
13-1 Digital Systems Family Tree

13-2 Fundamentals of PLD

Circuitry

13-3 PLD Architectures

13-4 The GAL 16V8 (Generic

Array Logic)

■ OUTLINE

P R O G R A M M A B L E

L O G I C D E V I C E

A R C H I T E C T U R E S* †

C H A P T E R 1 3

13-5 The Altera EPM7128S

CPLD

13-6 The Altera FLEX10K

Family

13-7 The Altera Cyclone Family

*Diagrams of the GAL 16V8 device presented in this chapter have been reproduced through the cour-
tesy of Lattice Semiconductor Corporation, Hillsboro, Oregon.

†Diagrams of the MAX7000S and FLEX10K family devices presented in this chapter have been repro-
duced through the courtesy of Altera Corporation, San Jose, California.

TOCCMC13_0131725793.QXD 12/20/05 6:51 PM Page 868

869

■ OBJECTIVES
Upon completion of this chapter, you will be able to:
■ Describe the different categories of digital system devices.

■ Describe the different types of PLDs.

■ Interpret PLD data book information.

■ Define PLD terminology.

■ Compare the different programming technologies used in PLDs.

■ Compare the architectures of different types of PLDs.

■ Compare the features of the Altera MAX7000S and FLEX10K families

of PLDs.

■ INTRODUCTION
Throughout the chapters of this book you have been introduced to a wide

variety of digital circuits. You now know how the building blocks of digital

systems work and can combine them to solve a wide variety of digital

problems. More complicated digital systems, such as microcomputers and

digital signal processors, have also been briefly described. The defining

difference between microcomputer/DSP systems and other digital systems

is that the former follow a programmed sequence of instructions that the

designer specifies. Many applications require faster response than a

microcomputer/DSP architecture can accommodate and in these cases, a

conventional digital circuit must be used. In today’s rapidly advancing

technology market, most conventional digital systems are not being

implemented with standard logic device chips containing only simple gates

or MSI-type functions. Instead, programmable logic devices, which contain

the circuitry necessary to create logic functions, are being used to imple-

ment digital systems. These devices are not programmed with a list of

instructions, like a computer or DSP. Instead, their internal hardware is

configured by electronically connecting and disconnecting points in the

circuit.

Why have PLDs taken over so much of the market? With programmable

devices, the same functionality can be obtained with one IC rather than

using several individual logic chips. This characteristic means less board

space, less power required, greater reliability, less inventory, and overall

lower cost in manufacturing.

In the previous chapters you have become familiar with the process of

programming a PLD using either AHDL or VHDL. At the same time, you

have learned about all the building blocks of digital systems. The PLD

implementations of digital circuits up to this point have been presented as

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 869

a “black box.” We have not been concerned with what was going on inside

the PLD to make it work. Now that you understand all the circuitry inside

the black box, it is time to turn the lights on in there and look at how it

works. This will allow you to make the best decisions when selecting and

applying a PLD to solve a problem. This chapter will take a look at the

various types of hardware available to design digital systems. We will then

introduce you to the architectures of various families of PLDs.

13-1 DIGITAL SYSTEMS FAMILY TREE

While the major goal of this chapter is to investigate PLD architectures, it is

also useful to look at the various hardware choices available to digital system

designers because it should give us a little better perception of today’s digital

hardware alternatives. The desired circuit functionality can generally be

achieved by using several different types of digital hardware. Throughout this

book, we have described both standard logic devices as well as how program-

mable logic devices can be used to create the same functional blocks.

Microcomputers and DSP systems can also often be applied with the neces-

sary sequence of instructions (i.e., the application’s program) to produce the

desired circuit function. The design engineering decisions must take into ac-

count many factors, including the necessary speed of operation for the circuit,

cost of manufacturing, system power consumption, system size, amount of

time available to design the product, etc. In fact, most complex digital designs

include a mix of different hardware categories. Many trade-offs between the

various types of hardware have to be weighed to design a digital system.

A digital system family tree (see Figure 13-1) showing most of the hard-

ware choices that are currently available can be useful in sorting out the

many categories of digital devices. The graphical representation in the figure

does not show all the details—some of the more complex device types have

many additional subcategories, and older, obsolete device types have been

omitted for clarity. The major digital system categories include standard

logic, application-specific integrated circuits (ASICs) and microprocessor/

digital signal processing (DSP) devices.

870 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

FIGURE 13-1 Digital system family tree.

Microprocessors
and DSPASICs

Standard
logic

Digital
systems

PLDsECLCMOSTTL Gate
arrays

Standard
cell

Full
custom

CPLDs HCPLDsSPLDs

EPROMFuse EEPROM EPROM EEPROM Flash SRAM Flash Antifuse

FPGAs

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 870

The first category of standard logic devices refers to the basic functional

digital components (gates, flip-flops, decoders, multiplexers, registers, coun-

ters, etc.) that are available as SSI and MSI chips.These devices have been used

for many years (some more than 30 years) to design complex digital systems.

An obvious drawback is that the system may literally consist of hundreds of

such chips. These inexpensive devices can still be useful if our design is not

very complex.As discussed in Chapter 8, there are three major families of stan-

dard logic devices: TTL, CMOS, and ECL. TTL is a mature technology consist-

ing of numerous subfamilies that have been developed over many years of use.

Very few new designs apply TTL logic, but many, many digital systems still con-

tain TTL devices. CMOS is the most popular standard logic device family today,

primarily due to its low power consumption. ECL technology, of course, is ap-

plied for higher-speed designs. Standard logic devices are still available to the

digital designer, but if the application is very complex, a lot of SSI/MSI chips

will be needed.That solution is not very attractive for our design needs today.

The microprocessor/digital signal processing (DSP) category is a much dif-

ferent approach to digital system design. These devices actually contain the

various types of functional blocks that have been discussed throughout this

text. With microcomputer/DSP systems, devices can be controlled electroni-

cally, and data can be manipulated by executing a program of instructions that

has been written for the application. A great deal of flexibility can be

achieved with microcomputer/DSP systems because all you have to do is

change the program. The major downfall with this digital system category is

speed. Using a hardware solution for your digital system design is always faster
than a software solution.

The third major digital system category is called application-specific
integrated circuits (ASICs). This broad category represents the modern

hardware design solution for digital systems. As the acronym implies, an in-

tegrated circuit is designed to implement a specific desired application.

Four subcategories of ASIC devices are available to create digital systems:

programmable logic devices, gate arrays, standard-cell, and full-custom.

Programmable logic devices (PLDs), sometimes referred to as field-

programmable logic devices (FPLDs), can be custom-configured to create any

desired digital circuit, from simple logic gates to complex digital systems.

Many examples of PLD designs have been given in earlier chapters. This ASIC

choice for the designer is very different from the other three subcategories.

With a relatively small capital investment, any company can purchase the nec-

essary development software and hardware to program PLDs for their digital

designs. On the other hand, to obtain a gate array, standard-cell or full-custom

ASIC requires that most companies contract with an IC foundry to fabricate

the desired IC chip. This option can be extremely expensive and usually re-

quires that your company purchase a large volume of parts to be cost effective.

Gate arrays are ULSI circuits that offer hundreds of thousands of gates.The

desired logic functions are created by the interconnections of these prefabri-

cated gates. A custom-designed mask for the specific application determines

the gate interconnections, much like the stored data in a mask-programmed

ROM. For this reason, they are often referred to as mask-programmed gate

arrays (MPGAs). Individually, these devices are less expensive than PLDs of

comparable gate count, but the custom programming process by the chip

manufacturer is very expensive and requires a great deal of lead time.

Standard-cell ASICs use predefined logic function building blocks called

cells to create the desired digital system. The IC layout of each cell has been

designed previously, and a library of available cells is stored in a computer

database. The needed cells are laid out for the desired application, and

the interconnections between the cells are determined. Design costs for

SECTION 13-1/DIGITAL SYSTEMS FAMILY TREE 871

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 871

standard-cell ASICs are even higher than for MPGAs because all IC fabrica-

tion masks that define the components and interconnections must be custom

designed. Greater lead time is also needed for the creation of the additional

masks. Standard cells do have a significant advantage over gate arrays. The

cell-based functions have been designed to be much smaller than equivalent

functions in gate arrays, which allows for generally higher-speed operation

and cheaper manufacturing costs.

