
3-1 Boolean Constants and

Variables

3-2 Truth Tables

3-3 OR Operation with OR

Gates

3-4 AND Operation with AND

Gates

3-5 NOT Operation

3-6 Describing Logic Circuits

Algebraically

3-7 Evaluating Logic-Circuit

Outputs

3-8 Implementing Circuits from

Boolean Expressions

3-9 NOR Gates and NAND

Gates

3-10 Boolean Theorems

3-11 DeMorgan’s Theorems

■ OUTLINE

D E S C R I B I N G L O G I C

C I R C U I T S

C H A P T E R 3

3-12 Universality of NAND Gates

and NOR Gates

3-13 Alternate Logic-Gate

Representations

3-14 Which Gate Representation

to Use

3-15 IEEE/ANSI Standard Logic

Symbols

3-16 Summary of Methods to

Describe Logic Circuits

3-17 Description Languages

Versus Programming

Languages

3-18 Implementing Logic

Circuits with PLDs

3-19 HDL Format and Syntax

3-20 Intermediate Signals

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 54

55

■ OBJECTIVES
Upon completion of this chapter, you will be able to:
■ Perform the three basic logic operations.

■ Describe the operation of and construct the truth tables for the AND,

NAND, OR, and NOR gates, and the NOT (INVERTER) circuit.

■ Draw timing diagrams for the various logic-circuit gates.

■ Write the Boolean expression for the logic gates and combinations of

logic gates.

■ Implement logic circuits using basic AND, OR, and NOT gates.

■ Appreciate the potential of Boolean algebra to simplify complex logic

circuits.

■ Use DeMorgan’s theorems to simplify logic expressions.

■ Use either of the universal gates (NAND or NOR) to implement a

circuit represented by a Boolean expression.

■ Explain the advantages of constructing a logic-circuit diagram using the

alternate gate symbols versus the standard logic-gate symbols.

■ Describe the concept of active-LOW and active-HIGH logic signals.

■ Draw and interpret the IEEE/ANSI standard logic-gate symbols.

■ Use several methods to describe the operation of logic circuits.

■ Interpret simple circuits defined by a hardware description language

(HDL).

■ Explain the difference between an HDL and a computer programming

language.

■ Create an HDL file for a simple logic gate.

■ Create an HDL file for combinational circuits with intermediate

variables.

■ INTRODUCTION
Chapters 1 and 2 introduced the concepts of logic levels and logic circuits.

In logic, only two possible conditions exist for any input or output: true and

false. The binary number system uses only two digits, 1 and 0, so it is perfect

for representing logical relationships. Digital logic circuits use predefined

voltage ranges to represent these binary states. Using these concepts, we

can create circuits made of little more than processed beach sand and wire

that make consistent, intelligent, logical decisions. It is vitally important

that we have a method to describe the logical decisions made by these cir-

cuits. In other words, we must describe how they operate. In this chapter,

we will discover many ways to describe their operation. Each description

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 55

method is important because all these methods commonly appear in techni-

cal literature and system documentation and are used in conjunction with

modern design and development tools.

Life is full of examples of circumstances that are in one state or an-

other. For example, a creature is either alive or dead, a light is either on or

off, a door is locked or unlocked, and it is either raining or it is not. In 1854,

a mathematician named George Boole wrote An Investigation of the Laws of
Thought, in which he described the way we make logical decisions based on

true or false circumstances. The methods he described are referred to today

as Boolean logic, and the system of using symbols and operators to describe

these decisions is called Boolean algebra. In the same way we use symbols

such as x and y to represent unknown numerical values in regular algebra,

Boolean algebra uses symbols to represent a logical expression that has one

of two possible values: true or false. The logical expression might be door is
closed, button is pressed, or fuel is low. Writing these expressions is very te-

dious, and so we tend to substitute symbols such as A, B, and C.

The main purpose of these logical expressions is to describe the rela-

tionship between a logic circuit’s output (the decision) and its inputs (the

circumstances). In this chapter, we will study the most basic logic circuits—

logic gates—which are the fundamental building blocks from which all other

logic circuits and digital systems are constructed. We will see how the oper-

ation of the different logic gates and the more complex circuits formed

from combinations of logic gates can be described and analyzed using

Boolean algebra. We will also get a glimpse of how Boolean algebra can be

used to simplify a circuit’s Boolean expression so that the circuit can be re-

built using fewer logic gates and/or fewer connections. Much more will be

done with circuit simplification in Chapter 4.

Boolean algebra is not only used as a tool for analysis and simplifica-

tion of logic systems. It can also be used as a tool to create a logic circuit

that will produce the desired input/output relationship. This process is

often called synthesis of logic circuits as opposed to analysis. Other tech-

niques have been used in the analysis, synthesis, and documentation of

logic systems and circuits including truth tables, schematic symbols, timing

diagrams, and—last but by no means least—language. To categorize these

methods, we could say that Boolean algebra is a mathematic tool, truth ta-

bles are data organizational tools, schematic symbols are drawing tools,

timing diagrams are graphing tools, and language is the universal descrip-

tion tool.

Today, any of these tools can be used to provide input to computers. The

computers can be used to simplify and translate between these various

forms of description and ultimately provide an output in the form neces-

sary to implement a digital system. To take advantage of the powerful bene-

fits of computer software, we must first fully understand the acceptable

ways for describing these systems in terms the computer can understand.

This chapter will lay the groundwork for further study of these vital tools

for synthesis and analysis of digital systems.

Clearly the tools described here are invaluable tools in describing, ana-

lyzing, designing, and implementing digital circuits. The student who ex-

pects to work in the digital field must work hard at understanding and

becoming comfortable with Boolean algebra (believe us, it’s much, much

easier than conventional algebra) and all the other tools. Do all of the ex-

amples, exercises, and problems, even the ones your instructor doesn’t

assign. When those run out, make up your own. The time you spend will be

well worth it because you will see your skills improve and your confidence

grow.

56 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 56

3-1 BOOLEAN CONSTANTS AND VARIABLES

Boolean algebra differs in a major way from ordinary algebra because

Boolean constants and variables are allowed to have only two possible values,

0 or 1. A Boolean variable is a quantity that may, at different times, be equal

to either 0 or 1. Boolean variables are often used to represent the voltage

level present on a wire or at the input/output terminals of a circuit. For ex-

ample, in a certain digital system, the Boolean value of 0 might be assigned

to any voltage in the range from 0 to 0.8 V, while the Boolean value of 1 might

be assigned to any voltage in the range 2 to 5 V.*

Thus, Boolean 0 and 1 do not represent actual numbers but instead repre-

sent the state of a voltage variable, or what is called its logic level. A voltage

in a digital circuit is said to be at the logic 0 level or the logic 1 level, depend-

ing on its actual numerical value. In digital logic, several other terms are used

synonymously with 0 and 1. Some of the more common ones are shown in

Table 3-1. We will use the 0/1 and LOW/HIGH designations most of the time.

SECTION 3-2/TRUTH TABLES 57

*Voltages between 0.8 and 2 V are undefined (neither 0 nor 1) and should not occur under normal cir-
cumstances.

Logic 0 Logic 1

False True

Off On

Low High

No Yes

Open switch Closed switch

TABLE 3-1

As we said in the introduction, Boolean algebra is a means for expressing

the relationship between a logic circuit’s inputs and outputs. The inputs are

considered logic variables whose logic levels at any time determine the out-

put levels. In all our work to follow, we shall use letter symbols to represent

logic variables. For example, the letter A might represent a certain digital

circuit input or output, and at any time we must have either or

if not one, then the other.

Because only two values are possible, Boolean algebra is relatively easy

to work with compared with ordinary algebra. In Boolean algebra, there are

no fractions, decimals, negative numbers, square roots, cube roots, loga-

rithms, imaginary numbers, and so on. In fact, in Boolean algebra there are

only three basic operations: OR, AND, and NOT.
These basic operations are called logic operations. Digital circuits called

logic gates can be constructed from diodes, transistors, and resistors con-

nected so that the circuit output is the result of a basic logic operation (OR,
AND, NOT) performed on the inputs. We will be using Boolean algebra first

to describe and analyze these basic logic gates, then later to analyze and de-

sign combinations of logic gates connected as logic circuits.

3-2 TRUTH TABLES

A truth table is a means for describing how a logic circuit’s output depends

on the logic levels present at the circuit’s inputs. Figure 3-1(a) illustrates a

truth table for one type of two-input logic circuit. The table lists all possible

A = 1:A = 0

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 57

combinations of logic levels present at inputs A and B, along with the corre-

sponding output level x. The first entry in the table shows that when A and B
are both at the 0 level, the output x is at the 1 level or, equivalently, in the 1

state. The second entry shows that when input B is changed to the 1 state, so

that and the output x becomes a 0. In a similar way, the table

shows what happens to the output state for any set of input conditions.

Figures 3-1(b) and (c) show samples of truth tables for three- and four-

input logic circuits. Again, each table lists all possible combinations of input

logic levels on the left, with the resultant logic level for output x on the right.

Of course, the actual values for x will depend on the type of logic circuit.

Note that there are 4 table entries for the two-input truth table, 8 entries

for a three-input truth table, and 16 entries for the four-input truth table.

The number of input combinations will equal 2N for an N-input truth table.

Also note that the list of all possible input combinations follows the binary

counting sequence, and so it is an easy matter to write down all of the com-

binations without missing any.

B = 1,A = 0

58 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

Inputs

Output

A

B

(a)

(b)

(c)

? x

A
0
0
1
1

B
0
1
0
1

x
1
0
1
0

A
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

B
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

C
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

D
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

x
0
0
0
1
1
0
0
1
0
0
0
1
0
0
0
1

A
0
0
0
0
1
1
1
1

B
0
0
1
1
0
0
1
1

C
0
1
0
1
0
1
0
1

x
0
1
1
0
0
0
0
1

FIGURE 3-1 Example

truth tables for (a) two-

input, (b) three-input, and

(c) four-input circuits.

3-3 OR OPERATION WITH OR GATES

The OR operation is the first of the three basic Boolean operations to be

learned. An example can be found in the kitchen oven. The light inside the

oven should turn on if either the oven light switch is on OR if the door is
opened.The letter A could be used to represent the oven light switch is on and

B could represent door is opened. The letter x could represent the light is on.
The truth table in Figure 3-2(a) shows what happens when two logic inputs,

A and B, are combined using the OR operation to produce the output x. The

table shows that x is a logic 1 for every combination of input levels where one

or more inputs are 1. The only case where x is a 0 is when both inputs are 0.

REVIEW QUESTIONS 1. What is the output state of the four-input circuit represented in Figure

3-1(c) when all inputs except B are 1?

2. Repeat question 1 for the following input conditions:

3. How many table entries are needed for a five-input circuit?

D = 0.

A = 1, B = 0, C = 1,

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 58

The Boolean expression for the OR operation is

In this expression, the � sign does not stand for ordinary addition; it stands

for the OR operation. The OR operation is similar to ordinary addition ex-

cept for the case where A and B are both 1; the OR operation produces

not In Boolean algebra, 1 is as high as we go, so we can

never have a result greater than 1. The same holds true for combining three

inputs using the OR operation. Here we have If we consider

the case where all three inputs are 1, we have

The expression is read as “x equals A OR B,” which means that x
will be 1 when A or B or both are 1. Likewise, the expression

is read as “x equals A OR B OR C,” which means that x will be 1 when A or B
or C or any combination of them are 1. To describe this circuit in the English

language we could say that x is true (1) WHEN A is true (1) OR B is true (1) OR
C is true (1).

OR Gate
In digital circuitry, an OR gate* is a circuit that has two or more inputs and

whose output is equal to the OR combination of the inputs. Figure 3-2(b) is

the logic symbol for a two-input OR gate. The inputs A and B are logic volt-

age levels, and the output x is a logic voltage level whose value is the result

of the OR operation on A and B; that is, In other words, the OR

gate operates so that its output is HIGH (logic 1) if either input A or B or both
are at a logic 1 level. The OR gate output will be LOW (logic 0) only if all its

inputs are at logic 0.

This same idea can be extended to more than two inputs. Figure 3-3 shows

a three-input OR gate and its truth table. Examination of this truth table shows

again that the output will be 1 for every case where one or more inputs are 1.

This general principle is the same for OR gates with any number of inputs.

x = A + B.

x = A + B + C
x = A + B

x = 1 + 1 + 1 = 1

x = A + B + C.

1 + 1 = 2.1 + 1 = 1,

x = A + B

SECTION 3-3/OR OPERATION WITH OR GATES 59

A
0
0
1
1

B
0
1
0
1

x = A + B
0
1
1
1

x = A + B

(a)

A

B

OR Gate

(b)

ORFIGURE 3-2 (a) Truth

table defining the OR oper-

ation; (b) circuit symbol for

a two-input OR gate.

x = A + B + CA

C
B

A
0
0
0
0
1
1
1
1

B
0
0
1
1
0
0
1
1

C
0
1
0
1
0
1
0
1

x = A + B + C
0
1
1
1
1
1
1
1

FIGURE 3-3 Symbol and

truth table for a three-input

OR gate.

*The term gate comes from the inhibit/enable operation discussed in Chapter 4.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 59

Using the language of Boolean algebra, the output x can be expressed as

where again it must be emphasized that the � represents

the OR operation. The output of any OR gate, then, can be expressed as the

OR combination of its various inputs. We will put this to use when we subse-

quently analyze logic circuits.

Summary of the OR Operation
The important points to remember concerning the OR operation and OR

gates are:

1. The OR operation produces a result (output) of 1 whenever any input is

a 1. Otherwise the output is 0.

2. An OR gate is a logic circuit that performs an OR operation on the cir-

cuit’s inputs.

3. The expression is read as “x equals A OR B.”x = A + B

x = A + B + C,

60 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-4 Example of

the use of an OR gate in an

alarm system.

In many industrial control systems, it is required to activate an output func-

tion whenever any one of several inputs is activated. For example, in a chem-

ical process it may be desired that an alarm be activated whenever the

process temperature exceeds a maximum value or whenever the pressure goes

above a certain limit. Figure 3-4 is a block diagram of this situation.The tem-

perature transducer circuit produces an output voltage proportional to the

process temperature. This voltage, VT, is compared with a temperature ref-

erence voltage, VTR, in a voltage comparator circuit. The comparator output,

TH, is normally a low voltage (logic 0), but it switches to a high voltage (logic

1) when VT exceeds VTR, indicating that the process temperature is too high.

A similar arrangement is used for the pressure measurement, so that its as-

sociated comparator output, PH, goes from LOW to HIGH when the pressure

is too high.

Temperature
transducer

Pressure
transducer

Chemical process

Comparator

Alarm

VT

VTR

VP

VPR

Comparator

TH

PH

Since we want the alarm to be activated when either temperature or
pressure is too high, it should be apparent that the two comparator outputs

can be fed to a two-input OR gate. The OR gate output thus goes HIGH (1)

for either alarm condition and will activate the alarm.This same idea can ob-

viously be extended to situations with more than two process variables.

EXAMPLE 3-1

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 60

Solution

The OR gate output will be HIGH whenever any input is HIGH. Between time

t0 and t1, both inputs are LOW, so OUTPUT � LOW. At t1, input A goes HIGH

while B remains LOW. This causes OUTPUT to go HIGH at t1 and stay HIGH

until t4 because, during this interval, one or both inputs are HIGH. At t4, input

B goes from 1 to 0 so that now both inputs are LOW, and this drives OUTPUT

back to LOW. At t5, A goes HIGH, sending OUTPUT back HIGH, where it stays

for the rest of the shown time span.

