
Preview

Distributed Database Management Systems

In this chapter, you will learn:

� What a distributed database management system (DDBMS) is and what its components are

� How database implementation is affected by different levels of data and process distribution

� How transactions are managed in a distributed database environment

� How database design is affected by the distributed database environment

In this chapter, you learn that a single database can be divided into several fragments.The

fragments can be stored on different computers within a network. Processing, too, can be

dispersed among several different network sites, or nodes.The multisite database forms the

core of the distributed database system.

The growth of distributed database systems has been fostered by the dispersion of business

operations across the country and the world, along with the rapid pace of technological

change that has made local and wide area networks practical and more reliable. The

network-based distributed database system is very flexible: it can serve the needs of a small

business operating two stores in the same town while at the same time meeting the needs

of a global business.

Although a distributed database system requires a more sophisticated DBMS, the end user

should not be burdened by increased operational complexity.That is, the greater complexity

of a distributed database system should be transparent to the end user.

The distributed database management system (DDBMS) treats a distributed database as a

single logical database; therefore, the basic design concepts you learned in earlier chapters

apply. However, although the end user need not be aware of the distributed database’s

special characteristics, the distribution of data among different sites in a computer network

clearly adds to a system’s complexity. For example, the design of a distributed database must

consider the location of the data and the partitioning of the data into database fragments.

You examine such issues in this chapter.

12

T
W

E
L

V
E

C6545_12 8/31/2007 12:31:34 Page 477

12.1 THE EVOLUTION OF DISTRIBUTED DATABASE MANAGEMENT SYSTEMS

A distributed database management system (DDBMS) governs the storage and processing of logically related
data over interconnected computer systems in which both data and processing functions are distributed among several
sites. To understand how and why the DDBMS is different from the DBMS, it is useful to briefly examine the changes
in the business environment that set the stage for the development of the DDBMS.

During the 1970s, corporations implemented centralized database management systems to meet their structured
information needs. Structured information is usually presented as regularly issued formal reports in a standard format.
Such information, generated by procedural programming languages, is created by specialists in response to precisely
channeled requests. Thus, structured information needs are well served by centralized systems.

The use of a centralized database required that corporate data be stored in a single central site, usually a mainframe
computer. Data access was provided through dumb terminals. The centralized approach, illustrated in Figure 12.1,
worked well to fill the structured information needs of corporations, but it fell short when quickly moving events
required faster response times and equally quick access to information. The slow progression from information request
to approval, to specialist, to user simply did not serve decision makers well in a dynamic environment. What was
needed was quick, unstructured access to databases, using ad hoc queries to generate on-the-spot information.

Database management systems based on the relational model could provide the environment in which unstructured
information needs would be met by employing ad hoc queries. End users would be given the ability to access data when
needed. Unfortunately, the early relational model implementations did not yet deliver acceptable throughput when
compared to the well-established hierarchical or network database models.

The last two decades gave birth to a series of crucial social and technological changes that affected database
development and design. Among those changes were:

� Business operations became decentralized.

� Competition increased at the global level.

� Customer demands and market needs favored a decentralized management style.

Local database

FIGURE
12.1

Centralized database management system

DBMS

Data

Request

Reply

Read

End user
Application

issues
a data request
to the DBMS

C6545_12 8/31/2007 13:52:5 Page 478

478 C H A P T E R 1 2

� Rapid technological change created low-cost computers with mainframe-like power, impressive multifunction
handheld portable wireless devices with cellular phone and data services, and increasingly complex and fast
networks to connect them. As a consequence, corporations have increasingly adopted advanced network
technologies as the platform for their computerized solutions.

� The large number of applications based on DBMSs and the need to protect investments in centralized DBMS
software made the notion of data sharing attractive. Data realms are converging in the digital world more and
more. As a result, single applications manage multiple different types of data (voice, video, music, images, etc.),
and such data are accessed from multiple geographically dispersed locations.

Those factors created a dynamic business environment in which companies had to respond quickly to competitive and
technological pressures. As large business units restructured to form leaner and meaner, quickly reacting, dispersed
operations, two database requirements became obvious:

� Rapid ad hoc data access became crucial in the quick-response decision-making environment.
� The decentralization of management structures based on the decentralization of business units made

decentralized multiple-access and multiple-location databases a necessity.

During recent years, the factors just described became even more firmly entrenched. However, the way those factors
were addressed was strongly influenced by:

� The growing acceptance of the Internet as the platform for data access and distribution. The World Wide
Web (WWW or just the Web) is, in effect, the repository for distributed data.

� The wireless revolution. The widespread use of wireless digital devices, such as personal digital assistants
(PDAs) like Palm and BlackBerry and multipurpose “smart phones” like the iPhone, has created high demand
for data access. Such devices access data from geographically dispersed locations and require varied data
exchanges in multiple formats (data, voice, video, music, pictures, etc.) Although distributed data access does
not necessarily imply distributed databases; performance and failure tolerance requirements often make use of
data replication techniques similar to the ones found in distributed databases.

� The accelerated growth of companies providing “application as a service” type of services. This new type
of service provides remote application services to companies wanting to outsource their application develop-
ment, maintenance, and operations. The company data is generally stored on central servers and is not
necessarily distributed. Just as with wireless data access, this type of service may not require fully distributed
data functionality; however, other factors such as performance and failure tolerance often require the use of
data replication techniques similar to the ones found in distributed databases.

� The increased focus on data analysis that led to data mining and data warehousing. Although a data
warehouse is not usually a distributed database, it does rely on techniques such as data replication and
distributed queries that facilitate data extraction and integration. (Data warehouse design, implementation, and
use are discussed in Chapter 13, Business Intelligence and Data Warehouses.)

At this point, the long-term impact of the Internet and the wireless revolution on distributed database design and
management is still unclear. Perhaps the success of the Internet and wireless technologies will foster the use of
distributed databases as bandwidth becomes a more troublesome bottleneck. Perhaps the resolution of bandwidth
problems will simply confirm the centralized database standard. In any case, distributed databases exist today and many
distributed database operating concepts and components are likely to find a place in future database developments.

The decentralized database is especially desirable because centralized database management is subject to problems
such as:

� Performance degradation due to a growing number of remote locations over greater distances.

O n l i n e C o n t e n t

To learn more about the Internet’s impact on data access and distribution, see Appendix I in the Student
Online Companion, Databases in Electronic Commerce.

C6545_12 9/24/2007 17:12:20 Page 479

479D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

� High costs associated with maintaining and operating large central (mainframe) database systems.

� Reliability problems created by dependence on a central site (single point of failure syndrome) and the need
for data replication.

� Scalability problems associated with the physical limits imposed by a single location (power, temperature
conditioning, and power consumption.)

� Organizational rigidity imposed by the database might not support the flexibility and agility required by
modern global organizations.

The dynamic business environment and the centralized database’s shortcomings spawned a demand for applications
based on accessing data from different sources at multiple locations. Such a multiple-source/multiple-location database
environment is best managed by a distributed database management system (DDBMS).

12.2 DDBMS ADVANTAGES AND DISADVANTAGES

Distributed database management systems deliver several advantages over traditional systems. At the same time, they
are subject to some problems. Table 12.1 summarizes the advantages and disadvantages associated with a DDBMS.

TABLE
12.1

Distributed DBMS Advantages and Disadvantages

ADVANTAGES DISADVANTAGES
• Data are located near the greatest demand site.

The data in a distributed database system are dis-
persed to match business requirements.

• Faster data access. End users often work with only
a locally stored subset of the company’s data.

• Faster data processing. A distributed database sys-
tem spreads out the systems workload by process-
ing data at several sites.

• Growth facilitation. New sites can be added to
the network without affecting the operations of
other sites.

• Improved communications. Because local sites are
smaller and located closer to customers, local sites
foster better communication among departments
and between customers and company staff.

• Reduced operating costs. It is more cost-effective to
add workstations to a network than to update a
mainframe system. Development work is done
more cheaply and more quickly on low-cost PCs
than on mainframes.

• User-friendly interface. PCs and workstations are
usually equipped with an easy-to-use graphical
user interface (GUI). The GUI simplifies training
and use for end users.

• Less danger of a single-point failure. When one of
the computers fails, the workload is picked up by
other workstations. Data are also distributed at
multiple sites.

• Processor independence. The end user is able to
access any available copy of the data, and an end
user’s request is processed by any processor at the
data location.

• Complexity of management and control. Applications
must recognize data location, and they must be able to
stitch together data from various sites. Database admin-
istrators must have the ability to coordinate database
activities to prevent database degradation due to data
anomalies.

• Technological difficulty. Data integrity, transaction man-
agement, concurrency control, security, backup, recov-
ery, query optimization, access path selection, and so
on, must all be addressed and resolved.

• Security. The probability of security lapses increases
when data are located at multiple sites. The responsi-
bility of data management will be shared by different
people at several sites.

