

A

Access time
defined, 788
ROM, 799
Accumulator register, 318
Acquisition time, sample-and-hold circuits, 762
Active. (See also Asserted levels)
HIGH decoding, 390-391
logic levels, 88-89
LOW decoding, 391
Actuator, 721
Addend, 306, 318
Adders
full, 319
parallel, 318-320
Addition in
BCD, 312-314
binary, 298-299
hexadecimal, 314-315
OR, 58-62
2's-complement system, 306-307, 328 addition
equal and opposite numbers, 307
positive number and larger negative number, 307
positive number and smaller negative number, 306
two negative numbers, 307
two positive numbers, 306
Address, 788
bus, 794, 836
code, 254
decoders, ROM, 797-798
incomplete decoding, 841-843
inputs, 599, 790-791
multiplexing (in DRAM), 825-829
pointer registers, 845
setup time, 820
unidirectional, 794

Advanced
CMOS, 74AC/ACT, 524
high speed CMOS, 74AHC, 525
low power Schottky TTL, 74ALS Series (ALS-TTL), 507
low voltage BiCMOS (74ALVT/ALB), 531-532
low voltage CMOS (74ALVC), 531
Schottky TTL, 74AS Series (AS-TTL), 507
ultra-low-power (74AUP), 531
ultra-low-voltage CMOS (74AUC), 531
very-low-voltage CMOS (AVC), 531
Advantages of digital techniques, 6
AHDL, 98-99, 409-410
adder, 342
adder/subtractor, 344-345
BCD-to-binary code converter, 654-655
BEGIN, 103
behavioral description of a counter in, 410
bit array declarations, 178-179
Boolean description using, 103
buried nodes, 105-106
cascading BCD counters, 421-423
CASE, 190, 417, 458-459, 639, 649
code converter, 654-655
comments, 105-106
comparator, 652
concurrent assignment statement, 103
CONSTANT, 344
converter, 654-655
counter, 277-278, 409-410, 459-461
decoder(s), 639-641
driver, 642-643
full-step sequence, 683
decoding the MOD-5 counter, 417-418
D latch, 271
DEFAULTS, 639, 650
demultiplexers, 649-650
design file, 182
digital clock project (HDL), 693-710 (see also HDL)
ELSE, 413
ELSIF, 189, 413
Encoder, 646-647
END, 103
essential elements in, 103
flip-flops, 272-273
four-bit adder, 342
frequency counter project, 710-714 (see also HDL)
full-featured counter, 412-414
function prototype, 338
IF/THEN/ELSE, 186, 646-647, 702
INCLUDE, 707
INPUT, 103
intermediate variables in, 107
JK flip-flop, 273
keypad encoder project, 687-693 (see also HDL)
simulation, 693
solution, 689-691
literals, 181
MACHINE, 426-427
magnitude comparator, 652
multiplexers, 649-650
MOD-5 counter, 406-407, 418
MOD-6 counter, 698-699, 707
MOD-8 counter, 682
MOD-10 counter, 421-422, 700, 707
graphic block symbols, 705
MOD-12 counter, 702-703
MOD-60 counter, 707
MOD-100 BCD counter, 421-423
module integration, 707-708
NAND latch, 270
NODE, AHDL, 106, 339
nonretriggerable one-shot, 462
one-shots, simple, 462
OUTPUT, 103
PISO register, 455-456
primitive port identifiers, 272
retriggerable, edge-triggered one-shot, 465
ring counter, 460
ripple-up counter (MOD-8), 277-278
SISO register, 453-454
state descriptions in, 406-407
state machines, simple 426-427
stepper driver, 684
simulation testing, 686
stepper motor driver project, 679-686 (see also HDL)
SUBDESIGN, 103, 105-106, 178, 273, 341, 406, 413, 417-418
TABLE, 640, 642-643, 646
traffic light controller, 430-432
truth tables, 181-182
VARIABLE, 105, 272, 339, 406, 689
Aliasing, 747-748
Alphanumeric codes, 39-41
ALTERA
cyclone family, 894-895
EPM7128S CPLD, 885-889
FLEX10K family, 890-894
function prototype, 338
graphic description file of an 8-bit ALU, 338
hardware description language, 98-99
logic array blocks (LABs), 885
logic elements (LEs), 890
macrofunction, 337

MAX+PLUS II, 99
MAX7000S, 885-889
primitive port identifiers, 272
programmable interconnect array (PIA), 885
using TTL library functions with, 337-338
Alternate logic-gate representation, 86-89
ALU integrated circuits, 317-318, 331-335, 767
expanding the ALU, 334
Operations
add, 332
AND, 333
clear, 332
EX-OR, 333
OR, 333
PRESET, 333
subtract, 332
other ALUs, 335
American Standard Code for Information Interchange (ASCII), 39-41
Analyzing synchronous counters, 393-396
Analog
quantity, 719
representation, 4
systems, 5-6
Analog-to-digital (ADC)
accuracy, 742-744
conversion, 737, 739-740
conversion time, 744, 750-751
converter (ADC), 7, 720
data acquisition, 745-748
digital amplitude control, 737
digital-ramp, 740-745
dual-slope, 757-758
flash, 755-757
IC, 8 -bit successive approximation (ADC0804), 751-755
an application, 754
Chip Select ($\overline{\mathrm{CS}}$), 752
Clk In, 753
Clk Out, 753
differential inputs, 751
Interrupt ($\overline{\text { INTR }}$), 753
READ ($\overline{\mathrm{RD}}$), 753
$\mathrm{V}_{\mathrm{ref}} / 2,753$
WRITE ($\overline{\mathrm{WR}}$), 753
multiplexing, 762-764
other conversion methods, 757-761
quantization error, 743
resolution, 742-744
sample-and-hold circuit, 761-762
sigma/delta modulation, 758-761
successive approximation, 749-755 (see also Digital to analog converter)
tracking, 757
up/down digital-ramp, 757
voltage-to-frequency, 758
Analog voltage comparators, 554-556
AND gate, 62-65 (see also Combinational logic circuits)
alternate logic-gate representation, 86-89
Boolean description, 62
Boolean theorems, 76-80
counter decoding, 389-393
defined, 63
implementing from Boolean expressions, 71-73
summary of operation, 63
symbol, 63
which representation to use, 89-95

AND operation, 57, 62-65
summary, 63
Answers to selected problems, 911-918
Application-specific integrated circuits (ASICs), 870-871
ARCHITECTURE, 104, 179
Arithmetic circuits, 317-318
Arithmetic/logic unit (ALU), 20, 317-318, 331-335
functional parts of an, 318
Arithmetic overflow, 308-309
Array, register, 796-797
ASCII code, 39-41
ASICs, 870-871
Asserted levels, 94
Associative laws, 78
Astable multivibrators, 260-262
555 timer used as, 261-263
Asynchronous active pulse width, 239
Asynchronous inputs, 233-236
designations for, 234-235
Asynchronous (ripple) counters, 362-365
MOD number, 363-364
propagation delay, 365-367
Asynchronous systems, 221
Asynchronous transfer, 245
Augend, 306, 318
Automatic circuit testing (using DACs), 736
Auxiliary memory, 786
Auxiliary storage, 814

B

B register, 318
Back-lit LCDs, 587
Backplane, LCD, 587
Barrell shifter, 767
Base-10 system, 10
Basic characteristics of digital ICs, 153-160
Basic counters using HDL, 405-411

BCD

to decimal decoder, 581-582
to decimal decoder/driver, 582
to 7 segment decoder/driver, 584-587
subtraction, 314
BCD addition, 312-314
sum equals 9 or less, 312
sum greater than 9, 313-314
BCD (binary-coded-decimal) code, 33-35
advantage, 35
comparison with binary, 35
forbidden codes, 34
BCD counters, 375-376
decoding, 391-392
displaying two multidigit, 605
Behavioral
description, 409
level of abstraction, 409
BiCMOS 5-volt logic, 525, 531-532
Bidirectional
busing, 637-638
data lines, 637
Bilateral switch, 546-548
Binary
addition, 298-299
arithmetic and number circles, 309

