
9-1 Decoders

9-2 BCD-to-7-Segment

Decoder/Drivers

9-3 Liquid-Crystal Displays

9-4 Encoders

9-5 Troubleshooting

9-6 Multiplexers (Data

Selectors)

9-7 Multiplexer Applications

9-8 Demultiplexers (Data

Distributors)

9-9 More Troubleshooting

9-10 Magnitude Comparator

9-11 Code Converters

■ OUTLINE

M S I L O G I C C I R C U I T S

C H A P T E R 9

9-12 Data Busing

9-13 The 74ALS173/HC173

Tristate Register

9-14 Data Bus Operation

9-15 Decoders Using HDL

9-16 The HDL 7-Segment

Decoder/Driver

9-17 Encoders Using HDL

9-18 HDL Multiplexers and

Demultiplexers

9-19 HDL Magnitude

Comparators

9-20 HDL Code Converters

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 576

577

■ OBJECTIVES
Upon completion of this chapter, you will be able to:
■ Analyze and use decoders and encoders in various types of circuit

applications.

■ Compare the advantages and disadvantages of LEDs and LCDs.

■ Utilize the observation/analysis technique for troubleshooting digital

circuits.

■ Understand the operation of multiplexers and demultiplexers by

analyzing several circuit applications.

■ Compare two binary numbers by using the magnitude comparator

circuit.

■ Understand the function and operation of code converters.

■ Cite the precautions that must be considered when connecting digital

circuits using the data bus concept.

■ Use HDL to implement the equivalent of MSI logic circuits.

■ INTRODUCTION
Digital systems obtain binary-coded data and information that are continu-

ously being operated on in some manner. Some of the operations include:

(1) decoding and encoding, (2) multiplexing, (3) demultiplexing, (4) compari-
son, (5) code conversion, and (6) data busing. All of these operations and oth-

ers have been facilitated by the availability of numerous ICs in the MSI

(medium-scale-integration) category.

In this chapter, we will study many of the common types of MSI de-

vices. For each type, we will start with a brief discussion of its basic

operating principle and then introduce specific ICs. We then show how

they can be used alone or in combination with other ICs in various

applications.

9-1 DECODERS

A decoder is a logic circuit that accepts a set of inputs that represents a

binary number and activates only the output that corresponds to that in-

put number. In other words, a decoder circuit looks at its inputs, deter-

mines which binary number is present there, and activates the one output

that corresponds to that number; all other outputs remain inactive. The

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 577

diagram for a general decoder is shown in Figure 9-1 with N inputs and M
outputs. Because each of the N inputs can be 0 or 1, there are possible

input combinations or codes. For each of these input combinations, only

one of the M outputs will be active (HIGH); all the other outputs are LOW.

Many decoders are designed to produce active-LOW outputs, where only

the selected output is LOW while all others are HIGH. This situation is

indicated by the presence of small circles on the output lines in the decoder

diagram.

Some decoders do not utilize all of the possible input codes but only

certain ones. For example, a BCD-to-decimal decoder has a four-bit input

code and ten output lines that correspond to the ten BCD code groups 0000

through 1001. Decoders of this type are often designed so that if any of

the unused codes are applied to the input, none of the outputs will be

activated.

In Chapter 7, we saw how decoders are used in conjunction with counters

to detect the various states of the counter. In that application, the FFs in the

counter provided the binary code inputs for the decoder. The same basic de-

coder circuitry is used no matter where the inputs come from. Figure 9-2

shows the circuitry for a decoder with three inputs and outputs. It uses

all AND gates, and so the outputs are active-HIGH. Note that for a given in-

put code, the only output that is active (HIGH) is the one corresponding to

the decimal equivalent of the binary input code (e.g., output goes HIGH

only when).

This decoder can be referred to in several ways. It can be called a 3-line-
to-8-line decoder because it has three input lines and eight output lines. It can

also be called a binary-to-octal decoder or converter because it takes a three-

bit binary input code and activates one of the eight (octal) outputs corre-

sponding to that code. It is also referred to as a 1-of-8 decoder because only 1

of the 8 outputs is activated at one time.

CBA = 1102 = 610

O6

23
= 8

2N

2N

578 CHAPTER 9/MSI LOGIC CIRCUITS

FIGURE 9-1 General

decoder diagram. O0

O1

O2.
.
.

A0

A1

A2

AN–1

.

.

.

OM–1

Only one output
is HIGH for each
input code

M
outputs

N
inputs

2N

input
codes

Decoder

ENABLE Inputs
Some decoders have one or more ENABLE inputs that are used to control the

operation of the decoder. For example, refer to the decoder in Figure 9-2 and

visualize having a common ENABLE line connected to a fourth input of each

gate. With this ENABLE line held HIGH, the decoder will function normally,

and the A, B, C input code will determine which output is HIGH. With

ENABLE held LOW, however, all of the outputs will be forced to the LOW

state regardless of the levels at the A, B, C inputs.Thus, the decoder is enabled

only if ENABLE is HIGH.

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 578

Figure 9-3(a) shows the logic diagram for the 74ALS138 decoder. By ex-

amining this diagram carefully, we can determine exactly how this decoder

functions. First, notice that it has NAND gate outputs, so its outputs are

active-LOW. Another indication is the labeling of the outputs as ,

and so on; the overbar indicates active-LOW outputs.

The input code is applied at , and , where is the MSB. With

three inputs and eight outputs, this is a 3-to-8 decoder or, equivalently, a 1-of-8

decoder.

Inputs , and are separate enable inputs that are combined in the

AND gate. In order to enable the output NAND gates to respond to the input

code at , this AND gate output must be HIGH.This will occur only when

and . In other words, and are active-LOW, is active-

HIGH, and all three must be in their active states to activate the decoder out-

puts. If one or more of the enable inputs is in its inactive state, the AND output

will be LOW, which will force all NAND outputs to their inactive HIGH state

regardless of the input code. This operation is summarized in the truth table

in Figure 9-3(b). Recall that x represents the don’t-care condition.

The logic symbol for the 74ALS138 is shown in Figure 9-3(c). Note how

the active-LOW outputs are represented and how the enable inputs are rep-

resented. Even though the enable AND gate is shown as external to the

decoder block, it is part of the IC’s internal circuitry. The 74HC138 is the

high-speed CMOS version of this decoder.

E3E2E1E3 = 1E1 = E2 = 0

A2A1A0

E3E1, E2

A2A0A2, A1

O7, O6, O5

SECTION 9-1/DECODERS 579

C

0
0
0
0
1
1
1
1

B

0
0
1
1
0
0
1
1

A

0
1
0
1
0
1
0
1

O0

1
0
0
0
0
0
0
0

O1

0
1
0
0
0
0
0
0

O2

0
0
1
0
0
0
0
0

O3

0
0
0
1
0
0
0
0

O4

0
0
0
0
1
0
0
0

O5

0
0
0
0
0
1
0
0

O6

0
0
0
0
0
0
1
0

O7

0
0
0
0
0
0
0
1

A
(LSB)

B

C
(MSB)

0

1

2

3

4

5

6

7

O0 = CBA

O1 = CBA

O2 = CBA

O3 = CBA

O4 = CBA

O5 = CBA

O6 = CBA

O7 = CBA

FIGURE 9-2 Three-line-to-

8-line (or 1-of-8) decoder.

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 579

580 CHAPTER 9/MSI LOGIC CIRCUITS

FIGURE 9-3 (a) Logic

diagram for the 74ALS138

decoder; (b) truth table;

(c) logic symbol.

O1O2O3O4O5O6O7

(a)

O0

E2E1 E3
A1 A0

(MSB)
A2

E1

0
1
X
X

Outputs

Respond to input code A2A1A0
Disabled – all HIGH
Disabled – all HIGH
Disabled – all HIGH

E2

0
X
1
X

E3

1
X
X
0

(b)

74ALS138
1-of-8 decoder

E

A2 A1 A0

E2E1 E3

O7 O6 O5 O4 O3 O2 O1 O0

(c)

EXAMPLE 9-1 Indicate the states of the 74ALS138 outputs for each of the following sets of

inputs.

(a)

(b)

Solution

(a) With the decoder is disabled and all of its outputs will be in their

inactive HIGH state. This can be determined from the truth table or by

following the input levels through the circuit logic.

(b) All of the enable inputs are activated, so the decoding portion is en-

abled. It will decode the input code to activate output .

Thus, will be LOW and all other outputs will be HIGH.O3

O30112 = 310

E2 = 1,

E3 = 1, E2 = E1 = 0, A2 = 0, A1 = A0 = 1

E3 = E2 = 1, E1 = 0, A2 = A1 = 1, A0 = 0

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 580

Solution

(a) The five-bit code has two distinct portions. The and bits determine

which one of the decoder chips to will be enabled, while de-

termine which output of the enabled chip will be activated. With

only has all of its enable inputs activated. Thus, re-

sponds to the code and activates its output, which has

been renamed .Thus, the input code 01101, which is the binary equiv-

alent of decimal 13, will cause output to go LOW, while all others stay

HIGH.

(b) To enable both and must be HIGH. Thus, all input codes rang-

ing from 11000 () to 11111 () will activate .This corresponds to

outputs to .

BCD-to-Decimal Decoders
Figure 9-5(a) shows the logic diagram for a 7442 BCD-to-decimal decoder. It

is also available as a 74LS42 and a 74HC42. Each output goes LOW only

when its corresponding BCD input is applied. For example, will go LOW

only when inputs ; will go LOW only when .

For input combinations that are invalid for BCD, none of the outputs will be

activated. This decoder can also be referred to as a 4-to-10 decoder or a 1-of-10
decoder. The logic symbol and the truth table for the 7442 are also shown in

DCBA = 1000O8DCBA = 0101

O5

O31O24

Z431102410

A3A4Z4,

O13

O13

O5A2A1A0 = 101

Z2Z2A4A3 = 01,

A2A1A0Z4Z1

A3A4

SECTION 9-1/DECODERS 581

EXAMPLE 9-2 Figure 9-4 shows how four 74ALS138s and an INVERTER can be arranged to

function as a 1-of-32 decoder. The decoders are labeled to for easy ref-

erence, and the eight outputs from each one are combined into 32 outputs.

’s outputs are to ’s outputs to are renamed to re-

spectively; ’s outputs are renamed to ; and ’s are renamed to

. A five-bit input code will activate only one of these 32 out-

puts for each of the 32 possible input codes.

(a) Which output will be activated for ?

(b) What range of input codes will activate the chip?Z4

A4A3A2A1A0 = 01101

A4 A3 A2 A1A0O31

O24Z4O23O16Z3

O15,O8O7O0O7; Z2O0Z1

Z4Z1

+5 V

E

1 2 3

0 1 2 3 4 5 6 7

E

1 2 3

0 1 2 3 4 5 6 7

E

1 2 3

0 1 2 3 4 5 6 7

E

1 2 3

0 1 2 3 4 5 6 7

A4
(MSB)

A3

A0
A1
A2

O7O0

A0 A1

74ALS138
Z1

O15O8

A0 A1

74ALS138
Z2

O23O16

A0 A1

74ALS138
Z3

O31O24

A0 A1

74ALS138
Z4

A2 A2 A2 A2

FIGURE 9-4 Four

74ALS138s forming a

1-of-32 decoder.

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 581

the figure. Note that this decoder does not have an enable input. In Problem

9-7, we will see how the 7442 can be used as a 3-to-8 decoder, with the D in-

put used as an enable input.

BCD-to-Decimal Decoder/Driver
The TTL 7445 is a BCD-to-decimal decoder/driver. The term driver is added

to its description because this IC has open-collector outputs that can operate

at higher current and voltage limits than a normal TTL output. The 7445’s

outputs can sink up to 80 mA in the LOW state, and they can be pulled up to

30 V in the HIGH state. This makes them suitable for directly driving loads

such as indicator LEDs or lamps, relays, or dc motors.

Decoder Applications
Decoders are used whenever an output or a group of outputs is to be acti-

vated only on the occurrence of a specific combination of input levels. These

input levels are often provided by the outputs of a counter or a register.

582 CHAPTER 9/MSI LOGIC CIRCUITS

FIGURE 9-5 (a) Logic diagram for the 7442 BCD-to-decimal decoder; (b) logic

symbol; (c) truth table.

D

L
L
L
L

L
L
L
L

H
H
H
H

H
H
H
H

(c)

C

L
L
L
L

H
H
H
H

L
L
L
L

H
H
H
H

B

L
L
H
H

L
L
H
H

L
L
H
H

L
L
H
H

A

L
H
L
H

L
H
L
H

L
H
L
H

L
H
L
H

O0
O1
O2
O3

O4
O5
O6
O7

O8
O9
None
None

None
None
None
None

Active Output

H = HIGH Voltage Level
L = LOW Voltage Level

Inputs

A

B

C

D

BCD
input
code

(a)

D C B A

7442
1-of-10 decoder

O7 O6 O5 O4 O3 O2 O1 O0O8O9

(b)

O4

O3

O2

O1

O0

O8

O7

O6

O5

O9

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 582

When the decoder inputs come from a counter that is being continually

pulsed, the decoder outputs will be activated sequentially, and they can be

used as timing or sequencing signals to turn devices on or off at specific

times. An example of this operation is shown in Figure 9-6 using the 74ALS163

counter and the 7445 decoder/driver described above.

SECTION 9-1/DECODERS 583

(a)

(b)

Note open-collector symbol

7445
74ALS163

1

1 pps
CLK

ENT RCO

B
C

D
-t

o-
de

ci
m

al
de

co
de

r/
dr

iv
er

ENP

CLR

LOAD

D QD

QC

QB

QA

C

B

A

D

C

B

A

O9

O8

O7

O6

O5

O4

O3

O2

O1

O0

+24 V

+24 VK2

K1

CLOCK

24 V

24 V

0 V

0 V

K1

energized
K2

energized

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

O3

O6

FIGURE 9-6 Example 9-3: counter/decoder combination used to provide timing

and sequencing operations.

EXAMPLE 9-3 Describe the operation of the circuit in Figure 9-6(a).

Solution

The counter is being pulsed by a 1-pps signal so that it will sequence through

the binary counts at the rate of 1 count/s. The counter FF outputs are con-

nected as the inputs to the decoder. The 7445 open-collector outputs and

are used to switch relays and on and off. For instance, when is in

its inactive HIGH state, its output transistor will be off (nonconducting) so

that no current can flow through relay and it will be deenergized.When

is in its active-LOW state, its output transistor is on and acts as a current sink

for current through so that is energized. Note that the relays operateK1K1

O3K1

O3K2K1O6

O3

TOCCMC09_0131725793.QXD 12/20/05 8:14 PM Page 583

from V. Also note the presence of the diodes across the relay coils; these

protect the decoder’s output transistors from the large “inductive kick” volt-

age that would be produced when coil current is stopped abruptly.

The timing diagram in Figure 9-6(b) shows the sequence of events. If we as-

sume that the counter is in the 0000 state at time 0, then both outputs and

are initially in the inactive HIGH state, where their output transistors are

off and both relays are deenergized. As clock pulses are applied, the counter

will be incremented once per second. On the NGT of the third pulse (time 3),

the counter will go to the 0011 (3) state. This will activate decoder output

and thereby energize . On the NGT of the fourth pulse, the counter goes to

the 0100 (4) state.This will deactivate and deenergize relay .

Similarly, at time 6, the counter will go to the 0110 (6) state; this will

make and energize . At time 7, the counter goes to 0111 (7) and

deactivates to deenergize .

The counter will continue counting as pulses are applied. After 16 pulses,

the sequence just described will start over.

Decoders are widely used in the memory system of a computer where they

respond to the address code generated by the central processor to activate a par-

ticular memory location. Each memory IC contains many registers that can store

binary numbers (data). Each register needs to have its own unique address to

distinguish it from all the other registers.A decoder is built into the memory IC’s

circuitry and allows a particular storage register to be activated when a unique

combination of inputs (i.e., its address) is applied. In a system, there are usually

several memory ICs combined to make up the entire storage capacity.A decoder

is used to select a memory chip in response to a range of addresses by decoding

the most significant bits of the system address and enabling (selecting) a par-

ticular chip.We will examine this application in Problem 9-63, and we will study

it in much more depth when we read about memories in Chapter 12.

In more complicated memory systems, the memory chips are arranged in

multiple banks that must be selected individually or simultaneously, de-

pending on whether the microprocessor wants one or more bytes at a time.

This means that under certain circumstances, more than one output of the

decoder must be activated. For systems such as this, a programmable logic

device is often used to implement the decoder because a simple 1-of-8 de-

coder alone is not sufficient. Programmable logic devices can be used easily

for custom decoding applications.

K2O6

K2O6 = 0

K1O3

K1

O3

O6

O3

+24

584 CHAPTER 9/MSI LOGIC CIRCUITS

REVIEW QUESTIONS 1. Can more than one decoder output be activated at one time?

2. What is the function of a decoder’s enable input(s)?

3. How does the 7445 differ from the 7442?

4. The 74154 is a 4-to-16 decoder with two active-LOW enable inputs. How

many pins (including power and ground) does this IC have?

9-2 BCD-TO-7-SEGMENT DECODER/DRIVERS

Most digital equipment has some means for displaying information in a form

that can be understood readily by the user or operator.This information is of-

ten numerical data but can also be alphanumeric (numbers and letters). One

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 584

SECTION 9-2/BCD-TO-7-SEGMENT DECODER/DRIVERS 585

FIGURE 9-7 (a) 7-segment arrangement; (b) active segments for each digit.

a

g

d

f b

e c

(a) (b)

b and c
segments

of the simplest and most popular methods for displaying numerical digits

uses a 7-segment configuration [Figure 9-7(a)] to form the decimal charac-

ters 0 through 9 and sometimes the hex characters A through F. One common

arrangement uses light-emitting diodes (LEDs) for each segment. By con-

trolling the current through each LED, some segments will be light and oth-

ers will be dark so that the desired character pattern will be generated.

Figure 9-7(b) shows the segment patterns that are used to display the various

digits. For example, to display a “6,” the segments a, c, d, e, f, and g are made

bright while segment b is dark.

A BCD-to-7-segment decoder/driver is used to take a four-bit BCD in-

put and provide the outputs that will pass current through the appropriate

segments to display the decimal digit. The logic for this decoder is more

complicated than the logic of decoders that we have looked at previously

because each output is activated for more than one combination of inputs.

For example, the e segment must be activated for any of the digits 0, 2, 6,

and 8, which means whenever any of the codes 0000, 0010, 0110, or 1000

occurs.

Figure 9-8(a) shows a BCD-to-7-segment decoder/driver (TTL 7446 or

7447) being used to drive a 7-segment LED readout. Each segment consists

of an LED (light-emitting diode). Diodes are solid-state devices that allow

current to flow through them in one direction, but block the flow in the

other direction. Whenever the anode of an LED is more positive than the

cathode by approximately 2 V, the LED will light up. The anodes of

the LEDs are all tied to . The cathodes of the LEDs are con-

nected through current-limiting resistors to the appropriate outputs of the

decoder/driver. The decoder/driver has active-LOW outputs that are open-

collector driver transistors and can sink a fairly large current because LED

readouts may require 10 to 40 mA per segment, depending on their type

and size.

To illustrate the operation of this circuit, let us suppose that the BCD in-

put is which is BCD for 5. With these inputs, the

decoder/driver outputs and will be driven LOW (connected to

ground), allowing current to flow through the a, f, g, c, and d LED segments

and thereby displaying the numeral 5. The and outputs will be HIGH

(open), so that LED segments b and e cannot conduct.

The 7446/47 decoder/drivers are designed to activate specific segments

even for non-BCD input codes (greater than 1001). Figure 9-8(b) shows the ac-

tivated segment patterns for all possible input codes from 0000 to 1111. Note

that an input code of 1111 (15) will blank out all the segments.

eb

da, f, g, c,

D = 0, C = 1, B = 0, A = 1,

VCC (+5 V)

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 585

Seven-segment decoder/drivers such as the 7446/47 are exceptions to the

rule that decoder circuits activate only one output for each combination of

inputs. Rather, they activate a unique pattern of outputs for each combina-

tion of inputs.

Common-Anode Versus Common-Cathode LED Displays
The LED display used in Figure 9-8 is a common-anode type because the an-

odes of all of the segments are tied together to . Another type of 7-segment

LED display uses a common-cathode arrangement where the cathodes of all

of the segments are tied together and connected to ground. This type of dis-

play must be driven by a BCD-to-7-segment decoder/driver with active-

HIGH outputs that apply a HIGH voltage to the anodes of those segments

that are to be activated. Because each segment requires 10 to 20 mA of cur-

rent to light it, TTL and CMOS devices are normally not used to drive the

common-cathode display directly. Recall from Chapter 8 that TTL and

CMOS outputs are not able to source large amounts of current. A transistor

interface circuit is often used between decoder chips and the common-cathode

display.

VCC

586 CHAPTER 9/MSI LOGIC CIRCUITS

FIGURE 9-8 (a) BCD-to-7-

segment decoder/driver

driving a common-anode

7-segment LED display;

(b) segment patterns for all

possible input codes.

For current
limiting

BCD-
to-

7-segment
decoder/

driver

D

C

B

A

(a)

7446 or 7447

BCD
input

Common-
Anode

Cathode

anode
connections

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b)

a

f b

g

e c

d

Blanking
controls
LED test

input
LT

RBI

BI/RBO

a

b

c

d

e

f

g

+VCC

EXAMPLE 9-4 Each segment of a typical 7-segment LED display is rated to operate at 10 mA

at 2.7 V for normal brightness. Calculate the value of the current-limiting

resistor needed to produce approximately 10 mA per segment.

Solution

Referring to Figure 9-8(a), we can see that the series resistor must have a

voltage drop equal to the difference between and the segment

voltage of 2.7 V. This 2.3 V across the resistor must produce a current of

about 10 mA. Thus, we have

VCC = 5 V

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 586

A standard resistor value close to this can be used. A resistor

would be a good choice.

220-Æ

RS =

2.3 V

10 mA
= 230 Æ

SECTION 9-3/LIQUID-CRYSTAL DISPLAYS 587

REVIEW QUESTIONS 1. Which LED segments will be on for a decoder/driver input of 1001?

2. True or false: More than one output of a BCD-to-7-segment decoder/driver

can be active at one time.

9-3 LIQUID-CRYSTAL DISPLAYS

An LED display generates or emits light energy as current is passed through

the individual segments. A liquid-crystal display (LCD) controls the reflec-

tion of available light. The available light may simply be ambient (surround-

ing) light such as sunlight or normal room lighting; reflective LCDs use

ambient light. Or the available light might be provided by a small light

source that is part of the display unit; backlit LCDs use this method. In any

case, LCDs have gained wide acceptance because of their very low power

consumption compared to LEDs, especially in battery-operated equipment

such as calculators, digital watches, and portable electronic measuring

instruments. LEDs have the advantage of a much brighter display that,

unlike reflective LCDs, is easily visible in dark or poorly lit areas.

Basically, LCDs operate from a low-voltage (typically 3 to 15 V rms), low-

frequency (25 to 60 Hz) ac signal and draw very little current. They are often

arranged as 7-segment displays for numerical readouts as shown in Figure

9-9(a). The ac voltage needed to turn on a segment is applied between the

segment and the backplane, which is common to all segments. The segment

and the backplane form a capacitor that draws very little current as long as

the ac frequency is kept low. It is generally not lower than 25 Hz because this

would produce visible flicker.

FIGURE 9-9 Liquid-crystal display: (a) basic arrangement; (b) applying a voltage

between the segment and the backplane turns ON the segment. Zero voltage turns

the segment OFF.

LCD display

a
b
c
d
e
f
g

Backplane

(a)

Incident
ambient

light

a
b
c
d
e
f
g

Backplane

(b)

Incident
light

a

g

d

e

f

c

b

a

c

b

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 587

An admittedly simplified explanation of how an LCD operates goes

something like this. When there is no difference in voltage between a seg-

ment and the backplane, the segment is said to be nonactivated (OFF). Seg-

ments d, e, f, and g in Figure 9-9(b) are OFF and will reflect incident light

so that they appear invisible against their background. When an appropri-

ate ac voltage is applied between a segment and the backplane, the seg-

ment is activated (ON). Segments a, b, and c in Figure 9-9(b) are ON and will

not reflect the incident light, and thus they appear dark against their back-

ground.

Driving an LCD
An LCD segment will turn ON when an ac voltage is applied between the

segment and the backplane, and will turn OFF when there is no voltage be-

tween the two. Rather than generating an ac signal, it is common practice to

produce the required ac voltage by applying out-of-phase square waves to

the segment and the backplane. This is illustrated in Figure 9-10(a) for one

segment. A 40-Hz square wave is applied to the backplane and also to the

input of a CMOS 74HC86 XOR. The other input to the XOR is a CONTROL

input that will control whether the segment is ON or OFF.

When the CONTROL input is LOW, the XOR output will be exactly the

same as the 40-Hz square wave, so that the signals applied to the segment and

588 CHAPTER 9/MSI LOGIC CIRCUITS

40 Hz

LCD
a
b
c
d
e
f
g

Backplane

D

C

B

A

All 74HC8674HC4511

BCD-to-
7-segment
decoder/

driver

a

b

c

d

e

f

g

74HC86Control

40 Hz signal 5 V
0 Segment

Backplane

(a)

(b)

Control

LOW
HIGH

Segment

Off
On

FIGURE 9-10 (a) Method

for driving an LCD

segment; (b) driving a

7-segment display.

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 588

the backplane are equal. Because there is no difference in voltage, the seg-

ment will be OFF. When the CONTROL input is HIGH, the XOR output will

be the INVERSE of the 40-Hz square wave, so that the signal applied to the

segment is out of phase with the signal applied to the backplane. As a result,

the segment voltage will alternately be at and at relative to the

backplane. This ac voltage will turn ON the segment.

