehand but they can be derived using a query, you must use an IN
subquery. The following example lists all customers who have purchased hammers, saws, or saw blades.

SELECT DISTINCT CUS_CODE, CUS_LNAME, CUS_FNAME

FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)
JOIN LINE USING (INV_NUMBER)
JOIN PRODUCT USING (P_CODE)

WHERE P_CODE IN (SELECT P_CODE FROM PRODUCT
WHERE P_DESCRIPT LIKE '%ohammer%'
OR P_DESCRIPT LIKE '%esaw%);

The result of that query is shown in Figure 8.14.

FIGURE IN subquery example

Oracle SOL*Plus M=l E3
File Edit Search Options Help
SOL> SELECT DISTINCT CUS_CODE, CUS_LHAME, CUS_FHAME -
2 FROHM CUSTOMER JOIN INUDICE USIHG (CUS_CODE)
3 JOIN LINE USING (IHU_NUMBER)
L JOIN PRODUCT USING (P_CODE)
5 WHERE P_CODE IH {SELECT P_CODE FROM PRODUCT
i} WHERE P_DESCRIPT LIKE "%hammer%’' OR P_DESCRIPT LIKE '%saw%');
CUS_CODE CUS_LHAME CUS_FHAHE
18811 Dunne Leona
168812 Smith Kathy
18814 0Orlando Hyron
10815 0'Brian Amy
soL> -
4| | 3 |

HAVING SUBQUERIES

Just as you can use subqueries with the WHERE clause, you can use a subquery with a HAVING clause. Remember
that the HAVING clause is used to restrict the output of a GROUP BY query by applying a conditional criteria to the
grouped rows. For example, to list all products with the total quantity sold greater than the average quantity sold, you
would write the following query:

SELECT P_CODE, SUM(LINE_UNITS)

FROM LINE

GROUP BY P_CODE

HAVING SUM(LINE_UNITS) > (SELECT AVG(LINE_UNITS) FROM LINE);

The result of that query is shown in Figure 8.15.

C6545_08 8/15/2007 16:14:53 Page 317 ‘

FIGURE
8.15

#+ Dracle SOL*Plus

SOQL> SELECT P_CODE, SUM{(LINE_UNITS)
2 FROH LINE
3 GROUP BY P_CODE
4 HAVING SUM{LIME_UNITS) > (SELECT AUG(LIME_UNITS) FROM LIMNE);

P_CODE SUM(LINE_UNITS})

13-Q2/P2

23189-HB

SL778-2T

PUG23DRT 1
SH-18277

WR3/TT3

W~

6 rows selected.

sqL> ‘
]

M MULTIROW SUBQUERY OPERATORS: ANY AND ALL

So far, you have learned that you must use an IN subquery when you need to compare a value to a list of values. But
the IN subquery uses an equality operator; that is, it selects only those rows that match (are equal to) at least one of
the values in the list. What happens if you need to do an inequality comparison (> or <) of one value to a list of values?

For example, suppose you want to know what products have a product cost that is greater than all individual product
costs for products provided by vendors from Florida.

SELECT P_CODE, P_QOH * P_PRICE
FROM PRODUCT
WHERE P_QOH * P_PRICE > ALL (SELECT P_QOH * P_PRICE
FROM PRODUCT
WHERE V_CODE IN (SELECT V_CODE
FROM VENDOR
WHERE V_STATE = ‘FL));

The result of that query is shown in Figure 8.16.

FIGURE
8.16
* Oracle SQL*Plus A8 -19]
File Edit Search Options Help
SOL> SELECT P_CODE, P_QOH=P_PRICE -
2 FROH PRODUCT

3 UWHERE P_QOH=P_PRICE > ALL
4 (SELECT P_QOH=P_PRICE FROM PRODUCT
5 WHERE VU_CODE IN (SELECT V_GODE FROM VENDOR WHERE V_STATE = °FL'));

P_CODE P_QOHxP_PRICE
89-URE-0Q 2826 .89

5
K| v

C6545_08 9/7/2007 9:12:12 Page 318

318

CHAPTER 8

It's important to note the following points about the query and its output in Figure 8.16:

e The query is a typical example of a nested query.

e The query has one outer SELECT statement with a SELECT subquery (call it sq”) containing a second SELECT
subquery (call it sq®).

e The last SELECT subquery (sq) is executed first and returns a list of all vendors from Florida.

e The first SELECT subquery (sq®) uses the output of the SELECT subquery (sq%). The sq”* subquery returns the
list of product costs for all products provided by vendors from Florida.

e The use of the ALL operator allows you to compare a single value (P_QOH * P_PRICE) with a list of values
returned by the first subquery (sq”*) using a comparison operator other than equals.

e For a row to appear in the result set, it has to meet the criterion P_QOH * P_PRICE > ALL, of the individual
values returned by the subquery sq. The values returned by sq”* are a list of product costs. In fact, “greater
than ALL” is equivalent to “greater than the highest product cost of the list.” In the same way, a condition of
“less than ALL” is equivalent to “less than the lowest product cost of the list.”

Another powerful operator is the ANY multirow operator (near cousin of the ALL multirow operator). The ANY
operator allows you to compare a single value to a list of values, selecting only the rows for which the inventory cost
is greater than any value of the list or less than any value of the list. You could use the equal to ANY operator, which
would be the equivalent of the IN operator.

FROM SUBQUERIES

So far you have seen how the SELECT statement uses subqueries within WHERE, HAVING, and IN statements and
how the ANY and ALL operators are used for multirow subqueries. In all of those cases, the subquery was part of a
conditional expression and it always appeared at the right side of the expression. In this section, you will learn how
to use subqueries in the FROM clause.

As you already know, the FROM clause specifies the table(s) from which the data will be drawn. Because the output
of a SELECT statement is another table (or more precisely a “virtual” table), you could use a SELECT subquery in the
FROM clause. For example, assume that you want to know all customers who have purchased products 13-Q2/P2
and 23109-HB. All product purchases are stored in the LINE table. It is easy to find out who purchased any given
product by searching the P_CODE attribute in the LINE table. But in this case, you want to know all customers who
purchased both products, not just one. You could write the following query:

SELECT DISTINCT CUSTOMER.CUS_CODE, CUSTOMER.CUS_LNAME
FROM CUSTOMER,
(SELECT INVOICE.CUS_CODE FROM INVOICE NATURAL JOIN LINE
WHERE P_CODE = '13-Q2/P2) CP1,
(SELECT INVOICE.CUS_CODE FROM INVOICE NATURAL JOIN LINE
WHERE P_CODE = '23109-HB) CP2
WHERE CUSTOMER.CUS_CODE = CP1.CUS_CODE AND CP1.CUS_CODE = CP2.CUS_CODE;

The result of that query is shown in Figure 8.17.

Note in Figure 8.17 that the first subquery returns all customers who purchased product 13-Q2/P2, while the second
subquery returns all customers who purchased product 23109-HB. So in this FROM subquery, you are joining the
CUSTOMER table with two virtual tables. The join condition selects only the rows with matching CUS_CODE values
in each table (base or virtual).

C6545_08 9/7/2007 9:13:24 Page 319

ADVANCED SQL 319
FIGURE FROM subquery example
8.17
4 Oracle SOL*Plus !EE
File Edit Search Options Help
SQL> SELECT DISTINCT CUSTOMER.CUS_CODE, CUSTOMER.CUS_LHAHE -
2 FROH CUSTOHER,

(SELECT IMUVDICE.CUS_CODE
FROM INUDICE HATURAL JOIN LINE WHERE P_CODE

4 *13-02/P2') CP1, (SELECT INUDICE.CUS_CI
5 FROM INUDICE HATURAL JOIN LIHNE WHERE P_CODE

[i]

7

*23189-HB') CP2

WHERE CUSTOMER.CUS_CODE = CP1.CUS_CODE AND
CP1.CUS_CODE = CP2.CUS_CODE;

CUS_CODE CUS_LHAME

18814 0Orlando

sQL> | <

In the previous chapter, you learned that a view is also a virtual table; therefore, you can use a view name anywhere
a table is expected. So in this example, you could create two views: one listing all customers who purchased
product 13-Q2/P2 and another listing all customers who purchased product 23109-HB. Doing so, you would write
the query as:

CREATE VIEW CP1 AS
SELECT INVOICE.CUS_CODE FROM INVOICE NATURAL JOIN LINE
WHERE P_CODE = '13-Q2/PZ';

CREATE VIEW CP2Z AS
SELECT INVOICE.CUS_CODE FROM INVOICE NATURAL JOIN LINE
WHERE P_CODE = '23109-HB;

SELECT DISTINCT CUS_CODE, CUS_LNAME
FROM CUSTOMER NATURAL JOIN CP1 NATURAL JOIN CPZ2;

You might speculate that the above query could also be written using the following syntax:

SELECT CUS_CODE, CUS_LNAME
FROM CUSTOMER NATURAL JOIN INVOICE NATURAL JOIN LINE
WHERE P_CODE = '13-Q2/P2' AND P_CODE = '23109-HB;

But if you examine that query carefully, you will note that a P_CODE cannot be equal to two different values at the
same time. Therefore, the query will not return any rows.

ATTRIBUTE LIST SUBQUERIES

The SELECT statement uses the attribute list to indicate what columns to project in the resulting set. Those columns
can be attributes of base tables or computed attributes or the result of an aggregate function. The attribute list can also
include a subquery expression, also known as an inline subquery. A subquery in the attribute list must return one single
value; otherwise, an error code is raised. For example, a simple inline query can be used to list the difference between
each product’s price and the average product price:

SELECT P_CODE, P_PRICE, (SELECT AVG(P_PRICE) FROM PRODUCT) AS AVGPRICE,
P_PRICE - (SELECT AVG(P_PRICE) FROM PRODUCT) AS DIFF
FROM PRODUCT;

4

C6545_08 8/15/2007 16:14:54 Page 320

320

CHAPTER 8

Figure 8.18 shows the result of that query.

FIGURE Inline subquery example

Oracle SOL*Plus _ (O] =]

File Edit Search Options Help

SOL> SELECT P_CODE, P_PRICE, (SELECT AUG{P_PRICE) FROM PRODUCT) AS AVGPRICE, -
2 P_PRICE-{SELECT AUG{P_PRICE) FROM PRODUCT) AS DIFF
3 FROHM PRODUCT;

P_CODE P_PRICE AUGPRICE DIFF

11QER/31 189.99 56.42125 53.56875

13-02/P2 14.99 5642125 -41._43125

14-01/L3 17 .49 56.42125 -38.93125

1546-002 32.9% 56.42125 -16.47125

1558-0W1 43.99 56.42125 -12.43125

2232/701% 189.92 56.42125 53.49875

2232/7QUE 99 87 56.42125 43 44875

2238/0PD 38.95 56.42125 -17.4712%

23109-HB 9.05 56.42125 -46_47125

23114-an 144 56.42125 -42.82125

Sh778-2T 4.99 56.42125 -51.43125

89-URE-0 256.99 56.42125 280.56875

PUC23DRT 5 .87 56.42125 -58.55125

SH-18277 6.99 5642125 -49 43125

SW-23116 .45 56.42125 -47.97125

WR3/TT3 119.95% 56.42125 63.52875

16 rows selected.

sSOL> -

4| | 3 42

In Figure 8.18, note that the inline query output returns one single value (the average product’s price) and that the
value is the same in every row. Note also that the query used the full expression instead of the column aliases when
computing the difference. In fact, if you try to use the alias in the difference expression, you will get an error message.
The column alias cannot be used in computations in the attribute list when the alias is defined in the same attribute
list. That DBMS requirement is due to the way the DBMS parses and executes queries.

Another example will help you understand the use of attribute list subqueries and column aliases. For example, suppose
you want to know the product code, the total sales by product, and the contribution by employee of each product’s
sales. To get the sales by product, you need to use only the LINE table. To compute the contribution by employee, you
need to know the number of employees (from the EMPLOYEE table). As you study the tables’ structures, you can see
that the LINE and EMPLOYEE tables do not share a common attribute. In fact, you don’t need a common attribute.
You need to know only the total number of employees, not the total employees related to each product. So to answer
the query, you would write the following code:

SELECT P_CODE, SUM(LINE_UNITS * LINE_PRICE) AS SALES,

(SELECT COUNT(*) FROM EMPLOYEE) AS ECOUNT,

SUM(LINE_UNITS * LINE_PRICE)/(SELECT COUNT(*) FROM EMPLOYEE) AS CONTRIB
FROM LINE
GROUP BY P_CODE;

The result of that query is shown in Figure 8.19.

As you can see in Figure 8.19, the number of employees remains the same for each row in the result set. The use of
that type of subquery is limited to certain instances where you need to include data from other tables that are not
directly related to a main table or tables in the query. The value will remain the same for each row, like a constant in
a programming language. (You will learn another use of inline subqueries in Section 8.3.7, Correlated Subqueries).

4

C6545_08 8/15/2007 16:14:54 Page 321

ADVANCED SQL 321
FIGURE Another example of an inline subquery
4 Dracle SOL*Plus M=l E3
File Edit Search Options Help
SO0L> SELECT P_CODE, SUM(LINE_UNITS#*LINE_PRICE} AS SALES, -
2 (SELECT COUNT{=) FROH EMPLOYEE) AS ECOUNT,
3 SUM{LINE_UNITS*LINE_PRICE)/({SELECT COUNT{*) FROM EMFLOYEE) AS CONTRIB
4 FROM LIHNE
5 GROUP BY P_CODE;
P_CODE SALES ECOUNT CONTRIB
13-027P2 119.92 17 7.85411765
1546-002 39.95% 17 2.35
2232/QTY 1089.92 17 6.46588235
2238/70PD 38.9% 17 2.29117647
23189-HB h9 75 17 2.92647059
SLU778-2T 29.94 17 1. 76117647
89-WRE-1 256.99 17 15.1176588
PUC23DRT o079 17 5 .87
SH-18277 28.97 17 1.23352911
WRI/TT3 35985 17 211676471
18 rows selected.
sqL> -
Jealf=| JL 7|

Note that you cannot use an alias in the attribute list to write the expression that computes the contribution per
employee.

Another way to write the same query by using column aliases requires the use of a subquery in the FROM clause, as
follows:

SELECT P_CODE, SALES, ECOUNT, SALES/ECOUNT AS CONTRIB

FROM (SELECT P_CODE, SUM(LINE_UNITS * LINE_PRICE) AS SALES,
(SELECT COUNT(*) FROM EMPLOYEE) AS ECOUNT
FROM LINE

GROUP BY P_CODE);

In that case, you are actually using two subqueries. The subquery in the FROM clause executes first and returns a virtual
table with three columns: P_CODE, SALES, and ECOUNT. The FROM subquery contains an inline subquery that
returns the number of employees as ECOUNT. Because the outer query receives the output of the inner query, you
can now refer to the columns in the outer subquery using the column aliases.

CORRELATED SUBQUERIES

Until now, all subqueries you have learned execute independently. That is, each subquery in a command sequence
executes in a serial fashion, one after another. The inner subquery executes first; its output is used by the outer query,
which then executes until the last outer query executes (the first SQL statement in the code).

In contrast, a correlated subquery is a subquery that executes once for each row in the outer query. That process
is similar to the typical nested loop in a programming language. For example:

FORX =1TO 2
FORY =1TO 3
PRINT “X = “X, “Y = Y
END
END

C6545_08 8/15/2007 16:14:55 Page 322

322

CHAPTER 8

will vield the output

Il
NN DN —H =

XX X X X X
I

<o
I
W N = WN =

Note that the outer loop X = 1 TO 2 begins the process by setting X = 1; then the inner loop Y = 1 TO 3 is completed
for each X outer loop value. The relational DBMS uses the same sequence to produce correlated subquery results:

1. It initiates the outer query.
2. For each row of the outer query result set, it executes the inner query by passing the outer row to the

inner query.

That process is the opposite of the subqueries you have seen so far. The query is called a correlated subquery because
the inner query is related to the outer query by the fact that the inner query references a column of the outer subquery.

To see the correlated subquery in action, suppose you want to know all product sales in which the units sold value is
greater than the average units sold value for that product (as opposed to the average for all products). In that case,
the following procedure must be completed:

1. Compute the average-units-sold value for a product.

2. Compare the average computed in Step 1 to the units sold in each sale row; then select only the rows in which
the number of units sold is greater.

The following correlated query completes the preceding two-step process:

SELECT INV_NUMBER, P_CODE, LINE_UNITS

FROM LINE LS
WHERE LS.LINE_UNITS > (SELECT AVG(LINE_UNITS)
FROM LINE LA
WHERE LA.P_CODE = LS.P_CODE);

The first example in Figure 8.20 shows the result of that query.

In the top query and its result in Figure 8.20, note that the LINE table is used more than once; so you must use table
aliases. In that case, the inner query computes the average units sold of the product that matches the P_CODE of the
outer query P_CODE. That is, the inner query runs once using the first product code found in the (outer) LINE table
and returns the average sale for that product. When the number of units sold in that (outer) LINE row is greater than
the average computed, the row is added to the output. Then the inner query runs again, this time using the second
product code found in the (outer) LINE table. The process repeats until the inner query has run for all rows in the (outer)
LINE table. In that case, the inner query will be repeated as many times as there are rows in the outer query.

To verify the results and to provide an example of how you can combine subqueries, you can add a correlated inline
subquery to the previous query. That correlated inline subquery will show the average units sold column for each
product. (See the second query and its results in Figure 8.20.) As you can see, the new query contains a correlated
inline subquery that computes the average units sold for each product. You not only get an answer, but you also can
verify that the answer is correct.

C6545_08 9/13/2007 15:29:43 Page 323

ADVANCED SQL 323
FIGURE Correlated subquery examples
8.20
4 DOracle 5QL*Plus _ O] x|
File Edit Search Options Help
SQL> SELECT INU_NUMBER, P_CODE, LIME_UNITS -
2 FROM LINE LS

3 UWHERE LS.LIME_UNITS >
4 (SELECT AUG{LINE_UNITS)
5 FROM LINE LA

6 WHERE LA.P_CODE = LS.P_GCODE});

INU_NUMBER P_CODE LINE_UNITS
1883 13-02/P2 5
1004 54778-2T 3
1864 23189-HB 2
18685 PUC23DRT 12

SQL> SELECT IMV_MNUMBER, P_CODE, LIME_UNITS,
2 (SELECT AUG{LINE_UNITS) FROM LIME LX WHERE LX.P_CODE = LS.P_CODE) AS AUG
3 FROHM LINE LS
4 WHERE LS.LINE_UNITS >

5 (SELECT AUG{LINE_UNITS)
[} FROH LINE LA
7 WHERE LA.P_CODE = LS.P_CODE);
INU_NUMBER P_CODE LINE_UNITS AuG
18683 13-02/p2 5 2.66666667
1004 54778-2T 3 2
16804 23109-HB 2 1.25
18685 PUC23DRT 12 8.5
sqQL> -
4| I Ld P

Correlated subqueries can also be used with the EXISTS special operator. For example, suppose you want to know all
customers who have placed an order lately. In that case, you could use a correlated subquery like the first one shown
in Figure 8.21:

SELECT CUS_CODE, CUS_LNAME, CUS_FNAME
FROM CUSTOMER
WHERE EXISTS (SELECT CUS_CODE FROM INVOICE
WHERE INVOICE.CUS_CODE = CUSTOMER.CUS_CODE);

The second example of an EXISTS correlated subquery in Figure 8.21 will help you understand how to use correlated
queries. For example, suppose you want to know what vendors you must contact to start ordering products that are
approaching the minimum quantity-on-hand value. In particular, you want to know the vendor code and name of
vendors for products having a quantity on hand that is less than double the minimum quantity. The query that answers
that question is as follows:

SELECT V_CODE, V_NAME
FROM VENDOR
WHERE EXISTS (SELECT *
FROM PRODUCT
WHERE P_QOH < P_MIN * 2
AND VENDOR.V_CODE = PRODUCT.V_CODE);

C6545_08 8/15/2007 16:14:55 Page 324

324

CHAPTER 8

FIGURE EXISTS correlated subquery examples

8.21
£ oracle SQL*Plus A8 -13] x|
File Edit S{wch | Options Help
SOL> SELECT CUS_CODE, CUS_LMNAME, CUS_FNAME -
2 FROM CUSTOHER
3 WHERE EXISTS (SELECT CUS_CODE FROM INUDICE
L3 WHERE INUVOICE.CUS_CODE = CUSTOMER.CUS_CODE);
CUS_CODE CUS_LHNAKE CUS_FNAME
18811 Dunne Leona
168812 Smith Kathy
18814 0Orlando Hyron
10815 0'Brian Amy
18818 Farriss Anne

SOL> SELECT V_CODE, V_HAME FROM UENDOR
WHERE EXISTS (
SELECT = FROM PRODUCT
WHERE P_QO0OH<P_MIN*2
AND VENDOR.U_CODE = PRODUCT.V_CODE);

Ll -l

U_CODE U_NAHE

21344 Gomez Bros.
23119 Randsets Ltd.
24288 ORDVUA, Inc.
25595 Rubicon Systenms

In the second query in Figure 8.21, note that:
1. The inner correlated subquery runs using the first vendor.

