
6-1 Binary Addition

6-2 Representing Signed

Numbers

6-3 Addition in the 2’s-

Complement System

6-4 Subtraction in the 2’s-

Complement System

6-5 Multiplication of Binary

Numbers

6-6 Binary Division

6-7 BCD Addition

6-8 Hexadecimal Arithmetic

6-9 Arithmetic Circuits

6-10 Parallel Binary Adder

6-11 Design of a Full Adder

6-12 Complete Parallel Adder

with Registers

■ OUTLINE

D I G I TA L A R I T H M E T I C :

O P E R AT I O N S A N D

C I R C U I T S

C H A P T E R 6

6-13 Carry Propagation

6-14 Integrated-Circuit Parallel

Adder

6-15 2’s-Complement System

6-16 ALU Integrated Circuits

6-17 Troubleshooting Case Study

6-18 Using TTL Library

Functions with Altera

6-19 Logical Operations on Bit

Arrays

6-20 HDL Adders

6-21 Expanding the Bit Capacity

of a Circuit

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 296

297

■ OBJECTIVES
Upon completion of this chapter, you will be able to:
■ Perform binary addition, subtraction, multiplication, and division on

two binary numbers.

■ Add and subtract hexadecimal numbers.

■ Know the difference between binary addition and OR addition.

■ Compare the advantages and disadvantages among three different

systems of representing signed binary numbers.

■ Manipulate signed binary numbers using the 2’s-complement system.

■ Understand the BCD addition process.

■ Describe the basic operation of an arithmetic/logic unit.

■ Employ full adders in the design of parallel binary adders.

■ Cite the advantages of parallel adders with the look-ahead carry

feature.

■ Explain the operation of a parallel adder/subtractor circuit.

■ Use an ALU integrated circuit to perform various logic and arithmetic

operations on input data.

■ Analyze troubleshooting case studies of adder/subtractor circuits.

■ Use HDL forms of standard TTL parts from libraries to implement more

complicated circuits.

■ Use the Boolean equation form of description to perform operations on

entire sets of bits.

■ Apply software engineering techniques to expand the capacity of a

hardware description.

■ INTRODUCTION
Digital computers and calculators perform the various arithmetic opera-

tions on numbers that are represented in binary form. The subject of digital

arithmetic can be a very complex one if we want to understand all the vari-

ous methods of computation and the theory behind them. Fortunately, this

level of knowledge is not required by most technicians, at least not until

they become experienced computer programmers. Our approach in this

chapter will be to concentrate on those basic principles that are necessary

for understanding how digital machines (i.e., computers) perform the basic

arithmetic operations.

First, we will see how the various arithmetic operations are performed

on binary numbers using “pencil and paper,” and then we will study the

TOCCMC06_0131725793.QXD 12/16/2005 2:05 PM Page 297

actual logic circuits that perform these operations in a digital system.

Finally, we will learn how to describe these simple circuits using HDL

techniques. Several methods of expanding the capacity of these circuits

will also be covered. The focus will be on the fundamentals of HDL, using

arithmetic circuits as an example. The powerful capability of HDL com-

bined with PLD hardware will provide the basis for further study, design,

and experimentation with much more sophisticated arithmetic circuits in

more advanced courses.

6-1 BINARY ADDITION

The addition of two binary numbers is performed in exactly the same

manner as the addition of decimal numbers. In fact, binary addition is sim-

pler because there are fewer cases to learn. Let us first review decimal

addition:

The least-significant-digit (LSD) position is operated on first, producing a

sum of 7. The digits in the second position are then added to produce a sum

of 13, which produces a carry of 1 into the third position.This produces a sum

of 8 in the third position.

The same general steps are followed in binary addition. However, only

four cases can occur in adding the two binary digits (bits) in any position.

They are:

0 � 0 � 0

1 � 0 � 1

1 � 1 � 10 � 0 � carry of 1 into next position

1 � 1 � 1 � 11 � 1 � carry of 1 into next position

The last case occurs when the two bits in a certain position are 1 and there is

a carry from the previous position. Here are several examples of the addition

of two binary numbers (decimal equivalents are in parentheses):

It is not necessary to consider the addition of more than two binary num-

bers at a time because in all digital systems the circuitry that actually per-

forms the addition can handle only two numbers at a time. When more than

two numbers are to be added, the first two are added together and then their

sum is added to the third number, and so on. This is not a serious drawback

because modern digital computers can typically perform an addition opera-

tion in several nanoseconds.

Addition is the most important arithmetic operation in digital systems.

As we shall see, the operations of subtraction, multiplication, and division as

011 (3)

+ 110 (6)

1001 (9)

1001 (9)

+ 1111 (15)

11000 (24)

11.011 (3.375)

+ 10.110 (2.750)

110.001 (6.125)

3 7 6 LSD

�4 6 1

8 3 7

↑ ↑

298 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 298

6-2 REPRESENTING SIGNED NUMBERS

In digital computers, the binary numbers are represented by a set of binary

storage devices (e.g., flip-flops). Each device represents one bit. For example,

a six-bit FF register can store binary numbers ranging from 000000 to 111111

(0 to 63 in decimal). This represents the magnitude of the number. Because

most digital computers and calculators handle negative as well as positive

numbers, some means is required for representing the sign of the number (�
or �).This is usually done by adding to the number another bit called the sign
bit. In general, the common convention is that a 0 in the sign bit represents a

positive number and a 1 in the sign bit represents a negative number. This is

illustrated in Figure 6-1. Register A contains the bits 0110100. The 0 in the

leftmost bit () is the sign bit that represents The other six bits are the

magnitude of the number which is equal to 52 in decimal. Thus, the

number stored in the A register is . Similarly, the number stored in the B
register is because the sign bit is 1, representing �.

The sign bit is used to indicate the positive or negative nature of the

stored binary number. The numbers in Figure 6-1 consist of a sign bit and six

magnitude bits. The magnitude bits are the true binary equivalent of the

decimal value being represented. This is called the sign-magnitude system
for representing signed binary numbers.

Although the sign-magnitude system is straightforward, calculators and

computers do not normally use it because the circuit implementation is more

complex than in other systems. The most commonly used system for repre-

senting signed binary numbers is the 2’s-complement system. Before we see

how this is done, we must first see how to form the 1’s complement and 2’s

complement of a binary number.

-52

+52

1101002,

+ .A6

SECTION 6-2/REPRESENTING SIGNED NUMBERS 299

REVIEW QUESTION 1. Add the following pairs of binary numbers.

(a)

(b)

(c) 10001111 + 00000001

011.101 + 010.010

10110 + 00111

FIGURE 6-1
Representation of signed

numbers in sign-magnitude

form.

01 1 1 1 0 0

00 1 1 1 0 0

A6 A5 A4 A3 A2 A1 A0

B6 B5 B4 B3 B2 B1 B0

Sign bit (+)

Sign bit (–)

Magnitude = 5210

Magnitude = 5210

= +5210

= –5210

they are performed in most modern digital computers and calculators actu-

ally use only addition as their basic operation.

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 299

1’s-Complement Form
The 1’s complement of a binary number is obtained by changing each 0 to a

1 and each 1 to a 0. In other words, change each bit in the number to its com-

plement. The process is shown below.

Thus, we say that the 1’s complement of 101101 is 010010.

2’s Complement Form
The 2’s complement of a binary number is formed by taking the 1’s comple-

ment of the number and adding 1 to the least-significant-bit position. The

process is illustrated below for

Thus, we say that 010011 is the 2’s complement representation of 101101.

Here’s another example of converting a binary number to its 2’s-comple-

ment representation:

Representing Signed Numbers Using 2’s Complement
The 2’s-complement system for representing signed numbers works like this:

■ If the number is positive, the magnitude is represented in its true binary

form, and a sign bit of 0 is placed in front of the MSB. This is shown in

Figure 6-2 for

■ If the number is negative, the magnitude is represented in its 2’s-

complement form, and a sign bit of 1 is placed in front of the MSB. This

is shown in Figure 6-2 for -4510.

+4510.

1 0 1 1 0 0

0 1 0 0 1 1

+ 1

0 1 0 1 0 0

original binary number

1’s complement

add 1

2’s complement of original number

1 0 1 1 0 1

0 1 0 0 1 0

+ 1

0 1 0 0 1 1

binary equivalent of 45

complement each bit to form 1’s complement

add 1 to form 2’s complement

2’s complement of original binary number

1011012 = 4510.

1 0 1 1 0 1 original binary number

↓↓ ↓ ↓↓ ↓
0 1 0 0 1 0 complement each bit to form 1’s complement

300 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

FIGURE 6-2
Representation of signed

numbers in the 2’s-

complement system.

10 1 0 1 0 1

01 0 1 0 1 1

Sign bit (+)

Sign bit (–)

= +4510

= –4510

True binary

2's complement

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 300

The 2’s-complement system is used to represent signed numbers be-

cause, as we shall see, it allows us to perform the operation of subtraction by

actually performing addition. This is significant because it means that a dig-

ital computer can use the same circuitry both to add and to subtract, thereby

realizing a saving in hardware.

SECTION 6-2/REPRESENTING SIGNED NUMBERS 301

EXAMPLE 6-1 Represent each of the following signed decimal numbers as a signed binary

number in the 2’s-complement system. Use a total of five bits, including the

sign bit.

(a) (b) (c) (d) (e)

Solution

(a) The number is positive, so the magnitude (13) will be represented in its

true-magnitude form, that is, . Attaching the sign bit of 0, we

have

(b) The number is negative, so the magnitude (9) must be represented in 2’s-

complement form:

When we attach the sign bit of 1, the complete signed number becomes

The procedure we have just followed required two steps. First, we de-

termined the 2’s complement of the magnitude, and then we attached the

sign bit.This can be accomplished in one step if we include the sign bit in

the 2’s-complement process. For example, to find the representation for

we start with the representation for including the sign bit, and we

take the 2’s complement of it in order to obtain the representation for

The result is, of course, the same as before.

(c) The decimal value 3 can be represented in binary using only two bits.

However, the problem statement requires a four-bit magnitude preceded

by a sign bit. Thus, we have

�310 � 00011

+9 = 01001

10110

+ 1

-9 = 10111

11’s complement of each bit including sign bit2

1add 1 to LSB2

12’s-complement representation of -92

-9.

+9,-9,

�9 � 10111
sign bit ↑

910 = 10012

0110
+ 1

0111

11’s complement2

1add 1 to LSB2

12’s complement2

�13 � 01101
sign bit ↑

13 = 11012

-8-2+3-9+13

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 301

In many situations the number of bits is fixed by the size of the registers

that will be holding the binary numbers, so that 0s may have to be added

in order to fill the required number of bit positions.

(d) Start by writing using five bits:

(e) Start with :

Sign Extension
Example 6-1 required that we use a total of five bits to represent the signed

numbers. The size of a register (number of flip-flops) determines the number

of binary digits that are stored for each number. Most digital systems today

store numbers in registers sized in even multiples of four bits. In other

words, the storage registers will be made up of 4, 8, 12, 16, 32, or 64 bits. In a

system that stores eight-bit numbers, seven bits represent the magnitude

and the MSB represents the sign. If we need to store a positive five-bit num-

ber in an eight-bit register, it makes sense to simply add leading zeros. The

MSB (sign bit) is still 0, indicating a positive value.

What happens when we try to store five-bit negative numbers in an eight-

bit register? In the previous section we found that the five-bit, 2’s-comple-

ment binary representation for is 10111.

If we appended leading 0s, this would no longer be a negative number in

eight-bit format. The proper way to extend a negative number is to append

leading 1’s. Thus, the value stored for negative 9 is

111 1 0111

sign extension to eight-bit format

2’s complement magnitude

sign in five-bit format

1 0111

-9

0000 1001

appended leading 0s binary value for 9

⎫ ⎬ ⎭ ⎫ ⎬ ⎭

+8 = 01000

10111

+ 1

-8 = 11000

1complement each bit2

1add 12

12’s-complement representation of -82

+8

+2 = 00010

11101

+ 1

-2 = 11110

11’s complement2

1add 12

12’s-complement representation of -22

+2

302 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 302

Negation
Negation is the operation of converting a positive number to its negative

equivalent or a negative number to its positive equivalent. When signed bi-

nary numbers are represented in the 2’s-complement system, negation is per-

formed simply by performing the 2’s-complement operation. To illustrate,

let’s start with in eight-bit binary form. Its signed representation is

00001001. If we take its 2’s complement we get 11110111, which represents

the signed value Likewise, we can start with the representation of

which is 11110111, and take its 2’s complement to get 00001001, which rep-

resents These steps are diagrammed below.

Thus, we negate a signed binary number by 2’s-complementing it.

This negation changes the number to its equivalent of opposite sign.We used

negation in steps (d) and (e) of Example 6-1 to convert positive numbers to

their negative equivalents.

Start with 00001001 �9

2’s complement (negate) 11110111 �9

negate again 00001001 �9

+9.

-9,-9.

+9

SECTION 6-2/REPRESENTING SIGNED NUMBERS 303

EXAMPLE 6-2 Each of the following numbers is a five-bit signed binary number in the

2’s-complement system. Determine the decimal value in each case:

(a) 01100 (b) 11010 (c) 10001

Solution

(a) The sign bit is 0, so the number is positive and the other four bits repre-

sent the true magnitude of the number. That is, Thus, the

decimal number is

(b) The sign bit of 11010 is a 1, so we know that the number is negative, but we

can’t tell what the magnitude is. We can find the magnitude by negating

(2’s-complementing) the number to convert it to its positive equivalent.

Because the result of the negation is the original number

11010 must be equivalent to .

(c) Follow the same procedure as in (b):

Thus, 10001 = -15.

10001

01110

+ 1

01111

1original negative number2

11’s complement2

1add 12

1+152

-6

00110 = +6,

11010

00101

+ 1

00110

1original negative number2

11’s complement2

1add 12

1+62

+12.

11002 = 1210.

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 303

Special Case in 2’s-Complement Representation
Whenever a signed number has a 1 in the sign bit and all 0s for the magni-

tude bits, its decimal equivalent is where N is the number of bits in the

magnitude. For example,

1000 � �23 � �8

10000 � �24 � �16

100000 � �25 � �32

and so on. Notice that in this special case, taking the 2’s complement of these

numbers produces the value we started with because we are at the negative

limit of the range of numbers that can be represented by this many bits. If

we extend the sign of these special numbers, the normal negation procedure

works fine. For example, extending the number 1000 () to 11000 (five-bit

negative 8) and taking its 2’s complement we get 01000 (8), which is the

magnitude of the negative number.

Thus, we can state that the complete range of values that can be repre-

sented in the 2’s-complement system having N magnitude bits is

There are a total of different values, including zero.

For example, Table 6-1 lists all signed numbers that can be represented in

four bits using the 2’s-complement system (note there are three magnitude

bits, so). Note that the sequence starts at

and proceeds upward to by adding

0001 at each step as in an up counter.

+(2N
- 1) = +23

- 1 = +710 = 01112

-2N
= -23

= -810 = 10002N = 3

2N+1

-2N
 to +(2N

- 1)

-8

-2N,

304 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

Signed Binary Using
Decimal Value 2’s Complement

+7 = 23 � 1 0111

+6 0110

+5 0101

+4 0100

+3 0011

+2 0010

+1 0001

0 0000

�1 1111

�2 1110

�3 1101

�4 1100

�5 1011

�6 1010

�7 1001

�8 = �23 1000

TABLE 6-1

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 304

SECTION 6-2/REPRESENTING SIGNED NUMBERS 305

EXAMPLE 6-3 What is the range of unsigned decimal values that can be represented in a byte?

Solution

Recall that a byte is eight bits. We are interested in unsigned numbers here,

so there is no sign bit, and all of the eight bits are used for the magnitude.

Therefore, the values will range from

to

This is a total of 256 different values, which we could have predicted be-

cause 28
= 256.

111111112 = 25510

000000002 = 010

EXAMPLE 6-4 What is the range of signed decimal values that can be represented in a byte?

Solution

Because the MSB is to be used as the sign bit, there are seven bits for the

magnitude. The largest negative value is

The largest positive value is

Thus, the range is to this is a total of 256 different values, in-

cluding zero. Alternatively, because there are seven magnitude bits (),

then there are different values.2N+1
= 28

= 256

N = 7

+127;-128

011111112 = +27
- 1 = +12710

100000002 = -27
= -12810

EXAMPLE 6-5 A certain computer is storing the following two signed numbers in its mem-

ory using the 2’s-complement system:

While executing a program, the computer is instructed to convert each num-

ber to its opposite sign; that is, change the to and change the

to How will it do this?

