
PART

V
Databases and the

Internet

14Database Connectivity and Web Technologies

C6545_14 10/22/2007 11:17:41 Page 570

B
V

usiness
ignette

Casio Upgrades Customer Web Experience

A global leader, Casio Computer Co., Ltd., has been developing consumer electronics

since 1957. While the company creates high tech devices such as LCD TVs, digital

cameras, handheld computers, and other communications devices, its Web site was

behind the times. The site was written in HTML only, with little content and with an

e-commerce page that was managed by a third party.

“It was an OK site, but not the kind of breakthrough experience we were hoping to offer

our customers,” says Casio’s Internet services manager Michael McCormick.

The company wanted to upgrade the look and feel and add new functionality, including

better merchandising capabilities and a more comprehensive shopping cart.The company

chose Macromedia’s ColdFusion MX running on a Linux platform. (Macromedia recently

merged with Adobe and the product is now Adobe ColdFusion.) A 15-person team

including designers, programmers, and testers spent five months creating the new site.

ColdFusion’s tag-based language, its reusability of code modules, and its debugging tools

expedited this development. ColdFusion’s open architecture Web application server also

facilitated integration with the company’s enterprise system. Now, users can browse

through thousands of products, make purchases easily, and track their orders.

Casio also enjoys much greater administrative functionality, accessing inventory figures,

sales reports, membership information, and order process and fulfillment data through

the site. In addition, the company now can manage the site’s content itself, rather than

turning to its Web development partner, Pipeline Interactive, each time it needs to update

one of its 50,000 screens of content.

Yet, the most critical feature of the new site is its ability to cross-sell and upsell.“We can

cross-sell a printer when someone buys a digital camera,” explains McCormick. “Or we

can suggest additional ink cartridges when someone buys a printer. If a particular SKU

isn’t in stock, [we] suggest substitute products that are similar—perhaps a different

color.”

The result is that Casio’s e-commerce sales have doubled since the site was launched.The

site boasts more than 700,000 registered users with more than one million page views

per day.

C6545_14 10/22/2007 11:18:22 Page 571

Preview

Database Connectivity and Web Technologies

In this chapter, you will learn:

� About the various database connectivity technologies

� How Web-to-database middleware is used to integrate databases with the Internet

� About Web browser plug-ins and extensions

� What services are provided by Web application servers

� What Extensible Markup Language (XML) is and why it is important for Web database
development

As you know, a database is a central repository for critical business data. Such data can be

generated through traditional business applications or via newer business channels such as

the Web, a phone connection, a wireless PDA, or a smart phone.To be useful universally, the

data must be available to all business users.Those users need access to the data via many

avenues: a spreadsheet, a user-developedVisual Basic application, a Web front end, Microsoft

Access forms and reports, and so on. In this chapter, you learn about the architectures used

by applications to connect to databases.

The Internet has changed how organizations of all types operate. For example, buying goods

and services via the Internet has become commonplace. In today’s environment, intercon-

nectivity occurs not only between an application and the database, but also between

applications interchanging messages and data. Extensible Markup Language (XML) provides

a standard way of exchanging unstructured and structured data between applications.

Given the growing relationship between the Web and databases, database professionals

must know how to create, use, and manage Web interfaces to those databases.This chapter

examines the basics of Web database technologies.

14
F

O
U

R
T

E
E

N

C6545_14 10/22/2007 11:20:18 Page 572

14.1 DATABASE CONNECTIVITY

The term database connectivity refers to the mechanisms through which application programs connect and
communicate with data repositories. Database connectivity software is also known as database middleware because
it interfaces between the application program and the database. The data repository, also known as the data source,
represents the data management application (that is, an Oracle RDBMS, SQL Server DBMS, or IBM DBMS) that will
be used to store the data generated by the application program. Ideally, a data source or data repository could be
located anywhere and hold any type of data. For example, the data source could be a relational database, a hierarchical
database, a spreadsheet, or a text data file.

The need for standard database connectivity interfaces cannot be overstated. Just as SQL has become the de facto data
manipulation language, there is a need for a standard database connectivity interface that will enable applications to
connect to data repositories. There are many different ways to achieve database connectivity. This section will cover
only the following interfaces:

� Native SQL connectivity (vendor provided).

� Microsoft’s Open Database Connectivity (ODBC).

� Data Access Objects (DAO) and Remote Data Objects (RDO).

� Microsoft’s Object Linking and Embedding for Database (OLE-DB).

� Microsoft’s ActiveX Data Objects (ADO.NET).

� Sun’s Java Database Connectivity (JDBC).

You should not be surprised to learn that most interfaces you are likely to encounter are Microsoft offerings. After all,
client applications connect to databases, and the majority of those applications run on computers that are powered by
some version of Microsoft Windows. The data connectivity interfaces illustrated here are dominant players in the
market, and more importantly, they enjoy the support of the majority of database vendors. In fact, ODBC, OLE-DB,
and ADO.NET form the backbone of Microsoft’s Universal Data Access (UDA) architecture, a collection of
technologies used to access any type of data source and manage the data through a common interface. As you will
see, Microsoft’s database connectivity interfaces have evolved over time: each interface builds on top of the other, thus
providing enhanced functionality, features, flexibility, and support.

14.1.1 Native SQL Connectivity

Most DBMS vendors provide their own methods for connecting to their databases. Native SQL connectivity refers to
the connection interface that is provided by the database vendor and that is unique to that vendor. The best example
of that type of native interface is the Oracle RDBMS. To connect a client application to an Oracle database, you must
install and configure the Oracle’s SQL*Net interface in the client computer. Figure 14.1 shows the configuration of
Oracle SQL*Net interface on the client computer.

Native database connectivity interfaces are optimized for “their” DBMS, and those interfaces support access to most,
if not all, of the database features. However, maintaining multiple native interfaces for different databases can become
a burden for the programmer. Therefore, the need for “universal” database connectivity arises. Usually, the native
database connectivity interface provided by the vendor is not the only way to connect to a database; most current
DBMS products support other database connectivity standards, the most common being ODBC.

14.1.2 ODBC, DAO, and RDO

Developed in early 1990s, Open Database Connectivity (ODBC) is Microsoft’s implementation of a superset of the
SQL Access Group Call Level Interface (CLI) standard for database access. ODBC is probably the most widely
supported database connectivity interface. ODBC allows any Windows application to access relational data sources,
using SQL via a standard application programming interface (API). The Webopedia online dictionary

C6545_14 10/22/2007 11:21:38 Page 573

573D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

(www.webopedia.com) defines an API as “a set of routines, protocols, and tools for building software applications.”
A good API makes it easy to develop a program by providing all of the building blocks; the programmer puts the blocks
together. Most operating environments, such as Microsoft Windows, provide an API so programmers can write
applications consistent with the operating environment. Although APIs are designed for programmers, they are
ultimately good for users because they guarantee that all programs using a common API will have similar interfaces.
That makes it easy for users to learn new programs.

ODBC was the first widely adopted database middleware standard, and it enjoyed rapid adoption in Windows
applications. As programming languages evolved, ODBC did not provide significant functionality beyond the ability to
execute SQL to manipulate relational style data. Therefore, programmers needed a better way to access data. To
answer that need, Microsoft developed two other data access interfaces:

� Data Access Objects (DAO) is an object-oriented API used to access MS Access, MS FoxPro, and dBase
databases (using the Jet data engine) from Visual Basic programs. DAO provided an optimized interface that
exposed to programmers the functionality of the Jet data engine (on which the MS Access database is based).
The DAO interface can also be used to access other relational style data sources.

� Remote Data Objects (RDO) is a higher-level object-oriented application interface used to access remote
database servers. RDO uses the lower-level DAO and ODBC for direct access to databases. RDO was
optimized to deal with server-based databases, such as MS SQL Server, Oracle, and DB2.

Figure 14.2 illustrates how Windows applications can use ODBC, DAO, and RDO to access local and remote relational
data sources.

As you can tell by examining Figure 14.2, client applications can use ODBC to access relational data sources.
However, the DAO and RDO object interfaces provide more functionality. DAO and RDO make use of the underlying
ODBC data services. ODBC, DAO, and RDO are implemented as shared code that is dynamically linked to the
Windows operating environment through dynamic-link libraries (DLLs) which are stored as files with the .dll
extension. Running as a DLL, the code speeds up load and run times.