• Lack of standards. There are no standard communica-
tion protocols at the database level. (Although TCP/IP
is the de facto standard at the network level, there is
no standard at the application level.) For example,
different database vendors employ different—and
often incompatible—techniques to manage the distri-
bution of data and processing in a DDBMS
environment.

• Increased storage and infrastructure requirements. Mul-
tiple copies of data are required at different sites, thus
requiring additional disk storage space.

• Increased training cost. Training costs are generally
higher in a distributed model than they would be in a
centralized model, sometimes even to the extent of
offsetting operational and hardware savings.

• Costs. Distributed databases require duplicated infra-
structure to operate (physical location, environment,
personnel, software, licensing, etc.)

C6545_12 9/24/2007 17:13:42 Page 480

480 C H A P T E R 1 2

Distributed databases are used successfully but have a long way to go before they will yield the full flexibility and power
of which they are theoretically capable. The inherently complex distributed data environment increases the urgency for
standard protocols governing transaction management, concurrency control, security, backup, recovery, query
optimization, access path selection, and so on. Such issues must be addressed and resolved before DDBMS technology
is widely embraced.

The remainder of this chapter explores the basic components and concepts of the distributed database. Because the
distributed database is usually based on the relational database model, relational terminology is used to explain the basic
concepts and components of a distributed database.

12.3 DISTRIBUTED PROCESSING AND DISTRIBUTED DATABASES

In distributed processing, a database’s logical processing is shared among two or more physically independent sites
that are connected through a network. For example, the data input/output (I/O), data selection, and data validation
might be performed on one computer, and a report based on that data might be created on another computer.

A basic distributed processing environment is illustrated in Figure 12.2, which shows that a distributed processing
system shares the database processing chores among three sites connected through a communications network.
Although the database resides at only one site (Miami), each site can access the data and update the database. The
database is located on Computer A, a network computer known as the database server.

A distributed database, on the other hand, stores a logically related database over two or more physically
independent sites. The sites are connected via a computer network. In contrast, the distributed processing system uses
only a single-site database but shares the processing chores among several sites. In a distributed database system, a
database is composed of several parts known as database fragments. The database fragments are located at
different sites and can be replicated among various sites. Each database fragment is, in turn, managed by its local
database process. An example of a distributed database environment is shown in Figure 12.3.

Employee database

FIGURE
12.2

Distributed processing environment

Site 2
New York user Donna

Computer B

Database records are processed in different locations

Site 3
Atlanta user Victor

Computer C

Generate
payroll
report

DBMS

Computer ASite 1
Miami user Joe

Communications network

Update
payroll

data

C6545_12 8/31/2007 13:52:57 Page 481

481D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

The database in Figure 12.3 is divided into three database fragments (E1, E2, and E3) located at different sites. The
computers are connected through a network system. In a fully distributed database, the users Alan, Betty, and
Hernando do not need to know the name or location of each database fragment in order to access the database. Also,
the users might be located at sites other than Miami, New York, or Atlanta, and still be able to access the database as
a single logical unit.

As you examine Figures 12.2 and 12.3, you should keep the following points in mind:

� Distributed processing does not require a distributed database, but a distributed database requires distributed
processing (each database fragment is managed by its own local database process).

� Distributed processing may be based on a single database located on a single computer. For the management
of distributed data to occur, copies or parts of the database processing functions must be distributed to all data
storage sites.

� Both distributed processing and distributed databases require a network to connect all components.

E1

E3E2

FIGURE
12.3

Distributed database environment

Site 2
New York user Betty

Site 3
Atlanta user Hernando

DBMS

Computer A

Site 1
Miami user Alan

Communications network

DBMS

Computer B

DBMS

Computer C

C6545_12 8/31/2007 12:43:12 Page 482

482 C H A P T E R 1 2

12.4 CHARACTERISTICS OF DISTRIBUTED DATABASE MANAGEMENT SYSTEMS

A DDBMS governs the storage and processing of logically related data over interconnected computer systems in which
both data and processing functions are distributed among several sites. A DBMS must have at least the following
functions to be classified as distributed:

� Application interface to interact with the end user, application programs, and other DBMSs within the
distributed database.

� Validation to analyze data requests for syntax correctness.

� Transformation to decompose complex requests into atomic data request components.

� Query optimization to find the best access strategy. (Which database fragments must be accessed by the query,
and how must data updates, if any, be synchronized?)

� Mapping to determine the data location of local and remote fragments.

� I/O interface to read or write data from or to permanent local storage.

� Formatting to prepare the data for presentation to the end user or to an application program.

� Security to provide data privacy at both local and remote databases.

� Backup and recovery to ensure the availability and recoverability of the database in case of a failure.

� DB administration features for the database administrator.

� Concurrency control to manage simultaneous data access and to ensure data consistency across database
fragments in the DDBMS.

� Transaction management to ensure that the data moves from one consistent state to another. This activity
includes the synchronization of local and remote transactions as well as transactions across multiple distributed
segments.

A fully distributed database management system must perform all of the functions of a centralized DBMS, as follows:

1. Receive an application’s (or an end user’s) request.

2. Validate, analyze, and decompose the request. The request might include mathematical and/or logical
operations such as the following: Select all customers with a balance greater than $1,000. The request might
require data from only a single table, or it might require access to several tables.

3. Map the request’s logical-to-physical data components.

4. Decompose the request into several disk I/O operations.

5. Search for, locate, read, and validate the data.

6. Ensure database consistency, security, and integrity.

7. Validate the data for the conditions, if any, specified by the request.

8. Present the selected data in the required format.

In addition, a distributed DBMS must handle all necessary functions imposed by the distribution of data and processing.
And it must perform those additional functions transparently to the end user. The DDBMS’s transparent data access
features are illustrated in Figure 12.4.

The single logical database in Figure 12.4 consists of two database fragments, A1 and A2, located at sites 1 and 2,
respectively. Mary can query the database as if it were a local database; so can Tom. Both users “see” only one logical
database and do not need to know the names of the fragments. In fact, the end users do not even need to know
that the database is divided into fragments, nor do they need to know where the fragments are located.

To better understand the different types of distributed database scenarios, let’s first define the distributed database
system’s components.

C6545_12 9/24/2007 17:14:15 Page 483

483D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

12.5 DDBMS COMPONENTS

The DDBMS must include at least the following components:

� Computer workstations (sites or nodes) that form the network system. The distributed database system must
be independent of the computer system hardware.

� Network hardware and software components that reside in each workstation. The network components allow
all sites to interact and exchange data. Because the components—computers, operating systems, network
hardware, and so on—are likely to be supplied by different vendors, it is best to ensure that distributed database
functions can be run on multiple platforms.

� Communications media that carry the data from one workstation to another. The DDBMS must be
communications-media-independent; that is, it must be able to support several types of communications media.

� The transaction processor (TP), which is the software component found in each computer that requests
data. The transaction processor receives and processes the application’s data requests (remote and local). The
TP is also known as the application processor (AP) or the transaction manager (TM).

� The data processor (DP), which is the software component residing on each computer that stores and
retrieves data located at the site. The DP is also known as the data manager (DM). A data processor may
even be a centralized DBMS.

Figure 12.5 illustrates the placement of the components and the interaction among them. The communication among
TPs and DPs shown in Figure 12.5 is made possible through a specific set of rules, or protocols, used by the DDBMS.

FIGURE
12.4

A fully distributed database management system

Database fragment A2Database fragment A1

Distributed processing
Site 1 Site 2

Single logical database

User Mary User Tom

Communication line

C6545_12 8/31/2007 13:53:54 Page 484

484 C H A P T E R 1 2

The protocols determine how the distributed database system will:

� Interface with the network to transport data and commands between data processors (DPs) and transaction
processors (TPs).

� Synchronize all data received from DPs (TP side) and route retrieved data to the appropriate TPs (DP side).

� Ensure common database functions in a distributed system. Such functions include security, concurrency
control, backup, and recovery.

DPs and TPs can be added to the system without affecting the operation of the other components. A TP and a DP
can reside on the same computer, allowing the end user to access local as well as remote data transparently. In theory,
a DP can be an independent centralized DBMS with proper interfaces to support remote access from other
independent DBMSs in the network.

12.6 LEVELS OF DATA AND PROCESS DISTRIBUTION

Current database systems can be classified on the basis of how process distribution and data distribution are supported.
For example, a DBMS may store data in a single site (centralized DB) or in multiple sites (distributed DB) and may
support data processing at a single site or at multiple sites. Table 12.2 uses a simple matrix to classify database systems
according to data and process distribution. These types of processes are discussed in the sections that follow.

FIGURE
12.5

Distributed database system management components

Note: Each TP can access data on any DP, and
each DP handles all requests for local data from any TP.