2. If any products match the condition (quantity on hand is less than double the minimum quantity), the vendor
code and name are listed in the output.

3. The correlated subquery runs using the second vendor, and the process repeats itself until all vendors are used.

8.4 SQL FUNCTIONS

The data in databases are the basis of critical business information. Generating information from data often requires
many data manipulations. Sometimes such data manipulation involves the decomposition of data elements. For
example, an employee’s date of birth can be subdivided into a day, a month, and a year. A product manufacturing code
(for example, SE-05-2-09-1234-1-3/12/04-19:26:48) can be designed to record the manufacturing region, plant,
shift, production line, employee number, date, and time. For years, conventional programming languages have had
special functions that enabled programmers to perform data transformations like those data decompositions. If you
know a modern programming language, it’s very likely that the SQL functions in this section will look familiar.

SQL functions are very useful tools. You'll need to use functions when you want to list all employees ordered by year
of birth or when your marketing department wants you to generate a list of all customers ordered by zip code and the
first three digits of their telephone numbers. In both of those cases, you'll need to use data elements that are not
present as such in the database; instead you'll need an SQL function that can be derived from an existing attribute.
Functions always use a numerical, date, or string value. The value may be part of the command itself (a constant or
literal) or it may be an attribute located in a table. Therefore, a function may appear anywhere in an SQL statement
where a value or an attribute can be used.

C6545_08 9/7/2007 9:19:59 Page 325

There are many types of SQL functions, such as arithmetic, trigonometric, string, date, and time functions. This section
will not explain all of those types of functions in detail, but it will give you a brief overview of the most useful ones.

Although the main DBMS vendors support the SQL functions covered here, the syntax or degree of support will
probably differ. In fact, DBMS vendors invariably add their own functions to products to lure new customers.
The functions covered in this section represent just a small portion of functions supported by your DBMS. Read
your DBMS SQL reference manual for a complete list of available functions.

m DATE AND TIME FUNCTIONS

All SQL-standard DBMSs support date and time functions. All date functions take one parameter (of a date or
character data type) and return a value (character, numeric, or date type). Unfortunately, date/time data types are
implemented differently by different DBMS vendors. The problem occurs because the ANSI SQL standard defines date
data types, but it does not say how those data types are to be stored. Instead, it lets the vendor deal with that issue.

Because date/time functions differ from vendor to vendor, this section will cover basic date/time functions for MS
Access/SQL Server and for Oracle. Table 8.3 shows a list of selected MS Access/SQL Server date/time functions.

Selected MS Access/SQL Server Date/Time Functions

FUNCTION EXAMPLE(S)
YEAR Lists all employees born in 1966:
Returns a four-digit year SELECT EMP_LNAME, EMP_FNAME, EMP_DOB,
Syntax: YEAR(EMP_DOB) AS YEAR
YEAR(date value) FROM EMPLOYEE
WHERE YEAR(EMP_DOB) = 1966;
MONTH Lists all employees born in November:
Returns a two-digit month code | SELECT EMP_LNAME, EMP_FNAME, EMP_DOB,
Syntax: MONTH(EMP_DOB) AS MONTH
MONTH(date_value) FROM EMPLOYEE
WHERE MONTH(EMP_DOB) = 11;
DAY Lists all employees born on the 14th day of the month:
Returns the number of the day SELECT EMP_LNAME, EMP_FNAME, EMP_DOB,
Syntax: DAY(EMP_DOB) AS DAY
DAY(date value) FROM EMPLOYEE
WHERE DAY(EMP _DOB) = 14;
DATE() — MS Access Lists how many days are left until Christmas:
GETDATE() — SQL Server SELECT #25-Dec-2008# — DATE();
Returns today’s date Note two features:
e There is no FROM clause, which is acceptable in MS Access.
e The Christmas date is enclosed in # signs because you are doing date
arithmetic.
In MS SQL Server:
Use GETDATE() to get the current system date. To compute the difference
between dates, use the DATEDIFF function (see below).

C6545_08 9/13/2007 15:30:19 Page 326

Selected MS Access/SQL Server Date/Time Functions (continued)

FUNCTION

EXAMPLE(S)

DATEADD — SQL Server

Adds a number of selected time
periods to a date

Syntax:

DATEADD (datepart,

number, date)

Adds a number of dateparts to a given date. Dateparts can be minutes, hours,
days, weeks, months, quarters, or years. For example:

SELECT DATEADD(day,90, P_INDATE) AS DueDate

FROM PRODUCT;

The above example adds 90 days to P_INDATE.

In MS Access use:

SELECT P_INDATE+90 AS DueDate

enddate)

FROM PRODUCT;
DATEDIFF — SQL Server Returns the difference between two dates expressed in a selected datepart. For
Subtracts two dates example:
Syntax: SELECT DATEDIFF(day, P_INDATE, GETDATE()) AS DaysAgo
DATEDIFF(datepart, startdate, FROM PRODUCT;

In MS Access use:
SELECT DATE() - P_INDATE AS DaysAgo
FROM PRODUCT;

Table 8.4 shows the equivalent date/time functions used in Oracle. Note that Oracle uses the same function
(TO_CHAR) to extract the various parts of a date. Also, another function (TO_DATE) is used to convert character
strings to a valid Oracle date format that can be used in date arithmetic.

Selected Oracle Date/Time Functions

FUNCTION

TO_CHAR

Returns a character string or a
formatted string from a date
value

Syntax:
TO_CHAR(date_value, fmt)
fmt = format used; can be:
MONTH: name of month
MON: three-letter month name
MM: two-digit month name
D: number for day of week
DD: number day of month
DAY: name of day of week
YYYY: four-digit year value
YY: two-digit year value

EXAMPLE(S)

Lists all employees born in 1982:

SELECT EMP_LNAME, EMP_FNAME, EMP_DOB,
TO_CHAR(EMP_DOB, 'YYYY') AS YEAR

FROM EMPLOYEE

WHERE TO_CHAR(EMP_DOB, 'YYYY') = '1982';

Lists all employees born in November:

SELECT EMP_LNAME, EMP_FNAME, EMP_DOB,
TO_CHAR(EMP_DOB, 'MM') AS MONTH

FROM EMPLOYEE

WHERE TO_CHAR(EMP_DOB, 'MM') = '11";

Lists all employees born on the 14th day of the month:

SELECT EMP_LNAME, EMP_FNAME, EMP_DOB,
TO_CHAR(EMP_DOB, 'DD') AS DAY

FROM EMPLOYEE

WHERE TO_CHAR(EMP_DOB, 'DD') = '14';

C6545_08 9/7/2007 9:26:18 Page 327

ADVANCED SQL

Selected Oracle Date/Time Functions (continued)

FUNCTION

TO_DATE

Returns a date value using a
character string and a date for-
mat mask; also used to translate
a date between formats

Syntax:

TO_DATE(char_value, fmt)

fmt = format used; can be:
MONTH: name of month
MON: three-letter month name
MM: two-digit month name

D: number for day of week
DD: number day of month
DAY: name of day of week
YYYY: four-digit year value

YY: two-digit year value

EXAMPLE(S)
Lists the approximate age of the employees on the company’s tenth anniversary
date (11/25/2008):
SELECT EMP_LNAME, EMP_FNAME,
EMP_DOB, '11/25/2008' AS ANIV_DATE,
(TO_DATE('11/25/1998','MM/DD/YYYY') - EMP_DOB)/365 AS YEARS
FROM EMPLOYEE
ORDER BY YEARS;
Note the following:
e '11/25/2008' is a text string, not a date.
e The TO_DATE function translates the text string to a valid Oracle date used
in date arithmetic.
How many days between Thanksgiving and Christmas 2008?
SELECT TO_DATE('2008/12/25','YYYY/MM/DD") —
TO_DATE('NOVEMBER 27, 2008','MONTH DD, YYYY')
FROM DUAL;
Note the following:
e The TO_DATE function translates the text string to a valid Oracle date used
in date arithmetic.
e DUAL is Oracle’s pseudo table used only for cases where a table is not
really needed.

SYSDATE
Returns today’s date

Lists how many days are left until Christmas:
SELECT TO_DATE('25-Dec-2008','DD-MON-YYYY') SYSDATE
FROM DUAL;
Notice two things:
e DUAL is Oracle’s pseudo table used only for cases where a table is not
really needed.
e The Christmas date is enclosed in a TO_DATE function to translate the
date to a valid date format.

ADD_MONTHS

Adds a number of months to a
date; useful for adding months
or years to a date

Syntax:
ADD_MONTHS(date value, n)
n = number of months

Lists all products with their expiration date (two years from the purchase date):
SELECT ~ P_CODE, P_INDATE, ADD_MONTHS(P_INDATE,24)

FROM PRODUCT

ORDER BY ADD_MONTHS(P_INDATE,24);

LAST_DAY
Returns the date of the last day
of the month given in a date
Syntax:

LAST DAY(date value)

Lists all employees who were hired within the last seven days of a month:
SELECT EMP_LNAME, EMP_FNAME, EMP_HIRE_DATE

FROM EMPLOYEE

WHERE EMP_HIRE_DATE >=LAST DAY(EMP_HIRE_DATE)-7;

m NUMERIC FUNCTIONS

Numeric functions can be grouped in many different ways, such as algebraic, trigonometric, and logarithmic. In this

section, you will learn two very useful functions. Do not confuse the SQL aggregate functions you saw in the previous

chapter with the numeric functions in this section. The first group operates over a set of values (multiple rows—hence,

the name aggregate functions), while the numeric functions covered here operate over a single row. Numeric

functions take one numeric parameter and return one value. Table 8.5 shows a selected group of numeric functions

available.

C6545_08 9/7/2007 9:27:10 Page 328

Selected Numeric Functions

FUNCTION

EXAMPLE(S)

ABS

Returns the absolute value of a number
Syntax:

ABS(numeric_value)

In Oracle use:

SELECT 1.95, -1.93, ABS(1.95), ABS(-1.93)
FROM DUAL;

In MS Access/SQL Server use:

SELECT 1.95, -1.93, ABS(1.95), ABS(-1.93);

ROUND

Rounds a value to a specified precision
(number of digits)

Syntax:

ROUND(numeric_value, p)

p = precision

Lists the product prices rounded to one and zero decimal places:
SELECT P_CODE, P_PRICE,

ROUND(P_PRICE, 1) AS PRICET,

ROUND(P_PRICE,0) AS PRICEO
FROM PRODUCT;

CEIL/CEILING/FLOOR

Returns the smallest integer greater than or
equal to a number or returns the largest
integer equal to or less than a number,
respectively

Syntax:

CEIL(numeric_value) — Oracle
CEILING(numeric_value) — SQL Server
FLOOR(numeric_value)

Lists the product price, smallest integer greater than or equal to the
product price, and the largest integer equal to or less than the
product price.

In Oracle use:

SELECT P_PRICE, CEIL(P_PRICE), FLOOR(P_PRICE)

FROM PRODUCT;

In SQL Server use:

SELECT P_PRICE, CEILING(P_PRICE), FLOOR(P_PRICE)

FROM PRODUCT;

MS Access does not support these functions.

m STRING FUNCTIONS

String manipulations are among the most-used functions in programming. If you have ever created a report using any
programming language, you know the importance of properly concatenating strings of characters, printing names in
uppercase, or knowing the length of a given attribute. Table 8.6 shows a subset of useful string manipulation functions.

C6545_08 9/7/2007 9:28:44 Page 329 ‘

Selected String Functions

FUNCTION EXAMPLE(S)

Concatenation Lists all employee names (concatenated).

|| — Oracle In Oracle use:

+ — MS Access/SQL Server SELECT EMP_LNAME || ', ' || EMP_FNAME AS NAME
Concatenates data from two different | FROM EMPLOYEE;

character columns and returns a In MS Access / SQL Server use:

single column SELECT EMP_LNAME + ', ' + EMP_FNAME AS NAME
Syntax: FROM EMPLOYEE;

strg_value || strg value
strg_value + strg_value

UPPER/LOWER Lists all employee names in all capital letters (concatenated).

Returns a string in all capital or all In Oracle use:

lowercase letters SELECT UPPER(EMP_LNAME) || ', ' | | UPPER(EMP_FNAME) AS NAME
Syntax: FROM EMPLOYEE;

UPPER(strg_value) In SQL Server use:

LOWER(strg_value) SELECT UPPER(EMP_LNAME) + ', ' + UPPER(EMP_FNAME) AS NAME

FROM EMPLOYEE;

Lists all employee names in all lowercase letters (concatenated).

In Oracle use:

SELECT LOWER(EMP_LNAME) || ', ' | | LOWER(EMP_FNAME) AS NAME
FROM EMPLOYEE;

In SQL Server use:

SELECT LOWER(EMP_LNAME) + ', ' + LOWER(EMP_FNAME) AS NAME
FROM EMPLOYEE;

Not supported by MS Access.

SUBSTRING Lists the first three characters of all employee phone numbers.
Returns a substring or part of a given | In Oracle use:

string parameter SELECT EMP_PHONE, SUBSTR(EMP_PHONE,1,3) AS PREFIX
Syntax: FROM EMPLOYEE;

SUBSTR(strg_value, p, [) — Oracle In SQL Server use:

SUBSTRING(strg_value,p,l) — SQL SELECT EMP_PHONE, SUBSTRING(EMP_PHONE,1,3) AS PREFIX
Server FROM EMPLOYEE;

p = start position Not supported by MS Access.

| = length of characters

LENGTH Lists all employee last names and the length of their names; ordered
Returns the number of characters in descended by last name length.

a string value In Oracle use:

Syntax: SELECT EMP_LNAME, LENGTH(EMP_LNAME) AS NAMESIZE
LENGTH(strg_value) — Oracle FROM EMPLOYEE;

LEN(strg_value) — SQL Server In MS Access / SQL Server use:

SELECT EMP_LNAME, LEN(EMP_LNAME) AS NAMESIZE
FROM EMPLOYEE;

C6545_08 9/13/2007 15:35:2 Page 330

CHAPTER 8

CONVERSION FUNCTIONS

Conversion functions allow you to take a value of a given data type and convert it to the equivalent value in another
data type. In Section 8.4.1, you learned about two of the basic Oracle SQL conversion functions: TO_CHAR and
TO_DATE. Note that the TO_CHAR function takes a date value and returns a character string representing a day, a
month, or a year. In the same way, the TO_DATE function takes a character string representing a date and returns
an actual date in Oracle format. SQL Server uses the CAST and CONVERT functions to convert one data type to
another. A summary of the selected functions is shown in Table 8.7.

Selected Conversion Functions

FUNCTION

Numeric to Character:
TO_CHAR — Oracle

CAST — SQL Server

CONVERT — SQL Server

Returns a character string from a
numeric value.

Syntax:

Oracle: TO_CHAR(numeric_value,
fmt)

SQL Server:

CAST (numeric AS varchar(length))
CONVERT (varchar(length), numeric)

EXAMPLE(S)

Lists all product prices, quantity on hand, percent discount, and total

inventory cost using formatted values.

In Oracle use:

SELECT P_CODE,

TO_CHAR(P_PRICE,'999.99') AS PRICE,
TO_CHAR(P_QOH,'9,999.99') AS QUANTITY,
TO_CHAR(P_DISCOUNT,'0.99') AS DISC,
TO_CHAR(P_PRICE*P_QOH,'99,999.99")

AS TOTAL_COST

FROM PRODUCT;

In SQL Server use:

SELECT P_CODE, CAST(P_PRICE AS VARCHAR(8)) AS PRICE,
CONVERT(VARCHAR(4),P_QOH) AS QUANTITY,
CAST(P_DISCOUNT AS VARCHAR(4)) AS DISC,
CAST(P_PRICE*P_QOH AS VARCHAR(10)) AS TOTAL_COST

FROM PRODUCT;

Not supported in MS Access.

Date to Character:

TO_CHAR — Oracle

CAST — SQL Server

CONVERT — SQL Server

Returns a character string or a format-
ted character string from a date value
Syntax:

Oracle: TO_CHAR(date_value, fmt)
SQL Server:

CAST (date AS varchar(length))
CONVERT(varchar(length), date)

Lists all employee dates of birth, using different date formats.
In Oracle use:

SELECT EMP_LNAME, EMP_DOB,
TO_CHAR(EMP_DOB, ‘DAY, MONTH DD, YYYY’)
AS ‘DATEOFBIRTH’

FROM EMPLOYEE;

SELECT EMP_LNAME, EMP_DOB,
TO_CHAR(EMP_DOB, YYYY/MM/DD’)
AS ‘DATEOFBIRTH’

FROM EMPLOYEE;

In SQL Server use:

SELECT EMP_LNAME, EMP_DOB,
CONVERT(varchar(11),EMP_DOB) AS “DATE OF BIRTH”
FROM EMPLOYEE;
SELECT EMP_LNAME, EMP_DOB,
CAST(EMP_DOB as varchar(11)) AS “DATE OF BIRTH”
FROM EMPLOYEE;

Not supported in MS Access.

C6545_08 9/13/2007 15:36:22 Page 331

ADVANCED SQL

331

Selected Conversion Functions (continued)

FUNCTION

String to Number:

TO_NUMBER

Returns a formatted number from a
character string, using a given format
Syntax:

Oracle:

TO_NUMBER(char_value, fmt)

fmt = format used; can be:

9 = displays a digit

0 = displays a leading zero

, = displays the comma

. = displays the decimal point

$ = displays the dollar sign

B = leading blank

S = leading sign

MI = trailing minus sign

EXAMPLE(S)
Converts text strings to numeric values when importing data to a table
from another source in text format; for example, the query shown below
uses the TO_NUMBER function to convert text formatted to Oracle
default numeric values using the format masks given.
In Oracle use:
SELECT TO_NUMBER('-123.99', 'S999.99"),
TO_NUMBER('99.78-','B999.99MI')
FROM DUAL;
In SQL Server use:
SELECT CAST('-123.99' AS NUMERIC(8,2)),
CAST('-99.78' AS NUMERIC(8,2))
The SQL Server CAST function does not support the trailing sign on the
character string.
Not supported in MS Access.