Full-custom ASICs are considered the ultimate ASIC choice. As the name

implies, all components (transistors, resistors, and capacitors) and the inter-

connections between them are custom-designed by the IC designer. This

design effort requires a significant amount of time and expense, but it can

result in ICs that can operate at the highest possible speed and require the

smallest die (individual IC chip) area. Smaller IC die sizes allow for many

more die to fit on a silicon wafer, which significantly lowers the manufactur-

ing cost for each IC.

More on PLDs
This chapter is mainly about PLDs, so we will look a little further down that

branch of the family tree. The development of PLD technology has advanced

continuously since the first PLDs appeared more than 30 years ago.The early

devices contained the equivalent of a few hundred gates, and now we have

parts available that contain a few million gates. The old devices could han-

dle a few inputs and a few outputs with limited logic capabilities. Now there

are PLDs that can handle hundreds of inputs and outputs. Original devices

could be programmed only once and, if the design changed, the old PLD

would have to be removed from the circuit and a new one, programmed with

the updated design, would have to be inserted in its place. With newer de-

vices, the internal logic design can be changed on the fly, while the chip is

still connected to a printed circuit board in an electronic system.

Generally, PLDs can be described as being one of three different types:

simple programmable logic devices (SPLDs), complex programmable logic
devices (CPLDs), or field programmable gate arrays (FPGAs). There are sev-

eral manufacturers with many different families of PLD devices, so there are

many variations in architecture. We will attempt to discuss the general char-

acteristics for each of the types, but be forewarned: the differences are not

always clear-cut. The distinction between CPLDs and FPGAs is often a little

fuzzy, with the manufacturers constantly designing new, improved architec-

tures and frequently muddying the waters for marketing purposes. Together,

CPLDs and FPGAs are often referred to as high-capacity programmable logic
devices (HCPLDs). The programming technologies for PLD devices are actu-

ally based on the various types of semiconductor memory. As new types of

memory have been developed, the same technology has been applied to the

creation of new types of PLD devices.

The amount of logic resources available is the major distinguishing feature

between SPLDs and HCPLDs. Today, SPLDs are devices that typically contain

the equivalent of 600 or fewer gates, while HCPLDs have thousands and hun-

dreds of thousands of gates available. Internal programmable signal intercon-

nect resources are much more limited with SPLDs. SPLDs are generally much

less complicated and much cheaper than HCPLDs. Many small digital applica-

tions need only the resources of an SPLD. On the other hand, HCPLDs are ca-

pable of providing the circuit resources for complete complex digital systems,

and larger, more sophisticated HCPLD devices are designed every year.

The SPLD classification includes the earliest PLD devices.The amount of

logic resources contained in the early PLDs may be relatively small by today’s

872 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 872

standards, but they represented a significant technological step in their abil-

ity to create easily a custom IC that can replace several standard logic

devices. Over the years, numerous semiconductor advances have created dif-

ferent SPLD types.The first PLD type to gain the interest of circuit designers

was programmed by literally burning open selected fuses in the programming

matrix.The fuses that were left intact in these one-time programmable (OTP)
devices provided the electrical connections for the AND/OR circuits to pro-

duce the desired functions. This logic device was based on the fuse links in

PROM memory technology (see Section 12-7) and was most commonly re-

ferred to as a programmable logic array (PLA). PLDs didn’t really gain wide-

spread acceptance with digital designers until the late 1970s, when a device

called a programmable array logic (PAL) was introduced. The programmable

fuse links in a PAL are used to determine the input connections to a set of

AND gates that are wired to fixed OR gates. With the development of the

ultraviolet erasable PROM came the EPROM-based PLDs in the mid 1980s,

followed soon by PLDs using electrically erasable (EEPROM) technology.

CPLDs are devices that typically combine an array of PAL-type devices

on the same chip. The logic blocks themselves are programmable AND/fixed-

OR logic circuits with fewer product terms available than most PAL devices.

Each logic block (often called a macrocell) can typically handle many input

variables, and the internal programmable logic signal routing resources tend

to be very uniform throughout the chip, producing consistent signal delays.

When more product terms are needed, gates may be shared between logic

blocks, or several logic blocks can be combined to implement the expression.

The flip-flop used to implement the register in the macrocell can often be

configured for D, JK, T (toggle), or SR operation. Input and output pins for

some CPLD architectures are associated with a specific macrocell, and typi-

cally additional macrocells are buried (that is, not connected to a pin). Other

CPLD architectures may have independent I/O blocks with built-in registers

that can be used to latch incoming or outgoing data. The programming tech-

nologies used in CPLD devices are all nonvolatile and include EPROM,

EEPROM, and flash, with EEPROM being the most common. All three tech-

nologies are erasable and reprogrammable.

FPGAs also have a few fundamental characteristics that are shared.They

typically consist of many relatively small and independent programmable

logic modules that can be interconnected to create larger functions. Each

module can usually handle only up to four or five input variables. Most

FPGA logic modules utilize a look-up table (LUT) approach to create the de-

sired logic functions. A look-up table functions just like a truth table in

which the output can be programmed to create the desired combinational

function by storing the appropriate 0 or 1 for each input combination. The

programmable signal routing resources within the chip tend to be quite var-

ied, with many different path lengths available. The signal delays produced

for a design depend on the actual signal routing selected by the program-

ming software. The logic modules also contain programmable registers. The

logic modules are not associated with any I/O pin. Instead, each I/O pin is

connected to a programmable input/output block that, in turn, is connected

to the logic modules with selected routing lines. The I/O blocks can be con-

figured to provide input, output, or bidirectional capability, and built-in reg-

isters can be used to latch incoming or outgoing data. A general architecture

of FPGAs is shown in Figure 13-2. All of the logic blocks and input/output

blocks can be programmed to implement almost any logic circuit. The pro-

grammable interconnections are accomplished via lines that run through the

rows and columns in the channels between the logic blocks. Some FPGAs

include large blocks of RAM memory; others do not.

SECTION 13-1/DIGITAL SYSTEMS FAMILY TREE 873

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 873

The programming technologies used in FPGA devices include SRAM,

flash, and antifuse, with SRAM being the most common. SRAM-based de-

vices are volatile and therefore require the FPGA to be reconfigured (pro-

grammed) when it is powered-up.The programming information that defines

how each logic block functions, which I/O blocks are inputs and outputs, and

how the blocks are interconnected is stored in some type of external memory

that is downloaded to the SRAM-based FPGA when power is applied.Antifuse

devices are one-time programmable and are therefore nonvolatile. Antifuse

memory technology is not currently used for memory devices but, as its

name implies, it is the opposite of fuse technology. Instead of opening a fuse

link to prevent a signal connection, an insulator layer between interconnects

has an electrical short created to produce a signal connection. Antifuse de-

vices are programmed in a device programmer either by the end-user or by

the factory or distributor.

Differences in architecture between CPLDs and FPGAs, among different

HCPLD manufacturers, and among different families of devices from a single

manufacturer can affect the efficiency of design implementation for a par-

ticular application. You may ask, “Does the architecture of this PLD family

provide the best fit for my application?” It is very difficult, however, to pre-

dict which architecture may be the best choice to use for a complex digital

system. Only a portion of the available gates can be utilized. Who knows how

874 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

FIGURE 13-2 FPGA

architecture.

Logic
block

clk

Logic
block

clk

Logic
block

clk

Logic
block

clk

Logic
block

clk

Logic
block

clk

I/O I/O I/O I/O

I/O

I/O

I/O

I/O

I/O

Logic
block

clk

Logic
block

clk

Logic
block

clk

Programmable interconnect
Connecting segment
Interconnect path

NOTE: Clock inputs may
have special low-skew
interconnect paths.