José

Communications network

TP TP DP

Peter Mary
Dedicated

data processor

Amy Chantal Dedicated
data processor

DP
TP
DP

TP
DP

TP
DP

C6545_12 8/31/2007 12:44:3 Page 485

485D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

TABLE
12.2

Database Systems: Levels of Data and Process Distribution

SINGLE-SITE DATA MULTIPLE-SITE DATA
Single-site process Host DBMS Not applicable

(Requires multiple processes)
Multiple-site process File server

Client/server DBMS (LAN DBMS)
Fully distributed
Client/server DDBMS

12.6.1 Single-Site Processing, Single-Site Data (SPSD)

In the single-site processing, single-site data (SPSD) scenario, all processing is done on a single host computer
(single-processor server, multiprocessor server, mainframe system) and all data are stored on the host computer’s local
disk system. Processing cannot be done on the end user’s side of the system. Such a scenario is typical of most
mainframe and midrange server computer DBMSs. The DBMS is located on the host computer, which is accessed by
dumb terminals connected to it. See Figure 12.6. This scenario is also typical of the first generation of single-user
microcomputer databases.

Using Figure 12.6 as an example, you can see that the functions of the TP and the DP are embedded within the DBMS
located on a single computer. The DBMS usually runs under a time-sharing, multitasking operating system, which
allows several processes to run concurrently on a host computer accessing a single DP. All data storage and data
processing are handled by a single host computer.

FIGURE
12.6

Single-site processing, single-site data (centralized)

Database

Dumb
terminals

Remote
dumb

terminal

DBMS

Front-end
processor

T1

T3

T2

Communication through
DSL or T-1 line

C6545_12 8/31/2007 12:44:42 Page 486

486 C H A P T E R 1 2

12.6.2 Multiple-Site Processing, Single-Site Data (MPSD)

Under the multiple-site processing, single-site data (MPSD) scenario, multiple processes run on different
computers sharing a single data repository. Typically, the MPSD scenario requires a network file server running
conventional applications that are accessed through a network. Many multiuser accounting applications running under
a personal computer network fit such a description. (See Figure 12.7.)

As you examine Figure 12.7, note that:

� The TP on each workstation acts only as a redirector to route all network data requests to the file server.

� The end user sees the file server as just another hard disk. Because only the data storage input/output (I/O)
is handled by the file server’s computer, the MPSD offers limited capabilities for distributed processing.

� The end user must make a direct reference to the file server in order to access remote data. All record- and
file-locking activities are done at the end-user location.

� All data selection, search, and update functions take place at the workstation, thus requiring that entire files
travel through the network for processing at the workstation. Such a requirement increases network traffic,
slows response time, and increases communication costs.

The inefficiency of the last condition can be illustrated easily. For example, suppose the file server computer stores a
CUSTOMER table containing 10,000 data rows, 50 of which have balances greater than $1,000. Suppose site A
issues the following SQL query:

SELECT *
FROM CUSTOMER
WHERE CUS_BALANCE > 1000;

All 10,000 CUSTOMER rows must travel through the network to be evaluated at site A.

FIGURE
12.7

Multiple-site processing, single-site data

Site A

TP

File Server

Communications network

DP

Site B

TP

Site C

TP

C6545_12 8/31/2007 13:54:35 Page 487

487D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

A variation of the multiple-site processing, single-site data approach is known as client/server architecture. Client/
server architecture is similar to that of the network file server except that all database processing is done at the
server site, thus reducing network traffic. Although both the network file server and the client/server systems
perform multiple-site processing, the latter’s processing is distributed. Note that the network file server approach
requires the database to be located at a single site. In contrast, the client/server architecture is capable of supporting
data at multiple sites.

12.6.3 Multiple-Site Processing, Multiple-Site Data (MPMD)

The multiple-site processing, multiple-site data (MPMD) scenario describes a fully distributed DBMS with
support for multiple data processors and transaction processors at multiple sites. Depending on the level of support
for various types of centralized DBMSs, DDBMSs are classified as either homogeneous or heterogeneous.

Homogeneous DDBMSs integrate only one type of centralized DBMS over a network. Thus, the same DBMS will
be running on different server platforms (single processor server, multi-processor server, server farms, or server blades).
In contrast, heterogeneous DDBMSs integrate different types of centralized DBMSs over a network. See
Figure 12.8. A fully heterogeneous DDBMS will support different DBMSs that may even support different data
models (relational, hierarchical, or network) running under different computer systems, such as mainframes and PCs.

Some DDBMS implementations support several platforms, operating systems, and networks and allow remote data
access to another DBMS. However, such DDBMSs still are subject to certain restrictions. For example:

� Remote access is provided on a read-only basis and does not support write privileges.

� Restrictions are placed on the number of remote tables that may be accessed in a single transaction.

� Restrictions are placed on the number of distinct databases that may be accessed.

� Restrictions are placed on the database model that may be accessed. Thus, access may be provided to relational
databases but not to network or hierarchical databases.

The preceding list of restrictions is by no means exhaustive. The DDBMS technology continues to change rapidly, and
new features are added frequently. Managing data at multiple sites leads to a number of issues that must be addressed
and understood. The next section will examine several key features of distributed database management systems.

O n l i n e C o n t e n t

Appendix F, Client/Server Systems, is located in the Student Online Companion for this book.

C6545_12 9/5/2007 8:55:51 Page 488

488 C H A P T E R 1 2

12.7 DISTRIBUTED DATABASE TRANSPARENCY FEATURES

A distributed database system requires functional characteristics that can be grouped and described as transparency
features. DDBMS transparency features have the common property of allowing the end user to feel like the database’s
only user. In other words, the user believes that (s)he is working with a centralized DBMS; all complexities of a
distributed database are hidden, or transparent, to the user.

The DDBMS transparency features are:

� Distribution transparency, which allows a distributed database to be treated as a single logical database. If
a DDBMS exhibits distribution transparency, the user does not need to know:

- That the data are partitioned—meaning the table’s rows and columns are split vertically or horizontally and
stored among multiple sites.

- That the data can be replicated at several sites.

- The data location.

FIGURE
12.8

Heterogeneous distributed database scenario

IBM 3090

DEC/VAX

IBM AS/400

RISC computer

Pentium CPU

DB2 MVS APPC LU 6.2

VAX rdb

SQL/400

Informix

Oracle

OpenVMS

OS/400

UNIX

Windows
Server 2003

DECnet

3270

TCP/IP

TCP/IP

Platform DBMS
Operating

System

Network
Communications

Protocol

C6545_12 8/31/2007 14:3:51 Page 489

489D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

� Transaction transparency, which allows a transaction to update data at more than one network site.
Transaction transparency ensures that the transaction will be either entirely completed or aborted, thus
maintaining database integrity.

� Failure transparency, which ensures that the system will continue to operate in the event of a node failure.
Functions that were lost because of the failure will be picked up by another network node.

� Performance transparency, which allows the system to perform as if it were a centralized DBMS. The
system will not suffer any performance degradation due to its use on a network or due to the network’s
platform differences. Performance transparency also ensures that the system will find the most cost-effective
path to access remote data.

� Heterogeneity transparency, which allows the integration of several different local DBMSs (relational,
network, and hierarchical) under a common, or global, schema. The DDBMS is responsible for translating the
data requests from the global schema to the local DBMS schema.

Distribution, transaction, and performance transparency features will be examined in greater detail in the next few
sections.

12.8 DISTRIBUTION TRANSPARENCY

Distribution transparency allows a physically dispersed database to be managed as though it were a centralized
database. The level of transparency supported by the DDBMS varies from system to system. Three levels of distribution
transparency are recognized:

� Fragmentation transparency is the highest level of transparency. The end user or programmer does not
need to know that a database is partitioned. Therefore, neither fragment names nor fragment locations are
specified prior to data access.

� Location transparency exists when the end user or programmer must specify the database fragment names
but does not need to specify where those fragments are located.

� Local mapping transparency exists when the end user or programmer must specify both the fragment
names and their locations.

Transparency features are summarized in Table 12.3.

TABLE
12.3

A Summary of Transparency Features

IF THE SQL STATEMENT REQUIRES:
FRAGMENT NAME? LOCATION NAME? THEN THE DBMS

SUPPORTS
LEVEL OF DISTRIBUTON
TRANSPARENCY

Yes Yes Local mapping Low
Yes No Location transparency Medium
No No Fragmentation transparency High

As you examine Table 12.3, you might ask why there is no reference to a situation in which the fragment name is “No”
and the location name is “Yes.” The reason for not including that scenario is simple: you cannot have a location name
that fails to reference an existing fragment. (If you don’t need to specify a fragment name, its location is clearly
irrelevant.)

