
Resonance

20.1 INTRODUCTION

This chapter introduces the very important resonant (or tuned) circuit, which is fundamental
to the operation of a wide variety of electrical and electronic systems in use today. The reso-
nant circuit is a combination of R, L, and C elements having a frequency response character-
istic similar to the one appearing in Fig. 20.1. Note in the figure that the response is a maximum
for the frequency fr , decreasing to the right and left of this frequency. In other words, for a par-
ticular range of frequencies, the response will be near or equal to the maximum. The frequen-
cies to the far left or right have very low voltage or current levels and, for all practical purposes,
have little effect on the system’s response. The radio or television receiver has a response curve
for each broadcast station of the type indicated in Fig. 20.1. When the receiver is set (or tuned)
to a particular station, it is set on or near the frequency fr in Fig. 20.1. Stations transmitting at
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872 ⏐⏐⏐ RESONANCE ƒr

frequencies to the far right or left of this resonant frequency are not car-
ried through with significant power to affect the program of interest. The
tuning process (setting the dial to fr) as described above is the reason for
the terminology tuned circuit. When the response is at or near the maxi-
mum, the circuit is said to be in a state of resonance.

The concept of resonance is not limited to electrical or electronic sys-
tems. If mechanical impulses are applied to a mechanical system at the
proper frequency, the system will enter a state of resonance in which sus-
tained vibrations of very large amplitude will develop. The frequency at
which this occurs is called the natural frequency of the system. The clas-
sic example of this effect was the Tacoma Narrows Bridge built in 1940
over Puget Sound in Washington State. Four months after the bridge, with
its suspended span of 2800 ft, was completed, a 42 mi/h pulsating gale
set the bridge into oscillations at its natural frequency. The amplitude of
the oscillations increased to the point where the main span broke up and
fell into the water below. It has since been replaced by the new Tacoma
Narrows Bridge, completed in 1950.

The resonant electrical circuit must have both inductance and capaci-
tance. In addition, resistance will always be present due either to the lack
of ideal elements or to the control offered on the shape of the resonance
curve. When resonance occurs due to the application of the proper fre-
quency ( fr), the energy absorbed by one reactive element is the same as that
released by another reactive element within the system. In other words, en-
ergy pulsates from one reactive element to the other. Therefore, once an
ideal (pure C, L) system has reached a state of resonance, it requires no fur-
ther reactive power since it is self-sustaining. In a practical circuit, there is
some resistance associated with the reactive elements that will result in the
eventual “damping” of the oscillations between reactive elements.

There are two types of resonant circuits: series and parallel. Each will
be considered in some detail in this chapter.

SERIES RESONANCE

20.2 SERIES RESONANT CIRCUIT

A resonant circuit (series or parallel) must have an inductive and a ca-
pacitive element. A resistive element is always present due to the inter-
nal resistance of the source (Rs), the internal resistance of the inductor
(Rl), and any added resistance to control the shape of the response curve
(Rdesign). The basic configuration for the series resonant circuit appears in
Fig. 20.2(a) with the resistive elements listed above. The “cleaner” ap-
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FIG. 20.2

Series resonant circuit.
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SERIES RESONANT CIRCUIT ⏐⏐⏐ 873ƒr

pearance in Fig. 20.2(b) is a result of combining the series resistive ele-
ments into one total value. That is,

(20.1)

The total impedance of this network at any frequency is determined by

ZT � R � j XL � j XC � R � j (XL � XC)

The resonant conditions described in the introduction occurs when

(20.2)

removing the reactive component from the total impedance equation. The
total impedance at resonance is then

(20.3)

representing the minimum value of ZT at any frequency. The subscript s
is employed to indicate series resonant conditions.

The resonant frequency can be determined in terms of the inductance and
capacitance by examining the defining equation for resonance [Eq. (20.2)]:

XL � XC

Substituting yields

and (20.4)

or fs �
1

2p1LC

vs �
1

1LC

vL �
1

vC
    and    v2 �

1

LC

ZTs
� R

XL � XC

R � Rs � Rl � Rd

f � hertz (Hz)
L � henries (H) (20.5)
C � farads (F)

The current through the circuit at resonance is

which is the maximum current for the circuit in Fig. 20.2 for an applied
voltage E since ZT is a minimum value. Consider also that the input volt-
age and current are in phase at resonance.

Since the current is the same through the capacitor and inductor, the volt-
age across each is equal in magnitude but 180° out of phase at resonance:

and, since XL � XC , the magnitude of VL equals VC at resonance; that is,

(20.6)

Fig. 20.3, a phasor diagram of the voltages and current, clearly indi-
cates that the voltage across the resistor at resonance is the input voltage,
and E, I, and VR are in phase at resonance.

VLs
� VCs

VL � 1I �0° 2 1XL �90° 2 � IXL �90°

VC � 1I �0° 2 1XC ��90° 2 � IXC ��90°
s  180°

out of

phase

I �
E �0°

R �0°
�

E

R
 �0°

I

E

VL

VC

VR

FIG. 20.3

Phasor diagram for the series resonant circuit 
at resonance.
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874 ⏐⏐⏐ RESONANCE ƒr

The average power to the resistor at resonance is equal to I 2R, and the
reactive power to the capacitor and inductor are I 2XC and I 2XL, respectively.

The power triangle at resonance (Fig. 20.4) shows that the total ap-
parent power is equal to the average power dissipated by the resistor since
QL � QC. The power factor of the circuit at resonance is

and (20.7)

Plotting the power curves of each element on the same set of axes (Fig.
20.5), we note that, even though the total reactive power at any instant is
equal to zero (note that t � t�), energy is still being absorbed and released
by the inductor and capacitor at resonance.

Fps
� 1

Fp � cos u �
P

S

QL = I2XL

S = EI

P = I2R = EI

QC = I2XC

FIG. 20.4

Power triangle for the series resonant circuit 
at resonance.
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FIG. 20.5

Power curves at resonance for the series resonant circuit.

A closer examination reveals that the energy absorbed by the inductor
from time 0 to t1 is the same as the energy released by the capacitor from
0 to t1. The reverse occurs from t1 to t2, and so on. Therefore, the total ap-
parent power continues to be equal to the average power, even though the
inductor and capacitor are absorbing and releasing energy. This condition
occurs only at resonance. The slightest change in frequency introduces a
reactive component into the power triangle, which increases the apparent
power of the system above the average power dissipation, and resonance
no longer exists.

20.3 THE QUALITY FACTOR (Q)

The quality factor Q of a series resonant circuit is defined as the ratio of
the reactive power of either the inductor or the capacitor to the average
power of the resistor at resonance; that is,

(20.8)

The quality factor is also an indication of how much energy is placed in
storage (continual transfer from one reactive element to the other) com-
pared to that dissipated. The lower the level of dissipation for the same
reactive power, the larger the Qs factor and the more concentrated and in-
tense the region of resonance.

Qs �
reactive power

average power
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THE QUALITY FACTOR (Q) ⏐⏐⏐ 875ƒr

Substituting for an inductive reactance in Eq. (20.8) at resonance
gives us

and (20.9)

If the resistance R is just the resistance of the coil (Rl), we can speak
of the Q of the coil, where

(20.10)

Since the quality factor of a coil is typically the information provided
by manufacturers of inductors, it is often given the symbol Q without an
associated subscript. It appears from Eq. (20.10) that Ql increases linearly
with frequency since XL � 2pfL. That is, if the frequency doubles, then Ql

also increases by a factor of 2. This is approximately true for the low range
to the midrange of frequencies such as shown for the coils in Fig. 20.6. Un-
fortunately, however, as the frequency increases, the effective resistance
of the coil also increases, due primarily to skin effect phenomena, and the
resulting Ql decreases. In addition, the capacitive effects between the
windings increases, further reducing the Ql of the coil. For this reason, Ql

must be specified for a particular frequency or frequency range. For wide
frequency applications, a plot of Ql versus frequency is often provided.
The maximum Ql for most commercially available coils is less than 200,
with most having a maximum near 100. Note in Fig. 20.6 that for coils of
the same type, Ql drops off more quickly for higher levels of inductance.

If we substitute

vs � 2pfs

and then

into Eq. (20.9), we have

and (20.11)

providing Qs in terms of the circuit parameters.
For series resonant circuits used in communication systems, Qs is usu-

ally greater than 1. By applying the voltage divider rule to the circuit in
Fig. 20.2, we obtain

(at resonance)VL �
XLE

ZT

�
XLE

R

Qs �
1

R
 B

L

C

 �
L

R
 a 1

1LC
b � a 1 L

1L
 b  

L

R2LC

 Qs �
vsL

R
�

2pfsL

R
�

2p

R
 a 1

2p2LC
 b  L

fs �
1

2p2LC

Qcoil � Ql �
XL
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�
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FIG. 20.6

Ql versus frequency for a series of inductors of
similar construction.
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876 ⏐⏐⏐ RESONANCE ƒr

and (20.12)

or

and (20.13)

Since Qs is usually greater than 1, the voltage across the capacitor or
inductor of a series resonant circuit can be significantly greater than the
input voltage. In fact, in many cases the Qs is so high that careful design
and handling (including adequate insulation) are mandatory with respect
to the voltage across the capacitor and inductor.