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 874

many equivalent gates will be needed for a large design? The basic design of

the signal routing resources can affect how much of the PLD’s logic resources

can be utilized. The segmented interconnects often found in FPGAs can pro-

duce shorter delays between adjacent logic blocks, but they may also produce

longer delays between the blocks that are further apart than would be pro-

duced by the continuous type of interconnect found in most CPLDs. There is

no easy answer to your question, but every HCPLD manufacturer will give

you an answer anyway: their product is best!

As you can see, the field of PLDs is quite diverse and it is constantly chang-

ing. You should now have the basic knowledge of the various types and tech-

nologies necessary to interpret PLD data sheets and learn more about them.

SECTION 13-2/FUNDAMENTALS OF PLD CIRCUITRY 875

REVIEW QUESTIONS 1. What are the three major categories of digital systems?

2. What is the major disadvantage of a microprocessor/DSP design?

3. What does ASIC stand for?

4. What are the four types of ASICs?

5. What are HCPLDs?

6. What are two major differences between CPLDs and FPGAs?

7. What does volatility refer to?

13-2 FUNDAMENTALS OF PLD CIRCUITRY

A simple PLD device is shown in Figure 13-3. Each of the four OR gates can

produce an output that is a function of the two input variables, A and B. Each

output function is programmed with the fuses located between the AND

gates and each of the OR gates.

A B

1 4

A BA B AND array

AB

AB

AB

AB

AB

AB

Product
lines

AB

OR
array

O1 O2 O3 O4

Sum of product outputs

AB

Fuses

Input lines 1 2 3 4

FIGURE 13-3 Example of

a programmable logic

device.

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 875

Each of the inputs A and B feed both a noninverting buffer and an in-

verting buffer to produce the true and inverted forms of each variable.These

are the input lines to the AND gate array. Each AND gate is connected to two

different input lines to generate a unique product of the input variables.The

AND outputs are called the product lines.
Each of the product lines is connected to one of the four inputs of each

OR gate through a fusible link. With all of the links initially intact, each OR

output will be a constant 1. Here’s the proof:

Each of the four outputs O1, O2, O3, and O4 can be programmed to be any func-

tion of A and B by selectively blowing the appropriate fuses. PLDs are

designed so that a blown OR input acts as a logic 0. For example, if we blow

fuses 1 and 4 at OR gate 1, the O1 output becomes

We can program each of the OR outputs to any desired function in a sim-

ilar manner. Once all of the outputs have been programmed, the device will

permanently generate the selected output functions.

PLD Symbology
The example in Figure 13-3 has only two input variables and the circuit dia-

gram is already quite cluttered. You can imagine how messy the diagram

would be for PLDs with many more inputs. For this reason, PLD manufac-

turers have adopted a simplified symbolic representation of the internal cir-

cuitry of these devices.

Figure 13-4 shows the same PLD circuit as Figure 13-3 using the simpli-

fied symbols. First, notice that the input buffers are represented as a single

buffer with two outputs, one inverted and one noninverted. Next, note that a

single line is shown going into the AND gate to represent all four inputs. Each

time the row line crosses a column represents a separate input to the AND

gate. The connections from the input variable lines to the AND gate inputs

are indicated as dots. A dot means that this connection to the AND gate in-

put is hard-wired (i.e., one that cannot be changed). At first glance, it looks

like the input variables are connected to each other. It is important to real-

ize that this is not the case because the single row line represents multiple
inputs to the AND gate.

The inputs to each of the OR gates are also designated by a single line

representing all four inputs. An X represents an intact fuse connecting a

product line to one input of the OR gate. The absence of an X (or a dot) at

any intersection represents a blown fuse. For OR gate inputs, blown fuses

(unconnected inputs) are assumed to be LOW, and for AND gate inputs,

blown fuses are HIGH. In this example, the outputs are programmed as

 O4 = 1

 O3 = 0

 O2 = AB
 O1 = A B + AB

O1 = 0 + A B + AB + 0 = A B + AB

 = A + A = 1

 = A(B + B) + A(B + B)

 O1 = A B + A B + AB + AB

876 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 876

SECTION 13-3/PLD ARCHITECTURES 877

FIGURE 13-4 Simplified

PLD symbology.

AB

AB

AB

AB

O1 O2 O3 O4

AB

AB

AB

AB

B

BB

A

AA

Intact
fuse

Blown
fuse

Hard-wired
connection

No
connection

REVIEW QUESTIONS 1. What is a PLD?

2. What would output O1 be in Figure 13-3 if fuses 1 and 2 were blown?

3. What does an X represent on a PLD diagram?

4. What does a dot represent on a PLD diagram?

13-3 PLD ARCHITECTURES

The concept of PLDs has led to many different architectural designs of the

inner circuitry of these devices. In this section, we will explore some of the

basic differences in architecture.

PROMs
The architecture of the programmable circuits in the previous section in-

volves programming the connections to the OR gate. The AND gates are

used to decode all the possible combinations of the input variables, as

shown in Figure 13-5(a). For any given input combination, the correspon-

ding row is activated (goes HIGH). If the OR input is connected to that

row, a HIGH appears at the OR output. If the input is not connected, a

LOW appears at the OR output. Does this sound familiar? Refer back to

Figure 12-9. If you think of the input variables as address inputs and the

intact/blown fuses as stored 1s and 0s, you should recognize the architec-

ture of a PROM.

Figure 13-5(b) shows how the PROM would be programmed to generate four

specified logic functions. Let’s follow the procedure for output O3 = AB + C D.

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 877

The first step is to construct a truth table showing the desired O3 output level

for all possible input combinations (Table 13-1).

Next, write down the AND products for those cases where the output is to

be a 1.The O3 output is to be the OR sum of these products.Thus, only the fuses

that connect these product terms to the inputs of OR gate 3 are to be left intact.

All others are to be blown, as indicated in Figure 13-5(b). This same procedure

is followed to determine the status of the fuses at the other OR gate inputs.

The PROM can generate any possible logic function of the input vari-

ables because it generates every possible AND product term. In general, any

application that requires every input combination to be available is a good

candidate for a PROM. However, PROMs become impractical when a large

878 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

FIGURE 13-5 (a) PROM architecture makes it suitable for PLDs; (b) fuses are

blown to program outputs for given functions.

D C B A

1

0

2

3

4

5

6

7

8

9

10

11

12

13

14

15

3

O3

2

O2

1

O1

0

O0

Outputs

AND array
(hard-wired)

(a)

Inputs

OR array
(programmable)

D C B A

1

0

2

3

4

5

6

7

8

9

10

11

12

13

14

15

3

O3

2

O2

1

O1

0

O0

(b)

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

O3 = AB + CD; O2 = ABC
O1 = ABCD + ABCD;
O0 = A + BD + CD

All fuses
intact

Blown
fuse

Fuse
left

intact

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 878

number of input variables must be accommodated because the number of

fuses doubles for each added input variable.

Calling a PROM a PLD is really just a semantics issue. You already knew

that a PROM is programmable and it is a logic device. This is just a way of us-

ing a PROM and thinking of its purpose as implementing SOP logic expres-

sions rather than storing data values in memory locations.The real problem is

translating the logic equations into the fuse map for a given PROM. A general-

purpose logic compiler designed to program SPLDs has a list of PROM de-

vices that it can support. If you choose to use any old scavenged EPROM as

a PLD, you may need to generate your own bit map (like they used to do it),

which is very tedious.

Programmable Array Logic (PAL)
The PROM architecture is well suited for those applications where every pos-

sible input combination is required to generate the output functions. Examples

are code converters and data storage (look-up) tables that we examined in

Chapter 12. When implementing SOP expressions, however, they do not make

very efficient use of circuitry. Each combination of address inputs must be

fully decoded, and each expanded product term has an associated fuse that is

used to OR them together. For example, notice how many fuses were required

in Figure 13-5 to program the simple SOP expressions and how many product

terms are often not used. This has led to the development of a class of PLDs

called programmable array logic (PAL). The architecture of a PAL differs

slightly from that of a PROM, as shown in Figure 13-6(a).