FIGURE
14.1

ORACLE native connectivity

C6545_14 10/22/2007 11:22:5 Page 574

574 C H A P T E R 1 4

The basic ODBC architecture has three main components:

� A high-level ODBC API through which application programs access ODBC functionality.

� A driver manager that is in charge of managing all database connections.

� An ODBC driver that communicates directly to the DBMS.

Defining a data source is the first step in using ODBC. To define a data source, you must create a data source name
(DSN) for the data source. To create a DSN you need to provide:

� An ODBC driver. You must identify the driver to use to connect to the data source. The ODBC driver is
normally provided by the database vendor, although Microsoft provides several drivers that connect to most
common databases. For example, if you are using an Oracle DBMS, you will select the Oracle ODBC driver
provided by Oracle, or if desired, the Microsoft-provided ODBC driver for Oracle.

FIGURE
14.2

Using ODBC, DAO, and RDO to access databases

MS Word MS Access MS Excel

RDO

DAO

Jet Engine

ODBC API

ODBC Driver Manager

ODBC Database Driver

Oracle
Driver

MS SQL
Driver

ODBC
Driver

Oracle MS SQL Access

Remote Data Objects

Data Access Objects

Jet Engine supports MS
Access databases and other

SQL-aware data sources

Database vendors provide ODBC
database drivers so Windows
applications can access their

respective databases

Client Applications

C6545_14 10/22/2007 11:20:21 Page 575

575D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

� A DSN name. This is a unique name by which the data source will be known to ODBC, and therefore, to
applications. ODBC offers two types of data sources: user and system. User data sources are available only
to the user. System data sources are available to all users, including operating system services.

� ODBC driver parameters. Most ODBC drivers require specific parameters in order to establish a connection
to the database. For example, if you are using an MS Access database, you must point to the location of the
MS Access (.mdb) file, and if necessary, provide a username and password. If you are using a DBMS server,
you must provide the server name, the database name, the username, and the password needed to connect
to the database. Figure 14.3 shows the ODBC screens required to create a System ODBC data source for an
Oracle DBMS. Note that some ODBC drivers use the native driver provided by the DBMS vendor.

Once the ODBC data source is defined, application programmers can write to the ODBC API by issuing specific
commands and providing the required parameters. The ODBC Driver Manager will properly route the calls to the
appropriate data source. The ODBC API standard defines three levels of compliance: Core, Level-1, and Level-2,
which provide increasing levels of functionality. For example, Level-1 might provide support for most SQL DDL and
DML statements, including subqueries and aggregate functions, but no support for procedural SQL or cursors. The
database vendors can choose which level to support. However, to interact with ODBC, the database vendor must
implement all of the features indicated in that ODBC API support level.

FIGURE
14.3

Configuring an Oracle ODBC data source

Defining an ODBC
System Data Source Name (DSN)
to Connect to an Oracle DBMS,

Using Oracle ODBC Driver

To create a new ODBC Data Source in Windows XP:
1. Click Start, Settings, Control Panel, Administrative
 Tools, Data Sources (ODBC).
2. Click the System DSN tab.
3. Click Add.
4. Select the database driver to use.
5. Click Finish to see the ODBC Driver Configuration screen.
6. Enter the new data source name and the parameters required.

Oracle ODBC Driver
uses the Native Oracle
SQL Connectivity

If no User ID is provded,
ODBC will prompt for the
User ID and Password at
run time

C6545_14 10/22/2007 11:20:21 Page 576

576 C H A P T E R 1 4

Figure 14.4 shows how you could use MS Excel to retrieve data from an Oracle RDBMS, using ODBC. Because much
of the functionality provided by these interfaces is oriented to accessing relational data sources, the use of the interfaces
was limited when they were used with other data source types. With the advent of object-oriented programming
languages, it has become more important to provide access to other nonrelational data sources.

14.1.3 OLE-DB

Although ODBC, DAO, and RDO were widely used, they did not provide support for nonrelational data. To answer
that need and to simplify data connectivity, Microsoft developed Object Linking and Embedding for Database
(OLE-DB). Based on Microsoft’s Component Object Model (COM), OLE-DB is database middleware that adds
object-oriented functionality for access to relational and nonrelational data. OLE-DB was the first part of Microsoft’s
strategy to provide a unified object-oriented framework for the development of next-generation applications.

FIGURE
14.4

MS EXCEL uses ODBC to connect to an Oracle database

CLIENT APPLICATION ODBC Interface

ODBC API

ODBC
DRIVER MGR

ODBC DRIVER

RDBMS
SERVER

DATABASE

DATABASE
SERVER

COMPUTER

1. From Excel, select Data, Import External Data and New
Database Query options to retrieve data from an Oracle
RDBMS.

2. Select the Oralab ODBC data source (see Figure 14.3).
3. Enter the authentication parameters. ODBC uses the

connection parameters to connect to the data source.
4. Select the table and the columns to use in the query.
5. Select Return Data to Microsoft Office Excel.
6. Excel uses the ODBC API to pass the SQL request down

to the database. Oracle executes the request and
generates a result set. Excel issues calls to the ODBC
API to retreive the result set and populate the
spreadsheet.

2

3

4

5

6

1

C6545_14 10/22/2007 11:20:21 Page 577

577D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

OLE-DB is composed of a series of COM objects that provide low-level database connectivity for applications. Because
OLE-DB is based on COM, the objects contain data and methods, also known as the interface. The OLE-DB model
is better understood when you divide its functionality into two types of objects:

� Consumers are objects (applications or processes) that request and use data. The data consumers request data
by invoking the methods exposed by the data provider objects (public interface) and passing the required
parameters.

� Providers are objects that manage the connection with a data source and provide data to the consumers.
Providers are divided into two categories: data providers and service providers.

- Data providers provide data to other processes. Database vendors create data provider objects that expose
the functionality of the underlying data source (relational, object-oriented, text, and so on).

- Service providers provide additional functionality to consumers. The service provider is located between the
data provider and the consumer. The service provider requests data from the data provider, transforms the
data, and then provides the transformed data to the data consumer. In other words, the service provider acts
like a data consumer of the data provider and as a data provider for the data consumer (end-user
application). For example, a service provider could offer cursor management services, transaction manage-
ment services, query processing services, and indexing services.

As a common practice, many vendors provide OLE-DB objects to augment their ODBC support, effectively creating
a shared object layer on top of their existing database connectivity (ODBC or native) through which applications can
interact. The OLE-DB objects expose functionality about the database; for example, there are objects that deal with
relational data, hierarchical data, and flat-file text data. Additionally, the objects implement specific tasks, such as
establishing a connection, executing a query, invoking a stored procedure, defining a transaction, or invoking an OLAP
function. By using OLE-DB objects, the database vendor can choose what functionality to implement in a modular way,
instead of being forced to include all of the functionality all of the time. Table 14.1 shows a sample of the
object-oriented classes used by OLE-DB and some of the methods (interfaces) exposed by the objects.

TABLE
14.1

Sample OLE-DB Classes and Interfaces

OBJECT CLASS USAGE SAMPLE INTERFACES
Session Used to create an OLE-DB session between a data consumer

application and a data provider.
IGetDataSource
ISessionProperties

Command Used to process commands to manipulate a data provider's data.
Generally, the command object will create RowSet objects to hold
the data returned by a data provider.

ICommandPrepare
ICommandProperties

RowSet Used to hold the result set returned by a relational style database
or a database that supports SQL. Represents a collection of rows
in a tabular format.

IRowsetInfo
IRowsetFind
IRowsetScroll

OLE-DB provided additional capabilities for the applications accessing the data. However, it did not provide support
for scripting languages, especially the ones used for Web development, such as Active Server Pages (ASP) and ActiveX.
(A script is written in a programming language that is not compiled, but is interpreted and executed at run time.) To
provide that support, Microsoft developed a new object framework called ActiveX Data Objects (ADO), which
provides a high-level application-oriented interface to interact with OLE-DB, DAO, and RDO. ADO provides a unified
interface to access data from any programming language that uses the underlying OLE-DB objects. Figure 14.5
illustrates the ADO/OLE-DB architecture, showing how it interacts with ODBC and native connectivity options.

C6545_14 10/22/2007 11:20:23 Page 578

578 C H A P T E R 1 4

ADO introduced a simpler object model that was composed of only a few interacting objects to provide the data
manipulation services required by the applications. Sample objects in ADO are shown in Table 14.2.

