
Preview

Database Design

In this chapter, you will learn:

� That successful database design must reflect the information system of which the database is
a part

� That successful information systems are developed within a framework known as the
Systems Development Life Cycle (SDLC)

� That within the information system, the most successful databases are subject to frequent
evaluation and revision within a framework known as the Database Life Cycle (DBLC)

� How to conduct evaluation and revision within the SDLC and DBLC frameworks

� About database design strategies: top-down vs. bottom-up design and centralized vs.
decentralized design

Databases are a part of a larger picture called an information system. Database designs that

fail to recognize that the database is part of this larger whole are not likely to be successful.

That is, database designers must recognize that the database is a critical means to an end

rather than an end in itself. (Managers want the database to serve their management needs,

but too many databases seem to require that managers alter their routines to fit the

database requirements.)

Information systems don’t just happen; they are the product of a carefully staged

development process. Systems analysis is used to determine the need for an information

system and to establish its limits.Within systems analysis, the actual information system is

created through a process known as systems development.

The creation and evolution of information systems follows an iterative pattern called the

Systems Development Life Cycle, a continuous process of creation, maintenance, enhance-

ment, and replacement of the information system.A similar cycle applies to databases.The

database is created, maintained, and enhanced. When even enhancement can no longer

stretch the database’s usefulness and the database can no longer perform its functions

adequately, it might have to be replaced.The Database Life Cycle is carefully traced in this

chapter and is shown in the context of the larger Systems Development Life Cycle.

At the end of the chapter, you are introduced to some classical approaches to database

design: top-down vs. bottom-up and centralized vs. decentralized.

9
N

I
N

E

C6545_09 8/16/2007 13:2:36 Page 372

9.1 THE INFORMATION SYSTEM

Basically, a database is a carefully designed and constructed repository of facts. The database is a part of a larger whole
known as an information system, which provides for data collection, storage, and retrieval. The information system
also facilitates the transformation of data into information, and it allows for the management of both data and
information. Thus, a complete information system is composed of people, hardware, software, the database(s),
application programs, and procedures. Systems analysis is the process that establishes the need for and the extent
of an information system. The process of creating an information system is known as systems development.

One key characteristic of current information systems is the strategic value of information in the age of global business.
Therefore, information systems should always be aligned with the strategic business goals; the view of isolated and
independent information systems is no longer valid. Current information systems should always be integrated with the
company’s enterprise-wide information systems architecture.

Within the framework of systems development, applications transform data into the information that forms the basis
for decision making. Applications usually produce formal reports, tabulations, and graphic displays designed to
produce insight into the information. Figure 9.1 illustrates that every application is composed of two parts: the data
and the code (program instructions) by which the data are transformed into information. Data and code work together
to represent real-world business functions and activities. At any given moment, physically stored data represent a
snapshot of the business. But the picture is not complete without an understanding of the business activities that are
represented by the code.

Note

This chapter is not meant to cover all aspects of systems analysis and development—those usually are covered
in a separate course or book. However, this chapter should help you develop a better understanding of the
issues associated with database design, implementation, and management that are affected by the information
system in which the database is a critical component.

4th Qtr3rd Qtr2nd Qtr

90
80
70
60
50
40
30
20
10
0

1st Qtr

FIGURE
9.1

Generating information for decision making

Application
code

Information

Decisions

East

West

North

South

Data

C6545_09 9/4/2007 14:33:21 Page 373

373D A T A B A S E D E S I G N

The performance of an information system depends on a triad of factors:

� Database design and implementation.

� Application design and implementation.

� Administrative procedures.

This book emphasizes the database design and implementation segment of the triad—arguably the most important of
the three. However, failure to address the other two segments will likely yield a poorly functioning information system.
Creating a sound information system is hard work: systems analysis and development require much planning to ensure
that all of the activities will interface with each other, that they will complement each other, and that they will be
completed on time.

In a broad sense, the term database development describes the process of database design and implementation.
The primary objective in database design is to create complete, normalized, nonredundant (to the extent possible), and
fully integrated conceptual, logical, and physical database models. The implementation phase includes creating the
database storage structure, loading data into the database, and providing for data management.

To make the procedures discussed in this chapter broadly applicable, the chapter focuses on the elements that are
common to all information systems. Most of the processes and procedures described in this chapter do not depend on
the size, type, or complexity of the database being implemented. However, the procedures that would be used to design
a small database, such as one for a neighborhood shoe store, do not precisely scale up to the procedures that would
be needed to design a database for a large corporation or even a segment of such a corporation. To use an analogy,
building a small house requires a blueprint, just as building the Golden Gate Bridge does, but the bridge requires more
complex and further-ranging planning, analysis, and design than the house.

The next sections will trace the overall Systems Development Life Cycle and the related Database Life Cycle. Once you
are familiar with those processes and procedures, you will learn about various approaches to database design, such as
top-down vs. bottom-up and centralized vs. decentralized design.12

1See Rapid Application Development, James Martin, Prentice-Hall, Macmillan College Division, 1991.
2Further information about Agile Software Development can be found at www.agilealliance.org.

Note

The Systems Development Life Cycle (SDLC) is a general framework through which you can track and come to
understand the activities required to develop and maintain information systems. Within that framework, there
are several ways to complete various tasks specified in the SDLC. For example, this texts focus is on ER modeling
and on relational database implementation issues, and that focus is maintained in this chapter. However, there
are alternative methodologies, such as:

• Unified Modeling Language (UML) provides object-oriented tools to support the tasks associated with the
development of information systems. UML is covered in Appendix H, Unified Modeling
Language (UML), in the Student Online Companion.

• Rapid Application Development (RAD)1 is an iterative software development methodology that uses
prototypes, CASE tools, and flexible management to develop application systems. RAD started as an
alternative to traditional structured development which had long deliverable times and unfulfilled
requirements.

• Agile Software Development2 is a framework for developing software applications that divides the work to
be done in smaller subprojects to obtain valuable deliverables in shorter times and with better cohesion.
This method emphasizes close communication among all users and continuous evaluation with the
purpose of increasing customer satisfaction.

Although the development methodologies may change, the basic framework within which those method-
ologies are used does not change.

C6545_09 9/4/2007 14:33:56 Page 374

374 C H A P T E R 9

9.2 THE SYSTEMS DEVELOPMENT LIFE CYCLE (SDLC)

The Systems Development Life Cycle (SDLC) traces the history (life cycle) of an information system. Perhaps
more important to the system designer, the SDLC provides the big picture within which the database design and
application development can be mapped out and evaluated.

As illustrated in Figure 9.2, the traditional SDLC is divided into five phases: planning, analysis, detailed systems design,
implementation, and maintenance. The SDLC is an iterative rather than a sequential process. For example, the details
of the feasibility study might help refine the initial assessment, and the details discovered during the user requirements
portion of the SDLC might help refine the feasibility study.

Because the Database Life Cycle (DBLC) fits into and resembles the Systems Development Life Cycle (SDLC), a brief
description of the SDLC is in order.

FIGURE
9.2

The Systems Development Life Cycle (SDLC)

Planning

Analysis

Detailed
systems design

Implementation

Maintenance

Phase

Initial assessment
Feasibility study

User requirements
Existing system evaluation
Logical system design

Detailed system specification

Coding, testing, and debugging
Installation, fine-tuning

Evaluation
Maintenance
Enhancement

Action(s) Section

9.2.1

9.2.2

9.2.3

9.2.4

9.2.5

C6545_09 8/16/2007 13:20:31 Page 375

375D A T A B A S E D E S I G N

9.2.1 Planning

The SDLC planning phase yields a general overview of the company and its objectives. An initial assessment of the
information flow-and-extent requirements must be made during this discovery portion of the SDLC. Such an
assessment should answer some important questions:

� Should the existing system be continued? If the information generator does its job well, there is no point in
modifying or replacing it. To quote an old saying, “If it ain’t broke, don’t fix it.”

� Should the existing system be modified? If the initial assessment indicates deficiencies in the extent and flow
of the information, minor (or even major) modifications might be in order. When considering modifications, the
participants in the initial assessment must keep in mind the distinction between wants and needs.

� Should the existing system be replaced? The initial assessment might indicate that the current system’s flaws
are beyond fixing. Given the effort required to create a new system, a careful distinction between wants and
needs is perhaps even more important in this case than it is in modifying the system.

Participants in the SDLC’s initial assessment must begin to study and evaluate alternative solutions. If it is decided that
a new system is necessary, the next question is whether it is feasible. The feasibility study must address the following:

� The technical aspects of hardware and software requirements. The decisions might not (yet) be vendor-
specific, but they must address the nature of the hardware requirements (desktop computer, multiprocessor
computer, mainframe, or supercomputer) and the software requirements (single- or multiuser operating
systems, database type and software, programming languages to be used by the applications, and so on).

� The system cost. The admittedly mundane question, “Can we afford it?” is crucial. (And the answer to that
question might force a careful review of the initial assessment.) It bears repeating that a million-dollar solution
to a thousand-dollar problem is not defensible.

� The operational cost. Does the company possess the human, technical, and financial resources to keep the
system operational? Do we count in the cost the management and end-user support needed to put in place the
operational procedures to ensure the success of this system?

9.2.2 Analysis

Problems defined during the planning phase are examined in greater detail during the analysis phase. A macroanalysis
must be made of both individual needs and organizational needs, addressing questions such as:

� What are the requirements of the current system’s end users?

� Do those requirements fit into the overall information requirements?

The analysis phase of the SDLC is, in effect, a thorough audit of user requirements.

The existing hardware and software systems are also studied during the analysis phase. The result of analysis should
be a better understanding of the system’s functional areas, actual and potential problems, and opportunities.

End users and the system designer(s) must work together to identify processes and to uncover potential problem areas.
Such cooperation is vital to defining the appropriate performance objectives by which the new system can be judged.

