
2-1 Binary-to-Decimal

Conversions

2-2 Decimal-to-Binary

Conversions

2-3 Hexadecimal Number

System

2-4 BCD Code

2-5 The Gray Code

■ OUTLINE

2-6 Putting It All Together

2-7 The Byte, Nibble, and Word

2-8 Alphanumeric Codes

2-9 Parity Method for Error

Detection

2-10 Applications

C H A P T E R 2

N U M B E R S YS T E M S

A N D C O D E S

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 24

25

■ OBJECTIVES
Upon completion of this chapter, you will be able to:
■ Convert a number from one number system (decimal, binary, hexadeci-

mal) to its equivalent in one of the other number systems.

■ Cite the advantages of the hexadecimal number system.

■ Count in hexadecimal.

■ Represent decimal numbers using the BCD code; cite the pros and cons

of using BCD.

■ Understand the difference between BCD and straight binary.

■ Understand the purpose of alphanumeric codes such as the ASCII code.

■ Explain the parity method for error detection.

■ Determine the parity bit to be attached to a digital data string.

■ INTRODUCTION
The binary number system is the most important one in digital systems, but

several others are also important. The decimal system is important because

it is universally used to represent quantities outside a digital system. This

means that there will be situations where decimal values must be con-

verted to binary values before they are entered into the digital system. For

example, when you punch a decimal number into your hand calculator (or

computer), the circuitry inside the machine converts the decimal number

to a binary value.

Likewise, there will be situations where the binary values at the out-

puts of a digital system must be converted to decimal values for presenta-

tion to the outside world. For example, your calculator (or computer) uses

binary numbers to calculate answers to a problem and then converts the an-

swers to decimal digits before displaying them.

As you will see, it is not easy to simply look at a large binary number

and convert it to its equivalent decimal value. It is very tedious to enter a

long sequence of 1s and 0s on a keypad, or to write large binary numbers

on a piece of paper. It is especially difficult to try to convey a binary quan-

tity while speaking to someone. The hexadecimal (base-16) number system

has become a very standard way of communicating numeric values in digi-

tal systems. The great advantage is that hexadecimal numbers can be con-

verted easily to and from binary.

Other methods of representing decimal quantities with binary-encoded

digits have been devised that are not truly number systems but offer the

ease of conversion between the binary code and the decimal number sys-

tem. This is referred to as binary-coded decimal. Quantities and patterns of

bits might be represented by any of these methods in any given system and

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 25

throughout the written material that supports the system, so it is very im-

portant that you are able to interpret values in any system and convert be-

tween any of these numeric representations. Other codes that use 1s and 0s

to represent things such as alphanumeric characters will be covered be-

cause they are so common in digital systems.

2-1 BINARY-TO-DECIMAL CONVERSIONS

As explained in Chapter 1, the binary number system is a positional system

where each binary digit (bit) carries a certain weight based on its position

relative to the LSB. Any binary number can be converted to its decimal

equivalent simply by summing together the weights of the various positions

in the binary number that contain a 1. To illustrate, let’s change 110112 to its

decimal equivalent.

Let’s try another example with a greater number of bits:

Note that the procedure is to find the weights (i.e., powers of 2) for each bit

position that contains a 1, and then to add them up. Also note that the MSB

has a weight of 27 even though it is the eighth bit; this is because the LSB is

the first bit and has a weight of 20.

1 0 1 1 0 1 0 12 �

27 � 0 � 25 � 24 � 0 � 22 � 0 � 20 � 18110

1 1 0 1 12

24 � 23 � 0 � 21 � 20 � 16 � 8 � 2 � 1

� 2710

26 CHAPTER 2/NUMBER SYSTEMS AND CODES

2-2 DECIMAL-TO-BINARY CONVERSIONS

There are two ways to convert a decimal whole number to its equivalent

binary-system representation. The first method is the reverse of the process

described in Section 2-1. The decimal number is simply expressed as a sum

of powers of 2, and then 1s and 0s are written in the appropriate bit posi-

tions. To illustrate:

Note that a 0 is placed in the 21 and 24 positions, since all positions must be

accounted for. Another example is the following:

7610 � 64 � 8 � 4 � 26 � 0 � 0 � 23 � 22 � 0 � 0

� 1 0 0 1 1 0 02

4510 � 32 � 8 � 4 � 1 � 25 � 0 � 23 � 22 � 0 � 20

� 1 0 1 1 0 12

REVIEW QUESTIONS 1. Convert 1000110110112 to its decimal equivalent.

2. What is the weight of the MSB of a 16-bit number?

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 26

Repeated Division
Another method for converting decimal integers uses repeated division by 2.

The conversion, illustrated below for 2510, requires repeatedly dividing the

decimal number by 2 and writing down the remainder after each division un-

til a quotient of 0 is obtained. Note that the binary result is obtained by writ-

ing the first remainder as the LSB and the last remainder as the MSB. This

process, diagrammed in the flowchart of Figure 2-1, can also be used to con-

vert from decimal to any other number system, as we shall see.

�
2

2

5
� � � remainder of 1

LSB

� 6 � remainder of 0

�
6

2
� � 3 � remainder of 0

�
3

2
� � 1 � remainder of 1

�
1

2
� � 0 � remainder of 1

MSB

2510 � 1 1 0 0 12

12
�
2

12

↑
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐

↑
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐⏐

↑
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐

↑⏐
⏐
⏐
⏐
⏐
⏐⏐

↑
⏐
⏐⏐

⏐⎯⎯⎯⎯⎯⎯⎯
↓

⏐⎯⎯⎯⎯⎯
↓

⏐⎯⎯⎯⎯⎯
↓

⏐⎯⎯⎯⎯⎯
↓

SECTION 2-2/DECIMAL-TO-BINARY CONVERSIONS 27

Collect R’s into desired
binary number with
first R as LSB and

last R as MSB

Is
Q = 0?

Record quotient (Q)
and remainder (R)

Divide by
2

START

END

NO

YES

FIGURE 2 -1 Flowchart for

repeated-division method

of decimal-to-binary

conversion of integers. The

same process can be used

to convert a decimal

integer to any other

number system.

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 27

28 CHAPTER 2/NUMBER SYSTEMS AND CODES

CALCULATOR HINT:
If you use a calculator to perform the divisions by 2, you can tell whether the

remainder is 0 or 1 by whether or not the result has a fractional part. For in-

stance, 25/2 would produce 12.5. Since there is a fractional part (the .5), the

remainder is a 1. If there were no fractional part, such as 12/2 � 6, then the

remainder would be 0. The following example illustrates this.

Convert 3710 to binary.Try to do it on your own before you look at the solution.

Solution

Thus, 3710 � 1001012.

Counting Range
Recall that using N bits, we can count through 2N different decimal numbers

ranging from 0 to For example, for we can count from 00002 to

11112, which is 010 to 1510, for a total of 16 different numbers. Here, the

largest decimal value is and there are 24 different numbers.