This same idea can be extended to a complete 7-segment LCD display, as

shown in Figure 9-10(b). Here, the CMOS 74HC4511 BCD-to-7-segment de-

coder/driver supplies the CONTROL signals to each of seven XOR for the

seven segments. The 74HC4511 has active-HIGH outputs because a HIGH is

required to turn on a segment. The decoder/driver and XOR gates of Figure

9-10(b) are available on a single chip. The CMOS 74HC4543 is one such de-

vice. It takes the BCD input code and provides the outputs to drive the LCD

segments directly.

In general, CMOS devices are used to drive LCDs for two reasons: (1) they

require much less power than TTL and are more suited to the battery-

operated applications where LCDs are used; (2) the TTL LOW-state voltage

is not exactly 0 V and can be as much as 0.4 V. This will produce a dc compo-

nent of voltage between the segment and the backplane that considerably

shortens the life of an LCD.

Types of LCDs
Liquid crystals are available as multidigit 7-segment decimal numeric dis-

plays. They come in many sizes and with many special characters such as

colons (:) for clock displays, and indicators for digital voltmeters, deci-

mal points for calculators, and battery-low indicators because many LCD de-

vices are battery-powered.These displays must be driven by a decoder/driver

chip such as the 74HC4543.

A more complicated but readily available LCD display is the alphanumeric

LCD module. These modules are available from many companies in numerous

formats such as 1-line-by-16-characters up to 4-lines-by-40-characters. The

interface to these modules has been standardized so that an LCD module

from any manufacturer will use the same signals and data format. The mod-

ule includes some VLSI chips that make this device simple to use. Eight data

lines are used to send the ASCII code for whatever you wish to display.These

data lines also carry special control codes to the LCD command register.

Three other inputs (Register Select, Read/Write, and Enable) are used to

control the location, direction, and timing of the data transfer. As characters

are sent to the module, it stores them in its own memory and types them

across the display screen.

Other LCD modules allow the user to create a graphical display by con-

trolling individual dots on the screen called pixels. Larger LCD panels can

be scanned at a high rate, producing high-quality video motion pictures. In

these displays, the control lines are arranged in a grid of rows and

columns. At the intersection of each row and column is a pixel that acts

like a “window” or “shutter” that can be electronically opened and closed

to control the amount of light that is transmitted through the cell.The volt-

age from a row to a column determines the brightness of each pixel. In a

laptop computer, a binary number for each pixel is stored in the “video”

memory. These numbers are converted to voltages that are applied to the

display.

Each pixel on a color display is actually made up of three subpixels.

These subpixels control the light that passes through a red, green, or blue

filter to produce the color of each pixel. On a 640-by-480 LCD screen there

-+

-5 V+5 V

SECTION 9-3/LIQUID-CRYSTAL DISPLAYS 589

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 589

would be connections for columns and 480 connections for rows, for

a total of 2400 connections to the LCD. Obviously, the driver circuitry for such

a device is a very complicated VLSI circuit.

The advances in technology for LCD displays have increased the speed

at which the pixels can be turned on and off. The older screens are called

Twisted Nematic (TN) or Super Twisted Nematic (STN). These devices are

referred to as passive LCDs. Instead of using a uniform backplane like the

7-segment LCD displays, they have conducting parallel lines manufactured

onto two pieces of glass. The two glass sheets are used to sandwich the liq-

uid crystal material with the conducting lines at forming a grid of rows

and columns, as shown in Figure 9-11. The intersection of each row and col-

umn forms a pixel. The actual switching of the current on and off is done in

the driver IC that is connected to the rows and columns of the display. Pas-

sive matrix displays are rather slow at turning off. This limits the rate at

which objects can move on the screen without leaving a shadow trail behind

them.

The newer displays are called active matrix TFT LCDs. The active ma-

trix means that an active element on the display is used to switch the pix-

els on and off. The active component is a thin film transistor (TFT) that is

manufactured directly onto one piece of glass. The other piece of glass has

a uniform coating to form a backplane. The control lines for these transis-

tors run in rows and columns between the pixels.The technology that allows

these transistors to be manufactured in a matrix on a thin film the size of a

laptop computer screen has made these displays possible. They provide a

much faster-response, higher-resolution display.The use of polysilicon tech-

nology allows the driver circuits to be integrated into the display unit, re-

ducing connection problems and requiring very little perimeter space

around the LCD.

Other display technologies are being refined, including vacuum fluores-

cent, gas discharge plasma, and electroluminescence. The optical physics

for each of these displays varies, but the means of controlling all of them is

the same. A digital system must activate a row and a column of a matrix in

order to control the amount of light at the pixel located at the row/column

intersection.

90°,

640 * 3

590 CHAPTER 9/MSI LOGIC CIRCUITS

Glass

Glass

Primary color filters:
red, blue, green

Liquid crystal
space

Transparent column
electrodes

Transparent row
electrodes

FIGURE 9-11 A passive

matrix LCD panel.

TOCCMC09_0131725793.QXD 1/17/06 3:29 AM Page 590

9-4 ENCODERS

Most decoders accept an input code and produce a HIGH (or a LOW) at one
and only one output line. In other words, we can say that a decoder identifies,

recognizes, or detects a particular code. The opposite of this decoding

process is called encoding and is performed by a logic circuit called an en-
coder. An encoder has a number of input lines, only one of which is activated

at a given time, and produces an N-bit output code, depending on which in-

put is activated. Figure 9-12 is the general diagram for an encoder with M in-

puts and N outputs. Here, the inputs are active-HIGH, which means that they

are normally LOW.

SECTION 9-4/ENCODERS 591

REVIEW QUESTIONS 1. Indicate which of the following statements refer to LCD displays and

which refer to LED displays.

(a) Emit light

(b) Reflect ambient light

(c) Are best for low-power applications

(d) Require an ac voltage

(e) Use a 7-segment arrangement to produce digits

(f) Require current-limiting resistors

2. What form of data is sent to each of the following?

(a) A 7-segment LCD display with a decoder/driver

(b) An alphanumeric LCD module

(c) An LCD computer display

FIGURE 9-12 General

encoder diagram. O0

Encoder

O1

O2

ON - 1

A0

A1

A2

AM - 1

N-bit
output code

M inputs
only one HIGH

at a time

We saw that a binary-to-octal decoder (3-line-to-8-line decoder) accepts a

three-bit input code and activates one of eight output lines corresponding to

that code. An octal-to-binary encoder (8-line-to-3-line encoder) performs the op-

posite function: it accepts eight input lines and produces a three-bit output

code corresponding to the activated input. Figure 9-13 shows the logic circuit

and the truth table for an octal-to-binary encoder with active-LOW inputs.

By following through the logic, you can verify that a LOW at any single

input will produce the output binary code corresponding to that input. For

instance, a LOW at (while all other inputs are HIGH) will produceA3

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 591

and which is the binary code for 3. Notice that is

not connected to the logic gates because the encoder outputs will normally

be at 000 when none of the inputs to is LOW.A9A1

A0O0 = 1,O2 = 0, O1 = 1,

592 CHAPTER 9/MSI LOGIC CIRCUITS

FIGURE 9-13 Logic circuit for an octal-to-binary (8-line-to-3-line) encoder. For

proper operation, only one input should be active at one time.

8
inputs

A0

X
X
X
X
X
X
X
X

A1

1
0
1
1
1
1
1
1

A2

1
1
0
1
1
1
1
1

A3

1
1
1
0
1
1
1
1

A4

1
1
1
1
0
1
1
1

A5

1
1
1
1
1
0
1
1

A6

1
1
1
1
1
1
0
1

A7

1
1
1
1
1
1
1
0

O2

0
0
0
0
1
1
1
1

O1

0
0
1
1
0
0
1
1

O0

LSB

O1

O2

MSB

A0

A1

A2

A3

A4

A5

A6

A7

*Only one
LOW input
at a time

O0

0
1
0
1
0
1
0
1

Inputs Outputs

EXAMPLE 9-5 Determine the outputs of the encoder in Figure 9-13 when and are si-

multaneously LOW.

Solution

Following through the logic gates, we see that the LOWs at these two inputs

will produce HIGHs at each output, in other words, the binary code 111.

Clearly, this is not the code for either activated input.

Priority Encoders
This last example identifies a drawback of the simple encoder circuit of

Figure 9-13 when more than one input is activated at one time. A modified

version of this circuit, called a priority encoder, includes the necessary logic

to ensure that when two or more inputs are activated, the output code will

correspond to the highest-numbered input. For example, when both and

are LOW, the output code will be 101 (5). Similarly, when and

are all LOW, the output code is 110 (6). The 74148, 74LS148, and 74HC148

are all octal-to-binary priority encoders.

74147 Decimal-to-BCD Priority Encoder
Figure 9-14 shows the logic symbol and the truth table for the 74147

(74LS147, 74HC147), which functions as a decimal-to-BCD priority encoder. It

has nine active-LOW inputs representing the decimal digits 1 through 9, and

it produces the inverted BCD code corresponding to the highest-numbered

activated input.

A0A6, A2,A5

A3

A5A3

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 592

Let’s examine the truth table to see how this IC works. The first line in

the table shows all inputs in their inactive HIGH state. For this condition, the

outputs are 1111, which is the inverse of 0000, the BCD code for 0. The sec-

ond line in the table indicates that a LOW at regardless of the states of

the other inputs, will produce an output code of 0110, which is the inverse of

1001, the BCD code for 9. The third line shows that a LOW at provided

that is HIGH, will produce an output code of 0111, the inverse of 1000, the

BCD code for 8. In a similar manner, the remaining lines in the table show

that a LOW at any input, provided that all higher-numbered inputs are HIGH,

will produce the inverse of the BCD code for that input.

The 74147 outputs will normally be HIGH when none of the inputs are

activated. This corresponds to the decimal 0 input condition. There is no

input because the encoder assumes the decimal 0 input state when all other

inputs are HIGH. The 74147 inverted BCD outputs can be converted to nor-

mal BCD by putting each one through an INVERTER.

A0

A9

A8,

A9,

SECTION 9-4/ENCODERS 593

FIGURE 9-14 74147 decimal-to-BCD priority encoder.

O3

74147
Decimal-
to-BCD
priority

encoder

X = either 0 or 1

O2

O1

O0

MSB
A1

A2

A8

A9

Nine
inputs

Inverted
BCD

A1

1
X
X
X
X
X
X
X
X
0

A2

1
X
X
X
X
X
X
X
0
1

A3

1
X
X
X
X
X
X
0
1
1

A4

1
X
X
X
X
X
0
1
1
1

A5

1
X
X
X
X
0
1
1
1
1

A6

1
X
X
X
0
1
1
1
1
1

A7

1
X
X
0
1
1
1
1
1
1

A8

1
X
0
1
1
1
1
1
1
1

A9

1
0
1
1
1
1
1
1
1
1

O0

1
0
1
0
1
0
1
0
1
0

O1

1
1
1
0
0
1
1
0
0
1

O2

1
1
1
0
0
0
0
1
1
1

O3

1
0
0
1
1
1
1
1
1
1

EXAMPLE 9-6 Determine the states of the outputs in Figure 9-14 when and are

LOW and all other inputs are HIGH.

Solution

The truth table shows that when is LOW, the levels at and do not

matter. Thus, the outputs will each be 1000, the inverse of 0111 (7).

Switch Encoder
Figure 9-15 shows how a 74147 can be used as a switch encoder. The 10 switches

might be the keyboard switches on a calculator representing digits 0 through

9. The switches are of the normally open type, so that the encoder inputs are

all normally HIGH and the BCD output is 0000 (note the INVERTERs). When

a digit key is depressed, the circuit will produce the BCD code for that digit.

Because the 74LS147 is a priority encoder, simultaneous key depressions will

produce the BCD code for the higher-numbered key.

The switch encoder of Figure 9-15 can be used whenever BCD data must

be entered manually into a digital system. A prime example would be in an

electronic calculator, where the operator depresses several keyboard switches

in succession to enter a decimal number. In a simple, basic calculator, the BCD

code for each decimal digit is entered into a four-bit storage register. In other

A3A5A7

A3A5, A7,

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 593

words, when the first key is depressed, the BCD code for that digit is sent to a

four-bit FF register; when the second switch is depressed, the BCD code for

that digit is sent to another four-bit FF register, and so on. Thus, a calculator

that can handle eight digits will have eight four-bit registers to store the BCD

codes for these digits. Each four-bit register drives a decoder/driver and a nu-

merical display so that the eight-digit number can be displayed.

The operation described above can be accomplished with the circuit in

Figure 9-16. This circuit will take three decimal digits entered from the key-

board in sequence, encode them in BCD, and store the BCD in three FF out-

put registers. The 12 D-type flip-flops to are used to receive and store

the BCD codes for the digits. to store the BCD code for the most sig-

nificant digit (MSD), which is the first one entered on the keyboard. to

store the second entered digit, and to store the third entered digit. Flip-

flops X,Y, and Z form a ring counter (Chapter 7) that controls the transfer of

data from the encoder outputs to the appropriate output register. The OR

gate produces a HIGH output any time one of the keys is depressed.This out-

put may be affected by switch contact bounce, which would produce several

pulses before settling down to the HIGH state. The OS is used to neutralize

the switch bounce by triggering on the first positive transition from the OR

gate and remaining HIGH for 20 ms, well past the time duration of the switch

bounce. The OS output clocks the ring counter.

The circuit operation is described as follows for the case where the deci-

mal number 309 is being entered:

1. The CLEAR key is depressed. This clears all storage flip-flops to

to 0. It also clears flip-flops X and Y and presets flip-flop Z to 1, so that

the ring counter begins in the 001 state.

2. The CLEAR key is released and the “3” key is depressed. The encoder

outputs 1100 are inverted to produce 0011, the BCD code for 3. These bi-

nary values are sent to the D inputs of the three four-bit output registers.

3. The OR output goes HIGH (because two of its inputs are HIGH) and trig-

gers the OS output for 20 ms.After 20 ms, Q returns LOW and clocksQ = 1

Q11Q0

Q3Q0

Q7Q4

Q11Q8

Q11Q0

594 CHAPTER 9/MSI LOGIC CIRCUITS

SW9

SW8

SW7

SW6

SW5

SW4

SW3

SW2

SW1

SW0

74LS147
Decimal-
to-BCD
priority

encoder

Pull-up resister
on each encoder

input shown
only for SW9

+5 V

1 k�

Normal
BCD

A9

A8

A7

A6

A5

A4

A3

A2

A1

O3

O2

O1

O0

FIGURE 9-15 Decimal-to-

BCD switch encoder.

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 594

the ring counter to the 100 state (X goes HIGH). The positive transition

at X is fed to the CLK inputs of flip-flops to so that the encoder

outputs are transferred to these FFs. That is,

and . Note that flip-flops to are not affected because their

CLK inputs have not received a positive transition.

Q7Q0Q8 = 1

Q11 = 0, Q10 = 0, Q9 = 1,

Q11,Q8

SECTION 9-4/ENCODERS 595

Digit keys
9

8

7

6

5

4

3

2

1

+5 V

1 k�

Q3

0

MSB

Q2

Q1

Q0

LSB

Pull-up
resistor for
each input

Q11D
CLK

Q10D
CLK

Q9D
CLK

Q8D
CLK

Q7D
CLK

Q6D
CLK

Q5D
CLK

Q4D
CLK

Q3D
CLK

Q2D
CLK

Q1D
CLK

Q0D
CLK

LSD

Second
MSD

BCD
code for

MSD

ZJ

CLK

ZK

PRE
YJ

CLK

YK
CLR

XJ

CLK

XK
CLR

Q

T

Q

tp = 20 ms

+5 V

1 k�

CLEAR
to CLR inputs

of Q0–Q11

OS

For switch
bounce

74LS147
Decimal-
to-BCD
encoder

To
decoder/drivers

and displays

FIGURE 9-16 Circuit for keyboard entry of three-digit number into storage registers.

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 595

4. The “3” key is released and the OR gate output returns LOW.The “0” key

is then depressed. This produces the BCD code of 0000, which is fed to

the inputs of the three registers.

5. The OR output goes HIGH in response to the “0” key (note the IN-

VERTER) and triggers the OS for 20 ms. After 20 ms, the ring counter

shifts to the 010 state (Y goes HIGH). The positive transition at Y is fed to

the CLK inputs of to and transfers the 0000 to these FFs. Note that

flip-flops to and to are not affected by the Y transition.

6. The “0” key is released and the OR output returns LOW. The “9” key is

depressed, producing BCD outputs 1001, which are fed to the storage

registers.

7. The OR output goes HIGH again, triggering the OS, which in turn clocks

the ring counter to the 001 state (Z goes HIGH). The positive transition

at Z is fed to the CLK inputs of to and transfers the 1001 into these

FFs. The other storage FFs are unaffected.

8. At this point, the storage register contains 001100001001, beginning with

. This is the BCD code of 309. These register outputs feed decoder/

drivers that drive appropriate displays for indicating the decimal digits

309.

9. The storage FF outputs are also fed to other circuits in the system. In a

calculator, for example, these outputs would be sent to the arithmetic

section to be processed.

Several problems at the end of the chapter will deal with some other aspects

of this circuit, including troubleshooting exercises.

The 74ALS148 is slightly more sophisticated than the ’147. It has eight

inputs that are encoded into a three-bit binary number. This IC also provides

three control pins as indicated in Table 9-1.The Enable Input () and Enable

Output () can be used to cascade two IC’s producing a hexadecimal-to-

binary encoder. The pin must be LOW in order for any output pin to go

LOW, and the pin will only go LOW when none of the eight inputs is active

and the is active. The output is used to indicate when at least one of

the eight inputs is activated. It should be noted that the outputs through

are inverted, just as in the 74147.A0

A2

GSEI

EO

EI

EO

EI

Q11

Q3Q0

Q11Q8Q3Q0

Q7Q4

596 CHAPTER 9/MSI LOGIC CIRCUITS

TABLE 9-1 74ALS148 function table.

INPUTS OUTPUTS

EI
–—

0
–

1
– –

2
–
3

–
4

–
5

–
6

–
8

–
A2

–
A1

–
A0 GS

–—
EO
–—

H x x x x x x x x H H H H H

L H H H H H H H H H H H H L

L x x x x x x x L L L L L H

L x x x x x x L H L L H L H

L x x x x x L H H L H L L H

L x x x x L H H H L H H L H

L x x x L H H H H H L L L H

L x x L H H H H H H L H L H

L x L H H H H H H H H L L H

L L H H H H H H H H H H L H

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 596

9-5 TROUBLESHOOTING

As circuits and systems become more complex, the number of possible

causes of failure obviously increases. Whereas the procedure for fault isola-

tion and correction remains essentially the same, the application of the ob-
servation/analysis process is more important for complex circuits because it

helps the troubleshooter narrow the location of the fault to a small area of

the circuit. This reduces to a reasonable amount the testing steps and result-

ing data that must be analyzed. By understanding the circuit operation, ob-

serving the symptoms of the failure, and reasoning through the operation,

the troubleshooter can often predict the possible faults before ever picking

up a logic probe or an oscilloscope. This observation/analysis process is one

that inexperienced troubleshooters are hesitant to apply, probably because

of the great variety and capabilities of modern test equipment available to

them. It is easy to become overly reliant on these tools while not adequately

utilizing the human brain’s reasoning and analytical skills.

The following examples illustrate how the observation/analysis process can

be applied. Many of the end-of-chapter troubleshooting problems will provide

you with the opportunity to develop your skill at applying this process.

Another vital strategy in troubleshooting is known as divide-and-conquer.

It is used to identify the location of the problem after observation/analysis has

generated several possibilities. A less efficient method would be to investi-

gate each possible cause, one by one. The divide-and-conquer method finds a

point in the circuit that can be tested, thereby dividing the total possible num-

ber of causes in half. In simple systems, this may seem unnecessary, but as

complexity increases, the total number of possible causes also increases. If

there are eight possible causes, then a test should be performed that elimi-

nates four of them.The next test should eliminate two more, and the third test

should identify the problem.

SECTION 9-5/TROUBLESHOOTING 597

REVIEW QUESTIONS 1. How does an encoder differ from a decoder?

2. How does a priority encoder differ from an ordinary encoder?

3. What will the outputs be in Figure 9-15 when SW6, SW5, and SW2 are all

closed?

4. Describe the functions of each of the following parts of the keyboard en-

try circuit of Figure 9-16.

(a) OR gate (d) Flip-flops X, Y, Z

(b) 74147 encoder (e) Flip-flops to

(c) One-shot

5. What is the purpose of each control input and output on a 74148 encoder?

Q11Q0

EXAMPLE 9-7 A technician tests the circuit of Figure 9-4 by using a set of switches to apply

the input code at through . She runs through each possible input code

and checks the corresponding decoder output to see if it is activated. She ob-

serves that all of the odd-numbered outputs respond correctly, but all of the

even-numbered outputs fail to respond when their code is applied. What are

the most probable faults?

A0A4

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 597

Solution

In a situation where so many outputs are failing, it is unreasonable to expect

that each of these outputs has a fault. It is much more likely that some faulty

input condition is causing the output failures. What do all of the even-

numbered outputs have in common? The input codes for several of them are

listed in Table 9-2.

Clearly, each even-numbered output requires an input code with an

in order to be activated. Thus, the most probable faults would be

those that prevent from going LOW. These include:

1. A faulty switch connected to the input

2. A break in the path between the switch and the line

3. An external short from the line to

4. An internal short to at the inputs of any one of the decoder

chips

Through observation and analysis, the technician has identified sev-

eral possible causes. Potential causes 1 and 2 are in the switches generat-

ing the address. Causes 3 and 4 are in the decoder circuit itself. The

circuit can be divided by opening the connection between the least sig-

nificant switch and the input, as shown in Figure 9-17. A logic probe

can be used to see if the switch can generate a LOW as well as a HIGH.

Regardless of the outcome, two of the four possible causes have been

eliminated.

Thus, the fault is narrowed to a specific area of the circuit. The exact

fault can be traced with the testing and measurement techniques that we

are already familiar with.

A0

A0VCC

VCCA0

A0

A0

A0

A0 = 0

598 CHAPTER 9/MSI LOGIC CIRCUITS

TABLE 9-2

Output Input Code

00000

00100

01110

10010O18

O14

O4

O0

EXAMPLE 9-8 A technician wires the outputs from a BCD counter to the inputs of the de-

coder/driver of Figure 9-8. He applies pulses to the counter at a very slow

rate and observes the LED display, which is shown below, as the counter

counts up from 0000 to 1001. Examine this observed sequence carefully and

try to predict the most probable fault.

VCC

Decoder circuit Fig. 9-4

A0

A1

A2

A3

A4

Same circuitry as
connected to A0

CSwitch

R
74ALS14

Test point

Break circuitFIGURE 9-17
Troubleshooting circuitry in

Example 9-7.

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 598

Solution

Comparing the observed display with the expected display for each count,

we see several important points:

■ For those counts where the observed display is incorrect, the observed

display is not one of the segment patterns that correspond to counts

greater than 1001.

■ This rules out a faulty counter or faulty wiring from the counter to the

decoder/driver.

■ The correct segment patterns (0, 1, 3, 6, 7, and 8) have the common prop-

erty that segments e and f are either both on or both off.

■ The incorrect segment patterns have the common property that seg-

ments e and f are in opposite states, and if we interchange the states of

these two segments, the correct pattern is obtained.

Giving some thought to these points should lead us to conclude that

the technician has probably “crossed” the connections to the e and f
segments.

9-6 MULTIPLEXERS (DATA SELECTORS)

A modern home stereo system may have a switch that selects music from

one of four sources: a cassette tape, a compact disc (CD), a radio tuner, or an

auxilliary input such as audio from a VCR or DVD. The switch selects one of

the electronic signals from one of these four sources and sends it to the

power amplifier and speakers. In simple terms, this is what a multiplexer
(MUX) does: it selects one of several input signals and passes it on to the

output.

A digital multiplexer or data selector is a logic circuit that accepts several

digital data inputs and selects one of them at any given time to pass on to the

output. The routing of the desired data input to the output is controlled by

SELECT inputs (often referred to as ADDRESS inputs). Figure 9-18 shows

the functional diagram of a general digital multiplexer. The inputs and out-

puts are drawn as wide arrows rather than lines; this indicates that they may

actually be more than one signal line.

The multiplexer acts like a digitally controlled multiposition switch

where the digital code applied to the SELECT inputs controls which data in-

puts will be switched to the output. For example, output Z will equal data in-

put for some particular SELECT input code, Z will equal for another

particular SELECT input code, and so on. Stated another way, a multiplexer

selects 1 out of N input data sources and transmits the selected data to a sin-

gle output channel. This is called multiplexing.

I1I0

SECTION 9-6/MULTIPLEXERS (DATA SELECTORS) 599

0COUNT

Observed
display

Expected
display

1 2 3 4 5 6 7 8 9

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 599

Basic Two-Input Multiplexer
Figure 9-19 shows the logic circuitry for a two-input multiplexer with data

inputs and and SELECT input S. The logic level applied to the S input

determines which AND gate is enabled so that its data input passes through

the OR gate to output Z. Looking at it another way, the Boolean expression

for the output is

With this expression becomes

[gate 2 enabled]

which indicates that Z will be identical to input signal which in turn can

be a fixed logic level or a time-varying logic signal. With the expres-

sion becomes

[gate 1 enabled]

showing that output Z will be identical to input signal .