The PAL has an AND and OR structure similar to a PROM but in the

PAL, inputs to the AND gates are programmable, whereas the inputs to the

OR gates are hard-wired. This means that every AND gate can be pro-

grammed to generate any desired product of the four input variables and

their complements. Each OR gate is hard-wired to only four AND outputs.

This limits each output function to four product terms. If a function requires

SECTION 13-3/PLD ARCHITECTURES 879

TABLE 13-1
D C B A O3

0 0 0 0 1 →
0 0 0 1 1 →
0 0 1 0 1 →
0 0 1 1 1 →

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1 →

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1 →

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1 → DCBA

DC BA

D CBA

D C BA

D C BA

D C B A

D C B A

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 879

more than four product terms, it cannot be implemented with this PAL; one

having more OR inputs would have to be used. If fewer than four product

terms are required, the unneeded ones can be made 0.

Figure 13-6(b) shows how this PAL is programmed to generate four spec-

ified logic functions. Let’s follow the procedure for output

First, we must express this output as the OR sum of four terms because the

OR gates have four inputs. We do this by putting in 0s. Thus, we have

Next, we must determine how to program the inputs to AND gates 1, 2, 3, and

4 so that they provide the correct product terms to OR gate 3. We do this term

by term. The first term, AB, is obtained by leaving intact the fuses that con-

nect inputs A and B to AND gate 1 and by blowing all other fuses on that line.

O3 = AB + C D + 0 + 0

O3 = AB + C D.

880 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

FIGURE 13-6 (a) Typical PAL architecture; (b) the same PAL programmed for the

given functions.

D C B A

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

O3

23

O2

1

O1

0

O0

Outputs

AND array
(programmable)

(a)

OR array
(hard-wired)

D C B A

2

3

4

5

6

7

8

9

10

11

12

13

14

15

3

O3

2

O2

1

O1

0

O0

O3 = AB + CD; O2 = ABC
O1 = ABCD + ABCD;
O0 = A + BD + CD

(b)

AB

CD

0

0

ABC

0

0

0

ABCD

ABCD

0

0

A

BD

CD

016 16

1 1

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 880

SECTION 13-4/THE GAL 16V8 (GENERIC ARRAY LOGIC) 881

REVIEW QUESTIONS 1. Verify that the correct fuses are blown for the O2, O1, and O0 functions in

Figure 13-5(b).

2. A PAL has a hard-wired _____ array and a programmable _____ array.

3. A PROM has a hard-wired _____ array and a programmable _____ array.

4. How would the equation for the output of O1 in Figure 13-5(b) change if

all the fuses from AND gate 14 were left intact?

13-4 THE GAL 16V8 (GENERIC ARRAY LOGIC)

The GAL 16V8, introduced by Lattice Semiconductor, has an architecture

that is very similar to the PAL devices described in the previous section.

Standard, low-density PALs are one-time programmable. The GAL chip, on

the other hand, uses an EEPROM array (located at row and column intersec-

tions in Figure 13-7) to control the programmable connections to the AND

matrix, allowing them to be erased and reprogrammed at least 100 times. In

addition to the AND and OR gates used to produce the sum of product func-

tions, the GAL 16V8 contains optional flip-flops for register and counter

applications, tristate buffers for the outputs, and control multiplexers used

Likewise, the second term, is obtained by leaving intact only the fuses

that connect inputs and to AND gate 2. The third term is a 0. A constant

0 is produced at the output of AND gate 3 by leaving all of its input fuses in-

tact.This would produce an output of which, as we know, is 0.The

fourth term is also 0, so the input fuses to AND gate 4 are also left intact.

The inputs to the other AND gates are programmed similarly to generate

the other output functions. Note especially that many of the AND gates have

all of their input fuses intact because they need to generate 0s.

An example of an actual PAL integrated circuit is the PAL16L8, which

has 10 logic inputs and eight output functions. Each output OR gate is hard-

wired to seven AND gate outputs, and so it can generate functions that in-

clude up to seven terms. An added feature of this particular PAL is that six

of the eight outputs are fed back into the AND array, where they can be con-

nected as inputs to any AND gate. This makes it very useful in generating all

sorts of combinational logic.

The PAL family also contains devices with variations of the basic SOP cir-

cuitry we have described. For example, most PAL devices have a tristate buffer

driving the output pin. Others channel the SOP logic circuit to a D FF input and

use one of the pins as a clock input to clock all of the output flip-flops synchro-

nously. These devices are referred to as registered PLDs because the outputs

pass through a register. An example is the PAL16R8, which has up to eight reg-

istered outputs (which can also serve as inputs) plus eight dedicated inputs.

Field Programmable Logic Array (FPLA)
The field programmable logic array (FPLA) was developed in the mid-1970s

as the first nonmemory programmable logic device. It used a programmable

AND array as well as a programmable OR array. Although the FPLA is more

flexible than the PAL architecture, it has not been as widely accepted by en-

gineers. FPLAs are used mostly in state-machine design where a large num-

ber of product terms are needed in each SOP expression.

AABBCCDD,

DC
C D,

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 881

882 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

FIGURE 13-7 GAL 16V8 logic diagram. (Reprinted with permission of Lattice

Semiconductor.)

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 882

to select the various modes of operation. Consequently, it can be used as a

generic, pin-compatible replacement for most PAL devices. Specific loca-

tions in the memory array are designated to control the various programma-

ble connections in the chip. Fortunately, it is not necessary to delve into the

addresses of each bit location in the matrix.The programming software takes

care of these details in a user-friendly manner.

The complete logic diagram of the GAL 16V8 is shown in Figure 13-7.This

device has eight dedicated input pins (pins 2–9), two special function inputs

(pins 1 and 11), and eight pins (12–19) that can be used as inputs or outputs.

The major components of the GAL devices are the input term matrix; the

AND gates, which generate the products of input terms; and the output logic

macrocells (OLMCs). Notice that the eight inputs (pins 2–9) are each con-

nected directly to a column of the input term matrix.The complement of each

of these inputs is also connected to a column of the matrix. These pins must

always be specified as inputs when programming the 16V8. A logic level and

its complement are also fed from each OLMC back to a column of the input

matrix.This accounts for the 32 input variables (columns in the input matrix)

that can be programmed as connections to the 64 multiple-input AND gates.

The flexibility of the GAL 16V8 lies in its programmable output logic

macrocell. Eight different products (outputs of AND gates) are applied as in-

puts to each of the eight output logic macrocells. Within each OLMC, the

products are ORed together to generate the sum of products (SOP). Recall

from Chapter 4 that any logic function can be expressed in SOP form. Within

the OLMC, the SOP output may be routed to the output pin to implement a

combinational circuit, or it may be clocked into a D flip-flop to implement a

registered output circuit.

To understand the detailed operation of the OLMC, refer to Figure 13-8.

The figure shows the structure of OLMC(n), where n is a number from 12 to 19.

Notice that seven of the products are unconditionally connected to the OR

SECTION 13-4/THE GAL 16V8 (GENERIC ARRAY LOGIC) 883

FIGURE 13-8 Output logic macrocell for the GAL 16V8. (Reprinted with permis-

sion of Lattice Semiconductor.)

OE

T
S
M
U
X

11
10
01
00VCC

AC0
AC1 (n)

O
M
U
X

0

To
adjacent
OLMC
FMUX in

I/O (n)1Q

D Q

F
M
U
X

10
11
0X

AC1 (n)AC0 From
adjacent
OLMC
output

CLK

XOR =1

P
T
M
U
X1

0

From
AND
array

Feedback

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 883

gate inputs.The eighth product term is connected to a two-input product term

multiplexer (PTMUX), which drives the eighth input to the OR gate. The

eighth product term also connects to one input of a four-input multiplexer

(TSMUX). The output of TSMUX enables the tristate inverter that drives the

output pin [I/O(n)]. The output multiplexer (OMUX) is a two-input MUX that

selects between the combinational output (OR gate) and the registered output

(the D flip-flop). A fourth MUX selects the logic signal that is fed back to the

input matrix. This is called the feedback multiplexer (FMUX).