Along with a study of user requirements and the existing systems, the analysis phase also includes the creation of a
logical systems design. The logical design must specify the appropriate conceptual data model, inputs, processes, and
expected output requirements.

When creating a logical design, the designer might use tools such as data flow diagrams (DFDs), hierarchical input
process output (HIPO) diagrams, and entity relationship (ER) diagrams. The database design’s data-modeling activities
take place at this point to discover and describe all entities and their attributes and the relationships among the entities
within the database.

C6545_09 8/16/2007 13:20:52 Page 376

376 C H A P T E R 9

Defining the logical system also yields functional descriptions of the system’s components (modules) for each process
within the database environment. All data transformations (processes) are described and documented using such
systems analysis tools as DFDs. The conceptual data model is validated against those processes.

9.2.3 Detailed Systems Design

In the detailed systems design phase, the designer completes the design of the system’s processes. The design includes
all the necessary technical specifications for the screens, menus, reports, and other devices that might be used to help
make the system a more efficient information generator. The steps are laid out for conversion from the old to the new
system. Training principles and methodologies are also planned and must be submitted for management’s approval.

9.2.4 Implementation

During the implementation phase, the hardware, DBMS software, and application programs are installed, and the
database design is implemented. During the initial stages of the implementation phase, the system enters into a cycle
of coding, testing, and debugging until it is ready to be delivered. The actual database is created, and the system is
customized by the creation of tables and views, user authorizations, and so on.

The database contents might be loaded interactively or in batch mode, using a variety of methods and devices:

� Customized user programs.

� Database interface programs.

� Conversion programs that import the data from a different file structure, using batch programs, a database
utility, or both.

The system is subjected to exhaustive testing until it is ready for use. Traditionally, the implementation and testing of
a new system took 50 to 60 percent of the total development time. However, the advent of sophisticated application
generators and debugging tools has substantially decreased coding and testing time. After testing is concluded, the final
documentation is reviewed and printed and end users are trained. The system is in full operation at the end of this
phase but will be continuously evaluated and fine-tuned.

Note

Because attention has been focused on the details of the systems design process, the book has not until this
point explicitly recognized the fact that management approval is needed at all stages of the process. Such
approval is needed because a GO decision requires funding. There are many GO/NO GO decision points along
the way to a completed systems design!

C6545_09 8/16/2007 13:24:1 Page 377

377D A T A B A S E D E S I G N

9.2.5 Maintenance

Almost as soon as the system is operational, end users begin to request changes in it. Those changes generate system
maintenance activities, which can be grouped into three types:

� Corrective maintenance in response to systems errors.

� Adaptive maintenance due to changes in the business environment.

� Perfective maintenance to enhance the system.

Because every request for structural change requires retracing the SDLC steps, the system is, in a sense, always at
some stage of the SDLC.

Each system has a predetermined operational life span. The actual operational life span of a system depends on its
perceived utility. There are several reasons for reducing the operational life of certain systems. Rapid technological
change is one reason, especially for systems based on processing speed and expandability. Another common reason
is the cost of maintaining a system.

If the system’s maintenance cost is high, its value becomes suspect. Computer-aided systems engineering (CASE)
technology, such as System Architect or Visio Professional, helps make it possible to produce better systems within a
reasonable amount of time and at a reasonable cost. In addition, CASE-produced applications are more structured,
documented, and especially standardized, which tends to prolong the operational life of systems by making them
easier and cheaper to update and maintain. For example, if you have used Microsoft’s Visio Professional to develop
your database design, you already know that Visio Professional tests the internal consistency of your ERDs when you
create the relationships. Visio Professional implements the FKs according to the design’s entity types (weak, strong)
and the nature of the relationship (identifying, non-identifying) between those entities. When you see the result of the
implementation, you immediately see whether the results are what you intended them to be. In addition, if there are
circular arguments in the design, Visio Professional will make that clear. Therefore, you will be able to spot design
problems before they become permanent.

9.3 THE DATABASE LIFE CYCLE (DBLC)

Within the larger information system, the database, too, is subject to a life cycle. The Database Life Cycle (DBLC)
contains six phases, as shown in Figure 9.3: database initial study, database design, implementation and loading,
testing and evaluation, operation, and maintenance and evolution.

C6545_09 9/4/2007 14:37:7 Page 378

378 C H A P T E R 9

9.3.1 The Database Initial Study

If a designer has been called in, chances are the current system has failed to perform functions deemed vital by the
company. (You don’t call the plumber unless the pipes leak.) So in addition to examining the current system’s operation
within the company, the designer must determine how and why the current system fails. That means spending a lot of time
talking with (but mostly listening to) end users. Although database design is a technical business, it is also people-oriented.
Database designers must be excellent communicators, and they must have finely tuned interpersonal skills.

Depending on the complexity and scope of the database environment, the database designer might be a lone operator
or part of a systems development team composed of a project leader, one or more senior systems analysts, and one
or more junior systems analysts. The word designer is used generically here to cover a wide range of design team
compositions.

FIGURE
9.3

The Database Life Cycle (DBLC)

Database initial
study

Database design

Implementation
and loading

Testing and
evaluation

Operation

Maintenance and
evolution

Phase

Analyze the company situation

Action(s) Section

9.3.1

9.3.2

9.3.3

9.3.4

9.3.5

9.3.6

Define problems and constraints
Define objectives
Define scope and boundaries

Create the conceptual design
DBMS software selection
Create the logical design
Create the physical design

Install the DBMS
Create the database(s)
Load or convert the data

Test the database
Fine-tune the database
Evaluate the database and its application programs

Produce the required information flow

Introduce changes
Make enhancements

C6545_09 9/4/2007 14:37:8 Page 379

379D A T A B A S E D E S I G N

The overall purpose of the database initial study is to:

� Analyze the company situation.

� Define problems and constraints.

� Define objectives.

� Define scope and boundaries.

Figure 9.4 depicts the interactive and iterative processes required to complete the first phase of the DBLC successfully.
As you examine Figure 9.4, note that the database initial study phase leads to the development of the database system
objectives. Using Figure 9.4 as a discussion template, let’s examine each of its components in greater detail.

Analyze the Company Situation
The company situation describes the general conditions in which a company operates, its organizational structure,
and its mission. To analyze the company situation, the database designer must discover what the company’s
operational components are, how they function, and how they interact.

FIGURE
9.4

A summary of activities in the database initial study

Analysis of the
company situation

Company operationsCompany objectives Company structure

Definition of
problems and constraints

Database system
specifications

ScopeObjectives Boundaries

C6545_09 8/16/2007 13:25:2 Page 380

380 C H A P T E R 9

These issues must be resolved:

� What is the organization’s general operating environment, and what is its mission within that
environment? The design must satisfy the operational demands created by the organization’s mission. For
example, a mail-order business is likely to have operational requirements involving its database that are quite
different from those of a manufacturing business.

� What is the organization’s structure? Knowing who controls what and who reports to whom is quite useful
when you are trying to define required information flows, specific report and query formats, and so on.

Define Problems and Constraints
The designer has both formal and informal sources of information. If the company has existed for any length of time,
it already has some kind of system in place (either manual or computer-based). How does the existing system function?
What input does the system require? What documents does the system generate? By whom and how is the system
output used? Studying the paper trail can be very informative. In addition to the official version of the system’s
operation, there is also the more informal, real version; the designer must be shrewd enough to see how these differ.

The process of defining problems might initially appear to be unstructured. Company end users are often unable to
describe precisely the larger scope of company operations or to identify the real problems encountered during
company operations. Often the managerial view of a company’s operation and its problems is different from that of
the end users, who perform the actual routine work.

During the initial problem definition process, the designer is likely to collect very broad problem descriptions. For
example, note these concerns expressed by the president of a fast-growing transnational manufacturing company:

Although the rapid growth is gratifying, members of the management team are concerned that such growth is
beginning to undermine the ability to maintain a high customer service standard and, perhaps worse, to diminish
manufacturing standards control.

The problem definition process quickly leads to a host of general problem descriptions. For example, the marketing
manager comments:

I’m working with an antiquated filing system. We manufacture more than 1,700 specialty machine parts. When
a regular customer calls in, we can’t get a very quick inventory scan. If a new customer calls in, we can’t do a
current parts search by using a simple description, so we often do a machine setup for a part that we have in
inventory. That’s wasteful. And of course, some new customers get irritated when we can’t give a quick response.

The production manager comments:

At best, it takes hours to generate the reports I need for scheduling purposes. I don’t have hours for quick
turnarounds. It’s difficult to manage what I don’t have information about.

I don’t get quick product request routing. Take machine setup. Right now I’ve got operators either waiting for
the right stock or getting it themselves when a new part is scheduled for production. I can’t afford to have an
operator doing chores that a much lower-paid worker ought to be doing. There’s just too much waiting around
with the current scheduling. I’m losing too much time, and my schedules back up. Our overtime bill is ridiculous.

I sometimes produce parts that are already in inventory because we don’t seem to be able to match what we’ve
got in inventory with what we have scheduled. Shipping yells at me because I can’t turn out the parts, and often
they’ve got them in inventory one bay down. That’s costing us big bucks sometimes.

New reports can take days or even weeks to get to my office. And I need a ton of reports to schedule personnel,
downtime, training, etc. I can’t get new reports that I need NOW. What I need is the ability to get quick updates
on percent defectives, percent rework, the effectiveness of training, you name it. I need such reports by shift, by
date, by any characteristic I can think of to help me manage scheduling, training, you name it.

C6545_09 8/16/2007 13:25:2 Page 381

381D A T A B A S E D E S I G N

A machine operator comments:

It takes a long time to set my stuff up. If I get my schedule banged up because John doesn’t get the paperwork
on time, I wind up looking for setup specs, startup material, bin assignments, and other stuff. Sometimes I spend
two or three hours just setting up. Now you know why I can’t meet schedules. I try to be productive, but I’m
spending too much time getting ready to do my job.