An example of where a two-input MUX could be used is in a digital sys-

tem that uses two different MASTER CLOCK signals: a high-speed clock

(say, 10 MHz) in one mode and a slow-speed clock (say, 4.77 MHz) for the

I1

Z = I0
0 + I1

1 = I1

S = 1,

I0,

 = I0

 Z = I0
1 + I1

0

S = 0,

Z = I0S + I1S

I1I0

600 CHAPTER 9/MSI LOGIC CIRCUITS

FIGURE 9-18 Functional

diagram of a digital

multiplexer (MUX).

FIGURE 9-19 Two-input

multiplexer.

MUX

I0

I1

IN–1

DATA
inputs

Output
Z

SELECT
inputs

SELECT input code
determines which input
is transmitted to output Z.

I1

I0

S
SELECT input

DATA
inputs Z = I0 • S + I1 • S

S

0
1

Output

Z = I0
Z = I1

1

2

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 600

other. Using the circuit of Figure 9-19, the 10-MHz clock would be tied to

and the 4.77-MHz clock would be tied to . A signal from the system’s con-

trol logic section would drive the SELECT input to control which clock sig-

nal appears at output Z for routing to the other parts of the circuit.

Four-Input Multiplexer
The same basic idea can be used to form the four-input multiplexer shown in

Figure 9-20(a). Here, four inputs are selectively transmitted to the output ac-

cording to the four possible combinations of the select inputs. Each data

input is gated with a different combination of select input levels. is gated

with so that will pass through its AND gate to output Z only when

and . The table in the figure gives the outputs for the other

three input-select codes.

Another circuit that performs exactly the same function is shown in

Figure 9-20(b).This approach uses tristate buffers to select one of the signals.

The decoder ensures that only one buffer can be enabled at any time. and

are used to specify which of the input signals is allowed to pass through

its buffer and arrive at the output.

Two-, four-, eight-, and 16-input multiplexers are readily available in the

TTL and CMOS logic families. These basic ICs can be combined for multi-

plexing a larger number of inputs.

S0

S1

S0 = 0S1 = 0

I0S1S0

I0

S1S0

I1

I0,

SECTION 9-6/MULTIPLEXERS (DATA SELECTORS) 601

(b)

Z

S1

0
0
1
1

S0

0
1
0
1

Output

Z = I0
Z = I1
Z = I2
Z = I3

I0

I1

I2

I3

S1 S0

(a)

ZI0

I1

I2

I3

S1 S0

Decoder

Tristate
buffers

1 023

FIGURE 9-20 Four-input multiplexer: (a) using sum of products logic; (b) using

tristate buffers.

Eight-Input Multiplexer
Figure 9-21(a) shows the logic diagram for the 74ALS151 (74HC151) eight-

input multiplexer. This multiplexer has an enable input and provides both

the normal and the inverted outputs. When the select inputs

will select one data input (from through) for passage to output Z. When

the multiplexer is disabled so that regardless of the select

input code. This operation is summarized in Figure 9-21(b), and the 74151

logic symbol is shown in Figure 9-21(c).

Z = 0E = 1,

I7I0

S2S1S0E = 0,

E

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 601

602 CHAPTER 9/MSI LOGIC CIRCUITS

(a)

I0 I1 I2 I3 I4 I5 I6 I7

S2

S1

S0

Z Z

E

E

H
L
L
L
L
L
L
L
L

OutputsInputs

S2

X
L
L
L
L
H
H
H
H

(b)

S1

X
L
L
H
H
L
L
H
H

S0

X
L
H
L
H
L
H
L
H

Z

H
I0
I1
I2
I3
I4
I5
I6
I7

Z

L
I0
I1
I2
I3
I4
I5
I6
I7

74ALS151
8-input MUX

S2

S1

S0

E

I0 I1 I2 I3 I4 I5 I6 I7

ZZ

(c)

FIGURE 9-21 (a) Logic diagram for the 74ALS151 multiplexer; (b) truth table;

(c) logic symbol.

EXAMPLE 9-9 The circuit in Figure 9-22 uses two 74HC151s, an INVERTER, and an OR

gate. Describe this circuit’s operation.

Solution

This circuit has a total of 16 data inputs, eight applied to each multiplexer.

The two multiplexer outputs are combined in the OR gate to produce a sin-

gle output X. The circuit functions as a 16-input multiplexer. The four select

inputs will select one of the 16 inputs to pass through to X.
The input determines which multiplexer is enabled. When

the top multiplexer is enabled, and the inputs determine which of

its data inputs will appear at its output and pass through the OR gate to X.
When the bottom multiplexer is enabled, and the inputs

select one of its data inputs for passage to output X.
S2S1S0S3 = 1,

S2S1S0

S3 = 0,S3

S3S2S1S0

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 602

Quad Two-Input MUX (74ALS157/HC157)
The 74ALS157 is a very useful multiplexer IC that contains four two-input

multiplexers like the one in Figure 9-19. The logic diagram for the 74ALS157

is shown in Figure 9-23(a). Note the manner in which the data inputs and out-

puts are labeled.

SECTION 9-6/MULTIPLEXERS (DATA SELECTORS) 603

Data
in

74HC151
MUX

Z

Data
in

74HC151
MUX

Z

X

S3

S2

S1

S0

I7

I0

E

S2

S1

S0

•
•
•
•
•
•

I7

I0

E

S2

S1

S0

•
•
•
•
•
•

FIGURE 9-22 Example 9-9: two 74HC151s combined to form a 16-input

multiplexer.

EXAMPLE 9-10 Determine the input conditions required for each Z output to take on the

logic level of its corresponding input. Repeat for .

Solution

First of all, the enable input must be active; that is, . In order for to

equal the select input must be LOW. These same conditions will produce

and .

With and the Z outputs will follow the set of inputs; that

is, and .

All of the outputs will be disabled (LOW) when .

It is helpful to think of this multiplexer as being a simple two-input

multiplexer, but one in which each input is four lines and the output is four

lines. The four output lines switch back and forth between the two sets of

four input lines under the control of the select input. This operation is rep-

resented by the 74ALS157’s logic symbol in Figure 9-23(b).

E = 1

Zd = I1dZa = I1a, Zb = I1b, Zc = I1c,

I1S = 1,E = 0

Zd = I0dZb = I0b, Zc = I0c,

I0a,

ZaE = 0

I1I0

TOCCMC09_0131725793.QXD 12/20/05 5:28 PM Page 603

604 CHAPTER 9/MSI LOGIC CIRCUITS

E

H
L
L

S

X
L
H

Za

L
I0a
I1a

Zb

L
I0b
I1b

Zc

L
I0c
I1c

Zd

L
I0d
I1d

(c)

I1a

74ALS157

Za Zb Zc Zd

I0a I1b I0b I1c I0c I1d I0d

S

E

(a)

Zd

S

I1a I1b I1c I1d I0a I0b I0c I0d

E

Za Zb Zc

(b)

74ALS157
MUX

FIGURE 9-23 (a) Logic diagram for the 74ALS157 multiplexer; (b) logic symbol;

(c) truth table.

REVIEW QUESTIONS 1. What is the function of a multiplexer’s select inputs?

2. A certain multiplexer can switch one of 32 data inputs to its output. How

many different inputs does this MUX have?

9-7 MULTIPLEXER APPLICATIONS

Multiplexer circuits find numerous and varied applications in digital sys-

tems of all types.These applications include data selection, data routing, op-

eration sequencing, parallel-to-serial conversion, waveform generation, and

logic-function generation. We shall look at some of these applications here

and several more in the problems at the end of the chapter.

Data Routing
Multiplexers can route data from one of several sources to one destination.

One typical application uses 74ALS157 multiplexers to select and display the

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 604

contents of either of two BCD counters using a single set of decoder/drivers

and LED displays. The circuit arrangement is shown in Figure 9-24.

Each counter consists of two cascaded BCD stages, and each one is driven by

its own clock signal.When the COUNTER SELECT line is HIGH, the outputs of

counter 1 will be allowed to pass through the multiplexers to the decoder/driv-

ers to be displayed on the LED readouts. When the

outputs of counter 2 will pass through the multiplexers to the displays. In this

way, the decimal contents of one counter or the other will be displayed under

the control of the COUNTER SELECT input. A common situation where this

might be used is in a digital watch. The digital watch circuitry contains many

counters and registers that keep track of seconds, minutes, hours, days, months,

alarm settings, and so on. A multiplexing scheme such as this one allows differ-

ent data to be displayed on the limited number of decimal readouts.

The purpose of the multiplexing technique, as it is used here, is to time-
share the decoder/drivers and display circuits between the two counters

rather than have a separate set of decoder/drivers and displays for each

counter. This results in a significant saving in the number of wiring connec-

tions, especially when more BCD stages are added to each counter. Even more

important, it represents a significant decrease in power consumption because

COUNTER SELECT = 0,

SECTION 9-7/MULTIPLEXER APPLICATIONS 605

Tens TensUnits Units

Counter 1

Clock #1 Clock #2

74ALS157
MUX
(tens)

Counter 2

COUNTER
SELECT

74ALS157
MUX

(units)

BCD-to-7-segment
decoder/driver (7447)

LED display

TENS

BCD-to-7-segment
decoder/driver (7447)

LED display

UNITS

S

E

S

E

I1 I0

Zd Zc Zb Za

I1 I0

Zd Zc Zb Za

BCD
counterTC

CLK

EN 1

BCD
counterTC

CLK

EN

BCD
counterTC

CLK

EN

BCD
counterTC

QD QCQB QA QD QCQB QA

CLK

EN 1
QD QCQB QA QD QCQB QA

FIGURE 9-24 System for displaying two multidigit BCD counters one at a time.

TOCCMC09_0131725793.QXD 12/21/2005 05:46 AM Page 605

decoder/drivers and LED readouts typically draw relatively large amounts of

current from the supply. Of course, this technique has the limitation that

only one counter’s contents can be displayed at a time. However, in many ap-

plications, this limitation is not a drawback. A mechanical switching arrange-

ment could have been used to perform the function of switching first one

counter and then the other to the decoder/drivers and displays, but the num-

ber of required switch contacts, the complexity of wiring, and the physical size

could all be disadvantages over the completely logic method of Figure 9-24.

Parallel-to-Serial Conversion
Many digital systems process binary data in parallel form (all bits simulta-

neously) because it is faster. When data are to be transmitted over relatively

long distances, however, the parallel arrangement is undesirable because it

requires a large number of transmission lines. For this reason, binary data or

information in parallel form is often converted to serial form before being

transmitted to a remote destination. One method for performing this

parallel-to-serial conversion uses a multiplexer, as illustrated in Figure 9-25.

VCC

606 CHAPTER 9/MSI LOGIC CIRCUITS

(a)

(b)

Clock

Z
1

1 0 1 0 1 1 0 1
0

X0 X1 X2 X3 X4 X5 X6 X7

Z

E

QC

0

QB QA

CLOCK

MOD-8 up counter

CLK

Storage
register 74HC151

X1

X0

X2

X3

X4

X5

X6

X7

I0

I1

I2

I3

I4

I5

I6

I7

S2 S1 S0

Z

FIGURE 9-25 (a) Parallel-

to-serial converter;

(b) waveforms for

.= 10110101

X7X6X5X4X3X2X1X0

TOCCMC09_0131725793.QXD 12/22/2005 9:42 AM Page 606

SECTION 9-7/MULTIPLEXER APPLICATIONS 607

The data are present in parallel form at the outputs of the X register and

are fed to the eight-input multiplexer. A three-bit (MOD-8) counter is used to

provide the select code bits so that they cycle through from 000 to 111

as clock pulses are applied. In this way, the output of the multiplexer will be

during the first clock period, during the second clock period, and so on.The

output Z is a waveform that is a serial representation of the parallel input data.

The waveforms in the figure are for the case where

.This conversion process takes a total of eight clock cycles. Note that

(the LSB) is transmitted first and the (MSB) is transmitted last.

Operation Sequencing
The circuit of Figure 9-26 uses an eight-input multiplexer as part of a control

sequencer that steps through seven steps, each of which actuates some portion

of the physical process being controlled. This could be, for example, a process

that mixes two liquid ingredients and then cooks the mixture. The circuit also

uses a 3-line-to-8-line decoder and a MOD-8 binary counter. The operation is

described as follows.

1. Initially the counter is reset to the 000 state.The counter outputs are fed

to the select inputs of the multiplexer and to the inputs of the decoder.

Thus, the decoder output and the others are all 1, so that all the

ACTUATOR inputs of the process are LOW. The SENSOR outputs of the

process all start out LOW. The multiplexer output because

the S inputs are 000.

2. The START pulse initiates the sequencing operation by setting flip-flop

HIGH, bringing the counter to the 001 state. This causes decoder out-

put to go LOW, thereby activating actuator 1, which is the first step in

the process (opening fill valve 1).

3. Some time later, SENSOR output 1 goes HIGH, indicating the comple-

tion of the first step (the float switch indicates that the tank is full).

This HIGH is now present at the input of the multiplexer. It is in-

verted and reaches the output because the select code from the

counter is 001.

4. The LOW transition at is fed to the CLK of flip-flop . This negative

transition advances the counter to the 010 state.

5. Decoder output now goes LOW, activating actuator 2, which is the

second step in the process (opening fill valve 2). now equals (the

select code is 010). Because SENSOR output 2 is still LOW, will go

HIGH.

6. When the second process step is complete, SENSOR output 2 goes HIGH,

producing a LOW at and advancing the counter to 011.

7. This same action is repeated for each of the other steps. When the sev-

enth step is completed, SENSOR output 7 goes HIGH, causing the

counter to go from 111 to 000, where it will remain until another START

pulse reinitiates the sequence.

Logic Function Generation
Multiplexers can be used to implement logic functions directly from a truth

table without the need for simplification. When a multiplexer is used for

this purpose, the select inputs are used as the logic variables, and each data

input is connected permanently HIGH or LOW as necessary to satisfy the

truth table.

Z

Z
I2Z

O2

Q0Z

Z
I1

O1

Q0

Z = I0 = 1

O0 = 0

X7X0

10110101

X7X6X5X4X3X2X1X0 =

X1

X0

S2S1S0

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 607

Figure 9-27 illustrates how an eight-input multiplexer can be used to im-

plement the logic circuit that satisfies the given truth table.The input variables

A, B, C are connected to respectively, so that the levels on these inputs

determine which data input appears at output Z. According to the truth table,

Z is supposed to be LOW when .Thus, multiplexer input should beI0CBA = 000

S0, S1, S2,

608 CHAPTER 9/MSI LOGIC CIRCUITS

Fill valve 1

Fill valve 2

Drain valve 1

Drain valve 2

 Mixer

 Heater

 Pump

Tank 1 full

Tank 2 full

Tank 1 empty

Tank 2 empty

Mix time over

Up to temp.

Main tank empty

+5 V

J

CLK

K

Q2 J

CLK

K

Q1

1

J

CLK

K

Q0

1

CLR CLR CLR

Reset

A2 A1 A0

3-line-to-8-line
decoder

74HC138
E

O7 O0

PHYSICAL PROCESS

I0 I1 I2 I3 I4 I5 I6 I7
S0

S1

S2

8-input
multiplexer
74HC151

Inverting amplifiers
for driving actuators.

Normally LOW
sensor outputs will
go HIGH to indicate
completion of step.

Start pulse

Z

PREPREPRE

E

A1

A2

A3

A4

A5

A6

A7

S1

S2

S3

S4

S5

S6

S7

A1

S1

S3

S2

S4

A3 A4

M

Timer

Heater

A6

Temp

S5

S6

S7

P A7

A2

A5

SENSORSACTUATORS

FIGURE 9-26 Seven-step control sequencer.

TOCCMC09_0131725793.QXD 12/22/2005 2:20 AM Page 608

SECTION 9-7/MULTIPLEXER APPLICATIONS 609

A

Z = ABC + ABC + ABC

1 k�

Input
logic

variables

B
C

I0 I1 I2 I3 I4 I5 I6 I7

S0

E

S1

S2

74HC151 MUX

(a)

C

0
0
0
0
1
1
1
1

B

0
0
1
1
0
0
1
1

A

0
1
0
1
0
1
0
1

Z

0
1
1
0
0
0
0
1

(b)

+VCCFIGURE 9-27 Multiplexer

used to implement a logic

function described by the

truth table.

connected LOW. Likewise, Z is supposed to be LOW for 100, 101,

and 110, so that inputs and should also be connected LOW.The other

sets of CBA conditions must produce and so multiplexer inputs and

are connected permanently HIGH.

It is easy to see that any three-variable truth table can be implemented

with this eight-input multiplexer. This method of implementation is often

more efficient than using separate logic gates. For example, if we can write

the sum-of-products expression for the truth table in Figure 9-27, we have

This cannot be simplified either algebraically or by K mapping, and so its

gate implementation would require three INVERTERs and four NAND

gates, for a total of three ICs.

There is an even more efficient method for using multiplexers to implement

logic functions. This method will allow the logic designer to use a multiplexer

with three select inputs (e.g., a 74HC151) to implement a four-variable logic

function. We will present this method in Problem 9-37.

The most important concept to be gained from using a MUX to imple-

ment a sum-of-products expression is the fact that the logic function can be

very easily changed by simply changing the 1s and 0s on the MUX inputs. In

other words, a MUX can very easily be used as a programmable logic device

(PLD). Many PLDs use this strategy in hardware blocks that are generally

referred to as look-up tables (LUTs). We will discuss look-up tables in more

detail in Chapters 12 and 13.

Z = AB C + ABC + ABC

I7

I1, I2,Z = 1,

I6I3, I4, I5,

CBA = 011,

REVIEW QUESTIONS 1. What are some of the major applications of multiplexers?

2. True or false: When a multiplexer is used to implement a logic function,

the logic variables are applied to the multiplexer’s data inputs.

3. What type of circuit provides the select inputs when a MUX is used as a

parallel-to-serial converter?

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 609

1-Line-to-8-Line Demultiplexer
Figure 9-29 shows the logic diagram for a demultiplexer that distributes one

input line to eight output lines.The single data input line I is connected to all

eight AND gates, but only one of these gates will be enabled by the SELECT

input lines. For example, with only AND gate 0 will be enabled,

and data input I will appear at output . Other SELECT codes cause input I
to reach the other outputs. The truth table summarizes the operation.

The demultiplexer circuit of Figure 9-29 is very similar to the 3-line-to-8-

line decoder circuit in Figure 9-2 except that a fourth input (I) has been

added to each gate. It was pointed out earlier that many IC decoders have an

ENABLE input, which is an extra input added to the decoder gates.This type

of decoder chip can therefore be used as a demultiplexer, with the binary

code inputs (e.g., A, B, C in Figure 9-2) serving as the SELECT inputs and the

ENABLE input serving as the data input I. For this reason, IC manufacturers

often call this type of device a decoder/demultiplexer, and it can be used for

either function.

We saw earlier how the 74ALS138 is used as a 1-of-8 decoder. Figure 9-30

shows how it can be used as a demultiplexer. The enable input is used as

the data input I, while the other two enable inputs are held in their active

states. The inputs are used as the select code. To illustrate the opera-

tion, let’s assume that the select inputs are 000.With this input code, the only

output that can be activated is while all other outputs are HIGH. will

go LOW only if goes LOW and will be HIGH if goes HIGH. In other

words, will follow the signal on (i.e., the data input, I) while all other

outputs stay HIGH. In a similar manner, a different select code applied to

will cause the corresponding output to follow the data input, I.A2A1A0

E1O0

E1E1

O0O0,

A2A1A0

E1

O0

S2S1S0 = 000,

610 CHAPTER 9/MSI LOGIC CIRCUITS

O0

DATA
input

SELECT input

DATA input is transmitted
to only one of the outputs
as determined by select input code.

O1

ON–1

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

DEMUXFIGURE 9-28 General

demultiplexer.

9-8 DEMULTIPLEXERS (DATA DISTRIBUTORS)

A multiplexer takes several inputs and transmits one of them to the output.

A demultiplexer (DEMUX) performs the reverse operation: it takes a single

input and distributes it over several outputs. Figure 9-28 shows the func-

tional diagram for a digital demultiplexer. The large arrows for inputs and

outputs can represent one or more lines.The select input code determines to

which output the DATA input will be transmitted. In other words, the de-

multiplexer takes one input data source and selectively distributes it to 1 of

N output channels just like a multiposition switch.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 610

SECTION 9-8/DEMULTIPLEXERS (DATA DISTRIBUTORS) 611

0

1

2

3

4

5

6

7

I
DATA input

S2

0
0
0
0
1
1
1
1

S0

0
1
0
1
0
1
0
1

O7

0
0
0
0
0
0
0
I

SELECT code OUTPUTS

S1

0
0
1
1
0
0
1
1

O6

0
0
0
0
0
0
I
0

O5

0
0
0
0
0
I
0
0

O4

0
0
0
0
I
0
0
0

O3

0
0
0
I
0
0
0
0

O2

0
0
I
0
0
0
0
0

O1

0
I
0
0
0
0
0
0

O0

I
0
0
0
0
0
0
0

Note: I is the
 data input

S2

S1

S0

O7 = I • (S2S1S0)

O6 = I • (S2S1S0)

O5 = I • (S2S1S0)

O4 = I • (S2S1S0)

O3 = I • (S2S1S0)

O2 = I • (S2S1S0)

O1 = I • (S2S1S0)

O0 = I • (S2S1S0)
FIGURE 9-29 A 1-line-to-

8-line demultiplexer.

Select
code

+5 V

Data input
I

74ALS138
decoder/DEMUX

(a) (b)

Waveforms for A2A1A0 = 000

Logic 1

E1 (I)

O0

O1–O7

A2

A1

A0

O7 O6 O5 O4 O3 O2 O1 O0

E1 E2 E3

FIGURE 9-30 (a) The

74ALS138 decoder can

function as a demultiplexer

with used as the data

input; (b) typical waveforms

for a select code of

show that

is identical to the data

input I on E1.

O0A2A1A0 = 000

E1

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 611

612 CHAPTER 9/MSI LOGIC CIRCUITS

+5 V

Door 0

Door 6 Door 7

I0

I1
I2
I3
I4
I5

From
doors
1–5 74HC151

MUX

I6

I7

S2 S1 S0
E

74HC138

DEMUX

A2 A1 A0

Q2 Q1 Q0

MOD-8

CTR

+5 V

3
2
1

Z

+5 V

+5 V

+5 V

O0 0

O1 1

O2 2

O3 3

O4 4

O5 5

O6 6

O7 7

330 �

CLOCK

Monitoring panel

FIGURE 9-31 Security monitoring system.

Figure 9-30(b) shows typical waveforms for the case where A2A1A0 � 000

selects output For this case, the data signal applied to will be trans-

mitted to and all other outputs will remain in their inactive HIGH state.

Security Monitoring System
Consider the case of a security monitoring system in an industrial plant

where the open/closed status of many access doors is to be monitored.

Each door controls the state of a switch, and it is necessary to display the

state of each switch on LEDs that are mounted on a remote monitoring

panel at the security guard’s station. One way to do this would be to run a

separate signal from each door switch to an LED on the monitoring panel.

This setup would require running many wires over a long distance. A bet-

ter approach that would reduce the amount of wiring to the monitoring

panel uses a multiplexer/demultiplexer combination. Figure 9-31 shows a

system that can handle eight doors, but the basic idea can be expanded to

any number.

O0,

E1O0.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 612

SECTION 9-8/DEMULTIPLEXERS (DATA DISTRIBUTORS) 613

EXAMPLE 9-11 Examine Figure 9-31 carefully and describe the complete operation.

Solution

The eight door switches are the data inputs to the MUX; they produce a

HIGH when a door is open and a LOW when it is closed. The MOD-8 counter

provides the select inputs to the MUX and also to the DEMUX on the remote

monitoring panel. Each DEMUX output is connected to an indicator LED

that will be on when the output is LOW. Clock pulses applied to the counter

will cause the select inputs to sequence through all of the possible states 000

through 111. At each number of the counter, the switch status for the door of

the same number will be inverted by the MUX and passed to output From

there, it is transmitted to the DEMUX input, which passes it through to the

output corresponding to the same number.

For example, let’s say that the counter is at the count of 110 (6). While

the counter is in this state, let’s say that door 6 is closed. The LOW at will

pass through the MUX and be inverted to produce a HIGH at This HIGH

will be passed through the DEMUX to output so that LED 6 will be off,

indicating that door 6 is closed. Now let’s say that door 6 is open. A LOW

will appear at and so that LED 6 will be on to signal that door 6 is

open. Of course, all other LEDs will be off during this time because is

the only active output.

As the counter is clocked through its eight states 000 through 111, the

LEDs will sequentially indicate the status of the eight doors. If all the

doors are closed, none of the LEDs will be on even when the correspon-

ding DEMUX output is selected. If a door is open, its LED will turn on only

during the time interval that the counter is at the appropriate count; it

will be off at all other counts. Thus, the LED will be flashing on and off if

its door is open. The flashing rate can be adjusted by changing the fre-

quency of the clock.

Note that there are only four signal lines going from the “door-sensing”

circuitry to the remote monitoring panel: the output and the three select

lines. This is a saving of four lines when compared with the alternative of

having one line per door.The MUX/DEMUX combination is used to transmit

the status of each door to its LED one at a time (serially) instead of all at

once (parallel).

Synchronous Data Transmission System
Figures 9-32 and 9-33 show the logic diagrams for a synchronous data trans-

mission system that is used to transmit four, four-bit words serially from a

transmitter to a remote receiver. To operate this system, four data words are

parallel-loaded into the input registers of the transmitter block and the

transmit signal is activated. The 16 data bits are then sent over a single data

line, one bit at a time, reassembled by the receiver, and stored in output reg-

isters. Let’s look at the transmitter details in Figure 9-32 first.The clock input

is a high-frequency, constantly running, periodic clock signal that synchro-

nizes all activities in the system. The four-bit data words are stored individu-

ally (synchronously) in the PISO registers when enabled by the appropriate

ld_x input. For simplicity, the parallel data inputs to the PISO registers are

not shown in the diagram. These input registers are designed to shift the

data to the right and also recirculate the LSB (rightmost bit) to the MSB

Z

O6

O6Z

O6

Z.