In general, then, we can state:

Using N bits, we can represent decimal numbers ranging from 0 to
a total of 2N different numbers.2N � 1,

24
- 1 = 15,

N = 4,2N
- 1.

�
3

2

7
� � 5 ⎯→ remainder of 1 (LSB)

� 9.0 ⎯→ 0

�
9

2
� � 4.5 ⎯→ 1

�
4

2
� � 2.0 ⎯→ 0

�
2

2
� � 1.0 ⎯→ 0

�
1

2
� � 0.5 ⎯→ 1 (MSB)

18
�
2

18.
↑

EXAMPLE 2-2 (a) What is the total range of decimal values that can be represented in

eight bits?

(b) How many bits are needed to represent decimal values ranging from 0 to

12,500?

Solution

(a) Here we have Thus, we can represent decimal numbers from 0 to

We can verify this by checking to see that 111111112 con-

verts to 25510.

28
- 1 = 255.

N = 8.

EXAMPLE 2-1

TOCCMC02_0131725793.QXD 12/21/05 9:37 AM Page 28

(b) With 13 bits, we can count from decimal 0 to With 14 bits,

we can count from 0 to Clearly, 13 bits aren’t enough, but

14 bits will get us up beyond 12,500.Thus, the required number of bits is 14.

214
- 1 = 16,383.

213
- 1 = 8191.

SECTION 2-3/HEXADECIMAL NUMBER SYSTEM 29

REVIEW QUESTIONS 1. Convert 8310 to binary using both methods.

2. Convert 72910 to binary using both methods. Check your answer by con-

verting back to decimal.

3. How many bits are required to count up to decimal 1 million?

2-3 HEXADECIMAL NUMBER SYSTEM

The hexadecimal number system uses base 16. Thus, it has 16 possible digit

symbols. It uses the digits 0 through 9 plus the letters A, B, C, D, E, and F as

the 16 digit symbols. The digit positions are weighted as powers of 16 as

shown below, rather than as powers of 10 as in the decimal system.

TABLE 2-1
Hexadecimal Decimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

164 163 162 161 160

Hexadecimal point

16-416-316-216-1

Hex-to-Decimal Conversion
A hex number can be converted to its decimal equivalent by using the fact

that each hex digit position has a weight that is a power of 16. The LSD has a

Table 2-1 shows the relationships among hexadecimal, decimal, and binary.

Note that each hexadecimal digit represents a group of four binary digits. It

is important to remember that hex (abbreviation for “hexadecimal”) digits A

through F are equivalent to the decimal values 10 through 15.

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 29

weight of the next higher digit position has a weight of

the next has a weight of and so on. The conversion process is

demonstrated in the examples below.

162
= 256;

161
= 16;160

= 1;

30 CHAPTER 2/NUMBER SYSTEMS AND CODES

CALCULATOR HINT:
You can use the yx calculator function to evaluate the powers of 16.

Note that in the second example, the value 10 was substituted for A and the

value 15 for F in the conversion to decimal.

For practice, verify that 1BC216 is equal to 710610.

Decimal-to-Hex Conversion
Recall that we did decimal-to-binary conversion using repeated division by 2.

Likewise, decimal-to-hex conversion can be done using repeated division by 16

(Figure 2-1).The following example contains two illustrations of this conversion.

2AF16 � 2 � 162 � 10 � 161 � 15 � 160

� 512 � 160 � 15

� 68710

35616 � 3 � 162 � 5 � 161 � 6 � 160

� 768 � 80 � 6

� 85410

(a) Convert 42310 to hex.

Solution

(b) Convert 21410 to hex.

Solution

�
2

1

1

6

4
� � 13 � remainder of 6

�
1

1

3

6
� � 0 � remainder of 13

21410 � D616

↑
⏐
⏐
⏐
⏐
⏐

↑
⏐⏐

↑

�
4

1

2

6

3
� � � remainder of 7

� 1 � remainder of 10

�
1

1

6
� � 0 � remainder of 1

42310 � 1A716

26
�
16

26

↑
⏐
⏐
⏐⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐

↑
⏐⏐
⏐
⏐
⏐
⏐

↑
⏐

↑

↑

EXAMPLE 2-3

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 30

Again note that the remainders of the division processes form the digits

of the hex number. Also note that any remainders that are greater than 9 are

represented by the letters A through F.

SECTION 2-3/HEXADECIMAL NUMBER SYSTEM 31

CALCULATOR HINT:
If a calculator is used to perform the divisions in the conversion process, the

results will include a decimal fraction instead of a remainder.The remainder

can be obtained by multiplying the fraction by 16. To illustrate, in Example

2-3(b), the calculator would have produced

The remainder becomes (0.375) * 16 = 6.

214

16
= 13.375

Hex-to-Binary Conversion
The hexadecimal number system is used primarily as a “shorthand” method

for representing binary numbers. It is a relatively simple matter to convert a

hex number to binary. Each hex digit is converted to its four-bit binary equiv-

alent (Table 2-1). This is illustrated below for 9F216.

For practice, verify that BA616 � 1011101001102.

Binary-to-Hex Conversion
Conversion from binary to hex is just the reverse of the process above. The

binary number is grouped into groups of four bits, and each group is con-

verted to its equivalent hex digit. Zeros (shown shaded) are added, as

needed, to complete a four-bit group.

To perform these conversions between hex and binary, it is necessary to

know the four-bit binary numbers (0000 through 1111) and their equivalent

hex digits. Once these are mastered, the conversions can be performed

quickly without the need for any calculations. This is why hex is so useful in

representing large binary numbers.

For practice, verify that 1010111112 � 15F16.

Counting in Hexadecimal
When counting in hex, each digit position can be incremented (increased by 1)

from 0 to F. Once a digit position reaches the value F, it is reset to 0, and the

1 1 1 0 1 0 0 1 1 02 � 1 1 1 0 1 0 0 1 1 0

3 A 6

� 3A616

0 0 ⎫⎪⎬⎪⎭ ⎭⎭ ⎫⎪⎬⎪ ⎫⎪⎬⎪

9F216 � 9 F 2

↓ ↓ ↓
� 1 0 0 1 1 1 1 1 0 0 1 0

� 100111110010 2

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 31

next digit position is incremented. This is illustrated in the following hex

counting sequences:

(a) 38, 39, 3A, 3B, 3C, 3D, 3E, 3F, 40, 41, 42

(b) 6F8, 6F9, 6FA, 6FB, 6FC, 6FD, 6FE, 6FF, 700

Note that when there is a 9 in a digit position, it becomes an A when it is in-

cremented.

With N hex digit positions, we can count from decimal 0 to for a

total of 16N different values. For example, with three hex digits, we can

count from 00016 to FFF16, which is 010 to 409510, for a total of 4096 � 163 dif-

ferent values.