SECTION 3-3/OR OPERATION WITH OR GATES 61

Determine the OR gate output in Figure 3-5. The OR gate inputs A and B are

varying according to the timing diagrams shown. For example, A starts out

LOW at time t0, goes HIGH at t1, back to LOW at t3, and so on.

Output = A + BA

t 0

 t 1 t 2 t 3 t 4 t 5 t 6 t 7

Time

A

B 1

0

Output
1

0

0

1

B

FIGURE 3-5 Example 3-2.

FIGURE 3-6 Examples

3-3A and B.

For the situation depicted in Figure 3-6, determine the waveform at the OR

gate output.

 A + B + C

A

C

B

Time

OUT

A

B

C

0
OUT

1

0

1

0

1

0

1

 t1

Solution

The three OR gate inputs A, B, and C are varying, as shown by their waveform

diagrams. The OR gate output is determined by realizing that it will be

EXAMPLE 3-2

EXAMPLE 3-3A

TOCCMC03_0131725793.QXD 12/21/05 11:12 AM Page 61

HIGH whenever any of the three inputs is at a HIGH level. Using this rea-

soning, the OR output waveform is as shown in the figure. Particular atten-

tion should be paid to what occurs at time t1.The diagram shows that, at that

instant of time, input A is going from HIGH to LOW while input B is going

from LOW to HIGH. Since these inputs are making their transitions at ap-

proximately the same time, and since these transitions take a certain amount

of time, there is a short interval when these OR gate inputs are both in the

undefined range between 0 and 1. When this occurs, the OR gate output also

becomes a value in this range, as evidenced by the glitch or spike on the out-

put waveform at t1. The occurrence of this glitch and its size (amplitude and

width) depend on the speed with which the input transitions occur.

62 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

What would happen to the glitch in the output in Figure 3-6 if input C sat in

the HIGH state while A and B were changing at time t1?

Solution

With the C input HIGH at t1, the OR gate output will remain HIGH, regardless

of what is occurring at the other inputs, because any HIGH input will keep an

OR gate output HIGH. Therefore, the glitch will not appear in the output.

3-4 AND OPERATION WITH AND GATES

The AND operation is the second basic Boolean operation. As an example of

the use of AND logic, consider a typical clothes dryer. It is drying clothes

(heating, tumbling) only if the timer is set above zero AND the door is closed.

Let’s assign A to represent timer is set, B to represent door is closed, and x can

represent the heater and motor are on. The truth table in Figure 3-7(a) shows

what happens when two logic inputs, A and B, are combined using the AND

operation to produce output x. The table shows that x is a logic 1 only when

both A and B are at the logic 1 level. For any case where one of the inputs is

0, the output is 0.

The Boolean expression for the AND operation is

In this expression, the sign stands for the Boolean AND operation and

not the multiplication operation. However, the AND operation on Boolean

variables operates the same as ordinary multiplication, as examination of

the truth table shows, so we can think of them as being the same. This char-

acteristic can be helpful when evaluating logic expressions that contain

AND operations.

#

x = A # B

EXAMPLE 3-3B

REVIEW QUESTIONS 1. What is the only set of input conditions that will produce a LOW output

for any OR gate?

2. Write the Boolean expression for a six-input OR gate.

3. If the A input in Figure 3-6 is permanently kept at the 1 level, what will

the resultant output waveform be?

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 62

The expression is read as “x equals A AND B,” which means

that x will be 1 only when A and B are both 1. The sign is usually omitted

so that the expression simply becomes . For the case when three in-

puts are ANDed, we have This is read as “x equals A AND

B AND C,” which means that x will be 1 only when A and B and C are all 1.

AND Gate
The logic symbol for a two-input AND gate is shown in Figure 3-7(b). The

AND gate output is equal to the AND product of the logic inputs; that is,

In other words, the AND gate is a circuit that operates so that its out-

put is HIGH only when all its inputs are HIGH. For all other cases, the AND

gate output is LOW.

This same operation is characteristic of AND gates with more than two

inputs. For example, a three-input AND gate and its accompanying truth

table are shown in Figure 3-8. Once again, note that the gate output is 1 only

for the case where The expression for the output is

For a four-input AND gate, the output is and so on.x = ABCD,

x = ABC.A = B = C = 1.

x = AB.

x = A # B # C = ABC.

x = AB

#

x = A # B

SECTION 3-4/AND OPERATION WITH AND GATES 63

FIGURE 3-7 (a) Truth

table for the AND opera-

tion; (b) AND gate symbol.

FIGURE 3-8 Truth table

and symbol for a three-

input AND gate.

A
0
0
1
1

B
0
1
0
1

x = A • B
0
0
0
1

A

B

(a) (b)

x = AB

AND

AND gate

A
0
0
0
0
1
1
1
1

B
0
0
1
1
0
0
1
1

C
0
1
0
1
0
1
0
1

x = ABC
0
0
0
0
0
0
0
1

A

C
x = ABCB

Note the difference between the symbols for the AND gate and the OR

gate. Whenever you see the AND symbol on a logic-circuit diagram, it tells you

that the output will go HIGH only when all inputs are HIGH. Whenever you

see the OR symbol, it means that the output will go HIGH when any input is

HIGH.

Summary of the AND Operation
1. The AND operation is performed the same as ordinary multiplication of

1s and 0s.

2. An AND gate is a logic circuit that performs the AND operation on the

circuit’s inputs.

3. An AND gate output will be 1 only for the case when all inputs are 1; for

all other cases, the output will be 0.

4. The expression is read as “x equals A AND B.”x = AB

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 63

Solution

The output of an AND gate is determined by realizing that it will be HIGH only

when all inputs are HIGH at the same time. For the input waveforms given, this

condition is met only during intervals and At all other times, one or

more of the inputs are 0, thereby producing a LOW output. Note that input level

changes that occur while the other input is LOW have no effect on the output.

t6-t7.t2-t3

64 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-9 Example 3-4.

Determine the output x from the AND gate in Figure 3-9 for the given input

waveforms.

A

B

x = AB

t 0 t1 t2 t3

0

1

0

1

0

1

A

B

x

 t4 t5 t6 t7

Determine the output waveform for the AND gate shown in Figure 3-10.

What will happen to the x output waveform in Figure 3-10 if the B input is

kept at the 0 level?

Solution

With B kept LOW, the x output will also stay LOW. This can be reasoned in

two different ways. First, with B � 0 we have becausex = A # B = A # 0 = 0

A

B

A

B

x

x

FIGURE 3-10 Examples 3-5A

and B.

Solution

The output x will be at 1 only when A and B are both HIGH at the same time.

Using this fact, we can determine the x waveform as shown in the figure.

Notice that the x waveform is 0 whenever B is 0, regardless of the signal

at A. Also notice that whenever B is 1, the x waveform is the same as A. Thus,

we can think of the B input as a control input whose logic level determines

whether or not the A waveform gets through to the x output. In this situation,

the AND gate is used as an inhibit circuit. We can say that B � 0 is the inhibit

condition producing a 0 output. Conversely, B � 1 is the enable condition,

which enables A to reach the output. This inhibit operation is an important

application of AND gates, which will be encountered later.

EXAMPLE 3-4

EXAMPLE 3-5A

EXAMPLE 3-5B

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 64

anything multiplied (ANDed) by 0 will be 0. Another way to look at it is that

an AND gate requires that all inputs be HIGH for the output to be HIGH, and

this cannot happen if B is kept LOW.

SECTION 3-5/NOT OPERATION 65

3-5 NOT OPERATION

The NOT operation is unlike the OR and AND operations because it can be

performed on a single input variable. For example, if the variable A is sub-

jected to the NOT operation, the result x can be expressed as

where the overbar represents the NOT operation. This expression is read as

“x equals NOT A” or “x equals the inverse of A” or “x equals the complement
of A.” Each of these is in common usage, and all indicate that the logic value

of is opposite to the logic value of A. The truth table in Figure 3-11(a)

clarifies this for the two cases A � 0 and A � 1. That is,

because 0 is not 1

and

because 1 is not 0

The NOT operation is also referred to as inversion or complementation, and

these terms will be used interchangeably throughout the book. Although we

will always use the overbar indicator to represent inversion, it is important to

mention that another indicator for inversion is the prime symbol (). That is,

Both should be recognized as indicating the inversion operation.

A¿ = A

¿

1 = 0

0 = 1

x = A

x = A

FIGURE 3-11 (a) Truth

table; (b) symbol for the

INVERTER (NOT circuit);

(c) sample waveforms.

A
0
1

x = A
1
0

1

0
A

1

0
x

(c)

Presence of small
circle always denotes
inversion

(b)

A x = A

(a)

NOT NOT

REVIEW QUESTIONS 1. What is the only input combination that will produce a HIGH at the out-

put of a five-input AND gate?

2. What logic level should be applied to the second input of a two-input

AND gate if the logic signal at the first input is to be inhibited (pre-

vented) from reaching the output?

3. True or false: An AND gate output will always differ from an OR gate out-

put for the same input conditions.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 65

NOT Circuit (INVERTER)
Figure 3-11(b) shows the symbol for a NOT circuit, which is more commonly

called an INVERTER. This circuit always has only a single input, and its out-

put logic level is always opposite to the logic level of this input. Figure 3-11(c)

shows how the INVERTER affects an input signal. It inverts (complements)

the input signal at all points on the waveform so that whenever the input

� 0, output � 1, and vice versa.

66 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-12 A NOT gate

indicating a button is not
pressed when its output is

true.

Logic level 1 (true) when pressed
(false when button is not pressed).

Pressed

+5 V

Push
button

NOT Pressed

Logic level 1 (true) when not pressed
(false when button is pressed).

Summary of Boolean Operations
The rules for the OR,AND, and NOT operations may be summarized as follows:

OR AND NOT

1 # 1 = 11 + 1 = 1

1 # 0 = 01 + 0 = 1

1 = 00 # 1 = 00 + 1 = 1

0 = 10 # 0 = 00 + 0 = 0

3-6 DESCRIBING LOGIC CIRCUITS ALGEBRAICALLY

Any logic circuit, no matter how complex, can be described completely using

the three basic Boolean operations because the OR gate, AND gate, and NOT

circuit are the basic building blocks of digital systems. For example, consider

Figure 3-12 shows a typical application of the NOT gate. The push button is

wired to produce a logic 1 (true) when it is pressed. Sometimes we want to

know if the push button is not being pressed, and so this circuit provides an

expression that is true when the button is not pressed.

APPLICATION 3-1

REVIEW QUESTIONS 1. The output of the INVERTER of Figure 3-11 is connected to the input of

a second INVERTER. Determine the output level of the second IN-

VERTER for each level of input A.

2. The output of the AND gate in Figure 3-7 is connected to the input of an

INVERTER. Write the truth table showing the INVERTER output, y, for

each combination of inputs A and B.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 66

the circuit in Figure 3-13(a). This circuit has three inputs, A, B, and C, and a

single output, x. Utilizing the Boolean expression for each gate, we can eas-

ily determine the expression for the output.

The expression for the AND gate output is written A · B.This AND output

is connected as an input to the OR gate along with C, another input. The OR

gate operates on its inputs so that its output is the OR sum of the inputs.

Thus, we can express the OR output as (This final expression

could also be written as because it does not matter which term

of the OR sum is written first.)

Operator Precedence
Occasionally, there may be confusion about which operation in an expression

is performed first. The expression can be interpreted in two differ-

ent ways: (1) is ORed with C, or (2) A is ANDed with the term To

avoid this confusion, it will be understood that if an expression contains both

AND and OR operations, the AND operations are performed first, unless

there are parentheses in the expression, in which case the operation inside

the parentheses is to be performed first. This is the same rule that is used in

ordinary algebra to determine the order of operations.

To illustrate further, consider the circuit in Figure 3-13(b).The expression

for the OR gate output is simply This output serves as an input to the

AND gate along with another input, C. Thus, we express the output of the

AND gate as Note the use of parentheses here to indicate that

A and B are ORed first, before their OR sum is ANDed with C. Without the

parentheses it would be interpreted incorrectly, because means

that A is ORed with the product

Circuits Containing INVERTERs
Whenever an INVERTER is present in a logic-circuit diagram, its output ex-

pression is simply equal to the input expression with a bar over it. Figure 3-14

shows two examples using INVERTERs. In Figure 3-14(a), input A is fed

through an INVERTER, whose output is therefore .The INVERTER output

is fed to an OR gate together with B, so that the OR output is equal to

Note that the bar is over the A alone, indicating that A is first inverted and

then ORed with B.

A + B.

A

B # C.

A + B # C

x = (A + B) # C.

A + B.

B + C.A # B
A # B + C

x = C + A # B
x = A # B + C.

SECTION 3-6/DESCRIBING LOGIC CIRCUITS ALGEBRAICALLY 67

FIGURE 3-13 (a) Logic

circuit with its Boolean

expression; (b) logic circuit

whose expression requires

parentheses.

A

B x = A • B + C
C

A • B

(a)

A

B x = (A + B) • C
C

A + B

(b)

A

B

A

B x = A + B

A + B

(b)(a)

x = A + B

AFIGURE 3-14 Circuits

using INVERTERs.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 67

In Figure 3-14(b), the output of the OR gate is equal to A � B and is fed

through an INVERTER.The INVERTER output is therefore equal to

because it inverts the complete input expression. Note that the bar covers the

entire expression (A � B). This is important because, as will be shown later,

the expressions and are not equivalent. The expression

means that A is ORed with B and then their OR sum is inverted,

whereas the expression indicates that A is inverted and B is inverted

and the results are then ORed together.

Figure 3-15 shows two more examples, which should be studied carefully.

Note especially the use of two separate sets of parentheses in Figure 3-15(b).

Also notice in Figure 3-15(a) that the input variable A is connected as an in-

put to two different gates.

(A + B)

(A + B)

(A + B)(A + B)

(A + B)

68 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-15 More examples.

A
B
C

A

D

A

B

C

D

E

A + B

A + D

A
ABC

A + D

(a)

x = ABC (A + D)

(A + B)C (A + B)C

(b)

D + (A + B)C

x = [D + (A + B)C] • E

3-7 EVALUATING LOGIC-CIRCUIT OUTPUTS

Once we have the Boolean expression for a circuit output, we can obtain the

output logic level for any set of input levels. For example, suppose that we

want to know the logic level of the output x for the circuit in Figure 3-15(a)

for the case where and As in ordinary algebra,D = 1.A = 0, B = 1, C = 1,

REVIEW QUESTIONS 1. In Figure 3-15(a), change each AND gate to an OR gate, and change the

OR gate to an AND gate. Then write the expression for output x.

2. In Figure 3-15(b), change each AND gate to an OR gate, and each OR

gate to an AND gate. Then write the expression for x.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 68

the value of x can be found by “plugging” the values of the variables into the

expression and performing the indicated operations as follows:

As another illustration, let us evaluate the output of the circuit in Figure

3-15(b) for and

In general, the following rules must always be followed when evaluating a

Boolean expression:

1. First, perform all inversions of single terms; that is, or

2. Then perform all operations within parentheses.

3. Perform an AND operation before an OR operation unless parentheses

indicate otherwise.

