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Matrix Algebra and 
Its Applications

Geometric Vectors

In the early 1800s, physicists found that most physical quantities could be catego-
rized in one of two ways: those that have only size, such as length, time, or mass,
and those that have both size and direction, such as force, velocity, or acceleration.
Quantities that have only size, or magnitude, are called scalars; those that have
both magnitude and direction are called vectors. We use lightface, italic lowercase
letters, such as a, m, or x to denote scalars; we use boldface, roman lowercase letters
such as b, v, or x to denote vectors.

Although vectors may represent physical (as well as other) quantities, we will
think of them geometrically in this section. In two dimensions, we visualize a vec-
tor as an arrow connecting two points, as shown in Figure 10.1. The length of the
arrow represents the magnitude of the vector. The slope of the line through any
two points on the arrow, along with the arrowhead, gives the direction of the vec-
tor v. In three dimensions, we likewise visualize a vector as an arrow connecting
two points, as shown in Figure 10.2.
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Any vector starting at the origin is known as a position vector because it gives the
position of the arrowhead with respect to the origin. A vector connecting two points
P and Q, sometimes written is called a displacement vector; it indicates howv � PQ,
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to get from P to Q by moving a given distance from P in the desired direction. Ob-
viously, a position vector is also a displacement vector, indicating how to move from
the origin to point Q. But a displacement vector is not a position vector if it starts at
any point P other than the origin.

If we know the coordinates of the initial point and the final point of the arrow,
we can write the vector simply. First, we consider the position vector v from the
origin to the point shown in Figure 10.3. It involves moving 3 units to the
right and 4 units upward from the origin, and we write the vector v as either a

row vector or as a column vector The numerical entries 3 and 

4 in the vector are called its components. The decision to write the vector as a row vec-
tor or as a column vector is usually a matter of choice, so long as you are consistent.
We cover several specific cases later in this chapter in which the choice of column
vectors is essential; in this section we primarily use row vectors for convenience.

The magnitude of the vector is the length of the arrow, as shown in
Figure 10.3. It is the distance from the origin to the point and so is 5, using
the Pythagorean theorem.

Next, we consider the displacement vector w from the point to the
point as shown in Figure 10.4. It involves a move of to the
right and a move of vertically. We therefore write this vector 

either as the row vector or as the column vector Note 

that, in a displacement vector, the components are the differences in the coordinates
of the points defining the vector. The magnitude of the vector 
equals the distance from one point to the other, or

 � 225 � 144 � 2169 � 13.

 Magnitude � 2111 � 6 2 2 � 13 � 15 2 2 � 252 � 1�12 2 2

w � 35 �12 4

w � B 5

�12
R .w � 35 �12 4

�12 1�3 � 15 2
5 1�11 � 6 2111, 3 2 ,

16, 15 2

13, 4 2 ,
v � 33 4 4

v � B3
4
R .v � 33 4 4

13, 4 2
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If then

7 v 7 � 2a2 � b2
 .

v � 3a b 4 ,

We write the magnitude of a vector v as In general, in two dimensions, we
have the following.

7 v 7 .
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10.1 Geometric Vectors 651

If then

7 v 7 � 2a2 � b2 � c2
 .

v � 3a b c 4 ,

For example, if then 
Similarly, in three dimensions we can write a vector v in terms of three compo-

nents a, b, and c as The magnitude of such a vector is defined anal-
ogously with the Pythagorean theorem.

v � 3a b c 4 .

7 v 7 � 272 � 1�4 2 2 � 265 .v � 37 �4 4 ,

However, specifying the direction of a vector in space is considerably harder than
in the plane, and we don’t go into it here.

EXAMPLE 1
Find the magnitude of the vector from the point to the point 

Solution We first write this vector in terms of its components, which are the differences in
each of the three coordinates. Therefore 
and its magnitude is

�

We say that two vectors v and w are equal, written if all their corre-
sponding components are equal. For instance, but

Geometrically, two vectors are equal if they have the same magnitude and the same
direction. Figure 10.5 shows that (they have the same magnitude and the
same direction); but (they are parallel and have the same direction, but have
different magnitudes) and (they have the same magnitude, but do not have
the same direction because they are not parallel).

v � w
v � x

v � y

C1

8

2

S � C1

0

2

S
.

33 4 7 4 � 33 116 7 4 ,
v � w,

7 v 7 � 222 � 1�5 2 2 � 42 � 24 � 25 � 16 � 245 .

v � 33 � 1 �3 � 2 8 � 4 4 � 32 �5 4 4 ,

13, �3, 8 2 .11, 2, 4 2
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FIGURE 10.5

Gord.3896.10.pgs  4/28/03  3:29 PM  Page 651



652 CHAPTER 10 Matrix Algebra and Its Applications

x

y

O

3

8

5 4

(x + 3, y + 4)

(x, y)

(x + 6, y + 8)

v =  3  4

w = 2v

10

6
FIGURE 10.6

Two vectors v and w are parallel if and only if one is a multiple of the other.

A Constant Multiple of a Vector

If the vector it seems reasonable to assume that two times v is just

Does this make sense geometrically? Figure 10.6 shows v as the displacement vec-
tor from an arbitrary point to the point Note that the mag-
nitude of v is 5. We also show the vector starting from the same point

it extends 6 units to the right and 8 units up, so it ends at the point
From the Pythagorean theorem, the magnitude of w is

7w 7 � 262 � 82 � 2100 � 10.

1x � 6, y � 8 2 .
1x, y 2 ;

w � 36 8 4
1x � 3, y � 4 2 .1x, y 2

2v � 2 . 33 4 4 � 36 8 4 .

v � 33 4 4 ,

Thus the magnitude of w is twice the magnitude of v. So multiplying v by 2 pro-
duces a vector that is twice the length of v, but in the same direction.

In general, for any vector and any scalar multiple m,

is a vector m times as long as v (shorter if ) that points in the same di-
rection if If the multiple the resulting vector is parallel to v, but it
points in the opposite direction.

Moreover, this definition of the multiple of a vector suggests the following im-
portant and useful fact.

m � 0,m � 0.
0 � m � 1

m 
.

 v � 3ma mb 4

v � 3a b 4
w � 2v

Unit Vectors
EXAMPLE 2

Find a vector u of length 1 that is in the same direction as the vector 

Solution Because the vector u we want to find is in the same direction as v, it will be
parallel to v and so must be some multiple of v, as shown in Figure 10.7. The
problem is to find the appropriate multiple m. The magnitude of v is

7 v 7 � 21�6 2 2 � 82 � 236 � 64 � 2100 � 10.

u � m . v,

v � 3�6 8 4 .
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The vector u we seek is to have length 1, so it must be one-tenth of v. That is,

�

Any vector whose length is 1 is called a unit vector. In general, if v is any
nonzero vector, a unit vector u in the same direction as v is

In two dimensions, the two most important unit vectors are the coordinate vec-
tors along the horizontal and vertical axes. The unit coordinate vector pointing to
the right is denoted by and the unit coordinate vector pointing up-
ward is denoted by 

The Sum of Two Vectors

We add vectors—whether they are two row vectors or two column vectors—by
adding the corresponding components. For instance, if and

are row vectors, their sum is the row vector

In general, if and are any two row vectors,

Geometrically, adding vectors involves “adding” the arrows, which can be
thought of in two ways. First, in Figure 10.8 vector w is “moved” so that it starts at
the end of vector v and still points in the same direction. (Equivalently, vector w is
replaced by an equal vector that starts at the end of vector v.) Then is the
vector from the start of v to the end of w. The sum of the two vectors is the third
side of the triangle formed by the vector v and the shifted vector w.

Alternatively, in Figure 10.9, v and w form adjacent sides of a parallelogram. The
upper side has the same length as v and is parallel to v; therefore it equals v. Similar-
ly, the right side of the parallelogram has the same magnitude as w and is parallel to
w, so it equals w. The sum then is the long diagonal in the parallelogram.v � w

v � w

v � w � 3v1 � w1 v2 � w2 4 .

w � 3w1 w2 4v � 3v1 v2 4

v � w � 34 �9 4 � 37 3 4 � 34 � 7 �9 � 3 4 � 311 �6 4 .

w � 37 3 4
v � 34 �9 4

j � 30 1 4 .
i � 31 0 4 ,

u �
v

7 v 7
 .

u � a
1

10
b v � c� 

6

10
 

8

10
d .
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The Coordinate Vectors i and j

One of the advantages of the coordinate vectors and is that
any vector in the plane can be written in terms of i and j. In particular,
as shown in Figure 10.10, the vector v can be thought of as the sum of a horizontal
vector with magnitude a and a vertical vector with magnitude b. We write the hor-
izontal vector with magnitude a as ai and the vertical vector with magnitude b as
bj. Consequently, v � 3a b 4 � ai � bj.

v � 3a b 4
j � 30 1 4i � 31 0 4

All operations with vectors, such as addition, can be done in terms of i and j.

EXAMPLE 3
Given the vectors and find (a) their sum and (b) 4 times the
first vector.

Solution
a. The sum of the two vectors is 

b.

�

Applications of Vectors

We next look at several examples involving physical situations that use vector
addition.

4v � 413i � 5j 2 � 12i � 20j.

v � w � 13i � 5j 2 � 17i � 4j 2 � 10i � j.

w � 7i � 4j,v � 3i � 5j
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EXAMPLE 4
Tom is trying to open a window that is stuck. He exerts a force of 30 lb at an angle of
with the wall. What is the effective vertical force that he exerts upward against the window?

Solution We start by drawing a sketch of the situation, as shown in Figure 10.11. The
force that Tom exerts is a vector F whose magnitude is 30 and whose direction is at a 
angle with the wall. The force actually consists of two components—one vertically up-
ward which represents the effective force that he exerts to raise the window, and the
other perpendicular to the window, which doesn’t have any effect on moving the
window vertically. Thus the total force F is just the sum of the two vectors and and
what we seek is the vertical vector Fy .

Fy ,Fx

1Fx 2
1Fy 2 ,

20°

20°

The angle at the upper vertex of the triangle is so the angle at the starting point
of vector F is The length of the hypotenuse of the triangle is just the magnitude of
the force vector, or Using trigonometry, we have

where the length of the hypotenuse is Therefore the length of the vertical side
of the triangle is and the corresponding vertical vector
is Consequently, the effective force that Tom exerts upward to move
the window actually is

�

EXAMPLE 5
A flock of Canadian geese is trying to fly due south for the winter with a constant veloc-
ity of 12 mph. A stiff wind is blowing at a constant rate of 20 mph from a direction 
west of north. Find the actual direction that the geese end up flying and their actual
speed with respect to the ground.

Solution We begin with a sketch of the situation, as shown in Figure 10.12. Each goose
is trying to fly due south, so there is one velocity vector, g, for the goose having magnitude
12 and pointing vertically downward. In addition, each goose is pushed by the wind,
which is coming from a northwesterly direction. The wind is represented by a second ve-
locity vector, w, having magnitude 20 and pointing from a direction west of north.35°

35°

7Fy 7 � 30 sin 70° � 28.19 pounds.
Fy � 30 28.19 4 .

7F 7 sin 70° � 30 sin 70° � 28.19,
7F 7 � 30.

sin 70° �
opposite

hypotenuse
 ,

7F 7 � 30.
70°.

20°,
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The actual velocity vector for the goose is the sum of these two vectors. To find the
direction that a goose actually flies—and then the speed at which it flies—we need to
find the components of Because the goose is trying to fly due south, g has only a
vertical component of so The velocity vector for the wind has both
a horizontal and a vertical component. Using trigonometry, we see that the horizontal
component of w is Similarly, the vertical component of w is

(it is negative because it is directed downward). Consequently,
the wind vector w is

Thus the sum of the two vectors is

The actual speed with which the goose flies is the magnitude of this vector which is

Next, to find the direction in which the goose flies, we need to find the angle that
the vector makes with the vertical. From the large right trangle in Figure 10.12,
we find

so that

Thus the geese actually end up flying in a direction east of south instead of due south.

�

The Difference of Two Vectors

We define the difference of two vectors and to be

that is, we simply take the difference of corresponding components.

v � w � 3v1 � w1 v2 � w2 4 ;

w � 3w1 w2 4v � 3v1 v2 4

22°

u � arctan 0.404 � 22°.

 �
11.47

28.38
� 0.404

 tan u �
20 sin 35°

20 cos 35° � 12

g � w
u

Speed � 2111.47 2 2 � 1�28.38 2 2 � 2131.56 � 805.42 � 2936.90 � 30.61.

g � w,

g � w � 30 �12 4 � 311.47 �16.38 4 � 311.47 �28.38 4 .

w � 311.47 �16.38 4 .

�20 cos 35° � �16.38
20 sin 35° � 11.47.

g � 30 �12 4 .�12,
g � w.

20 cos 35°

20 mph

12 mph

20 sin 35°

35°

θ

w

g
g + wFIGURE 10.12
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10.1 Geometric Vectors 657

For instance, if and then Alter-
natively, in terms of the unit vectors i and j, and so that

Now let’s interpret the difference of two vectors geometrically. Consider the
vector x in Figure 10.13, which connects the end of v to the end of w. We know
from the sum of two vectors that

v � x � w so that x � w � v.

v � w � 114i � 3j 2 � 16i � 10j 2 � 8i � 7j.

w � 6i � 10j,v � 14i � 3j
v � w � 38 �7 4 .w � 36 10 4 ,v � 314 3 4

In general, the difference of two vectors always connects the end of the second vec-
tor to the end of the first. The only question is: Which way does the difference vec-
tor point? The easiest way to decide that is to draw a sketch such as Figure 10.13.

Another way of looking at the difference is to think of it as
where

a vector with the same length as w but pointing in the opposite direction.

� w � 1�1 2 3w1 w2 4 � 3�w1 �w2 4 ,

v � w � v � 1�w 2 ,
v � w

x

y

w

v

x

OFIGURE 10.13

1. Plot each position vector as an arrow in the xy-
plane from the origin to the point having the ap-
propriate coordinates.

a. b.

c. d.

e.

2. Using the vectors in Problem 1, plot the result of:

a. Adding vector u to vector r.
b. Adding vector r to u. Compare your answer to

the vector obtained in part (a).

v � B�1

�2
R

u � B 3

�4
Rt � B�2

4
R

s � B2
4
Rr � B4

0
R

c. Adding t to s.
d. Adding u to v.

3. Using the vectors in Problem 1, plot each vector in
a–c on the same graph.

a. The result of adding one-half of r to one-half
of s.

b. The result of adding one-quarter of r to three-
quarters of s.

c. The result of adding three-quarters of r to one-
quarter of s.

d. Plot r and s. Draw a straight line joining these
two vectors. Which of the vectors drawn in parts
(a), (b), and (c) lie on this line?

Problems
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13. a. If a jet plane is flying on a heading of due east at
600 mph and the wind is blowing due south at
100 mph, what are the actual direction and
speed of the plane?

b. Repeat part (a) if the plane is flying due east at
600 mph and the wind is blowing in a direction
that is south of east at 100 mph.

c. Repeat part (a) if the plane is flying southwest (
south of west) at 300 mph and the wind is blowing
in a direction south of west at 100 mph.50°

45°
40°

658 CHAPTER 10 Matrix Algebra and its Applications

4. Determine the magnitude of the position vectors
from the origin to the following points.

a. b.
c. d.
e. f.

5. Determine the magnitude of the displacement vec-
tor from point A to point B for each pair of points.

a.
b.
c.
d.
e.

6. Determine the vector that is the given multiple of
the vector 

a. 2 b. 7
c. d. 0

7. Determine the vector that is the given multiple of
the vector 

a. 3 b. 10
c. d.

8. Find the unit vector that points in the same direc-
tion as the given vector.

a. b.
c. d.
e. f.

9. Express each vector as a sum of multiples of the co-
ordinate vectors and 

a. b.
c. d.

10. Express each vector as a sum of multiples of the three
coordinate vectors 
and 

a. b.
c. d.

11. Refer to Example 4 in the text. What is the upward
force on the window if Tom exerts

a. a force of 30 lb at an angle of
b. a force of 20 lb at an angle of
c. a force of 40 lb at an angle of

12. a. A sliding door is difficult to open. If Claire exerts
a horizontal force of 30 lb at an angle of to
the sliding door, what is the effective force on the
door in the direction in which the door slides?

b. Repeat part (a) with a force of 25 lb at an angle
of 40°.

25°

15°?
30°?
25°?

30 1
2 0 43�1 �3 1 4

32 0 3 431 2 3 4
k � 30 0 1 4 .

j � 30 1 0 4 ,i � 31 0 0 4 ,

33 0 43 12 
1
2 4

3�1 3 432 1 4
j � 30 1 4 .i � 31 0 4

31 �1 1 431 2 2 4
31 �1 430 5 4
31 1 433 4 4

1
2�7

33 �1 2 4 .

�2

31 2 4 .

B � 13, �1, 2 2A � 1�1, 6, 3 2 ,
B � 14, 5, 3 2A � 11, 2, 3 2 ,
B � 1�3, �4 2A � 11, �3 2 ,

B � 14, 1 2A � 1�2, �1 2 ,
B � 15, 5 2A � 11, 2 2 ,

12, �3, 4 211, 2, 2 2
1�7, �3 213, �2 2
112, 5 213, 4 2

25°

30 pounds

20°

40°

N

EW

S

600 mph

100 mph
N

EW

S

14. Suppose that a boat is moving at 10 mph in the di-
rection of north of east across a bay and the tide
is moving the water in the bay at 4 mph in the di-
rection of west of south. What are the actual di-
rection and speed of the boat? (Hint: Express both
the boat’s vector and the tide’s vector in terms of
the two coordinate vectors i and j).

40°

20°

c. Repeat part (a) with a force of 40 lb at an angle
of 20°.

Gord.3896.10.pgs  11/21/03  11:05 AM  Page 658



10.2 Linear Models 659

Linear Models

The real-world problems to which people apply mathematical models often involve
large and very complex situations. For instance, one might want to analyze the effect
that imposing a per gallon tax on gasoline would have on the national economy
with its thousands of interdependent businesses and industries. An airline must have
a reservations system that takes into account all its aircraft, the cities it serves, flight
schedules, dates, and different fare structures in effect. A company may need a battery
of tests that can predict how well applicants will perform at a given job. The data in
such problems usually come in the form of a rectangular array of numbers, called a
matrix. For example, if four students, Ann, Bob, Carol, and Dan, take exams in
French, mathematics, and sociology, the set of exam results could be displayed in the
matrix

Ann Bob Carol Dan

Thus, for instance, Bob received an 81 in sociology and Carol a 94 in math.
Matrix algebra provides a systematic way of working with such arrays of num-

bers. In this chapter, we develop the basic language and methods of matrix algebra
that will allow you to use matrices to solve various problems involving systems of
linear equations.

We refer to a rectangular array of numbers as an matrix when it has m
rows horizontally and it has n columns vertically. A matrix thus has 3 hori-
zontal rows and 4 vertical columns, as in the preceding matrix of exam scores. We use
boldface capital letters, such as A, to denote matrices in print. (When writing matri-
ces by hand, you may find it convenient to use a wavy line under the letter, as in A.)

Two more examples of matrices are

Here A is a matrix and N is a matrix because it has two rows across
and three columns vertically.

We denote the entry in row i and column j of matrix A by Thus in matrix A,
because is the entry in the first row and the third column, whereas

because 6 is the entry in the third row and first column. Similarly, in ma-
trix N, because 4 is the entry in the second row and the third column.

When a matrix has only one row or only one column, we call it a row vector or
a column vector, respectively, or simply a vector. A vector having three numbers is
called a 3-vector, whereas a vector consisting of n numbers is called an n-vector. As
noted in Section 10.1, we use boldface lowercase letters, such as b or x, to denote
vectors. Note that any vector is also a matrix. Some examples of vectors are

b � 31 3 0 5 4 and x � C2

4

1

S  .

n23 � 4
a31 � 6

�1a13 � �1
aij .

