
Network Theorems (ac)

18.1 INTRODUCTION

This chapter parallels Chapter 9, which dealt with network theorems as applied to dc networks.
Reviewing each theorem in Chapter 9 before beginning this chapter is recommended because
many of the comments offered there are not repeated here.

Due to the need for developing confidence in the application of the various theorems to net-
works with controlled (dependent) sources, some sections have been divided into two parts:
independent sources and dependent sources.

Theorems to be considered in detail include the superposition theorem, Thévenin’s and
Norton’s theorems, and the maximum power transfer theorem. The substitution and reciproc-
ity theorems and Millman’s theorem are not discussed in detail here because a review of
Chapter 9 will enable you to apply them to sinusoidal ac networks with little difficulty.

18.2 SUPERPOSITION THEOREM

You will recall from Chapter 9 that the superposition theorem eliminated the need for solv-
ing simultaneous linear equations by considering the effects of each source independently. To
consider the effects of each source, we had to remove the remaining sources. This was ac-
complished by setting voltage sources to zero (short-circuit representation) and current sources
to zero (open-circuit representation). The current through, or voltage across, a portion of the
network produced by each source was then added algebraically to find the total solution for
the current or voltage.

The only variation in applying this method to ac networks with independent sources is that
we are now working with impedances and phasors instead of just resistors and real numbers.

The superposition theorem is not applicable to power effects in ac networks since we are
still dealing with a nonlinear relationship. It can be applied to networks with sources of dif-
ferent frequencies only if the total response for each frequency is found independently and the
results are expanded in a nonsinusoidal expression, as appearing in Chapter 25.

One of the most frequent applications of the superposition theorem is to electronic systems
in which the dc and ac analyses are treated separately and the total solution is the sum of the
two. It is an important application of the theorem because the impact of the reactive elements

• Be able to apply the superposition theorem to ac

networks with independent and dependent

sources.

• Become proficient in applying Thévenin’s theorem

to ac networks with independent and dependent

sources.

• Be able to apply Norton’s theorem to ac networks

with independent and dependent sources.

• Clearly understand the conditions that must be

met for maximum power transfer to a load in an

ac network with independent or dependent

sources.
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XL2
4 �

–

+

XC 3 �
I

E2  =  5 V ∠ 0°E1  =  10 V ∠ 0°

–

+

XL1
4 �

FIG. 18.1

Example 18.1.

changes dramatically in response to the two types of independent
sources. In addition, the dc analysis of an electronic system can often de-
fine important parameters for the ac analysis. Example 18.4 demon-
strates the impact of the applied source on the general configuration of
the network.

We first consider networks with only independent sources to provide
a close association with the analysis of Chapter 9.

Independent Sources

EXAMPLE 18.1 Using the superposition theorem, find the current I
through the 4 � reactance in Fig. 18.1.1XL2

2

–

+

I

E2E1 –

+

Z1

Z2

Z3

FIG. 18.2

Assigning the subscripted impedances to the network
in Fig. 18.1.

I�

E1

–

+

Z1

Z2

Z3

E1

–

+

Z1

Z2�3

Is1
Is1

FIG. 18.3

Determining the effect of the voltage source E1 on the current I of the network in
Fig. 18.1.

Solution: For the redrawn circuit (Fig. 18.2),

Considering the effects of the voltage source E1 (Fig. 18.3), we have

 � 1.25 A �90°

  Is1
�

E1

Z 2 � 3 � Z1
�

10 V �0°

�j 12 � � j 4 �
�

10 V �0°

8 � ��90°

 � 12 � ��90°

 Z 2 � 3 �
Z 2Z3

Z 2 � Z3
�
1j 4 � 2 1�j 3 � 2
j 4 � � j 3 �

�
12 �

j
� �j 12 �

 Z3 � �j XC � �j 3 �
 Z2 � �j XL2

� j 4 �
 Z1 � �j XL1

� j 4 �
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and

(current divider rule)

Considering the effects of the voltage source E2 (Fig. 18.4), we have

 �
1�j 3 � 2 1 j 1.25 A 2

j 4 � � j 3 �
�

3.75 A

j 1
� 3.75 A ��90°

 I� �
Z3Is1

Z2 � Z3

4 � I

I′

I″

XL2

FIG. 18.5

Determining the resultant current for the network in
Fig. 18.1.

I�
E2

–

+

Z1

Z2

Z3

E2

–

+

Z3

Z1�2

Is2
Is2

FIG. 18.4

Determining the effect of the voltage source E2 on the current I of the network
in Fig. 18.1.

and

The resultant current through the 4 � reactance (Fig. 18.5) is

I � I� � I�
� 3.75 A ��90° � 2.50 A �90° � �j 3.75 A � j 2.50 A
� �j 6.25 A

I � 6.25 A ��90°

EXAMPLE 18.2 Using superposition, find the current I through the 
6 � resistor in Fig. 18.6.

XL2

I� �
Is2

2
� 2.5 A �90°

 Is2
�

E2

Z1 � 2 � Z3
�

5 V �0°

j 2 � � j 3 �
�

5 V �0°

1 � ��90°
� 5 A �90°

 Z1 � 2 �
Z1

N
�

j 4 �

2
� j 2 �

XC  =  8 �

I

E1  =  20 V ∠ 30°

–

+ R  =  6 �XL  =  6 �

I1 2 A ∠ 0°

FIG. 18.6

Example 18.2.
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790 ⏐⏐⏐ NETWORK THEOREMS (ac) Th

Solution: For the redrawn circuit (Fig. 18.7),

Z1 � j 6 � Z2 � 6 � � j 8 �

Consider the effects of the current source (Fig. 18.8). Applying the cur-
rent divider rule, we have

Consider the effects of the voltage source (Fig. 18.9). Applying Ohm’s
law gives us

The total current through the 6 � resistor (Fig. 18.10) is

I � I� � I�
� 1.9 A �108.43° � 3.16 A �48.43°
� (�0.60 A � j 1.80 A) � (2.10 A � j 2.36 A)
� 1.50 A � j 4.16 A

I � 4.42 A �70.2°

EXAMPLE 18.3 Using superposition, find the voltage across the 6 �
resistor in Fig. 18.6. Check the results against V6� � I(6 �), where I is
the current found through the 6 � resistor in Example 18.2.

Solution: For the current source,

For the voltage source,

The total voltage across the 6 � resistor (Fig. 18.11) is

 V6� � 26.5 V �70.2°

 � 8.98 V � j 25.0 V

 � 1�3.60 V � j 10.82 V 2 � 112.58 V � j 14.18 V 2
 � 11.4 V �108.43° � 18.96 V �48.43°

 V6� � V�6� � V�6�

V�6� � I�16 2 � 13.16 A �48.43° 2 16 � 2 � 18.96 V �48.43°

V�6� � I�16 � 2 � 11.9 A �108.43° 2 16 � 2 � 11.4 V �108.43°

 � 3.16 A �48.43°

 I� �
E1

ZT
�

E1

Z1 � Z 2
�

20 V �30°

6.32 � ��18.43°

 I� � 1.9 A �108.43°

 �
12 A �90°

6.32 ��18.43°

 I� �
Z1I1

Z1 � Z 2
�

1j 6 � 2 12 A 2
j 6 � � 6 � � j 8 �

�
j 12 A

6 � j 2

I�

Z1 Z2

–

E1

+

FIG. 18.9

Determining the effect of the voltage source E1 on
the current I of the network in Fig. 18.6.

I

I′

R

6 �
I″

FIG. 18.10

Determining the resultant current I for the network
in Fig. 18.6.

R

6 �

V″6�+ –

V′6�+ –

V6�+ –

FIG. 18.11

Determining the resultant voltage V6� for the network in Fig. 18.6.

–

I

Z1 Z2

E1

+

I1

FIG. 18.7

Assigning the subscripted impedances to the network
in Fig. 18.6.

I�

Z1 Z2

I1

FIG. 18.8

Determining the effect of the current source I1 on the
current I of the network in Fig. 18.6.
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SUPERPOSITION THEOREM ⏐⏐⏐ 791Th

Checking the result, we have

V6� � I(6 �) � (4.42 A �70.2°)(6 �)
� 26.5 V �70.2° (checks)

EXAMPLE 18.4 For the network in Fig. 18.12, determine the sinu-
soidal expression for the voltage y3 using superposition.

–

+

R2 1 k�

R1

0.5 k�

R3 3 k� V3

E1  =  12 V

FIG. 18.13

Determining the effect of the dc voltage source E1 on
the voltage y3 of the network in Fig. 18.12.

–

+

R2 1 k�

R1

0.5 k�

XL

2 k�

R3 3 k� v3XC 10 k�E2  =  4 V ∠0°
–

+

E1  =  12 V

FIG. 18.12

Example 18.4.

Solution: For the dc analysis, the capacitor can be replaced by an open-
circuit equivalent, and the inductor by a short-circuit equivalent. The re-
sult is the network in Fig. 18.13.

The resistors R1 and R3 are then in parallel, and the voltage V3 can be
determined using the voltage divider rule:

and

For the ac analysis, the dc source is set to zero and the network is re-
drawn, as shown in Fig. 18.14.

  V3  �  3.6 V

 �
10.429 k� 2 112 V 2
0.429 k� �  1 k�

�
5.148 V

1.429

  V3 �
R�E1

R� � R 2

R� � R1  �  R3 � 0.5 k�  �  3 k� �  0.429 k�

XC  =  10 k�
–

+
R2  =  1 k�

R1

0.5 k�

R3  =  3 k� V3

XL

2 k�

E2  =  4 V ∠0°
–

+

FIG. 18.14

Redrawing the network in Fig. 18.12 to determine the effect of the ac voltage
source E2 .
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792 ⏐⏐⏐ NETWORK THEOREMS (ac) Th

The block impedances are then defined as in Fig. 18.15, and series-
parallel techniques are applied as follows:

and

Calculator Solution: Performing the above on the TI-89 calculator
requires the sequence of steps in Fig. 18.16.

 � 1.312 k� �1.57°

 � 0.5 k� � 10.995 k� ��5.71° 2   �  13.61 k� �33.69° 2
 ZT � Z1 � Z2  �  Z3

 Z3 � R3 � j XL � 3 k� � j 2 k� � 3.61 k� �33.69°

 � 0.995 k� ��5.71°

 �
11 k� �0° 2 110 k� ��90° 2

1 k� � j 10 k�
�

10 k� ��90°

10.05 ��84.29°

 Z2 � 1R2 �0°  �  1XC ��90° 2
 Z1 � 0.5 k� �0°

.5�((0.995∠(�)5.71°)�(3.61∠33.69°))	((0.995∠(�)5.71°)�(3.61∠33.69°)) Polar 1.31E0∠1.55E0

FIG. 18.16

Using the TI-89 calculator to determine ZT for the network in Fig. 18.12.

6.51 V

3.6 V

0.69 V
0

v3
32.74°

qt

FIG. 18.17

The resultant voltage y3 for the network in
Fig. 18.12.

