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■ OBJECTIVES
Upon completion of this chapter, you will be able to:
■ Understand the operation and characteristics of synchronous and 

asynchronous counters.

■ Construct counters with MOD numbers less than 2N.

■ Construct both up and down counters.

■ Connect multistage counters.

■ Analyze and evaluate various types of counters.

■ Design arbitrary-sequence synchronous counters.

■ Understand several types of schemes used to decode different types of

counters.

■ Describe counter circuits using different levels of abstraction in HDL.

■ Compare the major differences between ring and Johnson counters.

■ Recognize and understand the operation of various types of IC 

registers.

■ Describe shift registers and shift register counters using HDL.

■ Apply existing troubleshooting techniques used for combinational logic

systems to troubleshoot sequential logic systems.

■ INTRODUCTION
In Chapter 5, we saw how flip-flops could be connected to function as coun-

ters and registers. At that time we studied only the basic counter and regis-

ter circuits. Digital systems employ many variations of these basic circuits,

mostly in integrated-circuit form. In this chapter, we will look at how FFs

and logic gates can be combined to produce different types of counters and

registers.

Because there are a great number of topics in this chapter, it has been

divided into two parts. In PART 1, we will cover the principles of counter

operation, the various counter circuit arrangements, and representative IC

counters. PART 2 will present several types of IC registers, shift register

counters, and troubleshooting. Each part includes a section containing

HDL descriptions of counters and registers.

As you progress through this chapter, you will find that you are con-

stantly drawing on your understanding of the material we have covered in

the preceding chapters. It is a good idea to go back and review previously

learned material whenever you need to.
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PART 1
7-1 ASYNCHRONOUS (RIPPLE) COUNTERS
Figure 7-1 shows a four-bit binary counter circuit such as the one discussed

in Chapter 5. Recall the following points concerning its operation:

1. The clock pulses are applied only to the CLK input of flip-flop A.Thus, flip-

flop A will toggle (change to its opposite state) each time the clock pulses

make a negative (HIGH-to-LOW) transition. Note that J � K � 1 for all FFs.

2. The normal output of flip-flop A acts as the CLK input for flip-flop B, and

so flip-flop B will toggle each time the A output goes from 1 to 0.

Similarly, flip-flop C will toggle when B goes from 1 to 0, and flip-flop D
will toggle when C goes from 1 to 0.

3. FF outputs D, C, B, and A represent a four-bit binary number, with D as

the MSB. Let’s assume that all FFs have been cleared to the 0 state

(CLEAR inputs are not shown). The waveforms in Figure 7-1 show that a

binary counting sequence from 0000 to 1111 is followed as clock pulses

are continuously applied.

4. After the NGT of the fifteenth clock pulse has occurred, the counter FFs

are in the 1111 condition. On the sixteenth NGT, flip-flop A goes from 1

to 0, which causes flip-flop B to go from 1 to 0, and so on, until the

362 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-1 Four-bit asynchronous (ripple) counter.
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counter is in the 0000 state. In other words, the counter has gone through

one complete cycle (0000 through 1111) and has recycled back to 0000.

From this point, it will begin a new counting cycle as subsequent clock

pulses are applied.

In this counter, each FF output drives the CLK input of the next FF. This

type of counter arrangement is called an asynchronous counter because the

FFs do not change states in exact synchronism with the applied clock pulses;

only flip-flop A responds to the clock pulses. FF B must wait for FF A to

change states before it can toggle; FF C must wait for FF B, and so on. Thus,

there is a delay between the responses of successive FFs. This delay is

typically 5–20 ns per FF. In some cases, as we shall see, this delay can be

troublesome.This type of counter is also often referred to as a ripple counter
because of the way the FFs respond one after another in a kind of rippling

effect. We will use the terms asynchronous counter and ripple counter inter-

changeably.

Signal Flow
It is conventional in circuit schematics to draw the circuits (wherever possi-

ble) so that the signal flow is from left to right, with inputs on the left and

outputs on the right. In this chapter, we will often break with this conven-

tion, especially in diagrams showing counters. For example, in Figure 7-1, the

CLK inputs of each FF are on the right, the outputs are on the left, and the

input clock signal is shown coming in from the right. We will use this arrange-

ment because it makes the counter operation easier to understand and

follow (because the order of the FFs is the same as the order of the bits in the

binary number that the counter represents). In other words, FF A (which is

the LSB) is the rightmost FF, and FF D (which is the MSB) is the leftmost FF.

If we adhered to the conventional left-to-right signal flow, we would have to

put FF A on the left and FF D on the right, which is opposite to their posi-

tions in the binary number that the counter represents. In some of the

counter diagrams later in the chapter, we will employ the conventional left-

to-right signal flow so that you will get used to seeing it.

SECTION 7-1/ASYNCHRONOUS (RIPPLE) COUNTERS 363

EXAMPLE 7-1 The counter in Figure 7-1 starts off in the 0000 state, and then clock pulses

are applied. Some time later the clock pulses are removed, and the counter

FFs read 0011. How many clock pulses have occurred?

Solution

The apparent answer seems to be 3 because 0011 is the binary equivalent of

3. With the information given, however there is no way to tell whether or not

the counter has recycled. This means that there could have been 19 clock

pulses; the first 16 pulses bring the counter back to 0000, and the last 3 bring

it to 0011. There could have been 35 pulses (two complete cycles and then

three more), or 51 pulses, and so on.

MOD Number
The counter in Figure 7-1 has 16 distinctly different states (0000 through

1111). Thus, it is a MOD-16 ripple counter. Recall that the MOD number is

generally equal to the number of states that the counter goes through in
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each complete cycle before it recycles back to its starting state. The MOD

number can be increased simply by adding more FFs to the counter. That is,

MOD number � 2N (7-1)

where N is the number of FFs connected in the arrangement of Figure 7-1.

364 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-2 Counter waveforms showing frequency division by 2 for each FF.

EXAMPLE 7-2 A counter is needed that will count the number of items passing on a con-

veyor belt. A photocell and light source combination is used to generate a

single pulse each time an item crosses its path. The counter must be able to

count as many as one thousand items. How many FFs are required?

Solution

It is a simple matter to determine what value of N is needed so that

Since 29 � 512, 9 FFs will not be enough. 210 � 1024, so 10 FFs

would produce a counter that could count as high as 11111111112 � 102310.

Therefore, we should use 10 FFs. We could use more than 10, but it would be

a waste of FFs because any FF past the tenth one will not be needed.

Frequency Division
In Chapter 5, we saw that in the basic counter each FF provides an output

waveform that is exactly half the frequency of the waveform at its CLK input.

To illustrate, suppose that the clock signal in Figure 7-1 is 16 kHz. Figure 7-2

shows the FF output waveforms.The waveform at output A is an 8-kHz square
wave, at output B it is 4 kHz, at output C it is 2 kHz, and at output D it is

1 kHz. Notice that the output of flip-flop D has a frequency equal to the orig-

inal clock frequency divided by 16. In general,

In any counter, the signal at the output of the last FF (i.e., the
MSB) will have a frequency equal to the input clock frequency 
divided by the MOD number of the counter.

For example, in a MOD-16 counter, the output from the last FF will have a

frequency of 1/16 of the input clock frequency. Thus, it can also be called a

divide-by-16 counter. Likewise, a MOD-8 counter has an output frequency of 

the input frequency; it is a divide-by-8 counter.

1
8

2N
Ú 1000.

CLOCK

A

B

C

D
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Solution

There is no integer power of 2 that will equal 60. The closest is 26 � 64. Thus,

a counter using six FFs would act as a MOD-64 counter. Obviously, this will

not satisfy the requirement. It seems that there is no solution using a counter

of the type shown in Figure 7-1. This is partly true; in Section 7-4, we will see

how to modify basic binary counters so that almost any MOD number can be

obtained and we will not be limited to values of 2N.

SECTION 7-2/PROPAGATION DELAY IN RIPPLE COUNTERS 365

EXAMPLE 7-3 The first step involved in building a digital clock is to take the 60-Hz signal

and feed it into a Schmitt-trigger, pulse-shaping circuit* to produce a square

wave, as illustrated in Figure 7-3. The 60-Hz square wave is then put into a

MOD-60 counter, which is used to divide the 60-Hz frequency by exactly 60

to produce a 1-Hz waveform. This 1-Hz waveform is fed to a series of coun-

ters, which then count seconds, minutes, hours, and so on. How many FFs are

required for the MOD-60 counter?

Pulse
shaper

60 Hz

60 Hz

MOD-60
counter

Counters,
displays,etc.

1 HzFIGURE 7-3 Example 7-3.

REVIEW QUESTIONS 1. True or false: In an asynchronous counter, all FFs change states at the

same time.

2. Assume that the counter in Figure 7-1 is holding the count 0101. What

will be the count after 27 clock pulses?

3. What would be the MOD number of the counter if three more FFs were

added?

7-2 PROPAGATION DELAY IN RIPPLE COUNTERS

Ripple counters are the simplest type of binary counters because they require

the fewest components to produce a given counting operation. They do, how-

ever, have one major drawback, which is caused by their basic principle of op-

eration: each FF is triggered by the transition at the output of the preceding

FF. Because of the inherent propagation delay time (tpd) of each FF, this means

that the second FF will not respond until a time tpd after the first FF receives

an active clock transition; the third FF will not respond until a time equal to

after that clock transition; and so on. In other words, the propagation

delays of the FFs accumulate so that the Nth FF cannot change states until a

time equal to after the clock transition occurs. This is illustrated in

Figure 7-4, where the waveforms for a three-bit ripple counter are shown.

The first set of waveforms in Figure 7-4(a) shows a situation where an in-

put pulse occurs every 1000 ns (the clock period T � 1000 ns) and it is as-

sumed that each FF has a propagation delay of 50 ns (tpd � 50 ns). Notice

N * tpd

2 * tpd

*See Section 5-21.
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that the A flip-flop output toggles 50 ns after the NGT of each input pulse.

Similarly, B toggles 50 ns after A goes from 1 to 0, and C toggles 50 ns after B
goes from 1 to 0. As a result, when the fourth input NGT occurs, the C output

goes HIGH after a delay of 150 ns. In this situation, the counter does operate

properly in the sense that the FFs do eventually get to their correct states,

representing the binary count. However, the situation worsens if the input

pulses are applied at a much higher frequency.

The waveforms in Figure 7-4(b) show what happens if the input pulses

occur once every 100 ns. Again, each FF output responds 50 ns after the 1-to-0

transition at its CLK input (note the change in the relative time scale). Of

particular interest is the situation after the falling edge of the fourth input

pulse, where the C output does not go HIGH until 150 ns later, which is the

same time that the A output goes HIGH in response to the fifth input pulse.

In other words, the condition C � 1, B � A � 0 (count of 100) never appears

because the input frequency is too high. This could cause a serious problem

if this condition were supposed to be used to control some other operation in

a digital system. Problems such as this can be avoided if the period between

366 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-4 Waveforms

of a three-bit ripple counter

illustrating the effects of

FF propagation delays for

different input pulse fre-

quencies.
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input pulses is made longer than the total propagation delay of the counter.

That is, for proper counter operation we need

(7-2)

where N � the number of FFs. Stated in terms of input-clock frequency, the

maximum frequency that can be used is given by

(7-3)

For example, suppose that a four-bit ripple counter is constructed using the

74LS112 J-K flip-flop. Table 5-2 shows that the 74LS112 has tPLH � 16 ns and

tPHL � 24 ns as the propagation delays from CLK to Q. To calculate fmax, we

will assume the “worst case”; that is, we will use tpd � tPHL � 24 ns, so that

Clearly, as the number of FFs in the counter increases, the total propagation

delay increases and fmax decreases. For example, a ripple counter that uses

six 74LS112 FFs will have

Thus, asynchronous counters are not useful at very high frequencies, es-

pecially for counters with large numbers of bits. Another problem caused by

propagation delays in asynchronous counters occurs when we try to elec-

tronically detect (decode) the counter’s output states. If you look closely at

Figure 7-4(a), for a short period of time (50 ns in our example) right after

state 011, you see that state 010 occurs before 100. This is obviously not the

correct binary counting sequence, and while the human eye is much too slow

to see this temporary state, our digital circuits will be fast enough to detect

it. These erroneous count patterns can generate what are called glitches in

the signals that are produced by digital systems using asynchronous coun-

ters. In spite of their simplicity, these problems limit the usefulness of asyn-

chronous counters in digital applications.

fmax =

1

6 * 24 ns
= 6.9 MHz

fmax =

1

4 * 24 ns
= 10.4 MHz

fmax =

1

N * tpd

Tclock Ú  N * tpd

SECTION 7-3/SYNCHRONOUS (PARALLEL) COUNTERS 367

REVIEW QUESTIONS 1. Explain why a ripple counter’s maximum frequency limitation decreases

as more FFs are added to the counter.

2. A certain J-K flip-flop has tpd � 12 ns. What is the largest MOD counter

that can be constructed from these FFs and still operate up to 10 MHz?

7-3 SYNCHRONOUS (PARALLEL) COUNTERS

The problems encountered with ripple counters are caused by the accumu-

lated FF propagation delays; stated another way, the FFs do not all change

states simultaneously in synchronism with the input pulses. These limitations

can be overcome with the use of synchronous or parallel counters in which all

of the FFs are triggered simultaneously (in parallel) by the clock input pulses.
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FIGURE 7-5 Synchronous MOD-16 counter. Each FF is clocked by the NGT of the

clock input signal so that all FF transitions occur at the same time.

Because the input pulses are applied to all the FFs, some means must be used

to control when an FF is to toggle and when it is to remain unaffected by a

clock pulse.This is accomplished by using the J and K inputs and is illustrated

in Figure 7-5 for a four-bit, MOD-16 synchronous counter.

If we compare the circuit arrangement for this synchronous counter with

its asynchronous counterpart in Figure 7-1, we can see the following notable

differences:

■ The CLK inputs of all of the FFs are connected together so that the input

clock signal is applied to each FF simultaneously.

■ Only flip-flop A, the LSB, has its J and K inputs permanently at the HIGH

level. The J, K inputs of the other FFs are driven by some combination of

FF outputs.

■ The synchronous counter requires more circuitry than does the asyn-

chronous counter.
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Circuit Operation
For this circuit to count properly, on a given NGT of the clock, only those FFs

that are supposed to toggle on that NGT should have J � K � 1 when that

NGT occurs. Let’s look at the counting sequence in Figure 7-5(b) to see

what this means for each FF.

The counting sequence shows that the A flip-flop must change states at

each NGT. For this reason, its J and K inputs are permanently HIGH so that

it will toggle on each NGT of the clock input.

The counting sequence shows that flip-flop B must change states on each

NGT that occurs while A � 1. For example, when the count is 0001, the next

NGT must toggle B to the 1 state; when the count is 0011, the next NGT must

toggle B to the 0 state; and so on.This operation is accomplished by connecting

output A to the J and K inputs of flip-flop B so that J � K � 1 only when A � 1.

The counting sequence shows that flip-flop C must change states on each

NGT that occurs while A � B � 1. For example, when the count is 0011, the

next NGT must toggle C to the 1 state; when the count is 0111, the next NGT

must toggle C to the 0 state; and so on. By connecting the logic signal AB to

FF C’s J and K inputs, this FF will toggle only when A � B � 1.

In a like manner, we can see that flip-flop D must toggle on each NGT that

occurs while A � B � C � 1.When the count is 0111, the next NGT must toggle

D to the 1 state; when the count is 1111, the next NGT must toggle D to the 0

state. By connecting the logic signal ABC to FF D’s J and K inputs, this FF will

toggle only when A � B � C � 1.

The basic principle for constructing a synchronous counter can therefore

be stated as follows:

Each FF should have its J and K inputs connected so that they are
HIGH only when the outputs of all lower-order FFs are in the HIGH
state.

Advantage of Synchronous Counters over Asynchronous
In a parallel counter, all of the FFs will change states simultaneously; that is,

they are all synchronized to the NGTs of the input clock pulses. Thus, unlike

the asynchronous counters, the propagation delays of the FFs do not add to-

gether to produce the overall delay. Instead, the total response time of a syn-

chronous counter like the one in Figure 7-5 is the time it takes one FF to tog-

gle plus the time for the new logic levels to propagate through a single AND

gate to reach the J, K inputs. That is, for a synchronous counter,

total delay � FF tpd � AND gate tpd

This total delay is the same no matter how many FFs are in the counter, and

it will generally be much lower than with an asynchronous counter with the

same number of FFs. Thus, a synchronous counter can operate at a much

higher input frequency. Of course, the circuitry of the synchronous counter

is more complex than that of the asynchronous counter.

Actual ICs
There are many synchronous IC counters in both the TTL and the CMOS

logic families. Some of the most commonly used devices are:

■ 74ALS160/162, 74HC160/162: synchronous decade counters

■ 74ALS161/163, 74HC161/163: synchronous MOD-16 counters

SECTION 7-3/SYNCHRONOUS (PARALLEL) COUNTERS 369
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7-4 COUNTERS WITH MOD NUMBERS < 2N

The basic synchronous counter of Figure 7-5 is limited to MOD numbers that are

equal to 2N, where N is the number of FFs. This value is actually the maximum

MOD number that can be obtained using N flip-flops. The basic counter can be

modified to produce MOD numbers less than 2N by allowing the counter to skip
states that are normally part of the counting sequence. One of the most common

methods for doing this is illustrated in Figure 7-6, where a three-bit counter is

shown. Disregarding the NAND gate for a moment, we can see that the counter

is a MOD-8 binary counter that will count in sequence from 000 to 111. However,

the presence of the NAND gate will alter this sequence as follows:

1. The NAND output is connected to the asynchronous CLEAR inputs of

each FF. As long as the NAND output is HIGH, it will have no effect on

the counter.When it goes LOW, however, it will clear all of the FFs so that

the counter immediately goes to the 000 state.

370 CHAPTER 7/COUNTERS AND REGISTERS

EXAMPLE 7-4 (a) Determine fmax for the counter of Figure 7-5(a) if tpd for each FF is 50 ns

and tpd for each AND gate is 20 ns. Compare this value with fmax for a

MOD-16 ripple counter.

(b) What must be done to convert this counter to MOD-32?

(c) Determine fmax for the MOD-32 parallel counter.

Solution

(a) The total delay that must be allowed between input clock pulses is equal

to FF tpd � AND gate tpd.Thus, and so the par-

allel counter has

A MOD-16 ripple counter uses four FFs with tpd � 50 ns. Thus, fmax for

the ripple counter is

(b) A fifth FF must be added because 25 � 32. The CLK input of this FF is

also tied to the input pulses. Its J and K inputs are fed by the output of a

four-input AND gate whose inputs are A, B, C, and D.

(c) fmax is still determined as in (a) regardless of the number of FFs in the

parallel counter. Thus, fmax is still 14.3 MHz.

fmax =

1

4 * 50 ns
= 5 MHz (ripple counter)

fmax =

1

70 ns
= 14.3 MHz (parallel counter)

Tclock Ú  50 + 20 = 70 ns,

REVIEW QUESTIONS 1. What is the advantage of a synchronous counter over an asynchronous

counter? What is the disadvantage?

2. How many logic devices are required for a MOD-64 parallel counter?

3. What logic signal drives the J, K inputs of the MSB flip-flop for the

counter of question 2?

TOCCMC07_0131725793.QXD  12/12/2005  10:50 PM  Page 370



2. The inputs to the NAND gate are the outputs of the B and C flip-flops,

and so the NAND output will go LOW whenever B � C � 1.This condition

will occur when the counter goes from the 101 state to the 110 state on

the NGT of input pulse 6.The LOW at the NAND output will immediately

(generally within a few nanoseconds) clear the counter to the 000 state.

Once the FFs have been cleared, the NAND output goes back HIGH be-

cause the B � C � 1 condition no longer exists.

3. The counting sequence is, therefore,

SECTION 7-4/COUNTERS WITH MOD NUMBERS <2N 371

FIGURE 7-6 MOD-6

counter produced by clear-

ing a MOD-8 counter when

a count of six (110) occurs.
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Although the counter does go to the 110 state, it remains there for only a

few nanoseconds before it recycles to 000.Thus, we can essentially say that

this counter counts from 000 (zero) to 101 (five) and then recycles to 000.

It essentially skips 110 and 111 so that it goes through only six different

states; thus, it is a MOD-6 counter.

Notice that the waveform at the B output contains a spike or glitch caused

by the momentary occurrence of the 110 state before clearing. This glitch is

very narrow and so would not produce any visible indication on indicator

LEDs or numerical displays. It could, however, cause a problem if the B out-

put were being used to drive other circuitry outside the counter. It should

also be noted that the C output has a frequency equal to one-sixth of the in-

put frequency; in other words, this MOD-6 counter has divided the input

frequency by six. The waveform at C is not a symmetrical square wave (50

percent duty cycle) because it is HIGH for only two clock cycles, whereas it

is LOW for four cycles.

State Transition Diagram
Figure 7-7(a) is the state transition diagram for the MOD-6 counter of Figure

7-6, showing how FFs C, B, and A change states as pulses are applied to the

CLK input of flip-flop A. Recall that each circle represents one of the possi-

ble counter states and that the arrows indicate how one state changes to an-

other in response to an input clock pulse.

If we assume a starting count of 000, the diagram shows that the states of

the counter change normally up until the count of 101. When the next clock

pulse occurs, the counter temporarily goes to the 110 count before going to

the stable 000 count. The dotted lines indicate the temporary nature of the

110 state. As stated earlier, the duration of this temporary state is so short

that for most purposes we can consider that the counter goes directly from

101 to 000 (solid arrow).

Note that there is no arrow into the 111 state because the counter can

never advance to that state. However, the 111 state can occur on power-up

when the FFs come up in random states. If that happens, the 111 condition

will produce a LOW at the NAND gate output and immediately clear the

counter to 000.Thus, the 111 state is also a temporary condition that ends up

at 000.

Displaying Counter States
Sometimes during normal operation, and very often during testing, it is nec-

essary to have a visible display of how a counter is changing states in

response to the input pulses. We will take a detailed look at several ways of

doing this later in the text. For now, Figure 7-7(b) shows one of the simplest

methods using individual indicator LEDs for each FF output. Each FF out-

put is connected to an INVERTER whose output provides the current path

for the LED. For example, when output A is HIGH, the INVERTER output

goes LOW and the LED turns ON. An LED that is turned on indicates A � 1.

When output A is LOW, the INVERTER output is HIGH and the LED turns

OFF. When the LED is turned off, it indicates A � 0.
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C   B   A

111 000

001

010

011

100

101

110
Temporary
   state

(a)

(b)

A

CLK

K
CLR

JB

LED is on
when FF is HIGH.

B

CLK

K

J

1

1

A
CLR

C

C

B

C

CLK

K

J

CLR

�5 V 

330 �330 �330 �

FIGURE 7-7 (a) State transition diagram for the MOD-6 counter of Figure 

7-6. (b) LEDs are often used to display the states of a counter.
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EXAMPLE 7-6 Determine the MOD number of the counter in Figure 7-8(a). Also determine

the frequency at the D output.

Solution

This is a four-bit counter, which would normally count from 0000 through

1111. The NAND inputs are D, C, and B, which means that the counter will

immediately recycle to 0000 when the 1110 (decimal 14) count is reached.

Thus, the counter actually has 14 stable states 0000 through 1101 and is

therefore a MOD-14 counter. Because the input frequency is 30 kHz, the fre-

quency at output D will be

General Procedure
To construct a counter that starts counting from all 0s and has a MOD num-

ber of X:

1. Find the smallest number of FFs such that and connect them as

a counter. If 2N � X, do not do steps 2 and 3.

2. Connect a NAND gate to the asynchronous CLEAR inputs of all the FFs.

3. Determine which FFs will be in the HIGH state at a count � X; then con-

nect the normal outputs of these FFs to the NAND gate inputs.

2N
Ú X,

30 kHz

14
= 2.14 kHz

EXAMPLE 7-5 (a) What will be the status of the LEDs when the counter is holding the

count of five?

(b) What will the LEDs display as the counter is clocked by a 1-kHz input?

(c) Will the 110 state be visible on the LEDs?

Solution

(a) Because 510 � 1012, the 20 and 22 LEDs will be ON, and the 21 LED will

be OFF.

(b) At 1 kHz, the LEDs will be switching ON and OFF so rapidly that they

will appear to the human eye to be ON all the time at about half the

normal brightness.

(c) No; the 110 state will persist for only a few nanoseconds as the counter

recycles to 000.

Changing the MOD Number
The counter of Figures 7-6 and 7-7 is a MOD-6 counter because of the choice

of inputs to the NAND gate. Any desired MOD number can be obtained by

changing these inputs. For example, using a three-input NAND gate with in-

puts A, B, and C, the counter would function normally until the 111 condition

was reached, at which point it would immediately reset to the 000 state.

Ignoring the very temporary excursion into the 111 state, the counter would

go from 000 through 110 and then recycle back to 000, resulting in a MOD-7

counter (seven states).
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FIGURE 7-8 (a) MOD-14 ripple counter; (b) MOD-10 (decade) ripple counter.
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EXAMPLE 7-7 Construct a MOD-10 counter that will count from 0000 (zero) through 1001

(decimal 9).

Solution

and ; thus, four FFs are required. Because the counter is to

have stable operation up to the count of 1001, it must be reset to zero when

the count of 1010 is reached. Therefore, FF outputs D and B must be con-

nected as the NAND gate inputs. Figure 7-8(b) shows the arrangement.

24
= 1623

= 8

Decade Counters/BCD Counters
The MOD-10 counter of Example 7-7 is also referred to as a decade counter. In

fact, a decade counter is any counter that has 10 distinct states, no matter what
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REVIEW QUESTIONS 1. What FF outputs should be connected to the clearing NAND gate to form

a MOD-13 counter?

2. True or false: All BCD counters are decade counters.

3. What is the output frequency of a decade counter that is clocked from a

50-kHz signal?

the sequence. A decade counter such as the one in Figure 7-8(b), which counts

in sequence from 0000 (zero) through 1001 (decimal 9), is also commonly called

a BCD counter because it uses only the 10 BCD code groups 0000, 0001, . . . ,

1000, and 1001.To reiterate, any MOD-10 counter is a decade counter; and any

decade counter that counts in binary from 0000 to 1001 is a BCD counter.

Decade counters, especially the BCD type, find widespread use in appli-

cations where pulses or events are to be counted and the results displayed on

some type of decimal numerical readout. We shall examine this later in more

detail. A decade counter is also often used for dividing a pulse frequency

exactly by 10.The input pulses are applied to the paralleled clock inputs, and

the output pulses are taken from the output of flip-flop D, which has one-

tenth the frequency of the input signal.

EXAMPLE 7-8 In Example 7-3, a MOD-60 counter was needed to divide the 60-Hz line fre-

quency down to 1 Hz. Construct an appropriate MOD-60 counter.

Solution

and , and so we need six FFs, as shown in Figure 7-9. The

counter is to be cleared when it reaches the count of 60 (111100). Thus, the

outputs of flip-flops and must be connected to the NAND gate.

The output of flip-flop will have a frequency of 1 Hz.Q5

Q2Q5, Q4, Q3,

26
= 6425

= 32

FIGURE 7-9 MOD-60 counter.
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FIGURE 7-10 Synchronous, MOD-16, down counter and output waveforms.

7-5 SYNCHRONOUS DOWN AND UP/DOWN COUNTERS
In Section 7-3, we saw that using the output of lower-order FFs to control the tog-

gling of each FF creates a synchronous up counter. A synchronous down counter
is constructed in a similar manner except that we use the inverted FF outputs

to control the higher-order J, K inputs. Comparing the synchronous, MOD-16,

down counter in Figure 7-10 with the up counter in Figure 7-5 shows that we

need only to substitute the corresponding inverted FF output in place of the A,

B, and C outputs. For a down count sequence, the LSB FF (A) still needs to tog-

gle with each NGT of the clock input signal. Flip-flop B must change states on

the next NGT of the clock when A � 0 Flip-flop C changes states when

A � B � 0 and flip-flop D changes states when A � B � C � 0

This circuit configuration will produce the count sequence: 15,

14, 13, 12, . . . , 3, 2, 1, 0, 15, 14, and so on, as shown in the timing diagram.

Figure 7-11(a) shows how to form a parallel up/down counter. The control

input controls whether the normal FF outputs or the inverted FF

outputs are fed to the J and K inputs of the successive FFs. When 

is held HIGH, AND gates 1 and 2 are enabled while AND gates 3 and 4 are

disabled (note the inverter). This allows the A and B outputs through gates 1

and 2 to the J and K inputs of FFs B and C. When is held LOW, AND

gates 1 and 2 are disabled while AND gates 3 and 4 are enabled. This allows

the inverted A and B outputs through gates 3 and 4 into the J and K inputs of

FFs B and C. The waveforms in Figure 7-11(b) illustrate the operation. Notice

that for the first five clock pulses, and the counter counts up;

for the last five pulses, and the counter counts down.Up/Down = 0,

Up/Down = 1

Up/Down

Up/Down

Up/Down

(A � B � C = 1).

(A � B = 1),

(A = 1).
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K

A J

K

J

CLR CLR CLR
K

J

1

CLKCLKCLK

CLOCK

A

B

B

C

C

B
A

B
A

2

4

Up/Down

A

A

1

3

(a)

FIGURE 7-11 (a) MOD-8 synchronous up/down counter. (b) The counter counts up

when the control input ; it counts down when the control input

.Up/Down = 0

Up/Down = 1

EXAMPLE 7-9 What problems might be caused if the signal changes levels on the

NGT of the clock?

Solution

The FFs might operate unpredictably because some of them would have their

J and K inputs changing at about the same time that a NGT occurs at their

CLK input. However, the effects of the change in the control signal must prop-

agate through two gates before reaching the J, K inputs, so it is more likely

that the FFs will respond predictably to the levels that are at J, K prior to the

NGT of CLK.

Up/Down

CLOCK

A

B

C

000 001 010 011 100 101 100 011 010 001 000
Count

(CBA)

Up/Down

(b)

Up Down

The nomenclature used for the control signal was chosen to

make it clear how it affects the counter. The count-up operation is active-

HIGH; the count-down operation is active-LOW.

(Up/Down)
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7-6 PRESETTABLE COUNTERS

Many synchronous (parallel) counters that are available as ICs are designed to

be presettable; in other words, they can be preset to any desired starting count

either asynchronously (independent of the clock signal) or synchronously 

(on the active transition of the clock signal). This presetting operation is also

referred to as parallel loading the counter.

Figure 7-12 shows the logic circuit for a three-bit presettable parallel up

counter. The J, K, and CLK inputs are wired for operation as a parallel up

counter.The asynchronous PRESET and CLEAR inputs are wired to perform

asynchronous presetting. The counter is loaded with any desired count at

any time by doing the following:

1. Apply the desired count to the parallel data inputs, P2, P1, and P0.

2. Apply a LOW pulse to the PARALLEL LOAD input, .PL

SECTION 7-6/PRESETTABLE COUNTERS 379

REVIEW QUESTIONS 1. What is the difference between the counting sequence of an up counter

and a down counter?

2. What circuit changes will convert a synchronous, binary up counter into

a binary down counter?

FIGURE 7-12 Synchronous counter with asynchronous parallel load.