In the circuit in Fig. 20.7, for example, which is in the state of resonance,

and VL � VC � Qs E � (80)(10 V) � 800 V

which is certainly a potential of significant magnitude.

Qs �
XL

R
�

480 �
6 � � 80

VCs
� Qs E

VC �
XC E

ZT

�
XC E

R

VLs
� Qs E

R  =  6 �

XC  =  480 �

–

+

E  =  10 V ∠0°

XL  =  480 �

FIG. 20.7

High-Q series resonant circuit.

R( f )

R

0 f

FIG. 20.8

Resistance versus frequency.

20.4 ZT VERSUS FREQUENCY

The total impedance of the series R-L-C circuit in Fig. 20.2 at any fre-
quency is determined by

ZT � R � j XL � j XC or ZT � R � j (XL � XC)

The magnitude of the impedance ZT versus frequency is determined by

The total-impedance-versus-frequency curve for the series resonant
circuit in Fig. 20.2 can be found by applying the impedance-versus-
frequency curve for each element of the equation just derived, written in
the following form:

(20.14)

where ZT ( f ) “means” the total impedance as a function of frequency. For
the frequency range of interest, we assume that the resistance R does not
change with frequency, resulting in the plot in Fig. 20.8. The curve for
the inductance, as determined by the reactance equation, is a straight line
intersecting the origin with a slope equal to the inductance of the coil.
The mathematical expression for any straight line in a two-dimensional
plane is given by

y � mx � b

ZT 1 f 2 � 2 3R1 f 2 4 2 � 3XL1 f 2 � XC 1 f 2 4 2

ZT � 2R2 � 1XL � XC 2 2
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Thus, for the coil,

XL � 2pfL � 0 �  2pL    f   � 0

y  � m x b�

(where 2pL is the slope), producing the results shown in Fig. 20.9.
For the capacitor,

which becomes yx � k, the equation for a hyperbola, where

The hyperbolic curve for XC ( f ) is plotted in Fig. 20.10. In particular,
note its very large magnitude at low frequencies and its rapid dropoff as
the frequency increases.

If we place Figs. 20.9 and 20.10 on the same set of axes, we obtain the
curves in Fig. 20.11. The condition of resonance is now clearly defined
by the point of intersection, where XL � XC . For frequencies less than fs ,
it is also quite clear that the network is primarily capacitive (XC � XL).
For frequencies above the resonant condition, XL � XC , and the network
is inductive.

Applying

to the curves in Fig. 20.11, where X( f ) � XL( f ) � XC ( f ), we obtain the
curve for ZT ( f ) as shown in Fig. 20.12. The minimum impedance occurs
at the resonant frequency and is equal to the resistance R. Note that the
curve is not symmetrical about the resonant frequency (especially at
higher values of ZT).

The phase angle associated with the total impedance is

(20.15)

For the tan�1x function (resulting when XL � XC), the larger x is, the
larger the angle u (closer to 90°). However, for regions where XC � XL ,
one must also be aware that

(20.16)

At low frequencies, XC � XL , and u approaches �90° (capacitive), as
shown in Fig. 20.13, whereas at high frequencies, XL � XC , and u ap-
proaches 90°. In general, therefore, for a series resonant circuit:

tan�11�x 2 � �tan�1x

u � tan�1
1XL � XC 2

R

 � 2 3R1 f 2 4 2 � 3X1 f 2 4 2
 ZT 1 f 2 � 2 3R1 f 2 4 2 � 3XL1 f 2 � XC 1 f 2 4 2

 k 1constant 2 �
1

2pC

 x 1variable 2 �  f

 y 1variable 2 �  XC

XC �
1

2pfC
    or    XC f �

1

2pC

f � fs: network capacitive; I leads E
f � fs: network inductive; E leads I
f � fs: network resistive; E and I are in phase

XL  =  2pfL

XL ( f )

0

Δx

Δy
2pL  = =  mΔy

Δx

f

FIG. 20.9

Inductive reactance versus frequency.

XC  = 1
2pfC

f0

XC ( f )

FIG. 20.10

Capacitive reactance versus frequency.

XC

X

XL

XC  >  XL XL  >  XC

fs f0

FIG. 20.11

Placing the frequency response of the inductive and
capacitive reactance of a series R-L-C circuit on the

same set of axes.

b  ≠  a

ZT ( f )

ffs

a

ZT

R

0

FIG. 20.12

ZT versus frequency for the series resonant circuit.
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Circuit capacitive
Leading Fp

v

90°
45°
0°

–45°
–90°
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Circuit inductive
Lagging Fp

fs f

FIG. 20.13

Phase plot for the series resonant circuit.

BW

I

Imax  = E
R

0.707Imax

0 f1 fs f2 f

FIG. 20.14

I versus frequency for the series resonant circuit.

20.5 SELECTIVITY

If we now plot the magnitude of the current I � E/ZT versus frequency
for a fixed applied voltage E, we obtain the curve shown in Fig. 20.14,
which rises from zero to a maximum value of E/R (where ZT is a mini-
mum) and then drops toward zero (as ZT increases) at a slower rate than
it rose to its peak value. The curve is actually the inverse of the
impedance-versus-frequency curve. Since the ZT curve is not absolutely
symmetrical about the resonant frequency, the curve of the current ver-
sus frequency has the same property.

There is a definite range of frequencies at which the current is near its
maximum value and the impedance is at a minimum. Those frequencies
corresponding to 0.707 of the maximum current are called the band fre-
quencies, cutoff frequencies, half-power frequencies, or corner fre-
quencies. They are indicated by f1 and f2 in Fig. 20.14. The range of
frequencies between the two is referred to as the bandwidth (abbreviated
BW) of the resonant circuit.

Half-power frequencies are those frequencies at which the power de-
livered is one-half that delivered at the resonant frequency; that is,

(20.17)

The above condition is derived using the fact that

and PHPF � I 2R � 10.707Imax 2 2R � 10.5 2 1Imax
2 R 2 �

1

2
 Pmax

Pmax � Imax
2  R

PHPF �
1

2
 Pmax
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Since the resonant circuit is adjusted to select a band of frequencies,
the curve in Fig. 20.14 is called the selectivity curve. The term is derived
from the fact that one must be selective in choosing the frequency to en-
sure that it is in the bandwidth. The smaller the bandwidth, the higher the
selectivity. The shape of the curve, as shown in Fig. 20.15, depends on
each element of the series R-L-C circuit. If the resistance is made smaller
with a fixed inductance and capacitance, the bandwidth decreases and the
selectivity increases. Similarly, if the ratio L/C increases with fixed re-
sistance, the bandwidth again decreases with an increase in selectivity.

In terms of Qs , if R is larger for the same XL , then Qs is less, as deter-
mined by the equation Qs � vsL/R.

A small Qs , therefore, is associated with a resonant curve having a
large bandwidth and a small selectivity, while a large Qs indicates the
opposite.

For circuits where Qs 	 10, a widely accepted approximation is that
the resonant frequency bisects the bandwidth and that the resonant
curve is symmetrical about the resonant frequency.

These conditions are shown in Fig. 20.16, indicating that the cutoff fre-
quencies are then equidistant from the resonant frequency.

For any Qs, the preceding is not true. The cutoff frequencies f1 and f2

can be found for the general case (any Qs) by first using the fact that a
drop in current to 0.707 of its resonant value corresponds to an increase
in impedance equal to times the resonant value, which
is R.

Substituting into the equation for the magnitude of ZT, we find
that

becomes

or, squaring both sides, that

2R2 � R2 � (XL � XC)2

and, R2 � (XL � XC)2

Taking the square root of both sides gives us

R � XL � XC or R � XL � XC � 0

Let us first consider the case where XL � XC , which relates to f2 or v2.
Substituting v2L for XL and 1/v2C for XC and bringing both quantities to
the left of the equal sign, we have

which can be written

Solving the quadratic, we have

and v2 � �
R

2L
 
 

1

2B
R2

L2 �
4

LC

v2 �
�1�R>L 2  
 2 3�1R>L 2 4 2 � 3�14>LC 2 4

2

v2
2 �

R

L
v2 �

1

LC
� 0

R � v2L �
1

v2C
� 0    or    Rv2 � v2

2 L �
1

C
� 0

22R � 2R2 � 1XL � XC 2 2
ZT � 2R2 � 1XL � XC 2 2

12R

1>0.707 � 12

BW

BW

fs f0

I
R3 > R2 > R1 (L, C fixed)

R1(smaller)

R2

R3(larger)

fs f0

I

BW2

BW3

BW1

L3 /C3

L2/C2

L1/C1

(R  fixed)L3/C3 > L2/C2 > L1/C1

(a)

(b)

BW

FIG. 20.15

Effect of R, L, and C on the selectivity curve for the
series resonant circuit.