Usefulness of Hex
Hex is often used in a digital system as sort of a “shorthand” way to repre-

sent strings of bits. In computer work, strings as long as 64 bits are not un-

common. These binary strings do not always represent a numerical value,

but—as you will find out—can be some type of code that conveys nonnu-

merical information. When dealing with a large number of bits, it is more

convenient and less error-prone to write the binary numbers in hex and, as

we have seen, it is relatively easy to convert back and forth between binary

and hex.To illustrate the advantage of hex representation of a binary string,

suppose you had in front of you a printout of the contents of 50 memory lo-

cations, each of which was a 16-bit number, and you were checking it against

a list. Would you rather check 50 numbers like this one: 0110111001100111,

or 50 numbers like this one: 6E67? And which one would you be more apt to

read incorrectly? It is important to keep in mind, though, that digital

circuits all work in binary. Hex is simply used as a convenience for the

humans involved. You should memorize the 4-bit binary pattern for each

hexadecimal digit. Only then will you realize the usefulness of this tool in

digital systems.

16N
- 1,

32 CHAPTER 2/NUMBER SYSTEMS AND CODES

Convert decimal 378 to a 16-bit binary number by first converting to hexa-

decimal.

Solution

Thus, 37810 � 17A16. This hex value can be converted easily to binary

000101111010. Finally, we can express 37810 as a 16-bit number by adding

four leading 0s:

37810 = 0000 0001 0111 10102

�
3

1

7

6

8
� � 23 � remainder of 10 � A

�
2

1

3

6
� � 1 � remainder of 7

�
1

1

6
� � 0 � remainder of 1

↑

↑

1610

EXAMPLE 2-4

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 32

Summary of Conversions
Right now, your head is probably spinning as you try to keep straight all of

these different conversions from one number system to another. You proba-

bly realize that many of these conversions can be done automatically on your

calculator just by pressing a key, but it is important for you to master these

conversions so that you understand the process. Besides, what happens if

your calculator battery dies at a crucial time and you have no handy re-

placement? The following summary should help you, but nothing beats prac-

tice, practice, practice!

1. When converting from binary [or hex] to decimal, use the method of tak-

ing the weighted sum of each digit position.

2. When converting from decimal to binary [or hex], use the method of re-

peatedly dividing by 2 [or 16] and collecting remainders (Figure 2-1).

3. When converting from binary to hex, group the bits in groups of four, and

convert each group into the correct hex digit.

4. When converting from hex to binary, convert each digit into its four-bit

equivalent.

SECTION 2-4/BCD CODE 33

2-4 BCD CODE

When numbers, letters, or words are represented by a special group of sym-

bols, we say that they are being encoded, and the group of symbols is called

a code. Probably one of the most familiar codes is the Morse code, where a se-

ries of dots and dashes represents letters of the alphabet.

We have seen that any decimal number can be represented by an equiva-

lent binary number.The group of 0s and 1s in the binary number can be thought

of as a code representing the decimal number. When a decimal number is

represented by its equivalent binary number, we call it straight binary coding.

EXAMPLE 2-5 Convert B2F16 to decimal.

Solution

 = 286310

 = 11 * 256 + 2 * 16 + 15

 B2F16 = B * 162
+ 2 * 161

+ F * 160

REVIEW QUESTIONS 1. Convert 24CE16 to decimal.

2. Convert 311710 to hex, then from hex to binary.

3. Convert 10010111101101012 to hex.

4. Write the next four numbers in this hex counting sequence: E9A, E9B,

E9C, E9D, _____, _____, _____, _____.

5. Convert 3527 to binary16.

6. What range of decimal values can be represented by a four-digit hex

number?

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 33

Digital systems all use some form of binary numbers for their internal

operation, but the external world is decimal in nature. This means that con-

versions between the decimal and binary systems are being performed

often. We have seen that the conversions between decimal and binary can

become long and complicated for large numbers. For this reason, a means of

encoding decimal numbers that combines some features of both the decimal

and the binary systems is used in certain situations.

Binary-Coded-Decimal Code
If each digit of a decimal number is represented by its binary equivalent, the

result is a code called binary-coded-decimal (hereafter abbreviated BCD).

Since a decimal digit can be as large as 9, four bits are required to code each

digit (the binary code for 9 is 1001).

To illustrate the BCD code, take a decimal number such as 874. Each

digit is changed to its binary equivalent as follows:

As another example, let us change 943 to its BCD-code representation:

Once again, each decimal digit is changed to its straight binary equivalent.

Note that four bits are always used for each digit.

The BCD code, then, represents each digit of the decimal number by a

four-bit binary number. Clearly only the four-bit binary numbers from 0000

through 1001 are used. The BCD code does not use the numbers 1010, 1011,

1100, 1101, 1110, and 1111. In other words, only 10 of the 16 possible four-bit

binary code groups are used. If any of the “forbidden” four-bit numbers ever

occurs in a machine using the BCD code, it is usually an indication that an er-

ror has occurred.

9 4 3 (decimal)
↓ ↓ ↓

1001 0100 0011 (BCD)

8 7 4 (decimal)

↓ ↓ ↓
1000 0111 0100 (BCD)

34 CHAPTER 2/NUMBER SYSTEMS AND CODES

EXAMPLE 2-6 Convert 0110100000111001 (BCD) to its decimal equivalent.

Solution

Divide the BCD number into four-bit groups and convert each to decimal.

0110 1000 0011 1001

6 8 3 9

⎫ ⎫⎫⎫⎫⎬ ⎫⎬ ⎫⎬ ⎫⎬

EXAMPLE 2-7 Convert the BCD number 011111000001 to its decimal equivalent.

Solution

0111 1100 0001

7 ↓ 1

The forbidden code group indicates an

error in the BCD number.

⎫⎬ ⎫⎫⎫ ⎬

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 34

Comparison of BCD and Binary
It is important to realize that BCD is not another number system like

binary, decimal, and hexadecimal. In fact, it is the decimal system with

each digit encoded in its binary equivalent. It is also important to under-

stand that a BCD number is not the same as a straight binary number. A

straight binary number takes the complete decimal number and represents

it in binary; the BCD code converts each decimal digit to binary individu-

ally. To illustrate, take the number 137 and compare its straight binary and

BCD codes:

The BCD code requires 12 bits, while the straight binary code requires only

eight bits to represent 137. BCD requires more bits than straight binary to

represent decimal numbers of more than one digit because BCD does not use

all possible four-bit groups, as pointed out earlier, and is therefore somewhat

inefficient.

The main advantage of the BCD code is the relative ease of converting to

and from decimal. Only the four-bit code groups for the decimal digits 0

through 9 need to be remembered. This ease of conversion is especially im-

portant from a hardware standpoint because in a digital system, it is the

logic circuits that perform the conversions to and from decimal.

13710 � 100010012 (binary)

13710 � 0001 0011 0111 (BCD)

SECTION 2-5/THE GRAY CODE 35

2-5 THE GRAY CODE

Digital systems operate at very fast speeds and respond to changes that oc-

cur in the digital inputs. Just as in life, when multiple input conditions are

changing at the same time, the situation can be misinterpreted and cause an

erroneous reaction. When you look at the bits in a binary count sequence, it

is clear that there are often several bits that must change states at the same

time. For example, consider when the three-bit binary number for 3 changes

to 4: all three bits must change state.