BCD, 33-35
coded decimal (see also BCD code)
counter, 251
counting sequence, 13
digit, 12
division, 311-312
multiplication, 310-311
parity method for error detection, 41-44
point, 12
quantities, representation of, 13-15
Binarily weighted, 730
Binary system, 11-13
binary to decimal conversion, 26
binary to gray conversion, 36
binary to hex conversion, 31
conversions, summary, 33
decimal to binary conversion, 26-29
gray to binary conversion, 36
hex to binary conversion, 31
negation, 303
parallel and serial transmission, 17-18
representing quantities, 13-15
signed numbers, representing, 299-306
Bipolar DACs, 728
Bipolar digital ICs, 155-156
ECL, 543-546
Bistable multivibrators, 211, 260-263
(see also Flip-flops)
Bit, 12
arrays, 177-178, 344
carry, 319
vectors, 177-178
Block diagram (digital clock using HDL), 694
Boolean
algebra, 57
alternate logic-gate representation, 86-89
AND operation, 62-65
constants and variables, 57
DeMorgan's theorems, 80-83
description of logic circuits, 66-68
evaluation of logic-circuit outputs, 68-71
implementing circuits from expressions, 71-73
NAND gate, 73-76
NOR gate, 73-76
NOT operation, 57, 65-66
summary, 66
OR operation, 57-62
summary, 60
simplifying logic circuits, 121
theorems, 76-80
truth tables, 57-58
which representation to use, 89-95
Bootstrap
memory, 812
program, 812
Bubbles, 88-89
placement of, 91
Buffer(s)/
circular, 846
driver, 536-537
inverting, 539
linear, 846
noninverting, 539
open collector, 536-537
output, ROM, 796-797
tristate, 539-540

Building the blocks from the bottom up (digital clock using HDL), 698
Bulk erase, 809
Bundle method, 637
Buried nodes, AHDL, 105-106
Bus
address, 794
clock cycles, 845
clock rate, 845
contention, 540
control, 794
data, 794
drivers, 635
expanding, 634-635
high speed interface logic, 541-542
representation, simplified, 635-637
signals, 633-634
termination techniques, 542
Busing, bidirectional, 637-638, 794
Byte, 37-39, 787

C

Cache memory, 845
Capacity, memory
defined, 787
expansion, 838-841
Carry, 298, 318
bit, 319
look-ahead, 326
propagation, 325-326
ripple, 325
Cascading parallel adders, 326-328
CASE using
AHDL, 190-191
VHDL, 191-192
CD player, block diagram, 174
Central processing unit (CPU), 20 (see also Microprocessor)
Checker, parity, 149-151
Checksum, 852
Chip, 153
Chip select, 795, 816
Circuit excitation table, 399
Circuits, digital, 15-17 (see also Logic circuits)
clock generator, 263
enable/disable, 151-153
Circular buffers, 846
Circulating shift register, 445
CLEAR, 234-235
Cleared State, 213
Clock
crystal-controlled, 263
defined, 221
edges, 222
frequency, 222
generator circuits, 260-263
period, 222
pulse HIGH $\mathrm{t}_{\mathrm{w}}(\mathrm{H}), 239$
pulse LOW $\mathrm{t}_{\mathrm{w}}(\mathrm{L}), 239$
signals, 221-224
skew, 266-268
transition times, 239
Clocked flip-flops, 221-224
asynchronous inputs, 233-236
D, 230-231
D latch (transparent latch), 232-233, 271

J-K, 227-229
S-R, 224-227
CML (current-mode logic), 543
CMOS logic family, 16, 155-158, 521-530
4000/14000 series, 156-157, 524
74AC series, 156-157, 524
74ACT series, 156, 524
74AHC series, 525
74AHCT series, 525
74ALB, 532
74ALVC series, 531
74ALVT series, 531
74AUP series, 531
74AVC series, 531
74C series, 156
74HC series, 156, 524
74HCT series, 156, 524
74LV series, 531
74LVC series, 530-531
74LVT series, 531
74VME series, 532
advanced low-voltage, 531
BiCMOS 5-Volt, 525
bilateral switch, 546-548
characteristics, 523-530
driving TTL, 551
in the HIGH state, 551
in the LOW state, 551-552
electrically compatible, 156,524
electrostatic discharge (ESD),529
fan-out, 527-528
flash memory (28F256A), 809-811
functionally equivalent, 524
ground, 157
input voltages, 526
INVERTER circuit, 155, 521-522
latch up, 529
logic level voltage ranges, 157
low voltage BiCMOS, 531
low voltage levels, 525-526
NAND gate, 522
noise margins, 526
NOR gate, 522-523
open-drain outputs, 533-538
output voltages, 526
outputs shorted together, 533
P_{D} increases with frequency, 526-527
pin compatible, 524
power dissipation, 526
power supply voltage, 157,525
series characteristics, 523-530
SET-RESET FF, 523
static sensitivity, 528-529
switching speed, 528
transmission gate, 546-548
tristate outputs, 538-541
TS switch, 531
unconnected inputs, 157-158
unused inputs, 528
voltage levels, 525-526
Code
alphanumeric, 39-41
BCD, 33-35
defined, 33
gray, 35-36
putting it all together, 37

Code converters, 624-627, 653-655
basic idea, 624-625
circuit implementation, 626-627
conversion process, 625-626
other implementations, 627
Column address strobe ($\overline{\mathrm{CAS}}$), 827
Combinational logic circuits, 118-207
algebraic simplification, 121-126
complete design procedure, 128-133
complete simplification process, 138-141
designing, 127-133
exclusive-NOR, 144-149
exclusive-OR, 144-149
Karnaugh map method, 133-144, 322
parity generator and checker, 149-151
product-of-sums, 120-121
simplifying, 121-126
sum of products form, 120-121
summary, 193
Combining DRAM chips, 843
Command register, 810
Common
control block, 237
input/output pins (in RAM), 816-817
Commutative laws, 78
Complementation, 65. (see also NOT operation)
Complete hierarchy of the project (digital clock using HDL), 697
Complex programmable logic devices (CPLDs), 872
Computer
data acquisition system, 746
decision process of a program, 100
dedicated, 21
digital, 19-21, 721
embedded controller, 21
functional diagram of, 19
major parts of, 19-21
microcomputer, 20
microcontroller, 21
programming languages, 99
types of, 20-21
Concatenating, 182-183, 453
Conditional signal assignment statement, 647
Constants, 344
Contact bounce, 215
Control
bus, 794
inputs, 223, 233
synchronous, 223
unit, 20
Controlled inverter, 147
Conversion time, ADC, 744, 750-751
Converter, data, 813
Counters, 360-486
and registers, 360-486
asynchronous (ripple), 362-365
propagation delay, 365-367
basic idea, 396
BCD, decoding, 391-392
cascading, 388-389
decade, 375-376
decoding, 381, 389-393, 448-449
design procedure, 397-400
displaying states, 372
feedback, with, 445
glitches, 367, 372