2 � 33 � 3

A � C5 1 �1

1 7 2

6 5 0

S and N � B1 0 3

1 7 4
R .

3 � 4
m � n

French

Mathematics 

Sociology

C84 73 82 85

88 78 94 92

76 81 83 78

S

50¢

10.2
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Here b is a row 4-vector and x is a column 3-vector. We write for the first entry
in vector b, for the second entry in b, and for the ith entry in b. Thus for the
vectors b and x, we have and 

Recall from Section 10.1 that two vectors v and w are equal, written if
all their corresponding entries, or components, are equal. Similarly, two matrices
are equal if all their corresponding components are the same.

Any list of numbers can be thought of as a column vector or a row vector.
Whether we choose a column or row format if only vectors are involved usually
doesn’t matter, but when a vector and a matrix are multiplied, it is important to
distinguish clearly whether the vector is a row vector or a column vector. For rea-
sons that will be clear shortly, we usually treat most vectors as column vectors. Note
that a column n-vector is an matrix and a row n-vector is a matrix.

An matrix A can be thought of as a set of n column m-vectors or as a set
of m row n-vectors. In the case of students and their test results, each column vec-
tor of the matrix gives the scores for one student in all these courses, whereas each
row vector gives the scores in one course for all these students.

We use the following notation to refer to rows and columns in a matrix:

denotes the jth column vector in A; and

denotes the ith row vector in A.

For instance, in the matrix

A Geometric View of Vectors

In Section 10.1, we presented vectors geometrically as positions and displacements
in coordinate space. As we pointed out there, vectors can be used to represent
points in space. In two-dimensional space, we use a 2-vector; in three-dimensional
space, we use a 3-vector. The point in the plane can be thought of as the 

2-vector Similarly, the point in three-dimensional space with coordi-

nates or equivalently, can be written
as the 3-vector

Thus the coordinates of a point become the components of a position vector.
We next consider how matrices in general and vectors in particular occur in

applied problems from many different fields.

A Clothes Production Model

A textile company runs three clothing factories. Each factory produces three types
of women’s clothing: vests, pants, and coats. For simplicity, we assume that one size
fits all. Suppose that the first factory produces 20 vests, 10 pants, and 5 coats from

C3

2

7

S  .

x3 � 7,x2 � 2,x1 � 3,z � 7,y � 2,x � 3,

13, 2, 7 2B5
2
R .

15, 2 2

A � C5 1 �1

1 7 2

6 5 0

S  ,  a 2 � C1

7

5

S and a œ
1 � 35 1 �1 4 .

a œ
i

a j

m � n
1 � nn � 1

v � w,
x2 � 4.b2 � 3

bib2

b1
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each roll of cloth. The second and third factories produce different amounts of
these three products, as described in matrix A.

Factory 1 Factory 2 Factory 3

Each column of A is a vector of clothing produced by a factory from one roll of
cloth. For instance, Factory 3 has the output vector

which indicates that it makes 4 vests, 5 pants, and 12 coats from each roll. Each row
of A is a vector of factory production of one particular type of clothing from one
roll of cloth. The row vector for coats is which indicates that
Factory 1 produces 5 coats, Factory 2 produces 5 coats, and Factory 3 produces 12
coats from each roll.

Let denote the number of rolls of cloth used by the first factory; similarly,
and denote the numbers of rolls used by the second and third factories, respective-
ly. Suppose that the company gets an order for 500 vests, 850 pants, and 1000 coats.
This triple of numbers is called the demand, which we write as a column vector

Then and need to satisfy the system of linear equations

In words, the vests equation says: The number of vests produced by Factory 1,
(this expression is 20 vests per roll times the rolls used by Factory 1), plus the
number of vests produced by Factory 2, which is plus the number of vests pro-
duced by Factory 3, which is must equal the demand of 500 vests.

As we demonstrate in Section 10.3, we can write this system of linear equations
as the matrix–vector equation

We can also write this as a single vector equation in the column vectors of the ma-
trix as

x1C20

10

5

S � x2C 4

14

5

S � x3C 4

5

12

S � C 500

850

1000

S  .

C20 4 4

10 14 5

5 5 12

S  Cx1

x2

x3

S � C 500

850

1000

S  .

4x3 ,
4x2 ,

x1

20x1

 coats:  5x1  �  5x2  �  12x3  � 1000.

 pants:  10x1  �  14x2  �  5x3  � 850

 vests:  20x1   �  4x2   �  4x3    � 500

x3x2 ,x1 ,

C 500

850

1000

S  .

x3

x2x1

a œ
3 � 35 5 12 4 ,

a 3 � C 4

5

12

S  ,

Vests

Pants

Coats

 C20 4 4

10 14 5

5 5 12

S � A
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662 CHAPTER 10 Matrix Algebra and Its Applications

If b is the demand vector on the right side of the matrix–vector equation and x
is a (column) vector of the matrix algebra gives us a way to write the system of
linear equations concisely in terms of A, b, and x as We discuss how to do
this in Section 10.3. In Section 10.5, we extend these ideas to solve any system of
three equations in three variables by using matrix algebra techniques.

The expression is a linear expression in three variables; it in-
volves only the first power of the variables and Other cases are the expres-
sions on the left side of the preceding system of linear equations. More formally, a
linear expression is one that involves a sum of terms made up of constants multiply-
ing individual variables that are raised only to the first power. In contrast, a nonlinear
expression involves one or more variables that are raised to various powers (different
from 1), or exponential, logarithmic, trigonometric, or other more complex expres-
sions. (This terminology is similar to that used to describe linear difference equa-
tions.) The term linear is used to indicate that a “line-like” graph is associated with
each variable in the expression. For example, the vest expression is
a linear expression; if and are fixed—say, —with only remaining
as a free variable, the resulting expression or de-
fines a function whose graph is a line.

The clothing production equations form what is called a linear model because
the equations involve only linear expressions (linear equations). In the following
sections, we will return to this and other models introduced here as we develop the
mathematical methods needed to analyze linear models.

A Markov Chain Model for the Stock Market

We next develop a linear model for the behavior of the stock market. Here we show
how matrix methods can be used to represent a situation in which the values of a
number of variables at one stage of a process are related to their values at the pre-
ceding stage.

Each business day, the stock market goes up, goes down, or stays the same.
Suppose that historical studies show that if the market goes up one day—say
today—the probability is that it will go up tomorrow, the probability is that it
will go down tomorrow, and the probability is that it will stay the same tomor-
row. If the market goes down today, there are three other observed probabilities for
tomorrow’s market performance. Similarly, if the market stays the same today,
there is a third set of three probabilities for what will happen tomorrow. We can
conveniently display all nine of these probabilities in a matrix A:

Market Today

Up Down Same

The probabilities in this matrix are called transition probabilities because they give
us information about how to relate one stage of a process to the next. The matrix A
is called a transition matrix. Each column corresponds to a type of market move-
ment today, and each row corresponds to a type of market movement tomorrow.
The matrix entry which equals is in the “down tomorrow” row and in the1

2 ,a23 ,

Market

Tomorrow 
 

Up

Down

Same

C 1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

S � A.

1
4

1
2

1
4

y � 20x1 � 24
20x1 � 24,20x1 � 413 2 � 413 2 ,

x1x2 � x3 � 3x3x2

20x1 � 4x2 � 4x3

x3 .x2 ,x1 ,
2x1 � 4x2 � 1

2 x3

Ax � b.
xi’s,
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10.2 Linear Models 663

“same today” column. The value represents the probability that the market will
go down tomorrow given that it stays the same today.

Note that the probabilities in each column of the transition matrix must add to
1 because they include all possible outcomes for tomorrow given a particular type
of market behavior today. A mathematical model such as this with given transition
probabilities is known as a Markov process, or Markov chain (named after Russ-
ian mathematician Andrei Markov, who first developed these ideas). A convenient
way to display the information in a Markov chain is with a transition diagram, such
as the one shown in Figure 10.14. In this diagram, there are three nodes, one for
each type of market movement: go up (U), go down (D), or stay the same (S).
These are the possible states for the system. Note also that we indicate each transi-
tion probability with an arrow.

1
2

EXAMPLE 1
Suppose that, before the stock market opens today, we believe that there is a 50–50
chance of the market going down or staying the same, but no chance of its going up. Use
the values in the preceding transition matrix A to compute the probabilities of the mar-
ket being in any of the three states tomorrow—up, down, or the same—based on the
probabilities of the market being up, down, or the same today.

Solution Let and denote today’s probabilities of the market being up, down,
and the same, respectively, and let and denote tomorrow’s probabilities of
being up, down, and the same, respectively. Let’s see how to compute First, to com-
pute the probability of two successive events—such as (i) being in State 1 today (probabil-
ity ) followed by (ii) switching from State 1 today to State 1 tomorrow (probability )—we
multiply the probabilities of the two events and get Similarly, the probability of
(i) being in State 2 today (probability ) followed by (ii) switching from State 2 to State 1
tomorrow (probability ) is the product Also, the probability of (i) being in State 31

2 p2 .1
2

p2

1
4 p1 .

1
4p1

p1 

�.
p3 

�p2 

�,p1 

�,
p3p2 ,p1 ,

U

1
4

1
4

1
4

1
2

1
2

1
2

1
4

S

1
4

D

1
4

FIGURE 10.14
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664 CHAPTER 10 Matrix Algebra and Its Applications

today (probability ) followed by (ii) switching from State 3 to State 1 tomorrow
(probability )is 

To get the total probability that the stock market will go up tomorrow, we add
these three values to get

In the same way, we calculate the probabilities and that the stock market goes
down or stays the same tomorrow and so obtain a set of three equations based on the
transition matrix A:

(1)

Note that the coefficients in this system of linear equations come directly from the en-
tries in the transition matrix A.

Believing that and are today’s probabilities of the market
being up, down, and the same, respectively, we calculate the probability that the mar-
ket goes up tomorrow, using the first of Equations (1), as follows:

In the same way, using Equations (1), we obtain the probabilities for the other two mar-
ket outcomes tomorrow. Thus tomorrow’s probabilities and are

�

EXAMPLE 2
Use the equations for and to predict the market probabilities and

two days ahead. Then predict the market probabilities farther into the future.

Solution We repeat the process in Example 1, using and to
obtain

 p3 

�� �
1

4
 p1 

� �
1

4
 p2 

� �
1

4
 p3 

� �
1

4
. 3

8
�

1

4
. 3

8
�

1

4
. 1

4
�

8

32
�

1

4
 .

 p2 

�� �
1

2
 p1 

� �
1

4
 p2 

� �
1

2
 p3 

� �
1

2
. 3

8
�

1

4
. 3

8
�

1

2
. 1

4
�

13

32
 ,

 p1 

�� �
1

4
 p1 

� �
1

2
 p2 

� �
1

4
 p3 

� �
1

4
. 3

8
�

1

2
. 3

8
�

1

4
. 1

4
�

11

32
 ,

p3 

� � 1
4p2 

� � 3
8 ,p1 

� � 3
8 ,

p3 

��
p2 

��
 ,p1 

��
 ,p3 

�p2 

�
 ,p1 

�
 ,

 p3 

� �
1

4
 p1 �

1

4
 p2 �

1

4
 p3 �

1

4
. 0 �

1

4
. 1

2
�

1

4
. 1

2
�

1

4
 .

 p2 

� �
1

2
 p1 �

1

4
 p2 �

1

2
 p3 �

1

4
. 0 �

1

4
. 1

2
�

1

2
. 1

2
�

3

8
 ,

 p1 

� �
1

4
 p1 �

1

2
 p2 �

1

4
 p3 �

1

4
. 0 �

1

2
. 1

2
�

1

4
. 1

2
�

3

8
 ,

p3 

�p2 

�
 ,p1 

�
 ,

p1 

� �
1

4
 p1 �

1

2
 p2 �

1

4
 p3 �

1

4
. 0 �

1

2
. 1

2
�

1

4
. 1

2
�

3

8
 .

p1 

�
p3 � 1

2p2 � 1
2 ,p1 � 0,

 p3 

� �
1

4
 p1 �

1

4
 p2 �

1

4
 p3 .

 p2 

� �
1

2
 p1 �

1

4
 p2 �

1

2
 p3 

 p1 

� �
1

4
 p1 �

1

2
 p2 �

1

4
 p3 

p3 

�p2 

�

p1 

� �
1

4
 p1 �

1

2
 p2 �

1

4
 p3 .

p1 

�

1
4 p3 .1

4
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10.2 Linear Models 665

From these probabilities for 2 days hence, we can predict the market 3 days ahead,
and so on indefinitely, so long as the probabilities of the market going up, going down,
or staying the same continue to hold. In Section 10.4, we introduce a far simpler way to
perform these calculations based on matrix algebra. For now, we simply indicate the re-
sults in the following table, assuming that today’s market probabilities are 0 for going up,

for going down, and for staying the same.1
2

1
2

�

Each triple of probabilities for any day—say for the first day— can be
thought of as the components of a 3-vector of probabilities for that day. Also, note
that on any given day, the sum of the probabilities is always 1 because one of the
possibilities (up, down, or the same) must occur.

The sequence of all the successive vectors p, associated with
any transition matrix A is called a Markov chain because the successive vectors are
linked by the matrix A. Eventually, the successive probabilities in this Markov chain
stabilize at 0.35 for the market going up, 0.40 for the market going down, and 0.25
for the market staying the same. That is, the probabilities converge over time to
these limiting values. This behavior occurs regardless of the initial values we used
for today’s probabilities. Later, we formulate a system of three linear equations in
three variables and solve it to determine these stable probabilities directly.

A Population Growth Model

The following model relates populations of hares and wolves from one week to the
next. To make the numbers work out conveniently, we measure the hare population
in groups of 10 hares and the wolf population in single wolves. Suppose that the
number of groups of hares H grows by 20% per week when no wolves are present,
so the population of hares next week would be 1.2H. But W wolves are present
and the wolves eat the hares at the rate of each wolf eating 3 hares each week, which
is of a group of 10 hares. Thus the hare population is reduced by 0.3W
per week, giving as next week’s hare population.

Next, without hares present, the wolf population decreases at a rate of 30%
per week, so the wolf population next week would be 0.7W. But the wolf
population grows each week when hares are present at the rate of one wolf for

W�

H� � 1.2H � 0.3W
30% � 0.3

H�

p���, . . . p��,p�,

p3p2 ,p1 ,

Up Down Same

Today 0

Tomorrow

2 days ahead

3 days ahead

5 days ahead 0.25

10 days ahead 0.25

100 days ahead 0.35 0.40 0.25

�0.40�0.35

�0.40�0.35

1

4

51

128

45

128

1

4

13

32

11

32

1

4

3

8

3

8

1

2

1

2
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666 CHAPTER 10 Matrix Algebra and Its Applications

every 50 hares or every 5 groups of 10 hares, which is wolf per group of 10
hares. Hence 

Together, these two equations are our model for the hare and wolf population
over time:

EXAMPLE 3
Suppose that we start with 1000 groups of hares and 800 wolves. Use the preceding ex-
pressions for and to calculate the populations of hares and wolves over time.

Solution If we start with and the hare–wolf model predicts that

as the populations after the first week. We now use these values to predict the two popu-
lations after the second week:

Extending these values from one week to the next, we obtain the following table for the
sizes of the hare and wolf populations over time.

 W 
�� � 0.2H� � 0.7W � � 0.21960 2 � 0.71760 2 � 724.

 H 
�� � 1.2H� � 0.3W 

� � 1.21960 2 � 0.31760 2 � 924

 W 
� � 0.211000 2 � 0.71800 2 � 760

 H 
� � 1.211000 2 � 0.31800 2 � 960

W � 800,H � 1000

W�H�

 W� � 0.2H � 0.7W.

 H� � 1.2H � 0.3W

W� � 0.2H � 0.7W.

1
5 � 0.2

Weeks Groups of hares Wolves

0 1000 800

1 960 760

2 924 724

3 892 692

10 739 539

20 649 449

50 602 402

100 600 400

Note that over time the populations converge to 600 groups of 10 hares and 400 wolves.
Figure 10.15 shows the graphs of both populations as functions of time.

�

We can visualize this situation another way: We can think one population de-
pends on the other. That is, the number of wolves W can be viewed as a function of
the number of hares H. If we plot the number of wolves versus groups of hares, we
find that they fall in a straight line. In particular, the linear function that fits the points
in the preceding table is The graph in Figure 10.16 shows several traj-
ectories for the populations (in hundreds) of groups of 10 hares and wolves. One tra-
jectory shown starts from the initial point and leads to the point 16, 4 2 .110, 8 2

W � H � 200.

200

400

600

800

1000

n

H, W

Hares

Wolves

Months

N
um
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r 

of
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ac
h 
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ec

ie
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FIGURE 10.15
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FIGURE 10.16

Suppose we start with a different set of initial values for the two populations—
say, and Then

and so on. The resulting points all lie on a line starting at the point and
converge to the point Similarly, if we start with and 
the resulting points all lie on a line and converge to as also shown in Fig-
ure 10.16. In each case, the limiting values for H and W satisfy That is, the
limiting points lie on the line as shown in Figure 10.17. In fact, for any ini-
tial pair of population values the points of successive pairs all lie
on some line, and in each case the successive points are converging (as indicated by the
arrows) toward a limiting point on the line as illustrated in Figure 10.18.
Thus under this model, all populations, regardless of the initial values, converge over
time to populations in which the number of wolves is two-thirds the number of
groups of 10 hares.

W � 2
3 H,

1Hn , Wn 21H0 , W0 2 ,
W � 2

3 H,
W � 2

3 H.
1300, 200 2 ,

W0 � 500,H0 � 6001900, 600 2 .
1700, 400 2

 W� � 0.21700 2 � 0.71400 2 � 420

 H� � 1.21700 2 � 0.31400 2 � 720

W0 � 400.H0 � 700
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668 CHAPTER 10 Matrix Algebra and Its Applications

Note that the pair of equations we used to define this model can be rewritten
as a pair of difference equations:

We present a more detailed analysis of population models based on systems of
difference equations, including a more sophisticated predator–prey model, in
supplementary Section 12.6.

 Wn�1 � 0.2Hn � 0.7Wn .

 Hn�1 � 1.2Hn � 0.3Wn

Problems

1. Ted, Carol, and Alice took tests in German, physics,
theater, and politics. Ted’s test scores in these sub-
jects were 64, 73, 86, 85; Carol’s scores were 82, 69,
77, 91; Alice’s were 82, 84, 81, 83. Construct a matrix
of these test results. Label the columns and rows.

2. For the matrix

write the following row and column vectors and
entries.

a.
b.
c.
d.
e.
f.

3. In the matrix of letters

spell the words represented by the following se-
quences of entries.

a.
b.
c.
d.

4. A clothing company’s three factories (1, 2, and 3)
produce the following numbers of vests, pants, and
coats from each roll of cloth.

a33a24 a43 a12 a31 a32 a22 a31 a33 

a33a34 a12 a24 a31 

a12a31 a11 a32 a23 a41 

a21a12 a23 a11 

A � DH R B I

N S O A

E T Y L

M G D I

T ,

a41

a23

a12

a 4

a 3

a 1 

œ

A � D1 5 3

6 1 7

6 9 5

0 2 8

T ,

Factory 1 Factory 2 Factory 3

Suppose that the company has a demand for 400
vests, 800 pants, and 500 coats. Write a system of
equations whose solution would determine pro-
duction levels to yield the desired numbers of
vests, pants, and coats. As in the clothes produc-
tion model, let be the number of rolls of cloth
processed by the ith factory.

5. Three oil refineries (1, 2, and 3) produce the follow-
ing amounts, in thousands of gallons, of heating oil,
diesel oil, and gasoline from each shipment of
crude petroleum.

Refinery 1 Refinery 2 Refinery 3

Suppose that demand is for 6200 thousand gallons
of heating oil, 4000 thousand gallons of diesel oil,
and 4700 thousand gallons of gasoline. Write a
system of equations whose solution would de-
termine production levels to yield the desired
amounts of heating oil, diesel oil, and gasoline. Let

be the number of shipments processed by the ith
refinery.