Solution

This is the negation operation whereby a signed number can have its polar-

ity changed simply by performing the 2’s-complement operation on the

complete number, including the sign bit. The computer circuitry will take the

signed number from memory, find its 2’s complement, and put the result

back in memory.

+12.

-12-31+31

 111101002 = -1210

 000111112 = +3110

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 305

6-3 ADDITION IN THE 2’s-COMPLEMENT SYSTEM

We will now investigate how the operations of addition and subtraction are

performed in digital machines that use the 2’s-complement representation

for negative numbers. In the various cases to be considered, it is important

to note that the sign bit of each number is operated on in the same manner

as the magnitude bits.

Case I: Two Positive Numbers. The addition of two positive numbers is

straightforward. Consider the addition of and

Note that the sign bits of the augend and the addend are both 0 and the sign

bit of the sum is 0, indicating that the sum is positive. Also note that the au-

gend and the addend are made to have the same number of bits. This must

always be done in the 2’s-complement system.

Case II: Positive Number and Smaller Negative Number. Consider the ad-

dition of and Remember that the will be in its 2’s-complement

form. Thus, (00100) must be converted to (11100).

In this case, the sign bit of the addend is 1. Note that the sign bits also partic-

ipate in the addition process. In fact, a carry is generated in the last position

sign bits

�9 → 0 1001 (augend)

�4 → 1 1100 (addend)

1� 0 0101

This carry is disregarded; the result is 00101 (sum � �5).↑

↑

-4+4

-4-4.+9

�9 → 0 1001 (augend)

�4 → 0 0100 (addend)

0 1101 (sum � �13)

sign bits ↑

+4:+9

306 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

REVIEW QUESTIONS 1. Represent each of the following values as an eight-bit signed number in

the 2’s-complement system.

(a) (b) (c)

2. Each of the following is a signed binary number in the 2’s-complement

system. Determine the decimal equivalent for each.

(a) 100011 (b) 1000000 (c) 01111110

3. What range of signed decimal values can be represented in 12 bits (in-

cluding the sign bit)?

4. How many bits are required to represent decimal values ranging from

to

5. What is the largest negative decimal value that can be represented by a

two-byte number?

6. Perform the 2’s-complement operation on each of the following.

(a) 10000 (b) 10000000 (c) 1000

7. Define the negation operation.

+50?-50

-128-7+13

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 306

of addition. This carry is always disregarded, so that the final sum is 00101,

which is equivalent to

Case III: Positive Number and Larger Negative Number. Consider the ad-

dition of and

The sum here has a sign bit of 1, indicating a negative number. Because the

sum is negative, it is in 2’s-complement form, so that the last four bits, 1011,

actually represent the 2’s complement of the sum.To find the true magnitude

of the sum, we must negate (2’s-complement) 11011; the result is

Thus, 11011 represents

Case IV: Two Negative Numbers

This final result is again negative and in 2’s-complement form with a sign bit

of 1. Negating (2’s-complementing) this result produces

Case V: Equal and Opposite Numbers

The result is obviously as expected.+0,

�9 → 10111

�9 → 01001

0 1� 00000

Disregard; the result is 00000 (sum � �0).↑

01101 = +13.

�9 → 10111

�4 → 11100

1� 10011

sign bit

This carry is disregarded; the result is 10011 (sum � �13).

↑↑⏐
⏐

-5.

00101 = +5.

�9 → 10111

�4 → 00100

11011 (sum � �5)

negative sign bit↑

+4:-9

+5.

SECTION 6-4/SUBTRACTION IN THE 2’S-COMPLEMENT SYSTEM 307

REVIEW QUESTIONS Assume the 2’s-complement system for both questions.

1. True or false: Whenever the sum of two signed binary numbers has a sign

bit of 1, the magnitude of the sum is in 2’s-complement form.

2. Add the following pairs of signed numbers. Express the sum as a signed

binary number and as a decimal number.

(a) (b) 100111 + 011001100111 + 111011

6-4 SUBTRACTION IN THE 2’s-COMPLEMENT SYSTEM

The subtraction operation using the 2’s-complement system actually involves

the operation of addition and is really no different from the various cases for

addition considered in Section 6-3. When subtracting one binary number

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 307

(the subtrahend) from another binary number (the minuend), use the fol-

lowing procedure:

1. Negate the subtrahend. This will change the subtrahend to its equivalent

value of opposite sign.

2. Add this to the minuend. The result of this addition will represent the diff-
erence between the subtrahend and the minuend.

Once again, as in all 2’s-complement arithmetic operations, it is necessary

that both numbers have the same number of bits in their representations.

Let us consider the case where is to be subtracted from

Negate the subtrahend to produce 11100, which represents Now add this

to the minuend.

When the subtrahend is changed to its 2’s complement, it actually be-

comes , so that we are adding and , which is the same as subtracting

from . This is the same as case II of Section 6-3. Any subtraction oper-

ation, then, actually becomes one of addition when the 2’s-complement sys-

tem is used. This feature of the 2’s-complement system has made it the most

widely used of the methods available because it allows addition and sub-

traction to be performed by the same circuitry.

Here’s another example showing subtracted from :

Negate the subtrahend () to produce 10111 () and add this to the min-

uend ().

The reader should verify the results of using the above procedure for the

following subtractions: (a) (b) (c) (d)

Remember that when the result has a sign bit of 1, it is negative and in

2’s-complement form.

Arithmetic Overflow
In each of the previous addition and subtraction examples, the numbers

that were added consisted of a sign bit and four magnitude bits. The an-

swers also consisted of a sign bit and four magnitude bits. Any carry into

the sixth bit position was disregarded. In all of the cases considered, the

(-4).

+4 --9 - (-4);-9 - (+4);+9 - (-4);

11100 (�4)

� 10111 (�9)

1� 10011 (�13)

Disregard↑

-4

-9+9

- 01001 (+9)

 11100 (-4)

-4+9

+9+4

+9-4-4

01001 (�9)

� 11100 (�4)

1� 00101 (�5)

Disregard, so the result is 00101 � �5.↑

-4.

 subtrahend (+4) : 00100

 minuend (+9) : 01001

+9.+4

308 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 308

magnitude of the answer was small enough to fit into four bits. Let’s look at

the addition of and .

The answer has a negative sign bit, which is obviously incorrect because we

are adding two positive numbers. The answer should be , but the magni-

tude 17 requires more than four bits and therefore overflows into the sign-bit

position. This overflow condition can occur only when two positive or two

negative numbers are being added, and it always produces an incorrect re-

sult. Overflow can be detected by checking to see that the sign bit of the re-

sult is the same as the sign bits of the numbers being added.

Subtraction in the 2’s-complement system is performed by negating the

minuend and adding it to the subtrahend, so overflow can occur only when

the minuend and subtrahend have different signs. For example, if we are

subtracting from , the is negated to become and is added to

just as shown above, and overflow produces an erroneous negative result be-

cause the magnitude is too large.

A computer will have a special circuit to detect any overflow condition

when two numbers are added or subtracted.This detection circuit will signal

the computer’s control unit that overflow has occurred and the result is in-

correct. We will examine such a circuit in an end-of-chapter problem.

Number Circles and Binary Arithmetic
The concept of signed arithmetic and overflow can be illustrated by taking

the numbers from Table 6-1 and “bending” them into a number circle as

shown in Figure 6-3. Notice that there are two ways to look at this circle. It

can be thought of as a circle of unsigned numbers (as shown in the outer

ring) with minimum value 0 and maximum 15, or as signed 2’s-complement

numbers (as shown in the inner ring) with maximum value 7 and minimum

To add using a number circle, simply start at the value of the augend and-8.

+9,+8-8+9-8

+17

�9 → 0 1001

�8 → 0 1000

1 0001

incorrect sign incorrect magnitude↑↑
⎫ ⎬ ⎭

+8+9

SECTION 6-4/SUBTRACTION IN THE 2’S-COMPLEMENT SYSTEM 309

FIGURE 6-3 A four-bit

number circle.

�1
�2

�3

�5

�4

�6

�7
�8

1000 0111
0110

0101

0100

0011

0010

0001
00001111

1110

1101

1100

1011

1010

1001
9

8 7

6

5

4

3

2

1

015

14

13

12

11

10
7

6

5

4

3

2

1
0

UNSIGNED

(MIN)(MAX)

SIGNEDSIGNED
MAXMAXMINMIN

POSITIVEPOSITIVENEGATIVENEGATIVE

TOCCMC06_0131725793.QXD 12/21/05 11:14 AM Page 309

advance around the number circle clockwise by the number of spaces in the

addend. For example, to add start at 2 (0010) and then advance clock-

wise three more spaces to arrive at 5 (0101). Overflow occurs when the sum

is too big to fit into four-bit signed format, meaning we have exceeded the

maximum value of 7. On the number circle this is indicated when adding two

positive values causes us to cross the line between 0111 (max positive) and

1000 (max negative).

The number circle can also illustrate how 2’s-complement subtraction re-

ally works. For example, let’s perform the subtraction of 5 from 3. Of course,

we know the answer is but let’s run the problem through the number cir-

cle. First we start at the number 3 (0011) on the number circle. The most ap-

parent way to subtract is to move counterclockwise around the circle five

spaces, which lands us on the number 1110 (). The less obvious operation

that illustrates 2’s-complement arithmetic is to add to the number 3.

Negative five (the 2’s complement of 0101) is 1011 which, interpreted as an

unsigned binary number, represents the value 11 (eleven) in decimal. Start

at the number 3 (0011) and move clockwise around the circle 11 spaces and

you will once again find yourself arriving at the number 1110 (), which is

the correct result.

Any subtraction operation between four-bit numbers of opposite sign

that produces a result greater than 7 or less than is an overflow of the

four-bit format and results in an incorrect answer. For example, 3 minus

should produce the answer 9, but moving clockwise six spaces from 3 lands

us on the signed number an overflow condition has occurred, giving us

an incorrect answer.

-7:

-6

-8

-2

-5

-2

-2,

2 + 3,

310 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

REVIEW QUESTIONS 1. Perform the subtraction on the following pairs of signed numbers using

the 2’s-complement system. Express the results as signed binary num-

bers and as decimal values.

(a) (b)

2. How can arithmetic overflow be detected when signed numbers are be-

ing added? Subtracted?

10010 - 1001101001 - 11010

6-5 MULTIPLICATION OF BINARY NUMBERS

The multiplication of binary numbers is done in the same manner as the mul-

tiplication of decimal numbers. The process is actually simpler because the

multiplier digits are either 0 or 1 and so we are always multiplying by 0 or 1 and

no other digits.The following example illustrates for unsigned binary numbers:

In this example the multiplicand and the multiplier are in true binary form

and no sign bits are used. The steps followed in the process are exactly the

1001 ← multiplicand � 910

1011 ← multiplier � 1110

1001
1001 partial products

0000
1001
1100011 } final product � 9910

⎫
⎪
⎬
⎪
⎭

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 310

same as in decimal multiplication. First, the LSB of the multiplier is exam-

ined; in our example, it is a 1. This 1 multiplies the multiplicand to produce

1001, which is written down as the first partial product. Next, the second bit

of the multiplier is examined. It is a 1, and so 1001 is written for the second

partial product. Note that this second partial product is shifted one place to

the left relative to the first one. The third bit of the multiplier is 0, and 0000

is written as the third partial product; again, it is shifted one place to the left

relative to the previous partial product. The fourth multiplier bit is 1, and so

the last partial product is 1001 shifted again one position to the left.The four

partial products are then summed to produce the final product.

Most digital machines can add only two binary numbers at a time. For

this reason, the partial products formed during multiplication cannot all be

added together at the same time. Instead, they are added together two at a

time; that is, the first is added to the second, their sum is added to the third,

and so on. This process is now illustrated for the example above:

Multiplication in the 2’s-Complement System
In computers that use the 2’s-complement representation, multiplication is

carried on in the manner described above, provided that both the multipli-

cand and the multiplier are put in true binary form. If the two numbers to be

multiplied are positive, they are already in true binary form and are multi-

plied as they are. The resulting product is, of course, positive and is given a

sign bit of 0. When the two numbers are negative, they will be in 2’s-comple-

ment form. The 2’s complement of each is taken to convert it to a positive

number, and then the two numbers are multiplied. The product is kept as a

positive number and is given a sign bit of 0.

When one of the numbers is positive and the other is negative, the nega-

tive number is first converted to a positive magnitude by taking its 2’s com-

plement. The product will be in true-magnitude form. However, the product

must be negative because the original numbers are of opposite sign.Thus, the

product is then changed to 2’s-complement form and is given a sign bit of 1.

1001 ← first partial product
Add 1001 ← second partial product shifted left

11011 ← sum of first two partial products
Add

0000 ← third partial product shifted left

011011 ← sum of first three partial products
Add

1001 ← fourth partial product shifted left

1100011 ← sum of four partial products, which

equals final total product

⎫
⎬
⎭

⎫
⎬
⎭

⎫
⎬
⎭

SECTION 6-6/BINARY DIVISION 311

REVIEW QUESTION 1. Multiply the unsigned numbers 0111 and 1110.

6-6 BINARY DIVISION

The process for dividing one binary number (the dividend) by another (the div-
isor) is the same as that followed for decimal numbers, that which we usually

refer to as “long division.” The actual process is simpler in binary because

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 311

when we are checking to see how many times the divisor “goes into” the div-

idend, there are only two possibilities, 0 or 1. To illustrate, consider the fol-

lowing simple division examples:

In the first example, we have divided by which is equivalent to

in decimal.The resulting quotient is In the second example,

is divided by or in decimal.The result is

In most modern digital machines, the subtractions that are part of the di-

vision operation are usually carried out using 2’s-complement subtraction,

that is, taking the 2’s complement of the subtrahend and then adding.

The division of signed numbers is handled in the same way as multiplica-

tion. Negative numbers are made positive by complementing, and the division

is then carried out. If the dividend and the divisor are of opposite sign, the re-

sulting quotient is changed to a negative number by taking its 2’s-complement

and is given a sign bit of 1. If the dividend and the divisor are of the same sign,

the quotient is left as a positive number and is given a sign bit of 0.

6-7 BCD ADDITION

In Chapter 2, we stated that many computers and calculators use the BCD

code to represent decimal numbers. Recall that this code takes each decimal

digit and represents it by a four-bit code ranging from 0000 to 1001. The ad-

dition of decimal numbers that are in BCD form can be best understood by

considering the two cases that can occur when two decimal digits are added.

Sum Equals 9 or Less
Consider adding 5 and 4 using BCD to represent each digit:

The addition is carried out as in normal binary addition, and the sum is 1001,

which is the BCD code for 9. As another example, take 45 added to 33:

In this example, the four-bit codes for 5 and 3 are added in binary to produce

1000, which is BCD for 8. Similarly, adding the second-decimal-digit posi-

tions produces 0111, which is BCD for 7. The total is 01111000, which is the

BCD code for 78.

In the examples above, none of the sums of the pairs of decimal digits ex-

ceeded 9; therefore, no decimal carries were produced. For these cases, the BCD

addition process is straightforward and is actually the same as binary addition.

45 0100 0101 ← BCD for 45

�33 � 0011 0011 ← BCD for 33

78 0111 1000 ← BCD for 78

5 0101 ← BCD for 5

�4 � 0100 ← BCD for 4

9 1001 ← BCD for 9

0010.12 = 2.510.10 , 41002,

1010200112 = 310.

9 , 3112,10012

0011 0010.1

11/1001 100/1010.0

011 100

0011 100

11 100

0 0

312 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 312

Sum Greater than 9
Consider the addition of 6 and 7 in BCD:

The sum 1101 does not exist in the BCD code; it is one of the six forbidden or

invalid four-bit code groups. This has occurred because the sum of the two

digits exceeds 9. Whenever this occurs, the sum must be corrected by the ad-

dition of six (0110) to take into account the skipping of the six invalid code

groups:

As shown above, 0110 is added to the invalid sum and produces the correct

BCD result. Note that with the addition of 0110, a carry is produced in the

second decimal position.This addition must be performed whenever the sum

of the two decimal digits is greater than 9.

As another example, take 47 plus 35 in BCD:

The addition of the four-bit codes for the 7 and 5 digits results in an invalid

sum and is corrected by adding 0110. Note that this generates a carry of 1,

which is carried over to be added to the BCD sum of the second-position

digits.