HDL, basic, 405-411
integrated circuit registers, 437
J-K excitation table, 397, 399
Johnson, 447-449
with MOD numbers $<2^{\text {N }}, 370-377$
multistage arrangement, 388-389
NEXT state, 393-404
parallel in/parallel out-the 74ALS174/74HC174, 437-439
parallel in/serial out-the 74ALS165/74HC165, 441-443
PRESENT state, 393-404
presettable, 379-380
recycle, 363
ring, 445-447, 594-596
ripple, 277-280, 362-365
self-correcting, 394
serial in/parallel out-The 74ALS164/74HC164, 443-445
serial in/serial out-The 74ALS166/74HC166, 439-441
the 74ALS160-163/74HC160-163 series, 380-384
the 74ALS190-191/74HC190-191 series, 384-388
shift register, 445-449
spike, 372
summary, 436-437, 468
synchronous, analyzing, 393-396
synchronous design, 396-404
synchronous design with D FFs, 402-404
synchronous (parallel), 367-370, 380-389
synchronous (parallel) down and up/down, 377-379
troubleshooting, 450-452
undesired states, 397
Count enable, 381
Counters and registers, 360-486
Counting
binary, 12-13
decimal, 10-11
hexadecimal, 31-32
operation, 251-252
CPU (central processing unit), 20
Cross Bar Technology (74CBT), 531
low voltage (74CBTLV), 531
Crystal controlled clock generators, 263
Current
mode logic, 543
parameters for digital ICs, 490-491
sinking action, TTL, 495, 500
sinking transistor, TTL, 500
sourcing action, 495, 500-501
sourcing transistor, TTL, 501
transients, TTL, 516-517
D
D latch (see also Flip-flops)
DAC (see also Digital-to-analog converter)
Data
acquisition, 745-748
bus, 628, 794
bundle method, 637
defined, 628
floating, 629
operation, 632-638
converter, 813
distributors, 610-617
hold time, 820
lines, 255
rate buffer, 846
routing, by MUXs, 604-606
sampling, 745
selectors, 599-604
setup time, 820
storage and transfer, 245-247
tables, 812-813
word, 635
Data transfer, 245-247
asynchronous, 245
data busing, 628-629
demultiplexers, 610-617
hold time requirement, 248
operation, 633
parallel, 231, 246-247
parallel versus serial transfer, 250
economy and simplicity of, 250
speed, 250
and portability, 812
registers, between, 633
serial, 247-250
shift registers, 247-250
simultaneous, 247
and storage, 245-247
synchronous, 245
Decade counters, 375-376
Decimal
counting, 10-11
point, 10
Decimal system, 10-11
binary-to-decimal conversion, 26
conversions, summary, 33
decimal to binary conversion, 22-29
counting range, 28
decimal to hex conversion, 30-31
hex to decimal conversion, 29-30
Decimal-to-BCD priority encoder (74147), 592-593
Decision control structures in HDL, 184-192
Decoders, 577-584
1-of-10, 581-582
1-of-8, 578-580
3-line-to-8-line, 578-580
4-to-10, 581-582
address, 797-798
applications, 582-584
BCD to decimal, 581-582
BCD to 7 segment drivers, 584-587
binary to octal, 578-580
column, 796-797
demultiplexer, 610-617
ENABLE inputs, 578
liquid crystal displays (LCDs), 587-591
row, 796-797
simulation (HDL), 683
using HDL, 638-641
Decoding
counters, 389-393
Johnson, counter, 448-449
Decoupling, power-supply TTL, 517
DeMorgan's theorems, 80-83
implications of, 81-83
Demultiplexers (DEMUXs), 610-617, 648-651
1-line-to-8-line, 610-612
security monitoring system, applications, 612-613
Dependency notation, 95-96
\&, 95-96, 631
C, 236-237
$\geq, 95-96$
1, 95-96
R, 236-237
S, 236-237
\sum (Sigma), 334
$\diamond, 537$
$\bar{\nabla}, 541$
$\triangle, 95$
Depletion MOSFET, 518-519
Describing logic circuits, 54-117
Description languages versus programming languages, 98-100
Designing combinational logic circuits, 127-133
Detecting an input sequence, 244-245
Development
software (for PLDs), 172-174
system (for PLD programming), 172
Diagrams
logic circuit connections, 158-160
simplified bus timing, 634
state transition, 252-253, 372-373, 394
timing, 394
Differential inputs, 751
Digital
amplitude control, 737
circuits, 15-17 (see also Logic circuits)
clock project (HDL), 693-710 (see also HDL)
computers, 19-21 (see also Microcomputer)
integrated circuits, 16
multiplexer, 599
number systems, 10-13
one-shots, HDL, 461-467
pulses, 220-221
quantity, 719
ramp ADC, 740-745
up/down, 757
representation, 4-5
storage oscilloscope (DSO), 767-765
related applications, 765
Digital and analog systems, 5-9
Digital arithmetic, 296-358
BCD addition, 312-314
binary addition, 298-299
binary division, 311-312
binary multiplication, 310-311
carry propagation, 325-326
circuits, 317-318
circuits and operations, 296-358
full adder, 319
hexadecimal addition, 314-315
hexadecimal representation of signed numbers, 316-317
hexadecimal subtraction, 315-316
integrated circuit parallel adder, 326-328
number circles and binary arithmetic, 309
operations and circuits, 296-358
parallel binary adder, 318-320
signed number representation, 299-306
summary, 349-350
2's complement system, addition, 306-307, 328
2's complement system, multiplication, 311
2's complement system, subtraction, 307-310, 328-331
Digital signal processing (DSP), 764-768
architecture, 767
arithmetic logic unit (ALU), 767

Digital signal processing (DSP) (continued)
Barrell shifter, 767
filtering, 766
interpolation filtering, 767
multiply and accumulate section (MAC), 767
oversampling, 767
weighted average, 766
Digital signals and timing diagrams, 15
Digital system projects using HDL, 676-717 summary, 714
Digital systems, 5-6
family tree, 870-875
introductory concepts, 2-23
summary, 21
input internally shorted to ground or supply, 162-163
malfunction in internal circuitry, 162
open signal lines, 166-167
open-circuited input or output, 163-165
output internally shorted to ground or supply, 163
output loading, 168
power supply, faulty, 167
short between two pins, 165-166
shorted signal lines, 167
troubleshooting, 160-162, 556-557, 597-599, 617-620
case study, 168-170
tree diagram, 620
typical signal, 15
typical voltage assignments, 15
Digital techniques
advantages, 6
limitations, 6-9
Digital-to-analog converter (DAC), 7, 720-721
accuracy, 734
analog output, 723
analog-to-digital conversion, used in, 740-745
applications, 736-738
bipolar, 728
circuitry, 728-733
control, used in, 736
conversion, 721-728
conversion accuracy, 730-731
current output, with, 731-732
digitizing a signal, 736
full-scale output, 721, 724
input weights, 723
integrated circuit (AD7524), 735-736
monotonicity, 735
offset error, 734-735
output waveform, 724
percentage resolution, 725-726
R/2R ladder, 732-733
resolution, 724
what does it mean, 726
serial, 737-738
settling time, 735
signal reconstruction, 736-737
specifications, 733-735
staircase, 724
staircase test, 738
static accuracy test, 738
step size, 724
troubleshooting, 738-739
Digital vs. analog, review, 719-721
Digitize
reconstructing a signal, 746-748
signal, 736-737, 745-748
Digits, 4, 10
DIMM (dual-in-line memory module), 834
Diode, Schottky barrier (SBD), 506
DIP (dual-in-line package), 153
Direct Rambus DRAM (DRDRAM), 835
Discrete steps, 4
Displaying counter states, 372
Displays
LCD, 587-591
back-lit, 587
passive matrix panel, 590
reflective, 587
Super Twisted Nematic (STN), 590
TFT (Thin Film Transistor), 590
Twisted Nematic (TN), 590
LED, 586-587
common-anode, 586
common-cathode, 586
D latch (transparent latch), 232-233, 271
Distributive law, 78
Divide and conquer, troubleshooting process, 597
Dividend, 311
Division, binary, 311-312
Divisor, 311
Don't care conditions, 142-143
Double Data Rate SDRAM (DDRSDRAM), 835
Driver, decoder, 582
DSP (Digital Signal Processing), 765-768
Dual
in-line package (DIP), 153, 497
slope ADC, 757-758
Dynamic RAM (DRAM), 823-824
address multiplexing, 825-829
combining chips, 843
controller, 832
DDRSDRAM, 835
DIMM, 834
DRDRAM, 835
EDO, 835
FPM (Fast Page Mode), 834-835
memory modules, 834
Read/Write cycles, DRAM, 829-831
Read cycle, 829-830
Write cycle, 830
refresh counter, 831
refreshing, 823, 831-833
methods,
burst, 831
CAS-before- $\overline{\text { RAS }}$ refresh, 832, 835
distributed, 831
RAS-only refresh, 831
SDRAM (Synchronous DRAM), 835
SIMM, 834
SLDRAM, 835
SODIMM, 834
structure and operation, 824-829
technology, 834-835
E
ECL integrated circuit family, 16, 543-546 (see also
Emitter coupled logic)
Edge triggered devices, 272-277
event, 272
logic primitive, 272