CASE — SQL Server

DECODE — Oracle

Compares an attribute or expression
with a series of values and returns an
associated value or a default value if
no match is found

Syntax:

Oracle:

DECODE(e, x, y, d)

e = attribute or expression

x = value with which to compare e
y = value to return in e = x

d = default value to return if e is not
equal to x

SQL Server:

CASE When condition

THEN valuel ELSE value2 END

The following example returns the sales tax rate for specified states:
e Compares V_STATE to 'CA'; if the values match, it returns .08.
e Compares V_STATE to 'FL'; if the values match, it returns .05.
o Compares V_STATE to 'TN'; if the values match, it returns .085.
If there is no match, it returns 0.00 (the default value).
SELECT V_CODE, V_STATE,
DECODE(V_STATE,'CA',.08,'FL',.05, 'TN',.085, 0.00)
AS TAX
FROM VENDOR;
In SQL Server use:
SELECT V_CODE, V_STATE,
CASE WHEN V_STATE = 'CA' THEN .08
WHEN V_STATE = 'FL' THEN .05
WHEN V_STATE = '"TN' THEN .085
ELSE 0.00 END AS TAX
FROM VENDOR
Not supported in MS Access.

8.5 ORACLE SEQUENCES

If you use MS Access, you might be familiar with the AutoNumber data type, which you can use to define a column
in your table that will be automatically populated with unique numeric values. In fact, if you create a table in MS Access
and forget to define a primary key, MS Access will offer to create a primary key column; if you accept, you will notice
that MS Access creates a column named ID with an AutoNumber data type. After you define a column as an
AutoNumber type, every time you insert a row in the table, MS Access will automatically add a value to that column,
starting with 1 and increasing the value by 1 in every new row you add. Also, you cannot include that column in your
INSERT statements—Access will not let you edit that value at all. MS SQL Server uses the Identity column property
to serve a similar purpose. In MS SQL Server a table can have at most one column defined as an Identity column. This
column behaves similarly to an MS Access column with the AutoNumber data type.

Oracle does not support the AutoNumber data type or the Identity column property. Instead, you can use a “sequence”
to assign values to a column on a table. But an Oracle sequence is very different from the Access AutoNumber data
type and deserves close scrutiny:

e Oracle sequences are an independent object in the database. (Sequences are not a data type.)

e Oracle sequences have a name and can be used anywhere a value is expected.

4

C6545_08 8/15/2007 16:17:21 Page 332

332

CHAPTER 8

Oracle sequences are not tied to a table or a column.
Oracle sequences generate a numeric value that can be assigned to any column in any table.
The table attribute to which you assigned a value based on a sequence can be edited and modified.

An Oracle sequence can be created and deleted anytime.

The basic syntax to create a sequence in Oracle is:

CREATE SEQUENCE name [START WITH n] [INCREMENT BY n] [CACHE | NOCACHE]

where:
[]
[]

For example, you could create a sequence to automatically assign values to the customer code each time a new
customer is added and create another sequence to automatically assign values to the invoice number each time a new

invoice

name is the name of the sequence.
n is an integer value that can be positive or negative.
START WITH specifies the initial sequence value. (The default value is 1.)

INCREMENT BY determines the value by which the sequence is incremented. (The default increment value
is 1. The sequence increment can be positive or negative to enable you to create ascending or descending

sequences.)

The CACHE or NOCACHE clause indicates whether Oracle will preallocate sequence numbers in memory.

(Oracle preallocates 20 values by default.)

is added. The SQL code to accomplish those tasks is:

CREATE SEQUENCE CUS_CODE_SEQ START WITH 20010 NOCACHE;
CREATE SEQUENCE INV_NUMBER_SEQ START WITH 4010 NOCACHE;

You can check all of the sequences you have created by using the following SQL command, illustrated in Figure 8.22:

SELECT * FROM USER_SEQUENCES;

FIGU
8.22

RE Oracle sequence

Oracle SAL*Plus _ (O] =]
File Edit Search Options Help
SOL> CREATE SEQUENCE CUS_CODE_SEQ START WITH 28618 NOCACHE; ﬂ

Sequence created.
SQL> CREATE SEQUEHCE INU_HUMBER_SEQ START WITH 4818 HOCACHE;
Sequence created.

SQL> SELECT = FROM USER_SEQUEHNCES;

SEQUENCE_HAME MIN UALUE HMAX_UALUE IHWCREMEWT_BY C 0 CACHE_SIZE LAST_HUHMBER
CUS_CODE_SEQ 1 1.00888E+27 1 HH a 28818
INV_HUMBER_SEN 1 1.08888BE+27 1HH a 4a18
sSQL> -
6 H 4

C6545_08 9/7/2007 9:45:11 Page 333

ADVANCED SQL 333

To use sequences during data entry, you must use two special pseudo columns: NEXTVAL and CURRVAL. NEXTVAL
retrieves the next available value from a sequence, and CURRVAL retrieves the current value of a sequence. For
example, you can use the following code to enter a new customer:

INSERT INTO CUSTOMER
VALUES (CUS_CODE_SEQ.NEXTVAL, ‘Connery’, ‘Sean’, NULL, ‘615’, ‘898-2008’, 0.00);

The preceding SQL statement adds a new customer to the CUSTOMER table and assigns the value 20010 to the
CUS_CODE attribute. Let’s examine some important sequence characteristics:

e CUS_CODE_SEQ.NEXTVAL retrieves the next available value from the sequence.
e Each time you use NEXTVAL, the sequence is incremented.

e Once a sequence value is used (through NEXTVAL), it cannot be used again. If, for some reason, your SQL
statement rolls back, the sequence value does not roll back. If you issue another SQL statement (with another
NEXTVAL), the next available sequence value will be returned to the user—it will look as though the sequence
skips a number.

e You can issue an INSERT statement without using the sequence.

CURRVAL retrieves the current value of a sequence—that is, the last sequence number used, which was generated with
a NEXTVAL. You cannot use CURRVAL unless a NEXTVAL was issued previously in the same session. The main use
for CURRVAL is to enter rows in dependent tables. For example, the INVOICE and LINE tables are related in a
one-to-many relationship through the INV_NUMBER attribute. You can use the INV_NUMBER_SEQ sequence to
automatically generate invoice numbers. Then, using CURRVAL, you can get the latest INV_NUMBER used and assign
it to the related INV_NUMBER foreign key attribute in the LINE table. For example:

INSERT INTO INVOICE VALUES (INV_NUMBER_SEQ.NEXTVAL, 20010, SYSDATE);

INSERT INTO LINE VALUES (INV_NUMBER_SEQ.CURRVAL, 1,'13-Q2/P2’, 1, 14.99);
INSERT INTO LINE VALUES (INV_NUMBER_SEQ.CURRVAL, 2,'23109-HB’, 1, 9.95);
COMMIT;

The results are shown in Figure 8.23.

In the example shown in Figure 8.23, INV_NUMBER_SEQ.NEXTVAL retrieves the next available sequence number
(4010) and assigns it to the INV_NUMBER column in the INVOICE table. Also note the use of the SYSDATE attribute
to automatically insert the current date in the INV_DATE attribute. Next, the following two INSERT statements add the
products being sold to the LINE table. In this case, INV_NUMBER_SEQ.CURRVAL refers to the last-used INV_
NUMBER_SEQ sequence number (4010). In this way, the relationship between INVOICE and LINE is established
automatically. The COMMIT statement at the end of the command sequence makes the changes permanent. Of
course, you can also issue a ROLLBACK statement, in which case the rows you inserted in INVOICE and LINE tables
would be rolled back (but remember that the sequence number would not). Once you use a sequence number (with
NEXTVAL), there is no way to reuse it! This “no-reuse” characteristic is designed to guarantee that the sequence will
always generate unique values.

Remember these points when you think about sequences:
e The use of sequences is optional. You can enter the values manually.

e A sequence is not associated with a table. As in the examples in Figure 8.23, two distinct sequences were
created (one for customer code values and one for invoice number values), but you could have created just one
sequence and used it to generate unique values for both tables.

Finally, you can drop a sequence from a database with a DROP SEQUENCE command. For example, to drop the
sequences created earlier, you would type:

DROP SEQUENCE CUS_CODE_SEQ;
DROP SEQUENCE INV_NUMBER_SEQ);

‘ C6545_08 8/15/2007 16:18:44 Page 334

G

FIGURE
8.23

SOL> INSERT INTO CUSTOMER -
2 UALUES (CUS_CODE_SEQ.HEXTUAL, ‘Connery’, ‘Sean’, NULL, '615°, '898-2887', 0.88);

1 row created.
SOL> SELECT = FROM CUSTOMER WHERE CUS_CODE = 28818;

CUS_CODE CUS_LHAHE CUS_FHAME C CUS CUS_PHDN CUS_BALANCE

208818 Connery Sean 615 898-2887 a

SOL> THSERT INTOD INUDICE
2 UALUES {INU_NUMBER_SEQ.HEXTUAL, 268618, 3YSDATE);

1 row created.
SOL> SELECT * FROM INVODICE WHERE INU_NUMBER = 4818;

IHU_NUMBER CUS_CODE INU_DATE

4o18 20018 27-HAY-88

SOL> THSERT INTO LINE
2 UALUES (INU_HUMBER_SEQ.CURRUAL, 1,'13-02/P2°', 1, 14.99);

1 row created.

SOL> INSERT INTOD LINE
2 UALUES (INV_NUMBER_SEQ.CURRUAL, 2,'23109-HB', 1, 2.95);

1 row created.

SQL> SELECT = FROM LINE WHERE INU_HUMBER = 4818;

IHU_NUMBER LIME_HNUMBER P_CODE LINE_UNITS LINE_PRICE
4o18 1 13-02/P2 1 14.99
4o18 2 23149-HB 1 9.95

SOL> COMMIT;

Commit complete. >
| a7

The latest SQL standard (SQL-2003) defines the use of Identity columns and sequence objects. However, some
DBMS vendors might not adhere to the standard. Check your DBMS documentation.

Dropping a sequence does not delete the values you assigned to table attributes (CUS_CODE and INV_NUMBER); it
deletes only the sequence object from the database. The values you assigned to the table columns (CUS_CODE and
INV_NUMBER) remain in the database.

Because the CUSTOMER and INVOICE tables are used in the following examples, you’'ll want to keep the original data
set. Therefore, you can delete the customer, invoice, and line rows you just added by using the following commands:

DELETE FROM INVOICE WHERE INV_NUMBER = 4010;
DELETE FROM CUSTOMER WHERE CUS_CODE = 20010;
COMMIT;

Those commands delete the recently added invoice and all of the invoice line rows associated with the invoice (the LINE
table’s INV_NUMBER foreign key was defined with the ON DELETE CASCADE option) and the recently added
customer. The COMMIT statement saves all changes to permanent storage.

4

C6545_08 8/15/2007 16:18:44 Page 335

ADVANCED SQL 335

NOTE

At this point, you'll need to re-create the CUS_CODE_SEQ and INV_NUMBER_SEQ sequences, as they will be
used again later in the chapter. Enter:

CREATE SEQUENCE CUS_CODE_SEQ START WITH 20010 NOCACHE;
CREATE SEQUENCE INV_NUMBER_SEQ START WITH 4010 NOCACHE;

8.6 UPDATABLE VIEWS

In Chapter 7, you learned how to create a view and why and how views are used. You will now take a look at how
views can be made to serve common data management tasks executed by database administrators.

One of the most common operations in production database environments is using batch update routines to update
a master table attribute (field) with transaction data. As the name implies, a batch update routine pools multiple
transactions into a single batch to update a master table field in a single operation. For example, a batch update
routine is commonly used to update a product’s quantity on hand based on summary sales transactions. Such routines
are typically run as overnight batch jobs to

FIGURE The PRODMASTER and PRODSALES tables update the quantity on hand of products in
8.24 inventory. The sales transactions performed,
for example, by traveling salespeople were

entered during periods when the system was
Database name: CH08_UV

offline.
Table name: PRODMASTER Table name: PRODSALES
PROD_ID | PROD_DESC | PROD_GoH | PropD [Fs.aTv | To demonstrate a batch update routine, let’s
173 SCRENS Gl 175 7 begin by defining the master product table
B34 MUTS L) B34 3 (PRODMASTER) and the product monthly
C5E3 BOLTS 50

sales totals table (PRODSALES) shown in
Figure 8.24. Note the 1:1 relationship
between the two tables.

ONLINE CONTENT

For MS Access users, the PRODMASTER and PRODSALES tables are located in the ChO8_UV database, which
is located in the Student Online Companion.

ONLINE CONTENT

For Oracle users, all SQL commands you see in this section are located in the Student Online Companion. After
you locate the script files (uv-01.sql through uv-04.sql), you can copy and paste the command sequences
into your SQL*Plus program.

C6545_08 8/15/2007 16:19:24 Page 336

336 CHAPTER 8

Using the tables in Figure 8.24, let’s update the PRODMASTER table by subtracting the PRODSALES table’s product
monthly sales quantity (PS_QTY) from the PRODMASTER table’s PROD_QOH. To produce the required update, the
update query would be written like this:

UPDATE PRODMASTER, PRODSALES
SET PRODMASTER.PROD_QOH = PROD_QOH - PS_QTY
WHERE PRODMASTER.PROD_ID = PRODSALES.PROD_ID;

Note that the update statement reflects the following sequence of events:
e Join the PRODMASTER and PRODSALES tables.

e Update the PROD_QOH attribute (using the PS_QTY value in the PRODSALES table) for each row of the
PRODMASTER table with matching PROD_ID values in the PRODSALES table.

To be used in a batch update, the PRODSALES data must be stored in a base table rather than in a view. That query
will work fine in Access, but Oracle will return the error message shown in Figure 8.25.

FIGURE The Oracle UPDATE error message

#+ Dracle SQL*Plus =] &2

File Edit Search Options Help

SQL> UPDATE PRODHMASTER, PRODSALES -
2 SET PRODHMASTER.PROD_QOH = [PROD_QOH]-[PS_QTY]

3 UWHERE PRODHMASTER.PROD_ID=PRODSALES.PROD_ID;
UPDATE PRODMASTER, PRODSALES

*
ERROR at line 1:
ORA-00971: missing SET keyword

sQL> -

Ja] M

Oracle produced the error message because Oracle expects to find a single table name in the UPDATE statement. In
fact, you cannot join tables in the UPDATE statement in Oracle. To solve that problem, you have to create an
updatable view. As its name suggests, an updatable view is a view that can be used to update attributes in the base
table(s) that is (are) used in the view. You must realize that not all views are updatable. Actually, several restrictions
govern updatable views, and some of them are vendor-specific.

NOTE

Keep in mind that the examples in this section are generated in Oracle. To see what restrictions are placed on
updatable views by the DBMS you are using, check the appropriate DBMS documentation.

The most common updatable view restrictions are as follows:
e GROUP BY expressions or aggregate functions cannot be used.
e You cannot use set operators such as UNION, INTERSECT, and MINUS.

e Most restrictions are based on the use of JOINs or group operators in views.
To meet the Oracle limitations, an updatable view named PSVUPD has been created, as shown in Figure 8.26.

One easy way to determine whether a view can be used to update a base table is to examine the view'’s output. If the
primary key columns of the base table you want to update still have unique values in the view, the base table is
updatable. For example, if the PROD_ID column of the view returns the A123 or BX34 values more than once, the
PRODMASTER table cannot be updated through the view.

4

C6545_08 8/15/2007 16:19:24 Page 337 ‘

FIGURE
8.26

+ Oracle SQL*Plus

SQL> CREATE UIEY PSUUPD AS (
2 SELECT PRODHASTER.PROD_ID, PRODHMASTER.PROD_QOH, PRODSALES.PS_QTY
3 FROM PRODMASTER, PRODSALES
4 UYHERE PRODHASTER.PROD_ID = PRODSALES .PROD_ID);

Uiew created.

sQL>

SQL> SELECT = FROM PSUUPD;
PROD PROD_QOH PS_QTY
A123 67 7
BX3%4 37 3

sQL>
I 1 J

After creating the updatable view shown in Figure 8.26, you can use the UPDATE command to update the view,
thereby updating the PRODMASTER table. Figure 8.27 shows how the UPDATE command is used and what the final
contents of the PRODMASTER table are after the UPDATE has been executed.

FIGURE
8.27

+ Oracle SQL*Plus

SQL> SELECT = FROM PRODMASTER;

PROD PROD_DESC PROD_QOH
A123 SCREWS 67
BX34 NUTS 37
C583 BOLTS e

SQL> SELECT = FROM PRODSALES;

PROD PS_QT¥Y
A123 7
BX3Y4 3

SQL> UPDATE PSVUPD
2 SET PROD_QOH = PROD_QOH - PS_QTY;

2 rows updated.

sQL>

SQL> SELECT = FROM PRODMASTER;

PROD PROD_DESC PROD_QOH
A123 SCREWS 60
BX34 HUTS 34
C583 BOLTS e

soL> |
Ly Ny

C6545_08 8/15/2007 16:19:24 Page 338

338

CHAPTER 8

Although the batch update procedure just illustrated meets the goal of updating a master table with data from a
transaction table, the preferred real-world solution to the update problem is to use procedural SQL, which you'll learn
about next.

8.7 PROCEDURAL SQL

Thus far, you have learned to use SQL to read, write, and delete data in the database. For example, you learned to
update values in a record, to add records, and to delete records. Unfortunately, SQL does not support the conditional
execution of procedures that are typically supported by a programming language using the general format:

[F <condition>
THEN <perform procedure>
ELSE <perform alternate procedure>
END IF

SQL also fails to support the looping operations in programming languages that permit the execution of repetitive
actions typically encountered in a programming environment. The typical format is:

DO WHILE
<perform procedure>

END DO

Traditionally, if you wanted to perform a conditional (IF-THEN-ELSE) or looping (DO-WHILE) type of operation (that
is, a procedural type of programming), you would use a programming language such as Visual Basic.Net, C#, or
COBOL. That’s why many older (so-called “legacy”) business applications are based on enormous numbers of COBOL
program lines. Although that approach is still common, it usually involves the duplication of application code in many
programs. Therefore, when procedural changes are required, program modifications must be made in many different
programs. An environment characterized by such redundancies often creates data management problems.

A better approach is to isolate critical code and then have all application programs call the shared code. The advantage
of that modular approach is that the application code is isolated in a single program, thus vielding better maintenance
and logic control. In any case, the rise of distributed databases (see Chapter 12, Distributed Database Management
Systems) and object-oriented databases (see Appendix G in the Student Online Companion) required that more
application code be stored and executed within the database. To meet that requirement, most RDBMS vendors created
numerous programming language extensions. Those extensions include:

e Flow-control procedural programming structures (IF-THEN-ELSE, DO-WHILE) for logic representation.
e Variable declaration and designation within the procedures.

e Error management.

To remedy the lack of procedural functionality in SQL and to provide some standardization within the many vendor
offerings, the SQL-99 standard defined the use of persistent stored modules. A persistent stored module (PSM) is
a block of code containing standard SQL statements and procedural extensions that is stored and executed at the
DBMS server. The PSM represents business logic that can be encapsulated, stored, and shared among multiple
database users. A PSM lets an administrator assign specific access rights to a stored module to ensure that only
authorized users can use it. Support for persistent stored modules is left to each vendor to implement. In fact, for many
years, some RDBMSs (such as Oracle, SQL Server, and DB2) supported stored procedure modules within the database
before the official standard was promulgated.

MS SQL Server implements persistent stored modules via Transact-SQL and other language extensions, the most
notable of which are the .NET family of programming languages. Oracle implements PSMs through its procedural SQL
language. Procedural SQL (PL/SQL) is a language that makes it possible to use and store procedural code and SQL

4

C6545_08 9/13/2007 15:37:17 Page 339

ADVANCED SQL 339

statements within the database and to merge SQL and traditional programming constructs, such as variables,
conditional processing (IF-THEN-ELSE), basic loops (FOR and WHILE loops,) and error trapping. The procedural code
is executed as a unit by the DBMS when it is invoked (directly or indirectly) by the end user. End users can use PL/SQL
to create:

e Anonymous PL/SQL blocks.

o Triggers (covered in Section 8.7.1).

e Stored procedures (covered in Section 8.7.2 and Section 8.7.3).
e PL/SQL functions (covered in Section 8.7.4).