–

Is

Z1

Z2E2

+

Z3

ZT

V3

–

+

I3

FIG. 18.15

Assigning the subscripted impedances to the network
in Fig. 18.14.

Current divider rule:

with

V3 � (I3 �u)(R3 �0°
� (0.686 mA ��32.74°)(3 k� �0°)
� 2.06 V ��32.74°

The total solution:

y3 � y3 (dc) � y3 (ac)
� 3.6 V � 2.06 V ��32.74°

y3 � 3.6 � 2.91 sin(Vt � 32.74°)

The result is a sinusoidal voltage having a peak value of 2.91 V riding
on an average value of 3.6 V, as shown in Fig. 18.17.

Dependent Sources

For dependent sources in which the controlling variable is not determined
by the network to which the superposition theorem is to be applied, the ap-
plication of the theorem is basically the same as for independent sources.
The solution obtained will simply be in terms of the controlling variables.

EXAMPLE 18.5 Using the superposition theorem, determine the cur-
rent I2 for the network in Fig. 18.18. The quantities m and h are constants.

 � 0.686 mA ��32.74°

 I3 �
Z2Is

Z2 � Z3
�
10.995 k� ��5.71° 2 13.05 mA ��1.57° 2
0.995 k� ��5.71° � 3.61 k� �33.69°

Is �
E2

ZT

�
4 V �0°

1.312 k� �1.57°
� 3.05 mA ��1.57°
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Solution: With a portion of the system redrawn (Fig. 18.19),

Z1 � R1 � 4 � Z2 � R2 � j XL � 6 � � j 8 �

For the voltage source (Fig. 18.20),

For the current source (Fig. 18.21),

The current I2 is

I2 � I� � I�
� 0.078 mV/� ��38.66° � 0.312hI ��38.66°

For V � 10 V �0°, I � 20 mA �0°, m� 20, and h � 100,

I2 � 0.078(20)(10 V �0°)/� �� 38.66°
� 0.312(100)(20 mA �0°)��38.66°

� 15.60 A ��38.66° � 0.62 A ��38.66°
I2 � 16.22 A ��38.66°

For dependent sources in which the controlling variable is determined
by the network to which the theorem is to be applied, the dependent
source cannot be set to zero unless the controlling variable is also zero.
For networks containing dependent sources (as in Example 18.5) and de-
pendent sources of the type just introduced above, the superposition the-
orem is applied for each independent source and each dependent source
not having a controlling variable in the portions of the network under in-
vestigation. It must be reemphasized that dependent sources are not
sources of energy in the sense that, if all independent sources are re-
moved from a system, all currents and voltages must be zero.

EXAMPLE 18.6 Determine the current IL through the resistor RL in
Fig. 18.22.

Solution: Note that the controlling variable V is determined by the net-
work to be analyzed. From the above discussions, it is understood that the

 � 0.312hI ��38.66°

 I� �
Z11hI 2

Z1 � Z2
�

14 � 2 1hI 2
12.8 � �38.66°

� 410.078 2hI ��38.66°

 �
mV

12.8 � �38.66°
� 0.078 mV>� ��38.66°

 I� �
mV

Z1 � Z2
�

mV

4 � � 6 � � j 8 �
�

mV

10 � � j 8 �

–

Z1

+

Z2

I2

hI V�

FIG. 18.19

Assigning the subscripted impedances to the network
in Fig. 18.18.

–

Z1

  V

+

Z2

I�

�

FIG. 18.20

Determining the effect of the voltage-controlled
voltage source on the current I2 for the network in

Fig. 18.18.

Z1

Z2

I�

hI1

FIG. 18.21

Determining the effect of the current-controlled
current source on the current I2 for the network in

Fig. 18.18.

–

+ R2 6 �

XL 8 �

hI

R1

4 �
I2I

–+ V

V�

FIG. 18.18

Example 18.5.

RL

mV
– +

ILI1

R1 VI
–

+

FIG. 18.22

Example 18.6.
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794 ⏐⏐⏐ NETWORK THEOREMS (ac) Th

dependent source cannot be set to zero unless V is zero. If we set I to zero,
the network lacks a source of voltage, and V � 0 with mV � 0. The re-
sulting IL under this condition is zero. Obviously, therefore, the network
must be analyzed as it appears in Fig. 18.22, with the result that neither
source can be eliminated, as is normally done using the superposition
theorem.

Applying Kirchhoff’s voltage law, we have

VL � V � mV � (1 � m)V

and

The result, however, must be found in terms of I since V and mV are
only dependent variables.

Applying Kirchhoff’s current law gives us

and

or

Substituting into the above yields

Therefore,

18.3 THÉVENIN’S THEOREM

Thévenin’s theorem, as stated for sinusoidal ac circuits, is changed only
to include the term impedance instead of resistance; that is,

any two-terminal linear ac network can be replaced with an
equivalent circuit consisting of a voltage source and an impedance in
series, as shown in Fig. 18.23.

Since the reactances of a circuit are frequency dependent, the Thévenin
circuit found for a particular network is applicable only at one frequency.

The steps required to apply this method to dc circuits are repeated here
with changes for sinusoidal ac circuits. As before, the only change is the
replacement of the term resistance with impedance. Again, dependent
and independent sources are treated separately.

Example 18.9, the last example of the independent source section, in-
cludes a network with dc and ac sources to establish the groundwork for
possible use in the electronics area.

Independent Sources

1. Remove that portion of the network across which the Thévenin
equivalent circuit is to be found.

IL �
11 � M 2R1I

 RL � 11 � M 2R1

IL �
11 � m 2V

RL

�
11 � m 2

RL

 a I
11>R1 2 � 3 11 � m 2 >RL 4 b

V �
I

11>R1 2 � 3 11 � m 2 >RL 4

I � V a 1

R1
�

1 � m

RL

b

I � I1 � IL �
V
R1

�
11 � m 2V

RL

IL �
VL

RL

�
11 � m 2V

RL

–

+

ZTh

ETh

FIG. 18.23

Thévenin equivalent circuit for ac networks.
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2. Mark (�, •, and so on) the terminals of the remaining two-terminal
network.

3. Calculate ZTh by first setting all voltage and current sources to
zero (short circuit and open circuit, respectively) and then finding
the resulting impedance between the two marked terminals.

4. Calculate ETh by first replacing the voltage and current sources
and then finding the open-circuit voltage between the marked
terminals.

5. Draw the Thévenin equivalent circuit with the portion of the
circuit previously removed replaced between the terminals of the
Thévenin equivalent circuit.

EXAMPLE 18.7 Find the Thévenin equivalent circuit for the network
external to resistor R in Fig. 18.24.

Z1

Z2
ZTh

FIG. 18.26

Determining the Thévenin impedance for the
network in Fig. 18.24.

R2 �

–

+

E  =  10 V ∠ 0°

XL  =  8 �

XC

Thévenin

FIG. 18.24

Example 18.7.

Solution:

Steps 1 and 2 (Fig. 18.25):

Z1 � j XL � j 8 � Z2 � �j XC � �j 2 �

E  =  10 V ∠ 0°
–

+

Z1

Z2

Thévenin

FIG. 18.25

Assigning the subscripted impedances to the network in Fig. 18.24.

Step 3 (Fig. 18.26):

Step 4 (Fig. 18.27):

(voltage divider rule)

 �
1�j 2 � 2 110 V 2
j 8 � � j 2 �

�
�j 20 V

j 6
� 3.33 V ��180°

 ETh �
Z 2E

Z1 � Z2

 � 2.67 � ��90°

 ZTh �
Z1Z 2

Z1 � Z 2
�
1j 8 � 2 1�j 2 � 2
j 8 � � j 2 �

�
�j 2 16 �

j 6
�

16 �

6 �90°

Z1

Z2 ETh

–

+

E

+

–

FIG. 18.27

Determining the open-circuit Thévenin voltage for
the network in Fig. 18.24.
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Step 5: The Thévenin equivalent circuit is shown in Fig. 18.28.

–

+

ETh  =  3.33 V ∠  – 180°

ZTh

R

ZTh  =  2.67 � ∠ –90°

–

+

ETh  =  3.33 V ∠  – 180° R

XC  =  2.67 �

FIG. 18.28

The Thévenin equivalent circuit for the network in Fig. 18.24.

–

+

R3

7 �

R1

6 �

E1

XL1

8 �

R2 3 �

XL2  
=  5 �

10 V ∠ 0°
XC 4 �

a

–

+

E2 30 V ∠ 15°

a� Thévenin

FIG. 18.29

Example 18.8.

E1

–

+

Z1

Z2

Z3

10 V ∠ 0°

a

a� Thévenin

FIG. 18.30

Assigning the subscripted impedances for the network in Fig. 18.29.

EXAMPLE 18.8 Find the Thévenin equivalent circuit for the network
external to branch a-a� in Fig. 18.29.

Solution:

Steps 1 and 2 (Fig. 18.30): Note the reduced complexity with subscripted
impedances:

 Z3 � �j XL2
� j 5 �

 Z2 � R2 � j XC � 3 � � j 4 �

 Z1 � R1 � j XL1
� 6 � � j 8 �

Step 3 (Fig. 18.31):

 ZTh � 4.64 � � j 2.94 � � 5.49 � �32.36°

 � j 5 � 5.08 ��23.96° � j 5 � 4.64 � j 2.06

 � j 5 �
50 �0°

9 � j 4
� j 5 �

50 �0°

9.85 �23.96°

 ZTh � Z3 �
Z1Z2

Z1 � Z2
� j 5 � �

110 � �53.13° 2 15 � ��53.13° 2
16 � � j 8 � 2 � 13 � � j 4 � 2
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Z1

Z2

Z3
a

a�

ZTh

FIG. 18.31

Determining the Thévenin impedance for the network in Fig. 18.29.

Step 4 (Fig. 18.32): Since a-a� is an open circuit, Then ETh is
the voltage drop across Z2:

(voltage divider rule)

 ETh �
50 V ��53.13°

9.85 �23.96°
� 5.08 V ��77.09°

�
15 � ��53.13° 2 110 V �0° 2

9.85 � �23.96°

 ETh �
Z 2E

Z 2 � Z1

IZ3
� 0.

E1

–

+

Z1

Z2

Z3 a

a�

ETh

–

+
IZ3

  =  0

FIG. 18.32

Determining the open-circuit Thévenin voltage for the network in Fig. 18.29.

Step 5: The Thévenin equivalent circuit is shown in Fig. 18.33.

–

+

ETh

ZTh

R3

4.64 �  +  j2.94 �
7 �

5.08 V ∠  –77.09°
–

+

E2 30 V ∠  15°
–

+

ETh

4.64 � 7 �

5.08 V ∠  –77.09°

–

+

E2 30 V ∠  15°

2.94 �

R XLa

a′

a

a′

R3

FIG. 18.33

The Thévenin equivalent circuit for the network in Fig. 18.29.