Edge-detector circuit, 226-227
Edges, of a clock signal, 221-222
EDO (Extended Data Output) DRAM, 835
EEPROMs (electrically erasable PROMs), 805-807
Eight input multiplexers, 601-602
Electrical noise, 41
Electrically Erasable PROMs (EEPROMs), 805-807
Electrostatic discharge (ESD), 529
ELSIF, 187-189
using AHDL, 189
using VHDL, 189
Embedded
controller, 21
microcontroller program memory, 812
Emitter coupled logic (ECL), 16, 543-546
basic circuit, 543-544
characteristics, 543-546
OR/NOR gate, 543, 545
ENABLE inputs, decoders, 578
Enable/Disable circuits, 151-153
Encoders, 591-597
decimal to BCD priority, 592-593
8-line-to-3-line, 591
octal to binary, 591
priority, 592-593
switch, 593-596
Encoding, 591
Enhancement MOSFET, 518-519
EPROMs (erasable programmable ROMs), 803-805
Erasable Programmable ROMs (EPROMs), 803-805
Erase
command, 811
verify command, 811
Error detection, parity method for, 41-44
Etching, incomplete, 167
Even-parity method, 42
Event, 272
Excitation table, J-K, 397
Exclusive
NOR circuit, 145-147
OR circuit, 144-145
Expanding the bit capacity of a circuit, 343-348
Extension, sign, 302
External faults, 166-168

F

Fan-out, 491
CMOS, 527-528
determining, 510-513
TTL, 509-514
Fast page mode (FPM) DRAM, 834-835
Fast TTL (74F), 508
Feedback multiplexer (FMUX), 884
Field programmable gate arrays (FPGA), 872,
Filling K map from output expression, 141
First-in, first-out memory (FIFO), 845-846
Flash
ADC, 755-757
conversion time of, 756-757
memory, 808-811
Flip-flops, 19, 2208-295
actual ICs, 240
ambiguous output, 227
applications, 243
asynchronous inputs, 233-236
bistable multivibrator, 211
clearing, 211
clock signals, 221-224
clocked, 221-224
clocked D, 230-231
implementation of, 231
clocked J-K, 227-229
clocked S-R, 224-227
D (data), 230-231
implementation of, 231
D latch (transparent latch), 232-233, 271
defined, 210-211
edge triggered, 222
frequency division and counting, 250-254
input sequence detection, 244-245
latches, 19
memory characteristics, 211
NAND gate latch, 211-216, 226
alternate representations, 214
summary of, 213
troubleshooting case study, 219-220
using AHDL, 270
NOR gate latch, 216-218
override inputs, 234
propagation delays, 238-239
related devices, 208-295
resetting, 211
setup and hold times, 223-224
shift registers, 247-250
state on power-up, 218
summary, 280-281
synchronization, 243-244
terminology, 214-215
timing considerations, 238-241
timing problems, 241-242
troubleshooting circuits, 264-268
Floating
bus, 629
gate, EPROMs, 804
inputs (see also Unconnected inputs), 157-158, 514
Four-input multiplexers, 601
Free-running multivibrator, 260-263
Frequency, 222
counter project (HDL), 710-714 (see also HDL)
division, 250-254, 364-365
and counting, 250-254
Full adder, 319
design of, 320-323
K-map simplification, 322
Full-custom ASICs, 872
Full-featured counters in HDL, 412-417
Full-scale error (of a DAC), 734
Full-scale output (of a DAC), 721, 724
Full-step sequence (HDL stepper-motor), 679
Function generator, 813-814
Function prototype, ALTERA, 338
Fusible-link, PROMs, 803
Future, digital, 8
G
GAL16V8 (Generic Array Logic), 881-885
complex mode, 895
feedback multiplexer (FMUX), 884
output logic macro cells (OLMCs), 883-885
output multiplexer (OMUX), 884

GAL16V8 (continued)
product term multiplexer (PTMUX), 884
registered mode, 885
simple mode, 885
GAL22V10 (Generic Array Logic), 885
Gate(s)
AND, 63
arrays, 871
NAND, 73-76
NOR, 73-76
OR, 58-62
which representation to use, 89-95
Generator
function, 813-814
parity, 149-151
Giga-scale integration (GSI), 154-155
Glitches, 367, 372
Glossary, 898-910
Gray Code, 35-36
Gunning Transceivers Logic Plus, 542
Plus (74GTLP1394), 531

H

Half adder (HA), 322-323
Half-step sequence (HDL stepper-motor), 680
Hardware description language (HDL), 98, 173
HDL, 98, 173
adders, 340-343
basic counters using, 405-411
behavioral description, 409
behavioral level of abstraction, 409
bit arrays, 177-178
bit vectors, 177-178
CASE, 459, 639, 683, 701
circuits with multiple components, 277-280
code converters, 653-655
combining blocks using only, 706-707
comparator, 652-653
concatenation, 453
decision control structures, 184-192
concurrent, 184
sequential, 184
decoder/driver, 7-segment, 642-645
decoders, using, 638-641
demultiplexers, 648-651
designing number systems, 177
digital clock project, 693-710
block diagram, 694
building the blocks from the bottom up, 698
combining blocks graphically, 705-706
complete hierarchy of the project, 697
hours section circuit, 695
MOD-6 counter simulation, 700
MOD-60 section, 697
prescaler, 697
top-down hierarchical design, 696-698
encoders, 645-648
format, 102-104
frequency counter project, 710-714
block diagram, 711
sampling interval, 710
timing and control block, 713
timing diagram, 712
full-featured counters in, 412-417
function prototype, 338
hierarchical design, 417

IF/ELSE, 184-185, 460
IF/ELSIF, 701
IF/THEN, 185
index, 178
keypad encoder project, 687-693
block diagram, 687
problem analysis, 687
simulation, 693
strategic planning, 689
literals, 177
magnitude comparator, 652-653
MOD 12 design, 701-702
MOD 60 graphic block symbol, 706
mode, 102
multiplexers, 648-651
nesting, 686
NEXT, 459
one-shots, 461-467
PRESENT, 459
projects using, 676-717
registers, 452-459
representing data, 177-181
retriggerable, edge-triggered one-shots in, 464-465
ring counters, 459-461
scalars, 177
schematic diagram, 102
sequential circuits using, 268-271
D latch, 271
NAND latch, 270
simulation of basic counter, 411
simulation of full-featured counter, 416
small-project management, 678-679
definition, 678
strategic planning, 678
synthesis and testing, 678-679
system integration and testing, 679
state transition description methods, 405
stepper motor driver project, 679-686
full-step sequence, 679
half-step sequence, 680
problem statement, 680-681
strategic planning, 681
synthesis and testing, 681
wave-drive sequence, 680
structural level of abstraction, 280
syntax, 102-104
TABLE, 639
timing simulation, 175
truth tables, 181-184
type, 102
wiring modules together, 417
Hertz, 222
Hexadecimal
addition, 314-315
arithmetic, 314-317
number system, 29-33
representation of signed numbers, 316-317
subtraction , 315-316
Hierarchical design, 173
Hierarchy, 696
High capacity programmable logic devices
(HCPLDs), 872
High speed
bus interface logic, 541-542
CMOS, 74HC/HCT, 524
logic comparison, 546

High-state noise margin $\left(\mathrm{V}_{\mathrm{NH}}\right), 493$
Hold time (t_{H}), 223-224, 238, 248
Hours section circuit (digital clock using HDL), 695
Hybrid systems, 8