Each of these multiplexers is controlled by programmable bits (AC1 and

AC0) in the EEPROM matrix. This is the way that the OLMC configuration

can be altered by the programmer. Another programmable bit is the input to

the XOR gate. This provides the programmable output polarity feature.

Recall that an XOR gate can be used to complement a logic signal selec-

tively, as shown in Figure 13-9. When the control line is a logic 0, the XOR

will pass the logic level at input A with no inversion. When the control bit is

a logic 1, the XOR will invert the signal so that In Figure 13-8, the pro-

grammable bit (labeled XOR) is a logic 1 under normal positive logic condi-

tions. This inverts the output of the OR gate, which is inverted again when it

passes through the tristate inverting buffer on the output.

We can understand the various configuration options by studying the

possible inputs to each multiplexer.The TSMUX controls the tristate buffer’s

enable input. If the VCC input is selected, the output is always enabled, like

a standard combinational logic gate. If the grounded input is selected, the

tristate output of the inverter is always in its high-impedance state (allowing

the I/O pin to be used as an input). Another input to the MUX that may be

selected comes from the OE input, which is pin 11. This allows the output to

be enabled or disabled by an external logic signal applied to pin 11. The last

possible input selection is a product term from the eighth AND gate. This

allows an AND combination of terms from the input matrix to enable or dis-

able the output.

The FMUX selects the signal that is fed back into the input matrix. In

this case, there are three possible selections. Selecting the MUX input that is

connected to an adjacent stage or the MUX input connected to its own

OLMC I/O pin allows an existing output state to be fed back to the input ma-

trix in some of the modes of operation. This feature gives the GAL 16V8 the

ability to implement sequential circuits such as the cross-coupled NAND

gate latch circuit described in Chapter 5.This feedback option also allows an

I/O pin to be used as a dedicated input as opposed to an output. One of these

two feedback paths is chosen, depending on the MODE that the chip is pro-

grammed for. The third option, selecting the output from the D flip-flop, al-

lows the present state of the flip-flop (which can be used to determine the

next state) to be fed back to the input matrix. This allows synchronous se-

quential circuits, such as counters and shift registers, to be implemented.

X = A.

884 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

CONTROL
INPUT

A
OUTPUT

X

0

1

0

1

0

1

1

0

0

0

1

1

OUTPUT
X

INPUT
A

CONTROL
Buffer/Invert

Exclusive-OR

Inverted

Not inverted
(buffered)

FIGURE 13-9 Using XOR to complement selectively.

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 884

SECTION 13-5/THE ALTERA EPM7128S CPLD 885

REVIEW QUESTIONS 1. Name two advantages of GAL devices over PAL devices.

2. Name the three modes of operation for a GAL 16V8.

13-5 THE ALTERA EPM7128S CPLD

We will investigate the architecture of the EPM7128S, an EEPROM-based

device in the Altera MAX7000S CPLD family. This device is found on several

educational development boards, including the Altera UP2, DeVry eSOC, and

RSR PLDT-2. The block diagram for this family is shown in Figure 13-10. The

major structures in the MAX7000S are the logic array blocks (LABs) and the

programmable interconnect array (PIA). A LAB contains a set of 16 macro-

cells and looks very similar to a single SPLD device. Each macrocell consists

of a programmable AND/OR circuit and a programmable register (flip-flop).

The macrocells in a single LAB can share logic resources such as common

product terms or unused AND gates. The number of macrocells contained

in one of the MAX7000S family devices depends on the part number. As

shown in Table 13-2, the EPM7128S has 128 macrocells arranged in eight LABs.

Logic signals are routed between LABs via the PIA. The PIA is a global

bus that connects any signal source to any destination within the device. All

inputs to the MAX7000S device and all macrocell outputs feed the PIA. Up

to 36 signals can feed each LAB from the PIA. Only signals needed to pro-

duce the required functions for any LAB are fed into that LAB.

With all of these options, it would seem that there must be a long list of

possible configurations. In actual practice, all these configuration decisions

are made by the software. Actually, the GAL 16V8 has only three different

modes: (1) simple mode, which is used to implement simple SOP combina-

tional logic without tristate outputs; (2) complex mode, which implements

SOP combinational logic with tristate outputs that are enabled by an AND

product expression; and (3) registered mode, which allows individual OLMCs

to operate in a combinational configuration with tristate outputs (similar to

the complex mode) or in a synchronous mode with clocked D FFs synchro-

nized to a common clock signal.

The GAL 16V8 is an inexpensive and versatile PLD chip, but what if a de-

sign requires more hardware resources than is contained in the 16V8? It may

be possible to split the design into smaller blocks that can be implemented in

several 16V8 chips. Fortunately, there are other members of the GAL family

to choose from. Another popular, general-purpose PLD is the GAL 22V10.

This device has 10 output pins and 12 input pins in an architecture that is sim-

ilar but not identical to the GAL 16V8. Groups of product terms are logically

summed with an OR gate, which feeds an OLMC. Unlike the 16V8, however,

each OR gate in the 22V10 does not combine the same number of product

terms. The number of terms ranges from eight all the way up to 16. To take

advantage of the extra terms, you must assign the larger Boolean expressions

to the correct output pin. The D flip-flops contained in the OLMCs also have

asynchronous reset and synchronous preset capabilities. A newer version of

the 22V10—the ispGAL 22V10—is now available. This device is said to be in-

system programmable (ISP). Instead of requiring a programmer, as is needed

to program PALs and standard GAL chips, a cable from the PC is connected

directly to a special set of pins on the ISP device to do the programming.

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 885

I/O pins in the MAX7000S family are connected to specific macrocells.The

number of I/O pins available to the user depends on the device package. An

EPM7128S in a 160-pin PQFP package has 12 I/Os per LAB plus four additional

input-only pins, for a total of 100 pins. On the other hand, in an 84-pin PLCC

package, which is included on the above-mentioned development boards, there

are eight I/Os per LAB plus the four extras, for a total of 68 I/O pins. The

EPM7128S is an in-system programmable (ISP) device.The ISP feature utilizes

a joint test action group (JTAG) interface that requires four specific pins to be

dedicated to the programming interface and are therefore not available for

general user I/O. The target PLD can be programmed in-system via the JTAG

pins by connecting them to the parallel port of a PC with driver gates, as shown

886 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

•
•
•

6 to16

LAB D

Macrocells
49 to 64

36

16

6 to16 6

I/O
control
block

6 to16

•
•
•

6 to16

LAB B

Macrocells
17 to 32

36

16

6 to16 6

I/O
control
block

6 to16

•
•
•

•
•
•

6 to16

LAB C

Macrocells
33 to 48

36

16

6 to166

I/O
control
block

6 to16

•
•
•

INPUT/OE2/GCLK2

6 to16

LAB A

Macrocells
1 to 16

36

16

6 to166

I/O
control
block

6 to16 I/O pins

6 to16

6 to16 I/O pins

•
•
•

6 to16 I/O pins

6 to16 I/O pins

6 output enables6 output enables

INPUT/GCLK1

INPUT/OE1

INPUT/GCLRn

PIA

FIGURE 13-10 MAX7000S family block diagram. (Courtesy of Altera Corporation.)

TABLE 13-2 Altera MAX7000S family device features.

Feature EPM7032S EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S

Usable gates 600 1250 2500 3200 3750 5000

Macrocells 32 64 128 160 192 256

LABs 2 4 8 10 12 16

Maximum number
of user I/O pins 36 68 100 104 124 164

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 886

in Figure 13-11. The JTAG signals are named TDI (test data in), TDO (test data

out), TMS (test mode select), and TCK (test clock). This brings the user I/O pin

total for an EPM7128SLC84 (an EPM7128S in an 84-pin PLCC package) down

to 64 pins. All 68 pins, however, can be used for user I/O if the EPM7128SLC84

is programmed in a PLD programmer instead of in-system. When the design is

compiled, you must indicate whether or not the device will use a JTAG inter-

face. In either case, you can see that some macrocells will not be connected

directly to user I/O pins. These macrocells can be utilized by the compiler for

internal (buried) logic.