TABLE
14.2

Sample ADO Objects

OBJECT CLASS USAGE
Connection Used to set up and establish a connection with a data source. ADO will connect to any

OLE-DB data source. The data source can be of any type.
Command Used to execute commands against a specific connection (data source).
Recordset Contains the data generated by the execution of a command. It will also contain any new

data to be written to the data source. The Recordset can be disconnected from the data
source.

Fields Contains a collection of Field descriptions for each column in the Recordset.

Although the ADO model is a tremendous improvement over the OLE-DB model, Microsoft is actively encouraging
programmers to use its new data access framework, ADO.NET.

FIGURE
14.5

OLE-DB architecture

OLE-DB Data Providers

OLE-DB Provider
for SQL Server

OLE-DB Provider
for ODBC

OLE-DB Provider
for Exchange

OLE-DB Provider
for Oracle

SQL Server

ODBCSQL*NET

E-MAIL

OLE-DB Service Providers
Query

Processing
Cursor

Processing
E-mail

Processing
Indexing

Processing

DATABASEDATABASE

OLE-DB Consumers

ActiveX Data Objects (ADO)

Client Applications

Access Excel Visual C++

C6545_14 10/22/2007 11:20:24 Page 579

579D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

14.1.4 ADO.NET

Based on ADO, ADO.NET is the data access component of Microsoft’s .NET application development framework.
The Microsoft .NET framework is a component-based platform for developing distributed, heterogeneous,
interoperable applications aimed at manipulating any type of data over any network under any operating system and
any programming language. Comprehensive coverage of the .NET framework is beyond the scope of this book.
Therefore, this section will only introduce the basic data access component of the .NET architecture, ADO.NET.

It’s important to understand that the .NET framework extends and enhances the functionality provided by the
ADO/OLE-DB duo. ADO.NET introduced two new features critical for the development of distributed applications:
DataSets and XML support.

To understand the importance of this new model, you should know that a DataSet is a disconnected memory-resident
representation of the database. That is, the DataSet contains tables, columns, rows, relationships, and constraints.
Once the data are read from a data provider, the data are placed on a memory-resident DataSet, and the DataSet is
then disconnected from the data provider. The data consumer application interacts with the data in the DataSet object
to make changes (inserts, updates, and deletes) in the DataSet. Once the processing is done, the DataSet data are
synchronized with the data source and the changes are made permanent.

The DataSet is internally stored in XML format (you will learn about XML later in this chapter), and the data in the
DataSet can be made persistent as XML documents. This is critical in today’s distributed environments. In short, you
can think of the DataSet as an XML-based, in-memory database that represents the persistent data stored in the data
source. Figure 14.6 illustrates the main components of the ADO.NET object model.

The ADO.NET framework consolidates all data access functionality under one integrated object model. In this object
model, several objects interact with one another to perform specific data manipulation functions. Those objects can
be grouped as data providers and consumers.

Data provider objects are provided by the database vendors. However, ADO.NET comes with two standard data
providers: a data provider for OLE-DB data sources and a data provider for SQL Server. That way ADO.NET can work
with any previously supported database, including an ODBC database with an OLE-DB data provider. At the same
time, ADO.NET includes a highly optimized data provider for SQL Server.

Whatever the data provider is, it must support a set of specific objects in order to manipulate the data in the data
source. Some of those objects are shown in Figure 14.6. A brief description of the objects follows.

� Connection. The Connection object defines the data source used, the name of the server, the database, and
so on. This object enables the client application to open and close a connection to a database.

� Command. The Command object represents a database command to be executed within a specified database
connection. This object contains the actual SQL code or a stored procedure call to be run by the database.
When a SELECT statement is executed, the Command object returns a set of rows and columns.

� DataReader. The DataReader object is a specialized object that creates a read-only session with the database
to retrieve data sequentially (forward only) in a very fast manner.

� DataAdapter. The DataAdapter object is in charge of managing a DataSet object. This is the most specialized
object in the ADO.NET framework. The DataAdapter object contains the following objects that aid in
managing the data in the DataSet: SelectCommand, InsertCommand, UpdateCommand, and
DeleteCommand. The DataAdapter object uses those objects to populate and synchronize the data in the
DataSet with the permanent data source data.

� DataSet. The DataSet object is the in-memory representation of the data in the database. This object contains
two main objects. The DataTableCollection object contains a collection of DataTable objects that make up the
“in-memory” database, and the DataRelationCollection object contains a collection of objects describing the
data relationships and ways to associate one row in a table to the related row in another table.

C6545_14 10/22/2007 11:20:24 Page 580

580 C H A P T E R 1 4

� DataTable. The DataTable object represents the data in tabular format. This object has one very important
property: PrimaryKey, which allows the enforcement of entity integrity. In turn, the DataTable object is
composed of three main objects:

- DataColumnCollection contains one or more column descriptions. Each column description has properties
such as column name, data type, nulls allowed, maximum value, and minimum value.

- DataRowCollection contains zero rows, one row, or more than one row with data as described in the
DataColumnCollection.

- ConstraintCollection contains the definition of the constraints for the table. Two types of constraints are
supported: ForeignKeyConstraint and UniqueConstraint.

As you can see, a DataSet is, in fact, a simple database with tables, rows, and constraints. Even more important, the
DataSet doesn’t require a permanent connection to the data source. The DataAdapter uses the SelectCommand object
to populate the DataSet from a data source. However, once the DataSet is populated, it is completely independent of
the data source, which is why it’s called “disconnected.”

FIGURE
14.6

ADO.NET framework

DataReader

DataAdapter

Command

Connection

OLE-DB

DATABASE

ADO.NET

Client Applications

DataRelationCollection

DataTableCollection

DataTable

DataColumnCollection

DataRowCollection

ConstraintCollection

DataSet (XML)

Data Providers

Internet

Data Consumers

Access Excel

C6545_14 10/22/2007 11:20:24 Page 581

581D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

Additionally, DataTable objects in a DataSet can come from different data sources. This means that you could have an
EMPLOYEE table in an Oracle database and a SALES table in a SQL Server database. You could then create a DataSet
that relates both tables as though they were located in the same database. In short, the DataSet object paves the way
for truly heterogeneous distributed database support within applications.

The ADO.NET framework is optimized to work in disconnected environments. In a disconnected environment,
applications exchange messages in request/reply format. The most common example of a disconnected system is the
Internet. Modern applications rely on the Internet as the network platform and on the Web browser as the graphical
user interface. In the next section, you will learn details about how Internet databases work.

14.1.5 Java Database Connectivity (JDBC)

Java is an object-oriented programming language developed by Sun Microsystems that runs on top of Web browser
software. Java is one of the most common programming languages for Web development. Sun Microsystems created
Java as a “write once, run anywhere” environment. That means that a programmer can write a Java application once
and then without any modification, run the application in multiple environments (Microsoft Windows, Apple OS X,
IBM AIX, etc.). The cross-platform capabilities of Java are based on its portable architecture. Java code is normally
stored in pre-processed chunks known as applets that run on a virtual machine environment in the host operating
system. This environment has well-defined boundaries and all interactivity with the host operating system is closely
monitored. Sun provides Java runtime environments for most operating systems (from computers to hand-held devices
to TV set-top boxes.) Another advantage of using Java is its “on-demand” architecture. When a Java application loads,
it can dynamically download all its modules or required components via the Internet.

When Java applications want to access data outside the Java runtime environment, they use pre-defined application
programming interfaces. Java Database Connectivity (JDBC) is an application programming interface that allows
a Java program to interact with a wide range of data sources (relational databases, tabular data sources, spreadsheets,
and text files). JDBC allows a Java program to establish a connection with a data source, prepare and send the SQL
code to the database server, and process the result set.

One of the main advantages of JDBC is that it allows a company to leverage its existing investment in technology and
personnel training. JDBC allows programmers to use their SQL skills to manipulate the data in the company’s
databases. As a matter of fact, JDBC allows direct access to a database server or access via database middleware.
Furthermore, JDBC provides a way to connect to databases through an ODBC driver. Figure 14.7 illustrates the basic
JDBC architecture and the various database access styles.