I

IC synchronous counters, 380-389
IEEE/ANSI standard logic symbols, 95-96, 236-237, 537, 541
AND, 95
common control block, 237
D Flip-flop, 237
definition, 95-96
dependency notation (see also dependency notation)
exclusive-NOR, 145-147
exclusive-OR, 144-145
flip-flops, 236-238
for logic-gate ICs, 95
inverter, 95
J-K flip-flop, 237
monostable multivibrator, 256-260
NAND, 95
NOR, 95
one-shot, 256-260
open-collector output, 537
open-drain output, 537
OR, 95
traditional, 95-96
tristate outputs, 541
IF/ELSE, 184-185
IF/THEN, 185
IF/THEN/ELSE using AHDL, 186
Implementing logic circuits with PLDs, 100-101
Implications of DeMorgan's theorems, 81-83
Improved flash memory, 811
Incomplete address decoding, 841-843
Indeterminate
logic level, 161
voltages, 157
Inhibit circuits, 64
Input
currents for standard devices, 550
sequence detection, 244-245
unit, 20
Integrated-circuit logic families, 488-574
ALU(s), 331-335
add operation, 332
AND operation, 333
clear operation, 332
EX-OR operation, 333
expanding, 334
OR operation, 333
other, 335
PRESET operation, 333
subtract operation, 332
basic characteristics, 153-160
bipolar, 155-156, 543-546
defined, 489-490
ECL, 543-546
interfacing, 548-552
MOS (see also MOS logic family)
summary, 558
terminology, 490-497
unipolar, 155-156
Integrated-circuit packages, 495-497
common, 496
dual-in-line (DIP), 495-496, 497
gull-wing, 497
J-shaped leads, 497
lead pitch, 496
low-profile five-pitch ball grid array (LFBGA), 497
plastic leaded chip carrier (PLCC), 497
quad flat pack (QFP), 497
shrink small outline package (SSOP), 497
small outline IC (SOIC), 497
surface-mount technology, 496
thin quad flat pack (TQFP), 497
thin shrink small outline package (TSSOP), 497
thin very small outline package (TVSOP), 497
Integrated circuit parallel adder, 326-328
Integrated circuit registers, 437
parallel in/parallel out-the 74ALS174/74HC174, 437-439
parallel in/serial out-the 74ALS165/74HC165, 441-443
serial in/parallel out-the 74ALS164/74HC164, 443-445
serial in/serial out-the 74ALS166/74HC166, 439-441
Integrated circuit shift-register counters, 449
Interfacing
5-V TTL and CMOS, 550
high-voltage outputs driving low-voltage loads, 554
integrated circuit, 548-552
logic ICs, 549
low-voltage outputs driving high-voltage loads, 553
mixed-voltage, 553-554
not needed, 549
required, 549
with the analog world, 718-782
summary, 769-770
Intermediate signals, 105-108
Interpolation filtering, 767
Invalid voltage levels, 494-495
Inversion (see also NOT operation), 57, 65-66
Inverter, 65-66
circuits containing, 67-68
controlled inverter, 147
response to slow noisy inverter, 257
Inverted flip-flop output, 210
Inverting tristate buffer, 539

J

Jam transfer, 246, 380
JEDEC
standard, 172
standard memory packaging (JEDEC), 822
J-K excitation table, 397, 399
Johnson counter, 447-449
decoding, 448-449
K
Karnaugh map
complete simplification process, 138-141
don't-care conditions, 142-143
filling from output expression, 141
format, 134-135
looping, 135-138
method, 133-144
simplification, 322
summary, 143-144
Keypad encoder project (HDL), 687-693 (see also HDL)

L
Labeling
active-LOW signals, 94
bistate signals, 94
Ladder, R/2R, 732-733
Large scale integration (LSI), 154-155, 489
Latches, 18, 2111-218, 232-233, 268-271
(see also Flip-flops)
resetting, 212
setting, 212
Latch-up, 529
Latency, 827
Least significant bit (LSB), 12
Least significant digit (LSD), 10
Libraries of parameterized modules, 347-348
Light-emitting diodes (LEDs), 586-587
common-anode vs. common-cathode, 586
Limitations of digital techniques, 6-9
Linear buffers, 846
Linearity error (of a DAC), 734
Liquid crystal displays (LCDs), 587-591
backplane, 587
driving an, 588-589
types, 589-590
Loading
factor, 491
TTL, 509-514
Local signals, 105
Logic
diagram using schematic capture, 160
function generation, 607-609
level, 57
primitive, 272
probe, how to use, 161, 556-557
product life cycle, 532
pulser, how to use, 161, 556-557
standard, 871
Logic circuits
analysis using a table, 69-71
analyzing, 92-94
arithmetic, 317-318
combinational (see also Combinational logic circuits)
connection diagrams, 158-160
defined, 16
describing, 54-117
describing algebraically, 66-68
disabled, 151-153
enabled, 151-153
evaluation of outputs, 68-71
implementing from Boolean expressions, 71-73
implementing with PLDs, 100-101
interface, 548-552
pulse-shaping circuit, 365
pulse-steering, 153
Logic gates, 57-117
alternate representation, 86-89
AND, 63
Boolean theorems, 76-80
DeMorgan's theorems, 80-83
evaluation of outputs, 68-71
IEEE/ANSI representations, 95-96
NAND, 73-76
NOR, 73-76
NOT circuit (INVERTER), 65-66
OR, 58-62
summary of methods to describe, 96-98
truth tables, 57-58
which representation to use, 89-95
Logic operations, 57
on bit arrays, 338-340
Logic signals
labeling active-LOW, 94
labeling bistate, 94
Logic symbol interpretation, 88-89 summary, 89
Logical complementation or inversion (NOT operation), 65-66
Look ahead carry, 326
Look up table (LUT), 873
Looping, 135-138
octets, 137-138
pairs, 135-136
quads, 136-137
Low-power Schottky TTL, 74LS Series (LS-TTL), 506-507
Low-state noise margin (V_{NL}), 493
Low voltage (74LV), 531
BiCMOS technology (74LVT), 531
CMOS (74LVC), 530-531
series characteristics, 532
voltage technology, 530-532
LPMs (library of parameterized modules), 348
LSI. See Large-scale integration
LUT (look up table), 873
functional block diagram, 891
LVDS (Low Voltage Differential Signaling, 542

M

Machines, state, 425-437
Mealy model, 426
Moore model, 426
traffic light controller, 429-435
Macrofunction, 337
Magnitude comparator, 621-624, 652-653
applications, 623
cascading inputs, 622-623
data inputs, 621
outputs, 622
Magnitude of binary numbers, 299
Major parts of a computer, 19-21
Mask-programmed
gate arrays (MPGAs), 871
ROM (MROM), 800-802
storage devices, 786
Maximum clocking frequency ($\mathrm{f}_{\text {MAX }}$), 239
Mealy model, 426
Medium-scale integration (MSI), 154-155, 489
Megafunctions, 348
Memory, 18-19, 784-866
auxiliary, 786, 789
bipolar static RAM cell, 818
bootstrap, 812
capacity, 787
CD ROM, 807-808
cell, 787
compact disk, 786
connections, CPU, 793-794
density, 788
devices, 784-866
dynamic, devices, 789
embedded microcontroller program, 812
enable, 791-792
expanding
capacity, 838-841
word size, 836-838
fetch operation, 788
first-in, first-out (FIFO), 845-846
flash, 808-811
bulk erase, 808
command register, 810
erase command, 811
erase verify command, 811
IC (28F256A), 809-811
improved, 811
program command, 811
program-verify command, 811
Read command, 810
sector erase, 808
set-erase, 811
set-up program, 811
tradeoffs, 809
fold-back, 842
general operation, 790-793
main, 786, 789
map, 842
mass, 789
modules, 834, 837
NMOS static RAM cell, 818
nonvolatile, 788-789, 795
random-access, 788-789
read-only, 789
Read/Write, 789
sequential-access, 789
special functions, 844-846
cache memory, 845
first-in, first-out, 845-846
power-down storage, 844-845
static, devices, 789
store operation, 788
summary, 853-854
terminology, 786-789
unit, 20
volatile, 788
word, 787
working, 786, 789
Microcomputer
application, 254-255
defined, 20
input unit, 20
memory unit, 20
output unit, 20
Microcontroller, 21
Microprocessor, 20
digital signal processing (DSP), 871
READ operation, 794
WRITE operation, 794
Minuend, 308
Mixed-voltage interfacing, 553-554
high-voltage outputs driving low-voltage loads, 554
low-voltage outputs driving high-voltage loads, 553
voltage-level translator, 553
MOD number, 253, 363-364
changing, 374
general procedure, 374-375
Johnson counter, 447-449
ring counter, 445-447
Monostable multivibrator, 256-260. See also One-shot
Monotonicity (of a DAC), 735