Do not confuse PL/SQL functions with SQL’s built-in aggregate functions such as MIN and MAX. SQL built-in
functions can be used only within SQL statements, while PL/SQL functions are mainly invoked within PL/SQL
programs such as triggers and stored procedures. Functions can also be called within SQL statements, provided they
conform to very specific rules that are dependent on your DBMS environment.

NOTE

PL/SQL, triggers, and stored procedures are illustrated within the context of an Oracle DBMS. All examples in
the following sections assume the use of Oracle RDBMS.

Using Oracle SQL*Plus, you can write a PL/SQL code block by enclosing the commands inside BEGIN and END
clauses. For example, the following PL/SQL block inserts a new row in the VENDOR table, as shown in Figure 8.28.

BEGIN

INSERT INTO VENDOR

VALUES (25678, Microsoft Corp. ', 'Bill Gates','765','546-8484', WA',N);
END;
/

The PL/SQL block shown in Figure 8.28 is known as an anonymous PL/SQL block because it has not been given
a specific name. (Incidentally, note that the block’s last line uses a forward slash (“/”) to indicate the end of the
command-line entry.) That type of PL/SQL block executes as soon as you press the Enter key after typing the forward
slash. Following the PL/SQL block’s execution, you will see the message “PL/SQL procedure successfully completed.”

But suppose you want a more specific message displayed on the SQL*Plus screen after a procedure is completed, such
as “New Vendor Added.” To produce a more specific message, you must do two things:

1. At the SQL > prompt, type SET SERVEROUTPUT ON. This SQL*Plus command enables the client console
(SQL*Plus) to receive messages from the server side (Oracle DBMS). Remember, just like standard SQL, the
PL/SQL code (anonymous blocks, triggers, and procedures) are executed at the server side, not at the client
side. (To stop receiving messages from the server, you would enter SET SERVEROUT OFF.)

2. To send messages from the PL/SQL block to the SQL*Plus console, use the DBMS_OUTPUT.PUT_LINE
function.

The following anonymous PL/SQL block inserts a row in the VENDOR table and displays the message “New Vendor
Added!” (See Figure 8.28).

BEGIN
INSERT INTO VENDOR
VALUES (25772,'Clue Store', Issac Hayes', '456','323-2009', 'VA', 'N);
DBMS_OUTPUT.PUT_LINE(New Vendor Added!");

END;

/

C6545_08 9/7/2007 10:0:30 Page 340

340

CHAPTER 8

FIGURE
8.28

Oracle SQL*Plus

Anonymous PL/SQL block examples

=1 E3

File Edit Search Options Help
SOL> BEGIN -~
2 INSERT INTO VENDOR
3 UVALUES (25678, 'Microsoft Corp.', 'Bill Gates','765','S46-8484' 'WUA','NH');
4 EHND;
5 &
PL/SOL procedure successfully completed.
SOL> SET SERVEROUTPUT DN
sOL>
SOL> BEGIN
2 INSERT INTOD UENDOR
3 VUALUES (25772,'Clue Store’,'Issac Hayes','456°,°323-2089°,°VA","N");
4 DBHS_DUTPUT.PUT_LINE('HNew Uendor Added?');
5 END;
[
Hew Vendor Added?
PL/SOL procedure successfully completed.
SOL> SELECT *= FROM VENDOR;

U_CODE U_NAME U_CONTACT U_A U_PHONE U_ VU
21225 Bryson, Inc. Smithson 615 223-3234 TH ¥
21226 SuperLoo, Inc. Flushing o84 215-8995 FL H
21231 D&E Supply Singh 615 228-3245 TH ¥
21344 Gomez Bros. Ortega 615 889-2546 KY H
22567 Dome Supply smith 981 678-1419 GA N
23119 Randsets Ltd. Anderson 201 678-3998 GA ¥
24884 Brackman Bros. Browning 615 228-1418 TH H
24288 ORDVA, Inc. Hakford 615 898-1234 TH ¥
25443 B&K, Inc. smith o84 227-8093 FL N
25581 Damal Supplies Smythe 615 898-3529 TH H
25595 Rubicon Systems Orton 984 456-86892 FL ¥
25678 Microsoft Corp. Bill Gates 765 Sh6-8484 WA H
25772 Clue Store Issac Hayes 456 323-2889 UA H

13 rows selected.
sqL> -

Al o 4

In Oracle, you can use the SQL*Plus command SHOW ERRORS to help you diagnose errors found in PL/SQL blocks.
The SHOW ERRORS command yields additional debugging information whenever you generate an error after
creating or executing a PL/SQL block.

The following example of an anonymous PL/SQL block demonstrates several of the constructs supported by the
procedural language. Remember that the exact syntax of the language is vendor-dependent; in fact, many vendors
enhance their products with proprietary features.

DECLARE
W_P1 NUMBER(3) := 0;
W_P2 NUMBER(3) := 10;

W_NUM NUMBER(2) := 0;
BEGIN
WHILE W_P2 < 300 LOOP
SELECT COUNT(P_CODE) INTO W_NUM FROM PRODUCT
WHERE P_PRICE BETWEEN W_P1 AND W_P2;
DBMS_OUTPUT.PUT_LINE(There are ' | | W_NUM | | ' Products with price between ' | | W_P1 | |
"and ' | | W_P2);

4

C6545_08 8/15/2007 16:19:25 Page 34| ‘

W_P1 .= W_P2 + 1;
W_P2 := W_P2 + 50;
END LOOP;
END;
/

The block’s code and execution are shown in Figure 8.29.

FIGURE
8.29

+ Oracle SAL*Plus

SOL> DEGLARE

W_P1 HUHMBER(3) :- 8;
W_ P2 NUMBER(3) := 18;
W_HUM HUHBER(2) := 8;

WHILE W P2 < 388 LOOP
SELEGT COUNT{P_CODE) INTD W HUH FROM PRODUCT

2
3
M
5 BEGIH
6
7
8 WHERE P_PRICE BETWEEHN Y _P1 AND W P2;
o

DBHMS_OUTPUT.PUT_LIHNE{'There are ' || W HUM || ' Products with price between ' || W.P1 || ' and " || W P2});
18 WPl = WP2+1;
11 W P2 := W P2 + 50;
12 END LOOP;
13 EMD;
14 7/
There are 5 Products with price between B and 18
There are & Products with price between 11 and 68
There are 3 Products with price between 61 and 118
There are 1 Products with price between 111 and 168
There are 8 Products with price between 161 and 218

1

There are 1 Products with price between 211 and 268

PL/SOL procedure successfully completed.

sqL> J
| ||

The PL/SQL block shown in Figure 8.29 has the following characteristics:

e The PL/SQL block starts with the DECLARE section in which you declare the variable names, the data types,
and, if desired, an initial value. Supported data types are shown in Table 8.8.

PL/SQL Basic Data Types

DATA TYPE DESCRIPTION
CHAR Character values of a fixed length; for example:
W_ZIPCHAR(5)
VARCHAR2 Variable length character values; for example:
W_FNAMEVARCHAR2(15)
NUMBER Numeric values; for example:
W_PRICENUMBER(6,2)
DATE Date values; for example:
W_EMP_DOBDATE
%TYPE Inherits the data type from a variable that you declared previously or from an attribute of a
database table; for example:
W_PRICEPRODUCT.P_PRICE%TYPE
Assigns W_PRICE the same data type as the P_PRICE column in the PRODUCT table

C6545_08 8/15/2007 16:20:34 Page 342

342

CHAPTER 8

e A WHILE loop is used. Note the syntax:

WHILE condition LOOP
PL/SQL statements;
END LOOP

e The SELECT statement uses the INTO keyword to assign the output of the query to a PL/SQL variable. You
can use the INTO keyword only inside a PL/SQL block of code. If the SELECT statement returns more than
one value, you will get an error.

e Note the use of the string concatenation symbol “| | ” to display the output.

«

e Each statement inside the PL/SQL code must end with a semicolon “;”.

NOTE

PL/SQL blocks can contain only standard SQL data manipulation language (DML) commands such as SELECT,
INSERT, UPDATE, and DELETE. The use of data definition language (DDL) commands is not directly supported
in a PL/SQL block.

The most useful feature of PL/SQL blocks is that they let you create code that can be named, stored, and
executed—either implicitly or explicitly—by the DBMS. That capability is especially desirable when you need to use
triggers and stored procedures, which you will explore next.

TRIGGERS

Automating business procedures and automatically maintaining data integrity and consistency are critical in a modern
business environment. One of the most critical business procedures is proper inventory management. For example,
you want to make sure that current product sales can be supported with sufficient product availability. Therefore, it is
necessary to ensure that a product order be written to a vendor when that product’s inventory drops below its minimum
allowable quantity on hand. Better yet, how about ensuring that the task is completed automatically?

To accomplish automatic product ordering, you first must make sure the product’s quantity on hand reflects an
up-to-date and consistent value. After the appropriate product availability requirements have been set, two key issues
must be addressed:

1. Business logic requires an update of the product quantity on hand each time there is a sale of that product.

2. If the product’s quantity on hand falls below its minimum allowable inventory (quantity-on-hand) level, the
product must be reordered.

To accomplish those two tasks, you could write multiple SQL statements: one to update the product quantity on hand
and another to update the product reorder flag. Next, you would have to run each statement in the correct order each
time there was a new sale. Such a multistage process would be inefficient because a series of SQL statements must
be written and executed each time a product is sold. Even worse, that SQL environment requires that somebody must
remember to perform the SQL tasks.

A trigger is procedural SQL code that is automatically invoked by the RDBMS upon the occurrence of a given data
manipulation event. It is useful to remember that:

e A trigger is invoked before or after a data row is inserted, updated, or deleted.
e A trigger is associated with a database table.
e Each database table may have one or more triggers.

e A trigger is executed as part of the transaction that triggered it.

C6545_08 9/7/2007 10:1:57 Page 343

ADVANCED SQL

343

Triggers are critical to proper database operation and management. For example:

Triggers can be used to enforce constraints that cannot be enforced at the DBMS design and implementation
levels.

Triggers add functionality by automating critical actions and providing appropriate warnings and suggestions
for remedial action. In fact, one of the most common uses for triggers is to facilitate the enforcement of
referential integrity.

Triggers can be used to update table values, insert records in tables, and call other stored procedures.

Triggers play a critical role in making the database truly useful; they also add processing power to the RDBMS and to

the database system as a whole. Oracle recommends triggers for:

Auditing purposes (creating audit logs).
Automatic generation of derived column values.
Enforcement of business or security constraints.

Creation of replica tables for backup purposes.

To see how a trigger is created and used, let’s examine a simple inventory management problem. For example, if a
product’s quantity on hand is updated when the product is sold, the system should automatically check whether the
quantity on hand falls below its minimum allowable quantity. To demonstrate that process, let’s use the PRODUCT
table in Figure 8.30. Note the use of the minimum order quantity (P_MIN_ORDER) and the product reorder flag
(P_REORDER) columns. The P_MIN_ORDER indicates the minimum quantity for restocking an order. The
P_REORDER column is a numeric field that indicates whether the product needs to be reordered (1 = Yes, 0 = No).
The initial P_REORDER values will be set to 0 (No) to serve as the basis for the initial trigger development.

FIGURE The PRODUCT table

8.30
oracle SQL*Plus 7 B o 5
e Bl £ Search - S0P Help
SQL> SELECT = FROM PRODUCT; d
P_CODE P_DESCRIPT P_INDATE P_QOH P_HMIN P_PRICE P_DISCOUNT U_CODE P_MIN_ORDER P_REORDER
11QER/31 Pouwer painter, 15 psi., 3-nozz B3-NOU-87 8 5 189.99 Ll 255095 25 a
13-02/P2 7.25-in. pw. saw blade 13-DEC-87 32 15 14.99 -85 21344 5a [i]
14-01/13 9.88-in. pw. saw blade 13-NOU-87 18 12 17.49 i) 21344 5a [i]
1546-002 Hrd. cloth, 1/4-in., 2x58 15-JAH-B8 15 8 39.95 i) 23119 a5 [i]
1558-0W1 Hrd. cloth, 1/2-in., 3x58 15-JAH-B8 23 5 43.99 i) 23119 25 [i]
2232/0TY B&D jigsaw, 12-in. blade 38-DEC-B7 8 5 1089 .92 -85 24288 15 [i]
2232/0WE B&D jigsaw, 8-in. blade 24-DEC-87 [5 9987 -85 24288 15 [i]
2238/0PD B&D cordless drill, 1/2-in. 28-JaH-B8 12 5 38.95 -85 25505 12 [i]
23109-HB Claw hammep 28-JAN-88 23 18 9.95 .18 21225 25 L]
23114-AA Sledge hanmmer, 12 1b. 02-JAN-88 8 5 14.4 -85 12 L]
S4778-2T Rat-tail file, 1/8-in. fine 15-DEC-87 43 28 4.99 .88 21344 25 L]
89-URE-Q Hicut chain saw, 16 in. 07-FEB-88 11 5 256.99 -85 24288 18 L]
PUC23DRT PUC pipe, 3.5-in., 8-ft 20-FEB-88 188 75 5.87 .88 5a8 L]
SH-18277 1.25-in. metal screw, 25 01-MAR- B8 172 75 6.99 .88 21225 5a8 L]
SW-23116 2.5-in. wd. screw, 50 24-FEB-88 237 188 8.45 .88 21231 180 [
WR3/TT3 Steel matting, 4°x8°'x1/6", .5 17-JAN-88 18 5 119.95 .18 25595 18 Li] —I
16 rows selected. -
Sk 4B

ONLINE CONTENT

Oracle users can run the PRODLIST.SQL script file to format the output of the PRODUCT table shown in
Figure 8.30. The script file is located in the Student Online Companion.

C6545_08 8/15/2007 16:20:45 Page 344

344

CHAPTER 8

Given the PRODUCT table listing shown in Figure 8.30, let’s create a trigger to evaluate the product’s quantity on
hand, P_QOH. If the quantity on hand is below the minimum quantity shown in P_MIN, the trigger will set the
P_REORDER column to 1. (Remember that the number 1 in the P_REORDER column represents “Yes.”) The syntax
to create a trigger in Oracle is:

CREATE OR REPLACE TRIGGER trigger_name
[BEFORE / AFTER] [DELETE / INSERT / UPDATE OF column_name] ON table_name
[FOR EACH ROW]
[DECLARE]
[variable_namedata typel:=initial_value] |
BEGIN
PL/SQL instructions;

END;

As you can see, a trigger definition contains the following parts:
e The triggering timing: BEFORE or AFTER. This timing indicates when the trigger’s PL/SQL code executes;
in this case, before or after the triggering statement is completed.
e The triggering event: the statement that causes the trigger to execute (INSERT, UPDATE, or DELETE).
e The triggering level: There are two types of triggers: statement-level triggers and row-level triggers.

- A statement-level trigger is assumed if you omit the FOR EACH ROW keywords. This type of trigger
is executed once, before or after the triggering statement is completed. This is the default case.

- A row-level trigger requires use of the FOR EACH ROW keywords. This type of trigger is executed once
for each row affected by the triggering statement. (In other words, if you update 10 rows, the trigger
executes 10 times.)

e The triggering action: The PL/SQL code enclosed between the BEGIN and END keywords. Each statement
inside the PL/SQL code must end with a semicolon “;”.

In the PRODUCT table’s case, you will create a statement-level trigger that is implicitly executed AFTER an UPDATE
of the P_QOH attribute for an existing row or AFTER an INSERT of a new row in the PRODUCT table. The trigger
action executes an UPDATE statement that compares the P_QOH with the P_MIN column. If the value of P_QOH is
equal to or less than P_MIN, the trigger updates the P_REORDER to 1. To create the trigger, Oracle’s SQL*Plus will
be used. The trigger code is shown in Figure 8.31.

FIGURE Creating the TRG_PRODUCT_REORDER trigger
8.31

#* Oracle SQL*Plus Z] o 4
File Edit Search Options Help
SOL> CREATE OR REPLACE TRIGGER TRG_PRODUCT_REORDER -
AFTER INSERT OR UPDATE OF P_QOH ON PRODUCT
BEGIN

UPDATE PRODUCT

SET P_REORDER = 1
WHERE P_QOH <= P_MIN;

END;
/

=T = B)

Trigger created.

2 o 4

C6545_08 9/24/2007 |1:47:39 Page 345

The source code for all of the triggers shown in this section can be found in the Student Online Companion.

To test the TRG_PRODUCT_REORDER trigger, let’s update the quantity on hand of product ‘11QER/31’ to 4. After
the UPDATE completes, the trigger is automatically fired and the UPDATE statement (inside the trigger code) sets the
P_REORDER to 1 for all products that are below the minimum. See Figure 8.32.

FIGURE
8.32

#* oracle SQL*Plus
“Flle” Edit” Search’ Options” Help

SOL> SELECT = FROM PRODUCT WHERE P_CODE = "11QER/31'; -
P_CODE P_DESCRIPT P_INDATE P_QOH P_HIN P_PRICE P_DISCOUNT U CODE P_HIN ODRDER P_REORDER
110ER/31 Power painter, 15 psi., 3-nozz 83-HOU-87 8 5 109.99 .88 25595 25 [i]
SQL> UPDATE PRODUCT

2 SET P_QOH = &

3 WHERE P_CODE = "11QER/31°;

1 rou updated.

SQL> SELECT = FROW PRODUCT WHERE P_CODE = "11QER/31°;

P_CODE P_DESCRIPT P_INDATE P_QOH P_HMIN P_PRICE P_DISCOUNT U_CODE P_MIN_ORDER P_REORDER
110ER/31 Power painter, 15 psi., 3-nozz B3-HOV-87 4 5 109.99 i) 25595 25 1

-
LB 2

The trigger shown in Figure 8.32 seems to work fine, but what happens if you reduce the minimum quantity of product
‘2232/QWE’? Figure 8.33 shows that when you update the minimum quantity, the quantity on hand of the product
‘2232/QWE’ falls below the new minimum, but the reorder flag is still 0. Why?

FIGURE
8.33

#* oracle sQL*Plus
File Edit Search ©Options Help

SQL> SELECT * FROH PRODUCT WHERE P_CODE = '2232/QUE"; -
P_CODE P_DESCRIPT P_INDATE P_QOH P_MIN P_PRICE P_DISCOUNT U_CODE P_MIN_ORDER P_REORDER
2232/QWE B&D jigsaw, 8-in. blade 24-DEC-87 6 5 99.87 .65 24288 15 0
SQL> UPDATE PRODUCT

2 SET P_MIN = 7

a WHERE P_CODE = '2232/QUE";

1 row updated.

SOL> SELECT > FROW PRODUCT WHERE P_CODE = '2232/QUE’;

P_CODE P_DESCRIPT P_INDATE P_QOH P_HMIN P_PRICE P_DISCOUNT U_CODE P_MIN_ORDER P_REORDER
2232/QUE B&D jigsaw, 8-in. blade 24-DEC-87 6 7 99 .87 .85 24288 15]

=
JiT | e

The answer is simple: you updated the P_MIN column, but the trigger is never executed. TRG_PRODUCT_
REORDER executes only after an update of the P_QOH column! To avoid that inconsistency, you must modify the
trigger event to execute after an update of the P_MIN field, too. The updated trigger code is shown in Figure 8.34.

4

‘ C6545_08 8/15/2007 16:19:28 Page 346

FIGURE
8.34

* Oracle SQL*Plus A8 -3

File Edit Search Options Help
SOL> CREATE OR REPLACE TRIGGER TRG_PRODUCT_REORDER -

2 AFTER INSERT OR UPDATE OF P_QOH, P_HMIN ON PRODUCT
BEGIN

UPDATE PRODUCT

SET P_REORDER = 1
WHERE P_QOH <= P_MIN;

END;
/

== = T -t]

Trigger created.