P2 P1 P0

Q0

CLK

K

CLR

J
PRE

Q1

CLK

K

CLR

J
PRE

Q2

CLK

K

CLR

J
PRE

CLK

PL

Parallel load

Parallel data inputs

1
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This procedure will perform an asynchronous transfer of the P2, P1, and P0

levels into flip-flops Q2, Q1, and Q0, respectively (Section 5-17).This jam transfer
occurs independently of the J, K, and CLK inputs. The effect of the CLK input

will be disabled as long as is in its active-LOW state because each FF will

have one of its asynchronous inputs activated while Once returns

HIGH, the FFs can respond to their CLK inputs and can resume the counting-

up operation starting from the count that was loaded into the counter.

For example, let’s say that , , and . While is HIGH,

these parallel data inputs have no effect. If clock pulses are present, the

counter will perform the normal count-up operation. Now let’s say that is

pulsed LOW when the counter is at the 010 count (i.e., , , and

).This LOW at will produce LOWs at the CLR input of Q1 and at the

PRE inputs of Q2 and Q0 so that the counter will go to the 101 count regardless
of what is occurring at the CLK input. The count will hold at 101 until is de-

activated (returned HIGH); at that time the counter will resume counting up

at each clock pulse from the count of 101.

This asynchronous presetting is used by several IC counters, such as the

TTL 74ALS190, 74ALS191, 74ALS192, and 74ALS193 and the CMOS equiva-

lents, 74HC190, 74HC191, 74HC192, and 74HC193.

Synchronous Presetting
Many IC parallel counters use synchronous presetting whereby the counter is

preset on the active transition of the same clock signal that is used for count-

ing.The logic level on the parallel load control input determines if the counter

is preset with the applied input data at the next active clock transition.

Examples of IC counters that use synchronous presetting include the

TTL 74ALS160, 74ALS161, 74ALS162, and 74ALS163 and their CMOS equiv-

alents, 74HC160, 74HC161, 74HC162, and 74HC163.

PL

PLQ0 = 0

Q1 = 1Q2 = 0

PL

PLP0 = 1P1 = 0P2 = 1

PLPL = 0.

PL
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REVIEW QUESTIONS 1. What is meant when we say that a counter is presettable?

2. Describe the difference between asynchronous and synchronous presetting.

7-7 IC SYNCHRONOUS COUNTERS

The 74ALS160-163/74HC160-163 Series
Figure 7-13 shows the logic symbol, modulus, and function table for the

74ALS160 through 74ALS163 series of IC counters (and the equivalent

CMOS counterparts, 74HC160 through 74HC163). These recycling, four-bit

counters have outputs labeled QD, QC, QB, QA, where QA is the LSB and QD

is the MSB. They are clocked by a PGT applied to CLK. Each of the four dif-

ferent part numbers has a different combination of two feature variations.

As seen in Figure 7-13(b), two of the counters are MOD-10 counters

(74ALS160 and 74ALS162), while the other two are MOD-16 binary coun-

ters (74ALS161 and 74ALS163). The other variation for these parts is in the

operation of the clear function [as highlighted in Figure 7-13(c)]. The

74ALS160 and 74ALS161 each has an asynchronous clear input. This means

that as soon as goes LOW ( is active-LOW for all four parts), the

counter’s output will be reset to 0000. On the other hand, the 74ALS162 and

74ALS163 IC counters are synchronously cleared. For these counters to be

synchronously cleared, the input must be LOW and a PGT must be ap-

plied to the clock input. The clear input has priority over all other functions

CLR

CLRCLR
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for this series of IC counters. Clear will override all other control inputs, as

indicated by the Xs in the Figure 7-13(c) function table.

The second priority function available in this series of IC counters is the

parallel loading of data into the counter’s flip-flops.To preset a data value, make

the clear input inactive (HIGH), apply the desired four-bit value to the data

input pins D, C, B, A (A is LSB and D is MSB), apply a LOW to the input

control, and then clock the chip with a PGT. The load function is therefore syn-

chronous and has priority over counting, so it does not matter what logic levels

are applied to ENT or ENP. To count from the preset state it will be necessary to

disable the load (with a HIGH) and enable the count function. If the load func-

tion is inactive, it does not matter what is applied to the data input pins.

To enable counting, the lowest-priority function, both and con-

trol inputs must be inactive. Additionally, there are two active-HIGH count

enable controls, ENT and ENP. ENT and ENP are essentially ANDed together

to control the count function. If either or both of the count enable controls is

inactive (LOW), the counter will hold the current state. Therefore, to incre-

ment the count with each PGT on CLK, all four of the control inputs must be

HIGH. When counting, the decade counters (74ALS160 and 74ALS162) will

automatically recycle to 0000 after state 1001 (9) and the binary counters

(74ALS161 and 74ALS163) will automatically recycle after 1111 (15).

This series of IC counter chips has one more output pin, RCO. The func-

tion of this active-HIGH output is to detect (decode) the last or terminal state

of the counter. The terminal state for a decade counter is 1001 (9), while the

terminal state for a MOD-16 counter is 1111 (15). ENT, the primary count en-

able input, also controls the operation of RCO. ENT must be HIGH for the

counter to indicate with the RCO output that it has reached its terminal

state. You will see that this feature is very useful in connecting two or more

counter chips together in a multistage arrangement to create larger counters.

LOADCLR

LOAD
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FIGURE 7-13 74ALS160-

74ALS163 series synchro-

nous counters: (a) logic 

symbol; (b) modules; 

(c) function table.

74ALS160-74ALS163 Function Table

ENP ENT CLK Function Part Numbers

74ALS160 & 74ALS161X

X

X

X 74ALS162 & 74ALS163

L

L

H

H

H

H

L

H

H

H

X

X

X

H

L

X

X

H

X

L

X

↑
↑
↑
X

X

Asynch. Clear

Synchr. Clear

Synchr. Load

Count up

No change

No change

All

All

All

All

(c)

LOADCLR

(a)

CLK

ENT

ENP

CLR

LOAD

D

A

B

C

QD

QA

QB

QC

RCO

74ALS160-
74ALS163

Part
Number

Modulus

74ALS160 10

74ALS161 16

74ALS162 10

74ALS163 16

(b)
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EXAMPLE 7-10 Refer to Figure 7-14, where a 74HC163 has the input signals given in the tim-

ing diagram applied. The parallel data inputs are permanently connected as

1100. Assume the counter is initially in the 0000 state, and determine the

counter output waveforms.

Solution

Initially (at t0), the counter’s FFs are all LOW. Since this is not the terminal

state for the counter, output RCO will be LOW also.The first PGT on the CLK

input occurs at t1 and, since all control inputs are HIGH, the counter will

increment to 0001.The counter continues to count up with each PGT until t2.

The input is LOW for t2. This will synchronously reset the counter to

0000 at t2. After t2, the input goes inactive (HIGH) so the counter willCLR

CLR

CLK

CLR

LOAD

ENT

ENP

QD

QC

QB

QA

RCO

t0 t1 t2 t3 t4 t6 t7t5

(b)

(a)

CLK

ENT

ENP

CLR

LOAD

D

A

B

C

QD

QA

QB

QC

RCO

QD

QA

QB

QC

RCO

74HC163

ENT

ENP

CLR

LOAD

1

0

0

1

FIGURE 7-14 Example 7-10.
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start counting up again from 0000 with each subsequent PGT. The in-

put is LOW for t3. This will synchronously load the applied data value 1100

(12) into the counter at t3. After t3, the input goes inactive (HIGH), so

the counter will continue counting up from 1100 with each subsequent PGT

until t4. The counter output does not change at t4 or t5, since either ENP or

ENT (the count enable inputs) is LOW. This holds the count at 1110 (14). At

t6, the counter is enabled again and counts up to 1111 (15), its terminal state.

As a result, the RCO output now goes HIGH. At t7, another PGT on CLK will

make the counter recycle to 0000 and RCO returns to a LOW output.

LOAD

LOAD
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EXAMPLE 7-11 Refer to Figure 7-15, where a 74HC160 has the input signals given in the tim-

ing diagram applied. The parallel data inputs are permanently connected as

FIGURE 7-15 Example 7-11.
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0111. Assume the counter is initially in the 0000 state, and determine the

counter output waveforms.

Solution

Initially (at t0) the counter’s FFs are all LOW. Since this is not the terminal

state for the BCD counter, output RCO will be LOW also.The first PGT on the

CLK input occurs at t1 and, since all control inputs are HIGH, the counter will

increment to 0001. The counter continues to count up with each PGT until t2.

The asynchronous input goes LOW at t2 and will immediately reset the

counter to 0000 at that point. At t3, the input is still active (LOW), so the

PGT of the CLK input will be ignored and the counter will stay at 0000. Later

the input goes inactive again and the counter will count up to 0001 and

then to 0010. At t4, the count enable ENP is LOW, so the count holds at 0010.

For subsequent PGTs of the CLK input, the counter is enabled and counts up

until t5. The input is LOW for t5. This will synchronously load the ap-

plied data value 0111 (7) into the counter at t5. At t6, the count enable ENT is

LOW, so the count holds at 0111. For the two subsequent PGTs after t6, the

counter will continue counting up since it is re-enabled. At t7, the BCD

counter reaches its terminal state 1001 (9) and the RCO output now goes

HIGH. At t8, ENP is LOW and the counter stops counting (remaining at 1001).

At t9, while ENT is LOW, the RCO output will be disabled so that it returns to

a LOW even though the counter is still at its terminal state (1001). Recall that

only ENT controls the RCO output. When ENT returns HIGH during the

counter’s terminal state, RCO goes HIGH again. At t10 the counter is enabled,

and it recycles to 0000 and then counts to 0001 on the last PGT.

The 74ALS190-191/74HC190-191 Series
Figure 7-16 shows the logic symbol, modulus, and function table for the

74ALS190 and 74ALS191 series of IC counters (and the equivalent CMOS

counterparts, 74HC190 and 74HC191).These recycling, four-bit counters have

outputs labeled QD, QC, QB, QA, where QA is the LSB and QD is the MSB.

They are clocked by a PGT applied to CLK. The only difference between the

two part numbers is the counter’s modulus. The 74ALS190 is a MOD-10

counter and the 74ALS191 is a MOD-16 binary counter. Both chips are

up/down counters and have an asynchronous, active-LOW load input. This

LOAD

CLR

CLR

CLR
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(a)

CLK

CTEN

D/U

LOAD

Max
/Min

D

A

B

C

QD

QA

QB

QC

RCO

74ALS190-
74ALS191

(b)

Part
Number

Modulus

74ALS190 10

74ALS191 16

(c)

74ALS190-74ALS191 Function Table

CLK Function

L

H

H

H

X

L

L

H

X

L

H

X

X

↑
↑
X

Asynch. Load

Count down

Count up

No change

LOAD CTEN D/U

FIGURE 7-16 74ALS190-

74ALS191 series synchro-

nous counters: (a) logic

symbol; (b) modulus; 

(c) function table.
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means that as soon as goes LOW, the counter will be preset to the

parallel data on the D, C, B, A (A is LSB and D is MSB) input pins. If the load

function is inactive, it does not matter what is applied to the data input pins.

The load input has priority over the counting function.

To count, the control input must be inactive (HIGH) and the

count enable control must be LOW. The count direction is controlled

by the control input. If is LOW, the count is incremented with

each PGT on CLK, while a HIGH on will decrement the count. Both

counters automatically recycle in either count direction. The decade

counter recycles to 0000 after state 1001 (9) when counting up or to 1001

after state 0000 when counting down. The binary counter will recycle to

0000 after 1111 (15) when counting up or to 1111 after state 0000 when

counting down.

These counter chips have two more output pins, MAX/MIN and RCO.

MAX/MIN is an active-HIGH output that detects (decodes) the terminal state

of the counter. Since they are up/down counters, the terminal state depends on

the direction of the count. The terminal state (MIN) for either counter when

counting down is 0000 (0). However when counting up, the terminal state

(MAX) for a decade counter is 1001 (9), while the terminal state for a MOD-16

counter is 1111 (15). Note that MAX/MIN detects only one state in the count

sequence—it just depends on whether it is counting up or down. The active-

LOW output also detects the appropriate terminal state for the counter,

but it is a bit more complicated. First, it is only enabled when is LOW.

Additionally, will only be LOW while the CLK input is also LOW. So es-

sentially will mimic the CLK waveform only during the terminal state

while the counter is enabled.

RCO

RCO

CTEN

RCO

D/U

D/UD/U

CTEN

LOAD

LOAD
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EXAMPLE 7-12 Refer to Figure 7-17, where a 74HC190 has the input signals given in the tim-

ing diagram applied. The parallel data inputs are permanently connected as

0111. Assume the counter is initially in the 0000 state, and determine the

counter output waveforms.

Solution

Initially (at t0), the counter’s FFs are all LOW. Since the counter is enabled

and the count direction control the BCD counter will

start counting up on the first PGT applied to CLK at t1 and continues to

count up with each PGT until t2, where the count has reached 0101. The

asynchronous input goes LOW at t2 and will immediately load 0111

into the counter at that point. At t3, the input is still active (LOW), so

the PGT of the CLK input will be ignored and the counter will stay at 0111.

Later the input goes HIGH again and the counter will count up to

1000 at the next PGT. At t4, the counter increments to 1001, which is the ter-

minal state for a BCD up counter and the MAX/MIN output goes HIGH.

During t5, the counter is at its terminal state and the CLK input is LOW, so

goes LOW. For subsequent PGTs of the CLK input, the counter recycles

to 0000 and continues to count up until t6. Just prior to t6, the control

changes to a HIGH. This will make the counter count down at t6 and again at

t7, where it will be at state 0000, which now is the terminal state since we are

counting down, and MAX/MIN will output a HIGH. During t8, when the CLK

input goes LOW, the output again will be LOW. At t9, the counter is

disabled with and the counter holds at 1001. For the subsequent

CLK pulses, the counter continues to count down.

CTEN = 1

RCO

D/U

RCO

LOAD

LOAD

LOAD

D/U = 0,(CTEN = 0)
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EXAMPLE 7-13 Compare the operation of two counters, one with synchronous load and the

other with asynchronous load. Refer to Figure 7-18(a), in which a 74ALS163

and a 74ALS191 have been wired in a similar fashion to count up in binary.

Both chips are driven by the same clock signal and have their QD and QC

outputs NANDed together to control the respective input control.

Assume that both counters are initially in the 0000 state.

(a) Determine the output waveform for each counter.

(b) What is the recycling count sequence and modulus for each counter?

(c) Why do they have different count sequences?

LOAD

(b)

CLK

LOAD

CTEN

QC

QD

QB

QA

MAX/MIN

RCO

t0 t1 t3 t4 t5 t6 t7 t8 t9t2

D/U

(a)

74HC190

LOAD

0

1

1

1

CLK

CTEN

D/U

LOAD

Max
/Min

D

A

B

C

QD

QA

QB

QC

RCOCTEN

D/U

FIGURE 7-17 Example 7-12.

TOCCMC07_0131725793.QXD  12/12/2005  10:50 PM  Page 386



SECTION 7-7/IC SYNCHRONOUS COUNTERS 387

(b)

(a)

_____

74ALS163

0

0

0

1

0

0

0

1

0

0
1

1

1

S3

S2

S1

S0

T3

T2

T1

T0

S-LD T-LD

S0

S1

S2

S3

T0

T1

T2

T3

S-LD

T-LD

CLK

CLK

ENT

ENP

CLR

LOAD

D

A

B

C

QD

QA

QB

QC

RCO

CLK

Max
/Min

D/U

LOAD

D

A

B

C

QD

QA

QB

QC

74ALS191

CTEN RCO

FIGURE 7-18 Example 7-13.

Solution

(a) Starting at state 0000, each counter will count up until it reaches state 1100

(12) as shown in Figure 7-18(b).The output of each NAND gate will apply a

LOW to the respective input at that time. The 74ALS163 has a syn-

chronous and will wait until the next PGT on CLK to load the dataLOAD

LOAD
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input 0001 into the counter.The 74ALS191 has an asynchronous and

will immediately load the data input 0001 into the counter. This will make

the 1100 state a temporary or transient state for the 74ALS191. The tran-

sient state will produce some spikes or glitches for some of the counter’s

outputs because of their rapid switching back and forth.

(b) The 74ALS163 circuit has a recycling count sequence of 0001 through

1100 and is a MOD-12 counter. The 74ALS191 circuit has a recycling

count sequence of 0001 through 1011 and is a MOD-11 counter.Transient

states are not included in determining the modulus for a counter.

(c) The counter circuits have different count sequences because one has a

synchronous load and the other has an asynchronous load.

Multistage Arrangement
Many standard IC counters have been designed to make it easy to connect

multiple chips together to create circuits with a higher counting range. All of

the counter chips presented in this section can be simply connected in a

multistage or cascading arrangement. In Figure 7-19, two 74ALS163s are

connected in a two-stage counter arrangement that produces a recycling, bi-

nary sequence from 0 to 255 for a maximum modulus of 256. Applying a LOW

to the input will synchronously clear both counter stages, and applying

a LOW to will synchronously preset the eight-bit counter to the binary

value on inputs D7, D6, D5, D4, D3, D2, D1, D0 (D0 � LSB). The block on the

left (stage 1) is the low-order stage and provides the least-significant counter

outputs Q3, Q2, Q1, Q0 (with Q0 � LSB). Stage 2 on the right provides the

most-significant counter outputs Q7, Q6, Q5, Q4 (with Q7 � MSB).

EN, the enable for the eight-bit counter, is connected to the ENT input on

stage 1. Note that we must use the ENT input and not ENP, since only ENT

controls the RCO output. Using ENT and RCO makes cascading very easy.

Both counter blocks are clocked together synchronously, but the block on the

right (stage 2) is disabled until the least-significant output nibble has reached

its terminal state, which will be indicated by the TC1 output.When Q3, Q2, Q1,

Q0 reaches 1111 and if EN is HIGH, then TC1 will output a HIGH.This will al-

low both counter stages to count up one with the next PGT on the clock. Stage 1

LD

CLR

LOAD
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FIGURE 7-19 Two 74ALS163s connected in a two-stage arrangement to extend the

maximum counting range.
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1 1
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will recycle back to 0000 and stage 2 will increment from its previous output

state.TC1 will return to a LOW, since stage 1 is no longer at its terminal state.

With subsequent clock pulses, stage 1 will continue to count up if EN�1 until

it again reaches 1111 and the process repeats. When the eight-bit counter

reaches 11111111, it will recycle back to 00000000 on the next clock pulse.

Additional 74ALS163 counter chips can be cascaded in the same fashion.

TC2 would be connected to the ENT control on the next chip, and so on. TC2

will be HIGH when Q7, Q6, Q5, Q4 is equal to 1111 and TC1 is HIGH, which

in turn means that Q3, Q2, Q1, Q0 is also equal to 1111 and EN is HIGH. This

cascading technique works for all chips (TTL or CMOS families) in this se-

ries, even for the BCD counters. The 74ALS190-191 (or 74HC190-191) series

also can be cascaded similarly using the active-LOW and pins. A

multistage counter using 74ALS190-191 chips connected in this fashion can

count up or down.

RCOCTEN
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REVIEW QUESTIONS 1. Describe the function of the inputs and D, C, B, A.

2. Describe the function of the input.

3. True or false: The 74HC161 cannot be preset while is active.

4. What logic levels must be present on the control inputs in order for the

74ALS162 to count pulses that appear on the CLK?

5. What logic levels must be present on the control inputs in order for the

74HC190 to count down with pulses that appear on the CLK?

6. What would be the maximum counting range for a four-stage counter

made up of 74HC163 ICs? What is the maximum counting range for

74ALS190 ICs?

CLR

CLR

LOAD

7-8 DECODING A COUNTER

Digital counters are often used in applications where the count represented

by the states of the FFs must somehow be determined or displayed. One of

the simplest means for displaying the contents of a counter involves just con-

necting the output of each FF to a small indicator LED [see Figure 7-7(b)]. In

this way the states of the FFs are visibly represented by the LEDs (on � 1,

off � 0), and the count can be mentally determined by decoding the binary

states of the LEDs. For instance, suppose that this method is used for a BCD

counter and the states of the LEDs are off–on–on–off, respectively. This

would represent 0110, which we would mentally decode as decimal 6. Other

combinations of LED states would represent the other possible counts.

The indicator LED method becomes inconvenient as the size (number of

bits) of the counter increases because it is much harder to decode the dis-

played results mentally. For this reason, it is preferable to develop a means for

electronically decoding the contents of a counter and displaying the results in

a form that is immediately recognizable and requires no mental operations.

An even more important reason for electronic decoding of a counter oc-

curs because of the many applications in which counters are used to control

the timing or sequencing of operations automatically without human inter-

vention. For example, a certain system operation might have to be initiated

when a counter reaches the 101100 state (count of 4410). A logic circuit can

be used to decode for or detect when this particular count is present and

then initiate the operation. Many operations may have to be controlled in
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this manner in a digital system. Clearly, human intervention in this process

would be undesirable except in extremely slow systems.

Active-HIGH Decoding
A MOD-X counter has X different states; each state is a particular pattern of 0s

and 1s stored in the counter FFs. A decoding network is a logic circuit that gen-

erates X different outputs, each of which detects (decodes) the presence of one

particular state of the counter. The decoder outputs can be designed to pro-

duce either a HIGH or a LOW level when the detection occurs.An active-HIGH

decoder produces HIGH outputs to indicate detection. Figure 7-20 shows the

complete active-HIGH decoding logic for a MOD-8 counter. The decoder

390 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-20 Using AND gates to decode a MOD-8 counter.
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consists of eight three-input AND gates. Each AND gate produces a HIGH out-

put for one particular state of the counter.

For example, AND gate 0 has at its inputs the FF outputs and 

Thus, its output will be LOW at all times except when A � B � C � 0, that is,

on the count of 000 (zero). Similarly, AND gate 5 has as its inputs the FF out-

puts C, and A, so that its output will go HIGH only when C � 1, B � 0, and

A � 1, that is, on the count of 101 (decimal 5). The rest of the AND gates per-

form in the same manner for the other possible counts. At any one time, only

one AND gate output is HIGH: the one that is decoding for the particular

count present in the counter. The waveforms in Figure 7-20 show this clearly.

The eight AND outputs can be used to control eight separate indicator

LEDs, which represent the decimal numbers 0 through 7. Only one LED will

be on at a given time, indicating the proper count.

The AND gate decoder can be extended to counters with any number of

states. The following example illustrates.

B,

A.C, B,

SECTION 7-8/DECODING A COUNTER 391

EXAMPLE 7-14 How many AND gates are required to decode completely all of the states of

a MOD-32 binary counter? What are the inputs to the gate that decodes for

the count of 21?

Solution

A MOD-32 counter has 32 possible states. One AND gate is needed to decode

for each state; therefore, the decoder requires 32 AND gates. Because

, the counter contains five FFs. Thus, each gate will have five inputs,

one from each FF. Decoding for the count of 21 (that is, ) requires

AND gate inputs of E, C, and A, where E is the MSB flip-flop.

Active-LOW Decoding
If NAND gates are used in place of AND gates, the decoder outputs produce

a normally HIGH signal, which goes LOW only when the number being de-

coded occurs. Both types of decoders are used, depending on the type of cir-

cuits being driven by the decoder outputs.

B,D,

101012

32 = 25

EXAMPLE 7-15 Figure 7-21 shows a common situation in which a counter is used to generate

a control waveform, which could be used to control devices such as a motor,

solenoid valve, or heater. The MOD-16 counter cycles and recycles through

its counting sequence. Each time it goes to the count of 8 (1000), the upper

NAND gate will produce a LOW output, which sets flip-flop X to the 1 state.

Flip-flop X stays HIGH until the counter reaches the count of 14 (1110), at

which time the lower NAND gate decodes it and produces a LOW output to

clear X to the 0 state. Thus, the X output is HIGH between the counts of 8

and 14 for each cycle of the counter.

BCD Counter Decoding
A BCD counter has 10 states that can be decoded using the techniques de-

scribed previously. BCD decoders provide 10 outputs corresponding to the

decimal digits 0 through 9 and represented by the states of the counter
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FFs. These 10 outputs can be used to control 10 individual indicator LEDs

for a visual display. More often, instead of using 10 separate LEDs, a sin-

gle display device is used to display the decimal numbers 0 through 9. One

class of decimal displays contains seven small segments made of a mate-

rial (usually LEDs or liquid-crystal displays) that either emits light or re-

flects ambient light. The BCD decoder outputs control which segments are

illuminated in order to produce a pattern representing one of the decimal

digits.

We will go into more detail concerning these types of decoders and dis-

plays in Chapter 9. However, because BCD counters and their associated de-

coders and displays are very commonplace, we will use the decoder/display

unit (see Figure 7-22) to represent the complete circuitry used to display vi-

sually the contents of a BCD counter as a decimal digit.
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FIGURE 7-21 Example 7-15.
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FIGURE 7-22 BCD

counters usually have their

count displayed on a single

display device.
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7-9 ANALYZING SYNCHRONOUS COUNTERS

Synchronous counter circuits can be custom-designed to generate any de-

sired count sequence. We can use just the synchronous inputs that are ap-

plied to the individual flip-flops to produce the counter’s sequence. By not

using asynchronous FF controls, such as the clears, to change the counter’s

sequence, we will never have to deal with transient states and possible

glitches in output waveforms. The process of designing completely synchro-

nous counters will be investigated in the next section. First, let’s see how to

analyze a counter design of this type by predicting the FF control inputs for

each state of the counter. A PRESENT state/NEXT state table is a very use-

ful tool in this analysis process. The first step is to write the logic expression

for each FF control input. Next assume a PRESENT state for the counter and

apply that combination of bits to the control logic expressions. The outputs

from the control expressions will allow us to predict the commands to each

FF and the resulting NEXT state for the counter after clocking. Repeat the

analysis process until the entire count sequence is determined.

Figure 7-23 is a synchronous counter that has slightly different J and K
inputs than we saw in Section 7-3 for a regular binary up counter. These mi-

nor changes to the control circuitry will cause the counter to produce a dif-

ferent count sequence. The control input expressions for this counter are:

Let us assume that the PRESENT state for the counter is CBA � 000.

Applying this combination to the control expressions above will yield JC KC �
0 0, JB KB � 0 0, and JA KA � 1 1. These control inputs will tell FFs C and B to

hold and FF A to toggle on the next NGT on CLK. Our predicted NEXT state is

001 for CBA. This information has been entered in the first line of the PRE-

SENT state/NEXT state table shown in Table 7-1. Next we can use the state 001

 JA = KA = C
 JB = KB = A

 KC = C
 JC = A # B

SECTION 7-9/ANALYZING SYNCHRONOUS COUNTERS 393

REVIEW QUESTIONS 1. How many gates are needed to decode a six-bit counter fully?

2. Describe the decoding gate needed to produce a LOW output when a

MOD-64 counter is at the count of 23.

FIGURE 7-23 Synchronous counter with different control inputs.

CLK

C K

C J

CLK

B K

B J

CLK

A K

A J

CLK
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as our PRESENT state. Analyzing the control expressions with this new combi-

nation will now yield JC KC � 0 0, JB KB � 1 1, and JA KA � 1 1 giving us a hold

command for FF C and toggle commands for FFs B and A. This will produce a

NEXT state of 010 for CBA, which we have listed on the second line of Table 7-1.

Continuing with this process will result in a recycling count sequence of 000,

001, 010, 011, 100, 000.This would be a MOD-5 count sequence.We can also pre-

dict the NEXT states for the remaining three possible state combinations in

the same way. By doing so, we can determine if the counter design is self-
correcting. A self-correcting counter is one in which normally unused states will

all somehow return to the normal count sequence. If any of these unused states

cannot return to the normal sequence, the counter is said to be not self-

correcting. Our NEXT-state predictions for all possible states have been en-

tered into Table 7-1. The highlighted information indicates that this counter

design happens to be self-correcting. The complete state transition diagram

and timing diagram for this counter is shown in Figure 7-24.

We can likewise analyze the operation of counter circuits that use D flip-

flops to store the present state of the counter. The control circuitry for a D-type

will typically be more complex than for an equivalent JK-type counter that

produces the same count sequence, but we will also have half the number of

394 CHAPTER 7/COUNTERS AND REGISTERS

PRESENT State Control Inputs NEXT State

C B A JC KC JB KB JA KA C B A

0 0 0 0 0 0 0 1 1 0 0 1

0 0 1 0 0 1 1 1 1 0 1 0

0 1 0 0 0 0 0 1 1 0 1 1

0 1 1 1 0 1 1 1 1 1 0 0

1 0 0 0 1 0 0 0 0 0 0 0

1 0 1 0 1 1 1 0 0 0 1 1

1 1 0 0 1 0 0 0 0 0 1 0

1 1 1 1 1 1 1 0 0 0 0 1

TABLE 7-1

CLK

A

B

C
C  B  A

000

001

010

100

011

110

111

101

(b)(a)

FIGURE 7-24 (a) State transition diagram and (b) timing diagram for synchronous

counter in Figure 7-23.
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FIGURE 7-25
Synchronous counter using

D flip-flops.

synchronous inputs to control. Most PLDs utilize D flip-flops for their memory

elements, so the analysis of this type of counter circuit will give us some in-

sight into how counters are actually programmed inside a PLD.

A synchronous counter designed with D flip-flops is shown in Figure 7-25.

The first step is to write the logic expressions for the D inputs:

Then we will determine the PRESENT state/NEXT state table for the

counter circuit by assuming a state and applying that set of bit values to the

input expressions given above. If we pick CBA � 000 for the initial counter

state, we will find that DC � 0, DB � 0, and DA � 1. With a PGT on CLOCK,

the flip-flops will “load” in the value 001, which becomes the counter’s

NEXT state. Using 001 as a PRESENT state will produce inputs of DC � 0,

DB � 1, and DA � 0 so that 010 will be the NEXT state, and so on. The com-

pleted PRESENT state/NEXT state table, shown in Table 7-2, indicates that

this circuit is a recycling MOD-8 binary counter. By applying a little Boolean

algebra to the input expressions, we can see that there is actually a fairly

simple circuit pattern in creating binary counters from D flip-flops:

 DA =  A
 DB =  B A +  B A =  B {  A

 =  C B A +  C (B A) =  C {  (A B)

 DC =  C B +  C A +  C B A =  C (B +  A) +  C B A

 DA =  A
 DB =  B A +  B A
 DC =  C B +  C A +  C B A

PRESENT State Control Inputs NEXT State

C B A DC DB DA C B A

0 0 0 0 0 1 0 0 1

0 0 1 0 1 0 0 1 0

0 1 0 0 1 1 0 1 1

0 1 1 1 0 0 1 0 0

1 0 0 1 0 1 1 0 1

1 0 1 1 1 0 1 1 0

1 1 0 1 1 1 1 1 1

1 1 1 0 0 0 0 0 0

TABLE 7-2
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It is important to note that the gating resources for most PLDs actually

consist of sets of AND-OR circuit arrangements and the SOP logic expression

more accurately describes the internal circuit implementation. However, we

can see that the expressions have been greatly simplified by using the XOR

function. This leads us to predict correctly that to create a MOD-16 binary

counter with D flip-flops, we would need a fourth FF with:

DD =  D {  (A B C)

396 CHAPTER 7/COUNTERS AND REGISTERS

REVIEW QUESTIONS 1. Why is it desirable to avoid having asynchronous controls on counters?