In order to reduce the likelihood of a digital circuit misinterpreting a

changing input, the Gray code has been developed as a way to represent a

sequence of numbers.The unique aspect of the Gray code is that only one bit

ever changes between two successive numbers in the sequence. Table 2-2

shows the translation between three-bit binary and Gray code values.To con-

vert binary to Gray, simply start on the most significant bit and use it as the

Gray MSB as shown in Figure 2-2(a). Now compare the MSB binary with the

next binary bit (B1). If they are the same, then G1 � 0. If they are different,

then G1 � 1. G0 can be found by comparing B1 with B0.

REVIEW QUESTIONS 1. Represent the decimal value 178 by its straight binary equivalent. Then

encode the same decimal number using BCD.

2. How many bits are required to represent an eight-digit decimal number

in BCD?

3. What is an advantage of encoding a decimal number in BCD rather than

in straight binary? What is a disadvantage?

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 35

Conversion from Gray code back into binary is shown in Figure 2-2(b).

Note that the MSB in Gray is always the same as the MSB in binary. The

next binary bit is found by comparing the binary bit to the left with the corr-
esponding Gray code bit. Similar bits produce a 0 and differing bits produce

a 1. The most common application of the Gray code is in shaft position

encoders as shown in Figure 2-3. These devices produce a binary value that

represents the position of a rotating mechanical shaft. A practical shaft

encoder would use many more bits than just three and divide the rotation

into many more segments than eight, so that it could detect much smaller

increments of rotation.

36 CHAPTER 2/NUMBER SYSTEMS AND CODES

TABLE 2-2 Three-bit

binary and Gray code

equivalents.

B2 B1 B0 G2 G1 G0

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 1

0 1 1 0 1 0

1 0 0 1 1 0

1 0 1 1 1 1

1 1 0 1 0 1

1 1 1 1 0 0

B2 B1 B0

G2 G1

Gray

(a)

Binary
MSB LSB

G0

Different? Different?

G2 G1 G0

B2 B1

Binary

(b)

Gray
MSB LSB

B0

Different? Different?

FIGURE 2-2 Converting (a) binary to Gray and (b) Gray to binary.

G2
G1
G0

FIGURE 2-3 An eight-

position, three-bit shaft

encoder.

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 36

2-6 PUTTING IT ALL TOGETHER

Table 2-3 gives the representation of the decimal numbers 1 through 15 in

the binary and hex number systems and also in the BCD and Gray codes.

Examine it carefully and make sure you understand how it was obtained.

Especially note how the BCD representation always uses four bits for each

decimal digit.

SECTION 2-7/THE BYTE, NIBBLE, AND WORD 37

TABLE 2-3
Decimal Binary Hexadecimal BCD GRAY

0 0 0 0000 0000

1 1 1 0001 0001

2 10 2 0010 0011

3 11 3 0011 0010

4 100 4 0100 0110

5 101 5 0101 0111

6 110 6 0110 0101

7 111 7 0111 0100

8 1000 8 1000 1100

9 1001 9 1001 1101

10 1010 A 0001 0000 1111

11 1011 B 0001 0001 1110

12 1100 C 0001 0010 1010

13 1101 D 0001 0011 1011

14 1110 E 0001 0100 1001

15 1111 F 0001 0101 1000

2-7 THE BYTE, NIBBLE, AND WORD

Bytes
Most microcomputers handle and store binary data and information in groups

of eight bits, so a special name is given to a string of eight bits: it is called a

byte. A byte always consists of eight bits, and it can represent any of numerous

types of data or information. The following examples will illustrate.

REVIEW QUESTIONS 1. Convert the number 0101 (binary) to its Gray code equivalent.

2. Convert 0101 (Gray code) to its binary number equivalent.

EXAMPLE 2-8 How many bytes are in a 32-bit string (a string of 32 bits)?

Solution

32/8 � 4, so there are four bytes in a 32-bit string.

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 37

38 CHAPTER 2/NUMBER SYSTEMS AND CODES

EXAMPLE 2-9 What is the largest decimal value that can be represented in binary using

two bytes?

Solution

Two bytes is 16 bits, so the largest binary value will be equivalent to decimal

216
- 1 = 65,535.

EXAMPLE 2-10 How many bytes are needed to represent the decimal value 846,569 in BCD?

Solution

Each decimal digit converts to a four-bit BCD code. Thus, a six-digit decimal

number requires 24 bits. These 24 bits are equal to three bytes. This is dia-

grammed below.

8 4 6 5 6 9 (decimal)

1000 0100 0110 0101 0110 1001 (BCD)

byte 1 byte 2 byte 3

⎫⎪ ⎫ ⎪⎫ ⎪⎫ ⎪ ⎫⎪ ⎫⎪⎬ ⎬ ⎬

EXAMPLE 2-11 How many nibbles are in a byte?

Solution

2

EXAMPLE 2-12 What is the hex value of the least significant nibble of the binary number

1001 0101?

Solution

1001 0101

The least significant nibble is 0101 � 5.

Nibbles
Binary numbers are often broken down into groups of four bits, as we have

seen with BCD codes and hexadecimal number conversions. In the early days

of digital systems, a term caught on to describe a group of four bits. Because

it is half as big as a byte, it was named a nibble. The following examples il-

lustrate the use of this term.

Words
Bits, nibbles, and bytes are terms that represent a fixed number of binary

digits. As systems have grown over the years, their capacity (appetite?) for

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 38

2-8 ALPHANUMERIC CODES

In addition to numerical data, a computer must be able to handle nonnu-

merical information. In other words, a computer should recognize codes that

represent letters of the alphabet, punctuation marks, and other special char-

acters as well as numbers. These codes are called alphanumeric codes. A

complete alphanumeric code would include the 26 lowercase letters, 26 up-

percase letters, 10 numeric digits, 7 punctuation marks, and anywhere from

20 to 40 other characters, such as �, /, #, %, *, and so on. We can say that an

alphanumeric code represents all of the various characters and functions

that are found on a computer keyboard.

ASCII Code
The most widely used alphanumeric code is the American Standard Code
for Information Interchange (ASCII). The ASCII (pronounced “askee”)

code is a seven-bit code, and so it has possible code groups. This

is more than enough to represent all of the standard keyboard characters

as well as the control functions such as the (RETURN) and (LINEFEED)

functions. Table 2-4 shows a listing of the standard seven-bit ASCII code.

The table gives the hexadecimal and decimal equivalents. The seven-bit

binary code for each character can be obtained by converting the hex

value to binary.

27
= 128

SECTION 2-8/ALPHANUMERIC CODES 39

handling binary data has also grown. A word is a group of bits that repre-

sents a certain unit of information. The size of the word depends on the size

of the data pathway in the system that uses the information. The word size
can be defined as the number of bits in the binary word that a digital system

operates on. For example, the computer in your microwave oven can proba-

bly handle only one byte at a time. It has a word size of eight bits. On the

other hand, the personal computer on your desk can handle eight bytes at a

time, so it has a word size of 64 bits.