(1] H 4

To test this new trigger version, let’s change the minimum quantity for product ‘23114-AA’ to 8. After that update, the
trigger makes sure that the reorder flag is properly set for all of the products in the PRODUCT table. See Figure 8.35.

FIGURE
8.35

Dracle SQL*Plus
Fie Edt Search Options Help

SQL> SELECT * FROM PRODUCT WHERE P_CODE = ‘23114-AR°; =
P_CODE P_DESCRIPT P_INDATE P_QoH P_MIN P_PRICE P_DISCOUNT U_CODE P_MIN_ORDER P_REORDER
23114-An Sledge hanmer, 12 1b. 02-JAN-08 8 5 14,4 .65 12 0

'SOL> UPDATE PRODUCT
2 SET P_MIN = 18
3 WHERE P_CODE = '23114-AR";
1 row updated.
SQL> SELECT = FROM PRODUCT WHERE P_CODE = '23114-Af‘;

'P_CODE P_DESGRIPT P_INDATE P_QOH P_MIN P_PRICE P_DISCOUNT U_CODE P_HMIN_ORDER P_REORDER

23115-Ah S$ledge hammer, 12 1b. 82-JaN-88 8 18 4.4 -85 12 1

This second version of the trigger seems to work well, but what happens if you change the P_QOH value for product
‘11QER/31’, as shown in Figure 8.36? Nothing! (Note that the reorder flag is still set to 1.) Why didn’t the trigger
change the reorder flag to 0?

The answer is that the trigger does not consider all possible cases. Let’s examine the second version of the
TRG_PRODUCT_REORDER trigger code (Figure 8.34) in more detail:

o The trigger fires after the triggering statement is completed. Therefore, the DBMS always executes two statements
(INSERT plus UPDATE or UPDATE plus UPDATE). That is, after you do an update of P_MIN or P_QOH or you
insert a new row in the PRODUCT table, the trigger executes another UPDATE statement automatically.

e The triggering action performs an UPDATE that updates all of the rows in the PRODUCT table, even if the
triggering statement updates just one row! This can affect the performance of the database. Imagine what
will happen if you have a PRODUCT table with 519,128 rows and you insert just one product. The trigger will
update all 519,129 rows (519,128 original rows plus the one you inserted), including the rows that do not need
an update!

o The trigger sets the P_REORDER value only to 1; it does not reset the value to 0, even if such an action is
clearly required when the inventory level is back to a value greater than the minimum value.

4

C6545_08 8/15/2007 16:19:28 Page 347 ‘

FIGURE
8.36

% Oracle 5QL*Plus
Fle Edt Search Options Help

'SQL> SELECT * FROM PRODUCT WHERE P_CODE = ‘11QER/31°; =
P_CODE P_DESCRIPT P_INDATE P_QOH P_MIN P_PRICE P_DISCOUNT U_CODE P_MIN_ORDER P_REORDER
11QER/31 Power painter, 15 psi., 3-nozz B3-HOU-07 4 5 109.99 .88 25595 25 1
'SOL> UPDATE PRODUCT

2 SET P_QOH = P_QOH + P_HIN_ORDER

3 WHERE P_CODE - '11QER/31";

1 row updated.

'5QL> SELECT = FROM PRODUCT WHERE P_CODE = '11QER/31';

P_CODE P_DESCRIPT P_INDATE P_QOH P_MIN P_PRICE P_DISCOUNT U_CODE P_WIM_ORDER P_REORDER
11QER/31 Power painter, 15 psi., 3-nozz 03-HOU-67 29 5 1089.99 .88 25595 25 1 -
_

In short, the second version of the TRG_PRODUCT_REORDER trigger still does not complete all of the necessary
steps. Now let’s modify the trigger to handle all update scenarios, as shown in Figure 8.37.

FIGURE
8.37
#+ Oracle SQL*Plus A8 18] x|
File Edit Search Options Help
SQL> CREATE OR REPLACE TRIGGER TRG_PRODUCT_REORDER -
2 BEFORE INSERT OR UPDATE OF P_QOH, P_MIN OH PRODUGCT
3 FOR EACH ROW
! BEGI&
5 Ir: :MEW.P_QOH <= :HEW.P_HMIN THEH
L] tHEW.P_REORDER := 1;
7 ELSE
8 HEW.P_REORDER := 8;
9 END IF;
18 END;
"/
Trigger created.

(E H 4

The trigger in Figure 8.37 sports several new features:

e The trigger is executed before the actual triggering statement is completed. In Figure 8.37, the triggering
timing is defined in line 2, BEFORE INSERT OR UPDATE. This clearly indicates that the triggering statement
is executed before the INSERT or UPDATE completes, unlike the previous trigger examples.

e The trigger is a row-level trigger instead of a statement-level trigger. The FOR EACH ROW keywords make the
trigger a row-level trigger. Therefore, this trigger executes once for each row affected by the triggering
statement.

o The trigger action uses the :NEW attribute reference to change the value of the P_REORDER attribute.

The use of the :NEW attribute references deserves a more detailed explanation. To understand its use, you must first
consider a basic computing tenet: all changes are done first in primary memory, then transferred to permanent
memory. In other words, the computer cannot change anything directly in permanent storage (disk). It must first read
the data from permanent storage to primary memory; then it makes the change in primary memory; and finally, it
writes the changed data back to permanent memory (disk).

4

C6545_08 8/15/2007 16:19:28 Page 348

348

CHAPTER 8

The DBMS does the same thing, and one thing more. Because ensuring data integrity is critical, the DBMS makes two
copies of every row being changed by a DML (INSERT, UPDATE, or DELETE) statement. (You will learn more about
this in Chapter 10, Transaction Management and Concurrency Control.) The first copy contains the original (“old”)

values of the attributes before the changes. The second copy contains the changed (“new”) values of the attributes that
will be permanently saved to the database (after any changes made by an INSERT, UPDATE, or DELETE). You can
use :OLD to refer to the original values; you can use :NEW to refer to the changed values (the values that will be stored
in the table). You can use :NEW and :OLD attribute references only within the PL/SQL code of a database trigger

action.

Before

For example:

IF :NEW.P_QOH < = :NEW.P_MIN compares the quantity on hand with the minimum quantity of a product.
Remember that this is a row-level trigger. Therefore, this comparison is done for each row that is updated by
the triggering statement.

Although the trigger is a BEFORE trigger, this does not mean that the triggering statement hasn’t executed yet.
To the contrary, the triggering statement has already taken place; otherwise, the trigger would not have fired
and the :NEW values would not exist. Remember, BEFORE means before the changes are permanently saved
to disk, but after the changes are made in memory.

The trigger uses the :NEW reference to assign a value to the P_REORDER column before the UPDATE or
INSERT results are permanently stored in the table. The assignment is always done to the :NEW value (never
to the :OLD value), and the assignment always uses the “ := “ assignment operator. The :OLD values are
read-only values; you cannot change them. Note that :NEW.P_REORDER := 1; assigns the value 1 to the

P_REORDER column and :NEW.P_REORDER := 0; assigns the value 0 to the P_REORDER column.

This new trigger version does not use any DML statement!

testing the new trigger, note that product ‘11QER/31’ currently has a quantity on hand that is above the

minimum quantity, yet the reorder flag is set to 1. Given that condition, the reorder flag must be 0. After creating the

new trigger, you can execute an UPDATE statement to fire it, as shown in Figure 8.38.

FIGURE Execution of the third trigger version
8.38

% oracle sQL*Plus :;' =10l x]
File Edit Search Options Help
SQL> SELECT = FROM PRODUCT; ﬂ
P_CODE P_DESCRIPT P_INDATE P_QOH P_MIN P_PRICE P_DISCOUNT U_CODE P_MIN_ORDER P_REORDER
110ER/31 Power painter, 15 psi., 3-nozz B3-HOV-87 29 5 109.99 i) 25595 25 1
13-02/P2 7.25-in. pwr. saw blade 13-DEC-87 32 15 14.99 -85 21344 50 Li]
14-01/L3 9.80-in. pwr. saw blade 13-HOVU-87 18 12 17.49 i) 21344 50 Li]
1546-002 Hrd. cloth, 1/4-in., 2x58 15-JAN-88 15 8 39.95 i) 23119 35 Li]
1558-0W1 Hrd. cloth, 1/2-in., 3x58 15-JAN-88 23 5 43.99 i) 23119 25 Li]
2232/QTY B&D jigsaw, 12-in. blade 38-DEC-87 3 5 109.92 -85 24288 15 Li]
2232/QVE B&D jigsaw, 8-in. blade 24-DEC-87 6 i 99 .87 -85 24288 15 1
2238/0PD B&D cordless drill, 1/2-in. 28-JaH-B8 12 5 38.95 -85 25505 12 [i]
231089-HB Claw hammer 28-JaH-B8 23 18 9.95 18 21225 25 [i]
23114-nn S$ledge hammer, 12 1b. 82-.JAH-88 8 18 4.4 -85 12 1
SL4L778-2T Rat-tail file, 1/8-in. fine 15-DEC- 87 43 28 4.99 i) 21344 25 [i]
89-URE-Q Hicut chain saw, 16 in. 87-FEB-88 " 5 256.99 -85 24288 18 [i]
PUC23DRT PUC pipe, 3.5-in., 8-ft 28-FEB-B8 188 75 5.87 i) 5a [i]
SH-18277 1.25-in. metal screw, 25 81-HAR- 88 172 75 6.99 i) 21225 5 Li]
SU-23116 2.5-in. wd. screw, 50 24-FEB-88 237 188 8.45 .88 21231 180 L]
WR3/TT3 Steel matting, 4 x8°x1/6™, .5 17-JAN-88 18 5 119.95 .18 25595 18 L]
16 rows selected.
SQL> UPDATE PRODUCT SET P_QOH = P_QOH;
16 rows updated.
SQL> SELECT = FROM PRODUCT WHERE P_CODE = "11QER/31°;
P_CODE P_DESCRIPT P_INDATE P_QOH P_HMIN P_PRICE P_DISCOUNT U_CODE P_MIN_ORDER P_REORDER
11QER/31 Power painter, 15 psi., 3-nozz B3-NOU-87 29 5 1089.99 Ll 25595 25 a

o
o H

C6545_08 8/15/2007 16:19:29 Page 349

ADVANCED SQL

349

Note the following important features of the code in Figure 8.38:

e The trigger is automatically invoked for each affected row—in this case, all rows of the PRODUCT table. If your
triggering statement would have affected only three rows, not all PRODUCT rows would have the correct
P_REORDER value set. That’s the reason the triggering statement was set up as shown in Figure 8.38.

o The trigger will run only if you insert a new product row or update P_QOH or P_MIN. If you update any other
attribute, the trigger won'’t run.

You can also use a trigger to update an attribute in a table other than the one being modified. For example, suppose
you would like to create a trigger that automatically reduces the quantity on hand of a product with every sale. To
accomplish that task, you must create a trigger for the LINE table that updates a row in the PRODUCT table. The
sample code for that trigger is shown in Figure 8.39.

FIGURE TRG_LINE_PROD trigger to update the PRODUCT quantity on hand
8.39

£ Oracle SQL*Plus : A8 =13 x|

File Edit Search Options Help

SQL> CREATE OR REPLACE TRIGGER TRG_LINE_PROD -~
2 AFTER INSERT ON LINE

3 FOR EACH ROW

4 BEGIN

5 UPDATE PRODUCT

6 SET P_OOH = P_QOH - :NEW.LINE_UNITS
7 WHERE PRODUCT.P_CODE = :MEW.P_CODE;
8 END;

9 /

Trigger created.

Al H

Note that the TRG_LINE_PROD row-level trigger executes after inserting a new invoice’s LINE and reduces the
quantity on hand of the recently sold product by the number of units sold. This row-level trigger updates a row in a
different table (PRODUCT), using the :NEW values of the recently added LINE row.

A third trigger example shows the use of variables within a trigger. In this case, you want to update the customer
balance (CUS_BALANCE) in the CUSTOMER table after inserting every new LINE row. This trigger code is shown
in Figure 8.40.

Let’s carefully examine the trigger in Figure 8.40.
e The trigger is a row-level trigger that executes after each new LINE row is inserted.
e The DECLARE section in the trigger is used to declare any variables used inside the trigger code.

e You can declare a variable by assigning a name, a data type, and (optionally) an initial value, as in the case of
the W_TOT variable.

o The first step in the trigger code is to get the customer code (CUS_CODE) from the related INVOICE table.
Note that the SELECT statement returns only one attribute (CUS_CODE) from the INVOICE table. Also note
that that attribute returns only one value as specified by the use of the WHERE clause to restrict the query
output to a single value.

e Note the use of the INTO clause within the SELECT statement. You use the INTO clause to assign a value from
a SELECT statement to a variable (W_CUS) used within a trigger.

e The second step in the trigger code computes the total of the line by multiplying the :NEW.LINE_UNITS times
:NEW.LINE_PRICE and assigning the result to the W_TOT variable.

4

C6545_08 8/15/2007 16:19:29 Page 350

350 CHAPTER 8

FIGURE TRG_LINE_CUS trigger to update the customer balance

+ Oracle $0LPlus _ O] =]
File Edit Search Optionz Help
SOL> CGCREATE OR REPLACE TRIGGER TRG_LIHE_CUS -~
2 AFTER INSERT OH LIHE
FOR EACH ROW
4 DECLARE
5 W_CUS CHAR{5});
6 W_TOT HUMBER:= 8; —— to compute total cost
¥ BEGIH
8 —-- this trigger fires up after an INSERT of a LINE
o -- it will update the CUS_BALANMCE in CUSTOMER
18
11 —— 1) get the CUS_CODE
12 SELECT CUS_CODE INWTO W CUS
13 FROM INUDICE
14 WHERE INVOICE.INV_ HUMBER = :HEW.INUV_ HUMBER;
15
16 -- 2) compute the total of the current line
17 W_TOT := :HEW.LIHE_PRICE = :HEW.LINE_UNITS;
18
19 -- 3) Update the CUS_BALANCE in CUSTOHER
28 UPDATE CUSTOMER
21 SET CUS_BALAHMCE = CUS_BALAMCE + W TOT
22 WHERE CUS_CODE = W _CUS;
23
24 DEHS_DUTPUT.PUT_LIHE{' = = * Balance updated for customer: ° || W_CUS);
25
26 EHD;
2y
Trigger created.
SOL> v
Jell= Bl

e The final step updates the customer balance by using an UPDATE statement and the W_TOT and W_CUS
trigger variables.

e Double dashes “--” are used to indicate comments within the PL/SQL block.

Let’s summarize the triggers created in this section.
e The TRG_PROD_REORDER is a row-level trigger that updates P_REORDER in PRODUCT when a new
product is added or when the P_QOH or P_MIN columns are updated.
e The TRG_LINE_PROD is a row-level trigger that automatically reduces the P_QOH in PRODUCT when a new
row is added to the LINE table.
e TRG_LINE_CUS is a row-level trigger that automatically increases the CUS_BALANCE in CUSTOMER when
a new row is added in the LINE table.

The use of triggers facilitates the automation of multiple data management tasks. Although triggers are independent
objects, they are associated with database tables. When you delete a table, all its trigger objects are deleted with it.
However, if you needed to delete a trigger without deleting the table, you could use the following command:

DROP TRIGGER trigger_name

Trigger Action Based on Conditional DML Predicates
You could also create triggers whose actions depend on the type of DML statement (INSERT, UPDATE, or DELETE)
that fires the trigger. For example, you could create a trigger that executes after an insert, an update, or a delete on

C6545_08 8/15/2007 16:19:29 Page 351

ADVANCED SQL 351

the PRODUCT table.But how do you know which one of the three statements caused the trigger to execute? In those
cases, you could use the following syntax:

IF INSERTING THEN .. END IF;
IF UPDATING THEN .. END IF;
IF DELETING THEN .. END IF;

STORED PROCEDURES

A stored procedure is a named collection of procedural and SQL statements. Just like database triggers, stored
procedures are stored in the database. One of the major advantages of stored procedures is that they can be used to
encapsulate and represent business transactions. For example, you can create a stored procedure to represent a
product sale, a credit update, or the addition of a new customer. By doing that, you can encapsulate SQL statements
within a single stored procedure and execute them as a single transaction. There are two clear advantages to the use
of stored procedures:

e Stored procedures substantially reduce network traffic and increase performance. Because the procedure is
stored at the server, there is no transmission of individual SQL statements over the network. The use of stored
procedures improves system performance because all transactions are executed locally on the RDBMS, so each
SQL statement does not have to travel over the network.

e Stored procedures help reduce code duplication by means of code isolation and code sharing (creating unique
PL/SQL modules that are called by application programs), thereby minimizing the chance of errors and the
cost of application development and maintenance.

To create a stored procedure, you use the following syntax:

CREATE OR REPLACE PROCEDURE procedure_name [(argument [IN/OUT] data-type, ..)] [IS/AS]
[variable_name data type[:=initial_value] |

BEGIN
PL/SQL or SQL statements;

END;

Note the following important points about stored procedures and their syntax:

e argument specifies the parameters that are passed to the stored procedure. A stored procedure could have
zero or more arguments or parameters.

e IN/OUT indicates whether the parameter is for input, output, or both.

e data-type is one of the procedural SQL data types used in the RDBMS. The data types normally match those
used in the RDBMS table-creation statement.

e Variables can be declared between the keywords IS and BEGIN. You must specify the variable name, its data
type, and (optionally) an initial value.

To illustrate stored procedures, assume that you want to create a procedure (PRC_PROD_DISCOUNT) to assign an
additional 5 percent discount for all products when the quantity on hand is more than or equal to twice the minimum
quantity. Figure 8.41 shows how the stored procedure is created.

Note in Figure 8.41 that the PRC_PROD_DISCOUNT stored procedure uses the DBMS_OUTPUT.PUT_LINE
function to display a message when the procedure executes. (This action assumes you previously ran SET
SERVEROUTPUT ON.)

‘ C6545_08 8/15/2007 16:19:30 Page 352

FIGURE
8.41

File Edit Search Options Help
SQL> CREATE OR REPLACE PROCEDURE PRC_PROD_DISCOUNT -
2 AS BEGIN
3 UPDATE PRODUCT
4 SET P_DISCOUNT = P_DISCOUNT + .85
5 WHERE P_QOH >= P_HMIN=2;
1] DBHS_OUTPUT.PUT_LINE ('#* % Update finished = *');
7 EHND;
8 /

Procedure created.

A H 4

ONLINE CONTENT

The source code for all of the stored procedures shown in this section can be found in the Student Online
Companion.

To execute the stored procedure, you must use the following syntax:
EXEC procedure_namel(parameter_list)];

For example, to see the results of running the PRC_PROD_DISCOUNT stored procedure, you can use the EXEC
PRC_PROD_DISCOUNT command shown in Figure 8.42.

Using Figure 8.42 as your guide, you can see how the product discount attribute for all products with a quantity on
hand more than or equal to twice the minimum quantity was increased by 5 percent. (Compare the first PRODUCT
table listing to the second PRODUCT table listing.)