Consider the addition of 59 and 38 in BCD:

Here, the addition of the least significant digits (LSDs) produces a sum of

This generates a carry into the next digit position to be added to

the codes for 5 and 3. Since a correction factor of 6 must be added to17 7 9,

17 = 10001.

1

59 0101 1001 ← BCD for 59

�38 � 0011 1000 ← BCD for 38

97 1001 0001 ← perform addition

0110 ← add 6 to correct

1001 0111 BCD for 97

9 7

⎫ ⎬ ⎭ ⎫ ⎬ ⎭

↓

47 0100 0111 ← BCD for 47

�35 � 0011 0101 ← BCD for 35

82 0111 1100 ← invalid sum in first digit

1 0110 ← add 6 to correct

1000 0010 ← correct BCD sum

8 2

⎫ ⎬ ⎭ ⎫ ⎬ ⎭

↑
⏐

0110 ← BCD for 6

� 0111 ← BCD for 7

1101 ← invalid sum

0110 ← add 6 for correction

0001 0011 ← BCD for 13

1 3

⎫ ⎬ ⎭ ⎫ ⎬ ⎭

6 0110 ← BCD for 6

�7 � 0111 ← BCD for 7

�13 1101 ← invalid code group for BCD

SECTION 6-7/BCD ADDITION 313

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 313

the LSD sum. Addition of this correction does not generate a carry; the carry

was already generated in the original addition.

To summarize the BCD addition procedure:

1. Using ordinary binary addition, add the BCD code groups for each digit

position.

2. For those positions where the sum is 9 or less, no correction is needed.

The sum is in proper BCD form.

3. When the sum of two digits is greater than 9, a correction of 0110 should

be added to that sum to get the proper BCD result. This case always pro-

duces a carry into the next digit position, either from the original addi-

tion (step 1) or from the correction addition.

The procedure for BCD addition is clearly more complicated than

straight binary addition. This is also true of the other BCD arithmetic opera-

tions. Readers should perform the addition of Then check the

correct procedure below.

BCD Subtraction
The process of subtracting BCD numbers is more difficult than addition. It

involves a complement-then-add procedure similar to the 2’s-complement

method. We do not cover it in this book.

275 0010 0111 0101 ← BCD for 275

�641 � 0110 0100 0001 ← BCD for 641

916 1000 1011 0110 ← perform addition

� 0110 ← add 6 to correct second digit

1001 0001 0110 ← BCD for 916

275 + 641.

314 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

REVIEW QUESTIONS 1. How can you tell when a correction is needed in BCD addition?

2. Represent and in BCD and then perform BCD addition.

Check your work by converting the result back to decimal.

2651013510

6-8 HEXADECIMAL ARITHMETIC

Hex numbers are used extensively in machine-language computer program-

ming and in conjunction with computer memories (i.e., addresses). When

working in these areas, you will encounter situations where hex numbers

must be added or subtracted.

Hex Addition
Addition of hexadecimal numbers is done in much the same way as decimal

addition, as long as you remember that the largest hex digit is F instead of 9.

The following procedure is suggested:

1. Add the two hex digits in decimal, mentally inserting the decimal equiv-

alent for those digits larger than 9.

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 314

2. If the sum is 15 or less, it can be directly expressed as a hex digit.

3. If the sum is greater than or equal to 16, subtract 16 and carry a 1 to the

next digit position.

The following examples will illustrate the procedure.

SECTION 6-8/HEXADECIMAL ARITHMETIC 315

EXAMPLE 6-6 Add the hex numbers 58 and 24.

Solution

Adding the LSDs (8 and 4) produces 12, which is C in hex. There is no carry

into the next digit position. Adding 5 and 2 produces 7.

58

+24

7C

EXAMPLE 6-7 Add the hex numbers 58 and 4B.

Solution

Start by adding 8 and B, mentally substituting decimal 11 for B. This pro-

duces a sum of 19. Because 19 is greater than 16, subtract 16 to get 3; write

down the 3 and carry a 1 into the next position. This carry is added to the 5

and 4 to produce a sum of 1010, which is then converted to hexadecimal A.

58

+4B

A3

EXAMPLE 6-8 Add 3AF to 23C.

Solution

The sum of F and C is considered as Because this is greater

than 16, subtract 16 to get which is hexadecimal B, and carry a 1 into

the second position. Add this carry to A and 3 to obtain E. There is no carry

into the MSD position.

Hex Subtraction
Remember that hex numbers are just an efficient way to represent binary

numbers.Thus, we can subtract hex numbers using the same method we used

for binary numbers. The 2’s complement of the hex subtrahend will be taken

and then added to the minuend, and any carry out of the MSD position will

be disregarded.

1110,

15 + 12 = 2710.

3AF

+23C

5EB

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 315

How do we find the 2’s complement of a hex number? One way is to con-

vert it to binary, take the 2’s complement of the binary equivalent, and then

convert it back to hex. This process is illustrated below.

There is a quicker procedure: subtract each hex digit from F; then add 1.

Let’s try this for the same hex number from the example above.

Try either of the procedures above on the hex number E63. The correct

result for the 2’s complement is 19D.

F F F

�7 �3 �A ← subtract each digit from F

8 C 5

�1 ← add 1

8 C 6 ← hex equivalent of 2’s complement

⎫⎪
⎬
⎪⎭

73A ← hex number

0111 0011 1010 ← convert to binary

1000 1100 0110 ← take 2’s complement

8C6 ← convert back to hex

316 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

CALCULATOR HINT
On a hex calculator, you can subtract the hex digits from a string of F’s and

then add one as we just demonstrated, or you can add one to the string of all

F’s and then subtract. For example, adding 1 to yields On the

hex calculator enter:

1000 - 73A = The answer is 8C6

100016.FFF16

EXAMPLE 6-9 Subtract from

Solution

First, convert the subtrahend (3A5) to its 2’s-complement form by using ei-

ther method presented above. The result is C5B. Then add this to the minu-

end (592):

Ignore the carry out of the MSD addition; the result is 1ED.We can prove that

this is correct by adding 1ED to 3A5 and checking to see that it equals

Hex Representation of Signed Numbers
The data stored in a microcomputer’s internal working memory or on a hard

disk or CD ROM are typically stored in bytes (groups of eight bits). The data

59216.

592

� C5B

1�1ED

Disregard carry.↑

59216.3A516

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 316

byte stored in a particular memory location is often expressed in hexadecimal

because it is more efficient and less error-prone than expressing it in binary.

When the data consist of signed numbers, it is helpful to be able to recognize

whether a hex value represents a positive or a negative number. For exam-

ple, Table 6-2 lists the data stored in a small segment of memory starting at

address 4000.

Each memory location stores a single byte (eight bits), which is the bi-

nary equivalent of a signed decimal number. The table also shows the hex

equivalent of each byte. For a negative data value, the sign bit (MSB) of the

binary number will be a 1; this will always make the MSD of the hex num-

ber 8 or greater. When the data value is positive, the sign bit will be a 0, and

the MSD of the hex number will be 7 or less. The same holds true no matter

how many digits are in the hex number. When the MSD is 8 or greater, the
number being represented is negative; when the MSD is 7 or less, the number is
positive.

SECTION 6-9/ARITHMETIC CIRCUITS 317

TABLE 6-2

Hex Address Stored Binary Data Hex Value Decimal Value

4000 00111010 3A

4001 11100101 E5

4002 01010111 57

4003 10000000 80 -128

+87

-29

+58

REVIEW QUESTIONS 1. Add

2. Subtract

3. Which of the following hex numbers represent positive values: 2F, 77EC,

C000, 6D, FFFF?

67F - 2A4.

67F + 2A4.

6-9 ARITHMETIC CIRCUITS

One essential function of most computers and calculators is the performance

of arithmetic operations. These operations are all performed in the arith-

metic/logic unit of a computer, where logic gates and flip-flops are combined

so that they can add, subtract, multiply, and divide binary numbers. These

circuits perform arithmetic operations at speeds that are not humanly possi-

ble. Typically, an addition operation will take less than 100 ns.

We will now study some of the basic arithmetic circuits that are used to

perform the arithmetic operations discussed earlier. In some cases, we will

go through the actual design process, even though the circuits may be com-

mercially available in integrated-circuit form, to provide more practice in

the use of the techniques learned in Chapter 4.

Arithmetic/Logic Unit
All arithmetic operations take place in the arithmetic/logic unit (ALU) of a

computer. Figure 6-4 is a block diagram showing the major elements in-

cluded in a typical ALU. The main purpose of the ALU is to accept binary

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 317

data that are stored in the memory and to execute arithmetic and logic op-

erations on these data according to instructions from the control unit.

The arithmetic/logic unit contains at least two flip-flop registers: the B
register and the accumulator register. It also contains combinational logic,

which performs the arithmetic and logic operations on the binary numbers

that are stored in the B register and the accumulator. A typical sequence of

operations may occur as follows:

1. The control unit receives an instruction (from the memory unit) specify-

ing that a number stored in a particular memory location (address) is to

be added to the number presently stored in the accumulator register.

2. The number to be added is transferred from memory to the B register.

3. The number in the B register and the number in the accumulator regis-

ter are added together in the logic circuits (upon command from the con-

trol unit). The resulting sum is then sent to the accumulator to be stored.

4. The new number in the accumulator can remain there so that another

number can be added to it or, if the particular arithmetic process is fin-

ished, it can be transferred to memory for storage.

These steps should make it apparent how the accumulator register de-

rives its name. This register “accumulates” the sums that occur when per-

forming successive additions between new numbers acquired from memory

and the previously accumulated sum. In fact, for any arithmetic problem

containing several steps, the accumulator usually contains the results of the

intermediate steps as they are completed as well as the final result when the

problem is finished.

6-10 PARALLEL BINARY ADDER

Computers and calculators perform the addition operation on two binary num-

bers at a time, where each binary number can have several binary digits. Figure

6-5 illustrates the addition of two five-bit numbers.The augend is stored in the

accumulator register; that is, the accumulator contains five FFs, storing the val-

ues 10101 in successive FFs. Similarly, the addend, the number that is to be

added to the augend, is stored in the B register (in this case, 00111).

The addition process starts by adding the least significant bits (LSBs) of

the augend and addend.Thus, which means that the sum for that

position is 0, with a carry of 1.

1 + 1 = 10,

318 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

Memory
unit

Accumulator

Logic
circuits

B register

Arithmetic/logic unit

Control
unit

FIGURE 6-4 Functional

parts of an ALU.

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 318

This carry must be added to the next position along with the augend and

addend bits in that position. Thus, in the second position,

which is again a sum of 0 and a carry of 1. This carry is added to the next

position together with the augend and addend bits in that position, and so

on, for the remaining positions, as shown in Figure 6-5.

At each step in this addition process, we are performing the addition of

three bits: the augend bit, the addend bit, and a carry bit from the previous

position. The result of the addition of these three bits produces two bits: a

sum bit, and a carry bit that is to be added to the next position. It should be

clear that the same process is followed for each bit position. Thus, if we can

design a logic circuit that can duplicate this process, then all we have to do

is to use the identical circuit for each of the bit positions. This is illustrated

in Figure 6-6.

In this diagram, variables , , , , and represent the bits of the

augend that are stored in the accumulator (which is also called the A regis-

ter). Variables , , , , and represent the bits of the addend stored

in the B register.Variables , , , , and represent the carry bits into

the corresponding positions. Variables , , , , are the sum output

bits for each position. Corresponding bits of the augend and addend are fed

to a logic circuit called a full adder (FA), along with a carry bit from the

previous position. For example, bits and are fed into full adder 1 alongB1A1

S0S1S2S3S4

C0C1C2C3C4

B0B1B2B3B4

A0A1A2A3A4

1 + 0 + 1 = 10,

SECTION 6-10/PARALLEL BINARY ADDER 319

1 0

0 0 1 1 1

1 0 1

0 0 1 1 1

00 1 1 1

1 1 1 0 0

Augend

Addend

Sum

Carry

Stored in B register

Stored in
accumulator

register

(To be added
to next

position)

FIGURE 6-5 Typical

binary addition process.

FIGURE 6-6 Block diagram of a five-bit parallel adder circuit using full adders.

B4

A4

S4

FA
#4

C5

B3

A3

S3

FA
#3

C4

B2

A2

S2

FA
#2

C3

B1

A1

S1

FA
#1

C2

B0

A0

S0

Full
 adder

#0

C1 C0

Augend bits
from A register

Addend bits
from B register

Sum appears at S4, S3, S2, S1, S0 outputs.

TOCCMC06_0131725793.QXD 12/16/2005 2:05 PM Page 319

with , which is the carry bit produced by the addition of the and

bits. Bits and are fed into full adder 0 along with . and are the

LSBs of the augend and addend, so it appears that would always have to

be 0 because there can be no carry into that position. We shall see, however,

that there will be situations when can also be 1.

The full-adder circuit used in each position has three inputs: an A bit, a

B bit, and a C bit. It also produces two outputs: a sum bit and a carry bit. For

example, full adder 0 has inputs , , and , and it produces outputs

and . Full adder 1 had , , and as inputs and and as outputs,

and so on.This arrangement is repeated for as many positions as there are in

the augend and addend. Although this illustration is for five-bit numbers, in

modern computers the numbers usually range from 8 to 64 bits.

The arrangement in Figure 6-6 is called a parallel adder because all of

the bits of the augend and addend are present and are fed into the adder

circuits simultaneously. This means that the additions in each position are

taking place at the same time. This is different from how we add on paper,

taking each position one at a time starting with the LSB. Clearly, parallel ad-

dition is extremely fast. More will be said about this later.

C2S1C1B1A1C1

S0C0B0A0

C0

C0

B0A0C0B0A0

B0A0C1

320 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

FIGURE 6-7 Truth table

for a full-adder circuit.

REVIEW QUESTIONS 1. How many inputs does a full adder have? How many outputs?

2. Assume the following input levels in Figure 6-6:

(a) What are the logic levels at the outputs of FA #2?

(b) What is the logic level at the output?C5

C0 = 0.B4B3B2B1B0 = 00111;

A4
A3A2A1A0 = 01001;

6-11 DESIGN OF A FULL ADDER

Now that we know the function of the full adder, we can design a logic circuit

that will perform this function. First, we must construct a truth table show-

ing the various input and output values for all possible cases. Figure 6-7

shows the truth table having three inputs, A, B, and and two outputs, S
and There are eight possible cases for the three inputs, and for eachCOUT.

CIN,

Augend
bit

input

A
0
0
0
0
1
1
1
1

Addend
bit

input

B
0
0
1
1
0
0
1
1

Carry
bit

input

CIN
0
1
0
1
0
1
0
1

Sum
bit

output

S
0
1
1
0
1
0
0
1

Carry
bit

output

COUT
0
0
0
1
0
1
1
1

B

S

A

FA

COUT

CIN

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 320

case the desired output values are listed. For example, consider the case

and The full adder (FA) must add these bits to pro-

duce a sum (S) of 0 and a carry () of 1.The reader should check the other

cases to be sure they are understood.

Because there are two outputs, we will design the circuitry for each out-

put individually, starting with the S output. The truth table shows that there

are four cases where S is to be a 1. Using the sum-of-products method, we can

write the expression for S as

(6-1)

We can now try to simplify this expression by factoring. Unfortunately, none

of the terms in the expression has two variables in common with any of the

other terms. However, can be factored from the first two terms, and A can

be factored from the last two terms:

The first term in parentheses should be recognized as the exclusive-OR com-

bination of B and which can be written as The second term in

parentheses should be recognized as the exclusive-NOR of B and which

can be written as Thus, the expression for S becomes

If we let this can be written as

which is simply the exclusive-OR of A and X. Replacing the expression for X,

we have

(6-2)

Consider now the output in the truth table of Figure 6-7. We can

write the sum-of-products expression for as follows:

This expression can be simplified by factoring. We will employ the trick in-

troduced in Chapter 4, whereby we will use the term three times be-

cause it has common factors with each of the other terms. Hence,

(6-3)

This expression cannot be simplified further.

Expressions (6-2) and (6-3) can be implemented as shown in Figure 6-8.

Several other implementations can be used to produce the same expressions

for S and none of which has any particular advantage over those

shown.The complete circuit with inputs A, B, and and outputs S and

represents the full adder. Each of the FAs in Figure 6-6 contains this same

circuitry (or its equivalent).

COUTCIN

COUT,

 = BCIN + ACIN + AB
 COUT = BCIN(A + A) + ACIN(B + B) + AB(CIN + CIN)

ABCIN

COUT = ABCIN + ABCIN + ABCIN + ABCIN

COUT

COUT

S = A { [B { CIN]

S = A # X + A # X = A { X

X = B { CIN,

S = A(B { CIN) + A(B { CIN)

B { CIN.