Moore model, 426
MOS
electrostatic discharge (ESD), 529
FETs, 518-521
logic family, 518-521
NMOS, 519-520
static sensitivity, 528-529
technology, 518-521
MOSFET, 16, 518-521
basic switch, 519-521
CMOS, 521-523
digital circuits, 519-520
N-MOS, 519
P-MOS, 520
Most significant bit (MSB), 12
Most significant digit (MSD), 10
MSI. See Medium-scale integration
MSI logic circuits, 576-673
BCD to decimal decoder, 581-582
BCD to 7 segment decoder/drivers, 584-587
data busing, 628-629
decoders, 577-584
demultiplexers (DEMUXs), 610-617
encoders, 591-597
liquid crystal displays (LCDs), 587-591
multiplexers (MUX), 599-604
summary, 656-657
tristate registers, 629-631
Multiple-emitter input transistor, 498
Multiplexers (MUX), 599-604, 648-651
applications, 604-609, 612-617, 828
control sequence, seven-step, 608
eight-input, 601-602
four-input, 601
operation sequencing, using, 607
quad two-input, 603-604
two-input, basic, 600-601
Multiplexing, 599
ADC, 762-764
address (in DRAM), 825-829
Multiplication
AND, 62
of binary numbers, 310-311
in the 2 's-complement system, 311
N
NAND gate, 73-76
alternate representation, 86-89
CMOS, 522
counter decoding, 389-393
defined, 75
internal circuitry of the edge-triggered J-K FF, 229
internal circuitry of the edge-triggered S-R FF, 226-227
latch flip-flop, 211-216
summary of, 213
TTL, 498
universality of, 83-86
which representation to use, 89-95
Negation, 303
Negative-going threshold voltage (V_{T}), 256
Negative-going transition (NGT), 222
NEXT state, 393-404
Nibble, 37-39
NMOS logic family, 16
logic circuits, 519
NMOS static RAM cell, 818

Noise, 6, 264
immunity, 493
Noise margin, 493
CMOS, 526
DC, 493
Nonretriggerable one-shot, 258
Nonvolatile memory, 788-789, 795, 803
NOR gate, 73-76
alternate representation, 86-89
CMOS, 522-523
defined, 73
ECL, 543, 545
latch, 216-218
universality of, 83-86
which gate representation to use, 89-95
Normal flip-flop output, 210
NOT circuit (INVERTER), 65-66
alternate representation, 86-89
circuits containing, 67-68
controlled inverter, 147
defined, 66
DeMorgan's theorems, 80-83
implementing from Boolean expressions, 71-73
NMOS, 519
symbol, 65
which representation to use, 89-95
NOT operation, 57, 65-66
Number circles and binary arithmetic, 309
Number systems, 10-13
and codes, 24-52
applications, 44-46
binary, 11-12 (see also Binary system)
decimal, 10 (see also Decimal system)
digital, 10-13
hexadecimal, 29-33
putting it all together, 37
summary, 46
Numerical representations, 4-5

0

Observation/analysis, troubleshooting process, 597
Octal to-binary encoders, 591
Octets, looping, 137-139
Odd-parity method, 42
Offset error, 734-735
One-shot (monostable multivibrator), 256-260
actual devices, 259
AHDL, 462, 465
HDL, 461-467
retriggerable, edge-triggered in HDL, 464-465
VHDL, 462-464, 466-467
1 's complement form, 300
One-time programmable ROM (OTP), 803, 873
Open-collector buffer/drivers, 536-537
Open-collector outputs, 533-538
Open-drain buffer/drivers, 536-537
Open-drain outputs, 533-538
Operation
fetch, 788
refresh, 789
Operational amplifier (in a DAC), 728
OR gate, 58-62
alternate logic-gate representation, 86-89
Boolean theorems, 76-80
defined, 59

ECL, 543, 545
implementing from Boolean expressions, 71-73
symbol, 59
OR operation, 57-62
summary, 60
which representation to use, 89-95
Organizational hierarchical chart, 175
Oscillator, Schmitt-trigger, 260-261
OTP (One-Time Programmable ROM), 803, 873
Output
buffers, ROM, 798
currents for standard devices, 550
enable time ($\mathrm{t}_{\mathrm{OE} \text {), }} 799$
loading, 168
unit, 20
Overflow bit, 323
Override inputs, 234

P

Pairs, looping, 135-136
Parallel
in/parallel out-the 74ALS174/74HC174, 437-439
parallel in/serial out-the 74ALS165/74HC165, 441-443
loading, 379
transmission, 17-18
parallel-to-serial conversion, 606-607
Parallel and serial transmission, 17-18
trade-offs between, 18
Parallel binary adder, 318-320
carry propagation, 325-326
complete, with registers, 323-325
integrated circuits, 326-328
troubleshooting case study, 335-337
2's-complement system, 328-331
Parallel data transfer, 231, 246-247
vs. serial transfer, 250
Parasitic, 529
Parity
bit, 42-44
checker, 149-151
checking, 150
checking the, 43
errors
single-bit, 43
two-bit, 43
generator, 149-151
method for error detection, 41-44
Percentage resolution, 725-726
Period, 222
PIPO (parallel in/parallel out), 437
PISO (parallel in/serial out), 437
PISO register, AHDL, 455-456
PISO register, VHDL, 456
Pixels, 589
Plastic leaded chip carrier (PLCC), 497
Positional-value system, 10
Positive-going
threshold voltage $\left(\mathrm{V}_{\mathrm{T}+}\right), 256$
transition (PGT), 222
Power
down (in MROM), 802
down storage, 844-845
requirements for digital ICs, 492-493
supply decoupling, TTL, 517
up self-test, RAM, 852

Precision reference supply, 731
Prescaler (digital clock using HDL), 697
PRESENT state, 393-404
PRESET, 234
Presettable counters, 379-380
Priority encoders, 592-593, 756
Product-of-sums, 120-121
Program
command, 811
defined, 6, 19
verify command, 811
Programmable Logic Device/s (PLDs), 99, 170-176, 871
Architecture/s, 868-918, 877-881
FPGA (field programmable gate array), 874
FPLA (field programmable logic array), 881
programmable array logic (PAL), 873, 879-881
PROMs, 877-879
summary, 895-896
CPLD, 872
design and development process, 174-175
test vectors, 175
top-down, 174
development cycle flowchart, 176
development software, 173-174
AHDL, 173
compilers, 101
timing simulation, 175
VHDL, 173
FPGA, 872
fundamentals of PLD circuitry, 875-877
generic array logic (GAL16V8), 881-885
hardware, 170-171
HCPLD, 872
hierarchical design, 173
look up table (LUT), 873
macrocell, 873
mask programmed gate arrays (MPGAs), 871
more on, 872-875
one-time programmable (OTP), 873
organizational hierarchical chart, 175
programmable array logic (PAL), 873
programmer, 172
universal, 172
programming, 171-172
development system, 172
JEDEC standard 172
JTAG, 172
zero insertion force (ZIF) socket, 172
SPLD, 872
standard JEDEC memory packaging, 822
symbology, 876-877
Programmable ROMs (PROMs), 803
Programmer, 172
Programming languages, 99
Projects, using HDL, 676-717
digital clock, 693-710
frequency counter, 710-714
keypad encoder, 687-693
management, 678-679
stepper motor driver, 679-686
PROMs (programmable ROMs), 803
Propagation delays ($\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$),
in asynchronous counters, 365-367
flip-flop, 238-241
integrated circuits, 491
TTL NAND gate, 505

Pull-down transistor, TTL, 500
Pull-up transistor, TTL, 501
Pulse(s), 220
leading edge, 221
negative, 220-221
positive, 220-221
shaping circuit, 365
steering circuit, 153, 226
trailing edge, 221
0
Quad
flat pack (QFP), 497
looping, 136-137
two-input multiplexers, 603-604
Quantization error, 743
Quartz
crystal, 263
watch, 251
Quasi-stable state, 256

