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Business Intelligence and Data Warehouses

In this chapter, you will learn:

� How business intelligence is a comprehensive framework to support business decision
making

� How operational data and decision support data differ

� What a data warehouse is, how to prepare data for one, and how to implement one

� What star schemas are and how they are constructed

� What data mining is and what role it plays in decision support

� About online analytical processing (OLAP)

� How SQL extensions are used to support OLAP-type data manipulations

Data are crucial raw material in this information age, and data storage and management have

become the focus of database design and implementation. Ultimately, the reason for

collecting, storing, and managing data is to generate information that becomes the basis for

rational decision making. Decision support systems (DSSs) were originally developed to

facilitate the decision-making process. However, as the complexity and range of information

requirements increased, so did the difficulty of extracting all the necessary information from

the data structures typically found in an operational database.Therefore, a new data storage

facility, called a data warehouse, was developed.The data warehouse extracts or obtains its

data from operational databases as well as from external sources, providing a more

comprehensive data pool.

In parallel with data warehouses, new ways to analyze and present decision support data

were developed. Online analytical processing (OLAP) provides advanced data analysis and

presentation tools (including multidimensional data analysis). Data mining employs advanced

statistical tools to analyze the wealth of data now available through data warehouses and

other sources and to identify possible relationships and anomalies.

Business intelligence (BI) is the collection of best practices and software tools developed to

support business decision making in this age of globalization, emerging markets, rapid change,

and increasing regulation. BI encompasses tools and techniques such as data warehouses and

OLAP, with a more comprehensive focus on integrating them from a company-wide

perspective.

This chapter explores the main concepts and components of business intelligence and

decision support systems that gather,generate, and present information for business

decision makers, focusing especially on the use of data warehouses.
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13.1 THE NEED FOR DATA ANALYSIS

Organizations tend to grow and prosper as they gain a better understanding of their environment. Most managers want
to be able to track daily transactions to evaluate how the business is performing. By tapping into the operational
database, management can develop strategies to meet organizational goals. In addition, data analysis can provide
information about short-term tactical evaluations and strategies such as these: Are our sales promotions working? What
market percentage are we controlling? Are we attracting new customers? Tactical and strategic decisions are also
shaped by constant pressure from external and internal forces, including globalization, the cultural and legal
environment, and (perhaps most importantly) technology.

Given the many and varied competitive pressures, managers are always looking for a competitive advantage through
product development and maintenance, service, market positioning, sales promotion, and so on. Managers understand
that the business climate is dynamic, and thus, mandates their prompt reaction to change in order to remain
competitive. In addition, the modern business climate requires managers to approach increasingly complex problems
that involve a rapidly growing number of internal and external variables. It should also come as no surprise that interest
is growing in creating support systems dedicated to facilitating quick decision making in a complex environment.

Different managerial levels require different decision support needs. For example, transaction-processing systems,
based on operational databases, are tailored to serve the information needs of people who deal with short-term
inventory, accounts payable, and purchasing. Middle-level managers, general managers, vice presidents, and presi-
dents focus on strategic and tactical decision making. Those managers require detailed information designed to help
them make decisions in a complex data and analysis environment.

Companies and software vendors addressed these multilevel decision support needs by creating independent
applications to fit the needs of particular areas (finance, customer management, human resources, product support,
etc.). Applications were also tailored to different industry sectors such as education, retail, health care, or financial. This
approach worked well for some time, but changes in the business world (globalization, expanding markets, mergers
and acquisitions, increased regulation, and more) called for new ways of integrating and managing data across levels
and sectors. This more comprehensive and integrated decision support framework within organizations became known
as business intelligence.

13.2 BUSINESS INTELLIGENCE

Business intelligence (BI)1 is a term used to describe a comprehensive, cohesive, and integrated set of tools and
processes used to capture, collect, integrate, store, and analyze data with the purpose of generating and presenting
information used to support business decision making. As the names implies, BI is about creating intelligence about
a business. This intelligence is based on learning and understanding the facts about a business environment. BI is a
framework that allows a business to transform data into information, information into knowledge, and knowledge into
wisdom. BI has the potential to positively affect a company’s culture by creating “business wisdom” and distributing it
to all users in an organization. This business wisdom empowers users to make sound business decisions based on the
accumulated

1 In 1989, while working at Gartner Inc., Howard Dresner popularized “BI” as an umbrella term to describe a set of concepts and methods to
improve business decision making by using fact-based support systems. Source: http://www.computerworld.com/action/article.do?
command=viewArticleBasic&articleId=266298
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knowledge of the business as reflected on recorded facts (historic operational data). Table 13.1 gives some real-world
examples of companies that have implemented BI tools (data warehouse, data mart, OLAP, and/or data mining tools)
and shows how the use of such tools benefited the companies.

TABLE
13.1

Solving Business Problems and Adding Value with BI Tools

COMPANY PROBLEM BENEFIT
MOEN
Manufacturer of bathroom
and kitchen fixtures and
supplies
Source: Cognos Corp.
www.cognos.com

• Information generation very lim-
ited and time-consuming.

• How to extract data using a 3GL
known by only five people.

• Response time unacceptable for
managers' decision-making
purposes.

• Provided quick answers to ad hoc
questions for decision making.

• Provided access to data for
decision-making purposes.

• Received in-depth view of product
performance and customer
margins.

NASDAQ
Largest U.S. electronic stock
market trading organization
Source: Oracle
www.oracle.com

• Inability to provide real-time ad
hoc query and standard reporting
to executives, business analysts,
and other users.

• Excessive storage costs for many
terabytes of data.

• Reduced storage cost by moving to
a multitier storage solution.

• Implemented new data warehouse
center with support for ad hoc
query and reporting and near real-
time data access for end users.

Sega of America, Inc.
Interactive entertainment
systems and video games
Source: Oracle Corp.
www.oracle.com

• Needed a way to rapidly analyze a
great amount of data.

• Needed to track advertising, cou-
pons, and rebates associated with
effects of pricing changes.

• Used to do it with Excel spread-
sheets, leading to human-caused
errors.

• Eliminated data-entry errors.
• Identified successful marketing

strategies to dominate interactive
entertainment niches.

• Used product analysis to identify
better markets/product offerings.

Owens and Minor, Inc.
Medical and surgical supply
distributor
Source: CFO Magazine
www.cfomagazine.com

• Lost its largest customer, which
represented 10% of its annual rev-
enue ($360 million).

• Stock plunged 23%.
• Cumbersome process to get infor-

mation out of antiquated main-
frame system.

• Increased earnings per share in just
five months.

• Gained more business, thanks to
opening the data warehouse to
its clients.

• Managers gained quick access to
data for decision-making purposes.

Amazon.com
Leading online retailer
Source: PC Week Online
whitepapers.zdnet.com/
whitepaper.aspx?
docid=241748

• Difficulty in managing a very rap-
idly growing data environment.

• Existing data warehouse solution
not capable of supporting
extremely rapid growth.

• Needed more flexible and reliable
data warehouse solution to protect
its investment in data and
infrastructure.

• Implemented new data warehouse
with superior scalability and
performance.

• Improved business intelligence.
• Improved management of product

flow through the entire
supply chain.

• Improved customer experience.

BI is a comprehensive endeavor because it encompasses all business processes within an organization. Business
processes are the central units of operation in a business. Implementing BI in an organization involves capturing not
only business data (internal and external) but also the metadata, or knowledge about the data. In practice, BI is a
complex proposition that requires a deep understanding and alignment of the business processes, the internal and
external data, and the information needs of users at all levels in an organization.
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BI is not a product by itself, but a framework of concepts, practices, tools, and technologies that help a business better
understand its core capabilities, provide snapshots of the company situation, and identify key opportunities to create
competitive advantage. In practice, BI provides a well-orchestrated framework for the management of data that works
across all levels of the organization. BI involves the following general steps:

1. Collecting and storing operational data

2. Aggregating the operational data into decision support data

3. Analyzing decision support data to generate information

4. Presenting such information to the end user to support business decisions

5. Making business decisions, which in turn generate more data that is collected, stored, etc. (restarting the
process)

6. Monitoring results to evaluate outcomes of the business decisions (providing more data to be collected, stored, etc.)

To implement all these steps, BI uses varied components and technologies. In the following sections, you will learn
about the basic BI architecture and implementations.

13.3 BUSINESS INTELLIGENCE ARCHITECTURE

BI covers a range of technologies and applications to manage the entire data life cycle from acquisition to storage,
transformation, integration, analysis, monitoring, presentation, and archiving. BI functionality ranges from simple data
gathering and extraction to very complex data analysis and presentation applications. There is no single BI
architecture; instead, it ranges from highly integrated applications from a single vendor to a loosely integrated,
multivendor environment. However, there are some general types of functionality that all BI implementations share.

Like any critical business IT infrastructure, the BI architecture is composed of data, people, processes, technology, and
the management of such components. Figure 13.1 depicts how all those components fit together within the BI
framework.

Remember that the main focus of BI is to gather, integrate, and store business data for the purpose of creating
information. As depicted in Figure 13.1, BI integrates people and processes using technology in order to add value to
the business. Such value is derived from how end users use such information in their daily activities, and in particular,
their daily business decision making. Also note that the BI technology components are varied. This chapter will explain
those components in greater detail in the following sections.

The focus of traditional information systems was on operational automation and reporting; in contrast, BI tools focus
on the strategic and tactical use of information. In order to achieve this goal, BI recognizes that technology alone is
not enough. Therefore, BI uses an arrangement of best management practices to manage data as a corporate asset.
One of the most recent developments in this area is the use of master data management techniques. Master data
management (MDM) is a collection of concepts, techniques, and processes for the proper identification, definition,
and management of data elements within an organization. MDM’s main goal is to provide a comprehensive and
consistent definition of all data within an organization. MDM ensures that all company resources (people, procedures,
and IT systems) that operate over data have uniform and consistent views of the company’s data.
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An added benefit of this meticulous approach to data management and decision making is that it provides a framework
for business governance. Governance is a method or process of government. In this case, BI provides a method for
controlling and monitoring business health and for consistent decision making. Furthermore, having such governance
creates accountability for business decisions. In the present age of business flux, accountability is increasingly
important. Had governance been as pivotal to business operations a few years back, crises precipitated by the likes of
Enron, WorldCom, and Arthur Andersen might have been avoided.

Monitoring a business’s health is crucial to understanding where the company is and where it is headed. In order to
do this, BI makes extensive use of a special type of metrics known as key performance indicators. Key performance
indicators (KPI) are quantifiable measurements (numeric or scale based) that assess the company’s effectiveness or
success in reaching its strategic and operational goals. There are many different KPI used by different industries. Some
examples of KPI are:

� General. Year-to-year measurements of profit by line of business, same store sales, product turnovers, product
recalls, sales by promotion, sales by employee, etc.

� Finance. Earnings per share, profit margin, revenue per employee, percentage of sales to account receivables,
assets to sales, etc.

� Human resources. Applicants to job openings, employee turnover, employee longevity, etc.

� Education. Graduation rates, number of incoming freshmen, student retention rates, etc.

FIGURE
13.1

Business intelligence framework
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KPIs are determined after the main strategic, tactical, and operational goals for a business are defined. To tie the KPI
to the strategic master plan of an organization, a KPI will be compared to a desired goal within a specific time frame.
For example, if you are in an academic environment, you might be interested in ways to measure student satisfaction
or retention. In this case, a sample goal would be to “Increase the graduating senior average exit exam grades from
9 to 12 by fall, 2010.” Another sample KPI would be: “Increase the returning student rate of freshman year to
sophomore year from 60% to 75% by 2012.” In this case, such performance indicators would be measured and
monitored on a year-to-year basis, and plans to achieve such goals would be set in place.

Another way to understand BI architecture is by describing the basic components that form part of its infrastructure.
Some of the components have overlapping functionality; however, there are four basic components that all BI
environments should provide. These are described in Table 13.2 and illustrated in Figure 13.2.

TABLE
13.2

Basic BI Architectural Components

COMPONENT DESCRIPTION
Data extraction, trans-
formation, and loading
(ETL) tools

This component is in charge of collecting, filtering, integrating, and aggregating opera-
tional data to be saved into a data store optimized for decision support. For example, to
determine the relative market share by selected product lines, you require data from
competitors' products. Such data can be located in external databases provided by indus-
try groups or by companies that market the data. As the name implies, this component
extracts the data, filters the extracted data to select the relevant records, and packages the
data in the right format to be added to the data store component.

Data store The data store is optimized for decision support and is generally represented by a data
warehouse or a data mart. The data store contains business data extracted from the
operational database and from external data sources. The business data are stored in
structures that are optimized for data analysis and query speed. The external data sources
provide data that cannot be found within the company but that are relevant to the busi-
ness, such as stock prices, market indicators, marketing information (such as demograph-
ics), and competitors' data.

Data query and
analysis tools

This component performs data retrieval, data analysis, and data mining tasks using the data in
the data store and business data analysis models. This component is used by the data analyst
to create the queries that access the database. Depending on the implementation, the query
tool accesses either the operational database, or more commonly, the data store. This tool
advises the user on which data to select and how to build a reliable business data model.
This component is generally represented in the form of an OLAP tool.