CIN,

B { CIN.CIN,

S = A(BCIN + BCIN) + A(B CIN + BCIN)

A

S = A BCIN + ABCIN + ABCIN + ABCIN

COUT

CIN = 1.B = 0,A = 1,

SECTION 6-11/DESIGN OF A FULL ADDER 321

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 321

K-Map Simplification
We simplified the expressions for S and using algebraic methods.The K-

map method can also be used. Figure 6-9(a) shows the K map for the S output.

This map has no adjacent 1s, and so there are no pairs or quads to loop.Thus,

the expression for S cannot be simplified using the K map. This points out a

limitation of the K-map method compared with the algebraic method. We

were able to simplify the expression for S through factoring and the use of

XOR and XNOR operations.

The K map for the output is shown in Figure 6-9(b). The three pairs

that are looped will produce the same expression obtained from the alge-

braic method.

Half Adder
The FA operates on three inputs to produce a sum and carry output. In

some cases, a circuit is needed that will add only two input bits, to produce

COUT

COUT

322 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

S

A

B

COUT

FA

CIN

FIGURE 6-9 K mappings

for the full-adder outputs.

FIGURE 6-8 Complete

circuitry for a full adder.

0 1

1 0

0 1

1 0

AB

CIN CIN

AB

AB

AB

0 0

0 1

1

0 1

AB

CIN CIN

AB

AB

AB

K map for S K map for COUT

S = ABCIN + ABCIN + ABCIN + ABCIN

(a) (b)

COUT = BCIN + ACIN + AB

1

TOCCMC06_0131725793.QXD 12/21/05 11:14 AM Page 322

a sum and carry output. An example would be the addition of the LSB po-

sition of two binary numbers where there is no carry input to be added. A

special logic circuit can be designed to take two input bits, A and B, and to

produce sum (S) and carry () outputs.This circuit is called a half adder
(HA). Its operation is similar to that of an FA except that it operates on

only two bits. We shall leave the design of the HA as an exercise at the end

of the chapter.

6-12 COMPLETE PARALLEL ADDER WITH REGISTERS

In a computer, the numbers that are to be added are stored in FF registers.

Figure 6-10 shows the diagram of a four-bit parallel adder, including the

storage registers. The augend bits through are stored in the accumu-

lator (A register); the addend bits through are stored in the B regis-

ter. Each of these registers is made up of D flip-flops for easy transfer of

data.

The contents of the A register (i.e., the binary number stored in

through) is added to the contents of the B register by the four FAs, and

the sum is produced at outputs through . is the carry out of the fourth

FA, and it can be used as the carry input to a fifth FA, or as an overflow bit to

indicate that the sum exceeds 1111.

Note that the sum outputs are connected to the D inputs of the A regis-

ter. This will allow the sum to be parallel-transferred into the A register on

the positive-going transition (PGT) of the TRANSFER pulse. In this way, the

sum can be stored in the A register.

Also note that the D inputs of the B register are coming from the com-

puter’s memory, so that binary numbers from memory will be parallel-

transferred into the B register on the PGT of the LOAD pulse. In most com-

puters, there is also provision for parallel-transferring binary numbers from

memory into the accumulator (A register). For simplicity, the circuitry nec-

essary for performing this transfer is not shown in this diagram; it will be

addressed in an end-of-chapter exercise.

Finally, note that the A register outputs are available for transfer to

other locations such as another computer register or the computer’s memory.

This will make the adder circuit available for a new set of numbers.

Register Notation
Before we go through the complete process of how this circuit adds two

binary numbers, it will be helpful to introduce some notation that makes it

easy to describe the contents of a register and data transfer operations.

Whenever we want to give the levels that are present at each FF in a reg-

ister or at each output of a group of outputs, we will use brackets, as illus-

trated below:

This is the same as saying that In other

words, think of [A] as representing “the contents of register A.”

Whenever we want to indicate the transfer of data to or from a register,

we will use an arrow, as illustrated below:

[B] : [A]

A0 = 1.A1 = 1,A2 = 0,A3 = 1,

[A] = 1011

C4S0S3

A0

A3

B0B3

A0A3

COUT

SECTION 6-12/COMPLETE PARALLEL ADDER WITH REGISTERS 323

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 323

This means that the contents of the B register have been transferred to the

A register.The old contents of the A register will be lost as a result of this op-

eration, and the B register will be unchanged. This type of notation is very

common, especially in data books describing microprocessor and microcon-

troller operations. In many ways, it is very similar to the notation used to re-

fer to bit-array data objects using hardware description languages.

324 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

FIGURE 6-10 (a) Complete four-bit parallel adder with registers; (b) signals used to add

binary numbers from memory and store their sum in the accumulator.

CLEAR

LOAD

TRANSFER

t1 t2 t3 t4 t5
(b)

CLK

CLR

D A3

CLK

CLR

D A2

CLK

CLR

D A1

CLK

CLR

D A0

CLEAR

LOAD

TRANSFER

(a)

FA FA FA FA

C4

S3 S2 S1 S0

C3 C2 C1
C0

CLK
D

B0

CLK
D

B1

CLK
D

B2

CLK
D

B3

From memory

B register

A register

4-bit adder

Accumulator outputs

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 324

Sequence of Operations
We will now describe the process by which the circuit of Figure 6-10 will add

the binary numbers 1001 and 0101. Assume that that is, there is no

carry into the LSB position.

1. A pulse is applied to the asynchronous inputs

of each FF in register A. This occurs at time

2. This first binary number is transferred from memory (M) to

the B register. In this case, the binary number 1001 is loaded into regis-

ter B on the PGT of the LOAD pulse at

3. With and the full adders produce a

sum of 1001; that is, These sum outputs are transferred into

the A register on the PGT of the TRANSFER pulse at This makes

4. The second binary number, 0101, is transferred from memory

into the B register on the PGT of the second LOAD pulse at This

makes

5. With and the FAs produce

These sum outputs are transferred into the A register when the second

TRANSFER pulse occurs at Thus,

6. At this point, the sum of the two binary numbers is present in the accu-

mulator. In most computers, the contents of the accumulator, [A], will

usually be transferred to the computer’s memory so that the adder cir-

cuit can be used for a new set of numbers. The circuitry that performs

this transfer is not shown in Figure 6-10.[A] : [M]

[A] = 1110.t5.

[S] = 1110.[A] = 1001,[B] = 0101[S] : [A].

[B] = 0101.

t4.

[M] : [B].

[A] = 1001.

t3.

[S] = 1001.

[A] = 0000,[B] = 1001[S]* : [A].

t2.

[M] : [B].

t1.

(CLR)CLEAR[A] = 0000.

C0 = 0;

SECTION 6-13/CARRY PROPAGATION 325

REVIEW QUESTIONS 1. Suppose that four different four-bit numbers are to be taken from mem-

ory and added by the circuit of Figure 6-10. How many pulses will

be needed? How many TRANSFER pulses? How many LOAD pulses?

2. Determine the contents of the A register after the following sequence of

operations: [S] : [A].[1110] : [B],[S] : [A],[0110] : [B],[A] = 0000,

CLEAR

6-13 CARRY PROPAGATION

The parallel adder of Figure 6-10 performs additions at a relatively high

speed because it adds the bits from each position simultaneously. However,

its speed is limited by an effect called carry propagation or carry ripple,

which can best be explained by considering the following addition:

Addition of the LSB position produces a carry into the second position. This

carry, when added to the bits of the second position, produces a carry into

0111

+ 0001

1000

*Even though S is not a register, we will use [S] to represent the group of S outputs.

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 325

the third position. The latter carry, when added to the bits of the third posi-

tion, produces a carry into the last position.The key point to notice in this ex-

ample is that the sum bit generated in the last position (MSB) depended on

the carry that was generated by the addition in the first position (LSB).

Looking at this from the viewpoint of the circuit of Figure 6-10, out of

the last full adder depends on out of the first full adder. But the signal

must pass through three FAs before it produces . What this means is that

the output will not reach its correct value until has propagated through

the intermediate FAs. This represents a time delay that depends on the pro-

pagation delay produced in each FA. For example, if each FA has a propaga-

tion delay of 40 ns, then will not reach its correct level until 120 ns after

is generated. This means that the add command pulse cannot be applied

until 160 ns after the augend and addend numbers are present in the FF

registers (the extra 40 ns is due to the delay of the LSB full adder, which

generates).

Obviously, the situation becomes much worse if we extend the adder cir-

cuitry to add a greater number of bits. If the adder were handling 32-bit

numbers, the carry propagation delay could be The add

pulse could not be applied until at least after the numbers were pres-

ent in the registers.

This magnitude of delay is prohibitive for high-speed computers.

Fortunately, logic designers have come up with several ingenious schemes

for reducing this delay. One of the schemes, called look-ahead carry, utilizes

logic gates to look at the lower-order bits of the augend and addend to see if

a higher-order carry is to be generated. For example, it is possible to build a

logic circuit with , , , , , and as inputs and as an output. This

logic circuit would have a shorter delay than is obtained by the carry propa-

gation through the FAs. This scheme requires a large amount of extra cir-

cuitry but is necessary to produce high-speed adders. The extra circuitry is

not a significant consideration with the present use of integrated circuits.

Many high-speed adders available in integrated-circuit form utilize the look-

ahead carry or a similar technique for reducing overall propagation delays.

6-14 INTEGRATED-CIRCUIT PARALLEL ADDER

Several parallel adders are available as ICs. The most common is a four-bit

parallel adder IC that contains four interconnected FAs and the look-ahead

carry circuitry needed for high-speed operation. The 7483A, 74LS83A,

74LS283, and 74HC283 are all four-bit parallel-adder chips.

Figure 6-11(a) shows the functional symbol for the 74HC283 four-bit par-

allel adder (and its equivalents). The inputs to this IC are two four-bit num-

bers, and , and the carry, , into the LSB position. The

outputs are the sum bits and the carry, , out of the MSB position. The sum

bits are labeled , where is the Greek capital letter sigma. The

label is just a common alternative to the S label for a sum bit.

Cascading Parallel Adders
Two or more IC adders can be connected together (cascaded) to accomplish

the addition of larger binary numbers. Figure 6-11(b) shows two 74HC283

adders connected to add two 8-bit numbers and

.The adder on the right adds the lower-order bits of the num-

bers. The adder on the left adds the higher-order bits plus the carry out of

the lower-order adder.The eight sum outputs are the resultant sum of the two

C4

B0B1B2B3B4B5

B6B7A0A1A2A3A4A5A6A7

©©©3©2©1©0

C4

C0B0B1B2B3A0A1A2A3

C3A0A1A2B0B1B2

1.28 ms

1280 ns = 1.28 ms.

C1

C1

S3

C1S3

S3

C1C1

S3

326 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 326

8-bit numbers. is the carry out of the MSB position. It can be used as the

carry input to a third adder stage if larger binary numbers are to be added.

The look-ahead carry feature of the 74HC283 speeds up the operation of

this two-stage adder because the logic level at , the carry out of the lower-

order stage, is generated more rapidly than it would be if there were no look-

ahead carry circuitry on the 74HC283 chip. This allows the higher-order

stage to produce its sum outputs more quickly.

C4

C8

SECTION 6-14/INTEGRATED-CIRCUIT PARALLEL ADDER 327

FIGURE 6-11 (a) Block

symbol for the 74HC283

four-bit parallel adder;

(b) cascading two 74HC283s.

B3 B2 B1 B0

A3 A2 A1 A0

Σ3

4-bit
parallel adder

74HC283
C0

C4

(a)

B7 B6 B5 B4

A7 A6 A5 A4

74HC283
(high-order adder)

C4
C8

B3 B2 B1 B0

A3 A2 A1 A0

C0

8-bit augend

8-bit addend

(b)

74HC283
(low-order adder)

Σ2 Σ1 Σ0

Σ7 Σ6 Σ5 Σ4 Σ3 Σ2 Σ1 Σ0

EXAMPLE 6-10 Determine the logic levels at the inputs and outputs of the eight-bit adder in

Figure 6-11(b) when is added to

Solution

First, convert each number to an eight-bit binary number:

 72 = 01001000

 137 = 10001001

13710.7210

TOCCMC06_0131725793.QXD 12/16/2005 2:05 PM Page 327

These two binary values will be applied to the A and B inputs; that is, the A
inputs will be 10001001 from left to right, and the B inputs will be 01001000

from left to right.The adder will produce the binary sum of the two numbers:

The sum outputs will read 11010001 from left to right. There is no overflow

into the bit, and so it will be a 0.C8

[A] = 10001001

[B] = 01001000

[©] = 11010001

328 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

REVIEW QUESTIONS 1. How many 74HC283 chips are needed to add two 20-bit numbers?

2. If a 74HC283 has a maximum propagation delay of 30 ns from to ,

what will be the total propagation delay of a 32-bit adder constructed

from 74HC283s?

3. What will be the logic level at in Example 6-10?C4

C4C0

6-15 2’s-COMPLEMENT SYSTEM

Most modern computers use the 2’s-complement system to represent nega-

tive numbers and to perform subtraction.The operations of addition and sub-

traction of signed numbers can be performed using only the addition opera-

tion if we use the 2’s-complement form to represent negative numbers.

Addition
Positive and negative numbers, including the sign bits, can be added to-

gether in the basic parallel-adder circuit when the negative numbers are in

2’s-complement form. This is illustrated in Figure 6-12 for the addition of

and . The is represented in its 2’s-complement form as 1101, where the

first 1 is the sign bit; the is represented as 0110, with the first zero as the

sign bit. These numbers are stored in their corresponding registers. The four-

bit parallel adder produces sum outputs of 0011, which represents .The

output is 1, but remember that it is disregarded in the 2’s-complement

method.

Subtraction
When the 2’s-complement system is used, the number to be subtracted (the

subtrahend) is changed to its 2’s complement and then added to the minuend

(the number the subtrahend is being subtracted from). For example, we can

assume that the minuend is already stored in the accumulator (A register).

The subtrahend is then placed in the B register (in a computer it would be

transferred here from memory) and is changed to its 2’s-complement form

before it is added to the number in the A register. The sum outputs of the

adder circuit now represent the difference between the minuend and the sub-

trahend.

The parallel-adder circuit that we have been discussing can be adapted

to perform the subtraction described above if we provide a means for taking

C4+3

+6

-3+6

-3

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 328

the 2’s complement of the B register number.The 2’s complement of a binary

number is obtained by complementing (inverting) each bit and then adding

1 to the LSB. Figure 6-13 shows how this can be accomplished. The inverted
outputs of the B register are used rather than the normal outputs; that is,

and are fed to the adder inputs (remember, is the sign bit).

This takes care of complementing each bit of the B number. Also, is made

a logical 1, so that it adds an extra 1 into the LSB of the adder; this accom-

plishes the same effect as adding 1 to the LSB of the B register for forming

the 2’s complement.

The outputs to represent the results of the subtraction operation.

Of course, is the sign bit of the result and indicates whether the result is

� or �. The carry output is again disregarded.

To help clarify this operation, study the following steps for subtracting

from :

1. is stored in the A register as 0100.

2. is stored in the B register as 0110.

3. The inverted outputs of the B-register FFs (1001) are fed to the adder.

+6

+4

+4+6

C4

©3

©0©3

C0

B3B3B0, B1, B2,

SECTION 6-15/2’S-COMPLEMENT SYSTEM 329

Σ0

B3 B2 B1 B0

4-bit
parallel adder

74LS283
C0

0 0 1 1

0 1 1 0

1 1 0 1

A3 A2 A1 A0

From A register

From B register

+3
(resultant sum)

01

C4

+6
(addend)

2's-complement
representation of –3 (augend)

Σ1Σ2Σ3

FIGURE 6-12 Parallel

adder used to add and sub-

tract numbers in 2’s-com-

plement system.

FIGURE 6-13 Parallel

adder used to perform

subtraction () using

the 2’s-complement system.

The bits of the subtrahend

(B) are inverted, and

to produce the

2’s complement.

C0 = 1

A - B

Σ0Σ1Σ2Σ3

A3 A2 A1 A0

B3 B2 B1 B0

4-bit
parallel adder

74LS283

From A register

C0 = 1

Represents DIFFERENCE
output

Inverted
outputs of
B register

C4
(disregard)

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 329

4. The parallel-adder circuitry adds to along with a

carry, into the LSB. The operation is shown below.