6. The staff dietitian at the California Institute of
Trigonometry has to make up a meal with 600 calo-
ries, 20 grams of protein, and 200 mg of vitamin C.
The three food types that the dietitian can choose
from are gelatin, fish sticks, and mystery meat. They
have the following nutritional content per unit.

xi

Heating Oil 

Diesel Oil

Gasoline

C8 5 3

2 5 5

3 7 6

S

xi

Vests

Pants

Coats 

C6 4 2

4 8 4

3 2 8

S
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10.2 Linear Models 669

Gelatin Fish Sticks Mystery Meat

Construct a mathematical model for this situation,
based on a system of three linear equations.

7. A company has a budget of $280, 000 for comput-
ing equipment. The types of equipment available
are microcomputers at $2000 each, terminals at
$500 each, and workstations at $5000 each. There
should be five times as many terminals as micro-
computers and twice as many microcomputers as
workstations. Write a system of three linear equa-
tions to describe this situation.

8. In the clothes production model in the text, suppose
that Factory 1 processes 15 rolls of cloth, Factory 2
processes 20 rolls, and Factory 3 processes 60 rolls.
For which product, vests, pants, or coats, does pro-
duction deviate the most from the demand for 600,
800, 1000?

9. Refer to the stock market Markov chain in Example 1.
Determine the set of probabilities for tomorrow’s
market for each set of probabilities that the market
will be up, down, or the same today.

a.
b.
c.
d.
e.

10. The copy machine at the student union breaks
down according to the following pattern. If it is
working today, it has a 70% chance of working to-
morrow (and a 30% chance of breaking down). If
the copy machine is broken today, it has a 50%
chance of working tomorrow (and a 50% chance of
being broken again).

a. Construct a Markov chain for this situation; give
the matrix of transition probabilities and draw
the transition diagram.

b. If there is a 50–50 chance of the copy machine’s
working today, what is the chance of its working
tomorrow?

c. Based on the situation in part (b), what is the
chance that the copy machine is working the day
after tomorrow?

d. If the copy machine is working today, what is the
chance that it is working the day after tomorrow?

p3 � 0.25p2 � 0.40,p1 � 0.35,
p3 � 1

4p2 � 1
2 ,p1 � 1

4 ,
p3 � 1

2p2 � 0,p1 � 1
2 ,

p3 � 1
2p2 � 1

2 ,p1 � 0,
p3 � 0p2 � 0,p1 � 1,

Calories

Protein

Vitamin C 

C10 50 200

1 3 0.2

30 10 0

S
11. The Pins, a bowling team, plays in a bowling league

each week. If they win this week’s game, they have a
chance of winning next week’s game. If they lose

this week’s game, they have a chance of winning
next week’s game.

a. Construct a Markov chain for this situation; give
the matrix of transition probabilities and draw
the transition diagram.

b. If there is a 50–50 chance of the Pins’ winning
this week’s game, what is their chance of win-
ning next week’s game?

c. If they won this week, what is their chance of win-
ning the game 2 weeks from now?

12. Consider a weather Markov chain having two states:
sunny and cloudy. If today is sunny, there is a prob-
ability that tomorrow will be sunny and a probabil-
ity that tomorrow will be cloudy. If today is cloudy,
there is a probability that tomorrow will be sunny
and a probability that tomorrow will be cloudy.

a. Write the transition matrix for this Markov
chain and draw its transition diagram.

b. In this weather Markov chain, starting with the

vector of probabilities (a sunny day), compute 

and plot the vectors of probabilities for four suc-
cessive days.

c. Repeat the process starting with the probability

vector (a cloudy day). Can you guess the val-

ues of the equilibrium state to which your prob-
ability vectors are converging?

13. The following model for learning a concept over a set
of lessons identifies four states of learning: igno-
rance, thinking,
understanding, and If you are now in
state I, after one lesson you have a probability of of
still being in I and a probability of of being in E. If
you are now in state E, after one lesson you have a
probability of of being in I, in E, and in S. If you
are now in state S, after one lesson you have a prob-
ability of of being in E, in S, and in M. If you are
in M, you always stay in M (with a probability of 1).

a. Construct a Markov chain for this learning model.
b. If you start in state I, what is your probability

vector after two lessons? After three lessons?

14. a. In Example 3, if initially there were 800 groups
of 10 hares and 300 wolves, how many hares and
wolves would there be after 1 month, 3 months,

1
4

1
2

1
4

1
4

1
2

1
4

1
2

1
2

M � mastery.
S � superficialE � exploratory

I �

B0
1
R

B1
0
R

3
4

1
4

1
4

3
4

1
2

2
3
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5 months, and 10 months? What do the limiting
values for the two populations appear to be?

b. Repeat part (a) with an initial population of 600
groups of 10 hares and 800 wolves.

c. Repeat part (a) with an initial population of 900
groups of 10 hares and 600 wolves.

15. Consider the following cattle–sheep models in
which the two species compete for common graz-
ing land. In each case, compute the populations
after 1 month, 2 months, and 3 months if the initial
populations are 50 cattle and 100 sheep.

a.

b.

16. Consider the rabbit–fox model

Plot the following on the same graph.

a. The trajectory of populations starting from

b. The trajectory of populations starting from

c. The trajectory of populations starting from

17. In Example 3 we found that the solution to the system

converged to a point on the line for any
starting values and W0 .H0

W � 2
3 H

 W� � 0.2H � 0.7W
 H� � 1.2H � 0.3W

120, 10 2 .

110, 30 2 .

110, 15 2 .

 F� � 0.2R � 0.6F.

 R� � 1.1R � 0.2F

 S� � 0.5C � 1.4S
 C� � 1.2C � 0.1S
 S� � �0.2C � 1.2S
 C� � 1.2C � 0.3S

a. To find the equation of this limiting line, assume
that and in the two equa-
tions defining the system and solve these two
equations in two unknowns.

b. For any given starting populations—say,
and —calculate the next

point on the trajectory. What is the
equation of the line through and

c. You now have the equation of the limiting line
and the equation of the trajectory. Describe how
you would use them to find the final population
values for H and W. What are the values for initial
population values of and 

18. a. The population models in Example 3 and
Problems 15–17 all involve linear expressions
in H and W. Suppose that the equations for 
and contained nonlinear expressions in H
and W. How might such expressions affect the
trajectory?

b. We develop a more sophisticated mathematical
model for two species, known as the predator–
prey model, in supplementary Section 12.6. It is
based on equations such as

If the initial population values are and
calculate and plot the population val-

ues over the first 3 months. What do you observe
about the trajectory?

W0 � 100,
H0 � 200

 W� � 0.2W � 0.005HW.
 H� � 1.2H � 0.003HW

W �
H�

W0 � 800?H0 � 1000

1H�, W� 2?
1H0 , W0 2

1H�, W� 2
W0 � 800H0 � 1000

W� � WH� � H

Scalar Products

In this section, we explain how to multiply two vectors in what is called a scalar
product. For instance, suppose that a family normally eats three vegetables—
asparagus, beans, and corn. Suppose that the costs per pound for these vegetables
are $0.80 for asparagus, $1.00 for beans, and $0.60 for corn. We can then form a vec-
tor for the prices of these three vegetables. Suppose further
that the family consumes 2 lb of asparagus, 5 lb of beans, and 3 lb of corn each week,
so we can also form a vector of the family’s weekly demand for these
vegetables. The total cost of the family’s weekly demand for the vegetables is

because the cost for asparagus is the cost for beans is and the
cost for corn is This result suggests a natural way to define the product3 � $0.60.

5 � $1.00,2 � $0.80,

2 � 0.80 � 5 � 1.00 � 3 � 0.60 � 1.60 � 5.00 � 1.80 � $8.40

d � 32 5 3 4

p � 30.80 1.00 0.60 4

10.3
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10.3 Scalar Products 671

of the two vectors d and p. We write this product as and call it the scalar prod-
uct of d and p. Here the scalar product is

or $8.40. Note that the scalar product involves multiplying the corresponding en-
tries in each position of the vectors and adding the results. Each vector in a scalar
product can be either a row or a column vector, but multiplication makes sense
only when the two vectors have the same size (that is, they have the same number
of entries). The scalar product of two vectors of different sizes can’t be formed be-
cause there would be terms that do not match. For instance, the scalar product of

and can’t be formed.
Recall that the word scalar means a single number, as opposed to a vector or

matrix. The scalar product of two vectors is so named because its result is a single
number—a scalar. The scalar product also is known as the dot product and the
inner product, but we will not use either of these terms.

The product of two vectors can also be defined in a different way, known as the
vector product, which produces a vector instead of a scalar, or number, as the result.
However, we don’t consider it here.

More formally we have the following definition of the scalar product.

320 40 60 431 2 3 4 5 4

 � 1.60 � 5.00 � 1.80 � 8.40,

 � 210.80 2 � 511.00 2 � 310.60 2
 d . p � 32 5 3 4 . 30.80 1.00 0.60 4

d . p
d . p

Figure 10.19 will help you visualize how to calculate the scalar product of two vec-
tors a and b.

For instance, the scalar product of the vectors and 
is

We now see how the scalar product arises in a variety of situations.

a . b � 316 2 � 21�3 2 � 1�5 2 12 2 � 410 2 � 18 � 6 � 10 � 0 � 2.

36 �3 2 0 4
b �a � 33 2 �5 4 4

Scalar Product

Let

be vectors of the same size n. Then the scalar product of a and b is the
single number (a scalar) equal to the sum of the products,

a . b � a1 b1 � a2 b2 � . . . � an bn .

a . b

a � 3a1 a2  . . .  an 4 and b � 3b1 b2  . . .  bn 4

b1
b2
...

bn

a1 a2  
... an

anbn

a2b2

a1b1

FIGURE 10.19

Gord.3896.10.pgs  4/28/03  3:29 PM  Page 671



672 CHAPTER 10 Matrix Algebra and Its Applications

EXAMPLE 1
Suppose that peaches cost each, pears cost each, apples cost each, and grape-
fruits cost each. Amy wants to get 5 peaches, 3 pears, 2 apples, and 2 grapefruits, and
Bill wants to get 3 peaches, 4 pears, 3 apples, and 3 grapefruits.

a. Write vectors to represent the prices of the fruits and the amount of each fruit that
Amy and Bill will purchase.

b. Write the total costs of their fruit purchases, using vector methods.

Solution
a. We form the price vector for the prices of the respec-

tive fruits and the two demand vectors, for Amy and 
for Bill.

b. The scalar products and give the total costs of Amy’s and Bill’s purchases:

Thus the cost of fruit was $3.80 for Amy and $4.25 for Bill.

�

A Geometric View of Scalar Products

An interesting special case of the scalar product involves the use of coordinate vectors,
which we introduced in Section 10.1. In two dimensions, they are the unit vectors

along the horizontal axis and along the vertical axis. See Figure 10.20.
In three dimensions, the coordinate vectors are and

They lie along three mutually perpendicular axes, as illustrated in Fig-
ure 10.21.
30 0 1 4 .

30 1 0 4 ,31 0 0 4 ,
30 1 431 0 4

 � 0.90 � 0.80 � 1.05 � 1.50 � 4.25.

 � 310.30 2 � 410.20 2 � 310.35 2 � 310.50 2
 b . p � 33 4 3 3 4 . 30.30 0.20 0.35 0.50 4

 � 1.50 � 0.60 � 0.70 � 1.00 � 3.80;

 � 510.30 2 � 310.20 2 � 210.35 2 � 210.50 2
 a . p � 35 3 2 2 4 . 30.30 0.20 0.35 0.50 4

b . pa . p

33 4 3 3 4
b �a � 35 3 2 2 4

p � 30.30 0.20 0.35 0.50 4

50¢
35¢20¢30¢

Any vector can be built from its components. For instance, for the 3-vector
we use the components 2, 5, and 3 and the coordinate vectors to write

32 5 3 4 � 2 31 0 0 4 � 5 30 1 0 4 � 3 30 0 1 4 .

32 5 3 4 ,

y

x

z

1

1

1

0
0
1

0
1
0

1
0
0

FIGURE 10.20

x

y

1

1

0
1

1
0

FIGURE 10.21
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10.3 Scalar Products 673

In general, for any 3-vector we can write

In many geometric uses of vectors, we need to know whether two vectors
“point” in the same general direction or in opposite directions. When two vectors
point in approximately the same general direction, as shown by the arrows in Fig-
ure 10.22, their scalar product will be positive. When two vectors point in approxi-
mately opposite directions, as shown in Figure 10.23, their scalar product will be
negative. Most interestingly, when two vectors form a right angle, as shown in Fig-
ure 10.24, their scalar product will be zero.

a � a1 31 0 0 4 � a2 30 1 0 4 � a3 30 0 1 4 .

a � 3a1 a2 a3 4 ,

These assertions follow from the fact that, if is the angle between the vectors a
and b, as shown in Figure 10.25, we have the following relationship.

u

x

y
2
4

a =

4
2

b =

–4 4

–4

4

FIGURE 10.22

x

y

–4 4

–4

4

2
4

a =

–3
–3

b =

FIGURE 10.23

–4 4

–4

4

x

y
2
4

a =

–4
  2

b =

FIGURE 10.24

cos u �
a . b2a . a 2b . b

x

y

b

aθ

FIGURE 10.25

(This formula is based on the Law of Cosines introduced in Section 6.5; we ask you
to derive this formula in a problem at the end of the section.) Note that, if

is a 2-vector, We interpret geometrically bya . aa . a � a1ˇ

2 � a2ˇ

2.a � 3a1 a2 4
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674 CHAPTER 10 Matrix Algebra and Its Applications

using the Pythagorean theorem to represent the square of the hypotenuse in a right
triangle with sides and as shown in Figure 10.26. Thus, in the formula for 

is the length of the vector a. Similarly, if a is a 3-vector, then

and so is the length of a. Similarly, is the length of b. Therefore we
can rewrite the formula for as

cos u �
a . b

1length of a 2 1length of b 2

cos u
1b . b1a . a

a . a � a1ˇ

2 � a2ˇ

2 � a3ˇ

2

a � 3a1 a2 a3 4 ,1a . a
cos u,a2 ,a1

y = 2xy = 3x

θ

1 2 3

1

0

2

3

4

x

y

1
2

a =

1
3

b =

FIGURE 10.27

a

a1

a2

x

y

FIGURE 10.26

Clearly the length of a and the length of b are both positive. Thus, when the
vectors point in roughly the same direction and the angle is between and 

is positive and so is When the vectors point in roughly opposite direc-
tions and is between and is negative and so is When is 
so that a and b are perpendicular, is zero and so 

EXAMPLE 2
Find the angle between the lines and 

Solution We know that both lines pass through the origin, as illustrated in Figure 10.27.
To find the angle between the lines at the origin, we need to find vectors along each line.
Suppose that we arbitrarily choose On the first line the corresponding
value of y is 2, so the point is on that line and the vector from the origin to that11, 2 2

y � 2x,x � 1.
u

y � 3x.y � 2x

a . b � 0.cos u
90°,ua . b.cos u180°,90°u

a . b.cos u
90°,0°u
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10.3 Scalar Products 675

point is Similarly, using we find the corresponding point on the
second line so the vector from the origin to that point is The angle 
between the lines is the same as the angle between the vectors, so

Consequently, the angle between the two lines is

�

The Clothes Production Model Using Scalar Products

In Section 10.2 we introduced a mathematical model for production in three
clothing factories to meet a demand for 500 vests, 850 pants, and 1000 coats. If
denotes the number of rolls of cloth used by the ith factory the 
must satisfy the system of linear equations

A key property of scalar products is that is a linear combination of the entries
in each vector. (Similarly, you can think of a polynomial as being a linear combina-
tion of power functions.) Conversely, any linear combination of variables or num-
bers always can be interpreted as a scalar product of two vectors.

EXAMPLE 3
Rewrite the three linear equations for the clothes production model using scalar prod-
ucts of vectors.

Solution Consider the first linear equation of the clothes production model

The left-hand side of this equation is a linear combination of the three variables. If

(we explain shortly the reason for writing a as a row vector and x as a column vector), we
can write the left-hand side of this equation as the scalar product

a . x � 320 4 4 4 . Cx1

x2

x3

S � 20x1 � 4x2 � 4x3 .

a � 320 4 4 4 and x � Cx1

x2

x3

S  ,

20x1 � 4x2 � 4x3 � 500.

a . b

 coats:  5x1     �  5x2    �  12x3  � 1000.

 pants:  10x1  �  14x2  �  5x3    � 850

 vests:  20x1   �  4x2    �  4x3    � 500

xi’s1i � 1, 2, 3 2 ,
xi

u � arccos10.98995 2 � 8.13° � 0.1419 radian.

 �
725 210

� 0.98995.

 cos u �
a . b2a . a 2b . b

�
11 2 11 2 � 12 2 13 2211 2 11 2 � 12 2 12 2  211 2 11 2 � 13 2 13 2

ub � 31 3 4 .y � 3x,
11, 3 2x � 1,a � 31 2 4 .
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676 CHAPTER 10 Matrix Algebra and Its Applications

The first equation is then Note that the vector a consists of the entries in the
first row of the matrix

that we used in the clothes production model of Section 10.2.
Using vectors b and c to represent the second and third rows of matrix A, we can

write the other two linear equations in the same way as and

�

Any system of linear equations can be written in terms of a system of scalar
products. For example, the left-hand sides of the equations for the clothes produc-
tion model are

vests:

pants:

coats:

where is the ith row of the clothes production coefficient matrix

Factory 1 Factory 2 Factory 3

The Matrix–Vector Product

Although we encounter many important uses of single scalar products in matrix
algebra, their most important use is as a building block for defining the product of
a matrix and a vector and, in Section 10.4, the product of two matrices. We define
the matrix–vector product as follows.

Shirts 

Pants

Coats

C20 4 4

10 14 5

5 5 12

S � A.

a œ
i

 5x1 � 5x2 � 12x3 � 35 5 12 4 . Cx1

x2

x3

S � a œ
3

. x,

 10x1 � 14x2 � 5x3 � 310 14 5 4 . £
x1

x2

x3

§ � a œ
2

. x,

 20x1 � 4x2 � 4x3 � 320 4 4 4 . Cx1

x2

x3

S � a œ
1

. x,

c . x � 1000.b . x � 850

A � C20 4 4

10 14 5

5 5 12

S
a . x � 500.

Matrix–Vector Product

The product of an matrix A and a column n-vector c is a column m-
vector of scalar products

(each row of A multiplies c).a œ
iAc � a œ

i
. c 

m � n
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10.3 Scalar Products 677

b1
b2

...

bn

am1b1 + am2b2 + ... + amnbn

a11b1 + a12b2 + ... + a1nbn

...
...

...
...

a11 a12 a13
... a1n

a21 a22 a23
... a2n

am1 am2 am3
... amn

FIGURE 10.28

The diagram in Figure 10.28 will help you visualize this definition. Think of each
row in the first matrix A as a row vector (or think of A as consisting of a collection
of row vectors). The scalar product of each row vector in A and the column vector
c creates a new column vector. In order for this definition to make sense, the entries
in each row of the matrix A (equivalently, the number of columns in matrix A)
must equal the size of the vector c.

For instance, if A is a matrix and c is a column 3-vector,

then

As we said previously, each row of matrix A is treated as if it were a row vector, and
it is used to form a scalar product with the column vector c. However, we cannot
multiply

because the number of entries in each row of A does not match the number of en-
tries in C.

We can recast this illustration symbolically as follows. If

then

Ac � Ba œ
1

. c

a œ
2

. c
R � Ba11 c1 � a12 c2 � a13 c3

a21 c1 � a22 c2 � a23 c3

R .