After the initial declarations, the database designer must continue to probe carefully in order to generate additional
information that will help define the problems within the larger framework of company operations. How does the
problem of the marketing manager’s customer fit within the broader set of marketing department activities? How does
the solution to the customer’s problem help meet the objectives of the marketing department and the rest of the
company? How do the marketing department’s activities relate to those of the other departments? That last question
is especially important. Note that there are common threads in the problems described by the marketing and
production department managers. If the inventory query process can be improved, both departments are likely to find
simple solutions to at least some of the problems.

Finding precise answers is important, especially concerning the operational relationships among business units. If a
proposed system will solve the marketing department’s problems but exacerbate those of the production department,
not much progress will have been made. Using an analogy, suppose your home water bill is too high. You have
determined the problem: the faucets leak. The solution? You step outside and cut off the water supply to the house.
Is that an adequate solution? Or would the replacement of faucet washers do a better job of solving the problem? You
might find the leaky faucet scenario simplistic, yet almost any experienced database designer can find similar instances
of so-called database problem solving (admittedly more complicated and less obvious).

Even the most complete and accurate problem definition does not always lead to the perfect solution. The real world
usually intrudes to limit the design of even the most elegant database by imposing constraints. Such constraints include
time, budget, personnel, and more. If you must have a solution within a month and within a $12,000 budget, a solution
that takes two years to develop at a cost of $100,000 is not a solution. The designer must learn to distinguish
between what’s perfect and what’s possible.

Define Objectives
A proposed database system must be designed to help solve at least the major problems identified during the problem
discovery process. As the list of problems unfolds, several common sources are likely to be discovered. In the previous
example, both the marketing manager and the production manager seem to be plagued by inventory inefficiencies. If
the designer can create a database that sets the stage for more efficient parts management, both departments gain.
The initial objective, therefore, might be to create an efficient inventory query and management system.

Note that the initial study phase also yields proposed problem solutions. The designer’s job is to make sure that the
database system objectives, as seen by the designer, correspond to those envisioned by the end user(s). In any case,
the database designer must begin to address the following questions:

� What is the proposed system’s initial objective?

� Will the system interface with other existing or future systems in the company?

� Will the system share the data with other systems or users?

Note

When trying to develop solutions, the database designer must look for the source of the problems. There are
many cases of database systems that failed to satisfy the end users because they were designed to treat the
symptoms of the problems rather than their source.

C6545_09 8/17/2007 14:20:13 Page 382

382 C H A P T E R 9

Define Scope and Boundaries
The designer must recognize the existence of two sets of limits: scope and boundaries. The system’s scope defines
the extent of the design according to operational requirements. Will the database design encompass the entire
organization, one or more departments within the organization, or one or more functions of a single department? The
designer must know the “size of the ballpark.” Knowing the scope helps in defining the required data structures, the
type and number of entities, the physical size of the database, and so on.

The proposed system is also subject to limits known as boundaries, which are external to the system. Has any
designer ever been told, “We have all the time in the world” or “Use an unlimited budget and use as many people as
needed to make the design come together”? Boundaries are also imposed by existing hardware and software. Ideally,
the designer can choose the hardware and software that will best accomplish the system goals. In fact, software
selection is an important aspect of the Systems Development Life Cycle. Unfortunately, in the real world, a system
often must be designed around existing hardware. Thus, the scope and boundaries become the factors that force the
design into a specific mold, and the designer’s job is to design the best system possible within those constraints. (Note
that problem definitions and the objectives sometimes must be reshaped to meet the system scope and boundaries.)

9.3.2 Database Design

The second phase focuses on the design of the database model that will support company operations and objectives.
This is arguably the most critical DBLC phase: making sure that the final product meets user and system requirements.
In the process of database design, you must concentrate on the data characteristics required to build the database
model. At this point, there are two views of the data within the system: the business view of data as a source of
information and the designer’s view of the data structure, its access, and the activities required to transform the data
into information. Figure 9.5 contrasts those views. Note that you can summarize the different views by looking at the
terms what and how. Defining data is an integral part of the DBLC’s second phase.

As you examine the procedures required to complete the design phase in the DBLC, remember these points:

� The process of database design is loosely related to the analysis and design of a larger system. The data
component is only one element of a larger information system.

� The systems analysts or systems programmers are in charge of designing the other system components. Their
activities create the procedures that will help transform the data within the database into useful information.

� The database design does not constitute a sequential process. Rather, it is an iterative process that provides
continuous feedback designed to trace previous steps.

C6545_09 8/16/2007 13:26:41 Page 383

383D A T A B A S E D E S I G N

The database design process is depicted in Figure 9.6. Look at the procedure flow in the figure.

Now let’s explore in detail each of the components in Figure 9.6. Knowing those details will help you successfully
design and implement databases in a real-world setting.

Co m p a n y D a t a b a s e

FIGURE
9.5

Two views of data: business manager and database designer

Company

PurchasingEngineering Manufacturing

Shared information

Manager’s view

Designer’s view

What are the problems?
What are the solutions?
What information is needed to
implement the solutions?
What data are required to
generate the desired information?

How must the data be structured?
How will the data be accessed?
How are the data transformed
into information?

C6545_09 8/16/2007 13:29:13 Page 384

384 C H A P T E R 9

I. Conceptual Design
In the conceptual design stage, data modeling is used to create an abstract database structure that represents
real-world objects in the most realistic way possible. The conceptual model must embody a clear understanding of the
business and its functional areas. At this level of abstraction, the type of hardware and/or database model to be used
might not yet have been identified. Therefore, the design must be software- and hardware-independent so the system
can be set up within any hardware and software platform chosen later.

Keep in mind the following minimal data rule:

All that is needed is there, and all that is there is needed.

FIGURE
9.6

Procedure flow in the database design

Database analysis
and requirements

I. Conceptual Design

Entity relationship modeling
and normalization

Data model verification

Distributed database design*

DBMS software selection

Logical design

Physical design

II.

III.

IV.

Determine end-user views, outputs,
and transaction-processing requirements.

Define entities, attributes, and relationships.
Draw ER diagrams. Normalize tables.

Identify main processes, insert, update,
and delete rules.

Define the location of tables, access
requirements, and fragmentation strategy.

Translate the conceptual model into definitions
for tables, views, and so on.

Define storage structures and access paths for
optimum performance.

* See Chapter 12, Distributed Database Management Systems.

DBMS-
dependent

Hardware-
dependent

DBMS-
independent

O n l i n e C o n t e n t

In Appendixes B and C in the Student Online Companion, The University Lab: Conceptual Design
and The University Lab: Conceptual Design Verification, Logical Design, and
Implementation, respectively, you learn what happens during each of these stages in developing real
databases.

C6545_09 8/16/2007 13:29:25 Page 385

385D A T A B A S E D E S I G N

In other words, make sure that all data needed are in the model and that all data in the model are needed. All data
elements required by the database transactions must be defined in the model, and all data elements defined in the
model must be used by at least one database transaction.

However, as you apply the minimal data rule, avoid an excessive short-term bias. Focus not only on the immediate data
needs of the business, but also on the future data needs. Thus, the database design must leave room for future
modifications and additions, ensuring that the business’s investment in information resources will endure.

Note in Figure 9.6 that conceptual design requires four steps, examined in the next sections:

1. Data analysis and requirements

2. Entity relationship modeling and normalization

3. Data model verification

4. Distributed database design

Data Analysis and Requirements The first step in conceptual design is to discover the characteristics of the
data elements. An effective database is an information factory that produces key ingredients for successful decision
making. Appropriate data element characteristics are those that can be transformed into appropriate information.
Therefore, the designer’s efforts are focused on:

� Information needs. What kind of information is needed—that is, what output (reports and queries) must be
generated by the system, what information does the current system generate, and to what extent is that
information adequate?

� Information users. Who will use the information? How is the information to be used? What are the various
end-user data views?

� Information sources. Where is the information to be found? How is the information to be extracted once it
is found?

� Information constitution. What data elements are needed to produce the information? What are the data
attributes? What relationships exist among the data? What is the data volume? How frequently are the data
used? What data transformations are to be used to generate the required information?

The designer obtains the answers to those questions from a variety of sources in order to compile the necessary
information. Note these sources:

� Developing and gathering end-user data views. The database designer and the end user(s) interact to jointly
develop a precise description of end-user data views. In turn, the end-user data views will be used to help
identify the database’s main data elements.

� Directly observing the current system: existing and desired output. The end user usually has an existing
system in place, whether it’s manual or computer-based. The designer reviews the existing system to identify
the data and their characteristics. The designer examines the input forms and files (tables) to discover the data
type and volume. If the end user already has an automated system in place, the designer carefully examines the
current and desired reports to describe the data required to support the reports.

� Interfacing with the systems design group. As noted earlier in this chapter, the database design process is part
of the Systems Development Life Cycle (SDLC). In some cases, the systems analyst in charge of designing the
new system will also develop the conceptual database model. (This is usually true in a decentralized
environment.) In other cases, the database design is considered part of the database administrator’s job. The
presence of a database administrator (DBA) usually implies the existence of a formal data-processing
department. The DBA designs the database according to the specifications created by the systems analyst.

To develop an accurate data model, the designer must have a thorough understanding of the company’s data types and
their extent and uses. But data do not by themselves yield the required understanding of the total business. From a
database point of view, the collection of data becomes meaningful only when business rules are defined. Remember

C6545_09 8/16/2007 13:29:42 Page 386

386 C H A P T E R 9

from Chapter 2, Data Models, that a business rule is a brief and precise description of a policy, procedure, or principle
within a specific organization’s environment. Business rules, derived from a detailed description of an organization’s
operations, help to create and enforce actions within that organization’s environment. When business rules are written
properly, they define entities, attributes, relationships, connectivities, cardinalities, and constraints.