Data presentation and
visualization tools

This component is in charge of presenting the data to the end user in a variety of ways. This
component is used by the data analyst to organize and present the data. This tool helps the
end user select the most appropriate presentation format, such as summary report, map, pie
or bar graph, or mixed graphs. The query tool and the presentation tool are the front end to
the BI environment.
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Each BI component shown in Table 13.2 has generated a fast-growing market for specialized tools. And thanks to the
advancement of client/server technologies, those components can interact with other components to form a truly
open architecture. As a matter of fact, you can integrate multiple tools from different vendors into a single BI
framework. Table 13.3 shows a sample of common BI tools and vendors.

TABLE
13.3

Sample of Business Intelligence Tools

TOOL DESCRIPTION SAMPLE VENDORS
Decision support
systems

A decision support system (DSS) is an arrangement of com-
puterized tools used to assist managerial decision making
within a business. Decision support systems were the precur-
sors of modern BI systems. A DSS typically has a much nar-
rower focus and reach than a BI solution.

SAP
Teradata
IBM
Proclarity

Dashboards and
business activity
monitoring

Dashboards use Web-based technologies to present key busi-
ness performance indicators or information in a single inte-
grated view, generally using graphics in a clear, concise, and
easy to understand manner.

Salesforce
VisualCalc
Cognos
BusinessObjects
Information Builders
Actuate

Portals Portals provide a unified, single point of entry for information
distribution. Portals are a Web-based technology that uses a
Web browser to integrate data from multiple sources into a
single Web page. Many different types of BI functionality can
be accessed through a portal.

Oracle Portal
Actuate
Microsoft

FIGURE
13.2
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TABLE
13.3

Sample of Business Intelligence Tools (continued)

TOOL DESCRIPTION SAMPLE VENDORS
Data analysis and
reporting tools

Advanced tools used to query multiple diverse data sources to
create single integrated reports.

Mircrosoft Reporting
Services
Information Builders
Eclipse BIRT
MicroStrategy
SAS WebReportStudio

Data mining tools Tools that provide advanced statistical analysis to uncover
problems and opportunities hidden within business data.

MicroStrategy Intelligence
Server
MS Analytics Services

Data warehouses The data warehouse is the foundation on which a BI infra-
structure is built. Data is captured from the OLTP system and
placed on the DW on near-real time basis. BI provides com-
panywide integration of data and the capability to respond to
business issues in a timely manner.

Microsoft
Oracle
IBM
MicroStrategy

OLAP tools Online analytical processing provides multidimensional data
analysis.

Cognos
BusinessObjects
Oracle
Microsoft

Data visualization Tools that provide advanced visual analysis and techniques to
enhance understanding of business data.

Advanced Visual Systems
Dundas
iDashboards

Although BI has an unquestionably important role in modern business operations, keep in mind that the manager must
initiate the decision support process by asking the appropriate questions. The BI environment exists to support the
manager; it does not replace the management function. If the manager fails to ask the appropriate questions, problems
will not be identified and solved, and opportunities will be missed. In spite of the very powerful BI presence, the human
component is still at the center of business technology.

13.4 DECISION SUPPORT DATA

Although BI is used at strategic and tactical managerial levels within organizations, its effectiveness depends on the
quality of data gathered at the operational level. Yet operational data are seldom well suited to the decision support
tasks. The differences between operational data and decision support data are examined in the next section.

13.4.1 Operational Data vs. Decision Support Data

Operational data and decision support data serve different purposes. Therefore, it is not surprising to learn that their
formats and structures differ.

Most operational data are stored in a relational database in which the structures (tables) tend to be highly normalized.
Operational data storage is optimized to support transactions that represent daily operations. For example, each time
an item is sold, it must be accounted for. Customer data, inventory data, and so on, are in a frequent update mode.
To provide effective update performance, operational systems store data in many tables, each with a minimum number
of fields. Thus, a simple sales transaction might be represented by five or more different tables (for example, invoice,

Note

Although the term BI includes a variety of components and tools, this chapter focuses on its data warehouse
component.
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invoice line, discount, store, and department). Although such an arrangement is excellent in an operational database,
it is not efficient for query processing. For example, to extract a simple invoice, you would have to join several tables.
Whereas operational data are useful for capturing daily business transactions, decision support data give tactical and
strategic business meaning to the operational data. From the data analyst’s point of view, decision support data differ
from operational data in three main areas: time span, granularity, and dimensionality.

� Time span. Operational data cover a short time frame. In contrast, decision support data tend to cover a longer
time frame. Managers are seldom interested in a specific sales invoice to customer X; rather, they tend to focus
on sales generated during the last month, the last year, or the last five years.

� Granularity (level of aggregation). Decision support data must be presented at different levels of aggregation,
from highly summarized to near-atomic. For example, if managers must analyze sales by region, they must be
able to access data showing the sales by region, by city within the region, by store within the city within the
region, and so on. In that case, summarized data to compare the regions is required, but also data in a structure
that enables a manager to drill down, or decompose, the data into more atomic components (that is,
finer-grained data at lower levels of aggregation). In contrast, when you roll up the data, you are aggregating
the data to a higher level.

� Dimensionality. Operational data focus on representing individual transactions rather than on the effects of
the transactions over time. In contrast, data analysts tend to include many data dimensions and are interested
in how the data relate over those dimensions. For example, an analyst might want to know how product X
fared relative to product Z during the past six months by region, state, city, store, and customer. In that case,
both place and time are part of the picture.

Figure 13.3 shows how decision support data can be examined from multiple dimensions (such as product, region, and
year), using a variety of filters to produce each dimension. The ability to analyze, extract, and present information in
meaningful ways is one of the differences between decision support data and transaction-at-a-time operational data.

From the designer’s point of view, the differences between operational and decision support data are as follows:

� Operational data represent transactions as they happen in real time. Decision support data are a snapshot of
the operational data at a given point in time. Therefore, decision support data are historic, representing a time
slice of the operational data.

� Operational and decision support data are different in terms of transaction type and transaction volume. Whereas
operational data are characterized by update transactions, decision support data are mainly characterized by
query (read-only) transactions. Decision support data also require periodic updates to load new data that are
summarized from the operational data. Finally, the concurrent transaction volume in operational data tends to
be very high when compared with the low-to-medium levels found in decision support data.

� Operational data are commonly stored in many tables, and the stored data represent the information about a
given transaction only. Decision support data are generally stored in a few tables that store data derived from
the operational data. The decision support data do not include the details of each operational transaction.
Instead, decision support data represent transaction summaries; therefore, the decision support database
stores data that are integrated, aggregated, and summarized for decision support purposes.

� The degree to which decision support data are summarized is very high when contrasted with operational data.
Therefore, you will see a great deal of derived data in decision support databases. For example, rather than
storing all 10,000 sales transactions for a given store on a given day, the decision support database might
simply store the total number of units sold and the total sales dollars generated during that day. Decision
support data might be collected to monitor such aggregates as total sales for each store or for each product.
The purpose of the summaries is simple: they are to be used to establish and evaluate sales trends, product
sales comparisons, and so on, that serve decision needs. (How well are items selling? Should this product be
discontinued? Has the advertising been effective as measured by increased sales?)

� The data models that govern operational data and decision support data are different. The operational
database’s frequent and rapid data updates make data anomalies a potentially devastating problem. Therefore,
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the data requirements in a typical relational transaction (operational) system generally require normalized
structures that yield many tables, each of which contains the minimum number of attributes. In contrast, the
decision support database is not subject to such transaction updates, and the focus is on querying capability.
Therefore, decision support databases tend to be non-normalized and include few tables, each of which
contains a large number of attributes.

� Query activity (frequency and complexity) in the operational database tends to be low to allow additional
processing cycles for the more crucial update transactions. Therefore, queries against operational data typically
are narrow in scope, low in complexity, and speed-critical. In contrast, decision support data exist for the sole
purpose of serving query requirements. Queries against decision support data typically are broad in scope, high
in complexity, and less speed-critical.

� Finally, decision support data are characterized by very large amounts of data. The large data volume is the result
of two factors. First, data are stored in non-normalized structures that are likely to display many data redundancies
and duplications. Second, the same data can be categorized in many different ways to represent different
snapshots. For example, sales data might be stored in relation to product, store, customer, region, and manager.

FIGURE
13.3

Transforming operational data into decision support data

Operational Data Decision Support Data

Operational data have a narrow time span, low
granularity, and single focus. Such data are usually
presented in tabular format, in which each row
represents a single transaction. This format often
makes it difficult to derive useful information.

Decision support system (DSS) data focus on a broader
time span, tend to have high levels of granularity, and can be
examined in multiple dimensions. For example, note these
possible aggregations:

• Sales by product, region, agent, etc.
• Sales for all years or only a few selected years.
• Sales for all products or only a few selected products.

Sales

Region

Time

Product

Agent

O n l i n e C o n t e n t

The operational data in Figure 13.3 are found in the Student Online Companion for this book. The decision
support data in Figure 13.3 shows the output for the solution to Problem 2 at the end of this chapter.
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Table 13.4 summarizes the differences between operational and decision support data from the database designer’s
point of view.

TABLE
13.4

Contrasting Operational and Decision Support Data Characteristics

CHARACTERISTIC OPERATIONAL DATA DECISION SUPPORT DATA
Data currency Current operations

Real-time data
Historic data
Snapshot of company data
Time component (week/month/year)

Granularity Atomic-detailed data Summarized data
Summarization level Low; some aggregate yields High; many aggregation levels
Data model Highly normalized

Mostly relational DBMS
Non-normalized
Complex structures
Some relational, but mostly multidimensional DBMS

Transaction type Mostly updates Mostly query
Transaction volumes High update volumes Periodic loads and summary calculations
Transaction speed Updates are critical Retrievals are critical
Query activity Low to medium High
Query scope Narrow range Broad range
Query complexity Simple to medium Very complex
Data volumes Hundreds of megabytes, up to

gigabytes
Hundreds of gigabytes, up to terabytes

The many differences between operational data and decision support data are good indicators of the requirements of
the decision support database, described in the next section.

13.4.2 Decision Support Database Requirements

A decision support database is a specialized DBMS tailored to provide fast answers to complex queries. There are four
main requirements for a decision support database: the database schema, data extraction and loading, the end-user
analytical interface, and database size.

Database Schema
The decision support database schema must support com-
plex (non-normalized) data representations. As noted earlier,
the decision support database must contain data that are
aggregated and summarized. In addition to meeting those
requirements, the queries must be able to extract multidimen-
sional time slices. If you are using an RDBMS, the conditions
suggest using non-normalized and even duplicated data. To
see why this must be true, take a look at the 10-year sales
history for a single store containing a single department. At
this point, the data are fully normalized within the single
table, as shown in Table 13.5.

This structure works well when you have only one store with
only one department. However, it is very unlikely that such a
simple environment has much need for a decision support

database. One would suppose that a decision support database becomes a factor when dealing with more than one
store, each of which has more than one department. To support all of the decision support requirements, the database
must contain data for all of the stores and all of their departments—and the database must be able to support

TABLE
13.5

Ten-Year Sales History for a Single-
Department, in Millions of Dollars

YEAR SALES
1998 8,227
1999 9,109
2000 10,104
2001 11,553
2002 10,018
2003 11,875
2004 12,699
2005 14,875
2006 16,301
2007 19,986
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multidimensional queries that track sales by stores, by departments, and over time. For simplicity, suppose there are
only two stores (A and B) and two departments (1 and 2) within each store. Let’s also change the time dimension to
include yearly data. Table 13.6 shows the sales figures under the specified conditions. Only 1998, 2002, and 2007
are shown; ellipses (...) are used to indicate that data values were omitted. You can see in Table 13.6 that the number
of rows and attributes already multiplies quickly and that the table exhibits multiple redundancies.

TABLE
13.6

Yearly Sales Summaries, Two Stores and Two Departments per Store,
in Millions of Dollars

YEAR STORE DEPARTMENT SALES
1998 A 1 1,985
1998 A 2 2,401
1998 B 1 1,879
1998 B 2 1,962
� � � �

2002 A 1 3,912
2002 A 2 4,158
2002 B 1 3,426
2002 B 2 1,203
� � � �

2007 A 1 7,683
2007 A 2 6,912
2007 B 1 3,768
2007 B 2 1,623

Now suppose that the company has 10 departments per store and 20 stores nationwide. And suppose you want to
access yearly sales summaries. Now you are dealing with 200 rows and 12 monthly sales attributes per row. (Actually,
there are 13 attributes per row if you add each store’s sales total for each year.)

The decision support database schema must also be optimized for query (read-only) retrievals. To optimize query speed,
the DBMS must support features such as bitmap indexes and data partitioning to increase search speed. In addition,
the DBMS query optimizer must be enhanced to support the non-normalized and complex structures found in decision
support databases.

Data Extraction and Filtering
The decision support database is created largely by extracting data from the operational database and by importing
additional data from external sources. Thus, the DBMS must support advanced data extraction and data filtering tools.
To minimize the impact on the operational database, the data extraction capabilities should allow batch and scheduled
data extraction. The data extraction capabilities should also support different data sources: flat files and hierarchical,
network, and relational databases, as well as multiple vendors. Data filtering capabilities must include the ability to
check for inconsistent data or data validation rules. Finally, to filter and integrate the operational data into the decision
support database, the DBMS must support advanced data integration, aggregation, and classification.