The next example demonstrates how superposition is applied to elec-
tronic circuits to permit a separation of the dc and ac analyses. The fact
that the controlling variable in this analysis is not in the portion of the net-
work connected directly to the terminals of interest permits an analysis
of the network in the same manner as applied above for independent
sources.
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–

+

RB 1 M�

RC 2 k�

Rs

0.5 k�

Ei

C1

10 �

12 V

C2

10 �

Transistor

RL  =  1 k�  VL

–

+

Thévenin

FIG. 18.34

Example 18.9.

EXAMPLE 18.9 Determine the Thévenin equivalent circuit for the
transistor network external to the resistor RL in the network in Fig. 18.34.
Then determine VL .

RB 1 M�

Rs

0.5 k�

–

+

I1

2.3 k� RC 2 k� RL 1 k�  VLEi
100I1

Transistor equivalent
circuit

–

+

Thévenin

FIG. 18.35

The ac equivalent network for the transistor amplifier in Fig. 18.34.

Solution: Applying superposition.

dc Conditions Substituting the open-circuit equivalent for the cou-
pling capacitor C2 will isolate the dc source and the resulting currents
from the load resistor. The result is that for dc conditions, VL � 0 V. Al-
though the output dc voltage is zero, the application of the dc voltage is
important to the basic operation of the transistor in a number of impor-
tant ways, one of which is to determine the parameters of the “equivalent
circuit” to appear in the ac analysis to follow.

ac Conditions For the ac analysis, an equivalent circuit is substituted
for the transistor, as established by the dc conditions above, that will be-
have like the actual transistor. A great deal more will be said about equiv-
alent circuits and the operations performed to obtain the network in Fig.
18.35, but for now we limit our attention to the manner in which the
Thévenin equivalent circuit is obtained. Note in Fig. 18.35 that the equiv-
alent circuit includes a resistor of 2.3 k� and a controlled current source
whose magnitude is determined by the product of a factor of 100 and the
current I1 in another part of the network.

Note in Fig. 18.35 the absence of the coupling capacitors for the ac
analysis. In general, coupling capacitors are designed to be open circuits
for dc analysis and short circuits for ac analysis. The short-circuit equiv-
alent is valid because the other impedances in series with the coupling ca-
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pacitors are so much larger in magnitude that the effect of the coupling
capacitors can be ignored. Both RB and RC are now tied to ground because
the dc source was set to zero volts (superposition) and replaced by a
short-circuit equivalent to ground.

For the analysis to follow, the effect of the resistor RB will be ignored
since it is so much larger than the parallel 2.3 k� resistor.

ZTh When Ei is set to zero volts, the current I1 will be zero amperes, and
the controlled source 100I1 will be zero amperes also. The result is an
open-circuit equivalent for the source, as appearing in Fig. 18.36.

It is fairly obvious from Fig. 18.36 that

ZTh � 2 k�

ETh For ETh , the current I1 in Fig. 18.35 will be

and

Referring to Fig. 18.37, we find that

ETh � �(100I1)RC

� �(35.71 � 10�3/� Ei)(2 � 103 �)
ETh � �71.42Ei

The Thévenin equivalent circuit appears in Fig. 18.38 with the origi-
nal load RL.

100I1 � 1100 2 a Ei

2.8 k�
 b � 35.71 � 10�3>� Ei

I1 �
Ei

Rs � 2.3 k�
�

Ei

0.5 k� � 2.3 k�
�

Ei

2.8 k�

RC 2 k� ZTh

FIG. 18.36

Determining the Thévenin impedance for the
network in Fig. 18.35.

–

+

RC 2 k� ETh

–

+

100I1

FIG. 18.37

Determining the Thévenin voltage for the network in
Fig. 18.35.

–

+

ETh RL

RTh

2 k�

1 k�  VL

–

+

71.42Ei

FIG. 18.38

The Thévenin equivalent circuit for the network in Fig. 18.35.

Output Voltage VL

and VL � �23.81Ei

revealing that the output voltage is 23.81 times the applied voltage with
a phase shift of 180° due to the minus sign.

Dependent Sources

For dependent sources with a controlling variable not in the network un-
der investigation, the procedure indicated above can be applied. However,
for dependent sources of the other type, where the controlling variable is
part of the network to which the theorem is to be applied, another ap-
proach must be used. The necessity for a different approach is demon-
strated in an example to follow. The method is not limited to dependent

VL �
�RLETh

RL � RTh

�
�11 k� 2 171.42Ei 2

1 k� �  2 k�
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sources of the latter type. It can also be applied to any dc or sinusoidal ac
network. However, for networks of independent sources, the method of
application used in Chapter 9 and presented in the first portion of this sec-
tion is generally more direct, with the usual savings in time and errors.

The new approach to Thévenin’s theorem can best be introduced at
this stage in the development by considering the Thévenin equivalent cir-
cuit in Fig. 18.39(a). As indicated in Fig. 18.39(b), the open-circuit ter-
minal voltage (Eoc) of the Thévenin equivalent circuit is the Thévenin
equivalent voltage; that is,

(18.1)

If the external terminals are short circuited as in Fig. 18.39(c), the result-
ing short-circuit current is determined by

(18.2)

or, rearranged,

and (18.3)

Eqs. (18.1) and (18.3) indicate that for any linear bilateral dc or ac net-
work with or without dependent sources of any type, if the open-circuit
terminal voltage of a portion of a network can be determined along with
the short-circuit current between the same two terminals, the Thévenin
equivalent circuit is effectively known. A few examples will make the
method quite clear. The advantage of the method, which was stressed ear-
lier in this section for independent sources, should now be more obvious.
The current Isc , which is necessary to find ZTh , is in general more diffi-
cult to obtain since all of the sources are present.

There is a third approach to the Thévenin equivalent circuit that is also
useful from a practical viewpoint. The Thévenin voltage is found as in the
two previous methods. However, the Thévenin impedance is obtained by
applying a source of voltage to the terminals of interest and determining
the source current as indicated in Fig. 18.40. For this method, the source
voltage of the original network is set to zero. The Thévenin impedance is
then determined by the following equation:

(18.4)

Note that for each technique, ETh � Eoc , but the Thévenin impedance is
found in different ways.

EXAMPLE 18.10 Using each of the three techniques described in this
section, determine the Thévenin equivalent circuit for the network in
Fig. 18.41.

ZTh �
Eg

Ig

ZTh �
Eoc

Isc

ZTh �
ETh

Isc

 Isc �
ETh

ZTh

Eoc � ETh

Ig

–

+

Network Eg

ZTh

FIG. 18.40

Determining ZTh using the approach ZTh � Eg / Ig.

–

+

R1

R2

Thévenin

XC

�V

–

+�

FIG. 18.41

Example 18.10.

–

+

ZTh

ETh

–

+

ZTh

ETh

–

+

ZTh

ETh

Eoc  =  ETh

–

+

Isc  =
ETh
ZTh

(a)

(b)

(c)

FIG. 18.39

Defining an alternative approach for determining the
Thévenin impedance.
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Solution: Since for each approach the Thévenin voltage is found in ex-
actly the same manner, it is determined first. From Fig. 18.41, where

Due to the polarity for V and
defined terminal polarities

The following three methods for determining the Thévenin impedance
appear in the order in which they were introduced in this section.

Method 1: See Fig. 18.42.

Method 2: See Fig. 18.43. Converting the voltage source to a current
source (Fig. 18.44), we have (current divider rule)

and

Method 3: See Fig. 18.45.

and

In each case, the Thévenin impedance is the same. The resulting
Thévenin equivalent circuit is shown in Fig. 18.46.

ZTh �
Eg

Ig

� R1  �  R2 � j XC

Ig �
Eg

1R1  �  R2 2 � j XC

 �  R1  �  R2 � j XC

 ZTh �
Eoc

Isc

�

�mR2V

R1 � R2

�mR2V

R1 � R2

1R1  �  R2 2 � j XC

�
1

1

1R1  �  R2 2 � j XC

 �

�mR2V

R1 � R2

1R1  �  R2 2 � j XC

 Isc �

�1R1  �  R2 2mV

R1

1R1  �  R2 2 � j XC

�

�
R1R2

R1 � R2
 a mV

R1
 b

1R1  �  R2 2 � j XC

ZTh � R1  �  R2 � j XC

VR1
� ETh � Eoc � �

R21mV 2
R1 � R2

� �
MR2V

R1 � R2

IXC
� 0,

R1

R2 ZTh

XC

FIG. 18.42

Determining the Thévenin impedance for the
network in Fig. 18.41.

–

+
R2

R1

V

XC

Isc

Isc

�

FIG. 18.43

Determining the short-circuit current for the network
in Fig. 18.41.

R1 R2 Isc

XC

V
R1

Isc

�

FIG. 18.44

Converting the voltage source in Fig. 18.43 to a
current source.

R2

R1
XC Ig

+

–
Eg

ZTh

FIG. 18.45

Determining the Thévenin impedance for the
network in Fig. 18.41 using the approach

ZTh � Eg /Ig .

R1  +  R2
ETh  = Thévenin

–

+

�R2V

ZTh  =  R1 � R2  –  jXC

–

+

�

FIG. 18.46

The Thévenin equivalent circuit for the network in Fig. 18.41.
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EXAMPLE 18.11 Repeat Example 18.10 for the network in Fig. 18.47.

Solution: From Fig. 18.47, ETh is

Method 1: See Fig. 18.48.

Note the similarity between this solution and that obtained for the previ-
ous example.

Method 2: See Fig. 18.49.

and

Method 3: See Fig. 18.50.

and

The following example has a dependent source that will not permit the
use of the method described at the beginning of this section for inde-
pendent sources. All three methods will be applied, however, so that the
results can be compared.

EXAMPLE 18.12 For the network in Fig. 18.51 (introduced in Exam-
ple 18.6), determine the Thévenin equivalent circuit between the indi-
cated terminals using each method described in this section. Compare
your results.

ZTh �
Eg

Ig

� R1  �  R2 � j XC

Ig �
Eg

1R1  �  R2 2 � j XC

ZTh �
Eoc

Isc

�
�hI1R1  �  R2 2
�1R1  �  R2 2hI

1R1  �  R2 2 � j XC

�  R1  �  R2 � j XC

Isc �
�1R1  �  R2 2hI

1R1  �  R2 2 � j XC

ZTh � R1  �  R2 � j XC

ETh � Eoc � �hI1R1  �  R2 2 � �
 hR1R2I

 R1 � R2

hI R1 R2

XC

Thévenin

FIG. 18.47

Example 18.11.

R1 R2

XC

ZTh  =  R1 � R2  –  jXC

FIG. 18.48

Determining the Thévenin impedance for the
network in Fig. 18.47.

hI R1 R2

XC

Isc

Isc

FIG. 18.49

Determining the short-circuit current for the network
in Fig. 18.47.

R1 R2

XC

Eg

Ig

–

+

ZTh

FIG. 18.50

Determining the Thévenin impedance using the
approach ZTh � Eg / Ig.

I R1

�V

Thévenin

V
+

–

+– �

FIG. 18.51

Example 18.12.