To illustrate the use of various transparency levels, suppose you have an EMPLOYEE table containing the attributes
EMP_NAME, EMP_DOB, EMP_ADDRESS, EMP_DEPARTMENT, and EMP_SALARY. The EMPLOYEE data are
distributed over three different locations: New York, Atlanta, and Miami. The table is divided by location; that is, New

C6545_12 8/31/2007 13:55:45 Page 490

490 C H A P T E R 1 2

York employee data are stored in fragment E1, Atlanta employee data are stored in fragment E2, and Miami employee
data are stored in fragment E3. See Figure 12.9.

Now suppose the end user wants to list all employees with a date of birth prior to January 1, 1960. To focus on the
transparency issues, also suppose the EMPLOYEE table is fragmented and each fragment is unique. The unique
fragment condition indicates that each row is unique, regardless of the fragment in which it is located. Finally, assume
that no portion of the database is replicated at any other site on the network.

Depending on the level of distribution transparency support, you may examine three query cases.

Case 1: The Database Supports Fragmentation Transparency
The query conforms to a nondistributed database query format; that is, it does not specify fragment names or locations.
The query reads:

SELECT *
FROM EMPLOYEE
WHERE EMP_DOB < '01-JAN-1960';

Case 2: The Database Supports Location Transparency
Fragment names must be specified in the query, but fragment location is not specified. The query reads:

SELECT *
FROM E1
WHERE EMP_DOB < '01-JAN-1960';
UNION
SELECT *
FROM E2
WHERE EMP_DOB < '01-JAN-1960';
UNION
SELECT *
FROM E3
WHERE EMP_DOB < '01-JAN-1960';

FIGURE
12.9

Fragment locations

Distributed DBMS

Fragment

Location

EMPLOYEE table

E1 E2 E3

New York Atlanta Miami

C6545_12 9/24/2007 17:14:50 Page 491

491D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

Case 3: The Database Supports Local Mapping Transparency
Both the fragment name and location must be specified in the query. Using pseudo-SQL:

SELECT *
FROM El NODE NY
WHERE EMP_DOB < '01-JAN-1960';
UNION
SELECT *
FROM E2 NODE ATL
WHERE EMP_DOB < '01-JAN-1960';
UNION
SELECT *
FROM E3 NODE MIA
WHERE EMP_DOB < '01-JAN-1960';

As you examine the preceding query formats, you can see how distribution transparency affects the way end users and
programmers interact with the database.

Distribution transparency is supported by a distributed data dictionary (DDD), or a distributed data catalog
(DDC). The DDC contains the description of the entire database as seen by the database administrator. The database
description, known as the distributed global schema, is the common database schema used by local TPs to translate
user requests into subqueries (remote requests) that will be processed by different DPs. The DDC is itself distributed,
and it is replicated at the network nodes. Therefore, the DDC must maintain consistency through updating at all sites.

Keep in mind that some of the current DDBMS implementations impose limitations on the level of transparency
support. For instance, you might be able to distribute a database, but not a table, across multiple sites. Such a condition
indicates that the DDBMS supports location transparency but not fragmentation transparency.

12.9 TRANSACTION TRANSPARENCY

Transaction transparency is a DDBMS property that ensures that database transactions will maintain the distributed
database’s integrity and consistency. Remember that a DDBMS database transaction can update data stored in many
different computers connected in a network. Transaction transparency ensures that the transaction will be completed
only when all database sites involved in the transaction complete their part of the transaction.

Distributed database systems require complex mechanisms to manage transactions and to ensure the database’s
consistency and integrity. To understand how the transactions are managed, you should know the basic concepts
governing remote requests, remote transactions, distributed transactions, and distributed requests.

12.9.1 Distributed Requests and Distributed Transactions1

Whether or not a transaction is distributed, it is formed by one or more database requests. The basic difference
between a nondistributed transaction and a distributed transaction is that the latter can update or request data from

1The details of distributed requests and transactions were originally described in David McGoveran and Colin White, “Clarifying Client/Server,” DBMS
3(12), November 1990, pp. 78−89.

Note

NODE indicates the location of the database fragment. NODE is used for illustration purposes and is not part
of the standard SQL syntax.

C6545_12 9/24/2007 17:15:11 Page 492

492 C H A P T E R 1 2

several different remote sites on a network. To better illustrate the distributed transaction concepts, let’s begin by
establishing the difference between remote and distributed transactions, using the BEGIN WORK and COMMIT
WORK transaction format. Assume the existence of location transparency to avoid having to specify the data location.

A remote request, illustrated in Figure 12.10, lets a single SQL statement access the data that are to be processed
by a single remote database processor. In other words, the SQL statement (or request) can reference data at only one
remote site.

Similarly, a remote transaction, composed of several requests, accesses data at a single remote site. A remote
transaction is illustrated in Figure 12.11.

As you examine Figure 12.11, note the following remote transaction features:

� The transaction updates the PRODUCT and INVOICE tables (located at site B).

� The remote transaction is sent to and executed at the remote site B.

� The transaction can reference only one remote DP.

� Each SQL statement (or request) can reference only one (the same) remote DP at a time, and the entire
transaction can reference and be executed at only one remote DP.

FIGURE
12.10

A remote request

CUSTOMER
Network

SELECT *
 FROM CUSTOMER
 WHERE CUS_STATE = ‘AL’;

Comment: The request is
directed to the CUSTOMER
table at site B.

Site A Site B

TP DP

FIGURE
12.11

A remote transaction

INVOICE

PRODUCT
BEGIN WORK;
UPDATE PRODUCT

 SET PROD_QTY = PROD_QTY — 1
 WHERE PROD_NUM = ‘231785’;

INSERT INTO INVOICE (CUS_NUM, INV_DATE, INV_TOTAL)
VALUES ‘100’, ‘15-FEB-2008’, 120.00;

COMMIT WORK;

Network

Site A Site B

TP DP

C6545_12 8/31/2007 13:56:48 Page 493

493D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

A distributed transaction allows a transaction to reference several different local or remote DP sites. Although
each single request can reference only one local or remote DP site, the transaction as a whole can reference multiple
DP sites because each request can reference a different site. The distributed transaction process is illustrated in
Figure 12.12.

Note the following features in Figure 12.12:

� The transaction references two remote sites (B and C).

� The first two requests (UPDATE PRODUCT and INSERT INTO INVOICE) are processed by the DP at the
remote site C, and the last request (UPDATE CUSTOMER) is processed by the DP at the remote site B.

� Each request can access only one remote site at a time.

The third characteristic may create problems. For example, suppose the table PRODUCT is divided into two
fragments, PRODl and PROD2, located at sites B and C, respectively. Given that scenario, the preceding distributed
transaction cannot be executed because the request:

SELECT *
FROM PRODUCT
WHERE PROD_NUM = &'231785';

cannot access data from more than one remote site. Therefore, the DBMS must be able to support a distributed
request.

A distributed request lets a single SQL statement reference data located at several different local or remote DP sites.
Because each request (SQL statement) can access data from more than one local or remote DP site, a transaction can
access several sites. The ability to execute a distributed request provides fully distributed database processing
capabilities because of the ability to:

� Partition a database table into several fragments.

� Reference one or more of those fragments with only one request. In other words, there is fragmentation
transparency.

FIGURE
12.12

A distributed transaction

CUSTOMER

PRODUCT

INVOICEBEGIN WORK;
UPDATE PRODUCT

SET PROD_QTY=PROD_QTY — 1
 WHERE PROD_NUM = ‘231785’;

INSERT INTO INVOICE (CUS_NUM, INV_DATE, INV_TOTAL)
VALUES (‘100’, ‘15-FEB-2008’, 120.00);

UPDATE CUSTOMER
SET CUS_BALANCE = CUS_BALANCE + 120
 WHERE CUS_NUM = ‘100’;

COMMIT WORK;

Network

Site A Site B

TP DP

DP

Site C

C6545_12 8/31/2007 13:57:13 Page 494

494 C H A P T E R 1 2

The location and partition of the data should be transparent to the end user. Figure 12.13 illustrates a distributed
request. As you examine Figure 12.13, note that the transaction uses a single SELECT statement to reference two
tables, CUSTOMER and INVOICE. The two tables are located at two different sites, B and C.

The distributed request feature also allows a single request to reference a physically partitioned table. For example, suppose
a CUSTOMER table is divided into two fragments, C1 and C2, located at sites B and C, respectively. Further suppose the
end user wants to obtain a list of all customers whose balances exceed $250. The request is illustrated in Figure 12.14.
Full fragmentation transparency support is provided only by a DDBMS that supports distributed requests.