C6545_08 8/15/2007 16:19:30 Page 353

ADVANCED SQL 353
FIGURE Results of the PRC_PROD_DISCOUNT stored procedure
8.42
I =T

File Edit Search Options Help
SQL> SELECT = FROH PRODUCT;

P_CODE P_DESCRIPT P_INDATE P_NOH P_HIN P_PRICE P_DISCOUNT U CODE P_WIN ORDER P _REDRDER
110ER/31 Power painter, 15 psi., 3-nozz B83-HOU-87 29 5 109.99 .88 25595 25 a
13-02/P2 7.25-in. pwr. saw blade 13-DEC-87 3z 15 14.99 -85 21344 5a a
14-01/L3 9.88-in. pwr. saw blade 13-HOU-87 18 12 17.49 .88 21344 5a a
1546-002 Hrd. cloth, 1/4-in., 2x58 15-JAN-88 15 8 30.95 .88 23119 a5 a
1558-0iH Hrd. cloth, 1/2-in., 3x508 15-JAN-88 23 5 43.99 .88 23119 25 a
2232/qQTY B&D jigsaw, 12-in. blade 30-DEC-87 8 5 109.92 -85 24288 15 a
22327QUE B&D jigsaw, 8-in. blade 24-DEC-87] 7 99.87 -85 24288 15 1
223870PD B&D cordless drill, 1/2-in. 20-JAN-88 12 5 38.95 -85 25595 12 a
231089-HB Claw hammer 20-JAN-88 23 18 9.95 .18 21225 25 a
23114-AR Sledge hammer, 12 1b. 82-.JAN-88 8 18 14.4 -85 12 1
S4778-2T Rat-tail file, 1/8-in. fine 15-DEC-87 43 28 4.99 -8a 21344 25 a
89-URE-Q Hicut chain saw, 16 in. 87-FEB-88 " 5 256.99 -85 24288 18 a
PUC23DRT PUC pipe, 3.5-in., 8-Ft 20-FEB-88 188 75 5.87 -8a 50 a
SHM-18277 1.25-in. metal screw, 2% 81-MAR- 88 172 75 6.99 -8a 21225 50 a
SW-23116 2.5-in. wd. screw, 58 24-FEB-88 237 108 B.45 -8a 21231 180 a
WR3/TT3 Steel matting, &'x8°x1/6", .5" 17-JAN-88 18 5 119.95 .18 25595 10 a
16 rows selected.

SQL> EXEC PRC_PROD_DISCOUNT;

PL/SQL procedure successfully completed.

SQL> SELECT = FROM PRODUCT;

P_CODE P_DESCRIPT P_INDATE P_QOH P_HIN P_PRICE P_DISCOUNT U_CODE P_MIN_ORDER P_REORDER
110ER/31 Power painter, 15 psi., 3-nozz B83-HOU-87 29 5 109.99 .85 25595 25 a
13-02/P2 7.25-in. pwr. saw blade 13-DEC-87 3z 15 14.99 .18 21344 5a a
14-01/L3 9.88-in. pwr. saw blade 13-HOU-87 18 12 17.49 .88 21344 5a a
1546-002 Hrd. cloth, 1/4-in., 2x58 15-JAN-88 15 8 30.95 .88 23119 a5 a
1558-0iH Hrd. cloth, 1/2-in., 3x508 15-JAN-88 23 5 43.99 -85 23119 25 a
2232/0TY B&D jigsaw, 12-in. blade 38-DEC-87 8 5 189.92 -85 24288 15 a
2232/0UE B&D jigsaw, 8-in. blade 24-DEC-87] 7 90.87 -85 24288 15 1
2238/0PD B&D cordless drill, 1/2-in. 28-JAN-88 12 5 38.95 .18 25505 12 a
23189-HB Claw hammer 28-JAN-88 23 18 9.95 .15 21225 25 a
23114-nA Sledge hammer, 12 1b. 82-.JAN-88 8 18 144 -85 12 1
S4778-2T Rat-tail file, 1/8-in. fine 15-DEC-87 43 28 4.99 -85 21344 25 a
89-URE-Q Hicut chain saw, 16 in. 87-FEB-88 " 5 256.99 .18 24288 18 a
PUC23DRT PUC pipe, 3.5-in., 8-Ft 20-FEB-88 188 75 5.87 -85 50 a
SHM-18277 1.25-in. metal screw, 2% 81-MAR- 88 172 75 6.99 -85 21225 50 a
SW-23116 2.5-in. wd. screw, 58 24-FEB-88 237 108 B.45 -85 21231 180 a
UR3/TT3 Steel matting, 4'x8'x1/6", .5" 17-JAN-88 18 5 119.95 .15 25595 18 a

16 rows selected.

|l

One of the main advantages of procedures is that you can pass values to them. For example, the previous
PRC_PRODUCT_DISCOUNT procedure worked fine, but what if you wanted to make the percentage increase an
input variable? In that case, you can pass an argument to represent the rate of increase to the procedure. Figure 8.43

shows the code for that procedure.

C6545_08 8/15/2007 16:19:31 Page 354

FIGURE
8.43

+ oracle sQL*Plus =1]

File Edit Search Options Help

SOL> CREATE OR REPLACE PROCEDURE PRC_PROD_DISCOUNT({WPI IH HUMBER) AS ﬂ
2 BEGIH
3 IF ((WPI <= @) OR (WPI >= 1)) THEN -- validate WPI parameter
L DBHS_OUTPUT.PUT_LIHE({'Error: Ualue must be greater than @ and less than 1'});
5 ELSE -- if value is greater than 8 and less than 1
[} UPDPATE PRODUCT
7 SET P_DISCOUNT = P_DISCOUNT + WPI
8 WHERE P_QOH >= P_HMIN=2;
9 DBMS_OUTPUT.PUT_LINE {"* = Update finished = =");
18 END IF;
11 EHND;
12 7

Procedure created.

1/ H 4|

Figure 8.44 shows the execution of the second version of the PRC_PROD_DISCOUNT stored procedure. Note that
if the procedure requires arguments, those arguments must be enclosed in parentheses and they must be separated by
commas.

FIGURE
8.44

Oracle SOL*Plus

S0L> EXEC PRC_PROD_DISCOUHT{1.5};
Error: Value must be greater than 8 and less than 1

PL/S0L procedure successfully completed.

SOL> EXEC PRC_PROD_DISCOUNT({.85);
* * lUpdate finished = =

PL/SOL procedure successfully completed.

soL> |

Stored procedures are also useful to encapsulate shared code to represent business transactions. For example, you can
create a simple stored procedure to add a new customer. By using a stored procedure, all programs can call the stored
procedure by name each time a new customer is added. Naturally, if new customer attributes are added later, you would
need to modify the stored procedure. However, the programs that use the stored procedure would not need to know
the name of the newly added attribute and would need to add only a new parameter to the procedure call. (Notice the
PRC_CUS_ADD stored procedure shown in Figure 8.45.)

As you examine Figure 8.45, note these features:

e The PRC_CUS_ADD procedure uses several parameters, one for each required attribute in the
CUSTOMER table.

e The stored procedure uses the CUS_CODE_SEQ sequence to generate a new customer code.

C6545_08 8/15/2007 16:19:31 Page 355

ADVANCED

S© L

355

FIGURE The PRC_CUS_ADD stored procedure
8.45

The next two examples further illustrate the use of sequences within stored procedures. In this case, let’s create two

. pti &
SQL> CREATE OR REPLACE PROCEDURE PRC_CUS_ADD
2 (W_LN IN UARCHAR, W_FH IM UARCHAR, W _INIT IN VARCHAR, W_AC IM VARCHAR, W_PH IN UARCHAR) i

-- note that the procedure uses the CUS_CODE_SEQ sequence created earlier
-- attribute names are required when not giving values for all table attributes
INSERT INTOD CUSTOMER(CUS_CODE,CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE, CUS_PHONE)
UALUES (CUS_CODE_SEQ.MEXTUAL, W LN, W FN, W INIT, W AC, W PH);
DEMS_OUTPUT.PUT_LINE ('Customer * || W LN || ", " || Y.FN || ' added.");
END;
f

T

Ty

Procedure created.

SQL> EXEC PRC_CUS_ADD({ 'Walker','James' ,HULL, 615", 84-HORSE");
Customer Walker, James added.

PL/SOL procedure successfully completed.
S0L> SELECT = FROM CUSTOMER WHERE CUS_LHAME = 'Walker';

CUS_GCODE CUS_LNAME CUS_FHAME C CUS CUS_PHON CUS_BALANCE

20018 Yalker James 615 84-HORSE a

S0L> EXEC PRC_CUS_ADD{'Lowery", ‘Denisee’, HULL, HULL, HULL);
BEGIN PRC_CUS_ADD('Lowery’, 'Denisee’, HULL, HULL, HULL); EHD;

*

ERROR at line 1:

ORA-B1400: cannot insert NULL into {"STUDENT'."CUSTOMER"."'CUS_AREACODE")
ORA-B6512: at “STUDENT.PRC_CUS_ADD", line 7

ORA-B86512: at line 1

A

The required parameters—those specified in the table definition—must be included and can be null only when
the table specifications permit nulls for that parameter. For example, note that the second customer addition

was unsuccessful because the CUS_AREACODE is a required attribute and cannot be null.

The procedure displays a message in the SQL*Plus console to let the user know that the customer was added.

stored procedures:

1.
2.

Both procedures are shown in Figure 8.46. Note the use of a variable in the PRC_LINE_ADD procedure to get the

The PRC_INV_ADD procedure adds a new invoice.
The PRC_LINE_ADD procedure adds a new product line row for a given invoice.

product price from the PRODUCT table.

To test the procedures shown in Figure 8.46:

1.
2.

Call the PRC_INV_ADD procedure with the new invoice data as arguments.
Call the PRC_LINE_ADD procedure and pass the product line arguments.

C6545_08 8/15/2007 16:19:31 Page 356

FIGURE
8.46

+ Dracle 5OL"Plus

SQL> CREATE OR REFLACE PROCEDURE PRC_INU_ADD (W CUS_CODE IN VARCHAR2, W DATE IN DATE)

2 AS BEGIN

3 INSERT INTO INUOIGE

3 UALUES{INU_NUMBER_SE(Q.MEXTUAL, ¥ CUS_CODE, W _DATE);
5 DBHS_OUTPUT .PUT_LINE{ "Invoice added');

6 END;

a4

Procedure created.

SOL> CREATE OR REPLACE PROCEDURE PRC_LINE_ADD (W LN IN NUMBER, W _P_CODE IN UARCHAR2, W_LU NUMBER)
2 as
3 U LP NUMBER := 8.08;
4 BEGIN
5 -— GET THE PRODUCT PRICE
6 SELECT P_PRICE INTO W_LP
7 FROM PRODUCT
8 WHERE P_CODE = W_P_CODE;
9
10 -— ADDS THE NEW LINE ROW
11 INSERT INTO LIME
12 UALUES(INU_NUMBER_SEQ.CURRUAL, W LN, W_P_CODE, W LU, W LP);
13
14 DBMS_OUTPUT.PUT_LINE('Inveice line * || W.LN || ' added');
15 END;
16 7/

Procedure created.

SQL>

That process is illustrated in Figure 8.47.

FIGURE
8.47

Invoice added

PL/SQL procedure successfully completed.

SOL> EXEC PRC_LIME_ADD(1,"13-02/P2',1);
* x * Balance updated for customer: 266180
Invoice line 1 added

PL/SQL procedure successfully completed.
SQL> EXEC PRC_LINE_ADD(2,'23189-HB',1);
= % = Balance updated for customer: 266818
Invoice line 2 added

PL/SQL procedure successfully completed.

SQL> SELECT = FROM THUOICE WHERE CUS_CODE

INU_NUMBER CUS_CODE INU_DATE

4810 20610 B89-APR-08

SQL> SELECT = FROM LINE WHERE INU_NUMBER

20010;

(SELECT INU_NUMBER FROM INVOICE WHERE CUS_CODE

THU_HUMBER LIHE_HUMBER P_CODE

LINE_UNITS LINE_PRICE

20010} ;

4p18 1 13-02/P2 1 14.99

4618 2 23189-HB 1 92.95
SOL> SELECT » FROM PRODUGT WHERE P_CODE IN (13-02/P2', *23169-HB'):
P_CODE P_DESCRIPT P_INDATE P_QOH P_MIN P_PRICE P_DISCOUNT U_CODE P_MIN ORDER P_REORDER
13-Q2/P2 7.25-in. pur. saw blade 13-DEC-87 31 15 14.99 A5 21344 1]]
23109-HB Claw hammer 208-JAN-B8 22 18 9.95 .28 2122% 25 a
SOL> SELECT = FROM CUSTOMER WHERE CUS_CODE - 20010;

CUS_CODE CUS_LHAME CUS_FHAKE

c

CUS CUS_PHON CUS_BALANCE

2068108 Walker

Pl

James

615 84-HORSE 24.94

K

C6545_08 9/7/2007 10:3:19 Page 357 ‘

PL/SQL PROCESSING WITH CURSORS

Until now, all of the SQL statements you have used inside a PL/SQL block (trigger or stored procedure) have returned
a single value. If the SQL statement returns more than one value, you will generate an error. If you want to use an SQL
statement that returns more than one value inside your PL/SQL code, you need to use a cursor. A cursor is a special
construct used in procedural SQL to hold the data rows returned by an SQL query. You can think of a cursor as a
reserved area of memory in which the output of the query is stored, like an array holding columns and rows. Cursors
are held in a reserved memory area in the DBMS server, not in the client computer.

There are two types of cursors: implicit and explicit. An implicit cursor is automatically created in procedural SQL
when the SQL statement returns only one value. Up to this point, all of the examples created an implicit cursor. An
explicit cursor is created to hold the output of an SQL statement that may return two or more rows (but could return
0 or only one row). To create an explicit cursor, you use the following syntax inside a PL/SQL DECLARE section:

CURSOR cursor_name IS select-query;

Once you have declared a cursor, you can use specific PL/SQL cursor processing commands (OPEN, FETCH, and
CLOSE) anywhere between the BEGIN and END keywords of the PL/SQL block. Table 8.9 summarizes the main use
of each of those commands.

Cursor Processing Commands

CURSOR
COMMAND EXPLANATION
Opening the cursor executes the SQL command and populates the cursor with data, opening the
cursor for processing. The cursor declaration command only reserves a named memory area for
the cursor; it doesn’t populate the cursor with the data. Before you can use a cursor, you need to
open it. For example:

OPEN cursor_name
FETCH Once the cursor is opened, you can use the FETCH command to retrieve data from the cursor and
copy it to the PL/SQL variables for processing. The syntax is:

FETCH cursor_name INTO variable1 [, variable2, ..]

The PL/SQL variables used to hold the data must be declared in the DECLARE section and must
have data types compatible with the columns retrieved by the SQL command. If the cursors SQL
statement returns five columns, there must be five PL/SQL variables to receive the data from the
cursor.

This type of processing resembles the one-record-at-a-time processing used in previous database
models. The first time you fetch a row from the cursor, the first row of data from the cursor is cop-
ied to the PL/SQL variables; the second time you fetch a row from the cursor, the second row of
data is placed in the PL/SQL variables; and so on.

CLOSE The CLOSE command closes the cursor for processing.

Cursor-style processing involves retrieving data from the cursor one row at a time. Once you open a cursor, it becomes
an active data set. That data set contains a “current” row pointer. Therefore, after opening a cursor, the current row
is the first row of the cursor.

When you fetch a row from the cursor, the data from the “current” row in the cursor is copied to the PL/SQL variables.
After the fetch, the “current” row pointer moves to the next row in the set and continues until it reaches the end of
the cursor.

‘ C6545_08 8/15/2007 16:19:32 Page 358

How do you know what number of rows are in the cursor? Or how do you know when you have reached the end of

the cursor data set? You know because cursors have special attributes that convey important information. Table 8.10

summarizes the cursor attributes.

Cursor Attributes

ATTRIBUTE
%ROWCOUNT

DESCRIPTION
Returns the number of rows fetched so far. If the cursor is not OPEN, it returns an error. If
no FETCH has been done but the cursor is OPEN, it returns 0.

%FOUND

Returns TRUE if the last FETCH returned a row and FALSE if not. If the cursor is not
OPEN, it returns an error. If no FETCH has been done, it contains NULL.

%NOTFOUND

Returns TRUE if the last FETCH did not return any row and FALSE if it did. If the cursor is
not OPEN, it returns an error. If no FETCH has been done, it contains NULL.

%ISOPEN

Returns TRUE if the cursor is open (ready for processing) or FALSE if the cursor is closed.
Remember, before you can use a cursor, you must open it.

To illustrate the use of cursors, let’s use a simple stored procedure example that lists all products that have a quantity

on hand greater than the average quantity on hand for all products. The code is shown in Figure 8.48.

FIGURE
8.48

+ Oracle SQL*Plus
File Edit Search Options Help
SQL> CREATE OR REPLACE PROCEDURE PRC_CURSOR_ENAMPLE IS -
2 W _P_CODE FRODUCT.P_CODE%ZTYFPE;
3 W _P_DESCRIPT PRODUCT.P_DESCRIPTZTYPE;
4 W _TOT HUMBER{3);
5 CURSOR PROD_CURSOR IS
[}
7
8

23 /

Procedure created.

SQL> EXEC PRC_CURSOR_EXAMPLE;
WITH P_QOH > AVG(P_QOH)

-» PUC pipe, 3.5-in., B-ft
-» 1.25-in. metal screw, 25
->» 2.5-in. wd. screw, 58

TOTAL PRODUCT PROCESSED 3
--- END OF REPORT ----

PRODUCTS

PUC23DRT
SH-18277
SW-23116

PL/SQL procedure successfully completed.

I [

SELECT P_CODE, P_DESCRIPT

FROM PRODUCT

WHERE P_QOH > (SELECT AUG(P_QOH) FROH PRODUCT);
9 BEGIN
18 DBMS_OUTPUT.PUT_LINE('PRODUCTS WITH P_QOH > AUG(P_QOH)');
11 DBMS_OUTPUT.PUT_LINE(" =
12 OPEN PROD_CURSOR;
13 LOOP
FETCH PROD_CURSOR INTO W_P_CODE, W P_DESCRIPT;
EXIT WHEN PROD_CURSORZNOTFOUND ;
DBHS_OUTPUT.PUT_LINE(Y_P_CODE ||’ -> * || W_P_DESCRIPT };
17 END LOOP;
18 DBMS_OUTPUT.PUT_LINE('==========================s===ss========'});
19 DBMS_OUTPUT.PUT_LINE('TOTAL PRODUCT PROCESSED * || PROD_CURSOR%ROWCOUNT);
20 DBMS_OUTPUT.PUT_LINE({'--- END OF REPORT —---'});
21 CLOSE PROD_CURSOR;
22 END;

A8l -3 x|

S [

C6545_08 8/15/2007 16:23:10 Page 359

ADVANCED SQL 359

As you examine the stored procedure code shown in Figure 8.48, note the following important characteristics:

e Lines 2 and 3 use the %TYPE data type in the variable definition section. As indicated in Table 8.8, the %TYPE
data type is used to indicate that the given variable inherits the data type from a variable previously declared
or from an attribute of a database table. In this case, you are using the %TYPE to indicate that the W_P_CODE
and W_P_DESCRIPT will have the same data type as the respective columns in the PRODUCT table. This
way, you ensure that the PL/SQL variable will have a compatible data type.

e Line 5 declares the PROD_CURSOR cursor.
e Line 12 opens the PROD_CURSOR cursor and populates it.
e Line 13 uses the LOOP statement to loop through the data in the cursor, fetching one row at a time.

e Line 14 uses the FETCH command to retrieve a row from the cursor and place it in the respective PL/SQL
variables.

e Line 15 uses the EXIT command to evaluate when there are no more rows in the cursor (using the
%NOTFOUND cursor attribute) and to exit the loop.

e Line 19 uses the %JROWCOUNT cursor attribute to obtain the total number of rows processed.
e Line 21 issues the CLOSE PROD_CURSOR command to close the cursor.

The use of cursors, combined with standard SQL, makes relational databases very desirable because programmers can
work in the best of both worlds: set-oriented processing and record-oriented processing. Any experienced programmer
knows to use the tool that best fits the job. Sometimes you will be better off manipulating data in a set-oriented
environment; at other times, it might be better to use a record-oriented environment. Procedural SQL lets you have
your proverbial cake and eat it, too. Procedural SQL provides functionality that enhances the capabilities of the DBMS
while maintaining a high degree of manageability.