As you see in Figure 14.7, the database access architecture in JDBC is very similar to the ODBC/OLE/ADO.NET
architecture. All database access middleware shares similar components and functionality. One advantage of JDBC
over other middleware is that it requires no configuration on the client side. The JDBC driver is automatically
downloaded and installed as part of the Java applet download. Because Java is a Web-based technology, applications
can connect to a database directly using a simple URL. Once the URL is invoked, the Java architecture comes into
place, the necessary applets are downloaded to the client (including the JDBC database driver and all configuration
information), and then the applets are executed securely in the client’s runtime environment.

Every day, more and more companies are investing resources in developing and expanding their Web presence and
finding ways to do more business on the Internet. Such business will generate increasing amounts of data that will be
stored in databases. Java and the .NET framework are part of the trend toward increasing reliance on the Internet as
a critical business resource. In fact, it has been said that the Internet will become the development platform of the
future. In the next section you will learn more about Internet databases and how they are used.

C6545_14 10/22/2007 11:23:27 Page 582

582 C H A P T E R 1 4

14.2 INTERNET DATABASES

Millions of people all over the world use computers and Web browser software to access the Internet, connecting to
databases over the Web. Web database connectivity opens the door to new innovative services that:

� Permit rapid responses to competitive pressures by bringing new services and products to market quickly.

� Increase customer satisfaction through the creation of Web-based support services.

� Yield fast and effective information dissemination through universal access from across the street or across
the globe.

Given those advantages, many organizations rely on their IS departments to create universal data access architectures
based on Internet standards. Table 14.3 shows a sample of Internet technology characteristics and the benefits they
provide.

Java Client Application

JDBC API

JDBC Driver Manager

Java DB Driver Java DB Driver
JDBC-ODBC
Bridge Driver

ODBC
Database

Middleware

FIGURE
14.7

JDBC architecture

DATABASE DATABASE DATABASE DATABASE

C6545_14 10/22/2007 11:20:25 Page 583

583D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

TABLE
14.3

Characteristics and Benefits of Internet Technologies

INTERNET CHARACTERISTIC BENEFIT
Hardware and software independence Savings in equipment/software acquisition

Ability to run on most existing equipment
Platform independence and portability
No need for multiple platform development

Common and simple user interface Reduced training time and cost
Reduced end-user support cost
No need for multiple platform development

Location independence Global access through Internet infrastructure
Reduced requirements (and costs!) for dedicated connections

Rapid development at manageable costs Availability of multiple development tools
Plug-and-play development tools (open standards)
More interactive development
Reduced development times
Relatively inexpensive tools
Free client access tools (Web browsers)
Low entry costs. Frequent availability of free Web servers
Reduced costs of maintaining private networks
Distributed processing and scalability, using multiple servers

In the current business and global information environment, it’s easy to see why many database professionals consider
the DBMS connection to the Internet to be a critical element in IS development. As you will learn in the following
sections, database application development—and, in particular, the creation and management of user interfaces and
database connectivity—are profoundly affected by the Web. However, having a Web-based database interface does not
negate the database design and implementation issues that were addressed in the previous chapters. In the final
analysis, whether you make a purchase by going online or by standing in line, the system-level transaction details are
essentially the same, and they require the same basic database structures and relationships. If any immediate lesson is
to be learned, it is this: The effects of bad database design, implementation, and management are multiplied in
an environment in which transactions might be measured in hundreds of thousands per day, rather than in
hundreds per day.

The Internet is rapidly changing the way information is generated, accessed, and distributed. At the core of this change
is the Web’s ability to access data in databases (local and remote), the simplicity of the interface, and cross-platform
(heterogeneous) functionality. The Web has helped create a new information dissemination standard.

The following sections examine how Web-to-database middleware enables end users to interact with databases over
the Web.

14.2.1 Web-to-Database Middleware: Server-Side Extensions

In general, the Web server is the main hub through which all Internet services are accessed. For example, when an end
user uses a Web browser to dynamically query a database, the client browser requests a Web page. When the Web
server receives the page request, it looks for the page on the hard disk; when it finds the page (for example, a stock
quote, product catalog information, or an airfare listing), the server sends it back to the client.

C6545_14 10/22/2007 11:20:26 Page 584

584 C H A P T E R 1 4

Dynamic Web pages are at the heart of current generation Web sites. In this database-query scenario, the Web server
generates the Web page contents before it sends the page to the client Web browser. The only problem with the
preceding query scenario is that the Web server must include the database query result on the page before it sends that
page back to the client. Unfortunately, neither the Web browser nor the Web server knows how to connect to and read
data from the database. Therefore, to support this type of request (database query), the Web server’s capability must
be extended so it can understand and process database requests. This job is done through a server-side extension.

A server-side extension is a program that interacts directly with the Web server to handle specific types of requests.
In the preceding database query example, the server-side extension program retrieves the data from databases and
passes the retrieved data to the Web server, which, in turn, sends the data to the client’s browser for display purposes.
The server-side extension makes it possible to retrieve and present the query results, but what’s more important is that
it provides its services to the Web server in a way that is totally transparent to the client browser. In short, the
server-side extension adds significant functionality to the Web server, and therefore, to the Internet.

A database server-side extension program is also known as Web-to-database middleware. Figure 14.8 shows the
interaction between the browser, the Web server, and the Web-to-database middleware.

Trace the Web-to-database middleware actions in Figure 14.8:

1. The client browser sends a page request to the Web server.

2. The Web server receives and validates the request. In this case, the server will pass the request to the
Web-to-database middleware for processing. Generally, the requested page contains some type of scripting
language to enable the database interaction.

3. The Web-to-database middleware reads, validates, and executes the script. In this case, it connects to the
database and passes the query using the database connectivity layer.

4. The database server executes the query and passes the result back to the Web-to-database middleware.

5. The Web-to-database middleware compiles the result set, dynamically generates an HTML-formatted page that
includes the data retrieved from the database, and sends it to the Web server.

6. The Web server returns the just-created HTML page, which now includes the query result, to the client browser.

7. The client browser displays the page on the local computer.

The interaction between the Web server and the Web-to-database middleware is crucial to the development of a
successful Internet database implementation. Therefore, the middleware must be well integrated with the other Internet
services and the components that are involved in its use. For example, when installing Web-to-database middleware,
the middleware must verify the type of Web server being used and install itself to match that Web server’s requirements.
In addition, how well the Web server and the Web-to-database service interact will depend on the Web server interfaces
that are supported by the Web server.

O n l i n e C o n t e n t

Client/server systems are covered in detail in Appendix F, Client/Server Systems, located in the Student
Online Companion for this book.

C6545_14 10/22/2007 11:20:26 Page 585

585D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

14.2.2 Web Server Interfaces

Extending Web server functionality implies that the Web server and the Web-to-database middleware will properly
communicate with each other. (Database professionals often use the word interoperate to indicate that each party can
respond to the communications of the other. This book’s use of communicate assumes interoperation.) If a Web server
is to communicate successfully with an external program, both programs must use a standard way to exchange
messages and to respond to requests. A Web server interface defines how a Web server communicates with external
programs. Currently, there are two well-defined Web server interfaces:

� Common Gateway Interface (CGI).

� Application programming interface (API).

CLIENT
COMPUTER

HTML
PAGE

The result of the
database query is

displayed in
HTML format

HTTP page
request

Web server
receives
request

WEB
SERVER

Web server determines the
page contains script language
and passes the script page to

the web-to-database
middleware

Web-to-database
middleware
connects
 to the database
and passes query
using database
connectivity layer

SCRIPT
PAGE

SERVER
COMPUTER

HTML
PAGE

Database server
passes the query

results back to the
web-to-database

middleware

RDBMS
Computer

Web server
sends the HTML
formatted page

to the client
Web-to-database

middleware passes the
query results in HTML

format back to the
web server

FIGURE
14.8

Web-to-database middleware

WEB-TO-DATABASE
MIDDLEWARE

JDBC
ADO.NET

ADO
OLE-DB
ODBC

5
RDBMS
SERVER

DATABASE

TCP/IP
NETWORK

7

6

4

3

2

1

8

C6545_14 10/22/2007 11:20:27 Page 586

586 C H A P T E R 1 4

The Common Gateway Interface (CGI) uses script files that perform specific functions based on the client’s
parameters that are passed to the Web server. The script file is a small program containing commands written in a
programming language—usually Perl, C++, or Visual Basic. The script file’s contents can be used to connect to the
database and to retrieve data from it, using the parameters passed by the Web server. Next, the script converts the
retrieved data to HTML format and passes the data to the Web server, which sends the HTML-formatted page to the
client.