FIGURE
12.13

A distributed request

INVOICE

PRODUCT

CUSTOMER

BEGIN WORK;
 SELECT CUS_NUM, INV_TOTAL

 FROM CUSTOMER, INVOICE
 WHERE CUS_NUM = ‘100’ AND

INVOICE.CUS_NUM = CUSTOMER.CUS_NUM;
COMMIT WORK;

Network

Site A Site B

TP DP

DP

Site C

FIGURE
12.14

Another distributed request

C1

C2

SELECT *
FROM CUSTOMER

WHERE CUS_BALANCE > 250;

Network

Site A Site B

TP DP

DP

Site C

C6545_12 8/31/2007 13:12:27 Page 495

495D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

Understanding the different types of database requests in distributed database systems helps you address the
transaction transparency issue more effectively. Transaction transparency ensures that distributed transactions are
treated as centralized transactions, ensuring the serializability of transactions. (Review Chapter 10, Transaction
Management and Concurrency Control, if necessary.) That is, the execution of concurrent transactions, whether or not
they are distributed, will take the database from one consistent state to another.

12.9.2 Distributed Concurrency Control

Concurrency control becomes especially important in the distributed database environment because multisite,
multiple-process operations are more likely to create data inconsistencies and deadlocked transactions than single-site
systems are. For example, the TP component of a DDBMS must ensure that all parts of the transaction are completed
at all sites before a final COMMIT is issued to record the transaction.

Suppose each transaction operation was committed by each local DP, but one of the DPs could not commit the
transaction’s results. Such a scenario would yield the problems illustrated in Figure 12.15: the transaction(s) would yield
an inconsistent database, with its inevitable integrity problems, because committed data cannot be uncommitted! The
solution for the problem illustrated in Figure 12.15 is a two-phase commit protocol, which you will explore next.

12.9.3 Two-Phase Commit Protocol

Centralized databases require only one DP. All database operations take place at only one site, and the consequences
of database operations are immediately known to the DBMS. In contrast, distributed databases make it possible for a
transaction to access data at several sites. A final COMMIT must not be issued until all sites have committed their parts
of the transaction. The two-phase commit protocol guarantees that if a portion of a transaction operation cannot

FIGURE
12.15

The effect of a premature COMMIT

Data are
committed

Rollback at
site C

Site A

Site B

Site C

Can’t roll back
sites A and B

DP

DP

LOCK (Z)
...
...
ROLLBACK

DP

LOCK (X)
WRITE (X)
COMMIT

LOCK (Y)
WRITE (Y)
COMMIT

C6545_12 8/31/2007 13:12:43 Page 496

496 C H A P T E R 1 2

be committed, all changes made at the other sites participating in the transaction will be undone to maintain a
consistent database state.

Each DP maintains its own transaction log. The two-phase commit protocol requires that the transaction entry log for
each DP be written before the database fragment is actually updated. (See Chapter 10.) Therefore, the two-phase
commit protocol requires a DO-UNDO-REDO protocol and a write-ahead protocol.

The DO-UNDO-REDO protocol is used by the DP to roll back and/or roll forward transactions with the help of the
system’s transaction log entries. The DO-UNDO-REDO protocol defines three types of operations:

� DO performs the operation and records the “before” and “after” values in the transaction log.

� UNDO reverses an operation, using the log entries written by the DO portion of the sequence.

� REDO redoes an operation, using the log entries written by the DO portion of the sequence.

To ensure that the DO, UNDO, and REDO operations can survive a system crash while they are being executed, a
write-ahead protocol is used. The write-ahead protocol forces the log entry to be written to permanent storage
before the actual operation takes place.

The two-phase commit protocol defines the operations between two types of nodes: the coordinator and one or
more subordinates, or cohorts. The participating nodes agree on a coordinator. Generally, the coordinator role is
assigned to the node that initiates the transaction. However, different systems implement various, more sophisticated
election methods. The protocol is implemented in two phases:

Phase 1: Preparation
The coordinator sends a PREPARE TO COMMIT message to all subordinates.

1. The subordinates receive the message; write the transaction log, using the write-ahead protocol; and send an
acknowledgment (YES/PREPARED TO COMMIT or NO/NOT PREPARED) message to the coordinator.

2. The coordinator makes sure that all nodes are ready to commit, or it aborts the action.

If all nodes are PREPARED TO COMMIT, the transaction goes to phase 2. If one or more nodes reply NO or NOT
PREPARED, the coordinator broadcasts an ABORT message to all subordinates.

Phase 2: The Final COMMIT
1. The coordinator broadcasts a COMMIT message to all subordinates and waits for the replies.

2. Each subordinate receives the COMMIT message, and then updates the database using the DO protocol.

3. The subordinates reply with a COMMITTED or NOT COMMITTED message to the coordinator.

If one or more subordinates did not commit, the coordinator sends an ABORT message, thereby forcing them to
UNDO all changes.

The objective of the two-phase commit is to ensure that each node commits its part of the transaction; otherwise, the
transaction is aborted. If one of the nodes fails to commit, the information necessary to recover the database is in the
transaction log, and the database can be recovered with the DO-UNDO-REDO protocol. (Remember that the log
information was updated using the write-ahead protocol.)

12.10 PERFORMANCE TRANSPARENCY AND QUERY OPTIMIZATION

One of the most important functions of a database is its ability to make data available. Because all data reside at a single
site in a centralized database, the DBMS must evaluate every data request and find the most efficient way to access the
local data. In contrast, the DDBMS makes it possible to partition a database into several fragments, thereby rendering

C6545_12 8/31/2007 13:12:57 Page 497

497D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

the query translation more complicated, because the DDBMS must decide which fragment of the database to access.
In addition, the data may also be replicated at several different sites. The data replication makes the access problem
even more complex, because the database must decide which copy of the data to access. The DDBMS uses query
optimization techniques to deal with such problems and to ensure acceptable database performance.

The objective of a query optimization routine is to minimize the total cost associated with the execution of a request.
The costs associated with a request are a function of the:

� Access time (I/O) cost involved in accessing the physical data stored on disk.

� Communication cost associated with the transmission of data among nodes in distributed database systems.

� CPU time cost associated with the processing overhead of managing distributed transactions.

Although costs are often classified as either communication or processing costs, it is difficult to separate the two. Not
all query optimization algorithms use the same parameters, and all algorithms do not assign the same weight to each
parameter. For example, some algorithms minimize total time; others minimize the communication time; and still
others do not factor in the CPU time, considering it insignificant relative to other cost sources.

To evaluate query optimization, keep in mind that the TP must receive data from the DP, synchronize it, assemble the
answer, and present it to the end user or an application. Although that process is standard, you should consider that
a particular query may be executed at any one of several different sites. The response time associated with remote sites
cannot be easily predetermined because some nodes are able to finish their part of the query in less time than others.

One of the most important characteristics of query optimization in distributed database systems is that it must provide
distribution transparency as well as replica transparency. (Distribution transparency was explained earlier in this
chapter.) Replica transparency refers to the DDBMS’s ability to hide the existence of multiple copies of data from
the user.

Most of the algorithms proposed for query optimization are based on two principles:

� The selection of the optimum execution order.

� The selection of sites to be accessed to minimize communication costs.

Within those two principles, a query optimization algorithm can be evaluated on the basis of its operation mode or
the timing of its optimization.

Operation modes can be classified as manual or automatic. Automatic query optimization means that the DDBMS
finds the most cost-effective access path without user intervention. Manual query optimization requires that the
optimization be selected and scheduled by the end user or programmer. Automatic query optimization is clearly more
desirable from the end user’s point of view, but the cost of such convenience is the increased overhead that it imposes
on the DDBMS.

Query optimization algorithms can also be classified according to when the optimization is done. Within this timing
classification, query optimization algorithms can be classified as static or dynamic.

� Static query optimization takes place at compilation time. In other words, the best optimization strategy is
selected when the query is compiled by the DBMS. This approach is common when SQL statements are
embedded in procedural programming languages such as C# or Visual Basic .NET. When the program is
submitted to the DBMS for compilation, it creates the plan necessary to access the database. When the
program is executed, the DBMS uses that plan to access the database.

Note

Chapter 11, Database Performance Tuning and Query Optimization, provides additional details about query
optimization.

C6545_12 9/5/2007 8:56:19 Page 498

498 C H A P T E R 1 2

� Dynamic query optimization takes place at execution time. Database access strategy is defined when the
program is executed. Therefore, access strategy is dynamically determined by the DBMS at run time, using the
most up-to-date information about the database. Although dynamic query optimization is efficient, its cost is
measured by run-time processing overhead. The best strategy is determined every time the query is executed;
this could happen several times in the same program.

Finally, query optimization techniques can be classified according to the type of information that is used to optimize
the query. For example, queries may be based on statistically based or rule-based algorithms.

� A statistically based query optimization algorithm uses statistical information about the database. The
statistics provide information about database characteristics such as size, number of records, average access
time, number of requests serviced, and number of users with access rights. These statistics are then used by the
DBMS to determine the best access strategy.

� The statistical information is managed by the DDBMS and is generated in one of two different modes: dynamic
or manual. In the dynamic statistical generation mode, the DDBMS automatically evaluates and updates
the statistics after each access. In the manual statistical generation mode, the statistics must be updated
periodically through a user-selected utility such as IBM’s RUNSTAT command used by DB2 DBMSs.