I6

Z.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 613

(leftmost bit). With this arrangement the bits are all shifted to the serial out-

put and also end up back in their proper locations after four clock pulses.

TRANSMITTER OPERATION Initially, let’s assume that all the flip-flops

and the two MOD-4 counters in Figure 9-32 are all cleared. On the next PGT

of clock, FF2 is SET, removing the asynchronous clear command from the

counters and FF1. When the transmit signal goes HIGH, FF1 is SET, putting

all the shift registers in the shift mode. The MUX selects input 0 (register A)

because the MOD-4 Word counter is at 0. At this point the LSB of register A
is on the transmit_data line. The next three clock pulses (counted by the Bit

counter) shift the other bits of register A to the serial output. As a result, the

transmit_data line outputs each of the register A bits, one at a time from the

least to the most significant. On the fourth PGT, the Bit counter rolls over to

zero, the Word counter increments to 1, all of the shift registers have recir-

culated their data back to the original position, and the MUX now selects the

LSB data from register B to output on the transmit_data line. The next three

clocks shift out the contents of register B, followed by registers C and D. On the

16th PGT, FF2 toggles to a zero state, resetting all the counters and disabling

any further counting by also clearing FF1. The next PGT sets FF2 again, and

the system is waiting for new data to be loaded and the next transmit signal.

RECEIVER OPERATION The receiver circuit shown in Figure 9-33 is very

similar in operation to the transmitter. Notice that all flip-flops, counters,

614 CHAPTER 9/MSI LOGIC CIRCUITS

A3 I0

I1

I2

I3

A2

PISO
Registers MUX

transmit_dataZ

4-
in

pu
t

m
ul

tip
le

xe
r

Id_A

Id_B

Id_C

Id_D

Shift_enable

Clock

Transmit

FF2

CLK

Word counter

/sent

K

1J

A1 A0

B3 B2 B1 B0

C3 C2 C1 C0

D3 D2 D1 D0
S1

Bit counter

1DFF1

S0

MOD-4
counter

ENTC

Q1 Q0
CLK

MOD-4
counter

ENTC

Q1 Q0
CLK

CLK

CLR

CLR CLR

FIGURE 9-32 Transmitter block in synchronous data transmission system.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 614

FF2

CLK

K

J 1

A3O0

O3 O2 O1 O0

O1

O2

O3

A2 A1 A0

B3 B2 B1 B0

C3 C2 C1 C0

D3 D2 D1 D0

DEMUX
SIPO

Registers
enable_A

enable_B

enable_D

Decoder
1-out-of-4

B

A

EN

enable_CI

4-
ou

tp
ut

de
m

ul
tip

le
xe

r

S0S1

/received

Bit counterWord counter

transmit_data

Clock

Transmit

MOD-4
counter

ENTC

Q1 Q0
CLK

MOD-4
counter

ENTC

Q1 Q0
CLK

1DFF1

CLK

CLR

CLR CLR

FIGURE 9-33 Receiver block in synchronous data transmission system.

SECTION 9-8/DEMULTIPLEXERS (DATA DISTRIBUTORS) 615

and registers use the same clock as the transmitter. The receiver uses a DE-

MUX to distribute the serial data to the appropriate SIPO register and a de-

coder to enable one register at a time. Let’s begin analyzing this circuit with

all counters and flip-flops at zero.The next clock sets FF2, removing the asyn-

chronous clear command from the counters and FF1. When the transmit line

goes HIGH, FF1 is SET, enabling the Bit counter, Word counter, and also the

decoder. With the Word counter at zero, the decoder enables register A and

the DEMUX connects the serial data line (which currently contains the LSB

of transmit register A) to the serial data input of receive register A. The next

PGT shifts the least significant data bit into register A and advances the Bit

counter.The next three PGTs shift the next three data bits into register A, the

Bit counter rolls over to zero, the Word counter increments to 1, and the de-

coder and DEMUX switch to register B. After the 16th PGT, all four registers

contain the proper data, FF2 has toggled to a zero state, FF1 is cleared and

disables the decoder, which disables all the SIPO registers. On the next PGT,

FF2 is set and the system is waiting for the next transmission of data.

SYSTEM TIMING The timing diagram in Figure 9-34 shows the parallel

data that is loaded into the transmitter, the serial data stream, and the dis-

tribution and storage of the four data values in the receiver registers. At

times the binary data values (shown as hex 3, 5, 6, and D) are loaded into

transmit registers A, B, C, and D, respectively. The system is idle until the

transmit line goes HIGH at . At this point the LSB from register A () is al-

ready on the transmit_data line. Also notice that at the data on outputt5–t8,

A0t5

t1-4,

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 615

t 1
t 2

t 3
t 4

t 5
t 6

t 7
t 8

t 9
t 1

0
t 1

1
t 1

2
t 1

3

tr
an

sm
it

Id
_d

Id
_c

Id
_b

Id
_a

cl
oc

k

da
ta

[3
..0

]

re
ce

iv
ed

o0 a[
3.

.0
]

o1 b[
3.

.0
]

o2 c[
3.

.0
]

o3 d[
3.

.0
]

tr
an

sm
it_

da
ta

A
0

A
0

A
1

A
1

�
�

�

A
2

A
3

A
2

A
3

B
0

B
1

B
2

B
3

B
0

B
1

B
2

B
3

C
0

C
1

C
2

C
3

C
0

C
1

C
2

C
3

D
0

D
1

D
2

D
3

D
0

D
1

D
2

D
3

�
�

�

�
�

�
�

�

01
01

11
01

00
11

0
3

5
6

D

00
00

00
00

00
00

00
00

01
10

F
IG

U
R

E
 9

-3
4

T
im

in
g
 d

ia
g

ra
m

 f
o
r

o
n

e
 c

o
m

p
le

te
 t

ra
n

sm
is

si
o
n

 c
y
c
le

.

616

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 616

SECTION 9-9/MORE TROUBLESHOOTING 617

of the DEMUX is identical to the transmit_data line. This shows that the

DEMUX has distributed the transmit_data to shift register A. At the PGT

of the clock shifts into the MSB of receive register A, all transmit data reg-

isters (not shown in the timing) are shifted, and data bit appears on the

transmit_data line. At times and the other three bits are shifted into

register A such that after receive register A contains the data bits that

were stored in transmit register A. The diagram shows that the DEMUX has

switched to distribute data to register B because the DEMUX output is

now identical to transmit_data from through . Starting at the data

are shifted into receive register B, which at contains the value that was

originally stored in transmit register B. Register C and Register D are sent and

stored from to and from to respectively.t13,t12t12t11

t11

t10,t11t9

O1

t9,

t9,t7, t8,

A1

A0

t6,

O0

REVIEW QUESTIONS 1. Explain the difference between a DEMUX and a MUX.

2. True or false: The circuit for a DEMUX is basically the same as for a de-

coder.

3. For the system of Figure 9-31, what will the security guard see on the

monitoring panel when all of the doors are open?

9-9 MORE TROUBLESHOOTING

Here are three more examples to illustrate the observation/reasoning

process that is such an important initial step when troubleshooting. For each

case, try to determine the circuit fault before looking at the solution.

EXAMPLE 9-12 Consider the circuit of Figure 9-24. A test performed on this circuit yields the

result shown in Table 9-3. What is the probable circuit fault?

TABLE 9-3
Actual Count Displayed Count

Case 1 Counter 1 25 25

Counter 2 37 35

Case 2 Counter 1 49 49

Counter 2 72 79

Case 3 Counter 1 96 96

Counter 2 14 16

Solution

In each of the test cases, the display of counter 1 matches the counter’s actual

count. This indicates that the inputs, all MUX outputs, and both displays

are probably working correctly. On the other hand, each test case shows that

counter 2’s tens digit is displayed correctly but its units digit is displayed

incorrectly. This could mean that there is a fault somewhere between the

I1

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 617

618 CHAPTER 9/MSI LOGIC CIRCUITS

output of the units section of counter 2 and the inputs of the units MUX.

We should compare the bit patterns of the actual and displayed values of the

units for counter 2 (Table 9-4). The idea is to look for things such as a bit that

does not change (stuck LOW or HIGH) or two bits that are reversed (crossed

connections). The data in Table 9-4 reveal no obvious pattern.

I0

TABLE 9-4
Actual Units Displayed Units

Case 1 0111 (7) 0101 (5)

Case 2 0010 (2) 1001 (9)

Case 3 0100 (4) 0110 (6)

EXAMPLE 9-13 The security monitoring system of Figure 9-31 is tested and the results are

recorded in Table 9-5. What are the possible faults that could produce these

results?

TABLE 9-5
Condition LEDs

All doors closed All LEDs off

Door 0 open LED 4 flashing

Door 1 open LED 5 flashing

Door 2 open LED 6 flashing

Door 3 open LED 7 flashing

Door 4 open LED 4 flashing

Door 5 open LED 5 flashing

Door 6 open LED 6 flashing

Door 7 open LED 7 flashing

Solution

Again, the data should be reviewed to see if there is some pattern that could

help to narrow down the search for the fault to a small area of the circuit.

The data in Table 9-5 reveal that the correct LEDs flash for open doors 4

through 7.They also show that for open doors 0 through 3, the number of the

flashing LED is four more than the number of the door, and LEDs 0 through

3 are always off. This is most probably caused by a constant logic HIGH at

the MSB of the select input of the DEMUX, because this would alwaysA2,

If we take another look at the recorded test results, we see that the dis-

played units digit of counter 2 is always the same as the units digit of

counter 1. This symptom is probably the result of a constant logic HIGH at

the select input of the units MUX because that would continually pass the

units digit of counter 1 to the units MUX output. This constant HIGH at the

select input is most likely caused by an open path somewhere between

the select input of the tens MUX and the select input of the units MUX. It

could not be caused by a short to VCC because that would also keep the se-

lect input of the tens MUX at a constant HIGH, and we know that the tens

MUX is working.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 618

SECTION 9-9/MORE TROUBLESHOOTING 619

make the select code 4 or greater, and it would add 4 to the select codes 0

through 3.

Thus, we have two possibilities: is somehow shorted to or there

is an open connection at . A little thought will eliminate the first choice

as a possibility because this would also mean that of the MUX would

also be stuck HIGH. If that were so, then the status of doors 0 through 3

would not get through the MUX and into the DEMUX. We know that this is

not true because the data show that when any of these doors is open, it af-

fects one of the DEMUX outputs.

S2

A2

VCC,A2

EXAMPLE 9-14 An extremely important principle of troubleshooting, called divide-and-
conquer, was introduced in Section 9-5. It is really not about military strategy,

but rather describes the most efficient way to eliminate from consideration

all the parts of the circuit that are working correctly. Assume that data have

been loaded into the four transmit registers of Figure 9-32 and the transmit

pulse has occurred, but after the next 16 clock pulses, no new data have ap-

peared in the receive registers shown in Figure 9-33. How can we most effi-

ciently find the problem?

Solution

In a synchronous digital system that is simply not functioning, it is reason-

able first to check to see if the power supply and clock are working, just as

you might check for a pulse if you found a person lying on the ground.

However, assuming the clock is oscillating, there is a much more efficient

way to isolate the problem than randomly picking points in the circuit and

determining if the correct signal is present. We want to perform a test on this

circuit such that, if we obtain the desired results, we know that half of the

circuit is working correctly and we can eliminate that half from considera-

tion. In this circuit the best place to look is at the transmit_data line. A logic

probe should be placed on the transmit_data line and the transmit signal

should be activated. If a burst of pulses is observed on the logic probe, it

means that the transmit section is functioning. We may not know if the data

are correct, but remember, the receiver is not getting incorrect data but

rather no data at all. However, if no burst of pulses is observed, there is cer-

tainly a problem in the transmit section.

A troubleshooting tree diagram as shown in Figure 9-35 is helpful in

isolating problems in a system. Let’s assume there were no pulses on

transmit_data. Now we need to perform a test on the transmitter to prove

that half of the transmitter is working properly. In this case the circuit does

not divide exactly in half easily. A good choice might be to examine the out-

put of the word counter. A logic probe should be placed on the select inputs

of the MUX and the transmit signal activated. If brief pulses occur imme-

diately after transmit, then the entire control section (made up of two

counters and two flip-flops) is probably functioning properly and we can

look elsewhere. The next place to look is at the outputs of the PISO regis-

ters (or data inputs of the MUX). If data pulses are present on each line af-

ter transmit is activated, the problem must be in the MUX. If not, we can

further break down the PISO section. Each test that is performed should

eliminate the largest possible amount of the remaining circuitry until all

that is left is a small block containing the fault.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 619

P
ro

be
 w

or
d

co
un

te
r

ou
t

T
ra

ns
m

it

P
ul

se
s

?

P
ul

se
s

?

P
ul

se
s

?

P
ul

se
s

?

N
Y

Y

P
ro

be
 P

IS
O

 o
ut

T
ra

ns
m

it

P
ro

be
 T

xD
T

ra
ns

m
it

P
ro

be
 w

or
d

co
un

te
r

ou
t

T
ra

ns
m

it

T
im

in
g

an
d

C
on

tr
ol

P
ro

bl
em

N
N

Y

P
IS

O
P

ro
bl

em

N

M
U

X
P

ro
bl

em

Y

T
im

in
g

an
d

C
on

tr
ol

P
ro

bl
em

P
ul

se
s

?

P
ro

be
 d

ec
od

er
 o

ut
T

ra
ns

m
it

D
ec

od
er

P
ro

bl
em

N

P
ro

be
 d

em
ux

 o
ut

T
ra

ns
m

it

P
ul

se
s

?

Y

Y
N

D
em

ux
P

ro
bl

em
S

IP
O

P
ro

bl
em

F
IG

U
R

E
 9

-3
5

E
x
a
m

p
le

 9
-1

4
:
A

 t
ro

u
b

le
sh

o
o
ti

n
g
 t

re
e
 d

ia
g

ra
m

.

620

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 620

SECTION 9-10/MAGNITUDE COMPARATOR 621

9-10 MAGNITUDE COMPARATOR

Another useful member of the MSI category of ICs is the magnitude com-
parator. It is a combinational logic circuit that compares two input binary

quantities and generates outputs to indicate which one has the greater mag-

nitude. Figure 9-36 shows the logic symbol and the truth table for the 74HC85

four-bit magnitude comparator, which is also available as the 74LS85.

FIGURE 9-36 Logic symbol and truth table for a 74HC85 (7485, 74LS85) four-bit

magnitude comparator.

74HC85
4-bit

magnitude
comparator

IA>B

A3

IA>B

IA<B

IA=B

A2 A1 A0 B3 B2 B1 B0

OA>B OA<B OA=B

Cascading
inputs

Data inputs

Outputs

TRUTH TABLE

COMPARING INPUTS

A3, B3 A2, B2 A1, B1 A0, B0

A3>B3 X X X
A3<B3
A3=B3
A3=B3

X X X
X X
X X

A2>B2
A2<B2

A3=B3 X
A3=B3
A3=B3
A3=B3

X
A2=B2
A2=B2
A2=B2
A2=B2

A1>B1
A1<B1
A1=B1
A1=B1

A0>B0
A0<B0

A3=B3 A2=B2 A1=B1 A0=B0
A3=B3 A2=B2 A1=B1 A0=B0
A3=B3 A2=B2 A1=B1 A0=B0
A3=B3 A2=B2 A1=B1 A0=B0
A3=B3 A2=B2 A1=B1 A0=B0

CASCADING INPUTS

IA >B

X
X
X
X

X
X
X
X

H
L
X
L
H

IA< B

X
X
X
X

X
X
X
X

L
H
X
L
H

IA=B

X
X
X
X

X
X
X
X

L
L
H
L
L

OUTPUTS

OA >B

H
L
H
L

H
L
H
L

H
L
L
H
L

OA< B

L
H
L
H

L
H
L
H

L
H
L
H
L

OA=B

L
L
L
L

L
L
L
L

L
L
H
L
L

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

Data Inputs
The 74HC85 compares two unsigned four-bit binary numbers. One of them is

which is called word A; the other is which is called word

B. The term word is used in the digital computer field to designate a group of

bits that represents some specific type of information. Here, word A and

word B represent numerical quantities.

B3B2B1B0,A3A2A1A0,

TOCCMC09_0131725793.QXD 12/22/2005 2:06 PM Page 621

622 CHAPTER 9/MSI LOGIC CIRCUITS

Outputs
The 74HC85 has three active-HIGH outputs. Output will be HIGH

when the magnitude of word A is greater than the magnitude of word B.
Output will be HIGH when the magnitude of word A is less than the

magnitude of word B. Output will be HIGH when word A and word B
are identical.

Cascading Inputs
Cascading inputs provide a means for expanding the comparison operation to

more than four bits by cascading two or more four-bit comparators. Note that

the cascading inputs are labeled the same as the outputs. When a four-bit

comparison is being made, as in Figure 9-37(a), the cascading inputs should

be connected as shown in order for the comparator to produce the correct

outputs.

When two comparators are to be cascaded, the outputs of the lower-order

comparator are connected to the corresponding inputs of the higher-order com-

parator.This is shown in Figure 9-37(b), where the comparator on the left is com-

paring the lower-order four bits of the two eight-bit words:

and . Its outputs are fed to the cascade inputs of the com-

parator on the right, which is comparing the high-order bits.The outputs of the

high-order comparator are the final outputs that indicate the result of the eight-

bit comparison.

B7B6B5B4B3B2B1B0

A7A6A5A4A3A2A1A0

OA=B

OA6B

OA7B

4-bit
comparator

74HC85

A3

IA>B

IA<B

IA=B

A2 A1 A0 B3 B2 B1 B0

OA>B OA<B OA=B

(a)

+5 V

74HC85

A3

IA>B

IA<B

IA=B

A2 A1 A0 B3 B2 B1 B0

OA>B OA<B OA=B

(b)

+5 V

Low-order bits

A B

74HC85

A7

IA>B

IA<B

IA=B

A6 A5 A4 B7 B6 B5 B4

OA>B OA<B OA=B

High-order bits

A B

8-bit comparison
outputs

FIGURE 9-37 (a) 74HC85

wired as a four-bit

comparator; (b) two

74HC85s cascaded to

perform an eight-bit

comparison.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 622

SECTION 9-10/MAGNITUDE COMPARATOR 623

EXAMPLE 9-15 Describe the operation of the eight-bit comparison arrangement in Figure

9-37(b) for the following cases:

(a)

(b)

Solution

(a) The high-order comparator compares its inputs and

and produces regardless of what levels are ap-

plied to its cascade inputs from the low-order comparator. In other words,

once the high-order comparator senses a difference in the high-order bits

of the two eight-bit words, it knows which eight-bit word is greater without

having to look at the results of the low-order comparison.

(b) The high-order comparator sees so it must

look at its cascade inputs to see the result of the low-order comparison.

The low-order comparator has and

which produces a 1 at its output and the input of the high-order

comparator.The high-order comparator senses this 1, and because its data

inputs are equal, it produces a HIGH at its to indicate the result of

the eight-bit comparison.

Applications
Magnitude comparators are also useful in control applications where a binary

number representing the physical variable being controlled (e.g., position,

speed, or temperature) is compared with a reference value. The comparator

outputs are used to actuate circuitry to drive the physical variable toward the

reference value. The following example will illustrate one application. We

will examine another comparator application in Problem 9-52.

OA7B

IA7BOA7B

B3B2B1B0 = 1001,A3A2A1A0 = 1111

A7A6A5A4 = B7B6B5B4 = 1010,

OA6B = 1B7B6B5B4 = 1011

A7A6A5A4 = 1010

A7A6A5A4A3A2A1A0 = 10101111; B7B6B5B4B3B2B1B0 = 10101001

A7A6A5A4A3A2A1A0 = 10101111; B7B6B5B4B3B2B1B0 = 10110001

EXAMPLE 9-16 Consider a digital thermostat in which the measured room temperature is

converted to a digital number and applied to the A inputs of a comparator.

The desired room temperature, entered from a keypad, is stored in a register

that is connected to the B inputs. If the furnace should be activated

to heat the room. The furnace should continue to heat while and shut

off when . As the room cools off, the furnace should stay off while

and turn on again when . What digital circuit can be used to in-

terface a magnitude comparator to a furnace to perform the thermostat con-

trol application described above?

Solution

Using the output to drive the furnace directly would cause it to turn off

as soon as the values became equal.This can cause severe on/off cycling of the

furnace when the actual temperature is very close to the boundary between

and . By using a NOR gate SET-CLEAR latch circuit (refer to

Chapter 5) as shown in Figure 9-38, the system will operate as described.

Notice that is connected to the SET input and is connected to the

CLEAR input of the latch. When the temperature is hotter than desired, it

clears the latch, shutting off the furnace. When the temperature is cooler

than desired, it sets the latch, turning the furnace on.

OA7BOA6B

A = BA 6 B

OA6B

A 6 BA = B
A 7 B

A = B
A 6 B,

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 623

624 CHAPTER 9/MSI LOGIC CIRCUITS

9-11 CODE CONVERTERS

A code converter is a logic circuit that changes data presented in one type of

binary code to another type of binary code. The BCD-to-7-segment decoder-

driver that we presented earlier is a code converter because it changes a

BCD input code to the 7-segment code needed by the LED display. A partial

list of some of the more common code conversions is given in Table 9-6.

As an example of a code converter circuit, let’s consider a BCD-to-binary

converter. Before we get started on the circuit implementation, we should re-

view the BCD representation.

Two-digit decimal values ranging from 00 to 99 can be represented in

BCD by two four-bit code groups. For example, is represented as

The straight binary representation for decimal 57 is

The largest two-digit decimal value of 99 has the following representations:

Note that the binary representation requires only seven bits.

Basic Idea
The diagram of Figure 9-39 shows the basic idea for a two-digit BCD-to-binary

converter. The inputs to the converter are the two four-bit code groups

9910 = 10011001 (BCD) = 11000112

5710 = 1110012

5 7

0101 0111 (BCD)

⎫ ⎬ ⎭ ⎫ ⎬ ⎭

5710

74HC85s
(as in Fig. 9-37)

/8

A0
•
•
•

A7

/8

B0
•
•
•

B7

OA>B

OA=B

OA<B

Temp. sensor

Keypad

CLR

SET

Analog-
to-digital
converter

Keypad
encoder

and
registers

Furnace
controller

REVIEW QUESTIONS 1. What is the purpose of the cascading inputs of the 74HC85?

2. What are the outputs of a 74HC85 with the following inputs:

and ?IA=B = 1B3B2B1B0 = 1001, IA7B = IA6B = 0,

A3A2A1A0 =

TABLE 9-6

BCD to 7-segment

BCD to binary

Binary to BCD

Binary to Gray code

Gray code to binary

ASCII to EBCDIC*

EBCDIC to ASCII

*EBCDIC is an alphanumeric
code developed by IBM and is
similar to ASCII.

FIGURE 9-38 Magnitude

comparator used in a

digital thermostat.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 624

SECTION 9-11/CODE CONVERTERS 625

representing the or units digit, and representing

the or tens digit of the decimal value.The outputs from the converter are

the seven bits of the binary equivalent of the same decimal

value. Note the difference in the weights of the BCD bits and those of the

binary bits.

A typical use of a BCD-to-binary converter would be where BCD data

from an instrument such as a DMM (digital multimeter) are being trans-

ferred to a computer for storage or processing. The data must be converted

to binary so that they can be operated on in binary by the computer ALU,

which may not have the capability of performing arithmetic operations on

BCD data. The BCD-to-binary conversion can be accomplished with either

hardware or software. The hardware method (which we will look at momen-

tarily) is generally faster but requires extra circuitry. The software method

uses no extra circuitry, but it takes more time because the software does the

conversion step by step. The method chosen in a particular application de-

pends on whether or not conversion time is an important consideration.

Conversion Process
The bits in a BCD representation have decimal weights that are 8, 4, 2, 1 within

each code group but that differ by a factor of 10 from one code group (decimal

digit) to the next. Figure 9-39 shows the bit weights for the two-digit BCD rep-

resentation.

The decimal weight of each bit in the BCD representation can be converted

to its binary equivalent.The results are given in Table 9-7. Using these weights,

we can perform the BCD-to-binary conversion by simply doing the following:

b6b5b4b3b2b1b0,

101
D1C1B1A1,100D0C0B0A0,

D1BCD

80

C1

40

B1

20

A1

10

101

D0

8

C0

4

B0

2

A0

1

100

64 32 16 8 4 2 1

Two-digit BCD-to-binary converter

b6 b5 b4 b3 b2 b1 b0

Binary equivalent

Decimal weights

Decimal weights

FIGURE 9-39 Basic idea

of a two-digit BCD-to-binary

converter.

TABLE 9-7 Binary

equivalents of decimal

weights of each BCD bit.

Binary Equivalent
Decimal

BCD Bit Weight b6 b5 b4 b3 b2 b1 b0

A0 1 0 0 0 0 0 0 1

B0 2 0 0 0 0 0 1 0

C0 4 0 0 0 0 1 0 0

D0 8 0 0 0 1 0 0 0

A1 10 0 0 0 1 0 1 0

B1 20 0 0 1 0 1 0 0

C1 40 0 1 0 1 0 0 0

D1 80 1 0 1 0 0 0 0

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 625

626 CHAPTER 9/MSI LOGIC CIRCUITS

Compute the binary sum of the binary equivalents of all bits in the
BCD representation that are 1s.