The result at the sum outputs is 1110. This actually represents the result of

the subtraction operation, the difference between the number in the A regis-

ter and the number in the B register, that is, Because the sign bit

� 1, it is a negative result and is in 2’s-complement form. We can verify that

1110 represents by taking its 2’s complement and obtaining :

Combined Addition and Subtraction
It should now be clear that the basic parallel-adder circuit can be used to

perform addition or subtraction depending on whether the B number is left

unchanged or is converted to its 2’s complement. A complete circuit that can

perform both addition and subtraction in the 2’s-complement system is

shown in Figure 6-14.

This adder/subtractor circuit is controlled by the two control signals

ADD and SUB.When the ADD level is HIGH, the circuit performs addition of

the numbers stored in the A and B registers. When the SUB level is HIGH,

the circuit subtracts the B-register number from the A-register number. The

operation is described as follows:

1. Assume that and The disables (inhibits)

AND gates 2, 4, 6, and 8, holding their outputs at 0. The enables
AND gates 1, 3, 5, and 7, allowing their outputs to pass the , , , and

levels, respectively.

2. The levels to pass through the OR gates into the four-bit parallel adder

to be added to the bits to .The sum appears at the outputs to .

3. Note that causes a carry into the adder.

4. Now assume that and The inhibits AND

gates 1, 3, 5, and 7. The enables AND gates 2, 4, 6, and 8, so that

their outputs pass the and levels, respectively.

5. The levels to pass through the OR gates into the adder to be added

to the bits to . Note also that is now 1. Thus, the B-register num-

ber has essentially been converted to its 2’s complement.

6. The difference appears at the outputs to .

Circuits like the adder/subtractor of Figure 6-14 are used in computers be-

cause they provide a relatively simple means for adding and subtracting signed

binary numbers. In most computers, the outputs present at the output lines

are usually transferred into the A register (accumulator), so that the results of

the addition or subtraction always end up stored in the A register. This is ac-

complished by applying a TRANSFER pulse to the CLK inputs of register A.

©

©3©0

C0A3A0

B3B0

B3B0, B1, B2,

SUB = 1

ADD = 0SUB = 1.ADD = 0

C0 = 0SUB = 0

©3©0A3A0

B3B0

B3

B2B1B0

ADD = 1

SUB = 0SUB = 0.ADD = 1

1110

0001

+ 1

0010 = +210

+210-210

[A] - [B].

1 ← C0

0100 ← [A]

� 1001 ← []

1110 ← [�] � [A] � [B]

B

C0 = 1,

[B] = 1001[A] = 0100

330 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 330

SECTION 6-16/ALU INTEGRATED CIRCUITS 331

FIGURE 6-14 Parallel

adder/subtractor using the

2’s-complement system.

74LS283C4

C0

248 6

7 5 3 1

ADD

SUB

D D D D
CLKCLKCLKCLK

Transfer

pulse

12 11 10 9

A3 A2 A1 A0

B3 B2 B1 B0

Σ0Σ1Σ2Σ3

A3 A2 A1 A0

B3 B3 B2 B2 B1 B1 B0 B0

B register

REVIEW QUESTIONS 1. Why does have to be a 1 in order to use the adder circuit in Figure

6-13 as a subtractor?

2. Assume that and in Figure 6-14. If and

determine the logic levels at the OR gate outputs.

3. Repeat question 2 for

4. True or false: When the adder/subtractor circuit is used for subtraction,

the 2’s complement of the subtrahend appears at the input of the adder.

SUB = 1.ADD = 0,

SUB = 0,

ADD = 1[B] = 0010[A] = 0011

C0

6-16 ALU INTEGRATED CIRCUITS

Several integrated circuits are called arithmetic/logic units (ALUs), even

though they do not have the full capabilities of a computer’s arithmetic/logic

unit.These ALU chips are capable of performing several different arithmetic

and logic operations on binary data inputs. The specific operation that an

ALU IC is to perform is determined by a specific binary code applied to its

function-select inputs. Some of the ALU ICs are fairly complex, and it would

require a great amount of time and space to explain and illustrate their op-

eration. In this section, we will use a relatively simple, yet useful, ALU chip

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 331

to show the basic concepts behind all ALU chips. The ideas presented here

can then be extended to the more complex devices.

The 74LS382/HC382 ALU
Figure 6-15(a) shows the block symbol for an ALU that is available as a

74LS382 (TTL) and as a 74HC382 (CMOS). This 20-pin IC operates on two

four-bit input numbers, and , to produce a four-bit output

result . This ALU can perform eight different operations. At any

given time, the operation that it is performing depends on the input code ap-

plied to the function-select inputs . The table in Figure 6-15(b) shows

the eight available operations.We will now describe each of these operations.

CLEAR OPERATION With the ALU will clear all of the

bits of the F output so that

ADD OPERATION With the ALU will add to

to produce their sum at . For this operation, is the

carry into the LSB position, and it must be made a 0. is the carry

output from the MSB position. OVR is the overflow indicator output; it

detects overflow when signed numbers are being used. OVR will be a 1

when an add or a subtract operation produces a result that is too large to

fit into four bits (including the sign bit).

SUBTRACT OPERATIONS With the ALU will subtract

the A input number from the B input number.With the ALU

will subtract B from A. In either case, the difference appears at .

Note that the subtract operations require that the input be a 1.CN

F3F2F1F0

S2S1S0 = 010,

S2S1S0 = 001,

CN+4

CNF3F2F1F0B3B2B1B0

A3A2A1A0S2S1S0 = 011,

F3F2F1F0 = 0000.

S2S1S0 = 000,

S2S1S0

F3F2F1F0

B3B2B1B0A3A2A1A0

332 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

S2

S1

S0

CN

B3

B2

B1

B0

B

A3

A2

A1

A0

F0

F2

F1

F3

F

CN+4

(a)

ALU

A

74LS382/
74HC382

OVR
S

0
0
0
0
1
1
1
1

S2

0
0
1
1
0
0
1
1

S1

0
1
0
1
0
1
0
1

S0

Function Table

(b)

A = 4-bit input number

B = 4-bit input number

CN = carry into LSB position

S = 3-bit operation select inputs

F = 4-bit output number

CN+4 = carry out of MSB position

OVR = overflow indicator

CLEAR
B minus A
A minus B
A plus B
A ⊕ B
A + B
AB
PRESET

F3F2F1F0 = 0000

Needs CN = 0
Exclusive-OR
OR
AND
F3F2F1F0 = 1111

Needs CN = 1

Notes: S inputs select operation.
OVR = 1 for signed-number overflow.

Inputs

Outputs
Operation Comments

FIGURE 6-15 (a) Block symbol for 74LS382/HC382 ALU chip; (b) function table showing

how select inputs (S) determine what operation is to be performed on A and B inputs.

TOCCMC06_0131725793.QXD 12/5/05 4:19 PM Page 332

XOR OPERATION With the ALU will perform a bit-by-

bit XOR operation on the A and B inputs. This is illustrated below for

and

The result is

OR OPERATION With the ALU will perform a bit-by-bit

OR operation on the A and B inputs. For example, with

and the ALU will generate a result of

AND OPERATION With the ALU will perform a bit-by-bit

AND operation on the A and B inputs. For example, with

and the ALU will generate a result of

PRESET OPERATIONS With the ALU will set all of the

bits of the output so that F3F2F1F0 = 1111.

S2S1S0 = 111,

F3F2F1F0 = 0100.B3B2B1B0 = 1100,

A3A2A1A0 = 0110

S2S1S0 = 110,

F3F2F1F0 = 1110.B3B2B1B0 = 1100,

A3A2A1A0 = 0110

S2S1S0 = 101,

F3F2F1F0 = 1010.

 A0 { B0 = 0 { 0 = 0 = F0

 A1 { B1 = 1 { 0 = 1 = F1

 A2 { B2 = 1 { 1 = 0 = F2

 A3 { B3 = 0 { 1 = 1 = F3

B3B2B1B0 = 1100.A3A2A1A0 = 0110

S2S1S0 = 100,

SECTION 6-16/ALU INTEGRATED CIRCUITS 333

EXAMPLE 6-11 (a) Determine the 74HC382 outputs for the following inputs:

and

(b) Change the select code to 011 and repeat.

Solution

(a) From the function table in Figure 6-15(b), 010 selects the () opera-

tion. The ALU will perform the 2’s-complement subtraction by comple-

menting B and adding it to A and . Note that is needed to com-

plete the 2’s complement of B effectively.

As always in 2’s-complement subtraction, the CARRY OUT of the MSB is

discarded. The correct result of the () operation appears at the F
outputs.

The OVR output is determined by considering the input numbers to be

signed numbers. Thus, we have and

The result of the subtract operation is

which is correct. Therefore, no overflow has occurred, and

If the result had been negative, it would have been in 2’s-complement form.

(b) A select code of 011 will produce the sum of the A and B inputs. However,

because there will be a carry of 1 added into the LSB position.

This will produce a result of which is 1 greater than

(). The and OVR outputs will both be 0. For the correct sum to

appear at F, the input must be at 0.CN

CN+4A + B
F3F2F1F0 = 0110,

CN = 1,

OVR = 0.+310,

F3F2F1F0 = 0011 =0001 = +110.

B3B2B1B0 =A3A2A1A0 = 0100 = +410

A - B

1 ← C

F3 F2 F1 F0CN + 4

N

0100 ← A
� 1110 ←

10011

B

CN = 1CN

A - B

CN = 1.B3B2B1B0 = 0001,A3A2A1A0 = 0100,

S2S1S0 = 010,

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 333

Expanding the ALU
A single 74LS382 or 74HC382 operates on four-bit numbers. Two or more of

these chips can be connected together to operate on larger numbers. Figure

6-16 shows how two four-bit ALUs can be combined to add two eight-bit num-

bers, and , to produce the output sum

. Study the circuit diagram and note the following points:

1. Chip Z1 operates on the four lower-order bits of the two input numbers.

Chip Z2 operates on the four higher-order bits.

2. The sum appears at the F outputs of Z1 and Z2. The lower-order bits ap-

pear at Z1, and the higher-order bits appear at Z2.

3. The input of Z1 is the carry into the LSB position. For addition, it is

made a 0.

4. The carry output of Z1 is connected to the carry input [] of Z2.

5. The OVR output of Z2 is the overflow indicator when signed eight-bit

numbers are being used.

6. The corresponding select inputs of the two chips are connected together

so that Z1 and Z2 are always performing the same operation. For addi-

tion, the select inputs are shown as 011.

CN[CN+4]

CN

©7©6©5©4©3©2©1©0

A7A6 A5 A4 A3 A2A1A0B7B6B5B4B3B2B1B0

334 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

EXAMPLE 6-12 How would the arrangement of Figure 6-16 have to be changed in order to

perform the subtraction (B - A)?

74HC382

Z2

74HC382

Z1

0

0
1

1

Notes: Z1 adds lower-order bits.
Z2 adds higher-order bits.
Σ7–Σ0 = 8-bit sum.
OVR of Z2 is 8-bit overflow indicator.

B7 B6 B5 B4

A7 A6 A5 A4

S2 S1 S0 CN B3 B2 B1 B0 A3 A2 A1 A0

OVR F2F3 F1 F0CN+4

Σ7 Σ6 Σ5 Σ4

B3 B2 B1 B0

A3 A2 A1 A0

S2 S1 S0 CN B3 B2 B1 B0 A3 A2 A1 A0

OVR F2 F1 F0CN+4

Σ3 Σ2 Σ1 Σ0

F3

FIGURE 6-16 Two 74HC382 ALU chips connected as an eight-bit adder.

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 334

Solution

The select input code [see the table in Figure 6-15(b)] must be changed to

001, and the input of Z1 must be made a 1.

Other ALUs
The 74LS181/HC181 is another four-bit ALU. It has four select inputs that

can select any of 16 different operations. It also has a mode input bit that can

switch between logic operations and arithmetic operations (add and sub-

tract).This ALU has an output that is used to compare the magnitudes

of the A and B inputs. When the two input numbers are exactly equal, the

output will be a 1; otherwise, it is a 0.

The 74LS881/HC881 is similar to the 181 chip, but it has the capability of

performing some additional logic operations.

A = B

A = B

CN

SECTION 6-17/TROUBLESHOOTING CASE STUDY 335

REVIEW QUESTIONS 1. Apply the following inputs to the ALU of Figure 6-15, and determine the

outputs:

2. Change the select code to 011 and to 0, and repeat review question 1.

3. Change the select code to 110, and repeat review question 1.

4. Apply the following inputs to the circuit of Figure 6-16, and determine

the outputs:

5. Change the select code to 111, and repeat review question 4.

6. How many 74HC382s are needed to add two 32-bit numbers?

A = 00011000.B = 01010011,

CN

CN = 1.B3B2B1B0 = 1001,A3 A2A1A0 = 1110,S2S1S0 = 001,

6-17 TROUBLESHOOTING CASE STUDY

A technician is testing the adder/subtractor redrawn in Figure 6-17 and

records the following test results for the various operating modes:

Mode 1: ADD � 0, SUB � 0. The sum outputs are always equal to the

number in the A register plus one. For example, when the

sum is This is incorrect because the OR outputs and

should all be 0 in this mode to produce

Mode 2: Add � 1, SUB � 0. The sum is always 1 more than it should be.

For example, with and the sum output is 0111 in-

stead of 0110.

Mode 3: Add � 0, SUB � 1. The outputs are always equal to

as expected.

When she examines these test results, the technician sees that the sum out-

puts exceed the expected results by 1 for the first two modes of operation. At

first, she suspects a possible fault in one of the LSB inputs to the adder, but

she dismisses this because such a fault would also affect the subtraction op-

eration, which is working correctly. Eventually, she realizes that there is an-

other fault that could add an extra 1 to the results for the first two modes

without causing an error in the subtraction mode.

Recall that is made a 1 in the subtraction mode as part of the 2’s-com-

plement operation on [B]. For the other modes, is to be a 0.The technicianC0

C0

[A] - [B],©

[B] = 0100,[A] = 0010

[©] = [A].

C0[©] = 0111.

[A] = 0110,

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 335

checks the connection between the SUB signal and the input to the adder

and finds that it is open due to a bad solder connection. This open connec-

tion explains the observed results because the TTL adder responds as if

were a constant logic 1, causing an extra 1 to be added to the result in modes

1 and 2. The open connection would have no effect on mode 3 because is

supposed to be a 1 anyway.

C0

C0

C0

336 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

FIGURE 6-17 Parallel

adder/subtractor circuit.

74LS283
4-bit parallel adderC4

A3 A2 A1 A0
Σ3 Σ2 Σ1 Σ0

C0

B0B1B2B3

12 11 10 9

248 6

7 5 3 1

ADD

SUB

B3 B3 B2 B2 B1 B1 B0 B0

X

EXAMPLE 6-13 Consider again the adder/subtractor circuit. Suppose that there is a break in

the connection path between the SUB input and the AND gates at point X in

Figure 6-17. Describe the effects of this open on the circuit operation for

each mode.

Solution

First, realize that this fault will produce a logic 1 at the affected input of

AND gates 2, 4, 6, and 8, which will permanently enable each of these gates

to pass its input to the following OR gate as shown.

Mode 1: ADD � 0, SUB � 0. The fault will cause the circuit to perform

subtraction—almost. The 1’s complement of [B] will reach the OR gate

outputs and be applied to the adder along with [A]. With the 2’s

complement of [B] will not be complete; it will be short by 1. Thus, the

adder will produce To illustrate, let’s try

and The adder will add as follows:

1’s complement of [B] � 1100

[A] � 0110

result � 1�0010

Disregard carry.↑

[B] = +3 = 0011.

[A] = +6 = 0110[A] - [B] - 1.

C0 = 0,

B

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 336

The result is instead of as it would be for normal

subtraction.

Mode 2: ADD � 1, SUB � 0. With AND gates 1, 3, 5, and 7

will pass the B inputs to the following OR gate. Thus, each OR gate will

have a and a B at its inputs, thereby producing a 1 output. For exam-

ple, the inputs to OR gate 9 will be coming from AND gate 2 (because

of the fault), and coming from AND gate 1 (because). Thus,

OR gate 9 will produce an output of which will always be a

logic 1.

The adder will add the 1111 from the OR gates to the [A] to produce

a sum that is 1 less than [A]. Why? Because

Mode 3: ADD � 0, SUB � 1. This mode will work correctly because

is supposed to enable AND gates 2, 4, 6, and 8 anyway.