To be effective, business rules must be easy to understand and they must be widely disseminated to ensure that every
person in the organization shares a common interpretation of the rules. Using simple language, business rules describe
the main and distinguishing characteristics of the data as viewed by the company. Examples of business rules are as
follows:

� A customer may make many payments on account.

� Each payment on account is credited to only one customer.

� A customer may generate many invoices.

� Each invoice is generated by only one customer.

Given their critical role in database design, business rules must not be established casually. Poorly defined or inaccurate
business rules lead to database designs and implementations that fail to meet the needs of the organization’s end users.

Ideally, business rules are derived from a formal description of operations, which is a document that provides a
precise, up-to-date, and thoroughly reviewed description of the activities that define an organization’s operating
environment. (To the database designer, the operating environment is both the data sources and the data users.)
Naturally, an organization’s operating environment is dependent on the organization’s mission. For example, the
operating environment of a university would be quite different from that of a steel manufacturer, an airline, or a nursing
home. Yet no matter how different the organizations may be, the data analysis and requirements component of the
database design process is enhanced when the data environment and data use are described accurately and precisely
within a description of operations.

In a business environment, the main sources of information for the description of operations—and, therefore, of
business rules—are company managers, policy makers, department managers, and written documentation such as
company procedures, standards, and operations manuals. A faster and more direct source of business rules is direct
interviews with end users. Unfortunately, because perceptions differ, the end user can be a less reliable source when
it comes to specifying business rules. For example, a maintenance department mechanic might believe that any
mechanic can initiate a maintenance procedure, when actually only mechanics with inspection authorization should
perform such a task. Such a distinction might seem trivial, but it has major legal consequences. Although end users are
crucial contributors to the development of business rules, it pays to verify end-user perceptions. Often interviews with
several people who perform the same job yield very different perceptions of their job components. While such a
discovery might point to “management problems,” that general diagnosis does not help the database designer. Given
the discovery of such problems, the database designer’s job is to reconcile the differences and verify the results of the
reconciliation to ensure that the business rules are appropriate and accurate.

Knowing the business rules enables the designer to understand fully how the business works and what role the data
plays within company operations. Consequently, the designer must identify the company’s business rules and analyze
their impact on the nature, role, and scope of data.

Business rules yield several important benefits in the design of new systems:

� They help standardize the company’s view of data.

� They constitute a communications tool between users and designers.

� They allow the designer to understand the nature, role, and scope of the data.

� They allow the designer to understand business processes.

� They allow the designer to develop appropriate relationship participation rules and foreign key constraints.
(See Chapter 4, Entity Relationship (ER) Modeling.)

C6545_09 8/17/2007 14:20:35 Page 387

387D A T A B A S E D E S I G N

The last point is especially noteworthy: whether a given relationship is mandatory or optional is usually a function of
the applicable business rule.

Entity Relationship Modeling and Normalization Before creating the ER model, the designer must com-
municate and enforce appropriate standards to be used in the documentation of the design. The standards include the
use of diagrams and symbols, documentation writing style, layout, and any other conventions to be followed during
documentation. Designers often overlook this very important requirement, especially when they are working as
members of a design team. Failure to standardize documentation often means a failure to communicate later, and
communications failures often lead to poor design work. In contrast, well-defined and enforced standards make design
work easier and promise (but do not guarantee) a smooth integration of all system components.

Because the business rules usually define the nature of the relationship(s) among the entities, the designer must
incorporate them into the conceptual model. The process of defining business rules and developing the conceptual
model using ER diagrams can be described using the steps shown in Table 9.1.3

TABLE
9.1

Developing the Conceptual Model Using ER Diagrams

STEP ACTIVITY
1 Identify, analyze, and refine the business rules.
2 Identify the main entities, using the results of Step 1.
3 Define the relationships among the entities, using the results of Steps 1 and 2.
4 Define the attributes, primary keys, and foreign keys for each of the entities.
5 Normalize the entities. (Remember that entities are implemented as tables in an RDBMS.)
6 Complete the initial ER diagram.
7 Have the main end users verify the model in Step 6 against the data, information, and processing

requirements.
8 Modify the ER diagram, using the results of Step 7.

Some of the steps listed in Table 9.1 take place concurrently. And some, such as the normalization process, can
generate a demand for additional entities and/or attributes, thereby causing the designer to revise the ER model. For
example, while identifying two main entities, the designer might also identify the composite bridge entity that
represents the many-to-many relationship between those two main entities.

To review, suppose you are creating a conceptual model for the JollyGood Movie Rental Corporation, whose end users
want to track customers’ movie rentals. The simple ER diagram presented in Figure 9.7 shows a composite entity that
helps track customers and their video rentals. Business rules define the optional nature of the relationships between the
entities VIDEO and CUSTOMER depicted in Figure 9.7. (For example, customers are not required to check out a video.
A video need not be checked out in order to exist on the shelf. A customer may rent many videos, and a video may be
rented by many customers.) In particular, note the composite RENTAL entity that connects the two main entities.

As you will likely discover, the initial ER model may be subjected to several revisions before it meets the system’s
requirements. Such a revision process is quite natural. Remember that the ER model is a communications tool as well as
a design blueprint. Therefore, when you meet with the proposed system users, the initial ER model should give rise to
questions such as, “Is this really what you meant?” For example, the ERD shown in Figure 9.7 is far from complete.
Clearly, many more attributes must be defined and the dependencies must be checked before the design can be
implemented. In addition, the design cannot yet support the typical video rental transactions environment. For example,
each video is likely to have many copies available for rental purposes. However, if the VIDEO entity shown in Figure 9.7
is used to store the titles as well as the copies, the design triggers the data redundancies shown in Table 9.2.

3 See “Linking Rules to Models,” Alice Sandifer and Barbara von Halle, Database Programming and Design, 4(3), March 1991, pp. 13−16. Although
the source seems dated, it remains the current standard. The technology has changed substantially, but the process has not.

C6545_09 9/4/2007 14:39:34 Page 388

388 C H A P T E R 9

TABLE
9.2

Data Redundancies in the VIDEO Table

VIDEO_ID VIDEO_TITLE VIDEO_COPY VIDEO_CHG VIDEO_DAYS
SF-12345FT-1 Adventures on Planet III 1 $4.50 1
SF-12345FT-2 Adventures on Planet III 2 $4.50 1
SF-12345FT-3 Adventures on Planet III 3 $4.50 1
WE-5432GR-1 TipToe Canu and Tyler 2: A Journey 1 $2.99 2
WE-5432GR-2 TipToe Canu and Tyler 2: A Journey 2 $2.99 2

The initial ERD shown in Figure 9.7 must be modified to reflect the answer to the question, “Is more than one copy
available for each title?” Also, payment transactions must be supported. (You will have an opportunity to modify this
initial design in Problem 5 at the end of the chapter.)

From the preceding discussion, you might get the impression that ER modeling activities (entity/attribute definition,
normalization, and verification) take place in a precise sequence. In fact, once you have completed the initial ER model,
chances are you will move back and forth among the activities until you are satisfied that the ER model accurately
represents a database design that is capable of meeting the required system demands. The activities often take place in
parallel, and the process is iterative. Figure 9.8 summarizes the ER modeling process interactions. Figure 9.9 summarizes
the array of design tools and information sources that the designer can use to produce the conceptual model.

All objects (entities, attributes, relations, views, and so on) are defined in a data dictionary, which is used in tandem with
the normalization process to help eliminate data anomalies and redundancy problems. During this ER modeling
process, the designer must:

� Define entities, attributes, primary keys, and foreign keys. (The foreign keys serve as the basis for the
relationships among the entities.)

� Make decisions about adding new primary key attributes to satisfy end-user and/or processing requirements.

� Make decisions about the treatment of multivalued attributes.

� Make decisions about adding derived attributes to satisfy processing requirements.

� Make decisions about the placement of foreign keys in 1:1 relationships. (If necessary, review the supertype/
subtype relationships in Chapter 6, Advanced Data Modeling.)

� Avoid unnecessary ternary relationships.

� Draw the corresponding ER diagram.

� Normalize the entities.

� Include all data element definitions in the data dictionary.

� Make decisions about standard naming conventions.

FIGURE
9.7

A composite entity

C6545_09 8/16/2007 13:50:4 Page 389

389D A T A B A S E D E S I G N

FIGURE
9.8

ER modeling is an iterative process based on many activities

Database initial study

DBLC
processes and

database transactions

Verification Attributes

Initial ER model

Normalization

Data analysis
User views and
business rules

Final ER model

FIGURE
9.9

Conceptual design tools and information sources

Conceptual model

Definition
and

validation

Design toolsInformation sources

ERD

Business rules and
data constraints

Data flow diagrams
DFD*

Process functional
descriptions (FD)*

(user views)

ER diagram

Normalization

Data dictionary

* Output generated by the systems analysis and design activities

C6545_09 8/16/2007 13:50:5 Page 390

390 C H A P T E R 9

The naming conventions requirement is important, yet it is frequently ignored at the designer’s risk. Real database
design is generally accomplished by teams. Therefore, it is important to ensure that the team members work in an
environment in which naming standards are defined and enforced. Proper documentation is crucial to the successful
completion of the design. Therefore, it is very useful to establish procedures that are, in effect, self-documenting.

Although some useful entity and attribute naming conventions were established in Chapter 4, they will be revisited in
greater detail here. However, keep in mind that such conventions are sometimes subject to constraints imposed by the
DBMS software. In an enterprise-wide database environment, the lowest common denominator rules. For example,
Microsoft Access finds the attribute name LINE_ITEM_NUMBER to be perfectly acceptable. Many older DBMSs,
however, are likely to truncate such long names when they are exported from one DBMS to another, thus making
documentation more difficult. Therefore, table-exporting requirements might dictate the use of shorter names. (The
same is true for data types. For example, many older DBMSs cannot handle OLE or memo formats.)