PL/SQL STORED FUNCTIONS

Using programmable or procedural SQL, you can also create your own stored functions. Stored procedures and
functions are very similar. A stored function is basically a named group of procedural and SQL statements that
returns a value (indicated by a RETURN statement in its program code). To create a function, you use the following
syntax:

CREATE FUNCTION function_name (argument IN data-type, ..) RETURN data-type [IS]
BEGIN
PL/SQL statements;

RETURN (value or expression);
END;

Stored functions can be invoked only from within stored procedures or triggers and cannot be invoked from SQL
statements (unless the function follows some very specific compliance rules). Remember not to confuse built-in SQL
functions (such as MIN, MAX, and AVG) with stored functions.

8.8 EMBEDDED SQL

There is little doubt that SQL’s popularity as a data manipulation language is in part due to its ease of use and its
powerful data-retrieval capabilities. But in the real world, database systems are related to other systems and programs,
and you still need a conventional programming language such as Visual Basic.Net, C#, or COBOL to integrate
database systems with other programs and systems. If you are developing Web applications, you are most likely familiar
with Visual Studio.Net, Java, ASP, or ColdFusion. Yet, almost regardless of the programming tools you use, if your

4

C6545_08 9/24/2007 11:48:23 Page 360

360 CHAPTER 8

Web application or Windows-based GUI system requires access to a database such as MS Access, SQL Server, Oracle,
or DB2, you will likely need to use SQL to manipulate the data in the database.

Embedded SQL is a term used to refer to SQL statements that are contained within an application programming
language such as Visual Basic.Net, C#, COBOL, or Java. The program being developed might be a standard binary
executable in Windows or Linux, or it might be a Web application designed to run over the Internet. No matter what
language you use, if it contains embedded SQL statements, it is called the host language. Embedded SQL is still the
most common approach to maintaining procedural capabilities in DBMS-based applications. However, mixing SQL
with procedural languages requires that you understand some key differences between SQL and procedural languages.

e Run-time mismatch: Remember that SQL is a nonprocedural, interpreted language; that is, each instruction
is parsed, its syntax is checked, and it is executed one instruction at a time.l All of the processing takes place
at the server side. Meanwhile, the host language is generally a binary-executable program (also known as a
compiled program). The host program typically runs at the client side in its own memory space (which is
different from the DBMS environment).

e Processing mismatch: Conventional programming languages (COBOL, ADA, FORTRAN, PASCAL, C++,
and PL/I) process one data element at a time. Although you can use arrays to hold data, you still process the
array elements one row at a time. This is especially true for file manipulation, where the host language typically
manipulates data one record at a time. However, newer programming environments (such as Visual Studio.Net)
have adopted several object-oriented extensions that help the programmer manipulate data sets in a cohesive

manner.

e Data type mismatch: SQL provides several data types, but some of those data types might not match data
types used in different host languages (for example, the date and varchar2 data types).

To bridge the differences, the Embedded SQL standard? defines a framework to integrate SQL within several
programming languages. The Embedded SQL framework defines the following:

e A standard syntax to identify embedded SQL code within the host language (EXEC SQL/END-EXEC).

e A standard syntax to identify host variables. Host variables are variables in the host language that receive data
from the database (through the embedded SQL code) and process the data in the host language. All host
variables are preceded by a colon (“:7).

e A communication area used to exchange status and error information between SQL and the host language.
This communications area contains two variables—SQLCODE and SQLSTATE.

Another way to interface host languages and SQL is through the use of a call level interface (CLD3 , in which the

programmer writes to an application programming interface (API). A common CLI in Windows is provided by the
Open Database Connectivity (ODBC) interface.

ONLINE CONTENT

Additional coverage of CLIs and ODBC is found in Appendix F, Client/Server Systems, and Appendix J,
Web Database Development with ColdFusion in the Student Online Companion.

IThe authors are particularly grateful for the thoughtful comments provided by Emil T. Cipolla, who teaches at Mount Saint Mary College and whose
IBM experience is the basis for his considerable and practical expertise.

You can obtain more details about the Embedded SQL standard at www.ansi.org, SQL/Bindings is in the SQL Part Il - SQL/Foundation section of
the SQL 2003 standard.
3 You can find additional information about the SQL Call Level Interface standard at www.ansi.org, in the SQL Part 3: Call Level Interface (SQL/CLI)
section of the SQL 2003 standard.

4

C6545_08 8/15/2007 16:19:33 Page 361

ADVANCED SQL 361

Before continuing, let’s explore the process required to create and run an executable program with embedded SQL
statements. If you have ever programmed in COBOL or C++, you are familiar with the multiple steps required to
generate the final executable program. Although the specific details vary among language and DBMS vendors, the
following general steps are standard:

1. The programmer writes embedded SQL code within the host language instructions. The code follows the
standard syntax required for the host language and embedded SQL.

2. A preprocessor is used to transform the embedded SQL into specialized procedure calls that are DBMS- and
language-specific. The preprocessor is provided by the DBMS vendor and is specific to the host language.

3. The program is compiled using the host language compiler. The compiler creates an object code module for
the program containing the DBMS procedure calls.

4. The object code is linked to the respective library modules and generates the executable program. This process
binds the DBMS procedure calls to the DBMS run-time libraries. Additionally, the binding process typically
creates an “access plan” module that contains instructions to run the embedded code at run time.

5. The executable is run, and the embedded SQL statement retrieves data from the database.

Note that you can embed individual SQL statements or even an entire PL/SQL block. Up to this point in the book,
you have used a DBMS-provided application (SQL*Plus) to write SQL statements and PL/SQL blocks in an interpretive
mode to address one-time or ad hoc data requests. However, it is extremely difficult and awkward to use ad hoc queries
to process transactions inside a host language. Programmers typically embed SQL statements within a host language
that it is compiled once and executed as often as needed. To embed SQL into a host language, follow this syntax:

EXEC SQL
SQL statement;
END-EXEC.

The preceding syntax will work for SELECT, INSERT, UPDATE, and DELETE statements. For example, the following
embedded SQL code will delete employee 109, George Smith, from the EMPLOYEE table:

EXEC SQL
DELETE FROM EMPLOYEE WHERE EMP_NUM = 109;
END-EXEC.

Remember, the preceding embedded SQL statement is compiled to generate an executable statement. Therefore, the
statement is fixed permanently and cannot change (unless, of course, the programmer changes it). Each time the
program runs, it deletes the same row. In short, the preceding code is good only for the first run; all subsequent runs
will likely generate an error. Clearly, this code would be more useful if you could specify a variable to indicate the
employee number to be deleted.

In embedded SQL, all host variables are preceded by a colon (“:”). The host variables may be used to send data from
the host language to the embedded SQL, or they may be used to receive the data from the embedded SQL. To use
a host variable, you must first declare it in the host language. Common practice is to use similar host variable names
as the SQL source attributes. For example, if you are using COBOL, you would define the host variables in the
Working Storage section. Then you would refer to them in the embedded SQL section by preceding them with a colon
(“:"). For example, to delete an employee whose employee number is represented by the host variable W_EMP_NUM,
you would write the following code:

EXEC SQL
DELETE FROM EMPLOYEE WHERE EMP_NUM = :W_EMP_NUM;
END-EXEC.

‘ C6545_08 9/7/2007 10:5:48 Page 362

At run time, the host variable value will be used to execute the embedded SQL statement. What happens if the
employee you are trying to delete doesn’t exist in the database? How do you know that the statement has been
completed without errors? As mentioned previously, the embedded SQL standard defines a SQL communication area
to hold status and error information. In COBOL, such an area is known as the SQLCA area and is defined in the Data
Division as follows:

EXEC SQL
INCLUDE SQLCA
END-EXEC.

The SQLCA area contains two variables for status and error reporting. Table 8.11 shows some of the main values
returned by the variables and their meaning.

SQL Status and Error Reporting Variables

VARIABLE NAME VALUE EXPLANATION

SQLCODE Old-style error reporting supported for backward compatibility only; returns
an integer value (positive or negative).

0 Successful completion of command.

100 No data; the SQL statement did not return any rows or did not select, update,
or delete any rows.

-999 Any negative value indicates that an error occurred.

SQLSTATE Added by SQL-92 standard to provide predefined error codes; defined as a
character string (5 characters long).

00000 Successful completion of command.

Multiple values in the format XXYYY where:

XX-> represents the class code.

YYY-> represents the subclass code.

The following embedded SQL code illustrates the use of the SQLCODE within a COBOL program.

EXEC SQL
EXEC SQL
SELECT EMP_LNAME, EMP_LNAME INTO :W_EMP_FNAME, :W_EMP_LNAME
WHERE EMP_NUM = :W_EMP_NUM;
END-EXEC.
IF SQLCODE = 0 THEN
PERFORM DATA_ROUTINE
ELSE
PERFORM ERROR_ROUTINE
END-IF.

In this example, the SQLCODE host variable is checked to determine whether the query completed successfully. If that
is the case, the DATA_ROUTINE is performed; otherwise, the ERROR_ROUTINE is performed.

C6545_08 8/15/2007 16:19:33 Page 363

ADVANCED SQL 363

Just as with PL/SQL, embedded SQL requires the use of cursors to hold data from a query that returns more than one
value. If COBOL is used, the cursor can be declared either in the Working Storage Section or in the Procedure
Division. The cursor must be declared and processed as you learned earlier in Section 8.7.3. To declare a cursor, you
use the syntax shown in the following example:

EXEC SQL
DECLARE PROD_CURSOR FOR
SELECT P_CODE, P_DESCRIPT FROM PRODUCT
WHERE P_QOH > (SELECT AVG(P_QOH) FROM PRODUCT);
END-EXEC.

Next, you must open the cursor to make it ready for processing:

EXEC SQL
OPEN PROD_CURSOR;
END-EXEC.

To process the data rows in the cursor, you use the FETCH command to retrieve one row of data at a time and place
the values in the host variables. The SQLCODE must be checked to ensure that the FETCH command completed
successfully. This section of code typically constitutes part of a routine in the COBOL program. Such a routine is
executed with the PERFORM command. For example:

EXEC SQL
FETCH PROD_CURSOR INTO :W_P_CODE, :W_P_DESCRIPT,;
END-EXEC.
IF SQLCODE = 0 THEN
PERFORM DATA_ROUTINE
ELSE
PERFORM ERROR_ROUTINE
END-IF.

When all rows have been processed, you close the cursor as follows:

EXEC SQL
CLOSE PROD_CURSOR,;
END-EXEC.

Thus far, you have seen examples of embedded SQL in which the programmer used predefined SQL statements and
parameters. Therefore, the end users of the programs are limited to the actions that were specified in the application
programs. That style of embedded SQL is known as static SQL, meaning that the SQL statements will not change
while the application is running. For example, the SQL statement might read like this:

SELECT P_CODE, P_DESCRIPT, P_QOH, P_PRICE
FROM PRODUCT
WHERE P_PRICE > 100;

C6545_08 9/7/2007 10:6:5 Page 364

364

CHAPTER 8

Note that the attributes, tables, and conditions are known in the preceding SQL statement. Unfortunately, end users
seldom work in a static environment. They are more likely to require the flexibility of defining their data access
requirements on the fly. Therefore, the end user requires that SQL be as dynamic as the data access requirements.

Dynamic SQL is a term used to describe an environment in which the SQL statement is not known in advance;
instead, the SQL statement is generated at run time. At run time in a dynamic SQL environment, a program can
generate the SQL statements that are required to respond to ad hoc queries. In such an environment, neither the
programmer nor the end user is likely to know precisely what kind of queries are to be generated or how those queries
are to be structured. For example, a dynamic SQL equivalent of the preceding example could be:

SELECT :W_ATTRIBUTE_LIST
FROM :W_TABLE
WHERE :W_CONDITION;

Note that the attribute list and the condition are not known until the end user specifies them. W_TABLE,
W_ATRIBUTE_LIST, and W_CONDITION are text variables that contain the end-user input values used in the query
generation. Because the program uses the end-user input to build the text variables, the end user can run the same
program multiple times to generate varying outputs. For example, in one instance, the end user might want to know
what products have a price less than $100; in another case, the end user might want to know how many units of a
given product are available for sale at any given moment.

Although dynamic SQL is clearly flexible, such flexibility carries a price. Dynamic SQL tends to be much slower than
static SQL. Dynamic SQL also requires more computer resources (overhead). Finally, you are more likely to find
inconsistent levels of support and incompatibilities among DBMS vendors.

C6545_08 8/15/2007 16:19:34 Page 365

ADVANCED SQL 365

S UMMAR RY

P SQL provides relational set operators to combine the output of two queries to generate a new relation. The UNION
and UNION ALL set operators combine the output of two (or more) queries and produce a new relation with all
unique (UNION) or duplicate (UNION ALL) rows from both queries. The INTERSECT relational set operator selects
only the common rows. The MINUS set operator selects only the rows that are different. UNION, INTERSECT,
and MINUS require union-compatible relations.

W Operations that join tables can be classified as inner joins and outer joins. An inner join is the traditional join in
which only rows that meet a given criteria are selected. An outer join returns the matching rows as well as the rows
with unmatched attribute values for one table or both tables to be joined.

W A natural join returns all rows with matching values in the matching columns and eliminates duplicate columns. This
style of query is used when the tables share a common attribute with a common name. One important difference
between the syntax for a natural join and for the “old-style” join is that the natural join does not require the use
of a table qualifier for the common attributes.

W Joins may use keywords such as USING and ON. If the USING clause is used, the query will return only the rows
with matching values in the column indicated in the USING clause; that column must exist in both tables. If the ON
clause is used, the query will return only the rows that meet the specified join condition.

W Subqueries and correlated queries are used when it is necessary to process data based on other processed data.
That is, the query uses results that were previously unknown and that are generated by another query. Subqueries
may be used with the FROM, WHERE, IN, and HAVING clauses in a SELECT statement. A subquery may return
a single row or multiple rows.

W Most subqueries are executed in a serial fashion. That is, the outer query initiates the data request, and then the
inner subquery is executed. In contrast, a correlated subquery is a subquery that is executed once for each row in
the outer query. That process is similar to the typical nested loop in a programming language. A correlated
subquery is so named because the inner query is related to the outer query—the inner query references a column
of the outer subquery.

P SQL functions are used to extract or transform data. The most frequently used functions are date and time
functions. The results of the function output can be used to store values in a database table, to serve as the basis
for the computation of derived variables, or to serve as a basis for data comparisons. Function formats can be
vendor-specific. Aside from time and date functions, there are numeric and string functions as well as conversion
functions that convert one data format to another.

P Oracle sequences may be used to generate values to be assigned to a record. For example, a sequence may be used
to number invoices automatically. MS Access uses an AutoNumber data type to generate numeric sequences. MS
SQL Server uses the Identity column property to designate the column that will have sequential numeric values
automatically assigned to it. There can only be one Identity column per SQL Server table.

W Procedural SQL (PL/SQL) can be used to create triggers, stored procedures, and PL/SQL functions. A trigger is
procedural SQL code that is automatically invoked by the DBMS upon the occurrence of a specified data
manipulation event (UPDATE, INSERT, or DELETE). Triggers are critical to proper database operation and
management. They help automate various transaction and data management processes, and they can be used to
enforce constraints that are not enforced at the DBMS design and implementation levels.

W A stored procedure is a named collection of SQL statements. Just like database triggers, stored procedures are
stored in the database. One of the major advantages of stored procedures is that they can be used to encapsulate
and represent complete business transactions. Use of stored procedures substantially reduces network traffic and
increases system performance. Stored procedures help reduce code duplication by creating unique PL/SQL

4

C6545_08 8/15/2007 16:19:35 Page 366

366

CHAPTER 8

modules that are called by the application programs, thereby minimizing the chance of errors and the cost of
application development and maintenance.

P When SQL statements are designed to return more than one value inside the PL/SQL code, a cursor is needed.
You can think of a cursor as a reserved area of memory in which the output of the query is stored, like an array
holding columns and rows. Cursors are held in a reserved memory area in the DBMS server, rather than in the
client computer. There are two types of cursors: implicit and explicit.

P Embedded SQL refers to the use of SQL statements within an application programming language such as Visual
Basic.Net, C#, COBOL, or Java. The language in which the SQL statements are embedded is called the host
language. Embedded SQL is still the most common approach to maintaining procedural capabilities in DBMS-based
applications.

K E Y T E R M S

anonymous PL/SQL block, 339 host language, 360 statement-level trigger, 344

batch update routine, 335 implicit cursor, 357 static SQL, 363

correlated subquery, 321 inner join, 305 stored function, 359

cross join, 306 outer join, 305 stored procedure, 359

cursor, 357 persistent stored module trigger, 342

dynamic SQL, 364 (PSM), 338 union-compatible, 298

embedded SQL, 360 procedural SQL (PL/SQL), 338 updatable view, 336

explicit cursor, 357 row-level trigger, 344

ONLINE CONTENT

Answers to selected Review Questions and Problems for this chapter are contained in the Student Online
Companion for this book.

0 N o Ok

R E VI EW QUESTI ON s

The relational set operators UNION, INTERSECT, and MINUS work properly only when the relations are
union-compatible. What does union-compatible mean, and how would you check for this condition?

What is the difference between UNION and UNION ALL? Write the syntax for each.

Suppose you have two tables: EMPLOYEE and EMPLOYEE_1. The EMPLOYEE table contains the records for
three employees: Alice Cordoza, John Cretchakov, and Anne McDonald. The EMPLOYEE_1 table contains the
records for employees John Cretchakov and Mary Chen. Given that information, list the query output for the
UNION query.

Given the employee information in Question 3, list the query output for the UNION ALL query.
Given the employee information in Question 3, list the query output for the INTERSECT query.
Given the employee information in Question 3, list the query output for the MINUS query.
What is a CROSS JOIN? Give an example of its syntax.

What three join types are included in the OUTER JOIN classification?

Using tables named T1 and T2, write a query example for each of the three join types you described in
Question 8. Assume that T1 and T2 share a common column named C1.

4

C6545_08 8/15/2007 16:19:35 Page 367

ADVANCED SQL

367

10.
11.
12.

13.

14.

15.

16.
17.
18.
19.
20.

What is a subquery, and what are its basic characteristics?

What is a correlated subquery? Give an example.

What MS Access/SQL Server function should you use to calculate the number of days between the current date
and January 25, 1999?

What Oracle function should you use to calculate the number of days between the current date and
January 25, 1999?

Suppose a PRODUCT table contains two attributes, PROD_CODE and VEND_CODE. Those two attributes have
values of ABC, 125, DEF, 124, GHI, 124, and JKL, 123, respectively. The VENDOR table contains a single
attribute, VEND_CODE, with values 123, 124, 125, and 126, respectively. (The VEND_CODE attribute in the
PRODUCT table is a foreign key to the VEND_CODE in the VENDOR table.) Given that information, what
would be the query output for:

a. A UNION query based on the two tables?

b. A UNION ALL query based on the two tables?
c. An INTERSECT query based on the two tables?
d. A MINUS query based on the two tables?

What string function should you use to list the first three characters of a company’s EMP_LNAME values? Give
an example using a table named EMPLOYEE. Provide examples for Oracle and SQL Server.

What is an Oracle sequence? Write its syntax.

What is a trigger, and what is its purpose? Give an example.

What is a stored procedure, and why is it particularly useful? Give an example.
What is embedded SQL, and how is it used?

What is dynamic SQL, and how does it differ from static SQL?

Use the database tables in Figure P8.1 as the basis for Problems 1-18.

ONLINE CONTENT

The ChO8_SimpleCo database is located in the Student Online Companion, as are the script files to
duplicate this data set in Oracle.

w

N g

Create the tables. (Use the MS Access example shown in Figure P8.1 to see what table names and attributes
to use.)
Insert the data into the tables you created in Problem 1.