4. If an expression has a bar over it, perform the operations inside the ex-

pression first and then invert the result.

For practice, determine the outputs of both circuits in Figure 3-15 for the

case where all inputs are 1. The answers are and respectively.

Analysis Using a Table
Whenever you have a combinational logic circuit and you want to know how

it works, the best way to analyze it is to use a truth table. The advantages of

this method are:

It allows you to analyze one gate or logic combination at a time.

It allows you to easily double-check your work.

When you are done, you have a table that is of tremendous benefit in

troubleshooting the logic circuit.

Recall that a truth table lists all the possible input combinations in nu-

merical order. For each possible input combination, we can determine the logic

state at every point (node) in the logic circuit including the output. For exam-

ple refer to Figure 3-16(a). There are several intermediate nodes in this circuit

that are neither inputs nor outputs to the circuit. They are simply connections

between one gate’s output and another gate’s input. In this diagram they have

been labeled u, v, and w. The first step after listing all the input combinations

is to create a column in the truth table for each intermediate signal (node) as

shown in Figure 3-16(b). Node u has been filled in as the complement of A.

x = 1,x = 0

1 = 0.0 = 1

 = 1

 = 1 # 1

 = [1 + 1] # 1

 = [1 + 0] # 1

 = [1 + 0 # 1] # 1

 = [1 + (0 + 0) # 1] # 1

x = [D + (A + B)C] # E

E = 1.A = 0, B = 0, C = 1, D = 1,

 = 0

 = 1 # 1 # 1 # 0

 = 1 # 1 # 1 # (1)

 = 1 # 1 # 1 # (0 + 1)

 = 0 # 1 # 1 # (0 + 1)

x = ABC(A + D)

SECTION 3-7/EVALUATING LOGIC-CIRCUIT OUTPUTS 69

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 69

The next step is to fill in the values for column v as shown in Figure 3-16(c).

From the diagram we can see that The node v should be HIGH when

(node u) is HIGH AND B is HIGH. This occurs whenever A is LOW AND B
is HIGH. The third step is to predict the values at node w which is the logical

product of BC. This column is HIGH whenever B is HIGH AND C is HIGH as

shown in Figure 3-16(d). The final step is to logically combine columns v and

w to predict the output x. Since the x output will be HIGH when

v is HIGH OR w is HIGH as shown in Figure 3-16(e).

If you built this circuit and it was not producing the correct output for x
under all conditions, this table could be used to find the trouble.The general

procedure is to test the circuit under each combination of inputs. If any in-

put combination produces an incorrect output (i.e., a fault), compare the

actual logic state of each intermediate node in the circuit with the correct

theoretical value in the table while applying that input condition. If the logic

state for an intermediate node is correct, the problem must be farther to the

right of that node. If the logic state for an intermediate node is incorrect, the

problem must be to the left of that node (or that node is shorted to some-

thing). Detailed troubleshooting procedures and possible circuit faults will

be covered more extensively in Chapter 4.

x = v + w,

A
v = AB.

70 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-16 Analysis of

a logic circuit using truth

tables.
u = A

v = AB
x

A

B

C

w = BC

A B C u=
A

v=
AB

w=
BC

x=
v+w

0 0 1
0 0 1
0 1 1
0 1 1
1 0 0
1 0 0
1 1 0
1 1

0
1
0
1
0
1
0
1 0

(b)

A B C u=
A

v=
AB

w=
BC

x=
v+w

(c)

0 0 0 1 0

0 0 1 1 0

0 1 0 1 1
0 1 1 1 1
1 0 0 0 0

1 0 1 0 0

1 1 0 0 0

1 1 1 0 0

A B C u=
A

v=
AB

w=
BC

x=
v+w

0 0 0 1 0 0

0 0 1 1 0 0

0 1 0 1 1 0

0 1 1 1 1 1
1 0 0 0 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 1 1 0 0 1

(d)

0 0 0 0 0

0 1 0 0 0

0 0 1 0 1
0 1 1 1 1
1 0 0 0 0

1 1 0 0 0

1 0 0 0 0

1

0
0
1
1
0
0
1
1 1

1
1
1
1
0
0
0
0 0 1 1

A B C u=
A

v=
AB

w=
BC

x=
v+w

(e)

(a)

TOCCMC03_0131725793.QXD 12/21/05 11:12 AM Page 70

3-8 IMPLEMENTING CIRCUITS FROM BOOLEAN EXPRESSIONS

When the operation of a circuit is defined by a Boolean expression, we can

draw a logic-circuit diagram directly from that expression. For example, if we

needed a circuit that was defined by , we would immediately

know that all that was needed was a three-input AND gate. If we needed a

circuit that was defined by , we would use a two-input OR gate

with an INVERTER on one of the inputs. The same reasoning used for these

simple cases can be extended to more complex circuits.

x = A + B

x = A # B # C

SECTION 3-8/IMPLEMENTING CIRCUITS FROM BOOLEAN EXPRESSIONS 71

Analyze the operation of Figure 3-15(a) by creating a table showing the logic

state at each node of the circuit.

Solution

Fill in the column for t by entering a 1 for all entries where A � 0 and

B � 1 and C � 1.

Fill in the column for u by entering a 1 for all entries where A � 1 or D � 1.

Fill in the column for v by complementing all entries in column u.

Fill in the column for x by entering a 1 for all entries where t � l and v � 1.

A B C D t � u � A � D v � x � tv

0 0 0 0 0 0 1 0

0 0 0 1 0 1 0 0

0 0 1 0 0 0 1 0

0 0 1 1 0 1 0 0

0 1 0 0 0 0 1 0

0 1 0 1 0 1 0 0

0 1 1 0 1 0 1 1

0 1 1 1 1 1 0 0

1 0 0 0 0 1 0 0

1 0 0 1 0 1 0 0

1 0 1 0 0 1 0 0

1 0 1 1 0 1 0 0

1 1 0 0 0 1 0 0

1 1 0 1 0 1 0 0

1 1 1 0 0 1 0 0

1 1 1 1 0 1 0 0

A � DABC

EXAMPLE 3-6

REVIEW QUESTIONS 1. Use the expression for x to determine the output of the circuit in Figure

3-15(a) for the conditions and

2. Use the expression for x to determine the output of the circuit in Figure

3-15(b) for the conditions

3. Determine the answers to Questions 1 and 2 by finding the logic levels

present at each gate output using a table as in Figure 3-16.

A = B = E = 1, C = D = 0.

D = 0.A = 0, B = 1, C = 1,

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 71

Suppose that we wanted to construct a circuit whose output is

This Boolean expression contains three terms

which are ORed together. This tells us that a three-input OR

gate is required with inputs that are equal to AC, , and This is illus-

trated in Figure 3-17(a), where a three-input OR gate is drawn with inputs la-

beled as AC, , and ABC.BC

ABC.BC
(AC, BC, ABC),

y = AC + BC + ABC.

72 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-17 Constructing

a logic circuit from a

Boolean expression.

AC

ABC
BC y = AC + BC + ABC

(a)

y = AC + BC + ABC

A

B

C
C

A

B

AC

ABC

BC

(b)

C

C

B

Each OR gate input is an AND product term, which means that an AND

gate with appropriate inputs can be used to generate each of these terms.

This is shown in Figure 3-17(b), which is the final circuit diagram. Note the

use of INVERTERs to produce the and terms required in the expression.

This same general approach can always be followed, although we shall

find that there are some clever, more efficient techniques that can be em-

ployed. For now, however, this straightforward method will be used to mini-

mize the number of new items that are to be learned.

CA

Draw the circuit diagram to implement the expression

Solution

This expression shows that the terms A � B and are inputs to an AND

gate, and each of these two terms is generated from a separate OR gate. The

result is drawn in Figure 3-18.

B + C

x = (A + B)(B + C).

A

B

C

A + B

B + C
B

x = (A + B)(B + C)

FIGURE 3-18
Example 3-7.

EXAMPLE 3-7

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 72

3-9 NOR GATES AND NAND GATES

Two other types of logic gates, NOR gates and NAND gates, are widely used

in digital circuits. These gates actually combine the basic AND, OR, and

NOT operations, so it is a relatively simple matter to write their Boolean

expressions.

NOR Gate
The symbol for a two-input NOR gate is shown in Figure 3-19(a). It is the

same as the OR gate symbol except that it has a small circle on the output.

The small circle represents the inversion operation. Thus, the NOR gate op-

erates like an OR gate followed by an INVERTER, so that the circuits in

Figure 3-19(a) and (b) are equivalent, and the output expression for the NOR

gate is x = A + B.

SECTION 3-9/NOR GATES AND NAND GATES 73

FIGURE 3-19 (a) NOR

symbol; (b) equivalent circuit;

(c) truth table.

A
0
0
1
1

B
0
1
0
1

 A + B
0
1
1
1

 A + B
1
0
0
0

A

B
Denotes
inversion

(a)

(b)

OR NOR

(c)

x = A + B

A + BA

B

x = A + B

The truth table in Figure 3-19(c) shows that the NOR gate output is the

exact inverse of the OR gate output for all possible input conditions. An OR

gate output goes HIGH when any input is HIGH; the NOR gate output goes

LOW when any input is HIGH. This same operation can be extended to NOR

gates with more than two inputs.

REVIEW QUESTIONS
1. Draw the circuit diagram that implements the expression

using gates with no more than three inputs.

2. Draw the circuit diagram for the expression

3. Draw the circuit diagram for x = [D + (A + B)C)] # E.

y = AC + BC + ABC.

x = ABC(A + D)

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 73

Solution

One way to determine the NOR output waveform is to find first the OR out-

put waveform and then invert it (change all 1s to 0s, and vice versa). Another

way utilizes the fact that a NOR gate output will be HIGH only when all in-

puts are LOW. Thus, you can examine the input waveforms, find those time

intervals where they are all LOW, and make the NOR output HIGH for those

intervals. The NOR output will be LOW for all other time intervals. The re-

sultant output waveform is shown in the figure.

74 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-20
Example 3-8.

Determine the waveform at the output of a NOR gate for the input wave-

forms shown in Figure 3-20.

Determine the Boolean expression for a three-input NOR gate followed by

an INVERTER.

Solution

Refer to Figure 3-21, where the circuit diagram is shown. The expression at

the NOR output is which is then fed through an INVERTER to

produce

The presence of the double inversion signs indicates that the quantity (A �
B � C) has been inverted and then inverted again. It should be clear that this

simply results in the expression (A � B � C) being unchanged. That is,

Whenever two inversion bars are over the same variable or quantity, they

cancel each other out, as in the example above. However, in cases such as

the inversion bars do not cancel. This is because the smaller inver-

sion bars invert the single variables A and B, while the wide bar inverts the

quantity (). Thus, . Similarly, .A B Z ABA + B Z A + BA + B

A + B

x = (A + B + C) = (A + B + C)

x = (A + B + C)

(A + B + C),

A

B

x = A + B

1

0
A

1

0
B

1

0
x

A

C
B

A + B + C x = A + B + C = A + B + CFIGURE 3-21 Example 3-9.

EXAMPLE 3-8

EXAMPLE 3-9

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 74

NAND Gate
The symbol for a two-input NAND gate is shown in Figure 3-22(a). It is the

same as the AND gate symbol except for the small circle on its output. Once

again, this small circle denotes the inversion operation. Thus, the NAND op-

erates like an AND gate followed by an INVERTER, so that the circuits of

Figure 3-22(a) and (b) are equivalent, and the output expression for the

NAND gate is x = AB.

SECTION 3-9/NOR GATES AND NAND GATES 75

FIGURE 3-22 (a) NAND

symbol; (b) equivalent

circuit; (c) truth table.

A
0
0
1
1

B
0
1
0
1

 AB
0
0
0
1

(c)

 AB
1
1
1
0

AND NAND
A

B
Denotes
inversion

(a)

(b)

x = AB

A

B

AB AB

The truth table in Figure 3-22(c) shows that the NAND gate output is the

exact inverse of the AND gate for all possible input conditions. The AND

output goes HIGH only when all inputs are HIGH, while the NAND output

goes LOW only when all inputs are HIGH. This same characteristic is true of

NAND gates having more than two inputs.

Determine the output waveform of a NAND gate having the inputs shown in

Figure 3-23.

A

B

x

x = ABA

B

FIGURE 3-23
Example 3-10.

Solution

One way is to draw first the output waveform for an AND gate and then in-

vert it. Another way utilizes the fact that a NAND output will be LOW only

when all inputs are HIGH. Thus, you can find those time intervals during

which the inputs are all HIGH, and make the NAND output LOW for those in-

tervals. The output will be HIGH at all other times.

EXAMPLE 3-10

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 75

76 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-24
Examples 3-11 and 3-12.

Implement the logic circuit that has the expression using

only NOR and NAND gates.

Solution

The term is the expression for the output of a NOR gate.This term is

ANDed with A and B, and the result is inverted; this, of course, is the NAND

operation. Thus, the circuit is implemented as shown in Figure 3-24. Note

that the NAND gate first ANDs the A, B, and terms, and then it in-

verts the complete result.

(C + D)

(C + D)

x = AB # (C + D)

C

D

1

0
C + D

x = AB(C + D)1

1

1
0

B

A

Determine the output level in Figure 3-24 for A � B � C � 1 and D � 0.

Solution

In the first method we use the expression for x.

In the second method, we write down the input logic levels on the circuit

diagram (shown in color in Figure 3-24) and follow these levels through

each gate to the final output. The NOR gate has inputs of 1 and 0 to pro-

duce an output of 0 (an OR would have produced an output of 1). The

NAND gate thus has input levels of 0, 1, and 1 to produce an output of 1 (an

AND would have produced an output of 0).

 = 0 = 1

 = 1 # 1 # 0

 = 1 # 1 # (1)

 = 1 # 1 # (1 + 0)

x = AB(C + D)

3-10 BOOLEAN THEOREMS

We have seen how Boolean algebra can be used to help analyze a logic circuit

and express its operation mathematically. We will continue our study of

Boolean algebra by investigating the various Boolean theorems (rules) that

can help us to simplify logic expressions and logic circuits. The first group of

theorems is given in Figure 3-25. In each theorem, x is a logic variable that

EXAMPLE 3-11

EXAMPLE 3-12

REVIEW QUESTIONS 1. What is the only set of input conditions that will produce a HIGH output

from a three-input NOR gate?

2. Determine the output level in Figure 3-24 for A � B � 1, C � D � 0.

3. Change the NOR gate of Figure 3-24 to a NAND gate, and change the

NAND to a NOR. What is the new expression for x?

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 76

can be either a 0 or a 1. Each theorem is accompanied by a logic-circuit dia-

gram that demonstrates its validity.

Theorem (1) states that if any variable is ANDed with 0, the result must

be 0. This is easy to remember because the AND operation is just like ordi-

nary multiplication, where we know that anything multiplied by 0 is 0. We

also know that the output of an AND gate will be 0 whenever any input is 0,

regardless of the level on the other input.

Theorem (2) is also obvious by comparison with ordinary multiplication.

Theorem (3) can be proved by trying each case. If x � 0, then ; if

x � 1, then Thus,

Theorem (4) can be proved in the same manner. However, it can also be

reasoned that at any time either x or its inverse must be at the 0 level, and

so their AND product always must be 0.

Theorem (5) is straightforward, since 0 added to anything does not affect

its value, either in regular addition or in OR addition.