The following example will illustrate.

EXAMPLE 9-17 Convert 01010010 (BCD for decimal 52) to binary. Repeat for 10010101 (dec-

imal 95).

Solution

Write down the binary equivalents for all the 1s in the BCD representation.

Then add them all together in binary.

Circuit Implementation
Clearly, one way to implement the logic circuit that performs this conversion

process is to use binary adder circuits. Figure 9-40 shows how two 74HC83

0 1 0 1 0 0 1 0 (BCD)

0000010 (binary for 2)

0001010 (binary for 10)

� 0101000 (binary for 40)

0110100 (binary for 52)

1 0 0 1 0 1 0 1 (BCD)

0000001 (binary for 1)

0000100 (binary for 4)

0001010 (binary for 10)

� 1010000 (binary for 80)

1011111 (binary for 95)

↑
↑

↑

↑
↑
↑

↑

74HC83

0

BCD representation

Binary equivalent

74HC83C4 C0

Σ3 Σ2 Σ1 Σ0

C4

D1 C1 B1 A1 D0 C0 B0 A0

C0

Σ3 Σ2 Σ1 Σ0

b6 b5 b4 b3 b2 b1 b0

123

0123

3 2 1 0

3 2 1 0

FIGURE 9-40 BCD-to-

binary converter

implemented with 74HC83

four-bit parallel adders.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 626

SECTION 9-11/CODE CONVERTERS 627

four-bit parallel adders can be wired to perform the conversion.This is one of

several possible adder arrangements that will work. You may want to review

the operation of this IC in Section 6-14.

The two adder ICs perform the addition of the BCD bits in the proper

combinations according to Table 9-7. For instance, Table 9-7 shows that is

the only BCD bit that contributes to the LSB, of the binary equivalent. Be-

cause there is no carry into this bit position, is connected directly as out-

put . The table also shows that only BCD bits and contribute to bit

of the binary output. These two bits are combined in the upper adder to pro-

duce output . Likewise, only BCD bits and contribute to bit .

The upper adder combines and to generate which is connected to

the lower adder, where is added to it to produce .b3C1

©2,A1D0

b3C1D0, A1,b1

b1A1B0b0

A0

b0,

A0

EXAMPLE 9-18 The BCD representation for decimal 56 is applied to the converter of

Figure 9-40. Determine the outputs from each adder and the final binary

output.

Solution

Write down the bits of the BCD representation 01010110 on the circuit dia-

gram. Because the bit of the output is 0.

The top inputs to the upper adder are 0011.The bottom inputs are 0101.

This adder adds these to produce

The and bits become binary outputs and respectively. The

and bits are fed to the lower adder. The top inputs to the lower adder

are therefore 0010. The bottom inputs are 0101. This adder adds these to

produce

These bits become respectively.

Thus, we have as the correct binary equiva-

lent for decimal 56.

Other Code Converter Implementations
Whereas all types of code converters can be made by combining logic gates,

adder circuits, or other combinational logic, the circuitry can become quite

complex, requiring many ICs. It is often more efficient to use a read-only

memory (ROM) or programmable logic device (PLD) to function as a code

converter. As we will see in Chapters 12 and 13, these devices contain the

equivalent of hundreds of logic gates, and they can be programmed to pro-

vide a wide range of logic functions.

b6b5b4b3b2b1b0 = 0111000

b6b5b4b3,

0010

+0101

0111 = ©3©2©1©0 outputs of the lower adder

©2

©3b1,b2©0©1

0011

+0101

1000 = ©3©2©1©0 outputs of the upper adder

b0A0 = 0,

©

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 627

628 CHAPTER 9/MSI LOGIC CIRCUITS

9-12 DATA BUSING

In most modern computers, the transfer of data takes place over a common set

of connecting lines called a data bus. In these bus-organized computers, many

different devices can have their outputs and inputs tied to the common data bus

lines. Because of this, the devices that are tied to the data bus will often have

tristate outputs, or they will be tied to the data bus through tristate buffers.

Some of the devices that are commonly connected to a data bus are (1)

microprocessors; (2) semiconductor memory chips, covered in Chapter 12;

and (3) digital-to-analog converters (DACs) and analog-to-digital converters

(ADCs), described in Chapter 11.

Figure 9-41 illustrates a typical situation in which a microprocessor (the

CPU chip in a microcomputer) is connected to several devices over an eight-line

REVIEW QUESTIONS 1. What is a code converter?

2. How many binary outputs would a three-digit BCD-to-binary converter

have?

ENABLE 3

ENABLE 1

Device-1
8-bit counter

Data Bus

Microprocessor
(CPU)

Note:

CLOCK

OE

ENABLE 2

Device-2
keyboard
encoder

OE

Device-3
74HC126

buffers

OE

DIP
switches

Keyboard

indicates
tristate outputs.

FIGURE 9-41 Three different devices can transmit eight-bit data over an eight-

line data bus to a microprocessor; only one device at a time is enabled so that bus

contention is avoided.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 628

SECTION 9-13/THE 74ALS173/HC173 TRISTATE REGISTER 629

data bus.The data bus is simply a collection of conducting paths over which dig-

ital data are transmitted from one device to another. Each device provides an

eight-bit output that is sent to the inputs of the microprocessor over the eight-

line data bus. Clearly, because the outputs of each of the three devices are con-

nected to the same microprocessor inputs over the data bus conducting paths,

we must be aware of bus contention problems (Section 8-12), where two or more

signals tied to the same bus line are active and are essentially fighting each

other. Bus contention is avoided if the devices have tristate outputs or are con-

nected to the bus through tristate buffers (Section 8-12).The output enable in-

puts (OE) to each device (or its buffer) are used to ensure that no more than one

device’s outputs are active at a given time.

EXAMPLE 9-19 (a) For Figure 9-41, describe the conditions necessary to transmit data from

device 3 to the microprocessor.

(b) What will the status of the data bus be when none of the devices is

enabled?

Solution

(a) ENABLE 3 must be activated; ENABLE 1 and ENABLE 2 must be in their

inactive state.This will put the outputs of device 1 and device 2 in the Hi-

Z state and essentially disconnect them from the bus. The outputs of de-

vice 3 will be activated so that their logic levels will appear on the data

bus lines and be transmitted to the inputs of the microprocessor. We can

visualize this by covering up device 1 and device 2 as if they are not even

part of the circuit; then we are left with device 3 alone connected to the

microprocessor over the data bus.

(b) If none of the device enable inputs are activated, all of the device out-

puts are in the Hi-Z state. This disconnects all device outputs from the

bus. Thus, there is no definite logic level on any of the data bus lines;

they are in the indeterminate state. This condition is known as a floating
bus, and each data bus line is said to be in a floating (indeterminate)

state. An oscilloscope display of a floating bus line would be unpre-

dictable. A logic probe would indicate an indeterminate logic level.

REVIEW QUESTIONS 1. What is meant by the term data bus?

2. What is bus contention, and what must be done to prevent it?

3. What is a floating bus?

9-13 THE 74ALS173/HC173 TRISTATE REGISTER

The devices connected to a data bus will contain registers (usually flip-flops)

that hold the device data. The outputs of these registers are usually con-

nected to tristate buffers that allow them to be tied to a data bus. We will

demonstrate the details of data bus operation by using an IC register that in-

cludes the tristate buffers on the same chip: the TTL 74ALS173 (also avail-

able in CMOS 74HC173 versions). Its logic diagram and truth table are

shown in Figure 9-42.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 629

630 CHAPTER 9/MSI LOGIC CIRCUITS

The 74ALS173 is a four-bit register with parallel in/parallel out capabil-

ity. Note that the FF outputs are connected to tristate buffers that provide

outputs through . Also note that the data inputs through are con-

nected to the D inputs of the register FFs through logic circuitry. This logic

allows two modes of operation: (1) load, where the data at inputs to are

transferred into the FFs on the PGT of the clock pulse at CP; and (2) hold,
where the data in the register do not change when the PGT of CP occurs.

D3D0

D3D0O3O0

FIGURE 9-42 Truth table and logic diagram for the 74ALS173 tristate register.

D

Q

IE1Input
Enable IE2

OE1Output
Enable OE2

O0

MR

CP

Q

CP

CD

Q

D0

D

Q

O1

Q

CP

CD

Q

D1

D

Q

O2

Q

CP

CD

Q

D2

D

Q

O3

Q

CP

CD

Q

D3

74ALS173

When either OE1 or OE2 is HIGH, the output is in the OFF
state (high impedance); however, this does not affect the
contents or sequential operating of the register.

H = HIGH voltage level
L = LOW voltage level
X = immaterial

Q0 = output prior to PGT

Logic Diagram

Inputs

MR

H
L
L
L
L
L

CP

X
L

X
X
H
X
L
L

IE1

X
X
X
H
L
L

IE2

X
X
X
X
L
H

Dn

FF Outputs

L
Q0
Q0
Q0
L
H

Q

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 630

SECTION 9-13/THE 74ALS173/HC173 TRISTATE REGISTER 631

EXAMPLE 9-20 (a) What input conditions will produce the load operation?

(b) What input conditions will produce the hold operation?

(c) What input conditions will allow the internal register outputs to appear

at to ?

Solution

(a) The last two entries in the truth table show that each Q output takes on

the value present at its D input when a PGT occurs at CP provided that

MR is LOW and both input-enable inputs, and are LOW.

(b) The third and fourth lines of the truth table state that when either in-

put is HIGH, the D inputs have no effect, and the Q outputs will retain

their current values when the PGT occurs.

(c) The output buffers are enabled when both output-enable inputs, and

are LOW. This will pass the register outputs through to the external

outputs to . If either output-enable input is HIGH, the buffers will

be disabled, and the outputs will be in the Hi-Z state.

Note that the inputs have no effect on the data load operation. They

are used only to control whether or not the register outputs are passed to

the external outputs.

The logic symbol for the 74ALS173/HC173 is given in Figure 9-43. We

have included the IEEE/ANSI “&” notation to indicate the AND relationship

of the two pairs of enable inputs.

OE

O3O0

OE2,

OE1

IE

IE2,IE1

O3O0

REVIEW QUESTIONS 1. Assume that both IE inputs are LOW and that . What

logic levels are present at the FF D inputs?

2. True or false: The register cannot be loaded when the master reset input

(MR) is held HIGH.

3. What will the output levels be when and both OE inputs are

held low?

MR = HIGH

D0D1D2D3 = 1011

OE2

IE2

74ALS173/HC173

IE1

OE1

CP

&
D3 D2 D1 D0

Data inputs

O3 O2 O1 O0

Data outputs

Note:

a tristate
output

indicates

MR

&

FIGURE 9-43 Logic

symbol for the

74ALS173/HC173 IC.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 631

632 CHAPTER 9/MSI LOGIC CIRCUITS

9-14 DATA BUS OPERATION

The data bus is very important in computer systems, and its significance will

not be appreciated until our later studies of memories and microprocessors.

For now, we will illustrate the data bus operation for register-to-register data

transfer. Figure 9-44 shows a bus-organized system for three 74HC173 tri-

state registers. Note that each register has its pair of inputs tied together

as one input, and likewise for the inputs. Also note that the registers

will be referred to as registers A, B, and C from top to bottom. This is indi-

cated by the subscripts on each input and output.

IEOE
OE

74HC173
IEA

OEA

D3A

O3A

MR

CP

Clock

DB3

D2A D1A D0A

O2A O1A O0A

74HC173
IEB

OEB

D3B

O3B

MR

CP

D2B D1B D0B

O2B O1B O0B

74HC173
IEC

OEC

D3C

O3C

MR

CP

D2C D1C D0C

O2C O1C O0C

Only one register's
outputs should be
enabled at one time

DB2 DB1 DB0

Data
bus

Data bus

FIGURE 9-44 Tristate registers connected to a data bus.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 632

SECTION 9-14/DATA BUS OPERATION 633

In this arrangement, the data bus consists of four lines labeled to

. Corresponding outputs of each register are connected to the same data

bus line (e.g., and are connected to). Because the three reg-

isters have their outputs connected together, it is imperative that only one

register have its outputs enabled and that the other two register outputs re-

main in the Hi-Z state. Otherwise, there will be bus contention (two or more

sets of outputs fighting each other), producing uncertain levels on the bus

and possible damage to the register output buffers.

Corresponding register inputs are also tied to the same bus line (e.g.,

and are tied to). Thus, the levels on the bus will always be

ready to be transferred to one or more of the registers depending on the

inputs.

Data Transfer Operation
The contents of any one of the three registers can be parallel-transferred

over the data bus to one of the other registers through the proper application

of logic levels to the register enable inputs. In a typical system, the control

unit of a computer (i.e., the CPU) will generate the signals that select which

register will put its data on the data bus and which one will take the data

from the data bus. The following example will illustrate this.

IE
DB3D3CD3A, D3B,

DB3O3CO3A, O3B,

DB3

DB0

EXAMPLE 9-21 Describe the input signal requirements for transferring .

Solution

First of all, only register A should have its outputs enabled. That is, we need

This will place the contents of register A onto the data bus lines.

Next, only register C should have its inputs enabled. For this, we want

This will allow only register C to accept data from the data bus when the

PGT of the clock signal occurs.

Finally, a clock pulse is required to transfer the data from the bus into

the register C flip-flops.

Bus Signals
The timing diagram in Figure 9-45 shows the various signals involved in the

transfer of the data 1011 from register A to register C. The and lines

that are not shown are assumed to be in their inactive HIGH state. Prior to

time the and lines are also HIGH, so that all of the register out-

puts are disabled, and none of the registers will be placing their data on the

bus lines. In other words, the data bus lines are in the Hi-Z or “floating”

state as represented by the hatched lines on the timing diagram. The Hi-Z
state does not correspond to any particular voltage level.

At the and inputs are activated. The outputs of register A are

enabled, and they start changing the data bus lines through from

the Hi-Z state to the logic levels 1011. After allowing time for the logic levels

DB0DB3

OEAIECt1

OEAIECt1,

OEIE

IEC = 0 IEA = IEB = 1

OEA = 0 OEB = OEC = 1

[A] : [C]

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 633

634 CHAPTER 9/MSI LOGIC CIRCUITS

to stabilize on the bus, the PGT of the clock is applied at . This PGT will

transfer these logic levels into register C because is active. If the PGT oc-

curs before the data bus has valid logic levels, unpredictable data will be

transferred into C.
At the and lines return to the inactive state. As a result, reg-

ister A’s outputs go to the Hi-Z state. This removes the register A output data

from the bus lines, and the bus lines return to the Hi-Z state.

Note that the data bus lines show valid logic levels only during the time

interval when register A’s outputs are enabled. At all other times, the data

bus lines are floating, and there is no way to predict easily what they would

look like if displayed on an oscilloscope. A logic probe would give an “in-

determinate” indication if it were monitoring a floating bus line. Also note

the relatively slow rate at which the signals on the data bus lines are chang-

ing. Although this effect has been somewhat exaggerated in the diagram, it

is a characteristic common to bus systems and is caused by the capacitive

load on each line. This load consists of a combination of parasitic capaci-

tance and the capacitances contributed by each input and output con-

nected to the line.

Simplified Bus Timing Diagram
The timing diagram in Figure 9-45 shows the signals on each of the four data

bus lines. This same kind of signal activity occurs in digital systems that use

the more common data buses of 8, 16, or 32 lines. For these larger buses, the

timing diagrams like Figure 9-45 would get excessively large and cumber-

some.There is a simplified method for showing the signal activity that occurs

on a set of bus lines that uses only a single timing waveform to represent the

complete set of bus lines. This is illustrated in Figure 9-46 for the same data

transfer situation depicted in Figure 9-45. Notice how the data bus activity is

represented. Especially note how the valid data 1011 are indicated on the

diagram during the – interval. We will generally use this simplified bus

timing diagram from now on.

Expanding the Bus
The data transfer operation of the four-line data bus of Figure 9-44 is typical

of the operation of larger data buses found in most computers and other dig-

t3t2

OEAIECt3,

IEC

t2

1

0

1 1

1

NOTES:

t1: Register A outputs are
enabled. Its data are
placed on the data bus lines.

t2: The PGT of the clock
transfers valid data from the
data bus into register C.

t3: Register A outputs are
disabled and the data bus
lines return to Hi-Z state.

= floating (Hi-Z)

1

1

1

1

1

1

IEC

OEA

Clock

DB3

DB2

DB1

DB0

t1 t3t2

0

0

0

0

0

0

0

FIGURE 9-45 Signal activ-

ity during the transfer of

the data 1011 from register

A to register C.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 634

SECTION 9-14/DATA BUS OPERATION 635

ital systems, usually the 8-, 16-, or 32-line data buses. These larger buses gen-

erally have many more than three devices tied to the bus, but the basic data

transfer operation is the same: one device has its outputs enabled so that its
data are placed on the data bus; another device has its inputs enabled so that it
can take these data off the bus and latch them into its internal circuitry on the
appropriate clock edge.

The number of lines on the data bus will depend on the size of the data

word (unit of data) that is to be transferred over the bus. A computer that

has an 8-bit word size will have an eight-line data bus, a computer that has

a 16-bit word size will have a 16-line data bus, and so on. The number of

devices connected to a data bus varies from one computer to another and

depends on factors such as how much memory the computer has and the

number of input and output devices that must communicate with the CPU

over the data bus.

All device outputs must be tied to the bus through tristate buffers. Some

devices, such as the 74173 register, have these buffers on the same chip. Other

devices will need to be connected to the bus through an IC called a bus driver.

A bus driver IC has tristate outputs with a very low output impedance that

can rapidly charge and discharge the bus capacitance. This bus capacitance

represents the cumulative effect of all of the parasitic capacitances of the dif-

ferent inputs and outputs tied to the bus, and it can cause deterioration of the

bus signal transition times if they are not driven from a low-impedance signal

source. Figure 9-47 shows a 74HC541 octal bus driver IC connecting the out-

puts of an eight-bit analog-to-digital converter (ADC) to a data bus. The ADC

has tristate outputs but lacks the drive capability to charge the bus capaci-

tance (shown as capacitors to ground in the drawing). Notice that data bit 0 is

driving the bus directly, without the assistance of the bus driver. If the transi-

tion time is slow enough, the voltage may never reach a HIGH logic level in

the allotted enable time. The bus driver’s two enable inputs are tied together

so that a LOW on the common enable line will allow the ADC’s outputs

through the buffers and onto the data bus, from which they can be transferred

to another device.

Simplified Bus Representation
Usually, many devices are connected to the same data bus. On a circuit

schematic, this can produce a confusing array of lines and connections. For

this reason, a more simplified representation of data bus connections is of-

ten used on block diagrams and in some circuit schematics. One type of sim-

plified representation is shown in Figure 9-48 for an eight-line data bus.

FIGURE 9-46 Simplified

way to show signal activity

on data bus lines.

1

1

1

1
1011

t1

IEC

t3t2

OEA

Clock

DB3–DB0

0

0

0

0

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 635

636 CHAPTER 9/MSI LOGIC CIRCUITS

ENABLE
74HC541

ADC

Data Bus

OE D7

D6

D5

D4

D3

D2

D1

D0

FIGURE 9-47 A 74HC541

octal bus driver connects

the outputs of an analog-to-

digital converter (ADC) to

an eight-line data bus. The

output connects directly

to the bus showing the

capacitive effects.

D0

FIGURE 9-48 Simplified

representation of bus

arrangement.

A

CP [8]

8-wire
bus

[8]

DATA IN

DATA OUT

Clock

[8]

B

CP [8]

[8]

DATA IN

DATA OUT

[8]

C

CP [8]

[8]

DATA IN

DATA OUT

[8]

IEA

OEA

IEB

OEB

IEC

OEC

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 636

SECTION 9-14/DATA BUS OPERATION 637

The connections to and from the data bus are represented by wide

arrows. The numbers in brackets indicate the number of bits that each regis-

ter contains, as well as the number of lines connecting the register inputs and

outputs to the bus.

Another common method for representing buses on a schematic is pre-

sented in Figure 9-49 for an eight-line data bus. It shows the eight individual

output lines from a 74HC541 bus driver labeled bundled (not con-

nected) together and shown as a single line.These bundled data output lines

are then connected to the data bus, which is also shown as one line (i.e., the

eight data bus lines are bundled together). The “/8” notation indicates the

number of lines represented by each bundle. This bundle method is used to

represent the connections from the data bus to the eight microprocessor data

inputs. When the bundle method is used, it is very important to label both

ends of every wire that is in the bundle because the connection cannot be

traced visually on the diagram.

D7–D0

Bidirectional Busing
Each register in Figure 9-44 has both its inputs and its outputs connected

to the data bus, so that corresponding inputs and outputs are shorted to-

gether. For example, each register has output connected to input be-

cause of their common connection to . This, of course, would not be true

if external bus drivers were connected between the register outputs and

the data bus.

Because inputs and outputs are often connected together in bus systems,

IC manufacturers have developed ICs that connect inputs and outputs to-

gether internal to the chip in order to reduce the number of IC pins and the

number of connections to the bus. Figure 9-50 illustrates this for a four-bit

register. The separate data input lines (to) and output lines (to)

have been replaced by input/output lines (to).

Each I/O line will function as either an input or an output depending on

the states of the enable inputs.Thus, they are called bidirectional data lines.

The 74ALS299 is an eight-bit register with common I/O lines. Many memory

ICs and microprocessors have bidirectional transfer of data.

We will return to the important topic of data busing in our comprehen-

sive coverage of memory systems in Chapter 12.

I/O3I/O0

O3O0D3D0

DB2

D2O2

74HC541

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

8

Microprocessor

8

8

Data
Bus

D7 D6 D5 D4 D3 D2 D1 D0

AD7

D0 D1 D2 D3 D4 D5 D6 D7

AD6AD5AD4AD3AD2AD1AD0

FIGURE 9-49 Bundle method for simplified representation of data bus connec-

tions. The “/8” denotes an eight-line data bus.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 637

638 CHAPTER 9/MSI LOGIC CIRCUITS

9-15 DECODERS USING HDL

Section 9-1 introduced the decoder as a device that can recognize a binary

number on its input and activate a corresponding output. Specifically, the

74138 1-of-8 decoder was presented. It uses three binary inputs to activate

one of the eight outputs when the chip is enabled. In order to study HDL

methods for implementing the types of digital devices that are covered in this

chapter, we will focus primarily on conventional MSI parts, which have been

FIGURE 9-50
Bidirectional register

connected to data bus.

(a)

Bidirectional
register

IE

OE

CLOCK CP

I/O3

I/O2

I/O1

I/O0

DB3 DB2 DB1 DB0

Bus

Bidirectional
register

IE

OE

CLOCK CP

I/O

(b)

[4]

[4]
4-wire

bus

Bidirectional
register

I/O3 I/O2 I/O1 I/O0

4

4

Data
Bus

IE

OE

CLOCK

FIGURE 9-51

REVIEW QUESTIONS
1. What will happen if in Figure 9-44?

2. What logic level is on a data bus line when all devices tied to the bus are

disabled?

3. What is the function of a bus driver?

4. What are the reasons for having registers with common I/O lines?

5. Redraw Figure 9-50(a) using the bundled line representation. (The an-

swer is shown in Figure 9-51.)

OEA = OEB = LOW

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 638

discussed earlier. Not only is the operation of these devices already described

in this book, but further reference material is readily available in logic data

books. In all of these cases, it is vital that you understand what the device is

supposed to do before trying to dissect the HDL code that describes it.

In actual practice, we are not recommending, for example, that new code

be written to perform the task of a 74138. After all, there is a macrofunction

already available that works exactly like this standard part. Using these de-

vices as examples and showing the HDL techniques used to create them

opens the door for embellishment of these devices so that a circuit that will

uniquely fit the application at hand can be described. In some instances, we

will add our own embellishments to a circuit that has been described; in

other instances, we will describe a simpler version of a part in order to focus

on the core principle in HDL and avoid other confusing features.

The methods used to define the inputs and outputs should take into consid-

eration the purpose of these signals. In the case of a 1-of-8 decoder such as the

74138 described in Figure 9-3, there are three enable inputs (and)

that should be described as individual inputs to the device. On the other hand,

the binary inputs that are to be decoded () should be described as

three-bit numbers.The outputs can be described as eight individual bits.They

can also be described as an array of eight bits, with output 0 represented by el-

ement 0 in the array, and so on, to output 7 represented by element 7. De-

pending on the way the code is written, one strategy may be easier to write

than the other. Generally, using individual names can make the purpose of

each I/O bit clearer, and using bit arrays makes it easier to write the code.

When an application such as a decoder calls for a unique response from

the circuit corresponding to each combination of its input variables, the two

methods that best serve this purpose are the CASE construct and the truth

TABLE. The interesting aspect of this decoder is that the output response

should happen only when all the enables are activated. If any of the enables

are not in their active state, it should cause all the outputs to go HIGH. Each

of the examples that follow will demonstrate ways to decode the input num-

ber only when all of the enables are activated.

AHDL DECODERS
The first illustration of an AHDL decoder, shown in Figure 9-52, is intended

to demonstrate the use of a CASE construct that is evaluated only under the

condition that all enables are active. The outputs must all revert back to

HIGH as soon as any enable is deactivated. This example also illustrates a

way to accomplish this without explicitly assigning a value to each output for

each case, and it uses individually named output bits.

Line 3 defines the three-bit binary number that will be decoded. Line 4

defines the three enable inputs, and line 5 specifically names each output.

The unique property of this solution is the use of the DEFAULTS keyword in

AHDL (lines 10 to 13) to establish a value for variables that are not specified

elsewhere in the code. This maneuver allows each case to force one bit LOW

without specifically stating that the others must go HIGH.