R

R/2R ladder digital-to-analog converters, 732-733
RAMs (random-access memories),
architecture, 815-817
capacity expansion, 838-841
defined, 788-789
dynamic devices, 789
power-up self-test, 852
semiconductor, 814-815
static (SRAM), 818-822
troubleshooting, 847-852
know the operation, 847-850
testing the complete system, 851-852
testing the decoding logic, 850-851
word size expansion, 836-838
Read command, 810
Read operation
CPU, 794
defined, 788
RAM, 816
Read/write
input ($\mathrm{R} / \overline{\mathrm{W}}$), 791
memory (RWM), 789
Reconstructing a digitized signal, 746-748
Reflective LCDs, 587
Refresh counter, 831
Refreshing, DRAM, 789, 818, 823, 831-833
Register array, 797
Registers, 245, 360-486
accumulator, 318
address pointer, 845
and counters, 360-486
B, 318
complete parallel adder with, 323-325
HDL, 452-459
notation, 323-325
sequence of operations, 325
shift left operation, 250
tristate (74ALS173/HC173), 629-631
Repeated division method, 27-29
Representing
binary quantities, 13-15
data in HDL, 177-181
signed numbers, 299-306
using 2's complement, 300-306

RESET, 235

Resetting a flip-flop,
and setting simultaneously, 213
defined, 212
latch, 212
Resolution
ADC, 742-744
DAC, 724, 733-734
what does it mean, 726
Resolution, percentage, 725-726
Retriggerable one-shot, 258-259
Ring counter, 445-447, 594-596
in circuit, 595
starting a, 447
state diagram, of, 446, 689
ROM (read-only memory), 795-796
applications, 811-814
architecture, 796-798
output buffers, 798
block diagram, 795
burning-in, 795
CD, 807-808
column decoder, 796-797
defined, 789
erased, 795
mask-programmed, 800-802
one-time programmable (OTP), 803
output buffer, 796-797
programming, 795
READ operation, the, 795-796
row decoder, 796-797
testing, 852-853
timing, 799-800
types of, 800-808
Row address strobe ($\overline{\text { RAS }}$), 827

S

74 TTL series, 156, 506, 508
74AC series, 156-157, 524
74ACT series, 156-157, 524
74AHC series, 525
74AHCT series, 525
74ALB series, 532
74ALS TTL series, 507-508
74ALVC series, 531
74ALVT series, 531
74AS TTL series, 507-508
74AUC series, 531
74AVC series, 531
74C series, 156-157
74CBT series, 531
74CBTLV series, 531
74F-Fast TTL series, 508
74GTLP series, 531
74HC series, 156-157, 524
74HCT series, 156-157, 524
74LV series, 531
74LVC series, 530-531
74LVT series, 531
74LS TTL series, 156, 506-508
74S TTL series, 506, 508
74SSTV series, 531
74TVC series, 531
S, 236-237
SAM (sequential-access memory), 789
Sample-and-hold circuits, 761-762

Sampling, 745
frequency, 748
SBD (Schottky Barrier Diode), 506
Schmitt-trigger
devices, 256
oscillator, 260-261
response to slow noisy input, 257
Schottky
barrier diode (SBD), 506
TTL, 74S Series, 506
SDRA (synchronous DRAM), 835
Sector erase, 808
Security monitoring system, 612-613
Select inputs, (in MUXs), 599-600
Sense amplifier (in DRAM), 825
Sequential-access memory (SAM), 789
Sequential circuits, 243
design, 396-404
using HDL, 268-271
Sequential logic systems, troubleshooting, 450
Serial
in/serial out-the 74ALS166/74HC166, 439-441
transmission, 17-18
Serial data transfer, 247-250
between registers, 248-249
Set up program/program control, 811
Set-erase, 811
Sets, 339
Setting the flip-flop
latch, 212
and resetting simultaneously, 213
Settling time, of a DAC, 735
Setup time (t_{s}), 223-224, 238
Shift register counters, 445-449
Shift registers, 247-250
bidirectional universal, 444
left, 250
octal (8-bit), 444
parallel in/parallel out-the 74ALS174/74HC174, 437-439
serial in/serial out-the 74ALS166/74HC166, 439-441
Shrink small outline package (SSOP), 497
Sigma (Σ), 326
delta modulation (ADC) 758-761
Sign
bit, 299
extension, 302
magnitude system, 299
Signal
alias, 748
contention, 165
flow, 363
Signed numbers
representing, 299-306
In sign-magnitude form, 299
SIMM (single-line memory module), 834
Simple programmable logic devices (SPLDs), 872
SIPO (serial in/parallel out register), 437
SISO register, AHDL, 453-454
SISO register, VHDL, 454-455
SISO (serial in/serial out register), 437
Skew, clock, 266-268
Sloppy wiring, 167
Small outline integrated circuit (SOIC), 497
Small scale integration (SSI), 154-155, 489

Small-project management (using HDL), 678-679
definition, 678
strategic planning, 678
synthesis and testing, 681
system integration and testing, 679
SODIMM (small-outline, dual-in-line memory module), 834
Solder bridges, 167
Special memory functions, 844-846
Spike, 372
SPLDs (simple programmable logic devices), 872
Staircase
test, of a DAC, 738
waveform, of a DAC, 724
Standard
cell ASICs, 871-872
logic, 871
State
descriptions in AHDL, 406-407
descriptions in VHDL, 407-408
machines, 425-437
traffic light controller, 429-435
table, 252
transition description methods, 405
transition diagram, 252-253, 372-373
Mod-6 counter, 373
synchronous counter, 398
Static accuracy test, of a DAC, 738
Static RAM (SRAM), 818-822
actual chip (MCM6264C), 821-822
read cycle, 820
timing, 818-819
write cycle, 820-821
Stepper motor
control, 401-402
driver project (HDL), 679-686 (see also HDL)
universal, interface circuit, 682
Step-size, 724
Storage, auxiliary, 814
Straight binary coding, 33
Strategic planning (using HDL), 678, 681
Strobe inputs (in DRAM), 827
Stub Series Terminated Logic (74SSTV), 531
SUBDESIGN, 103, 178
Subpixels, 589
Subtraction
BCD, 315-316
hexadecimal, 315-316
2's-complement system, 307-310, 328-331
Substrate, 153
Subtrahend, 308
Successive-approximation ADC, 749-755
Sum bit, 319
Sum-of-products form, 120-121
Switch
bilateral, 546-548
debouncing, 215
encoders, 593-596
Synchronization, flip-flop, 243-244
Synchronous
control inputs, 223, 233
counter design with D FF, 403
Link DRAM (SLDRAM), 835
presetting, 380
systems, 221
transfer, 245

Synchronous data transmission system, 613-617 receiver operation, 614-615
system timing, 615-616
transmitter operation, 614
Synchronous (parallel) counters, 367-370
actual ICs, 369-370
advantages over asynchronous, 369
design, 396-404
stepper motor control, 402
down and up/down, 377-379
operation, 369
presettable, 379-380
Synthesis and testing (using HDL), 681, 681
System integration and testing (using HDL), 679

T

Table analysis using, 69
circuit excitation, 397, 399
J-K excitation, 397, 399
look up (LUT), 873
state, 252
Temporary storage, RAM, 815
Test vectors, 175
Theorems
Boolean, 76-80
DeMorgan's, 80-83
multivariable, 77-78
Thin Film Transistor (TFT) LCD, 590
Thin quad flat pack (TQFP), 497
Thin shrink small outline package (TSSOP), 497
Thin very small outline package (TVSOP), 497
3 line to 8 line decoder, 578-580
TI signal switch (TS switch), 531
Tied-together inputs, TTL, 515
Timer, 555 used as an astable multivibrator, 261-263.
(see also Astable multivibrator)
Timing diagrams, 15, 394
simplified bus, 634
Timing problems in Flip-flop circuits, 241-242
Toggle mode, 227
Toggles, 12
Top-down hierarchical design (digital clock using HDL), 696-698
Totem-pole output circuit, 501
Tracking ADC, 757
Tradeoffs (for nonvolatile memories), 809
Traditional or IEEE/ANSI, 96
Transducer, 720
Transfer operation, data, 245
Transition diagram, state, 252-253
Translation Voltage Clamp (74TVC), 531
Transmission gate, CMOS, 546-548
Transparent latch (D latch) 232-233. (see also Flip-flops)
Trigger input, 225
Tristate
buffers, 539-540
data bus, 540
ICs, 540
outputs, 538-541
registers (74ALS173/HC173), 629-631
connected to data bus, 632
Tristate TTL, 538-541
advantages of, 538-539
buffers, 539-540
ICs, 540