Using data from multiple external sources also usually means having to solve data-formatting conflicts. For example,
data such as Social Security numbers and dates can occur in different formats; measurements can be based on different
scales, and the same data elements can have different names. In short, data must be filtered and purified to ensure that
only the pertinent decision support data are stored in the database and that they are stored in a standard format.
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End-User Analytical Interface
The decision support DBMS must support advanced data modeling and data presentation tools. Using those tools
makes it easy for data analysts to define the nature and extent of business problems. Once the problems have been
defined, the decision support DBMS must generate the necessary queries to retrieve the appropriate data from the
decision support database. If necessary, the query results may then be evaluated with data analysis tools supported by
the decision support DBMS. Because queries yield crucial information for decision makers, the queries must be
optimized for speedy processing. The end-user analytical interface is one of the most critical DBMS components.
When properly implemented, an analytical interface permits the user to navigate through the data to simplify and
accelerate the decision-making process.

Database Size
Decision support databases tend to be very large; gigabyte and terabyte ranges are not unusual. For example, in 2005,
Wal-Mart, the world’s largest company, had 260 terabytes of data in its data warehouses. As mentioned earlier, the
decision support database typically contains redundant and duplicated data to improve data retrieval and simplify
information generation. Therefore, the DBMS must be capable of supporting very large databases (VLDBs). To
support a VLDB adequately, the DBMS might be required to use advanced hardware, such as multiple disk arrays, and
even more importantly, to support multiple-processor technologies, such as a symmetric multiprocessor (SMP) or a
massively parallel processor (MPP).

The complex information requirements and the ever-growing demand for sophisticated data analysis sparked the
creation of a new type of data repository. This repository contains data in formats that facilitate data extraction, data
analysis, and decision making. This data repository is known as a data warehouse and has become the foundation for
a new generation of decision support systems.

13.5 THE DATA WAREHOUSE

Bill Inmon, the acknowledged “father” of the data warehouse, defines the term as “an integrated, subject-oriented,
time-variant, nonvolatile collection of data (italics added for emphasis) that provides support for decision making.”2

To understand that definition, let’s take a more detailed look at its components.

� Integrated. The data warehouse is a centralized, consolidated database that integrates data derived from the
entire organization and from multiple sources with diverse formats. Data integration implies that all business
entities, data elements, data characteristics, and business metrics are described in the same way throughout
the enterprise. Although this requirement sounds logical, you would be amazed to discover how many different
measurements for “sales performance” can exist within an organization; the same scenario holds true for any
other business element. For instance, the status of an order might be indicated with text labels such as “open,”
“received,” “cancelled,” and “closed” in one department and as “1,” “2,” “3,” and “4” in another department.
A student’s status might be defined as “freshman,” “sophomore,” “junior,” or “senior” in the accounting
department and as “FR,” “SO,” “JR,” or “SR” in the computer information systems department. To avoid the
potential format tangle, the data in the data warehouse must conform to a common format acceptable
throughout the organization. This integration can be time-consuming, but once accomplished, it enhances
decision making and helps managers better understand the company’s operations. This understanding can be
translated into recognition of strategic business opportunities.

� Subject-oriented. Data warehouse data are arranged and optimized to provide answers to questions coming
from diverse functional areas within a company. Data warehouse data are organized and summarized by topic,
such as sales, marketing, finance, distribution, and transportation. For each topic, the data warehouse contains

2 Inmon, Bill and Chuck Kelley. “The Twelve Rules of Data Warehouse for a Client/Server World,” Data Management Review, 4(5), May 1994,
pp. 6−16.
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specific subjects of interest—products, customers, departments, regions, promotions, and so on. This form of
data organization is quite different from the more functional or process-oriented organization of typical
transaction systems. For example, an invoicing system designer concentrates on designing normalized data
structures (relational tables) to support the business process by storing invoice components in two tables:
INVOICE and INVLINE. In contrast, the data warehouse has a subject orientation. Data warehouse designers
focus specifically on the data rather than on the processes that modify the data. (After all, data warehouse data
are not subject to numerous real-time data updates!) Therefore, instead of storing an invoice, the data
warehouse stores its “sales by product” and “sales by customer” components because decision support
activities require the retrieval of sales summaries by product or customer.

� Time-variant. In contrast to operational data, which focus on current transactions, warehouse data represent
the flow of data through time. The data warehouse can even contain projected data generated through
statistical and other models. It is also time-variant in the sense that once data are periodically uploaded to the
data warehouse, all time-dependent aggregations are recomputed. For example, when data for previous weekly
sales are uploaded to the data warehouse, the weekly, monthly, yearly, and other time-dependent aggregates
for products, customers, stores, and other variables are also updated. Because data in a data warehouse
constitute a snapshot of the company history as measured by its variables, the time component is crucial. The
data warehouse contains a time ID that is used to generate summaries and aggregations by week, month,
quarter, year, and so on. Once the data enter the data warehouse, the time ID assigned to the data cannot be
changed.

� Nonvolatile. Once data enter the data warehouse, they are never removed. Because the data in the warehouse
represent the company’s history, the operational data, representing the near-term history, are always added to
it. Because data are never deleted and new data are continually added, the data warehouse is always growing.
That’s why the DBMS must be able to support multigigabyte and even multiterabyte databases, operating on
multiprocessor hardware. Table 13.7 summarizes the differences between data warehouses and operational
databases.

TABLE
13.7

Characteristics of Data Warehouse Data and Operational Database Data

CHARACTERISTIC OPERATIONAL DATABASE DATA DATA WAREHOUSE DATA
Integrated Similar data can have different representa-

tions or meanings. For example, Social Secu-
rity numbers may be stored as ###-##-
#### or as #########, and a given
condition may be labeled as T/F or 0/1 or
Y/N. A sales value may be shown in thou-
sands or in millions.

Provide a unified view of all data elements
with a common definition and representa-
tion for all business units.

Subject-oriented Data are stored with a functional, or process,
orientation. For example, data may be stored
for invoices, payments, and credit amounts.

Data are stored with a subject orientation
that facilitates multiple views of the data
and facilitates decision making. For
example, sales may be recorded by prod-
uct, by division, by manager, or by region.

Time-variant Data are recorded as current transactions.
For example, the sales data may be the sale
of a product on a given date, such as
$342.78 on 12-MAY-2008.

Data are recorded with a historical perspec-
tive in mind. Therefore, a time dimension is
added to facilitate data analysis and various
time comparisons.

Nonvolatile Data updates are frequent and common. For
example, an inventory amount changes with
each sale. Therefore, the data environment
is fluid.

Data cannot be changed. Data are added
only periodically from historical systems.
Once the data are properly stored, no
changes are allowed. Therefore, the data
environment is relatively static.
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In summary, the data warehouse is usually a read-only database optimized for data analysis and query processing.
Typically, data are extracted from various sources and are then transformed and integrated—in other words, passed
through a data filter—before being loaded into the data warehouse. Users access the data warehouse via front-end tools
and/or end-user application software to extract the data in usable form. Figure 13.4 illustrates how a data warehouse
is created from the data contained in an operational database.

Although the centralized and integrated data warehouse can be a very attractive proposition that yields many benefits,
managers may be reluctant to embrace this strategy. Creating a data warehouse requires time, money, and considerable
managerial effort. Therefore, it is not surprising that many companies begin their foray into data warehousing by focusing
on more manageable data sets that are targeted to meet the special needs of small groups within the organization. These
smaller data stores are called data marts. A data mart is a small, single-subject data warehouse subset that provides
decision support to a small group of people. In addition, a data mart could also be created from data extracted from
a larger data warehouse with the specific function to support faster data access to a target group or function. That is,
data marts and data warehouses can coexist within a business intelligence environment.

Some organizations choose to implement data marts not only because of the lower cost and shorter implementation
time, but also because of the current technological advances and inevitable “people issues” that make data marts
attractive. Powerful computers can provide a customized decision support system to small groups in ways that might
not be possible with a centralized system. Also, a company’s culture may predispose its employees to resist major
changes, but they might quickly embrace relatively minor changes that lead to demonstrably improved decision
support. In addition, people at different organizational levels are likely to require data with different summarization,
aggregation, and presentation formats. Data marts can serve as a test vehicle for companies exploring the potential
benefits of data warehouses. By migrating gradually from data marts to data warehouses, a specific department’s
decision support needs can be addressed within a reasonable time frame (six months to one year), as compared to the

Data extraction
Data warehouse

Operational data

• Extract

• Filter

• Transform

• Integrate

• Classify

• Aggregate

• Summarize

• Integrated

• Subject-oriented

• Time-variant

• Nonvolatile

FIGURE
13.4

Creating a data warehouse
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longer time frame usually required to implement a data warehouse (one to three years). Information technology (IT)
departments also benefit from this approach because their personnel have the opportunity to learn the issues and
develop the skills required to create a data warehouse.

The only difference between a data mart and a data warehouse is the size and scope of the problem being solved.
Therefore, the problem definitions and data requirements are essentially the same for both. To be useful, the data
warehouse must conform to uniform structures and formats to avoid data conflicts and to support decision making. In
fact, before a decision support database can be considered a true data warehouse, it must conform to the rules
described in the next section.

13.5.1 Twelve Rules that Define a Data Warehouse

In 1994, William H. Inmon and Chuck Kelley created 12 rules defining a data warehouse, which summarize many of
the points made in this chapter about data warehouses.3

1. The data warehouse and operational environments are separated.

2. The data warehouse data are integrated.

3. The data warehouse contains historical data over a long time.

4. The data warehouse data are snapshot data captured at a given point in time.

5. The data warehouse data are subject oriented.

6. The data warehouse data are mainly read-only with periodic batch updates from operational data. No online
updates are allowed.

7. The data warehouse development life cycle differs from classical systems development. The data warehouse
development is data-driven; the classical approach is process-driven.

8. The data warehouse contains data with several levels of detail: current detail data, old detail data, lightly
summarized data, and highly summarized data.

9. The data warehouse environment is characterized by read-only transactions to very large data sets. The
operational environment is characterized by numerous update transactions to a few data entities at a time.

10. The data warehouse environment has a system that traces data sources, transformations, and storage.

11. The data warehouse’s metadata are a critical component of this environment. The metadata identify and define
all data elements. The metadata provide the source, transformation, integration, storage, usage, relationships,
and history of each data element.

12. The data warehouse contains a chargeback mechanism for resource usage that enforces optimal use of the data
by end users.

Note how those 12 rules capture the complete data warehouse life cycle—from its introduction as an entity separate
from the operational data store to its components, functionality, and management processes. The next section
illustrates the historical progression of decision support architectural styles. This discussion will help you understand
how the data store components evolved to produce the data warehouse.

13.5.2 Decision Support Architectural Styles

Several decision support database architectural styles are available. These architectures provide advanced decision
support features, and some are capable of providing access to multidimensional data analysis. Table 13.8 summarizes
the main architectural styles that you are likely to encounter in the decision support database environment.

3 Inmon, Bill and Chuck Kelley. “The Twelve Rules of Data Warehouse for a Client/Server World,” Data Management Review, 4 (5), May 1994,
pp. 6−16.
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You might be tempted to think that the data warehouse is just a big summarized database. The previous discussion
indicates that a good data warehouse is much more than that. A complete data warehouse architecture includes
support for a decision support data store, a data extraction and integration filter, and a specialized presentation
interface. In the next section you will learn more about a common decision support architectural style known as Online
Analytical Processing (OLAP).

13.6 ONLINE ANALYTICAL PROCESSING

The need for more intensive decision support prompted the introduction of a new generation of tools. Those new
tools, called online analytical processing (OLAP), create an advanced data analysis environment that supports
decision making, business modeling, and operations research. OLAP systems share four main characteristics:

� They use multidimensional data analysis techniques.

� They provide advanced database support.

� They provide easy-to-use end-user interfaces.

� They support client/server architecture.

Let’s examine each of those characteristics.

13.6.1 Multidimensional Data Analysis Techniques

The most distinct characteristic of modern OLAP tools is their capacity for multidimensional analysis. In multidimen-
sional analysis, data are processed and viewed as part of a multidimensional structure. This type of data analysis is
particularly attractive to business decision makers because they tend to view business data as data that are related to
other business data.

To better understand this view, let’s examine how, as a business data analyst, you might investigate sales figures. In this
case, you are probably interested in the sales figures as they relate to other business variables such as customers and
time. In other words, customers and time are viewed as different dimensions of sales. Figure 13.5 illustrates how the
operational (one-dimensional) view differs from the multidimensional view of sales.

Note in Figure 13.5 that the tabular (operational) view of sales data is not well suited to decision support, because the
relationship between INVOICE and LINE does not provide a business perspective of the sales data. On the other hand,
the end user’s view of sales data from a business perspective is more closely represented by the multidimensional view
of sales than by the tabular view of separate tables. Note also that the multidimensional view allows end users to
consolidate or aggregate data at different levels: total sales figures by customers and by date. Finally, the multidimen-
sional view of data allows a business data analyst to easily switch business perspectives (dimensions) from sales by
customer to sales by division, by region, and so on.