REVIEW QUESTIONS 1. How many bytes are needed to represent 23510 in binary?

2. What is the largest decimal value that can be represented in BCD using

two bytes?

3. How many hex digits can a nibble represent?

4. How many nibbles are in one BCD digit?

EXAMPLE 2-13 Use Table 2-4 to find the seven-bit ASCII code for the backslash character (\).

Solution

The hex value given in Table 2-4 is 5C. Translating each hex digit into four-

bit binary produces 0101 1100. The lower seven bits represent the ASCII

code for \, or 1011100.

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 39

40 CHAPTER 2/NUMBER SYSTEMS AND CODES

TABLE 2-4 Standard ASCII codes.

Character HEX Decimal Character HEX Decimal Character HEX Decimal Character HEX Decimal

NUL (null) 0 0 Space 20 32 @ 40 64 . 60 96

Start Heading 1 1 ! 21 33 A 41 65 a 61 97

Start Text 2 2 “ 22 34 B 42 66 b 62 98

End Text 3 3 # 23 35 C 43 67 c 63 99

End Transmit. 4 4 $ 24 36 D 44 68 d 64 100

Enquiry 5 5 % 25 37 E 45 69 e 65 101

Acknowlege 6 6 & 26 38 F 46 70 f 66 102

Bell 7 7 ` 27 39 G 47 71 g 67 103

Backspace 8 8 (28 40 H 48 72 h 68 104

Horiz. Tab 9 9) 29 41 I 49 73 i 69 105

Line Feed A 10 * 2A 42 J 4A 74 j 6A 106

Vert. Tab B 11 + 2B 43 K 4B 75 k 6B 107

Form Feed C 12 , 2C 44 L 4C 76 l 6C 108

Carriage Return D 13 - 2D 45 M 4D 77 m 6D 109

Shift Out E 14 . 2E 46 N 4E 78 n 6E 110

Shift In F 15 / 2F 47 O 4F 79 o 6F 111

Data Link Esc 10 16 0 30 48 P 50 80 p 70 112

Direct Control 1 11 17 1 31 49 Q 51 81 q 71 113

Direct Control 2 12 18 2 32 50 R 52 82 r 72 114

Direct Control 3 13 19 3 33 51 S 53 83 s 73 115

Direct Control 4 14 20 4 34 52 T 54 84 t 74 116

Negative ACK 15 21 5 35 53 U 55 85 u 75 117

Synch Idle 16 22 6 36 54 V 56 86 v 76 118

End Trans Block 17 23 7 37 55 W 57 87 w 77 119

Cancel 18 24 8 38 56 X 58 88 x 78 120

End of Medium 19 25 9 39 57 Y 59 89 y 79 121

Substitue 1A 26 : 3A 58 Z 5A 90 z 7A 122

Escape 1B 27 ; 3B 59 [5B 91 { 7B 123

Form separator 1C 28 < 3C 60 \ 5C 92 | 7C 124

Group separator 1D 29 = 3D 61] 5D 93 } 7D 125

Record Separator 1E 30 > 3E 62 ^ 5E 94 ~ 7E 126

Unit Separator 1F 31 ? 3F 63 _ 5F 95 Delete 7F 127

The ASCII code is used for the transfer of alphanumeric information be-

tween a computer and the external devices such as a printer or another com-

puter. A computer also uses ASCII internally to store the information that an

operator types in at the computer’s keyboard. The following example illus-

trates this.

EXAMPLE 2-14 An operator is typing in a C language program at the keyboard of a certain

microcomputer. The computer converts each keystroke into its ASCII code

and stores the code as a byte in memory. Determine the binary strings that

will be entered into memory when the operator types in the following C

statement:

if (x>3)

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 40

SECTION 2-9/PARITY METHOD FOR ERROR DETECTION 41

2-9 PARITY METHOD FOR ERROR DETECTION

The movement of binary data and codes from one location to another is the

most frequent operation performed in digital systems. Here are just a few

examples:

■ The transmission of digitized voice over a microwave link

■ The storage of data in and retrieval of data from external memory de-

vices such as magnetic and optical disk

■ The transmission of digital data from a computer to a remote computer

over telephone lines (i.e., using a modem). This is one of the major ways

of sending and receiving information on the Internet.

Whenever information is transmitted from one device (the transmitter)

to another device (the receiver), there is a possibility that errors can occur

such that the receiver does not receive the identical information that was

sent by the transmitter. The major cause of any transmission errors is

electrical noise, which consists of spurious fluctuations in voltage or current

that are present in all electronic systems to varying degrees. Figure 2-4 is a

simple illustration of a type of transmission error.

The transmitter sends a relatively noise-free serial digital signal over a

signal line to a receiver. However, by the time the signal reaches the receiver,

Solution

Locate each character (including the space) in Table 2-4 and record its ASCII

code.

i 69 0110 1001

f 66 0110 0110

space 20 0010 0000

(28 0010 1000

x 78 0111 1000

> 3E 0011 1110

3 33 0011 0011

) 29 0010 1001

Note that a 0 was added to the leftmost bit of each ASCII code because the

codes must be stored as bytes (eight bits). This adding of an extra bit is

called padding with 0s.

REVIEW QUESTIONS 1. Encode the following message in ASCII code using the hex representa-

tion: “COST � $72.”

2. The following padded ASCII-coded message is stored in successive mem-

ory locations in a computer:

What is the message?

01010011 01010100 01001111 01010000

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 41

42 CHAPTER 2/NUMBER SYSTEMS AND CODES

it contains a certain degree of noise superimposed on the original signal.

Occasionally, the noise is large enough in amplitude that it will alter the

logic level of the signal, as it does at point x. When this occurs, the receiver

may incorrectly interpret that bit as a logic 1, which is not what the trans-

mitter has sent.

Most modern digital equipment is designed to be relatively error-free,

and the probability of errors such as the one shown in Figure 2-4 is very

low. However, we must realize that digital systems often transmit thou-

sands, even millions, of bits per second, so that even a very low rate of oc-

currence of errors can produce an occasional error that might prove to be

bothersome, if not disastrous. For this reason, many digital systems em-

ploy some method for detection (and sometimes correction) of errors. One

of the simplest and most widely used schemes for error detection is the

parity method.

Parity Bit
A parity bit is an extra bit that is attached to a code group that is being trans-

ferred from one location to another. The parity bit is made either 0 or 1,

depending on the number of 1s that are contained in the code group. Two

different methods are used.

In the even-parity method, the value of the parity bit is chosen so that the

total number of 1s in the code group (including the parity bit) is an even
number. For example, suppose that the group is 1000011. This is the ASCII

character “C.”The code group has three 1s.Therefore, we will add a parity bit

of 1 to make the total number of 1s an even number.The new code group, inc-
luding the parity bit, thus becomes

If the code group contains an even number of 1s to begin with, the parity

bit is given a value of 0. For example, if the code group were 1000001 (the

ASCII code for “A”), the assigned parity bit would be 0, so that the new code,

including the parity bit, would be 01000001.