Solution: First, using Kirchhoff’s voltage law, ETh (which is the same
for each method) is written

ETh � V � mV � (1 � m)V
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However, V � IR1

so ETh � (1 � M)IR1

ZTh

Method 1: See Fig. 18.52. Since I � 0, V and mV � 0, and

ZTh � R1 (incorrect)

Method 2: See Fig. 18.53. Kirchhoff’s voltage law around the indicated
loop gives us

V � mV � 0

and V(1 � m) � 0

Since m is a positive constant, the above equation can be satisfied only
when V � 0. Substitution of this result into Fig. 18.53 yields the config-
uration in Fig. 18.54, and

Isc � I

with

(correct)

Method 3: See Fig. 18.55.

Eg � V � mV � (1 � m)V

or

and

and (correct)

The Thévenin equivalent circuit appears in Fig. 18.56, and

which compares with the result in Example 18.6.

IL �
11 � M 2R1I

RL � 11 � M 2R1

ZTh �
Eg

Ig

� 11 � M 2R1

Ig �
V
 R1

�
Eg

11 � m 2R1

V �
Eg

1 � m

ZTh �
Eoc

Isc

�
11 � m 2IR1

I
� 11 � M 2R1

R1

�V  =  0

V  =  0
+

–

+–

ZTh

�

FIG. 18.52

Determining ZTh incorrectly.

I R1

�V

V
+

–

+–

Isc

Isc

�

FIG. 18.53

Determining Isc for the network in Fig. 18.51.

I R1 V  =  0
+

–
Isc

I1  =  0 Isc

FIG. 18.54

Substituting V � 0 into the network in Fig. 18.53.

–

+
R1 V Eg

Ig
�V

+–

ZTh

�

FIG. 18.55

Determining ZTh using the approach ZTh � Eg / Ig .
–

+

(1  +  m)R1

RL

IL

ETh  =  (1  +  m)IR1

FIG. 18.56

The Thévenin equivalent circuit for the network in Fig. 18.51.

The network in Fig. 18.57 is the basic configuration of the transistor
equivalent circuit applied most frequently today (although most texts in
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electronics use the circle rather than the diamond outline for the source).
Obviously, it is necessary to know its characteristics and to be adept in its
use. Note that there are both a controlled voltage and a controlled current
source, each controlled by variables in the configuration.

EXAMPLE 18.13 Determine the Thévenin equivalent circuit for the in-
dicated terminals of the network in Fig. 18.57.

Solution: Apply the second method introduced in this section.

ETh

and

or

and

so (18.5)

Isc For the network in Fig. 18.58, where

Eoc �
�k2R2Vi

R1 � k1k2R2
� ETh

Eoc a R1 � k1k2R2

R1
b �

�k2R2Vi

R1

Eoc a1 �
k1k2R2

R1
b �

�k2R2Vi

R1

 �
�k2R2Vi

R1
�

k1k2R2Eoc

R1

 Eoc � �k2IR2 � �k2R2 aVi � k1Eoc

R1
 b

 I �
Vi � k1V2

R1
�

Vi � k1Eoc

R1

 Eoc � V2

–

+

R2k2Ik1V2Vi

I

R1

Thévenin

–

+

V2

–

+

FIG. 18.57

Example 18.13: Transistor equivalent network.

Isc

–

+

R2k2IVi

I

R1

Isc

FIG. 18.58

Determining Isc for the network in Fig. 18.57.
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and

so

and (18.6)

Frequently, the approximation k1 � 0 is applied. Then the Thévenin
voltage and impedance are

k1 � 0 (18.7)

k1 � 0 (18.8)

Apply ZTh � Eg /Ig to the network in Fig. 18.59, where

I �
�k1V2

R1

ZTh � R2

ETh �
�k2R2Vi

R1

ZTh �
 R1R2

R1 � k1k2R2

ZTh �
Eoc

Isc

�

�k2R2Vi

R1 � k1k2R2

�k2Vi

R1

Isc � �k2I �
�k2Vi

R1

V2 � 0        k1V2 � 0        I �
Vi

R1

ZTh

–

+
Eg

Ig

R2k2Ik1V2

I

R1

–

+

FIG. 18.59

Determining ZTh using the procedure ZTh � Eg / Ig .

But V2 � Eg

so

Applying Kirchhoff’s current law, we have

 � Eg a 1

R2
�

k1k2

R1
b

 Ig � k2I �
Eg

R2
� k2 a�

k1Eg

R1
b �

Eg

R2

I �
�k1Eg

R1
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and

or

as obtained above.

The last two methods presented in this section were applied only to
networks in which the magnitudes of the controlled sources were depen-
dent on a variable within the network for which the Thévenin equivalent
circuit was to be obtained. Understand that both of these methods can
also be applied to any dc or sinusoidal ac network containing only inde-
pendent sources or dependent sources of the other kind.

18.4 NORTON’S THEOREM

The three methods described for Thévenin’s theorem will each be altered
to permit their use with Norton’s theorem. Since the Thévenin and Nor-
ton impedances are the same for a particular network, certain portions of
the discussion are quite similar to those encountered in the previous sec-
tion. We first consider independent sources and the approach developed
in Chapter 9, followed by dependent sources and the new techniques de-
veloped for Thévenin’s theorem.

You will recall from Chapter 9 that Norton’s theorem allows us to re-
place any two-terminal linear bilateral ac network with an equivalent cir-
cuit consisting of a current source and an impedance, as in Fig. 18.60.

The Norton equivalent circuit, like the Thévenin equivalent circuit,
is applicable at only one frequency since the reactances are frequency
dependent.

Independent Sources

The procedure outlined below to find the Norton equivalent of a sinu-
soidal ac network is changed (from that in Chapter 9) in only one respect:
the replacement of the term resistance with the term impedance.

1. Remove that portion of the network across which the Norton
equivalent circuit is to be found.

2. Mark (�, •, and so on) the terminals of the remaining two-terminal
network.

3. Calculate ZN by first setting all voltage and current sources to zero
(short circuit and open circuit, respectively) and then finding the
resulting impedance between the two marked terminals.

4. Calculate IN by first replacing the voltage and current sources and
then finding the short-circuit current between the marked terminals.

5. Draw the Norton equivalent circuit with the portion of the circuit
previously removed replaced between the terminals of the Norton
equivalent circuit.

The Norton and Thévenin equivalent circuits can be found from each
other by using the source transformation shown in Fig. 18.61. The source
transformation is applicable for any Thévenin or Norton equivalent cir-
cuit determined from a network with any combination of independent or
dependent sources.

ZTh �
Eg

Ig

�
R1R2

R1 �  k1k2R2

Ig

Eg

�
R1 � k1k2R2

R1R2

ZNIN

FIG. 18.60

The Norton equivalent circuit for ac networks.
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EXAMPLE 18.14 Determine the Norton equivalent circuit for the net-
work external to the 6 � resistor in Fig. 18.62.

–

+

ZTh

ETh  =  INZN
ZNIN  =

ETh
ZTh

ZN  =  ZTh

ZTh  =  ZN

FIG. 18.61

Conversion between the Thévenin and Norton equivalent circuits.

Solution:

Steps 1 and 2 (Fig. 18.63):

Z1 � R1 � j XL � 3 � � j 4 � � 5 � �53.13°
Z2 � �j XC � �j 5 �

Step 3 (Fig. 18.64):

Step 4 (Fig. 18.65):

IN � I1 �
E
Z1

�
20 V �0°

5 � �53.13°
� 4 A ��53.13°

 �
25 � ��36.87°

3.16 ��18.43°
� 7.91 � ��18.44° � 7.50 � � j 2.50 �

 ZN �
Z1Z2

Z1 � Z2
�
15 � �53.13° 2 15 � ��90° 2

3 � � j 4 � � j 5 �
�

25 � ��36.87°

3 � j 1

–

+

RL 6 �

R1

3 �

E  =  20 V ∠ 0°

XL

4 �

XC 5 �

Norton

FIG. 18.62

Example 18.14.

E
–

+

Z1

Z2

Norton

FIG. 18.63

Assigning the subscripted impedances to the network
in Fig. 18.62.

Z1

Z2 ZN

FIG. 18.64

Determining the Norton impedance for the network
in Fig. 18.62.

E
–

+

Z1

Z2

I1

IN

IN

FIG. 18.65

Determining IN for the network in Fig. 18.62.
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Step 5: The Norton equivalent circuit is shown in Fig. 18.66.

R 6 �ZNIN  =  4 A ∠  –  53.13° RL 6 �IN  =  4 A ∠  –  53.13°

R 7.50 �

XC 2.50 �

7.50 �  –  j2.50 �

FIG. 18.66

The Norton equivalent circuit for the network in Fig. 18.62.

R2

1 �
R1 2 �

XC1
4 �

I  =  3 A ∠ 0° XC2 
 =  7 �

XL

5 �

FIG. 18.67

Example 18.15.

EXAMPLE 18.15 Find the Norton equivalent circuit for the network
external to the 7 � capacitive reactance in Fig. 18.67.

Solution:

Steps 1 and 2 (Fig. 18.68):

 Z3 � �j XL � j 5 �

 Z2 � R2 � 1 �
 Z1 � R1 � j XC1

� 2 � � j 4 �

I  =  3 A ∠ 0° Z1

Z2

Z3

FIG. 18.68

Assigning the subscripted impedances to the network in Fig. 18.67.

Step 3 (Fig. 18.69):

 ZN �
15 � �90° 2 15 � ��53.13° 2

j 5 � � 3 � � j 4 �
�

25 � �36.87°

3 � j 1

 Z1 � Z2 � 2 � � j 4 � � 1 � � 3 � � j 4 � � 5 � ��53.13°

 ZN �
Z31Z1 � Z 2 2

Z3 � 1Z1 � Z2 2
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 ZN � 7.91 � �18.44° � 7.50 � � j 2.50 �

 �
25 � �36.87°

3.16 ��18.43°

Z1

Z2

Z3

ZN

Z1

Z2

Z3 ZN

FIG. 18.69

Finding the Norton impedance for the network in Fig. 18.67.

Calculator Solution: Performing the above on the TI-89 calculator
results in the sequence in Fig. 18.70:

((5i�(2�4i�1)))	((5i�2�4i�1)) Polar 7.91E0∠18.43E0

FIG. 18.70

Step 4 (Fig. 18.71):

(current divider rule)

IN � 2.68 A ��10.3°

�
12 � � j 4 � 2 13 A 2

3 � � j 4 �
�

6 A � j 12 A

5 ��53.13°
�

13.4 A ��63.43°

5 ��53.13°

IN � I1 �
Z1I

Z1 � Z2

I  =  3 A ∠ 0° Z1

Z2

Z3

I1

IN

FIG. 18.71

Determining IN for the network in Fig. 18.67.

Step 5: The Norton equivalent circuit is shown in Fig. 18.72.