Multidimensional data analysis techniques are augmented by the following functions:

� Advanced data presentation functions. 3-D graphics, pivot tables, crosstabs, data rotation, and three-
dimensional cubes. Such facilities are compatible with desktop spreadsheets, statistical packages, and query
and report packages.

� Advanced data aggregation, consolidation, and classification functions. These allow the data analyst to
create multiple data aggregation levels, slice and dice data (see Section 13.6.3), and drill down and roll up data
across different dimensions and aggregation levels. For example, aggregating data across the time dimension
(by week, month, quarter, and year) allows the data analyst to drill down and roll up across time dimensions.

� Advanced computational functions. These include business-oriented variables (market share, period compari-
sons, sales margins, product margins, and percentage changes), financial and accounting ratios (profitability,
overhead, cost allocations, and returns), and statistical and forecasting functions. These functions are provided
automatically, and the end user does not need to redefine their components each time they are accessed.

� Advanced data modeling functions. These provide support for what-if scenarios, variable assessment,
variable contributions to outcome, linear programming, and other modeling tools.
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Because many analysis and presentation functions are common to desktop spreadsheet packages, most OLAP vendors
have closely integrated their systems with spreadsheets such as Microsoft Excel and IBM Lotus 1-2-3. Using the
features available in graphical end-user interfaces such as Windows, the OLAP menu option simply becomes another
option within the spreadsheet menu bar, as shown in Figure 13.6. This seamless integration is an advantage for OLAP
systems and for spreadsheet vendors because end users gain access to advanced data analysis features by using familiar
programs and interfaces. Therefore, additional training and development costs are minimized.

13.6.2 Advanced Database Support

To deliver efficient decision support, OLAP tools must have advanced data access features. Such features include:

� Access to many different kinds of DBMSs, flat files, and internal and external data sources.

� Access to aggregated data warehouse data as well as to the detail data found in operational databases.

� Advanced data navigation features such as drill-down and roll-up.

� Rapid and consistent query response times.

Totals

FIGURE
13.5

Operational vs. multidimensional view of sales

Database name: Ch13_Text
Table name: DW_INVOICE

Table name: DW_LINE

Multidimensional View of Sales

Sales are located in the intersection
of a customer row and time column

Aggregations are provided
for both dimensions

Dartonik

Summer Lake

Trydon

Customer Dimension 15-May-08 16-May-08

$1,400.00 $1,350.00

$1,800.00 $3,100.00

$400.00

$3,200.00 $4,850.00

Totals

$2,750.00

$4,900.00

$400.00

$8,050.00

Time Dimension
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� The ability to map end-user requests, expressed in either business or model terms, to the appropriate data
source and then to the proper data access language (usually SQL). The query code must be optimized to match
the data source, regardless of whether the source is operational or data warehouse data.

� Support for very large databases. As already explained, the data warehouse can easily and quickly grow to
multiple gigabytes and even terabytes.

To provide a seamless interface, OLAP tools map the data elements from the data warehouse and from the operational
database to their own data dictionaries. These metadata are used to translate end-user data analysis requests into the
proper (optimized) query codes, which are then directed to the appropriate data source(s).

13.6.3 Easy-to-Use End-User Interface

Advanced OLAP features become more useful when access to them is kept simple. OLAP tool vendors learned this
lesson early and have equipped their sophisticated data extraction and analysis tools with easy-to-use graphical
interfaces. Many of the interface features are “borrowed” from previous generations of data analysis tools that are
already familiar to end users. This familiarity makes OLAP easily accepted and readily used.

13.6.4 Client/Server Architecture

Client/server architecture provides a framework within which new systems can be designed, developed, and
implemented. The client/server environment enables an OLAP system to be divided into several components that
define its architecture. Those components can then be placed on the same computer, or they can be distributed among
several computers. Thus, OLAP is designed to meet ease-of-use requirements while keeping the system flexible.

FIGURE
13.6

Integration of OLAP with a spreadsheet program
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13.6.5 OLAP Architecture

OLAP operational characteristics can be divided into three main modules:

� Graphical user interface (GUI).

� Analytical processing logic.

� Data-processing logic.

In the client/server environment, those three OLAP modules make the defining features of OLAP possible:
multidimensional data analysis, advanced database support, and an easy-to-use interface. Figure 13.7 illustrates
OLAP’s client/server components and attributes.

O n l i n e C o n t e n t

If necessary, review the coverage in Appendix F, Client/Server Systems in the Student Online
Companion for this book, which provides an in-depth look at client/server system architecture and principles.

FIGURE
13.7

OLAP client/server architecture
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As Figure 13.7 illustrates, OLAP systems are designed to use both operational and data warehouse data. Figure 13.7
shows the OLAP system components located on a single computer, but this single-user scenario is only one of many.
In fact, one problem with the installation shown here is that each data analyst must have a powerful computer to store
the OLAP system and perform all data processing locally. In addition, each analyst uses a separate copy of the data.
Therefore, the data copies must be synchronized to ensure that analysts are working with the same data. In other
words, each end user must have his/her own “private” copy (extract) of the data and programs, thus returning to the
islands of information problems discussed in Chapter 1, Database Systems. This approach does not provide the
benefits of a single business image shared among all users.

A more common and practical architecture is one in which the OLAP GUI runs on client workstations, while the OLAP
engine, or server, composed of the OLAP analytical processing logic and OLAP data-processing logic, runs on a
shared computer. In that case, the OLAP server will be a front end to the data warehouse’s decision support data. This
front end or middle layer (because it sits between the data warehouse and the end-user GUI) accepts and processes the
data-processing requests generated by the many end-user analytical tools. The end-user GUI might be a custom-made
program or, more likely, a plug-in module that is integrated with Lotus 1-2-3, Microsoft Excel, or a third-party data
analysis and query tool. Figure 13.8 illustrates such an arrangement.

Note in Figure 13.8 that the data warehouse is created and maintained by a process or software tool that is
independent of the OLAP system. This independent software performs the data extraction, filtering, and integration
necessary to transform operational data into data warehouse data. This scenario reflects the fact that in most cases,
the data warehousing and data analysis activities are handled separately.

FIGURE
13.8
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At this point, you might ask why you need a data warehouse if OLAP provides the necessary multidimensional data
analysis of operational data. The answer lies in the definition of OLAP. OLAP is defined as an “advanced data analysis
environment that supports decision making, business modeling, and research activities.” The keyword here is
environment, which includes client/server technology. Environment is defined as “surroundings or atmosphere.” And
an atmosphere surrounds a nucleus. In this case, the nucleus is composed of all business activities within an
organization as represented by the operational data. Just as there are several layers within the atmosphere, there
are several layers of data processing, each outer layer representing a more aggregated data analysis. The fact is that
an OLAP system might access both data storage types (operational or data warehouse) or only one; it depends on the
vendor’s implementation of the product selected. In any case, multidimensional data analysis requires some type of
multidimensional data representation, which is normally provided by the OLAP engine.

In most implementations, the data warehouse and OLAP are interrelated, complementary environments. While the
data warehouse holds integrated, subject-oriented, time-variant, and nonvolatile decision support data, the OLAP
system provides the front end through which end users access and analyze such data. Yet an OLAP system can also
directly access operational data, transforming it and storing it in a multidimensional structure. In other words, the
OLAP system can provide a multidimensional data store component, as shown in Figure 13.9.

Figure 13.9 represents a scenario in which the OLAP engine extracts data from an operational database and then
stores it in a multidimensional structure for further data analysis. The extraction process follows the same conventions
used with data warehouses. Therefore, the OLAP provides a mini data-warehouse component that looks remarkably
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Data-processing logic

Multiple users
access OLAP engine

OLAP GUI

OLAP GUI

OLAP GUI

OLAP GUI

Operational data when
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OLAP System

FIGURE
13.9

OLAP server with multidimensional data store arrangement
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like the data mart mentioned in previous sections. In this scenario, the OLAP engine has to perform all of the data
extraction, filtering, integration, classification, and aggregation functions that the data warehouse normally provides.
In fact, when properly implemented, the data warehouse performs all data preparation functions instead of letting
OLAP perform those chores; as a result, there is no duplication of functions. Better yet, the data warehouse handles
the data component more efficiently than OLAP does; so you can appreciate the benefits of having a central data
warehouse serve as the large enterprise decision support database.

To provide better performance, some OLAP systems merge the data warehouse and data mart approaches by storing
small extracts of the data warehouse at end-user workstations. The objective is to increase the speed of data access and
data visualization (the graphic representations of data trends and characteristics). The logic behind that approach is the
assumption that most end users usually work with fairly small, stable data warehouse data subsets. For example, a sales
analyst is most likely to work with sales data, whereas a customer representative is likely to work with customer data.
Figure 13.10 illustrates that scenario.

Whatever the arrangement of the OLAP components, one thing is certain: multidimensional data must be used. But
how are multidimensional data best stored and managed? OLAP proponents are sharply divided. Some favor the use
of relational databases to store the multidimensional data; others argue for the superiority of specialized multidimen-
sional databases to store multidimensional data. The basic characteristics of each approach are examined next.
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13.6.6 Relational OLAP

Relational online analytical processing (ROLAP) provides OLAP functionality by using relational databases and
familiar relational query tools to store and analyze multidimensional data. That approach builds on existing relational
technologies and represents a natural extension to all of the companies that already use relational database
management systems within their organizations. ROLAP adds the following extensions to traditional RDBMS
technology:

� Multidimensional data schema support within the RDBMS.

� Data access language and query performance optimized for multidimensional data.

� Support for very large databases (VLDBs).

Multidimensional Data Schema Support within the RDBMS
Relational technology uses normalized tables to store data. The reliance on normalization as the design methodology
for relational databases is seen as a stumbling block to its use in OLAP systems. Normalization divides business entities
into smaller pieces to produce the normalized tables. For example, sales data components might be stored in four or
five different tables. The reason for using normalized tables is to reduce redundancies, thereby eliminating data
anomalies, and to facilitate data updates. Unfortunately, for decision support purposes, it is easier to understand
data when they are seen with respect to other data. (See the example in Figure 13.5.) Given that view of the data
environment, this book has stressed that decision support data tend to be non-normalized, duplicated, and
pre-aggregated. Those characteristics seem to preclude the use of standard relational design techniques and RDBMSs
as the foundation for multidimensional data.

Fortunately for those heavily invested in relational technology, ROLAP uses a special design technique to enable
RDBMS technology to support multidimensional data representations. This special design technique is known as a star
schema, which is covered in detail in Section 13.7.

The star schema is designed to optimize data query operations rather than data update operations. Naturally, changing
the data design foundation means that the tools used to access such data will have to change. End users who are
familiar with the traditional relational query tools will discover that those tools do not work efficiently with the new star
schema. However, ROLAP saves the day by adding support for the star schema when familiar query tools are used.
ROLAP provides advanced data analysis functions and improves query optimization and data visualization methods.

Data Access Language and Query Performance Optimized for Multidimensional Data
Another criticism of relational databases is that SQL is not suited for performing advanced data analysis. Most decision
support data requests require the use of multiple-pass SQL queries or multiple nested SQL statements. To answer this
criticism, ROLAP extends SQL so that it can differentiate between access requirements for data warehouse data (based
on the star schema) and operational data (normalized tables). In that way, a ROLAP system is able to generate the SQL
code required to access the star schema data.

Query performance is also improved because the query optimizer is modified to identify the SQL code’s intended query
targets. For example, if the query target is the data warehouse, the optimizer passes the requests to the data warehouse.
However, if the end user performs drill-down queries against operational data, the query optimizer identifies that operation
and properly optimizes the SQL requests before passing them through to the operational DBMS.

Another source of improved query performance is the use of advanced indexing techniques such as bitmapped indexes
within relational databases. As the name suggests, a bitmapped index is based on 0 and 1 bits to represent a given
condition. For example, if the REGION attribute in Figure 13.3 has only four outcomes—North, South, East, and
West—those outcomes may be represented as shown in Table 13.9. (Only the first 10 rows from Figure 13.3 are
represented in Table 13.9. The “1” represents “bit on,” and the “0” represents “bit off.” For example, to represent
a row with a REGION attribute = “East,” only the “East” bit would be on. Note that each row must be represented
in the index table.)
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Note that the index in Table 13.9 takes a minimum amount
of space. Therefore, bitmapped indexes are more efficient at
handling large amounts of data than are the indexes typically
found in many relational databases. But do keep in mind that
bitmapped indexes are primarily used in situations where the
number of possible values for an attribute (in other words,
the attribute domain) is fairly small. For example, REGION
has only four outcomes in this example. Marital status—
married, single, widowed, divorced—would be another good
bitmapped index candidate, as would gender—M or F.

ROLAP tools are mainly client/server products in which the
end-user interface, the analytical processing, and the data
processing take place on different computers. Figure 13.11
shows the interaction of the client/server ROLAP
components.