Imax

0.707Imax

a

b

a = b

f1 f2fs

FIG. 20.16

Approximate series resonance curve for Qs 	 10.
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with (Hz) (20.18)

The negative sign in front of the second factor was dropped because
is always greater than R/(2L). If it were not

dropped, there would be a negative solution for the radian frequency v.
If we repeat the same procedure for XC � XL , which relates to v1 or f1

such that , the solution f1 becomes

(Hz) (20.19)

The bandwidth (BW) is

BW � f2 � f1 � Eq. (20.18) � Eq. (20.19)

and (20.20)

Substituting R/L � vs /Qs from Qs � vs L/R and 1/2p � fs /vs from vs �
2pfs gives us

or (20.21)

which is a very convenient form since it relates the bandwidth to the Qs

of the circuit. As mentioned earlier, Eq. (20.21) verifies that the larger the
Qs , the smaller the bandwidth, and vice versa.

Written in a slightly different form, Eq. (20.21) becomes

(20.22)

The ratio (f2 � f1)/fs is sometimes called the fractional bandwidth, pro-
viding an indication of the width of the bandwidth compared to the reso-
nant frequency.

It can also be shown through mathematical manipulations of the per-
tinent equations that the resonant frequency is related to the geometric
mean of the band frequencies; that is,

(20.23)

20.6 VR , VL , AND VC

Plotting the magnitude (effective value) of the voltages VR , VL , and VC and
the current I versus frequency for the series resonant circuit on the same
set of axes, we obtain the curves shown in Fig. 20.17. Note that the VR

curve has the same shape as the I curve and a peak value equal to the mag-
nitude of the input voltage E. The VC curve builds up slowly at first from

fs � 1f1 f2

f2 � f1

fs

�
1

Qs

BW �
fs

Qs

BW �
R

2pL
� a 1

2p
b a R

L
b � a fs

vs
b a vs

Qs

b

BW � f2 � f1 �
R

2pL

f1 �
1

2p
 c� R

2L
�

1

2B a
R

L
b 2

�
4

LC
d

ZT � 2R2 � 1XC � XL 2 2

11>2 221R>L 2 2 � 4>LC

f2 �
1

2p
 c R

2L
�

1

2B a
R

L
b 2

�
4

LC
d
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VL

VCmax
  =  VLmax

VCs
  =  VLs

  =  QE

VR
I

f
fLmax

fCmax

fs0

Imax

E

VC

FIG. 20.17

VR, VL, VC, and I versus frequency for a series resonant circuit.

a value equal to the input voltage since the reactance of the capacitor is
infinite (open circuit) at zero frequency and the reactance of the inductor
is zero (short circuit) at this frequency. As the frequency increases, 1/vC
of the equation

becomes smaller, but I increases at a rate faster than that at which 1/vC
drops. Therefore, VC rises and will continue to rise due to the quickly ris-
ing current, until the frequency nears resonance. As it approaches the res-
onant condition, the rate of change of I decreases. When this occurs, the
factor 1/vC, which decreased as the frequency rose, overcomes the rate
of change of I, and VC starts to drop. The peak value occurs at a frequency
just before resonance. After resonance, both VC and I drop in magnitude,
and VC approaches zero.

The higher the Qs of the circuit, the closer will be to fs, and the
closer will be to QsE. For circuits with Qs 	 10, and

The curve for VL increases steadily from zero to the resonant fre-
quency since both quantities vL and I of the equation VL � IXL � (I)(vL)
increase over this frequency range. At resonance, I has reached its max-
imum value, but vL is still rising. Therefore, VL reaches its maximum
value after resonance. After reaching its peak value, the voltage VL drops
toward E since the drop in I overcomes the rise in vL . It approaches E
because XL will eventually be infinite, and XC will be zero.

As Qs of the circuit increases, the frequency drops toward fs , and
approaches QsE. For circuits with Qs 	 10, and

The VL curve has a greater magnitude than the VC curve for any fre-
quency above resonance, and the VC curve has a greater magnitude than
the VL curve for any frequency below resonance. This again verifies that
the series R-L-C circuit is predominantly capacitive from zero to the res-
onant frequency and predominantly inductive for any frequency above
resonance.

For the condition Qs 	 10, the curves in Fig. 20.17 appear as shown
in Fig. 20.18. Note that they each peak (on an approximate basis) at the
resonant frequency and have a similar shape.

VLmax
 � QsE.

fLmax
 �  fs,VLmax

fLmax

VCmax
 � QsE.

fCmax � fs ,VCmax

fCmax

VC � IXC � 1I 2  a 1

vC
 b
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VCmax
  =  VLmax

  =  QsE

VC

E
VL

VR
Imax

0 f1 fs f2

I

VL

VC

f

FIG. 20.18

VR , VL , VC , and I for a series resonant circuit where Qs 	 10.

In review,

1. VC and VL are at their maximum values at or near resonance (de-
pending on Qs).

2. At very low frequencies, VC is very close to the source voltage
and VL is very close to zero volts, whereas at very high frequen-
cies, VL approaches the source voltage and VC approaches zero
volts.

3. Both VR and I peak at the resonant frequency and have the same
shape.

20.7 EXAMPLES (SERIES RESONANCE)

EXAMPLE 20.1

a. For the series resonant circuit in Fig. 20.19, find I, VR , VL , and VC at
resonance.

b. What is the Qs of the circuit?
c. If the resonant frequency is 5000 Hz, find the bandwidth.
d. What is the power dissipated in the circuit at the half-power fre-

quencies?

VR

VC

–

+

E  =  10 V ∠0°

I

+ –

R  =  2 � XL  =  10 �

VL+ –

XC  =  10 �
+

–

FIG. 20.19

Example 20.1.

Solutions:

a.

 VR � E � 10 V �0°

 I �
E

ZTs

�
10 V �0°

2 � �0°
� 5 A �0°

 ZTs
� R � 2 �
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b.

c.

d.

EXAMPLE 20.2 The bandwidth of a series resonant circuit is 400 Hz.

a. If the resonant frequency is 4000 Hz, what is the value of Qs?
b. If R � 10 �, what is the value of XL at resonance?
c. Find the inductance L and capacitance C of the circuit.

Solutions:

a.

b.

c.

EXAMPLE 20.3 A series R-L-C circuit has a series resonant frequency
of 12,000 Hz.

a. If R � 5 �, and if XL at resonance is 300 �, find the bandwidth.
b. Find the cutoff frequencies.

Solutions:

a.

b. Since Qs 	 10, the bandwidth is bisected by fs . Therefore,

and f1 � 12,000 Hz � 100 Hz � 11,900 Hz

EXAMPLE 20.4

a. Determine the Qs and bandwidth for the response curve in Fig. 20.20.
b. For C � 101.5 nF, determine L and R for the series resonant circuit.
c. Determine the applied voltage.

 f2 � fs �
BW

2
� 12,000 Hz �  100 Hz � 12,100 Hz

BW �
fs

Qs

�
12,000 Hz

60
� 200 Hz

Qs �
XL

R
�

300 �
5 � � 60

 � 397.89 nF

 XC �
1

2pfsC
    or    C �

1

2pfs XC

�
1

2p14000 Hz 2 1100 � 2

XL � 2pfsL    or    L �
XL

2pfs

�
100 �

2p14000 Hz 2 � 3.98 mH

Qs �
XL

R
    or    XL � Qs R � 110 2 110 � 2 � 100 �

BW �
fs

Qs

    or    Qs �
fs

BW
�

4000 Hz

400 Hz
� 10

PHPF �
1

2
 Pmax �

1

2
 Imax

2 R � a 1

2
b 15 A 2 212 � 2 � 25 W

BW � f2 � f1 �
fs

Qs

�
5000 Hz

5
� 1000 Hz

Qs �
XL

R
�

10 �
2 � � 5

 � 50 V  ��90°
 VC � 1I  �0° 2 1XC  ��90° 2 � 15 A  �0° 2 110 �  ��90° 2

 � 50 V  �90°
 VL � 1I  �0° 2 1XL  �90° 2 � 15 A  �0° 2 110 �  �90° 2

I (mA)

200

100

0 2000 3000 4000 f (Hz)

FIG. 20.20

Example 20.4
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Solutions:

a. The resonant frequency is 2800 Hz. At 0.707 times the peak value,

BW � 200 Hz

and

b.

c.

EXAMPLE 20.5 A series R-L-C circuit is designed to resonate at vs �
105 rad/s, have a bandwidth of 0.15vs , and draw 16 W from a 120 V
source at resonance.

a. Determine the value of R.
b. Find the bandwidth in hertz.
c. Find the nameplate values of L and C.
d. Determine the Qs of the circuit.
e. Determine the fractional bandwidth.