This book uses naming conventions that are likely to be acceptable across a reasonably broad range of DBMSs and
will meet self-documentation requirements to the greatest extent possible. As the older DBMSs fade from the scene,
the naming conventions will be more broadly applicable. You should try to adhere to the following conventions:

� Use descriptive entity and attribute names wherever possible. For example, in the University Computer Lab
database, the USER entity contains data about the lab’s users and the LOCATION entity is related to the
location of the ITEMs that the lab director wants to track.

� Composite entities usually are assigned a name that describes the relationship they represent. For example, in
the University Computer Lab database, an ITEM may be stored in many LOCATIONs and a LOCATION may
have many ITEMs stored in it. Therefore, the composite (bridge) entity that links ITEM and LOCATION will be
named STORAGE. Occasionally, the designer finds it necessary to show what entities are being linked by the
composite entity. In such cases, the composite entity name may borrow segments of those entity names. For
example, STU_CLASS may be the composite entity that links STUDENT and CLASS. However, that naming
convention might make the next one more cumbersome, so it should be used sparingly. (A better choice would
be the composite entity name ENROLL, to indicate that the STUDENT enrolls in a CLASS.)

� An attribute name should be descriptive, and it should contain a prefix that helps identify the table in which it
is found. For the purposes here, the maximum prefix length will be five characters. For example, the VENDOR
table might contain attributes such as VEND_ID and VEND_PHONE. Similarly, the ITEM table might contain
attribute names such as ITEM_ID and ITEM_DESCRIPTION. The advantage of that naming convention is that
it immediately identifies a table’s foreign key(s). For example, if the EMPLOYEE table contains attributes such
as EMP_ID, EMP_LNAME, and DEPT_CODE, it is immediately obvious that DEPT_CODE is the foreign key
that probably links EMPLOYEE to DEPARTMENT. Naturally, the existence of relationships and table names
that start with the same characters might dictate that you bend this naming convention occasionally, as you can
see in the next bulleted item.

� If one table is named ORDER and its weak counterpart is named ORDER_ITEM, the prefix ORD will be used
to indicate an attribute originating in the ORDER table. The ITEM prefix will identify an attribute originating
in the ITEM table. Clearly, you cannot use ORD as a prefix to the attributes originating in the ORDER_ITEM
table, so you should use a combination of characters, such as OI, as the prefix to the ORDER_ITEM attribute
names. In spite of that limitation, it is generally possible to assign prefixes that identify an attribute’s origin.
(Keep in mind that some RDBMSs use a “reserved word” list. For example, ORDER might be interpreted as
a reserved word in a SELECT statement. In that case, you should use a table name other than ORDER.)

As you can tell, it is not always possible to strictly adhere to the naming conventions. Sometimes the requirement to
limit name lengths makes the attribute or entity names less descriptive. Also, with a large number of entities and
attributes in a complex design, you might have to be somewhat inventive about using proper attribute name prefixes.
But then those prefixes are less helpful in identifying the precise source of the attribute. Nevertheless, the consistent
use of prefixes will reduce sourcing doubts significantly. For example, while the prefix CO does not obviously relate to
the CHECK_OUT table, just as obvious is the fact that it does not originate in WITHDRAW, ITEM, or USER.

C6545_09 8/16/2007 13:50:28 Page 391

391D A T A B A S E D E S I G N

Adherence to the naming conventions just described serves database designers well. In fact, a common refrain from
users seems to be this: “I didn’t know why you made such a fuss over naming conventions, but now that I’m doing this
stuff for real, I’ve become a true believer.”

Data Model Verification The ER model must be verified against the proposed system processes in order to
corroborate that the intended processes can be supported by the database model. Verification requires that the model
be run through a series of tests against:

� End-user data views and their required transactions: SELECT, INSERT, UPDATE, and DELETE operations and
queries and reports.

� Access paths and security.

� Business-imposed data requirements and constraints.

Revision of the original database design starts with a careful reevaluation of the entities, followed by a detailed
examination of the attributes that describe those entities. This process serves several important purposes:

� The emergence of the attribute details might lead to a revision of the entities themselves. Perhaps some of the
components first believed to be entities will, instead, turn out to be attributes within other entities. Or what was
originally considered to be an attribute might turn out to contain a sufficient number of subcomponents to
warrant the introduction of one or more new entities.

� The focus on attribute details can provide clues about the nature of relationships as they are defined by the
primary and foreign keys. Improperly defined relationships lead to implementation problems first and to
application development problems later.

� To satisfy processing and/or end-user requirements, it might be useful to create a new primary key to replace an
existing primary key. For example, in the invoicing example illustrated in Figure 3.30 in Chapter 3, The Relational
Database Model, a primary key composed of INV_NUMBER and LINE_NUMBER replaced the original primary
key composed of INV_NUMBER and PROD_CODE. That change ensured that the items in the invoice would
always appear in the same order as they were entered. To simplify queries and to increase processing speed, you
may create a single-attribute primary key to replace an existing multiple-attribute primary key.

� Unless the entity details (the attributes and their characteristics) are precisely defined, it is difficult to evaluate
the extent of the design’s normalization. Knowledge of the normalization levels helps guard against undesirable
redundancies.

� A careful review of the rough database design blueprint is likely to lead to revisions. Those revisions will help
ensure that the design is capable of meeting end-user requirements.

Because real-world database design is generally done by teams, you should strive to organize the design’s major
components into modules. A module is an information system component that handles a specific function, such as
inventory, orders, payroll, and so on. At the design level, a module is an ER segment that is an integrated part of the
overall ER model. Creating and using modules accomplishes several important ends:

� The modules (and even the segments within them) can be delegated to design groups within teams, greatly
speeding up the development work.

� The modules simplify the design work. The large number of entities within a complex design can be daunting.
Each module contains a more manageable number of entities.

� The modules can be prototyped quickly. Implementation and applications programming trouble spots can be
identified more readily. (Quick prototyping is also a great confidence builder.)

� Even if the entire system can’t be brought online quickly, the implementation of one or more modules will
demonstrate that progress is being made and that at least part of the system is ready to begin serving the end users.

As useful as modules are, they represent ER model fragments. Fragmentation creates a potential problem: the
fragments might not include all of the ER model’s components and might not, therefore, be able to support all of the
required processes. To avoid that problem, the modules must be verified against the complete ER model. That
verification process is detailed in Table 9.3.

C6545_09 8/16/2007 13:53:48 Page 392

392 C H A P T E R 9

Keep in mind that the verification process requires the con-
tinuous verification of business transactions as well as system
and user requirements. The verification sequence must be
repeated for each of the system’s modules. Figure 9.10 illus-
trates the iterative nature of the process.

The verification process starts with selecting the central
(most important) entity. The central entity is defined in terms
of its participation in most of the model’s relationships, and
it is the focus for most of the system’s operations. In other
words, to identify the central entity, the designer selects the
entity involved in the greatest number of relationships. In the
ER diagram, it is the entity that has more lines connected to
it than any other.

The next step is to identify the module or subsystem to which the central entity belongs and to define that module’s
boundaries and scope. The entity belongs to the module that uses it most frequently. Once each module is identified,
the central entity is placed within the module’s framework to let you focus your attention on the module’s details.

TABLE
9.3

The ER Model Verification
Process

STEP ACTIVITY
1 Identify the ER model’s central entity.
2 Identify each module and its

components.
3 Identify each module’s transaction

requirements:
Internal: Updates/Inserts/Deletes/
Queries/Reports
External: Module interfaces

4 Verify all processes against the
ER model.

5 Make all necessary changes suggested
in Step 4.

6 Repeat Steps 2−5 for all modules.

FIGURE
9.10

Iterative ER model verification process

ER model verified

Yes

No

Identify central entity,
module and components

Define processes and
transaction steps

Verify ER model

Make changes
to ER model

Does ER
require changes

C6545_09 8/16/2007 13:54:39 Page 393

393D A T A B A S E D E S I G N

Within the central entity/module framework, you must:

� Ensure the module’s cohesivity. The term cohesivity describes the strength of the relationships found
among the module’s entities. A module must display high cohesivity—that is, the entities must be strongly
related, and the module must be complete and self-sufficient.

� Analyze each module’s relationships with other modules to address module coupling. Module coupling
describes the extent to which modules are independent of one another. Modules must display low coupling,
indicating that they are independent of other modules. Low coupling decreases unnecessary intermodule
dependencies, thereby allowing the creation of a truly modular system and eliminating unnecessary relation-
ships among entities.

Processes may be classified according to their:

� Frequency (daily, weekly, monthly, yearly, or exceptions).

� Operational type (INSERT or ADD, UPDATE or CHANGE, DELETE, queries and reports, batches, mainte-
nance, and backups).

All identified processes must be verified against the ER model. If necessary, appropriate changes are implemented. The
process verification is repeated for all of the model’s modules. You can expect that additional entities and attributes will
be incorporated into the conceptual model during its validation.

At this point, a conceptual model has been defined as hardware- and software-independent. Such independence
ensures the system’s portability across platforms. Portability can extend the database’s life by making it possible to
migrate to another DBMS and/or another hardware platform.

Distributed Database Design Portions of a database may reside in several physical locations. Processes that
access the database may also vary from one location to another. For example, a retail process and a warehouse storage
process are likely to be found in different physical locations. If the database process is to be distributed across the
system, the designer must also develop the data distribution and allocation strategies for the database. The design
complications introduced by distributed processes are examined in detail in Chapter 12, Distributed Database Systems.

II. DBMS Software Selection
The selection of DBMS software is critical to the information system’s smooth operation. Consequently, the
advantages and disadvantages of the proposed DBMS software should be carefully studied. To avoid false expectations,
the end user must be made aware of the limitations of both the DBMS and the database.