2. What tool is useful in the analysis of synchronous counters?

3. What determines the count sequence for a counter circuit?

4. What counter characteristic is described by saying that it is self-correcting?

7-10 SYNCHRONOUS COUNTER DESIGN*

Many different counter arrangements are available as ICs—asynchronous, syn-

chronous, and combined asynchronous/synchronous. Most of these count in a

normal binary or BCD count sequence, although their counting sequences can

be somewhat altered using the clearing or loading methods we demonstrated

for the 74ALS160-163 and 74ALS190-191 series of ICs. There are situations,

however, where a custom counter is required that follows a sequence that is not

a regular binary count pattern, for example, 000, 010, 101, 001, 110, 000, . . .

Several methods exist for designing counters that follow arbitrary se-

quences. We will present the details for one common method that uses J-K

flip-flops in a synchronous counter configuration. The same method can be

used in designs with D flip-flops. The technique is one of several design pro-

cedures that are part of an area of digital circuit design called sequential cir-
cuit design, which is normally part of an advanced course.

Basic Idea
In synchronous counters, all of the FFs are clocked at the same time. Before

each clock pulse, the J and K input of each FF in the counter must be at the

correct level to ensure that the FF goes to the correct state. For example,

consider the situation where state 101 for counter CBA is to be followed by

state 011. When the next clock pulse occurs, the J and K inputs of the FFs

must be at the correct levels that will cause flip-flop C to change from 1 to 0,

flip-flop B from 0 to 1, and flip-flop A from 1 to 1 (i.e., no change).

The process of designing a synchronous counter thus becomes one of

designing the logic circuits that decode the various states of the counter to

supply the proper logic levels to each J and K input at the correct time. The

inputs to these decoder circuits will come from the outputs of one or more of

the FFs. To illustrate, for the synchronous counter of Figure 7-5, the AND

gate that feeds the J and K inputs of flip-flop C decodes the states of flip-

flops A and B. Likewise, the AND gate that feeds the J and K inputs of flip-

flop D decodes the states of A, B, and C.

*This topic may be omitted without affecting the continuity of the remainder of the book.
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J-K Excitation Table
Before we begin the process of designing the decoder circuits for each J and

K input, we must first review the operation of the J-K flip-flop using a differ-

ent approach, one called an excitation table (Table 7-3). The leftmost column

of this table lists each possible FF output transition. The second and third

columns list the FF’s PRESENT state, symbolized as , and the NEXT state,

symbolized as , for each transition. The last two columns list the J and K
levels required to produce each transition. Let’s examine each case.

0 0 TRANSITION The FF PRESENT state is at 0 and is to remain at

0 when a clock pulse is applied. From our understanding of how a J-K

flip-flop works, this can happen when either J � K � 0 (no-change condi-

tion) or J � 0 and K � 1 (clear condition). Thus, J must be at 0, but K can

be at either level. The table indicates this with a “0” under J and an “x”

under K. Recall that “x” means the don’t-care condition.

0 1 TRANSITION The PRESENT state is 0 and is to change to a 1,

which can happen when either J � 1 and K � 0 (set condition) or J � K �
1 (toggle condition). Thus, J must be a 1, but K can be at either level for

this transition to occur.

1 0 TRANSITION The PRESENT state is 1 and is to change to a 0,

which can happen when either J � 0 and K � 1 or J � K � 1.Thus, K must

be a 1, but J can be at either level.

1 1 TRANSITION The PRESENT state is a 1 and is to remain a 1,

which can happen when either J � K � 0 or J � 1 and K � 0.Thus, K must

be a 0 while J can be at either level.

The use of this J-K excitation table (Table 7-3) is a principal part of the

synchronous counter design procedure.

:

:

:

:

Qn +  1

Qn
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Transition at PRESENT State NEXT State 

FF Output Qn Qn+1 J K

0 0 0 0 0 x

0 1 0 1 1 x

1 0 1 0 x 1

1 1 1 1 x 0:
:
:
:

TABLE 7-3 J-K flip-flop

excitation table.

Design Procedure
We will now go through a complete synchronous counter design procedure.

Although we will do it for a specific counting sequence, the same steps can

be followed for any desired sequence.

Step 1. Determine the desired number of bits (FFs) and the desired count-

ing sequence.

For our example, we will design a three-bit counter that goes through the

sequence shown in Table 7-4. Notice that this sequence does not include the

101, 110, and 111 states. We will refer to these states as undesired states.

Step 2. Draw the state transition diagram showing all possible states, includ-

ing those that are not part of the desired counting sequence.

C B A

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

0 0 0

0 0 1

etc.

TABLE 7-4
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For our example, the state transition diagram appears as shown in Figure

7-26.The 000 through 100 states are connected in the expected sequence. We

have also included a defined NEXT state for each of the undesired states.This

was done in case the counter accidentally gets into one of these states upon

power-up or due to noise.The circuit designer can choose to have each of these

undesired states go to any state upon the application of the next clock pulse.

Alternatively, the designer may choose not to define the counter’s action for

the undesired states at all. In other words, we may not care about the NEXT

state for any undesired state. Using the latter “don’t care” design approach

will generally produce a simpler design but can be a potential problem in the

application where this counter is to be used. For our design example, we will

choose to have all undesired states go to the 000 state. This will make our de-

sign self-correcting but slightly different from the example MOD-5 counter

that was analyzed in Section 7-9.

Step 3. Use the state transition diagram to set up a table that lists all
PRESENT states and their NEXT states.

For our example, the information is shown in Table 7-5.The left-hand portion

of the table lists every possible state,even those that are not part of the sequence.

We label these as the PRESENT states. The right-hand portion lists the NEXT

state for each PRESENT state. These are obtained from the state transition

398 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-26 State transition

diagram for the synchronous

counter design example.

TABLE 7-5
PRESENT State NEXT State

C B A C B A

Line 1 0 0 0 0 0 1

2 0 0 1 0 1 0

3 0 1 0 0 1 1

4 0 1 1 1 0 0

5 1 0 0 0 0 0

6 1 0 1 0 0 0

7 1 1 0 0 0 0

8 1 1 1 0 0 0

101
110

111

000

001

010011

100
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diagram in Figure 7-26. For instance, line 1 shows that the PRESENT state of 000

has the NEXT state of 001, and line 5 shows that the PRESENT state of 100 has

the NEXT state of 000. Lines 6, 7, and 8 show that the undesired PRESENT states

101, 110, and 111 all have the NEXT state of 000.

Step 4. Add a column to this table for each J and K input. For each PRESENT

state, indicate the levels required at each J and K input in order to

produce the transition to the NEXT state.

Our design example uses three FFs—C, B, and A—and each one has a J
and a K input. Therefore, we must add six new columns as shown in Table 7-6.

This completed table is called the circuit excitation table. The six new

columns are the J and K inputs of each FF.The entries under each J and K are

obtained from Table 7-3, the J-K flip-flop excitation table that we developed

earlier. We will demonstrate this for several of the cases, and you can verify

the rest.

Let’s look at line 1 in Table 7-6. The PRESENT state of 000 is to go to the

NEXT state of 001 on the occurrence of a clock pulse. For this state transi-

tion, the C flip-flop goes from 0 to 0. From the J-K excitation table, we see

that JC must be at 0 and KC at “x” for this transition to occur. The B flip-flop

also goes from 0 to 0, and so and . The A flip-flop goes from 0

to 1. Also from Table 7-3, we see that and for this transition.

In line 4 in Table 7-6, the PRESENT state of 011 has a NEXT state of 100.

For this state transition, flip-flop C goes from 0 to 1, which requires 

and . Flip-flops B and A are both going from 1 to 0. The J-K excitation

table indicates that these two FFs need J � x and K � 1 for this to occur.

The required J and K levels for all other lines in Table 7-6 can be deter-

mined in the same manner.

Step 5. Design the logic circuits needed to generate the levels required at

each J and K input.

Table 7-6, the circuit excitation table, lists six J, K inputs—JC, KC, JB, KB,

JA, and KA. We must consider each of these as an output from its own logic

circuit with inputs from flip-flops C, B, and A. Then we must design the cir-

cuit for each one. Let’s design the circuit for JA.
To do this, we need to look at the PRESENT states of C, B, and A and the

desired levels at JA for each case. This information has been extracted from

Table 7-6 and presented in Figure 7-27(a). This truth table shows the desired

KC = x
JC = 1

KA = xJA = 1

KB = xJB = 0
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TABLE 7-6
Circuit excitation table.

PRESENT State NEXT State

C B A C B A JC KC JB KB JA KA

Line 1 0 0 0 0 0 1 0 x 0 x 1 x

2 0 0 1 0 1 0 0 x 1 x x 1

3 0 1 0 0 1 1 0 x x 0 1 x

4 0 1 1 1 0 0 1 x x 1 x 1

5 1 0 0 0 0 0 x 1 0 x 0 x

6 1 0 1 0 0 0 x 1 0 x x 1

7 1 1 0 0 0 0 x 1 x 1 0 x

8 1 1 1 0 0 0 x 1 x 1 x 1
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levels at JA for each PRESENT state. Of course, for some of the cases, JA is a

don’t-care. To develop the logic circuit for JA, we must first determine its

expression in terms of C, B, and A. We will do this by transferring the truth-

table information to a three-variable Karnaugh map and performing the K-

map simplification, as in Figure 7-27(b).

There are only two 1s in this K map, and they can be looped to obtain the

term but if we use the don’t-care conditions at and as 1s, we

can loop a quad to obtain the simpler term Thus, the final expression is

Now let’s consider KA. We can follow the same steps as we did for JA.
However, a look at the entries under KA in the circuit excitation table shows

only 1s and don’t-cares. If we change all the don’t-cares to 1s, then KA is

always a 1. Thus, the final expression is

In a similar manner, we can derive the expressions for JC, KC, JB, and KB.
The K maps for these expressions are given in Figure 7-28. You might want to

confirm their correctness by checking them against the circuit excitation table.

KA = 1

JA = C

C.

ABCA B CA C,
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FIGURE 7-27 (a) Portion

of circuit excitation table

showing JA for each PRE-

SENT state; (b) K map used

to obtain the simplified

expression for JA.

C

0

0

0

0

1

1

1

1

B

0

0

1

1

0

0

1

1

A

0

1

0

1

0

1

0

1

JA

1

x

1

x

0

x

0

x

PRESENT

(a)

1   X

1   X

0   X

0   X

C B

C B

C B

C B

A     A

CJ  = 
A

(b)

(a)

K   = 1
C

0    0

0    1

X   X

X   X

C B

C B

C B

C B

A     A

J  = B A
C

X    X

X    X

1   1

1    1

C B

C B

C B

C B

A     A

(b)

0    1

X    X

X    X

0    0

C B

C B

C B

C B

A     A

C AJ  = 
B

X    X

0    1

1    1

X    X

C B

C B

C B

C B

A     A

K  = C + A 
B

FIGURE 7-28 (a) K maps

for the JB and KB logic cir-

cuits; (b) K maps for the JC
and KC logic circuits.

Step 6. Implement the final expressions.

The logic circuits for each J and K input are implemented from the ex-

pressions obtained from the K map. The complete synchronous counter de-

sign is implemented in Figure 7-29. Note that all FFs are clocked in parallel.

You might want to verify that the logic for the J and K inputs agrees with

Figures 7-27 and 7-28.
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Stepper Motor Control
We will now apply this design procedure to a practical situation—driving a

stepper motor. A stepper motor is a motor that rotates in steps, typically 

per step, rather than in a continuous motion. Magnetic coils or windings

within the motor must be energized and deenergized in a specific sequence

in order to produce this stepping action. Digital signals are normally used to

control the current in each of the motor’s coils. Stepper motors are used ex-

tensively in situations where precise position control is needed, such as in

positioning of read/write heads on magnetic disks, in controlling print heads

in printers, and in robots.

Figure 7-30(a) is a diagram of a typical stepper motor with four coils. For the

motor to rotate properly, coils 1 and 2 must always be in opposite states; that is,

15°
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FIGURE 7-29 Final imple-

mentation of the synchro-

nous counter design 

example.

AJA

KA

CLK

A

BJB

KB

CLK

B

CJC

KC

CLK

C
11

CLOCK

AB

FIGURE 7-30 (a) A synchronous counter supplies the appropriate sequential 

outputs to drive a stepper motor; (b) state transition diagrams for both states of 

Direction input, D.

11

10

00

01

(b)

Current
amplifiers

CCW rotation
D = 1

11

10

00

01

CW rotation
D = 0

BABA

Coil 1

2

3

4

Synch
counter

A

A

B

B

D

(Direction
input)

Step
(clock)

Coil 1

2

3

4

Stepper
motor

(a)
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when coil 1 is energized, coil 2 is not, and vice versa. Likewise, coil 3 and coil 4

must always be in opposite states.The outputs of a two-bit synchronous counter

are used to control the current in the four coils; A and control coils 1 and 2,

and B and control coils 3 and 4.The current amplifiers are needed because the

FF outputs cannot supply the amount of current that the coils require.

Because this stepper motor can rotate either clockwise (CW) or counter-

clockwise (CCW), we have a Direction input, D, which is used to control the

direction of rotation. The state diagrams in Figure 7-30(b) show the two

cases. For CW rotation to occur, we must have D � 0, and the state of the

counter, BA, must follow the sequence 11, 10, 00, 01, 11, 10, . . . , and so on, as

it is clocked by the Step input signal. For CCW rotation, D � 1, and the

counter must follow the sequence 11, 01, 00, 10, 11, 01, . . . , and so on.

We are now ready to follow the six steps of the synchronous counter de-

sign procedure. Steps 1 and 2 have already been done, so we can proceed

with steps 3 and 4. Table 7-7 shows each possible PRESENT state of D, B, and

B
A
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TABLE 7-7
PRESENT State NEXT State Control Inputs

D B A B A JB KB JA KA

0 0 0 0 1 0 x 1 x

0 0 1 1 1 1 x x 0

0 1 0 0 0 x 1 0 x

0 1 1 1 0 x 0 x 1

1 0 0 1 0 1 x 0 x

1 0 1 0 0 0 x x 1

1 1 0 1 1 x 0 1 x

1 1 1 0 1 x 1 x 0

JB = DA + DA

0    1

1    0

x    x

x    x

BA

BA

BA

BA

D        D

x    x

x    x

0    1

1    0

BA

BA

BA

BA

D        D

(a)

= D ⊕ A

KB = DA + DA

= D ⊕ A

1    0

x    x

x    x

0    1

BA

BA

BA

BA

D        D

JA = DB + DB

x    x

0    1

1    0

x    x

BA

BA

BA

BA

D        D

(b)

= D ⊕ B

KA = DB + DB

= D ⊕ B

FIGURE 7-31 (a) K maps

for JB and KB; (b) K maps

for JA and KA.
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Synchronous Counter Design with D FF
We have provided a detailed procedure for designing synchronous counters

using J-K flip-flops. Historically, J-K flip-flops have been used to implement

counters because the logic circuits needed for the J and K inputs are usually

simpler than the logic circuits needed to control an equivalent synchronous

counter using D flip-flops. When designing counters that will be imple-

mented in PLDs, where abundant gates are generally available, it makes

sense to use D flip-flops instead of J-Ks. Let us now look at synchronous

counter design using D FFs.

Designing counter circuits using D flip-flops is even easier than using J-K

flip-flops. We will demonstrate by designing a D FF circuit that produces the

same count sequence as is given in Figure 7-26. The first three steps for syn-

chronous D counter design are identical to the J-K technique. Step 4 for D FF

design is trivial since the necessary D inputs are the same as the desired

NEXT state as seen in Table 7-8. Step 5 is to generate the logic expressions

Step

D (Direction)

B

B

CLK

J
B

K
B

A

A

CLK

J
A

K
A

B

B

A

A

To current
amplifiers
(Fig. 7-30)

FIGURE 7-32 Synchronous counter implemented from the J, K equations.

A and the desired NEXT state, along with the levels at each J and K input

needed to achieve the transitions. Note that in all cases, the Direction input,

D, does not change in going from the PRESENT to the NEXT state because

it is an independent input that is held HIGH or LOW as the counter goes

through its sequence.

Step 5 of the design process is presented in Figure 7-31, where the infor-

mation in Table 7-7 has been transferred to the K maps showing how each

J and K signal is related to the PRESENT states of D, B, and A. Using the ap-

propriate looping, the simplified logic expressions for each J and K signal are

obtained.

The final step is shown in Figure 7-32, where the two-bit synchronous

counter is implemented using the J, K expressions obtained from the K

maps.
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from the PRESENT state/NEXT state table for the D inputs. The K maps and

simplified expressions are given in Figure 7-33. Finally, for step 6, the counter

can be implemented with the circuit shown in Figure 7-34.

TABLE 7-8
PRESENT State NEXT State Control Inputs

C B A C B A DC DB DA

0 0 0 0 0 1 0 0 1

0 0 1 0 1 0 0 1 0

0 1 0 0 1 1 0 1 1

0 1 1 1 0 0 1 0 0

1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0

1    0

1    0

0   0

0   0

C B

C B

C B

C B

A     A

0    0

0   1

0   0

0    0

C B

C B

C B

C B

A     A

C B AD   = 
C

C B A + C B AD   = 
B

C AD   = 
A

0    1

1    0

0   0

0   0

C B

C B

C B

C B

A     A

CLOCK

C

CD

B

BD

CLK CLK

BC A

D
A

D
B

D
C

A

AD

CLK

FIGURE 7-33 K maps and

simplified logic expressions

for MOD-5 flip-flop counter

design.

FIGURE 7-34 Circuit im-

plementation of MOD-5 D

flip-flop counter design.

REVIEW QUESTIONS 1. List the six steps in the procedure for designing a synchronous counter.

2. What information is contained in a PRESENT state-NEXT state table?

3. What information is contained in the circuit excitation table?

4. True or false:The synchronous counter design procedure can be used for the

following sequence: 0010, 0011, 0100, 0111, 1010, 1110, 1111, and repeat.
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7-11 BASIC COUNTERS USING HDL

In Chapter 5, we studied flip-flops and the methods used with HDLs to rep-

resent flip-flop circuits. The last section in Chapter 5 illustrated how to con-

nect FF components very much like you would wire integrated circuits to one

another. By connecting the Q output of one FF to the clock input of the next

FF, we found that a counter circuit can be created. Using an HDL to describe

component connections is referred to as the structural level of abstraction. It

is obvious that constructing a complicated circuit using the structural meth-

ods would be very tedious and also very difficult to read and interpret. In

this section, we will broaden our use of HDL to describe circuits using meth-

ods that are considered higher levels of abstraction. This term sounds intim-

idating, but it only means that there are much more concise and sensible

ways to describe what we want a counter to do without worrying about all

the details of how to wire flip-flop circuits to do it.

It is still vital that we understand the fundamental principles of flip-flop

operation compared with combinational logic gates. As you recall, flip-flops

have the following unique characteristics. The output is normally updated

according to the condition of the synchronous control inputs when the active
edge of the clock occurs, which means there is a logic state on the Q output

before the clock edge (PRESENT state) and potentially a different state on

the Q output after the clock edge (NEXT state). A flip-flop “remembers,” or

holds its state between clocks, regardless of changes in the synchronous con-

trol inputs (e.g., J and K).

Counter circuits using HDL rely on this basic understanding of a cir-

cuit going through a sequence of states in response to the event of a clock

edge. Ripple counters provide an easy circuit to analyze and understand.

They are also much less complicated to build using flip-flops and logic

gates than their synchronous counterparts. The problem with ripple coun-

ters is the combination of time delay and spurious temporary states that

occur when the counter changes state. When we advance to the next level

of abstraction and plan to use PLDs to implement our design, we are no

longer focusing on wiring issues but rather on describing the circuit’s op-

eration concisely. Consequently, the methods we use to describe counter

circuits using HDL primarily use synchronous techniques, where all flip-

flops update simultaneously in response to the same clock event. All the

bits in a count sequence go from their PRESENT state to their prescribed

NEXT state simultaneously, thereby preventing any intermediate, spuri-

ous states.

State Transition Description Methods
The next method of describing circuits that we need to examine uses tables.

This method is not concerned with connecting ports of components but

rather with assigning values to objects like ports, signals, and variables. In

other words, it describes how the output data relates to the input data

throughout the circuit.We have already used this method in several of the in-

troductory circuits in Chapters 3 and 4, in the form of truth tables. With se-

quential counter circuits, the equivalent of the truth table is the PRESENT

state/NEXT state table, as we saw in the last section. We can use the HDL es-

sentially to describe the PRESENT state/NEXT state table and thus avoid

the tedious details of generating the Boolean equations, as we did in Section

7-10 to design with standard logic devices.

SECTION 7-11/BASIC COUNTERS USING HDL 405

TOCCMC07_0131725793.QXD  12/12/2005  10:50 PM  Page 405



STATE DESCRIPTIONS IN AHDL
As an example of a simple counter circuit, we will implement the MOD-5

counter of Figure 7-26 in AHDL. The inputs and outputs are defined in the

SUBDESIGN section of Figure 7-35, as always. In the VARIABLE section on

line 7, we have declared (or instantiated) a three-bit array of DFF primitives

that are given the instance name count[ ]. This array will be treated basically

as a three-bit register in the design and we will essentially define what value

should be stored for each NEXT state. Because this is a synchronous counter,

we need to tie all the DFF clk inputs to the SUBDESIGN’s clock input. This is

accomplished in AHDL by the following statement in the logic section:

count[].clk � clock;

The flip-flop primitives provided in AHDL have standard inputs and out-

puts that are referred to as “ports.” These ports are labeled by a standard

port name that is attached to the instance name of the flip-flops. As seen in

Table 5-3, the clock port name is .clk, a D input is named .d, and the FF’s output

has the name .q. To implement the PRESENT state/NEXT state table, a CASE

construct is used. For each of the possible values of the register count[ ], we

determine the value that should be placed on the D inputs of the flip-flops,

which will determine the NEXT state of the counter. The statement on line

21 assigns the value on count[ ] to the output pins. Without this line, the

counter would be “buried” in the SUBDESIGN and would not be visible to

the outside world.

An alternative design solution is given in Figure 7-36.There are two modi-

fications from Figure 7-35. The first is seen on line 7, where the array name

for the D flip-flops is now the same as the output port for the SUBDESIGN.
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FIGURE 7-35 AHDL MOD-5 counter.

1    SUBDESIGN fig7_35

2    (

3          clock        :INPUT;

4          q[2..0]      :OUTPUT;

5    )

6    VARIABLE

7          count[2..0]  :DFF;       --create a 3-bit register

8    BEGIN

9          count[].clk = clock;     --connect all clocks in parallel

10

11                CASE count[] IS

12    --                Present          Next

13    --------------------------------------------------------

14                       WHEN  0     =>    count[].d = 1;

15                       WHEN  1     =>    count[].d = 2;

16                       WHEN  2     =>    count[].d = 3;

17                       WHEN  3     =>    count[].d = 4;

18                       WHEN  4     =>    count[].d = 0;

19                       WHEN OTHERS =>    count[].d = 0;

20                 END CASE;

21           q[] = count[];          -- assign register to output pins

22    END;

A
H

D
L
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This will automatically connect the flip-flop outputs to the SUBDESIGN out-

puts and eliminate the need to include an assignment statement like line 21

in the first solution. The second modification is the use of an AHDL TABLE

instead of the CASE statement used in Figure 7-35. In line 11, the .q port on

the q[ ] DFF array represents the PRESENT state side of the table, while the

.d port for q[ ] represents the NEXT state that will be entered into the array’s

set of D inputs when a PGT is applied to clock.

STATE DESCRIPTIONS IN VHDL
As an example of a simple counter circuit, we will implement the MOD-5

counter of Figure 7-26 in VHDL. Our purpose in this example is to demon-

strate a counter using a control structure similar to a PRESENT state/NEXT

state table. Two key tasks must be accomplished in VHDL: detecting the de-

sired clock edge, and assigning the proper NEXT state to the counter. Recall

from our study of flip-flops that a PROCESS can be used to respond to a tran-

sition of an input signal. Also, we have learned that a CASE construct can

evaluate an expression and, for any valid input value, assign a corresponding

value to another signal.The code in Figure 7-37 uses a PROCESS and a CASE

construct to implement this counter. The inputs and outputs are defined in

the ENTITY declaration, as in the past.

When VHDL is used to describe a counter, we must find a way to “store”

the state of the counter between clock pulses (i.e., the action of a flip-flop).

This is done in one of two ways: using SIGNALs, or using VARIABLEs. We

have used SIGNALs extensively in previous examples that operated con-

currently. A SIGNAL in VHDL holds the last value that was assigned to it,

very much like a flip-flop. Consequently, we can use a SIGNAL as the data

object representing the counter value. This SIGNAL can then be used to
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FIGURE 7-36 Another

version of the MOD-5

counter described in Figure

7-26.

1    SUBDESIGN fig7_36

2    (

3        clock     :INPUT;

4        q[2..0]   :OUTPUT;

5    )

6    VARIABLE

7       q[2..0]    :DFF;   -- create a 3-bit register

8    BEGIN

9       q[].clk = clock;   -- connect all clocks in parallel

10       TABLE

11          q[].q =>    q[].d;

12          0     =>    1;

13          1     =>    2;

14          2     =>    3;

15          3     =>    4;

16          4     =>    0;

17          5     =>    0;

18          6     =>    0;

19          7     =>    0;

20       END TABLE;

21    END;
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connect the counter value to any other elements in the architecture

description.

In this design, we have chosen to use a VARIABLE instead of a SIGNAL

as the data object that stores the counter value. VARIABLEs are not ex-

actly like SIGNALs because they are not used to connect various parts of

the design. Instead, they are used as a local place to “store” a value.

Variables are considered to be local data objects because they are recog-

nized only within the PROCESS in which they are declared. On line 11 of

Figure 7-37, the variable named count is declared within the PROCESS be-

fore BEGIN. Its type is the same as the output port q. The keyword

PROCESS on line 10 is followed by the sensitivity list containing the input

signal clock. Whenever clock changes state, the PROCESS is invoked, and

the statements within the PROCESS will be evaluated to produce a result.

A ’EVENT (read as “tick-event”) attribute will evaluate as TRUE if the

signal preceding it has just changed states. Line 13 states that if clock has

just changed states and right now it is ‘1’, then we know it was a rising

edge. To implement the PRESENT state/NEXT state table, a CASE con-

struct is used. For each of the possible values of the variable count, we de-

termine the NEXT state of the counter. Notice that the � operator is used

to assign a value to a variable. Line 25 assigns the value stored in count to

the output pins. Because count is a local variable, this assignment must be

done before END PROCESS on line 26.

408 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-37 VHDL MOD-5 counter.

1    ENTITY fig7_37 IS

2    PORT  (

3              clock  :IN BIT;

4              q      :OUT BIT_VECTOR(2 DOWNTO 0)

5          );

6    END fig7_37 ;

7

8    ARCHITECTURE a OF fig7_37    IS

9    BEGIN

10       PROCESS (clock)                            -- respond to clk input

11       VARIABLE count: BIT_VECTOR(2 DOWNTO 0); -- create a 3-bit register

12       BEGIN

13          IF (clock = '1' AND clock'EVENT) THEN   -- rising edge trigger

14             CASE count IS

15    --          Present             Next

16    ---------------------------------------------------------------------

17                WHEN "000"    =>    count := "001";

18                WHEN "001"    =>    count := "010";

19                WHEN "010"    =>    count := "011";

20                WHEN "011"    =>    count := "100";

21                WHEN "100"    =>    count := "000";

22                WHEN OTHERS   =>    count := "000";

23             END CASE;

24          END IF;

25          q <= count;         -- assign register to output pins

26       END PROCESS;

27    END a;
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Behavioral Description
The behavioral level of abstraction is a way to describe a circuit by describing

its behavior in terms very similar to the way you might describe its operation

in English. Think about the way a counter circuit’s operation might be de-

scribed by someone who knows nothing about flip-flops or logic gates. Perhaps

that person’s description would sound something like, “When the counter in-

put changes from LOW to HIGH, the number on the output counts up by 1.”

This level of description deals more with cause-and-effect relationships than

with the path of data flow or wiring details. However, we cannot really use just

any description in English to describe the circuit’s behavior.The proper syntax

must be used within the constraints of the HDL.

AHDL
In AHDL, the first important step in this description method is to declare the

counter output pins properly. They should be declared as a bit array, with in-

dices decreasing left to right and with 0 as the least significant index in the

array, as opposed to individual bits named a, b, c, d, and so on. In this way, the

numeric value associated with the bit array’s name is interpreted as a binary

number upon which certain arithmetic operations can be performed. For ex-

ample, the bit array count shown in Figure 7-38 might contain the bits 1001,

as shown. The AHDL compiler interprets this bit pattern as having the value

of 9 in decimal.

In order to create our MOD-5 counter in AHDL, we will need a three-bit

register that will store the current counter state. This three-bit array, named

count, is declared using D flip-flops on line 7 in Figure 7-39. Recall from

Figure 7-36 that we could name the DFF array the same as the output port

q[2..0] and thereby eliminate line 15, but we would also need to change

count[ ] to q[ ] everywhere in the logic section. In other words, the statement

on line 7 can be changed to

q[2..0] :DFF;.

If this were done, all references to count thereafter would be changed to q.
This can make the code shorter, but it does not demonstrate universal HDL

concepts as clearly. In AHDL, all the clocks can be specified as being tied to-

gether and connected to a common clock source using the statement on line

10, count[ ].clk � clock. In this example, count[ ].clk refers to the clock input

of each flip-flop in the array called count.
The behavioral description of this counter is very simple. The current

state of the counter is evaluated (count[ ].q) on line 11, and if it is less than

the highest desired count value, it uses the description count[ ].d � count.q � 1

(line 12). This means that the current state of the D inputs must be equal to

a value one count greater than the current state of the Q outputs. When the

current state of the counter has reached the highest desired state (or

higher), the IF statement test will be false, resulting in a NEXT-state input
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11 0 0

Element 3
count[3]

MSB

Element 2
count[2]

Element 1
count[1]

Element 0
count[0]

LSB

VARIABLE
count[3..0]       :DFF;

FIGURE 7-38 The 

elements of a D register

storing the number 9.
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value of zero (line 13), which recycles the counter. The last statement on line

15 simply connects the counter value to the output pins of the device.

VHDL
In VHDL, the first important step in this description method is to declare

properly the counter output port, as shown in Figure 7-40. The data type of

410 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-39 Behavioral description of a counter in AHDL.

1    SUBDESIGN fig7_39

2    (

3       clock    :INPUT;

4       q[2..0]  :OUTPUT;  -- declare 3-bit array of output bits

5    )

6    VARIABLE

7       count[2..0]  :DFF; -- declare a register of D flip flops.

8

9    BEGIN

10       count[].clk = clock;  -- connect all clocks to synchronous source

11       IF count[].q < 4 THEN    -- note; count[] is the same as count[].q

12          count[].d = count[].q + 1; -- increment current value by one

13       ELSE count[].d = 0;        -- recycle to zero: force unused states to 0

14       END IF;

15       q[] = count[];           -- transfer register contents to outputs

16    END;

FIGURE 7-40 Behavioral description of a counter in VHDL.