6-18 USING TTL LIBRARY FUNCTIONS WITH ALTERA

The adder and ALU ICs that we have looked at in this chapter are just a few

of the many MSI chips that have served as the building blocks of digital

systems for decades. Whenever a technology serves such a long and useful

lifetime, it has a lasting impact on the field and the people who use it. TTL

integrated circuits certainly fall into this category and continue in various

forms today. Experienced engineers and technicians (we want to avoid the

word old) are familiar with the standard parts. Existing designs can be re-

manufactured and upgraded using the same basic circuits if they can be

implemented in a VLSI PLD. Data sheets for these devices are readily avail-

able, and studying these old TTL parts is still an excellent way to learn the

fundamentals of any digital system.

For all of these reasons, the Altera development system offers what they

refer to as old-style macrofunctions. A macrofunction is a self-contained de-

scription of a logic circuit with all its inputs, outputs, and operational charac-

teristics defined. In other words, they have gone to the trouble of writing the

code necessary to get a PLD to emulate the operation of many conventional

TTL MSI devices. All the designer needs to know is how to hook it into the

rest of the system. In this section, we will expand on the concepts of logic

primitives and libraries presented in Chapter 5 to see how we can use stan-

dard MSI parts in our designs.

The 74382 arithmetic logic unit (ALU) is a fairly sophisticated IC. The

task of describing its operation using HDL code is challenging but certainly

within our reach. Refer again to the examples of this IC and its operation,

which were covered in Section 6-16. Specifically, look at Figure 6-16, which

shows how to cascade two four-bit ALU chips to make an eight-bit ALU that

could serve as the heart of a microcontroller’s central processing unit (CPU).

Figure 6-18 shows the graphic method of describing the eight-bit circuit us-

ing Altera’s graphic description file and macrofunction blocks from its li-

brary of components. The 74382 symbols are simply chosen from the list in

the macrofunction library and placed on the screen. Wiring these chips to-

gether is simple and intuitive.

It is possible to connect standard library MSI parts using only HDL. Just

as we demonstrated connecting flip-flop primitives together to make more

complex circuits, we can connect ICs such as the 74382 to other parts. The

names of all the input and output ports on these standard parts are defined

SUB = 1

11112 = -110.

B0 + B0,

ADD = 1B0

B0

B

ADD = 1,

0011 = +3,0010 = +2

SECTION 6-18/USING TTL LIBRARY FUNCTIONS WITH ALTERA 337

TOCCMC06_0131725793.QXD 12/5/05 8:07 PM Page 337

in a function prototype, which can be found in the help menu. The function

prototype given for a 74382 is

AHDL Function Prototype (port name and order also apply to Ver-
ilog HDL):

FUNCTION 74382 (s[2..0], a[3..0], b[3..0], cin)

RETURNS (ovr, cn4, f[3..0]);

338 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

Mode 0

CIN

OVRZ2

ALU 74382

Bin 7

Bin 6

Bin 5

Bin 4

Ain 7

Ain 6

Ain 5

Ain 4

caryout

ovrflo

sumout 7

sumout 6

sumout 5

sumout 4

Ain 3

Ain 2

Ain 1

Ain 0

sumout 3

sumout 2

sumout 1

sumout 0

caryin

Mode 1

Mode 2

Bin 3

Bin 2

Bin 1

Bin 0

S2 S1 S0 A3 B3 A2 B2 A1 B1 A0 B0

CN4 F3 F2 F1 F0

CIN

OVRZ1

ALU 74382

S2 S1 S0 A3 B3 A2 B2 A1 B1 A0 B0

CN4 F3 F2 F1 F0

FIGURE 6-18 An Altera graphic description file of an eight-bit ALU.

REVIEW QUESTIONS 1. Where can you find information about using a 74283 full adder in your

HDL design?

2. What is a macrofunction?

6-19 LOGICAL OPERATIONS ON BIT ARRAYS

In the previous section, we examined the use of macrofunctions to build sys-

tems from standard parts. Now we need to practice writing HDL code rather

than using a macrofunction to make an adder similar to Figure 6-6. In this

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 338

section, we will expand our understanding of the HDL techniques in two

main areas: specifying groups of bits in an array and using logical operations

to combine arrays of bits using Boolean expressions.

In Section 6-12, we discussed register notation, which makes it easy to

describe the contents of registers and signals consisting of multiple bits.The

HDLs use arrays of bits in a similar notation to describe signals, as we dis-

cussed in Chapter 4. For example, in AHDL, the four-bit signal named d is de-

fined as:

VARIABLE d[3..0] :NODE.

In VHDL, the same data format is expressed as:

SIGNAL d :BIT_VECTOR (3 DOWNTO 0).

Each bit in these data types is designated by an element number. In this ex-

ample of a bit array named d, the bits can be referred to as d3, d2, d1, d0. Bits

can also be grouped into sets. For example, if we want to refer to the three

most significant bits of d as a set, we can use the expression d[3..1] in AHDL

and the expression d (3 DOWNTO 1) in VHDL. Once a value is assigned to

the array and the desired set of bits is identified, logical operations can be

performed on the entire set of bits. As long as the sets are the same size (the

same number of bits), two sets can be combined in a logical expression, just

like you would combine single variables in a Boolean equation. Each of the

corresponding pairs of bits in the two sets is combined as stated in the logic

equation. This allows one equation to describe the logical operation per-

formed on each bit in a set.

SECTION 6-19/LOGICAL OPERATIONS ON BIT ARRAYS 339

EXAMPLE 6-14 Assume , , , has the value 1011 and , , , has the value

1100. Let’s define and

Let’s also define where Y is related to Dnum and Gnum

as follows:

What is the value of X after this operation?

Solution

Thus, Y is a set of four bits with value 1000.

D3, D2, D1, D0 1 0 1 1

AND each bit position together

G3, G2, G1, G0 1 1 0 0

Y3, Y2, Y1, Y0 1 0 0 0

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔

Y = Dnum • Gnum;

Y = [Y3, Y2, Y1, Y0]

Gnum = [G3, G2, G1, G0].Dnum = [D3, D2, D1, D0]

G0G1G2G3D0D1D2D3

EXAMPLE 6-15 For the register values described in Example 6-14, declare each d, g, and x.
Then write an expression using your favorite HDL that performs the ANDing

operation on all bits.

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 339

Solution

340 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

SUBDESIGN bitwise_and

(d[3..0], g[3..0] :INPUT;

y[3..0] :OUTPUT;)

BEGIN

y[] = d[] & g[];

END;

ENTITY bitwise_and IS

PORT(d, g :IN BIT_VECTOR (3 DOWNTO 0);

y :OUT BIT_VECTOR (3 DOWNTO 0));

END bitwise_and;

ARCHITECTURE a OF bitwise_and IS

BEGIN

y <= d AND g;

END a;

6-20 HDL ADDERS

In this section, we will see how to create a parallel adder circuit that can be

used to add bit arrays using the logic equation for a single-bit full adder.

Figure 6-19 shows the basic block diagram with signals labeled to create a

four-bit adder. Notice that each bit of the augend [A], addend [B], carry [C],

and sum [S] are bit array variables and have index numbers associated with

them. The equation for the sum using register notation is:

Notice that the carry signals between stages are not inputs or outputs of

this overall circuit, but rather intermediate variables. A strategy must be de-

veloped for labeling the carry bits so that they can be used in an array. We

have chosen to let each carry bit serve as an input to its corresponding adder

stage, as shown in Figure 6-19. For example, C0 is an input to the bit 0 stage,

C1 is the carry input to the bit 1 stage, and so on. The bits of the carry array

can be thought of as the “wires” that connect the adders. This array must

have a carry in for each stage and also a carry out for the most significant

state. In this example, there will be five bits, labeled C4 through C0, in the

carry array. The set of data that represents the carry outputs would be C4

through C1, and the set of data that represents the carry inputs would be C3

through C0.

The HDLs allow us to specify which sets of bits out of the entire array we

want to use in an equation. To ensure that all variables being combined in a

logic equation contain the same number of bits, we can start with the gen-

eral equation for the carry out of a one-bit adder as follows:

Cout = AB + ACin + BCin

 Cout = C[4..1]

 Cin = C[3..0]

[S] = [A] { [B] { [C];

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 340

Substituting our definition of Cin and Cout (above), we have the following

equation for the four-bit adder carry out:

The graphic symbol for this device is shown in Figure 6-20. Notice that it

does not show the carry array. It is a variable or signal inside the block. Altera

allows any SUBDESIGN in AHDL or ENTITY in VHDL, even those that you

create, to be represented by a graphic block diagram symbol such as this.

This is all part of the hierarchical design scheme of the Altera development

system (described in Chapter 4).

To summarize this information, Figure 6-19 shows the “insides” of the

block diagram in Figure 6-20 and summarizes the operation described

by the two equations. Now let’s look at text-based files that can be used

to generate a block symbol like the one in Figure 6-20 using AHDL and

VHDL.

C[4..1] = A[3..0] & B[3..0] + A[3..0] & C[3..0] + B[3..0] & C[3..0]

SECTION 6-20/HDL ADDERS 341

AUGEND A3 A2 A1 A0 A

ADDEND B3 B2 B1 B0 B

CARRYin C3 C2 C1 C0 Cin

SUM S3 S2 S1 S0 S

AUGEND A3 A2 A1 A0 A

ADDEND B3 B2 B1 B0 B

CARRYin C3 C2 C1 C0 Cin

CARRYout C4 C3 C2 C1 Cout

Generate sum
S = A ⊕ [B ⊕ Cin]

Generate carry bits
Cout = A•B + A•Cin + B•Cin

C3

FA
Bit 3

Cout

B3

A3

S3

C2

FA
Bit 2

B2

A2

S2

C1

FA
Bit 1

B1

A1

S1

FA
Bit 0

B0

A0

S0

Cin

C0C4

FIGURE 6-19 Four-bit parallel adder.

A [3 . .0]

B [3 . .0]

CIN S [3 . .0]

COUT

1

X

A [3 . .0]

B [3 . .0]

Cin

X

X

X

X

S [3 . .0]

CoutA [3 . .0]

FIGURE 6-20 Block symbol

generated by Altera

MAX+PLUS.

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 341

A
H

D
L

V
H

D
L

AHDL FOUR-BIT ADDER
In lines 14 and 15 of the AHDL code of Figure 6-21, notice the syntax for re-

ferring to bit arrays in their entirety. The name is given, followed by []. If no

bits are designated inside the square brackets, it means that all the bits that

were declared are included in the operations. Lines 14 and 15 describe fully

all four adder circuits and come up with the sum. In order to choose a spe-

cific set of elements from the array (i.e., a subset of the array), the name is

followed by the range of element numbers in square brackets. For example,

the carry equation (line 15) in AHDL syntax is:

Notice that only four bits of the carry array c[] are being assigned, even

though the array is five bits long. In this way, the carry out of each single-bit

adder is assigned as the carry in of the next stage.

c[4..1] = a[] & b[] # a[] & c[3..0] # b[] & c[3..0];

342 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

SUBDESIGN fig6_21

(

cin :INPUT; -- carry in

a[3..0] :INPUT; -- augend

b[3..0] :INPUT; -- addend

s[3..0] :OUTPUT; -- sum

cout :OUTPUT; -- carry OUT

)

VARIABLE

c[4..0] :NODE; -- carry array is 5 bits long!

BEGIN

c[0] = cin;

s[] = a[] $ b[] $ c[3..0]; -- generate sum

c[4..1] = (a[] & b[]) # (a[] & c[3..0]) # (b[] & c[3..0]);

cout = c[4]; -- carry out

END;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

FIGURE 6-21 AHDL adder.

VHDL FOUR-BIT ADDER
In the VHDL code of Figure 6-22, notice the syntax for referring to bit arrays

in their entirety. The name is simply used with no bit designations. Lines 15

and 16 describe fully all four adder circuits that will come up with the sum.

In order to choose a specific set of elements from the array (i.e., a subset of

the array), the name is followed by the range of element numbers in paren-

theses. The carry equation (line 16) in VHDL syntax is:

c(4 DOWNTO 1) <= (a AND b) OR (a AND c(3 DOWNTO 0)) OR (b

AND c(3 DOWNTO 0));

Notice that only four bits of the carry array c are being assigned, even though

the array is five bits long. In this way, the carry out of each single-bit adder

is assigned as the carry in of the next stage.

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 342

6-21 EXPANDING THE BIT CAPACITY OF A CIRCUIT

One way we have learned to expand the capacity of a circuit is to cascade

stages, like we did with the 74382 ALU chip in the previous section. This can

be done using the Altera graphic design file approach (like Figure 6-18) or

the structural text-based HDL approach. With either of these methods, we

need to specify all the inputs, outputs, and interconnections between blocks.

In the case of this adder circuit, it would be much easier to start with the

HDL file for a four-bit adder and simply increase the size of each operand

variable in the equation. For example, if we wanted an eight-bit adder, we

SECTION 6-21/EXPANDING THE BIT CAPACITY OF A CIRCUIT 343

FIGURE 6-22 VHDL adder.

ENTITY fig6_22 IS

PORT(

cin :IN BIT;

a :IN BIT_VECTOR(3 DOWNTO 0);

b :IN BIT_VECTOR(3 DOWNTO 0);

s :OUT BIT_VECTOR(3 DOWNTO 0);

cout :OUT BIT);

END fig6_22;

ARCHITECTURE a OF fig6_22 IS

SIGNAL c :BIT_VECTOR (4 DOWNTO 0); -- carries require 5 bit array

BEGIN

c(0) <= cin; -- Read the carry in to bit array

s <= a XOR b XOR c(3 DOWNTO 0); -- Generate the sum bits

c(4 DOWNTO 1) <= (a AND b)

OR (a AND c(3 DOWNTO 0))

OR (b AND c(3 DOWNTO 0));

cout <= c(4); -- output the carry of the MSB.

END a;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

REVIEW QUESTIONS 1. If and what is the value of (a) (b)

(Note that means AND; means OR.)

2. If what is the value of (a) (b)

3. In AHDL, the following object is declared: toggles[7..0] :INPUT. Give an

expression for the least significant four bits using AHDL syntax.

4. In VHDL, the following object is declared: toggles :IN BIT_VECTOR (7

DOWNTO 0). Give an expression for the least significant four bits using

VHDL syntax.

5. What would be the result of ORing the two registers of Example 6-14?

6. Write an HDL statement that would OR the two objects d and g together.

Use your favorite HDL.

7. Write an HDL statement that would XOR the two most significant bits of

d with the two least significant bits of g and put the result in the middle

two bits of x.

A[5..2]?A[7..4]?A[7..0] = 1010 1100,

+
#[B]?

[A] +[A] # [B]?[B] = 0011,[A] = 1001

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 343

A
H

D
L

simply need to expand a, b, and s to eight bits.The code would remain almost

identical to the four-bit adder shown above. This is just a glimpse of some of

the efficiency improvements that HDL offers. The way this code is written,

however, the indices of each signal, and each bit array specification in the

equation, would also have to be redefined. In other words, the designer

would need to examine the code carefully and change all the 3s to 7s, all the

4s to 8s, and so on.

An important principle in software engineering is symbolic representa-

tion of the constants that are used throughout the code. Constants are simply

fixed numbers represented by a name (symbol). If we can define a symbol

(i.e., make up a name) at the top of the source code that is assigned the value

for the total number of bits and then use this symbol (name) throughout the

code, it is much easier to modify the circuit. Only one line of code needs to

be changed to expand the capacity of the circuit. The examples that follow

add this feature to the code and also upgrade the code to implement the

adder/subtractor circuit like the one in Figure 6-14. It should be noted here

that expanding the capacity of an adder circuit such as this one will also

reduce the speed of the circuit because of carry propagation (described in

Section 6-13). In order to keep these examples simple, we have not added

any logic to generate a look-ahead carry.

AHDL ADDER/SUBTRACTOR
In AHDL, using constants is very simple, as shown on lines 1 and 2 of Figure

6-23. The keyword CONSTANT is followed by the symbolic name and the

value it is to be assigned. Notice that we can allow the compiler to do some

344 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

CONSTANT number_of_bits = 8; -- set total number of bits

CONSTANT n = number_of_bits - 1; -- n is highest bit index

SUBDESIGN fig6_23

(

add :INPUT; -- add control

sub :INPUT; -- subtract control and LSB Carry in

a[n..0] :INPUT; -- Augend bits

bin[n..0] :INPUT; -- Addend bits

s[n..0] :OUTPUT; -- Sum bits

caryout :OUTPUT; -- MSB carry OUT

)

VARIABLE

c[n+1..0] :NODE; -- intermediate carry vector

b[n..0] :NODE; -- intermediate operand vector

BEGIN

b[] = bin[] & add # NOT bin[] & sub;

c[0] = sub; --Read the carry in to group variable

s[] = a[] $ b[] $ c[n..0]; --Generate the sums

c[n+1..1] = (a[] & b[]) # (a[] & c[n..0]) # (b[] & c[n..0]);

caryout = c[n+1]; -- output the carry of the MSB.