Although the factors affecting the purchasing decision vary from company to company, some of the most
common are:

� Cost. This includes the original purchase price, along with maintenance, operational, license, installation,
training, and conversion costs.

� DBMS features and tools. Some database software includes a variety of tools that facilitate the application
development task. For example, the availability of query by example (QBE), screen painters, report generators,
application generators, data dictionaries, and so on, helps to create a more pleasant work environment for
both the end user and the application programmer. Database administrator facilities, query facilities, ease of
use, performance, security, concurrency control, transaction processing, and third-party support also influence
DBMS software selection.

� Underlying model. This can be hierarchical, network, relational, object/relational, or object-oriented.

� Portability. A DBMS can be portable across platforms, systems, and languages.

� DBMS hardware requirements. Items to consider include processor(s), RAM, disk space, and so on.

C6545_09 8/16/2007 13:55:11 Page 394

394 C H A P T E R 9

III. Logical Design
Logical design translates the conceptual design into the internal model for a selected database management system
(DBMS) such as DB2, SQL Server, MySQL, Oracle, and Access. Therefore, the logical design is software-dependent.

Logical design requires that all objects in the model be mapped to the specific constructs used by the selected database
software. For example, the logical design for a relational DBMS includes the specifications for the tables, indexes,
views, transactions, access authorizations, and so on. In the following discussion, a small portion of the simple
conceptual model shown in Figure 9.11 is converted into a logical design based on the relational model.

The translation of the conceptual model in Figure 9.11 requires the definition of the attribute domains, design of
the required tables, and appropriate access restriction formats. For example, the domain definitions for the
CLASS_CODE, CLASS_DAYS, and CLASS_TIME attributes displayed in the CLASS entity in Figure 9.11 are written
this way:

CLASS_CODE is a valid class code.
Type: numeric
Range: low value = 1000 high value = 9999
Display format: 9999
Length: 4

CLASS_DAYS is a valid day code.
Type: character
Display format: XXX
Valid entries: MWF, TTh, M, T, W, Th, F, S
Length: 3

CLASS_TIME is a valid time.
Type: character
Display format: 99:99 (24-hour clock)
Display range: 06:00 to 22:00
Length: 5

The logical design’s tables must correspond to the entities (EMPLOYEE, PROFESSOR, COURSE, and CLASS) shown
in the conceptual design of Figure 9.11, and the table columns must correspond to the attributes specified in the
conceptual design. For example, the initial table layout for the COURSE table might look like Table 9.4.

FIGURE
9.11

A simple conceptual model

C6545_09 8/17/2007 14:21:0 Page 395

395D A T A B A S E D E S I G N

TABLE
9.4

Sample Layout for the COURSE Table

CRS_CODE CRS_TITLE CRS_DESCRIPT CRS_CREDIT
CIS-4567 Database Systems Design Design and implementation of database

systems; includes conceptual design, logical
design, implementation, and management;
prerequisites: CIS 2040, CIS 2345, CIS 3680,
and upper-division standing

4

QM-3456 Statistics II Statistical applications; course requires use
of statistical software (MINITAB and SAS) to
interpret data; prerequisites: MATH 2345 and
QM 2233

3

The right to use the database is also specified during the logical design phase. Who will be allowed to use the tables,
and what portion(s) of the table(s) will be available to which users? Within a relational framework, the answers to those
questions require the definition of appropriate access rights and views.

The logical design translates the software-independent conceptual model into a software-dependent model by defining
the appropriate domain definitions, the required tables, and the necessary access restrictions. The stage is now set to
define the physical requirements that allow the system to function within the selected hardware environment.

IV. Physical Design
Physical design is the process of selecting the data storage and data access characteristics of the database. The
storage characteristics are a function of the types of devices supported by the hardware, the type of data access
methods supported by the system, and the DBMS. Physical design affects not only the location of the data in the
storage device(s), but also the performance of the system.

Physical design is a very technical job, more typical of the client/server and mainframe world than of the PC world.
Yet even in the more complex midrange and mainframe environments, modern database software has assumed much
of the burden of the physical portion of the design and its implementation.

In spite of the fact that relational models tend to hide the complexities of the computer’s physical characteristics, the
performance of relational databases is affected by physical characteristics. For example, performance can be affected
by the characteristics of the storage media, such as seek time, sector and block (page) size, buffer pool size, and the
number of disk platters and read/write heads. In addition, factors such as the creation of an index can have a
considerable effect on the relational database’s performance, that is, data access speed and efficiency.

Even the type of data request must be analyzed carefully to determine the optimum access method for meeting the
application requirements, establishing the data volume to be stored, and estimating the performance. Some DBMSs
automatically reserve the space required to store the database definition and the user’s data in permanent storage
devices. This ensures that the data are stored in sequentially adjacent locations, thereby reducing data access time and

O n l i n e C o n t e n t

Physical design is particularly important in the older hierarchical and network models described in
Appendixes K and L, The Hierarchical Database Model and The Network Database Model,
respectively, in the Student Online Companion. Relational databases are more insulated from physical details
than the older hierarchical and network models.

C6545_09 8/16/2007 14:1:9 Page 396

396 C H A P T E R 9

increasing system performance. (Database performance tuning is covered in detail in Chapter 11, Database
Performance Tuning and Query Optimization.)

Physical design becomes more complex when data are distributed at different locations because the performance is
affected by the communication media’s throughput. Given such complexities, it is not surprising that designers favor
database software that hides as many of the physical-level activities as possible.

The preceding sections have separated the discussions of logical and physical design activities. In fact, logical and
physical design can be carried out in parallel, on a table-by-table (or file-by-file) basis. Logical and physical design can
also be carried out in parallel when the designer is working with hierarchical and network models. Such parallel
activities require the designer to have a thorough understanding of the software and hardware in order to take full
advantage of both software and hardware characteristics.

9.3.3 Implementation and Loading

In most modern relational DBMSs, such as IBM DB2, Microsoft SQL Server, and Oracle, a new database
implementation requires the creation of special storage-related constructs to house the end-user tables. The constructs
usually include the storage group, the table space, and the tables. See Figure 9.12. Note that a table space may contain
more than one table.

For example, the implementation of the logical design in IBM’s DB2 would require that you:

1. Create the database storage group. This step (done by the system administrator or SYSADM) is mandatory
for such mainframe databases as DB2. Other DBMS software may create equivalent storage groups
automatically when a database is created. (See Step 2.) Consult your DBMS documentation to see if you must
create a storage group and, if so, what the command syntax must be.

Table
Table

Table space

FIGURE
9.12

Physical organization of a DB2 database environment

Table

Table space

Table

Table
Table

Table

Table space

Table space

Database

Storage group

Table space

C6545_09 8/16/2007 14:1:27 Page 397

397D A T A B A S E D E S I G N

2. Create the database within the storage group (also done by the SYSADM).

3. Assign the rights to use the database to a database administrator (DBADM).

4. Create the table space(s) within the database (usually done by a DBADM).

5. Create the table(s) within the table space(s) (also usually done by a DBADM). A generic SQL table creation
might look like this:

CREATE TABLE COURSE (
CRS_CODE CHAR(10) NOT NULL,
CRS_TITLE CHAR(C15) NOT NULL,
CRS_DESCRIPT CHARC(8) NOT NULL
CRS_CREDIT NUMBER,
PRIMARY KEY (CRS_CODE));
CREATE TABLE CLASS (
CLASS_CODE CHAR(4) NOT NULL,
CLASS_DAYS CHAR(3) NOT NULL,
CLASS_TIME CHAR(14) NOT NULL,
CLASS_DAY CHAR(3) NOT NULL,
CRS_CODE CHAR(10) NOT NULL,
PRIMARY KEY (CLASS_CODE),
FOREIGN KEY (CRS_CODE) REFERENCES COURSE;

(Note that the COURSE table is created first because it is referenced by the CLASS table.)

6. Assign access rights to the table spaces and to the tables within specified table spaces (another DBADM duty).
Access rights may be limited to views rather than to whole tables. The creation of views is not required for
database access in the relational environment, but views are desirable from a security standpoint.

Access rights to a table named PROFESSOR may be granted to a person whose identification code is PROB
by typing:

GRANT USE OF TABLE PROFESSOR
TO PROB;

A view named PROF may be substituted for the PROFESSOR table:

CREATE VIEW PROF
SELEC TEMP_LNAME
FROM EMPLOYEE
WHERE PROFESSOR.EMP_NUM = EMPLOYEE.EMP_NUM;

After the database has been created, the data must be loaded into the database tables. If the data are currently stored
in a format different from that required by the new DBMS, the data must be converted prior to being loaded.

During the implementation and loading phase, you also must address performance, security, backup and recovery,
integrity, and company standards. They will be discussed next.

Note

The following summary of database implementation activities assumes the use of a sophisticated DBMS. All
current generation DBMSs offer the features discussed next.

C6545_09 8/16/2007 14:8:39 Page 398

398 C H A P T E R 9

Performance
Database performance is one of the most important factors in certain database implementations. Chapter 11 covers
the subject in greater detail. However, not all DBMSs have performance-monitoring and fine-tuning tools embedded
in their software, thus making it difficult to evaluate performance.

Performance evaluation is also rendered more difficult because there is no standard measurement for database
performance. Performance varies according to the hardware and software environment used. Naturally, the database’s
size also affects database performance: a search of 10 tuples will be faster than a search of 100,000 tuples.

Important factors in database performance also include system and database configuration parameters, such as data
placement, access path definition, the use of indexes, and buffer size.

Security
Data stored in the company database must be protected from access by unauthorized users. (It does not take much
imagination to predict the likely results when students have access to a student database or when employees have
access to payroll data!) Consequently, you must provide for (at least) the following:

� Physical security allows only authorized personnel physical access to specific areas. Depending on the type of
database implementation, however, establishing physical security might not always be practical. For example,
a university student research database is not a likely candidate for physical security. The existence of large
multiserver PC networks often makes physical security impractical.