TABLE
13.9

Bitmap Representation
of Region Values

NORTH SOUTH EAST WEST
0 0 1 0
0 0 1 0
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 0 1
0 0 0 1

FIGURE
13.11

Typical ROLAP client/server architecture
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Support for Very Large Databases
Recall that support for VLDBs is a requirement for decision support databases. Therefore, when the relational database
is used in a decision support role, it also must be able to store very large amounts of data. Both the storage capability
and the process of loading data into the database are crucial. Therefore, the RDBMS must have the proper tools to
import, integrate, and populate the data warehouse with data. Decision support data are normally loaded in bulk
(batch) mode from the operational data. However, batch operations require that both the source and the destination
databases be reserved (locked). The speed of the data-loading operations is important, especially when you realize that
most operational systems run 24 hours a day, 7 days a week, 52 weeks a year. Therefore, the window of opportunity
for maintenance and batch loading is open only briefly, typically during slack periods.

With an open client/server architecture, ROLAP provides advanced decision support capabilities that are scalable to
the entire enterprise. Clearly, ROLAP is a logical choice for companies that already use relational databases for their
operational data. Given the size of the relational database market, it is hardly surprising that most current RDBMS
vendors have extended their products to support data warehouses.

13.6.7 Multidimensional OLAP

Multidimensional online analytical processing (MOLAP) extends OLAP functionality to multidimensional
database management systems (MDBMSs). (An MDBMS uses special proprietary techniques to store data in
matrix-like n-dimensional arrays.) MOLAP’s premise is that multidimensional databases are best suited to manage,
store, and analyze multidimensional data. Most of the proprietary techniques used in MDBMSs are derived from
engineering fields such as computer-aided design/computer-aided manufacturing (CAD/CAM) and geographic
information systems (GIS).

Conceptually, MDBMS end users visualize the stored data as a three-dimensional cube known as a data cube. The
location of each data value in the data cube is a function of the x-, y-, and z-axes in a three-dimensional space. The
x-, y-, and z-axes represent the dimensions of the data value. The data cubes can grow to n number of dimensions,
thus becoming hypercubes. Data cubes are created by extracting data from the operational databases or from the data
warehouse. One important characteristic of data cubes is that they are static; that is, they are not subject to change
and must be created before they can be used. Data cubes cannot be created by ad hoc queries. Instead, you query
pre-created cubes with defined axes; for example, a cube for sales will have the product, location, and time dimensions,
and you can query only those dimensions. Therefore, the data cube creation process is critical and requires in-depth
front-end design work. The front-end design work may be well justified because MOLAP databases are known to be
much faster than their ROLAP counterparts, especially when dealing with small to medium data sets. To speed data
access, data cubes are normally held in memory in what is called the cube cache. (A data cube is only a window to
a predefined subset of data in the database. A data cube and a database are not the same thing.) Because MOLAP
also benefits from a client/server infrastructure, the cube cache can be located at the MOLAP server, at the MOLAP
client, or in both locations. Figure 13.12 shows the basic MOLAP architecture.

Because the data cube is predefined with a set number of dimensions, the addition of a new dimension requires that
the entire data cube be re-created. This re-creation process is time consuming. Therefore, when data cubes are created
too often, the MDBMS loses some of its speed advantage over the relational database. And although MDBMSs have
performance advantages over relational databases, the MDBMS is best suited to small and medium data sets. Scalability
is somewhat limited because the size of the data cube is restricted to avoid lengthy data access times caused by having
less work space (memory) available for the operating system and the application programs. In addition, the MDBMS
makes use of proprietary data storage techniques that, in turn, require proprietary data access methods using a
multidimensional query language.

Multidimensional data analysis is also affected by how the database system handles sparsity. Sparsity is a
measurement of the density of the data held in the data cube and is computed by dividing the total number of actual
values in the cube by the total number of cells in the cube. Because the data cube’s dimensions are predefined, not all
cells are populated. In other words, some cells are empty. Returning to the sales example, there may be many products
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that are not sold during a given time period in a given location. In fact, you will often find that fewer than 50 percent
of the data cube’s cells are populated. In any case, multidimensional databases must handle sparsity effectively to
reduce processing overhead and resource requirements.

Relational proponents also argue that using proprietary solutions makes it difficult to integrate the MDBMS with other
data sources and tools used within the enterprise. Although it takes a substantial investment of time and effort to
integrate the new technology and the existing information systems architecture, MOLAP may be a good solution for
those situations in which small- to medium-sized databases are the norm and application software speed is critical.

13.6.8 Relational vs. Multidimensional OLAP

Table 13.10 summarizes some OLAP and MOLAP pros and cons. Keep in mind, too, that the selection of one or the
other often depends on the evaluator’s vantage point. For example, a proper evaluation of OLAP must include price,
supported hardware platforms, compatibility with the existing DBMS, programming requirements, performance, and
availability of administrative tools. The summary in Table 13.10 provides a useful starting point for comparison.
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TABLE
13.10

Relational vs. Multidimensional OLAP

CHARACTERISTIC ROLAP MOLAP
Schema Uses star schema

Additional dimensions can be added
dynamically

Uses data cubes
Additional dimensions require re-creation
of the data cube

Database size Medium to large Small to medium
Architecture Client/server

Standards-based
Open

Client/server
Proprietary

Access Supports ad hoc requests
Unlimited dimensions

Limited to predefined dimensions

Resources High Very high
Flexibility High Low
Scalability High Low
Speed Good with small data sets; average for

medium to large data sets
Faster for small to medium data sets; aver-
age for large data sets

ROLAP and MOLAP vendors are working toward the integration of their respective solutions within a unified decision
support framework. Many OLAP products are able to handle tabular and multidimensional data with the same ease.
For example, if you are using Excel OLAP functionality, as shown earlier in Figure 13.6, you can access relational
OLAP data in a SQL server as well as cube (multidimensional data) in the local computer. In the meantime, relational
databases successfully use the star schema design to handle multidimensional data, and their market share makes it
unlikely that their popularity will fade anytime soon.

13.7 STAR SCHEMAS

The star schema is a data modeling technique used to map multidimensional decision support data into a relational
database. In effect, the star schema creates the near equivalent of a multidimensional database schema from the
existing relational database. The star schema was developed because existing relational modeling techniques, ER, and
normalization did not yield a database structure that served advanced data analysis requirements well.

Star schemas yield an easily implemented model for multidimensional data analysis while still preserving the relational
structures on which the operational database is built. The basic star schema has four components: facts, dimensions,
attributes, and attribute hierarchies.

13.7.1 Facts

Facts are numeric measurements (values) that represent a specific business aspect or activity. For example, sales
figures are numeric measurements that represent product and/or service sales. Facts commonly used in business data
analysis are units, costs, prices, and revenues. Facts are normally stored in a fact table that is the center of the star
schema. The fact table contains facts that are linked through their dimensions, which are explained in the next
section.

Facts can also be computed or derived at run time. Such computed or derived facts are sometimes called metrics to
differentiate them from stored facts. The fact table is updated periodically (daily, weekly, monthly, and so on) with data
from operational databases.
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13.7.2 Dimensions

Dimensions are qualifying characteristics that provide additional perspectives to a given fact. Recall that dimensions
are of interest because decision support data are almost always viewed in relation to other data. For instance, sales
might be compared by product from region to region and from one time period to the next. The kind of problem
typically addressed by a BI system might be to make a comparison of the sales of unit X by region for the first quarters
of 1998 through 2007. In that example, sales have product, location, and time dimensions. In effect, dimensions are
the magnifying glass through which you study the facts. Such dimensions are normally stored in dimension tables.
Figure 13.13 depicts a star schema for sales with product, location, and time dimensions.

13.7.3 Attributes

Each dimension table contains attributes. Attributes are often used to search, filter, or classify facts. Dimensions provide
descriptive characteristics about the facts through their attributes. Therefore, the data warehouse designer must
define common business attributes that will be used by the data analyst to narrow a search, group information, or
describe dimensions. Using a sales example, some possible attributes for each dimension are illustrated in Table 13.11.

TABLE
13.11

Possible Attributes for Sales Dimensions

DIMENSION NAME DESCRIPTION POSSIBLE ATTRIBUTES
Location Anything that provides a description of the location. For

example, Nashville, Store 101, South Region, and TN
Region, state, city, store,
and so on

Product Anything that provides a description of the product sold.
For example, hair care product, shampoo, Natural
Essence brand, 5.5-oz. bottle, and blue liquid

Product type, product ID,
brand, package, presentation,
color, size, and so on

Time Anything that provides a time frame for the sales fact. For
example, the year 2008, the month of July, the date
07/29/2008, and the time 4:46 p.m.

Year, quarter, month, week,
day, time of day, and so on

FIGURE
13.13
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These product, location, and time dimensions add a business perspective to the sales facts. The data analyst can now
group the sales figures for a given product, in a given region, and at a given time. The star schema, through its facts
and dimensions, can provide the data in the required format when the data are needed. And it can do so without
imposing the burden of the additional and unnecessary data (such as order number, purchase order number, and status)
that commonly exist in operational databases.

Conceptually, the sales example’s multidimensional data model is best represented by a three-dimensional cube. Of
course, this does not imply that there is a limit on the number of dimensions that can be associated to a fact table.
There is no mathematical limit to the number of dimensions used. However, using a three-dimensional model makes
it easy to visualize the problem. In this three-dimensional example, the multidimensional data analysis terminology, the
cube illustrated in Figure 13.14 represents a view of sales dimensioned by product, location, and time.

Note that each sales value stored in the cube in Figure 13.14 is associated with the location, product, and time
dimensions. However, keep in mind that this cube is only a conceptual representation of multidimensional data, and
it does not show how the data are physically stored in a data warehouse. A ROLAP engine stores data in an RDBMS
and uses its own data analysis logic and the end-user GUI to perform multidimensional analysis. A MOLAP system
stores data in an MDBMS, using proprietary matrix and array technology to simulate this multidimensional cube.

Whatever the underlying database technology, one of the main features of multidimensional analysis is its ability to
focus on specific “slices” of the cube. For example, the product manager may be interested in examining the sales of
a product while the store manager is interested in examining the sales made by a particular store. In multidimensional
terms, the ability to focus on slices of the cube to perform a more detailed analysis is known as slice and dice. Figure
13.15 illustrates the slice-and-dice concept. As you look at Figure 13.15, note that each cut across the cube yields a
slice. Intersecting slices produce small cubes that constitute the “dice” part of the “slice-and-dice” operation.

To slice and dice, it must be possible to identify each slice of the cube. That is done by using the values of each attribute
in a given dimension. For example, to use the location dimension, you might need to define a STORE_ID attribute in
order to focus on a particular store.

Given the requirement for attribute values in a slice-and-dice environment, let’s reexamine Table 13.11. Note that each
attribute adds an additional perspective to the sales facts, thus setting the stage for finding new ways to search, classify,
and possibly aggregate information. For example, the location dimension adds a geographic perspective of where the
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product, time, and location
dimension
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cube of sales by product,
location, and time
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FIGURE
13.14

Three-dimensional view of sales
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sales took place: in which region, state, city, store, and so on. All of the attributes are selected with the objective of
providing decision support data to the end users so that they can study sales by each of the dimension’s attributes.

Time is an especially important dimension. The time dimension provides a framework from which sales patterns can
be analyzed and possibly predicted. Also, the time dimension plays an important role when the data analyst is
interested in looking at sales aggregates by quarter, month, week, and so on. Given the importance and universality
of the time dimension from a data analysis perspective, many vendors have added automatic time dimension
management features to their data warehousing products.

13.7.4 Attribute Hierarchies

Attributes within dimensions can be ordered in a well-defined
attribute hierarchy. The attribute hierarchy provides a
top-down data organization that is used for two main
purposes: aggregation and drill-down/roll-up data analysis.
For example, Figure 13.16 shows how the location dimen-
sion attributes can be organized in a hierarchy by region,
state, city, and store.

The attribute hierarchy provides the capability to perform
drill-down and roll-up searches in a data warehouse. For
example, suppose a data analyst looks at the answers to the
query, How does the 2007 month-to-date sales performance
compare to the 2008 month-to-date sales performance?
The data analyst spots a sharp sales decline for March 2008.
The data analyst might decide to drill down inside the month
of March to see how sales by regions compared to the
previous year. By doing that, the analyst can determine
whether the low March sales were reflected in all regions or
in only a particular region. This type of drill-down operation
can even be extended until the data analyst identifies the
store that is performing below the norm.
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The March sales scenario is possible because the attribute hierarchy allows the data warehouse and OLAP systems to
have a defined path that will identify how data are to be decomposed and aggregated for drill-down and roll-up
operations. It is not necessary for all attributes to be part of an attribute hierarchy; some attributes exist merely to
provide narrative descriptions of the dimensions. But keep in mind that the attributes from different dimensions can
be grouped to form a hierarchy. For example, after you drill down from city to store, you might want to drill down using
the product dimension so the manager can identify slow products in the store. The product dimension can be based
on the product group (dairy, meat, and so on) or on the product brand (Brand A, Brand B, and so on).

Figure 13.17 illustrates a scenario in which the data analyst studies sales facts, using the product, time, and location
dimensions. In this example, the product dimension is set to “All products,” meaning that the data analyst will see all
products on the y-axis. The time dimension (x-axis) is set to “Quarter,” meaning that the data are aggregated by quarters
(for example, total sales of products A, B, and C in Q1, Q2, Q3, and Q4). Finally, the location dimension is initially set
to “Region,” thus ensuring that each cell contains the total regional sales for a given product in a given quarter.