Theorem (6) states that if any variable is ORed with 1, the result will al-

ways be 1. We check this for both values of x: 0 � 1 � 1 and 1 � 1 � 1.

Equivalently, we can remember that an OR gate output will be 1 when any
input is 1, regardless of the value of the other input.

Theorem (7) can be proved by checking for both values of x: 0 � 0 � 0

and 1 � 1 � 1.

Theorem (8) can be proved similarly, or we can just reason that at any

time either x or must be at the 1 level so that we are always ORing a 0 and

a 1, which always results in 1.

Before introducing any more theorems, we should point out that when the-

orems (1) through (8) are applied, the variable x may actually represent an

expression containing more than one variable. For example, if we have

we can invoke theorem (4) by letting Thus, we can say that

The same idea can be applied to the use of any of these theorems.

Multivariable Theorems
The theorems presented below involve more than one variable:

(9) x � y � y � x
(10) x # y = y # x

AB(AB) = 0.

x = AB.AB(AB),

x

x

x # x = x.1 # 1 = 1.

0 # 0 = 0

SECTION 3-10/BOOLEAN THEOREMS 77

FIGURE 3-25 Single-variable theorems.

0

x

x

0

x

1

x

1
x

x

1

x

0

x

x

x

1

x

x

0

(1) x • 0 = 0

(2) x • 1 = x

(3) x • x = x

(4) x • x = 0

(5) x + 0 = x

(6) x + 1 = 1

(7) x + x = x

(8) x + x = 1

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 77

x y xy x � xy

0 0 0 0

0 1 0 0

1 0 0 1

1 1 1 1

(11) x � (y � z) � (x � y) � z � x � y � z
(12) x(yz) � (xy)z � xyz
(13a) x(y � z) � xy � xz
(13b) (w � x)(y � z) � wy � xy � wz � xz
(14) x � xy � x
(15a)

(15b)

Theorems (9) and (10) are called the commutative laws. These laws indi-

cate that the order in which we OR or AND two variables is unimportant; the

result is the same.

Theorems (11) and (12) are the associative laws, which state that we can

group the variables in an AND expression or OR expression any way we want.

Theorem (13) is the distributive law, which states that an expression can be

expanded by multiplying term by term just the same as in ordinary algebra.

This theorem also indicates that we can factor an expression.That is, if we have

a sum of two (or more) terms, each of which contains a common variable, the

common variable can be factored out just as in ordinary algebra. For example,

if we have the expression we can factor out the variable:

As another example, consider the expression ABC � ABD. Here the two

terms have the variables A and B in common, and so can be factored out

of both terms. That is,

ABC � ABD � AB(C � D)

Theorems (9) to (13) are easy to remember and use because they are

identical to those of ordinary algebra. Theorems (14) and (15), on the other

hand, do not have any counterparts in ordinary algebra. Each can be proved

by trying all possible cases for x and y. This is illustrated (for theorem 14) by

creating an analysis table for the equation x � xy as follows:

A # B

ABC + A B C = B(AC + A C)

BABC + A B C,

x + xy = x + y
x + xy = x + y

78 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

Notice that the value of the entire expression (x � xy) is always the same

as x.
Theorem (14) can also be proved by factoring and using theorems (6) and

(2) as follows:

All of these Boolean theorems can be useful in simplifying a logic expres-

sion—that is, in reducing the number of terms in the expression. When this is

done, the reduced expression will produce a circuit that is less complex than

the one that the original expression would have produced. A good portion of

the next chapter will be devoted to the process of circuit simplification. For

 = x [using theorem (2)]

 = x # 1 [using theorem (6)]

x + xy = x(1 + y)

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 78

now, the following examples will serve to illustrate how the Boolean theo-

rems can be applied. Note: You can find all the Boolean theorems on the in-

side back cover.

SECTION 3-10/BOOLEAN THEOREMS 79

Simplify the expression .

Solution

Factor out the common variables using theorem (13):

Using theorem (8), the term in parentheses is equivalent to 1. Thus,

[using theorem (2)]= AB
y = AB # 1

y = AB(D + D)

AB

y = ABD + AB D

Simplify

Solution

The expression can be expanded by multiplying out the terms [theorem (13)]:

Invoking theorem (4), the term Also, [theorem (3)]:

Factoring out the variable B [theorem (13)], we have

Finally, using theorems (2) and (6),

z � B

z = B(A + A + 1)

z = 0 + A # B + B # A + B = AB + AB + B

B # B = BA # A = 0.

z = A # A + A # B + B # A + B # B

z = (A + B)(A + B).

Simplify

Solution

Factoring out the common variables CD, we have

Utilizing theorem (15a), we can replace by A � B, so

 = ACD + BCD
x = CD(A + B)

A + AB

x = CD(A + AB)

x = ACD + ABCD.

EXAMPLE 3-13

EXAMPLE 3-14

EXAMPLE 3-15

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 79

3-11 DEMORGAN’S THEOREMS

Two of the most important theorems of Boolean algebra were contributed by

a great mathematician named DeMorgan. DeMorgan’s theorems are ex-

tremely useful in simplifying expressions in which a product or sum of vari-

ables is inverted. The two theorems are:

(16)

(17)

Theorem (16) says that when the OR sum of two variables is inverted,

this is the same as inverting each variable individually and then ANDing

these inverted variables. Theorem (17) says that when the AND product of

two variables is inverted, this is the same as inverting each variable individ-

ually and then ORing them. Each of DeMorgan’s theorems can readily be

proven by checking for all possible combinations of x and y. This will be left

as an end-of-chapter exercise.

Although these theorems have been stated in terms of single variables x
and y, they are equally valid for situations where x and/or y are expressions

that contain more than one variable. For example, let’s apply them to the ex-

pression as shown below:

Note that we used theorem (16) and treated as x and C as y. The result can

be further simplified because we have a product that is inverted. Using

theorem (17), the expression becomes

Notice that we can replace by B, so that we finally have

This final result contains only inverter signs that invert a single variable.

(A + B) # C = A C + BC

B

AB # C = (A + B) # C

AB
AB

(AB + C) = (AB) # C

(AB + C)

(x # y) = x + y
(x + y) = x # y

80 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

Simplify the expression to one having only single vari-

ables inverted.

Solution

Using theorem (17), and treating () as x and () as y, we have

z = (A + C) + (B + D)

B + DA + C

z = (A + C) # (B + D)

REVIEW QUESTIONS
1. Use theorems (13) and (14) to simplify

2. Use theorems (13) and (8) to simplify

3. Use theorems (13) and (15b) to simplify y = AD + ABD.

y = A BCD + A B C D.

y = AC + ABC.

EXAMPLE 3-16

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 80

We can think of this as breaking the large inverter sign down the middle

and changing the AND sign () to an OR sign (�). Now the term can

be simplified by applying theorem (16). Likewise, can be simpli-

fied:

Here we have broken the larger inverter signs down the middle and replaced

the (�) with a (·). Canceling out the double inversions, we have finally

Example 3-16 points out that when using DeMorgan’s theorems to reduce

an expression, we may break an inverter sign at any point in the expression

and change the operator sign at that point in the expression to its opposite

(� is changed to ·, and vice versa). This procedure is continued until the ex-

pression is reduced to one in which only single variables are inverted. Two

more examples are given below.

Example 1 Example 2

� �

DeMorgan’s theorems are easily extended to more than two variables.

For example, it can be proved that

Here, we see that the large inverter sign is broken at two points in the expres-

sion and the operator sign is changed to its opposite. This can be extended to

any number of variables. Again, realize that the variables can themselves be

expressions rather than single variables. Here is another example.

� AB � CD � EF

Implications of DeMorgan’s Theorems
Let us examine theorems (16) and (17) from the standpoint of logic circuits.

First, consider theorem (16):

The left-hand side of the equation can be viewed as the output of a NOR gate

whose inputs are x and y. The right-hand side of the equation, on the other

x + y = x # y

= AB + CD + EF
x = AB # CD # EF

 x # y # z = x + y + z
 x + y + z = x # y # z

= A B + A C + D E + D F

= [A # (B + C)] + [D # (E + F)]= A # (B + C)

= (A # BC) + (D # EF)= A # (B + C)

= (A + BC) + (D + EF)= A # (B # C)

1A + BC2 � 1D + EF2z = A + B # C

z = AC + BD

 = (A # C) + B # D

z = (A + C) + (B + D)

(B + D)

(A + C)#

SECTION 3-11/DEMORGAN’S THEOREMS 81

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 81

hand, is the result of first inverting both x and y and then putting them through

an AND gate. These two representations are equivalent and are illustrated in

Figure 3-26(a). What this means is that an AND gate with INVERTERs on each

of its inputs is equivalent to a NOR gate. In fact, both representations are used

to represent the NOR function.When the AND gate with inverted inputs is used

to represent the NOR function, it is usually drawn as shown in Figure 3-26(b),

where the small circles on the inputs represent the inversion operation.

Now consider theorem (17):

The left side of the equation can be implemented by a NAND gate with in-

puts x and y. The right side can be implemented by first inverting inputs x
and y and then putting them through an OR gate. These two equivalent rep-

resentations are shown in Figure 3-27(a). The OR gate with INVERTERs on

each of its inputs is equivalent to the NAND gate. In fact, both representa-

tions are used to represent the NAND function. When the OR gate with in-

verted inputs is used to represent the NAND function, it is usually drawn as

shown in Figure 3-27(b), where the circles again represent inversion.

x # y = x + y

82 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-26
(a) Equivalent circuits

implied by theorem (16);

(b) alternative symbol for

the NOR function.

FIGURE 3-27
(a) Equivalent circuits

implied by theorem (17);

(b) alternative symbol for

the NAND function.

(b)

x

y
x • y = x + y

x

y

(a)

x

y

x

yx + y x • y = x + y

Determine the output expression for the circuit of Figure 3-28 and simplify

it using DeMorgan’s theorems.

A
B

C

z = A • B • C = A + B + C = A + B + C

C

(b)

x

y
x + y = xy

x

y
x + y = xy xy

(a)

x

y

x

y

FIGURE 3-28
Example 3-17.

EXAMPLE 3-17

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 82

Solution

The expression for z is Use DeMorgan’s theorem to break the large

inversion sign:

Cancel the double inversions over C to obtain

z = A + B + C

z = A + B + C

z = ABC.

SECTION 3-12/UNIVERSALITY OF NAND GATES AND NOR GATES 83

3-12 UNIVERSALITY OF NAND GATES AND NOR GATES

All Boolean expressions consist of various combinations of the basic opera-

tions of OR, AND, and INVERT. Therefore, any expression can be imple-

mented using combinations of OR gates, AND gates, and INVERTERs. It is

possible, however, to implement any logic expression using only NAND gates

and no other type of gate. This is because NAND gates, in the proper combi-

nation, can be used to perform each of the Boolean operations OR, AND, and

INVERT. This is demonstrated in Figure 3-29.

A

A

B

A

B

A

INVERTER

AND

OR

A

A

B

B
1

2

3

1

2

(a)

(b)

(c)

x = A • A = A

AB

A

B

x = AB

x = A B = A + B

FIGURE 3-29 NAND gates can be used to implement any Boolean function.

REVIEW QUESTIONS
1. Use DeMorgan’s theorems to convert the expression to

one that has only single-variable inversions.

2. Repeat question 1 for the expression

3. Implement a circuit having output expression using only a NOR

gate and an INVERTER.

4. Use DeMorgan’s theorems to convert y � to an expression

containing only single-variable inversions.

A + B + CD

z = A BC

y = RST + Q.

z = (A + B) # C

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 83

First, in Figure 3-29(a), we have a two-input NAND gate whose inputs are

purposely connected together so that the variable A is applied to both. In

this configuration, the NAND simply acts as INVERTER because its output

is

In Figure 3-29(b), we have two NAND gates connected so that the AND

operation is performed. NAND gate 2 is used as an INVERTER to change

to which is the desired AND function.

The OR operation can be implemented using NAND gates connected as

shown in Figure 3-29(c). Here NAND gates 1 and 2 are used as INVERTERs

to invert the inputs, so that the final output is which can be sim-

plified to x � A � B using DeMorgan’s theorem.

In a similar manner, it can be shown that NOR gates can be arranged to

implement any of the Boolean operations. This is illustrated in Figure 3-30.

Part (a) shows that a NOR gate with its inputs connected together behaves

as an INVERTER because the output is x = A + A = A.

x = A # B,

AB = AB,

AB

x = A # A = A.

84 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-30 NOR gates can be used to implement any Boolean operation.

A

INVERTER

A

B

OR

A

B

AND

A

A

A

B

B

(a)

(b)

(c)

A

B

x = A + B = A B

x = A + A = A

A + B A + B
2

3

1

1

2

In Figure 3-30(b), two NOR gates are arranged so that the OR opera-

tion is performed. NOR gate 2 is used as an INVERTER to change

to which is the desired OR function.

The AND operation can be implemented with NOR gates as shown in

Figure 3-30(c). Here, NOR gates 1 and 2 are used as INVERTERs to invert

the inputs, so that the final output is which can be simplified to

by use of DeMorgan’s theorem.

Since any of the Boolean operations can be implemented using only

NAND gates, any logic circuit can be constructed using only NAND gates.

The same is true for NOR gates. This characteristic of NAND and NOR gates

can be very useful in logic-circuit design, as Example 3-18 illustrates.

x = A # B
x = A + B,

A + B = A + B,

A + B

In a certain manufacturing process, a conveyor belt will shut down when-

ever specific conditions occur. These conditions are monitored and reflected

EXAMPLE 3-18

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 84

SECTION 3-12/UNIVERSALITY OF NAND GATES AND NOR GATES 85

7654321

74LS00

14 13 12 11 10 9 8

GND

VCC

7654321

74LS08

14 13 12 11 10 9 8

GND

VCC

7654321

74LS32

14 13 12 11 10 9 8

GND

VCC

FIGURE 3-31 ICs available for Example 3-18.

Solution

The straightforward method for implementing the given expression uses two

AND gates and an OR gate, as shown in Figure 3-32(a). This implementation

uses two gates from the 74LS08 IC and a single gate from the 74LS32 IC.The

numbers in parentheses at each input and output are the pin numbers of the

respective IC. These are always shown on any logic-circuit wiring diagram.

For our purposes, most logic diagrams will not show pin numbers unless they

are needed in the description of circuit operation.

Another implementation can be accomplished by taking the circuit of

Figure 3-32(a) and replacing each AND gate and OR gate by its equivalent

NAND gate implementation from Figure 3-29. The result is shown in Figure

3-32(b).

At first glance, this new circuit looks as if it requires seven NAND

gates. However, NAND gates 3 and 5 are connected as INVERTERs in se-

ries and can be eliminated from the circuit because they perform a double

inversion of the signal out of NAND gate 1. Similarly, NAND gates 4 and 6

can be eliminated.The final circuit, after eliminating the double INVERTERs,

is drawn in Figure 3-32(c).

This final circuit is more efficient than the one in Figure 3-32(a) be-

cause it uses three two-input NAND gates that can be implemented from

one IC, the 74LS00.

by the states of four logic signals as follows: signal A will be HIGH when-

ever the conveyor belt speed is too fast; signal B will be HIGH whenever

the collection bin at the end of the belt is full; signal C will be HIGH when

the belt tension is too high; signal D will be HIGH when the manual over-

ride is off.