� Password security allows the assignment of access rights to specific authorized users. Password security is
usually enforced at logon time at the operating system level.

� Access rights can be established through the use of database software. The assignment of access rights may
restrict operations (CREATE, UPDATE, DELETE, and so on) on predetermined objects such as databases,
tables, views, queries, and reports.

� Audit trails are usually provided by the DBMS to check for access violations. Although the audit trail is an
after-the-fact device, its mere existence can discourage unauthorized use.

� Data encryption can be used to render data useless to unauthorized users who might have violated some of
the database security layers.

� Diskless workstations allow end users to access the database without being able to download the information
from their workstations.

For a more detailed discussion of security issues, please refer to Chapter 15, Database Administration and Security.

Backup and Recovery
Timely data availability is crucial for almost every database. Unfortunately, the database can be subject to data loss
through unintended data deletion, power outages, and so on. Data backup and recovery (restore) procedures create a
safety valve, allowing the database administrator to ensure the availability of consistent data. Typically, database
vendors encourage the use of fault-tolerant components such as uninterruptible power supply (UPS) units, RAID
storage devices, clustered servers, and data replication technologies to ensure the continuous operation of the database
in case of a hardware failure. Even with these components, backup and restore functions constitute a very important
component of daily database operations. Some DBMSs provide functions that allow the database administrator to
schedule automatic database backups to permanent storage devices such as disks, DVDs, and tapes. Database backups
can be performed at different levels:

� A full backup of the database, or dump of the entire database. In this case, all database objects are backed
up in their entirety.

C6545_09 8/16/2007 14:9:25 Page 399

399D A T A B A S E D E S I G N

� A differential backup of the database, in which only the last modifications to the database (when compared
with a previous full backup copy) are copied. In this case, only the objects that have been updated since the
last full backup are backed up.

� A transaction log backup, which backs up only the transaction log operations that are not reflected in a
previous backup copy of the database. In this case, only the transaction log is backed up; no other database
objects are backed up. (For a complete explanation of the use of the transaction log see Chapter 10,
Transaction Management and Concurrency Control.)

The database backup is stored in a secure place, usually in a different building from the database itself, and is protected
against dangers such as fire, theft, flood, and other potential calamities. The main purpose of the backup is to
guarantee database restoration following system (hardware/software) failures.

Failures that plague databases and systems are generally induced by software, hardware, programming exemptions,
transactions, or external factors. Table 9.5 briefly summarizes the most common sources of database failure.

TABLE
9.5

Common Sources of Database Failure

SOURCE DESCRIPTION EXAMPLE
Software Software-induced failures may be traceable to

the operating system, the DBMS software,
application programs, or viruses.

The SQL.Slammer worm affected many
unpatched MS SQL Server systems in 2003
causing damages valued in millions of dollars.

Hardware Hardware-induced failures may include
memory chip errors, disk crashes, bad disk
sectors, and “disk full” errors.

A bad memory module or a multiple hard
disk failure in a database system can bring a
database system to an abrupt stop.

Programming
exemptions

Application programs or end users may roll
back transactions when certain conditions are
defined. Programming exemptions can also
be caused by malicious or improperly tested
code that can be exploited by hackers.

Hackers constantly searching for exploits in
unprotected Web database systems.

Transactions The system detects deadlocks and aborts one
of the transactions. (See Chapter 10.)

Deadlock occurs when executing multiple
simultaneous transactions.

External factors Backups are especially important when a sys-
tem suffers complete destruction due to fire,
earthquake, flood, or other natural disaster.

The 2005 Katrina hurricane in New Orleans
caused data losses in the millions of dollars.

Depending on the type and extent of the failure, the recovery process ranges from a minor short-term inconvenience
to a major long-term rebuild. Regardless of the extent of the required recovery process, recovery is not possible without
a usable backup.

The database recovery process generally follows a predictable scenario. First, the type and extent of the required
recovery are determined. If the entire database needs to be recovered to a consistent state, the recovery uses the most
recent backup copy of the database in a known consistent state. The backup copy is then rolled forward to restore all
subsequent transactions by using the transaction log information. If the database needs to be recovered but the
committed portion of the database is still usable, the recovery process uses the transaction log to “undo” all of the
transactions that were not committed.

Integrity
Data integrity is enforced by the DBMS through the proper use of primary and foreign key rules. In addition, data
integrity is also the result of properly implemented data management policies. Such policies are part of a
comprehensive data administration framework. For a more detailed study of this topic, see The DBA’s Managerial Role
section in Chapter 15.

C6545_09 8/16/2007 14:10:1 Page 400

400 C H A P T E R 9

Company Standards
Database standards may be partially defined by specific company requirements. The database administrator must
implement and enforce such standards.

9.3.4 Testing and Evaluation

Once the data have been loaded into the database, the DBA tests and fine-tunes the database for performance,
integrity, concurrent access, and security constraints. The testing and evaluation phase occurs in parallel with
applications programming.

Programmers use database tools to prototype the applications during coding of the programs. Tools such as report
generators, screen painters, and menu generators are especially useful to the applications programmers during the
prototyping phase.

If the database implementation fails to meet some of the system’s evaluation criteria, several options may be considered
to enhance the system:

� For performance-related issues, the designer must consider fine-tuning specific system and DBMS configura-
tion parameters. The best sources of information are the hardware and software technical reference manuals.

� Modify the physical design. (For example, the proper use of indexes tends to be particularly effective in
facilitating pointer movements, thus enhancing performance.)

� Modify the logical design.

� Upgrade or change the DBMS software and/or the hardware platform.

9.3.5 Operation

Once the database has passed the evaluation stage, it is considered to be operational. At that point, the database, its
management, its users, and its application programs constitute a complete information system.

The beginning of the operational phase invariably starts the process of system evolution. As soon as all of the targeted
end users have entered the operations phase, problems that could not have been foreseen during the testing phase
begin to surface. Some of the problems are serious enough to warrant emergency “patchwork,” while others are
merely minor annoyances. For example, if the database design is implemented to interface with the Web, the sheer
volume of transactions might cause even a well-designed system to bog down. In that case, the designers have to
identify the source(s) of the bottleneck(s) and produce alternative solutions. Those solutions may include using
load-balancing software to distribute the transactions among multiple computers, increasing the available cache for the
DBMS, and so on. In any case, the demand for change is the designer’s constant concern, which leads to phase 6,
maintenance and evolution.

9.3.6 Maintenance and Evolution

The database administrator must be prepared to perform routine maintenance activities within the database. Some of
the required periodic maintenance activities include:

� Preventive maintenance (backup).

� Corrective maintenance (recovery).

� Adaptive maintenance (enhancing performance, adding entities and attributes, and so on).

� Assignment of access permissions and their maintenance for new and old users.

� Generation of database access statistics to improve the efficiency and usefulness of system audits and to
monitor system performance.

� Periodic security audits based on the system-generated statistics.

� Periodic (monthly, quarterly, or yearly) system-usage summaries for internal billing or budgeting purposes.

C6545_09 8/16/2007 14:10:21 Page 401

401D A T A B A S E D E S I G N

The likelihood of new information requirements and the demand for additional reports and new query formats require
application changes and possible minor changes in the database components and contents. Those changes can be
easily implemented only when the database design is flexible and when all documentation is updated and online.
Eventually, even the best-designed database environment will no longer be capable of incorporating such evolutionary
changes; then the whole DBLC process begins anew.

You should not be surprised to discover that many of the activities described in the Database Life Cycle (DBLC) remind
you of those in the Systems Development Life Cycle (SDLC). After all, the SDLC represents the framework within
which the DBLC activities take place. A summary of the parallel activities that take place within the SDLC and the
DBLC is shown in Figure 9.13.

9.4 DATABASE DESIGN STRATEGIES

There are two classical approaches to database design:

� Top-down design starts by identifying the data sets, and then defines the data elements for each of those sets.
This process involves the identification of different entity types and the definition of each entity’s attributes.

� Bottom-up design first identifies the data elements (items), and then groups them together in data sets. In
other words, it first defines attributes, and then groups them to form entities.

FIGURE
9.13

Parallel activities in the DBLC and the SDLC

Database maintenance
and evolution

Operation

Application program
maintenance

Testing and
evaluation

Implementation
and loading

Database design

Database initial
study

System
design

System
implementation

Creation
Loading
Fine-tuning

Conceptual
Logical
Physical

DBLC SDLC

Analysis

Detailed design

Coding

Testing and
evaluation

Screens
Reports
Procedures

Prototyping

Debugging

C6545_09 8/16/2007 14:10:40 Page 402

402 C H A P T E R 9

The two approaches are illustrated in Figure 9.14. The selection of a primary emphasis on top-down or bottom-up
procedures often depends on the scope of the problem or on personal preferences. Although the two methodologies are
complementary rather than mutually exclusive, a primary emphasis on a bottom-up approach may be more productive for
small databases with few entities, attributes, relations, and transactions. For situations in which the number, variety, and
complexity of entities, relations, and transactions is overwhelming, a primarily top-down approach may be more easily
managed. Most companies have standards for systems development and database design already in place.

9.5 CENTRALIZED VS. DECENTRALIZED DESIGN

The two general approaches (bottom-up and top-down) to database design can be influenced by factors such as the
scope and size of the system, the company’s management style, and the company’s structure (centralized or
decentralized). Depending on such factors, the database design may be based on two very different design
philosophies: centralized and decentralized.