� A rule-based query optimization algorithm is based on a set of user-defined rules to determine the best
query access strategy. The rules are entered by the end user or database administrator, and they typically are
very general in nature.

12.11 DISTRIBUTED DATABASE DESIGN

Whether the database is centralized or distributed, the design principles and concepts described in Chapter 3, The
Relational Database Model; Chapter 4, Entity Relationship Modeling; and Chapter 5, Normalization of Database
Tables, are still applicable. However, the design of a distributed database introduces three new issues:

� How to partition the database into fragments.

� Which fragments to replicate.

� Where to locate those fragments and replicas.

Data fragmentation and data replication deal with the first two issues, and data allocation deals with the third issue.

12.11.1 Data Fragmentation

Data fragmentation allows you to break a single object into two or more segments or fragments. The object might
be a user’s database, a system database, or a table. Each fragment can be stored at any site over a computer network.
Information about data fragmentation is stored in the distributed data catalog (DDC), from which it is accessed by the
TP to process user requests.

Data fragmentation strategies, as discussed here, are based at the table level and consist of dividing a table into logical
fragments. You will explore three types of data fragmentation strategies: horizontal, vertical, and mixed. (Keep in mind
that a fragmented table can always be re-created from its fragmented parts by a combination of unions and joins.)

� Horizontal fragmentation refers to the division of a relation into subsets (fragments) of tuples (rows). Each
fragment is stored at a different node, and each fragment has unique rows. However, the unique rows all have
the same attributes (columns). In short, each fragment represents the equivalent of a SELECT statement, with
the WHERE clause on a single attribute.

� Vertical fragmentation refers to the division of a relation into attribute (column) subsets. Each subset
(fragment) is stored at a different node, and each fragment has unique columns—with the exception of the key
column, which is common to all fragments. This is the equivalent of the PROJECT statement in SQL.

� Mixed fragmentation refers to a combination of horizontal and vertical strategies. In other words, a table
may be divided into several horizontal subsets (rows), each one having a subset of the attributes (columns).

C6545_12 9/5/2007 8:57:14 Page 499

499D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

To illustrate the fragmentation strategies, let’s use the CUSTOMER table for the XYZ Company, depicted in
Figure 12.16. The table contains the attributes CUS_NUM, CUS_NAME, CUS_ADDRESS, CUS_STATE, CUS_
LIMIT, CUS_BAL, CUS_RATING, and CUS_DUE.

Horizontal Fragmentation
Suppose XYZ Company’s corporate management requires information about its customers in all three states, but
company locations in each state (TN, FL, and GA) require data regarding local customers only. Based on such
requirements, you decide to distribute the data by state. Therefore, you define the horizontal fragments to conform to
the structure shown in Table 12.4.

TABLE
12.4

Horizontal Fragmentation of the Customer Table by State

FRAGMENT
NAME LOCATION CONDITION NODE NAME CUSTOMER

NUMBERS
NUMBER
OF ROWS

CUST_H1 Tennessee CUS_STATE = ‘TN’ NAS 10, 12 2
CUST_H2 Georgia CUS_STATE = ‘GA’ ATL 15 1
CUST_H3 Florida CUS_STATE = ‘FL’ TAM 11, 13, 14 3

Each horizontal fragment may have a different number of rows, but each fragment must have the same attributes. The
resulting fragments yield the three tables depicted in Figure 12.17.

Vertical Fragmentation
You may also divide the CUSTOMER relation into vertical fragments that are composed of a collection of attributes.
For example, suppose the company is divided into two departments: the service department and the collections
department. Each department is located in a separate building, and each has an interest in only a few of the
CUSTOMER table’s attributes. In this case, the fragments are defined as shown in Table 12.5.

O n l i n e C o n t e n t

The databases used to illustrate the material in this chapter are found in the Student Online Companion for
this book.

Table name: CUSTOMER

FIGURE
12.16

A sample CUSTOMER table

C6545_12 9/5/2007 8:57:32 Page 500

500 C H A P T E R 1 2

TABLE
12.5

Vertical Fragmentation of the Customer Table

FRAGMENT
NAME LOCATION NODE

NAME ATTRIBUTE NAMES

CUST_V1 Service Bldg. SVC CUS_NUM, CUS_NAME, CUS_ADDRESS, CUS_STATE
CUST_V2 Collection Bldg. ARC CUS_NUM, CUS_LIMIT, CUS_BAL, CUS_RATING, CUS_DUE

Each vertical fragment must have the same number of rows, but the inclusion of the different attributes depends on
the key column. The vertical fragmentation results are displayed in Figure 12.18. Note that the key attribute
(CUS_NUM) is common to both fragments CUST_V1 and CUST_V2.

Table name: CUST_H1

Table name: CUST_H2

Table name: CUST_H3

Location: Tennessee

Location: Georgia

Location: Florida

Node: NAS

Node: ATL

Node: TAM

FIGURE
12.17

Table fragments in three locations

Table name: CUST_V1

Table name: CUST_V2

Location: Service Building

Location: Collection Building

Node: SVC

Node: ARC

FIGURE
12.18

Vertically fragmented table contents

C6545_12 8/31/2007 13:17:26 Page 501

501D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

Mixed Fragmentation
The XYZ Company’s structure requires that the CUSTOMER data be fragmented horizontally to accommodate the
various company locations; within the locations, the data must be fragmented vertically to accommodate the two
departments (service and collection). In short, the CUSTOMER table requires mixed fragmentation.

Mixed fragmentation requires a two-step procedure. First, horizontal fragmentation is introduced for each site based
on the location within a state (CUS_STATE). The horizontal fragmentation yields the subsets of customer tuples
(horizontal fragments) that are located at each site. Because the departments are located in different buildings, vertical
fragmentation is used within each horizontal fragment to divide the attributes, thus meeting each department’s
information needs at each subsite. Mixed fragmentation yields the results displayed in Table 12.6.

TABLE
12.6

Mixed Fragmentation of the Customer Table

FRAGMENT
NAME

LOCATION HORIZONTAL
CRITERIA

NODE
NAME

RESULTING
ROWS AT SITE

VERTICAL CRITERIA
ATTRIBUTES AT
EACH FRAGMENT

CUST_M1 TN-Service CUS_STATE =
‘TN’

NAS-S 10, 12 CUS_NUM, CUS_NAME
CUS_ADDRESS, CUS_STATE

CUST_M2 TN-Collection CUS_STATE =
‘TN’

NAS-C 10, 12 CUS_NUM, CUS_LIMIT,
CUS_BAL, CUS_RATING,
CUS_DUE

CUST_M3 GA-Service CUS_STATE =
‘GA’

ATL-S 15 CUS_NUM, CUS_NAME
CUS_ADDRESS, CUS_STATE

CUST_M4 GA-Collection CUS_STATE =
‘GA’

ATL-C 15 CUS_NUM, CUS_LIMIT,
CUS_BAL, CUS_RATING,
CUS_DUE

CUST_M5 FL-Service CUS_STATE = ‘FL’ TAM-S 11, 13, 14 CUS_NUM, CUS_NAME
CUS_ADDRESS, CUS_STATE

CUST_M6 FL-Collection CUS_STATE = ‘FL’ TAM-C 11, 13, 14 CUS_NUM, CUS_LIMIT,
CUS_BAL, CUS_RATING,
CUS_DUE

Each fragment displayed in Table 12.6 contains customer data by state and, within each state, by department location,
to fit each department’s data requirements. The tables corresponding to the fragments listed in Table 12.6 are shown
in Figure 12.19.

C6545_12 8/31/2007 13:22:53 Page 502

502 C H A P T E R 1 2

12.11.2 Data Replication

Data replication refers to the storage of data copies at multiple sites served by a computer network. Fragment copies
can be stored at several sites to serve specific information requirements. Because the existence of fragment copies can
enhance data availability and response time, data copies can help to reduce communication and total query costs.

Suppose database A is divided into two fragments, A1 and A2. Within a replicated distributed database, the scenario
depicted in Figure 12.20 is possible: fragment A1 is stored at sites S1 and S2, while fragment A2 is stored at sites S2
and S3.

Replicated data are subject to the mutual consistency rule. The mutual consistency rule requires that all copies of
data fragments be identical. Therefore, to maintain data consistency among the replicas, the DDBMS must ensure that
a database update is performed at all sites where replicas exist.

Although replication has some benefits (such as improved data availability, better load distribution, improved data
failure-tolerance, and reduced query costs), it also imposes additional DDBMS processing overhead— because each
data copy must be maintained by the system. Furthermore, because the data are replicated at another site, there are

Table name: CUST_M1

Table name: CUST_M2

Table name: CUST_M3

Location: TN-Service

Location: TN-Collection

Location: GA-Service

Node: NAS-S

Node: NAS-C

Node: ATL-S

Table name: CUST_M4

Table name: CUST_M5

Table name: CUST_M6

Location: GA-Collection

Location: FL-Service

Location: FL-Collection

Node: ATL-C

Node: TAM-S

Node: TAM-C

FIGURE
12.19

Table contents after the mixed fragmentation process

C6545_12 8/31/2007 13:58:50 Page 503

503D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

associated storage costs and increased transaction times (as data must be updated at several sites concurrently to
comply with the mutual consistency rule). To illustrate the replica overhead imposed on a DDBMS, consider the
processes that the DDBMS must perform to use the database.