A logic circuit is needed to generate a signal x that will go HIGH when-

ever conditions A and B exist simultaneously or whenever conditions C
and D exist simultaneously. Clearly, the logic expression for x will be

x � AB � CD. The circuit is to be implemented with a minimum number

of ICs. The TTL integrated circuits shown in Figure 3-31 are available.

Each IC is a quad, which means that it contains four identical gates on one

chip.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 85

3-13 ALTERNATE LOGIC-GATE REPRESENTATIONS

We have introduced the five basic logic gates (AND, OR, INVERTER, NAND,

and NOR) and the standard symbols used to represent them on logic-circuit

diagrams. Although you may find that some circuit diagrams still use these

86 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

C

D

A

B

74LS00

74LS00

(8)
x

(9) 74LS00

(10)

(3)

(6)

(1)

(2)

(4)

(5)

(c)

(b)

C

D

A

B

74LS08

74LS08

(3)
x = AB + CD

(1)

(2)

(3)

(6)

(1)

(2)

(4)

(5)

C

D

A

B

x

74LS32

AND

ORAND

After eliminating
double inversions

7

(a)

1

2

3 5

4 6

FIGURE 3-32 Possible

implementations for

Example 3-18.

REVIEW QUESTIONS 1. How many different ways do we now have to implement the inversion op-

eration in a logic circuit?

2. Implement the expression x � (A � B)(C � D) using OR and AND gates.

Then implement the expression using only NOR gates by converting

each OR and AND gate to its NOR implementation from Figure 3-30.

Which circuit is more efficient?

3. Write the output expression for the circuit of Figure 3-32(c), and use

DeMorgan’s theorems to show that it is equivalent to the expression for

the circuit of Figure 3-32(a).

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 86

standard symbols exclusively, it has become increasingly more common to

find circuit diagrams that utilize alternate logic symbols in addition to the

standard symbols.

Before discussing the reasons for using an alternate symbol for a logic

gate, we will present the alternate symbols for each gate and show that they

are equivalent to the standard symbols. Refer to Figure 3-33; the left side of

the illustration shows the standard symbol for each logic gate, and the right

side shows the alternate symbol. The alternate symbol for each gate is ob-

tained from the standard symbol by doing the following:

1. Invert each input and output of the standard symbol. This is done by

adding bubbles (small circles) on input and output lines that do not have

bubbles and by removing bubbles that are already there.

2. Change the operation symbol from AND to OR, or from OR to AND. (In

the special case of the INVERTER, the operation symbol is not changed.)

SECTION 3-13/ALTERNATE LOGIC-GATE REPRESENTATIONS 87

FIGURE 3-33 Standard

and alternate symbols for

various logic gates and

inverter.

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A A

A • B

A + B

AB

A + B

A
A

A • B = A + B

A + B = AB

A + B = AB

A • B = A + B

AND

OR

NAND

NOR

INV

For example, the standard NAND symbol is an AND symbol with a bub-

ble on its output. Following the steps outlined above, remove the bubble

from the output, and add a bubble to each input. Then change the AND sym-

bol to an OR symbol. The result is an OR symbol with bubbles on its inputs.

We can easily prove that this alternate symbol is equivalent to the stan-

dard symbol by using DeMorgan’s theorems and recalling that the bubble

represents an inversion operation. The output expression from the standard

NAND symbol is which is the same as the output expression for

the alternate symbol. This same procedure can be followed for each pair of

symbols in Figure 3-33.

Several points should be stressed regarding the logic symbol equivalences:

1. The equivalences can be extended to gates with any number of inputs.

2. None of the standard symbols have bubbles on their inputs, and all the

alternate symbols do.

AB = A + B,

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 87

3. The standard and alternate symbols for each gate represent the same

physical circuit; there is no difference in the circuits represented by the two
symbols.

4. NAND and NOR gates are inverting gates, and so both the standard and

the alternate symbols for each will have a bubble on either the input or

the output. AND and OR gates are noninverting gates, and so the alter-

nate symbols for each will have bubbles on both inputs and output.

Logic-Symbol Interpretation
Each of the logic-gate symbols of Figure 3-33 provides a unique interpreta-

tion of how the gate operates. Before we can demonstrate these interpreta-

tions, we must first establish the concept of active logic levels.

When an input or output line on a logic circuit symbol has no bubble on

it, that line is said to be active-HIGH. When an input or output line does have

a bubble on it, that line is said to be active-LOW. The presence or absence of

a bubble, then, determines the active-HIGH/active-LOW status of a circuit’s

inputs and output, and is used to interpret the circuit operation.

To illustrate, Figure 3-34(a) shows the standard symbol for a NAND gate.

The standard symbol has a bubble on its output and no bubbles on its inputs.

Thus, it has an active-LOW output and active-HIGH inputs. The logic opera-

tion represented by this symbol can therefore be interpreted as follows:

The output goes LOW only when all of the inputs are HIGH.

Note that this says that the output will go to its active state only when all of

the inputs are in their active states. The word all is used because of the AND

symbol.

88 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-34
Interpretation of the two

NAND gate symbols.

A

B

ABA

B

Active -HIGH
LOW state is
the active state.

(a)

Output goes LOW only
when all inputs are HIGH.

Active -LOW

HIGH state is the
active state.

(b)

Output is HIGH when
any input is LOW.

A + B = AB

The alternate symbol for a NAND gate shown in Figure 3-34(b) has an

active-HIGH output and active-LOW inputs, and so its operation can be stated

as follows:

The output goes HIGH when any input is LOW.

This says that the output will be in its active state whenever any of the in-

puts is in its active state. The word any is used because of the OR symbol.

With a little thought, you can see that the two interpretations for the

NAND symbols in Figure 3-34 are different ways of saying the same thing.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 88

Summary
At this point you are probably wondering why there is a need to have two dif-

ferent symbols and interpretations for each logic gate. We hope the reasons

will become clear after reading the next section. For now, let us summarize

the important points concerning the logic-gate representations.

1. To obtain the alternate symbol for a logic gate, take the standard symbol

and change its operation symbol (OR to AND, or AND to OR), and change

the bubbles on both inputs and output (i.e., delete bubbles that are pres-

ent, and add bubbles where there are none).

2. To interpret the logic-gate operation, first note which logic state, 0 or 1,

is the active state for the inputs and which is the active state for the out-

put. Then realize that the output’s active state is produced by having all
of the inputs in their active state (if an AND symbol is used) or by having

any of the inputs in its active state (if an OR symbol is used).

SECTION 3-14/WHICH GATE REPRESENTATION TO USE 89

FIGURE 3-35
Interpretation of the two

OR gate symbols.

Give the interpretation of the two OR gate symbols.

Solution

The results are shown in Figure 3-35. Note that the word any is used when the

operation symbol is an OR symbol and the word all is used when it includes

an AND symbol.

A

B

A • B = A + B

A

B

A + B

Active-HIGH

HIGH state is
active state.

(a)

Output goes HIGH when
any input is HIGH.

Output goes LOW only
when all inputs are LOW.

Active-LOW

LOW state is
active state.

(b)

3-14 WHICH GATE REPRESENTATION TO USE

Some logic-circuit designers and some textbooks use only the standard logic-

gate symbols in their circuit schematics. While this practice is not incorrect, it

does nothing to make the circuit operation easier to follow. Proper use of the

alternate gate symbols in the circuit diagram can make the circuit operation

EXAMPLE 3-19

REVIEW QUESTIONS 1. Write the interpretation of the operation performed by the standard

NOR gate symbol in Figure 3-33.

2. Repeat question 1 for the alternate NOR gate symbol.

3. Repeat question 1 for the alternate AND gate symbol.

4. Repeat question 1 for the standard AND gate symbol.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 89

much clearer. This can be illustrated by considering the example shown in

Figure 3-36.

The circuit in Figure 3-36(a) contains three NAND gates connected to

produce an output Z that depends on inputs A, B, C, and D. The circuit dia-

gram uses the standard symbol for each of the NAND gates. While this dia-

gram is logically correct, it does not facilitate an understanding of how the

circuit functions.The circuit representations given in Figures 3-36(b) and (c),

however, can be analyzed more easily to determine the circuit operation.

The representation of Figure 3-36(b) is obtained from the original circuit

diagram by replacing NAND gate 3 with its alternate symbol. In this dia-

gram, output Z is taken from a NAND gate symbol that has an active-HIGH

output.Thus, we can say that Z will go HIGH when either X or Y is LOW. Now,

since X and Y each appear at the output of NAND symbols having active-LOW

outputs, we can say that X will go LOW only if A � B � 1, and Y will go LOW

only if C � D � 1. Putting this all together, we can describe the circuit oper-

ation as follows:

Output Z will go HIGH whenever either A � B � 1 or C � D � 1
(or both).

This description can be translated to truth-table form by setting Z � 1 for

those cases where A � B � 1 and for those cases where C � D � 1. For all other

cases, Z is made a 0. The resultant truth table is shown in Figure 3-36(d).

The representation of Figure 3-36(c) is obtained from the original circuit

diagram by replacing NAND gates 1 and 2 by their alternate symbols. In this

90 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-36 (a) Original

circuit using standard

NAND symbols; (b) equiva-

lent representation where

output Z is active-HIGH; (c)

equivalent representation

where output Z is active-

LOW; (d) truth table.

(d)

A
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

B
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

C
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

D
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

Z
0
0
0
1
0
0
0
1
0
0
0
1
1
1
1
1

A

B

Z

C

D

A

B

C

D

A

B

C

D

1

2

3

(a)

(b)

(c)

1

2

Z

X

Y
Active-HIGH

Z

Active-LOW

X

Y

3

3

1

2

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 90

equivalent representation, the Z output is taken from a NAND gate that has an

active-LOW output.Thus, we can say that Z will go LOW only when X � Y � 1.

Because X and Y are active-HIGH outputs, we can say that X will be HIGH

when either A or B is LOW, and Y will be HIGH when either C or D is LOW.

Putting this all together, we can describe the circuit operation as follows:

Output Z will go LOW only when A or B is LOW and C or D is LOW.

This description can be translated to truth-table form by making Z � 0 for all

cases where at least one of the A or B inputs is LOW at the same time that at

least one of the C or D inputs is LOW. For all other cases, Z is made a 1. The

resultant truth table is the same as that obtained for the circuit diagram of

Figure 3-36(b).

Which Circuit Diagram Should Be Used?
The answer to this question depends on the particular function being per-

formed by the circuit output. If the circuit is being used to cause some action

(e.g., turn on an LED or activate another logic circuit) when output Z goes to

the 1 state, then we say that Z is to be active-HIGH, and the circuit diagram

of Figure 3-36(b) should be used. On the other hand, if the circuit is being

used to cause some action when Z goes to the 0 state, then Z is to be active-

LOW, and the diagram of Figure 3-36(c) should be used.

Of course, there will be situations where both output states are used to

produce different actions and either one can be considered to be the active

state. For these cases, either circuit representation can be used.

Bubble Placement
Refer to the circuit representation of Figure 3-36(b) and note that the symbols

for NAND gates 1 and 2 were chosen to have active-LOW outputs to match the

active-LOW inputs of NAND gate 3. Refer to the circuit representation of

Figure 3-36(c) and note that the symbols for NAND gates 1 and 2 were chosen

to have active-HIGH outputs to match the active-HIGH inputs of NAND gate 3.

This leads to the following general rule for preparing logic-circuit schematics:

Whenever possible, choose gate symbols so that bubble outputs are
connected to bubble inputs, and nonbubble outputs to nonbubble
inputs.

The following examples will show how this rule can be applied.

SECTION 3-14/WHICH GATE REPRESENTATION TO USE 91

A

B

C

D

2

1

Z
A

B

C

D

2

1

Z

(a) (b)

ALARM ALARM

FIGURE 3-37 Example 3-20.

EXAMPLE 3-20 The logic circuit in Figure 3-37(a) is being used to activate an alarm when its

output Z goes HIGH. Modify the circuit diagram so that it represents the cir-

cuit operation more effectively.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 91

Solution

Because Z � 1 will activate the alarm, Z is to be active-HIGH. Thus, the AND

gate 2 symbol does not have to be changed. The NOR gate symbol should be

changed to the alternate symbol with a nonbubble (active-HIGH) output to

match the nonbubble input of AND gate 2, as shown in Figure 3-37(b). Note

that the circuit now has nonbubble outputs connected to the nonbubble in-

puts of gate 2.

92 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-38
Example 3-21.

When the output of the logic circuit in Figure 3-38(a) goes LOW, it activates

another logic circuit. Modify the circuit diagram to represent the circuit op-

eration more effectively.

E

D

C

B

A
1

2
Z

(b)

E

D

C

B

A

Z

(a)

1

2

Solution

Because Z is to be active-LOW, the symbol for OR gate 2 must be changed to

its alternate symbol, as shown in Figure 3-38(b). The new OR gate 2 symbol

has bubble inputs, and so the AND gate and OR gate 1 symbols must be

changed to bubbled outputs, as shown in Figure 3-38(b). The INVERTER al-

ready has a bubble output. Now the circuit has all bubble outputs connected

to bubble inputs of gate 2.

Analyzing Circuits
When a logic-circuit schematic is drawn using the rules we followed in these

examples, it is much easier for an engineer or technician (or student) to fol-

low the signal flow through the circuit and to determine the input conditions

that are needed to activate the output. This will be illustrated in the follow-

ing examples—which, incidentally, use circuit diagrams taken from the logic

schematics of an actual microcomputer.

The logic circuit in Figure 3-39 generates an output, MEM, that is used to ac-

tivate the memory ICs in a particular microcomputer. Determine the input

conditions necessary to activate MEM.

EXAMPLE 3-21

EXAMPLE 3-22

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 92

Solution

One way to do this would be to write the expression for MEM in terms of the

inputs RD, ROM-A, ROM-B, and RAM, and to evaluate it for the 16 possible

combinations of these inputs. While this method would work, it would re-

quire a lot more work than is necessary.

A more efficient method is to interpret the circuit diagram using the

ideas we have been developing in the last two sections. These are the steps:

1. MEM is active-LOW, and it will go LOW only when X and Y are HIGH.

2. X will be HIGH only when RD � 0.

3. Y will be HIGH when either W or V is HIGH.

4. V will be HIGH when RAM � 0.

5. W will be HIGH when either ROM-A or ROM-B � 0.

6. Putting this all together, MEM will go LOW only when RD � 0 and at

least one of the three inputs ROM-A, ROM-B, or RAM is LOW.

SECTION 3-14/WHICH GATE REPRESENTATION TO USE 93

FIGURE 3-39
Example 3-22.

FIGURE 3-40
Example 3-23.

MEM

Y

X

V

W

RD

ROM-A

ROM-B

RAM

The logic circuit in Figure 3-40 is used to control the drive spindle motor for

a floppy disk drive when the microcomputer is sending data to or receiving

data from the disk. The circuit will turn on the motor when DRIVE � 1.

Determine the input conditions necessary to turn on the motor.

EXAMPLE 3-23

Note: All gates are CMOS

DRIVE

Y
W

74HC30
74HC32

74HC02

A1

A2

A3

A4

A5

A6

A7

IN

OUT

A0

X
74HC02

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 93

Solution

Once again, we will interpret the diagram in a step-by-step fashion:

1. DRIVE is active-HIGH, and it will go HIGH only when X � Y � 0.

2. X will be LOW when either IN or OUT is HIGH.

3. Y will be LOW only when W � 0 and A0 � 0.

4. W will be LOW only when A1 through A7 are all HIGH.

5. Putting this all together, DRIVE will be HIGH when A1 � A2 � A3 � A4 �
A5 � A6 � A7 � 1 and A0 � 0, and either IN or OUT or both are 1.