The odd-parity method is used in exactly the same way except that the

parity bit is chosen so the total number of 1s (including the parity bit) is an

odd number. For example, for the code group 1000001, the assigned parity bit

would be a 1. For the code group 1000011, the parity bit would be a 0.

Regardless of whether even parity or odd parity is used, the parity bit

becomes an actual part of the code word. For example, adding a parity bit to

1 0 0 0 0 1 1

added parity bit*↑
1

*The parity bit can be placed at either end of the code group, but it is usually placed to the left of the
MSB.

FIGURE 2-4 Example of noise causing an error in the transmission of digital data.

Transmitter Receiver

x

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 42

SECTION 2-9/PARITY METHOD FOR ERROR DETECTION 43

the seven-bit ASCII code produces an eight-bit code. Thus, the parity bit is

treated just like any other bit in the code.

The parity bit is issued to detect any single-bit errors that occur during

the transmission of a code from one location to another. For example, sup-

pose that the character “A” is being transmitted and odd parity is being used.

The transmitted code would be

When the receiver circuit receives this code, it will check that the code con-

tains an odd number of 1s (including the parity bit). If so, the receiver will

assume that the code has been correctly received. Now, suppose that be-

cause of some noise or malfunction the receiver actually receives the fol-

lowing code:

The receiver will find that this code has an even number of 1s. This tells the

receiver that there must be an error in the code because presumably the

transmitter and receiver have agreed to use odd parity. There is no way, how-

ever, that the receiver can tell which bit is in error because it does not know

what the code is supposed to be.

It should be apparent that this parity method would not work if two bits

were in error, because two errors would not change the “oddness” or “even-

ness” of the number of 1s in the code. In practice, the parity method is used

only in situations where the probability of a single error is very low and the

probability of double errors is essentially zero.

When the parity method is being used, the transmitter and the receiver

must have agreement, in advance, as to whether odd or even parity is being

used. There is no advantage of one over the other, although even parity

seems to be used more often. The transmitter must attach an appropriate

parity bit to each unit of information that it transmits. For example, if the

transmitter is sending ASCII-coded data, it will attach a parity bit to each

seven-bit ASCII code group. When the receiver examines the data that it

has received from the transmitter, it checks each code group to see that the

total number of 1s (including the parity bit) is consistent with the agreed-

upon type of parity. This is often called checking the parity of the data. In

the event that it detects an error, the receiver may send a message back to

the transmitter asking it to retransmit the last set of data. The exact proce-

dure that is followed when an error is detected depends on the particular

system.

1 0 0 0 0 0 01

1 0 0 0 0 0 11

EXAMPLE 2-15 Computers often communicate with other remote computers over tele-

phone lines. For example, this is how dial-up communication over the inter-

net takes place. When one computer is transmitting a message to another,

the information is usually encoded in ASCII. What actual bit strings would

a computer transmit to send the message HELLO, using ASCII with even

parity?

Solution

First, look up the ASCII codes for each character in the message. Then for

each code, count the number of 1s. If it is an even number, attach a 0 as the

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 43

44 CHAPTER 2/NUMBER SYSTEMS AND CODES

MSB. If it is an odd number, attach a 1. Thus, the resulting eight-bit codes

(bytes) will all have an even number of 1s (including parity).

attached even-parity bits
↓

H � 0 1 0 0 1 0 0 0

E � 1 1 0 0 0 1 0 1

L � 1 1 0 0 1 1 0 0

L � 1 1 0 0 1 1 0 0

O � 1 1 0 0 1 1 1 1

2-10 APPLICATIONS

Here are several applications that will serve as a review of some of the con-

cepts covered in this chapter. These applications should give a sense of how

the various number systems and codes are used in the digital world. More ap-

plications are presented in the end-of-chapter problems.

A typical CD-ROM can store 650 megabytes of digital data. Since mega � 220,

how many bits of data can a CD-ROM hold?

Solution

Remember that a byte is eight bits. Therefore, 650 megabytes is

.650 * 220
* 8 = 5,452,595,200 bits

APPLICATION 2-1

In order to program many microcontrollers, the binary instructions are

stored in a file on a personal computer in a special way known as Intel Hex

Format. The hexadecimal information is encoded into ASCII characters so it

can be displayed easily on the PC screen, printed, and easily transmitted one

character at a time over a standard PC’s serial COM port. One line of an Intel

Hex Format file is shown below:

:10002000F7CFFFCF1FEF2FEF2A95F1F71A95D9F7EA

The first character sent is the ASCII code for a colon, followed by a 1.

Each has an even parity bit appended as the most significant bit. A test

instrument captures the binary bit pattern as it goes across the cable to the

microcontroller.

(a) What should the binary bit pattern (including parity) look like?

(MSB – LSB)

APPLICATION 2-2

REVIEW QUESTIONS 1. Attach an odd-parity bit to the ASCII code for the $ symbol, and express

the result in hexadecimal.

2. Attach an even-parity bit to the BCD code for decimal 69.

3. Why can’t the parity method detect a double error in transmitted data?

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 44

SECTION 2-10/APPLICATIONS 45

(b) The value 10, following the colon, represents the total hexadecimal num-

ber of bytes that are to be loaded into the micro’s memory. What is the

decimal number of bytes being loaded?

(c) The number 0020 is a four-digit hex value representing the address where

the first byte is to be stored. What is the biggest address possible? How

many bits would it take to represent this address?

(d) The value of the first data byte is F7. What is the value (in binary) of the

least significant nibble of this byte?

FFFF 1111 1111 1111 1111 16 bits

Solution

(a) ASCII codes are 3A (for :) and 31 (for 1) 00111010 10110001

even parity bit

(b)

(c) FFFF is the biggest possible value. Each hex digit is 4 bits, so we need 16

bits.

(d) The least significant nibble (4 bits) is represented by hex 7. In binary this

would be 0111.

10 hex = 1 * 16 + 0 * 1 = 16 decimal bytes

A small process-control computer uses hexadecimal codes to represent its

16-bit memory addresses.

(a) How many hex digits are required?

(b) What is the range of addresses in hex?

(c) How many memory locations are there?

Solution

(a) Since 4 bits convert to a single hex digit, 16/4 � 4 hex digits are needed.

(b) The binary range is 00000000000000002 to 11111111111111112. In hex,

this becomes 000016 to FFFF16.

(c) With 4 hex digits, the total number of addresses is 164 � 65,536.

APPLICATION 2-3

Numbers are entered into a microcontroller-based system in BCD, but stored

in straight binary. As a programmer, you must decide whether you need a

one-byte or two-byte storage location.

(a) How many bytes do you need if the system takes a two-digit decimal entry?

(b) What if you needed to be able to enter three digits?

Solution

(a) With two digits you can enter values up to 99 (1001 1001BCD). In binary

this value is 01100011, which will fit into an eight-bit memory location.

Thus you can use a single byte.