Troubleshooting
basic steps, 160-162
case study gates, 168-170
parallel binary adder/subtractor, 335-337
counters, 450-452
decoders, circuit with, 597-599
digital systems, 160-162, 556-557 (see also Digital systems)
digital-to-analog converters, 738-739
divide-and-conquer, 597
fault
external IC, 166-168
correction, 160
dectection, 160
isolation, 160
finding shorted nodes, 557
flip-flop circuits, 264-268
open inputs, 264-265
shorted outputs, 265-266
internal IC faults, 162-166
observation/analysis, 597
parallel binary adder/subtractor, 335-337
RAM systems, 847-852
know the operation, 847-850
testing the complete system, 851-852
testing the decoding logic, 850-851
security monitoring system, 612-613
sequential logic systems, 450
synchronous data transmission system, 613-617
tools used in, 161, 556-557
tree diagram, 620
Truth tables, 57-58
using AHDL, 181-182
using HDL, 181-184
using VHDL, 182-183
TTL logic family, 155-156, 498-502
active pull-up action, 501
ALS series, 156
AS series, 156
biasing inputs LOW, 516
characteristics, 506-509
circuit operation-HIGH state, 500
circuit operation-LOW state, 498-500
comparison of series characteristics, 508
current ratings, 512
current transients, TTL, 516-517
current-sinking action, TTL, 500
data sheets, 502-506
defined, 16
fan-out, 509-514
fast series (74 F), 508
ground, 157
input voltages, 526
interfacing w/CMOS, 550
INVERTER circuit, 155
loading, 509-514
logic-level voltage ranges, 157
low-power Schottky, 74LS series (LS-TTL), 506-507
LS series, 156
maximum voltage ratings, 504-505
NAND gate, basic, 499
NOR gate, basic, 502
open-collector outputs, 533-538
other characteristics, 514-518
output voltages, 526
power, 157
power dissipation, 505
propagation delays, 505
S series, 156
Schottky, 74S series, 506
series characteristics, 506-509
standard, 74 series, 506
subfamilies, 156, 506-509
summary, 502
supply (power) voltage, 157,503
temperature range, 503
tied-together inputs, 515
totem-pole output circuit, 498, 501
tristate, 538-541
unconnected inputs (floating), 157-158, 514
unused inputs, 514-515
voltage levels, 503-505
Twisted-ring counters, 447
Two-input multiplexer, basic, 600-601
2's complement
addition, 306-307
form, 300
special case representation , 304-305
subtraction, 307-310
system, 299, 328-331
addition and subtraction, combined, 330-331
addition, 328
multiplication, 310-311
subtraction, 328-331
Types of computers, 20-21
dedicated, 21
embedded controller, 21
microcomputer, 20
microcontroller, 21
microprocessor, 20
Types of LCDs, 589-590

U

Ultralarge-scale integration (ULSI), 154-155
Unasserted levels, 94
Unconnected inputs
TTL, 157-158, 514
CMOS, 157-158, 528
Undersampling, 748
Unipolar digital ICs, 155-156. See also CMOS logic family
Universal programmers, 172
Universality of NAND gates and NOR gates, 83-86
Unused inputs
TTL, 157-158, 514-515
CMOS, 157-159, 528
Up/down digital-ramp ADC, 757
Usefulness of hex and octal, 32
Using TTL library functions with ALTERA, 337-338
UV light, EPROMs, 804
V
VERSA Module Eurocard (74VME), 532
VHDL (very high-speed integrated circuit hardware description language), 98-99, 410-411
Adder, 343, 347
Adder/subtractor. 345-346
AND, 342
ARCHITECTURE, 104, 179, 420, 424
BCD-to-binary code converter, 655
BEGIN, 104, 408, 411
behavioral description of a counter in, 410

BIT, 104, 180, 274
BIT_VECTOR declarations, 179-181, 184, 339, 411, 420
Boolean description using, 104
BUFFER, 420
Cascading BCD counters, 423-425
CASE, 190-192, 407-408, 419, 428, 432, 435, 458-459, 691
code converter, 655
comments, 106-107
comparator, 653
complete clock, 709
COMPONENT(s), 273-274, 420, 425, 432, 708-709
declarion, 274
graphic representation using, 274
HDL circuits with multiple, 277-280
library, 273-275
concurrent assignment statement, 104
conditional signal assignment statement, 647
CONSTANT, 345
converter, 655
D latch, 271
Decoder(s), 641
driver, 643-644
full-step sequence, 683
decoding the MOD-5 counter, 419
data types, common, 180
demultiplexers, 650-651
design file, 183
digital clock project, 693-710 (see also HDL)
DOWNTO, 339, 342, 691
ELSIF, 187-190
encoder, 647-648
END, 104, 408
ENTITY, 104, 179, 183, 278, 341, 407-408, 419-420, 423-424
enumerated type, 428
essential elements in, 104
EVENT, 276, 278, 408
flip-flops, 275-277
JK flip-flop, 274-275
MOD-8 ripple counter, 278-279
simulation, 276
FOR loop, 347
four-bit adder, 342-343
frequency counter project, 710-714 (see also HDL)
full adder, single-bit, 347
full-featured counter, 414-415
GENERATE statement, 346-348
IF/THEN/ELSE, 187, 428, 435, 644, 653
IN, 179
INTEGER, 180, 187, 411, 415, 643-644
intermediate signals in, 117
iterative loop, 347
JK flip-flop, 275
simulation, 276
keypad encoder project (HDL), 687-693
(see also HDL)
simulation, 693
solution, 691-693
LIBRARY, 647-648
components, 273-275
libraries, 180
libraries of parameterized modules, 347-348
local signals, 106-107
LPMs, 348
macrofunctions, 180
magnitude comparator, 653
megafunctions, 348
multiplexers, 650-651
MOD-5 counter, 408
MOD-6 counter, 699, 708 graphic block symbols, 705 simulation, 700
MOD-8 counter, 682 simulation, 682
MOD-10 counter, 700-701, 708
MOD-12 counter, 703-705
graphic block symbols, 705
simulation, 705
MOD-60 counter, 708
MOD-100 BCD counter, 424
module integration, 708-710
NAND latch, 271
nonretriggerable one-shot, 463
objects, 180
one-shots, 462-464
simulation, 464, 467
OR, 342
PACKAGE, 345
PISO register, 456
PORT, 104
MAP, 275, 280, 420, 425, 432, 710
PROCESS, 187, 275-276, 278, 407-408, 411, 414-415, 419, 435, 459, 466, 643-644, 653, 691, 703-704
RANGE, 187, 411
retriggerable, edge-triggered one-shot, 466-467
ring counter, 460-461
ripple-up counter (MOD-8), 278-279
SELECT, 182
sensitivity list, 187
SIGNAL, 106, 184, 276, 279, 339, 407-408, 643-644, 704
simulation of full-featured counter, 415
single-bit full adder, 347
SISO register, 454-455
stepper driver, 685
simulation testing, 686
stepper motor driver project, 679-686 (see also HDL)
state descriptions in, 407-408
state machine, simple, 428-429
STD_LOGIC, 180, 274
values, 181
STD_LOGIC_VECTOR, 180
traffic light controller, 432-435
truth tables, 182-184
concatenating, 182-183
selected signal assignments, 182-184
TYPE, 428
VARIABLE, 275-276, 407-408, 466, 643-644, 703-704
WHEN, 641, 647-648
WITH, 182
VLSI (very large scale integration), 154-155, 489
Volatile memory, 788
Voltage
comparators, 554-556
controlled oscillator, linear (VCO), 758
to frequency ADC, 758
level translator, 553
levels, invalid, 494-495
parameters for digital ICs, 490-491

W

Wave-drive sequence (HDL stepper-motor), 680
Wired-AND connection, 535-536
Word, 37-39 size, 39
Write cycle, 255
address setup time, 820
data hold time, 820
data setup time, 820
time, 820

Write operation
CPU, 794
defined, 788
RAM, 816
Z
Zero
count, 12
insertion force socket (ZIF), 172