Note the strange symbol for the eight-input CMOS NAND gate (74HC30);

also note that signal A7 is connected to two of the NAND inputs.

Asserted Levels
We have been describing logic signals as being active-LOW or active-HIGH.

For example, the output MEM in Figure 3-39 is active-LOW, and the output

DRIVE in Figure 3-40 is active-HIGH because these are the output states that

cause something to happen. Similarly, Figure 3-40 has active-HIGH inputs A1

to A7, and active-LOW input A0.

When a logic signal is in its active state, it can be said to be asserted. For

example, when we say that input A0 is asserted, we are saying that it is in its

active-LOW state. When a logic signal is not in its active state, it is said to be

unasserted. Thus, when we say that DRIVE is unasserted, we mean that it is

in its inactive state (low).

Clearly, the terms asserted and unasserted are synonymous with active
and inactive, respectively:

asserted � active
unasserted � inactive

Both sets of terms are in common use in the digital field, so you should rec-

ognize both ways of describing a logic signal’s active state.

Labeling Active-LOW Logic Signals
It has become common practice to use an overbar to label active-LOW sig-

nals. The overbar serves as another indication that the signal is active-LOW;

of course, the absence of an overbar means that the signal is active-HIGH.

To illustrate, all of the signals in Figure 3-39 are active-LOW, and so they

can be labeled as follows:

, , , ,

Remember, the overbar is simply a way to emphasize that these are active-

LOW signals. We will employ this convention for labeling logic signals when-

ever appropriate.

Labeling Bistate Signals
Very often, an output signal will have two active states; that is, it will have

one important function in the HIGH state and another in the LOW state. It

is customary to label such signals so that both active states are apparent. A

common example is the read/write signal, which is interpreted as

follows: when this signal is HIGH, the read operation (RD) is performed;

when it is LOW, the write operation (WR) is performed.

RD/WR,

MEMRAMROM-BROM-ARD

94 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 94

SECTION 3-15/IEEE/ANSI STANDARD LOGIC SYMBOLS 95

REVIEW QUESTIONS 1. Use the method of Examples 3-22 and 3-23 to determine the input con-

ditions needed to activate the output of the circuit in Figure 3-37(b).

2. Repeat question 1 for the circuit of Figure 3-38(b).

3. How many NAND gates are shown in Figure 3-39?

4. How many NOR gates are shown in Figure 3-40?

5. What will be the output level in Figure 3-38(b) when all of the inputs are

asserted?

6. What inputs are required to assert the alarm output in Figure 3-37(b)?

7. Which of the following signals is active-LOW: ?RD, W, R/W

3-15 IEEE/ANSI STANDARD LOGIC SYMBOLS

The logic symbols we have used so far in this chapter are the traditional stan-

dard symbols used in the digital industry for many, many years. These tradi-

tional symbols use a distinctive shape for each logic gate. A newer standard

for logic symbols was developed in 1984; it is called the IEEE/ANSI Standard

91-1984 for logic symbols.The IEEE/ANSI standard uses rectangular symbols

to represent all logic gates and circuits. A special dependency notation inside

the rectangular symbol indicates how the device outputs depend on the de-

vice inputs. Figure 3-41 shows the IEEE/ANSI symbols alongside the tradi-

tional symbols for the basic logic gates. Note the following points:

1. The rectangular symbols use a small right triangle () in place of the

small bubble of the traditional symbols to indicate the inversion of the

logic level.The presence or absence of the triangle also signifies whether

an input or output is active-LOW or active-HIGH.

x

x

x

x

x
A

B

A

B

A

B

A

B

A

A

B

A

B

A

B

A

B

A

x

x

x

x

x

(b)(a)

NOR

NAND

OR

AND

NOT

1

&

&

≥1

≥1

FIGURE 3-41 Standard

logic symbols: (a) traditional;

(b) IEEE/ANSI.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 95

2. A special notation inside each rectangular symbol describes the logic re-

lation between inputs and output.The “1” inside the INVERTER symbol

denotes a device with only one input; the triangle on the output indicates

that the output will go to its active-LOW state when that one input is in

its active-HIGH state. The “&” inside the AND symbol means that the

output will go to its active-HIGH state when all of the inputs are in their

active-HIGH state. The “ ” inside the OR gate means that the output

will go to its active state (HIGH) whenever one or more inputs are in their

active state (HIGH).

3. The rectangular symbols for the NAND and the NOR are the same as

those for the AND and the OR, respectively, with the addition of the

small inversion triangle on the output.

Traditional or IEEE/ANSI?
The IEEE/ANSI standard has not yet been widely accepted for use in the dig-

ital field, although you will run across it in some newer equipment schemat-

ics. Most digital IC data books include both the traditional and IEEE/ANSI

symbols, and it is possible that the newer standard might eventually become

more widely used. We will employ the traditional symbols in most of the cir-

cuit diagrams throughout this book.

Ú

96 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

REVIEW QUESTIONS 1. Draw all of the basic logic gates using both the traditional symbols and

the IEEE/ANSI symbols.

2. Draw the IEEE/ANSI symbol for a NOR gate with active-HIGH output.

3-16 SUMMARY OF METHODS TO DESCRIBE LOGIC CIRCUITS

The topics we have covered so far in this chapter have all centered around

just three simple logic functions that we refer to as AND, OR, and NOT. The

concept is not new to anyone because we all use these logical functions every

day as we make decisions. Here are some logical examples. If it is raining OR

the newspaper says that it could rain, then I will take my umbrella. If I get

my paycheck today AND I make it to the bank, then I will have money to

spend this evening. If I have a passing grade in lecture AND I have NOT

failed in lab, then I will pass my digital class. At this point, you may be won-

dering why we have spent so much effort in describing such familiar con-

cepts. The answer can be summed up in two key points:

1. We must be able to represent these logical decisions.

2. We must be able to combine these logic functions and implement a decision-

making system.

We have learned how to represent each of the basic logic functions using:

Logical statements in our own language

Truth tables

Traditional graphic logic symbols

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 96

IEEE/ANSI standard logic symbols

Boolean algebra expressions

Timing diagrams

SECTION 3-16/SUMMARY OF METHODS TO DESCRIBE LOGIC CIRCUITS 97

The following English expression describes the way a logic circuit needs to

operate in order to drive a seatbelt warning indicator in a car.

If the driver is present AND the driver is NOT buckled up AND
the ignition switch is on, THEN turn on the warning light.

Describe the circuit using Boolean algebra, schematic diagrams with logic

symbols, truth tables, and timing diagrams.

Solution

See Figure 3-42.

EXAMPLE 3-24

Boolean expression

warning_light = driver_present • buckled_up • ignition_on

(a)

Schematic diagram

driver_present

buckled_up

ignition_on

(b)

Truth table

driver_present

0

0

0

0

1

1

1

1

buckled_up

0

0

1

1

0

0

1

1

ignition_on

0

1

0

1

0

1

0

1

warning_light

0

0

0

0

0

1

0

0

(c)

Timing diagram

Name

ignition_on

buckled_up

driver_present

warning_light

0

0

1

0

Val 1.0 ms 2.0 ms 3.0 ms 4.0 ms 5.0 ms 6.0 ms 7.0 ms 8.0 ms 9.0 ms 10 ms

(d)

warning_light

FIGURE 3-42 Methods of describing logic circuits: (a) Boolean expression;

(b) schematic diagram; (c) truth table; (d) timing diagram.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 97

Figure 3-42 shows four different ways of representing the logic circuit

that was described in English as the problem statement of Example 3-24.

There are many other ways in which we could represent the logic of this de-

cision. As an example we could dream up an entirely new set of graphic sym-

bols, or state the logical relationship in French or Japanese. Of course, we

cannot cover all the possible ways of describing a logic circuit, but we must

understand the most common methods to be able to communicate with oth-

ers in this profession. Furthermore, certain situations are easier to describe

using one method over another. In some cases, a picture is worth a thousand

words, and in other cases words are concise enough and are more easily com-

municated to others. The important point here is that we need ways to de-

scribe and communicate the operation of digital systems.

98 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

REVIEW QUESTION 1. Name five ways to describe the operation of logic circuits.

3-17 DESCRIPTION LANGUAGES VERSUS PROGRAMMING
LANGUAGES*

Recent trends in the field of digital systems are favoring text-based language

description of digital circuits. You probably noticed that each description

method in Figure 3-42 offers challenges to computer entry, whether it is due to

overbars, symbols, formatting, or line-drawing issues. In this section, we will

begin to learn some of the more advanced tools that professionals in the digi-

tal field use to describe the circuits that implement their ideas.These tools are

referred to as hardware description languages (HDLs). Even with the powerful

computers we have today, it is not possible to describe a logic circuit in English

prose and expect the computer to understand what you mean. Computers need

a more rigidly defined language. We will focus on two languages in this text:

Altera hardware description language (AHDL) and very high speed integrated
circuit (VHSIC) hardware description language (VHDL).

VHDL and AHDL
VHDL is not a new language. It was developed by the Department of

Defense in the early 1980s as a concise way to document the designs in the

very high speed integrated circuit (VHSIC) program. Appending HDL onto

this acronym was too much, even for the military, and so the language was ab-

breviated to VHDL. Computer programs were developed to take the VHDL

language files and simulate the operation of the circuits. With the growth of

complex programmable logic devices in digital systems, VHDL has evolved

into one of the primary high-level hardware description languages for de-

signing and implementing digital circuits (synthesis).The language has been

standardized by the IEEE, making it universally appealing for engineers as

well as the makers of software tools that translate designs into the bit pat-

terns used to program actual devices.

AHDL is a language that the Altera Corporation developed to provide a

convenient way to configure the logic devices that they offer. Altera was one

of the first companies to introduce logic devices that can be reconfigured

*All sections covering hardware description languages may by skipped without loss of continuity in the
balance of Chapters 1–12.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 98

electronically. These devices are called programmable logic devices (PLDs).
Unlike VHDL, this language is not intended to be used as a universal lan-

guage for describing any logic circuit. It is intended to be used for program-

ming complex digital systems into Altera PLDs in a language that is generally

perceived to be easier to learn yet very similar to VHDL. It also has features

that take full advantage of the architecture of Altera devices. All of the ex-

amples in this text will use the Altera MAX�PLUS II or Quartus II software

to develop both AHDL and VHDL design files. You will see the advantage of

using Altera’s development system for both languages when you program an

actual device. The Altera system makes circuit development very easy and

contains all the necessary tools to translate from the HDL design file to a file

ready to load into an Altera PLD. It also allows you to develop building

blocks using schematic entry, AHDL,VHDL, and other methods and then in-

terconnect them to form a complete system.

Other HDLs are available that are more suitable for programming simple

programmable logic devices.You will find any of these languages easy to use

after learning the basics of AHDL or VHDL as covered in this text.

Computer Programming Languages
It is important to distinguish between hardware description languages in-

tended to describe the hardware configuration of a circuit and programming

languages that represent a sequence of instructions intended to be carried

out by a computer to accomplish some task. In both cases, we use a language
to program a device. However, computers are complex digital systems that

are made up of logic circuits. Computers operate by following a laundry list

of tasks (i.e., instructions, or “the program”), each of which must be done in

sequential order. The speed of operation is determined by how fast the com-

puter can execute each instruction. For example, if a computer were to respond

to four different inputs, it would require at least four separate instructions

(sequential tasks) to detect and identify which input changed state. A digi-

tal logic circuit, on the other hand, is limited in its speed only by how quickly

the circuitry can change the outputs in response to changes in the inputs. It

is monitoring all inputs concurrently (at the same time) and responding to

any changes.

The following analogy will help you understand the difference between

computer operation and digital logic circuit operation and the role of lan-

guage elements used to describe what the systems do. Consider the chal-

lenge of describing what is done to an Indy 500 car during a pit stop. If a single

person performed all the necessary tasks one at a time, he or she would need

to be very fast at each task. This is the way a computer operates: one task at

a time but very quickly. Of course, at Indy, there is an entire pit crew that

swarms the car, and each member of the crew does his or her task while the

others do theirs. All crew members operate concurrently, like the elements

of a digital circuit. Now consider how you would describe to someone else

what is being done to the Indy car during the pit stop using (1) the individual-

mechanic approach or (2) the pit-crew approach. Wouldn’t the two English

language descriptions of what is being done sound very similar? As we will

see, the languages used to describe digital hardware (HDL) are very similar

to languages that describe computer programs (e.g., BASIC, C, JAVA), even

though the resulting implementation operates quite differently. Knowledge

of any of these computer programming languages is not necessary to under-

stand HDL. The important thing is that when you have learned both an HDL

and a computer language, you must understand their different roles in digi-

tal systems.

SECTION 3-17/DESCRIPTION LANGUAGES VERSUS PROGRAMMING LANGUAGES 99

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 99

3-18 IMPLEMENTING LOGIC CIRCUITS WITH PLDs

Many digital circuits today are implemented using programmable logic de-

vices (PLDs). These devices are not like microcomputers or microcontrollers

that “run” the program of instructions. Instead, they are configured elec-

tronically, and their internal circuits are “wired” together electronically to

form a logic circuit. This programmable wiring can be thought of as thou-

sands of connections that are either connected (1) or not connected (0).

Figure 3-44 shows a small area of programmable connections. Each intersec-

tion between a row (horizontal wire) and a column (vertical wire) is a pro-

grammable connection. You can imagine how difficult it would be to try to

100 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-43 Decision

process of a computer

program.

Compare the operation of a computer and a logic circuit in performing the

simple logical operation of y � AB.

Solution

The logic circuit is a simple AND gate. The output y will be HIGH within ap-

proximately 10 nanoseconds of the point when A and B are HIGH simultane-

ously. Within approximately 10 nanoseconds after either input goes LOW,

the output y will be LOW.

The computer must run a program of instructions that makes decisions.

Suppose each instruction takes 20 ns (that’s pretty fast!). Each shape in the

flowchart shown in Figure 3-43 represents one instruction. Clearly, it will

take a minimum of two or three instructions (40–60 ns) to respond to

changes in the inputs.

EXAMPLE 3-25

REVIEW QUESTIONS 1. What does HDL stand for?

2. What is the purpose of an HDL?

3. What is the purpose of a computer programming language?

4. What is the key difference between HDL and computer programming

languages?

Jump back and repeat

Make y LOWMake y LOW Make y HIGH

Is B HIGH?

Is A HIGH?
No Yes

No Yes

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 100

SECTION 3-18/IMPLEMENTING LOGIC CIRCUITS WITH PLDS 101

FIGURE 3-44 Configuring

hardware connections with

programmable logic

devices.

configure these devices by placing 1s and 0s in a grid manually (which is how

they did it back in the 1970s).

The role of the hardware description language is to provide a concise and

convenient way for the designer to describe the operation of the circuit in a

format that a personal computer can handle and store conveniently. The

computer runs a special software application called a compiler to translate

from the hardware description language into the grid of 1s and 0s that can

be loaded into the PLD. If a person can master the higher-level hardware de-

scription language, it actually makes programming the PLDs much easier

than trying to use Boolean algebra, schematic drawings, or truth tables. In

much the same way that you learned the English language, we will start by

expressing simple things and gradually learn the more complicated aspects

of these languages. Our objective is to learn enough of HDL to be able to

communicate with others and perform simple tasks. A full understanding of

all the details of these languages is beyond the scope of this text and can re-

ally be mastered only by regular use.