The next illustration, in Figure 9-53, is intended to demonstrate the same

decoder using the truth table approach. Notice that the outputs are defined as

bit arrays but are still numbered y[7] down to y[0]. The unique aspect of this

code is the use of the don’t-care values in the truth table. Line 11 is used to con-

catenate the six input bits into a single variable (bit array) named inputs[]. No-

tice that in lines 14, 15, and 16 of the table, only one bit value is specified as 1

or 0. The others are all in the don’t-care state (X). Line 14 says, “As long as e3

A2, A1, A0

E3E1, E2,

SECTION 9-15/DECODERS USING HDL 639

A
H

D
L

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 639

640 CHAPTER 9/MSI LOGIC CIRCUITS

FIGURE 9-52 AHDL

equivalent to the

74138 decoder.

1 SUBDESIGN fig9_52
2 (
3 a[2..0] :INPUT; -- binary inputs
4 e3, e2bar, e1bar :INPUT; -- enable inputs
5 y7,y6,y5,y4,y3,y2,y1,y0 :OUTPUT; -- decoded outputs
6)
7 VARIABLE
8 enable :NODE;
9 BEGIN
10 DEFAULTS
11 y7=VCC;y6=VCC;y5=VCC;y4=VCC;
12 y3=VCC;y2=VCC;y1=VCC;y0=VCC; -- defaults all HIGH out
13 END DEFAULTS;
14 enable = e3 & !e2bar & !e1bar; -- all enables activated
15 IF enable THEN
16 CASE a[] IS
17 WHEN 0 => y0 = GND;
18 WHEN 1 => y1 = GND;
19 WHEN 2 => y2 = GND;
20 WHEN 3 => y3 = GND;
21 WHEN 4 => y4 = GND;
22 WHEN 5 => y5 = GND;
23 WHEN 6 => y6 = GND;
24 WHEN 7 => y7 = GND;
25 END CASE;
26 END IF;
27 END;

FIGURE 9-53 AHDL

decoder using a

TABLE.

1 SUBDESIGN fig9_53
2 (
3 a[2..0] :INPUT; -- decoder inputs
4 e3, e2bar, e1bar :INPUT; -- enable inputs
5 y[7..0] :OUTPUT; -- decoded outputs
6)
7 VARIABLE
8 inputs[5..0] :NODE; -- all 6 inputs combined
9
10 BEGIN
11 inputs[] = (e3, e2bar, e1bar, a[]); -- concatenate the inputs
12 TABLE
13 inputs[] => y[];
14 B”0XXXXX” => B”11111111”; -- el not enabled
15 B”X1XXXX” => B”11111111”; -- e2bar disabled
16 B”XX1XXX” => B”11111111”; -- e3bar disabled
17 B”100000” => B”11111110”; -- Y0 active
18 B”100001” => B”11111101”; -- Y1 active
19 B”100010” => B”11111011”; -- Y2 active
20 B”100011” => B”11110111”; -- Y3 active
21 B”100100” => B”11101111”; -- Y4 active
22 B”100101” => B”11011111”; -- Y5 active
23 B”100110” => B”10111111”; -- Y6 active
24 B”100111” => B”01111111”; -- Y7 active
25 END TABLE;
26 END;

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 640

SECTION 9-15/DECODERS USING HDL 641

is not enabled, it does not matter what the other inputs are doing; the outputs

will be HIGH.” Lines 15 and 16 do the same thing, making sure that if e2bar or

e1bar is HIGH (disabled), the outputs will be HIGH. Lines 17 through 24 state

that as long as the first three bits (enables) are “100,” the proper decoder out-

put will be activated to correspond with the lower three bits of inputs[].

VHDL DECODERS
The VHDL solution presented in Figure 9-54 essentially uses a truth table ap-

proach. The key strategy in this solution involves the concatenation of the

three enable bits (e3, e2bar, e1bar) with the binary input a on line 11. The

VHDL selected signal assignment is used to assign a value to a signal when

a specific combination of inputs is present. Line 12 (WITH inputs SELECT)

indicates that we are using the value of the intermediate signal inputs to de-

termine which value is assigned to y. Each of the y outputs is listed on lines

13–20. Notice that only combinations that begin with 100 follow the WHEN

clause on lines 13–20.This combination of e3, e2bar, and e1bar is necessary to

make each of the enables active. Line 21 assigns a disabled state to each out-

put when any combination other than 100 is present on the enable inputs.

FIGURE 9-54 VHDL equivalent to the 74138 decoder.

1 ENTITY fig9_54 IS

2 PORT(

3 a :IN BIT_VECTOR (2 DOWNTO 0);

4 e3, e2bar, e1bar :IN BIT;

5 y :OUT BIT_VECTOR (7 DOWNTO 0)

6);

7 END fig9_54 ;

8 ARCHITECTURE truth OF fig9_54 IS

9 SIGNAL inputs: BIT_VECTOR (5 DOWNTO 0); --combine enables w/ binary in

10 BEGIN

11 inputs <= e3 & e2bar & e1bar & a;

12 WITH inputs SELECT

13 y <= “11111110” WHEN “100000”, --Y0 active

14 “11111101” WHEN “100001”, --Y1 active

15 “11111011” WHEN “100010”, --Y2 active

16 “11110111” WHEN “100011”, --Y3 active

17 “11101111” WHEN “100100”, --Y4 active

18 “11011111” WHEN “100101”, --Y5 active

19 “10111111” WHEN “100110”, --Y6 active

20 “01111111” WHEN “100111”, --Y7 active

21 “11111111” WHEN OTHERS; --disabled

22 END truth;

V
H

D
L

REVIEW QUESTIONS 1. What is the purpose of the three inputs e3, e2bar, and e1bar?

2. Name two AHDL methods to describe a decoder’s operation.

3. Name two VHDL methods to describe a decoder’s operation.

TOCCMC09_0131725793.QXD 12/23/05 4:27 AM Page 641

642 CHAPTER 9/MSI LOGIC CIRCUITS

9-16 THE HDL 7-SEGMENT DECODER/DRIVER

Section 9-2 described a BCD-to-7-segment decoder/driver. The standard part

number for the circuit described is a 7447. In this section, we look into the

HDL code necessary to produce a device that meets the same criteria as the

7447. Recall that the (blanking input) is the overriding control that turns

all segments off regardless of other input levels. The (lamp test) input is

used to test all the segments on the display by lighting them up. The

(ripple blanking output) is designed to go LOW when (ripple blanking

input) is LOW and the BCD input value is 0. Typically, in multiple-digit dis-

play applications, each pin is connected to the pin of the next digit

to the right. This setup creates the feature of blanking all leading zeros in a

display value without blanking zeros in the middle of a number. For exam-

ple, the number 2002 would display as 2002, but the number 0002 would not
display as 0002, but rather _ _ _ 2. One feature of the 7447 that would be dif-

ficult to replicate in HDL is the combination input/output pin named

Rather than complicate the code, we have decided to create a sepa-

rate input and an output on two different pins. This discussion

also makes no attempt to replicate the non-BCD display characters of a 7447

but simply blanks all segments for values greater than 9.

Several decisions must be made when designing a circuit such as this one.

The first involves the type of display we intend to use. If it is a common cath-

ode, then a logic 1 lights the LED segment. If it is a common anode, then a

logic 0 is required to turn on a segment. Next, we must decide on the type of

inputs, outputs, and intermediate variables. We have decided that the out-

puts for each individual segment should be assigned a bit name (a–g) rather

than using a bit array. This arrangement will make it clearer when connect-

ing the display to the IC.These individual bits can be grouped as a set of bits

and assigned binary values, as we have done in AHDL, or an intermediate

variable bit array can be used to make it convenient when assigning all seven

bit levels in a single statement, as we have done in VHDL. The BCD inputs

are treated as a four-bit number, and the blanking controls are individual

bits. The other issue that greatly affects the bit patterns in the HDL code is

the arbitrary decision of the order of the segment names a–g. In this discus-

sion, we have assigned segment a to the leftmost bit in the binary bit pattern,

with the bits moving alphabetically left to right.

Some of the controls must have precedence over other controls. For ex-

ample, the (lamp test) should override any regular digit display, and the

(blanking input) should override even the lamp test input. In these illus-

trations, the IF/ELSE control structure is used to establish precedence. The

first condition that is evaluated as true will determine the resulting output,

regardless of the other input levels. Subsequent ELSE statements will have

no effect, which is why the code tests first for then then and fi-

nally determines the correct segment pattern.

AHDL DECODER/DRIVER
The AHDL code for this circuit is shown in Figure 9-55. AHDL allows output

bits to be grouped in a set by separating the bits with commas and enclosing

them in parentheses. A group of binary states can be assigned directly to

these bit sets, as shown on lines 9, 11, 13, and 15. This convention avoids the

need for an intermediate variable and is much shorter than eight separate

assignment statements. The TABLE feature of AHDL is useful in this appli-

cation to correlate an input BCD value to a 7-segment bit pattern.

RBI,LT,BI,

BI
LT

(RBO)(BI)
BI/RBO.

RBIRBO

RBI
RBO

LT
BI

A
H

D
L

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 642

SECTION 9-16/THE HDL 7-SEGMENT DECODER/DRIVER 643

VHDL DECODER/DRIVER
The VHDL code for this circuit is shown in Figure 9-56.This illustration demon-

strates the use of a VARIABLE as opposed to a SIGNAL. A VARIABLE can be

thought of as a piece of scrap paper used to write down some numbers that will

be needed later. A SIGNAL, on the other hand, is usually thought of as a wire

connecting two points in the circuit. In line 12, the keyword VARIABLE is used

to declare segments as a bit vector with seven bits. Take special note of the or-

der of the indices for this variable. They are declared as 0 TO 6. In VHDL, this

means that element 0 appears on the left end of the binary bit pattern and el-

ement 6 appears on the right end. This is exactly opposite of the way most ex-

amples in this text have presented variables, but it is important to realize the

significance of the declaration statement in VHDL. For this illustration, seg-

ment a is bit 0 (on the left), segment b is bit 1 (moving to the right), and so on.

Notice that on line 3, the BCD input is declared as an INTEGER.This allows

us to refer to it by its numeric value in decimal rather than being limited to bit

pattern references.A PROCESS is employed here in order to allow us to use the

IF/ELSE constructs to establish the precedence of one input over the other.

Notice that the sensitivity list contains all the inputs. The code within the

FIGURE 9-55 AHDL 7-segment BCD display decoder.

1 SUBDESIGN fig9_55

2 (

3 bcd[3..0] :INPUT; -- 4-bit number

4 lt, bi, rbi :INPUT; -- 3 independent controls

5 a,b,c,d,e,f,g,rbo :OUTPUT; -- individual outputs

6)

7 BEGIN

8 IF !bi THEN

9 (a,b,c,d,e,f,g,rbo) = (1,1,1,1,1,1,1,0); % blank all %

10 ELSIF !lt THEN

11 (a,b,c,d,e,f,g,rbo) = (0,0,0,0,0,0,0,1); % test segments %

12 ELSIF !rbi & bcd[] == 0 THEN

13 (a,b,c,d,e,f,g,rbo) = (1,1,1,1,1,1,1,0); % blank leading 0’s %

14 ELSIF bcd[] > 9 THEN

15 (a,b,c,d,e,f,g,rbo) = (1,1,1,1,1,1,1,1); % blank non BCD input %

16 ELSE

17 TABLE % display 7 segment Common Anode pattern %

18 bcd[] => a,b,c,d,e,f,g,rbo;

19 0 => 0,0,0,0,0,0,1,1;

20 1 => 1,0,0,1,1,1,1,1;

21 2 => 0,0,1,0,0,1,0,1;

22 3 => 0,0,0,0,1,1,0,1;

23 4 => 1,0,0,1,1,0,0,1;

24 5 => 0,1,0,0,1,0,0,1;

25 6 => 1,1,0,0,0,0,0,1;

26 7 => 0,0,0,1,1,1,1,1;

27 8 => 0,0,0,0,0,0,0,1;

28 9 => 0,0,0,1,1,0,0,1;

29 END TABLE;

30 END IF;

31 END;

V
H

D
L

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 643

644 CHAPTER 9/MSI LOGIC CIRCUITS

PROCESS describes the behavioral operation of the circuit that is necessary

whenever any of the inputs in the sensitivity list changes state.Another very im-

portant point in this illustration is the assignment operator for variables. Notice

in line 15, for example, the statement segments :� “1111111”. The variable as-

signment operator is used for variables in place of the operator that was

used for signal assignments. In lines 36–42, the individual bits that were

established in the IF/ELSE decisions are assigned to the proper output bits.

6 =:=

FIGURE 9-56 VHDL 7-segment BCD display decoder.

1 ENTITY fig9_56 IS

2 PORT (

3 bcd :IN INTEGER RANGE 0 TO 15;

4 lt, bi, rbi :IN BIT;

5 a,b,c,d,e,f,g,rbo :OUT BIT

6);

7 END fig9_56 ;

8

9 ARCHITECTURE vhdl OF fig9_56 IS

10 BEGIN

11 PROCESS (bcd, lt, bi, rbi)

12 VARIABLE segments :BIT_VECTOR (0 TO 6);

13 BEGIN

14 IF bi = ’0’ THEN

15 segments := “1111111”; rbo <= ’0’; -- blank all

16 ELSIF lt = ’0’ THEN

17 segments := “0000000”; rbo <= ’1’; -- test segments

18 ELSIF (rbi = ’0’ AND bcd = 0) THEN

19 segments := “1111111”; rbo <= ’0’; -- blank leading 0’s

20 ELSE

21 rbo <= ’1’;

22 CASE bcd IS -- display 7 segment Common Anode pattern

23 WHEN 0 => segments := “0000001”;

24 WHEN 1 => segments := “1001111”;

25 WHEN 2 => segments := “0010010”;

26 WHEN 3 => segments := “0000110”;

27 WHEN 4 => segments := “1001100”;

28 WHEN 5 => segments := “0100100”;

29 WHEN 6 => segments := “1100000”;

30 WHEN 7 => segments := “0001111”;

31 WHEN 8 => segments := “0000000”;

32 WHEN 9 => segments := “0001100”;

33 WHEN OTHERS => segments := “1111111”;

34 END CASE;

35 END IF;

36 a <= segments(0); --assign bits of array to output pins

37 b <= segments(1);

38 c <= segments(2);

39 d <= segments(3);

40 e <= segments(4);

41 f <= segments(5);

42 g <= segments(6);

43 END PROCESS;

44 END vhdl;

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 644

SECTION 9-17/ENCODERS USING HDL 645

9-17 ENCODERS USING HDL

In Section 9-4, we discussed encoders and priority encoders. Similarities ex-

ist, of course, between decoders and encoders. Decoders take a binary num-

ber and activate one output that corresponds to that number. An encoder

works in the other direction by monitoring one of its several inputs; when

one of the inputs is activated, it produces a binary number corresponding to

that input. If more than one of its inputs is activated at the same time, a pri-

ority encoder ignores the input of lower significance and produces the bi-

nary value that corresponds to the most significant input. In other words, it

gives more significant inputs priority over less significant inputs. This sec-

tion focuses on the methods that can be used in HDL to describe circuits that

have this characteristic of priority for some inputs over others.

Another very important concept, which was presented in Chapter 8, was

the tristate output circuit. Devices with tristate outputs can produce a logic

HIGH or a logic LOW, just like a normal circuit, when their output is enabled.

However, these devices can have their outputs disabled, which puts them in a

“disconnected” or a high-impedance state. This is very important for devices

connected to common buses, as described in Section 9-12. The next logical

question is, “How do we describe tristate outputs using HDL?” This section

incorporates tristate outputs in the encoder design to address this issue. In or-

der to keep the discussion focused on the essentials, we create a circuit that

emulates the 74147 priority encoder, with one added feature of having active-

HIGH tristate outputs. Other features like cascading inputs and outputs (such

as those found on a 74148) are left for you to try later. A symbol for the circuit

we are describing is shown in Figure 9-57. Because the inputs are all labeled

in a manner very similar to bit array notation, it makes sense to use a bit ar-

ray to describe the encoder inputs. The tristate enable must be a single bit,

and the encoded outputs can be described as an integer numeric value.

REVIEW QUESTIONS 1. What feature of a 7447 is very difficult to duplicate in PLD hardware and

HDL code?

2. Are these illustrations intended to drive common-anode or common-

cathode 7-segment displays?

3. How are certain inputs (e.g., lamp test) given precedence over other in-

puts (e.g., RBI) in the HDL code in this section?

74147

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9

O0 D0

O1 D1

O2 D2

O3 D3

Tristate enable

OE

Encoder
INPUTS

Tristate inverters
FIGURE 9-57 Graphic

description of an encoder

with tristate outputs.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 645

646 CHAPTER 9/MSI LOGIC CIRCUITS

AHDL ENCODER
The most important point to be made from Figure 9-58 is the method of es-

tablishing priority, but also note the I/O assignments. The AHDL input/out-

put descriptions do not provide a separate type for integers but allow a bit

array to be referred to as an integer. Consequently, line 4 describes the out-

puts as a bit array. In this illustration, a TABLE is used that is very similar to

the tables often found in data books describing this circuit’s operation. The

key to this table is the use of the don’t-care state (X) on inputs. The priority

is described by the way we position these don’t-care states in the truth table.

Reading line 15, for instance, we see that as soon as we encounter an active

input (LOW on input a[4]), the lower order input bits do not matter. The out-

put has been determined to be 4. The tristate outputs are made possible by

using the built-in primitive function :TRI on line 6. This line assigns the at-

tributes of a tristate buffer to the variable that has been named buffer.
Recall that this is the same way a flip-flop is described in AHDL. The ports

of a tristate buffer are quite straightforward. They represent the input (in),

the output (out), and the tristate output enable (oe).

FIGURE 9-58 AHDL

priority encoder with

tristate outputs.

1 SUBDESIGN fig9_58

2 (

3 a[9..0], oe :INPUT;

4 d[3..0] :OUTPUT;

5)

6 VARIABLE buffer[3..0] :TRI;

7 BEGIN

8 TABLE

9 a[] => buffer[].in;

10 B”1111111111” => B”1111”; -- no input active

11 B”1111111110” => B”0000”; -- 0

12 B”111111110X” => B”0001”; -- 1

13 B”11111110XX” => B”0010”; -- 2

14 B”1111110XXX” => B”0011”; -- 3

15 B”111110XXXX” => B”0100”; -- 4

16 B”11110XXXXX” => B”0101”; -- 5

17 B”1110XXXXXX” => B”0110”; -- 6

18 B”110XXXXXXX” => B”0111”; -- 7

19 B”10XXXXXXXX” => B”1000”; -- 8

20 B”0XXXXXXXXX” => B”1001”; -- 9

21 END TABLE;

22 buffer[].oe = oe; -- hook up enable line

23 d[] = buffer[].out; -- hook up outputs

24 END;

The next illustration (Figure 9-59) uses the IF/ELSE construct to estab-

lish priority, very much like the method demonstrated in the 7-segment

decoder example.The first IF condition that evaluates TRUE will THEN cause

the corresponding value to be applied to the tristate buffer inputs.The prior-

ity is established by the order in which we list the IF conditions. Notice that

they start with input 9, the highest-order input.This illustration adds another

feature of putting the outputs into the high-impedance state when no input is

being activated. Line 20 shows that the output enables will be activated only

A
H

D
L

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 646

SECTION 9-17/ENCODERS USING HDL 647

when the oe pin is activated and one of the inputs is activated. Another item

of interest in this illustration is the use of bit array notation to describe in-

dividual inputs. For example, line 9 states that IF switch input 9 is activated

(LOW), THEN the inputs to the tristate buffer will be assigned the value 9

(in binary, of course).

VHDL ENCODER
Two very important VHDL techniques are demonstrated in this description

of a priority encoder.The first is the use of tristate outputs in VHDL, and the

second is a new method of describing priority. Figure 9-60 shows the in-

put/output definitions for this encoder circuit. Notice on line 6 that the input

switches are defined as bit vectors with indices from 9 to 0. Also note that the

d output is defined as an IEEE standard bit array (std_logic_vector type).

This definition is necessary to allow the use of high-impedance states (tri-

state) on the outputs and also explains the need for the LIBRARY and USE

statements on lines 1 and 2. As we mentioned, a very important point of this

illustration is the method of describing precedence for the inputs. This code

uses the conditional signal assignment statement starting on line 14 and con-

tinuing through line 24. On line 14, it assigns the value listed to the right of

to the variable d on the left, assuming the condition following WHEN is

true. If this clause is not true, the clauses following ELSE are evaluated one

at a time until one that is true is found.The value preceding WHEN will then

be assigned to d. A very important attribute of the conditional signal assign-

ment statement is the sequential evaluation. The precedence of these state-

ments is established by the order in which they are listed. Notice that in this

illustration, the first condition being tested (line 14) is the enabling of the

tristate outputs. Recall from Chapter 8 that the three states of a tristate out-

6 =

FIGURE 9-59 AHDL priority encoder using IF/ELSE.

1 SUBDESIGN fig9_59

2 (

3 sw[9..0], oe :INPUT;

4 d[3..0] :OUTPUT;

5)

6 VARIABLE

7 buffers[3..0] :TRI;

8 BEGIN

9 IF !sw[9] THEN buffers[].in = 9;

10 ELSIF !sw[8] THEN buffers[].in = 8;

11 ELSIF !sw[7] THEN buffers[].in = 7;

12 ELSIF !sw[6] THEN buffers[].in = 6;

13 ELSIF !sw[5] THEN buffers[].in = 5;

14 ELSIF !sw[4] THEN buffers[].in = 4;

15 ELSIF !sw[3] THEN buffers[].in = 3;

16 ELSIF !sw[2] THEN buffers[].in = 2;

17 ELSIF !sw[1] THEN buffers[].in = 1;

18 ELSE buffers[].in = 0;

19 END IF;

20 buffers[].oe = oe & sw[]!=b”1111111111”; -- enable on any input

21 d[] = buffers[].out; -- connect to outputs

22 END;

V
H

D
L

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 647

648 CHAPTER 9/MSI LOGIC CIRCUITS

put are HIGH, LOW, and high impedance, which is referred to as high Z.

When the value “ZZZZ” is assigned to the output, each output is in the high-

impedance state. If the outputs are to be disabled (high Z), then none of the

other encoding matters. Line 15 tests the highest priority input, which is bit

9 of the sw input array. If it is active (LOW), then a value of 9 is output re-

gardless of whether other inputs are being activated at the same time.

REVIEW QUESTIONS 1. Name two methods in AHDL for giving priority to some inputs over others.

2. Name two methods in VHDL for giving priority to some inputs over others.

3. In AHDL, how are tristate outputs implemented?

4. In VHDL, how are tristate outputs implemented?

9-18 HDL MULTIPLEXERS AND DEMULTIPLEXERS

A multiplexer is a device that acts like a selector switch for digital signals.

The select inputs are used to specify the input channel that is to be “con-

nected” to the output pins. A demultiplexer works in the opposite direction

by taking a digital signal as an input and distributing it to one of its outputs.

Figure 9-61 shows a multiplexer/demultiplexer system with four data input

channels. Each input is a four-bit number. These devices are not exactly like

any of the multiplexers or demultiplexers described earlier in this chapter,

but they operate in the same way. The system in this illustration allows the

four digital signals to share a common “pipeline” in order to get data from

FIGURE 9-60
VHDL priority

encoder using

conditional

signal

assignment.

1 LIBRARY ieee;

2 USE ieee.std_logic_1164.ALL;

3

4 ENTITY fig9_60 IS

5 PORT(

6 sw :IN BIT_VECTOR (9 DOWNTO 0); -- standard logic not needed

7 oe :IN BIT; -- standard logic not needed

8 d :OUT STD_LOGIC_VECTOR (3 DOWNTO 0) -- std logic for hi-Z

9);

10 END fig9_60;

11

12 ARCHITECTURE a OF fig9_60 IS

13 BEGIN

14 d <= “ZZZZ” WHEN ((oe = ’0’) OR (sw = “1111111111”)) ELSE

15 “1001” WHEN sw(9) = ’0’ ELSE

16 “1000” WHEN sw(8) = ’0’ ELSE

17 “0111” WHEN sw(7) = ’0’ ELSE

18 “0110” WHEN sw(6) = ’0’ ELSE

19 “0101” WHEN sw(5) = ’0’ ELSE

20 “0100” WHEN sw(4) = ’0’ ELSE

21 “0011” WHEN sw(3) = ’0’ ELSE

22 “0010” WHEN sw(2) = ’0’ ELSE

23 “0001” WHEN sw(1) = ’0’ ELSE

24 “0000” WHEN sw(0) = ’0’;

25 END a;

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 648

SECTION 9-18/HDL MULTIPLEXERS AND DEMULTIPLEXERS 649

one point to the other.The select inputs are used to decide which signal is go-

ing through the pipeline at any time.

In this section, we examine some code that implements both the multi-

plexer and the demultiplexer. The key HDL issue in both the MUX and DE-

MUX is assigning signals under certain conditions. For the demux, another

issue is assigning a state to whichever outputs are not currently selected to

distribute data. In other words, when an output is not being used for data

(not selected), do we want it to have all bits HIGH, all bits LOW, or the tri-

state disabled? In the following descriptions, we have chosen to make them all

HIGH when not selected, but with the structure shown, it would be a simple

matter to change to one of the other possibilities.

AHDL MUX AND DEMUX
We will implement the multiplexer first. Figure 9-62 describes a multiplexer

with four inputs of four bits each. Each input channel is named in a way that

identifies its channel number. In this figure, each input is described as a

four-bit array. The select input (s[]) requires two bits to specify the four

channel numbers (0–3). A CASE construct is used here to assign an input

channel conditionally to the output pins. Line 9, for example, states that in

the case when the select inputs (s[]) are set to 0 (that is, binary 00), the

/4

/4

/4

/4

/4

CH0

/4

CH1

/4

CH2

/4

CH3

/4

S1 S0

Dout

Pipeline

MUX

S1 S0

Din

DEMUX

CH0

CH1

CH2

CH3

Select

FIGURE 9-61 Four channels of data sharing a common data path.