XC2
7 �

7.50 �  +  j2.50 �

ZNIN  =  2.68 A ∠  – 10.3° IN  =  2.68 A ∠  – 10.3°

R 7.50 �

XL 2.50 �

XC2
7 �

FIG. 18.72

The Norton equivalent circuit for the network in Fig. 18.67.
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EXAMPLE 18.16 Find the Thévenin equivalent circuit for the network
external to the 7 � capacitive reactance in Fig. 18.67.

Solution: Using the conversion between sources (Fig. 18.73), we obtain

ZTh � ZN � 7.50 � � j 2.50 �

ETh � INZN � (2.68 A ��10.3°)(7.91 � �18.44°)

� 21.2 V �8.14°

The Thévenin equivalent circuit is shown in Fig. 18.74.

Dependent Sources

As stated for Thévenin’s theorem, dependent sources in which the con-
trolling variable is not determined by the network for which the Norton
equivalent circuit is to be found do not alter the procedure outlined above.

For dependent sources of the other kind, one of the following proce-
dures must be applied. Both of these procedures can also be applied to
networks with any combination of independent sources and dependent
sources not controlled by the network under investigation.

The Norton equivalent circuit appears in Fig. 18.75(a). In Fig. 18.75(b),
we find that

ZTh  =  ZN

INZNETh

+

–

ZTh

FIG. 18.73

Determining the Thévenin equivalent circuit for the
Norton equivalent in Fig. 18.72.

21.2 V ∠ 8.14°

R

7.50 �

ETh

+

–

XL

2.50 �

XC2
7 �

FIG. 18.74

The Thévenin equivalent circuit for the network in
Fig. 18.67.

IN

(a)

ZN IN

(b)

ZN

I  =  0

Isc IN

(c)

ZN

+

–

Eoc  =  INZN

FIG. 18.75

Defining an alternative approach for determining ZN.

(18.9)

and in Fig. 18.75(c) that

Eoc � INZN

Or, rearranging, we have

and (18.10)

The Norton impedance can also be determined by applying a source
of voltage Eg to the terminals of interest and finding the resulting Ig , as
shown in Fig. 18.76. All independent sources and dependent sources not
controlled by a variable in the network of interest are set to zero, and

(18.11)ZN �
Eg

Ig

ZN �
Eoc

Isc

ZN �
Eoc

IN

Isc � IN

+
Network ZN

Ig

Eg

–

FIG. 18.76

Determining the Norton impedance using the
approach ZN � Eg / Ig .
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For this latter approach, the Norton current is still determined by the
short-circuit current.

EXAMPLE 18.17 Using each method described for dependent sources,
find the Norton equivalent circuit for the network in Fig. 18.77.

Solution:

IN For each method, IN is determined in the same manner. From Fig.
18.78 using Kirchhoff’s current law, we have

0 � I � hI � Isc

or Isc � �(1 � h)I

Applying Kirchhoff’s voltage law gives us

E � IR1 � Isc R2 � 0

and IR1 � IscR2 � E

or

so

or

ZN

Method 1: Eoc is determined from the network in Fig. 18.79. By Kirch-
hoff’s current law,

0 � I � hI or 1(h � 1) � 0

For h, a positive constant I must equal zero to satisfy the above. Therefore,

I � 0 and hI � 0

and Eoc � E

with

Method 2: Note Fig. 18.80. By Kirchhoff’s current law,

Ig � I � hI � (I � h)I

By Kirchhoff’s voltage law,

Eg � IgR2 � IR1 � 0

or

Substituting, we have

and IgR1 � (1 � h)Eg � (1 � h)IgR2

Ig � 11 � h 2I �  11 � h 2 aEg � IgR2

R1
b

I �
Eg � IgR2

R1

ZN �
Eoc

Isc

�
E

11 � h 2E
R1 � 11 � h 2R2

�
R1 � 11 � h 2R2

11 � h 2

 Isc �
11 � h 2E

R1 � 11 � h 2R2
� IN

 Isc 3R1 � 11 � h 2R2 4 � 11 � h 2E
 R1Isc � �11 � h 2IscR2 � 11 � h 2E

Isc � �11 � h 2I � �11 � h 2 a IscR2 � E

R1
 b

I �
IscR2 � E

R1

R2

+
hIE

–

Norton

R1

I

FIG. 18.77

Example 18.17.

R2

+
hIE

–
Isc

R1

I + –VR2

Isc

FIG. 18.78

Determining Isc for the network in Fig. 18.77.

+
hIE

–
Eoc

R1

I
+
V  =  0

–

+

–

FIG. 18.79

Determining Eoc for the network in Fig. 18.77.

+
hI Eg

–

R1

I +–

ZN

Ig

R2

+– VR1
VR2

FIG. 18.80

Determining the Norton impedance using the
approach ZN � Eg / Eg.
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so Eg(1 � h) � Ig[R1 � (1 � h)R2]

or

which agrees with the above.

EXAMPLE 18.18 Find the Norton equivalent circuit for the network
configuration in Fig. 18.57.

Solution: By source conversion,

and (18.12)

which is Isc as determined in Example 18.13, and

(18.13)

For k1 � 0, we have

k1 � 0 (18.14)

k1 � 0 (18.15)

18.5 MAXIMUM POWER TRANSFER THEOREM

When applied to ac circuits, the maximum power transfer theorem
states that

maximum power will be delivered to a load when the load impedance
is the conjugate of the Thévenin impedance across its terminals.

That is, for Fig. 18.81, for maximum power transfer to the load,

ZN � R2

IN �
�k2Vi

R1

ZN � ZTh �
R2

1 �  
k1k2R2

R1

 

IN �
�k2Vi

R1

IN �
ETh

ZTh

�

�k2R2Vi

R1 � k1k2R2

R1R2

R1 � k1k2R2

ZN �
Eg

Ig

�
R1 � 11 � h 2R2

1 � h

ETh  =  ETh ∠ vThs

ZTh

ZL

 ZTh ∠ vThz

 =  ZL ∠ vL

FIG. 18.81

Defining the conditions for maximum power transfer to a load.
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(18.16)

or, in rectangular form,

(18.17)

The conditions just mentioned will make the total impedance of the cir-
cuit appear purely resistive, as indicated in Fig. 18.82:

ZT � (R 
 jX) � (R � j X)

and (18.18)ZT � 2R

RL � RTh    and    
j Xload � �j XTh

ZL � ZTh and�uL � �uThZ
 

ZTh = RTh ± jXTh

ZLETh = ETh ∠ vThs

+

– ZT

= R

±

jX

I

FIG. 18.82

Conditions for maximum power transfer to ZL.

Since the circuit is purely resistive, the power factor of the circuit un-
der maximum power conditions is 1; that is,

(maximum power transfer) (18.19)

The magnitude of the current I in Fig. 18.82 is

The maximum power to the load is

and (18.20)

EXAMPLE 18.19 Find the load impedance in Fig. 18.83 for maximum
power to the load, and find the maximum power.

Solution: Determine ZTh [Fig. 18.84(a)]:

 � 13.33 � �36.87° � 10.66 � � j 8 �

 ZTh �
Z1Z2

Z1 � Z2
�
110 � ��53.13° 2 18 � �90° 2

6 � � j 8 � � j 8 �
�

80 � �36.87°

6 �0°

 Z2 � �j XL � j 8 �
 Z1 � R � j XC � 6 � � j 8 � � 10 � ��53.13°

Pmax �
ETh

2

4R

Pmax � I 2R � a ETh

2R
 b 2

R

I �
ETh

ZT

�
ETh

2R

Fp � 1

E  =  9 V ∠ 0°

R

6 �
+

–

XC

8 �

XL 8 � ZL

FIG. 18.83

Example 18.19.
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(a)

Z2

Z1

ZTh

(b)

E

+
Z2

+

–
ETh

Z1

–

FIG. 18.84

Determining (a) ZTh and (b) ETh for the network external to the load in Fig. 18.83.

and ZL � 13.3 � ��36.87° � 10.66 � � j 8 �

To find the maximum power, we must first find ETh [Fig. 18.84(b)], as
follows:

(voltage divider rule)

Then

EXAMPLE 18.20 Find the load impedance in Fig. 18.85 for maximum
power to the load, and find the maximum power.

Solution: First we must find ZTh (Fig. 18.86).

Z1 � �j XL � j 9 � Z2 � R � 8 �

Converting from a � to a Y (Fig. 18.87), we have

The redrawn circuit (Fig. 18.88) shows

 � j 3 � �
3 � �90°1 j 3 � � 8 � 2

j 6 � � 8 �

 ZTh � Z�1 �
Z�1 1Z�1 � Z2 2

Z�1 � 1Z�1 � Z2 2

Z�1 �
Z1

3
� j 3 �    Z2 � 8 �

Pmax �
ETh

2

4R
�
112 V 2 2

4110.66 � 2 �
144

42.64
� 3.38 W

 �
18 � �90° 2 19 V �0° 2
j 8 � � 6 � � j 8 �

�
72 V �90°

6 �0°
� 12 V �90°

 ETh �
Z 2E

Z2 � Z1R

8 �
ZL

E  =
10 V ∠ 0°

+

–

XL

9 �

XL

9 �
9 �

XL

FIG. 18.85

Example 18.20.

ZTh

Z1

Z2

Z1

Z11

2

3

FIG. 18.86

Defining the subscripted impedances for the network
in Fig. 18.85.

ZTh

Z2

1

2

3

Z�1

Z�1 Z�1

FIG. 18.87

Substituting the Y equivalent for the upper �
configuration in Fig. 18.86.

ZTh
Z�1Z�1

Z2

Z�1

FIG. 18.88

Determining ZTh for the network in Fig. 18.85.
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and ZL � 0.72 � � j 5.46 �

For ETh , use the modified circuit in Fig. 18.89 with the voltage source
replaced in its original position. Since I1 � 0, ETh is the voltage across the
series impedance of and Z2 . Using the voltage divider rule gives us

and

If the load resistance is adjustable but the magnitude of the load reac-
tance cannot be set equal to the magnitude of the Thévenin reactance,
then the maximum power that can be delivered to the load will occur
when the load reactance is made as close to the Thévenin reactance as
possible and the load resistance is set to the following value:

(18.21)

where each reactance carries a positive sign if inductive and a negative
sign if capacitive.

The power delivered will be determined by

(18.22)

where (18.23)

The derivation of the above equations is given in Appendix G of the
text. The following example demonstrates the use of the above.

EXAMPLE 18.21 For the network in Fig. 18.90:

a. Determine the value of RL for maximum power to the load if the load
reactance is fixed at 4 �.

b. Find the power delivered to the load under the conditions of part (a).
c. Find the maximum power to the load if the load reactance is made

adjustable to any value, and compare the result to part (b) above.