END;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

FIGURE 6-23 An n-bit adder/subtractor description in AHDL.

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 344

simple math calculations to establish a value for one constant based on an-

other. We can also use this feature as we refer to the constant in the code, as

shown on lines 14, 20, and 21. For example, we can refer to c[7] as c[n] and

c[8] as c[n�1]. The size of this adder/subtractor can be expanded by simply

changing the value of number_of_bits to the desired number of bits and then

recompiling.

As mentioned, this code has been upgraded from the previous exam-

ple to make it an adder/subtractor like the one in Figure 6-14. The add and

sub inputs have been included on lines 6 and 7, and a new intermediate

variable named b[] has been included on line 15. The first concurrent

statement on line 17 describes all the SOP logic that drives the b inputs

to the adder in Figure 6-14. First, it describes a logical AND operation be-

tween every bit of bin[] and the logic level on add. This result is ORed (bit

for bit) with the result of ANDing the complement of every bit of bin[]
with sub. In other words, it creates the following Boolean function for

each bit: The signal b[] is then used in the adder

equations instead of bin[], as was used in the adder examples. Notice on

line 18 that sub is also used to connect the carry array LSB (carry into bit 0)

with the value on sub, which needs to be 0 when adding and 1 when sub-

tracting.

VHDL ADDER/SUBTRACTOR
In VHDL, using constants is a little bit more involved. Constants must be in-

cluded in a PACKAGE, as shown in Figure 6-24, lines 1–4. Packages are also

used to contain component definitions and other information that must be

available to all entities in the design file. Notice on line 6 that the keyword

USE tells the compiler to use the definitions in this package throughout

this design file. Inside the package, the keyword CONSTANT is followed by

the symbolic name, its type, and the value it is to be assigned using the :�
operator. Notice on line 3 that we can allow the compiler to do some simple

math calculations to establish a value of one constant based on another. We

can also use this feature as we refer to the constant in the code, as shown

on lines 34 and 37. For example, we can refer to c(7) as c(n) and c(8) as

c(n�1). The size of this adder/subtractor can be expanded by simply chang-

ing the value of number_of_bits to the desired number of bits and then

recompiling.

As mentioned, this code has been upgraded from the previous example

to make it an adder/subtractor like the one in Figure 6-14. The add and sub
inputs have been included on lines 10 and 11, and a new signal named b has

been included on line 20, bnot has been included on line 21, and mode has

been included on line 22. The first concurrent statement on line 24 serves to

create the 1’s complement of bin. The SOP circuits in Figure 6-14 that drive

the b inputs to the adder select the bin inputs if or the 1’s comple-

ment (bnot) if This is an excellent application of the VHDL selected

signal assignment, as shown on lines 27–30. When add is 1, bin is channeled

to b. When sub is 1, bnot is channeled to b. The signal b is then used in the

adder equations instead of bin, as was used in the previous adder examples.

Notice on line 32 that sub is also used to connect the carry array LSB (carry

into bit 0) with the value on sub, which needs to be 0 when adding and 1

when subtracting.

sub = 1.

add = 1

b = bin # add + bin # sub.

SECTION 6-21/EXPANDING THE BIT CAPACITY OF A CIRCUIT 345

V
H

D
L

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 345

346 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

PACKAGE const IS

CONSTANT number_of_bits :INTEGER:=8; -- set total number of bits

CONSTANT n :INTEGER:= number_of_bits � 1; -- MSB index number

END const;

USE work.const.all;

ENTITY fig6_24 IS

PORT(

add :IN BIT; -- add control

sub :IN BIT; -- subtract control and LSB carry in

a :IN BIT_VECTOR(n DOWNTO 0);

bin :IN BIT_VECTOR(n DOWNTO 0);

s :OUT BIT_VECTOR(n DOWNTO 0);

carryout :OUT BIT);

END fig6_24;

ARCHITECTURE a OF fig6_24 IS

SIGNAL c :BIT_VECTOR (n+1 DOWNTO 0); -- define intermediate carries

SIGNAL b :BIT_VECTOR (n DOWNTO 0); -- define intermediate operand

SIGNAL bnot :BIT_VECTOR (n DOWNTO 0);

SIGNAL mode :BIT_VECTOR (1 DOWNTO 0);

BEGIN

bnot <= NOT bin;

mode <= add & sub;

WITH mode SELECT

b <= bin WHEN “10”, -- add

bnot WHEN “01”, -- sub

“0000” WHEN OTHERS;

c(0) <= sub; -- read the carry_in to bit array

s <= a XOR b XOR c(n DOWNTO 0); -- generate the sum bits

c(n+1 DOWNTO 1) <= (a AND b) OR

(a AND c(n DOWNTO 0)) OR

(b AND c(n DOWNTO 0)); --generate carries

carryout <= c(n+1); -- output the carry of the MSB.

END a;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

FIGURE 6-24 An n-bit adder/subtractor description in VHDL.

VHDL GENERATE Statement
Another way to make circuits that handle more bits is the VHDL

GENERATE statement. It is a very concise way of telling the compiler to

replicate several components that are cascaded together. As we have shown,

there are many other ways to accomplish the same thing and if the abstract

nature of this method seems difficult, use another method. The GENERATE

statement is offered here for the sake of completeness.The adder circuits we

have been discussing are cascaded chains of single-bit full adder modules.

The VHDL code for a single-bit full adder module is shown in Figure 6-25.

Multiple instances of this module need to be connected to each other to form

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 346

an n-bit adder circuit. Of course, you can do it using the same component

techniques that we have discussed previously, but it would result in very

lengthy code.

To make the code more concise and easier to modify, a strategy is needed

for the way we label the inputs and outputs for each module. As we men-

tioned previously, the bit-0 adder has inputs that have an index of 0 (e.g., a0,

b0, c0, s0). The carry out of bit 0 is labeled c1, and it becomes the carry input

for the bit 1 adder module. Each time we instantiate another component for

the next bit of the multibit adder, the index number of all connections goes

up by 1 (a1, b1, c1, s1). The GENERATE statement allows us to repeat an in-

stantiation of a component n times, increasing the index number by 1 for

each instantiation up to n. In line 27 of Figure 6-26, the GENERATE keyword

is used in an iterative loop (FOR loop), which means that a set of descriptive

actions (PORT MAP) will be repeated a certain number of times. The vari-

able i represents an index number that starts at 0 (for the first iteration) and

ends at n (the last iteration). The advantages of this method are code com-

pactness and the ease with which the number of bits can be expanded. The

code in Figure 6-26 shows how to use a single-bit adder (Figure 6-25) as a

component to generate an eight-bit adder circuit. Remember that the file for

the single-bit adder (add1.vhd in Figure 6-25) must be saved in the same

folder as the design file that uses it to generate multiple instances of the

adder (fig6_26.vhd).

The single-bit adder component is defined on lines 17–23 of Figure 6-26.

For the first iteration of lines 29 and 30, the value of i is 0, creating an adder

stage for bit 0. The second iteration, i, has been increased to 1 to form adder

stage 1. This continues until i is equal to n, generating each stage of the

()-bit adder. Notice that VHDL allows us the option of placing labels at

the beginning of a line of code to help describe its purpose. For example, on

line 27, the label repeat is used and on line 29, the label casc is used. Labels

are optional but they must always end with a colon.

Libraries of Parameterized Modules
Using HDL techniques clearly makes it easy to alter the bit capacity of a

generic circuit. In this chapter, we can see that it is easy to change from a

n + 1

SECTION 6-21/EXPANDING THE BIT CAPACITY OF A CIRCUIT 347

ENTITY add1 IS

PORT(

cin :IN BIT;

a :IN BIT;

b :IN BIT;

s :OUT BIT;

cout :OUT BIT);

END add1;

ARCHITECTURE a OF add1 IS

BEGIN

s <= a XOR b XOR cin;

cout <= (a AND b) OR (a AND cin) OR (b AND cin);

END a;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FIGURE 6-25 Single-bit

full adder in VHDL.

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 347

four-bit adder to an eight-, 12-, or 16-bit adder. When Altera was creating

its library of useful functions, they also took advantage of these tech-

niques and created what they refer to as megafunctions, which include a

library of parameterized modules (LPMs). These functions do not attempt

to imitate a particular standard IC like the old-style macrofunctions; in-

stead, they offer a generic solution for the various types of logic circuits

that are useful in digital systems. Examples of these generic circuits that

we have covered so far are logic gates (AND, OR, XOR), latches, counters,

shift registers, and adders. The term parameterized means that when you

instantiate a function from the library, you also specify some parameters

that define certain attributes (bit capacity, for example) for the circuit

you are describing. The various LPMs that are available can be found

through the HELP menu under megafunctions/LPM. This documentation

describes the parameters that the user can specify as well as the port fea-

tures of the device.

348 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

FIGURE 6-26 Use of the VHDL GENERATE statement.

PACKAGE const IS

CONSTANT number_of_bits :INTEGER:=8; -- Specify number of bits

CONSTANT n :INTEGER:=number_of_bits - 1; --n is MSB bit number

END const;

USE work.const.all;

ENTITY fig6_26 IS

PORT(

caryin :IN bit;

ain :IN BIT_VECTOR (n DOWNTO 0);

bin :IN BIT_VECTOR (n DOWNTO 0);

sout :OUT BIT_VECTOR (n DOWNTO 0);

carryout :OUT bit);

END fig6_26;

ARCHITECTURE a OF fig6_26 IS

COMPONENT add1 -- declare single bit full adder

PORT (

cin :IN BIT;

a,b :IN BIT;

s :OUT BIT;

cout :OUT BIT);

END COMPONENT;

SIGNAL c :BIT_VECTOR (n+1 DOWNTO 0); -- declare bit array for carries

BEGIN

c(0) <= caryin; -- put LSB in array (carry in)

repeat:FOR i IN 0 TO n GENERATE -- instantiate n+1 adders

-- cascade them

casc:add1 PORT MAP (cin=> c(i), a=> ain(i), b=> bin(i),

s=> sout(i), cout=> c(i+1));

END GENERATE;

carryout <= c(n+1); -- out the carry from nth bit stage

END a;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 348

SUMMARY
1. To represent signed numbers in binary, a sign bit is attached as the MSB.

A sign is a 0, and a sign is a 1.

2. The 2’s complement of a binary number is obtained by complementing

each bit and then adding 1 to the result.

3. In the 2’s-complement method of representing signed binary numbers,

positive numbers are represented by a sign bit of 0 followed by the mag-

nitude in its true binary form. Negative numbers are represented by a

sign bit of 1 followed by the magnitude in 2’s-complement form.

4. A signed binary number is negated (changed to a number of equal value

but opposite sign) by taking the 2’s complement of the number, including

the sign bit.

5. Subtraction can be performed on signed binary numbers by negating (2’s

complementing) the subtrahend and adding it to the minuend.

6. In BCD addition, a special correction step is needed whenever the sum of

a digit position exceeds 9 (1001).

7. When signed binary numbers are represented in hexadecimal, the MSD

of the hex number will be 8 or greater when the number is negative; it

will be 7 or less when the number is positive.

8. The arithmetic/logic unit (ALU) of a computer contains the circuitry

needed to perform arithmetic and logic operations on binary numbers

stored in memory.

9. The accumulator is a register in the ALU. It holds one of the numbers be-

ing operated upon, and it also is where the result of the operation is

stored in the ALU.

10. A full adder performs the addition on two bits plus a carry input. A par-

allel binary adder is made up of cascaded full adders.

11. The problem of excessive delays caused by carry propagation can be re-

duced by a look-ahead carry logic circuit.

12. IC adders such as the 74LS83/HC83 and the 74LS283/HC283 can be used

to construct high-speed parallel adders and subtractors.

13. A BCD adder circuit requires special correction circuitry.

14. Integrated-circuit ALUs are available that can be commanded to perform

a wide range of arithmetic and logic operations on two input numbers.

15. Prefabricated functions are available in the Altera libraries.

16. These library parts and the HDL circuits you create can be intercon-

nected using either graphic or structural HDL techniques.

-+

SUMMARY 349

REVIEW QUESTIONS 1. What keyword is used to assign a symbolic name to a fixed number?

2. In AHDL, where are constants defined? Where are they defined in

VHDL?

3. Why are constants useful?

4. If the constant max_val has a value of 127, how will a compiler interpret

the expression max_val

5. What is the GENERATE statement used for in VHDL?

-5?

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 349

17. Logical operations can be performed on all the bits in a set using

Boolean equations.

18. Practicing good software engineering techniques, specifically the use of

symbols to represent constants, allows for easy code modification and ex-

pansion of the bit capacity of circuits such as full adders.

19. Libraries of parameterized modules (LPMs) offer a flexible, easily mod-

ified or expanded solution for many types of digital circuits.

350 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

IMPORTANT TERMS
carry

sign bit

sign-magnitude

system

2’s-complement

system

negation

augend

addend

subtrahend

minuend

overflow

arithmetic/logic

unit (ALU)

accumulator register

full adder (FA)

parallel adder

half adder (HA)

carry propagation

(carry ripple)

look-ahead carry

adder/subtractor

macrofunction

function prototype

sets

constants

PACKAGE

GENERATE

iterative loop

FOR loop

library of

parameterized

functions (LPMs)

megafunctions

*Answers to problems marked with an asterisk can be found in the back of the text.

PROBLEMS
SECTION 6-1

6-1. Add the following in binary. Check your results by doing the addition

in decimal.

(a)*1010 � 1011 (d) 0.1011 � 0.1111

(b)*1111 � 0011 (e) 10011011 � 10011101

(c)*1011.1101 � 11.1 (f) 1010.01 � 10.111

SECTION 6-2

6-2. Represent each of the following signed decimal numbers in the 2’s-

complement system. Use a total of eight bits, including the sign bit.

(a)*�32 (e)*�127 (i) �1 (m) �84

(b)*�14 (f)*�127 (j) �128 (n) �3

(c)*�63 (g)*�89 (k) �169 (o) �3

(d)*�104 (h)*�55 (l) 0 (p) �190

6-3. Each of the following numbers represents a signed decimal number in

the 2’s-complement system. Determine the decimal value in each

case. (Hint: Use negation to convert negative numbers to positive.)

(a)*01101 (f) 10000000

(b)*11101 (g) 11111111

(c)*01111011 (h) 10000001

(d)*10011001 (i) 01100011

(e)*01111111 (j) 11011001

B

B

B

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 350

6-4. (a) What range of signed decimal values can be represented using 12

bits, including the sign bit?

(b) How many bits would be required to represent decimal numbers

from �32,768 to �32,767?

6-5.*List, in order, all of the signed numbers that can be represented in five

bits using the 2’s-complement system.

6-6. Represent each of the following decimal values as an eight-bit signed

binary value. Then negate each one.

(a)* (b)* (c) (d) (e) (f)

6-7. (a)*What is the range of unsigned decimal values that can be repre-

sented in 10 bits? What is the range of signed decimal values us-

ing the same number of bits?

(b) Repeat both problems using eight bits.

SECTIONS 6-3 AND 6-4

6-8. The reason why the sign-magnitude method for representing signed

numbers is not used in most computers can readily be illustrated by

performing the following.

(a) Represent in eight bits using the sign-magnitude form.

(b) Represent in eight bits using the sign-magnitude form.

(c) Add the two binary numbers and note that the sum does not look

anything like zero.

6-9. Perform the following operations in the 2’s-complement system. Use

eight bits (including the sign bit) for each number. Check your results

by converting the binary result back to decimal.

(a)*Add to (f) Subtract from

(b)*Add to (g) Subtract from

(c)*Add to (h) Subtract from

(d)*Add to (i) Add to

(e)*Subtract from (j) Subtract from

6-10. Repeat Problem 6-9 for the following cases, and show that overflow

occurs in each case.

(a) Add to (c) Add to .

(b) Subtract from (d) Subtract from

SECTIONS 6-5 AND 6-6

6-11. Multiply the following pairs of binary numbers, and check your re-

sults by doing the multiplication in decimal.

(a)*111 � 101 (c) 101.101 � 110.010

(b)*1011 � 1011 (d) .1101 � .1011

6-12. Perform the following divisions. Check your results by doing the divi-

sion in decimal.