The main disadvantage of using CGI scripts is that the script file is an external program that is individually executed
for each user request. That scenario decreases system performance. For example, if you have 200 concurrent
requests, the script is loaded 200 different times, which takes significant CPU and memory resources away from the
Web server. The language and method used to create the script also can affect system performance. For example,
performance is degraded by using an interpreted language or by writing the script inefficiently.

An application programming interface (API) is a newer Web server interface standard that is more efficient and faster
than a CGI script. APIs are more efficient because they are implemented as shared code or as dynamic-link libraries
(DLLs). That means the API is treated as part of the Web server program that is dynamically invoked when needed.

APIs are faster than CGI scripts because the code resides in memory, so there is no need to run an external program
for each request. Instead, the same API serves all requests. Another advantage is that an API can use a shared
connection to the database instead of creating a new one every time, as is the case with CGI scripts.

Although APIs are more efficient in handling requests, they have some disadvantages. Because the APIs share the
same memory space as the Web server, an API error can bring down the server. The other disadvantage is that APIs
are specific to the Web server and to the operating system.

At the time of this writing, there are four well-established Web server APIs:

� Netscape API (NSAPI) for Netscape servers.

� Internet Server API (ISAPI) for Microsoft Windows Web servers.

� WebSite API (WSAPI) for O’Reilly Web servers.

� JDBC to provide database connectivity for Java applications.

The various types of Web interfaces are illustrated in Figure 14.9.

Regardless of the type of Web server interface used, the Web-to-database middleware program must be able to connect
with the database. That connection can be accomplished in one of two ways:

� Use the native SQL access middleware provided by the vendor. For example, you can use SQL*Net if you are
using Oracle.

� Use the services of general database connectivity standards such as Open Database Connectivity (ODBC),
Object Linking and Embedding for Database (OLE-DB), ActiveX Data Objects (ADO), the ActiveX Data Objects
for .NET (ADO.NET) interface, or JDBC for Java connectivity.

14.2.3 The Web Browser

The Web browser is the application software in the client computer, such as Microsoft Internet Explorer, Apple Safari,
or Mozilla Firefox, that lets end users navigate (browse) the Web. Each time the end user clicks a hyperlink, the browser
generates an HTTP GET page request that is sent to the designated Web server, using the TCP/IP Internet protocol.

The Web browser’s job is to interpret the HTML code that it receives from the Web server and to present the various
page components in a standard formatted way. Unfortunately, the browser’s interpretation and presentation
capabilities are not sufficient to develop Web-based applications. That is because the Web is a stateless system—
which means that at any given time, a Web server does not know the status of any of the clients communicating with
it. That is, there is no open communication line between the server and each client accessing it, which, of course, is
impractical in a worldwide Web! Instead, client and server computers interact in very short “conversations” that follow

C6545_14 10/22/2007 11:20:27 Page 587

587D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

the request-reply model. For example, the browser is concerned only with the current page, so there is no way for the
second page to know what was done in the first page. The only time the client and server computers communicate
is when the client requests a page—when the user clicks a link—and the server sends the requested page to the client.
Once the client receives the page and its components, the client/server communication is ended. Therefore, although
you may be browsing a page and think that the communication is open, you are actually just browsing the HTML
document stored in the local cache (temporary directory) of your browser. The server does not have any idea what the
end user is doing with the document, what data is entered in a form, what option is selected, and so on. On the Web,
if you want to act on a client’s selection, you need to jump to a new page (go back to the Web server), therefore losing
track of whatever was done before!

A Web browser’s function is to display a page on the client computer. The browser—through its use of HTML—does
not have computational abilities beyond formatting output text and accepting form field inputs. Even when the browser
accepts form field data, there is no way to perform immediate data entry validation. Therefore, to perform such crucial
processing in the client, the Web defers to other Web programming languages such as Java, JavaScript, and VBScript.
The browser resembles a dumb terminal that displays only data and can perform only rudimentary processing such as

FIGURE
14.9

Web server CGI and API interfaces

CLIENT
COMPUTER

WEB
SERVER

CGI

SERVER
COMPUTER

RDBMS
COMPUTER

API
(DLL call)

TCP/IP
Network

External
Program

JDBC
ADO.NET

ADO
OLE-DB
ODBC

RDBMS
SERVER

DATABASE

Database Connectivity
Middleware

C6545_14 10/22/2007 11:20:28 Page 588

588 C H A P T E R 1 4

accepting form data inputs. To improve capabilities on the client side of the Web browser, you must use plug-ins and
other client-side extensions. On the server side, Web application servers provide the necessary processing power.

14.2.4 Client-Side Extensions

Client-side extensions add functionality to the Web browser. Although client-side extensions are available in various
forms, the most commonly encountered extensions are:

� Plug-ins.

� Java and JavaScript.

� ActiveX and VBScript.

A plug-in is an external application that is automatically invoked by the browser when needed. Because it is an
external application, the plug-in is operating-system specific. The plug-in is associated with a data object—generally
using the file extension—to allow the Web server to properly handle data that are not originally supported. For
example, if one of the page components is a PDF document, the Web server will receive the data, recognize it as a
“portable document format” object, and launch Adobe Acrobat Reader to present the document on the client
computer.

As noted earlier, Java runs on top of the Web browser software. Java applications are compiled and stored in the Web
server. (In many respects, Java resembles C++.) Calls to Java routines are embedded inside the HTML page. When
the browser finds this call, it downloads the Java classes (code) from the Web server and runs that code in the client
computer. Java’s main advantage is that it enables application developers to develop their applications once and run
them in many environments. (For developing Web applications, interoperability is a very important issue. Unfortu-
nately, different client browsers are not 100 percent interoperable, thus limiting portability.)

JavaScript is a scripting language (one that enables the running of a series of commands or macros) that allows Web
authors to design interactive sites. Because JavaScript is simpler to generate than Java, it is easier to learn. JavaScript
code is embedded in the Web pages. It is downloaded with the Web page and is activated when a specific event takes
place—such as a mouse click on an object or a page being loaded from the server into memory.

ActiveX is Microsoft’s alternative to Java. ActiveX is a specification for writing programs that will run inside the
Microsoft client browser (Internet Explorer). Because ActiveX is oriented mainly to Windows applications, it has low
portability. ActiveX extends the Web browser by adding “controls” to Web pages. (Examples of such controls are
drop-down lists, a slider, a calendar, and a calculator.) Those controls, downloaded from the Web server when needed,
let you manipulate data inside the browser. ActiveX controls can be created in several programming languages; C++
and Visual Basic are most commonly used. Microsoft’s .NET framework allows for wider interoperability of
ActiveX-based applications (such as ADO.NET) across multiple operating environments.

VBScript is another Microsoft product that is used to extend browser functionality. VBScript is derived from Microsoft
Visual Basic. Like JavaScript, VBScript code is embedded inside an HTML page and is activated by triggering events
such as clicking a link.

From the developer’s point of view, using routines that permit data validation on the client side is an absolute necessity.
For example, when data are entered on a Web form and no data validation is done on the client side, the entire data
set must be sent to the Web server. That scenario requires the server to perform all data validation, thus wasting
valuable CPU processing cycles. Therefore, client-side data input validation is one of the most basic requirements for
Web applications. Most of the data validation routines are done in Java, JavaScript, ActiveX, or VBScript.

14.2.5 Web Application Servers

A Web application server is a middleware application that expands the functionality of Web servers by linking them
to a wide range of services, such as databases, directory systems, and search engines. The Web application server also
provides a consistent run-time environment for Web applications.

C6545_14 10/22/2007 11:20:28 Page 589

589D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

Web application servers can be used to:

� Connect to and query a database from a Web page.

� Present database data in a Web page, using various formats.

� Create dynamic Web search pages.

� Create Web pages to insert, update, and delete database data.

� Enforce referential integrity in the application program logic.

� Use simple and nested queries and programming logic to represent business rules.

Web application servers provide features such as:

� An integrated development environment with session management and support for persistent application
variables.

� Security and authentication of users through user IDs and passwords.

� Computational languages to represent and store business logic in the application server.

� Automatic generation of HTML pages integrated with Java, JavaScript, VBScript, ASP, and so on.