1    ENTITY fig7_40 IS

2    PORT( clock   :IN BIT;

3          q  :OUT INTEGER RANGE 0 TO 7  );

4    END  fig7_40;

5

6    ARCHITECTURE a OF fig7_40 IS

7    BEGIN

8       PROCESS (clock)

9       VARIABLE count: INTEGER RANGE 0 to 7;  -- define a numeric VARIABLE

10           BEGIN

11             IF (clock = '1' AND clock'EVENT) THEN   -- rising edge?

12                IF count < 4 THEN          -- less than max?

13                   count := count + 1;     -- increment value

14                ELSE                       -- must be at max or bigger

15                   count := 0;             -- recycle to zero

16                END IF;

17             END IF;

18       q <= count;             -- transfer register contents to outputs

19       END PROCESS;

20    END a;
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the output port (line 3) must match the type of the counter variable (line 9),

and it must be a type that allows arithmetic operations. Recall that VHDL

treats BIT_VECTORS as just a string of bits, not as a binary numeric quan-

tity. In order to recognize the signal as a numeric quantity, the data object

must be typed as an INTEGER. The compiler looks at the RANGE 0 TO 7

clause on line 3 and knows that the counter needs three bits. A similar dec-

laration is needed for the register variable on line 9 that will actually be

counting up. This is called count. The first statement after BEGIN in the

PROCESS responds to the rising edge of the clock as in the previous exam-

ples. It then uses behavioral description methods to define the counter’s re-

sponse to the clock edge. If the counter has not reached its maximum (line

12), then it should be incremented (line 13). Otherwise (line 14), it should re-

cycle the counter to zero (line 15). The last statement on line 18 simply con-

nects the counter value to the output pins of the device.

Simulation of Basic Counters
Simulation of any of our MOD-5 counter designs is pretty straightforward.

The counters have only one input bit (clock) and three output bits (q2 q1 q0)

to display in the simulation. The clock frequency has not been specified, so

we can use any frequency that we wish for a functional simulation—although

we probably should avoid a high-frequency clock unless we want to investi-

gate the effects of propagation delays. About the only decision that we must

make is to determine how many clock pulses to apply. Since the counter is a

MOD-5 counter, we should apply at least five clock pulses to verify that the

HDL design has the correct count sequence and that it recycles. The simula-

tion will start with the initial state 000 because the Altera PLDs have a built-

in power-on reset feature. We will not be able to test for any of the unused

states because the HDL designs did not provide for a way to preset the

counter to any of the unused states. Our simulation results for the HDL de-

sign of a MOD-5 counter are shown in Figure 7-41.
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2.0 ms 4.0 ms 6.0 ms 8.0 ms 10.0 ms 12.0 ms 14.0 ms

clock 1

0

0

0q0

q1

q2

FIGURE 7-41 Simulation results for HDL design of MOD-5 counter.

REVIEW QUESTIONS 1. What type of table is used to describe a counter’s operation?

2. When designing a counter with D flip-flops, what is applied to the D in-

puts in order to drive it to the NEXT state on the next active clock

edge?

3. How would you write the HDL description to trigger a storage device

(flip-flop) on a falling edge instead of a rising edge of the clock?

4. Which method describes the circuit’s operation using cause-and-effect

relationships?
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7-12 FULL-FEATURED COUNTERS IN HDL

The examples we have chosen so far have been very basic counters. All they

do is count up to four and then roll over to zero. The standard IC counters

that we have examined have many other features that make them very use-

ful for numerous digital applications. For example, consider the 74161 and

the 74191 IC counters that were discussed in Section 7-7. These devices have

combinations of various features including count enable, up/down counting,

parallel loading (preset to any count), and clearing. In addition, these coun-

ters have been designed to easily cascade synchronously to create larger

counters. In this section, we will explore the techniques that allow us to in-

clude these features in an HDL counter. We are going to create a counter

that will combine more features than are found in either the 74161 or the

74191. We will use this example to demonstrate the methods of designing a

counter with capabilities that specifically suit our needs. When we use HDLs

to create digital designs, we are not limited to features that happen to be in-

cluded with a certain IC.

Let’s review the specifications for our more complex counter example.

The recycling, MOD-16 binary counter is to change states on the rising edge

of the clock input when the counter is enabled with a HIGH level. A direction

control input will make the counter count up when it is LOW or count down

when it is HIGH.The counter will have an active-HIGH, asynchronous clear to

reset the counter immediately when the control input is activated. The

counter can be synchronously loaded with a number on the data input pins

when the load control is HIGH. The priority of the input control functions,

from highest to lowest, will be clearing, loading, and counting. And finally,

the counter will also include an active-HIGH output that will detect the ter-

minal state of the counter when the count function is enabled. Remember,

the terminal state will be dependent on the count direction. As we will see,

the correct operation of these features is determined by the way we write the

HDL code, so we will have to pay very close attention to the details.

AHDL FULL-FEATURED COUNTER
The code in Figure 7-42 implements all of the features we have discussed.

This is a four-bit counter, but it can easily be expanded in size. Read through

the inputs and outputs on lines 3 and 4 to make sure you understand what

each one is supposed to do. If you do not, reread the previous paragraphs of

this section. Line 7 defines a four-bit register of D flip-flops that will serve as

the counter. It should be noted again here that this register could have been

named the same as the output variable (q). The code is written with different

names to distinguish between ports (inputs and outputs) of the circuit and

the devices that are operating within the circuit.The clock input is connected

to all the clk inputs of all the D flip-flops on line 10. All the active-LOW clear

inputs (clrn) to the DFF primitive are connected to the complement of the

clear input signal on line 11. This clears the flip-flops immediately when the

clear input goes HIGH because the prn and clrn inputs to the DFF primitive

are not dependent on the clock (i.e., they are asynchronous).

In order to make the load function synchronously, the D inputs to the

flip-flops must be controlled so that the input data (din) is present on the D
inputs when the load line is HIGH.This way, when the next active clock edge

comes along, the data will be loaded into the counter. This action must hap-

pen regardless of whether the counter is enabled or not. Consequently, the

first conditional decision (IF) on line 12 evaluates the load input. Recall

412 CHAPTER 7/COUNTERS AND REGISTERS
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from Chapter 4 that the IF/ELSE decision structure gives precedence to the

first condition that is found to be true because, once it finds a condition that

is true, it does not go on to evaluate the conditions in subsequent ELSE

clauses. In this case, it means that if the load line is activated, it does not

matter whether the count is enabled, or it is trying to count up or down. It

will do a parallel load on the next clock edge.

Assuming that the load line is not active, the ELSIF clause on line 13 is

evaluated to see if the count is disabled. In AHDL, it is very important to re-

alize that the Q output must be fed back to the D input so that, on the next

clock edge, the register will hold its previous value. Forgetting to insert this

clause results in the D inputs defaulting to zero, thus resetting the counter.

If the counter is enabled, the ELSIF clause on line 14 is evaluated and either

increments count (line 14) or decrements count (line 15).To summarize these

decisions, first decide if it is time to load, next decide if the count should

hold or change, then decide whether to count up or down.

The next function described is the detecting (or decoding) of the termi-

nal count. Lines 17–20 decide whether the terminal count has been reached

while counting up or down. The double equals (��) operator is the symbol

that tests for equality between the expressions on each side of the operator.

Which counter state is the terminal state depends on the counting direction.

This is determined by ANDing the appropriate terminal state detection of 0

or 15 with the correct expression, down or !down. Term_ct will output a HIGH

if the correct state has been reached, otherwise it will be LOW. Line 21 will

connect the output for count to the output pins for the SUBDESIGN.

One of the key concepts of using HDLs is that it is generally very easy to

expand the size of a logic module. Let us look at the necessary changes to this

AHDL design to increase the binary counter modulus to 256. Since 28 � 256,
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FIGURE 7-42 Full-featured counter in AHDL.

1    SUBDESIGN fig7_42

2    (

3       clock, clear, load, cntenabl, down, din[3..0]      :INPUT;

4       q[3..0], term_ct :OUTPUT;  -- declare 4-bit array of output bits

5    )

6    VARIABLE

7       count[3..0]    :DFF;       -- declare a register of D flip flops

8

9    BEGIN

10       count[].clk = clock;       -- connect all clocks to synch source

11       count[].clrn= !clear;      -- connect for asynch active HIGH clear

12       IF load THEN count[].d = din[]; -- synchronous load

13          ELSIF !cntenabl THEN count[].d = count[].q; -- hold count

14          ELSIF !down THEN count[].d = count[].q + 1; -- increment

15          ELSE count[].d = count[].q - 1;            -- decrement

16       END IF;

17       IF ((count[].q == 0) & down # (count[].q == 15) & !down)& cntenabl

18       THEN     term_ct = VCC;    -- synchronous cascade output signal

19       ELSE term_ct = GND;

20       END IF;

21       q[] = count[];             -- transfer register contents to outputs

22    END;
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we will need to increase the number of bits to eight. Only four modifications

to Figure 7-42 will be required to make this change in counter modulus:

Line # Modification

3 din [3 7 . . 0]

4 q [3 7 . . 0]

7 count [3 7 . . 0]

17 (count [ ]. q �� 15 255)

VHDL FULL-FEATURED COUNTER
The code in Figure 7-43 implements all the features we have discussed. This

is a four-bit counter, but it can easily be expanded in size. Read through the

inputs and outputs on lines 2–5 to make sure you understand what each one

is supposed to do. If you do not, reread the previous paragraphs of this sec-

tion. The PROCESS statement on line 10 is the key to all clocked circuits de-

scribed in VHDL, but it also plays an important role in determining whether

the circuit responds synchronously or asynchronously to its inputs. We want

414 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-43 Full-featured counter in VHDL.

1    ENTITY fig7_43 IS

2    PORT( clock, clear, load, cntenabl, down   :IN BIT;

3          din         :IN INTEGER RANGE 0 TO 15;

4          q           :OUT INTEGER RANGE 0 TO 15;

5          term_ct     :OUT BIT);

6    END fig7_43;

7

8    ARCHITECTURE a OF fig7_43 IS

9       BEGIN

10          PROCESS ( clock, clear, down)

11          VARIABLE count :INTEGER RANGE 0 to 15;   -- define a numeric signal

12             BEGIN

13                IF clear = '1' THEN count := 0;    -- asynch clear

14                ELSIF (clock = '1' AND clock'EVENT)  THEN  -- rising edge?

15                   IF load = '1' THEN count := din;    -- parallel load

16                   ELSIF cntenabl = '1' THEN           -- enabled?

17                      IF down = '0' THEN count := count + 1;  -- increment

18                      ELSE           count := count - 1;  -- decrement

19                      END IF;

20                   END IF;

21                END IF;

22                IF (((count = 0) AND (down = '1')) OR

23                   ((count = 15) AND (down = '0'))) AND cntenabl = '1'

24                   THEN  term_ct <= '1';

25                ELSE     term_ct <= '0';

26                END IF;

27                q <= count;    -- transfer register contents to outputs

28             END PROCESS;

29         END a;
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this circuit to respond immediately to transitions on the clock, clear, and

down inputs. With these signals in the sensitivity list, we assure that the code

inside the PROCESS will be evaluated as soon as any of these inputs change

states. The variable count is defined on line 11 as an INTEGER so it can

be incremented and decremented easily. Variables are declared within the

PROCESS and can be used within the PROCESS only.

The clear input is given precedence by evaluating it with the first IF

statement on line 13. Recall from Chapter 4 that the IF/ELSE decision struc-

ture gives precedence to the first condition that is found to be true because

it does not go on to evaluate the conditions in subsequent ELSE clauses. In

this case, if the clear is active, the other conditions will not matter. The out-

put will be zero. In order to make the load function operate synchronously, it

must be evaluated after detecting the clock edge. The clock edge is detected

on line 14, and the circuit checks immediately to see if load is active. If load
is active, the count is loaded from din, regardless of whether or not the

counter is enabled. Consequently, the conditional decision (IF) on line 15

evaluates the load input; only if it is inactive does it evaluate line 16 to see if

the counter is enabled. If the counter is enabled, the count will be incre-

mented or decremented (lines 17 and 18, respectively).

The next issue is detecting the terminal count. Lines 22–25 decide

whether the maximum or minimum terminal count has been reached and

drive the output to the appropriate level. The decision-making structure

here is very important because we want to evaluate this situation, regardless

of whether the decision-making process was invoked by clock, clear, or down.
Notice that this decision is not another ELSE branch of the previous IF de-

cisions but is evaluated for each signal in the sensitivity list after the clear-

ing or counting has occurred. After all these decisions are made, count
should have the right value in the register, and line 27 effectively connects

the register to the output pins.

One of the key concepts of using HDLs is that it is generally very easy to

expand the size of a logic module. Let us look at the necessary changes to

this VHDL design to increase the binary counter modulus to 256. Only four

modifications to Figure 7-43 will be required to make this change in counter

modulus:

Line # Modification

3 RANGE 0 TO 15 255

4 RANGE 0 TO 15 255

11 RANGE 0 TO 15 255

23 (count � 15 255)

Simulation of Full-Featured Counter
Simulation of our full-featured counter design will require some planning

to generate appropriate input waveforms. While it may not be necessary to

exhaustively simulate every conceivable input combination, we do need to

test enough of the possible input conditions to be convinced that it works

properly. This is exactly what we should also do to test our prototype design

on the bench. The counter has five different input signals (clock, clear, load,
cntenabl, and din) and two different output signals (q and term_ct) to display

in our simulation. One of the input signals and one of the output signals

actually is four bits wide. We will pick a convenient clock frequency since

none has been specified for our functional simulation of the counter. We will

need to provide enough clock pulses to allow us to look at several operational
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conditions. The simulation should test the functions of enabling and dis-

abling the counter, counting up and counting down, clearing the counter,

loading a value into the counter and counting from that value, and terminal

count state detection.

There are some general simulation issues that we should consider in cre-

ating our input waveforms. Since the target PLDs have power-on reset, the

simulation will start with the initial output state at 0000. Therefore, it would

be better to wait until the count has reached another state before applying a

clear input so that we can see a change in the output. Likewise, loading in

the same value as the counter’s NEXT state does not really convince us that

load is working correctly. Changing input control signals at the same time as

the clocking edge occurs may create some setup time problems and produce

questionable results. Asynchronous controls should be applied at a time

other than the proper clocking edge to show clearly that the resultant circuit

action is immediate and not dependent on the clock. In general, we should

apply common sense in creating our input waveforms and consider what

we are trying to verify with the simulation. Simulation will be valuable in the

design process only if we apply appropriate input conditions and evaluate

the results critically.

Some simulation results for the full-featured counter are shown in Figure

7-44. The four-bit input din and the four-bit output q are displayed in hexa-

decimal. The counter is initially enabled (cntenabl � 1) to count up (down �
0), and we see the output is incrementing 0, 1, 2, 3, 4, 5. At t1, the counter syn-

chronously (i.e., on the PGT of clock) responds to the HIGH applied to the

load input. The counter is preset to the parallel data input (din) value of 8.

This also shows that loading has priority over counting, since they are both

active at the same time. After t1, load is LOW again and the counter contin-

ues to count up from 8. A LOW input to cntenabl makes the counter hold at

state 9 for an extra clock cycle. The count is continued when cntenabl goes

HIGH again until t2, when the counter is asynchronously cleared. Notice the

shortened time for the output state A due to the immediate clearing of the

counter. We would have to zoom in to actually see that state A is displayed.

We can also see that the clear function has the highest priority when all

three controls, clear, load, and cntenabl, are simultaneously high. The count-

up sequence continues and recycles to 0 after state F to verify that the

counter is a MOD-16 binary counter. At t3, the counter reaches its terminal

state F when counting up, and term_ct outputs a HIGH. At t4, the counter

starts counting down because down has been switched to a HIGH. Again,

term_ct outputs a HIGH since the counter is now at state 0, which is the ter-

minal state when counting down. Notice that, by the action of term_ct, the

terminal state for the counter depends on its direction of counting, which is
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FIGURE 7-44 Simulation results for HDL design of full-featured counter.

TOCCMC07_0131725793.QXD  12/13/05  4:51 AM  Page 416



A
H

D
L

controlled by the input down. The count holds at state 0 for an extra clock pe-

riod when cntenabl goes LOW. The output term_ct is also disabled while cnt-
enabl � 0.The down count sequence continues correctly when cntenabl again

goes HIGH. At t5, the counter synchronously loads the parallel data value 5.

At t6, the counter is asynchronously cleared. Again the priority of loading or

clearing over a down count is verified at t5 and t6. Did we verify that our de-

sign operates correctly in comparison to the specifications? We did a pretty

good job, but there are a couple of test conditions that could also be added

for completeness. Will the counter clear or load when the cntenabl is LOW?

It appears that we neglected to verify those scenarios. As you can see, com-

plex designs may require a lot of thought to verify their operation ade-

quately by simulation or bench testing. Can you think of any other tests that

we should make?

SECTION 7-13/WIRING HDL MODULES TOGETHER 417

REVIEW QUESTIONS 1. What is the difference between asynchronous clear and synchronous

load?

2. How do you create an asynchronous clear function in an HDL?

3. How do you create functions priority in an HDL description of a counter?

7-13 WIRING HDL MODULES TOGETHER

In the previous two sections we have looked at how to implement common

counter features using an HDL. We should also investigate how we can con-

nect these counter circuits to other digital modules to create larger systems.

Designing large digital systems becomes much easier if the system is subdi-

vided into smaller, more manageable modules that are then interconnected.

This is the essence of the concept of hierarchical design, and we will readily

see its benefits with example projects in Chapter 10. Let us now look at the

basic techniques for wiring modules together.

DECODING THE AHDL MOD-5 COUNTER
We looked briefly at the idea of decoding a counter in Section 7-8. You

should recall that a decoding circuit detects a counter’s state by the unique

bit pattern for that state. Let’s see how to connect a decoder circuit to the

MOD-5 counter design in Figure 7-35 (or Figure 7-36). We will rename the

counter SUBDESIGN mod5 to be a bit more descriptive in the block diagram

for the overall circuit that we will draw later. Since the counter does not pro-

duce all eight possible states for a three-bit counter, our decoder design

shown in Figure 7-45 will only decode the states that are used, 000 through

100.The three input bits (c � MSB) declared on line 3 will be connected later

to the MOD-5 counter’s outputs. The five outputs for the decoder are named

state0 through state4 on line 4. A CASE statement (lines 7–14) describes the

behavior of the decoder by checking the c b a input combination to deter-

mine which one of the decoder outputs should be HIGH. When the c b a in-

put is 000, only the state0 output will be HIGH or, when c b a is 001, only the

state1 output will be HIGH, and so on. Any input value greater than 100,

which is covered by OTHERS and actually should not occur in this applica-

tion, will produce LOWs on all outputs.
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We will instruct the Altera software to create symbols for our two design

files, mod5 and decode5. This will allow us to draw a block diagram (see

Figure 7-46) for our complete circuit that consists of these two modules, in-

put and output ports, and the wiring between them. Each symbol is labeled

with its respective SUBDESIGN name mod5 or decode5. Notice that some of

the wiring is drawn with heavier-weight lines. This is to represent a bus,

which is a collection of signal lines. The lighter-weight lines are individual

signals. The symbols created by Altera will automatically have ports drawn

to indicate whether they represent individual signals or buses. This will be

determined by the signal declarations in the SUBDESIGN section. Ports

with group names will be drawn as buses. Since the counter output port is a

bus but the decoder input ports are individual signals, it will be necessary

to split the bus into individual signal lines to wire the two modules together.

Whenever a bus is split, you must label both the group signal name of the

bus and the individual signals that are being used. Our block diagram has a

bus labeled q[2..0] and the corresponding individual signals q2, q1, and q0.
The simulation results for this counter and decoder circuit are shown in

Figure 7-47.

418 CHAPTER 7/COUNTERS AND REGISTERS

SUBDESIGN decode51
(2

c, b, a : INPUT;3
state[0..4] : OUTPUT;4

)5
BEGIN6

CASE (c,b,a) IS -- decode binary value7
WHEN B"000" => state[] = B"10000";8
WHEN B"001" => state[] = B"01000";9
WHEN B"010" => state[] = B"00100";10
WHEN B"011" => state[] = B"00010";11
WHEN B"100" => state[] = B"00001";12
WHEN OTHERS => state[] = B"00000";13

END CASE;14
END;15

FIGURE 7-45 AHDL MOD-5 counter decoder module.
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FIGURE 7-46 Block diagram design for the MOD-5 counter and decoder circuit.

FIGURE 7-47 Simulation of MOD-5 counter and decoder circuit.
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We looked briefly at the idea of decoding a counter in Section 7-8.You should

recall that a decoding circuit detects a counter’s state by the unique bit pat-

tern for that state. Let’s see how to connect a decoder circuit to the MOD-5

counter design in Figure 7-37. We will rename the counter ENTITY mod5 to

make it easier to identify the module in our overall circuit. Since the counter

does not produce all eight possible states for a three-bit counter, our decoder

design shown in Figure 7-48 will only decode the states that are used, 000

through 100. The three input bits (c � MSB) declared on line 3 will be con-

nected later to the MOD-5 counter’s outputs.The five outputs for the decoder

are named state, a bit vector, on line 4. An internal bit vector signal named

input is declared on line 9. Then line 11 combines the three input port bits (c
b a) together as a bit vector called input, which then can be evaluated by the

CASE statement on lines 14–21. If any of the input bits changes logic level,

the PROCESS will be invoked to determine the resultant output. The CASE

statement describes the behavior of the decoder by checking the input com-

bination (representing c b a) to determine which one of the decoder outputs

should be HIGH.When the input is 000, only the state(0) output will be HIGH;

when input is 001, only the state(1) output will be HIGH; and so on. Any input
value greater than 100, which is covered by OTHERS and actually should not

occur in this application, will produce LOWs on all outputs.

Since we are using the Altera PLD Development software, we can connect

the two modules graphically.To do this, you will need to instruct the software

to create symbols for our two design files, mod5 and decode5. This will allow

us to draw a block diagram (see Figure 7-46) for our complete circuit that con-

sists of these two modules, input and output ports, and the wiring between

them. Notice that some of the wiring is drawn with heavier-weight lines. This

is to represent a bus, which is a collection of signal lines. The lighter-weight

lines are individual signals. The symbols created by Altera will automatically

have ports drawn to indicate whether they represent individual signals or
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ENTITY  decode5  IS1
PORT (2

c, b, a : IN BIT;3
state     : OUT BIT_VECTOR (0 TO 4)4

);5
END decode5;6

7
ARCHITECTURE a OF decode5 IS8
SIGNAL input : BIT_VECTOR (2 DOWNTO 0);9
BEGIN10

input <= (c & b & a); -- combine inputs into bit vector11
PROCESS (c, b, a)12
BEGIN13

CASE input IS14
WHEN "000" => state <= "10000";15
WHEN "001" => state <= "01000";16
WHEN "010" => state <= "00100";17
WHEN "011" => state <= "00010";18
WHEN "100" => state <= "00001";19
WHEN OTHERS =>      state <= "00000";20

END CASE;21
END PROCESS;22

END a;23

FIGURE 7-48 VHDL MOD-5 counter decoder module.
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buses. This will be determined by the data type declarations for each port of

the ENTITY. BIT_VECTOR ports will be drawn as buses and BIT type ports

will be drawn as individual signal lines. Since the counter output port is a bus

but the decoder input ports are individual signals, it will be necessary to split

the bus into individual signal lines to wire the two modules together.Whenever

a bus is split, you must label both the group signal name of the bus and the

individual signals that are being used. Our block diagram has a bus labeled

q[2..0] and the corresponding individual signals q2, q1, and q0. The simula-

tion results for this counter and decoder circuit are shown in Figure 7-47.

The standard VHDL technique (and an alternative with Altera’s soft-

ware) to connect design modules is to use VHDL to describe the connections

between the modules in a text file. The desired modules are instantiated in

a higher-level design file using COMPONENTs in which the module’s PORTs

are declared. The wiring connections for each instance where the module is

utilized are listed in a PORT MAP. A VHDL file that connects the mod5 and

decode5 modules together is shown in Figure 7-49. Even though q is an out-

put port for our top-level design file, it is typed as a BUFFER on line 4 due

to the fact that it is necessary to “read” the bit vector array for an input to

the decode5 COMPONENT in its PORT MAP (line 25).VHDL does not permit

output ports to be used as inputs. The BUFFER data type declaration pro-

vides a port that can be used for both input and output. The mod5 module is

declared on lines 10–15 and the decode5 module is declared on lines 16–21.

The mod5 and decode5 ENTITY/ARCHITECTURE descriptions may be in-

cluded within the top-level design file, or instead they may be saved in the

same folder as the top-level file as was done here. The PORT MAP for each

instance of the modules is listed on lines 23 and 24–25. The word to the left

of the colon is a unique label for each instance and the module name is on

the right, then the keywords PORT MAP, and finally, in parentheses, are the

named associations between the design signals and ports. The operator

indicates which module ports (on the left side) are connected to which

= 7
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FIGURE 7-49 Higher-level VHDL file to connect mod5 and decode5 together.

ENTITY mod5decoded1 IS1
PORT (2

clk :IN BIT;3
q :BUFFER BIT_VECTOR (2 DOWNTO 0);4
cntr_state     :OUT BIT_VECTOR (0 TO 4)5
);6

END mod5decoded1;7
8

ARCHITECTURE toplevel OF mod5decoded1 IS9
COMPONENT mod510

PORT (11
clock     :IN BIT;12
q :OUT BIT_VECTOR (2 DOWNTO 0)13
);14

END COMPONENT;15
COMPONENT decode516
PORT (17

c, b, a :IN BIT;18
state     :OUT BIT_VECTOR (0 TO 4)19
);20

END COMPONENT;21
BEGIN22
counter:  mod5 PORT MAP (clock => clk, q => q);23
decoder:  decode5 PORT MAP24

(c => q(2), b => q(1), a => q(0), state => cntr_state);25
END toplevel;26
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higher-level system signals (on the right side). This circuit produces the sim-

ulation results shown in Figure 7-47.

MOD-100 BCD Counter
We wish to design a recycling, MOD-100 BCD counter that has a synchronous

clear. Creating a MOD-10 BCD counter module and synchronously cascading

two of these modules together in a higher-level design file is the easiest way to

do this.The clock inputs to the two MOD-10 modules will both be connected to

the system clock to achieve synchronous cascading of the two counter modules.

Remember, there are significant benefits to using synchronous counter design

rather than asynchronous clocking techniques. Also, if we did not employ

synchronous clocking, the synchronous clear would not work properly. Even

though the design specifications did not require a count enable or terminal

count detection for the MOD-100 counter, it will be necessary to include these

features in our design. In order to synchronously cascade two counters, the en-

able and decoding features will be needed. The count enable input causes the

counter to ignore clock edges unless it is enabled.The terminal count output in-

dicates that the counting sequence has reached its limit and will roll over on

the next clock.To synchronously cascade counter stages together, the terminal

count output is connected to the next higher-order stage’s enable input. By us-

ing the count enable to also control the decoding of the terminal count, our

MOD-10 module can be used to create even larger BCD counters.

CASCADING AHDL BCD COUNTERS
Our MOD-10 BCD counter SUBDESIGN is shown in Figure 7-50. The termi-

nal state for a BCD counter is 9. Lines 10–13 will detect this terminal state

only when the counter is enabled with a HIGH. ANDing the enable control
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SUBDESIGN  mod101
(2

clock, enable, clear :INPUT;3
counter[3..0], tc :OUTPUT;4

)5
VARIABLE6

counter[3..0] :DFF;7
BEGIN8

counter[].clk  = clock;9
IF counter[].q == 9 & enable == VCC  THEN10

tc = VCC; -- detect terminal count11
ELSE tc = GND;12
END IF;13
IF  clear  THEN14

counter[].d = B"0000"; -- synchronous clear15
ELSIF  enable  THEN -- clear has priority16

IF counter[].q == 9  THEN     -- check for last state17
counter[].d = B"0000";18

ELSE19
counter[].d = counter[].q + 1;      -- increment20

END IF;21
ELSE -- hold count when disabled22

counter[].d = counter[].q;23
END IF;24

END;25

FIGURE 7-50 MOD-10 BCD counter in AHDL.
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in the decoding function will allow more than two counter modules to be

cascaded synchronously if necessary and makes our mod10 design more ver-

satile. The clear function will operate synchronously in AHDL by including

it in the IF statement as shown on lines 14–15. If clear is inactive, we next

check to see if the counter is enabled (line 16). If enable is HIGH, the

counter checks, using a nested IF on lines 17–21, to see if the last state 9 has

been reached. After state 9, the counter synchronously recycles to 0.

Otherwise, the count will be incremented. If the counter is disabled, lines

22–23 will hold the current count value by feeding the current output back

to the counter’s input. This holding action will be necessary in the cascaded

MOD-100 counter for the 10s digit to hold its current state while the 1s digit

progresses through its count sequence. An appropriate design strategy

would be for us to simulate this module to determine if it functions

correctly before we use it in a more complex circuit application. From the

simulation results for mod10, given in Figure 7-51, we see that the count

sequence is correct, the clear is synchronous and has priority, and enable
controls both the count function and the decoding output tc.

422 CHAPTER 7/COUNTERS AND REGISTERS

clock

enable

clear

tc

counter[3..0] B 0000

0

0

1

1
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001000100001001100001110110010101000011001000010000001000010000

FIGURE 7-51 MOD-10 simulation results.

FIGURE 7-52 Block diagram design for a MOD-100 BCD counter.

After creating a default symbol for our mod10 counter module, we can

now draw the block diagram for the MOD-100 BCD counter application. The

input ports, output ports, and wiring have also been added to create the de-

sign in Figure 7-52. Notice that the counter outputs representing the 1s and

10s digits are drawn as buses. The mod10 modules are clocked synchro-

nously. They are cascaded by using the terminal count output from the 1s

digit to control the enable input on the 10s digit. The en input port controls

the enabling/disabling of the entire MOD-100 counter circuit. The BCD

counter design can be easily expanded with an additional mod10 stage by

connecting the tc output to the next enable input for each digit needed. A

sample of simulation results can be seen in Figure 7-53. The simulation

shows that the MOD-100 counter has a correct BCD count sequence and can

be synchronously cleared.

mod10 mod10

clock

enable

counter[3..0]

tc

clear

clock

enable

counter[3..0]

tc

clear

clk3

6

7

8

INPUT

VCC

INPUT

VCC

INPUT

VCC

en4

clr5

OUTPUT

tens[3..0]

ones[3..0]

OUTPUT

max
OUTPUT
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The ENTITY and ARCHITECTURE for our MOD-10 BCD counter is shown in

lines 26–51 of Figure 7-54. The terminal state for a BCD counter is 9. Lines

38–40 will detect this terminal state only when the counter is enabled with a

HIGH. ANDing the enable control in the decoding function will allow more

than two counter modules to be cascaded synchronously if necessary and

makes our mod10 design more versatile. The clear function will be synchro-

nous in VHDL by placing it in the nested IF statement (line 42) after the

clock edge has been detected in line 41. If clear is inactive, we next check to

see if the counter is enabled (line 43). If enable is HIGH, the counter checks,

using another nested IF on lines 44–46, to see if the last state 9 has been

reached. After state 9, the counter synchronously recycles to 0. Otherwise, the

count will be incremented. If the counter is disabled, VHDL will automati-

cally hold the current count value. This holding action will be necessary in

the cascaded MOD-100 counter for the 10s digit to hold its current state while

the 1s digit progresses through its count sequence. An appropriate design

strategy would be for us to simulate this module as a separate ENTITY to de-

termine if it functions correctly before we use it in a more complex circuit ap-

plication. Simulation results for the mod10 ENTITY, given in Figure 7-51,

show that the count sequence is correct, the clear is synchronous and has pri-

ority, and enable controls both the count function and the decoding output.