� If the database is fragmented, the DDBMS must decompose a query into subqueries to access the appropriate
fragments.

� If the database is replicated, the DDBMS must decide which copy to access. A READ operation selects the
nearest copy to satisfy the transaction. A WRITE operation requires that all copies be selected and updated
to satisfy the mutual consistency rule.

� The TP sends a data request to each selected DP for execution.

� The DP receives and executes each request and sends the data back to the TP.

� The TP assembles the DP responses.

The problem becomes more complex when you consider additional factors such as network topology and communi-
cation throughputs.

Three replication scenarios exist: a database can be fully replicated, partially replicated, or unreplicated.

� A fully replicated database stores multiple copies of each database fragment at multiple sites. In this case,
all database fragments are replicated. A fully replicated database can be impractical due to the amount of
overhead it imposes on the system.

� A partially replicated database stores multiple copies of some database fragments at multiple sites. Most
DDBMSs are able to handle the partially replicated database well.

� An unreplicated database stores each database fragment at a single site. Therefore, there are no duplicate
database fragments.

Several factors influence the decision to use data replication:

� Database size. The amount of data replicated will have an impact on the storage requirements and also on the
data transmission costs. Replicating large amounts of data requires a window of time and higher network
bandwidth that could affect other applications.

A 1 A 2A 1 A 2

FIGURE
12.20

Data replication

Site S1 Site S3Site S2

DP DP DP

C6545_12 9/5/2007 8:57:59 Page 504

504 C H A P T E R 1 2

� Usage frequency. The frequency of data usage determines how frequently the data needs to be updated.
Frequently used data needs to be updated more often, for example, than large data sets that are used only every
quarter.

� Costs, including those for performance, software overhead, and management associated with synchronizing
transactions and their components vs. fault-tolerance benefits that are associated with replicated data.

When the usage frequency of remotely located data is high and the database is large, data replication can reduce the
cost of data requests. Data replication information is stored in the distributed data catalog (DDC), whose contents are
used by the TP to decide which copy of a database fragment to access. The data replication makes it possible to restore
lost data.

12.11.3 Data Allocation

Data allocation describes the process of deciding where to locate data. Data allocation strategies are as follows:

� With centralized data allocation, the entire database is stored at one site.

� With partitioned data allocation, the database is divided into two or more disjointed parts (fragments) and
stored at two or more sites.

� With replicated data allocation, copies of one or more database fragments are stored at several sites.

Data distribution over a computer network is achieved through data partition, through data replication, or through a
combination of both. Data allocation is closely related to the way a database is divided or fragmented. Most data
allocation studies focus on one issue: which data to locate where.

Data allocation algorithms take into consideration a variety of factors, including:

� Performance and data availability goals.

� Size, number of rows, and number of relations that an entity maintains with other entities.

� Types of transactions to be applied to the database and the attributes accessed by each of those transactions.

� Disconnected operation for mobile users. In some cases, the design might consider the use of loosely
disconnected fragments for mobile users, particularly for read-only data that does not require frequent updates
and for which the replica update windows (the amount of time available to perform a certain data processing
task that cannot be executed concurrently with other tasks) may be longer.

Some algorithms include external data, such as network topology or network throughput. No optimal or universally
accepted algorithm exists yet, and very few algorithms have been implemented to date.

12.12 CLIENT/SERVER VS. DDBMS

Because the trend toward distributed databases is firmly established, many database vendors have used the
“client/server” label to indicate distributed database capability. However, distributed databases do not always accurately
reflect the characteristics implied by the client/server label.

Client/server architecture refers to the way in which computers interact to form a system. The client/server
architecture features a user of resources, or a client, and a provider of resources, or a server. The client/server
architecture can be used to implement a DBMS in which the client is the TP and the server is the DP.

Client/server interactions in a DDBMS are carefully scripted. The client (TP) interacts with the end user and sends a
request to the server (DP). The server receives, schedules, and executes the request, selecting only those records that
are needed by the client. The server then sends the data to the client only when the client requests the data.

C6545_12 9/5/2007 8:58:12 Page 505

505D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

Client/server applications offer several advantages.

� Client/server solutions tend to be less expensive than alternate minicomputer or mainframe solutions in terms
of startup infrastructure requirements.

� Client/server solutions allow the end user to use the microcomputer’s GUI, thereby improving functionality and
simplicity. In particular, using the ubiquitous Web browser in conjunction with Java and .NET frameworks
provides a familiar end-user interface.

� More people in the job market have PC skills than mainframe skills. The majority of new generation students
are learning Java and .NET programming skills.

� The PC is well established in the workplace. In addition, the increased use of the Internet as a business channel,
coupled with security advances (SSL, Virtual Private Networks, multifactor authentication, etc.) provide a more
reliable and secure platform for business transactions.

� Numerous data analysis and query tools exist to facilitate interaction with many of the DBMSs that are available
in the PC market.

� There is a considerable cost advantage to offloading applications development from the mainframe to
powerful PCs.

Client/server applications are also subject to some disadvantages.

� The client/server architecture creates a more complex environment in which different platforms (LANs,
operating systems, and so on) are often difficult to manage.

� An increase in the number of users and processing sites often paves the way for security problems.

� The client/server environment makes it possible to spread data access to a much wider circle of users. Such
an environment increases the demand for people with a broad knowledge of computers and software
applications. The burden of training increases the cost of maintaining the environment.

12.13 C. J. DATE’S TWELVE COMMANDMENTS FOR DISTRIBUTED DATABASES

The notion of distributed databases has been around for at least 20 years. With the rise of relational databases, most
vendors implemented their own versions of distributed databases, generally highlighting their respective product’s
strengths. To make the comparison of distributed databases easier, C. J. Date formulated twelve “commandments” or
basic principles of distributed databases.2 Although no current DDBMS conforms to all of them, they constitute a useful
target. The twelve rules are as follows:

1. Local site independence. Each local site can act as an independent, autonomous, centralized DBMS. Each site
is responsible for security, concurrency control, backup, and recovery.

2. Central site independence. No site in the network relies on a central site or any other site. All sites have the
same capabilities.

3. Failure independence. The system is not affected by node failures. The system is in continuous operation even
in the case of a node failure or an expansion of the network.

4. Location transparency. The user does not need to know the location of data in order to retrieve those data.

2 Date, C. J. “Twelve Rules for a Distributed Database,” Computer World, June 8, 1987, 2(23) pp. 77–81.

O n l i n e C o n t e n t

Refer to Appendix F, Client/Server Systems, for complete coverage of client/server computing
concepts, components, and managerial implications.

C6545_12 9/24/2007 17:15:54 Page 506

506 C H A P T E R 1 2

5. Fragmentation transparency. Data fragmentation is transparent to the user, who sees only one logical
database. The user does not need to know the name of the database fragments in order to retrieve them.

6. Replication transparency. The user sees only one logical database. The DDBMS transparently selects the
database fragment to access. To the user, the DDBMS manages all fragments transparently.

7. Distributed query processing. A distributed query may be executed at several different DP sites. Query
optimization is performed transparently by the DDBMS.

8. Distributed transaction processing. A transaction may update data at several different sites, and the
transaction is executed transparently.

9. Hardware independence. The system must run on any hardware platform.

10. Operating system independence. The system must run on any operating system platform.

11. Network independence. The system must run on any network platform.

12. Database independence. The system must support any vendor’s database product.

C6545_12 8/31/2007 13:44:58 Page 507

507D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

S u m m a r y

◗ A distributed database stores logically related data in two or more physically independent sites connected via a
computer network. The database is divided into fragments, which can be horizontal (a set of rows) or vertical (a set
of attributes). Each fragment can be allocated to a different network node.

◗ Distributed processing is the division of logical database processing among two or more network nodes. Distributed
databases require distributed processing. A distributed database management system (DDBMS) governs the
processing and storage of logically related data through interconnected computer systems.

◗ The main components of a DDBMS are the transaction processor (TP) and the data processor (DP). The
transaction processor component is the software that resides on each computer node that requests data. The data
processor component is the software that resides on each computer that stores and retrieves data.

◗ Current database systems can be classified by the extent to which they support processing and data distribution.
Three major categories are used to classify distributed database systems: (1) single-site processing, single-site data
(SPSD); (2) multiple-site processing, single-site data (MPSD); and (3) multiple-site processing, multiple-site
data (MPMD).