 Rav �
RTh � RL

2

P � ETh
2 >4Rav

 RL � 2RTh
2 � 1XTh � Xload 2 2

 � 25.32 W

  Pmax �
ETh

2

4R
�
18.54 V 2 2
410.72 � 2 �

72.93

2.88
 W

 ETh � 8.54 V ��16.31°

 �
18.54 �20.56° 2 110 V �0° 2

10 �36.87°

 ETh �
1Z�1 � Z2 2E

Z�1 � Z2 � Z�1
�
1j 3 � � 8 � 2 110 V �0° 2

8 � � j 6 �

Z�1

 ZTh � 0.72 � � j 5.46 �

 � j 3 � 0.72 � j 2.46

 � j 3 �
25.62 �110.56°

10 �36.87°
� j 3 � 2.56 �73.69°

 � j 3 �
13 �90° 2 18.54 �20.56° 2

10 �36.87°

ETh

Z�1Z�1

Z2

Z�1
+

–

I1  =  0

E

+

–

FIG. 18.89

Finding the Thévenin voltage for the network in
Fig. 18.85.
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Solutions:

a. Eq. (18.21):

b. Eq. (18.23):

Eq. (18.22):

c. For ZL � 4 � � j 7 �,

exceeding the result of part (b) by 2.78 W.

18.6 SUBSTITUTION, RECIPROCITY, 
AND MILLMAN’S THEOREMS

As indicated in the introduction to this chapter, the substitution and reci-
procity theorems and Millman’s theorem will not be considered here
in detail. A careful review of Chapter 9 will enable you to apply these the-
orems to sinusoidal ac networks with little difficulty. A number of prob-
lems in the use of these theorems appear in the Problems section at the
end of the chapter.

18.7 APPLICATION

Electronic Systems

One of the blessings in the analysis of electronic systems is that the
superposition theorem can be applied so that the dc analysis and ac analy-

 � 25 W

  Pmax �
ETh

2

4RTh

�
120 V 2 2
414 � 2

� 22.22 W

�
120 V 2 2

414.5 � 2 �
400

18
 W

 P �
ETh

2

4Rav

� 4.5 �

 Rav �
RTh � RL

2
�

4 � � 5 �

2

  RL � 5 �

 � 216 � 9 � 225

 � 214 � 2 2 � 17 � � 4 � 2 2
 RL � 2RTh

2 � 1XTh � Xload 2 2

+

–

RTh

ETh  =  20 V ∠0°

XTh

RL

4 � 7 �

XC  =  4 �

FIG. 18.90

Example 18.21.
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22 V

RB 47 k�
RC 100 �

VCC

B

E

IB
+

–
VBE

VCE

VCC 22 V

C

β = 200

–

+
IC

+

–

+

–

FIG. 18.92

dc equivalent of the transistor network in Fig. 18.91.

Rs

RB 47 k�

RC 100 �

+

–

Vs 1V(p-p)

Source

CC

Amplifier Load

VCC = 22 V

β = 200

E

B

C
CC

RL 8 �

0.1   Fμ

0.1   Fμ

FIG. 18.91

Transistor amplifier.

sis can be performed separately. The analysis of the dc system will affect
the ac response, but the analysis of each is a distinct, separate process.
Even though electronic systems have not been investigated in this text, a
number of important points can be made in the description to follow that
support some of the theory presented in this and recent chapters, so in-
clusion of this description is totally valid at this point. Consider the net-
work in Fig. 18.91 with a transistor power amplifier, an 8 � speaker as
the load, and a source with an internal resistance of 800 �. Note that each
component of the design was isolated by a color box to emphasize the
fact that each component must be carefully weighed in any good design.

As mentioned above, the analysis can be separated into a dc and an ac
component. For the dc analysis, the two capacitors can be replaced by an
open-circuit equivalent (Chapter 10), resulting in an isolation of the am-
plifier network as shown in Fig. 18.92. Given the fact that VBE will be
about 0.7 V dc for any operating transistor, the base current IB can be
found as follows using Kirchhoff’s voltage law:

For transistors, the collector current IC is related to the base current by
IC � bIB , and

IC � bIB � (200)(453.2 mA) � 90.64 mA

Finally, through Kirchhoff’s voltage law, the collector voltage (also
the collector-to-emitter voltage since the emitter is grounded) can be de-
termined as follows:

VC � VCE � VCC � IC RC � 22 V � (90.64 mA)(100 �) � 12.94 V

For the dc analysis, therefore,

IB � 453.2 MA IC � 90.64 mA VCE � 12.94 V

which will define a point of dc operation for the transistor. This is an im-
portant aspect of electronic design since the dc operating point will have
an effect on the ac gain of the network.

IB �
VRB

RB

�
VCC � VBE

RB

�
22 V � 0.7 V

47 k�
� 453.2 MA

boy30444_ch18.qxd  3/24/06  2:59 PM  Page 817



818 ⏐⏐⏐ NETWORK THEOREMS (ac) Th

Rs

800 �

RB 47 k�
RC 100 �

B

E

C

RL 8 �

β = 200

Vs 1V(p-p)

FIG. 18.93

ac equivalent of the transistor network in Fig. 18.91.

(a)

RC 100 �

Rs

800 �

Ii

Vs 1V(p-p)

+

–

RL 8 �Ri 200 �RB

B

E
47 kΩ

I ≅ 0 A Ib βIb
200Ib

C

IC

+

–
IL

VL

Transistor equivalent circuit

(b)

100 �

8 �
100 �

Impedance
matching
transformer

+

– 200 mA

100 �

100 �
100 mA

100 mA

VL

FIG. 18.94

(a) Network in Fig. 18.93 following the substitution of the transistor equivalent
network; (b) effect of the matching transformer.

Now, using superposition, we can analyze the network from an ac view-
point by setting all dc sources to zero (replaced by ground connections)
and replacing both capacitors by short circuits as shown in Fig. 18.93. Sub-
stituting the short-circuit equivalent for the capacitors is valid because at
10 kHz (the midrange for human hearing response), the reactance of the
capacitor is determined by XC � 1/2p fC � 15.92 � which can be ignored
when compared to the series resistors at the source and load. In other
words, the capacitor has played the important role of isolating the ampli-
fier for the dc response and completing the network for the ac response.

Redrawing the network as shown in Fig. 18.94(a) permits an ac in-
vestigation of its response. The transistor has now been replaced by an
equivalent network that represents the behavior of the device. This
process will be covered in detail in your basic electronics courses. This
transistor configuration has an input impedance of 200 � and a current
source whose magnitude is sensitive to the base current in the input cir-
cuit and to the amplifying factor for this transistor of 200. The 47 k� re-
sistor in parallel with the 200 � input impedance of the transistor can be
ignored, so the input current Ii and base current Ib are determined by

The collector current IC is then

IC � bIb � (200)(1 mA (p-p)) � 200 mA (p-p)

and the current to the speaker is determined by the current divider rule as
follows:

 � 185.2 mA 1p-p 2
  IL �

100 �1IC 2
100 � � 8 �

� 0.926IC � 0.9261200 mA 1p-p 2 2

Ii  �  Ib �
Vs

Rs � Ri

�
1 V1p-p 2

800 � � 200 �
�

1 V1p-p 2
1 k�

� 1 mA 1p-p 2
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with the voltage across the speaker being

VL � �ILRL � �(185.2 mA (p-p))(8 �) � �1.48 V

The power to the speaker is then determined as follows:

which is relatively low. It initially appears that the above was a good
design for distribution of power to the speaker because a majority of
the collector current went to the speaker. However, you must always
keep in mind that power is the product of voltage and current. A high
current with a very low voltage results in a lower power level. In this
case, the voltage level is too low. However, if we introduce a matching
transformer that makes the 8 � resistive load “look like” 100 � as
shown in Fig. 18.94(b), establishing maximum power conditions, the
current to the load drops to half of the previous amount because cur-
rent splits through equal resistors. But the voltage across the load in-
creases to

VL � ILRL � (100 mA (p-p))(100 �) � 10 V (p-p)

and the power level to

which is 3.6 times the gain without the matching transformer.
For the 100 � load, the dc conditions are unaffected due to the isola-

tion of the capacitor CC , and the voltage at the collector is 12.94 V as
shown in Fig. 18.95(a). For the ac response with a 100 � load, the out-
put voltage as determined above will be 10 V peak-to-peak (5 V peak) as
shown in Fig. 18.95(b). Note the out-of-phase relationship with the input
due to the opposite polarity of VL. The full response at the collector ter-
minal of the transistor can then be drawn by superimposing the ac re-
sponse on the dc response as shown in Fig. 18.95(c) (another application
of the superposition theorem). In other words, the dc level simply shifts
the ac waveform up or down and does not disturb its shape. The peak-to-
peak value remains the same, and the phase relationship is unaltered. The

Pspeaker �
1VL 1p-p2 2 1IL 1p-p2 2

8
�
110 V 2 1100 mA 2

8
� 125 mW

� 34.26 mW

  Pspeaker � VL rms 
  IL rms

�
1VL 1p-p2 2 1IL 1p-p2 2

8
�  
11.48 V 2 1185.2 mA 1p-p 22

8

(a)

0 2TT t

12.94

VC (volts) dc

(c)

0 2TT t

vc (volts) ac + dc

12.94

17.94

7.94

(b)

0 2TT t

5

vc (volts) ac

–5

FIG. 18.95

Collector voltage for the network in Fig. 18.91: (a) dc; (b) ac; (c) dc and ac.
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(a)

0 T t

vb (volts)

0.2

0 –T3
2

1.2

0.7

0 T t

vs (volts)

0.5

0

–0.5

–T3
2

(b)

–T2 –T2

FIG. 18.96

Applied signal: (a) at the source; (b) at the base of the transistor.

FIG. 18.97

Using PSpice to determine the open-circuit Thévenin voltage.

total waveform at the load will include only the ac response of Fig.
18.95(b) since the dc component has been blocked out by the capacitor.

The voltage at the source appears as shown in Fig. 18.96(a), while the
voltage at the base of the transistor appears as shown in Fig. 18.96(b) be-
cause of the presence of the dc component.

A number of important concepts were presented in the above example,
with some probably leaving a question or two because of your lack of
experience with transistors. However, you should understand that the
superposition theorem has the power to permit an isolation of the dc and ac
responses and the ability to combine both if the total response is desired.

18.8 COMPUTER ANALYSIS

PSpice

Thévenin’s Theorem This application parallels the methods used to
determine the Thévenin equivalent circuit for dc circuits. The network in
Fig. 18.29 appears as shown in Fig. 18.97 when the open-circuit
Thévenin voltage is to be determined. The open circuit is simulated by
using a resistor of 1 T (1 million M�). The resistor is necessary to es-
tablish a connection between the right side of inductor L2 and ground—
nodes cannot be left floating for OrCAD simulations. Since the magnitude
and the angle of the voltage are required, VPRINT1 is introduced as
shown in Fig 18.97. The simulation was an AC Sweep simulation at
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FIG. 18.98

The output file for the open-circuit Thévenin voltage for the network in
Fig. 18.97.

FIG. 18.99

Using PSpice to determine the short-circuit current.

1 kHz, and when the Orcad Capture window was obtained, the results
appearing in Fig. 18.98 were taken from the listing resulting from the
PSpice-View Output File. The magnitude of the Thévenin voltage is
5.187 V to compare with the 5.08 V of Example 18.8, while the phase an-
gle is �77.13° to compare with the �77.09° of the same example—
excellent results.