We have two choices for implementing the MOD-100 counter. One tech-

nique is to represent the design graphically in a block diagram as seen in

Figure 7-52. The mod10 counter modules, input ports, output ports, and

wiring have also been added to create the MOD-100 counter. Notice that the

counter outputs representing the 1s and 10s digits are drawn as buses. The

mod10 modules are clocked synchronously. They are cascaded by using

the terminal count output from the 1s digit to control the enable input on the

10s digit.The en input port controls the enabling/disabling of the entire MOD-

100 counter circuit. The BCD counter design can be easily expanded with an

additional mod10 stage by connecting the tc output to the next enable input for

each digit needed. A sample of simulation results can be seen in Figure 7-53.
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FIGURE 7-53 Simulation results for MOD-100 BCD counter design.
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The simulation shows that the MOD-100 counter has a correct BCD count se-

quence and can be synchronously cleared.

The second technique for creating the MOD-100 counter is to make the

necessary connections between design modules by describing the circuit

structure with VHDL.The listing for this system design file is given in Figure

7-54. The ENTITY/ARCHITECTURE description for the mod10 sub-block is

contained within the overall mod100 design file (but could be in a separate

file within this project’s folder). The mod100 design file would be the top

424 CHAPTER 7/COUNTERS AND REGISTERS

ENTITY mod100 IS1
PORT (2

clk, en, clr :IN BIT;3
ones :OUT INTEGER RANGE 0 TO 15;4
tens :OUT INTEGER RANGE 0 TO 15;5
max :OUT BIT6

);7
END mod100;8
ARCHITECTURE toplevel OF mod100 IS9
COMPONENT mod1010

PORT (11
clock, enable, clear :IN BIT;12
q :OUT INTEGER RANGE 0 TO 15;13
tc :OUT BIT14
);15

END COMPONENT;16
SIGNAL rco :BIT;17
BEGIN18
digit1:  mod10  PORT MAP (clock => clk, enable => en,19

clear => clr, q => ones, tc => rco);20
digit2:  mod10  PORT MAP (clock => clk, enable => rco,21

clear => clr, q => tens, tc => max);22
END toplevel;23

24
25

ENTITY mod10 IS26
PORT (27

clock, enable, clear :IN BIT;28
q :OUT INTEGER RANGE 0 TO 15;29
tc :OUT BIT30

);31
END mod10;32
ARCHITECTURE lowerblk OF mod10 IS33
BEGIN34

PROCESS (clock, enable)35
VARIABLE  counter :INTEGER RANGE 0 TO 15;36

BEGIN37
IF ((counter = 9) AND (enable = '1'))  THEN  tc <= '1';38
ELSE tc <= '0';39
END IF;40
IF (clock'EVENT AND clock = '1')  THEN41

IF (clear = '1')  THEN  counter := 0;42
ELSIF  (enable = '1')  THEN43

IF (counter = 9)  THEN  counter := 0;44
ELSE     counter := counter + 1;45
END IF;46

END IF;47
END IF;48
q <= counter;49

END PROCESS;50
END lowerblk;51

FIGURE 7-54 MOD-100 BCD counter in VHDL.
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level for the hierarchical design of this system. It contains lower-level sub-

blocks, which are actually two copies of the lower-level mod10 counter. The

mod10 COMPONENT is declared in this higher-level design file (lines

10–16). The wiring connections for each instance where the module is uti-

lized are listed in a PORT MAP. Since we need two instances of mod10, there

is a PORT MAP for each instance (lines 19–20 and 21–22). Each instance

must have a unique label (digit1 or digit2) to distinguish them from each

other. The PORT MAPs contain named associations between the lower-level

module ports, given on the left, and the higher-level signals to which they are

connected, given on the right. This circuit produces the same simulation re-

sults shown in Figure 7-53.
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REVIEW QUESTIONS 1. Describe how to connect HDL modules together to create a digital system.

2. What is a bus and how is it represented in a graphical block diagram de-

sign file in Altera?

3. What counter features must be included to synchronously cascade

counter modules together?

7-14 STATE MACHINES

The term state machine refers to a circuit that sequences through a set of

predetermined states controlled by a clock and other input signals. So the

counter circuits we have been studying so far in Chapter 7 are state ma-

chines. Generally, we use the term counter for sequential circuits that have a

regular numeric count sequence. They may count up or count down, they

may have a full 2N modules or they may have a modulus, or they may re-

cycle or stop automatically at some predetermined state. A counter, as its

name implies, is used to count things. The things that are counted are actu-

ally called clock pulses, but the pulses may represent many kinds of events.

The pulses may be the cycles of a signal for frequency division or they may

be seconds, minutes, and hours of a day for a digital clock.They may indicate

that an item has moved down the conveyer in a factory or that a car has

passed a particular spot on the highway.

The term state machine is more often used to describe other kinds of se-

quential circuits. They may have an irregular counting pattern like our step-

per motor control circuit in Section 7-10.The objective for that design was to

drive a stepper motor so that it would rotate in precise angular steps. The

control circuit had to produce the required specific sequence of states for

that movement, rather than count numerically. There are also many applica-

tions where we do not care about the specific binary value for each state

because we will use appropriate decoding logic to identify specific states of

interest and to generate desired output signals. The general distinction be-

tween the two terms is that a counter is commonly used to count events,

while a state machine is commonly used to control events. The correct de-

scriptive term depends on how we wish to use the sequential circuit.

The block diagram shown in Figure 7-55 may represent a state machine

or a counter. In Section 7-10 we found out that the classic sequential circuit

design process was to figure out how many flip-flops would be needed and

then determine the necessary combinational circuit to produce the desired

sequence. The output produced by a counter or a state machine may come

6 2N
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directly from the flip-flop outputs or there may be some gating circuitry

needed, as indicated in the block diagram. The two variations are described

as either a Mealy model for a sequential circuit or a Moore model. In the

Mealy model the output signals are also controlled by additional input sig-

nals, while the Moore model does not have any external controls for the gen-

erated output signals.The Moore output is a function only of the current flip-

flop state. An example of a Moore-type design would be the decoded MOD-5

circuit in Section 7-13. On the other hand, the BCD counter design in the

same section would be a Mealy-type design because of the external input

(enable) that controls the terminal state decoding output (tc). One signifi-

cant consequence of this subtle design variation is that Moore-type circuit

outputs will be completely synchronous to the circuit’s clock, while outputs

produced by a Mealy-type circuit can change asynchronously. The enable in-

put is not synchronized to the system clock in our MOD-10 design.

HDLs, of course, can make state machines easy and intuitive to describe.

As an oversimplified example that everyone can relate to, the following hard-

ware description deals with four states through which a typical washing ma-

chine might progress. Although a real washing machine is more complex

than this example, it will serve to demonstrate the techniques. This washing

machine is idle until the start button is pressed, then it fills with water until

the tub is full, then it runs the agitator until a timer expires, and finally it

spins the tub until the water is spun out, at which time it goes back to idle.

The point of this example focuses on the use of a set of named states for

which no binary values are defined. The name of the counter variable is

wash, which can be in any of the named states: idle, fill, agitate, or spin.

SIMPLE AHDL STATE MACHINE
The AHDL code in Figure 7-56 shows the syntax for declaring a counter with

named states on lines 6 and 7.The name of this counter is cycle. The keyword

MACHINE is used in AHDL to define cycle as a state machine. The number

of bits needed for this counter to produce the named states will be deter-

mined by the compiler. Notice that in line 7 the states are named, but the

binary value for each state is also left for the compiler to determine. The

426 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-55 Block dia-

gram for counters and state

machines.
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designer does not need to worry about this level of detail. The CASE struc-

ture on lines 11–25 and the decoding logic that drives the outputs (lines

27–33) refer to the states by name. This makes the description easy to read

and allows the compiler more freedom to minimize the circuitry. If the de-

sign requires the state machine also to be connected to an output port, then

line 6 can be changed to:

cycle: MACHINE OF BITS (st [1..0])

and the output port st[1..0] can be added to the SUBDESIGN section. A sec-

ond state machine option that is available is the ability for the designer to

define a binary value for each state. This can be accomplished in this exam-

ple by changing line 7 to:

WITH STATES (idle � B”00”, fill � B”01”, agitate � B”11”, spin �

B”10”);

SECTION 7-14/STATE MACHINES 427

FIGURE 7-56 State 

machine example using

AHDL.

1    SUBDESIGN fig7_56

2    (  clock, start, full, timesup, dry    :INPUT;

3       water_valve, ag_mode, sp_mode       :OUTPUT;

4    )

5    VARIABLE

6    cycle:  MACHINE

7             WITH STATES (idle, fill, agitate, spin);

8    BEGIN

9    cycle.clk = clock;

10

11       CASE cycle IS

12          WHEN idle =>IF start THEN cycle = fill;

13                      ELSE     cycle = idle;

14                      END IF;

15          WHEN fill =>IF full THEN cycle = agitate;

16                      ELSE     cycle = fill;

17                      END IF;

18          WHEN agitate=> IF timesup THEN cycle = spin;

19                      ELSE     cycle = agitate;

20                      END IF;

21          WHEN spin => IF dry THEN cycle = idle;

22                      ELSE     cycle = spin;

23                      END IF;

24          WHEN OTHERS => cycle = idle;

25       END CASE;

26

27       TABLE

28          cycle    => water_valve,    ag_mode, sp_mode;

29          idle     => GND,            GND,     GND;

30          fill     => VCC,            GND,     GND;

31          agitate  => GND,            VCC,     GND;

32          spin     => GND,            GND,     VCC;

33       END TABLE;

34    END;
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SIMPLE VHDL STATE MACHINE
The VHDL code in Figure 7-57 shows the syntax for declaring a counter with

named states. On line 6, a data object is declared named state_machine.
Notice the keyword TYPE. This is called an enumerated type in VHDL, in

which the designer lists by symbolic names all possible values that a signal,

variable, or port that is declared to be of that type is allowed to have. Notice

also that on line 6, the states are named, but the binary value for each state

is left for the compiler to determine. The designer does not need to worry

about this level of detail. The CASE structure on lines 12–29 and the decod-

ing logic that drives the outputs (lines 31–36) refer to the states by name.

This makes the description easy to read and allows the compiler more free-

dom to minimize the circuitry.

Using the simulator to verify our HDL designs produces the results given

in Figure 7-58. The Altera simulator allows us to also simulate intermediate

nodes in our design modules.The “buried” state machine named cycle has been

included in the simulation in order to confirm that it operates correctly. Note

that the results for cycle are given twice, since it will be displayed differently

428 CHAPTER 7/COUNTERS AND REGISTERS
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ENTITY  fig7_57  IS1
PORT ( clock, start, full, timesup, dry :IN BIT;2

water_valve, ag_mode, sp_mode :OUT BIT);3
END fig7_57;4
ARCHITECTURE  vhdl  OF  fig7_57  IS5
TYPE  state_machine  IS  (idle, fill, agitate, spin);6
BEGIN7

PROCESS (clock)8
VARIABLE  cycle :state_machine;9
BEGIN10
IF (clock'EVENT  AND  clock = '1')  THEN11

CASE  cycle  IS12
WHEN idle =>13

IF start = '1' THEN cycle := fill;14
ELSE           cycle := idle;15
END IF;16

WHEN fill =>17
IF full = '1' THEN cycle := agitate;18
ELSE           cycle := fill;19
END IF;20

WHEN agitate =>21
IF timesup = '1' THEN cycle := spin;22
ELSE           cycle := agitate;23
END IF;24

WHEN spin =>25
IF dry = '1' THEN cycle := idle;26
ELSE           cycle := spin;27
END IF;28

END CASE;29
END IF;30
CASE  cycle  IS31

WHEN idle  => water_valve <= '0';  ag_mode <= '0';  sp_mode <= '0';32
WHEN fill  => water_valve <= '1';  ag_mode <= '0';  sp_mode <= '0';33
WHEN agitate => water_valve <= '0';  ag_mode <= '1';  sp_mode <= '0';34
WHEN spin  => water_valve <= '0';  ag_mode <= '0';  sp_mode <= '1';35

END CASE;36
END PROCESS;37

END vhdl;38

FIGURE 7-57 State machine example using VHDL.
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for the two HDLs.The simulator cannot actually show the simulations for both

AHDL and VHDL together. The second buried node information has been

merely copied and pasted for a composite figure here. In AHDL the machine

state names are displayed, while in VHDL the compiler-assigned values for the

enumerated state names are displayed instead.

Traffic Light Controller State Machine
Let us investigate a state machine design that is a little more complicated, a

traffic light controller. The block diagram is shown in Figure 7-59. Our simple

controller is designed to control the flow of traffic at the intersection of a

main road with a less busy side road. Traffic will flow uninterrupted on the

main road with a green light, until a car is sensed on the side road (indicated

by the input labeled car). After a time delay that is set by the five-bit binary

input labeled tmaingrn, the main road light will change to yellow. The

tmaingrn time delay ensures that the main road will receive a green light for
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FIGURE 7-58 Simulation of washing machine HDL design example for a state 

machine.

FIGURE 7-59 Traffic light controller.
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at least this length of time during each cycling of the lights. The yellow light

will last for a fixed amount of time that is set in the HDL design and then

transition to red. When the main road light is red, the side road light turns to

green.The side road light will be green for a time that is set by the five-bit bi-

nary input labeled tsidegrn. Again the yellow light will last for the same fixed

length of time and then the side road will return to a red light and the main

road light will be green again.The delay module will control the time periods

for each of the lights. The actual time delays will be the period of the system

clock multiplied times the delay factor. The control module determines the

state of the traffic controller. There are four light combinations—main-

green/side-red, main-yellow/side-red, main-red/side-green, and main-red/side-

yellow—so control will need four states.The traffic light states are translated

into the proper on–off patterns for each of the six pairs of lights by the

lite_ctrl module. The outputs labeled change and lite are provided for diag-

nostic purposes. Reset is used to initialize each of the two sequential circuits.

AHDL TRAFFIC LIGHT CONTROLLER
The three design modules for our AHDL traffic light controller are listed to-

gether in Figure 7-60. They are actually three separate design files that are

interconnected with the block diagram design shown in Figure 7-59. The de-

lay module (lines 1–23) is basically a buried down counter (line 20) named

mach, which waits at zero when the main road has a green light (lite � 0) un-

til it is triggered by the car sensor (line 13) to load the delay factor

on line 14. Since the counter decrements all the way to zero, one

is subtracted from each delay factor to make the delay counter’s modulus

equal to the value of the delay factor. For example, if we wish to have a de-

lay factor of 25, the counter must count from 24 down to 0. The actual length

of time represented by the delay factors depends on the clock frequency.

With a 1-Hz clock frequency, the period would be 1 s, and the delay factors

would then be in seconds. Line 22 defines an output signal called change that

detects when mach is equal to one. Change will be HIGH to indicate that the

test condition is true, which in turn will enable the state machine in the con-

trol module to move to its next state (lite � 1) when clocked to indicate a yel-

low light on the main road. As the delay counter mach counts down and

reaches zero, CASE determines that lite has a new value and the fixed time

delay factor of 5 for a yellow light is loaded (actually loading one less than 5,

as previously discussed) into mach (line 16) on the next clock. The count

down continues from this new delay time, with change again enabling the

control module to move to its next state (lite � 2) when mach is equal to 1, re-

sulting in a green light for the side road. When mach again reaches zero, the

time delay for a green light on the side road will be loaded into

the down counter (line 17). When change again goes active, lite will advance

to state 3 for a yellow light on the side road. Mach will recycle to the value 

4 (5–1) on line 18 for the fixed time delay for a yellow light.When change goes

active this time, the control module will return to the lite � 0 state (green

light on main). When mach decrements to its terminal state (zero) this time,

lines 13–15 will determine by the status of the car sensor input whether to

wait for another car or to load in the delay factor for a green light on main

to start the cycle over again. The main road will receive a

green light for at least this length of time, even if there is a continuous

stream of cars on the side road. It is obvious that we could make improve-

ments to this design, but that, of course, would also complicate the design

further.

(tmaingrn-1)

(tsidegrn-1)

tmaingrn-1

430 CHAPTER 7/COUNTERS AND REGISTERS

TOCCMC07_0131725793.QXD  12/12/2005  10:50 PM  Page 430



SECTION 7-14/STATE MACHINES 431

SUBDESIGN  delay1
( clock, car, lite[1..0], reset :INPUT;2

tmaingrn[4..0], tsidegrn[4..0] :INPUT;3
change :OUTPUT;  )4

VARIABLE5
mach[4..0] :DFF;6

BEGIN7
mach[].clk = clock; -- with 1 Hz clock, times in seconds8
mach[].clrn = reset;9
IF  mach[] == 0  THEN10

CASE  lite[]  IS -- check state of light controller11
WHEN 0 =>12

IF  !car  THEN  mach[].d = 0; -- wait for car on side road13
ELSE mach[].d = tmaingrn[] - 1; -- set time for main’s green14
END IF;15

WHEN 1 => mach[].d = 5 - 1; -- set time for main's yellow16
WHEN 2 => mach[].d = tsidegrn[] - 1; -- set time for side's green17
WHEN 3 => mach[].d = 5 - 1; -- set time for side's yellow18

END CASE;19
ELSE  mach[].d = mach[].q - 1; -- decrement timer counter20
END IF;21
change = mach[] == 1; -- change lights on control module22

END;23
---------------------------------------------------------------------------------24
SUBDESIGN  control25
( clock, enable, reset :INPUT;26

lite[1..0] :OUTPUT;  )27
VARIABLE28

light: MACHINE OF BITS (lite[1..0]) -- need 4 states for light combinations29
WITH STATES (mgrn = B"00", myel = B"01", sgrn = B"10", syel = B"11");30

BEGIN31
light.clk = clock;32
light.reset = !reset; -- MACHINEs have asynchronous, active-high reset33
CASE  light  IS -- wait for enable to change light states34

WHEN mgrn => IF enable THEN light = myel;  ELSE light = mgrn;  END IF;35
WHEN myel => IF enable THEN light = sgrn;  ELSE light = myel;  END IF;36
WHEN sgrn => IF enable THEN light = syel;  ELSE light = sgrn;  END IF;37
WHEN syel => IF enable THEN light = mgrn;  ELSE light = syel;  END IF;38

END CASE;39
END;40
---------------------------------------------------------------------------------41
SUBDESIGN lite_ctrl42
( lite[1..0] :INPUT;43

mainred, mainyelo, maingrn :OUTPUT;44
sidered, sideyelo, sidegrn :OUTPUT;  )45

BEGIN46
CASE lite[] IS -- determine which lights to turn on47

WHEN B"00" => maingrn = VCC; mainyelo = GND; mainred = GND;48
sidegrn = GND; sideyelo = GND; sidered = VCC;49

WHEN B"01" => maingrn = GND; mainyelo = VCC; mainred = GND;50
sidegrn = GND; sideyelo = GND; sidered = VCC;51

WHEN B"10" => maingrn = GND; mainyelo = GND; mainred = VCC;52
sidegrn = VCC; sideyelo = GND; sidered = GND;53

WHEN B"11" => maingrn = GND; mainyelo = GND; mainred = VCC;54
sidegrn = GND; sideyelo = VCC; sidered = GND;55

END CASE;56
END;57

FIGURE 7-60 AHDL design files for traffic light controller.
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The control module (lines 25–40) contains a state machine named light
that will sequence through the four states for the traffic light combinations.

The bits for the state machine are named and connected as an output port

for this module (lines 27 and 29). The four states for light are named mgrn,
myel, sgrn, and syel on line 30. Each state represents which road, main or

side, is to receive a green or yellow light. The other road will have a red

light. The values for each state of the control module have also been speci-

fied on line 30 so that we can identify them as inputs to the other two mod-

ules, delay and lite_ctrl. The enable input is connected to the change output

signal produced by the delay module. When enabled, the light state ma-

chine will advance to the next state when clocked as described by the CASE

and nested IF statements on lines 34–39. Otherwise, light will hold at the

current state.

The lite_ctrl module (lines 42–57) inputs lite[1..0], which represents the

state of the light state machine from the control module, and will output the

signals that will turn on the proper combinations of green, yellow, and red

lights for the main and side roads. Each output from the lite_ctrl module will

actually be connected to lamp driver circuits to control the higher voltages

and currents necessary for real lamps in a traffic light. The CASE statement

on lines 47–55 determines which main road/side road light combination to

turn on for each state of light. The function of the lite_ctrl module is very

much like a decoder. It essentially decodes each state combination of lite to

turn on a green or yellow light for one road and a red light for the other road.

A unique output combination is produced for each input state.

VHDL TRAFFIC LIGHT CONTROLLER
The VHDL design for the traffic light controller is listed in Figure 7-61. The

top level of the design is described structurally on lines 1–34.There are three

COMPONENT modules to declare (lines 10–24). The PORT MAPs giving the

wiring interconnects between each module and the top level design are

listed on lines 26–33.

The delay module (lines 36–66) is basically a buried down counter (line

59) created with the integer variable mach that waits at zero when the main

road has a green light (lite � “00”) until it is triggered by the car sensor (line

52) to load the delay factor on line 53. Since the counter decre-

ments all the way to zero, one is subtracted from each delay factor to make

the delay counter’s modulus equal to the value of the delay factor. For

example, if we wish to have a delay factor of 25, the counter must count from

24 down to 0. The actual length of time represented by the delay factors

depends on the clock frequency. With a 1-Hz clock frequency, the period

would be 1 s, and the delay factors would then be in seconds. Lines 62–64

define an output signal called change that detects when mach is equal to one.

Change will be HIGH to indicate that the test condition is true, which in turn

will enable the state machine in the control module to move to its next state

(lite � “01”) when clocked to indicate a yellow light on the main road. When

mach reaches zero now, CASE determines that lite has a new value and the

fixed time delay factor of 5 for a yellow light is loaded (actually loading one

less, as previously discussed) into mach (line 55) on the next clock.The count

down continues from this new delay time, with change again enabling the

control module to move to its next state (lite � “10”), resulting in a green

light for the side road. When mach again reaches zero, the time delay

for a green light on the side road will be loaded into the down(tsidegrn-1)

tmaingrn-1
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ENTITY  traffic  IS1
PORT  ( clock, car, reset :IN BIT;2

tmaingrn, tsidegrn :IN INTEGER RANGE 0 TO 31;3
lite :BUFFER INTEGER RANGE 0 TO 3;4
change :BUFFER BIT;5
mainred, mainyelo, maingrn :OUT BIT;6
sidered, sideyelo, sidegrn :OUT BIT);7

END traffic;8
ARCHITECTURE  toplevel OF  traffic  IS9
COMPONENT delay10

PORT ( clock, car, reset :IN BIT;11
lite :IN INTEGER RANGE 0 TO 3;12
tmaingrn, tsidegrn :IN INTEGER RANGE 0 TO 31;13
change :OUT BIT);14

END COMPONENT;15
COMPONENT control16

PORT ( clock, enable, reset :IN BIT;17
lite :OUT INTEGER RANGE 0 TO 3);18

END COMPONENT;19
COMPONENT lite_ctrl20

PORT ( lite :IN INTEGER RANGE 0 TO 3;21
mainred, mainyelo, maingrn :OUT BIT;22
sidered, sideyelo, sidegrn :OUT BIT);23

END COMPONENT;24
BEGIN25
module1: delay PORT MAP (clock => clock, car => car, reset => reset,26

lite => lite, tmaingrn => tmaingrn, tsidegrn => tsidegrn,27
change => change);28

module2: control PORT MAP (clock => clock, enable => change, reset => reset,29
lite => lite);30

module3: lite_ctrl PORT MAP (lite => lite, mainred => mainred, mainyelo => mainyelo,31
maingrn => maingrn, sidered => sidered, sideyelo => sideyelo,32
sidegrn => sidegrn);33

END toplevel;34
------------------------------------------------------------------------------------35
ENTITY  delay  IS36
PORT  ( clock, car, reset :IN BIT;37

lite :IN BIT_VECTOR (1 DOWNTO 0);38
tmaingrn, tsidegrn :IN INTEGER RANGE 0 TO 31;39
change :OUT BIT);40

END delay;41
ARCHITECTURE  time OF delay  IS42
BEGIN43

PROCESS (clock, reset)44
VARIABLE  mach :INTEGER RANGE 0 TO 31;45
BEGIN46
IF  reset = '0'  THEN  mach := 0;47
ELSIF (clock = '1' AND clock'EVENT)  THEN -- with 1 Hz clock, times in seconds48

IF  mach = 0  THEN49
CASE  lite  IS50

WHEN "00"51
IF car = '0'  THEN  mach := 0; -- wait for car on side road52
ELSE          mach := tmaingrn - 1; -- set time for main's green53
END IF;54

WHEN "01" => mach := 5 - 1; -- set time for main's yellow55
WHEN "10" => mach := tsidegrn - 1;  -- set time for side's green56
WHEN "11" => mach := 5 - 1; -- set time for side's yellow57

END CASE;58
ELSE  mach := mach - 1; -- decrement timer counter59
END IF;60

END IF;61

FIGURE 7-61 VHDL design for traffic light controller.
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IF  mach = 1  THEN  change <= '1'; -- change lights on control62
ELSE  change <= '0';63
END IF;64
END PROCESS;65

END time;66
------------------------------------------------------------------------------------67
ENTITY  control  IS68
PORT  ( clock, enable, reset :IN BIT;69

lite :OUT BIT_VECTOR (1 DOWNTO 0));70
END control;71
ARCHITECTURE  a  OF  control  IS72
TYPE  enumerated  IS (mgrn, myel, sgrn, syel); -- need 4 states for light combinations73
BEGIN74

PROCESS (clock, reset)75
VARIABLE  lights :enumerated;76
BEGIN77

IF  reset = '0'  THEN  lights := mgrn;78
ELSIF (clock = '1' AND clock'EVENT)  THEN79

IF  enable = '1'  THEN  -- wait for enable to change light states80
CASE  lights  IS81

WHEN  mgrn => lights := myel;82
WHEN  myel => lights := sgrn;83
WHEN  sgrn => lights := syel;84
WHEN  syel => lights := mgrn;85

END CASE;86
END IF;87

END IF;88
CASE  lights  IS -- patterns for light states89

WHEN  mgrn=> lite <= "00";90
WHEN  myel=> lite <= "01";91
WHEN  sgrn=> lite <= "10";92
WHEN  syel=> lite <= "11";93

END CASE;94
END PROCESS;95

END a;96
------------------------------------------------------------------------------------97
ENTITY  lite_ctrl  IS98
PORT  ( lite :IN BIT_VECTOR (1 DOWNTO 0);99

mainred, mainyelo, maingrn :OUT BIT;100
sidered, sideyelo, sidegrn :OUT BIT);101

END lite_ctrl;102
ARCHITECTURE  patterns  OF  lite_ctrl  IS103
BEGIN104

PROCESS (lite)105
BEGIN106
CASE  lite  IS -- control state determines which lights to turn on/off107

WHEN "00" => maingrn <= '1'; mainyelo <= '0'; mainred <= '0';108
sidegrn <= '0'; sideyelo <= '0'; sidered <= '1';109

WHEN "01" => maingrn <= '0'; mainyelo <= '1'; mainred <= '0';110
sidegrn <= '0'; sideyelo <= '0'; sidered <= '1';111

WHEN "10" => maingrn <= '0'; mainyelo <= '0'; mainred <= '1';112
sidegrn <= '1'; sideyelo <= '0'; sidered <= '0';113

WHEN "11" => maingrn <= '0'; mainyelo <= '0'; mainred <= '1';114
sidegrn <= '0'; sideyelo <= '1'; sidered <= '0';115

END CASE;116
END PROCESS;117

END patterns;118

FIGURE 7-61 Continued
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counter (line 56). When change again goes active, lite will advance to “11” for

a yellow light on the side road. Mach will recycle to the value 4 (5 – 1) on line

57 for the fixed time delay for a yellow light. When change goes active this

time, the control module will return to lite � “00” (green light on main).When

mach decrements to its terminal state (zero) this time, lines 52–54 will de-

termine by the status of the car sensor input whether to wait for another car

or to load in the delay factor for a green light on main to start

the cycle over again. The main road will receive a green light for at least this

length of time, even if there is a continuous stream of cars on the side road.

It is obvious that we could make improvements to this design, but that, of

course, would also complicate the design further.

The control module (lines 68–96) contains a state machine named lights
that will sequence through four enumerated states for the traffic light com-

binations.The four enumerated states for lights are mgrn, myel, sgrn, and syel
(lines 73 and 76). Each state represents which road, main or side, is to receive

a green or yellow light. The other road will have a red light. The enable input

is connected to the change output signal produced by the delay module.

When enabled, the lights state machine will advance to the next state when

clocked, as described by the nested IF and CASE statements on lines 79–88.

Otherwise, lights will hold at the current state. The bit patterns for output

port lite have been specified for each state of lights with the CASE statement

on lines 89–94 so that we can identify them as inputs to the other two mod-

ules, delay and lite_ctrl.

The lite_ctrl module (lines 98–118) inputs lite, which represents the state

of the lights state machine from the control module, and will output the sig-

nals that will turn on the proper combinations of green, yellow, and red

lights for the main and side roads. Each output from the lite_ctrl module will

actually be connected to lamp driver circuits to control the higher voltages

and currents necessary for real lamps in a traffic light. The CASE statement

on lines 107–116, invoked by the PROCESS when the lite input changes,

determines which main road/side road light combination to turn on for each

state of lights. The function of the lite_ctrl module is very much like a

decoder. It essentially decodes each state combination of lite to turn on a

green or yellow light for one road and a red light for the other road. A unique

output combination is produced for each input state.

By this time, you may be wondering why there are so many ways to

describe logic circuits. If one way is easier than the others, why not just study

that one? The answer, of course, is that each level of abstraction offers

advantages over the others in certain cases. The structural method provides

the most complete control over interconnections. The use of Boolean equa-

tions, truth tables, and PRESENT state/NEXT state tables allows us to

describe the way data flows through the circuit using HDL. Finally, the

behavioral method allows a more abstract description of the circuit’s ope-

ration in terms of cause and effect. In practice, each source file may have

portions that can be categorized under each level of abstraction. Choosing

the right level when writing code is not an issue of right and wrong as much

as it is an issue of style and preference.

There are also several ways to approach any task from a standpoint of

choosing control structures. Should we use selected signal assignments or

Boolean equations, IF/ELSE or CASE, sequential processes or concurrent

statements, macrofunctions or megafunctions? Or should we write our own

code? The answers to these questions ultimately define your personal

strategy in solving the problem. Your preferences and the advantages you

find in using one method over another will be established with practice

and experience.

(tmaingrn-1)
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PART 1 SUMMARY
1. In asynchronous (ripple) counters, the clock signal is applied to the LSB

FF, and all other FFs are clocked by the output of the preceding FF.