◗ A homogeneous distributed database system integrates only one particular type of DBMS over a computer
network. A heterogeneous distributed database system integrates several different types of DBMSs over a computer
network.

◗ DDBMS characteristics are best described as a set of transparencies: distribution, transaction, failure, heterogene-
ity, and performance. All transparencies share the common objective of making the distributed database behave as
though it were a centralized database system; that is, the end user sees the data as part of a single logical centralized
database and is unaware of the system’s complexities.

◗ A transaction is formed by one or more database requests. An undistributed transaction updates or requests data
from a single site. A distributed transaction can update or request data from multiple sites.

◗ Distributed concurrency control is required in a network of distributed databases. A two-phase COMMIT protocol
is used to ensure that all parts of a transaction are completed.

◗ A distributed DBMS evaluates every data request to find the optimum access path in a distributed database. The
DDBMS must optimize the query to reduce access, communications, and CPU costs associated with the query.

◗ The design of a distributed database must consider the fragmentation and replication of data. The designer must
also decide how to allocate each fragment or replica to obtain better overall response time and to ensure data
availability to the end user.

◗ A database can be replicated over several different sites on a computer network. The replication of the database
fragments has the objective of improving data availability, thus decreasing access time. A database can be partially,
fully, or not replicated. Data allocation strategies are designed to determine the location of the database fragments
or replicas.

◗ Database vendors often label software as client/server database products. The client/server architecture label refers
to the way in which two computers interact over a computer network to form a system.

C6545_12 8/31/2007 13:26:24 Page 508

508 C H A P T E R 1 2

K e y T e r m s

application processor (AP), 484

automatic query optimization, 498

client/server architecture, 488

coordinator, 497

data allocation, 505
centralized, 505
partitioned, 505
replicated, 505

database fragments, 481

data fragmentation, 499
horizontal, 499
mixed, 499
vertical, 499

data manager (DM), 484

data processor (DP), 484

data replication, 503

distributed database, 481

distributed database management
system (DDBMS), 478

distributed data catalog (DDC), 492

distributed data dictionary
(DDD), 492

distributed global schema, 492

distributed processing, 481

distributed request, 494

distributed transaction, 494

distribution transparency, 489

DO-UNDO-REDO protocol, 497

dynamic query optimization, 499

dynamic statistical generation
mode, 499

failure transparency, 490

fragmentation transparency, 490

fully heterogeneous DDBMS, 488

fully replicated database, 504

heterogeneity transparency, 490

heterogeneous DDBMS, 488

homogeneous DDBMS, 488

local mapping transparency, 490

location transparency, 490

manual query optimization, 498

manual statistical generation
mode, 499

multiple-site processing, multiple-site
data (MPMD), 488

multiple-site processing, single-site
data (MPSD), 487

mutual consistency rule, 503

partially replicated database, 504

performance transparency, 490

remote request, 493

remote transaction, 493

replica transparency, 498

rule-based query optimization
algorithm, 499

single-site processing, single-site
data (SPSD), 487

static query optimization, 498

statistically based query optimization
algorithm, 499

subordinates, 497

transaction manager (TM), 484

transaction processor (TP), 484

transaction transparency, 490

two-phase commit protocol, 496

unique fragment, 491

unreplicated database, 504

write-ahead protocol, 497

R e v i e w Q u e s t i o n s

1. Describe the evolution from centralized DBMSs to distributed DBMSs.

2. List and discuss some of the factors that influenced the evolution of the DDBMS.

3. What are the advantages of the DDBMS?

4. What are the disadvantages of the DDBMS?

5. Explain the difference between a distributed database and distributed processing.

6. What is a fully distributed database management system?

7. What are the components of a DDBMS?

8. List and explain the transparency features of a DDBMS.

9. Define and explain the different types of distribution transparency.

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the Student Online
Companion for this book.

C6545_12 8/31/2007 14:8:7 Page 509

509D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

10. Describe the different types of database requests and transactions.

11. Explain the need for the two-phase commit protocol. Then describe the two phases.

12. What is the objective of query optimization functions?

13. To which transparency feature are the query optimization functions related?

14. What are the different types of query optimization algorithms?

15. Describe the three data fragmentation strategies. Give some examples of each.

16. What is data replication, and what are the three replication strategies?

17. Explain the difference between distributed databases and client/server architecture.

P r o b l e m s

The first problem is based on the DDBMS scenario in Figure P12.1.

1. Specify the minimum type(s) of operation(s) the database must support (remote request, remote transaction,
distributed transaction, or distributed request) to perform the following operations:

At site C

a. SELECT *
FROM CUSTOMER;

b. SELECT *
FROM INVOICE
WHERE INV_TOT > 1000;

c. SELECT *
FROM PRODUCT
WHERE PROD_ QOH < 10;

FIGURE
P12.1

The DDBMS scenario for Problem 1

CUSTOMER

PROD_A

INVOICE INV_LINE PROD_B

TABLES LOCATIONFRAGMENTS

CUSTOMER
PRODUCT

INVOICE
INV_LINE

N/A
PROD_A
PROD_B
N/A
N/A

A
A
B
B
B

Site C

C6545_12 8/31/2007 13:39:7 Page 510

510 C H A P T E R 1 2

d. BEGIN WORK;
UPDATE CUSTOMER
SET CUS_BAL = CUS_BAL + 100
WHERE CUS_NUM = '10936';
INSERT INTO INVOICE(INV_NUM, CUS_NUM, INV_DATE, INV_TOTAL)

VALUES ('986391', '10936', '15-FEB-2008', 100);
INSERT INTO LINE(INV_NUM, PROD_NUM, LINE_PRICE)

VALUES('986391', '1023', 100);
UPDATE PRODUCT
SET PROD_QOH = PROD_ QOH –1
WHERE PROD_NUM = '1023'; COMMIT WORK;

e. BEGIN WORK;
INSERT INTO CUSTOMER(CUS_NUM, CUS_NAME, CUS_ADDRESS, CUS_BAL)

VALUES ('34210', 'Victor Ephanor', '123 Main St.', 0.00);
INSERTINTO INVOICE(INV_NUM, CUS_NUM, INV_DATE, INV_TOTAL)

VALUES ('986434', '34210', '10-AUG-2007', 2.00);
COMMIT WORK;

At site A

f. SELECT CUS_NUM,CUS_NAME,INV_TOTAL
FROM CUSTOMER, INVOICE
WHERE CUSTOMER.CUS_NUM = INVOICE.CUS_NUM;

g. SELECT *
FROM INVOICE
WHERE INV_TOTAL > 1000;

h. SELECT *
FROM PRODUCT
WHERE PROD_QOH < 10;

At site B

i. SELECT *
FROM CUSTOMER;

j. SELECT CUS_NAME, INV_TOTAL
FROM CUSTOMER, INVOICE
WHERE INV_TOTAL > 1000

AND CUSTOMER.CUS_NUM = INVOICE.CUS_NUM;

k. SELECT *
FROM PRODUCT
WHERE PROD_QOH < 10;

C6545_12 9/24/2007 17:17:22 Page 511

511D I S T R I B U T E D D A T A B A S E M A N A G E M E N T S Y S T E M S

2. The following data structure and constraints exist for a magazine publishing company:

a. The company publishes one regional magazine in each region: Florida (FL), South Carolina (SC), Georgia
(GA), and Tennessee (TN).

b. The company has 300,000 customers (subscribers) distributed throughout the four states listed in Part a.

c. On the first of each month, an annual subscription INVOICE is printed and sent to each customer whose
subscription is due for renewal. The INVOICE entity contains a REGION attribute to indicate the state (FL,
SC, GA, TN) in which the customer resides:

CUSTOMER (CUS_NUM, CUS_NAME, CUS_ADDRESS, CUS_CITY, CUS_ZIP, CUS_SUBSDATE)
INVOICE (INV_NUM, INV_REGION, CUS_NUM, INV_DATE, INV_TOTAL)

The company’s management is aware of the problems associated with centralized management and has
decided to decentralize management of the subscriptions into the company’s four regional subsidiaries. Each
subscription site will handle its own customer and invoice data. The management at company headquarters,
however, will have access to customer and invoice data to generate annual reports and to issue ad hoc queries
such as:

� List all current customers by region.

� List all new customers by region.

� Report all invoices by customer and by region.

Given those requirements, how must you partition the database?

3. Given the scenario and the requirements in Question 2, answer the following questions:

a. What recommendations will you make regarding the type and characteristics of the required database system?

b. What type of data fragmentation is needed for each table?

c. What criteria must be used to partition each database?

d. Design the database fragments. Show an example with node names, location, fragment names, attribute
names, and demonstration data.

e. What type of distributed database operations must be supported at each remote site?

f. What type of distributed database operations must be supported at the headquarters site?

C6545_12 8/31/2007 13:43:21 Page 512

512 C H A P T E R 1 2