Next, the short-circuit current is determined using IPRINT as shown
in Fig. 18.99, to permit a determination of the Thévenin impedance. The
resistance Rcoil of 1 m� had to be introduced because inductors cannot be
treated as ideal elements when using PSpice; they must all show some se-
ries internal resistance. Note that the short-circuit current will pass di-
rectly through the printer symbol for IPRINT. Incidentally, there is no
need to exit the SCHEMATIC1 developed above to determine the
Thévenin voltage. Simply delete VPRINT and R3, and insert IPRINT.
Then run a new simulation to obtain the results in Fig. 18.100. The

FIG. 18.100

The output file for the short-circuit current for the network in Fig. 18.99.
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FIG. 18.101

Using PSpice to determine the open-circuit Thévenin voltage for the network in
Fig. 18.51.

magnitude of the short-circuit current is 936.1 mA at an angle of
�108.6°. The Thévenin impedance is then defined by

which is an excellent match with 5.49 � �32.36° obtained in Example
18.8.

VCVS The next application will verify the results in Example 18.12
and provide some practice using controlled (dependent) sources. The net-
work in Fig. 18.51, with its voltage-controlled voltage source (VCVS),
will have the schematic appearance in Fig. 18.101. The VCVS appears as
E in the ANALOG library, with the voltage E1 as the controlling volt-
age and E as the controlled voltage. In the Property Editor dialog box,
change the GAIN to 20, but leave the rest of the columns as is. After
Display-Name and Value, select Apply and exit the dialog box. This re-
sults in GAIN � 20 near the controlled source. Take particular note of
the second ground inserted near E to avoid a long wire to ground that may
overlap other elements. For this exercise, the current source ISRC is used
because it has an arrow in its symbol, and frequency is not important for
this analysis since there are only resistive elements present. In the
Property Editor dialog box, set the AC level to 5 mA and the DC level
to 0 A; both are displayed using Display-Name and value. VPRINT1 is
set up as in past exercises. The resistor Roc (open circuit) was given a
very large value so that it appears as an open circuit to the rest of the net-
work. VPRINT1 provides the open circuit Thévenin voltage between the
points of interest. Running the simulation in the AC Sweep mode at
1 kHz results in the output file appearing in Fig. 18.102, revealing that the
Thévenin voltage is 210 V �0°. Substituting the numerical values of this
example into the equation obtained in Example 18.12 confirms the result:

ETh � (1 � m)IR1 � (1 � 20) (5 mA �0°)(2 k�)

� 210 V�0°

ZTh �
ETh

Isc

�
5.187 V ��77.13°

936.1 mA ��108.6°
� 5.54 � �31.47°
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FIG. 18.102

The output file for the open-circuit Thévenin voltage for the network in
Fig. 18.101.

FIG. 18.103

Using PSpice to determine the short-circuit current for the network in
Fig. 18.51.

Next, determine the short-circuit current using the IPRINT option.
Note in Fig. 18.103 that the only difference between this network and that
in Fig. 18.102 is the replacement of Roc with IPRINT and the removal
of VPRINT1. Therefore, you do not need to completely “redraw” the
network. Just make the changes and run a new simulation. The result of
the new simulation as shown in Fig. 18.104 is a current of 5 mA at an an-
gle of 0°.

FIG. 18.104

The output file for the short-circuit current for the network in Fig. 18.103.
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FIG. 18.105

Using Multisim to apply superposition to the network in Fig. 18.12.

The ratio of the two measured quantities results in the Thévenin
impedance:

which also matches the longhand solution in Example 18.12:

ZTh � (1 � m)R1 � (1 � 20)2 k� � (21)2 k� � 42 k�

Multisim

Superposition This analysis begins with the network in Fig. 18.12
from Example 18.4 because it has both an ac and a dc source. You will
find in the analysis to follow that it is not necessary to set up a separate
network for each source. Once the network is set up, the dc levels will ap-
pear during simulation, and the ac response can be found from a View
option.

The resulting schematic appears in Fig. 18.105. The construction is
quite straightforward with the parameters of the ac source set as follows:
Voltage(RMS): 4 V; AC Analysis Magnitude: 4 V; Phase: 0 Degrees;
AC Analysis Phase: 0 Degrees; Frequency (F): 1 kHz; Voltage Offset:
0 V; and Time Delay: 0 Seconds. The dc voltmeter Indicator is listed as
VOLTMETER_V under Component in the Select a Component dia-
log box. Recall that the indicators appear on the keypad on the left edge
of the screen that looks like a red 8 LED display.

To perform the analysis, use the following sequence to obtain the AC
Analysis dialog box: Simulate-Analyses-AC Analysis. In the dialog
box, make the following settings under the Frequency Parameters
heading: Start frequency: 1 kHz; Stop frequency: 1 kHz; Sweep Type:
Decade; Number of points: 1000; Vertical scale: Linear. Then shift to

ZTh �
Eoc

Isc

�
ETh

Isc

�
210 V �0°

5 mA �0°
� 42 k�
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the Output option and select $4 (note node 4 on the constructed network)
under Variables in circuit followed by Add to place it in the Selected
variables for analysis column. Move any other variables in the selected
list back to the variable list using the Remove option. Then select
Simulate, and the Grapher View response of Fig. 18.106 results. Dur-
ing the simulation process, the dc solution of 3.6 V appears on the volt-
meter display (an exact match with the longhand solution). There are two
plots in Fig. 18.106: one of magnitude versus frequency and the other of
phase versus frequency. Left-click to select the upper graph, and a red ar-
row shows up along the left edge of the plot. The arrow reveals which plot
is currently active. To change the label for the vertical axis from
Magnitude to Voltage (V) as shown in Fig. 18.106, select the Properties
key from the top toolbar and choose Left Axis. Then change the label to
Voltage (V) followed by OK, and the label appears as shown in Fig.
18.106. Next, to read the levels indicated on each graph with a high de-
gree of accuracy, select the Show/Hide Cursor keypad on the toolbar.
The keypad has a small red sine wave with two vertical markers. The re-
sult is a set of markers at the left edge of each figure. By selecting a
marker from the left edge of the voltage plot and moving it to 1 kHz, you
can find the value of the voltage in the accompanying table. Note that at
a frequency of 1.006 kHz or essentially 1 kHz, the voltage is 2.06 V
which is an exact match with the longhand solution in Example 18.4. If
you then drop down to the phase plot, you find at the same frequency that
the phase angle is �32.65, which is very close to the �32.74 in the long-
hand solution.

In general, therefore, the results are an excellent match with the solu-
tions in Example 18.4 using techniques that can be applied to a wide va-
riety of networks that have both dc and ac sources.

FIG. 18.106

The output results from the simulation of the network in Fig. 18.105.
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R2

3 �

1 �XC

+

–

 4 A ∠0°I vC

R1

6 �

12 V

FIG. 18.110

Problems 4, 16, 31, and 43.

R 3 �

+

E1  =  30 V ∠ 30°
–

IL
XC 6 �

+

E2  =  60 V ∠ 10°
–

XL 8 �

(a)

I  =  0.3 A ∠ 60°

IL
XC 5 �

+

E  =  10 V ∠ 0°
–

XL 8 �

(b)

FIG. 18.107

Problem 1.

R 1 �

+

E1  =  20 V ∠ 0°
–

IL

+

E2  =  120 V ∠ 0°
–

XL 3 �

(a)

IL

XC2
7 �

I  =  0.5 A ∠ 60°

R

4 �

+

E  =  10 V ∠ 90°
–

XL

3 �

(b)

I  =  0.6 A ∠ 120°

XC1

6 �

FIG. 18.108

Problem 2.

R1 6 �

4 �

XL

2 �XCE2  =  4 V

+

–
E1  =  10 V ∠0°

R2 8 �

i

+

–

FIG. 18.109

Problems 3, 15, 30, and 42.

PROBLEMS

SECTION 18.2 Superposition Theorem

1. Using superposition, determine the current through the in-
ductance XL for each network in Fig. 18.107.

*2. Using superposition, determine the current IL for each net-
work in Fig. 18.108.

*3. Using superposition, find the sinusoidal expression for the
current i for the network in Fig. 18.109.

4. Using superposition, find the sinusoidal expression for the
voltage yC for the network in Fig. 18.110.
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R1 10 k�

5 k�XC

+–

 I  =  5 mA ∠ 0°
R2 5 k�

 E  =  20 V ∠ 0°

5 k�XL

I

FIG. 18.111

Problems 5, 17, 32, and 44.

R 20 k�

+–
 E  =  10 V ∠ 0°

10 k�XL

IL

hI

 I  =  2 mA ∠ 0°

FIG. 18.112

Problems 6 and 20.

R2 4 k� V  =  2 V ∠ 0°  I  =  2 mA ∠ 0°mV
–

+–

+

R1

5 k�

XC

1 k�

–

+

VL

FIG. 18.113

Problems 7, 21, and 35.

*5. Using superposition, find the current I for the network in
Fig. 18.111.

6. Using superposition, determine the current IL (h � 100) for
the network in Fig. 18.112.

7. Using superposition, for the network in Fig. 18.113, deter-
mine the voltage VL (m� 20).

 V  =  10 V ∠ 0°

mV
– +

–

+

R1 20 k�

R2

5 k�

5 k�XL

IL

 I  =  1 mA ∠ 0°

hI

FIG. 18.114

Problems 8, 22, and 36.

*8. Using superposition, determine the current IL for the net-
work in Fig. 18.114 (m� 20; h � 100).
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RL 2 k�

+

–

E  =  20 V ∠ 53° VLhI

+

–

I

R1  =  2 k�

FIG. 18.115

Problems 9 and 23.

R2 5 k�

+ –

 I1  =  1 mA ∠ 0°

I

20V

R1 2 k�  I2  =  2 mA ∠ 0°
+

–
V

FIG. 18.116

Problems 10, 24, and 38.

I

R2 2 �

+

R1 10 �Vx

–

10 V∠0°

–

E1

+

–

4Vx

+
5 A∠0°

–

Vs

+

FIG. 18.117

Problem 11.

+

–
 E  =  100 V ∠ 0° XL

3 �

R

4 � XC 2 �

a

b

(a)

+

–
 E  =  20 V ∠ 0°

XL

2 k�

R

6 k�

XC 3 k�

a

b

(b)

RL

FIG. 18.118

Problems 12 and 26.

*9. Determine VL for the network in Fig. 18.115 (h � 50).

*10. Calculate the current I for the network in Fig. 18.116.

11. Find the voltage Vs for the network in Fig. 18.117.

SECTION 18.3 Thévenin’s Theorem

12. Find the Thévenin equivalent circuit for the portions of the
networks in Fig. 18.118 external to the elements between
points a and b.
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 I  =  0.1 A ∠ 0°

XL

20 �R1

20 �

XC 32 �

a

b

(a)

+

–

 E  =  50 V ∠ 0°

XC2

2 �

R1

6 �

XL

4 �

a

b

(b)

R2  =  68 �

XC1

8 �
R2

10 �

FIG. 18.119

Problems 13 and 27.