The simple data analysis scenario illustrated in Figure 13.17 provides the data analyst with three different information
paths. On the product dimension (the y-axis), the data analyst can request to see all products, products grouped by
type, or just one product. On the time dimension (the x-axis), the data analyst can request time-variant data at different
levels of aggregation: year, quarter, month, or week. Each sales value initially shows the total sales, by region, of each
product. When a GUI is used, clicking on the region cell enables the data analyst to drill down to see sales by states
within the region. Clicking again on one of the state values yields the sales for each city in the state, and so forth.
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Attribute hierarchies in multidimensional analysis
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As the preceding examples illustrate, attribute hierarchies determine how the data in the data warehouse are extracted
and presented. The attribute hierarchy information is stored in the DBMS’s data dictionary and is used by the OLAP
tool to access the data warehouse properly. Once such access is ensured, query tools must be closely integrated with
the data warehouse’s metadata and they must support powerful analytical capabilities.

13.7.5 Star Schema Representation

Facts and dimensions are normally represented by physical tables in the data warehouse database. The fact table is related
to each dimension table in a many-to-one (M:1) relationship. In other words, many fact rows are related to each dimension
row. Using the sales example, you can conclude that each product appears many times in the SALES fact table.

Fact and dimension tables are related by foreign keys and are subject to the familiar primary key/foreign key
constraints. The primary key on the “1” side, the dimension table, is stored as part of the primary key on the “many”
side, the fact table. Because the fact table is related to many dimension tables, the primary key of the fact table
is a composite primary key. Figure 13.18 illustrates the relationships among the sales fact table and the product,
location, and time dimension tables. To show you how easily the star schema can be expanded, a customer dimension
has been added to the mix. Adding the customer dimension merely required including the CUST_ID in the SALES fact
table and adding the CUSTOMER table to the database.

FIGURE
13.18
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The composite primary key for the SALES fact table is composed of TIME_ID, LOC_ID, CUST_ID, and PROD_ID.
Each record in the SALES fact table is uniquely identified by the combination of values for each of the fact table’s
foreign keys. By default, the fact table’s primary key is always formed by combining the foreign keys pointing to
the dimension tables to which they are related. In this case, each sales record represents each product sold to a
specific customer, at a specific time, and in a specific location. In this schema, the TIME dimension table represents
daily periods, so the SALES fact table represents daily sales aggregates by product and by customer. Because fact tables
contain the actual values used in the decision support process, those values are repeated many times in the fact tables.
Therefore, the fact tables are always the largest tables in the star schema. Because the dimension tables contain only
nonrepetitive information (all unique salespersons, all unique products, and so on), the dimension tables are always
smaller than the fact tables.

In a typical star schema, each dimension record is related to thousands of fact records. For example, “widget” appears
only once in the product dimension, but it has thousands of corresponding records in the SALES fact table. That
characteristic of the star schema facilitates data retrieval functions because most of the time the data analyst will look
at the facts through the dimension’s attributes. Therefore, a data warehouse DBMS that is optimized for decision
support first searches the smaller dimension tables before accessing the larger fact tables.

Data warehouses usually have many fact tables. Each fact table is designed to answer specific decision support
questions. For example, suppose you develop a new interest in orders while maintaining your original interest in sales.
In that scenario, you should maintain an ORDERS fact table and a SALES fact table in the same data warehouse. If
orders are considered to be an organization’s key interest, the ORDERS fact table should be the center of a star schema
that might have vendor, product, and time dimensions. In that case, an interest in vendors yields a new vendor
dimension, represented by a new VENDOR table in the database. The product dimension is represented by the same
product table used in the initial sales star schema. However, given the interest in orders as well as sales, the time
dimension now requires special attention. If the orders department uses the same time periods as the sales department,
time can be represented by the same time table. If different time periods are used, you must create another table,
perhaps named ORDER_TIME, to represent the time periods used by the orders department. In Figure 13.19, the
orders star schema shares the product, vendor, and time dimensions.

Multiple fact tables also can be created for performance and semantic reasons. The following section explains several
performance-enhancing techniques that can be used within the star schema.
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13.7.6 Performance-Improving Techniques for the Star Schema

The creation of a database that provides fast and accurate answers to data analysis queries is the data warehouse
design’s prime objective. Therefore, performance-enhancement actions might target query speed through the
facilitation of SQL code as well as through better semantic representation of business dimensions. Four techniques are
often used to optimize data warehouse design:

� Normalizing dimensional tables.

� Maintaining multiple fact tables to represent different aggregation levels.

� Denormalizing fact tables.

� Partitioning and replicating tables.

Normalizing Dimensional Tables
Dimensional tables are normalized to achieve semantic simplicity and facilitate end-user navigation through the
dimensions. For example, if the location dimension table contains transitive dependencies among region, state, and
city, you can revise those relationships to the 3NF (third normal form), as shown in Figure 13.20. (If necessary, review

FIGURE
13.19
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normalization techniques in Chapter 5, Normalization of Database Tables.) The star schema shown in Figure 13.20
is known as a snowflake schema, which is a type of star schema in which the dimension tables can have their own
dimension tables. The snowflake schema is usually the result of normalizing dimension tables.

By normalizing the dimension tables, you simplify the data-filtering operations related to the dimensions. In this
example, the region, state, city, and location contain very few records compared to the SALES fact table. Only the
location table is directly related to the sales fact table.

Maintaining Multiple Fact Tables that Represent Different Aggregation Levels
You can also speed up query operations by creating and maintaining multiple fact tables related to each level of
aggregation (region, state, and city) in the location dimension. These aggregate tables are precomputed at the
data-loading phase rather than at run time. The purpose of this technique is to save processor cycles at run time,
thereby speeding up data analysis. An end-user query tool optimized for decision analysis then properly accesses the
summarized fact tables instead of computing the values by accessing a lower level of detail fact table. This technique
is illustrated in Figure 13.21, which adds aggregate fact tables for region, state, and city to the initial sales example.

FIGURE
13.20
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Note

Although using the dimension tables shown in Figure 13.20 gains structural simplicity, there is a price to pay for
that simplicity. For example, if you want to aggregate the data by region, you must use a four-table join, thus
increasing the complexity of the SQL statements. The star schema in Figure 13.18 uses a LOCATION dimension
table that greatly facilitates data retrieval by eliminating multiple join operations. This is yet another example of
the trade-offs that designers must consider.
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The data warehouse designer must identify which levels of aggregation to precompute and store in the database. These
multiple aggregate fact tables are updated during each load cycle in batch mode. And because the objective is to
minimize access and processing time, according to the expected frequency of use and the processing time required to
calculate a given aggregation level at run time, the data warehouse designer must select which aggregation fact tables
to create.

Denormalizing Fact Tables
Denormalizing fact tables improves data access performance and saves data storage space. The latter objective,
however, is becoming less of an issue. Data storage costs decrease almost daily, and DBMS limitations that restrict
database and table size limits, record size limits, and the maximum number of records in a single table have far more
negative effects than raw storage space costs.

Denormalization improves performance by using a single record to store data that normally take many records. For
example, to compute the total sales for all products in all regions, you might have to access the region sales aggregates
and summarize all of the records in this table. If you have 300,000 product sales, you could be summarizing at least
300,000 rows. Although this might not be a very taxing operation for a DBMS, a comparison of, say, 10 years’ worth
of previous sales begins to bog down the system. In such cases, it is useful to have special aggregate tables that are

FIGURE
13.21
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denormalized. For example, a YEAR_TOTALS table might contain the following fields: YEAR_ID, MONTH_1,
MONTH_2 ... MONTH_12, and each year’s total. Such tables can easily be used to serve as a basis for year-to-year
comparisons at the top month level, the quarter level, or the year level. Here again, design criteria, such as frequency
of use and performance requirements, are evaluated against the possible overload placed on the DBMS to manage the
denormalized relations.

Partitioning and Replicating Tables
Because table partitioning and replication were covered in detail in Chapter 12, Distributed Database Management
Systems, those techniques are discussed here only as they specifically relate to the data warehouse. Table partitioning
and replication are particularly important when a BI system is implemented in dispersed geographic areas.
Partitioning splits a table into subsets of rows or columns and places the subsets close to the client computer to
improve data access time. Replication makes a copy of a table and places it in a different location, also to improve
access time.

No matter which performance-enhancement scheme is used, time is the most common dimension used in business
data analysis. Therefore, it is very common to have one fact table for each level of aggregation defined within the time
dimension. For example, in the sales example, you might have five aggregate sales fact tables: daily, weekly, monthly,
quarterly, and yearly. Those fact tables must have an implicit or explicit periodicity defined. Periodicity, usually
expressed as current year only, previous years, or all years, provides information about the time span of the data stored
in the table.

At the end of each year, daily sales for the current year are moved to another table that contains previous years’ daily
sales only. This table actually contains all sales records from the beginning of operations, with the exception of the
current year. The data in the current year and previous years’ tables thus represent the complete sales history of the
company. The previous years’ sales table can be replicated at several locations to avoid remote access to the historic
sales data, which can cause slow response time. The possible size of this table is enough to intimidate all but the bravest
of query optimizers. Here is one case in which denormalization would be of value!

13.8 IMPLEMENTING A DATA WAREHOUSE

Organization-wide information system development is subject to many constraints. Some of the constraints are based
on available funding. Others are a function of management’s view of the role played by an IS department and of the
extent and depth of the information requirements. Add the constraints imposed by corporate culture, and you
understand why no single formula can describe perfect data warehouse development. Therefore, rather than proposing
a single data warehouse design and implementation methodology, this section identifies a few factors that appear to
be common to data warehousing.

13.8.1 The Data Warehouse as an Active Decision Support Framework

Perhaps the first thing to remember is that a data warehouse is not a static database. Instead, it is a dynamic framework
for decision support that is, almost by definition, always a work in progress. Because it is the foundation of a modern
BI environment, the design and implementation of the data warehouse means that you are involved in the design and
implementation of a complete database-system-development infrastructure for company-wide decision support.
Although it is easy to focus on the data warehouse database as the BI central data repository, you must remember that
the decision support infrastructure includes hardware, software, people, and procedures, as well as data. The argument
that the data warehouse is the only critical BI success component is as misleading as the argument that a human being
needs only a heart or a brain to function. The data warehouse is a critical component of a modern BI environment,
but it is certainly not the only critical component. Therefore, its design and implementation must be examined in light
of the entire infrastructure.
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13.8.2 A Company-Wide Effort That Requires User Involvement

Designing a data warehouse means being given an opportunity to help develop an integrated data model that captures
the data that are considered to be essential to the organization, from both end-user and business perspectives. Data
warehouse data cross departmental lines and geographical boundaries. Because the data warehouse represents an
attempt to model all of the organization’s data, you are likely to discover that organizational components (divisions,
departments, support groups, and so on) often have conflicting goals, and it certainly will be easy to find data
inconsistencies and damaging redundancies. Information is power, and the control of its sources and uses is likely to
trigger turf battles, end-user resistance, and power struggles at all levels. Building the perfect data warehouse is not just
a matter of knowing how to create a star schema; it requires managerial skills to deal with conflict resolution,
mediation, and arbitration. In short, the designer must:

� Involve end users in the process.

� Secure end users’ commitment from the beginning.

� Solicit continuous end-user feedback.

� Manage end-user expectations.

� Establish procedures for conflict resolution.

13.8.3 Satisfy the Trilogy: Data, Analysis, and Users

Great managerial skills are not, of course, solely sufficient. The technical aspects of the data warehouse must be
addressed as well. The old adage of input-process-output repeats itself here. The data warehouse designer must satisfy:

� Data integration and loading criteria.

� Data analysis capabilities with acceptable query performance.

� End-user data analysis needs.

The foremost technical concern in implementing a data warehouse is to provide end-user decision support with
advanced data analysis capabilities—at the right moment, in the right format, with the right data, and at the right cost.

13.8.4 Apply Database Design Procedures

You learned about the database life cycle and the database design process in Chapter 9, Database Design, so perhaps
it is wise to review the traditional database design procedures. These design procedures must then be adapted to fit the
data warehouse requirements. If you remember that the data warehouse derives its data from operational databases,
you will understand why a solid foundation in operational database design is important. (It’s difficult to produce good
data warehouse data when the operational database data are corrupted.) Figure 13.22 depicts a simplified process for
implementing the data warehouse.

As noted, developing a data warehouse is a company-wide effort that requires many resources: human, financial, and
technical. Providing company-wide decision support requires a sound architecture based on a mix of people skills,
technology, and managerial procedures that is often difficult to find and implement. For example:

� The sheer and often mind-boggling quantity of decision support data is likely to require the latest hardware and
software—that is, advanced computers with multiple processors, advanced database systems, and large-
capacity storage units. In the not-too-distant past, those requirements usually prompted the use of a
mainframe-based system. Today’s client/server technology offers many other choices to implement a data
warehouse.

� Very detailed procedures are necessary to orchestrate the flow of data from the operational databases to the
data warehouse. Data flow control includes data extraction, validation, and integration.