The four input-only pins found on devices in the MAX7000S family can

be configured as specific high-speed control signals or as general user in-

puts. GCLK1 is the primary global clock input for all macrocells in the de-

vice. It is used to clock all registers synchronously in a design. It is located on

pin 83 on an EPM7128SLC84 (see Figure 13-12). Pin 2 on this device is GCLK2

(secondary global clock). As an alternative, this pin may be used as a sec-

ondary global output enable (OE2) for any macrocells designated to have a

tristate output. The primary tristate enable, OE1, is located on pin 84. The

last of the four global control signals is GCLRn on pin 1. This active-LOW in-

put can control the asynchronous clear on any macrocell register. How these

pins are to be used for a specific application is assigned in MAX�PLUS II or

Quartus II either automatically by the compiler or manually by the designer

during the design process.

The I/O control blocks (see Figure 13-10) configure each I/O pin for input,

output, or bidirectional operation. All I/O pins in the MAX7000S family have

a tristate output buffer that is (1) permanently enabled or disabled, (2) con-

trolled by one of the two global output enable pins, or (3) controlled by other

inputs or functions generated by other macrocells. When an I/O pin is con-

figured as an input, the associated macrocell can be used for buried logic.

During in-system programming, the I/O pins will be made tristate and inter-

nally pulled up to eliminate board conflicts.

SECTION 13-5/THE ALTERA EPM7128S CPLD 887

EPM7128SLC84
(device to be
programmed)

13
25
12
24
11
23
10
22

9
21

8
20

7
19

6
18

5
17

4
16

3
15

2
14

1

D1
S3
D0
/C1

S4

S5

/S7

S6

D7

D6

D5

1
8
6
4
2

19
17
15
13
11

1G
1A4
1A3
1A2
1A1
2G
2A4
2A3
2A2
2A1

1Y4
1Y3
1Y2
1Y1

2Y4
2Y3
2Y2
2Y1

12
14
16
18

3
5
7
9

14
23
62

TDI
TMS
TCK

74LS244

VCC GND

20 10

VCC

VCC

GND

7, 19, 32, 42
47, 59, 72, 82

VCC

3, 13, 26, 38
43, 53, 66, 78

71
VCC

TDO

All pull-up R = 2.2 k�
All series R = 100 �DB25

FIGURE 13-11 JTAG interface between PC parallel port and EPM7128SLC84.

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 887

Figure 13-13 shows the block diagram for a MAX7000S macrocell. Each

macrocell can produce either a combinational or a registered output. The

register (flip-flop) contained in a macrocell will be bypassed to produce a

combinational output. The programmable sum of product circuit looks very

much like that found in a GAL chip. Each macrocell can produce five prod-

uct terms. While this is fewer than was found in the simpler GAL chips dis-

cussed earlier, it is often sufficient for most logic functions. If more product

terms are needed, the compiler will automatically program a macrocell to

borrow up to five product terms from each of three adjacent macrocells in

the same LAB. This parallel logic expander option can provide a total of

20 product terms. The borrowed gates are no longer usable by the macrocell

from which they are borrowed. Another expansion option, available in each

LAB, is called shared logic expanders. Instead of adding more product terms,

this option allows a common product term to be produced once and then

used by several macrocells within the LAB. Only one product term per

macrocell can be used in this fashion, but with 16 macrocells per LAB, this

makes up to 16 common product terms available.The compiler automatically

optimizes the allocation of available product terms within a LAB according

to the logic requirements of the design. Using either expander option does

incur a small amount of additional propagation delay.

888 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

FIGURE 13-12 Pin-out for

EPM7128SLC84.

I/O I/O I/O I/O G
N

D
I/O I/O I/O V

C
C

IN
T

IN
P

U
T

/O
E

2/
G

C
LK

2
IN

P
U

T
/G

C
LR

n
IN

P
U

T
/O

E
1

IN
P

U
T

/G
C

LK
1

G
N

D
I/O I/O I/O V

C
C

IO
I/O I/O I/O

I/O
I/O
GND
I/O(TDO)
I/O
I/O

I/O
I/O

VCCIO
I/O
I/O
I/O
I/O(TCK)
I/O

GND
I/O

I/O
I/O
I/O

I/O
I/O

I/O 12
VCCIO 13

I/O(TDI) 14
I/O 15
I/O 16
I/O 17

GND 19
I/O 18

I/O 20
I/O 21
I/O 22

I/O(TMS) 23
I/O 24
I/O 25

I/O 27
VCCIO 26

I/O 28
I/O 29
I/O 30

GND 32
I/O 31

I/O

33

I/O

34

I/O

35

I/O

36

I/O

37

V
C

C
IO

38

I/O

39

I/O

40

I/O

41

G
N

D

42

V
C

C
IN

T

43

I/O

44

I/O

45

I/O

46

G
N

D

47
I/O

48
I/O

49

I/O

50

I/O

51

I/O

52

V
C

C
IO

53

EPM7128SLC84

ALTERA

11 10 9 8 7 6 5 4 3 2 1 84 83 82 81 80 79 78 77 76 75
74
73
72
71
70
69

67
68

66
65
64
63
62
61

59
60

58
57
56

54
55

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 888

For registered functions, each macrocell flip-flop can be programmed

individually to implement D, T, JK, or SR operation. Each programmable

register can be clocked in three different modes: (1) with a global clock signal,

(2) with a global clock signal when the flip-flop is enabled, or (3) with an array

clock signal produced by a buried macrocell or a (nonglobal) input pin. In the

EPM7128S, either of the two global clock pins (GCLK1 or GCLK2) can be used

to produce the fastest clock-to-Q performance. Either clock edge can be pro-

grammed to trigger the flip-flops. Each register can be preset asynchronously

or cleared with an active-HIGH or active-LOW product term. Each register

may also be cleared with the active-LOW global clear pin (GCLRn).A fast data

input path from an I/O pin to the registers, bypassing the PIA, is also available.

All registers in the device will be reset automatically at power-up.

MAX7000S devices have a power-saving option that allows the designer

to program each individual macrocell for either high-speed (turbo bit turned

on) or low-power (turbo bit turned off) operation. Because most logic appli-

cations require only a small fraction of all gates to operate at maximum fre-

quency, this feature may produce a significant savings in total system power

consumption. Speed-critical paths in the design can run at maximum speed,

while the remaining signal paths can operate at reduced power.

SECTION 13-5/THE ALTERA EPM7128S CPLD 889

FIGURE 13-13 MAX7000S family macrocell. (Courtesy of Altera Corporation.)

Clock/
enable
select

• • •• • •

•
•

•

16 expander
product terms

36 signals
from PIA

Logic array

Parallel logic
expanders
(from other
macrocells)

•
•

•
Clear
select

VCC

CLRN
ENA

D/T
PRN

Q

to PIA

To I/O
control
block

From
I/O pin

Global
clear

Global
clocks

2

Fast input
select

Programmable
register

Register
bypass

Shared logic
expanders

Product-
term

select
matrix

REVIEW QUESTIONS 1. What is a macrocell?

2. What is an ISP device?

3. What special control functions are provided with the four input-only pins

on a MAX7000S device?

4. What system advantage is achieved by slowing down selected macrocells

in a MAX7000S device?

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 889

13-6 THE ALTERA FLEX10K FAMILY

The Altera FLEX10K family of programmable logic devices has a very dif-

ferent architecture. Instead of the programmable AND/fixed-OR gate array

used in the MAX7000S devices, this family is based on a look-up table (LUT)

architecture. The look-up table produces logic functions by storing the func-

tion’s output results in an SRAM-based memory. It functions essentially like

the truth table for the logic function. SRAM technology for PLDs programs

much faster than EEPROM-based devices, and it also results in a very high

density of storage cells that are used to program the larger PLDs. SRAM-

based PLDs that use the LUT architecture are generally classified in the in-

dustry as field programmable gate arrays. Unlike most FPGAs, however,

Altera has chosen to utilize a programmable signal routing design for the

FLEX10K family that looks more like an enhanced version of the PIA found

in the CPLD MAX7000S family. As a result, the FLEX10K family has archi-

tectural characteristics that are a combination of the two HCPLD classifica-

tions. Based on the high-density architecture of the logic cells, the FLEX10K

devices are generally classified as FPGAs.