FIGURE 9-62
Four-bit four-

channel MUX

in AHDL.

* 1 SUBDESIGN fig9_62

2 (

3 ch0[3..0], ch1[3..0], ch2[3..0], ch3[3..0]:INPUT;

4 s[1..0] :INPUT; -- select inputs

5 dout[3..0] :OUTPUT;

6)

7 BEGIN

8 CASE s[] IS

9 WHEN 0 => dout[] = ch0[];

10 WHEN 1 => dout[] = ch1[];

11 WHEN 2 => dout[] = ch2[];

12 WHEN 3 => dout[] = ch3[];

13 END CASE;

14 END;

A
H

D
L

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 649

650 CHAPTER 9/MSI LOGIC CIRCUITS

circuit should connect the channel 0 input to the data output. Notice that

when assigning connections, the destination (output) of the signal is on the

left of the sign and the source (input) is on the right.

The demultiplexer code works in a similar way but has only one input chan-

nel and four output channels. It must also ensure that the outputs are all HIGH

when they are not selected. In Figure 9-63, the inputs and outputs are declared

as usual on lines 3–5. The default condition for each channel is specified after

the keyword DEFAULTS, which tells the compiler to generate a circuit that

will have HIGHs on the outputs unless specifically assigned a value elsewhere

in the code. If this default section is not specified, the output values would de-

fault automatically to all LOW. Notice on lines 16–19 that the input signal is as-

signed conditionally to one of the output channels. Consequently, the output

channel is on the left of the sign and the input signal is on the right.

VHDL MUX AND DEMUX
Figure 9-64 shows the code that creates a four-channel MUX with four bits per

channel. The inputs are declared as bit arrays on line 3. They could have been

declared just as easily as integers ranging from 0 to 15. Whichever way the in-

puts are declared, the outputs must be of the same type. Notice on line 4 that the

select input (s) is declared as a decimal integer from 0 to 3 (equivalent to binary

00 to 11).This allows us to refer to it by its decimal channel number in the code,

making it easier to understand. Lines 11–15 use the selected signal assignment

statement to “connect” the appropriate input to the output, depending on the

value on the select inputs. For example, line 15 states that channel 3 should be

selected to connect to the data outputs when the select inputs are set to 3.

The demultiplexer code works in a similar way but has only one input

channel and four output channels. In Figure 9-65, the inputs and outputs are

declared as usual on lines 3–5. Notice that in line 3, the select input(s) is typed

as an integer, just like the MUX code in Figure 9-64. The operation of a

DEMUX is described most easily using several conditional signal assignment

=

=

FIGURE 9-63 Four-bit

four-channel DEMUX

in AHDL.

*

1 SUBDESIGN fig9_63

2 (

3 ch0[3..0], ch1[3..0], ch2[3..0], ch3[3..0] :OUTPUT;

4 s[1..0] :INPUT;

5 din[3..0] :INPUT;

6)

7 BEGIN

8 DEFAULTS

9 ch0[] = B”1111”;

10 ch1[] = B”1111”;

11 ch2[] = B”1111”;

12 ch3[] = B”1111”;

13 END DEFAULTS;

14

15 CASE S[] IS

16 WHEN 0 => ch0[] = din[];

17 WHEN 1 => ch1[] = din[];

18 WHEN 2 => ch2[] = din[];

19 WHEN 3 => ch3[] = din[];

20 END CASE;

21 END;

V
H

D
L

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 650

SECTION 9-18/HDL MULTIPLEXERS AND DEMULTIPLEXERS 651

statements, as shown in lines 11–14. We decided earlier that the code for this

DEMUX must ensure that the outputs are all HIGH when they are not

selected. This is accomplished with the ELSE clause of each conditional sig-

nal assignment. If the ELSE clause is not used, the output values would de-

fault automatically to all LOW. For example, line 13 states that channel 2 will

be connected to the data inputs whenever the select inputs are set to 2. If s is

set to any other value, then channel 2 will be forced to have all bits HIGH.

REVIEW QUESTIONS 1. For the four-bit by four-channel MUX, name the data inputs, the data

outputs, and the control inputs that choose one channel of the four.

2. For the four-bit by four-channel DEMUX, name the data inputs, the data

outputs, and the control inputs that choose one channel of the four.

3. In the AHDL example, how are the logic states determined for the chan-

nels that are not selected?

4. In the VHDL example, how are the logic states determined for the chan-

nels that are not selected?

FIGURE 9-64 Four-bit

four-channel MUX in

VHDL.

*

1 ENTITY fig9_64 IS

2 PORT (

3 ch0, ch1, ch2, ch3 :IN BIT_VECTOR (3 DOWNTO 0);

4 s :IN INTEGER RANGE 0 TO 3;

5 dout :OUT BIT_VECTOR (3 DOWNTO 0)

6);

7 END fig9_64;

8

9 ARCHITECTURE selecter OF fig9_64 IS

10 BEGIN

11 WITH s SELECT

12 dout <= ch0 WHEN 0, -- switch channel 0 to output

13 ch1 WHEN 1, -- switch channel 1 to output

14 ch2 WHEN 2, -- switch channel 2 to output

15 ch3 WHEN 3; -- switch channel 3 to output

16 END selecter;

FIGURE 9-65 Four-bit

four-channel DEMUX in

VHDL.

*

1 ENTITY fig9_65 IS

2 PORT (

3 s :IN INTEGER RANGE 0 TO 3;

4 din :IN BIT_VECTOR (3 DOWNTO 0);

5 ch0, ch1, ch2, ch3 :OUT BIT_VECTOR(3 DOWNTO 0)

6);

7 END fig9_65;

8

9 ARCHITECTURE selecter OF fig9_65 IS

10 BEGIN

11 ch0 <= din WHEN s = 0 ELSE “1111”;

12 ch1 <= din WHEN s = 1 ELSE “1111”;

13 ch2 <= din WHEN s = 2 ELSE “1111”;

14 ch3 <= din WHEN s = 3 ELSE “1111”;

15 END selecter;

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 651

652 CHAPTER 9/MSI LOGIC CIRCUITS

9-19 HDL MAGNITUDE COMPARATORS

In Section 9-10, we studied a 7485 magnitude comparator chip. As the name

implies, this device compares the magnitude of two binary numbers and in-

dicates the relationship between the two (greater than, less than, equal to).

Control inputs are provided for the purpose of cascading these chips. These

chips are interconnected so that the chip comparing the lower-order bits

has its outputs connected to the control inputs of the next higher-order

chip, as shown in Figure 9-37. When the highest-order stage detects that its

data inputs have equal magnitude, it will look to the next lower stage and

use these control inputs to make the final decision. This gives us a chance

to look at one of the defining differences between using traditional logic

ICs and using HDL to design a circuit. If we need to compare bigger values

using HDL we can simply adjust the size of the comparator input ports to

be whatever we need, rather than trying to cascade several four-bit com-

parators. Consequently, there is no need for cascading input controls in the

HDL version.

There are many possible ways to describe the operation of a comparator.

However, it is best to use an IF/ELSE construct because each IF clause eval-

uates a relationship between two values, as opposed to looking for the sin-

gle value of a variable, like a CASE. The two inputs being compared should

definitely be declared as numerical values. The three comparator outputs

should be declared as individual bits in order to label each bit’s purpose

clearly.

AHDL COMPARATOR
The AHDL code in Figure 9-66 follows the algorithm we have described us-

ing IF/ELSE constructs. Notice in line 3 that the data values are declared as

four-bit numbers. Also note in lines 8, 10, and 11 that several statements can

be used to specify the circuit’s operation when the IF clause is true. Each

statement is used to set the level on one of the outputs. These three state-

ments are considered concurrent, and the order in which they are listed

makes no difference. For example, in line 8, when A is greater than B, the

agtb output will go HIGH at the same time the other two outputs (altb, aeqb)

go LOW.

FIGURE 9-66 Magnitude comparator in AHDL.

A
H

D
L

SUBDESIGN fig9_661
(2

a[3..0], b[3..0] :INPUT;3
agtb, altb, aeqb :OUTPUT;4

)5
BEGIN6

IF a[] > b[] THEN7
agtb = VCC; altb = GND; aeqb = GND;8

ELSIF a[] < b[] THEN9
 agtb = GND; altb = VCC; aeqb = GND;10

ELSE agtb = GND ; altb = GND ; aeqb = VCC;11
END IF;12

END;13

TOCCMC09_0131725793.QXD 12/21/2005 02:15 AM Page 652

SECTION 9-20/HDL CODE CONVERTERS 653

VHDL COMPARATOR
The VHDL code in Figure 9-67 follows the algorithm we have described using

IF/ELSE constructs. Notice in line 2 that the data values are declared as

four-bit integers. Remember, in VHDL, the IF/ELSE constructs can be used

only inside a PROCESS. In this case, we want to evaluate the PROCESS

whenever any of the inputs change state. Consequently, each input is listed

in the sensitivity list within the parentheses. Also note in lines 10, 11, and 12

that several statements can be used to specify the circuit’s operation when

the IF clause is true. Each statement is used to set the level on one of the out-

puts. These three statements are considered concurrent, and the order in

which they are listed makes no difference. For example, on line 11, when A
is greater than B, the agtb output will go HIGH at the same time the other

two outputs (altb, aeqb) go LOW.

V
H

D
L

FIGURE 9-67 Magnitude comparator in VHDL.

9-20 HDL CODE CONVERTERS

Section 9-11 demonstrated some methods using adder circuits in an interesting

but not at all intuitive way to create a BCD-to-binary conversion. In Chapter 6,

we discussed adder circuits, and the circuit of Figure 9-40 can certainly be im-

plemented using HDL and 7483 macrofunctions or adder descriptions that we

know how to write. However, this is an excellent opportunity to point out the

tremendous advantage that HDL can offer because it allows a circuit to be

described in a way that makes the most sense. In the case of BCD-to-binary

REVIEW QUESTIONS 1. What type of data objects must be declared for data inputs to a

comparator?

2. What is the key control structure used to describe a comparator?

3. What are the key operators used?

ENTITY fig9_67 IS1
PORT (a, b : IN INTEGER RANGE 0 TO 15;2

 agtb, altb, aeqb : OUT BIT);3
END fig9_67;4

5
ARCHITECTURE vhdl OF fig9_67 IS6
BEGIN7

PROCESS (a, b)8
BEGIN9

IF a < b THEN altb <= '1'; agtb <= '0'; aeqb <= '0';10
ELSIF a > b THEN altb <= '0'; agtb <= '1'; aeqb <= '0';11
ELSE altb <= '0'; agtb <= '0'; aeqb <= '1';12
END IF;13

END PROCESS;14
END vhdl;15

TOCCMC09_0131725793.QXD 12/21/2005 02:15 AM Page 653

654 CHAPTER 9/MSI LOGIC CIRCUITS

conversion, the sensible method of conversion is to use the concepts that we all

learned in the third grade about the decimal number system. You were once

taught that the number 275 was actually:

Now we have studied the BCD number system and realize that 275 is repre-

sented in BCD as 0010 0111 0101. Each digit is simply represented in binary.

If we could multiply these binary digits by the decimal weight (represented

in binary) and add them, we would have a binary answer that is equivalent to

the BCD quantity. For example, let’s try using the BCD representation for 275:

BCD Decimal Partial

Weight Product

(in binary) (in binary)

11001000

01000110

The solution presented here for our eight-bit (two BCD digits) HDL code con-

verter will use the following strategy:

Take the most significant BCD digit (the tens place) and multiply it by
10. Add this product to the least significant BCD digit (the ones place).

The answer will be a binary number representing the BCD quantity. It is

important to realize that the HDL compiler does not necessarily try to imple-

ment an actual multiplier circuit in its solution. It will create the most efficient

circuit that will do the job, which allows the designer to describe its behavior

in the most sensible way.

AHDL BCD-TO-BINARY CODE CONVERTER
The key to this strategy is in being able to multiply by 10. AHDL does not

offer a multiplication operator, so in order to use this overall strategy, we need

some math tricks. We will use the shifting of bits to perform multiplication

and then employ the distributive property from algebra to multiply by 10. In

the same way that we can shift a decimal number left by one digit, thus mul-

tiplying it by 10, we can likewise shift a binary number one place to the left

and multiply it by 2. Shifting two places multiplies a binary number by 4, and

shifting three places multiplies by 8. The distributive property tells us that:

If we can take the BCD tens digit and shift it left three bit positions (i.e.,

multiply it by 8), then take the same number and shift it left one place (i.e.,

multiply it by 2), and then add them together, the result will be the same as

multiplying the BCD digit by 10. This value is then added to the BCD ones

digit to produce the binary equivalent of the two-digit BCD input.

num * 10 = num * (8 + 2) = (num * 8) + (num * 2)

100010011 = 27510

 01011 =+ 0101 *

1010 =+ 0111 *

1100100 =0010 *

 2 * 100 = 200

+ 7 * 10 = 70

+ 5 * 1 = 5

 275

A
H

D
L

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 654

SECTION 9-20/HDL CODE CONVERTERS 655

The next challenge is to shift the BCD digit left using AHDL. Because

AHDL allows us to make up sets of variables, we can shift the bits by ap-

pending zeros to the right end of the array. For example, if we have the num-

ber 5 in BCD (0101) and we want to shift it three places, we can concatenate

the number 0101 with the number 000 in a set, as follows:

The AHDL code in Figure 9-68 begins by declaring inputs for the BCD ones

and tens digits. The binary output must be able to represent which re-

quires seven bits. We also need a variable to hold the product of the BCD digit

multiplied by 10. Line 5 declares this variable as a seven-bit number. Line 8 per-

forms the shifting of the tens[] array three times and adds it to the tens[] array

shifted one place to the left. Notice that this latter set must have seven bits in

order to be added to the first set, thus the need to concatenate B“00” on the left

end. Finally, in line 10, the result from line 8 is added to the BCD ones digit with

leading zero extensions (to make seven bits) to form the binary output.

9910,

(B“0101”, B“000”) = B“0101000”

FIGURE 9-68 BCD-to-binary code converter in AHDL.

1 SUBDESIGN fig9_68

2 (ones[3..0], tens[3..0] :INPUT;

3 binary[6..0] :OUTPUT;)

4

5 VARIABLE times10[6..0] :NODE; % variable for tens digit times 10%

6

7 BEGIN

8 times10[] = (tens[],B”000”) + (B”00”,tens[],B”0”);

9 % shift left 3X (times 8) + shift left 1X (times 2) %

10 binary[] = times10[] + (B”000”,ones[]);

11 % tens digit times 10 + ones digit %

12 END;

VHDL BCD-TO-BINARY CODE CONVERTER
The VHDL solution in Figure 9-69 is very simple due to the powerful math op-

erations available in the language. The inputs and outputs must be declared

as integers because we intend to perform arithmetic operations on them.

Notice that the range is specified based on the largest valid BCD number

using two digits. In line 9, the tens digit is multiplied by ten, and in line 10,

the ones digit is added to form the binary equivalent of the BCD input.

FIGURE 9-69 BCD-to-

binary code converter in

VHDL.

1 ENTITY fig9_69 IS

2 PORT (ones, tens :IN INTEGER RANGE 0 TO 9;

3 binary :OUT INTEGER RANGE 0 TO 99);

4 END fig9_69;

5

6 ARCHITECTURE vhdl OF fig9_69 IS

7 SIGNAL times10 :INTEGER RANGE 0 TO 90;

8 BEGIN

9 times10 <= tens * 10;

10 binary <= times10 + ones;

11 END vhdl;

V
H

D
L

A
H

D
L

TOCCMC09_0131725793.QXD 12/20/05 8:14 PM Page 655

656 CHAPTER 9/MSI LOGIC CIRCUITS

REVIEW QUESTIONS 1. For a two-digit BCD (eight-bit) number, what is the decimal weight of the

most significant digit?

2. In AHDL, how is multiplication by 10 accomplished?

3. In VHDL, how is multiplication by 10 accomplished?

SUMMARY
1. A decoder is a device whose output is activated only when a unique bi-

nary combination (code) is presented on its inputs. Many MSI decoders

have several outputs, each one corresponding to only one of the many

possible input combinations.

2. Digital systems often need to display decimal numbers. This is done us-

ing 7-segment displays that are driven by special chips that decode the

binary number and translate it into segment patterns that represent dec-

imal numbers to people. The segment elements can be light-emitting

diodes, liquid crystals, or glowing electrodes surrounded by neon gas.

3. Graphical LCDs use a matrix of picture elements called pixels to create an

image on a large screen. Each pixel is controlled by activating the row and

column that have that pixel in common.The brightness level of each pixel

is stored as a binary number in the video memory. A fairly complex digital

circuit must scan through the video memory and all the row/column com-

binations, controlling the amount of light that can pass through each pixel.

4. An encoder is a device that generates a unique binary code in response

to the activation of each individual input.

5. Troubleshooting a digital system involves observation/analysis to identi-

fy the possible causes, and a process of elimination called divide-and-
conquer to isolate and identify the cause.

6. Multiplexers act like digitally controlled switches that select and connect

one logic input at a time to the output pin. By taking turns, many different

data signals can share the same data path using multiplexers. Demultiplex-

ers are used at the other end of the data path to separate the signals that are

sharing a data path and distribute them to their respective destinations.

7. Magnitude comparators serve as an indicator of the relationship be-

tween two binary numbers, with outputs that show and

8. It is often necessary to translate between and among various methods of

representing quantities with binary numbers. Code converters are devices

that take in one form of binary representation and convert it to another

form.

9. In digital systems, many devices must often share the same data path.

This data path is often called a data bus. Even though many devices can

be “riding” on the bus, there can be only one bus “driver” at any one time.

Thus, devices must take turns applying logic signals to the data bus.

10. In order to take turns, the devices must have tristate outputs that can be

disabled when another device is driving the bus. In the disabled state,

the device’s output is essentially electrically disconnected from the bus

by going into a state that offers a high-impedance path to both ground

and the positive power supply. Devices designed to interface to a bus

have outputs that can be HIGH, LOW, or disabled (high impedance).

= .7 , 6 ,

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 656

PROBLEMS 657

11. PLDs offer an alternative to the use of MSI circuits to implement digital

systems. Boolean equations can be used to describe the operation of

these circuits, but HDLs also offer high-level language constructs.

12. HDL macrofunctions are available for many MSI standard parts de-

scribed in this chapter.

13. Custom code can be written in HDL to describe each of the common

logic functions presented in this chapter.

14. Priority and precedence can be established in AHDL using don’t-care en-

tries in truth tables and using IF/ELSE decisions. Priority and prece-

dence can be established in VHDL using conditional signal assignments

or using a PROCESS containing IF/ELSE or CASE decisions.

15. Tristate outputs can be created in HDL. AHDL uses :TRI primitives that

drive the outputs. VHDL assigns Z (high impedance) as a valid state for

STD_LOGIC outputs.

16. The DEFAULTS statement in AHDL can be used to define the proper

level for outputs that are not explicitly defined in the code.

17. The ELSE clause in the conditional signal assignment statement of

VHDL can be used to define the default state of an output.

IMPORTANT TERMS
decoder

BCD-to-decimal

decoder

driver

BCD-to-7-segment

decoder/driver

common anode

common cathode

LCD

backplane

pixel

encoding

encoder

priority encoder

observation/analysis

divide-and-conquer

multiplexer (MUX)

multiplexing

parallel-to-serial

conversion

demultiplexer

(DEMUX)

magnitude comparator

data bus

floating bus

word

bus driver

bidirectional data

lines

DEFAULTS

conditional signal

assignment

statement

PROBLEMS
SECTION 9-1

9-1. Refer to Figure 9-3. Determine the levels at each decoder output for

the following sets of input conditions.

(a)*All inputs LOW

(b)*All inputs LOW except

(c) All inputs HIGH except

(d) All inputs HIGH

9-2.*What is the number of inputs and outputs of a decoder that accepts 64

different input combinations?

E1 = E2 = LOW

E3 = HIGH

B

B

*Answers to problems marked with an asterisk can be found in the back of the text.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 657

9-3. For a 74ALS138, what input conditions will produce the following

outputs:

(a)*LOW at

(b)*LOW at

(c) LOW at

(d) LOW at and simultaneously

9-4. Show how to use 74LS138s to form a 1-of-16 decoder.

9-5.*Figure 9-70 shows how a decoder can be used in the generation of con-

trol signals. Assume that a RESET pulse has occurred at time and

determine the CONTROL waveform for 32 clock pulses.

t0,

O7,O0

O5

O3

O6

658 CHAPTER 9/MSI LOGIC CIRCUITS

FIGURE 9-70 Problems 9-5 and 9-6.

D

CLK

EN
MOD-8
counter

CLOCK

TC

CONTROL

(a) (b)

t0 t1 t2 t3

Q2

O0O1O2O3O4O5O6O7

A2 A1 A0 E3 E2 E1

Q1 Q0

RESET

CLOCK

74LS138

CLK

EN

CLR

MOD-8
counter

TC

Q2 Q1 Q0

CLR

RESET

1

9-6. Modify the circuit of Figure 9-70 to generate a CONTROL waveform

that goes LOW from to . (Hint: The modification does not re-

quire additional logic.)

9-7.*The 7442 decoder of Figure 9-5 does not have an ENABLE input.

However, we can operate it as a 1-of-8 decoder by not using outputs

and and by using the D input as an ENABLE. This is illustrated in

Figure 9-71. Describe how this arrangement works as an enabled 1-of-8

decoder, and state how the level on D either enables or disables the

outputs.

O9

O8

t24t20

D

B

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 658

9-8. Consider the waveforms in Figure 9-72. Apply these signals to the

74LS138 as follows:

Assume that and are tied LOW, and draw the waveforms for out-

puts and O7.O0, O3, O6,

E2E1

A : A0 B : A1 C : A2 D : E3

PROBLEMS 659

FIGURE 9-71 Problem 9-7.

O9 O8 O7 O6 O5 O4 O3 O2

D

7442

Not
used

O1 O0

C B A

Input code

ENABLE

t9

A

t8t7t6t5t4t3 t10 t11 t12 t13 t14 t15 t16t0

B

C

D

t2t1

9-9. Modify the circuit of Figure 9-6 so that relay stays energized from

PGT 3 to 5 and stays energized from PGT 6 to 9. (Hint: This modi-

fication requires no additional circuitry.)

SECTIONS 9-2 AND 9-3

9-10.*Show how to connect BCD-to-7-segment decoder/drivers and

LED 7-segment displays to the counter circuit of Figure 7-22. Assume

that each segment is to operate at approximately 10 mA at 2.5 V.

K2

K1

B, D

D

FIGURE 9-72 Problems

9-8, 9-15, and 9-41.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 659

9-11. (a) Refer to Figure 9-10 and draw the segment and backplane wave-

forms relative to ground for . Then draw the wave-

form of segment voltage relative to backplane voltage.

(b) Repeat part (a) for .

9-12.*The BCD-to-7-segment decoder/driver of Figure 9-8 contains the logic

for activating each segment for the appropriate BCD inputs. Design

the logic for activating the g segment.

SECTION 9-4

9-13.*DRILL QUESTION

For each item, indicate whether it is referring to a decoder or an en-

coder.

(a) Has more inputs than outputs.

(b) Is used to convert key actuations to a binary code.

(c) Only one output can be activated at one time.

(d) Can be used to interface a BCD input to an LED display.

(e) Often has driver-type outputs to handle large I and V.

9-14. Determine the output levels for the 74147 encoder when

and all other inputs are HIGH.

9-15. Apply the signals of Figure 9-72 to the inputs of a 74147 as follows:

Draw the waveforms for the encoder’s outputs.

9-16. Figure 9-73 shows the block diagram of a logic circuit used to control

the number of copies made by a copy machine. The machine operator

selects the number of desired copies by closing one of the selector

switches to . This number is encoded in BCD by the encoder and

is sent to a comparator circuit. The operator then hits a momentary-

contact START switch, which clears the counter and initiates a HIGH

S9S1

A : A7 B : A4 C : A2 D : A1

A8 = A4 = 0

CONTROL = 1

CONTROL = 0

660 CHAPTER 9/MSI LOGIC CIRCUITS

B

C, D

B

+5 V

MSB

4-bit
comparator

BCD
counter

D
MSB

C

B

A

CLK

CLEAR

Copy
pulses

Control
logic

Start

Decimal-
to-BCD
encoder

OPERATE
0 = machine is OFF
1 = machine is ON

S9

S8

S5

S4

S3

S2

S1

O3

S7

S6

O2

O1

O0

X

FIGURE 9-73 Problems

9-16 and 9-52.

C, D

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 660

OPERATE output that is sent to the machine to signal it to make

copies. As the machine makes each copy, a copy pulse is generated

and fed to the BCD counter. The counter outputs are continually com-

pared with the switch encoder outputs by the comparator. When the

two BCD numbers match, indicating that the desired number of

copies has been made, the comparator output goes LOW; this

causes the OPERATE level to return LOW and stop the machine so

that no more copies are made. Activating the START switch will cause

this process to be repeated. Design the complete logic circuitry for the

comparator and control sections of this system.

9-17.*The keyboard circuit of Figure 9-16 is designed to accept a three-digit

decimal number. What would happen if four digit keys were activated

(e.g., 3095)? Design the necessary logic to be added to this circuit so

that after three digits have been entered, any additional digits will be

ignored until the CLEAR key is depressed. In other words, if 3095 is

entered on the keyboard, the output registers will display 309 and will

ignore the 5 and any subsequent digits until the circuit is cleared.