(a)

–

+

E1  =  120 V ∠ 0°

R

10 �

XC

8 �

XL 8 �
I  =
0.5 A ∠ 60° ZL

a

b

R2

10 �

XC

10 �
a

b

I  =  0.6 A ∠ 90° E  =  20 V ∠ 40°
–

+

R1 9 �
I2  =
0.8 ∠ 60°

(b)

FIG. 18.120

Problems 14 and 28.

*13. Find the Thévenin equivalent circuit for the portions of the
networks in Fig. 18.119 external to the elements between
points a and b.

*14. Find the Thévenin equivalent circuit for the portions of the
networks in Fig. 18.120 external to the elements between
points a and b.

*15. a. Find the Thévenin equivalent circuit for the network ex-
ternal to the resistor R2 in Fig. 18.109.

b. Using the results of part (a), determine the current i of
the same figure.

16. a. Find the Thévenin equivalent circuit for the network ex-
ternal to the capacitor in Fig. 18.110.

b. Using the results of part (a), determine the voltage VC for
the same figure.

*17. a. Find the Thévenin equivalent circuit for the network ex-
ternal to the inductor in Fig. 18.111.

b. Using the results of part (a), determine the current I of
the same figure.
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R1 40 k� R2 5 k�

Th

XL 4 k�100I

XC

0.2 k�

FIG. 18.122

Problems 19 and 34.

R1 2 k�

+

8 V∠0°
5Ix R3 3.3 k�

R2

1 k�

E
–

Thévenin
Ix

a

á

FIG. 18.123

Problem 25.

XL

4 �

–

+

E1  =  120 V ∠ 30°
–

+

E2  =  108 V ∠ 0°

R1  =  3 �

R3 68 �

R4 40 �

a

b

(b)

R2 8 �

R1

6 �

b

a

XL

8 �

I2  =  0.4 A ∠ 20°ZL

(a)

XC 12 �

R2 9 �

–

+

E 20 V ∠ 0°

XC 8 �

FIG. 18.124

Problem 29.

18. Determine the Thévenin equivalent circuit for the network
external to the 5 k� inductive reactance in Fig. 18.121 (in
terms of V).

19. Determine the Thévenin equivalent circuit for the network
external to the 4 k� inductive reactance in Fig. 18.122 (in
terms of I).

–

+

R1 10 k�

R2 10 k� XL 5 k�

XC

1 k�

Th

20V

FIG. 18.121

Problems 18 and 33.

20. Find the Thévenin equivalent circuit for the network exter-
nal to the 10 k� inductive reactance in Fig. 18.112.

21. Determine the Thévenin equivalent circuit for the network
external to the 4 k� resistor in Fig. 18.113.

*22. Find the Thévenin equivalent circuit for the network exter-
nal to the 5 k� inductive reactance in Fig. 18.114.

*23. Determine the Thévenin equivalent circuit for the network
external to the 2 k� resistor in Fig. 18.115.

SECTION 18.4 Norton’s Theorem

26. Find the Norton equivalent circuit for the network external
to the elements between a and b for the networks in Fig.
18.118.

27. Find the Norton equivalent circuit for the network external to
the elements between a and b for the networks in Fig. 18.119.

28. Find the Norton equivalent circuit for the network external to
the elements between a and b for the networks in Fig. 18.120.

*29. Find the Norton equivalent circuit for the portions of the net-
works in Fig. 18.124 external to the elements between points
a and b.

*30. a. Find the Norton equivalent circuit for the network exter-
nal to the resistor R2 in Fig. 18.109.

b. Using the results of part (a), determine the current I of
the same figure.

*31. a. Find the Norton equivalent circuit for the network exter-
nal to the capacitor in Fig. 18.110.

b. Using the results of part (a), determine the voltage VC for
the same figure.

*32. a. Find the Norton equivalent circuit for the network exter-
nal to the inductor in Fig. 18.111.

b. Using the results of part (a), determine the current I of
the same figure.

*24. Find the Thévenin equivalent circuit for the network exter-
nal to the resistor R1 in Fig. 18.116.

*25. Find the Thévenin equivalent circuit for the network to the
left of terminals a-a� in Fig. 18.123.
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R1 1 k�  V R2 3 k� R4 2 k�I  =  2 mA ∠ 0°

R3

4 k�

– +

–

+

μ(    =  20)
μV

FIG. 18.125

Problem 37.

–

+

R1

3 �

XC 6 �

XL

4 �

E  =  120 V ∠ 0° ZL

(a)

XL

4 �

I  =  2 A ∠ 30°

ZL

(b)

R2 2 �R1 3 �

FIG. 18.126

Problem 39.

–

+

R

10 �

XC1
5 �

XL

4 �

E  =  60 V ∠ 60°

(a)

XL1

4 �

ZL

(b)

R2 12 �R1 3 �

ZL

XC2
6 �

9 �

XC 8 �
E1  =  100 V ∠ 0° E2  =  200 V ∠ 90°

XL2

–

+

–

+

FIG. 18.127

Problem 40.

33. Determine the Norton equivalent circuit for the network ex-
ternal to the 5 k� inductive reactance in Fig. 18.121.

34. Determine the Norton equivalent circuit for the network ex-
ternal to the 4 k� inductive reactance in Fig. 18.122.

35. Find the Norton equivalent circuit for the network external
to the 4 k� resistor in Fig. 18.113.

*36. Find the Norton equivalent circuit for the network external
to the 5 k� inductive reactance in Fig. 18.114.

*37. For the network in Fig. 18.125, find the Norton equivalent
circuit for the network external to the 2 k� resistor.

*38. Find the Norton equivalent circuit for the network external
to the I1 current source in Fig. 18.116.

SECTION 18.5 Maximum Power Transfer Theorem

39. Find the load impedance ZL for the networks in Fig. 18.126
for maximum power to the load, and find the maximum
power to the load.

*40. Find the load impedance ZL for the networks in Fig. 18.127
for maximum power to the load, and find the maximum
power to the load.
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–

+

R1 1 k� R2 40 k� RL

I

50I

E  =  1 V ∠ 0°

FIG. 18.128

Problem 41.

–

+

R

2 k� LOAD

RL

XL 2 k�

XC

2 k�E  =  50 V ∠ 0°

FIG. 18.129

Problem 45.

–

+
RL

E  =  2 V ∠ 0° C 4 nF

C (1  –  10 nF)

LOAD

30 mH

L

f  =  10 kHz

R

1 k�

FIG. 18.130

Problem 46.

R1 4 k� R2 8 k�

a

b

I  =  4 mA ∠ 0°

FIG. 18.131

Problem 47.

41. Find the load impedance RL for the network in Fig. 18.128
for maximum power to the load, and find the maximum
power to the load.

45. a. For the network in Fig. 18.129, determine the value of
RL that will result in maximum power to the load.

b. Using the results of part (a), determine the maximum
power delivered.

*46. a. For the network in Fig. 18.130, determine the level of
capacitance that will ensure maximum power to the
load if the range of capacitance is limited to 1 nF to
10 nF.

b. Using the results of part (a), determine the value of RL

that will ensure maximum power to the load.
c. Using the results of parts (a) and (b), determine the max-

imum power to the load.

*42. a. Determine the load impedance to replace the inductor
XL in Fig. 18.109 to ensure maximum power to the
load.

b. Using the results of part (a), determine the maximum
power to the load.

*43. a. Determine the load impedance to replace the capacitor
XC in Fig. 18.110 to ensure maximum power to the load.

b. Using the results of part (a), determine the maximum
power to the load.

*44. a. Determine the load impedance to replace the inductor XL

in Fig. 18.111 to ensure maximum power to the load.
b. Using the results of part (a), determine the maximum

power to the load.

SECTION 18.6 Substitution, Reciprocity, and

Millman’s Theorems

47. For the network in Fig. 18.131, determine two equivalent
branches through the substitution theorem for the branch a-b.
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–

+

R1

1 k�

R2

8 k�

R4

11 k�

R3

4 k�

R5

6 k�
E  =  20 V ∠ 0°

I

R1

1 k�

R2

8 k�

R4

11 k�

R3

4 k�

R5  =  6 k�

E  =  20 V ∠ 0°

I

(a) (b)

–

+

FIG. 18.132

Problem 48.

–

+

XL 4 k�R1 2 k�
IC

4 k�

E1  =  100 V ∠ 0° E2  =  50 V ∠ 360°
XC

–

+
FIG. 18.133

Problem 49.

48. a. For the network in Fig. 18.132(a), find the current I.
b. Repeat part (a) for the network in Fig. 18.132(b).
c. Do the results of parts (a) and (b) compare?

49. Using Millman’s theorem, determine the current through the
4 k� capacitive reactance of Fig. 18.133.

SECTION 18.8 Computer Analysis 

PSpice or Multisim

50. Apply superposition to the network in Fig. 18.6. That is, de-
termine the current I due to each source, and then find the
resultant current.

*51. Determine the current IL for the network in Fig. 18.22 using
schematics.

*52. Using schematics, determine V2 for the network in Fig.
18.57 if Vi � 1 V �0°, R1 � 0.5 k�, k1 � 3 � 10�4, k2 � 50,
and R2 � 20 k�.

*53. Find the Norton equivalent circuit for the network in Fig.
18.77 using schematics.

*54. Using schematics, plot the power to the R-C load in Fig.
18.90 for values of RL from 1 � to 10 �.

GLOSSARY

Maximum power transfer theorem A theorem used to deter-
mine the load impedance necessary to ensure maximum power
to the load.

Millman’s theorem A method using voltage-to-current source
conversions that will permit the determination of unknown
variables in a multiloop network.

Norton’s theorem A theorem that permits the reduction of any
two-terminal linear ac network to one having a single current
source and parallel impedance. The resulting configuration
can then be used to determine a particular current or voltage in
the original network or to examine the effects of a specific por-
tion of the network on a particular variable.

Reciprocity theorem A theorem stating that for single-source
networks, the magnitude of the current in any branch of a net-
work, due to a single voltage source anywhere else in the net-
work, will equal the magnitude of the current through the
branch in which the source was originally located if the source
is placed in the branch in which the current was originally
measured.

Substitution theorem A theorem stating that if the voltage
across and current through any branch of an ac bilateral net-
work are known, the branch can be replaced by any combina-
tion of elements that will maintain the same voltage across and
current through the chosen branch.

Superposition theorem A method of network analysis that per-
mits considering the effects of each source independently. The
resulting current and/or voltage is the phasor sum of the cur-
rents and/or voltages developed by each source independently.

Thévenin’s theorem A theorem that permits the reduction of any
two-terminal linear ac network to one having a single voltage
source and series impedance. The resulting configuration can
then be employed to determine a particular current or voltage
in the original network or to examine the effects of a specific
portion of the network on a particular variable.

Voltage-controlled voltage source (VCVS) A voltage source
whose parameters are controlled by a voltage elsewhere in the
system.
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