Solutions:

a.

b.

c. Eq. (20.20):

d.

e.
f2 � f1

fs

�
BW

fs

�
1

Qs

�
1

6.67
� 0.15

Qs �
XL

R
�

2pfs L

R
�

2p115,915.49 Hz 2 160 mH 2
900 � � 6.67

 � 1.67 nF

 �
1

4p2115,915.49 Hz 2 2160 � 10�3 2

 fs �
1

2p2LC
    and    C �

1

4p 2fs
2 L

BW �
R

2pL
    and    L �

R

2pBW
�

900 �
2p12387.32 Hz 2 � 60 mH

BW � 0.15fs � 0.15115,915.49 Hz 2 � 2387.32 Hz

fs �
vs

2p
�

105 rad>s
2p

� 15,915.49 Hz

P �
E 2

R
    and    R �

E 2

P
�
1120 V 2 2

16 W � 900 �

 � 1200 mA 2 140 � 2 � 8 V

 Imax �
E

R
    or    E � ImaxR

 � 40 �

 Qs �
XL

R
    or    R �

XL

Qs

�
2p12800 Hz 2 131.832 mH 2

14

 � 31.83 mH

 �
1

4p2 12.8 kHz 2 21101.5 nF 2

 fs �
1

2p2LC
    or    L �

1

4p 2 f s
2C

Qs �
fs

BW
�

2800 Hz

200 Hz
� 14
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PARALLEL RESONANCE

20.8 PARALLEL RESONANT CIRCUIT

The basic format of the series resonant circuit is a series R-L-C combi-
nation in series with an applied voltage source. The parallel resonant cir-
cuit has the basic configuration in Fig. 20.21, a parallel R-L-C
combination in parallel with an applied current source.

For the series circuit, the impedance was a minimum at resonance,
producing a significant current that resulted in a high output voltage for
VC and VL. For the parallel resonant circuit, the impedance is relatively
high at resonance, producing a significant voltage for VC and VL through
the Ohm’s law relationship (VC � IZT). For the network in Fig. 20.21,
resonance occurs when XL � XC, and the resonant frequency has the same
format obtained for series resonance.

If the practical equivalent in Fig. 20.22 had the format in Fig. 20.21, the
analysis would be as direct and lucid as that experienced for series reso-
nance. However, in the practical world, the internal resistance of the coil
must be placed in series with the inductor, as shown in Fig. 20.22. The re-
sistance Rl can no longer be included in a simple series or parallel combi-
nation with the source resistance and any other resistance added for design
purposes. Even though Rl is usually relatively small in magnitude com-
pared with other resistance and reactance levels of the network, it does have
an important impact on the parallel resonant condition, as demonstrated in
the sections to follow. In other words, the network in Fig. 20.21 is an ideal
situation that can be assumed only for specific network conditions.

Our first effort is to find a parallel network equivalent (at the termi-
nals) for the series R-L branch in Fig. 20.22 using the technique intro-
duced in Section 15.10. That is,

ZR-L � Rl � j XL

and

with (20.24)

and (20.25)

as shown in Fig. 20.23.

XLp
�

Rl
2 � XL

2

XL

Rp �
Rl

2 � XL
2

Rl

 �
1

Rl
2 � XL

2

Rl

�
1

j a Rl
2 � XL

2

XL

b
�

1

Rp

�
1

j XLp

 YR-L �
1

ZR-L
�

1

Rl � j XL

�
Rl

Rl
2 � XL

2 � j 
XL

Rl
2 � XL

2

C VC

+

–
R L

ZT

I

FIG. 20.21

Ideal parallel resonant network.

Rl

XL

XC

FIG. 20.22

Practical parallel L-C network.

Rl

XL

Rp
Rl

2 + XL
2

RL
XLp

Rl
2 + XL

2

XL
=

FIG. 20.23

Equivalent parallel network for a series R-L combination.
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Redrawing the network in Fig. 20.22 with the equivalent in Fig. 20.23
and a practical current source having an internal resistance Rs results in
the network in Fig. 20.24.

I Rp

+
VpXLp

–
XCRs

ZT

YT

Source

FIG. 20.24

Substituting the equivalent parallel network for the series R-L combination in
Fig. 20.22.

XCR XLp

YT

I

ZT

FIG. 20.25

Substituting R � Rs � Rp for the network in
Fig. 20.24.

If we define the parallel combination of Rs and Rp by the notation

(20.26)

the network in Fig. 20.25 results. It has the same format as the ideal con-
figuration in Fig. 20.21.

We are now at a point where we can define the resonance conditions
for the practical parallel resonant configuration. Recall that for series res-
onance, the resonant frequency was the frequency at which the imped-
ance was a minimum, the current a maximum, and the input impedance
purely resistive, and the network had a unity power factor. For parallel
networks, since the resistance Rp in our equivalent model is frequency de-
pendent, the frequency at which maximum VC is obtained is not the same
as required for the unity-power-factor characteristic. Since both condi-
tions are often used to define the resonant state, the frequency at which
each occurs is designated by different subscripts.

Unity Power Factor, fp

For the network in Fig. 20.25,

and (20.27)

For unity power factor, the reactive component must be zero as de-
fined by

Therefore,

and (20.28)XLp
� XC

1

XC

�
1

XLp

1

XC

�
1

XLp

� 0

YT �
1

R
� j a 1

XC

�
1

XLp

b

 �
1

R
� j a 1

XLp

b � j a 1

XC

b
 YT �

1

Z1
�

1

Z2
�

1

Z3
�

1

R
�

1

j XLp

�
1

�j XC

R � Rs  �  Rp
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Substituting for yields

(20.29)

The resonant frequency, fp , can now be determined from Eq. (20.29)
as follows:

or

with

and

Multiplying the top and bottom of the factor within the square root
sign by C/L produces

and (20.30)

or (20.31)

where fp is the resonant frequency of a parallel resonant circuit (for Fp � 1)
and fs is the resonant frequency as determined by XL � XC for series res-
onance. Note that unlike a series resonant circuit, the resonant frequency
fp is a function of resistance (in this case Rl). Note also, however, the ab-
sence of the source resistance Rs in Eqs. (20.30) and (20.31). Since the
factor is less than 1, fp is less than fs . Recognize also that
as the magnitude of Rl approaches zero, fp rapidly approaches fs .

Maximum Impedance, fm

At f � fp the input impedance of a parallel resonant circuit will be near
its maximum value but not quite its maximum value due to the frequency
dependence of Rp. The frequency at which maximum impedance occurs
is defined by fm and is slightly more than fp , as demonstrated in Fig.
20.26. The frequency fm is determined by differentiating (calculus) the
general equation for ZT with respect to frequency and then determining
the frequency at which the resulting equation is equal to zero. The alge-
bra is quite extensive and cumbersome and is not included here. The re-
sulting equation, however, is the following:

(20.32)fm � fs B1 �
1

4
 a Rl

2C

L
b

21 � 1Rl
2C/L 2

fp � fs B1 �
Rl

2C

L

fp �
1

2p1LC
  B1 �

Rl
2C

L

fp �
1

2pLB
1 � Rl

21C/L 2
C/L

�
1

2pL2C/L
  B1 �

Rl
2C

L

fp �
1

2pLB
L

C
� Rl

2

2pfp L � B
L

C
� Rl

2

XL
2 �

L

C
� Rl

2

Rl
2 � XL

2 � XC XL � a 1

vC
bvL �

L

C

Rl
2 � XL

2

XL

� XC

XLp

ZT

ZTm

Rl
0 fm f

FIG. 20.26

ZT versus frequency for the parallel resonant circuit.
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Note the similarities with Eq. (20.31). Since the square root factor of
Eq. (20.32) is always more than the similar factor of Eq. (20.31), fm is al-
ways closer to fs and more than fp . In general,

(20.33)

Once fm is determined, the network in Fig. 20.25 can be used to deter-
mine the magnitude and phase angle of the total impedance at the reso-
nance condition simply by substituting f � fm and performing the
required calculations. That is,

f � fm

(20.34)

20.9 SELECTIVITY CURVE FOR PARALLEL
RESONANT CIRCUITS

The ZT -versus-frequency curve in Fig. 20.26 clearly reveals that a paral-
lel resonant circuit exhibits maximum impedance at resonance (fm), un-
like the series resonant circuit, which experiences minimum resistance
levels at resonance. Note also that ZT is approximately Rl at f � 0 Hz since

Since the current I of the current source is constant for any value of ZT

or frequency, the voltage across the parallel circuit will have the same
shape as the total impedance ZT, as shown in Fig. 20.27.

For the parallel circuit, the resonance curve of interest is that of the
voltage VC across the capacitor. The reason for this interest in VC derives
from electronic considerations that often place the capacitor at the input
to another stage of a network.