Let us examine the concept of a look-up table. The LUT is the portion of

the programmable logic block that produces a combinational function (see

Figure 13-14). This function can be used as the output of the logic block or

it may be registered (controlled by the internal MUX). The look-up table it-

self consists of a set of flip-flops that store the desired truth table for our

function. LUTs are usually rather small, typically handling four input vari-

ables, and so our truth table would have a total of 16 combinations. We will

need a flip-flop to store each of the 16 function values (see Figure 13-15). Up

to four input variables in our example LUT will be connected to the data in-

puts on the decoder block using programmable interconnects. The input

combination that is applied will determine which of the 16 flip-flops will be

selected to feed the output via the tristate buffers. The look-up table is

basically a SRAM memory block. All we have to do to create any

desired function (of up to four input variables) is to store the appropriate

set of 0s and 1s in the LUT’s flip-flops.That is essentially what is done to pro-

gram this type of PLD. Because the flip-flops are volatile (they are SRAM),

we need to load the LUT memory for the desired functions whenever the

PLD is powered-up. This process is called configuring the PLD. Other por-

tions of the device are also programmed in the same fashion using other

SRAM memory bits to store the programming information. This is the basic

programming technique for the logic blocks, called logic elements (LEs),
found in the FLEX10K devices.

16 * 1

890 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

FIGURE 13-14 Simplified

logic block diagram for

FLEX10K device.

Logic block

D0

D1

Y

MUX

SEL

SET
D Q

Q
CLR

Data1

Data2

Data3

Data4

Out

LUT

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 890

SECTION 13-6/THE ALTERA FLEX10K FAMILY 891

Figure 13-16 shows the block diagram for a FLEX10K logic element. It

contains the LUT and programmable register, as well as cascade- and carry-

expansion circuitry, programmable control functions, and local and global

bus interconnections. The programmable flip-flop can be configured for D, T,

JK, or SR operation and will be bypassed for combinational functions. The

flip-flop control signals (clock, clear, and preset) can be driven selectively by

global inputs, general-purpose I/O pins, or any internally created functions.

The LE can produce two outputs to drive local (LAB) and global (FastTrack)

interconnects on the chip. This allows the LUT and the register in one LE to

be used for unrelated functions. Two types of high-speed data paths—

cascade chains and carry chains—connect adjacent LEs without using local

interconnects. The cascade-chain expansion allows the FLEX10K architec-

ture to create functions with more than four input variables. Adjacent LUTs

can be paralleled together, with each additional LUT providing four more in-

put variables.The carry chain provides a fast carry-forward function between

FIGURE 13-15 Functional block diagram for an LUT.

Address

D Q

D Q
Q12

D Q
Q13

Address 13

D Q
Q14

Address 14

D Q
Q15

Address 15

D Q
Q8

Address 8

D Q
Q9

Address 9

Q10

Address 10

D Q
Q11

Address 11

D Q
Q4

Address 4

D Q
Q5

Address 5

D Q
Q6

Address 6

D Q
Q7

7

D Q
Q0

Address 0

D Q
Q1

Address 1

D Q
Q2

Address 2

D Q
Q3

Address 3

Out

Decoder

A Y0Data1 Address 0
B Y1Data2 Address 1
C Y2Data3 Address 2
D Y3Data4 Address 3

Y4 Address 4
Y5 Address 5
Y6 Address 6
Y7 Address 7
Y8 Address 8
Y9 Address 9

Y10 Address 10
Y11 Address 11
Y12 Address 12
Y13 Address 13
Y14 Address 14
Y15 Address 15

Address 12

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 891

Look-up
table
(LUT)

Chip-wide
reset

To fast track
interconnect

To LAB local
interconnect

CLRN
ENA

D
PRN

Q
Carry
chain

Cascade
chain

Data1
Data2
Data3
Data4

Carry-in

Carry-out

Cascade-in

Cascade-out

Clear/
preset
logic

Labctrl1
Labctrl2

Clock
select

Labctrl3
Labctrl4

Register bypass Programmable
register

FIGURE 13-16 FLEX10K logic element. (Courtesy of Altera Corporation.)

FIGURE 13-17 FLEX10K logic array block. (Courtesy of Altera Corporation.)

Column-to-row
interconnect

LE1

LAB local
interconnect (2)

LE2

LE3

LE4

LE5

LE6

LE7

LE8

4

4

4

4

4

4

4

4

4

4

6(1)

8 2

8
16

16 4

LAB control
signals

Row interconnect

Column
interconnect

Carry-in and
Cascade-in

2

Carry-out and
Cascade-out

248

Dedicated inputs and
global signals

892

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 892

SECTION 13-6/THE ALTERA FLEX10K FAMILY 893

LEs, which allows for efficient implementation of functions that build on

other functions such as those found in counters, adders, and comparators. In

these functions, the upper bits depend on the lower bits. Without an expan-

sion feature like the carry chain, the propagation delays can become quite

long for larger circuits. Cascade-chain and carry-chain logic can be created

automatically by the compiler software or manually by the designer during

design entry. Propagation delays will increase by a small amount when using

the expansion options.The MAX�PLUS II or Quartus II Timing Analyzer cal-

culates these added delays for a given design. Intensive use of carry and cas-

cade chains can reduce routing flexibility and should therefore be limited to

speed-critical portions of a design.

The logic array block for the FLEX10K family contains eight logic ele-

ments and the local interconnect for that LAB (see Figure 13-17). Signals

from one LE to another within an LAB are routed with the local intercon-

nect.The row and column interconnects, which Altera has named a FastTrack

interconnect, provide the signal pathways between LABs. Each LAB has four

control signals available to all eight LEs. Two can be used for register clocks

and the other two are for preset or clear.

The overall block diagram for a FLEX10K device is shown in Figure 13-18.

In addition to the logic array blocks and FastTrack interconnects that we have

already described, the devices contain I/O elements (IOEs) and embedded

array blocks (EABs). The IOEs each contain a bidirectional I/O buffer and a

register that can be used for either input or output data storage. Each EAB

FIGURE 13-18 FLEX10K device block diagram. (Courtesy of Altera Corporation.)

IOE IOE

IOE IOE

IOE IOE

IOE IOE

IOE IOE

IOE IOE

IOE IOE

IOE IOE

IOE IOE

IOE IOE

IOE

IOE

•••

IOE

IOE

•••

IOE

IOE

•••

IOE

IOE

•••

EAB

EAB

I/O element
(IOE)

Column
interconnect

Logic
array

Row
interconnect

Embedded array block (EAB)

Embedded array

Local interconnect

Logic element (LE)

Logic array

Logic array
block (LAB)

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 893

13-7 THE ALTERA CYCLONE FAMILY

New families of HCPLD devices are continually being developed. The archi-

tectures of these new families provide various combinations of enhance-

ments in logic and signal routing resources, in density (higher number of

logic elements), in the amount of embedded memory, in the number of avail-

able user I/O pins, higher speeds, and lower costs. Another Altera family that

may be of interest to us is the Cyclone family. The UP3 educational develop-

ment board from Altera contains a Cyclone EP1C6 device. In a Cyclone de-

vice, logic functions are implemented in LEs (logic elements) that contain a

four-input LUT (look-up table) and a programmable register (D flip-flop) sim-

ilar to those found in FLEX10K devices. The Cyclone LE contains advanced

features to provide more efficient logic utilization than with the FLEX10K.

The Cyclone LE, for example, has been enhanced to more efficiently create

894 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

REVIEW QUESTIONS 1. What is a look-up table?

2. What advantage does SRAM programming technology have over EEPROM?

3. What disadvantage does SRAM programming technology have compared

to EEPROM?

4. What are EABs? What can they be used for?

TABLE 13-3 Altera FLEX10K family device features.