2. A counter’s MOD number is the number of stable states in its counting

cycle; it is also the maximum frequency-division ratio.

3. The normal (maximum) MOD number of a counter is 2N. One way to mod-

ify a counter’s MOD number is to add circuitry that will cause it to recy-

cle before it reaches its normal last count.

4. Counters can be cascaded (chained together) to produce greater count-

ing ranges and frequency-division ratios.

5. In a synchronous (parallel) counter, all of the FFs are simultaneously

clocked from the input clock signal.

6. The maximum clock frequency for an asynchronous counter, fmax, de-

creases as the number of bits increases. For a synchronous counter, fmax

remains the same, regardless of the number of bits.

7. A decade counter is any MOD-10 counter. A BCD counter is a decade

counter that sequences through the 10 BCD codes (0–9).

8. A presettable counter can be loaded with any desired starting count.

9. An up/down counter can be commanded to count up or count down.

10. Logic gates can be used to decode (detect) any or all states of a counter.

11. The count sequence for a synchronous counter can be easily determined

by using a PRESENT state/NEXT state table that lists all possible states,

the flip-flop input control information, and the resulting NEXT states.

12. Synchronous counters with arbitrary counting sequences can be imple-

mented by following a standard design procedure.

13. Counters can be described in many different ways using HDL, including

structural wiring descriptions, PRESENT state/NEXT state tables, and

behavioral descriptions.

14. All the features available on the various standard IC counter chips, such

as asynchronous or synchronous loading or clearing, count enabling, and

terminal count decoding, can be described using HDL. HDL counters can

be easily modified for higher MOD numbers or changes in the active lev-

els for controls.

15. Digital systems can be subdivided into smaller modules or blocks that

can be interconnected as a hierarchical design.

16. State machines can be represented in HDL using descriptive names for

each state rather than specifying a numeric sequence of states.

REVIEW QUESTIONS 1. What is the fundamental difference between a counter and a state ma-

chine?

2. What is the difference between describing a counter and describing a

state machine in an HDL?

3. If the actual binary states for a state machine are not defined in the HDL

code, how are they assigned?

4. What is the advantage of using state machine description?
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PART 2
7-15 INTEGRATED-CIRCUIT REGISTERS

The various types of registers can be classified according to the manner in

which data can be entered into the register for storage and the manner in

which data are outputted from the register. The various classifications are

listed below.

1. Parallel in/parallel out (PIPO)

2. Serial in/serial out (SISO)

3. Parallel in/serial out (PISO)

4. Serial in/parallel out (SIPO)

Each of these types and several variations are available in IC form so

that a logic designer can usually find exactly what is required for a given ap-

plication. In the following sections, we will examine a representative IC from

each of the above categories.

7-16 PARALLEL IN/PARALLEL OUT—THE 74ALS174/74HC174

A group of flip-flops that can store multiple bits simultaneously and in

which all bits of the stored binary value are directly available is referred to

as a parallel in/parallel out register. Figure 7-62(a) shows the logic dia-

gram for the 74ALS174 (also the 74HC174), a six-bit register that has par-

allel inputs D5 through D0 and parallel outputs Q5 through Q0. Parallel data

are loaded into the register on the PGT of the clock input CP. A master re-

set input can be used to reset asynchronously all of the register FFs to

0. The logic symbol for the 74ALS174 is shown in Figure 7-62(b). This sym-

bol is used in circuit diagrams to represent the circuitry of Figure 7-62(a).

The 74ALS174 is normally used for synchronous parallel data transfer

whereby the logic levels present at the D inputs are transferred to the corre-

sponding Q outputs when a PGT occurs at the clock CP. This IC, however, can

be wired for serial data transfer, as the following examples will show.

MR

PART 1 IMPORTANT TERMS
asynchronous (ripple)

counter

MOD number

glitches

synchronous

(parallel) counters

decade counter

BCD counter

up counter

down counter

up/down counters

presettable counters

parallel load

count enable

multistage counters

cascading

decoding

PRESENT

state/NEXT

state table 

self-correcting

counter

sequential circuit

design

J-K excitation table

circuit excitation

table

VARIABLE

behavioral level of

abstraction

hierarchical design

state machine

mealy model

Moore model

MACHINE

enumerated type
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EXAMPLE 7-16 Show how to connect the 74ALS174 so that it operates as a serial shift regis-

ter with data shifting on each PGT of CP as follows: Serial input

In other words, serial data will enter

at D5 and will output at Q0.

Solution

Looking at Figure 7-62(a), we can see that to connect the six FFs as a serial

shift register, we have to connect the Q output of one to the D input of the

next so that data is transferred in the required manner. Figure 7-63 shows

how this is accomplished. Note that data shifts left to right, with input data

applied at D5 and output data appearing at Q0.

:  Q5 :  Q4 :  Q3 :  Q2 :  Q1 :  Q0.

Q5

D5

Q4

D4

Q3

D3

Q2

D2

Q1

D1

Q0

D0MR CP

MR

CP

(a)

74ALS174

Q5 Q4 Q3 Q2 Q1 Q0

D5 D4 D3 D2 D1 D0

(b)

D Q

CP
CLR

D Q

CP
CLR

D Q

CP
CLR

D Q

CP
CLR

D Q

CP
CLR

D Q

CP
CLR

FIGURE 7-62 (a) Circuit diagram of the 74ALS174; (b) logic symbol.

EXAMPLE 7-17 How would you connect two 74ALS174s to operate as a 12-bit shift register?

Solution

Connect a second 74ALS174 IC as a shift register, and connect Q0 from the

first IC to D5 of the second IC. Connect the CP inputs of both ICs so that they

will be clocked from the same signal. Also connect the MR inputs together if

using the asynchronous reset.
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7-17 SERIAL IN/SERIAL OUT—THE 74ALS166/74HC166

A serial in/serial out shift register will have data loaded into it one bit at a

time.The data will move one bit at a time with each clock pulse through the set

of flip-flops toward the other end of the register. With continued clocking, the

data will then exit the register one bit at a time in the same order as it was orig-

inally loaded. The 74HC166 (and also the 74ALS166) can be used as a serial

in/serial out register.The logic diagram and schematic symbol for the 74HC166

is shown in Figure 7-64. It is an eight-bit shift register of which only FF QH is

accessible.The serial data is input on SER and will be stored in FF QA.The se-

rial output is obtained at the other end of the shift register on As can be

seen from the function table for this shift register in Figure 7-64(c), parallel

data can also be synchronously loaded into it. If the register func-

tion will be serial shifting, while a LOW will instead parallel load data via the

A through H inputs. The synchronous serial shifting and parallel loading func-

tions can be inhibited (disabled) by applying a HIGH to the CLK INH control

input.The register also has an active-LOW, asynchronous clear input (CLR).

SH/LD = 1,

QH.

FIGURE 7-63 Example 

7-16: The 74ALS174 wired

as a shift register.

74ALS174

D5 D4 D3 D2 D1 D0

Q5 Q4 Q3 Q2 Q1 Q0

CP

MR

Serial
input

Serial
output

EXAMPLE 7-18 A shift register is often used as a way to delay a digital signal by an integral

number of clock cycles. The digital signal is applied to the shift register’s se-

rial input and is shifted through the shift register by successive clock pulses

until it reaches the end of the shift register, where it appears as the output

signal. This method for delaying the effect of a digital signal is common in

the digital communications field. For instance, the digital signal might be

the digitized version of an audio signal that is to be delayed before it is trans-

mitted. The input waveforms given in Figure 7-65 are applied to a 74HC166.

Determine the resultant output waveform.

Solution

QH starts at a LOW, since all flip-flops are initially cleared by the LOW

applied to the asynchronous CLR input at the beginning of the timing diagram.
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At t1, the shift register will input the current bit applied to SER. This will be

stored in QA. At t2, the first bit will move to QB and a second bit on SER will

be stored in QA. At t3, the first bit will now move to QC and a third bit on SER
will be stored in QA. The first data input bit will finally show up at the out-

put QH at t8. Each successive input bit on SER will follow at QH delayed by

eight clock cycles.

7-18 PARALLEL IN/SERIAL OUT—THE 74ALS165/74HC165
The logic symbol for the 74HC165 is shown in Figure 7-66(a). This IC is an

eight-bit parallel in/serial out register. It actually has serial data entry via DS

and asynchronous parallel data entry via P0 through P7.The register contains

eight FFs—Q0 through Q7—internally connected as a shift register, but the only

accessible FF outputs are Q7 and CP is the clock input used for the shift-

ing operation. The clock inhibit input, CP INH is used to inhibit the effect of

the CP input. The shift/load input, controls which operation is taking

place—shifting or parallel loading. The function table in Figure 7-66(b)

shows how the various input combinations determine what operation, if any,

is being performed. Parallel loading is asynchronous and serial shifting is

synchronous. Note that the serial shifting function will always be synchro-

nous, since the clock is required to ensure that the input data moves only one

bit at a time with each appropriate clocking edge.

SH/LD,

Q7.

CLK

CLK INH

SH/LD

SER QH

QH

74HC166

CLR

CLK

0

SER

1

CLR

A B C D E F G H

0 0 0 0 0 0 0 0

CLK

SER

QH

CLR

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

FIGURE 7-65 Example 7-18.

EXAMPLE 7-19 Examine the 74HC165 function table and determine (a) the conditions nec-

essary to load the register with parallel data; (b) the conditions necessary for

the shifting operation.
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Solution

(a) The first entry in the table shows that the input has to be LOW for

the parallel load operation. When this input is LOW, the data present at

the P inputs are asynchronously loaded into the register FFs, independ-

ent of the CP and the CP INH inputs. Of course, only the outputs from the

last FF are externally available.

(b) The shifting operation cannot take place unless the input is HIGH

and a PGT occurs at CP while CP INH is LOW [see the fourth table entry

in Figure 7-66(b)]. A HIGH at CP INH will inhibit the effect of any clock

pulses. Note that the roles of the CP and CP INH inputs can be reversed,

as indicated by the last table entry, because these two signals are ORed

together inside the IC.

SH/LD

SH/LD

FIGURE 7-66 (a) Logic

symbol for the 74HC165

parallel in/serial out 

register; (b) function table.

74HC165

Q7

DS

P7P6P5P4P3P2P1P0

CP

CP INH

SH/LD

Q7

(a)

(b)

SH/LD

L
H
H
H
H

Operation

Parallel load
No change
No change
Shifting
Shifting

CP

X
H
X

L

CP INH

X
X
H
L

Inputs

H = high level
L = low level
X = immaterial

= PGT

Function Table

EXAMPLE 7-20
Determine the output signal at Q7 if we connect a 74HC165 with DS � 0 and

CP INH � 0 and then apply the input waveforms given in Figure 7-67. P0–P7

represent the parallel data on P0 P1 P2 P3 P4 P5 P6 P7.

Solution

We have drawn the timing diagram for all eight FFs so that we could track

their contents over time even though only Q7 will be accessible. The parallel

load is asynchronous and will occur as soon as SH/LD goes LOW. After SH/LD

returns to a HIGH, the data stored in the register will move one FF to the

right (toward Q7) with each PGT on CP.
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7-19 SERIAL IN/PARALLEL OUT—THE 74ALS164/74HC164
The logic diagram for the 74ALS164 is shown in Figure 7-68(a). It is an eight-

bit serial in/parallel out shift register with each FF output externally acces-

sible. Instead of a single serial input, an AND gate combines inputs A and B
to produce the serial input to flip-flop Q0.

FIGURE 7-67 Example 7-20.

0101 0011 1001 1010

CP

__
SH/LD

(Q0)

(Q1)

(Q2)

(Q3)

(Q4)

(Q5)

(Q6)

Q7

P0 - P7

8-bit
shift register
74ALS164

MR

(b)

A

B

CP

74ALS164

(a)

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

MR

A

B

CP

&

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

D Q

CP
CD

D Q

CP
CD

D Q

CP
CD

D Q

CP
CD

D Q

CP
CD

D Q

CP
CD

D Q

CP
CD

D Q

CP
CD

FIGURE 7-68 (a) Logic diagram for the 74ALS164; (b) logic symbol.
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The shift operation occurs on the PGTs of the clock input CP. The in-

put provides asynchronous resetting of all FFs on a LOW level.

The logic symbol for the 74ALS164 is shown in Figure 7-68(b). Note that

the & symbol is used inside the block to indicate that the A and B inputs are

ANDed inside the IC and the result is applied to the D input of Q0.

MR

EXAMPLE 7-21 Assume that the initial contents of the 74ALS164 register in Figure 7-69(a)

are 00000000. Determine the sequence of states as clock pulses are applied.

&

(a)

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

MR

CP

A

B
1

1 74ALS164
&

Q7

0

0

0

0

0

0

0

0

1

Q6

0

0

0

0

0

0

0

1

1

Q5

0

0

0

0

0

0

1

1

1

Q4

0

0

0

0

0

1

1

1

1

Q3

0

0

0

0

1

1

1

1

1

Q2

0

0

0

1

1

1

1

1

1

Q1

0

0

1

1

1

1

1

1

1

Q0

0

1

1

1

1

1

1

1

1

0

1

2

3

4

5

6

7

8

Input
pulse

number

Temporary
state

(b)

Recycles

FIGURE 7-69 Example 7-21.

Solution

The correct sequence is given in Figure 7-69(b). With A � B � 1, the serial in-

put is 1, so that 1s will shift into the register on each PGT of CP. Because Q7

is initially at 0, the input is inactive.

On the eighth pulse, the register tries to go to the 11111111 state as the

1 from Q6 shifts into Q7. This state occurs only momentarily because Q7 � 1

produces a LOW at that immediately resets the register back to

00000000. The sequence is then repeated on the next eight clock pulses.

The following is a list of some other register ICs that are variations on

those already presented:

■ 74194/ALS194/HC194. This is a four-bit bidirectional universal shift-register
IC that can perform shift-left, shift-right, parallel in, and parallel out

operations. These operations are selected by a two-bit mode-select code

applied as inputs to the device. (Problem 7-71 will provide you with a

chance to find out more about this versatile chip.)

■ 74373/ALS373/HC373/HCT373. This is an eight-bit (octal) parallel in/-

parallel out register containing eight D latches with tristate outputs. A

tristate output is a special type of logic circuit output that allows device

outputs to be tied together safely. We will cover the characteristics of

tristate devices such as the 74373 in the next chapter.

■ 74374/ALS374/HC374/HCT374.This is an eight-bit (octal) parallel in/par-

allel out register containing eight edge-triggered D flip-flops with tris-

tate outputs.

MR

MR
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The IC registers that have been presented here are representative of the

various types that are commercially available. Although there are many vari-

ations on these basic registers, most of them should now be relatively easy to

understand from the manufacturers’ data sheets.

We will present several register applications in the end-of-chapter prob-

lems and in the material covered in subsequent chapters.

REVIEW QUESTIONS 1. What kind of register can have a complete binary number loaded into it

in one operation, and then have it shifted out one bit at a time?

2. True or false: A serial in/parallel out register can have all of its bits dis-

played at one time.

3. What type of register can have data entered into it only one bit at a time,

but has all data bits available as outputs?

4. In what type of register do we store data one bit at a time and have ac-

cess to only one output bit at a time?

5. How does the parallel data entry differ for the 74165 and the 74174?

6. How does the CP INH input of the 74ALS165 work?

7-20 SHIFT-REGISTER COUNTERS

In Section 5-18, we saw how to connect FFs in a shift-register arrangement to

transfer data left to right, or vice versa, one bit at a time (serially). Shift-

register counters use feedback, which means that the output of the last FF in

the register is connected back to the first FF in some way.

Ring Counter
The simplest shift-register counter is essentially a circulating shift register
connected so that the last FF shifts its value into the first FF. This arrange-

ment is shown in Figure 7-70 using D-type FFs (J-K flip-flops can also be

used).The FFs are connected so that information shifts from left to right and

back around from Q0 to Q3. In most instances, only a single 1 is in the regis-

ter, and it is made to circulate around the register as long as clock pulses are

applied. For this reason, it is called a ring counter.

The waveforms, sequence table, and state diagram in Figure 7-70 show

the various states of the FFs as pulses are applied, assuming a starting state

of Q3 � 1 and Q2 � Q1 � Q0 � 0. After the first pulse, the 1 has shifted from Q3

to Q2 so that the counter is in the 0100 state. The second pulse produces the

0010 state, and the third pulse produces the 0001 state. On the fourth clock

pulse, the 1 from Q0 is transferred to Q3, resulting in the 1000 state, which is,

of course, the initial state. Subsequent pulses cause the sequence to repeat.

This counter functions as a MOD-4 counter because it has four distinct

states before the sequence repeats. Although this circuit does not progress

through the normal binary counting sequence, it is still a counter because

each count corresponds to a unique set of FF states. Note that each FF out-

put waveform has a frequency equal to one-fourth of the clock frequency be-

cause this is a MOD-4 ring counter.

Ring counters can be constructed for any desired MOD number; a MOD-

N ring counter uses N flip-flops connected in the arrangement of Figure 7-70.
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In general, a ring counter requires more FFs than a binary counter for the

same MOD number; for example, a MOD-8 ring counter requires eight FFs,

while a MOD-8 binary counter requires only three.

Despite the fact that it is less efficient in the use of FFs, a ring counter

is still useful because it can be decoded without the use of decoding gates.

The decoding signal for each state is obtained at the output of its correspon-

ding FF. Compare the FF waveforms of the ring counter with the decoding

waveforms in Figure 7-20. In some cases, a ring counter might be a better

choice than a binary counter with its associated decoding gates. This is

especially true in applications where the counter is being used to control the

sequencing of operations in a system.
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.
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Q3

D

(a)

(b)
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CLOCK

Q3

Q2

Q1
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FIGURE 7-70 (a) Four-bit ring counter; (b) waveforms; (c) sequence table;

(d) state diagram.
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Starting a Ring Counter
To operate properly, a ring counter must start off with only one FF in the 1

state and all the others in the 0 state. Because the starting states of the FFs

will be unpredictable on power-up, the counter must be preset to the

required starting state before clock pulses are applied. One way to do this is

to apply a momentary pulse to the asynchronous input of one of the FFs

(e.g., Q3 in Figure 7-70) and to the input of all other FFs. Another

method is shown in Figure 7-71. On power-up, the capacitor will charge up

relatively slowly toward �VCC. The output of Schmitt-trigger INVERTER 1

will stay HIGH, and the output of INVERTER 2 will remain LOW until the

capacitor voltage exceeds the positive-going threshold voltage (VT�) of the

INVERTER 1 input (about 1.7 V). This will hold the input of Q3 and the

inputs of Q2, Q1, and Q0 in the LOW state long enough during power-up

to ensure that the counter starts at 1000.

Johnson Counter
The basic ring counter can be modified slightly to produce another type of

shift-register counter, which will have somewhat different properties. The

Johnson or twisted-ring counter is constructed exactly like a normal ring

counter except that the inverted output of the last FF is connected to the

input of the first FF. A three-bit Johnson counter is shown in Figure 7-72.

Note that the output is connected back to the D input of Q2, which

means that the inverse of the level stored in Q0 will be transferred to Q2 on

the clock pulse.

The Johnson-counter operation is easy to analyze if we realize that on

each positive clock-pulse transition, the level at Q2 shifts into Q1, the level at

Q1 shifts into Q0, and the inverse of the level at Q0 shifts into Q2. Using these

ideas and assuming that all FFs are initially 0, the waveforms, sequence

table, and state diagram of Figure 7-72 can be generated.

Examination of the waveforms and sequence table reveals the following

important points:

1. This counter has six distinct states—000, 100, 110, 111, 011, and 001—

before it repeats the sequence.Thus, it is a MOD-6 Johnson counter. Note

that it does not count in a normal binary sequence.

2. The waveform of each FF is a square wave (50 percent duty cycle) at one-

sixth the frequency of the clock. In addition, the FF waveforms are

shifted by one clock period with respect to each other.

The MOD number of a Johnson counter will always be equal to twice the

number of FFs. For example, if we connect five FFs in the arrangement of

Q0

CLR
PRE

CLR
PRE
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+VCC

1 k�

1000 pF

74ALS14

To PRE of Q3 and CLR of
Q2, Q1, and Q0 of Fig. 7-7021

FIGURE 7-71 Circuit for

ensuring that the ring

counter of Figure 7-70

starts in the 1000 state on

power-up.
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Figure 7-72, the result is a MOD-10 Johnson counter, where each FF output

waveform is a square wave at one-tenth the clock frequency. Thus, it is possi-

ble to construct a MOD-N counter (where N is an even number) by connect-

ing N/2 flip-flops in a Johnson-counter arrangement.

Decoding a Johnson Counter
For a given MOD number, a Johnson counter requires only half the number

of FFs that a ring counter requires. However, a Johnson counter requires de-

coding gates, whereas a ring counter does not. As in the binary counter, the

Johnson counter uses one logic gate to decode for each count, but each gate

requires only two inputs, regardless of the number of FFs in the counter.

Figure 7-73 shows the decoding gates for the six states of the Johnson

counter of Figure 7-72.
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FIGURE 7-72 (a) MOD-6

Johnson counter; (b) wave-

form; (c) sequence table;

(d) state diagram.
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Notice that each decoding gate has only two inputs, even though there

are three FFs in the counter, because for each count, two of the three FFs are

in a unique combination of states. For example, the combination Q2 � Q0 �
0 occurs only once in the counting sequence, at the count of 0. Thus, AND

gate 0, with inputs and can be used to decode for this count.This same

characteristic is shared by all of the other states in the sequence, as the

reader can verify. In fact, for any size Johnson counter, the decoding gates

will have only two inputs.

Johnson counters represent a middle ground between ring counters and

binary counters. A Johnson counter requires fewer FFs than a ring counter

but generally more than a binary counter; it has more decoding circuitry

than a ring counter but less than a binary counter. Thus, it sometimes repre-

sents a logical choice for certain applications.

IC Shift-Register Counters
Very few ring counters or Johnson counters are available as ICs because it is

relatively simple to take a shift-register IC and to wire it as either a ring

counter or a Johnson counter. Some of the CMOS Johnson-counter ICs

(74HC4017, 74HC4022) include the complete decoding circuitry on the same

chip as the counter.

Q0,Q2

SECTION 7-20/SHIFT-REGISTER COUNTERS 449

FIGURE 7-73 Decoding logic for a MOD-6 Johnson counter.
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REVIEW QUESTIONS 1. Which shift-register counter requires the most FFs for a given MOD

number?

2. Which shift-register counter requires the most decoding circuitry?

3. How can a ring counter be converted to a Johnson counter?

4. True or false:

(a) The outputs of a ring counter are always square waves.

(b) The decoding circuitry for a Johnson counter is simpler than for a

binary counter.

(c) Ring and Johnson counters are synchronous counters.

5. How many FFs are needed in a MOD-16 ring counter? How many are

needed in a MOD-16 Johnson counter?
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7-21 TROUBLESHOOTING

Flip-flops, counters, and registers are the major components in sequential
logic systems. A sequential logic system, because of its storage devices, has

the characteristic that its outputs and sequence of operations depend on

both the present inputs and the inputs that occurred earlier. Even though se-

quential logic systems are generally more complex than combinational logic

systems, the essential procedures for troubleshooting apply equally well to

both types of systems. Sequential systems suffer from the same types of fail-

ures (open circuits, shorts, internal IC faults, and the like) as do combina-

tional systems.

Many of the same steps used to isolate faults in a combinational system

can be applied to sequential systems. One of the most effective trou-

bleshooting techniques begins with the troubleshooter observing the system

operation and, by analytical reasoning, determining the possible causes of

the system malfunction. Then he or she uses available test instruments to

isolate the exact fault. The following examples will show the kinds of analyt-

ical reasoning that should be the initial step in troubleshooting sequential

systems. After studying these examples, you should be ready to tackle the

troubleshooting problems at the end of the chapter.
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FIGURE 7-74 Example 

7-22.

EXAMPLE 7-22 Figure 7-74(a) shows a 74ALS161 wired as a MOD-12 counter, but it produces

the count sequence given in Figure 7-74(b). Determine the cause of the in-

correct circuit behavior.

Solution

Outputs QB and QA seem to be operating correctly but QC and QD stay

LOW. Our first choice for the fault is that QC is shorted to ground, but an

ohmmeter check does not confirm this. The 74ALS161 might have an inter-

nal fault that prevents it from counting above 0011. We try removing the

74ALS161
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7400 NAND chip from its socket and shorting the CLR pin to a HIGH. The

counter now counts a regular MOD-16 sequence, so at least the counter’s

outputs seem to be ok. Next we decide to look at the CLR pin with the

NAND reconnected. Using a logic probe with its “pulse capture” turned on

shows us that the CLR pin is receiving pulses. Connecting a scope to the

outputs, we see that the counter produces the waveforms shown in Figure 

7-74(c). A glitch is observed on QC when the counter should be going to state

0100. That indicates that 0100 is a transient state when the transient state

should actually be 1100. The QD connection to the NAND gate is now sus-

pected, so we use the logic probe to check pin 2. There is no logic signal at

all indicated on pin 2, which now leads us to the conclusion that the fault is

an open between the QD output and pin 2 on the NAND. The NAND input is

floating HIGH, causing the circuit to detect state 0100 instead of 1100 as it

should be doing.
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EXAMPLE 7-23 A technician receives a “trouble ticket” for a circuit board that says the vari-

able frequency divider operates “sometimes.” Sounds like a dreaded inter-

mittent fault problem—often the hardest problems to find! His first thought

is to send it back with the note “Use only when operating correctly!” but he

decides to investigate further since he feels up to a good challenge today.

The schematic for the circuit block is shown in Figure 7-75. The desired
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FIGURE 7-75 Example 7-23.
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divide-by factor is applied to input f[7..0] in binary. The eight-bit counter

counts down from this number until it reaches zero and then asynchronously

loads in f[ ] again, making zero a transient state. The resulting modulus will

be equal to the value on f[ ]. The output frequency signal is obtained by de-

coding state 00000001, making the frequency of out equal to the frequency

of in divided by the binary value f[ ]. In the application, the frequency of in
is 100 kHz. Change f[ ] and a new frequency will be output.

Solution

The technician decides that he needs to obtain some test results to look at.

He picks some easy divide-by factors to apply to f and records the results

listed in Table 7-9.

452 CHAPTER 7/COUNTERS AND REGISTERS

f[ ] (decimal) f[ ] (binary) Measured fout OK?

255 11111111 398.4 Hz

240 11110000 416.7 Hz ✓

200 11001000 500.0 Hz ✓

100 01100100 1041.7 Hz

50 00110010 2000.0 Hz ✓

25 00011001 4000.0 Hz ✓

15 00001111 9090.9 Hz

TABLE 7-9

He observes that the circuit produces correct results for some test

cases but incorrect results for others. The problem does not seem to be

intermittent after all. Instead, it appears to be dependent on the value

for f. The technician decides to calculate the relationship between input

and output frequencies for the three tests that failed and obtains the

following:

100 kHz/398.4 Hz � 251

100 kHz/1041.7 Hz � 96

100 kHz/9090.9 Hz � 11

Each failure seems to be a divide-by factor that is four less than the

value that was actually applied to the input. After looking again at the

binary representation for f, he notes that every failure occurred when 

f2 � 1. The weight for that bit, of course, is four. Eureka! That bit doesn’t

seem to be getting in—time for a logic-probe test on the f2 pin. Sure

enough, the logic probe indicates the pin is LOW regardless of the value

for f2.

7-22 HDL REGISTERS

The various options of serial and parallel data transfer within registers

were described thoroughly in Sections 7-15 through 7-19, and some exam-

ples of ICs that perform these operations have also been described. The

beauty of using HDL to describe a register is in the fact that a circuit can be

given any of these options and as many bits as are needed by simply chang-

ing a few words.
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HDL techniques use bit arrays to describe a register’s data and to trans-

fer that data in a parallel or serial format. To understand how data are

shifted in HDL, consider the diagrams in Figure 7-76, which shows four flip-

flops performing transfer operations of parallel load, shift right, shift left,

and hold data. For all of these diagrams, the bits are transferred synchro-

nously, which means that they all move simultaneously on a single clock

edge. In Figure 7-76(a), the data that is to be parallel loaded into the register

is presented to the D inputs, and on the next clock pulse, it will be trans-

ferred to the q outputs. Shifting data right means that each bit is transferred

to the bit location to its immediate right, while a new bit is transferred in on

the left end and the last bit on the right end is lost.This situation is depicted

in Figure 7-76(b). Notice that the data set that we want in the NEXT state is

made up of the new serial input and three of the four bits in the PRESENT

state array. This data simply needs to move over and overwrite the four data

bits of the register.The same operation occurs in Figure 7-76(c), but it is mov-

ing data to the left. The key to shifting the contents of the register to the

right or left is to group the appropriate three PRESENT state data bits in

correct order with the serial input bit so that these four bits can be loaded in

parallel into the register. Concatenation (grouping together in a specific se-

quence) of the desired set of data bits can be used to describe the necessary

data movement for serial shifting in either direction. The last possibility is

called the hold data mode and is shown in Figure 7-76(d). It may seem un-

necessary because registers (flip-flops) hold data by their very nature. We

must consider, however, what must be done to a register in order to hold its

value as it is clocked. The Q outputs must be tied back to the D inputs for

each flip-flop so that the old data is reloaded on each clock. Let’s look at

some example HDL shift register circuits.

AHDL SISO REGISTER
A four-bit serial in/serial out (SISO) register in AHDL is listed in Figure 

7-77. An array of four D flip-flops is instantiated in line 7 and the serial out-

put is obtained from the last FF q0 (line 10). If the shift control is HIGH,

serial_in will be shifted into the register and the other bits will move to the

right (lines 11-15). Concatenating serial_in and FF output bits q3, q2, and q1

SECTION 7-22/HDL REGISTERS 453

Q3 Q2 Q1 Q0

New data being loaded

Q3 Q2 Q1 Q0

Q3 Q2 Q1 Q0Ser
IN

Q3 Q2 Q1 Q0
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Q3 Q2 Q1 Q0 Ser
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PRESENT

NEXT

PRESENT
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(a)  Parallel load (b)  Shift right

(c)  Shift left (d)  Hold data

FIGURE 7-76 Data 

transfers made in shift 

registers: (a) parallel load;

(b) shift right; (c) shift left;

(d) hold data.
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together in that order creates the proper shift-right data input bit pattern

(line 12). If the shift control is LOW, the register will hold the current data

(line 14). The simulation results are shown in Figure 7-78.
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SUBDESIGN  fig7_771
(2

clk, shift, serial_in :INPUT;3
serial_out :OUTPUT;4

)5
VARIABLE6

q[3..0] :DFF;7
BEGIN8

q[].clk = clk;9
serial_out = q0.q;  -- output last register bit10
IF (shift == VCC)  THEN11

q[3..0].d = (serial_in, q[3..1].q);  -- concatenates for shift12
ELSE13

q[3..0].d = (q[3..0].q);  -- hold data14
END IF;15

END;16

FIGURE 7-77 Serial in/serial out register using AHDL.

FIGURE 7-78 SISO register simulation.
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VHDL SISO REGISTER
A four-bit serial in/serial out (SISO) register in VHDL is listed in Figure 7-79.