Since the voltage across parallel elements is the same,

(20.35)

The resonant value of VC is therefore determined by the value of and
the magnitude of the current source I.

The quality factor of the parallel resonant circuit continues to be de-
termined by the ratio of the reactive power to the real power. That is,

where , and Vp is the voltage across the parallel branches.
The result is

(20.36a)

or since at resonance,

(20.36b)Qp �
Rs  �  Rp

XC

XLp
� XC

Qp �
R

XLp

�
Rs  �  Rp

XLp

R � Rs  �  Rp

Qp �
Vp

2/XLp

Vp
2/R

ZTm

VC � Vp � IZT

ZT � Rs  �  Rl � Rl .

ZTm
� R  �  XLp

  �  XC

fs 7 fm 7 fp

Vp( f ) I( f ) ZT ( f )

FIG. 20.27

Defining the shape of the Vp(f) curve.
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For the ideal current source (Rs � ∞ �) or when Rs is sufficiently large
compared to Rp, we can make the following approximation:

and

so that
Rs >> Rp

(20.37)

which is simply the quality factor Ql of the coil.
In general, the bandwidth is still related to the resonant frequency and

the quality factor by

(20.38)

The cutoff frequencies f1 and f2 can be determined using the equivalent
network in Fig. 20.25 and the unity power condition for resonance. The
half-power frequencies are defined by the condition that the output voltage
is 0.707 times the maximum value. However, for parallel resonance with a
current source driving the network, the frequency response for the driving
point impedance is the same as that for the output voltage. This similarity
permits defining each cutoff frequency as the frequency at which the input
impedance is 0.707 times its maximum value. Since the maximum value is
the equivalent resistance R in Fig. 20.25, the cutoff frequencies are associ-
ated with an impedance equal to 0.707R or 

Setting the input impedance for the network in Fig. 20.25 equal to this
value results in the following relationship:

which can be written as

or

and finally

The only way the equality can be satisfied is if the magnitude of the
imaginary term on the bottom left is equal to 1 because the magnitude of
1 � j 1 must be equal to .

The following relationship, therefore, defines the cutoff frequencies
for the system:

R avC �
1

vL
b � 1

12

1

1 � j R avC �
1

vL
b

�
1

22

R

1 � j R avC �
1

vL
b

�
R

22

Z �
1

1

R
 c1 � j R avC �

1

vL
b d

�
R

22

Z �
1

1

R
� j avC �

1

vL
b

� 0.707R

11/12 2R.

BW � f2 � f1 �
fr

Qp

Qp �
XL

Rl

� Ql

Qp �
Rs  �  Rp

XLp

�
Rp

XLp

�
1Rl

2 � XL
2 2 /Rl

1Rl
2 � XL

2 2 /XL

R � Rs  �  Rp � Rp
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Substituting v � 2pf and rearranging results in the following quad-
ratic equation:

having the form af 2 � bf � c � 0

with

Substituting into the equation:

results in the following after a series of careful mathematical manipu-
lations:

(20.39a)

(20.39b)

Since the term in the brackets of Eq. (20.39a) is always negative, simply
associate f1 with the magnitude of the result.

The effect of Rl , L, and C on the shape of the parallel resonance curve,
as shown in Fig. 20.28 for the input impedance, is quite similar to their
effect on the series resonance curve. Whether or not Rl is zero, the paral-
lel resonant circuit frequently appears in a network schematic as shown
in Fig. 20.28.

f2 �
1

4pC
c 1
R

� B
1

R2 �
4C

L
d

f1 �
1

4pC
c 1
R

� B
1

R2 �
4C

L
d

f �
�b 
 2b2 � 4ac

2a

a � 1    b � �
1

2pRC
    and    c � �

1

4p2LC

f 2 �
f

2pRC
�

1

4p2LC
� 0

Rl3

ffr0

Rl3
 > Rl2

 > Rl1

L/C fixed

Zp

Rl1

Rl2

Rl

ffr0

Zp
L3

C3

L2

C2

L1

C1
> >

Rl fixed L3/C3

L2/C2

L1/C1

FIG. 20.28

Effect of Rl , L, and C on the parallel resonance curve.

At resonance, an increase in Rl or a decrease in the ratio L/C results in
a decrease in the resonant impedance, with a corresponding increase in
the current. The bandwidth of the resonance curves is given by Eq.
(20.38). For increasing Rl or decreasing L (or L/C for constant C), the
bandwidth increases as shown in Fig. 20.28.

At low frequencies, the capacitive reactance is quite high, and the in-
ductive reactance is low. Since the elements are in parallel, the total im-
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Resonance (resistive)Circuit inductive
Lagging Fp

Circuit capacitive
Leading Fp

fp f

θ (Vp leads I)

90°

45°

0°

–90°

–45°

FIG. 20.29

Phase plot for the parallel resonant circuit.

pedance at low frequencies is therefore inductive. At high frequencies,
the reverse is true, and the network is capacitive. At resonance (fp), the
network appears resistive. These facts lead to the phase plot in Fig. 20.29.
Note that it is the inverse of that appearing for the series resonant circuit
because at low frequencies the series resonant circuit was capacitive and
at high frequencies it was inductive.

20.10 EFFECT OF QL 	 10

The content of the previous section may suggest that the analysis of par-
allel resonant circuits is significantly more complex than encountered for
series resonant circuits. Fortunately, however, this is not the case since,
for the majority of parallel resonant circuits, the quality factor of the coil
Ql is sufficiently large to permit a number of approximations that sim-
plify the required analysis.

Inductive Reactance, 

If we expand as

then, for Ql 	 10, compared to XL , and

Ql 	 10
(20.40)

and since resonance is defined by , the resulting condition for
resonance is reduced to:

Ql 	 10
(20.41)

Resonant Frequency, fp (Unity Power Factor)

We can rewrite the factor of Eq. (20.31) as

Rl
2C

L
�

1

L

Rl
2C

�
1

1v 2
1v 2  

L

Rl
2C

�
1

vL

Rl
2vC

�
1

XL XC

Rl
2

Rl
2C/L

XL  
�

  
XC

XLp
� XC

XLp � XL

XL/Q2
l  � 0

XLp
�

Rl
2 � XL

2

XL

�
Rl

21XL 2
XL1XL 2 � XL �

XL

Ql
2 � XL

XLp

XLp
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and substitute Eq. (20.41) (XL � XC):

Eq. (20.31) then becomes

Ql 	 10

(20.42)

clearly revealing that as Ql increases, fp becomes closer and closer to fs .
For Ql 	 10,

and
Ql 	 10

(20.43)

Resonant Frequency, fm (Maximum VC)

Using the equivalency derived for Eq. (20.42), Eq.

(20.32) takes on the following form:

Ql 	 10

(20.44)

The fact that the negative term under the square root will always be
less than that appearing in the equation for fp reveals that fm will always
be closer to fs than fp .

For Ql 	 10, the negative term becomes very small and can be dropped
from consideration, leaving:

Ql 	 10
(20.45)

In total, therefore, for Ql 	 10,

Ql 	 10
(20.46)

Rp

For Ql 	 10, and

Ql 	 10
(20.47)Rp � Ql

2Rl

1 � Ql
2 � Ql

2,

 � Rl � Ql
2Rl � 11 � Ql

2 2Rl

  Rp �
Rl

2 � XL
2

Rl

� Rl �
XL

2

Rl

 a Rl

Rl

 b � Rl �
XL

2

Rl
2 Rl

fp � fm � fs

fm � fs �
1

2p1LC

fm � fs B1 �
1

4
a 1

Ql
2 b

Rl
2C/L � 1/Ql

2

fp � fs �
1

2p1LC

1 �
1

Ql
2 � 1

fp � fs B1 �
1

Ql
2

1
XLXC

Rl
2

�
1

XL
2

Rl
2

�
1

Ql
2
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Rs Rp  =  Q2RlZTp

I XLp
  = XL XC

FIG. 20.30

Approximate equivalent circuit for Ql 	 10.

Applying the approximations just derived to the network in Fig. 20.24
results in the approximate equivalent network for Ql 	 10 in Fig. 20.30,
which is certainly a lot “cleaner” in general appearance.

Substituting into Eq. (20.47),

and
Ql 	 10

(20.48)

The total impedance at resonance is now defined by

Ql 	 10
(20.49)

For an ideal current source (Rs � ∞ �), or if Rs >> Rp, the equation re-
duces to

Ql 	 10, Rs >> Rp

(20.50)

Qp

The quality factor is now defined by

(20.51)

Quite obviously, therefore, Rs does have an impact on the quality fac-
tor of the network and the shape of the resonant curves.