Write the query that will generate a combined list of customers (from the tables CUSTOMER and CUSTOMER_2)
that do not include the duplicate customer records. (Note that only the customer named Juan Ortega shows up
in both customer tables.)

Write the query that will generate a combined list of customers to include the duplicate customer records.
Write the query that will show only the duplicate customer records.
Write the query that will generate only the records that are unique to the CUSTOMER_2 table.

Write the query to show the invoice number, the customer number, the customer name, the invoice date, and the
invoice amount for all customers with a customer balance of $1,000 or more.

4

C6545_08 9/7/2007 10:6:44 Page 368

368 CHAPTER 8

FIGURE Ch08_SimpleCo database tables

Database name: CH08_SimpleCo
Table name: CUSTOMER Table name: INVOICE
CUST_MUM | CUST_LWAME | CUST_FMAME | CUST_BALANCE IN_HUM | CUST_MUM | I _DATE | INY_AMOUNT |
1000 Smith Jeanne 105011 5000 1000 23-Mar-0g 235.89
1001 | Ortegs Jugn 540,92 3001 1001 23-Mar-0g 312.52
8002 1001 30-Mar-0g 528.10
Table name: CUSTOMER_2 8003 1000 12-&pr-0g 19478
CUST_NUM | CUST_LNAME | CUST_FNAME H004 1000 23-Apr-08 B19.44
2000| McPherson A
2001 | Ortega Juan
2002 | Kowwalski Jan
2003| Chen GEorge
8. Write the query that will show (for all the invoices) the invoice number, the invoice amount, the average invoice

amount, and the difference between the average invoice amount and the actual invoice amount.

9. Write the query that will write Oracle sequences to produce automatic customer number and invoice number
values. Start the customer numbers at 1000 and the invoice numbers at 5000.
10. Modify the CUSTOMER table to included two new attributes: CUST_DOB and CUST_AGE. Customer 1000
was born on March 15, 1979, and customer 1001 was born on December 22, 1988.
11. Assuming you completed Problem 10, write the query that will list the names and ages of your customers.
12. Assuming the CUSTOMER table contains a CUST_AGE attribute, write the query to update the values in that
attribute. (Hint: Use the results of the previous query.)
13. Write the query that lists the average age of your customers. (Assume that the CUSTOMER table has been
modified to include the CUST_DOB and the derived CUST_AGE attribute.)
14. Write the trigger to update the CUST_BALANCE in the CUSTOMER table when a new invoice record is entered.
(Assume that the sale is a credit sale.) Test the trigger, using the following new INVOICE record:
8005, 1001, ‘27-APR-08’, 225.40
Name the trigger trg_updatecustbalance.
15. Write a procedure to add a new customer to the CUSTOMER table. Use the following values in the new record:
1002, ‘Rauthor’, ‘Peter’, 0.00
Name the procedure prc_cust_add. Run a query to see if the record has been added.
16. Write a procedure to add a new invoice record to the INVOICE table. Use the following values in the new record:
8006, 1000, ‘30-APR-08’, 301.72
Name the procedure prc_invoice_add. Run a query to see if the record has been added.
17. Write a trigger to update the customer balance when an invoice is deleted. Name the trigger trg_
updatecustbalance2.
18. Write a procedure to delete an invoice, giving the invoice number as a parameter. Name the procedure
prc_inv_delete. Test the procedure by deleting invoices 8005 and 8006.
NOTE

The following problem sets can serve as the basis for a class project or case.

Use the ChO8_SaleCo2 database to work Problems 19-22, shown in Figure P8.19.

4

C6545_08 9/7/2007 10:7:18 Page 369

ADVANCED SQL

369

FIGURE Ch08_SaleCo2 database tables
P8.19

Database name: CH08_SaleCo2

Table name: CUSTOMER Table name: INVOICE

| SUS_CODE | CUS_LMAME | CUS_FHAME | CUS_MITIAL | CUS_AREACODE | CUS_PHONE | CUS_BALANCE [NOMBER [CUS_CODE | INv_DATE [INv_SUBTOTAL | INV_TAX_| INv_TOTAL
10010/ Ramas Alfred A B1S 844-2573 0.00 1001 10014] 16-Jan-08 24,90 133 2689
10041 | Dunne Leona K bk 8941238 0.00 1002 10011 16-Jan-08 .95 0.80 10.75
10012 Smith Kaithy w B1% 804-2285 34588 1003 10012 16-Jan-08 15365 1231 16616
10013 Olovarski Paul F 515 934-2160 53675 1004 10011| 17-Jan-08 34 97 280 3T
1001 4| Crlando Myran 515 2221672 0.00 1005 10018 17-Jan-08 7044 564 TE.06
10015 &*Brian Amy B k] 442-3361 0.00 1006 10014 17-Jan-03 397 83 3183 42966
10016 Brown James <] B15 297-1226 22119 1007 10015 17-Jan-08 3497 230 7T
10017 | iliams George 15 2902556 76893 1008 10011] 47-Jan-08 39915 3193 43108
10018 | Farriss Anne G RaE] 3827185 21655
10018 Smith Olette K B1S 297-3309 0.00

Table name: LINE

Table name: PRODUCT INY_WUMBER | LINE_NUMBER | P_CODE | LINE_UNITS | LINE_PRICE | LINE_TOTAL
101 1 13-02F2 1 1495 1495
| P_corE | P_DESCRIPT | PUNDATE | P_@OH [P_MIN | P_PRICE | P_DISCOUNT [¥_CODE 1001 2 23108-HB 1 985 935
1TQERMT | Power painter, 15 psi., 3-nozzle 03-how-07 [} 5 10888 000 25585 1002 1/ 8977827 2 498 933
13-Q2F2 |7 2500 pwr. saw blade 13-Dec-07 32 18 1488 005 21344 1003 1| 2238/8PD 1 3595 3895
141 |9.00-n. pvr. saw blade 13-Hov-07 1B 12 1748 000 21344 1003 21548002 1 39.95 39.95
1546-Q@2 |Hrd. cloth, 1/4-in., 2x50 15-Jan-08 15 s 3998 000 23119 1003 3/13-Q2P2 5 14.99 7495
1553-Gi1 | Hrd. cloth, 1/24in., 3x50 15-Jan-08 23 5 4389 000 2319 1004 1| 8477827 3 499 1497
2232007y | BED jigsaw, 1 2-n. blade 30-Dec-07 & s 10042 005 24283 1004 2/ 23103-HB 2 995 19.90
22320GMNE | BIED figsaw, B-in. klade 24-Dec-07 & s 97 005 24208 1005 1| PYC23DRT 121 547 044
22300GP0 | BED cordiess dril, 1/2-n 20-Jan-08 12 5 3885 005 25595 1005 1| sm18277 E] 639 2087
23I08HE | Clavy hammer 30-Jan-08 23 i 935 010/ 21235 1006 2 2zEAATY 1 10982 10892
23114-A4 | Sledge hammer, 12 b 02-Jan-08 8 s 1440 005 1008 3/23108-HB 1 935 935
5477627 | Rt tall file, 1/5-n. fine 15-Dec-07 43 488 000 21344 1008 4/ B3WRE-D 1 25699 256.99
B94ARE-Q | Hicut chain saw, 16 in 07-Feb-08 11 5 25699 005 24288 1007 1/13-02P2 2 1499 2993
PYCZ3DRT|PYC pipe, 3.5-n., 8-t 20-Fen08 188 75 S8 0.00 1007 2| 5477827 1 499 499
SW-18277 |1 25-in. metal screw, 25 O-Mar-03 172 75 693 000 21225 1008 1| PYC23DRT 5 587 2335
SW-23116 | 2.5-in. wel. screw, 50 24-Feh 08 237 100 345 000 2123 1008 2\ WR3TTE 3 119.95 35935
WRATT3 | Steel matting, 4xE1/8", 5" mesh | 17-Jan-0& 18 5 118485 010/ 25595 1008 3/23103-HB 1 235 935

Table name: VENDOR

| ¥ copE| W MAME | v_CONTACT | W_AREACODE | %_PHOME | W_STATE | W_CRDER
21225 Bryson, Inc. Stithzon E15 2233234 TM W
21226 SuperLoo, Inc. Flushing 904 2158995 FL N
21231 DAE Supply Singh 15 208-3245 | TH v
21344 Gomez Bros Ortega 615 6332546 KV i
22567 Dome Supply Smith am E78-1418 GA i
23119 Randsets Ltd Anderson ant E76-3998 | GA A
24004 Brackman Bros. Browning 615 2261410 | TH i
24288 ORDYA, Inc Hakford 615 8981234 TH A
25443 BEK, Inc. Smithy a04 2270093 FL il
258501 Damal Supplies Stmythe E15 #90-3529 (TM N
25585 Rubicon Systems | Orton 904 456-0092 (FL A

ONLINE CONTENT

The ChO8_SaleCo2 database used in Problems 19—22 is located in the Student Online Companion for this
book, as are the script files to duplicate this data set in Oracle.

19.

20.

21.

22.

Create a trigger named trg_line_total to write the LINE_TOTAL value in the LINE table every time you add a
new LINE row. (The LINE_TOTAL value is the product of the LINE_UNITS and the LINE_PRICE values.)

Create a trigger named trg_line_prod that will automatically update the quantity on hand for each product sold
after a new LINE row is added.

Create a stored procedure named prc_inv_amounts to update the INV_SUBTOTAL, INV_TAX, and INV_
TOTAL. The procedure takes the invoice number as a parameter. The INV_SUBTOTAL is the sum of the
LINE_TOTAL amounts for the invoice, the INV_TAX is the product of the INV_SUBTOTAL and the tax rate
(8%), and the INV_TOTAL is the sum of the INV_SUBTOTAL and the INV_TAX.

Create a procedure named prc_cus_balance_update that will take the invoice number as a parameter and
update the customer balance. (Hint: You can use the DECLARE section to define a TOTINV numeric variable
that holds the computed invoice total.)

Use the ChO8_AviaCo database to work Problems 23-34, shown in Figure P8.23.

4

C6545_08 8/15/2007 16:19:38 Page 370

370

CHAPTER 8

FIGURE

P8.23

Table name: CHARTER
CHAR_TRIP[CHAR_DATE | AC_NUMBER | CHAR_DESTINATION ‘ CHAR_DISTANCE‘ CHAR_HOURS_FLOWAN

Ch08_AviaCo database tables

OMS | CHAR_OL_QTS [CUS_CODE |

| HAR _HOURS_WAIT] CHAR_FUEL_GALL
2z

Database name: CH08_AviaCo

10001| 05-Feh-08 22861 ATL R 51 ETE] 1 10011 Table name: EARNEDRATING
10002 05-Feh-08 2778V EMA 320 16 0 726 0 1001
10003 05-Feb-08 42787 iy 1574 78 0 3398 2 10014, EMP_NUM | RTG_CODE | EARNRTG_DATE |
10004 0B-Feb-05 1484P STL 472 29 49 972 1 10019 101 ol 18-Feb88
10005 0E-Fen-08 2289 ATL 1023 57 35 3077 2 10011 101 cFIl 15.0ec.05
10006 06-Feh-08 42787 STL 472 26 52 174 0 10017 101 NETR OB-hlow-93
10007 0B-Feh08 2778V Ry 1574 79 0 3484 2 10012 101 MEL 23-Jun-34
10006 07-Feb-06 1484 TS 644 41 0 1406 1 10014, 101 SEL 21-pr-93
10009 07-Feb-08 2280 Gy 1574 65 234 459.9 i 10017, 104 NETR 15-0ul-56
10010 07-Feb-08 4278V ATL 958 6.2 3.2 2797 0 10016 104 MEL 29-Jan 97
10011| 07-Feb-0 1489P Bre a2 19 53 6.4 1 10012 104 SEL 12-Mar-25
10012 08-Feh-08 2778V MO 884 48 42 2154 0 10010, 105 ¢l 18 Now.97
10013 08-Feb-08 42787 TS 644 a8 45 1743 1 10011 105 NSTR 17-Apr-95
10014 09-Feh-08 42787 ATL a3 6.1 24 026 i 10017, 105 MEL 12-8ug-05
10015 09-Fen-0 2289 N 1645 6.7 0 45935 2 10016 105 SEL 23-58p-94
10016 09-Feh-08 2778V May 2z 15 0 572 0 10011 108 INSTR 20-Dec-95
10017| 10-Feh-05 1484P STl 505 EX 0 1055 0 10014, 108 MEL 12-Apr-95
10016 10-Feb-08 42787 TS 644 a8 45 167.4 0 10017 108 SEL 10 Mar-34
109 cFl 05-Now-98
108 CFIl 21-0un03
Table name: CREW Table name: CREW 108 INSTR 256
108 MEL 15-Mar-97
CHAR_TRP | EMP_NUM | CREW_JOB [cUS_cODE [CUS_MAME | CUS_FMAME | CUS_NTIAL | CUS_AREACODE | CUS_PHOME | CLIS_BALARCE | 108 SEL 05-Feh-96
10001 104 Pilct 10010 Ramas Alfred A 615 844-2573 000 109 SES 12-Mery-96
10002 101 it 10011 Bunne Leona K T3 694-1238 0.0
10003 10| Pilct 10012 Smith Kathy W 615 94-2285 896,54
10003 108 Copilot 10013 Olowski Paul F 615 94-2180 128519 Table name: RATING
10004, 106 Filct 10014) Orlando Myron 615 2221672 57321
10005 0 | Filot 10015 O'Brian Ay B L] 442-3381 101456 [[R1e_cope | [EIELLE |
100086 108 Pilot 10016 Brown James <] 615 257-1228 000 CFl Certifieat Flight Instructor
10007 104 Filat 10017 Wiliams: George 615 230-2556 0.00 CFI Cerlfiedt Flight Instructor, Instrument
10007 105 Copilat 10018 Farriss Anng G 713 3827185 000 INSTR Instrumertt
10008 108 | Filat 10013 Smith Olette K 615 297-3809 453.98 MEL Mutiengine Land
10009 105 Pt SEL Single Engine, Land
1000 108/ Pilct sES single Enging, Sea
10011 101 Pict Table name: CREW
10011 104 Coplot
10012 101 Pilat [EMP_MUM | EMP_TITLE | EMP_LMAME | EMP_FMNAME | EMP_INTIAL | EMP DOB | EMP_HIRE DATE Table name: MODEL
10013 105 Filat 100 Mr. Kalmyez George 3 15-Iur-1942 15-Mar-1 987
10014, 108 Filat 101 Ms Lewis Rhonda [19-Mar-1985 25-mpr-1988 [MOD_CODE | MOD_MANJFACTURER [MOD_NAME [MOD_SEATS | MOD_CHG MILE |
10015 101 Copilat 102 Mr. andam Rhett 14-Mov-1358 20-Dec-1932 €904 Beecheraft Kingir & 267
10015 104 Pilct 103 Ms. Jones Anne W 16-Oct-1574) 28-4ug-2005 P#23-250 Piper Ate & 1.83
10016 105 Copiot 104 Mr. Lange John 3 08-Nov-1971 20-0ct-1996 PAT-350 Piper Narvajo Chieftain 10 2.35)
10015, 103 Filat 105 M. willams Robert 3 14-Mar-1975 06-Jan-2006
10017, 101 Pilat 108 Mrs Duzak Jearine K 12-Feh-1968 05-Jan-1891
10013 104 Coplot 107 M. Diarte Jorge 3 21-Aug-1974 021996
10018 105 Pilat 108 hir wiesenach | Paul [14-Feb-1966 18-Nov-1394,
108/ Ms Travis Elizabeth K 18-Jun-1861 14-2pr-1891
10/ Mrs, Genkazi Leighia W 18-May-1970 01-Dec-1992
Table name: AIRCRAFT
[AC_MUMBER [MOD_GODE | AC TTAF | AC TTEL | AC TTER Table name: PILOT
1484P PA23-250 18331] 18331 1018
T80l 08 42438 7680 234 [Pt | PIL_LicEnsE | FIL_RATINGS PIL_MED_T+FE | PIL_MED_DATE | FIL_PT135_DATE
orray PL31-350 79928 15131 7895 101 AT ATR/SELMELINStr/CFI 1 20-Jan-08 11-Jan-08
4278y PA31-350 21473 5291 2433 104 ATP ATP/SELMELInstr 1 18-Dec-07 A7-Jan-08
105 COM COMMSELMELAnstr/cFl |2 05-Jan-08 02-Jan-08
105 COM COMMISELMELinstr 2 10-Dec-07 02-Feb-08
108 COM ATP/SELMELSESnstriCFI |1 22-Jan-08 15-Jan-08

ONLINE CONTENT

The ChO8_AviaCo database used for Problems 23 —34 is located in the Student Online Companion for this
book, as are the script files to duplicate this data set in Oracle.

23. Modify the MODEL table to add the attribute and insert the values shown in the following table.

MOD_WAIT_CHG Waiting charge per hour for each model | Numeric $100 for C-90A
$50 for PA23-250
$75 for PA31-350

24. Write the queries to update the MOD_WAIT_CHG attribute values based on Problem 23.
25. Modify the CHARTER table to add the attributes shown in the following table.

C6545_08 9/7/2007 10:7:39 Page 371 ‘

ATTRIBUTE NAME ATTRIBUTE DESCRIPTION ATTRIBUTE
TYPE

CHAR_WAIT_CHG Waiting charge for each model (copied from the MODEL table) Numeric

CHAR_FLT_CHG_HR Flight charge per mile for each model (copied from the MODEL table | Numeric
using the MOD CHG MILE attribute)

CHAR _FLT CHG Flight charge (calculated by CHAR_HOURS_FLOWN x Numeric
CHAR FLT CHG HR)

CHAR TAX CHG CHAR_FLT CHG x tax rate (8%) Numeric

CHAR_TOT_CHG CHAR_FLT_CHG + CHAR_TAX_CHG Numeric

CHAR_PYMT Amount paid by customer Numeric

CHAR_BALANCE Balance remaining after payment Numeric

26. Write the sequence of commands required to update the CHAR_WAIT_CHG attribute values in the CHARTER
table. (Hint: Use either an updatable view or a stored procedure.)

27. Write the sequence of commands required to update the CHAR_FLT_CHG_HR attribute values in the
CHARTER table. (Hint: Use either an updatable view or a stored procedure.)

28. Write the command required to update the CHAR_FLT_CHG attribute values in the CHARTER table.
29. Write the command required to update the CHAR_TAX_CHG attribute values in the CHARTER table.
30. Write the command required to update the CHAR_TOT_CHG attribute values in the CHARTER table.
31. Modify the PILOT table to add the attribute shown in the following table.

ATTRIBUTE NAME ATTRIBUTE DESCRIPTION ATTRIBUTE

TYPE
PIL_PIC_HRS Pilot in command (PIC) hours; updated by adding the CHARTER table’s | Numeric
CHAR_HOURS_FLOWN to the PIL_PIC_HRS when the CREW table shows the
CREW_JOB to be pilot

32. Create a trigger named trg_char_hours that will automatically update the AIRCRAFT table when a new
CHARTER row is added. Use the CHARTER table’s CHAR_HOURS_FLOWN to update the AIRCRAFT table’s
AC_TTAF, AC_TTEL, and AC_TTER values.

33. Create a trigger named trg_pic_hours that will automatically update the PILOT table when a new CREW row
is added and the CREW table uses a ‘pilot’ CREW_JOB entry. Use the CHARTER table’s CHAR_HOURS _
FLOWN to update the PILOT table’s PIL._PIC_HRS only when the CREW table uses a ‘pilot” CREW_JOB entry.

34. Create a trigger named trg_cust_balance that will automatically update the CUSTOMER table’s CUST_
BALANCE when a new CHARTER row is added. Use the CHARTER table’s CHAR_TOT_CHG as the update
source. (Assume that all charter charges are charged to the customer balance.)