A register is created with the declaration of the variable q on line 8 and the

serial output is obtained from the register’s last bit or q(0) (line 10). If the

shift control is HIGH, serial_in will be shifted into the register and the other

bits will move to the right (lines 12–14). Concatenating serial_in and register

bits q(3), q(2), and q(1) together in that order creates the proper shift-right

data input bit pattern (line 13). If the shift control is LOW,VHDL will assume

that the variable stays the same and will therefore hold the current data.

Simulation results are shown in Figure 7-78.
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AHDL PISO REGISTER
A four-bit parallel in/serial out (PISO) register in AHDL is listed in Figure 7-80.

The register named q is created on line 8 using four D FFs, and the serial

output from q0 is described on line 11.The register has separate parallel load
and serial shift controls. The register’s functions are defined in lines 12–15.

If load is HIGH, the external input data[3..0] will be synchronously loaded.

Load has priority and must be LOW to serial-shift the register’s contents on

each PGT of clk when shift is HIGH.The pattern for shifting data right is cre-

ated by concatenation on line 13. Note that a constant LOW will be the serial

data input for a shift operation. If neither load nor shift is HIGH, the register

will hold the current data value (line 14). Simulation results are shown in

Figure 7-81.
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FIGURE 7-80 Parallel in/serial out register using AHDL.
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SUBDESIGN  fig7_80 
( 
      clk, shift, load       :INPUT;
      data[3..0]             :INPUT; 
      serial_out             :OUTPUT; 
) 
VARIABLE 
      q[3..0]                :DFF; 
BEGIN 
      q[].clk = clk; 
      serial_out = q0.q;                        -- output last register bit 
      IF (load == VCC)  THEN  q[3..0].d = data[3..0];       -- parallel load 
      ELSIF (shift == VCC)  THEN  q[3..0].d = (GND, q[3..1].q);  -- shift 
      ELSE  q[3..0].d = q[3..0].q;                               -- hold 
      END IF; 
END;
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ENTITY  fig7_79  IS1
PORT ( clk, shift, serial_in :IN BIT;2

serial_out :OUT BIT );3
END fig 7-79;4
ARCHITECTURE  vhdl  OF  fig 7-79  IS5
BEGIN6
PROCESS (clk)7

VARIABLE  q :BIT_VECTOR (3 DOWNTO 0);8
BEGIN9
serial_out <= q(0); -- output last register bit10
IF (clk'EVENT AND clk = '1') THEN11

IF (shift = '1')  THEN12
q := (serial_in & q(3 DOWNTO 1));  -- concatenate for shift13

END IF; -- otherwise, hold data14
END IF;15

END PROCESS;16
END vhdl;17

FIGURE 7-79 Serial in/serial out register using VHDL.
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VHDL PISO REGISTER
A four-bit parallel in/serial out (PISO) register in VHDL is listed in Figure 7-82.

The register is created with the variable declaration for q on line 11, and the

serial output from q(0) is described on line 13.The register has separate par-

allel load and serial shift controls. The register’s functions are defined in

lines 14–18. If load is HIGH, the external input data will be synchronously

loaded. Load has priority and must be LOW to serial-shift the register’s con-

tents on each PGT of clk when shift is HIGH. The pattern for shifting data

right is created by concatenation on line 16. Note that a constant LOW will

be the serial data input for a shift operation. If neither load nor shift is

HIGH, the register will hold the current data value by VHDL’s implied oper-

ation. Simulation results are shown in Figure 7-81.
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ENTITY  fig7_82  IS
PORT (
      clk, shift, load        :IN BIT;
      data                    :IN BIT_VECTOR (3 DOWNTO 0);
      serial_out              :OUT BIT
);
END fig 7-82;
ARCHITECTURE vhdl OF fig 7-82 IS
BEGIN
PROCESS (clk)
      VARIABLE  q       :BIT_VECTOR (3 DOWNTO 0);
      BEGIN
      serial_out <= q(0);                       -- output last register bit
      IF (clk'EVENT AND clk = '1')  THEN
            IF (load = '1')  THEN  q := data;   -- parallel load
            ELSIF (shift = '1')  THEN  q := ('0' & q(3 DOWNTO 1));  -- shift
            END IF;                             -- otherwise, hold
      END IF;
END PROCESS;
END vhdl;
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FIGURE 7-82 Parallel in/serial out register using VHDL.

EXAMPLE 7-24 Suppose we want to design a universal four-bit shift register, using HDL, that

has four synchronous modes of operation: Hold Data, Shift Left, Shift Right,

and Parallel Load. Two input bits will select the operation that is to be

0 9 4 2 1 0 C 6 3 1 0 7 3 1 0 A 5 2 1 0

clk 1

0

0

B 1001 1001 1100 0111 1010

0

H0

load

shift

data[3..0]

serial_out

q

10.0us 20.0us 30.0us 40.0us 50.0us 60.0us 70.0us 80.0us 90.0us

FIGURE 7-81 PISO register simulation.
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performed on each rising edge of the clock. To implement a shift register, we

can use structural code to describe a string of flip-flops. Making the shift reg-

ister versatile by allowing it to shift right or left or to parallel load would

make this file quite long and thus hard to read and understand using struc-

tural methods. A much better approach is to use the more abstract and intu-

itive methods available in HDL to describe the circuit concisely. To do this,

we must develop a strategy that will create the shifting action. The concept

is very similar to the one presented in Example 7-16, where a D flip-flop reg-

ister chip (74174) was wired to form a shift register. Rather than thinking of

the shift register as a serial string of flip-flops, we consider it as a parallel

register whose contents are being transferred in parallel to a set of bits that

is offset by one bit position. Figure 7-76 demonstrates the concept of each

transfer needed in this design.

Solution

A very reasonable first step is to define a two-bit input named mode with

which we can specify mode 0, 1, 2, or 3.The next challenge is deciding how to

choose among the four operations using HDL. Several methods can work

here. The CASE structure was chosen because it allows us to choose a differ-

ent set of HDL statements for each and every possible mode value. There is

no priority associated with checking for the existing mode settings or over-

lapping ranges of mode numbers, so we do not need the advantages of the

IF/ELSE construct.The HDL solutions are given in Figures 7-83 and 7-84.The

same inputs and outputs are defined in each approach: a clock, four bits of

parallel load data, a single bit for the serial input to the register, two bits for

the mode selection, and four output bits.
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FIGURE 7-83 AHDL universal shift register.

1    SUBDESIGN fig7_83

2    (

3       clock       :INPUT;

4       din[3..0]   :INPUT;  -- parallel data in

5       ser_in      :INPUT;  -- serial data in from Left or Right

6       mode [1..0] :INPUT;  -- MODE Select: 0=hold, 1=right, 2=left, 3=load

7       q[3..0]     :OUTPUT;

8    )

9    VARIABLE

10       ff[3..0] :DFF;       -- define register set

11   BEGIN

12       ff[].clk = clock;    -- synchronous clock

13       CASE mode[] IS

14          WHEN 0  => ff[].d     = ff[].q;        -- hold shift

15          WHEN 1  => ff[2..0].d = ff[3..1].q);   -- shift right

16                     ff[3].d    = ser_in;        -- new data from left

17          WHEN 2  => ff[3..1].d = ff[2..0].q;    -- shift left

18                     ff[0].d    = ser_in;        -- new data bit from right

19          WHEN 3  => ff[].d     = din[];         -- parallel load

20       END CASE;

21       q[] = ff[];               -- update outputs

22    END;
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The AHDL solution of Figure 7-83 uses a register of D flip-flops declared by

the name ff on line 10, representing the current state of the register. Because

the flip-flops all need to be clocked at the same time (synchronously), all the

clock inputs are assigned to clock on line 12. The CASE construct selects a

different transfer configuration for each value of the mode inputs. Mode 0

(hold data) uses a direct parallel transfer from the current state to the same

bit positions on the D inputs to produce the identical NEXT state. Mode 1

(shift right), which is described on lines 15 and 16, transfers bits 3, 2, and 1

to bit positions 2, 1, and 0, respectively, and loads bit 3 from the serial input.

Mode 2 (shift left) performs a similar operation in the opposite direction

(see lines 17 and 18). Mode 3 (parallel load) transfers the value on the par-

allel data inputs to become the NEXT state of the register. The code creates

the circuitry that chooses one of these logical operations on the actual regis-

ter, and the proper data is transferred to the output pins on the next clock.

This code can be shortened by combining lines 15 and 16 into a single state-

ment that concatenates the ser_in with the three data bits and groups them

as a set of four bits. The statement that can replace lines 15 and 16 is:

WHEN 1 �> ff[].d � (ser_in, ff[3..1].q);

Lines 17 and 18 can also be replaced by:

WHEN 2 �> ff[].d � (ff[2..0].q,ser_in);
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ENTITY  fig7_84  IS 
PORT ( 
   clock          :IN BIT; 
   din            :IN BIT_VECTOR (3 DOWNTO 0);   -- parallel data in 
   ser_in         :IN BIT;                       -- serial data in L or R 
   mode           :IN INTEGER RANGE 0 TO 3;      -- 0=hold 1=rt 2=lt 3=load 
   q              :OUT BIT_VECTOR (3 DOWNTO 0)); 
END fig7_84; 
ARCHITECTURE a  OF fig7_84  IS 
BEGIN 
   PROCESS (clock)                              -- respond to clock 
   VARIABLE  ff   :BIT_VECTOR (3 DOWNTO 0); 
   BEGIN 
      IF (clock'EVENT AND clock = '1')  THEN 
         CASE mode  IS 
            WHEN 0  => ff := ff;                           -- hold data 
            WHEN 1  => ff(2 DOWNTO 0)  := ff(3 DOWNTO 1);  -- shift right 
                       ff(3) := ser_in; 
            WHEN  2 => ff(3 DOWNTO 1)  := ff(2 DOWNTO 0);  -- shift left 
                       ff(0) := ser_in; 
            WHEN  3 => ff := din;                          -- parallel load 
         END CASE; 
      END IF; 
   q <= ff;                                     -- update outputs 
   END PROCESS; 
END a;

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26

FIGURE 7-84 VHDL universal shift register.
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VHDL SOLUTION
The VHDL solution of Figure 7-84 defines an internal variable by the name

ff on line 12, representing the current state of the register. Because all the

transfer operations need to take place in response to a rising clock edge, a

PROCESS is used, with clock specified in the sensitivity list. The CASE con-

struct selects a different transfer configuration for each value of the mode in-

puts. Mode 0 (hold data) uses a direct parallel transfer from the current state

to the same bit positions to produce the identical NEXT state. Mode 1 (shift

right) transfers bits 3, 2, and 1 to bit positions 2, 1, and 0, respectively (line

17), and loads bit 3 from the serial input (line 18). Mode 2 (shift left) per-

forms a similar operation in the opposite direction. Mode 3 (parallel load)

transfers the value on the parallel data inputs to the NEXT state of the reg-

ister. After choosing one of these operations on the actual register, the data

is transferred to the output pins on line 24. This code can be shortened by

combining lines 17 and 18 into a single statement that concatenates the

ser_in with the three data bits and groups them as a set of four bits. The

statement that can replace lines 17 and 18 is:

WHEN 1 �> ff :� ser_in & ff(3 DOWNTO 1);

Lines 19 and 20 can also be replaced by:

WHEN 2 �> ff :� ff(2 DOWNTO 0) & ser_in;
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REVIEW QUESTIONS 1. Write a HDL expression that can implement a shift left of an eight-bit ar-

ray reg[7..0] with serial input dat.

2. Why is it necessary to reload the current data during the hold data mode

on a shift register?

7-23 HDL RING COUNTERS

In Section 7-20 we used a shift register to make a counter that circulates a

single active logic level through all of its flip-flops. This was referred to as

a ring counter. One characteristic of ring counters is that the modulus

is equal to the number of flip-flops in the register and thus there are 

always many unused and invalid states. We have already discussed ways of

describing counters using the CASE construct to specify PRESENT state

and NEXT state transitions. In those examples, we took care of invalid

states by including them under “others.” This method also works for ring

counters. In this section, however, we look at a more intuitive way to de-

scribe shift counters.

These methods use the same techniques described in Section 7-22 in or-

der to make the register shift one position on each clock.The main feature of

this code is the method of completing the “ring” by driving the ser_in line

of the shift register. With a little planning, we should also be able to ensure

that the counter eventually reaches the desired sequence, no matter what

state it is in initially. For this example, we re-create the operation of the ring

counter whose state diagram is shown in Figure 7-70(d). In order to make this

counter self-start without using asynchronous inputs, we control the ser_in line
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of the shift register using an IF/ELSE construct. Any time we detect that the

upper three bits are all LOW, we assume the lowest order bit is HIGH, and on

the next clock, we want to shift in a HIGH to ser_in. For all other states (valid

and invalid), we shift in a LOW. Regardless of the state to which the counter

is initialized, it eventually fills with zeros; at which time, our logic shifts in a

HIGH to start the ring sequence.

AHDL RING COUNTER
The AHDL code shown in Figure 7-85 should look familiar by now. Lines 11

and 12 control the serial input using the strategy we just described. Notice

the use of the double equals (��) operator on line 11. This operator evalu-

ates whether the expressions on each side are equal or not. Remember, the

single equals (�) operator assigns (i.e., connects) one object to another. Line

14 implements the shift right action that we described in the previous sec-

tion. Simulation results are shown in Figure 7-86.
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FIGURE 7-85 AHDL

four-bit ring counter. 1    SUBDESIGN fig7_85

2    (

3       clk         :INPUT;

4       q[3..0]     :OUTPUT;

5    )

6    VARIABLE

7       ff[3..0]    :DFF;

8       ser_in      :NODE;

9    BEGIN

10      ff[].clk = clk;

11      IF ff[3..1].q == B"000" THEN ser_in = VCC;  -- self start

12      ELSE ser_in = GND;

13      END IF;

14      ff[3..0].d = (ser_in, ff[3..1].q);        -- shift right

15      q[] = ff[];

16    END;

clk 1

0

0

0

0

q3

q2

q1

q0

2.0us 4.0us 6.0us 8.0us 10.0us 12.0us 14.0us

VHDL RING COUNTER
The VHDL code shown in Figure 7-87 should look familiar by now. Lines 12

and 13 control the serial input using the strategy we just described. Line 16

implements the shift right action that we described in the previous section.

Simulation results are shown in Figure 7-86.

FIGURE 7-86 Simulation

of HDL ring counter.
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7-24 HDL ONE-SHOTS
Another important circuit that we have studied is the one-shot. We can ap-

ply the concept of a counter to implement a digital one-shot using HDL.

Recall from Chapter 5 that one-shots were devices that produce a pulse of

a predefined width every time the trigger input is activated. A nonretrigg-
erable one-shot ignores the trigger input as long as the pulse output is still

active. A retriggerable one-shot starts a pulse in response to a trigger and

restarts the internal pulse timer every time a subsequent trigger edge 

occurs before the pulse is complete. The first example we investigate is a

nonretriggerable, HIGH-level-triggered digital one-shot. The one-shots

that we studied in Chapter 5 used a resistor and capacitor as the internal

pulse timing mechanism. In order to create a one-shot using HDL tech-

niques, we use a four-bit counter to determine the width of the pulse. The

inputs are a clock signal, trigger, clear, and pulse width value. The only

output is the pulse out, Q. The idea is quite simple. Whenever a trigger 

is detected, make the pulse go HIGH and load a down-counter with a num-

ber from the pulse width inputs. The larger this number, the longer it will

take to count down to zero. The advantage of this one-shot is that the pulse

width can be adjusted easily by changing the value loaded into the

counter. As you read the sections below, consider the following question:

“What makes this circuit nonretriggerable and what makes it level-

triggered?”

SECTION 7-24/HDL ONE-SHOTS 461

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20

ENTITY  fig7_87  IS
PORT (      clk         :IN BIT;
            q           :OUT BIT_VECTOR (3 DOWNTO 0));
END fig7_87;

ARCHITECTURE vhdl OF fig7_87 IS
SIGNAL  ser_in          :BIT;
BEGIN
PROCESS (clk)
   VARIABLE  ff         :BIT_VECTOR (3 DOWNTO 0);
   BEGIN
      IF (ff(3 DOWNTO 1) = "000")  THEN   ser_in <= '1';       -- self-start
      ELSE  ser_in <= '0';
      END IF;
      IF (clk'EVENT AND clk = '1')  THEN
         ff(3 DOWNTO 0) := (ser_in & ff(3 DOWNTO 1));          -- shift right
      END IF;
   q <= ff;
END PROCESS;
END vhdl;

FIGURE 7-87 VHDL four-bit ring counter.

REVIEW QUESTIONS 1. What does it mean for a ring counter to self-start?

2. Which lines of Figure 7-85 ensure that the ring counter self-starts?

3. Which lines of Figure 7-87 ensure that the ring counter self-starts?
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SIMPLE AHDL ONE-SHOTS
A nonretriggerable, level-sensitive, one-shot description in AHDL is shown

in Figure 7-88. A register of four flip-flops is created on line 8, and it serves

as the counter that counts down during the pulse. The clock is connected in

parallel to all the flip-flops on line 10. The reset function is implemented by

connecting the reset control line directly to the asynchronous clear input of

each flip-flop on line 11. After these assignments, the first condition that is

tested is the trigger. If it is activated (HIGH) at any time while the count

value is 0 (i.e., the previous pulse is done), then the delay value is loaded into

the counter. On line 14, it tests to see if the pulse is done by checking to see

if the counter is down to zero. If it is, then the counter should not roll over

but rather stay at zero. If the count is not at zero, then it must be counting, so

line 15 sets up the flip-flops to decrement on the next clock. Finally, line 17

generates the output pulse.This Boolean expression can be thought of as fol-

lows: “Make the pulse (Q) HIGH when the count is anything other than zero.”
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FIGURE 7-88 AHDL

nonretriggerable one-shot. 1    SUBDESIGN fig7_88

2    (

3       clock, trigger, reset   : INPUT;

4       delay[3..0]             : INPUT;

5       q                       : OUTPUT;

6    )

7    VARIABLE

8       count[3..0]    : DFF;

9    BEGIN

10       count[].clk = clock;

11       count[].clrn = reset;

12       IF trigger & count[].q == b"0000" THEN

13             count[].d = delay[];

14       ELSIF count[].q == B"0000" THEN count[].d = B"0000";

15       ELSE count[].d = count[].q - 1;

16       END IF;

17       q = count[].q != B"0000";  -- make output pulse

18    END;

SIMPLE VHDL ONE-SHOTS
A nonretriggerable, level-sensitive, one-shot description in VHDL is shown in

Figure 7-89. The inputs and outputs are shown on lines 3–5, as previously

described. In the architecture description, a PROCESS is used (line 11) to re-

spond to either of two inputs: the clock, or the reset. Within this PROCESS, a

variable is used to represent the value on the counter. The input that should

have overriding precedence is the reset signal.This is tested first (line 14) and

if it is active, the count is cleared immediately. If the reset is not active, line 15

is evaluated and looks for a rising edge on the clock. Line 16 checks for the

trigger. If it is activated at any time while the count value is 0 (i.e., the previ-

ous pulse is done), then the width value is loaded into the counter. On line 18,

it tests to see if the pulse is done by checking to see if the counter is down to

zero. If it is, then the counter should not roll over but rather stay at zero. If the
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count is not at zero, then it must be counting, so line 19 sets up the flip-flops

to decrement on the next clock. Finally, lines 22 and 23 generate the output

pulse. This Boolean expression can be thought of as follows: “Make the pulse

(q) HIGH when the count is anything other than zero.”

Now that we have reviewed the code that describes this one-shot, let’s

evaluate its performance. Converting a traditionally analog circuit to digital

usually offers some advantages and some disadvantages. On a standard one-

shot chip, the output pulse starts immediately after the trigger. For the digi-

tal one-shot described here, the output pulse starts on the next clock edge

and lasts as long as the counter is greater than zero. This situation is shown

in Figure 7-90 within the first ms of the simulation. Notice that the trigger

goes high almost 0.5 ms before the q out responds. If another trigger event

occurs while it is counting down (like the one just before 3 ms), it is ignored.

This is the nonretriggerable characteristic.

Another point to make for this digital one-shot is that the trigger pulse

must be long enough to be seen as a HIGH on the rising clock edge. At about

the 4.5-ms mark, a pulse occurs on the trigger input but goes LOW before the

rising edge of the clock. This circuit does not respond to this input event. At

just past 5 ms, the trigger goes HIGH and stays there. The pulse lasts exactly

6 ms, but because the trigger input remains HIGH, it responds with another

output pulse one clock later. The reason for this situation is that this circuit

is level-triggered rather than edge-triggered, like most of the conventional

one-shot ICs.
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FIGURE 7-89 VHDL nonretriggerable one-shot.

1    ENTITY fig7_89 IS

2    PORT (

3          clock, trigger, reset    :IN BIT;

4          delay                    :IN INTEGER RANGE 0 TO 15;

5          q                        :OUT BIT

6          );

7    END fig 7_89;

8

9    ARCHITECTURE vhdl OF fig7_89 IS

10    BEGIN

11       PROCESS (clock, reset)

12       VARIABLE count       : INTEGER RANGE 0 TO 15;

13       BEGIN

14          IF reset = '0' THEN count := 0;

15          ELSIF (clock'EVENT AND clock = '1' ) THEN

16             IF trigger = '1' AND count = 0 THEN

17                count := delay;                      -- load counter

18             ELSIF count = 0 THEN count := 0;

19             ELSE count := count - 1;

20             END IF;

21          END IF;

22          IF count /= 0 THEN q <= '1';

23          ELSE q <= '0';

24          END IF;

25       END PROCESS;

26    END vhdl;
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Retriggerable, Edge-Triggered One-Shots in HDL
Many applications of one-shots require the circuit to respond to an edge

rather than a level. How can HDL code be used to make the circuit respond

once to each positive transition on its trigger input? The technique described

here is called edge-trapping and has been a very useful tool in programming

microcontrollers for years. As we will see, it is equally useful for describing

edge-triggering for a digital circuit using HDL. This section illustrates an ex-

ample of a retriggerable one-shot while also demonstrating edge-trapping,

which can be useful in many other situations.

The general operation of this retriggerable one-shot requires that it re-

sponds to a rising edge of the trigger input. As soon as the edge is detected,

it should start timing the pulse. In the digital one-shot, this means that it

loads the counter as soon as possible after the trigger edge and starts count-

ing down toward zero. If another trigger event (rising edge) occurs before the

pulse is terminated, the counter is immediately reloaded, and the pulse tim-

ing starts again from the beginning, thus sustaining the pulse. Activating the

clear at any point should force the counter to zero and terminate the pulse.

The minimum output pulse width is simply the number applied to the width

input multiplied by the clock period.

The strategy behind edge-trapping for a one-shot is demonstrated in

Figure 7-91. On each active clock edge are two important pieces of informa-

tion that are needed. The first is the state of the trigger input now and the

second is the state of the trigger input when the last active clock edge oc-

curred. Start with point a on the diagram of Figure 7-91 and determine these

two values, then move to point b, and so on. By completing this task, you

should have concluded that, at point c, a unique result has been obtained.

The trigger is HIGH now but it was LOW on the last active clock edge. This is

the point where we have detected the trigger edge event.

464 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-90 Simulation of the nonretriggerable one-shots.

Name: Value: 1.0 ms 2.0 ms 3.0 ms 4.0 ms 5.0 ms 6.0 ms 7.0 ms 8.0 ms 9.0 ms 10 ms

Trigger 0

Reset 1

Clock 0

q 0

Ref: 0.0 ns

0.0ns

Time: 3.66 ns Interval: 3.66 ns

0

Delay H6

Count H0 0 6 5 4 3 2 1 0 6 5 4 3 2 1 0 6 5 4

6

Do NOT reload counter

a  b  c  d  e  f

Load counter

Clock

Trigger

FIGURE 7-91 Detecting

edges.
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In order to know what the trigger was on the last active clock edge, the

system must remember the last value that the trigger had at that point.
This is done by storing the value of the trigger bit in a flip-flop. Recall

that we discussed a similar concept in Chapter 5 when we talked about us-

ing a flip-flop to detect a sequence. The code for a one-shot is written so

that the counter is loaded only after a rising edge is detected on the

trigger input.

AHDL RETRIGGERABLE, EDGE-TRIGGERED ONE-SHOT
The first five lines of Figure 7-92 are identical to the previous nonretrigger-

able example. In AHDL, the only way to remember a value obtained in the

past is to store the value on a flip-flop. This section uses a flip-flop named

trig_was (line 9) to store the value that was on the trigger on the last active

clock edge.This flip-flop is simply connected so that the trigger is on its D in-

put (line 14) and the clock is connected to its clk input (line 13). The Q out-

put of trig_was remembers the value of the trigger right up to the next clock

edge. At this point, we use line 16 to evaluate if a triggering edge has oc-

curred. If trigger is HIGH (now), but trigger was LOW (last clock), it is time to

load the counter (line 17). Line 18 ensures that, once the count reaches zero,

it will remain at zero until a new trigger comes along. If the decisions allow

line 19 to be evaluated, it means that there is a value loaded into the counter

and it is not zero, so it needs to be decremented. Finally, the output pulse is

made HIGH any time a value other than 0000 is still on the counter, like we

saw previously.
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FIGURE 7-92 AHDL 

retriggerable one-shot

with edge trigger.

1    SUBDESIGN fig7_92

2    (

3       clock, trigger, reset  : INPUT;

4       delay[3..0]            : INPUT;

5       q                      : OUTPUT;

6    )

7    VARIABLE

8                count[3..0]   : DFF;

9                trig_was      : DFF;

10    BEGIN

11       count[].clk = clock;

12       count[].clrn = reset;

13       trig_was.clk = clock;

14       trig_was.d = trigger;

15

16       IF trigger & !trig_was.q THEN

17             count[].d = delay[];

18       ELSIF count[].q == B"0000" THEN count[].d = B"0000";

19       ELSE count[].d = count[].q - 1;

20       END IF;

21       q = count[].q != B"0000";

22    END;
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The ENTITY description in Figure 7-93 is exactly like the previous nonretrig-

gerable example. In fact, the only differences between this example and the

one shown in Figure 7-89 have to do with the logic of the decision process.

When we want to remember a value in VHDL, it must be stored in a VARI-

ABLE. Recall that we can think of a PROCESS as a description of what hap-

pens each time a signal in the sensitivity list changes state. A VARIABLE

retains the last value assigned to it between the times the process is invoked.

In this sense, it acts like a flip-flop. For the one-shot, we need to store a value

that tells us what the trigger was on the last active clock edge. Line 11

declares a variable bit to serve this purpose. The first decision (line 13) is the

overriding decision that checks and responds to the reset input. Notice that

this is an asynchronous control because it is evaluated before the clock edge is

detected on line 14. Line 14 determines that a rising clock edge has occurred,

and then the main logic of this process is evaluated between lines 15 and 20.

When a clock edge occurs, one of three conditions exists:

1. A trigger edge has occurred and we must load the counter.

2. The counter is zero and we need to keep it at zero.

3. The counter is not zero and we need to count down by one.
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FIGURE 7-93 VHDL retriggerable one-shot with edge trigger.

1    ENTITY fig7_93 IS

2    PORT (   clock, trigger, reset    : IN BIT;

3          delay                       : IN INTEGER RANGE 0 TO 15;

4          q                           : OUT BIT);

5    END fig7_93;

6

7    ARCHITECTURE vhdl OF fig7_93 IS

8    BEGIN

9       PROCESS (clock, reset)

10       VARIABLE count       : INTEGER RANGE 0 TO 15;

11       VARIABLE trig_was    : BIT;

12       BEGIN

13          IF reset = '0' THEN count := 0;

14          ELSIF (clock'EVENT AND clock = '1' ) THEN

15             IF trigger = '1' AND trig_was = '0' THEN

16                count := delay;              -- load counter

17                trig_was := '1';             -- "remember" edge detected

18             ELSIF count = 0 THEN count := 0; -- hold @ 0

19             ELSE count := count - 1;         -- decrement

20             END IF;

21             IF trigger = '0' THEN trig_was := '0';

22             END IF;

23          END IF;

24          IF count /= 0  THEN q <= '1';

25          ELSE q <= '0';

26          END IF;

27       END PROCESS;

28    END vhdl;
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Recall that it is very important to consider the order in which questions are

asked and assignments are made in VHDL PROCESS statements because

the sequence affects the operation of the circuit we are describing. The code

that updates the trig_was variable must occur after the evaluation of its pre-

vious condition. For this reason, the conditions necessary to detect a rising

edge on trigger are evaluated on line 15. If an edge occurred, then the

counter is loaded (line 16) and the variable is updated (line 17) to remember

this for the next time. If a trigger edge has not occurred, the code either

holds at zero (line 18) or counts down (line 19). Line 21 makes sure that, as

soon as the trigger input goes LOW, the variable trig_was remembers this by

resetting. Finally, lines 24–25 are used to create the output pulse during the

time the counter is not zero.

The two improvements that were made in this one-shot over the last ex-

ample are the edge-triggering and the retriggerable feature. Figure 7-94

evaluates the new performance features. Notice in the first ms of the timing

diagram that a trigger edge is detected, but the response is not immediate.

The output pulse goes high on the next clock edge. This is a drawback to the

digital one-shot. The retriggerable feature is demonstrated at about the 2-

ms mark. Notice that trigger goes high and on the next clock edge, the count
starts again at 5, sustaining the output pulse. Also notice that even after the

q output pulse is complete and the trigger is still HIGH, the one-shot does

not fire another pulse because it is not level-triggered but rather rising

edge-triggered. At the 6-ms mark, a short trigger pulse occurs but is ignored

because it does not stay HIGH until the next clock. On the other hand, an

even shorter trigger pulse occurring just after the 7-ms mark does fire the

one-shot because it is present during the rising clock edge. The resulting

output pulse lasts exactly five clock cycles because no other triggers occur

during this period.

SECTION 7-24/HDL ONE-SHOTS 467

Name: Value: 1.0 ms 2.0 ms 3.0 ms 4.0 ms 5.0 ms 6.0 ms 7.0 ms 8.0 ms 9.0 ms 10 ms

Trig_was.Q 0

Trigger 0

Reset 1

Clock

0.0ns

0

Delay

0

Count

H5

q

H0 4 3 5 4 3 2 1 0 5 4 3 2 1 050

5

FIGURE 7-94 Simulation of the edge-triggered retriggerable one-shot.

To minimize the effects of delayed response to trigger edges and the pos-

sibility of missing trigger edges that are too short, this circuit can be im-

proved quite simply.The clock frequency and the number of bits used to load

the delay value can both be increased to provide the same range of pulse

widths (with more precise control) while reducing the minimum trigger

pulse width. In order to cure this problem completely, the one-shot must re-

spond asynchronously to the trigger input.This is possible in both AHDL and

VHDL, but it will always result in a pulse that fluctuates in width by up to

one clock period.
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PART 2 SUMMARY
1. Numerous IC registers are available and can be classified according to

whether their inputs are parallel (all bits entered simultaneously), serial

(one bit at a time), or both. Likewise, registers can have outputs that are par-

allel (all bits available simultaneously) or serial (one bit available at a time).

2. A sequential logic system uses FFs, counters, and registers, along with

logic gates. Its outputs and sequence of operations depend on present

and past inputs.

3. Troubleshooting a sequential logic system begins with observation of the

system operation, followed by analytical reasoning to determine the pos-

sible causes of any malfunction, and finally test measurements to isolate

the actual fault.