In the sections throughout this book that cover the HDLs, we will present

both AHDL and VHDL in a format that allows you to skip over one language

and concentrate on the other without missing important information. Of

course, this setup means there will be some redundant information presented

if you choose to read about both languages. We feel this redundancy is worth

the extra effort to provide you with the flexibility of focusing on either of the

two languages or learning both by comparing and contrasting similar exam-

ples. The recommended way to use the text is to focus on one language. It is

true that the easiest way to become bilingual, and fluent in both languages, is

to be raised in an environment where both languages are spoken routinely. It

is also very easy, however, to confuse details, so we will keep the specific ex-

amples separate and independent. We hope this format provides you with the

opportunity to learn one language now and then use this book as a reference

later in your career should you need to pick up the second language.

A
B
C
D
E
F
G
H

Programmable connections matrix

Logic
circuits

Digital
INPUTS

REVIEW QUESTIONS 1. What does PLD stand for?

2. How are the circuits reconfigured electronically in a PLD?

3. What does a compiler do?

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 101

102 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

3-19 HDL FORMAT AND SYNTAX

Any language has its unique properties, similarities to other languages, and

its proper syntax. When we study grammar in school, we learn conventions

such as the order of words as elements in a sentence and proper punctuation.

This is referred to as the syntax of language. A language designed to be in-

terpreted by a computer must follow strict rules of syntax. A computer is just

an assortment of processed beach sand and wire that has no idea what you

“meant” to say, so you must present the instructions using the exact syntax

that the computer language expects and understands.The basic format of any

hardware circuit description (in any language) involves two vital elements:

1. The definition of what goes into it and what comes out of it (i.e.,

input/output specs)

2. The definition of how the outputs respond to the inputs (i.e., its operation)

A circuit schematic diagram such as Figure 3-45 can be read and under-

stood by a competent engineer or technician because both would under-

stand the meaning of each symbol in the drawing. If you understand how

each element works and how the elements are connected to each other, you

can understand how the circuit operates. On the left side of the diagram is

the set of inputs, and on the right is the set of outputs. The symbols in the

middle define its operation. The text-based language must convey the same

information. All HDLs use the format shown in Figure 3-46.

FIGURE 3-45 A schematic

diagram description.

FIGURE 3-46 Format of

HDL files.

yOUTPUT
a

INPUT

b

AND2

INPUT

Functional description

I/O definitions

Documentation

In a text-based language, the circuit being described must be given a

name. The inputs and outputs (sometimes called ports) must be assigned

names and defined according to the nature of the port. Is it a single bit from

a toggle switch? Or is it a four-bit number coming from a keypad? The text-

based language must somehow convey the nature of these inputs and out-

puts.The mode of a port defines whether it is input, output, or both.The type
refers to the number of bits and how those bits are grouped and interpreted.

If the type of input is a single bit, then it can have only two possible values:

0 and 1. If the type of input is a four-bit binary number from a keypad, it can

have any one of 16 different values The type determines

the range of possible values. The definition of the circuit’s operation in a

(00002-11112).

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 102

SECTION 3-19/HDL FORMAT AND SYNTAX 103

FIGURE 3-47 Essential

elements in AHDL. SUBDESIGN and_gate

(

a, b :INPUT;

y :OUTPUT;

)

BEGIN

y � a & b;

END;

The SUBDESIGN section defines the inputs and outputs of the logic cir-

cuit block. Something must enclose the circuit that we are trying to describe,

much the same way that a block diagram encloses everything that makes up

that part of the design. In AHDL, this input/output definition is enclosed in

parentheses. The list of variables used for inputs to this block are separated

by commas and followed by :INPUT;. In AHDL, the single-bit type is assumed

unless the variable is designated as multiple bits.The single-output bit is de-

clared with the mode :OUTPUT;. We will learn the proper way to describe

other types of inputs, outputs, and variables as we need to use them.

The set of statements that describe the operation of the AHDL circuit

are contained in the logic section between the keywords BEGIN and END. In

this example, the operation of the hardware is described by a very simple

Boolean algebra equation that states that the output (y) is assigned (�) the

logic level produced by a AND b. This Boolean algebra equation is referred

to as a concurrent assignment statement. Any statements (there is only one

in this example) between BEGIN and END are evaluated constantly and con-

currently. The order in which they are listed makes no difference. The basic

Boolean operators are:

& AND

OR

! NOT

$ XOR

REVIEW QUESTIONS 1. What appears inside the parentheses () after SUBDESIGN?

2. What appears between BEGIN and END?

A
H

D
L

text-based language is contained in a set of statements that follow the circuit in-

put/output (I/O) definition.The following two sections describe the very simple

circuit of Figure 3-45 and illustrate the critical elements of AHDL and VHDL.

BOOLEAN DESCRIPTION USING AHDL
Refer to Figure 3-47. The keyword SUBDESIGN gives a name to the circuit

block, which in this case is and_gate. The name of the file must also be

and_gate.tdf. Notice that the keyword SUBDESIGN is capitalized. This is not

required by the software, but use of a consistent style in capitalization makes

the code much easier to read.The style guide that is provided with the Altera

compiler for AHDL suggests the use of capital letters for the keywords in the

language.Variables that are named by the designer should be lowercase.

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 103

BOOLEAN DESCRIPTION USING VHDL
Refer to Figure 3-48. The keyword ENTITY gives a name to the circuit block,

which in this case is and_gate. Notice that the keyword ENTITY is capital-

ized but and_gate is not. This is not required by the software, but use of a

consistent style in capitalization makes the code much easier to read. The

style guide provided with the Altera compiler for VHDL suggests using cap-

ital letters for the keywords in the language.Variables that are named by the

designer should be lowercase.

104 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-48 Essential

elements in VHDL.

REVIEW QUESTIONS 1. What is the role of the ENTITY declaration?

2. Which key section defines the operation of the circuit?

3. What is the assignment operator used to give a value to a logic signal?

ENTITY and_gate IS

PORT (a, b :IN BIT;

y :OUT BIT);

END and_gate;

ARCHITECTURE ckt OF and_gate IS

BEGIN

y <= a AND b;

END ckt;

The ENTITY declaration can be thought of as a block description.

Something must enclose the circuit we are trying to describe, much the same

way a block diagram encloses everything that makes up that part of the de-

sign. In VHDL, the keyword PORT tells the compiler that we are defining in-

puts and outputs to this circuit block. The names used for inputs (separated

by commas) are listed, ending with a colon and a description of the mode and

type of input (:IN BIT;). In VHDL, the BIT description tells the compiler that

each variable in the list is a single bit. We will learn the proper way to de-

scribe other types of inputs, outputs, and variables as we need to use them.

The line containing END and_gate; terminates the ENTITY declaration.

The ARCHITECTURE declaration is used to describe the operation of

everything inside the block. The designer makes up a name for this architec-

tural description of the inner workings of the ENTITY block (ckt in this ex-

ample). Every ENTITY must have at least one ARCHITECTURE associated

with it. The words OF and IS are keywords in this declaration. The body of

the architecture description is enclosed between the BEGIN and END key-

words. END is followed by the name that has been assigned to this architec-

ture. Within the body (between BEGIN and END) is the description of the

block’s operation. In this example, the operation of the hardware is de-

scribed by a very simple Boolean algebra equation that states that the out-

put (y) is assigned () the logic level produced by a AND b.This is referred

to as a concurrent assignment statement, which means that all the state-

ments (there is only one in this example) between BEGIN and END are eval-

uated constantly and concurrently. The order in which they are listed makes

no difference.

6 =

V
H

D
L

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 104

3-20 INTERMEDIATE SIGNALS

In many designs, there is a need to define signal points “inside” the circuit

block. They are points in the circuit that are neither inputs nor outputs for

the block but may be useful as a reference point. It may be a signal that

needs to be connected to many other places within the block. In an analog or

digital schematic diagram, they would be called test points or nodes. In an

HDL, they are referred to as buried nodes or local signals. Figure 3-49 shows

a very simple circuit that uses an intermediate signal named m. In the HDL,

these nodes (signals) are not defined with the inputs and outputs but rather

in the section that describes the operation of the block. The inputs and out-

puts are available to other circuit blocks in the system, but these local sig-

nals are recognized only within this block.

SECTION 3-20/INTERMEDIATE SIGNALS 105

FIGURE 3-49 A logic circuit diagram with an intermediate variable.

a
INPUT

b

yOUTPUT

c

m

Intermediate signal m

INPUT

INPUT

In the example code that follows, notice the information at the top. The

purpose of this information is strictly for documentation purposes. It is ab-

solutely vital that the design is documented thoroughly. At a minimum, it

should describe the project it is being used in, who wrote it, and the date.

This information is often referred to as a header. We are keeping our head-

ers brief to make this book a little lighter to carry to class, but remember:

memory space is cheap and information is valuable. So don’t be afraid to

document thoroughly! There are also comments next to many of the state-

ments in the code.These comments help the designer remember what she or

he was trying to do and to help any other person to understand what was in-

tended.

AHDL BURIED NODES
The AHDL code that describes the circuit in Figure 3-49 is shown in Figure

3-50. The comments in AHDL can be enclosed between % characters, as you

can see in the figure between lines 1 and 4. This section of the code allows

the designer to write many lines of information that will be ignored by com-

puter programs using this file but can be read by any person trying to deci-

pher the code. Notice that the comments at the end of lines 9, 10, 13, 15, and

16 are preceded by two dashes (--). The text following the dashes is for docu-

mentation only. Either type of comment symbol may be used, but percent

signs must be used in pairs to open and close a comment. Double dashes in-

dicate a comment that extends to the end of the line.

In AHDL, local signals are declared in the VARIABLE section, which is

placed between the SUBDESIGN section and the logic section. The interme-

diate signal m is defined on line 11, following the keyword VARIABLE. The

A
H

D
L

TOCCMC03_0131725793.QXD 12/5/05 10:06 PM Page 105

keyword NODE designates the nature of the variable. Notice that a colon

separates the variable name from its node designation. In the hardware de-

scription on line 13, the intermediate variable is assigned (connected to) a

value and then m is used in the second statement on line 14 to

assign (connect) a value to y Remember that the assignment

statements are concurrent and, thus, the order in which they are given does

not matter. For human readability, it may seem more logical to assign values

to intermediate variables before they are used in other assignment state-

ments, as shown here.

(y = m # c;).

(m = a & b;)

106 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-50
Intermediate variables

in AHDL described in

Figure 3-49.

1 % Intermediate variables in AHDL (Figure 3-49)

2 Digital Systems 10th ed

3 NS Widmer

4 MAY 23, 2005 %

5 SUBDESIGN fig3_50

6 (

7 a,b,c :INPUT; -- define inputs to block

8 y :OUTPUT; -- define block output

9)

10 VARIABLE

11 m :NODE; -- name an intermediate signal

12 BEGIN

13 m � a & b; -- generate buried product term

14 y � m # c; -- generate sum on output

15 END;

REVIEW QUESTIONS 1. What is the designation used for intermediate variables?

2. Where are these variables declared?

3. Does it matter whether the m or y equation comes first?

4. What character is used to limit a block of comments?

5. What characters are used to comment a single line?

VHDL LOCAL SIGNALS
The VHDL code that describes the circuit in Figure 3-49 is shown in Figure

3-51. The comments in VHDL follow two dashes (--). Typing two successive

dashes allows the designer to write information from that point to the end of

the line.The information following the two successive dashes will be ignored

by computer programs using this file, but can be read by any person trying to

decipher the code.

The intermediate signal m is defined on line 13 following the keyword

SIGNAL. The keyword BIT designates the type of the signal. Notice that a

colon separates the signal name from its type designation. In the hardware de-

scription on line 16, the intermediate signal is assigned (connected to) a value

V
H

D
L

TOCCMC03_0131725793.QXD 12/2/05 8:18 PM Page 106

and then m is used in the statement on line 17 to assign (con-

nect) a value to y Remember that the assignment statements

are concurrent and, thus, the order in which they are given does not matter.

For human readability, it may seem more logical to assign values to interme-

diate signals before they are used in other assignment statements, as shown

here.

(y 6=m OR c;).

(m 6=a AND b;)

SUMMARY 107

1 -- Intermediate variables in VHDL (Figure 3-49)

2 -- Digital Systems 10th ed

3 -- NS Widmer

4 -- MAY 23, 2005

5

6 ENTITY fig3_51 IS

7 PORT(a, b, c :IN BIT; -- define inputs to block

8 y :OUT BIT); -- define block output

9 END fig3_51;

10

11 ARCHITECTURE ckt OF fig3_51 IS

12

13 SIGNAL m :BIT; -- name an intermediate signal

14

15 BEGIN

16 m <= a AND b; -- generate buried product term

17 y <= m OR c; -- generate sum on output

18 END ckt;

REVIEW QUESTIONS 1. What is the designation used for intermediate signals?

2. Where are these signals declared?

3. Does it matter whether the m or y equation comes first?

4. What characters are used to comment a single line?

SUMMARY
1. Boolean algebra is a mathematical tool used in the analysis and design of

digital circuits.

2. The basic Boolean operations are the OR, AND, and NOT operations.

3. An OR gate produces a HIGH output when any input is HIGH. An AND

gate produces a HIGH output only when all inputs are HIGH. A NOT cir-

cuit (INVERTER) produces an output that is the opposite logic level

compared to the input.

4. A NOR gate is the same as an OR gate with its output connected to an IN-

VERTER. A NAND gate is the same as an AND gate with its output con-

nected to an INVERTER.

FIGURE 3-51 Intermediate signals in VHDL described in Figure 3-49.

TOCCMC03_0131725793.QXD 12/2/05 8:19 PM Page 107

5. Boolean theorems and rules can be used to simplify the expression of a

logic circuit and can lead to a simpler way of implementing the circuit.

6. NAND gates can be used to implement any of the basic Boolean opera-

tions. NOR gates can be used likewise.

7. Either standard or alternate symbols can be used for each logic gate, de-

pending on whether the output is to be active-HIGH or active-LOW.

8. The IEEE/ANSI standard for logic symbols uses rectangular symbols for

each logic device, with special notations inside the rectangles to show

how the outputs depend on the inputs.

9. Hardware description languages have become an important method of

describing digital circuits.

10. HDL code should always contain comments that document its vital char-

acteristics so a person reading it later can understand what it does.

11. Every HDL circuit description contains a definition of the inputs and

outputs, followed by a section that describes the circuit’s operation.

12. In addition to inputs and outputs, intermediate connections that are

buried within the circuit can be defined. These intermediate connec-

tions are called nodes or signals.