� To implement and support the data warehouse architecture, you also need people with advanced database
design, software integration, and management skills.
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13.9 DATA MINING

The purpose of data analysis is to discover previously unknown data characteristics, relationships, dependencies, or
trends. Such discoveries then become part of the information framework on which decisions are built. A typical data
analysis tool relies on the end users to define the problem, select the data, and initiate the appropriate data
analyses to generate the information that helps model and solve problems that the end users uncover. In other
words, the end user reacts to an external stimulus—the discovery of the problem itself. If the end user fails to detect
a problem, no action is taken. Given that limitation, some current BI environments now support various types of
automated alerts. The alerts are software agents that constantly monitor certain parameters, such as sales indicators
and inventory levels, and then perform specified actions (send e-mail or alert messages, run programs, and so on) when
such parameters reach predefined levels.

In contrast to the traditional (reactive) BI tools, data mining is proactive. Instead of having the end user define the
problem, select the data, and select the tools to analyze the data, data-mining tools automatically search the data
for anomalies and possible relationships, thereby identifying problems that have not yet been identified by the
end user. In other words, data mining refers to the activities that analyze the data, uncover problems or opportunities
hidden in the data relationships, form computer models based on their findings, and then use the models to predict
business behavior—requiring minimal end-user intervention. Therefore, the end user is able to use the system’s findings

FIGURE
13.22
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to gain knowledge that might yield competitive advantages. Data mining describes a new breed of specialized decision
support tools that automate data analysis. In short, data-mining tools initiate analyses to create knowledge. Such
knowledge can be used to address any number of business problems. For example, banks and credit card companies
use knowledge-based analysis to detect fraud, thereby decreasing fraudulent transactions.

To put data mining in perspective, look at the pyramid in Figure 13.23, which represents how knowledge is extracted
from data. Data form the pyramid base and represent what most organizations collect in their operational databases.
The second level contains information that represents the purified and processed data. Information forms the basis
for decision making and business understanding. Knowledge is found at the pyramid’s apex and represents highly
specialized information.

It is difficult to provide a precise list of characteristics of data-mining tools. For one thing, the current generation of
data-mining tools contains many design and application variations to fit data-mining requirements. Additionally, the
many variations exist because there are no established standards that govern the creation of data-mining tools. Each
data-mining tool seems to be governed by a different approach and focus, thus generating families of data-mining tools
that focus on market niches such as marketing, retailing, finance, healthcare, investments, insurance, and banking.
Within a given niche, data-mining tools can use certain algorithms, and those algorithms can be implemented in
different ways and/or applied over different data.

Data-mining tools use advanced techniques from knowledge
discovery, artificial intelligence, and other fields to obtain “knowledge”
and apply it to business needs. Knowledge is then used to make
predictions of events or forecasts of values such as sales returns.
Several OLAP tools have integrated at least some of these data-mining
features in their products.
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Extracting knowledge from data
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In spite of the lack of precise standards, data mining is subject to four general phases:

1. Data preparation.

2. Data analysis and classification.

3. Knowledge acquisition.

4. Prognosis.

In the data preparation phase, the main data sets to be used by the data mining operation are identified and cleansed
of any data impurities. Because the data in the data warehouse are already integrated and filtered, the data warehouse
usually is the target set for data mining operations.

The data analysis and classification phase studies the data to identify common data characteristics or patterns.
During this phase, the data-mining tool applies specific algorithms to find:

� Data groupings, classifications, clusters, or sequences.

� Data dependencies, links, or relationships.

� Data patterns, trends, and deviations.

The knowledge acquisition phase uses the results of the data analysis and classification phase. During the knowledge
acquisition phase, the data-mining tool (with possible intervention by the end user) selects the appropriate modeling
or knowledge acquisition algorithms. The most common algorithms used in data mining are based on neural networks,
decision trees, rules induction, genetic algorithms, classification and regression trees, memory-based reasoning, and
nearest neighbor and data visualization. A data-mining tool may use many of these algorithms in any combination to
generate a computer model that reflects the behavior of the target data set.

Although many data-mining tools stop at the knowledge-acquisition phase, others continue to the prognosis phase.
In that phase, the data mining findings are used to predict future behavior and forecast business outcomes. Examples
of data mining findings can be:

� Sixty-five percent of customers who did not use a particular credit card in the last six months are 88 percent
likely to cancel that account.

� Eighty-two percent of customers who bought a 27-inch or larger TV are 90 percent likely to buy an
entertainment center within the next four weeks.

� If age < 30 and income <= 25,000 and credit rating < 3 and credit amount > 25,000, then the minimum loan
term is 10 years.

The complete set of findings can be represented in a decision tree, a neural net, a forecasting model, or a visual
presentation interface that is used to project future events or results. For example, the prognosis phase might project
the likely outcome of a new product rollout or a new marketing promotion. Figure 13.24 illustrates the different phases
of the data mining techniques.

Because data mining technology is still in its infancy, some of the data mining findings might fall outside the boundaries
of what business managers expect. For example, a data-mining tool might find a close relationship between a
customer’s favorite brand of soda and the brand of tires on the customer’s car. Clearly, that relationship might not be
held in high regard among sales managers. (In regression analysis, those relationships are commonly described by the
label “idiot correlation.”) Fortunately, data mining usually yields more meaningful results. In fact, data mining has
proved to be very helpful in finding practical relationships among data that help define customer buying patterns,
improve product development and acceptance, reduce healthcare fraud, analyze stock markets, and so on.

Ideally, you can expect the development of databases that not only store data and various statistics about data usage,
but also have the ability to learn about and extract knowledge from the stored data. Such database management
systems, also known as inductive or intelligent databases, are the focus of intense research in many laboratories.
Although those databases have yet to lay claim to substantial commercial market penetration, both “add-on” and
DBMS-integrated data mining tools have proliferated in the data warehousing database market.
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13.10 SQL EXTENSIONS FOR OLAP

The proliferation of OLAP tools has fostered the development of SQL extensions to support multidimensional data
analysis. Most SQL innovations are the result of vendor-centric product enhancements. However, many of the
innovations have made their way into standard SQL. This section introduces some of the new SQL extensions that
have been created to support OLAP-type data manipulations.

The SaleCo snowflake schema shown in Figure 13.25 will be used to demonstrate the use of the SQL extensions. Note
that this snowflake schema has a central DWSALESFACT fact table and three dimension tables: DWCUSTOMER,
DWPRODUCT, and DWTIME. The central fact table represents daily sales by product and customer. However, as you
examine the star schema shown in Figure 13.25 more carefully, you will see that the DWCUSTOMER and
DWPRODUCT dimension tables have their own dimension tables: DWREGION and DWVENDOR.

Keep in mind that a database is at the core of all data warehouses. Therefore, all SQL commands (such as CREATE,
INSERT, UPDATE, DELETE, and SELECT) will work in the data warehouse as expected. However, most queries you
run in a data warehouse tend to include a lot of data groupings and aggregations over multiple columns. That’s why
this section introduces two extensions to the GROUP BY clause that are particularly useful: ROLLUP and CUBE. In
addition, you will learn about using materialized views to store preaggregated rows in the database.

Operational
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13.10.1 The ROLLUP Extension

The ROLLUP extension is used with the GROUP BY clause to generate aggregates by different dimensions. As you
know, the GROUP BY clause will generate only one aggregate for each new value combination of attributes listed in
the GROUP BY clause. The ROLLUP extension goes one step further; it enables you to get a subtotal for each column
listed except for the last one, which gets a grand total instead. The syntax of the GROUP BY ROLLUP is as follows:

SELECT column1, column2 [, ...], aggregate_function(expression)
FROM table1 [,table2, �]
[WHERE condition]
GROUP BY ROLLUP (column1, column2 [, ...])
[HAVING condition]
[ORDER BY column1 [, column2, �]]

The order of the column list within the GROUP BY ROLLUP is very important. The last column in the list will generate
a grand total. All other columns will generate subtotals. For example, Figure 13.26 shows the use of the ROLLUP
extension to generate subtotals by vendor and product.

FIGURE
13.25

SaleCo snowflake schema

O n l i n e C o n t e n t

The script files used to populate the database and run the SQL commands are available in the Student Online
Companion.

Note

This section uses the Oracle RDBMS to demonstrate the use of SQL extensions to support OLAP functionality.
If you use a different DBMS, consult the documentation to verify whether the vendor supports similar
functionality and what the proper syntax is for your DBMS.
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Note that Figure 13.26 shows the subtotals by vendor code and a grand total for all product codes. Contrast that with
the normal GROUP BY clause that will generate only the subtotals for each vendor and product combination rather
than the subtotals by vendor and the grand total for all products. The ROLLUP extension is particularly useful when
you want to obtain multiple nested subtotals for a dimension hierarchy. For example, within a location hierarchy, you
can use ROLLUP to generate subtotals by region, state, city, and store.

13.10.2 The CUBE Extension

The CUBE extension is also used with the GROUP BY clause to generate aggregates by the listed columns, including
the last one. The CUBE extension will enable you to get a subtotal for each column listed in the expression, in addition
to a grand total for the last column listed. The syntax of the GROUP BY CUBE is as follows:

SELECT column1 [, column2, ...], aggregate_function(expression)
FROM table1 [,table2, �]
[WHERE condition]
GROUP BY CUBE (column1, column2 [, �])
[HAVING condition]
[ORDER BY column1 [, column2, �]]

For example, Figure 13.27 shows the use of the CUBE extension to compute the sales subtotals by month and by
product, as well as a grand total.

In Figure 13.27, note that the CUBE extension generates the subtotals for each combination of month and product,
in addition to subtotals by month and by product, as well as a grand total. The CUBE extension is particularly useful
when you want to compute all possible subtotals within groupings based on multiple dimensions. Cross-tabulations are
especially good candidates for application of the CUBE extension.

FIGURE
13.26

ROLLUP extension

Subtotals by V_CODE

Grand total for all P_CODE values
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13.10.3 Materialized Views

The data warehouse normally contains fact tables that store specific measurements of interest to an organization. Such
measurements are organized by different dimensions. The vast majority of OLAP business analysis of “everyday
activities” is based on comparisons of data that are aggregated at different levels, such as totals by vendor, by product,
and by store.

Because businesses normally use a predefined set of summaries for benchmarking, it is reasonable to predefine such
summaries for future use by creating summary fact tables. (See Section 13.5.6 for a discussion of additional
performance-improving techniques.) However, creating multiple summary fact tables that use GROUP BY queries with
multiple table joins could become a resource-intensive operation. In addition, data warehouses must also be able to
maintain up-to-date summarized data at all times. So what happens with the summary fact tables after new sales data
have been added to the base fact tables? Under normal circumstances, the summary fact tables are re-created. This
operation requires that the SQL code be run again to re-create all summary rows, even when only a few rows needed
updating. Clearly, this is a time-consuming process.

To save query processing time, most database vendors have implemented additional “functionality” to manage
aggregate summaries more efficiently. This new functionality resembles the standard SQL views for which the SQL
code is predefined in the database. However, the added functionality difference is that the views also store the

FIGURE
13.27

CUBE extension

Subtotals by Quarter

Subtotals by Product

Grand total for all products and quarters

C6545_13 9/24/2007 15:19:2 Page 559

559B U S I N E S S I N T E L L I G E N C E A N D D A T A W A R E H O U S E S



preaggregated rows, something like a summary table. For example, Microsoft SQL Server provides indexed views,
while Oracle provides materialized views. This section explains the use of materialized views.

A materialized view is a dynamic table that not only contains the SQL query command to generate the rows, but
also stores the actual rows. The materialized view is created the first time the query is run and the summary rows are
stored in the table. The materialized view rows are automatically updated when the base tables are updated. That way,
the data warehouse administrator will create the view but will not have to worry about updating the view. The use of
materialized views is totally transparent to the end user. The OLAP end user can create OLAP queries, using the
standard fact tables, and the DBMS query optimization feature will automatically use the materialized views if those
views provide better performance.

The basic syntax for the materialized view is:

CREATE MATERIALIZED VIEW view_name
BUILD {IMMEDIATE | DEFERRED}
REFRESH {[FAST | COMPLETE | FORCE]} ON COMMIT
[ENABLE QUERY REWRITE]
AS select_query;

The BUILD clause indicates when the materialized view rows are actually populated. IMMEDIATE indicates that the
materialized view rows are populated right after the command is entered. DEFERRED indicates that the materialized
view rows will be populated at a later time. Until then, the materialized view is in an “unusable” state. The DBMS
provides a special routine that an administrator runs to populate materialized views.

The REFRESH clause lets you indicate when and how to update the materialized view when new rows are added to
the base tables. FAST indicates that whenever a change is made in the base tables, the materialized view updates only
the affected rows. COMPLETE indicates that a complete update will be made for all rows in the materialized view when
the select query on which the view is based is rerun. FORCE indicates that the DBMS will first try to do a FAST update;
otherwise, it will do a COMPLETE update. The ON COMMIT clause indicates that the updates to the materialized view
will take place as part of the commit process of the underlying DML statement, that is, as part of the commit of the
DML transaction that updated the base tables. The ENABLE QUERY REWRITE option allows the DBMS to use the
materialized views in query optimization.