(b) Three digits can represent up to 999 (1001 1001 1001). In binary this

value is 1111100111 (10 bits). Thus you cannot use a single byte; you

need two bytes.

APPLICATION 2-4

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 45

46 CHAPTER 2/NUMBER SYSTEMS AND CODES

When ASCII characters must be transmitted between two independent

systems (such as between a computer and a modem), there must be a way

of telling the receiver when a new character is coming in. There is often a

need to detect errors in the transmission as well. The method of transfer is

called asynchronous data communication. The normal resting state of the

transmission line is logic 1. When the transmitter sends an ASCII charac-

ter, it must be “framed” so the receiver knows where the data begins and

ends. The first bit must always be a start bit (logic 0). Next the ASCII code

is sent LSB first and MSB last. After the MSB, a parity bit is appended to

check for transmission errors. Finally, the transmission is ended by send-

ing a stop bit (logic 1). A typical asynchronous transmission of a seven-bit

ASCII code for the pound sign # (23 Hex) with even parity is shown in

Figure 2-5.

APPLICATION 2-5

S
T
A
R
T

D
1

D
0

L
S
B

D
2

D
3

D
5

D
4

D
6

M
S
B

P
a
r
i
t
y

S
T
O
P

idle idle

FIGURE 2-5 Asynchronous serial data with even parity.

SUMMARY
1. The hexadecimal number system is used in digital systems and comput-

ers as an efficient way of representing binary quantities.

2. In conversions between hex and binary, each hex digit corresponds to

four bits.

3. The repeated-division method is used to convert decimal numbers to

binary or hexadecimal.

4. Using an N-bit binary number, we can represent decimal values from 0 to

5. The BCD code for a decimal number is formed by converting each digit

of the decimal number to its four-bit binary equivalent.

6. The Gray code defines a sequence of bit patterns in which only one bit

changes between successive patterns in the sequence.

7. A byte is a string of eight bits. A nibble is four bits. The word size de-

pends on the system.

8. An alphanumeric code is one that uses groups of bits to represent all of

the various characters and functions that are part of a typical computer’s

keyboard. The ASCII code is the most widely used alphanumeric code.

9. The parity method for error detection attaches a special parity bit to

each transmitted group of bits.

2N
- 1.

TOCCMC02_0131725793.QXD 12/22/05 4:46 AM Page 46

PROBLEMS 47

IMPORTANT TERMS
hexadecimal number

system

straight binary

coding

binary-coded-decimal

(BCD) code

Gray code

byte

nibble

word

word size

alphanumeric code

American Standard

Code for

Information

Interchange

(ASCII)

parity method

parity bit

PROBLEMS
SECTIONS 2-1 AND 2-2

2-1. Convert these binary numbers to decimal.

(a)*10110 (d) 01101011 (g)*1111010111

(b) 10010101 (e)*11111111 (h) 11011111

(c)*100100001001 (f) 01101111

2-2. Convert the following decimal values to binary.

(a)*37 (d) 1000 (g)*205

(b) 13 (e)*77 (h) 2133

(c)*189 (f) 390 (i)* 511

2-3. What is the largest decimal value that can be represented by (a)* an

eight-bit binary number? (b) A 16-bit number?

SECTION 2-4

2-4. Convert each hex number to its decimal equivalent.

(a)*743 (d) 2000 (g)*7FF

(b) 36 (e)*165 (h) 1204

(c)*37FD (f) ABCD

2-5. Convert each of the following decimal numbers to hex.

(a)*59 (d) 1024 (g)*65,536

(b) 372 (e)*771 (h) 255

(c)*919 (f) 2313

2-6. Convert each of the hex values from Problem 2-4 to binary.

2-7. Convert the binary numbers in Problem 2-1 to hex.

2-8. List the hex numbers in sequence from 19516 to 28016.

2-9. When a large decimal number is to be converted to binary, it is some-

times easier to convert it first to hex, and then from hex to binary. Try

this procedure for 213310 and compare it with the procedure used in

Problem 2-2(h).

2-10. How many hex digits are required to represent decimal numbers up to

20,000?

2-11. Convert these hex values to decimal.

(a)*92 (d) ABCD (g)*2C0

(b) 1A6 (e)*000F (h) 7FF

(c)*37FD (f) 55

*Answers to problems marked with an asterisk can be found in the back of the text.

TOCCMC02_0131725793.QXD 12/22/05 4:46 AM Page 47

48 CHAPTER 2/NUMBER SYSTEMS AND CODES

2-12. Convert these decimal values to hex.

(a)*75 (d) 24 (g)*25,619

(b) 314 (e)*7245 (h) 4095

(c)*2048 (f) 498

2-13. Take each four-bit binary number in the order they are written and

write the equivalent hex digit without performing a calculation by

hand or by calculator.

(a) 1001 (e) 1111 (i) 1011 (m) 0001

(b) 1101 (f) 0010 (j) 1100 (n) 0101

(c) 1000 (g) 1010 (k) 0011 (o) 0111

(d) 0000 (h) 1001 (l) 0100 (p) 0110

2-14. Take each hex digit and write its four-bit binary value without per-

forming any calculations by hand or by calculator.

(a) 6 (e) 4 (i) 9 (m) 0

(b) 7 (f) 3 (j) A (n) 8

(c) 5 (g) C (k) 2 (o) D

(d) 1 (h) B (l) F (p) 9

2-15.* Convert the binary numbers in Problem 2-1 to hexadecimal.

2-16.* Convert the hex values in Problem 2-11 to binary.

2-17.* List the hex numbers in sequence from 280 to 2A0.

2-18. How many hex digits are required to represent decimal numbers up to

1 million?

SECTION 2-5

2-19. Encode these decimal numbers in BCD.

(a)*47 (d) 6727 (g)*89,627

(b) 962 (e)*13 (h) 1024

(c)*187 (f) 529

2-20. How many bits are required to represent the decimal numbers in the

range from 0 to 999 using (a) straight binary code? (b) Using BCD

code?

2-21. The following numbers are in BCD. Convert them to decimal.

(a)*1001011101010010 (d) 0111011101110101

(b) 000110000100 (e)*010010010010

(c)*011010010101 (f) 010101010101

SECTION 2-7

2-22.*(a) How many bits are contained in eight bytes?

(b) What is the largest hex number that can be represented in

four bytes?

(c) What is the largest BCD-encoded decimal value that can be

represented in three bytes?

2-23. (a) Refer to Table 2-4. What is the most significant nibble of the

ASCII code for the letter X?

(b) How many nibbles can be stored in a 16-bit word?

(c) How many bytes does it take to make up a 24-bit word?

TOCCMC02_0131725793.QXD 12/22/05 4:46 AM Page 48

PROBLEMS 49

SECTIONS 2-8 AND 2-9

2-24. Represent the statement “ ” in ASCII code. Attach an odd-

parity bit.

2-25.*Attach an even-parity bit to each of the ASCII codes for Problem 2-24,

and give the results in hex.