If an ideal current source (Rs � ∞ �) is used, or if Rs >> Rp,

and
Ql 	 10, Rs >> Rp

(20.52)Qp � Ql

Qp � 
Rs  �  Ql

2Rl

XL

�
Ql

2Rl

XL

�
Ql

2

XL/Rl

�
Ql

2

Ql

Qp �
R

XLp

 � 
Rs  �  Ql

2Rl

XL

ZTp
 � Ql

2Rl

ZTp
 � Rs  �  Rp � Rs  �  Ql

2Rl

ZTp

Rp � 
L

RlC

Rp � Ql
2Rl � a XL

Rl

b2

Rl �
XL

2

Rl

�
XLXC

Rl

�
2pfL

Rl 12pfC 2

Ql �
XL

Rl
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IT

RP XL XC VC

+

–

ICIL

ZTp
  =  Rp  =  Ql

2Rl

FIG. 20.31

Establishing the relationship between IC and IL and
the current IT .

BW

The bandwidth defined by fp is

(20.53)

By substituting Qp from above and performing a few algebraic manipu-
lations, we can show that

(20.54)

clearly revealing the impact of Rs on the resulting bandwidth. Of course,
if Rs � ∞ � (ideal current source):

Rs � ∞ �

(20.55)

IL and IC

A portion of Fig. 20.30 is reproduced in Fig. 20.31, with IT defined as
shown.

As indicated, at resonance is The voltage across the paral-
lel network is, therefore,

The magnitude of the current IC can then be determined using Ohm’s
law, as follows:

Substituting XC � XL when Ql 	 10,

and
Ql 	 10

(20.56)

revealing that the capacitive current is Ql times the magnitude of the cur-
rent entering the parallel resonant circuit. For large Ql , the current IC can
be significant.

A similar derivation results in

Ql 	 10
(20.57)

Conclusions

The equations resulting from the application of the condition Ql 	 10
are obviously a great deal easier to apply than those obtained earlier.
It is, therefore, a condition that should be checked early in an analy-

IL � QlIT

IC � QlIT

IC �
IT Ql

2Rl

XL

� IT 
Ql

2

XL

Rl

� IT 
Ql

2

Ql

IC �
VC

XC

�
IT Ql

2Rl

XC

VC � VL � VR � IT ZTp
� IT Ql

2Rl

Ql
2Rl.ZTp

BW � f2 � f1 � 
Rl

2pL

BW � f2 � f1 � 
1

2p
c Rl

L
�

1

RsC
d

BW � f2 � f1 �
fp

Qp
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TABLE 20.1

Parallel resonant circuit 

Any Ql Ql 	 10 Ql 	 10, Rs >>

fp fs fs

fm fs fs

Qp Ql

BW

IL, IC Network analysis IL � IC � QlIT IL � IC � QlIT

fp

Ql

 �
fs

Ql

fp

Qp

 �
fs

Qp

fp

Qp

   or   
fm

Qp

ZTp

XL

 �
ZTp

XC

ZTp

XLp

 �
ZTp

XC

Ql
2 RlRs  �  Ql

2 RlRs  �  ZR�L  �  ZCZTm

Ql
2 RlRs  �  Ql

2 RlRs  �  Rp �  Rs  � a Rl
2 �  XL

2

Rl

bZTp

fsB1 �
1

4
 c Rl

2C

L
 d

fsB1 �
Rl

2C

L

Q2
l Rl

1fs � 1/12p2LC 2 2 .

sis to determine which approach must be applied. Although the con-
dition Ql 	 10 was applied throughout, many of the equations are still
good approximations for Ql � 10. For instance, if Ql � 5,

which is very close
to XL. In fact, for Ql � 2, which is not
XL , but it is only 25% off. In general, be aware that the approximate
equations can be applied with good accuracy with Ql � 10. The
smaller the level of Ql , however, the less valid the approximation.
The approximate equations are certainly valid for a range of values of
Ql � 10 if a rough approximation to the actual response is desired
rather than one accurate to the hundredths place.

20.11 SUMMARY TABLE

In an effort to limit any confusion resulting from the introduction of fp

and fm and an approximate approach dependent on Ql , the summary in
Table 20.1 was developed. You can always use the equations for any Ql,
but a proficiency in applying the approximate equations defined by Ql

will pay dividends in the long run.
For the future, the analysis of a parallel resonant network may proceed

as follows:

1. Determine fs to obtain some idea of the resonant frequency. Re-
call that for most situations, fs , fm , and fp will be relatively close
to each other.

2. Calculate an approximate Ql using fs from below, and compare it
to the condition Ql 	 10. If the condition is satisfied, the approx-
imate approach should be the chosen path unless a high degree of
accuracy is required.

3. If Ql is less than 10, the approximate approach can be applied, but
it must be understood that the smaller the level of Ql , the less ac-
curate the solution. However, considering the typical variations

XLp
� 1XL/4 2 � XL � 1.25XL,

XLp
� 1XL/Ql

2 2 � Xl � 1XL/25 2 � XL � 1.04XL,
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ZTp
10 k� 1 mH 1 mF VC

+

–

ICIL

I  =  10 mA Rs

Source “Tank circuit”

L C

FIG. 20.32

Example 20.6.

from nameplate values for many of our components and that a
resonant frequency to the tenths place is seldom required, the use
of the approximate approach for many practical situations is usu-
ally quite valid.

20.12 EXAMPLES (PARALLEL RESONANCE)

EXAMPLE 20.6 Given the parallel network in Fig. 20.32 composed of
“ideal” elements:

a. Determine the resonant frequency fp .
b. Find the total impedance at resonance.
c. Calculate the quality factor, bandwidth, and cutoff frequencies f1 and

f2 of the system.
d. Find the voltage VC at resonance.
e. Determine the currents IL and IC at resonance.

Solutions:

a. The fact that Rl is zero ohms results in a very high Ql (� XL/Rl), per-
mitting the use of the following equation for fp:

b. For the parallel reactive elements:

but XL � XC at resonance, resulting in a zero in the denominator of
the equation and a very high impedance that can be approximated by
an open circuit. Therefore,

c.

Eq. (20.39a):

 f1 �
1

4pC
 c 1

R
� B

1

R2 �
4C

L
 d

BW �
fp

Qp

 �
5.03 kHz

316.41
 � 15.90 Hz

Qp �
Rs

XLp

 �
Rs

2pfpL
 �

10 k�

2p15.03 kHz 2 11 mH 2  � 316.41

ZTp
� Rs  �  ZL  �  ZC � Rs � 10 k�

ZL  �  ZC �
1XL �90° 2 1XC ��90° 2

�j1XL � XC 2

 � 5.03 kHz

 fp � fs �
1

2p2LC
�

1

2p211 mH 2 11 mF 2
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Eq. (20.39b):

d.

e.

Example 20.6 demonstrates the impact of Rs on the calculations asso-
ciated with parallel resonance. The source impedance is the only factor
to limit the input impedance and the level of VC .

EXAMPLE 20.7 For the parallel resonant circuit in Fig. 20.33 with
Rs � ∞ �:

 IC �
VC

XC

�
100 V

31.6 �
� 3.16 A 1 � QpI 2

 IL �
VL

XL

�
VC

2pfpL
�

100 V

2p15.03 kHz 2 11 mH 2 �
100 V

31.6 �
� 3.16 A

VC � IZTp
� 110 mA 2 110 k� 2 � 100 V

 � 5.04 kHz

 f2 �
1

4pC
 c 1

R
 � B

1

R2 �
4C

L
 d

 � 5.03 kHz

 �
1

4p11 mF 2  c
1

10 k�
� B

1

110 k� 2 2 �
411 mF 2
1 mH

 d

Rl 20 �

XL 0.3 mH

C 100 nF VC

+

–

ZTp

I  =  2 mA

FIG. 20.33

Example 20.7.

a. Determine fs , fm , and fp , and compare their levels.
b. Calculate the maximum impedance and the magnitude of the voltage

VC at fm .
c. Determine the quality factor Qp.
d. Calculate the bandwidth.
e. Compare the above results with those obtained using the equations

associated with Ql 	 10.

Solutions:

a.

 � 25.58 kHz

 � 129.06 kHz 2B1 �
1

4
c 120 � 2 2 1100 nF 2

0.3 mH
d

 fm � fs B1 �
1

4
c Rl

2C

L
d

fs �
1

2p2LC
�

1

2p210.3 mH 2 1100 nF 2 � 29.06 kHz
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Both fm and fp are less than fs, as predicted. In addition, fm is closer to
fs than fp , as forecast. fm is about 0.5 kHz less than fs , whereas fp is
about 2 kHz less. The differences among fs , fm , and fp suggest a low
Q network.

b.

c. Rs � ∞ �; therefore,

The low Q confirms our conclusion of part (a). The differences
among fs , fm , and fp are significantly less for higher Q networks.

d.

e. For Ql 	 10, fm � fp � fs � 29.06 kHz

(versus 2.55 above)

(versus 159.34 � ��15.17° above)

(versus 318.68 mV above)

(versus 10.61 kHz above)

The results reveal that, even for a relatively low Q system, the ap-
proximate solutions are still close compared to those obtained using the
full equations. The primary difference is between fs and fp (about 7%),
with the difference between fs and fm at less than 2%. For the future, us-
ing fs to determine Ql will certainly provide a measure of Ql that can be
used to determine whether the approximate approach is appropriate.