� Performance and fault-tolerant features.

� Database access with transaction management capabilities.

� Access to multiple services, such as file transfers (FTP), database connectivity, e-mail, and directory services.

As of this writing, popular Web application servers include ColdFusion by Adobe, Oracle Application Server by Oracle,
WebLogic by BEA Systems, NetDynamics by Sun Microsystems, Fusion by NetObjects, Visual Studio.NET by
Microsoft, and WebObjects by Apple. All Web application servers offer the ability to connect Web servers to multiple
data sources and other services. They vary in terms of the range of available features, robustness, scalability, ease of
use, compatibility with other Web and database tools, and extent of the development environment.

Current-generation systems involve more than just the development of Web-enabled database applications. They also
require applications capable of intercommunicating with each other and with other systems not based on the Web.
Clearly, systems must be able to exchange data in a standard-based format. That’s the role of XML.

14.3 EXTENSIBLE MARKUP LANGUAGE (XML)

The Internet has brought about new technologies that facilitate the exchange of business data among business partners
and consumers. Companies are using the Internet to create new types of systems that integrate their data to increase
efficiency and reduce costs. Electronic commerce (e-commerce) enables all types of organizations to market and sell
products and services to a global market of millions of users. E-commerce transactions—the sale of products or
services—can take place between businesses (business-to-business, or B2B) or between a business and a consumer
(business-to-consumer, or B2C).

O n l i n e C o n t e n t

To see and try a particular Web-to-database interface in action, consult Appendix J, Web Database
Development with ColdFusion, in the Student Online Companion for this book. This appendix steps you
through the process of creating and using a simple Web-to-database interface, and gives more detailed
information on developing Web databases with Adobe ColdFusion middleware.

C6545_14 10/22/2007 11:24:35 Page 590

590 C H A P T E R 1 4

Most e-commerce transactions take place between businesses. Because B2B e-commerce integrates business
processes among companies, it requires the transfer of business information among different business entities. But the
way in which businesses represent, identify, and use data tends to differ substantially from company to company. (Is
a product code the same thing as an item ID?)

Until recently, the expectation was that a purchase order traveling over the Web would be in the form of an HTML
document. The HTML Web page displayed on the Web browser would include formatting tags as well as the order
details. HTML tags describe how something looks on the Web page, such as bold type or heading style, and often
come in pairs to start and end formatting features. For example, the following HTML tags would put the words FOR
SALE in bold in the Arial font:

FOR SALE

If an application wants to get the order data from the Web page, there is no easy way to extract the order details (such
as the order number, the date, the customer number, the item, the quantity, the price, or payment details) from an
HTML document. The HTML document can only describe how to display the order in a Web browser; it does not
permit the manipulation of the order’s data elements, that is, date, shipping information, payment details, product
information, and so on. To solve that problem, a new markup language, known as Extensible Markup Language, or
XML, was developed.

Extensible Markup Language (XML) is a metalanguage used to represent and manipulate data elements. XML is
designed to facilitate the exchange of structured documents, such as orders and invoices, over the Internet. The World
Wide Web Consortium (W3C)1 published the first XML 1.0 standard definition in 1998. That standard sets the stage
for giving XML the real-world appeal of being a true vendor-independent platform. Therefore, it is not surprising that
XML has rapidly become the data exchange standard for e-commerce applications.

The XML metalanguage allows the definition of new tags, such as <ProdPrice>, to describe the data elements used
in an XML document. This ability to extend the language explains the X in XML; the language is said to be extensible.
XML is derived from the Standard Generalized Markup Language (SGML), an international standard for the publication
and distribution of highly complex technical documents. For example, documents used by the aviation industry and the
military services are too complex and unwieldy for the Web. Just like HTML, which was also derived from SGML, an
XML document is a text file. However, it has a few very important additional characteristics, as follows:

� XML allows the definition of new tags to describe data elements, such as <ProductId>.

� XML is case sensitive: <ProductID> is not the same as <Productid>.

- XML tags must be well formed; that is, each opening tag has a corresponding closing tag. For example, the
product identification would require the format <ProductId>2345-AA</ProductId>.

- XML tags must be properly nested. For example, a properly nested XML tag might look like this:
<Product><ProductId>2345-AA</ProductId></Product>.

� You can use the <-- and --> symbols to enter comments in the XML document.

� The XML and xml prefixes are reserved for XML tags only.

XML is not a new version or replacement for HTML. XML is concerned with the description and representation of
the data, rather than the way the data are displayed. XML provides the semantics that facilitate the sharing, exchange,
and manipulation of structured documents over organizational boundaries. In short, XML and HTML perform
complementary, rather than overlapping, functions. Extensible Hypertext Markup Language (XHTML) is the next
generation of HTML based on the XML framework. The XHTML specification expands the HTML standard to include
XML features. Although more powerful than HTML, XHTML requires very strict adherence to syntax requirements.

1You can visit the W3C Web page, located at www.w3.org, to get additional information about the efforts that were made to develop the XML standard.

C6545_14 10/22/2007 11:24:55 Page 591

591D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

As an illustration of the use of XML for data exchange purposes, consider a B2B example in which Company A uses
XML to exchange product data with Company B over the Internet. Figure 14.10 shows the contents of the
ProductList.xml document.

The XML example shown in Figure 14.10 illustrates several important XML features, as follows:

� The first line represents the XML document declaration, and it is mandatory.

� Every XML document has a root element. In the example, the second line declares the ProductList root
element.

� The root element contains child elements or sub-elements. In the example, line 3 declares Product as a child
element of ProductList.

� Each element can contain sub-elements. For example, each Product element is composed of several child
elements, represented by P_CODE, P_DESCRIPT, P_INDATE, P_QOH, P_MIN, and P_PRICE.

� The XML document reflects a hierarchical tree structure where elements are related in a parent-child
relationship; each parent element can have many children elements. For example, the root element is
ProductList. Product is the child element of ProductList. Product has six child elements: P_CODE,
P_DESCRIPT, P_INDATE, P_QOH, P_MIN, and P_PRICE.

Once Company B receives the ProductList.xml document, it can process the document—assuming it understands the
tags created by Company A. The meaning of the XML tags in the example shown in Figure 14.10 is fairly self-evident,
but there is no easy way to validate the data or to check whether the data are complete. For example, you could
encounter a P_INDATE value of “25/14/2007”—but is that value correct? And what happens if Company B expects
a Vendor element as well? How can companies share data descriptions about their business data elements? The next
section will show how document type definitions and XML schemas are used to address those concerns.

14.3.1 Document Type Definitions (DTD) and XML Schemas

B2B solutions require a high degree of business integration between companies. Companies that use B2B transactions
must have a way to understand and validate each other’s tags. One way to accomplish that task is through the use of
Document Type Definitions. A Document Type Definition (DTD) is a file with a .dtd extension that describes XML
elements—in effect, a DTD file provides the composition of the database’s logical model and defines the syntax rules

FIGURE
14.10

Contents of the productlist.xml document

C6545_14 10/22/2007 11:25:14 Page 592

592 C H A P T E R 1 4

or valid tags for each type of XML document. (The DTD component is similar to having a public data dictionary for
business data.) Companies that intend to engage in e-commerce business transactions must develop and share DTDs.
Figure 14.11 shows the productlist.dtd document for the productlist.xml document shown earlier in Figure 14.10.

In Figure 14.11, note that the productlist.dtd file provides definitions of the elements in the productlist.xml document.
In particular, note that:

� The first line declares the ProductList root element.

� The ProductList root element has one child, the Product element.

� The plus “+” symbol indicates that Product occurs one or more times within ProductList.

� An asterisk “*” would mean that the child element occurs zero or more times.

� A question mark “?” would mean that the child element is optional.

� The second line describes the Product element.

� The question mark “?” after the P_INDATE and P_MIN indicates that they are optional elements.

� The third through eighth lines show that the Product element has six child elements.

� The #PCDATA keyword represents the actual text data.

To be able to use a DTD file to define elements within an XML document, the DTD must be referenced from within
that XML document. Figure 14.12 shows the productlistv2.xml document that includes the reference to the
productlist.dtd in the second line.