2-26. The following bytes (shown in hex) represent a person’s name as it

would be stored in a computer’s memory. Each byte is a padded ASCII

code. Determine the name of each person.

(a)*42 45 4E 20 53 4D 49 54 48

(b) 4A 6F 65 20 47 72 65 65 6E

2-27. Convert the following decimal numbers to BCD code and then attach

an odd parity bit.

(a)*74 (c)*8884 (e)*165

(b) 38 (d) 275 (f) 9201

2-28.*In a certain digital system, the decimal numbers from 000 through

999 are represented in BCD code. An odd-parity bit is also included at

the end of each code group. Examine each of the code groups below,

and assume that each one has just been transferred from one location

to another. Some of the groups contain errors. Assume that no more
than two errors have occurred for each group. Determine which of the

code groups have a single error and which of them definitely have a

double error. (Hint: Remember that this is a BCD code.)

(a) 1001010110000

parity bit

(b) 0100011101100

(c) 0111110000011

(d) 1000011000101

2-29. Suppose that the receiver received the following data from the trans-

mitter of Example 2-16:

0 1 0 0 1 0 0 0

1 1 0 0 0 1 0 1

1 1 0 0 1 1 0 0

1 1 0 0 1 0 0 0

1 1 0 0 1 1 0 0

What errors can the receiver determine in these received data?

DRILL QUESTIONS

2-30.*Perform each of the following conversions. For some of them, you may

want to try several methods to see which one works best for you. For

example, a binary-to-decimal conversion may be done directly, or

it may be done as a binary-to-hex conversion followed by a hex-to-

decimal conversion.

(a) 141710 � _____ 2

(b) 25510 � _____ 2

(c) 110100012 � _____ 10

(d) 11101010001001112 � _____ 10

X = 3 * Y

TOCCMC02_0131725793.QXD 12/22/05 4:46 AM Page 49

(e) 249710 � _____ 16

(f) 51110 � _____ (BCD)

(g) 23516 � _____ 10

(h) 431610 � _____ 16

(i) 7A916 � _____ 10

(j) 3E1C16 � _____ 10

(k) 160010 � _____ 16

(l) 38,18710 � _____ 16

(m) 86510 � _____ (BCD)

(n) 100101000111 (BCD) � _____ 10

(o) 46516 � _____ 2

(p) B3416 � _____ 2

(q) 01110100 (BCD) � _____ 2

(r) 1110102 � _____ (BCD)

2-31.*Represent the decimal value 37 in each of the following ways.

(a) straight binary

(b) BCD

(c) hex

(d) ASCII (i.e., treat each digit as a character)

2-32.*Fill in the blanks with the correct word or words.

(a) Conversion from decimal to _____ requires repeated division by

16.

(b) Conversion from decimal to binary requires repeated division by

_____.

(c) In the BCD code, each _____ is converted to its four-bit binary

equivalent.

(d) The _____ code has the characteristic that only one bit changes in

going from one step to the next.

(e) A transmitter attaches a _____ to a code group to allow the re-

ceiver to detect _____.

(f) The _____ code is the most common alphanumeric code used in

computer systems.

(g) _____ is often used as a convenient way to represent large binary

numbers.

(h) A string of eight bits is called a _____.

2-33. Write the binary number that results when each of the following num-

bers is incremented by one.

(a)*0111 (b) 010011 (c) 1011

2-34. Decrement each binary number.

(a)*1110 (b) 101000 (c) 1110

2-35. Write the number that results when each of the following is incre-

mented.

(a)*777916 (c)*OFFF16 (e)*9FF16

(b) 999916 (d) 200016 (f) 100A16

2-36.*Repeat Problem 2-35 for the decrement operation.

50 CHAPTER 2/NUMBER SYSTEMS AND CODES

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 50

CHALLENGING EXERCISES

2-37.*In a microcomputer, the addresses of memory locations are binary

numbers that identify each memory circuit where a byte is stored.The

number of bits that make up an address depends on how many mem-

ory locations there are. Since the number of bits can be very large, the

addresses are often specified in hex instead of binary.

(a) If a microcomputer uses a 20-bit address, how many different

memory locations are there?

(b) How many hex digits are needed to represent the address of a

memory location?

(c) What is the hex address of the 256th memory location? (Note: The

first address is always 0.)

2-38. In an audio CD, the audio voltage signal is typically sampled about

44,000 times per second, and the value of each sample is recorded on

the CD surface as a binary number. In other words, each recorded bi-

nary number represents a single voltage point on the audio signal

waveform.

(a) If the binary numbers are six bits in length, how many different

voltage values can be represented by a single binary number?

Repeat for eight bits and ten bits.

(b) If ten-bit numbers are used, how many bits will be recorded on the

CD in 1 second?

(c) If a CD can typically store 5 billion bits, how many seconds of au-

dio can be recorded when ten-bit numbers are used?

2-39.*A black-and-white digital camera lays a fine grid over an image and

then measures and records a binary number representing the level of

gray it sees in each cell of the grid. For example, if four-bit numbers

are used, the value of black is set to 0000 and the value of white to

1111, and any level of gray is somewhere between 0000 and 1111. If

six-bit numbers are used, black is 000000, white is 111111, and all

grays are between the two.

Suppose we wanted to distinguish among 254 different levels of gray

within each cell of the grid. How many bits would we need to use to

represent these levels?

2-40. A 3-Megapixel digital camera stores an eight-bit number for the

brightness of each of the primary colors (red, green, blue) found in

each picture element (pixel). If every bit is stored (no data compres-

sion), how many pictures can be stored on a 128-Megabyte memory

card? (Note: In digital systems, Mega means 220.)

2-41. Construct a table showing the binary, hex, and BCD representations of

all decimal numbers from 0 to 15. Compare your table with Table 2-3.

ANSWERS TO SECTION REVIEW QUESTIONS
SECTION 2-1
1. 2267 2. 32768

SECTION 2-2
1. 1010011 2. 1011011001 3. 20 bits

ANSWERS TO SECTION REVIEW QUESTIONS 51

TOCCMC02_0131725793.QXD 12/22/05 4:46 AM Page 51

SECTION 2-3
1. 9422 2. C2D; 110000101101 3. 97B5 4. E9E, E9F, EA0, EA1

5. 11010100100111 6. 0 to 65,535

SECTION 2-4
1. 101100102; 000101111000 (BCD) 2. 32 3. Advantage: ease of conversion.

Disadvantage: BCD requires more bits.

SECTION 2-5
1. 0111 2. 0110

SECTION 2-7
1. One 2. 9999 3. One 4. One

SECTION 2-8
1. 43, 4F, 53, 54, 20, 3D, 20, 24, 37, 32 2. STOP

SECTION 2-9
1. A4 2. 001101001 3. Two errors in the data would not change the oddness or

evenness of the number of 1s in the data.

52 CHAPTER 2/NUMBER SYSTEMS AND CODES

TOCCMC02_0131725793.QXD 12/22/05 4:46 AM Page 52

TOCCMC02_0131725793.QXD 11/26/05 1:14 AM Page 53