4. A ring counter is actually an N-bit shift register that recirculates a single

1 continuously, thereby acting as a MOD-N counter. A Johnson counter is

a modified ring counter that operates as MOD-2N counter.

5. Shift registers can be implemented with HDL by writing custom de-

scriptions of their operation.

6. An understanding of bit arrays/bit vectors and their notation is very im-

portant in describing shift register operations.

7. Shift register counters such as Johnson and ring counters can be imple-

mented easily in HDL. Decoding and self-starting features are easy to

write into the description.

8. Digital one-shots are implemented with a counter loaded with a delay

value when the trigger input is detected and counts down to zero. During

the countdown time, the output pulse is held HIGH.

9. With strategic placement of the hardware description statements, HDL

one-shots can be made edge- or level-triggered and retriggerable or non-

retriggerable. They produce an output pulse that responds synchro-

nously or asynchronously to the trigger.
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REVIEW QUESTIONS 1. Which control input signal holds the highest priority for each of the one-

shot descriptions?

2. Name two factors that determine how long a pulse from a digital one-

shot will last.

3. For the one-shots shown in this section, are the counters loaded synchro-

nously or asynchronously?

4. What is the advantage of loading a counter synchronously?

5. What is the advantage of loading the counter asynchronously?

6. What two pieces of information are necessary to detect an edge?

PART 2 IMPORTANT TERMS
parallel in/parallel out

serial in/serial out

parallel in/serial out

serial in/parallel out

circulating shift

register

ring counter

Johnson counter

(twisted ring

counter)

sequential logic

system

concatenation

digital one-shot
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PROBLEMS
PART 1
SECTION 7-1

7-1.*Add another flip-flop, E, to the counter of Figure 7-1. The clock signal

is an 8-MHz square wave.

(a) What will be the frequency at the E output? What will be the duty

cycle of this signal?

(b) Repeat (a) if the clock signal has a 20 percent duty cycle.

(c) What will be the frequency at the C output?

(d) What is the MOD number of this counter?

7-2. Draw a binary counter that will convert a 64-kHz pulse signal into a 

1-kHz square wave.

7-3.*Assume that a five-bit binary counter starts in the 00000 state. What

will be the count after 144 input pulses?

7-4. A 10-bit ripple counter has a 256-kHz clock signal applied.

(a) What is the MOD number of this counter?

(b) What will be the frequency at the MSB output?

(c) What will be the duty cycle of the MSB signal?

(d) Assume that the counter starts at zero. What will be the count in

hexadecimal after 1000 input pulses?

SECTION 7-2

7-5.*A four-bit ripple counter is driven by a 20-MHz clock signal. Draw the

waveforms at the output of each FF if each FF has tpd � 20 ns.

Determine which counter states, if any, will not occur because of the

propagation delays.

7-6. (a) What is the maximum clock frequency that can be used with the

counter of Problem 7-5?

(b) What would fmax be if the counter were expanded to six bits?

SECTIONS 7-3 AND 7-4

7-7.*(a) Draw the circuit diagram for a MOD-32 synchronous counter.

(b) Determine fmax for this counter if each FF has tpd � 20 ns and

each gate has tpd � 10 ns.

7-8. (a) Draw the circuit diagram for a MOD-64 synchronous counter.

(b) Determine fmax for this counter if each FF has tpd � 20 ns and

each gate has tpd � 10 ns.

7-9.*Draw the waveforms for all the FFs in the decade counter of Figure 

7-8(b) in response to a 1-kHz clock frequency. Show any glitches that

might appear on any of the FF outputs. Determine the frequency at

the D output.

7-10. Repeat Problem 7-9 for the counter of Figure 7-8(a).

7-11.*Change the inputs to the NAND gate of Figure 7-9 so that the counter

divides the input frequency by 50.

7-12. Draw a synchronous counter that will output a 10-kHz signal when a

1-MHz clock is applied.

PROBLEMS 469

*Answers to problems marked with an asterisk can be found in the back of the text.
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SECTIONS 7-5 AND 7-6

7-13.*Draw a synchronous, MOD-32, down counter.

7-14. Draw a synchronous, MOD-16, up/down counter.The count direction is

controlled by dir (dir � 0 to count up).

7-15.*Determine the count sequence of the up/down counter in Figure 7-11

if the INVERTER output were stuck HIGH. Assume the counter starts

at 000.

7-16. Complete the timing diagram in Figure 7-95 for the presettable

counter in Figure 7-12. Note that the initial condition for the counter

is given in the timing diagram.
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FIGURE 7-95 Problem 7-16 timing diagram.

FIGURE 7-96 Problem 7-17 timing diagram.

CLK

101 010P2P1P0

PL

Q0

Q1

Q2

SECTION 7-7

7-17.*Complete the timing diagram in Figure 7-96 for a 74ALS161 with the

indicated input waveforms applied. Assume the initial state is 0000.

CLK

QD

D C B A 0111 1101

ENP

ENT

QC

QB

QA

RCO

LOAD

CLR

B

B

C, T
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7-18. Complete the timing diagram in Figure 7-97 for a 74ALS162 with the

indicated input waveforms applied. Assume the initial state is 0000.

PROBLEMS 471

CLK

QD

D C B A 0110 0101 0100

ENP

ENT

QC

QB

QA

RCO

LOAD

CLR

FIGURE 7-97 Problem 7-18 timing diagram.

CLK

QC

QD

QB

QA

MAX/MIN

RCO

LOAD

CTEN

D/U

FIGURE 7-98 Problems 7-19 and 7-20 timing diagram.

7-19.*Complete the timing diagram in Figure 7-98 for a 74ALS190 with the

indicated input waveforms applied. The DCBA input is 0101.

7-20. Repeat Problem 7-19 for a 74ALS191 and a DCBA input of 1100.

7-21.*Refer to the IC counter circuit in Figure 7-99(a):

(a) Draw the state transition diagram for the counter’s QD QC QB QA
outputs.

(b) Determine the counter’s modulus.

B
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(c) What is the relationship of the output frequency of the MSB to the

input CLK frequency?

(d) What is the duty cycle of the MSB output waveform?

7-22. Repeat Problem 7-21 for the IC counter circuit in Figure 7-99(b).

7-23.*Refer to the IC counter circuit in Figure 7-100(a).

(a) Draw the timing diagram for outputs QD QC QB QA.

(b) What is the counter’s modulus?

(c) What is the count sequence? Does it count up or down?

(d) Can we produce the same modulus with a 74HC190? Can we

produce the same count sequence with a 74HC190?
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(b)(a)

74ALS163

QA

QB

QC

QD

1
CLK CLK

ENT
ENP

CLR

LOAD

D

A

B

C

QD

QA

QB

QC

RCO RCO

74ALS161

QA

QB

QC

QD

1
CLK CLK

ENT
ENP

CLR

LOAD

D

A

B

C

QD

QA

QB

QC

RCO RCO

FIGURE 7-99 Problems 7-21 and 7-22.

74HC191

QA

QB

QC

QD1

1

1

0

0

0

CLK CLK

LOAD

D

A

B

C

QD

Max
/Min

QA

QB

QC

CTEN

D/U

RCO

74HC190

QA

QB

QC

QD0

0

0

0

0

CLK CLK

LOAD

D

A

B

C

QD

QA

QB

QC

START

CTEN

D/U

RCO

Max
/Min

(a) (b)

FIGURE 7-100 Problems 7-23 and 7-24.
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7-24. Refer to the IC counter circuit in Figure 7-100(b):

(a) Describe the counter’s output on QD QC QB QA if is LOW.

(b) Describe the counter’s output on QD QC QB QA if is 

momentarily pulsed LOW and then returns to a HIGH.

(c) What is the counter’s modulus? Is this a recycling counter?

7-25.*Draw a schematic to create a recycling, MOD-6 counter that uses:

(a) the clear control on a 74ALS160

(b) the clear control on a 74ALS162

7-26. Draw a schematic to create a recycling, MOD-6 counter that produces

the count sequence:

(a) 1, 2, 3, 4, 5, 6, and repeats with a 74ALS162

(b) 5, 4, 3, 2, 1, 0, and repeats with a 74ALS190

(c) 6, 5, 4, 3, 2, 1, and repeats with a 74ALS190

7-27.*Design a MOD-100, binary counter using either two 74HC161 or two

74HC163 chips and any necessary gates. The IC counter chips are to

be synchronously cascaded together to produce the binary count 

sequence for 0 to 99.The MOD-100 is to have two control inputs, an ac-

tive-LOW count enable ( ) and an active-LOW, asynchronous clear

( ). Label the counter outputs Q0, Q1, Q2, etc., with Q0 � LSB.

Which output is the MSB?

7-28. Design a MOD-100, BCD counter using either two 74HC160 or two

74HC162 chips and any necessary gates. The IC counter chips are to

be synchronously cascaded together to produce the BCD count se-

quence for 0 to 99. The MOD-100 is to have two control inputs, an 

active-HIGH count enable (EN) and an active-HIGH, synchronous

load (LD). Label the counter outputs Q0, Q1, Q2, etc., with Q0 � LSB.

Which set of outputs represents the 10s digit?

7-29.*With a 6-MHz clock input to a 74ALS163 that has all four control in-

puts HIGH, determine the output frequency and duty cycle for each

of the five outputs (including RCO).

7-30. With a 6-MHz clock input to a 74ALS162 that has all four control 

inputs HIGH, determine the output frequency and duty cycle for each

of the following outputs: QA, QC, QD, RCO. What is unusual about the

waveform pattern that would be produced by the QB output? This pat-

tern characteristic results in an undefined duty cycle.

7-31.*The frequency of fin is 6 MHz in Figure 7-101.The two IC counter chips

have been cascaded asynchronously so that the output frequency pro-

duced by counter U1 is the input frequency for counter U2.

Determine the output frequency for fout1 and fout2.

7-32. The frequency of fin is 1.5 MHz in Figure 7-102. The two IC counter

chips have been cascaded asynchronously so that the output fre-

quency produced by counter U1 is the input frequency for counter

U2. Determine the output frequency for fout1 and fout2.

7-33.*Design a frequency divider circuit that will produce the following

three output signal frequencies: 1.5 MHz, 150 kHz, and 100 kHz. Use

74HC162 and 74HC163 counter chips and any necessary gates.The in-

put frequency is 12 MHz.

7-34. Design a frequency divider circuit that will produce the following

three output signal frequencies: 1 MHz, 800 kHz, and 100 kHz. Use

74HC160 and 74HC161 counter chips and any necessary gates. The

input frequency is 12 MHz.

CLR
EN

START

START
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D

D

D

D

B

B

B

B

D

D

TOCCMC07_0131725793.QXD  12/12/2005  10:50 PM  Page 473



SECTION 7-8

7-35.*Draw the gates necessary to decode all of the states of a MOD-16

counter using active-LOW outputs.

7-36. Draw the AND gates necessary to decode the 10 states of the BCD

counter of Figure 7-8(b).
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74ALS161
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RCO

1
U2

74ALS161

fin CLK

ENT
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A

B
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QD

QA

QB

QC

RCO
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CLK

ENT

ENP

CLR

LOAD

D

A

B

C

QD

QA

QB

QC

RCO

1
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FIGURE 7-101 Problem 7-31.

FIGURE 7-102 Problem 7-32.

B

B
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SECTION 7-9

7-37.*Analyze the synchronous counter in Figure 7-103(a). Draw its timing

diagram and determine the counter’s modulus.

7-38. Repeat Problem 7-37 for Figure 7-103(b).
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FIGURE 7-103 Problems 7-37 and 7-38.

A

CLK

K
CLR

JB

B

CLK

K

JD

K

J

1

D A

CLK

CLK

CLR

C
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CLRCLR

(a)

(b)

A

CLK

K
CLR

JB

B

CLK

K

JD

D
C
B
A

K

J

1

D A

CLK

CLK

CLR

C

C

CLK

K

J

CLRCLR

1

7-39.*Analyze the synchronous counter in Figure 7-104(a). Draw its timing

diagram and determine the counter’s modulus.

7-40. Repeat Problem 7-39 for Figure 7-104(b).

7-41.*Analyze the synchronous counter in Figure 7-105(a). F is a control input.

Draw its state transition diagram and determine the counter’s modulus.

7-42. Analyze the synchronous counter in Figure 7-105(b). Draw its com-

plete state transition diagram and determine the counter’s modulus.

Is the counter self-correcting?

C

C

C

C

C

C
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SECTION 7-10

7-43.*(a) Design a synchronous counter using J-K FFs that has the follow-

ing sequence: 000, 010, 101, 110, and repeat. The undesired (un-

used) states 001, 011, 100, and 111 must always go to 000 on the

next clock pulse.

(b) Redesign the counter of part (a) without any requirement on the

unused states; that is, their NEXT states can be don’t cares.

Compare with the design from (a).

7-44. Design a synchronous, recycling, MOD-5 down counter that produces

the sequence 100, 011, 010, 001, 000, and repeat. Use J-K flip-flops.

(a) Force the unused states to 000 on the next clock pulse.

(b) Use don’t-care NEXT states for the unused states. Is this design

self-correcting?

7-45.*Design a synchronous, recycling, BCD down counter with J-K FFs us-

ing don’t-care NEXT states.

7-46. Design a synchronous, recycling, MOD-7 up/down counter with J-K

FFs. Use the states 000 through 110 in the counter. Control the count

direction with input D (D � 0 to count up and D � 1 to count down).
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(a)

A

A

CLK

K

JC

K

J

C

CLK

CLK

B

B

CLK

K

J

1

(b)

A

A

CLK

K

JC

K

J

C

CLK

CLK

B

B

CLK

K

J

1

FIGURE 7-104 Problems 7-39 and 7-40.
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7-47.*Design a synchronous, recycling, MOD-8, binary down counter with D

flip-flops.

7-48. Design a synchronous, recycling, MOD-12 counter with D FFs. Use the

states 0000 through 1011 in the counter.

SECTIONS 7-11 AND 7-12

7-49.*Design a recycling, MOD-13, up counter using an HDL. The count se-

quence should be 0000 through 1100. Simulate the counter.

PROBLEMS 477

(a)

B

B

CLK

K

JD

K

J

D

A

A

CLK

CLK

C

C

CLK

K

J

CLK

K

J

1

F

A D DADBDC

A

CLK

C D

C

CLK

B D

B

CLK

ABC

(b)

CLOCK

FIGURE 7-105 Problems 7-41 and 7-42.
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7-50. Design a recycling, MOD-25, down counter using an HDL. The count

sequence should be 11000 through 00000. Simulate the counter.

7-51.*Design a recycling, MOD-16 Gray code counter using an HDL. The

counter should have an active-HIGH enable (cnt). Simulate the

counter.

7-52. Design a bidirectional, half-step controller for a stepper motor using

an HDL. The direction control input (dir) will produce a clockwise

(CW) pattern when HIGH or counterclockwise when LOW. The se-

quence is given in Figure 7-106. Simulate the sequential circuit.
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CW

CCW
Q3  Q2  Q1  Q0

0101 0001 1001 1000

0100 0110 0010 1010

FIGURE 7-106 Problem 

7-52.

7-53.*Design a frequency divider circuit to output a 100-kHz signal using an

HDL. The input frequency is 5 MHz. Simulate the counter.

7-54. Design a frequency divider circuit that will output either of two spec-

ified frequency signals using an HDL. The output frequency is se-

lected by the control input fselect. The divider will output a frequency

of 5 kHz when fselect � 0 or 12 kHz when fselect � 1. The input fre-

quency is 60 kHz. Simulate the counter.

7-55.*Expand the full-featured HDL counter in Section 7-12 to a MOD-256

counter. Simulate the counter.

7-56. Expand the full-featured HDL counter in Section 7-12 to a MOD-1024

counter. Simulate the counter.

7-57.*Design a recycling, MOD-16, down counter using an HDL.The counter

should have the following controls (from lowest to highest priority):

an active-LOW count enable ( ), an active-HIGH synchronous clear

(clr), and active-LOW synchronous load ( ). Decode the terminal

count when enabled by Simulate the counter.

7-58. Design a recycling, MOD-10, up/down counter using an HDL. The

counter will count up when up � 1 and counts down when up � 0. The

counter should also have the following controls (from lowest to highest

priority): an active-HIGH count enable (enable), active-HIGH synchro-

nous load (load), and an active-LOW asynchronous clear ( ). Decode

the terminal count when enabled by enable. Simulate the counter.

SECTION 7-13

7-59.*Create a MOD-1000 BCD counter by cascading together three of the

HDL BCD counter modules (described in Section 7-13). Simulate the

counter.

7-60. Create a MOD-256 binary counter by cascading together two of the

full-featured, MOD-16, HDL counter modules (described in Section 7-

12). Simulate the counter.

7-61.*Design a synchronous, MOD-50 BCD counter by cascading the HDL

designs for a MOD-10 and a MOD-5 counter together. The MOD-50

clear

en.

ld
en

H, D

H, D

H, D

H, D

H

H

H, D

H, D

H, D

H, B

H, B

H, B
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counter should have an active-HIGH count enable (enable) and an ac-

tive-LOW, synchronous clear ( ). Be sure to include the terminal

count detection for the 1s digit to cascade with the 10s digit. Simulate

the counter.

7-62. Design a synchronous, MOD-100, BCD down counter by cascading two

MOD-10 HDL down counter modules together. The MOD-100 counter

should have a synchronous parallel load (load). Simulate the counter.

SECTION 7-14

7-63.*Modify the HDL description in Figure 7-56 or Figure 7-57 to add a

rinse sequence after the clothes are washed. The new state machine

sequence should be idle wash_fill wash_agitate wash_spin
rinse_fill rinse_agitate rinse _spin idle. Use hot water to

wash, and cold water to rinse (add output bits to control two water

valves). Simulate the modified HDL design.

7-64. Simulate the HDL traffic light controller design presented in Section

7-14.

PART 2
SECTIONS 7-15 THROUGH 7-19

7-65.*A set of 74ALS174 registers is connected as shown in Figure 7-107.

What type of data transfer is performed with each register?

Determine the output of each register when the is pulsed mo-

mentarily LOW and after each of the indicated clock pulses (CP#) in

Table 7-10. How many clock pulses must be applied before data that

are input on I5–I0 are available at Z5–Z0?

MR

::::
:::

clrn
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CLK

74ALS174

W5 W4 W3 W2 W1 W0
Q5

D4

Q4

D3D5

Q3

D2

Q2

D1

Q1

D0

I4 I3I5 I2 I1 I0

Q0
MR

CP

CP

74ALS174

X5 X4 X3 X2 X1 X0
Q5

D4

Q4

D3D5

Q3

D2

Q2

D1

Q1

D0

Q0
MR

MR

74ALS174

Y5 Y4 Y3 Y2 Y1 Y0
Q5

D4

Q4

D3D5

Q3

D2

Q2

D1

Q1

D0

Q0
MR

CP

CP

74ALS174

Z5 Z4 Z3 Z2 Z1 Z0

Q5

D4

Q4

D3D5

Q3

D2

Q2

D1

Q1

D0

Q0
MR

FIGURE 7-107 Problem 7-65.
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7-66. Complete the timing diagram in Figure 7-108 for a 74HC174. How

does the timing diagram show that the master reset is asynchronous?

480 CHAPTER 7/COUNTERS AND REGISTERS

CLK I5–I10 W5–W0 X5–X0 Y5–Y0 Z5–Z0

X 0 101010

CP1 1 101010

CP2 1 010101

CP3 1 000111

CP4 1 111000

CP5 1 011011

CP6 1 001101

CP7 1 000000

CP8 1 000000

MRq
TABLE 7-10

110011 010010

CP

D5 - D0

Q5

Q4

Q3

Q2

Q1

Q0

MR

101001 010110 001110 100011

FIGURE 7-108 Problem 7-66.

7-67.*How many clock pulses will be needed to completely load eight bits of

serial data into a 74ALS166? How does this relate to the number of

flip-flops contained in the register?

7-68. Repeat Example 7-18 for the input waveforms given in Figure 7-109.

CLK

SER

QH

CLR

FIGURE 7-109 Problem 7-68.

B

B

B
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7-69.*Repeat Example 7-20 with DS � 1 and the input waveforms given in

Figure 7-110.

PROBLEMS 481

1100 1010 0011 0101

CP

P0 - P7

(Q0)

(Q1)

(Q2)

(Q3)

(Q4)

(Q5)

(Q6)

Q7

SH/LD

FIGURE 7-110 Problem 7-69.

7-70. Apply the input waveforms given in Figure 7-111 to a 74ALS166 and

determine the output produced.

0101 0011 1001 0010

CLK

SER

(QA)

(QB)

(QC)

(QD)

(QE)

(QF)

(QG)

QH

CLK INH

ABCD EFGH

SH/LD

CLR

FIGURE 7-111 Problem 

7-70.
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7-71.*While examining the schematic for a piece of equipment, a technician

or an engineer will often come across an IC that is unfamiliar. In such

cases, it is often necessary to consult the manufacturer’s data sheets

for specifications on the device. Research the data sheet for the

74AS194 bidirectional universal shift register to answer the following

questions:

(a) Is the input asynchronous or synchronous?

(b) True or false: When CLK is LOW, the S0 and S1 inputs have no effect

on the register.

(c) Assume the following conditions:

QA QB QC QD � 1 0 1 1

A B C D � 0 1 1 0

SR SER � 0

SL SER � 1

If S0 � 0 and S1 � 1, determine the register outputs after one CLK
pulse. After two CLK pulses. After three. After four.

(d) Use the same conditions except S0 � 1 and S1 � 0 and repeat part (c).

(e) Repeat part (c) with S0 � 1 and S1 � 1.

(f) Repeat part (c) with S0 � 0 and S1 � 0.

(g) Use the same conditions as in part (c), except assume that QA is

connected to SL SER. What will be the register outputs after four

CLK pulses?

7-72. Refer to Figure 7-112 to answer the following questions:

(a) Which register function (load or shift) will be performed on the

next clock if in � 1 and out � 0? What data value will be input

when clocked?

(b) Which register function (load or shift) will be performed on the

next clock if in � 0 and out � 1? What data value will be input

when clocked?

(c) Which register function (load or shift) will be performed on the

next clock if in � 0 and out � 0? What data value will be input

when clocked?

(d) Which register function (load or shift) will be performed on the

next clock if in � 1 and out � 1? What data value will be input

when clocked?

(e) What input condition will eventually (after several clock pulses)

cause the output to switch states?

CLR = 1

CLR

482 CHAPTER 7/COUNTERS AND REGISTERS

FIGURE 7-112 Problem 

7-72.
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(f) To change the output logic level requires the new input condition

to last for at least how many clock pulses?

(g) If the input signal changes levels and then goes back to its origi-

nal logic level before the number of clock pulses specified in part

(f), what happens to the output signal.

(h) Explain why this circuit can be used to debounce switches.

SECTION 7-20

7-73.*Draw the diagram for a MOD-5 ring counter using J-K flip-flops. Make

sure that the counter will start the proper count sequence when it is

turned on.

7-74. Add one more J-K flip-flop to convert the MOD-5 ring counter in

Problem 7-73 into a MOD-10 counter. Determine the sequence of

states for this counter. This is an example of a decade counter that is

not a BCD counter. Draw the decoding circuit for this counter.

7-75.*Draw the diagram for a MOD-10 Johnson counter using a 74HC164.

Make sure that the counter will start the proper count sequence when

it is turned on. Determine the count sequence for this counter and

draw the decoding circuit needed to decode each of the 10 states.This

is another example of a decade counter that is not a BCD counter.

7-76. The clock input to the Johnson counter in Problem 7-75 is 10 Hz. What

is the frequency and duty cycle for each of the counter outputs?

SECTION 7-21

7-77.*The MOD-10 counter in Figure 7-8(b) produces the count sequence

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, and repeats. Identify

some possible fault conditions that might produce this result.

7-78. The MOD-10 counter in Figure 7-8(b) produces the count sequence

0000, 0101, 0010, 0111, 1000, 1101, 1010, 1111, and repeats. Identify

some possible fault conditions that might produce this result.

SECTIONS 7-22 AND 7-23

7-79.*Create an eight-bit SISO shift register using an HDL. The serial input

is called ser and the serial output is called qout. An active-LOW en-

able ( ) controls the shift register. Simulate the design.

7-80. Create an eight-bit PIPO shift register using an HDL. The data in is

d[7..0] and the outputs are q[7..0]. An active-HIGH enable (ld) con-

trols the shift register. Simulate the design.

7-81.*Create an eight-bit PISO shift register using an HDL. The data in is

d[7..0] and the output is q0. The shift register function is controlled by

sh_ld (sh_ld � 0 to synchronously parallel load and sh_ld � 1 to serial

shift). The register also should have an active-LOW asynchronous

clear ( ). Simulate the design.

7-82. Create an eight-bit SIPO shift register using an HDL. The data in is

ser_in and the outputs are q[7..0]. The shift register function is en-

abled by an active-HIGH control named shift. The shift register also

has a higher priority active-HIGH synchronous clear (clear). Simulate

the design.

7-83.*Simulate the universal shift register design from Example 7-24.

clrn

en
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7-84. Create an eight-bit universal shift register by cascading two of the

modules in Example 7-24. Simulate the design.

7-85.*Design a MOD-10, self-starting Johnson counter with an active-HIGH,

asynchronous reset (reset) using an HDL. Simulate the design.

7-86. Sometimes a digital application may need a ring counter that recircu-

lates a single zero instead of a single one.The ring counter would then

have an active-LOW output instead of an active-HIGH. Design a MOD-8,

self-starting ring counter with an active-LOW output using an HDL.

The ring counter should also have an active-HIGH hold control to dis-

able the counting. Simulate the design.

SECTION 7-24

7-87.*Use Altera’s simulator to test the nonretriggerable, level-sensitive,

one-shot design example in either Figure 7-88 (AHDL) or 7-89

(VHDL). Use a 1-kHz clock and create a 10-ms output pulse for the

simulation.Verify that:

(a) The correct pulse width is created when triggered.

(b) The output can be terminated early with the reset input.

(c) The one-shot design is nonretriggerable and cannot be triggered

again until it has timed out.

(d) The trigger signal must last long enough for the clock to catch it.

(e) The pulse width can be changed to a different value.

7-88. Modify the nonretriggerable, level-sensitive, one-shot design exam-

ple from either Figure 7-88 (AHDL) or Figure 7-89 (VHDL) so that

the one-shot is retriggerable but still level-sensitive. Simulate the

design.

DRILL QUESTION

7-89.*For each of the following statements, indicate the type(s) of counter

being described.

(a) Each FF is clocked at the same time.

(b) Each FF divides the frequency at its CLK input by 2.

(c) The counting sequence is 111, 110, 101, 100, 011, 010, 001, 000.

(d) The counter has 10 distinct states.

(e) The total switching delay is the sum of the individual FFs’

delays.

(f) This counter requires no decoding logic.

(g) The MOD number is always twice the number of FFs.

(h) This counter divides the input frequency by its MOD number.

(i) This counter can begin its counting sequence at any desired start-

ing state.

(j) This counter can count in any direction.

(k) This counter can suffer from decoding glitches due to its propa-

gation delays.

(l) This counter only counts from 0 to 9.

(m) This counter can be designed to count through arbitrary se-

quences by determining the logic circuit needed at each flip-flop’s

synchronous control inputs.
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ANSWERS TO SECTION REVIEW QUESTIONS

PART 1
SECTION 7-1

1. False 2. 0000 3. 128

SECTION 7-2

1. Each FF adds its propagation delay to the total counter delay in response to a

clock pulse. 2. MOD-256

SECTION 7-3

1. Can operate at higher clock frequencies and has more complex circuitry

2. Six FFs and four AND gates 3. ABCDE

SECTION 7-4

1. D, C, and A 2. True, because a BCD counter has 10 distinct states 3. 5 kHz

SECTION 7-5

1. In an up counter, the count is increased by 1 with each clock pulse; in a down

counter, the count is decreased by 1 with each pulse. 2. Change connections to

respective inverted outputs instead of Qs.

SECTION 7-6

1. It can be preset to any desired starting count. 2. Asynchronous presetting is

independent of the clock input, while synchronous presetting occurs on the active

edge of the clock signal.

SECTION 7-7

1. is the control that enables the parallel loading of the data inputs D C B A

(A � LSB). 2. is the control that enables the resetting of the counter to

0000. 3. True 4. All control inputs ( ENT, and ENP) on the 74162

must be HIGH. 5. � 1, � 0, and to count down.

6. 74HC163: 0 to 65,535; 74ALS190: 0 to 9999 or 9999 to 0.

SECTION 7-8

1. Sixty-four 2. A six-input NAND gate with inputs and 

SECTION 7-9

1. We will not have to deal with transient states and possible glitches in output

waveforms. 2. PRESENT state/NEXT state table 3. The gates control the count

sequence. 4. Unused states all lead back to the count sequence of the counter.

SECTION 7-10

1. See text. 2. It associates every possible PRESENT state with its desired NEXT

state. 3. It shows the necessary levels at each flip-flop’s synchronous input to

produce the counter’s state transitions. 4. True

SECTION 7-11

1. PRESENT state/NEXT state tables 2. The desired NEXT state 3. AHDL:

ff[ ].clk � !clock
VHDL:

IF (clock � ’0’ AND clock’ EVENT) THEN
4. Behavioral description

F.A, B, C, D, E,

D/U = 1CTENLOAD

LOAD,CLR,

CLR

LOAD
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SECTION 7-12
1. Asynchronous clear causes the counter to clear immediately. Synchronous load

occurs on the next active clock edge. 2. AHDL: Use .clrn port on FFs; VHDL:

Define clear function before checking for clock edge 3. By the order of evalua-

tion in an IF statement.

SECTION 7-13
1. Both HDLs can use a block diagram to connect modules; VHDL can also use a

text file that describes the connections between components. 2. A bus is a col-

lection of signal lines; it is represented graphically by a heavy-weight line

3. Count enable and terminal count decoding

SECTION 7-14
1. A counter is commonly used to count events, while a state machine is commonly

used to control events. 2. A state machine can be described using symbols to de-

scribe its states rather than actual binary states. 3. The compiler assigns the op-

timal values to minimize the circuitry. 4. The description is much easier to write

and understand.

PART 2
SECTION 7-19
1. Parallel in/serial out 2. True 3. Serial in/parallel out 4. Serial in/serial out

5. The 74165 uses asynchronous parallel data transfer; the 74174 uses synchronous

parallel data transfer. 6. A HIGH prevents shifting on CPs.

SECTION 7-20
1. Ring counter 2. Johnson counter 3. The inverted output of the last FF is

connected to the input of the first FF. 4. (a) False (b) True (c) True

5. Sixteen; eight

SECTION 7-22
1. AHDL:

reg [ ] .d � (reg [6..0], dat)
VHDL:

reg :� reg (6 DOWNTO 0) & dat
2. Because the register may continue to receive clock edges during hold

SECTION 7-23
1. It can start in any state, but it will eventually reach the desired ring sequence.

2. Lines 11 and 12 3. Lines 12 and 13

SECTION 7-24
1. The reset input 2. The clock frequency and the delay value loaded into the

counter 3. Synchronously 4. The output pulse width is very consistent.

5. The output pulse responds to the trigger edge immediately. 6. The state of the

trigger on the current clock edge and its state on the previous edge.
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