FIGURE
14.11

Contents of the productlist.dtd document

FIGURE
14.12

Contents of the productlistv2.xml document

C6545_14 10/22/2007 11:25:27 Page 593

593D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

In Figure 14.12, note that the P_INDATE and P_MIN do not appear in all Product definitions because they were
declared to be optional elements. The DTD can be referenced by many XML documents of the same type. For
example, if Company A routinely exchanges product data with Company B, it will need to create the DTD only once.
All subsequent XML documents will refer to the DTD, and Company B will be able to verify the data being received.

To further demonstrate the use of XML and DTD for e-commerce business data exchanges, assume the case of two
companies exchanging order data. Figure 14.13 shows the DTD and XML documents for that scenario.

Although the use of DTDs is a great improvement for data sharing over the Web, a DTD provides only descriptive
information for understanding how the elements—root, parent, child, mandatory, or optional—relate to one another.
A DTD provides limited additional semantic value, such as data type support or data validation rules. That information
is very important for database administrators who are in charge of large e-commerce databases. To solve the DTD
problem, the W3C published an XML Schema standard in May 2001 to provide a better way to describe XML data.

FIGURE
14.13

DTD and XML documents for order data

OrderData.dtd

OrderData.xml

“+” sign indicates
one or more

ORD_PRODS elements

Two ORD_PRODS
 elements in XML

document

C6545_14 10/22/2007 11:20:30 Page 594

594 C H A P T E R 1 4

The XML schema is an advanced data definition language that is used to describe the structure (elements, data types,
relationship types, ranges, and default values) of XML data documents. One of the main advantages of an XML schema
is that it more closely maps to database terminology and features. For example, an XML schema will be able to define
common database types such as date, integer or decimal, minimum and maximum values, list of valid values, and
required elements. Using the XML schema, a company would be able to validate the data for values that may be out
of range, incorrect dates, valid values, and so on. For example, a university application must be able to specify that
a GPA value be between zero and 4.0, and it must be able to detect an invalid birth date such as “14/13/1987.”
(There is no 14th month.) Many vendors are adopting this new standard and are supplying tools to translate DTD
documents into XML Schema Definition (XSD) documents. It is widely expected that XML schemas will replace DTD
as the method to describe XML data.

Unlike a DTD document, which uses a unique syntax, an XML schema definition (XSD) file uses a syntax that
resembles an XML document. Figure 14.14 shows the XSD document for the OrderData XML document.

The code shown in Figure 14.14 is a simplified version of the XML schema document. As you can see, the XML
schema syntax is similar to the XML document syntax. In addition, the XML schema introduces additional semantic
information for the OrderData XML document, such as string, date, and decimal data types; required elements; and
minimum and maximum cardinalities for the data elements.

FIGURE
14.14

The XML schema document for the order data

C6545_14 10/22/2007 11:20:31 Page 595

595D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

14.3.2 XML Presentation

One of the main benefits of XML is that it separates data structure from its presentation and processing. By separating
data and presentation, you are able to present the same data in different ways—which is similar to having views in
SQL. But what mechanisms are used to present data?

The Extensible Style Language (XSL) specification provides the mechanism to display XML data. XSL is used to define
the rules by which XML data are formatted and displayed. The XSL specification is divided in two parts: Extensible
Style Language Transformations (XSLT) and XSL style sheets.

� Extensible Style Language Transformations (XSLT) describe the general mechanism that is used to extract
and process data from one XML document and enable its transformation within another document. Using
XSLT, you can extract data from an XML document and convert it into a text file, an HTML Web page, or a
Web page that is formatted for a mobile device. What the user sees in those cases is actually a view (or HTML
representation) of the actual XML data. XSLT can also be used to extract certain elements from an XML
document, such as the product codes and product prices, to create a product catalog. XSLT can even be used
to transform one XML document into another XML document.

� XSL style sheets define the presentation rules applied to XML elements—something like presentation
templates. The XSL style sheet describes the formatting options to apply to XML elements when they are
displayed on a browser, cellular phone display, PDA screen, and so on.

Figure 14.15 illustrates the framework used by the various components to translate XML documents into viewable Web
pages, an XML document, or some other document.

FIGURE
14.15

Framework for XML transformations

HTML

XML
document

HTML

XSL
transformations

XSL
style sheets

•Extract
•Convert

XSLT can be used to transform one XML
document into another XML document

Apply
formatting

rules to
XML

elements The process can render
different Web pages

for different purposes,
such as one page for a

Web browser and
another for a mobile device

New
XML

document

C6545_14 10/22/2007 11:20:31 Page 596

596 C H A P T E R 1 4

To display the XML document with Microsoft Internet Explorer (MSIE) 5.0 or later, enter the URL of the XML
document in the browser’s address bar. Figure 14.16 is based on the productlist.xml document created earlier. As you
examine Figure 14.16, note that MSIE shows the XML data in a color-coded, collapsible, treelike structure. (Actually,
this is the MSIE default style sheet that is used to render XML documents.)

FIGURE
14.16

Displaying XML documents

C6545_14 10/22/2007 11:20:31 Page 597

597D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

Internet Explorer also provides data binding of XML data to HTML documents. Figure 14.17 shows the HTML code
that is used to bind an XML document to an HTML table. The example uses the <xml> tag to include the XML data
in the HTML document to later bind it to the HTML table. This example works in MSIE 5.0 or later.

14.3.3 XML Applications

Now that you have some idea what XML is, the next question is, how can you use it? What kinds of applications lend
themselves particularly well to XML? This section will list some of the uses of XML. Keep in mind that the future use
of XML is limited only by the imagination and creativity of the developers, designers, and programmers.

� B2B exchanges. As noted earlier, XML enables the exchange of B2B data, providing the standard for all
organizations that need to exchange data with partners, competitors, the government, or customers. In
particular, XML is positioned to replace EDI as the standard for the automation of the supply chain because
it is less expensive and more flexible.

� Legacy systems integration. XML provides the “glue” to integrate legacy system data with modern
e-commerce Web systems. Web and XML technologies could be used to inject some new life in “old but
trusted” legacy applications. Another example is the use of XML to import transaction data from multiple
operational databases to a data warehouse database.

FIGURE
14.17

XML data binding

C6545_14 10/22/2007 11:25:57 Page 598

598 C H A P T E R 1 4

� Web page development. XML provides several features that make it a good fit for certain Web development
scenarios. For example, Web portals with large amounts of personalized data can use XML to pull data from
multiple external sources (such as news, weather, and stocks) and apply different presentation rules to format
pages on desktop computers as well as mobile devices.

� Database support. Databases are at the heart of e-commerce applications. A DBMS that supports XML
exchanges will be able to integrate with external systems (Web, mobile data, legacy systems, and so on) and
thus enable the creation of new types of systems. These databases can import or export data in XML format
or generate XML documents from SQL queries while still storing the data, using their native data model format.
Alternatively, a DBMS can also support an XML data type to store XML data in its native format. The
implications of these capabilities are far-reaching—you would even be able to store a hierarchical-like tree
structure inside a relational structure. Of course, such activities would also require that the query language be
extended to support queries on XML data.

� Database meta-dictionaries. XML can also be used to create meta-dictionaries, or vocabularies, for databases.
These meta-dictionaries can be used by applications that need to access other external data sources. (Until
now, each time an application wanted to exchange data with another application, a new interface had to be
built for that purpose.) DBMS vendors can publish meta-dictionaries to facilitate data exchanges and the
creation of data views from multiple applications—hierarchical, relational, object-oriented, object-relational, or
extended-relational. The meta-dictionaries would all use a common language regardless of the DBMS type. The
development of industry-specific meta-dictionaries is expected. These meta-dictionaries would enable the
development of complex B2B interactions, such as those likely to be found in the aviation, automotive, and
pharmaceutical industries. Also likely are application-specific initiatives that would create XML meta-
dictionaries for data warehousing, system management, and complex statistical applications. Even the United
Nations and a not-for-profit standards-promoting organization named Oasis are working on a new specification
called ebXML that will create a standard XML vocabulary for e-business. Other examples of meta-dictionaries
are HR-XML for the human resources industry; the metadata encoding and transmission standard (METS) from
the Library of Congress; the clinical accounting information (CLAIM) data exchange standard for patient data
exchange in electronic medical record systems; and the extensible business reporting language (XBRL) standard
for exchanging business and financial information.