SECTION 9-5

9-18.*A technician breadboards the keyboard entry circuit of Figure 9-16

and tests its operation by trying to enter a series of three-digit num-

bers. He finds that sometimes the digit 0 is entered instead of the

digit he pressed. He also observes that it happens with all of the keys

more or less randomly, although it is worse for some keys than others.

He replaces all of the ICs, and the malfunction persists. Which of the

following circuit faults would explain his observations? Explain each

choice.

(a) The technician forgot to ground the unused inputs of the OR gate.

(b) He has mistakenly used instead of Q from the one-shot.

(c) The switch bounce from the digit keys lasts longer than 20 ms.

(d) The Y and Z outputs are shorted together.

9-19. Repeat Problem 9-18 with the following symptom: the registers and

displays stay at 0 no matter how many times a key is pressed.

9-20.*While testing the circuit of Figure 9-16, a technician finds that every

odd-numbered key results in the correct digit being entered, but

every even-numbered key results in the wrong digit being entered as

follows: the 0 key causes a 1 to be entered, the 2 key causes a 3 to be

entered, the 4 key causes a 5 to be entered, and so on. Consider each

of the following faults as possible causes of the malfunction. For each

one, explain why it can or cannot be the actual cause.

(a) There is an open connection from the output of the LSB inverter

to the D inputs of the FFs.

(b) The D input of flip-flop is internally shorted to .

(c) A solder bridge is shorting to ground.

9-21.*A technician tests the circuit of Figure 9-4 as described in Example 9-7,

and she obtains the following results: all of the outputs work except

to and to which are permanently HIGH. What is the

most probable circuit fault?

9-22. A technician tests the circuit of Figure 9-4 as described in Example 9-7

and finds that the correct output is activated for each possible input

O27,O24O19O16

O0

VCCQ8

Q

X

PROBLEMS 661

C, D

T

T

T

T

T

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 661

code except those listed in Table 9-8. Examine this table and deter-

mine the probable cause of the malfunction.

9-23.*Suppose that a resistor was mistakenly used for the g segment in

Figure 9-8. How would this affect the display? What possible problems

could occur?

9-24. Repeat Example 9-8 with the observed sequence shown below:

9-25.*Repeat Example 9-8 with the observed sequence shown below:

9-26.*To test the circuit of Figure 9-11, a technician connects a BCD counter

to the 74HC4511 inputs and pulses the counter at a very slow rate.

She notices that the f segment works erratically, and no particular

pattern is evident. What are some of the possible causes of the mal-

function? (Hint: Remember, the ICs are CMOS.)

SECTIONS 9-6 AND 9-7

9-27. The timing diagram in Figure 9-74 is applied to Figure 9-19. Draw the

output waveform Z.

22-Æ

662 CHAPTER 9/MSI LOGIC CIRCUITS

T

T

T

T

Input Code

A4 A3 A2 A1 A0 Activated Outputs

1 0 0 0 0 and

1 0 0 0 1 and

1 0 0 1 0 and

1 0 0 1 1 and

1 0 1 0 0 and

1 0 1 0 1 and

1 0 1 1 0 and

1 0 1 1 1 and O31O23

O30O22

O29O21

O28O20

O27O19

O26O18

O25O17

O24O16

TABLE 9-8

0COUNT

Observed
display

1 2 3 4 5 6 7 8 9

0COUNT

Observed
display

1 2 3 4 5 6 7 8 9

B

I1

S

I0

FIGURE 9-74 Problem

9-27.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 662

9-28. Figure 7-68 shows an eight-bit shift register that could be used to delay

a signal by 1 to 8 clock periods. Show how to wire a 74151 to this shift

register in order to select the desired Q output and indicate the logic

level necessary on the select inputs to provide a delay of .

9-29.*The circuit in Figure 9-75 uses three two-input multiplexers (Figure 9-19).

Determine the function performed by this circuit.

6 * Tclk

PROBLEMS 663

D

C, D

9-30. Use the idea from Problem 9-29 to arrange several 74151 1-of-8 multi-

plexers to form a 1-of-64 multiplexer.

9-31.*Show how two 74157s and a 74151 can be arranged to form a 1-of-16

multiplexer with no other required logic. Label the inputs to to

show how they correspond to the select code.

9-32. (a) Expand the circuit of Figure 9-24 to display the contents of two

three-stage BCD counters.

(b)*Count the number of connections in this circuit, and compare it

with the number required if a separate decoder/driver and dis-

play were used for each stage of each counter.

9-33.*Figure 9-76 shows how a multiplexer can be used to generate logic

waveforms with any desirable pattern. The pattern is programmed

I15I0

MUX

I3 I1

I2 I0 S

Z

MUX

I1 I1

I0 I0 S

S1 S0

MUX

I1

I0 S

Z

Z

FIGURE 9-75 Problem

9-29.

D

8-input
multiplexer
74HC151

I7 I6 I5 I4 I3 I2 I1 I0

MOD-8
counter

CLK

S2

S1

S0

E

Z

+VCC

1 k�FIGURE 9-76 Problems

9-33 and 9-34.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 663

using eight SPDT switches, and the waveform is repetitively produced

by pulsing the MOD-8 counter. Draw the waveform at Z for the given

switch positions.

9-34. Change the MOD-8 counter in Figure 9-76 to a MOD-16 counter, and

connect the MSB to the multiplexer input. Draw the Z waveform.

9-35.*Show how a 74151 can be used to generate the logic function

.

9-36. Show how a 16-input multiplexer such as the 74150 is used to gener-

ate the function

9-37.*The circuit of Figure 9-77 shows how an eight-input MUX can be used

to generate a four-variable logic function, even though the MUX has

only three SELECT inputs.Three of the logic variables A, B, and C are

connected to the SELECT inputs. The fourth variable D and its in-

verse are connected to selected data inputs of the MUX as required

by the desired logic function.The other MUX data inputs are tied to a

LOW or a HIGH as required by the function.

D

Z = A B CD + BCD + AB D + ABCD.

+ BC + AC
Z = AB

E

664 CHAPTER 9/MSI LOGIC CIRCUITS

D

D

N

+5 V

74HC151
MUX

I0

S2

Z

A

B

C

D

S1

S0

E
I1 I2 I3 I4 I5 I6 I7

(a) Set up a truth table showing the output Z for the 16 possible com-

binations of input variables.

(b) Write the sum-of-products expression for Z and simplify it to ver-

ify that

9-38. The hardware method used in Figure 9-77 can be used to generate any

four-variable logic function. For example,

is implemented by following these steps:

1. Set up a truth table in two halves, side by side as shown in Table 9-9.

Notice that the left half shows all combinations of CBA when

and the right half shows all combinations of CBA when

2. Write the value of Z for each four-bit combination when

and also when .

3. Make a column on the right side as shown, which describes what

must be connected to each of the eight MUX inputs .In

D = 1

D = 0

D = 1.

D = 0,

+ CBA
Z = D B CA + CBA + DCBA

Z = CBA + DC BA + DCB A

FIGURE 9-77 Problems 9-37 and 9-38.

TOCCMC09_0131725793.QXD 12/20/05 8:14 PM Page 664

4. For each line of this table, compare the value for Z when

with the value for Z when D � 1. Enter the appropriate informa-

tion for as follows:

When regardless of whether or 1, THEN

(GND).

When regardless of whether or 1, THEN

(VCC).

When when AND when THEN

When when AND when THEN

(a) Verify the design of Figure 9-77 using this method.

(b) Use this method to implement a function that will produce a

HIGH only when the four input variables are at the same level

or when the B and C variables are at different levels.

SECTION 9-8

9-39.*DRILL QUESTION

For each item, indicate whether it is referring to a decoder, an en-

coder, a MUX, or a DEMUX.

(a) Has more inputs than outputs.

(b) Uses SELECT inputs.

(c) Can be used in parallel-to-serial conversion.

(d) Produces a binary code at its output.

(e) Only one of its outputs can be active at one time.

(f) Can be used to route an input signal to one of several possible

outputs.

(g) Can be used to generate arbitrary logic functions.

9-40. Show how the 7442 decoder can be used as 1-to-8 demultiplexer.

(Hint: See Problem 9-7.)

9-41.*Apply the waveforms of Figure 9-72 to the inputs of the 74LS138

DEMUX of Figure 9-30(a) as follows:

Draw the waveforms at the DEMUX outputs.

D : A2 C : A1 B : A0 A : E1

In = D.D = 1,Z = 0D = 0Z = 1

In = D.D = 1,Z = 1D = 0Z = 0

In = 1D = 0Z = 1

In = 0D = 0Z = 0

In

D = 0

PROBLEMS 665

D � 0 D � 1

DCBA Z DCBA Z In

0000 0 1000 0

0001 1 1001 0

0010 0 1010 0

0011 1 1011 1

0100 0 1100 0

0101 0 1101 1

0110 1 1110 1

0111 0 1111 0 I7 = 0

I6 = 1

I5 = D

I4 = 0

I3 = 1

I2 = 0

I1 = D

I0 = 0

TABLE 9-9

B

TOCCMC09_0131725793.QXD 12/20/05 8:14 PM Page 665

9-42. Consider the system of Figure 9-31. Assume that the clock frequency

is 10 pps. Describe what the monitoring panel indications will be for

each of the following cases.

(a) All doors closed

(b) All doors open

(c) Doors 2 and 6 open

9-43.*Modify the system of Figure 9-31 to handle 16 doors. Use a 74150 16-

input MUX and two 74LS138 DEMUXes. How many lines are going to

the remote monitoring panel?

9-44. Draw the waveforms at transmit_data, and DEMUX outputs

and in Figure 9-33 for the following register data loaded into the

transmit registers in Figure 9-32:

.

9-45. Figure 9-78 shows an graphic LCD display grid controlled by a

74HC138 configured as a decoder, and a 74HC138 configured as a de-

multiplexer. Draw 48 cycles of the clock and the data input necessary

to activate the pixels shown on the display.

8 * 8

[D] = 0111

[A] = 0011, [B] = 0110, [C] = 1001,

O3

O0, O1, O2,

666 CHAPTER 9/MSI LOGIC CIRCUITS

C, D

E2

0

1

2

3

4

E3

E1

Data

+5

A2

A1

A0

5

6

7

A2

76543210

A1A0

74HC138

Q0 Q1 Q2
MOD-8
counter

EN

CLK

TC
Q0 Q1 Q2

MOD-8
counter

CLOCK

+5

1

74HC138Columns

76543210

0

1

2

3

4

5

6

7

Rows

Pixels
on

E3

E2

E1

EN TC

CLK

SECTION 9-9

9-46. Consider the control sequencer of Figure 9-26. Describe how each of

the following faults will affect the operation.

(a)*The input of the MUX is shorted to ground.

(b) The connections from sensors 3 and 4 to the MUX are reversed.

I3

T

FIGURE 9-78 Problem

9-45.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 666

9-47.*Consider the circuit of Figure 9-24. A test of the circuit yields the re-

sults shown in Table 9-10. What are the possible causes of the mal-

function?

9-48.*A test of the security monitoring system of Figure 9-31 produces the

results recorded in Table 9-11. What are the possible faults that could

cause this operation?

PROBLEMS 667

T

T

T

T

T

TABLE 9-10
Actual Count Displayed Count

Case 1 Counter 1 33 33

Counter 2 47 47

Case 2 Counter 1 82 02

Counter 2 64 64

Case 3 Counter 1 63 63

Counter 2 95 15

9-49.*A test of the security monitoring system of Figure 9-31 produces the re-

sults recorded in Table 9-12. What are the possible faults that could

cause this operation? How can this be verified or eliminated as a fault?

TABLE 9-11
Condition LEDs

All doors closed All LEDs off

Door 0 open LED 0 flashing

Door 1 open LED 2 flashing

Door 2 open LED 1 flashing

Door 3 open LED 3 flashing

Door 4 open LED 4 flashing

Door 5 open LED 6 flashing

Door 6 open LED 5 flashing

Door 7 open LED 7 flashing

TABLE 9-12
Condition LEDs

All doors closed All LEDs off

Door 0 open LED 0 flashing

Door 1 open LED 1 flashing

Door 2 open LED 2 flashing

Door 3 open LED 3 flashing

Door 4 open LED 4 flashing

Door 5 open LED 5 flashing

Door 6 open No LED flashing

Door 7 open No LED flashing

Doors 6 and 7 open LEDs 6 and 7 flashing

9-50.*The synchronous data transmission system of Figure 9-32 and Figure 9-33

is malfunctioning. An oscilloscope is used to monitor the MUX and

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 667

DEMUX outputs during the transmission cycle, with the results shown

in Figure 9-79. What are the possible causes of the malfunction?

9-51. The synchronous data transmission system of Figures 9-32 and 9-33

is not working properly and the troubleshooting tree diagram of

Figure 9-35 has been used to isolate the problem to the timing and

control section of the receiver. Draw a troubleshooting tree diagram

that will isolate the problem further to one of the four blocks in that

section (FF1, Bit counter, Word counter, or FF2). Assume that all wires

are connected as shown, with no wiring errors.

SECTION 9-10

9-52. Redesign the circuit of Problem 9-16 using a 74HC85 magnitude com-

parator. Add a “copy overflow” feature that will activate an ALARM

output if the OPERATE output fails to stop the machine when the re-

quested number of copies is done.

9-53.*Show how to connect 74HC85s to compare two 10-bit numbers.

SECTION 9-11

9-54. Assume a BCD input of 69 to the code converter of Figure 9-40.

Determine the levels at each output and at the final binary output.

9-55.*A technician tests the code converter of Figure 9-40 and observes the

following results:

BCD Input Binary Output

52 0110011

95 1100000

27 0011011

What is the probable circuit fault?

SECTIONS 9-12 TO 9-14

9-56. DRILL QUESTION
True or false:

(a) A device connected to a data bus should have tristate outputs.

(b) Bus contention occurs when more than one device takes data from

the bus.

©

668 CHAPTER 9/MSI LOGIC CIRCUITS

��

��

��

��

��	
��
���	�	

������������

�������������� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

�� �� �� � � � � !� !� !� !� �� �� �� ����

��

��
FIGURE 9-79 Problem 9-50.

T

C, D

D

T

B

TOCCMC09_0131725793.QXD 12/21/2005 02:15 AM Page 668

(c) Larger units of data can be transferred over an eight-line data bus

than over a four-line data bus.

(d) A bus driver IC generally has a high output impedance.

(e) Bidirectional registers and buffers have common I/O lines.

9-57.*For the bus arrangement of Figure 9-44, describe the input signal re-

quirements for simultaneously transferring the contents of register C
to both of the other registers.

9-58. Assume that the registers in Figure 9-44 are initially

and . The signals in Figure 9-80 are applied to

the register inputs.

(a) Determine the contents of each register at times and .

(b) Describe what would happen if were LOW when the third

clock pulse occurred.

IEA

t4t1, t2, t3,

[C] = 0111[B] = 1000,

[A] = 1011,

PROBLEMS 669

FIGURE 9-80 Problems 9-58 and 9-59.

0

1

1

1

1

t1 t2 t4t3

IEC

IEB

IEA

OEC

OEB

OEA

CLK

9-59. Assume the same initial conditions of Problem 9-58, and sketch the

signal on for the waveforms of Figure 9-80.

9-60. Figure 9-81 shows two more devices that are to be added to the data

bus of Figure 9-44. One is a set of buffered switches that can be used

to enter data manually into any of the bus registers. The other device

is an output register that is used to latch any data that are on the bus

during a data transfer operation and display them on a set of LEDs.

(a) Assume that all registers contain 0000. Outline the sequence of

operations needed to load the registers with the following data

from the switches: .

(b) What will the state of the LEDs be at the end of this sequence?

9-61. Now that the circuitry of Figure 9-81 has been added to Figure 9-44,

a total of five devices are connected to the data bus. The circuit in

Figure 9-82(a) will now be used to generate the enable signals

needed to perform the different data transfers over the data bus. It

uses a 74HC139 chip that contains two identical independent 1-of-4

decoders with an active-LOW enable. The top decoder is used to se-

lect the device that will put data on the data bus (output select), and

the bottom decoder is used to select the device that is to take the

data from the data bus (input select). Assume that the decoder out-

puts are connected to the corresponding enable inputs of the

devices tied to the data bus. Also assume that all registers initially

[A] = 1011, [B] = 0001, [C] = 1110

DB3

C

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 669

contain 0000 at time and the switches are in the positions shown

in Figure 9-81.

(a)*Determine the contents of each register at times and in re-

sponse to the waveforms in Figure 9-82(b).

(b) Can bus contention ever occur with this circuit? Explain.

9-62. Show how a 74HC541 (Figure 9-47) can be used in the circuit of

Figure 9-81.

MICROCOMPUTER APPLICATIONS

9-63.*Figure 9-83 shows the basic circuitry to interface a microprocessor

(MPU) to a memory module. The memory module will contain one or

t3t1, t2,

t0,

670 CHAPTER 9/MSI LOGIC CIRCUITS

ESW

SW1

DB3 DB2 DB1 DB0

SW2

SW3

SW0

1 k�

+5 V

74HC125

74HC174 7406

+5 V

220 �

CLOCK
(from Fig. 9-44)

Q3D3

Q2

Q1

Q0

D2

D1

D0

CLK

Data bus
from

Fig. 9-44

FIGURE 9-81 Problems

9-60, 9-61, and 9-62.

74HC139

O3A1OS1Output
select A0OS0

ESW

O2 OEC

E O1 OEB

A1IS1 O3

A0IS0 O2 IEC

O1 IEB

O0 IEA

(a)

E

O0 OEA

Input
select

To Figs.
9-44, 9-81

CLOCK

t0 t1 t2 t3

(b)

IS0

IS1

OS0

OS1

C, N

FIGURE 9-82 Problem

9-61.

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 670

PROBLEMS 671

more memory ICs (Chapter 12) that can either receive data from the

MPU (a WRITE operation) or send data to the MPU (a READ opera-

tion).The data are transferred over the eight-line data bus.The MPU’s

data lines and the memory’s I/O data lines are connected to this com-

mon bus. For now we will be concerned with how the MPU controls

the selection of the memory module for a READ or WRITE operation.

The steps involved are as follows:

1. The MPU places the memory address on its address output lines

to .

2. The MPU generates the signal to inform the memory module

which operation is to be performed: for READ,

for WRITE.

3. The upper five bits of the MPU address lines are decoded by the

74ALS138, which controls the ENABLE input of the memory mod-

ule. This ENABLE input must be active in order for the memory

module to do a READ or WRITE operation.

4. The other 11 address bits are connected to the memory module,

which uses them to select the specific internal memory location

being accessed by the MPU, provided that ENABLE is active.

R/W = 0R/W = 1

R/W

A0A15

FIGURE 9-83 Basic microprocessor-to-memory interface circuit for Problem 9-63.

74ALS138
decoder

O2

8

E1

Memory
module

D0

ENABLE

From
MPU

R/W

D7D0

A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5

R/W

D7

To
memory
module

A2 A1 A0

E2

E3

CPMPU

Data Bus

A4
A3
A2
A1
A0

A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 671

672 CHAPTER 9/MSI LOGIC CIRCUITS

In order to read from or write into the memory module, the MPU must

put the correct address on the address lines to enable the memory,

and then pulse CP to the HIGH state.

(a) Determine which, if any, of these hexadecimal addresses will acti-

vate the memory module: 607F, 57FA, 5F00.

(b) Determine what range of hex addresses will activate the memory.

(Hint: Inputs to to memory can be any combination.)

(c) Assume that a second identical memory module is added to the

circuit with its address, and data I/O lines connected exactly

the same as the first module except that its ENABLE input is tied

to decoder output What range of hex addresses will activate

this second module?

(d) Is it possible for the MPU to read from or write to both modules at

the same time? Explain.

DESIGN PROBLEM

9-64. The keyboard entry circuit of Figure 9-16 is to be used as part of an

electronic digital lock that operates as follows: when activated, an

UNLOCK output goes HIGH.This HIGH is used to energize a solenoid

that retracts a bolt and allows a door to be opened. To activate UN-

LOCK, the operator must press the CLEAR key and then enter the

correct three-key sequence.

(a) Show how 74HC85 comparators and any other needed logic can be

added to the keyboard entry circuit to produce the digital lock op-

eration described above for a key sequence of CLEAR-3-5-8.

(b) Modify the circuit to activate an ALARM output if the operator

enters something other than the correct three-key sequence.

SECTIONS 9-15 TO 9-20

9-65.*Write the HDL code for a BCD-to-decimal decoder (the equivalent of

a 7442).

9-66. Write the HDL code for a HEX decoder/driver for a 7-segment dis-

play. The first 10 characters should appear as shown in Figure 9-7. The

last six characters should appear as shown in Figure 9-84.

O4.

R/W,

A10A0

C, D

H, D, N

H, D, N

B, H, N

H, N

H, N

H, N

FIGURE 9-84 HEX char-

acters for Problem 9-66.

9-67. Write a low-priority ENCODER description that will always encode

the lowest number if two inputs are activated simultaneously.

9-68. Rewrite the code of the four-bit comparator of Figures 9-66 or 9-67 to

make an eight-bit comparator without using macrofunctions.

9-69. Use HDL to describe a four-bit binary number to a two-digit BCD code

converter.

9-70. Use HDL to describe a three-digit BCD code to eight-bit binary num-

ber converter. (Maximum BCD input is 255.)

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 672

ANSWERS TO SECTION REVIEW QUESTIONS
SECTION 9-1

1. No 2. The enable input controls whether or not the decoder logic responds to

the input binary code. 3. The 7445 has open-collector outputs that can handle up

to 30 V and 80 mA. 4. 24 pins: 2 enables, 4 inputs, 16 outputs, and ground

SECTION 9-2

1. a, b, c, f, g 2. True

SECTION 9-3

1. LEDs: (a), (e), (f). LCDs: (b), (c), (d), (e) 2. (a) four-bit BCD, (b) seven- or eight-

bit ASCII, (c) binary value for pixel intensity

SECTION 9-4

1. An encoder produces an output code corresponding to the activated input. A

decoder activates one output corresponding to an applied input code. 2. In a

priority encoder, the output code corresponds to the highest-numbered input that is

activated. 3. Normal 4. (a) produces a PGT when a key is

pressed, (b) converts key actuation to its BCD code, (c) generates bounce-free pulse

to trigger the ring counter, (d) form a ring counter that sequentially clocks output

registers, (e) store BCD codes generated by key actuations 5. and are used

for cascading and GS indicates an active input.

SECTION 9-6

1. The binary number at the select inputs determines which data input will pass

through to the output. 2. Thirty-two data inputs and five select inputs

SECTION 9-7

1. Parallel-to-serial conversion, data routing, logic-function generation, operations

sequencing 2. False; they are applied to the select inputs. 3. Counter

SECTION 9-8

1. A MUX selects one of many input signals to be passed to its output; a DEMUX

selects one of many outputs to receive the input signal. 2. True, provided that

the decoder has an ENABLE input 3. The LEDs will go on and off in sequence.

SECTION 9-10

1. To provide a means for expanding the compare operations to numbers with more

than four bits. 2. other outputs are 0.

SECTION 9-11

1. A code converter takes input data represented in one type of binary code and

converts it to another type of binary code. 2. Three digits can represent decimal

values up to 999. To represent 999 in straight binary requires 10 bits.

SECTION 9-12

1. A set of connecting lines to which the inputs and outputs of many different

devices can be connected 2. Bus contention occurs when the outputs of more

than one device connected to a bus are enabled at the same time. It is prevented by

controlling the device enable inputs so that this cannot happen. 3. A condition

in which all devices connected to a bus are in the Hi-Z state

SECTION 9-13

1. 1011 2. True 3. 0000

OA=B = 1;

E0E1

BCD = 0110

VCC,

ANSWERS TO SECTION REVIEW QUESTIONS 673

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 673

SECTION 9-14

1. Bus contention 2. Floating, Hi-Z 3. Provides tristate low-impedance out-

puts 4. Reduces the number of IC pins and the number of connections to the

data bus 5. See Figure 9-51.

SECTION 9-15

1. They are enable inputs. All must be active for the decoder to work. 2. The CASE

and the TABLE 3. The selected signal assignment statement and the CASE

SECTION 9-16

1. The combination input/output pin BI/RBO 2. Common anode. The outputs

connect to the cathodes and go LOW to light the segments. 3. The IF/ELSE

control structure is evaluated sequentially and gives precedence in the order in

which decisions are listed.

SECTION 9-17

1. The don’t-care entry in a truth table and the IF/ELSE control structure 2. The

IF/ELSE control structure and the conditional signal assignment statement 3. By

use of the :TRI primitive and assigning a value to OE 4. By use of the IEEE

STD_LOGIC data type that has a possible value of Z

SECTION 9-18

1. Inputs: ch0, ch1, ch2, ch3; output: dout; control inputs (Select): s 2. Input din;

outputs: ch0, ch1, ch2, ch3; control inputs (Select): s 3. DEFAULTS 4. ELSE

SECTION 9-19

1. numerical data objects (e.g., INTEGER in VHDL) 2. IF/ ELSE 3. Relational

operators ()

SECTION 9-20

1. 10 2. By multiplying by . Shifting the BCD digit three places left multi-

plies by 8, and shifting the same BCD digit one place left multiplies by 2. Adding

these results produced the BCD digit multiplied by 10. 3. VHDL simply uses the

* operator to multiply.

8 + 2

6 , 7

674 CHAPTER 9/MSI LOGIC CIRCUITS

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 674

TOCCMC09_0131725793.QXD 12/20/05 5:29 PM Page 675