108 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

logic level

Boolean algebra

truth table

OR operation

OR gate

AND operation

AND gate

NOT operation

inversion

(complementation)

NOT circuit

(INVERTER)

NOR gate

NAND gate

Boolean theorems

DeMorgan’s theorems

alternate logic

symbols

active logic levels

active-HIGH

active-LOW

asserted

unasserted

IEEE/ANSI

hardware description

languages (HDLs)

Altera hardware

description

language (AHDL)

very high speed

integrated circuit

(VHSIC) hardware

description

language (VHDL)

programmable logic

devices (PLDs)

concurrent

compiler

syntax

mode

type

SUBDESIGN

concurrent

assignment

statement

ENTITY

BIT

ARCHITECTURE

buried nodes (local

signals)

comments

VARIABLE

NODE

IMPORTANT TERMS

PROBLEMS
The color letters preceding some of the problems are used to indicate the na-

ture or type of problem as follows:

B basic problem

T troubleshooting problem

D design or circuit-modification problem

N new concept or technique not covered in text

C challenging problem

H HDL problem

TOCCMC03_0131725793.QXD 12/2/05 8:19 PM Page 108

SECTION 3-3

3-1.*Draw the output waveform for the OR gate of Figure 3-52.

PROBLEMS 109

*Answers to problems marked with an asterisk can be found in the back of the text.

FIGURE 3-52
A

B

C

x

A
B
C

3-2. Suppose that the A input in Figure 3-52 is unintentionally shorted to

ground (i.e., A � 0). Draw the resulting output waveform.

3-3.*Suppose that the A input in Figure 3-52 is unintentionally shorted

to the �5 V supply line (i.e., A � 1). Draw the resulting output wave-

form.

3-4. Read the statements below concerning an OR gate. At first, they may

appear to be valid, but after some thought you should realize that nei-

ther one is always true. Prove this by showing a specific example to re-

fute each statement.

(a) If the output waveform from an OR gate is the same as the wave-

form at one of its inputs, the other input is being held perma-

nently LOW.

(b) If the output waveform from an OR gate is always HIGH, one of its

inputs is being held permanently HIGH.

3-5. How many different sets of input conditions will produce a HIGH out-

put from a five-input OR gate?

SECTION 3-4

3-6. Change the OR gate in Figure 3-52 to an AND gate.

(a)*Draw the output waveform.

(b) Draw the output waveform if the A input is permanently shorted

to ground.

(c) Draw the output waveform if A is permanently shorted to �5 V.

3-7.*Refer to Figure 3-4. Modify the circuit so that the alarm is to be acti-

vated only when the pressure and the temperature exceed their max-

imum limits at the same time.

3-8.*Change the OR gate in Figure 3-6 to an AND gate and draw the output

waveform.

3-9. Suppose that you have an unknown two-input gate that is either an

OR gate or an AND gate. What combination of input levels should you

apply to the gate’s inputs to determine which type of gate it is?

3-10. True or false: No matter how many inputs it has, an AND gate will pro-

duce a HIGH output for only one combination of input levels.

B

B

C

B

B

D

B

B

B

B

TOCCMC03_0131725793.QXD 12/2/05 8:19 PM Page 109

SECTIONS 3-5 TO 3-7

3-11. Apply the A waveform from Figure 3-23 to the input of an INVERTER.

Draw the output waveform. Repeat for waveform B.
3-12. (a)* Write the Boolean expression for output x in Figure 3-53(a).

Determine the value of x for all possible input conditions, and

list the values in a truth table.

(b) Repeat for the circuit in Figure 3-53(b).

110 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-53 A

(a)

x

B

C

(b)

A

B

C

D

x

3-13.*Create a complete analysis table for the circuit of Figure 3-15(b) by

finding the logic levels present at each gate output for each of the 32

possible input combinations.

3-14. (a)*Change each OR to an AND, and each AND to an OR, in Figure

3-15(b). Then write the expression for the output.

(b) Complete an analysis table.

3-15. Create a complete analysis table for the circuit of Figure 3-16 by find-

ing the logic levels present at each gate output for each of the 16 pos-

sible combinations of input levels.

SECTION 3-8

3-16. For each of the following expressions, construct the corresponding

logic circuit, using AND and OR gates and INVERTERs.

(a)*

(b)*

(c) y = (M + N + PQ)

z = A + B + CDE) + BCD

x = AB(C + D)

B

B

B

B

B

B

TOCCMC03_0131725793.QXD 12/2/05 8:19 PM Page 110

(d)

(e)

(f)

SECTION 3-9

3-17.*(a) Apply the input waveforms of Figure 3-54 to a NOR gate, and draw

the output waveform.

(b) Repeat with C held permanently LOW.

(c) Repeat with C held HIGH.

x = (A + B)(A + B)

z = MN(P + N)

x = W + PQ

PROBLEMS 111

FIGURE 3-54
A
B

C

3-18. Repeat Problem 3-17 for a NAND gate.

3-19.*Write the expression for the output of Figure 3-55, and use it to de-

termine the complete truth table.Then apply the waveforms of Figure

3-54 to the circuit inputs, and draw the resulting output waveform.

X
A

B

C

FIGURE 3-55

3-20. Determine the truth table for the circuit of Figure 3-24.

3-21. Modify the circuits that were constructed in Problem 3-16 so that

NAND gates and NOR gates are used wherever appropriate.

SECTION 3-10

3-22. Prove theorems (15a) and (15b) by trying all possible cases.

3-23.*DRILL QUESTION

Complete each expression.

(a) A � 1 � __________ (f) __________

(b) __________ (g) D � 0 � __________

(c) __________ (h) __________

(d) C � C � __________ (i) G � GF � __________

(e) __________ (j) __________y + wy =x # 0 =

C + C =B # B =

A # A =

D # 1 =

B

B

C

B

B

B

C

TOCCMC03_0131725793.QXD 12/2/05 8:19 PM Page 111

3-24. (a)*Simplify the following expression using theorems (13b), (3), and (4):

)

(b) Simplify the following expression using theorems (13a), (8), and (6):

SECTIONS 3-11 AND 3-12

3-25. Prove DeMorgan’s theorems by trying all possible cases.

3-26. Simplify each of the following expressions using DeMorgan’s theo-

rems.

(a)* (d) (g)*

(b) (e)* (h)

(c)* (f) (i)

3-27.*Use DeMorgan’s theorems to simplify the expression for the output of

Figure 3-55.

3-28. Convert the circuit of Figure 3-53(b) to one using only NAND gates.

Then write the output expression for the new circuit, simplify it using

DeMorgan’s theorems, and compare it with the expression for the

original circuit.

3-29. Convert the circuit of Figure 3-53(a) to one using only NOR gates.

Then write the expression for the new circuit, simplify it using

DeMorgan’s theorems, and compare it with the expression for the

original circuit.

3-30. Show how a two-input NAND gate can be constructed from two-input

NOR gates.

3-31. Show how a two-input NOR gate can be constructed from two-input

NAND gates.

3-32. A jet aircraft employs a system for monitoring the rpm, pressure, and

temperature values of its engines using sensors that operate as follows:

Figure 3-56 shows the logic circuit that controls a cockpit warning

light for certain combinations of engine conditions. Assume that a

HIGH at output W activates the warning light.

(a)*Determine what engine conditions will give a warning to the pilot.

(b) Change this circuit to one using all NAND gates.

T sensor output = 0 only when temperature 6 200°F

P sensor output = 0 only when pressure 6 220 psi

RPM sensor output = 0 only when speed 6 4800 rpm

ABCDA + C + DABCD

(M + N)(M + N)ABA + BC

A(B + C)DA + BABC

z = ABC + ABC + BCD

x = (M + N)(M + P)(N + P

112 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-56

Warning
light

W

P

T

R

Temp
sensor

Pressure
sensor

RPM
sensor

C

C

B

B

C

C

B

B

C

TOCCMC03_0131725793.QXD 12/2/05 8:19 PM Page 112

SECTIONS 3-13 AND 3-14

3-33. For each statement below, draw the appropriate logic-gate symbol—

standard or alternate—for the given operation.

(a) A HIGH output occurs only when all three inputs are LOW.

(b) A LOW output occurs when any of the four inputs is LOW.

(c) A LOW output occurs only when all eight inputs are HIGH.

3-34. Draw the standard representations for each of the basic logic gates.

Then draw the alternate representations.

3-35. The circuit of Figure 3-55 is supposed to be a simple digital combina-

tion lock whose output will generate an active-LOW signal

for only one combination of inputs.

(a)*Modify the circuit diagram so that it represents more effectively

the circuit operation.

(b) Use the new circuit diagram to determine the input combination

that will activate the output. Do this by working back from the

output using the information given by the gate symbols, as was

done in Examples 3-22 and 3-23. Compare the results with the

truth table obtained in Problem 3-19.

3-36. (a) Determine the input conditions needed to activate output Z in

Figure 3-37(b). Do this by working back from the output, as was

done in Examples 3-22 and 3-23.

(b) Assume that it is the LOW state of Z that is to activate the alarm.

Change the circuit diagram to reflect this, and then use the re-

vised diagram to determine the input conditions needed to acti-

vate the alarm.

3-37. Modify the circuit of Figure 3-40 so that A1 � 0 is needed to produce

DRIVE � 1 instead of A1 � 1.

3-38.*Determine the input conditions needed to cause the output in Figure

3-57 to go to its active state.

UNLOCK

PROBLEMS 113

FIGURE 3-57

x

A

B

C

D

E

3-39.*What is the asserted state for the output of Figure 3-57? For the out-

put of Figure 3-36(c)?

3-40. Use the results of Problem 3-38 to obtain the complete truth table for

the circuit of Figure 3-57.

3-41.*Figure 3-58 shows an application of logic gates that simulates a two-

way switch like the ones used in our homes to turn a light on or off

B

B

C

C

D

B

B

B

N

TOCCMC03_0131725793.QXD 12/2/05 8:19 PM Page 113

SECTION 3-15

3-42. Redraw the circuits of (a)* Figure 3-57 and (b) Figure 3-58 using the

IEEE/ANSI symbols.

SECTION 3-17
HDL DRILL QUESTIONS

3-43.*True or false:

(a) VHDL is a computer programming language.

(b) VHDL can accomplish the same thing as AHDL.

(c) AHDL is an IEEE standard language.

(d) Each intersection in a switch matrix can be programmed as an

open or short circuit between a row and column wire.

(e) The first item that appears at the top of an HDL listing is the

functional description.

(f) The type of an object indicates if it is an input or an output.

(g) The mode of an object determines if it is an input or an output.

(h) Buried nodes are nodes that have been deleted and will never be

used again.

(i) Local signals are another name for intermediate variables.

(j) The header is a block of comments that document vital informa-

tion about the project.

SECTION 3-18

3-44. Redraw the programmable connection matrix from Figure 3-44. Label

the output signals (horizontal lines) from the connection matrix (from

114 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

FIGURE 3-58 +5 V

LIGHT

+5 V

+5 V

A

B

from two different switches. Here the light is an LED that will be ON

(conducting) when the NOR gate output is LOW. Note that this output

is labeled to indicate that it is active-LOW. Determine the in-

put conditions needed to turn on the LED.Then verify that the circuit

operates as a two-way switch using switches A and B. (In Chapter 4,

you will learn how to design circuits like this one to produce a given

relationship between inputs and outputs.)

LIGHT

B

H

B

TOCCMC03_0131725793.QXD 12/2/05 8:19 PM Page 114

top row to bottom row) as follows: AAABADHE. Draw an X in the ap-

propriate intersections to short-circuit a row to a column and create

these connections to the logic circuit.

3-45.*Write the HDL code in the language of your choice that will produce

the following output functions:

X � A � B
Y � AB
Z � A � B � C

3-46. Write the HDL code in the language of your choice that will imple-

ment the logic circuit of Figure 3-39.

(a) Use a single Boolean equation.

(b) Use the intermediate variables V, W, X, and Y.

MICROCOMPUTER APPLICATION

3-47.*Refer to Figure 3-40 in Example 3-23. Inputs A7 through A0 are address
inputs that are supplied to this circuit from outputs of the micro-

processor chip in a microcomputer.The eight-bit address code A7 to A0

selects which device the microprocessor wants to activate. In Example

3-23, the required address code to activate the disk drive was A7

through A0 � 111111102 � FE16.

Modify the circuit so that the microprocessor must supply an ad-

dress code of 4A16 to activate the disk drive.

CHALLENGING EXERCISES

3-48. Show how can be implemented with one two-input NOR

and one two-input NAND gate.

3-49.*Implement y � ABCD using only two-input NAND gates.

ANSWERS TO SECTION REVIEW QUESTIONS
SECTION 3-2
1. x � 1 2. x � 0 3. 32

SECTION 3-3
1. All inputs LOW 2. x � A � B � C � D � E � F 3. Constant HIGH

SECTION 3-4
1. All five inputs � 1 2. A LOW input will keep the output LOW. 3. False; see

truth table of each gate.

SECTION 3-5
1. Output of second INVERTER will be the same as input A. 2. y will be LOW

only for A � B � 1.

SECTION 3-6
1. 2. x = D(AB + C) + Ex = A + B + C + AD

x = ABC

ANSWERS TO SECTION REVIEW QUESTIONS 115

H

H

C

C

C

TOCCMC03_0131725793.QXD 12/2/05 8:19 PM Page 115

SECTION 3-7
1. x � 1 2. x � 1 3. x � 1 for both.

SECTION 3-8
1. See Figure 3-15(a). 2. See Figure 3-17(b). 3. See Figure 3-15(b).

SECTION 3-9
1. All inputs LOW. 2. x � 0 3.

SECTION 3-10
1. 2. 3.

SECTION 3-11
1. 2. 3. Same as Figure 3-28 except NAND is

replaced by NOR. 4.

SECTION 3-12
1. Three. 2. NOR circuit is more efficient because it can be implemented with

one 74LS02 IC. 3.

SECTION 3-13
1. Output goes LOW when any input is HIGH. 2. Output goes HIGH only when

all inputs are LOW. 3. Output goes LOW when any input is LOW. 4. Output

goes HIGH only when all inputs are HIGH.

SECTION 3-14
1. Z will go HIGH when A � B � 0 and C � D � 1. 2. Z will go LOW when

A � B � 0, E � 1, and either C or D or both are 0. 3. Two 4. Two 5. LOW

6. A � B � 0, C � D � 1 7.

SECTION 3-15
1. See Figure 3-41. 2. Rectangle with & inside, and triangles on inputs.

SECTION 3-16
1. Boolean equation, truth table, logic diagram, timing diagram, language.

SECTION 3-17
1. Hardware description language 2. To describe a digital circuit and its

operation. 3. To give a computer a sequential list of tasks. 4. HDL describes

concurrent hardware circuits; computer instructions execute one at a time.

SECTION 3-18
1. Programmable logic device 2. By making and breaking connections in a

switching matrix 3. It translates HDL code into a pattern of bits to configure the

switching matix.

SECTION 3-19

AHDL
1. The input and output definitions. 2. The description of how it operates.

W

x = (AB) (CD) = AB + (CD) + AB + CD

y = AB(C + D)

y = (R + S + T)Qz = AB + C

y = AD + BDy = A B Dy = AC

x = A + B + CD

116 CHAPTER 3/DESCRIBING LOGIC CIRCUITS

TOCCMC03_0131725793.QXD 12/2/05 8:19 PM Page 116

VHDL
1. To give a name to the circuit and define its inputs and outputs. 2. The

ARCHITECTURE description. 3.

SECTION 3-20

AHDL
1. NODE 2. After the I/O definition and before BEGIN. 3. No 4. 5. --

VHDL
1. SIGNAL 2. Inside ARCHITECTURE before BEGIN. 3. No 4. --

%

6 =

ANSWERS TO SECTION REVIEW QUESTIONS 117

TOCCMC03_0131725793.QXD 12/2/05 8:19 PM Page 117