A � Ba11 a12 a13

a21 a22 a23

R and c � Cc1

c2

c3

S  ,

A � B2 1 0

5 3 6
R and c � D34

2

5

T

Ac � B2 1 0

5 3 6
R C3

4

2

S � B213 2 � 114 2 � 012 2
513 2 � 314 2 � 612 2

R � B10

39
R .

A � B2 1 0

5 3 6
R and c � C3

4

2

S  ,

2 � 3
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678 CHAPTER 10 Matrix Algebra and Its Applications

The only other allowable way to multiply a vector and a matrix is to multiply a
row vector by a matrix. In that case, the matrix must have the same number of rows
as the row vector has entries. That is, we can multiply

because there are four entries in the row vector, which matches the number of rows
(vertical entries per column) in the matrix A.

EXAMPLE 4
Consider again the set of equations discussed in Example 3 for the clothes produc-
tion model:

Rewrite the system of equations as a matrix–vector equation.

Solution If we make vectors of the left-hand sides of the three equations, we have

If we let

represent the column vector of demands for the different products, the system of equa-
tions becomes

�

As Example 4 suggests, any system of linear equations can be written as a
matrix–vector equation. As we develop the tools for working with and solving such
equations, we demonstrate that having such a formulation has significant advan-
tages, especially for systems that are larger than three equations in three unknowns.

The Fruit Purchase Model Revisited In Example 1, we computed the scalar prod-
ucts for the costs of fruit purchased by Amy and Bill. Recall that Amy wanted 5
peaches, 3 pears, 2 apples, and 2 grapefruits, whereas Bill wanted 3 peaches, 4 pears,
3 apples, and 3 grapefruits. Also, we know that peaches cost each, pears 
each, apples each, and grapefruits each.50¢35¢

20¢30¢

Ax � b or C 20x1 � 4x2 � 4x3

10x1 � 14x2 � 5x3

5x1 � 5x2 � 12x3

S � C 500

850

1000

S  .

b � C 500

850

1000

S
C20x1 � 4x2 � 4x3

10x1 � 14x2 � 5x3

5x1 � 5x2 � 12x3

S � C 320 4 4 4 . x

310 14 5 4 . x

35 5 12 4 . x

S � Ca œ
1

. x

a œ
2

. x

a œ
3

. x

S � Ax.

coats:  5x1  �  5x2  �  12x3 � 1000.

pants:  10x1  �  14x2  �  5x3 � 850

vests:  20x1  �  4x2  �  4x3 � 500

c � 31 4 �2 3 4 and A � D 2 0

6 �2

�3 5

1 �5

T
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10.3 Scalar Products 679

EXAMPLE 5
Write a matrix–vector equation to represent the costs of the fruit purchases by Amy
and Bill.

Solution Let’s make a matrix A of fruit purchases. The columns represent the different
fruits, the first row gives Amy’s fruit shopping list, and the second row gives Bill’s list. We
also make a (column) vector p of the costs, in cents.

Peaches Pears Apples Grapefruits

We can now write the costs of Amy’s and Bill’s fruit purchases as the matrix–vector product

This result is the same as we obtained in Example 1.

�

Markov Chain for the Stock Market Revisited Recall the Markov chain intro-
duced in Example 1 of Section 10.2. The equations for determining the probabili-
ties and that the stock market goes up, goes down, or stays the same
tomorrow given the probabilities and of its going up, going down, or stay-
ing the same today were

EXAMPLE 6
Write the preceding Markov chain model for the stock market as a matrix–vector equation.

Solution Let

respectively, be the vectors of today’s and tomorrow’s probabilities and let the matrix of
transition probabilities be A:

p � Cp1

p2

p3

S and p� � Cp1ˇ

�

p2ˇ

�

p3ˇ

�

S  ,

 p3 

� �
1

4
 p1 �

1

4
 p2 �

1

4
 p3 .

 p2 

� �
1

2
 p1 �

1

4
 p2 �

1

2
 p3 

 p1 

� �
1

4
 p1 �

1

2
 p2 �

1

4
 p3 

p3p2 ,p1 ,
p3ˇ

�p2ˇ

�
 ,p1ˇ

�
 ,

 � B380

425
R � B$3.80

$4.25
R .

 Ap � B5 3 2 2

3 4 3 3
R D30

20

35

50

T � B5130 2 � 3120 2 � 2135 2 � 2150 2
3130 2 � 4120 2 � 3135 2 � 3150 2

R

A � B5 3 2 2

3 4 3 3
R Amy

Bill
  p � D30

20

35

50

T Peaches

Pears

Apples

Grapefruits
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Market Today

Up Down Same

Then the preceding set of probability equations can be written simply as because

�

Similarly, the probabilities for the day after tomorrow can be found from

and so on.
In Section 10.4 we present a concise way of writing these probability vectors.

A Geometric View of Matrix–Vector Products

In geometric terms, when we multiply a vector v by some matrix A, the vector v is
transformed by the multiplication into another vector Because of the di-
mensions of A and v, this product makes sense only in the order Av (rather than
vA); we thus call this operation pre-multiplication of v by A. We can view pre-
multiplication by A as defining a function: where This type
of transformation is used in computer graphics, for instance, to produce creative
lettering and moving images (animation) on the screen. It also provides a way to
visualize the effect on a vector of multiplying it by a matrix.

Rather than using arrows, here we simply represent 2-vectors as points in
the plane.

EXAMPLE 7
Consider the vectors

Here, and point to the corners of a square whose sides are of length 2 and 
and point to the midpoints of the sides of this square, as shown in Figure 10.29(a).

Describe the effects of pre-multiplying each of these eight vectors by the matrix

A � B 1 1

�1 1
R .

v8v7 ,
v6 ,v5 ,v4v3 ,v2 ,v1 ,

 v5 � B0
1
R   v6 � B1

2
R   v7 � B2

1
R   v8 � B1

0
R .

 v1 � B0
0
R   v2 � B0

2
R   v3 � B2

2
R   v4 � B2

0
R 

f 1v 2 � Av.w � f 1v 2 ,

w � Av.

p�� � Ap�

p��

Ap � C 1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

S Cp1

p2

p3

S � C 1
4 p1 � 1

2 p2 � 1
4 p3

1
2 p1 � 1

4 p2 � 1
2 p3

1
4 p1 � 1

4 p2 � 1
4 p3

S  .

p� � Ap

Market

Tomorrow
 

Up

Down

Same

C 1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

S � A.
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1 2 3 4

–2

–1

0

1

2

x

y

v1 v8 v4

v2 v6 v3

v5 v7

(a)FIGURE 10.29

w2

w4

w8 w7

w5

w1 w3

w6

1 2 3 4

–2

–1

0

1

2

x

y

(b)

Solution When we pre-multiply the v’s by the matrix A, we obtain the following eight
vectors 

When we examine these eight new vectors, shown in Figure 10.29(b), we observe that
they also form a square, but it has a different orientation and size. Each of the four ver-
tex vectors and of the original square was transformed into a vertex vector

and of the new square. Each of the midpoint vectors and in
the original square was transformed into a corresponding midpoint vector 
and in the new square. Also, in the original square, the sides were of length 2 and each
diagonal was from the Pythagorean theorem. In the transformed square, each di-
agonal has length 4, so that the sides have length Thus pre-multiplying the vectors

and forming the original square by A does three things to the square.

1. It rotates the square clockwise through or 

2. It increases the length of each side by a factor of

3. It moves the center of the square from to 

�

Example 7 demonstrates that one square can be transformed into another by
multiplying a set of vectors by an appropriate matrix. The same principle applies to
any shape whose corners are determined by a set of vectors.

If we pre-multiplied the vectors forming the original square by other (appro-
priately chosen) matrices, we could get rotations of the square through any desired
angle, increase or decrease the lengths of the sides by any desired multiple, and

B2
0
R .B1

1
R 12 .

p>4.45°

v4v3 ,v2 ,v1 ,
2 12 .

2 12,
w8

w7 ,w6 ,w5 ,
v8v7 ,v6 ,v5 ,w4w3 ,w2 ,w1 ,

v4v3 ,v2 ,v1 ,

 w7 � B 1 1

�1 1
R B2

1
R � B 3

�1
R   w8 � B 1 1

�1 1
R B1

0
R � B 1

�1
R .

 w5 � B 1 1

�1 1
R B0

1
R � B1

1
R  w6 � B 1 1

�1 1
R B1

2
R � B3

1
R

 w3 � B 1 1

�1 1
R B2

2
R � B4

0
R  w4 � B 1 1

�1 1
R B2

0
R � B 2

�2
R

 w1 � B 1 1

�1 1
R B0

0
R � B0

0
R  w2 � B 1 1

�1 1
R B0

2
R � B2

2
Rwi � Avi .
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x

y

w = Rv

v

O a

b
α

φ

FIGURE 10.30

place the center in any desired location. However, the origin will always be un-

affected because multiplied by any matrix yields 

For example, using rotates the square counterclockwise

through an angle of and transforms the center to We ask you to verify this
result in the Problems at the end of this section.

In general, pre-multiplying by the matrix

rotates the square counterclockwise through an angle of

EXAMPLE 8
Show that the effect of pre-multiplying any vector by the matrix R is to rotate v
through an angle 

Solution We start with an arbitrary vector v, as shown in Figure 10.30, that is inclined
at an angle from the horizontal, so that

tan a �
b
a

 .

a

u.
v � Ba

b
R

u.

R � Bcos u �sin u

sin u cos u
R
B�1

1
R .p>2

B � B0 �1

1 0
R

B0
0
R .B0

0
R

Also, we let the angle associated with the vector be We want to show that the
difference in the two angles must equal 

When we pre-multiply vector v by R to form vector w, we get

Consequently, the tangent of angle is

tan f �
a sin u � b cos u

a cos u � b sin u
 .

f

w � Rv � Bcos u �sin u

sin u cos u
R  Ba

b
R � Ba cos u � b sin u

a sin u � b cos u
R .

u.f � a
f.w � Rv
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We factor a out of both the numerator and denominator and divide both the nu-
merator and denominator by 

However, we know that tan so that this expression reduces to

When we compare this expression to the sum identity for the tangent from Problem 37
of Section 8.1, we see that

Therefore the effect of pre-multiplying any vector v by the matrix R is to rotate the re-
sulting vector through an angle of

�

What if we want to change the length of a vector by using matrix multiplica-
tion? We note that the lengths of the sides of the square in Example 8 are un-
changed when we use this rotation matrix R. If we want to enlarge or contract the
square, we must use an appropriate scalar multiple of the rotation matrix, so that
we multiply every entry in the matrix by a constant amount. Thus, if

In Example 7, to make each side of the square grow by a factor of 2 instead of a fac-
tor of we would multiply A by because Incidentally, not
every matrix can be a rotation matrix; a special form is necessary.

Any transformation that takes a 2-vector v into the 2-vector for any
matrix A, always transforms or maps lines into lines. Because of this linearity

property, a mapping of the form is called a linear transformation.
Suppose that we start with any figure comprising (very short) line segments.

Each segment can be interpreted as a vector, and appropriate matrices can be con-
structed to create any kind of transformation—a shift, a stretch, or a rotation—that
we desire. This method is the mathematical foundation of the computer graphics
animation that appears in movies, on television, and on computer screens.

v S w � Av
2 � 2

w � Av,

12 . 12 � 2.1212 ,

A � B 1 1

�1 1
R , then 2A � 2 B 1 1

�1 1
R � B 2 2

�2 2
R .

u.

tan f � tan 1u � a 2 so that  f � u � a.

tan f �
tan u � tan a

1 � tan a tan u
.

a � b>a,

tan f �

a . a
sin u

cos u
�

b
a
b

a . a1 �
b

a
 
sin u

cos u
b

�

tan u �
b
a

1 �
b
a

 tan u

.

cos u:

1. Let

 d � B�1

0
R , e � B4

5
R .

 a � B3
5
R ,  b � B0

2
R ,  c � B 5

�1
R ,

Compute the scalar products.

a. b. c.
d. e. f.
g. c . e

b . ec . da . d
b . db . ca . c

Problems
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2. Let

Plot the pairs of vectors and compute their scalar
products.

a. a, b b. a, c c. a, d
d. b, d e. c, d f. d, e

What geometric pattern do you find in pairs of vec-
tors whose scalar products are zero? What numeri-
cal pattern do you find in the ratios of components
in these pairs?

3. Let

Compute the scalar products.

a. b. c.
d. e. f.

4. Let

Compute the scalar products.

a. b. c.
d. e.
f.

5. Let a, b, c, and d be as in Problem 1 and let

Compute the matrix–vector products.

a. Ab b. Ac c. Ba
d. Bb e. Cc f. Ca

C � C2 1

4 �2

3 1

S  .B � B 5 2

�1 0
R ,A � B1 7

4 2
R ,

1b � a 2 . 1a � c 2
a . 1c � d 21a � c 2 . a

c . db . da . c

 c � C1

4

8

S  ,   d � C2

1

5

S  .

 a � C3

1

2

S  ,  b � C 0

2

�2

S  ,

c . da . aa . d
b . db . ca . c

 c � C 7

�2

�1

S  ,  d � C�2

3

1

S  .

 a � C2

5

1

S  ,  b � C0

1

0

S  ,  

 d � B 4

�2
R , and e � B2

4
R .

 a � B4
2
R ,  b � B�2

4
R ,  c � B�4

2
R ,  

6. Let a, b, c, and d be as in Problem 3 and let

Find the matrix–vector products.

a. Aa b. Ab c. Bc
d. Bd e. Cb f. Cc

7. Let a, b, c, and d be as in Problem 3 and let

Compute the matrix–vector products and describe
in words the effect of multiplying a vector by the
particular matrix.

a. Ac b. Ad c. Ba
d. Bd e. Cb f. Ca

8. Explain why it is not possible to multiply the matrices

9. Write each vector–matrix equation as a system of
equations. Here x denotes a column vector of vari-
ables where the number of variables
equals the number of columns in A.

a. where 

b. where

c. where

A � C5 2 1

4 1 6

3 1 0

S and b � C1

5

2

S
Ax � b,

A � B1 4

2 �3
R  and b � B4

9
RAx � b,

A � B5 1

4 3
R and b � B2

5
RAx � b,

x2 , . . . ,x1 ,

A � B1 2 3

4 5 6
R   and   b � B4

7
R.

C � C1 0 0

0 �1 0

0 0 2

S  .

B � C0 0 1

0 1 0

1 0 0

S  ,A � C1 0 0

0 1 0

0 0 1

S  ,

 C � D0 1 2

3 4 5

6 7 8

9 10 11

T .

 B � C 0 1 3

�1 5 1

4 �1 6

S  , A � C3 1 2

0 �1 5

0 4 3

S  ,
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d. where 

10. Write each system of equations in matrix notation.
Define any matrix or vector that you use.

a.

b.

c.

11. Write in matrix notation the systems of linear equa-
tions obtained in the following Problems in Section
10.2. Define any matrix or vector that you use.

a. Problem 4 b. Problem 5
c. Problem 6 d. Problem 7

12. Write in matrix notation the systems of linear equa-
tions obtained in the hare–wolf population model
in Example 3 of Section 10.2. Define any matrix or
vector that you use.

13. Suppose that you will need 10 hero sandwiches, 6
quarts of fruit punch, 3 pounds of potato salad, and
2 plates of hors d’oeuvres for a party. The matrix
shows the cost per unit of these supplies from three
different caterers.

Caterer A Caterer B Caterer C

a. Express the cost of catering the party by each
caterer as a matrix–vector product.

b. Determine the cost of each caterer.

14. Plot a square with corners determined by the vectors
and in (a)and (b). Then, for the matrix

plot the transformed corners

and 
Confirm that the midpoints of the sides of the orig-
inal square are mapped to the midpoints of the
sides of the transformed square.

w4 � Av4 .w3 � Av3 ,w2 � Av2 ,w1 � Av1 ,

A � B 1 1

�1 1
R ,

v4 v3 ,v2 ,v1 ,

Hero sandwich

Fruit punch

Potato salad

Hors d’oeuvres

  D $4 $6 $5

$2 $1 $0.85

$1.50 $2 $2.50

$6 $5 $7

T

 x1 � x2 � 7x3 � 0
 3x1 � 8x2 � 4x3 � 0
 2x1 � 5x2 � 2x3 � 0

 2x1 � 5x2 � 5x3 � 5
 x1 � 3x2 � 2x3 � 2

 5x1 � 2x2 � 4x3 � 6

 2x1 � 6x2 � 4
 x1 � 2x2 � 6

A � C2 �1 5

3 1 2

5 1 �3

S and b � C0

0

0

S
Ax � b,

a.

b.

15. Repeat Problem 14 with the matrix 

In Example 8, we proved that the mapping of v to
acts to rotate a square counterclockwise

through an angle of Do your results confirm
this outcome?

16. Transform each square in Problem 14 by using the

matrix Does the mapping of v to

transform the square into a square?

17. Consider the rotation matrix 

Show that, for any vector the vector 

has the same length as v.

18. Use the matrix R from Problem 17 to determine the

effect that the matrix 2R has on the vector 

19. The rotation matrix R in Problem 17 acts to ro-
tate any nonzero vector counterclockwise through
an angle 

a. Modify matrix R to produce a matrix that rotates
any nonzero vector clockwise through an angle 

b. Write a matrix that will rotate any nonzero vec-
tor counterclockwise through an angle of

c. Plot the position vector pre-multiply it

by the matrix you created in part (b), and then
plot the resulting vector w on the same graph.

d. Pre-multiply the vector w by the matrix you cre-
ated in part (a) with What is the result
of this operation?

20. The five points A, B, C, D, and E at 
and determine a five sided figure16, 6 2110, 3 2 ,19, 1 2 ,

17, �1 2 ,13, 2 2 ,

u � 30°.

v � B5
2
R ,

30°.

u.

u.

v � Ba
b
R .

w � Rvv � Ba
b
R ,

R � Bcos u �sin u

sin u cos u
R .

w � Cv

C � B1 2

3 4
R .

p>2.
w � Bv

B � B0 �1

1 0
R .

v4 � B1
1
R

v3 � B0
2
R ,v2 � B�1

1
R ,v1 � B0

0
R ,

v4 � B3
1
R

v3 � B3
3
R ,v2 � B1

3
R ,v1 � B1

1
R ,
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having two right angles. Use vectors to determine
which of the five angles in the figure are the right
angles.

21. Find the acute angle between each pair of vectors.

a.
b.
c.
d.

22. Rewrite each polynomial as the scalar product of
a vector of numbers and a vector of power func-
tion terms of the form or

a.
b.
c.

23. When Susan was applying to college, she was
turned down by her top choice, Ivy Tech, but she
was accepted by State Tech and the Hawaii Institute
of Technology. To decide on which school to attend,
she rated each school (on a scale of 0 to 10) on five
important criteria and then selected the one that
was closer to Ivy Tech. She used her knowledge of
vectors to decide how to interpret closer—the two

4 � 2x � 6x2 � 5x3
8 � 7x � 3x2
5 � 3x � 2x2

x� � 31 x x2 x3 4 .
x � 31 x x2 4

36 4 �1 4 and 35 �3 2 4
31 4 5 4 and 32 3 �2 4
31 4 4 and 3�2 5 4
33 5 4 and 3�2 4 4

vectors with the smallest angle between them.
Which college did she choose?

24. (Continuation of Problem 23) Suggest some other
ways that Susan could have decided which school was
closer to Ivy Tech? Would you necessarily make the
same decision as to which school to choose? Explain.

25. (Derivation of the formula for ) In the triangle

shown, let and The

lengths of a and b can be written

and so that and

7b 7 2 � b . b.

7 a 7 2 � a . a7b 7 � 2b1 

2 � b2 

2
 ,

7 a 7 � 2a1 

2 � a2 

2

b � 3b1 b2 4 .a � 3a1 a2 4
cos u.