(a)* (c)

(b)* (d) 10110.1101 , 1.1111111 , 1001

10111 , 1001100 , 100

+95.-37-95.+37

-95-37+95.+37

-17.-17+17.+16

-17.+17-80.-48

-15.-36-24.+19

+47.+47-17.+14

-13.+21+6.+9

-12

+12

+127-128-1+15-12+73

PROBLEMS 351

B

B

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 351

SECTIONS 6-7 AND 6-8

6-13. Add the following decimal numbers after converting each to its BCD

code.

(a)* (d)

(b)* (e)

(c)* (f)

6-14. Find the sum of each of the following pairs of hex numbers.

(a)* (d)

(b)* (e)

(c)* (f)

6-15. Perform the following subtractions on the pairs of hex numbers.

(a)* (d)

(b)* (e)

(c)* (f)

6-16. The owner’s manual for a small microcomputer states that the com-

puter has usable memory locations at the following hex addresses:

0200 through 03FF, and 4000 through 7FD0. What is the total number

of available memory locations?

6-17. (a)*A certain eight-bit memory location holds the hex data 77. If this

represents an unsigned number, what is its decimal value?

(b)*If this represents a signed number, what is its decimal value?

(c) Repeat (a) and (b) if the data value is E5.

SECTION 6-11

6-18. Convert the FA circuit of Figure 6-8 to all NAND gates.

6-19.*Write the function table for a half adder (inputs A and B; outputs

SUM and CARRY). From the function table, design a logic circuit that

will act as a half adder.

6-20. A full adder can be implemented in many different ways. Figure 6-27

shows how one may be constructed from two half adders. Construct

a function table for this arrangement, and verify that it operates

as a FA.

2F00 - 40000300 - 005A

F000 - EFFF91B - 6F2

0200 - 00033E91 - 2F93

D191 + AAABABC + DEF

FFF + 0FF91B + 6F2

2FFE + 00023E91 + 2F93

623 + 599147 + 380

998 + 00358 + 37

385 + 11874 + 23

352 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

B

B

B

FIGURE 6-27 Problem 6-20.

A

B

HA

CARRY IN

HA

SUM

CARRY

SUM

CARRY

CARRY OUT

Full adder

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 352

SECTION 6-12

6-21.*Refer to Figure 6-10. Determine the contents of the A register after the

following sequence of operations:

6-22. Refer to Figure 6-10. Assume that each FF has and

a setup time of 10 ns, and that each FA has a propagation delay of 40 ns.

What is the minimum time allowed between the PGT of the LOAD

pulse and the PGT of the TRANSFER pulse for proper operation?

6-23. In the adder and subtractor circuits discussed in this chapter, we gave

no consideration to the possibility of overflow. Overflow occurs when

the two numbers being added or subtracted produce a result that con-

tains more bits than the capacity of the accumulator. For example,

using four-bit registers, including a sign bit, numbers ranging from

to (in 2’s complement) can be stored. Therefore, if the result of an

addition or subtraction exceeds or we would say that an over-

flow has occurred. When an overflow occurs, the results are useless

because they cannot be stored correctly in the accumulator register.

To illustrate, add and which results in 1001. This

1001 would be interpreted incorrectly as a negative number because

there is a 1 in the sign-bit position.

In computers and calculators, there are usually circuits that are

used to detect an overflow condition. There are several ways to do

this. One method that can be used for the adder that operates in the

2’s-complement system works as follows:

1. Examine the sign bits of the two numbers being added.

2. Examine the sign bit of the result.

3. Overflow occurs whenever the numbers being added are both pos-
itive and the sign bit of the result is 1 or when the numbers are

both negative and the sign bit of the result is 0.

This method can be verified by trying several examples. Readers

should try the following cases for their own clarification: (2)

(3) Cases 1 and 2 will produce an overflow, and case

3 will not. Thus, by examining the sign bits, one can design a logic cir-

cuit that will produce a 1 output whenever the overflow condition

occurs. Design this overflow circuit for the adder of Figure 6-10.

6-24. Add the necessary logic circuitry to Figure 6-10 to accommodate the

transfer of data from memory into the A register.The data values from

memory are to enter the A register through its D inputs on the PGT of

the first TRANSFER pulse; the data from the sum outputs of the FAs

will be loaded into A on the PGT of the second TRANSFER. In other

words, a LOAD pulse followed by two TRANSFER pulses is required

to perform the complete sequence of loading the B register from

memory, loading the A register from memory, and then transferring

their sum into the A register. (Hint: Use a flip-flop X to control which

source of data gets loaded into the D inputs of the accumulator.)

SECTION 6-13

6-25.*Design a look-ahead carry circuit for the adder of Figure 6-10 that gen-

erates the carry to be fed to the FA of the MSB position based on

the values of , , , , , , and . In other words, derive an ex-

pression for in terms of , , , , , , and . (Hint: Begin by

writing the expression for in terms of , , and .Then write theC0B0A0C1

B2A2B1A1C0B0A0C3

B2A2B1A1C0B0A0

C3

3 + 2.-4 + (-6);

(1) 5 + 4;

+4 (0100),+5 (0101)

-8,+7

-8

+7

tPLH = tPHL = 30 ns

[1011] : [B], [S] : [A].

[A] = 0000, [0100] : [B], [S] : [A],

PROBLEMS 353

C, D

C, D

D

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 353

expression for in terms of , , and . Substitute the expression

for into the expression for . Then write the expression for in

terms of , , and . Substitute the expression for into the ex-

pression for . Simplify the final expression for and put it in sum-

of-products form. Implement the circuit.)

SECTION 6-14

6-26. Show the logic levels at each input and output of Figure 6-11(a) when

is added to

SECTION 6-15

6-27. For the circuit of Figure 6-14, determine the sum outputs for the fol-

lowing cases.

(a)*

(b)

(c) Repeat (b) with

6-28. For the circuit of Figure 6-14 determine the sum outputs for the fol-

lowing cases.

(a)

(b)

(c)

6-29. For each of the calculations of Problem 6-27, determine if overflow

has occurred.

6-30. For each of the calculations of Problem 6-28, determine if overflow

has occurred.

6-31. Show how the gates of Figure 6-14 can be implemented using three

74HC00 chips.

6-32.*Modify the circuit of Figure 6-14 so that a single control input, X, is

used in place of ADD and SUB. The circuit is to function as an adder

when and as a subtractor when Then simplify each set

of gates. (Hint: Note that now each set of gates is functioning as a con-

trolled inverter.)

SECTION 6-16

6-33. Determine the F, and OVR outputs for each of the following sets

of inputs applied to a 74LS382.

(a)*

(b)

(c)

6-34. Show how the 74HC382 can be used to produce (Hint:
Recall that special property of an XOR gate.)

6-35. Determine the outputs in Figure 6-16 for the following sets of inputs.

(a)*

(b) [S] = 100, [A] = 11101110, [B] = 00110010

[S] = 110, [A] = 10101100, [B] = 00001111

g

[F] = [A].

[S] = 010, [A] = 0110, [B] = 0011, CN = 1

[S] = 001, [A] = 0110, [B] = 0011, CN = 1

[S] = 011, [A] = 0110, [B] = 0011, CN = 0

CN+4,

X = 1.X = 0,

SUB = 1, ADD = 0.

A register = 1011 (-5), B register = 0100 (+4),

SUB = 0, ADD = 1.

A register = 1100 (-4), B register = 0010 (+2),

SUB = 1, ADD = 0.

A register = 1101 (-3), B register = 0011 (+3),

ADD = SUB = 0.

SUB = 0, ADD = 1

A register = 1100 (-4), B register = 1110 (-2);

SUB = 1, ADD = 0

A register = 0101 (+5), B register = 1110 (-2);

1038.3548

C3C3

C2C2B2A2

C3C2C1

C1B1A1C2

354 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

D

B

D

D

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 354

6-36. Add the necessary logic to Figure 6-16 to produce a single HIGH out-

put whenever the binary number at A is exactly the same as the bi-

nary number at B. Apply the appropriate select input code (three

codes can be used).

SECTION 6-17

6-37. Consider the circuit of Figure 6-10. Assume that the output is stuck

LOW. Follow the sequence of operations for adding two numbers, and

determine the results that will appear in the A register after the sec-

ond TRANSFER pulse for each of the following cases. Note that the

numbers are given in decimal, and the first number is the one loaded

into B by the first LOAD pulse.

(a)*

(b)*

(c)

(d)

(e)

6-38. A technician breadboards the adder/subtractor of Figure 6-14. During

testing, she finds that whenever an addition is performed, the result

is 1 more than expected, and when a subtraction is performed, the re-

sult is 1 less than expected. What is the likely error that the techni-

cian made in connecting this circuit?

6-39.*Describe the symptoms that would occur at the following points in the

circuit of Figure 6-14 if the ADD and SUB lines were shorted together.

(a) B[3..0] inputs of the 74LS283 IC

(b) C0 input of the 74LS283 IC

(c) SUM () [3..0] outputs

(d)

SECTION 6-19
Problems 6-40 through 6-45 deal with the same two arrays, a and b, which we

will assume have been defined in an HDL source file and have the following

values: [a] [b] Output array [z] is also an eight-

bit array. Answer Problems 6-40 through 6-45 based on this information.

(Assume undefined bits in z are 0.)

6-40. Declare these data objects using your favorite HDL syntax.

6-41. Give the value of z for each expression (identical AHDL and VHDL

expressions are given):

(a)*z[] � a[] & b[]; z <� a AND b;

(b)*z[] � a[] # b[]; z <� a OR b;

(c) z[] � a[] $!b[]; z <� a XOR NOT b;

(d) z[7..4] � a[3..0] & b[3..0]; z(7 DOWNTO 4) <� a(3 DOWNTO 0)

AND b(3 DOWNTO 0);

(e) z[7..1] � a[6..0]; z[0] � GND; z(7 DOWNTO 1) <� a(6 DOWNTO 0);

z(0) <� ‘0’;

6-42. What is the value of each of the following:

(a) a[3..0] a(3 DOWNTO 0)

(b) b[0] b(0)

(c) a[7] b(7)

= [00101100].= [10010111],

C4

g

9 + 3

8 + 3

7 + 3

3 + 7

2 + 3

A2

PROBLEMS 355

B, H

B, H

T

T

T

C, D

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 355

6-43. What is the value of each of the following?

(a)*a[5] a(5)

(b)*b[2] b(2)

(c)*b[7..1] b(7 DOWNTO 1)

6-44.*Write one or more statements in HDL that will shift all the bits in [a]

one position to the right. The LSB should move to the MSB position.

The rotated data should end up in z[].

6-45. Write one or more HDL statements that will take the upper nibble of

b and place it in the lower nibble of z. The upper nibble of z should be

zero.

6-46. Refer to Problem 6-23. Modify the code of Figure 6-21 or Figure 6-22

to add an overflow output.

6-47.*Another way to detect 2’s-complement overflow is to XOR the carry

into the MSB with the carry out of the MSB of an adder/subtractor.

Use the same numbers given in Problem 6-23 to verify this. Modify

Figure 6-21 or Figure 6-22 to detect overflow using this method.

6-48.*Modify Figure 6-21 or Figure 6-22 to implement Figure 6-10.

SECTION 6-20

6-49. Modify Figure 6-21 or Figure 6-22 to make it a 12-bit adder without us-

ing constants.

6-50. Modify Figure 6-21 or Figure 6-22 to make it a versatile n-bit adder

module with a constant defining the number of bits.

6-51. Write an HDL file to create the equivalent of a 74382 ALU without us-

ing a built-in macrofunction.

DRILL QUESTION

6-52. Define each of the following terms.

(a) Full adder (f) Accumulator

(b) 2’s complement (g) Parallel adder

(c) Arithmetic/logic unit (h) Look-ahead carry

(d) Sign bit (i) Negation

(e) Overflow (j) B register

MICROCOMPUTER APPLICATIONS

6-53.*In a typical microprocessor ALU, the results of every arithmetic op-

eration are usually (but not always) transferred to the accumulator

register, as in Figures 6-10, 6-14, and 6-15. In most microprocessor

ALUs, the result of each arithmetic operation is also used to control

the states of several special flip-flops called flags. These flags are

used by the microprocessor when it is making decisions during the

execution of certain types of instructions. The three most common

flags are:

S (sign flag). This FF is always in the same state as the sign of the

last result from the ALU.

Z (zero flag).This flag is set to 1 whenever the result from an ALU

operation is exactly 0. Otherwise, it is cleared to 0.

C (carry flag).This FF is always in the same state as the carry from

the MSB of the ALU.

356 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

C, D

D, C, H

B, H

B, H

D, H

D, H, N

D, H

H

B, H

TOCCMC06_0131725793.QXD 12/5/05 7:30 PM Page 356

Using the adder/subtractor of Figure 6-14 as the ALU, design the logic

circuit that will implement these flags.The sum outputs and output

are to be used to control what state each flag will go to upon the oc-

currence of the TRANSFER pulse. For example, if the sum is exactly

0 (i.e., 0000), the Z flag should be set by the PGT of TRANSFER; oth-

erwise, it should be cleared.

6-54.*In working with microcomputers, it is often necessary to move binary

numbers from an eight-bit register to a 16-bit register. Consider the

numbers 01001001 and 10101110, which represent and re-

spectively, in the 2’s-complement system. Determine the 16-bit repre-

sentations for these decimal numbers.

6-55. Compare the eight- and 16-bit representations for from Problem

6-53. Then compare the two representations for There is a gen-

eral rule that can be used to convert easily from eight-bit to 16-bit rep-

resentations. Can you see what it is? It has something to do with the

sign bit of the eight-bit number.

ANSWERS TO SECTION REVIEW QUESTIONS
SECTION 6-1
1. (a) 11101 (b) 101.111 (c) 10010000

SECTION 6-2
1. (a) 00001101 (b) 11111001 (c) 10000000 2. (a) (b)

(c) 3. to 4. Seven 5. 6. (a) 10000

(b) 10000000 (c) 1000 7. Refer to text.

SECTION 6-3
1. True 2. (a) (b)

SECTION 6-4
1. (a) (b) 2. By comparing the sign bit of

the sum with the sign bits of the numbers being added

SECTION 6-5
1. 1100010

SECTION 6-7
1. The sum of at least one decimal digit position is greater than 1001 (9).

2. The correction factor is added to both the units and the tens digit positions.

SECTION 6-8
1. 923 2. 3DB 3. 2F, 77EC, 6D

SECTION 6-10
1. Three; two 2. (a) (b)

SECTION 6-12
1. One; four; four 2. 0100

SECTION 6-14
1. Five chips 2. 240 ns 3. 1

C5 = 0C3 = 1S2 = 0,

111112 = -110011112 = +1510

0000002 = 0101000102 = -3010

-32768+2047-2048+126
-64-29

-82.

+73

-82,+73

C4

ANSWERS TO SECTION REVIEW QUESTIONS 357

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 357

SECTION 6-15
1. To add the 1 needed to complete the 2’s-complement representation of the

number in the B register 2. 0010 3. 1101 4. False; the 1’s complement

appears there.

SECTION 6-16
1. 2. 3.

4. 5. 6. Eight

SECTION 6-18
1. See the MAX+PLUS HELP menu under old-style macrofunctions/adders.

2. An HDL description of a standard IC that can be used from the library.

SECTION 6-19
1. (a) 0001 (b) 1011 2. (a) 1010 (b) 1011 3. toggles[3..0]

4. toggles(3 DOWNTO 0) 5. 6. AHDL: xx[] d[] # g[];

VHDL: x <= d OR g; 7. AHDL: xx[2..1] = d[3..2] $ g[1..0]; VHDL:

x(2 DOWNTO 1) <= d(3 DOWNTO 2) XOR g(1 DOWNTO 0);

SECTION 6-21
1. CONSTANT. 2. In AHDL, near the top of the source file. In VHDL, in a

PACKAGE near the top of the source file. 3. They allow for global changes of the

value of a symbol used throughout the code. 4. max_val represents the

number 122. 5. GENERATE is used with an iterative FOR statement to

instantiate duplicate code modules that can be connected together or cascaded.

-5

=[X] = [1,1,1,1]

© = 11111111CN+4 = OVR = 0© = 01101011;

F = 1000CN+4 = 1OVR = 1;F = 0111;CN+4 = 0OVR = 0;F = 1011;

358 CHAPTER 6/DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 358

TOCCMC06_0131725793.QXD 12/5/05 4:20 PM Page 359