Feature EPF10K10 EPF10K20 EPF10K30 EPF10K40 EPF10K50 EPF10K70 EPF10K100 EPF10K120 EPF10K250

Typical
number
of gates 10,000 20,000 30,000 40,000 50,000 70,000 100,000 120,000 250,000

Maximum
number
of gates 31,000 63,000 69,000 93,000 116,000 118,000 158,000 211,000 310,000

LEs 576 1,152 1,728 2,304 2,880 3,744 4,992 6,656 12,160

LABs 72 144 216 288 360 468 624 832 1,520

EABs 3 6 6 8 10 9 12 16 20

Maximum
number
of I/O pins 150 189 246 189 310 358 406 470 470

provides a flexible block of 2048 bits of RAM storage for various internal

memory applications. Combining multiple EABs on one chip can create larger

blocks of RAM. An EAB can also be used to create large combinational func-

tions by implementing an LUT.

The FLEX10K family contains several different sizes of parts, as shown

in Table 13-3. The Altera UP2 educational development board also contains

an EPF10K70 device in a 240-pin package. As you can see in the table, this

device has a lot of logic resources available!

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 894

digital applications that use adder/subtractors, asynchronous loading of the

programmable register, and shift registers. The logic array blocks in Cyclone

devices consist of 10 LEs and a local interconnect. This family also contains

blocks of 4K bits of RAM memory that can be configured as dual-port or single-

port memory with words up to 36 bits wide. A global clock network with eight

global clock lines provides clocks for all I/O elements, LEs, and memory

blocks. Internal phase-lock loops (PLLs) provide clock frequency multiplica-

tion and division and clock signal phase shifting. The features of the Cyclone

family devices are compared in Table 13-4. Cyclone devices have the capabil-

ity to interface with other digital circuits using multiple I/O standards, but

they do not support 5-V I/O. Cyclone family devices are not supported by

MAX�PLUS II design software.

SUMMARY
1. Programmable logic devices (PLDs) are the key technology in the future

of digital systems.

2. PLDs can reduce parts inventory, simplify prototype circuitry, shorten

the development cycle, reduce the size and power requirements of the

product, and allow the hardware of a circuit to be upgraded easily.

3. The major digital system categories are standard logic, application-

specific integrated circuits (ASICs), and microprocessor/digital signal

processing (DSP) devices.

4. ASIC devices may be programmable logic devices (PLDs), gate arrays,

standard cells, or full-custom devices.

5. PLDs are the least expensive type of ASIC to develop.

6. Simple PLDs (SPLDs) contain the equivalent of 600 or fewer gates and

are programmed with fuse, EPROM, or EEPROM technology.

7. High-capacity PLDs (HCPLDs) have two major architectural categories:

complex programmable logic devices (CPLDs) and field programmable

gate arrays (FPGAs).

8. The most common CPLD programming technologies are EEPROM and

flash, both of which are nonvolatile.

9. The most common FPGA programming technology is SRAM, which is

volatile.

10. The GAL 16V8 is one of the simplest PLDs available but is still widely

used and demonstrates the basic principles behind all PLDs.

11. The Altera EPM7128S CPLD contains 128 macrocells, each of which con-

tains a programmable AND/OR circuit and a programmable register.

12. The EPM7128SLC84 can have up to 68 inputs and outputs.

SUMMARY 895

TABLE 13-4 Altera

Cyclone family device

features.

Feature EP1C3 EP1C4 EP1C6 EP1C12 EP1C20

LEs 2,910 4,000 5,980 12,060 20,060

M4K RAM blocks 13 17 20 52 64

Total RAM bits 59,904 78,336 92,160 239,616 294,912

PLLs 1 2 2 2 2

Maximum number
of I/O pins 104 301 185 249 301

TOCCMC13_0131725793.QXD 12/22/2005 9:19 AM Page 895

13. The MAX7000S family of CPLDs is in-system programmable (ISP).

14. The Altera FLEX10K and Cyclone families of devices use a look-up table

(LUT) architecture in an SRAM technology.

15. SRAM programming technology is volatile, meaning that the devices

must be reconfigured at power-up.

896 CHAPTER 13/PROGRAMMABLE LOGIC DEVICE ARCHITECTURES

standard logic

microprocessor

digital signal

processing

(DSP)

application-specific

integrated circuit

(ASIC)

programmable logic

device (PLD)

gate array

standard-cell ASIC

full-custom ASIC

simple PLD (SPLD)

complex PLD (CPLD)

field programmable

gate array (FPGA)

high-capacity PLD

(HCPLD)

one-time

programmable

(OTP)

programmable array

logic (PAL)

macrocell

look-up table (LUT)

logic array block

(LAB)

programmable

interconnect array

(PIA)

logic element (LE)

PROBLEMS
SECTION 13-1

13-1. Describe each of the following major digital system categories:

(a) Standard logic

(b) ASICs

(c) Microprocessor/DSP

13-2.*Name three factors that are generally considered when making de-

sign engineering decisions.

13-3. Why is a microprocessor/DSP system called a software solution for a

design?

13-4.*What major advantage does a hardware design solution have over a

software solution?

13-5. Describe each of the following four ASIC subcategories:

(a) PLDs

(b) Gate arrays

(c) Standard-cell

(d) Full-custom

13-6.*What are the major advantages and disadvantages of a full-custom

ASIC?

13-7. Name the six PLD programming technologies. Which is one-time pro-

grammable? Which is volatile?

13-8.*How is the programming of SRAM-based PLDs different from other

programming technologies?

SECTION 13-5

13-9. Describe the functions of each of the following architectural struc-

tures found in the Altera MAX7000S family:

IMPORTANT TERMS

*Answers to problems marked with an asterisk can be found in the back of the text.

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 896

(a) LAB

(b) PIA

(c) Macrocell

13-10.*What two ways can be used to program the MAX7000S family devices?

13-11. What standard device interface is used for in-system programming in

the MAX7000S family?

13-12.*What are the four input-only pins on the EPM7128SLC84 (by pin

number and function)?

13-13. What is the advantage of using one of the global clock inputs for reg-

istered operation?

SECTION 13-6

13-14.*What is the fundamental architectural difference between the

MAX 7000S and FLEX10K families? What is the programming tech-

nology used by each family? Which family is nonvolatile? Which family

contains more logic resources?

ANSWERS TO SECTION REVIEW QUESTIONS
SECTION 13-1

1. Standard logic, ASICs, microprocessor 2. Speed 3. Application-specific

integrated circuit 4. Programmable logic devices, gate arrays, standard cells, full

custom 5. High-capacity programmable logic device 6. (1) Logic blocks:

programmable AND/fixed-OR CPLD versus look-up table FPGA (2) Signal routing

resources: uniform CPLD versus varied FPGA 7. Volatility refers to whether a

PLD (or memory device) loses stored information when it is powered-down.

SECTION 13-2

1. An IC that contains a large number of gates whose interconnections can be modi-

fied by the user to perform a specific function. 2. O1 � A 3. An intact fuse

4. A hard-wired connection

SECTION 13-3

2. Hard-wired OR; programmable AND 3. Hard-wired AND; programmable OR

4.

SECTION 13-4

1. Erasable and reprogrammable; has an OLMC 2. Simple, complex, registered

SECTION 13-5

1. A macrocell is the programmable logic block in MAX7000S CPLDs consisting of a

programmable AND/OR circuit and a programmable register (flip-flop). 2. An

ISP PLD device is in-system programmable, which means that it can be

programmed while connected in the circuit. 3. Global clocks, tristate output

enables, asynchronous clear 4. Power consumption may be decreased by slowing

down macrocells.

SECTION 13-6

1. A look-up table is typically a 16-word by 1-bit SRAM array used to store the

desired output logic levels for a simple logic function. 2. SRAM programs faster

and has a higher logic cell density than EEPROM. 3. SRAM is volatile and must

be reconfigured upon power-up of the device. 4. Embedded array blocks provide

RAM storage on the PLD.

O1 = ABC D + A B CD + A BCD = ABC D + ACD

ANSWERS TO SECTION REVIEW QUESTIONS 897

TOCCMC13_0131725793.QXD 12/20/05 6:52 PM Page 897