Matrix Multiplication

In Section 10.3, we introduced the concept of the scalar product of two vectors

a and b. For example, if and then 

We used this scalar product of vectors to define the matrix–vector product Ab of a
matrix A times a vector b. For instance, if

A � B2 1

0 3
R and again b � B4

6
R ,

a . b � 214 2 � 116 2 � 14.b � B4
6
R ,a � 32 1 4

a . b

10.4

Ivy State Hawaii

Location 7 6 10

Size 6 3 7

Campus 8 4 7

Faculty 9 6 4

Programs 5 7 6

x

y

b

a

c

θ

O

a. Write the vector c in terms of the vectors a and b.
b. Use the expression from part (a) to form the

scalar product 
c. Use the law of cosines to write an equation giv-

ing 
d. Compare the expressions from part (b) and

part (c) and use the facts that 
and to show that

cos u �
a . b

7 a 7 7b 7
 .

c . c � 7 c 7 2b . b � 7b 7 2,
a . a � 7 a 7 2,

7 c 7 2.

c . c.
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a11 a12
... a1n

a21 a22
... a2n

am1 am2
... amn

...
...

... ...
...

...

...

...

...

b11

b21

bn1

b12

b22

bn2

b1p

b2p

bnpFIGURE 10.31

then

Thus Ab is a column vector consisting of the scalar products of each row of A with b.
In this section, we extend this process to define the product of two matrices A

and B. In particular, in the product AB we think of the second matrix B as consist-
ing of a series of column vectors and pre-multiply each of them by the matrix A.
That is, we multiply the first column of B by A, then multiply the second column of
B by A, and so on, as illustrated in Figure 10.31. The result of each product is a col-
umn vector, so the product AB will be a matrix having the same number of
columns as there are in B. We can think of the product AB as a matrix whose
columns are a sequence of matrix–vector products 3Ab1 Ab2  . . .  Abn 4 .

Ab � B2 1

0 3
R B4

6
R � B214 2 � 116 2

014 2 � 316 2
R � B14

18
R .

In the matrix product AB, you can also think of the first matrix A as consisting of
a series of row vectors and the second matrix B as consisting of a series of col-
umn vectors and then take the scalar product of each of the row vectors making
up A with each of the column vectors making up B. Draw a sketch comparable to
Figure 10.31 to illustrate this interpretation. ❐

To demonstrate the product of two matrices, consider again the matrix

We think of each of the three columns of matrix B as a column vector. Note that

the first column of B is precisely the column vector we used

above. The corresponding first column in the product matrix AB is then 

which we computed above to be 

Similarly, we take the matrix–vector product of the matrix A with the second

column of B thinking of it as the vector to produce the second column

of the product AB. That gives

Ab2 � B2 1

0 3
R B7

5
R � B217 2 � 115 2

017 2 � 315 2
R � B19

15
R .

b2 � B7
5
R

B14

18
R .

Ab1 ,

b � B4
6
Rb1 � B4

6
R

A � B2 1

0 3
R and let B � B4 7 �1

6 5 9
R .

Think About This
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...
...

...

a11 a12
... a1n

a21 a22
... a2n

am1 am2
... amn

...
b11
b21

...

bn1

b12
b22

...

bn2

b1p
b2p

...

bnp

FIGURE 10.32

Matrix Multiplication

Let A be an matrix and B be an matrix. The number of columns
in A must equal the number of rows in B.
The matrix product AB is the matrix obtained by forming the scalar
product of each row in A with each column in B. That is, the (i, j)th
entry in AB is Thus

AB � Da œ
1  b1 a œ

1  b2
. . . a œ

1  bn

a œ
2  b1 a œ

2  b2
. . . a œ

2  bn

o o o o
a œ

m  b1 a œ
m  b2

. . . a œ
m  bn

T .

a œ
i  bj .

bja œ
i

m � n

r � nm � r

Finally, we take the matrix–vector product of A with the third column of B,

which is the vector to produce the third column of the product AB.

The complete product AB is therefore

In general, we have the following definition for the product of two matrices.

 � B14 19 7

18 15 27
R .

 AB � B2 1

0 3
R B4 7 �1

6 5 9
R � B214 2 � 116 2 217 2 � 115 2 21�1 2 � 119 2

014 2 � 316 2 017 2 � 315 2 01�1 2 � 319 2
R

b3 � B�1

9
R ,

In summary, there are three ways to interpret matrix multiplication.

1. We can think of AB as the scalar product of each row of A with each col-
umn of B. Figure 10.32 illustrates this interpretation. The product requires
that the number of entries in each row of A must equal the number of en-
tries in each column of B.

2. We can think of AB as a sequence of matrix–vector products—that is, the
product of A with each of the column vectors making up B, so that

AB � A 3b1 b2  . . .  bn 4 � 3Ab1 Ab2  . . .  Abn 4 .
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10.4 Matrix Multiplication 689

For example, for the matrices A and B above, we verify that the first col-
umn of AB is the matrix–vector product Then

3. We can view AB as a set of vector-matrix products (defined analo-
gously to matrix–vector products), where each row of A, considered as a
row vector, pre-multiplies the matrix B. Thus

For instance, for the matrices A and B, we verify that the first row of AB is
the vector–matrix product :

For the matrix product AB to make sense, the number of columns in A must
equal the number of rows in B. Thus, if A is (m rows and n columns) and B
is (n rows and k columns), the product AB is For instance, the prod-
uct of a matrix and a matrix will be a matrix. But, the product
of a matrix and a matrix is not defined—the numbers of columns and
rows do not match, so it is not possible to perform the multiplication.

Note that our definition of a matrix–vector product in Section 10.3 is a special
case of matrix multiplication because, in the matrix–vector product Ab, the col-
umn vector b can be interpreted as an matrix. Then Ab is the matrix prod-
uct of an matrix A and an matrix b. The result Ab is an 
matrix (a column m-vector).

In general, except in rather unusual circumstances, matrix multiplication is
not commutative; that is, In fact, unless A and B are both square matri-
ces with the same size, only one at most of AB and BA is defined. For instance, if A
is and B is we can form AB, but not BA.

EXAMPLE 1
Given

find AB and BA and decide whether matrix multiplication is commutative.

Solution Using the given matrices, we find that

AB � B2 1

0 3
R B3 �1

1 4
R � B213 2 � 111 2 21�1 2 � 114 2

013 2 � 311 2 01�1 2 � 314 2
R � B7 2

3 12
R ,

A � B2 1

0 3
R and B � B3 �1

1 4
R ,

5 � 2,3 � 5

AB � BA.

m � 1n � 1m � n
n � 1

3 � 55 � 8
3 � 85 � 83 � 5
m � k.n � k

m � n

 � 3214 2 � 116 2 217 2 � 115 2 21�1 2 � 119 2 4 � 314 19 7 4 .

 a œ
1 B � 32 1 4  B4 7 �1

6 5 9
Ra œ

1  B

AB � Da œ
1

a œ
2

o
a œ

m

T B � Da œ
1  B

a œ
2  B

o
a œ

m  B

T .

a œ
i  B

Ab1 � B2 1

0 3
R B4

6
R � B214 2 � 116 2

014 2 � 316 2
R � B14

18
R .

Ab1 .
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whereas

Thus, for these two matrices, so matrix multiplication is not, in general, a
commutative operation.

�

We also need a way to add two matrices. Recall how we added vectors in Exam-
ple 3 of Section 10.1: We simply added the entries in the corresponding positions.
For instance, the sum of the row vectors and is

We add matrices in the same way by simply adding all corresponding entries.
However, for addition to make sense, the two matrices or the two vectors must be
of the same size.

EXAMPLE 2
Find the sum of the two matrices

Solution Matrix addition involves adding the entries in the corresponding positions,
so we have

�

EXAMPLE 3
Find the sum of the matrices

Solution Again, by adding the entries in the corresponding positions, we find that

�

Subtraction of matrices is defined in the analogous way—we simply take the
difference of the corresponding entries in each position. However, the quotient of
two matrices can’t be defined.

We now summarize the laws of matrix algebra for matrix addition and multi-
plication. In each case we assume that the matrices have the appropriate sizes so
that the operations make sense.

E � F � C4 2 3

2 1 3

0 5 4

S � C2 6 �1

4 0 2

7 3 8

S � C4 � 2 2 � 6 3 � 1�1 2
2 � 4 1 � 0 3 � 2

0 � 7 5 � 3 4 � 8

S � C6 8 2

6 1 5

7 8 12

S  .

E � C4 2 3

2 1 3

0 5 4

S and F � C2 6 �1

4 0 2

7 3 8

S  .

3 � 3

A � B � B2 1

0 3
R � B3 �1

1 4
R � B2 � 3 1 � 1�1 2

0 � 1 3 � 4
R � B5 0

1 7
R .

A � B2 1

0 3
R and B � B3 �1

1 4
R .

c � d � 32 1 5 4 � 34 3 0 4 � 32 � 4 1 � 3 5 � 0 4 � 36 4 5 4 .

d � 34 3 0 4c � 32 1 5 4

AB � BA,

BA � B3 �1

1 4
R B2 1

0 3
R � B312 2 � 1�1 2 10 2 311 2 � 1�1 2 13 2

112 2 � 410 2 111 2 � 413 2
R � B6 0

2 13
R .
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Basic Laws of Matrix Algebra
Associative Law
Matrix addition and matrix multiplication are associative:

Commutative Law
Matrix addition is commutative:

Matrix multiplication is not commutative (except in special cases):

Distributive Law

Law of Scalar Factoring

where k is a scalar constant.

k(AB) � (kA)B � A(kB),

A(B � C) � AB � AC and (B � C)A � BA � CA

AB � BA.

A � B � B � A.

(A � B) � C � A � (B � C) and (AB)C � A(BC).

With the exception that matrix multiplication is not commutative, these laws
are basically the same as the laws used in algebra for working with real numbers.
However, because the objects now are arrays and the operation of matrix multipli-
cation is much more complicated than real-number multiplication, it is not at all
obvious that these matrix laws should be true. Some effort is required to verify
them (but this is beyond the scope of this chapter).

Because a vector is just a matrix or an matrix, these laws also
apply to vectors. However, scalar products of vectors are commutative.

Matrix calculations are standard features on most calculators and in many
software packages. Typically, you have to give a name for a matrix, such as A, then
specify the dimensions of the matrix (the number of rows by the number of
columns)—say, —and then enter the values in the appropriate positions.
Once you have entered the matrices, you can use the calculator to perform any of
the allowable operations such as sums, differences, and products. See your instruc-
tion manual for details.

The Fruit Purchase Model Revisited

In Example 1 of Section 10.3, we computed the scalar products of fruit costs and
quantities of fruit to be purchased by Amy and Bill. Recall that Amy wanted 5
peaches, 3 pears, 2 apples, and 2 grapefruits, whereas Bill wanted 3 peaches, 4 pears,
3 apples, and 3 grapefruits. Also, peaches cost each, pears each, apples 
each, and grapefruits each. In Example 6 of Section 10.2, we constructed a ma-
trix A of the fruit shopping lists of Amy and Bill and made a column vector p of the
fruit costs (in cents).

50¢
35¢20¢30¢

3 � 4

n � 11 � n
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The matrix-vector product gave the cost of the fruit pur-

chases of Amy and Bill.

EXAMPLE 4
Suppose now that there are two other stores at which Amy and Bill can shop for fruit. In-
stead of a vector of fruit prices, we now have a matrix P of fruit prices (whose first col-
umn is the original store’s set of prices).

Store 1 Store 2 Store 3

Construct a matrix giving the cost to Amy and Bill of their fruit purchases at each store.

Solution We need to compute the matrix product AP, which is well defined becasue A
is a matrix and P is a matrix:

Alternatively, had we entered the cost of fruit in the form $0.30 instead of 30¢, say, we
would get

�

Note that we would have gotten the same results using a calculator to multiply
the two matrices.

Powers of Markov Chain Transition Matrices

Next, we consider a more substantial use of matrix multiplication—one that great-
ly expands the power of the Markov chain model for the stock market introduced
in Section 10.2.

AP � B$3.80 $4.00 $3.75

$4.25 $4.75 $4.15
R .

 � B380 400 375

425 475 415
R.

5130 2 � 3125 2 � 2130 2 � 2145 2
3130 2 � 4125 2 � 3130 2 � 3145 2

R � B5130 2 � 3120 2 � 2135 2 � 2150 2 5125 2 � 3125 2 � 2140 2 � 2160 2
3130 2 � 4120 2 � 3135 2 � 3150 2 3125 2 � 4125 2 � 3140 2 � 3160 2

 AP � B5 3 2 2

3 4 3 3
R D30 25 30

20 25 25

35 40 30

50 60 45

T
4 � 32 � 4

P � D30 25 30

20 25 25

35 40 30

50 60 45

T  

Peaches

Pears

Apples

Grapefruits

 

Ap � B380

425
R � B$3.80

$4.25
R

p � D30

20

35

50

T  

Peaches

Pears

Apples

Grapefruits

A � BPeaches Pears Apples Grapefruits

5 3 2 2

3 4 3 3
R  

Amy

Bill
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In the Markov chain model, the equations for determining the probabilities
and of the market going up, going down, or staying the same tomor-

row given the probabilities and of the market going up, going down, or
staying the same today were

If

are the vector of today’s probabilities and the vector of tomorrow’s probabilities,
respectively, and the matrix A of transition probabilities is

Market Today

Up Down Same

then the given system of transition probabilities can be written simply as 
or, equivalently, as

EXAMPLE 4
Use matrices to find the probabilities of the stock market going up, going down, or stay-
ing the same tomorrow if

is the vector of probabilities of the market going up, going down, or staying the same
today, as in Example 1 of Section 10.2.

Solution The vector of probabilities for the stock market tomorrow is so we get

p� � Ap � C 1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

S  C0
1
2
1
2

S � C 3
8
3
8
2
8

S  .

p� � Ap,

p � C0
1
2
1
2

S

Cp1 

�

p2 

�

p3 

�

S � C 1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

S  Cp1

p2

p3

S � C 1
4 p1 � 1

2 p2 � 1
4 p3

1
2 p1 � 1

4 p2 � 1
2 p3

1
4 p1 � 1

4 p2 � 1
4 p3

S  .

p� � Ap,

Market

Tomorrow
 

Up

Down

Same

C 1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

 S ,

p � Cp1

p2

p3

S and p� � Cp1 

�

p2 

�

p3 

�

S
 p3 

� �
1

4
 p1 �

1

4
 p2 �

1

4
 p3 .

 p2 

� �
1

2
 p1 �

1

4
 p2 �

1

2
 p3 

 p1 

� �
1

4
 p1 �

1

2
 p2 �

1

4
 p3 

p3p2 ,p1 ,
p3 

�p2 

�
 ,p1 

�
 ,
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Alternatively, using a calculator where the entries in the matrix A and the vector p are
given as decimals instead of fractions, we get

�

Recall that a Markov chain can be extended farther into the future. Just as to-
morrow’s probability vector can be computed by the matrix expression

so too the probability vector for the day after tomorrow is given by

where we have written to represent AA, the square of the matrix A. Note that
is possible provided that A is a square matrix. (Don’t confuse “square of

a matrix” and “square matrix”, where the number of rows equals the number of
columns.) Similarly, the vector of probabilities three days hence is given by

In writing these two matrix equations for and we made use of the fact

that matrix algebra is an associative operation, so and

where can be thought of as AAA.

EXAMPLE 5
Compute and for the stock market Markov transition matrix A.

Solution We first do the calculations by hand:

Similarly, we compute as

 

1
4

. 3
8 � 1

2
. 3

8 � 1
4

. 1
4

1
2

. 3
8 � 1

4
. 3

8 � 1
2

. 1
4

1
4

. 3
8 � 1

4
. 3

8 � 1
4

. 1
4

S   

1
4

. 5
16 � 1

2
. 7

16 � 1
4

. 1
4

1
2

. 5
16 � 1

4
. 7

16 � 1
2

. 1
4

1
4

. 5
16 � 1

4
. 7

16 � 1
4

. 1
4

� C 1
4

. 3
8 � 1

2
. 3

8 � 1
4

. 1
4

1
2

. 3
8 � 1

4
. 3

8 � 1
2

. 1
4

1
4

. 3
8 � 1

4
. 3

8 � 1
4

. 1
4

 A3 � AA2 � C 1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

S  C 3
8

5
16

3
8

3
8

7
16

3
8

1
4

1
4

1
4

S
A3

 � C 3
8

5
16

3
8

3
8

7
16

3
8

1
4

1
4

1
4

S  .

  

1
4

. 1
4 � 1

2
. 1

2 � 1
4

. 1
4

1
2

. 1
4 � 1

4
. 1

2 � 1
2

. 1
4

1
4

. 1
4 � 1

4
. 1

2 � 1
4

. 1
4

S  

1
4

. 1
2 � 1

2
. 1

4 � 1
4

. 1
4

1
2

. 1
2 � 1

4
. 1

4 � 1
2

. 1
4

1
4

. 1
2 � 1

4
. 1

4 � 1
4

. 1
4

 � C 1
4

. 1
4 � 1

2
. 1

2 � 1
4

. 1
4

1
2

. 1
4 � 1

4
. 1

2 � 1
2

. 1
4

1
4

. 1
4 � 1

4
. 1

2 � 1
4

. 1
4

 A2 � C 1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

S  C 1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

S
A3A2

A3A(A2p) � (AA2)p � A3p,

A(Ap) � (AA)p � A2 p,

p���,p��

p��� � Ap�� � A(A2p) � A3p.

p���

A2 � AA
A2

p�� � Ap� � A(Ap) � (AA)p � A2p,

p��p� � Ap,
p�

p� � Ap � C0.25 0.5 0.25

0.5 0.25 0.5

0.25 0.25 0.25

S  C 0

0.5

0.5

S � C0.375

0.375

0.25

S  .
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Alternatively, we can find these matrices by using the matrix capabilities of a calcu-
lator or computer package, though likely with the entries in decimal form. In that case,
we would define the matrix A and then refer to it by name to form

and

You can verify that these decimal entries are equivalent to the fractions we calculated by
hand initially.

�

The entries in are the transition probabilities for 2 days from now and the
entries in are the transition probabilities for 3 days from now. For instance, the
value in position of (the entry in the second row, first column)
means that, if we are now in State 1 (Up—first column), the chance is that in 2 days
we will be in State 2 (Down—second row). Similarly, the value of
in entry of indicates that, if the market is now up, the probability is 
that in 3 days it will go down.

The values we obtained in computing and look reasonable. In particular,
the numbers in each column of and sum to 1 (the sum of all probabilities for
the market on any given day must be 1). Note that all the entries in each of the
three rows of have roughly the same numerical value; the entries in the first row
are slightly larger than those in the second row are all about 0.40, and all the en-
tries in the last row are 0.25.

EXAMPLE 6
If the probabilities of the stock market going up, going down, or staying the same today
are given by the vector

use matrices to find the probabilities of the market going up, going down, or staying
the same the day after tomorrow and the probabilities for the day after that.

Solution We know that and Multiplying, we get

You can easily verify that these entries are the same values we obtained in Section 10.2.

�

p�� � A2p � C 0.34375

0.40625

0.25      

S and p��� � A3p � C 0.3515625

0.3984375

0.25           

S  .

p��� � A3p.p�� � A2p

p���
p��

p � C0
1
2
1
2

S  ,

1
3 ,

A3

A3A2
A3A2

13>32A312, 1 2
13>32 � 0.40625

3
8

A212, 1 23
8 � 0.375

A3
A2

A3 � A^3 � C0.34375 0.359375 0.34375

0.40625 0.390625 0.40625

0.25 0.25 0.25

S  .

A2 � A^2 � C0.375 0.3125 0.375

0.375 0.4375 0.375

0.25 0.25 0.25

S
3 � 3

� C 11
32

23
64

11
32

13
32

25
64

13
32

1
4

1
4

1
4

S .
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x

y

p0

p1

FIGURE 10.33

n 0 1 2 3 4 5 6 7

0.75 0.525 0.4575 0.43725 0.43118 0.42935 0.42881 0.42864 0.42857

0.25 0.475 0.5425 0.56275 0.56883 0.57065 0.57119 0.57136 0.57143 . . . p2

 . . . p1

 . . . 

x

y

p0

p1

p2

p3

FIGURE 10.34

If you refer back to the table that gave the market probabilities over many days
near the end of Example 2 in Section 10.2, you will observe that the probabilities
shown there are similar to the entries in the columns of That is, the probabilities
after 3 days are actually fairly close to the long-term probabilities, so this Markov
chain converges to a limiting state rather quickly.