EXAMPLE 20.8 For the network in Fig. 20.34 with fp provided:

a. Determine Ql .
b. Determine Rp .

BW �
fp

Qp

�
29.06 kHz

2.74
� 10.61 kHz

VCmax
� IZTp

� 12 mA 2 1150.15 � 2 � 300.3 mV

ZTp
� Ql

2Rl � 12.74 2 2 �  20 � � 150.15 � �0°

Qp � Ql �
2pfsL

Rl

�
2p129.06 kHz 2 10.3 mH 2

20 �
� 2.74

BW �
fp

Qp

�
27.06 kHz

2.55
� 10.61 kHz

 �
2p127.06 kHz 2 10.3 mH 2

20 � �
51 �
20 � � 2.55

 Qp �
Rs  �  Rp

XLp

�
Rp

XLp

� Ql �
XL

Rl

VCmax
� IZTm

� 12 mA 2 1159.34 � 2 � 318.68 mV

 � 159.34 � ��15.17°

 ZTm
�
157.46 � �69.63° 2 155.69 � ��90° 2

20 � � j 53.87 � � j 55.69 �

Rl � j XL � 20 � � j 53.87 � � 57.46 � �69.63°

XC �
1

2pfmC
�

1

2p128.58 kHz 2 1100 nF 2 � 55.69 �

XL � 2pfmL � 2p128.58 kHz 2 10.3 mH 2 � 53.87 �

ZTm
� 1Rl � j XL 2   �  �j XC at f � fm

 � 27.06 kHz

 fp � fsB1 �
Rl

2C

L
� 129.06 kHz 2B1 � c 120 � 2 21100 nF 2

0.3 mH
d

CRs

L

40 k�

Rl 10 �

1 mH

fp  =  0.04 MHz

I

FIG. 20.34

Example 20.8.
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c. Calculate 
d. Find C at resonance.
e. Find Qp.
f. Calculate the BW and cutoff frequencies.

Solutions:

a.

b. Ql 	 10. Therefore,

c.

d. Ql 	 10. Therefore,

and

e. Ql 	 10. Therefore,

f.

(ignoring the negative sign)

Note that f2 � f1 � 40.84 kHz � 39 kHz � 1.84 kHz, confirming our
solution for the bandwidth above. Note also that the bandwidth is not
symmetrical about the resonant frequency, with 1 kHz below and 840 Hz
above.

EXAMPLE 20.9 The equivalent network for the transistor configura-
tion in Fig. 20.35 is provided in Fig. 20.36.

a. Find fp .
b. Determine Qp.
c. Calculate the BW.
d. Determine Vp at resonance.
e. Sketch the curve of VC versus frequency.

 � 40.84 kHz

 � 5.005 � 106 38.160 � 10�3 4
 � 5.005 � 106 3183.486 � 10�6 � 7.977 � 10�3 4

 f2 �
1

4pC
 c 1

R
 � B

1

R2 �
4C

L
 d

 � 39 kHz

 � 5.005 � 106 3�7.794 � 10�3 4
 � 5.005 � 106 3183.486 � 10�6 � 7.977 � 10�3 4
 �

1

4p115.9 mF 2  c
1

5.45 k�
� B

1

15.45 k� 2 2 �
4115.9 mF 2

1 mH
 d

 f1 �
1

4pC
 c 1

R
� B

1

R2 �
4C

L
 d

BW �
fp

Qp

�
0.04 MHz

21.68
� 1.85 kHz

Qp �
ZTp

XL

�
Rs  �  Ql

2Rl

2pfpL
�

5.45 k�

2p10.04 MHz 2 11 mH 2 � 21.68

C �
1

4p2 f 2L
�

1

4p2 10.04 MHz 2 2 11 mH 2 � 15.83 nF

fp � 
1

2p2LC

ZTp
� Rs  �  Rp � 40 k�  �  6.31 k� � 5.45 k�

Rp � Ql
2Rl � 125.12 2 2110 � 2 � 6.31 k�

Ql �
XL

Rl

�
2pfpL

Rl

�
2p10.04 MHz 2 11 mH 2

10 �
� 25.12

ZTp
.

IC  =  2 mA

50 k�

Rl 100 �

L 5 mH

C 50 pF

Vp

FIG. 20.35

Example 20.9.

CRs
50 k�

L

Rl 100 �

5 mH

50 pF

Vp

2 mAI

FIG. 20.36

Equivalent network for the transistor configuration
in Fig. 20.35.
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Solutions:

a.

Therefore, fp � fs � 318.31 kHz. Using Eq. (20.31) results in
� 318.5 kHz.

b.

Note the drop in Q from Ql � 100 to Qp � 4.76 due to Rs .

c.

On the other hand,

compares very favorably with the above solution.

d.

e. See Fig. 20.37.

Vp � IZTp
� 12 mA 2 1Rs  �  Rp 2 � 12 mA 2 147.62 k� 2 � 95.24 V

 � 66.85 kHz

 BW �
1

2p
 a Rl

L
�

1

RsC
 b �

1

2p
 c 100 �

5 mH
�

1

150 k� 2 150 pF 2  d

BW �
fp

Qp

�
318.31 kHz

4.76
� 66.87 kHz

Qp �
50 k�  �  1 M�

10 k�
�

47.62 k�

10 k�
� 4.76

Rp � Ql
2Rl � 1100 2 2100 � � 1 M�

Qp �
Rs  �  Rp

XL

 Ql �
XL

Rl

�
10 k�

100 k�
� 100 7 10

 XL � 2pfsL � 2p1318.31 kHz 2 15 mH 2 � 10 k�

 fs �
1

2p1LC
�

1

2p215 mH 2 150 pF 2 � 318.31 kHz

Vp

95.24 V

67.34 V

0

318.31 –              kHz66.87
2

318.31 +              kHz  =  351.7 kHz66.87
2

318.31 kHz=  284.9 kHz

Qp  =  4.76BW

FIG. 20.37

Resonance curve for the network in Fig. 20.36.

EXAMPLE 20.10 Repeat Example 20.9, but ignore the effects of Rs,
and compare results.

Solutions:

a. fp is the same, 318.31 kHz.
b. For Rs � ∞ �,

Qp � Ql � 100 (versus 4.76)

c. (versus 66.87 kHz)BW �
fp

Qp

�
318.31 kHz

100
� 3.18 kHz
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d. (versus 47.62 k�)

(versus 95.24 V)

The results obtained clearly reveal that the source resistance can have
a significant impact on the response characteristics of a parallel resonant
circuit.

EXAMPLE 20.11 Design a parallel resonant circuit to have the re-
sponse curve in Fig. 20.38 using a 1 mH, 10 � inductor and a current
source with an internal resistance of 40 k�.

Solution:

Therefore,

and

(from above)

so that

resulting in Rs � 17.298 k�

However, the source resistance was given as 40 k�. We must there-
fore add a parallel resistor (R�) that will reduce the 40 k� to approxi-
mately 17.298 k�; that is,

Solving for R′:

R� � 30.48 k�

The closest commercial value is 30 k�. At resonance, XL � XC, and

and C � 0.01 MF (commercially available)

with Vp � IZTp

 � 6.28 k�

 � 17.298 k�  �  9859.6 �
 ZTp

� Rs  �  Ql
2Rl

 C �
1

2pfpXC

�
1

2p150 kHz 2 1314 � 2

 XC �
1

2pfpC

140 k� 2 1R¿ 2
40 k� �  R¿

� 17.298 k�

1Rs 2 19859.6 2
Rs � 9859.6

� 6280

 Qp �
R

XL

�
Rs  �  9859.6 �

314 �
� 20

 Rp � Ql
2 R � 131.4 2 2 110 � 2 � 9859.6 �

 Ql �
XL

Rl

�
314 �
10 � � 31.4

 XL � 2pfp L � 2p150 kHz 2 11 mH 2 � 314 �

 Qp �
fp

BW
�

50,000 Hz

2500 Hz
� 20

BW �
fp

Qp

Vp � IZTp
� 12 mA 2 11 M� 2 � 2000 V

ZTp
� Rp � 1 M�

BW  =  2500 Hz

fp  =  50 kHz f0

Vp

10 V

FIG. 20.38

Example 20.11.
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and

The network appears in Fig. 20.39.

I �
Vp

ZTp

�
10 V

6.28 k�
 � 1.6 mA

Rs 40 k� R� 30 k�

Rl 10 �

I 1.6 mA

L 1 mH

C 0.01 mF

FIG. 20.39

Network designed to meet the criteria in Fig. 20.38.