� XML databases.2 Given the huge number of expected XML-based data exchanges, businesses are already
looking for ways to better manage and utilize the data. Currently, many different products are on the market
to address this problem. The approaches range from simple middleware XML software, to object databases
with XML interfaces, to full XML database engines and servers. The current generation of relational databases
is tuned for the storage of normalized rows—that is, manipulating one row of data at a time. Because business
data do not always conform to such a requirement, XML databases provide for the storage of data in complex
relationships. For example, an XML database would be well suited to store the contents of a book. (The book’s
structure would dictate its database structure: a book typically consists of chapters, sections, paragraphs,
figures, charts, footnotes, endnotes, and so on.) Examples of XML databases are Oracle, IBM DB2, MS SQL
Server, Ipedo XML Database (www.ipedo.com), Tamino from Software AG (www.softwareag.com), and the
open source dbXML from http://sourceforge.net/projects/dbxml-core.

� XML services. Many companies are already working on the development of a new breed of services based on
XML and Web technologies. These services promise to break down the interoperability barriers among systems
and companies alike. XML provides the infrastructure that facilitates heterogeneous systems to work together
across the desk, the street, and the world. Services would use XML and other Internet technologies to publish
their interfaces. Other services, wanting to interact with existing services, would locate them and learn their
vocabulary (service request and replies) to establish a “conversation.”

2 For a comprehensive analysis of XML database products, see “XML Database Products” by Ronald Bourret at www.rpbourret.com.

C6545_14 10/22/2007 11:26:8 Page 599

599D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

S u m m a r y

◗ Database connectivity refers to the mechanisms through which application programs connect and communicate
with data repositories. Database connectivity software is also known as database middleware. The data repository
is also known as the data source because it represents the data management application (that is, an Oracle
RDBMS, SQL Server DBMS, or IBM DBMS) that will be used to store the data generated by the application
program.

◗ Microsoft database connectivity interfaces are dominant players in the market and enjoy the support of most
database vendors. In fact, ODBC, OLE-DB, and ADO.NET form the backbone of Microsoft’s Universal Data
Access (UDA) architecture. UDA is a collection of technologies used to access any type of data source and manage
any type of data, using a common interface.

◗ Native database connectivity refers to the connection interface that is provided by the database vendor and is unique
to that vendor. Open Database Connectivity (ODBC) is Microsoft’s implementation of a superset of the SQL Access
Group Call Level Interface (CLI) standard for database access. ODBC is probably the most widely supported
database connectivity interface. ODBC allows any Windows application to access relational data sources, using
standard SQL. Data Access Objects (DAO) is an object-oriented API used to access MS Access, MS FoxPro, and
dBase databases (using the Jet data engine) from Visual Basic programs. Remote Data Objects (RDO) is a
higher-level object-oriented application interface used to access remote database servers. RDO uses the lower-level
DAO and ODBC for direct access to databases. RDO was optimized to deal with server-based databases, such as
MS SQL Server and Oracle.

◗ Based on Microsoft’s Component Object Model (COM), Object Linking and Embedding for Database (OLE-DB) is
a database middleware developed with the goal of adding object-oriented functionality for access to relational and
nonrelational data. ActiveX Data Objects (ADO) provides a high-level application-oriented interface to interact with
OLE-DB, DAO, and RDO. Based on ADO, ADO.NET is the data access component of Microsoft’s .NET
application development framework, a component-based platform for developing distributed, heterogeneous,
interoperable applications aimed at manipulating any type of data over any network under any operating system
and any programming language. Java Database Connectivity (JDBC) is the standard way to interface Java
applications with data sources (relational, tabular, and text files).

◗ Database access through the Web is achieved through middleware. To improve capabilities on the client side of the
Web browser, you must use plug-ins and other client-side extensions such as Java and Javascript, or ActiveX and
VBScript. On the server side, Web application servers are middleware that expands the functionality of Web servers
by linking them to a wide range of services, such as databases, directory systems, and search engines.

◗ Extensible Markup Language (XML) facilitates the exchange of B2B and other data over the Internet. XML provides
the semantics that facilitates the exchange, sharing, and manipulation of structured documents across organiza-
tional boundaries. XML produces the description and the representation of data, thus setting the stage for data
manipulation in ways that were not possible before XML. XML documents can be validated through the use of
Document Type Definition (DTD) documents and XML Schema Definition (XSD) documents. The use of DTD,
XML schemas, and XML documents permits a greater level of integration among diverse systems than was possible
before this technology was made available.

C6545_14 10/22/2007 11:30:44 Page 600

600 C H A P T E R 1 4

K e y T e r m s

ActiveX, 589

ActiveX Data Objects (ADO), 578

ADO.NET, 580

application programming interface
(API), 573

Call Level Interface (CLI), 573

client-side extensions, 589

Common Gateway Interface
(CGI), 587

Data Access Objects (DAO), 574

database middleware, 573

DataSet, 580

data source name (DSN), 575

Document Type Definition
(DTD), 592

dynamic-link libraries (DLLs), 574

Extensible Markup Language
(XML), 591

Java, 582

JavaScript, 589

Java Database Connectivity
(JDBC), 582

Microsoft .NET framework, 580

Object Linking and Embedding for
Database (OLE-DB), 577

Open Database Connectivity
(ODBC), 573

plug-in, 589

Remote Data Objects (RDO), 574

script, 578

server-side extension, 585

stateless system, 587

tag, 591

Universal Data Access (UDA), 573

VBScript, 589

XML schema, 595

XML schema definition (XSD), 595

Web application server, 589

Web-to-database middleware, 585

R e v i e w Q u e s t i o n s

1. Give some examples of database connectivity options and what they are used for.

2. What are ODBC, DAO, and RDO? How are they related?

3. What is the difference between DAO and RDO?

4. What are the three basic components of the ODBC architecture?

5. What steps are required to create an ODBC data source name?

6. What is OLE-DB used for, and how does it differ from ODBC?

7. Explain the OLE-DB model based on its two types of objects.

8. How does ADO complement OLE-DB?

9. What is ADO.NET, and what two new features make it important for application development?

10. What is a DataSet, and why is it considered to be disconnected?

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the Student Online
Companion for this book.

C6545_14 10/22/2007 11:20:33 Page 601

601D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

11. What are Web server interfaces used for? Give some examples.

12. Search the Internet for Web application servers. Choose one and prepare a short presentation for your class.

13. What does this statement mean: “The Web is a stateless system.” What implications does a stateless system have
for database application developers?

14. What is a Web application server, and how does it work from a database perspective?

15. What are scripts, and what is their function? (Think in terms of database application development.)

16. What is XML, and why is it important?

17. What are Document Type Definition (DTD) documents, and what do they do?

18. What are XML Schema Definition (XSD) documents, and what do they do?

19. What is JDBC, and what is it used for?

P r o b l e m s

In the following exercises, you set up database connectivity using MS Excel.

1. Use MS Excel to connect to the Ch02_InsureCo MS Access database using ODBC, and retrieve all of the
AGENTs.

2. Use MS Excel to connect to the Ch02_InsureCo MS Access database using ODBC, and retrieve all of the
CUSTOMERs.

3. Use MS Excel to connect to the Ch02_InsureCo MS Access database using ODBC, and retrieve the customers
whose AGENT_CODE is equal to 503.

4. Create an ODBC System Data Source Name Ch02_SaleCo using the Control Panel, Administrative Tools, Data
Sources (ODBC) option.

5. Use MS Excel to list all of the invoice lines for Invoice 103 using the Ch02_SaleCo System DSN.

6. Create an ODBC System Data Source Name Ch02_Tinycollege using the Control Panel, Administrative Tools,
Data Sources (ODBC) option.

7. Use MS Excel to list all classes taught in room KLR200 using the Ch02_TinyCollege System DSN.

O n l i n e C o n t e n t

The databases used in the Problems for this chapter can be found in the Student Online Companion for
this book.

C6545_14 10/23/2007 14:25:2 Page 602

602 C H A P T E R 1 4

8. Create a sample XML document and DTD for the exchange of customer data.

9. Create a sample XML document and DTD for the exchange of product and pricing data.

10. Create a sample XML document and DTD for the exchange of order data.

11. Create a sample XML document and DTD for the exchange of student transcript data. Use your college transcript
as a sample.

(Hint: To answer Problems 8−11, use Section 14.3.1 as your guide.)

C6545_14 10/22/2007 11:32:3 Page 603

603D A T A B A S E C O N N E C T I V I T Y A N D W E B T E C H N O L O G I E S