Example 6 illustrates how, with concise notation, matrix algebra allows us to
express quite complex expressions.

We can visualize what happens in a Markov chain graphically in the case of a

two-by-two transition matrix—say, (Again, notice that the sum 

of the entries in each column is 1.) Let’s start with an initial vector of probabilities

Any vector, including this vector of probabilities, can be inter-

preted geometrically, as shown in Figure 10.33. When we pre-multiply the vector
by the transition matrix A, we obtain another vector of probabilities 

which we can interpret geometrically, as shown in Figure 10.33.

Note that the resulting vector points in a direction quite different from that of
the initial vector We can think of the matrix A as transforming the probability
vector into the vector 

When we multiply the vector by the matrix A to form the next probability

vector we get a vector that points in still another 

direction. What happens when we continue the Markov process to get 
(We have moved from using the notation and so on, to

use subscript notation because the use of multiple quickly becomes too un-
wieldy.) In the following table, we show the results of continuing this process nu-
merically for the two components and for each successive probability vector
p. As in Example 6, the probabilities seem to converge to a pair of limiting values—
approximately 0.42857, which is about and approximately 0.57143, or 4>7.3>7,

p2p1

�’s
p��,p�,p4 � A4p0 , . . . ?

p3 � A3p0 ,

p2 � A2p0p2 � Ap1 � B0.4575

0.5425
R ,

p1

p1 � Ap0 .p0

p0 .
p1

p� � p1 � B0.525

0.475
R ,

p0

p � p0 � B0.75

0.25
R .

A � B0.6 0.3

0.4 0.7
R .

A3.

Figure 10.34 shows the corresponding geometric behavior. Note how the se-
quence of vectors also converges, getting closer and closer to a single limiting vector.
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If we start with any other vector of probabilities, say, then the corre-

sponding sequence of vectors will also converge to this same limiting vector

This special limiting vector is called an eigenvector of the matrix A. A similar

type of convergence occurs with most other transition matrices, whether a two-by-
two matrix or larger.

A Geometric View of Powers of a Matrix

We have shown that any matrix of the form acts as a rotation

matrix to rotate a vector v through an angle We now examine the effect of apply-
ing to a vector.

EXAMPLE 7
Show that the matrix is a rotation matrix that will rotate any vector through an angle 

Solution We have

If we now apply the double angle identities for the sine and cosine from Chapter 8, we 

get so that indeed is a rotation matrix with an associated 

angle 

� 
2u.

R2R2 � Bcos 2u �sin 2u

sin 2u cos 2u
R ,

 � c
cos2u �  sin2u �2sin u cos u

2 sin u cos u cos2u � sin2u
R.

 � B cos2u �  sin2u �sin u cos u � sin u cos u

sin u cos u � sin u cos u �sin2
 u � cos2

 u
R

 R2 � Bcos u �sin u

sin u cos u
R Bcos u �sin u

sin u cos u
R

2u.R2

R2
u.

R � Bcos u �sin u

sin u cos u
R

B3
7
4
7

R .

p0 � B0.2

0.8
R,

Problems

1. Let

Compute the matrix products.

a. AB b. BA
c. CB d. BC
e. AC f.
g.

2. For the matrices in Problem 1, compute the sums
and linear combinations of matrices.

B2
A2

 C � B 3 1

�1 �3
R .

 B � B4 2

1 1
R , A � B0 2

1 4
R ,

a. b.
c. d.

3. Let

Compute the products, if possible.

a. AB b. CB c. BC
d. AD e. DA f. CD
g. DC h. C2

D � B1 5 �2

3 0 2
R .C � C1 2

3 4

5 6

S  ,

B � B5 �1

0 2
R ,A � B5 0

1 4
R ,

2A � 3CA � B � C
B � CA � B
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4. For A, B, and C in Problem 1,

a. compute AB and then compute 
b. compute BC and then compute Does

equal 

5. For B, C, and D in Problem 3,

a. compute CB and then compute 
b. compute BD and then compute Does

equal 

6. Let

Compute the products, if possible. If not possible,
explain why.

a. AB b. BA c. AC
d. CA e. BC f. CB
g.

7. Pre-multiply each matrix by the matrix A in Prob-
lem 6 and in each case describe how the columns of
the product matrix compare to the columns of A.

a. b.

c.

8. For A, B, and C in Problem 6, compute the entry in
the third row, third column in Explain why
you do not have to multiply BC fully to determine
this entry in 

9. Perform the matrix multiplication for Amy’s and
Bill’s fruit purchases at the three different stores if
the matrix of Amy’s and Bill’s needs are

Peaches Pears Apples Grapefruits

10. Suppose that you have four robots: Supremo, Ultra-
matic, Maximus, and Gandalf, and three types of
jobs: Job 1 (washing clothes), Job 2 (walking the dog),

Amy

Bill
 B7 2 4 5

2 5 1 8
R.

(BC)A.

(BC)A.

C1 0 0

0 3 0

0 0 2

S
C0 1 0

0 0 1

1 0 0

SC0 0 1

0 1 0

1 0 0

S

A2

C � C 4 1 0 3

�2 1 6 3

3 0 2 0

S  .

B � D0 1 0

1 0 1

0 1 0

1 0 1

T ,A � D�1 3 �2

3 4 �1

4 0 1

4 0 1

T ,

C(BD)?(CB)D
C(BD).

(CB)D.

A(BC)?(AB)C
A(BC).

(AB)C.

and Job 3 (doing a student’s homework assignment).
There are three families, the Joneses, the Smiths, and
the Madonnas. Matrix A gives the times in hours it
takes each robot to do each job. Matrix B tells how
many jobs of each type are required by each family.
Compute with A and B to find a matrix showing
how long it will take each robot to do each family’s
set of jobs.

Matrix of Times
Job 1 Job 2 Job 3

Matrix of Jobs
Jones Smith Madonna

11. Suppose that you are given the following matrices
involving the costs of fruit at different stores, the
amounts of fruit that professors and engineers typ-
ically want, and the number of each type of person
in two towns.

Store 1 Store 2

Bananas Peaches Pears

Professors Engineers

a. Compute a matrix product to find how much each
type of person’s fruit purchases cost at each store.

b. Compute a matrix product to find how many of
each fruit will be purchased in each town.

c. Compute a matrix product to find how much
was spent by each town at each store.

12. Consider the following population model for the
numbers of goats (G) and sheep (S) from year to year.

C �  B2000 800

1500 1200
RTown 1

Town 2

B �  B6 12 4

6 8 5
R Professors

Engineers

A �  C0.15 0.20

0.25 0.15

0.20 0.25

SBananas

Peaches

Pears

B � C 6 2 4

8 5 4

10 5 4

S Job 1

 Job 2

Job 3

A � D3 4 2

5 7 3

1 2 1

3 3 3

TSupremo

Ultramatic

Maxiumus

Gandalf
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Let be the initial vector and be

the vector of goats and sheep after n years. Let A be
the matrix of coefficients in this system. (a) Write
an expression for in terms of A and (b) Find

and and use them and your formula to de-
termine and if the starting population, in 

thousands, is (Check your answer by ap-

plying the model equations for 2 and 3 years.) 
(c) What does the model predict for the two popu-
lations in 10 years?

13. Consider the following population model for the
numbers of goats (G), sheep (S), and bears (B) from
year to year.

Let

be the initial vector and let denote the vector of
goats, sheep, and bears after n years. Let A be the ma-
trix of coefficients in this system. (a) Write an expres-
sion for in terms of A and (b) Find and 
(c) Determine and if the starting population,
in hundreds, is

(Check your answer by applying the model equa-
tions for 2 and 3 years.) (d) How long does it take
for one of the populations to die out?

14. The copy machine at the student union breaks
down as follows. If it is working today, it has a 70%
chance of working tomorrow (and a 30% chance of
breaking down). If the copy machine is broken
today, it has a 50% chance of working tomorrow
(and a 50% chance of being broken again). Write the
Markov chain transition matrix A for this scenario.

a. Compute What probability does the entry in
position in represent?A211, 2 2

A2.

x0 � C1

1

2

S  .

x3 ,x2

A3.A2x0 .xn

xn

x0 � CG0

S0

B0

S
 B� � 2G �  S � B

 S� � G � 2S � B

 G� � G � S � B

x0 � B2
5
R .

x3 ,x2

A3,A2
x0 .xn

xn � BGn

Sn

Rx0 � BG0

S0

R  S� � G � 3S
 G� � 2G � 2S b. Compute If the copy machine is working

today, what is the probability that it will be
working in 3 days?

c. If it is working today, what is the probability that
it will be working a week from today?

15. Consider a weather Markov chain with 2 states,
sunny and cloudy. If today is sunny, there is a 
probability that tomorrow will be sunny and a 
probability that tomorrow will be cloudy. If today is
cloudy, there is a probability that tomorrow will
be sunny and a probability that tomorrow will be
cloudy. Write the transition matrix A for this Markov
chain.

a. Compute What probability does the entry in
position in represent?

b. Compute If today is cloudy, what is the prob-
ability that it will be sunny in three days?

c. If today is cloudy, what is the probability that it
will be sunny a week from today?

16. Consider the transition matrix 

and an initial vector 

a. Calculate and by hand.
b. Use the matrix features of your calculator to cal-

culate the next four iterates and so
on, corresponding to and Create a
table listing the entries in the vectors that result.
Do they appear to be converging?

c. Plot the vectors you found in parts (a) and (b).
Do they appear to be converging?

d. Repeat parts (a)–(c) if the initial vector is

e. Repeat parts (a)–(c) if the initial vector is 

f. What do you observe about the three sequences
of vectors from parts (b), (d), and (e)?

17. In Problem 22 of Section 10.3, we described how
to write a polynomial as a scalar product of a
vector of coefficients and a vector of power func-
tions. Suppose that you now have two cubic poly-
nomials and 

a. Express the sum of the two polynomials in terms
of vectors.

4x3 � 5x2 � 8x � 17.
Q1x 2  �P1x 2 � x3 � 4x2 � 7x � 2

p � B0.25

0.75
R .

p � B0.5

0.5
R .

A6.A5,A4,A3,
p����,p���,

p��p�

p � B0.7

0.3
R .

A � B0.2 0.4

0.8 0.6
R

A3.
A211, 2 2

A2.

3
4

1
4

1
4

3
4

A3.
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b. Express the difference of the two polynomials in
terms of vectors.

18. Explain why you can’t have a power of a non-square
matrix A.

19. Prove that, if R is the rotation matrix associ-
ated with an angle then is a rotation matrix as-
sociated with an angle (Hint: Write 
and use appropriate trigonometric identities to
simplify the result of the multiplication.)

R3 � RR23u.
R3u,

2 � 2

20. The matrix is a rotation

matrix. What is the associated angle of rotation?

21. Consider the matrix 

Describe the effect of successively applying R,
to any nonzero vector v.R90R4, . . . ,R3,

R2,

R � Bcos 1° �sin 1°

sin 1° cos 1°
R .

R � B0.9272 �0.3746

0.3746 0.9272
R

Gaussian Elimination

In this section we develop a procedure known as Gaussian elimination for solving
any system of linear equations. The elimination method was devised by Carl Friedrich
Gauss in about 1820 to solve systems of linear equations in astronomical and land-
surveying computations. For our purposes here, when we speak of a system of linear
equations, we assume that the number of equations equals the number of variables.

Suppose that we start with the system of linear equations

Gaussian elimination involves two stages. The first stage transforms the given
system of equations, or equivalently the associated matrix of coefficients, into
upper triangular form, with only 0’s below the main diagonal of the matrix:

(We show how to do this shortly.) Once we have transformed the original system of
equations to upper triangular form, solving it is quite simple. The second stage of
the process uses “back substitution” to obtain values for the variables. That is, know-
ing from the third equation that we can solve for y in the second equation:

Now, knowing y and z, we can solve for x from the first equation:

We can simplify this procedure by using vectors and matrices. Instead of using
x, y, and z as the variables, we use and We then write the upper triangular
form for the preceding system of equations in matrix form as 

To apply Gaussian elimination to any system of linear equations, we transform
the original coefficient matrix into upper triangular form by applying the follow-
ing three elementary row operations repeatedly.

A � C3 �5 4

0 3 1

0 0 1

S  ,  x � Cx1

x2

x3

S  , and b � C10

1

1

S  .

Ax � b, where
x3 .x2 ,x1 ,

3x � 510 2 � 411 2 � 10 so that x � 2.

3y � 11 2 � 1 so that y � 0.

z � 1,

 z � 1.

 3y � z � 1

 3x � 5y � 4z � 10

 6x � 2y � 2z � 10.

 3x � 2y � 5z � 11

 3x � 5y � 4z � 10

10.5
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10.5 Gaussian Elimination 701

Elementary Row Operations

� Multiply or divide any row of a matrix (or an equation) by a nonzero
number.

� Add a multiple of one row (or equation) to another row (or equation).

� Interchange two rows (or two equations).

Realize that performing any of these operations on the rows of a matrix is
equivalent to performing the same operation on the original equations. Becasue the
operations do not materially change the equations, the equivalent operations do not
materially change the matrix, so we will get the same solution.

Because the numbers, not the variables, are what matter in the equations, we
work with the coefficient matrix A extended by a column for the right-hand side
vector b. This matrix of coefficients along with the right-hand side vector
is called the augmented coefficient matrix. For instance, if the system of equa-
tions is

so that

then the augmented matrix is

In Example 1 we show the steps involved in applying Gaussian elimination to
both the system of linear equations and the associated augmented matrix.

EXAMPLE 1
Use Gaussian elimination to solve the following system of two equations in two unknowns.

(1)

(2)

Solution This system is equivalent to the augmented matrix

To eliminate the x-term from Equation (2), we add times Equation (1) to Equation
(2) (the second elementary row operation). The result is a new second Equation ( ):

Equivalently, we perform the identical operation on the corresponding rows of the

   12 2     x � 2y � �4

� 
1
2 11 2     �x � 0.5y � �3.5

12	 2 � 12 2� 
1
2 11 2       0 � 2.5y � �7.5

2	
� 

1
2

B2 1

1 �2
2 7

�4
R .

 x � 2y � �4

 2x � y � 7

[A�b] � B2 3

4 �5
2 7

3
R .

A � B2 3

4 �5
R and b � B7

3
R ,

 4x � 5y � 3

 2x � 3y � 7

[A�b]
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702 CHAPTER 10 Matrix Algebra and Its Applications

augmented matrix: Add times the first row to the second row. Our new system of
equations and the new augmented matrix become

(1)

(2')

and

Note that any solution to Equations (1) and (2) is also a solution to Equations (1) and 
because we can reverse the step that created Equation That is, im-
plies that Thus Equation (2) is formed from Equation and a mul-
tiple of Equation (1), and so any solution to Equations (1) and is also a solution to
Equations (1) and (2). But Equation is trivial to solve, and gives Substituting

into Equation (1), we get

Verify that and satisfy the two original Equations (1) and (2).

�

When solving a system of linear equations, you should always check your re-
sult by substituting the values for the variables into the original equations, not the
transformed equations, in case you made a mathematical error along the way.

Note also that the work we did on the system of equations exactly parallels
what happens with the augmented matrix. Eventually, we will dispense with the
equations altogether and work exclusively with the augmented matrix because it
eliminates writing and keeping track of the variables at every step.

A Geometric Interpretation

If there are only two equations in two unknowns, you can also solve the system
graphically by plotting the two lines. The first equation represents all points on one
line and the second equation represents all points on the second line. Thus the so-
lution to the system of equations corresponds to the point of intersection and you
can approximate this point with your graphing calculator.

There is a comparable geometric interpretation for a system of three linear
equations in three unknowns. Just as an equation of the form repre-
sents a line in the two-dimensional coordinate plane, an equation of the form

represents a plane in three-dimensional space. When you have
three equations in three unknowns, you actually have three different planes in
space, as suggested in Figure 10.35. Visualize, for instance, the ceiling, the wall in
front of you, and the wall to your left. These three planes intersect at a single point
in the upper corner of the room to your left. This point of intersection also is the
solution of the system of three equations. Unfortunately, graphing calculators
cannot yet use this geometric interpretation to solve such a system of equations.

Also, there can be some complications: You know that two lines can be parallel, so
the resulting system of two equations in two unknowns will not have a solution. Sim-
ilarly, three planes don’t necessarily have a common point of intersection. Visualize

ax � by � cz � d

ax � by � d

y � 3x � 2

2x � 3 � 7, so x �
17 � 3 2

2
� 2.

y � 3
y � 3.12	 2

12	 2
12	 212 2 � 12	 2 � 1

2 11 2 .
12	 2 � 12 2 � 1

2 11 212	 2 .
12	 2

B2 1

0 �2.5
  2   

7

�7.5
R .

 �2.5y � �7.5,

 2x � y � 7

� 
1
2
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10.5 Gaussian Elimination 703

the ceiling, the floor, and the wall in front of you—they don’t meet at a single point.
Or, picture a long triangular prism made up of three flat sides that likewise have no
single point of intersection. Alternatively, three planes can all pass through a common
line of intersection, as with a revolving door. In that case the system of linear equa-
tions has infinitely many solutions. We consider such cases later in Example 3.

The Clothes Production Model and Gaussian Elimination

Recall the clothes production model introduced in Section 10.2 with three clothing
factories whose raw material production levels had to be chosen to meet the de-
mands for vests, pants, and coats.

(3)

(4)

(5)

EXAMPLE 2
Set up the corresponding augmented matrix and use Gaussian elimination to solve the
system of equations.

Solution The augmented matrix is

To solve this system, we first use multiples of Equation (3) to eliminate from Equa-
tions (4) and (5). Because is half of in Equation (3), we add times Equation
(3) to Equation (4) to cancel the terms and and so get a new second
Equation 

   14 2     10x1 � 14x2 � 5x3 �    850
� 

1
2 13 2                �10x1 �    2x2 � 2x3 � �250

14	 2 � 14 2 � 1� 
1
2 2 13 2       0    � 12x2 � 3x3 �  600

14	 2 .
10x1� 

1
2 120x1 2

� 
1
220x110x1

x1

C20 4 4

10 14 5

5 5 12

  3 500

850

  1000

S  .

Coats:  5x1 � 5x2 � 12x3 � 1000

Pants:  10x1 � 14x2 � 5x3 � 850

Vests:  20x1 � 4x2 � 4x3 � 500

FIGURE 10.35
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Similarly, we add times Equation (3) to Equation (5) to eliminate the -term from
Equation (5) and get a new Equation 

Our new system of equations is now

(3)

(4')

(5')

and the corresponding augmented matrix is

Next we use Equation to eliminate the -term from Equation by adding
times Equation to Equation We obtain a new Equation 

Our final system of equations in upper triangular form then is

(3)

(4')

(5")

with the associated augmented matrix

Any solution to the original system is also a solution to the new system. Further-
more, reversing the steps used in going from the original system to the final system (so
that the original system is formed from linear combinations of the equations in the final
system), we see that any solution to the new system is also a solution to the original sys-
tem. The final system is in upper triangular form, so we can solve it using back substitu-
tion. From Equation we have

Substituting this value into Equation yields

12x2 � 3167.5 2 � 600, so 12x2 � 600 � 202.5, or x2 � 33.125.

14	 2

x3 �
675

10
� 67.5.

15
 2 ,

C20 4 4

0 12 3

0 0 10

  3   
500

600

675

S  .

 10x3 � 675

 12x2 � 3x3 � 600

 20x1 � 4x2 � 4x3 � 500

 15	 2    4x2 � 11x3 �    875
� 

1
3 14	 2                 �4x2 �   1x3 � �200

15
 2 � 15	 2 � 1� 
1
3 2 14	 2         10x3 �    675

15
 2 .15	 2 .14	 2� 
1
3

15	 2x214	 2

C20 4 4

0 12 3

0 4 11

   3    

500

600

875

S  .