Centralized design is productive when the data component is composed of a relatively small number of objects and
procedures. The design can be carried out and represented in a fairly simple database. Centralized design is typical of
relatively simple and/or small databases and can be successfully done by a single person (database administrator) or by
a small, informal design team. The company operations and the scope of the problem are sufficiently limited to allow
even a single designer to define the problem(s), create the conceptual design, verify the conceptual design with the user
views, define system processes and data constraints to ensure the efficacy of the design, and ensure that the design
will comply with all the requirements. (Although centralized design is typical for small companies, do not make the
mistake of assuming that centralized design is limited to small companies. Even large companies can operate within
a relatively simple database environment.) Figure 9.15 summarizes the centralized design option. Note that a single
conceptual design is completed and then validated in the centralized design approach.

B
o
t
t
o
m

U
p

T
o
p

D
o
w
n

Conceptual model

Entity Entity

Attribute Attribute Attribute Attribute

FIGURE
9.14

Top-down vs. bottom-up design sequencing

Note

Even when a primarily top-down approach is selected, the normalization process that revises existing table
structures is (inevitably) a bottom-up technique. ER models constitute a top-down process even when the
selection of attributes and entities can be described as bottom-up. Because both the ER model and normaliza-
tion techniques form the basis for most designs, the top-down vs. bottom-up debate may be based on a
theoretical distinction rather than an actual difference.

C6545_09 8/16/2007 14:11:26 Page 403

403D A T A B A S E D E S I G N

Decentralized design might be used when the data component of the system has a considerable number of entities
and complex relations on which very complex operations are performed. Decentralized design is also likely to be
employed when the problem itself is spread across several operational sites and each element is a subset of the entire
data set. See Figure 9.16.

In large and complex projects, the database design typically cannot be done by only one person. Instead, a carefully
selected team of database designers is employed to tackle a complex database project. Within the decentralized design
framework, the database design task is divided into several modules. Once the design criteria have been established,
the lead designer assigns design subsets or modules to design groups within the team.

FIGURE
9.15

Centralized design

Conceptual model

User views System processes Data constraints

Conceptual model verification

Data dictionary

C6545_09 8/16/2007 14:12:1 Page 404

404 C H A P T E R 9

Because each design group focuses on modeling a subset of the system, the definition of boundaries and the
interrelation among data subsets must be very precise. Each design group creates a conceptual data model
corresponding to the subset being modeled. Each conceptual model is then verified individually against the user views,
processes, and constraints for each of the modules. After the verification process has been completed, all modules are
integrated into one conceptual model. Because the data dictionary describes the characteristics of all objects within the
conceptual data model, it plays a vital role in the integration process. Naturally, after the subsets have been aggregated
into a larger conceptual model, the lead designer must verify that the combined conceptual model is still able to support
all of the required transactions.

FIGURE
9.16

Decentralized design

Data component

PurchasingEngineering Manufacturing

Views
Processes

Constraints

Views
Processes

Constraints

Views
Processes

Constraints

Aggregation

Submodule criteria

Conceptual
models

Verification

Conceptual model

Data dictionary

C6545_09 8/16/2007 14:12:13 Page 405

405D A T A B A S E D E S I G N

Keep in mind that the aggregation process requires the designer to create a single model in which various aggregation
problems must be addressed. See Figure 9.17.

� Synonyms and homonyms. Various departments might know the same object by different names (synonyms),
or they might use the same name to address different objects (homonyms). The object can be an entity, an
attribute, or a relationship.

� Entity and entity subtypes. An entity subtype might be viewed as a separate entity by one or more
departments. The designer must integrate such subtypes into a higher-level entity.

� Conflicting object definitions. Attributes can be recorded as different types (character, numeric), or different
domains can be defined for the same attribute. Constraint definitions, too, can vary. The designer must remove
such conflicts from the model.

Entity X

Synonyms: two departments use different names for the same entity.

Department A

Entity X

Entity Y

Entity X

Entity X1 Entity X2

EMPLOYEE

SECRETARY PILOT

Label used:

Department B
X
Y

Homonyms: two different entities are addressed by the same label.
(Department B uses the label X to describe both entity X and entity Y.)

Entity and entity subclass: The entities X1 and X2 are subsets of entity X.
Example:

Name
Address
Phone

Common
attributes

Department A Typing speed
Classification

Hours flown
License

Distinguishing
attributes

Conflicting object definitions: attributes for the entity PROFESSOR

Conflicting
definitions

Primary key:
Phone attribute:

Payroll Dept.
PROF_SSN
898-2853

Label used:
X
X

Department B

Systems Dept.
PROF_NUM
2853

FIGURE
9.17

Summary of aggregation problems

C6545_09 8/16/2007 14:12:24 Page 406

406 C H A P T E R 9

S u m m a r y

◗ An information system is designed to facilitate the transformation of data into information and to manage both data
and information. Thus, the database is a very important part of the information system. Systems analysis is the
process that establishes the need for and the extent of an information system. Systems development is the process
of creating an information system.

◗ The Systems Development Life Cycle (SDLC) traces the history (life cycle) of an application within the information
system. The SDLC can be divided into five phases: planning, analysis, detailed systems design, implementation,
and maintenance. The SDLC is an iterative rather than a sequential process.

◗ The Database Life Cycle (DBLC) describes the history of the database within the information system. The DBLC
is composed of six phases: database initial study, database design, implementation and loading, testing and
evaluation, operation, and maintenance and evolution. Like the SDLC, the DBLC is iterative rather than sequential.

◗ The database design and implementation process moves through a series of well-defined stages: database initial
study, database design, implementation and loading, testing and evaluation, operation, and maintenance and
evolution.

◗ The conceptual portion of the design may be subject to several variations based on two basic design philosophies:
bottom-up vs. top-down and centralized vs. decentralized.

K e y T e r m s

bottom-up design, 402

boundaries, 383

centralized design, 403

cohesivity, 394

computer-aided systems engineering
(CASE), 378

conceptual design, 385

database development, 374

Database Life Cycle (DBLC), 378

decentralized design, 404

description of operations, 387

differential backup, 400

full backup, 399

information system, 373

logical design, 395

minimal data rule, 385

module, 392

module coupling, 392

physical design, 396

scope, 383

systems analysis, 373

systems development, 373

Systems Development Life Cycle
(SDLC), 373

top-down design, 402

transaction log backup, 400

R e v i e w Q u e s t i o n s

1. What is an information system? What is its purpose?

2. How do systems analysis and systems development fit into a discussion about information systems?

3. What does the acronym SDLC mean, and what does an SDLC portray?

4. What does the acronym DBLC mean, and what does a DBLC portray?

5. Discuss the distinction between centralized and decentralized conceptual database design.

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the Student Online
Companion for this book.

C6545_09 9/4/2007 14:40:43 Page 407

407D A T A B A S E D E S I G N

6. What is the minimal data rule in conceptual design? Why is it important?

7. Discuss the distinction between top-down and bottom-up approaches in database design.

8. What are business rules? Why are they important to a database designer?

9. What is the data dictionary’s function in database design?

10. What steps are required in the development of an ER diagram? (Hint: See Table 9.1.)

11. List and briefly explain the activities involved in the verification of an ER model.

12. What factors are important in a DBMS software selection?

13. What three levels of backup may be used in database recovery management? Briefly describe what each of those
three backup levels does.

P r o b l e m s

1. The ABC Car Service & Repair Centers are owned by the SILENT car dealer; ABC services and repairs only
SILENT cars. Three ABC Car Service & Repair Centers provide service and repair for the entire state.

Each of the three centers is independently managed and operated by a shop manager, a receptionist, and at least
eight mechanics. Each center maintains a fully stocked parts inventory.

Each center also maintains a manual file system in which each car’s maintenance history is kept: repairs made,
parts used, costs, service dates, owner, and so on. Files are also kept to track inventory, purchasing, billing,
employees’ hours, and payroll.

You have been contacted by the manager of one of the centers to design and implement a computerized database
system. Given the preceding information, do the following:

a. Indicate the most appropriate sequence of activities by labeling each of the following steps in the correct
order. (For example, if you think that “Load the database.” is the appropriate first step, label it “1.”)

___________ Normalize the conceptual model.

___________ Obtain a general description of company operations.

___________ Load the database.

___________ Create a description of each system process.

___________ Test the system.

___________ Draw a data flow diagram and system flowcharts.

___________ Create a conceptual model using ER diagrams.

___________ Create the application programs.

___________ Interview the mechanics.

___________ Create the file (table) structures.

___________ Interview the shop manager.

b. Describe the various modules that you believe the system should include.

c. How will a data dictionary help you develop the system? Give examples.

d. What general (system) recommendations might you make to the shop manager? (For example, if the system
will be integrated, what modules will be integrated? What benefits would be derived from such an integrated
system? Include several general recommendations.)

e. What is the best approach to conceptual database design? Why?

f. Name and describe at least four reports the system should have. Explain their use. Who will use those reports?

C6545_09 9/19/2007 16:4:32 Page 408

408 C H A P T E R 9

2. Suppose you have been asked to create an information system for a manufacturing plant that produces nuts and
bolts of many shapes, sizes, and functions. What questions would you ask, and how would the answers to those
questions affect the database design?

a. What do you envision the SDLC to be?

b. What do you envision the DBLC to be?

3. Suppose you perform the same functions noted in Problem 2 for a larger warehousing operation. How are the
two sets of procedures similar? How and why are they different?

4. Using the same procedures and concepts employed in Problem 1, how would you create an information system
for the Tiny College example in Chapter 4?

5. Write the proper sequence of activities in the design of a video rental database. (The initial ERD was shown in
Figure 9.7.) The design must support all rental activities, customer payment tracking, and employee work
schedules, as well as track which employees checked out the videos to the customers. After you finish writing the
design activity sequence, complete the ERD to ensure that the database design can be successfully implemented.
(Make sure that the design is normalized properly and that it can support the required transactions.)

C6545_09 8/16/2007 14:13:25 Page 409

409D A T A B A S E D E S I G N