To create materialized views, you must have specified privileges and you must complete specified prerequisite steps.
As always, you must defer to the DBMS documentation for the latest updates. In the case of Oracle, you must create
materialized view logs on the base tables of the materialized view. Figure 13.28 shows the steps required to create the
MONTH_SALES_MV materialized view in the Oracle RDBMS.
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The materialized view in Figure 13.28 computes the monthly total units sold and the total sales aggregates by product.
The SALES_MONTH_MV materialized view is configured to automatically update after each change in the base tables.
Note that the last row of SALES_MONTH_MV indicates that during October, the sales of product 'SM-18277' are
three units, for a total of $20.97. Figure 13.29 shows the effects of an update to the DWDAYSALESFACT base table.

FIGURE
13.28

Creating a materialized view
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Figure 13.29 shows how the materialized view was automatically updated after the insertion of a new row in the
DWDAYSALESFACT table. Note that the last row of the SALES_MONTH_MV now shows that in October, the sales
of product 'SM-18277' are four units, for a total of $27.96.

FIGURE
13.29

Refreshing a materialized view
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Although all of the examples in this section focus on SQL extensions to support OLAP reporting in an Oracle DBMS,
you have seen just a small fraction of the many business intelligence features currently provided by most DBMS
vendors. For example, most vendors provide rich graphical user interfaces to manipulate, analyze, and present the data
in multiple formats. Figure 13.30 shows two sample screens, one for Oracle and one for Microsoft OLAP products.

Oracle DBMS
OLAP Services

Microsoft SQL Server
Analysis Services

FIGURE
13.30

Sample OLAP applications
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S u m m a r y

◗ Business intelligence (BI) is a term used to describe a comprehensive, cohesive, and integrated set of applications
used to capture, collect, integrate, store, and analyze data with the purpose of generating and presenting
information used to support business decision making.

◗ BI covers a range of technologies and applications to manage the entire data life cycle from acquisition to storage,
transformation, integration, analysis, monitoring, presentation, and archiving. BI functionality ranges from simple
data gathering and extraction to very complex data analysis and presentation.

◗ Decision support systems (DSS) refers to an arrangement of computerized tools used to assist managerial decision
making within a business. DSS were the original precursor of current generation BI systems.

◗ Operational data are not well-suited for decision support. From the end-user point of view, decision support data
differ from operational data in three main areas: time span, granularity, and dimensionality.

◗ The requirements for a decision support DBMS are divided into four main categories: database schema, data
extraction and loading, end-user analytical interface, and database size requirements.

◗ The data warehouse is an integrated, subject-oriented, time-variant, nonvolatile collection of data that provides
support for decision making. The data warehouse is usually a read-only database optimized for data analysis and
query processing. A data mart is a small, single-subject data warehouse subset that provides decision support to a
small group of people.

◗ Online analytical processing (OLAP) refers to an advanced data analysis environment that supports decision
making, business modeling, and operations research. OLAP systems have four main characteristics: use of
multidimensional data analysis techniques, advanced database support, easy-to-use end-user interfaces, and client/
server architecture.

◗ Relational online analytical processing (ROLAP) provides OLAP functionality by using relational databases and
familiar relational query tools to store and analyze multidimensional data. Multidimensional online analytical
processing (MOLAP) provides OLAP functionality by using multidimensional database management systems
(MDBMSs) to store and analyze multidimensional data.

◗ The star schema is a data-modeling technique used to map multidimensional decision support data into a relational
database with the purpose of performing advanced data analysis. The basic star schema has four components:
facts, dimensions, attributes, and attribute hierarchies. Facts are numeric measurements or values representing a
specific business aspect or activity. Dimensions are general qualifying categories that provide additional perspec-
tives to a given fact. Conceptually, the multidimensional data model is best represented by a three-dimensional
cube. Attributes can be ordered in well-defined attribute hierarchies. The attribute hierarchy provides a top-down
organization that is used for two main purposes: to permit aggregation and to provide drill-down/roll-up data
analysis.

◗ Four techniques are generally used to optimize data warehouse design: normalizing dimensional tables, maintaining
multiple fact tables representing different aggregation levels, denormalizing fact tables, and partitioning and
replicating tables.

◗ Data mining automates the analysis of operational data with the intention of finding previously unknown data
characteristics, relationships, dependencies, and/or trends. The data mining process has four phases: data
preparation, data analysis and classification, knowledge acquisition, and prognosis.

◗ SQL has been enhanced with extensions that support OLAP-type processing and data generation.
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R e v i e w Q u e s t i o n s

1. What is business intelligence?

2. Describe the BI framework.

3. What are decision support systems, and what role do they play in the business environment?

4. Explain how the main components of the BI architecture interact to form a system.

5. What are the most relevant differences between operational and decision support data?

6. What is a data warehouse, and what are its main characteristics?

7. Give three examples of problems likely to be encountered when operational data are integrated into the data
warehouse.

Use the following scenario to answer Questions 8−14.

While working as a database analyst for a national sales organization, you are asked to be part of its data warehouse
project team.

8. Prepare a high-level summary of the main requirements for evaluating DBMS products for data warehousing.

9. Your data warehousing project group is debating whether to prototype a data warehouse before its
implementation. The project group members are especially concerned about the need to acquire some data
warehousing skills before implementing the enterprise-wide data warehouse. What would you recommend?
Explain your recommendations.

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the Student Online
Companion for this book.
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10. Suppose you are selling the data warehouse idea to your users. How would you define multidimensional data
analysis for them? How would you explain its advantages to them?

11. Before making a commitment, the data warehousing project group has invited you to provide an OLAP overview.
The group’s members are particularly concerned about the OLAP client/server architecture requirements and
how OLAP will fit the existing environment. Your job is to explain to them the main OLAP client/server
components and architectures.

12. One of your vendors recommends using an MDBMS. How would you explain this recommendation to your
project leader?

13. The project group is ready to make a final decision, choosing between ROLAP and MOLAP. What should be the
basis for this decision? Why?

14. The data warehouse project is in the design phase. Explain to your fellow designers how you would use a star
schema in the design.

15. Briefly discuss the decision support architectural styles and their evolution. What major technologies influenced
this evolution?

16. What is OLAP, and what are its main characteristics?

17. Explain ROLAP and give the reasons you would recommend its use in the relational database environment.

18. Explain the use of facts, dimensions, and attributes in the star schema.

19. Explain multidimensional cubes and describe how the slice-and-dice technique fits into this model.

20. In the star schema context, what are attribute hierarchies and aggregation levels, and what is their purpose?

21. Discuss the most common performance improvement techniques used in star schemas.

22. Explain some of the most important issues in data warehouse implementation.

23. What is data mining, and how does it differ from traditional decision support tools?

24. How does data mining work? Discuss the different phases in the data mining process.

P r o b l e m s

1. The university computer lab’s director keeps track of lab usage, measured by the number of students using the
lab. This particular function is important for budgeting purposes. The computer lab director assigns you the task
of developing a data warehouse in which to keep track of the lab usage statistics. The main requirements for this
database are to:

� Show the total number of users by different time periods.

� Show usage numbers by time period, by major, and by student classification.

� Compare usage for different majors and different semesters.

O n l i n e C o n t e n t

The databases used for this problem set are found in the Student Online Companion for this book. These
databases are stored in Microsoft Access 2000 format. The databases, named Ch13_P1.mdb, Ch13_P3.
mdb, and Ch13_P4.mdb, contain the data for Problems 1, 3, and 4, respectively. The data for Problem 2
are stored in Microsoft Excel format in the Student Online Companion for this book. The spreadsheet filename
is Ch13_P2.xls.
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Use the Ch13_P1.mdb database, which includes the following tables:

� USELOG contains the student lab access data.

� STUDENT is a dimension table containing student data.

Given the three bulleted requirements and using the Ch13_P1.mdb data, complete Problems 1a−1g.

a. Define the main facts to be analyzed. (Hint: These facts become the source for the design of the fact table.)

b. Define and describe the appropriate dimensions. (Hint: These dimensions become the source for the design
of the dimension tables.)

c. Draw the lab usage star schema, using the fact and dimension structures you defined in Problems 1a and 1b.

d. Define the attributes for each of the dimensions in Problem 1b.

e. Recommend the appropriate attribute hierarchies.

f. Implement your data warehouse design, using the star schema you created in Problem 1c and the attributes
you defined in Problem 1d.

g. Create the reports that will meet the requirements listed in this problem’s introduction.

2. Ms. Victoria Ephanor manages a small product distribution company. Because the business is growing fast, Ms.
Ephanor recognizes that it is time to manage the vast information pool to help guide the accelerating growth. Ms.
Ephanor, who is familiar with spreadsheet software, currently employs a small sales force of four people. She asks
you to develop a data warehouse application prototype that will enable her to study sales figures by year, region,
salesperson, and product. (This prototype is to be used as the basis for a future data warehouse database.)

Using the data supplied in the Ch13_P2.xls file, complete the following seven problems:

a. Identify the appropriate fact table components.

b. Identify the appropriate dimension tables.

c. Draw a star schema diagram for this data
warehouse.

d. Identify the attributes for the dimension tables
that will be required to solve this problem.

e. Using a Microsoft Excel spreadsheet (or any
other spreadsheet capable of producing pivot
tables), generate a pivot table to show the sales
by product and by region. The end user must be
able to specify the display of sales for any given
year. (The sample output is shown in the first
pivot table in Figure P13.2E.)

f. Using Problem 2e as your base, add a second
pivot table (see Figure P13.2E) to show the sales
by salesperson and by region. The end user
must be able to specify sales for a given year or
for all years and for a given product or for all
products.

FIGURE
P13.2E

Using a pivot table
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g. Create a 3-D bar graph to show sales by sales-
person, by product, and by region. (See the
sample output in Figure P13.2G.)

3. Mr. David Suker, the inventory manager for a mar-
keting research company, is interested in studying
the use of supplies within the different company
departments. Mr. Suker has heard that his friend,
Ms. Ephanor, has developed a small spreadsheet-
based data warehouse model (see Problem 2) that
she uses to analyze sales data. Mr. Suker is inter-
ested in developing a small data warehouse model
like Ms. Ephanor’s so he can analyze orders by
department and by product. He will use Microsoft
Access as the data warehouse DBMS and Microsoft
Excel as the analysis tool.

a. Develop the order star schema.

b. Identify the appropriate dimensions attributes.

c. Identify the attribute hierarchies required to sup-
port the model.

d. Develop a crosstab report (in Microsoft Access),
using a 3-D bar graph to show orders by prod-
uct and by department. (The sample output is
shown in Figure P13.3.)

4. ROBCOR, whose sample data are contained in the
database named Ch13_P4.mdb, provides “on-
demand” aviation charters, using a mix of different
aircraft and aircraft types. Because ROBCOR has
grown rapidly, its owner has hired you to be its first
database manager. (The company’s database, devel-
oped by an outside consulting team, already has a
charter database in place to help manage all of its
operations.) Your first critical assignment is to
develop a decision support system to analyze the

charter data. (Review Problems 30−34 in Chapter 3, The Relational Database Model, in which the operations
have been described.) The charter operations manager wants to be able to analyze charter data such as cost,
hours flown, fuel used, and revenue. She would also like to be able to drill down by pilot, type of airplane, and
time periods.

Given those requirements, complete the following:

a. Create a star schema for the charter data.

b. Define the dimensions and attributes for the charter operation’s star schema.

c. Define the necessary attribute hierarchies.

d. Implement the data warehouse design, using the design components you developed in Problems 4a−4c.

e. Generate the reports that will illustrate that your data warehouse meets the specified information
requirements.

Using the data provided in the SaleCo snowflake schema in Figure 13.25, solve the following problems.

FIGURE
P13.2G

3-D bar graph showing the
relationships among agent,
product, and region

FIGURE
P13.3

Crosstab report: orders by
product and department
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5. What is the SQL command to list the total sales by customer and by product, with subtotals by customer and a
grand total for all product sales? (Hint: Use the ROLLUP command.)

6. What is the SQL command to list the total sales by customer, month, and product, with subtotals by customer
and by month and a grand total for all product sales? (Hint: Use the ROLLUP command.)

7. What is the SQL command to list the total sales by region and customer, with subtotals by region and a grand
total for all sales? (Hint: Use the ROLLUP command.)

8. What is the SQL command to list the total sales by month and product category, with subtotals by month and
a grand total for all sales? (Hint: Use the ROLLUP command.)

9. What is the SQL command to list the number of product sales (number of rows) and total sales by month, with
subtotals by month and a grand total for all sales? (Hint: Use the ROLLUP command.)

10. What is the SQL command to list the number of product sales (number of rows) and total sales by month and
product category, with subtotals by month and product category and a grand total for all sales? (Hint: Use the
ROLLUP command.)

11. What is the SQL command to list the number of product sales (number of rows) and total sales by month, product
category, and product, with subtotals by month and product category and a grand total for all sales? (Hint: Use
the ROLLUP command.)

12. Using the answer to Problem 10 as your base, what command would you need to generate the same output but
with subtotals in all columns? (Hint: Use the CUBE command.)

O n l i n e C o n t e n t

The script files used to populate the database are available in the Student Online Companion. The script files
assume an Oracle RDBMS. If you use a different DBMS, consult the documentation to verify whether the
vendor supports similar functionality and what the proper syntax is for your DBMS.
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