 4x2 � 11x3 � 875,

 12x2 � 3x3 � 600

 20x1 � 4x2 � 4x3 � 500

  15 2    5x1 � 5x2 � 12x3 �    1000
� 

1
4 13 2       �5x1 � 1x2 �   1x3 �    �125

15	 2 � 15 2 � 1� 
1
4 2 13 2         4x2 � 11x3 �     875

15	 2 .
x1� 

1
4
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10.5 Gaussian Elimination 705

Next substituting and into Equation (3) gives

so that

Therefore the vector of the number of rolls of cloth needed by each of the three clothing
factories is

�

Clearly in practice, cloths come in full rolls, so a more realistic solution would in-
volve rounding up to the next full roll of cloth.

Incidentally, you can apply the three elementary row operations in many differ-
ent ways to solve a particular system of equations. However, although the steps you
use might differ from those of others solving the same problem, you should all ob-
tain the same solution in the end, if none of you have made any mathematical errors.

Most graphing calculators have a built-in routine for applying Gaussian elimina-
tion to any set of linear equations. Typically, you would enter the coefficients, press
the SOLVE key, and the calculator will respond with the solution or will indicate that
either there is not a unique solution or no solution exists. (The specific key operations
differ from one machine to another, so check your manual for details.) From one
point of view, this approach is extremely simple because you get the answer instantly.
However, it does have the drawback of not letting you see how the method works or
understand what went wrong when the method fails, as we discuss below.

Systems of Linear Equations with Multiple Solutions

In our discussion regarding the geometric interpretation of systems of three equations
in three unknowns, we mentioned that it is possible that three planes can have many
points of intersection, as in a revolving door. We illustrate this type of situation in
Example 3 where we change the number on the right-hand side of the third equation
in Example 2 from 1000 to 325 and the coefficient of from 12 to 2.

EXAMPLE 3
Apply Gaussian elimination to the system of linear equations

(6)

(7)

(8)

Solution The corresponding augmented matrix is

C20 4 4

10 14 5

5 5 2

  3   
500

850

325

S  .

 5x1 � 5x2 � 2x3 � 325.

 10x1 � 14x2 � 5x3 � 850

 20x1 � 4x2 � 4x3 � 500

x3

Cx1

x2

x3

S �  C 4.875

3.125

67.5

S � C 4 
7
8

33 
1
8

67 
1
2

S .

x1 �
500 � 132.5 � 270

20
� 4.875.

20x1 � 4133.125 2 � 4167.5 2 � 500

x2 � 33.125x3 � 67.5
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After eliminating from Equations (7) and (8), we have

along with the associated augmented matrix

Next we add times Equation to Equation to eliminate the -term:

The corresponding augmented matrix is

But this process eliminates the term, and simultaneously the constant term on the
right becomes 0. Also, note that Equation is equivalent to times Equation As
a consequence, we actually have only two equations in three unknowns. This system has
infinitely many solutions because we can choose any value for and then use back sub-
stitution to determine and based on our choice for For instance, if we choose

Equation gives so and then Equation (6) gives
so Alternatively, if we choose eventually

Equation gives and so Equation (6) gives That is, we have obtained
two very different solutions to the same system of equations. In fact, had we selected any
other positive value for we would have obtained still another solution to the system
(but not necessarily to the original problem). Thus, geometrically, the corresponding
planes in three dimensions all pass through a common line of intersection, and every
point on this line is a solution to the system.

�

Incidentally, if you attempted to solve the system of equations in Example 3 on
a graphing calculator, say, you would get an error message of the form SINGULAR
MATRIX. We discuss what this message means later in this section.

Systems of Linear Equations with No Solutions

We pointed out in our discussion of the geometry of systems of equations that
three planes may have no common point of intersection, as with the floor, ceiling
and one wall in a room. We illustrate this situation in Example 4 by making anoth-
er minor change in the value on the right-hand side of the third equation in the
original system in Examples 2 and 3.

x3 ,

x1 � 9.x2 � 40,17	 2
x3 � 40,x1 � 15.20x1 � 4150 2 � 410 2 � 500,

x2 � 50,12x2 � 310 2 � 600,17	 2x3 � 0,
x3 .x1 ,x2

x3

17	 2 .1
318	 2

x3

C20 4 4

0 12 3

0 0 0

  3   
500

600

0

S  .

16 2 20x1 � 4x2 � 4x3 � 500

17	 2        12x2 � 3x3 � 600

18
 2 � 18	 2 � 1
3 17	 2               0x3 � 0

x218	 217	 2� 
1
3

C20 4 4

0 12 3

0 4 1

  3   
500

600

200

S  .

16 2 20x1 � 4x2 � 4x3 � 500

17	 2 � 17 2 � 1
2 16 2        12x2 � 3x3 � 600

18	 2 � 18 2 � 1
4 16 2         4x2 � 1x3 � 200,

x1
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10.5 Gaussian Elimination 707

EXAMPLE 4
Apply Gaussian elimination to the system of linear equations

(9)

(10)

(11)

Solution The corresponding augmented matrix is

Eliminating as before, we get

(9)

(10')

(11')

The associated augmented matrix is

We now use Equation to eliminate the -term in Equation to get

(9)

along with the augmented matrix

The two Equations and are called inconsistent equations because they lead to
the impossible Equation Hence the original system has no solution.
Geometrically, this outcome indicates that the corresponding planes in three dimen-
sions do not have a common point of intersection.

�

If you attempted to solve this system of equations on a graphing calculator, say,
you would again get an error message about a SINGULAR MATRIX.

In the real world, the inconsistency that occurred in Example 4 would be re-
solved by increasing one of the right-hand side demands (thus producing an excess
amount of one type of clothing).

We now summarize the steps of Gaussian elimination.

0 � 675.111
 2 :
111	 2110	 2

C20 4 4

0 12 3

0 0 0

  3   
500

600

675

S  .

0x3 � 675,111
 2 � 111	 2 � 1� 
1
3 2 110	 2

12x2 � 3x3 � 600110	 2
20x1 � 4x2 � 4x3 � 500

111	 2x2110	 2

C20 4 4

0 12 3

0 4 1

  3   
500

600

875

S  .

 4x2 � 1x3 � 875.

 12x2 � 3x3 � 600

 20x1 � 4x2 � 4x3 � 500

x1

C20 4 4

10 14 5

5 5 2

  3   
500

850

1000

S  .

 5x1 � 5x2 � 2x3 � 1000.

 10x1 � 14x2 � 5x3 � 850

 20x1 � 4x2 � 4x3 � 500
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AA�1 � I2 � A�1A.

If, in the process, the coefficient of in the ith equation is
zero and the coefficient of in one of the following equations is nonzero, simply
interchange the two equations.

Using the Inverse Matrix

We can use a related approach with matrices to solve systems of equations. Let’s
begin with the matrices

Their product is

The matrix is called the identity matrix and is denoted by 

For any matrix A,

so plays the same role for matricies as the number 1 plays in arithmetic:
Similarly, the identity matrix for matrices is

and so on. The preceding matrices A and B are said to be inverses of each other. We
write and the product of the matrix and its inverse is the identity matrixB � A�1,

I3 � C1 0 0

0 1 0

0 0 1

S  ,

3 � 3a . 1 � 1 . a � a.
2 � 2I2 

AI2 � I2A � A,

2 � 2

I2 .2 � 2B1 0

0 1
R

AB � B1 0

4 2
R   B 1 0

�2 1
2

R � B1 0

0 1
R .

A � B1 0

4 2
R and B � B 1 0

�2 1
2

R .

xi

n � 1 22, . . . ,1i � 1,xi

The inverse of a matrix can be extremely useful in solving systems of linear equations.
Not every matrix has an inverse. A matrix that does not have an inverse is called

a singular matrix. (Note that this is the same term that is used in the error message
on graphing calculators when a system of equations has no solution or multiple so-
lutions.) A square matrix A has an inverse if, when we use Gaussian elimination to
reduce it to upper triangular form, all the diagonal elements are nonzero. However, if
any of the diagonal elements are zero, no inverse exists and the matrix is singular.

Gaussian Elimination

1. Add multiples of the ith equation, for to the
remaining equations to eliminate the ith variable from the other
equations.

2. Solve the resulting upper triangular system of equations, using back
substitution.

n � 1,2, . . . ,i � 1,
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10.5 Gaussian Elimination 709

Suppose now that we have the matrix-vector equation and that the
matrix A is not singular, so its inverse exists. Matrix A can be any size, so

we denote the corresponding identity matrix by I without designating its size.
Then we can left-multiply the equation by this inverse matrix and obtain

which automatically gives the desired solution vector x.
Note that we haven’t discussed how to calculate the inverse of a matrix A. We

can do so by using an extension of the Gaussian elimination process, but that is
somewhat outside the scope of what we want to focus on here. Instead, note that
your calculator will do this for you. Enter a square matrix A, call it up and press the
x-1 key, and your calculator will give you the inverse matrix A-1 if it exists. If the in-
verse does not exist, you will get an error message. Multiply this inverse matrix and
the vector of constants b to get the desired solution vector 

Some of you may have seen a method called Cramer’s rule, which uses
determinants for solving a system of linear equations. Although fairly effective for
solving systems of two or three equations, Cramer’s rule is very inefficient for larg-
er systems. Suppose, for instance, that you use a relatively slow computer that can
perform only 1 million operations per second. To solve a system of 20 equations in
20 unknowns with Cramer’s rule would take it about 77,000 years! The same com-
puter could solve that system in about 0.003 second using Gaussian elimination or
matrix methods.

Applications of Gaussian Elimination

We now consider a series of further applications involving systems of equations.
We begin by using Gaussian elimination to investigate the long-term behavior of
Markov chains.

Steady State of the Markov Chain for the Stock Market Consider again the
stock market Markov chain introduced in Section 10.2 with the transition matrix

Market Today
Up Down Same

We noted that over many time periods, the successive probability vectors con-
verged to 0.35 for the market going up, 0.40 for the market going down, and 0.25
for the market staying the same. We confirm the fact that

is the steady state or the equilibrium state of the Markov chain by showing that if
the market ever reaches this state on one day, the vector for the following
day will be the same as p. That is, at the steady state, there is no subsequent change

p� � Ap

p � C0.35

0.40

0.25

S

Market

Tomorrow
 

Up

Down

Same

C 1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

S � A.

x � A�1b.

 x � A�1b,

 Ix � A�1b

 A�1Ax � A�1b

A�1n � n
Ax � b
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in the values for the probabilities. Using a calculator to perform the matrix–vector
product gives

In Example 5, we show how to find the equilibrium state, denoted  by p*, for a
Markov chain exactly.

EXAMPLE 5
Find the equilibrium state p* for the preceding matrix A.

Solution We want a vector p* that satisfies the matrix-vector equation Let
the components of p* be denoted by and Note that 
because the sum of all the probabilities associated with an event must sum to 1.

Because we have

Collecting the variables on the left, we get the following system of three equations in the
three unknowns and 

Solving this system by Gaussian elimination applied to the augmented coefficient ma-
trix, we obtain

To eliminate the fractions, we multiply the first row by 4 and the second row by 12:

This augmented matrix is equivalent to the reduced system of equations

Because there are only two equations in the three unknowns, there is no unique solu-
tion. Instead, we can solve for any two of the variables in terms of the third—say,
The second equation then gives

p2ˇ* �
8

5
 p3ˇ*

p3ˇ* .

 5p2ˇ* � 8p3ˇ* � 0.

 3p1ˇ* � 2p2ˇ* � p3ˇ* � 0

C3 �2 �1 

0 5 �8 

0 0 0 

 3  0

0

 0

S  .

C 3
4 � 

1
2 � 

1
4 

� 
1
2

3
4 � 

1
2 

� 
1
4 � 

1
4

3
4 

 3  0

0

 0

S ⇒ C 3
4 � 

1
2 � 

1
4 

0 5
12 � 

2
3 

0 � 
5

12
2
3 

 3  0

0

 0

S ⇒   C 3
4 � 

1
2 � 

1
4 

0 5
12 � 

2
3 

0 0 0 

 3  0

0

 0

S  .

 � 
1
4 p1ˇ* � 1

4 p2ˇ* � 3
4 p3ˇ* � 0.

 � 
1
2 p1ˇ* � 3

4 p2ˇ* � 1
2 p3ˇ* � 0

 34 p1ˇ* � 1
2 p2ˇ* � 1

4 p3ˇ* � 0

p *3  :p *2  ,p1ˇ* ,

Cp1 *

p2 *

p3 *

 S� C 1
4 p1 * � 1

2 p2 * � 1
4 p3 *

1
2 p1 * � 1

4 p2 * � 1
2 p3 *

1
4 p1 * � 1

4 p2 * � 1
4 p3 *

S  .

p* � Ap*,

p1ˇ* � p2ˇ* � p3ˇ* � 1p3ˇ* .p2ˇ* ,p1ˇ* ,
p* � Ap*.

p� � Ap � C 1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

S  C0.35

0.40

0.25

S � C0.35

0.40

0.25

S � p.
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10.5 Gaussian Elimination 711

and, when we substitute it into the first equation and solve for we have

Where is our unique vector of stable probabilities? In this solution we obtained infi-
nitely many solutions—one for each value of We now use the fact that the sum of
the three probabilities must equal 1, or We substitute the expres-
sions for and in terms of to obtain

so that Therefore

These probabilities are identical to those in the equilibrium state vector of the market
Markov chain given previously.

�

Systems of linear equations of the form with a zero vector, 0, on the
right-hand side, such as the one in Example 5, occur frequently in matrix alge-
bra. They are called homogeneous systems of linear equations. In comparison, sys-
tems of equations of the form where are called nonhomogeneous
systems.

When solving a homogeneous system, we usually are interested in a nonzero
solution, as was the case here. Note, however, that is always a solution to any
homogeneous system Thus, if we are to get a nonzero solution, we must
have a case of multiple solutions.

Applications to Analytic Geometry Next, we apply Gaussian elimination to
solve some systems of linear equations that arise in analytic geometry.

One of the most basic objects in geometry is a line, whose equation can be
written as Suppose that we have two points, P with coordinates 
and Q with coordinates and we want to find the equation of the line through
these points. We could solve this problem by finding the slope of the line segment
joining the two points and then using the point–slope formula. Here, however, we
solve this problem using systems of equations to illustrate some important mathe-
matical ideas that can be extended to answer considerably more complicated ques-
tions. The results either way are the same.

EXAMPLE 6
Use matrix methods to find the equation of the line through the points and 

Solution First, let’s be clear about what we need to find. The equation of the line
is determined by two constants—the slope a and the vertical intercept b. Al-

though a and b are constants for a particular line, we can think of them as parameters
that distinguish one line from another. We need to determine appropriate values for a
and b so that the line passes through the points and According-
ly, a and b must satisfy the following two equations.

16, 7 2 .13, 1 2y � ax � b

y � ax � b

16, 7 2 .13, 1 2

16, 7 2 ,
13, 1 2y � ax � b.

Ax � 0.
x � 0

b � 0,Ax � b,

Ax � 0

p2ˇ* �
8

5
 10.25 2 � 0.40 and p1ˇ* �

7

5
 10.25 2 � 0.35.

p3ˇ* � 0.25.

p1ˇ* � p2ˇ* � p3ˇ* �
7

5
 p3ˇ* �

8

5
 p3ˇ* � p3ˇ* �

20

5
 p3ˇ* � 4p3ˇ* � 1,

p3ˇ*p2ˇ*p1ˇ*

p1ˇ* � p2ˇ* � p3ˇ* � 1.
p3ˇ* .

p1ˇ* �
2p2ˇ* � p3ˇ*

3
�

218>5 2p3ˇ* � p3ˇ*

3
�

7

5
 p3ˇ* .

p1ˇ* ,
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We rewrite these two equations in standard form to get

Subtracting twice the first equation from the second equation yields

Substituting back into the second equation gives

Therefore the equation of the desired line is

�

We now extend the ideas in Example 6 to find the equation of a parabola
We need to determine the values of the parameters a, b, and c.

To solve for these three unknowns, we need three linear equations. As with the
line, we get a linear equation associated with each point the parabola goes
through. For three equations, we need three points. Suppose that the three points
are and Note that the three points must be noncollinear
(i.e., they cannot lie on a common line). Each point determines an equation
when we substitute its coordinates, x and y, into the parabola’s formula

For point 

For point 

For point 

Hence we have the system of linear equations

In Problem 17 we ask you to solve these three equations to determine a, b, and c.
Next, we apply this curve-fitting method to a more complicated situation—

namely, finding the equation of a circle. The familiar form of the equation of a
circle is

where is the center of the circle and c is the radius. It turns out that, just as
three noncollinerar points determine a parabola, any three noncollinear points
also determine a circle. We now have three parameters a, b, and c to determine,
which should lead to three equations in the three unknowns. But the equations
arising from giving particular values to x and y in the above equation for the circle

1a, b 2

1x � a 2 2 � 1y � b 2 2 � c 
2,

 a � b � c � 8.

 16a � 4b � c � 3

 4a � 2b � c � �1

8 � a1�1 2 2 � b1�1 2 � c1�1, 8 2 :
3 � a14 2 2 � b14 2 � c14, 3 2 :

�1 � a12 2 2 � b12 2 � c12, �1 2 :

y � ax2 � bx � c.

1�1, 8 2 .14, 3 212, �1 2 ,

y � ax2 � bx � c.

y � 2x � 5.

6a � 1�5 2 � 7, so 6a � 12, and a � 2.

�b � 5, so that b � �5.

 6a � b � 7.

 3a � b � 1

For point 16, 7 2 : 7 � a16 2 � b

For point 13, 1 2 : 1 � a13 2 � b
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10.5 Gaussian Elimination 713

will not be linear (there will be and terms), so we cannot use Gaussian elimi-
nation to determine a, b, and c based on the equation 
However, if we expand this expression algebraically, we get

Therefore we can transform the equation of the circle to the form

where and are three other parameters.
Using this form, we can set up three linear equations in these three unknowns and
solve for them with Gaussian elimination. Once we have their values, we can
rewrite the equation of the circle in the more familiar form and read the coordi-
nates of the center and the radius. We illustrate these ideas in Example 7.

EXAMPLE 7
Find the equation of the circle passing through the points and 

Solution Using the equation

we create three linear equations that C, D, and E must satisfy.

For the point 

For the point 

For the point 

Moving the constant terms to the right-hand side in each equation, we have

(12)

(13)

(14)

We now apply Gaussian elimination to this (nonhomogeneous) system of three linear equa-
tions in three unknowns. First, to eliminate C from Equations (13) and (14), we subtract of
Equation (12) from Equation (13) and subtract of Equation (12) from Equation (14).

(12)

Next we eliminate D from the last equation by subtracting of Equation from
Equation 

(12)

1

2
 E � �10114
 2 � 114	 2 � 3

2 113	 2

5D �
1

2
 E � �10113	 2

4C � 2D � E � �20

114	 2 .
113	 23

2

15

2
 D �

1

4
 E � �25114	 2 � 114 2 � 5

4 112 2

5D �
1

2
 E � �10113	 2 � 113 2 � 3

2 112 2

4C � 2D � E � �20

5
4

3
2

5C � 5D � E � �50.

6C � 2D � E � �40

4C � 2D � E � �20

52 � 52 � C15 2 � D15 2 � E � 015, 5 2 :
62 � 22 � C16 2 � D12 2 � E � 016, 2 2 :
42 � 1�2 2 2 � C14 2 � D1�2 2 � E � 014, �2 2 :

x2 � y2 � Cx � Dy � E � 0,

15, 5 2 .16, 2 214, �2 2 ,

E � a2 � b2 � c2D � �2b,C � �2a,

x2 � y2 � Cx � Dy � E � 0,

 � x 
2 � y 

2 � 2ax � 2by � a2 � b2 � c 
2.

 1x � a 2 2 � 1y � b 2 2 � 1x2 � 2ax � a2 2 � 1  y 
2 � 2by � b2 2

1x � a 2 2 � 1y � b 2 2 � c 
2.

b2a2
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714 CHAPTER 10 Matrix Algebra and Its Applications

x

y

(4, –2)

(6, 2)

(5, 5)

(1, 2)

FIGURE 10.36

From Equation we have Substituting back into Equation yields

Then substituting back into Equation (12) yields

Therefore one form of an equation for our circle is

We rewrite this equation in the more familiar form by completing the square on both x
and y (see Appendix A8):

Thus our circle is centered at the point and has radius 5, as shown in Figure 10.36.11, 2 2

 1x � 1 2 2 � 1y � 2 2 2 � 1 � 4 � 20 � 25.

 3 1x � 1 2 2 � 1 4 � 3 1  y � 2 2 2 � 4 4 � 20 � 0

 3 1x2 � 2x � 1 2 � 1 4 � 3 1  y2 � 4y � 4 2 � 4 4 � 20 � 0

 3 1x2 � 2x 2 4 � 3 1  y2 � 4y 2 4 � 20 � 0

x2 � y2 � 2x � 4y � 20 � 0.

4C � 21�4 2 � 1�20 2 � �20, so 4C � �8 and C � �2.

5D �
1

2
 1�20 2 � �10, so 5D � �20 and D � �4.

113	 2E � �20.114
 2 ,

1. Solve each system of equations using Gaussian
elimination.

a. b.

c. d.

e.

2. Use Gaussian elimination to solve each variation on
the clothes production model in Example 2. Some

 �4x � 3y � �2
 3x � 2y � 3

 �2x � 5y � 2 �4x � y � 1
 3x � 2y � 3 2x � 3y � 4

 �x � 2y � 9 2x � 3y � 4
 x � 4y � 3 x � y � 8

variations may have no solution, some may have
multiple solutions (express such an infinite family
of solutions in terms of ), and some may have an
unrealistic solution involving negative values.

a.

b.

 2x1 � 12x3 � 1000
 10x1 � 10x2 � 850

 6x1 � 5x2 � 6x3 � 500

 4x1 � 5x2 � 11x3 � 2050
 8x1 � 3x2 � 5x3 � 850

 20x1 � 4x2 � 4x3 � 500

x3

Problems

�

Substitute the coordinates of the three points in Example 7 into the usual equation
for a circle, to see the types of equations involving the
three parameters a, b and c that would result. ❐

1x � a 2 2 � 1  y � b 2 2 � c2,
Think About This
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10.5 Gaussian Elimination 715

c.

d.

3. Solve each system of equations using Gaussian
elimination.

a.

b.

c.

d.

e.

f.

4. In each set of three equations, show that the third
equation equals some multiple r of the first equation
added to the second equation:

a.

b.

c.

5. Determine whether each system of equations has a
unique solution, multiple solutions, or is inconsis-
tent (has no solution).

a.

b.
 �3x � 6y � 4

 x � 2y � �3

 �3x � 6y � 9
 x � 2y � �3

13 2   6x � 0.5y � 2z � 0.5

12 2   3x � y � z � 8

11 2   2x � y � 2z � �5

 13 2  �2x � 4y � 4z � �3

12 2  x � y � z � 3

11 2  x � y � z � 2

 13 2  x � 3y � 1

 12 2  3x � y � 9

 11 2  x � 2y � 4

13 2 � r . 11 2 � 12 2 .

 3x1 � x2 � 2x3 � �3
 3x1 � 2x2 � 4x3 � 2

 x1 � x2 � 2x3 � 2

 2x1 � x2 � 2x3 � 5
 x1 � 2x2 � 3x3 � 11
 x1 � 2x2 � 2x3 � 3

 x1 � x2 � 2x3 � �1
 �2x1 � 2x2 � 3x3 � �4

 2x1 � 4x2 � 2x3 � 4

2x1 � x2 � 3x3 � 4
 5x1 � 4x2 � 6x3 � 12

 �x1 � 3x2 � 2x3 � �1

3x1 � 2x2 � x3 � 0
 �x1 � 2x2 � 2x3 � �3

 2x1 � x2 � x3 � 2

 2x1 � x2 � 2x3 � 2
 �x1 � 2x2 � 3x3 � 1

 x1 � 2x2 � x3 � 3

 12x2 � 6x3 � 500
 4x1 � 8x2 � 5x3 � 500
 8x1 � 4x2 � 3x3 � 500

 3x1 � 2x2 � 6x3 � 1000
 3x1 � 6x2 � 3x3 � 300
 6x1 � 2x2 � 2x3 � 500 c.

d.

e.

f.

6. For each augmented matrix, state whether the asso-
ciated system of equations has a unique solution,
multiple solutions, or no solution.

a. b.

c. d.

e.

7. (Continuation of Problem 4 of Section 10.2) Con-
sider the following clothes production model. There
are three clothing factories (1, 2, and 3) and from
each roll of cloth, the different factories produce the
following numbers of vests, pants, and coats.

Factory 1 Factory 2 Factory 3

Suppose that the demand is for 400 vests, 800 pants,
and 500 coats. Write a system of equations whose
solution would determine production levels (rolls
of cloth needed by each factory) to yield the desired
numbers of vests, pants, and coats. Find the solu-
tion using Gaussian elimination.

8. (Continuation of Problem 5 of Section 10.2) From
each shipment of crude petroleum, Refineries 1, 2,
and 3 produce the following amounts (in thousands
of gallons) of heating oil, diesel oil, and gasoline.

Vests

Pants

Coats

 C6 4 2

4 8 4

3 2 8

S

C2 1 3

0 1 0

0 0 1

  3  0

0

0

S
C4 2 3

0 4 2

0 2 1

  3  3

6

3

SC1 2 7

0 4 2

0 0 0

  3  5

1

0

S
C1 2 2

0 5 1

0 0 0

   3  3

6

2

SC3 3 1

0 1 5

0 0 1

   3  0

1

2

S

 x1 � x2 � 2x3 � 0
 2x1 � x2 � 3x3 � 0

 �x1 � 2x2 � x3 � 0

 x1 � x2 � x3 � 5
 x1 � 3x2 � 6x3 � 9
 x1 � 5x2 � 4x3 � 10

 5x2 � 2x3 � 0
 2x1 � x2 � 4x3 � 20
 x1 � 2x2 � 3x3 � 10

 6x � 15y � 9
 2x � 5y � 3
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716 CHAPTER 10 Matrix Algebra and Its Applications

Refinery 1 Refinery 2 Refinery 3

Suppose that the demand is for 6200 thousand gal-
lons of heating oil, 4000 thousand gallons of diesel
oil, and 4700 thousand gallons of gasoline. Write a
system of equations whose solution would deter-
mine production levels to yield the desired
amounts of heating oil, diesel oil, and gasoline. Find
the solution using Gaussian elimination.

9. (Continuation of Problem 6 of Section 10.2) The
staff dietitian at the California Institute of Trig-
onometry has to make up a meal with 600 calories,
20 grams of protein, and 200 mg of vitamin C. The
three food types that the dietitian can choose from
are gelatin, fish sticks, and mystery meat. They have
the following nutritional content per ounce.

Gelatin Fish Sticks Mystery Meat

Describe the dietitian’s problem and create a
mathematical model for it with a system of three
linear equations. Find the solution using Gaussian
elimination.

10. (Continuation of Problem 7 of Section 10.2) A
company has a budget of $280,000 for computing
equipment. The types of equipment available are
microcomputers at $2000 each, terminals at $500
each, and workstations at $5000 each. There should
be five times as many terminals as microcomputers
and twice as many microcomputers as worksta-
tions. Set up a system of three linear equations for
this situation. Find the solution using Gaussian
elimination.

11. Find the equilibrium state for the Markov chains
with the following transition matrices.

a. b. c.

12. The copy machine at the student union breaks
down with the following pattern. If it is working
today, there is a 70% chance that it works tomorrow
(and a 30% chance of breaking down). If it is bro-
ken today, there is a 50% chance that it works to-

B 

1 1
2

0 1 

2
 
RB  

3
4

1
4

1
4

3 

4

 RB 

2
3

1
3

1
 3

2
3

 
R

Calories

Protein

Vitamin C

 C10 50 200

1 3 0.2

30 10 0

S

Heating Oil

Diesel Oil

Gasoline

 C8 5 3

2 5 5

3 7 6

S
morrow. Construct a Markov chain for this problem
and find the equilibrium state.

13. From past experience, the Pins bowling team knows
that if they win this week’s game, they have a 
chance of winning next week’s game. If they lose
this week’s game, they have a chance of winning
next week’s game. Construct a Markov chain for
this problem and find the stable distribution.

14. Find the equilibrium state for the Markov chains
with the following transition matrices.

a. b.

c.

15. The following model for learning a concept over a set
of lessons identifies four states of learning: Igno-
rance, Exploratory thinking, superficial
understanding, and If you are now
in State I, after one lesson you have probability of
still being in I and probability of being in E. If you
are now in State E, you have probability of being
in I, in E, and in S. If you are now in State S, you
have probability of being in E, in S, and in M. If
you are in State M, you always stay in M (with prob-
ability 1). Construct a Markov chain for this prob-
lem and find the equilibrium state.

16. Find the equation of the line passing through each
pairs of points, using Gaussian elimination.

a. b.
c. d.
e. f.

17. Solve the three equations for determining the param-
eters of the parabola that passes
through the three points and 

18. A parabola passes through the points 
and Set up a system of linear equations in a,
b, and c and then solve it, using Gaussian elimina-
tion, to find the equation of the parabola.

19. Find an equation of the circle passing through each
triple of points, using Gaussian elimination.

a.
b.
c. 13, 1 2 , 12, 5 2 , 1�3, 6 2
12, 1 2 , 12, �3 2 , 10, 1 2
11, 0 2 , 10, 1 2 , 11, 1 2

14, 7 2 .
11, 2 21�1, 4 2 ,

1�1, 8 2 .14, 3 212, �1 2 ,
y � ax2 � bx � c

14, 1 2 , 1�1, �1 21�1, 1 2 , 12, �5 2
12, 1 2 , 13, 1 212, 3 2 , 1�1, 1 2
11, 0 2 , 10, 2 211, 1 2 , 12, 3 2

1
4

1
2

1
4

1
4

1
2

1
4

1
2

1
2

M � Mastery.
S �E �

I �

C0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

S
C 1

4
1
4

1
2

1
4

1
2

1
4

1
2

1
4

1
4

SC 1
3

2
3

1
3

0 0 1
3

2
3

1
3

1
3

S

1
2

2
3
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d.
e.

20. Just as two distinct points determine a line unique-
ly, three noncollinear points determine a para-
bola. Moreover, four noncollinear points, all of
which do not lie on a parabola, determine a cubic
polynomial.

a. A parabola passes through
the points and Set up a
system of linear equations in a, b, and c and then
solve it, using Gaussian elimination, to find the
equation of the parabola.

b. A cubic polynomial 
passes through the four points 

and Set up a system of linear equa-
tions in a, b, c, and d that could be used to find
the equation of the cubic. Then solve the system
using Gaussian elimination.

c. How does your answer to part (b) compare to
the result you can obtain with your calculator
using the routine for fitting a cubic function to a
set of data?

21. Find the inverse of the matrix 

algebraically. (Hint: Write the inverse as

and use the fact that to

solve for a, b, c, and d.) How does your answer com-
pare with what your calculator shows using its ma-
trix features?

22. a. Consider the rotation matrix

Based on geometric principles, predict what the
inverse matrix has to be.

b. Prove algebraically that the matrix you construct-
ed in part (a) is indeed the inverse matrix for R.

23. The method of linear regression discussed in Chap-
ter 3, in which the best fit line is con-
structed for a set of data, is based on solving a
system of linear equations for the unknown param-
eters a and b. It can be shown that, if the set of n data
points is then
a and b must satisfy the system of linear equations

 aa
n

i�1

xib a � nb � aa
n

i�1

yib

1xn , yn 2 ,1x3 , y3 2 , . . . ,1x2 , y2 2 ,1x1 , y1 2 ,

1x, y 2
y � ax � b

R�1

R � Bcos u �sin u

sin u    cos u
R .

AA�1 � I2A�1 � Ba b

c d
R

A � B1 0

4 2
R

15, 2 2 .14, 7 2 ,
11, �2 2 ,1�1, 4 2 ,

y � ax3 � bx2 � cx � d

14, 6 2 .11, �2 2 ,1�1, 5 2 ,
y � ax2 � bx � c

10, 0 2 , 14, 1 2 , 1�4, 1 2
1�1, �1 2 , 11, 3 2 , 12, �1 2

Recall that the summations indicate adding up all
the x-values, adding up all the y-values, adding up
the squares of all the x-values, and adding up all the
products of the x and y-values. Note that all the
summation terms are known constants once the x’s
and y’s have been given.

a. For the set of data 
and find the equation of

the regression line using your graphing calcula-
tor or appropriate software package.

b. Calculate the sums needed in the two preceding
equations by completing the entries in the table.

16, 65 2 ,15, 57 2 ,14, 45 2 ,
13, 33 2 ,12, 25 2 ,11, 11 2 ,

 aa
n

i�1

xi 

2b a � aa
n

i�1

xib b � aa
n

i�1

xi yib .

x y xy

1 11

2 25

3 33

4 45

5 57

6 65

gxy �gx2 �gy �gx �

x2

c. Use the results of part (b) to write the system of
linear equations in a and b that you can use to
determine the values for the unknown coeffi-
cients a and b in the regression equation.

d. Solve the system of equations in part (c) using
Gaussian elimination. How do your results com-
pare to what you obtained directly in part (a)?

e. In Chapter 3 we suggested that you scale down
large numbers, such as the full years 2000, 2001,

in a set of data. Based on your calcula-
tions in part (b), explain why doing so is desir-
able. In particular, what might happen if there
were many data values, if the x’ s, say, consisted
of full years and the y’ s were also large numbers?

24. Repeat parts (a)–(d) of Problem 23 for 
and 125, 9 2 .120, 12 2 ,115, 14 2 ,110, 17 2 ,15, 21 2 ,

10, 24 2 ,

2002, . . . ,
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Chapter Summary

In this chapter we introduced vectors and matrices and some of their properties
and applications. In particular, we emphasized

� What a vector is geometrically, algebraically, and as an ordered pair or or-
dered triple of numbers.

� What a matrix is algebraically and as an array of numbers.

� How to use vectors and matrices to construct mathematical models, including
Markov chains and growth models, of a wide variety of real-world problems.

� How to use vectors and matrices to rotate geometric figures.

� How to add and subtract vectors and matrices.

� How to compute the scalar product of two vectors.

� How to multiply matrices and vectors, and matrices and other matrices.

� How to use matrix multiplication to solve applied problems, including
Markov chains and linear growth models.

� How to solve a system of n linear equations in n unknowns, using Gaussian
elimination.

� How to apply Gaussian elimination to solve various real-world problems
with a system of linear equations.

� How to find an equation of various types of curves, such as parabolas and
circles, that pass through a given set of points.

Chapter Review Problems

1. Determine the magnitude of the displacement vec-
tors from point A to point B for each pair of points.

a.
b.
c.

2. a. If a plane is flying due south at 200 mph and the
wind is blowing in a direction that is north
of west at 50 mph, what are the actual direction
and speed of the plane?

b. Suppose instead that the wind is blowing from a
direction that is north of west at 50 mph.
How do your answers to part (a) change?

3. A furniture manufacturer makes tables, chairs, and
sofas. In one month, the company has available
1500 units of wood, 2300 units of labor, and 1800
units of upholstery. The manufacturer wants a pro-
duction schedule for the month that uses all these
resources. The different products require the fol-
lowing amounts of the resources.

40°

40°

B � 13, 3, �5 2A � 11, 2, �3 2 ,
B � 14, �1 2A � 1�1, 1 2 ,

B � 12, 3 2A � 16, 6 2 ,

Table Chair Sofa

Write a system of equations whose solution would
determine production levels to yield the desired
numbers of tables, chairs, and sofas.

4. If the stock market goes up today, historical data show
that for tomorrow it has a 60% chance of going up, a
20% chance of staying the same, and a 20% chance of
going down. If the market is unchanged today, it has a
20% chance of being unchanged, a 40% chance of
going up, and a 40% chance of going down tomorrow.
If the market goes down today, it has a 20% chance of
going up, a 20% chance of being unchanged, and a
60% chance of going down tomorrow.

a. Construct a Markov chain for this problem. Give
A, the matrix of transition probabilities, and
draw the transition diagram.

Wood

Labor

Upholstery

C4 1 3

3 2 5

0 2 4

S
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b. If there is a 30% chance of the market going up
today, a 10% chance of being unchanged, and a
60% chance of going down, what is the probabil-
ity distribution for the market tomorrow?

5. Let 

Compute: (a) (b) (c)
(d)

6. Let a, b, and c be as in Problem 5. Let

Which of the following matrix calculations are well
defined (the sizes match)? If the computation
makes sense, perform it. If necessary, a, b, or c may
be changed to row vectors.

a. aA b. bB c. cC
d. Aa e. Bb f. Cc

7. Three different types of computers need varying
amounts of four different types of integrated cir-
cuits. Matrix A gives the number of each circuit
needed by each computer.

Circuit

1 2 3 4

Let be the computer demand
vector. Let

p � D 2

5

1

10

T
d � 310 20 30 4

Computers

 A

 B

 C

 C2 3 2 1

5 1 3 2

3 2 2 2

S � A

C � D5 4 1

1 0 2

3 2 1

0 1 3

T .

B � C1 0 �1

2 �2 0

0 1 1

S  ,

A � C1 2 3 4

2 4 6 8

3 5 7 9

S  ,

a . a
a . 1b � c 2b . ca . b

a � C1

2

3

S  ,  b � C�1

3

�1

S  , and c � C2

5

8

S  .

be the price vector for the circuits (the cost in dollars
of each type of circuit).

a. Write an expression in terms of A, d, and p for
the total cost of the circuits needed to produce
the set of computers demanded; indicate where
the matrix–vector product occurs and where the
scalar product occurs.

b. Compute the total cost.

8. Let

Compute each matrix product (if possible).

a. AB b. BA c. AC
d. CA e. CB

9. Suppose that you are given the following matrices
involving the costs of fruits at different stores, the
amounts of fruit different types of people want, and
the numbers of people of different types in differ-
ent towns

Store 1 Store 2

Apples Oranges Pears

Person 1 Person 2

a. Compute a matrix that represents the cost of
each person’s fruit purchases at each store.

b. Compute a matrix that represents the quantity
of each fruit to be purchased in each town.

Town 1

Town 2
 B1000 500

2000 1000
R

Person 1 

Person 2
B5 10 3

4 5 5
R

Apples

Oranges

Pears

C0.10 0.15

0.15 0.20

0.10 0.10

S

C � D5 4 1

1 0 2

3 2 1

0 1 3

T .

B � C1 0 �1

2 �2 0

0 1 1

S  ,

A � C1 2 3 4

2 4 6 8

3 5 7 9

S  ,
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10. a. For the Markov chain matrix A in Problem 4,
compute and 

b. What vectors do the columns of the powers of A
appear to be approaching?

11. Solve each system of equations, using Gaussian
elimination.

a.

 �x1 �  5x2 �  4x3 � 4
 x1 �  x2 �  x3 � 7

 2x1 �  3x2 �  2x3 � 0

A5.A3,A2,
b.

12. Solve the system of equations obained for the furni-
ture model in Problem 3.

13. Find the stable distribution for the Markov chain in
Problem 4.

14. Use matrix methods to find the equation of the
parabola that passes through the three points 

and 13, 5 2 .12, 2 2 ,
11, 1 2 ,

 x1 �  2x2 �  3x3 � 5
 2x1 �  2x2 �  4x3 � �4

 �x1 �  x2 �  x3 � 2
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