20.13 APPLICATIONS

Stray Resonance

Stray resonance, like stray capacitance and inductance and unexpected
resistance levels, can occur in totally unexpected situations and can se-
verely affect the operation of a system. All that is required to produce
stray resonance is, for example, a level of capacitance introduced by par-
allel wires or copper leads on a printed circuit board, or simply two par-
allel conductive surfaces with residual charge and inductance levels
associated with any conductor or components such as tape recorder
heads, transformers, and so on, that provide the elements necessary for a
resonance effect. In fact, this resonance effect is a very common effect in
a cassette tape recorder. The play/record head is a coil that can act like an
inductor and an antenna. Combine this factor with the stray capacitance
and real capacitance in the network to form the tuning network, and the
tape recorder with the addition of a semiconductor diode can respond like
an AM radio. As you plot the frequency response of any transformer, you
normally find a region where the response has a peaking effect (look
ahead at Fig. 25.21). This peaking is due solely to the inductance of the
coils of the transformer and the stray capacitance between the wires.

In general, any time you see an unexpected peaking in the frequency
response of an element or a system, it is normally caused by a resonance
condition. If the response has a detrimental effect on the overall opera-
tion of the system, a redesign may be in order, or a filter can be added that
will block the frequencies that result in the resonance condition. Of
course, when you add a filter composed of inductors and/or capacitors,
you must be careful that you don’t add another unexpected resonance
condition. It is a problem that can be properly weighed only by con-
structing the system and exposing it to the full range of tests.

Graphic and Parametric Equalizers

We have all noticed at one time or another that the music we hear in a
concert hall doesn’t quite sound the same when we play a recording of it
on our home entertainment center. Even after we check the specifications
of the speakers and amplifiers and find that both are nearly perfect (and
the most expensive we can afford), the sound is still not what it should
be. In general, we are experiencing the effects of the local environmental
characteristics on the sound waves. Some typical problems are hard walls
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or floors (stone, cement) that make high frequencies sound louder. Cur-
tains and rugs, on the other hand, absorb high frequencies. The shape of
the room and the placement of the speakers and furniture also affect the
sound that reaches our ears. Another criterion is the echo or reflection of
sound that occurs in the room. Concert halls are designed very carefully
with their vaulted ceilings and curved walls to allow a certain amount of
echo. Even the temperature and humidity characteristics of the sur-
rounding air affect the quality of the sound. It is certainly impossible, in
most cases, to redesign your listening area to match a concert hall, but
with the proper use of electronic systems you can develop a response that
has all the qualities that you want from a home entertainment center.

For a quality system, a number of steps can be taken: characterization
and digital delay (surround sound) and proper speaker and amplifier
selection and placement. Characterization is a process whereby a thor-
ough sound absorption check of the room is performed and the fre-
quency response determined. A graphic equalizer such as appearing in
Fig. 20.40(a) is then used to make the response “flat” for the full range
of frequencies. In other words, the room is made to appear as though all
the frequencies receive equal amplification in the listening area. For in-
stance, if the room is fully carpeted with full draping curtains, there is
a considerable amount of high-frequency absorption, requiring that
the high frequencies have additional amplification to match the sound
levels of the mid and low frequencies. To characterize the typical
rectangular-shaped room, a setup such as shown in Fig. 20.40(b) may
be used. The amplifier and speakers are placed in the center of one wall,
with additional speakers in the corners of the room facing the reception
area. A mike is then placed in the reception area about 10 ft from the
amplifier and centered between the two other speakers. A pink noise is
then sent out from a spectrum analyzer (often an integral part of the
graphic equalizer) to the amplifier and speakers. Pink noise is actually
a square-wave signal whose amplitude and frequency can be controlled.
A square-wave signal was chosen because a Fourier breakdown of a
square-wave signal results in a broad range of frequencies for the sys-
tem to check. You will find in Chapter 24 that a square wave can be con-
structed of an infinite series of sine waves of different frequencies. Once
the proper volume of pink noise is established, the spectrum analyzer
can be used to set the response of each slide band to establish the de-
sired flat response. The center frequencies for the slides of the graphic
equalizer in Fig. 20.40(a) are provided in Fig. 20.40(c), along with the
frequency response for a number of adjoining frequencies evenly spaced
on a logarithmic scale. Note that each center frequency is actually the
resonant frequency for that slide. The design is such that each slide can
control the volume associated with that frequency, but the bandwidth and
frequency response stay fairly constant. A good spectrum analyzer has
each slide set against a decibel (dB) scale (decibels are discussed in de-
tail in Chapter 21). The decibel scale simply establishes a scale for the
comparison of audio levels. At a normal listening level, usually a change
of about 3 dB is necessary for the audio change to be detectable by the
human ear. At low levels of sound, a 2 dB change may be detectable, but
at loud sounds probably a 4 dB change would be necessary for the
change to be noticed. These are not strict laws but guidelines commonly
used by audio technicians. For the room in question, the mix of settings
may be as shown in Fig. 20.40(c). Once set, the slides are not touched
again. A flat response has been established for the room for the full au-
dio range so that every sound or type of music is covered.
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Full-range
speaker

Full-range
speaker

Amplifier and speaker
(woofer or subwoofer)

Pink noise
throughout

≅10′

Microphone
Graphic
and/or
parametric
equalizers

(Mid-range,
low-power)

(Full-range,
low-power)

(Full-range,
low-power)

“Surround sound”
speakers

(b)

10 Hz 100 Hz 1 kHz 10 kHz 100 kHz f
(log scale)31 Hz 63 Hz 125 Hz 250 Hz 500 Hz 2 kHz 4 kHz 8 kHz 16 kHz

Volume

(c)

(a)

FIG. 20.40

(a) Dual-channel 15-band “Constant Q” graphic equalizer
(Courtesy of ARX Systems.); (b) setup; (c) frequency response.
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A parametric equalizer such as appearing in Fig. 20.41 is similar to a
graphic equalizer, but instead of separate controls for the individual fre-
quency ranges, it uses three basic controls over three or four broader fre-
quency ranges. The typical controls—the gain, center frequency, and
bandwidth—are typically available for the low-, mid-, and high-frequency
ranges. Each is fundamentally an independent control; that is, a change in
one can be made without affecting the other two. For the parametric equal-
izer in Fig. 20.41, each of the six channels has a frequency control switch
which, in conjunction with the f � 10 switch, gives a range of center fre-
quencies from 40 Hz through 16 kHz. It has controls for BW (“Q”) from
3 octaves to 1⁄20 octave, and 
18 dB cut and boost. Some like to refer to the
parametric equalizer as a sophisticated tone control and actually use them
to enrich the sound after the flat response has been established by the
graphic equalizer. The effect achieved with a standard tone control knob
is sometimes referred to as “boring” compared to the effect established by
a good parametric equalizer, primarily because the former can control
only the volume and not the bandwidth or center frequency. In general,
graphic equalizers establish the important flat response while parametric
equalizers are adjusted to provide the type and quality of sound you like
to hear. You can “notch out” the frequencies that bother you and remove
tape “hiss” and the “sharpness” often associated with CDs.

One characteristic of concert halls that is more difficult to fake is the
fullness of sound that concert halls are able to provide. In the concert hall,
you have the direct sound from the instruments and the reflection of
sound off the walls and the vaulted ceilings which were all carefully de-
signed expressly for this purpose. Any reflection results in a delay in the
sound waves reaching the ear, creating the fullness effect. Through digi-
tal delay, speakers can be placed to the back and side of a listener to es-
tablish the surround sound effect. In general, the delay speakers are much
lower in wattage, with 20 W speakers typically used with a 100 W sys-
tem. The echo response is one reason that people often like to play their
stereos louder than they should for normal hearing. By playing the stereo
louder, they create more echo and reflection off the walls, bringing into
play some of the fullness heard at concert halls.

It is probably safe to say that any system composed of quality com-
ponents, a graphic and parametric equalizer, and surround sound will
have all the components necessary to have a quality reproduction of the
concert hall effect.

20.14 COMPUTER ANALYSIS

PSpice

Series Resonance This chapter provides an excellent opportunity
to demonstrate what computer software programs can do for us. Imag-
ine having to plot a detailed resonance curve with all the calculations

FIG. 20.41

Six-channel parametric equalizer.
(Courtesy of ARX Systems.)
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required for each frequency. At every frequency, the reactance of the in-
ductive and capacitive elements changes, and the phasor operations
would have to be repeated—a long and arduous task. However, with
PSpice, taking a few moments to enter the circuit and establish the de-
sired simulation results in a detailed plot in a few seconds that can have
plot points every microsecond!

For the first time, the horizontal axis is in the frequency domain rather
than in the time domain as in all the previous plots. For the series reso-
nant circuit in Fig. 20.42, the magnitude of the source was chosen to pro-
duce a maximum current of I � 400 mV/40 � � 10 mA at resonance,
and the reactive elements establish a resonant frequency of

fs �
1

2p2LC
�

1

2p2130 mH 2 10.1 mF 2  � 2.91 kHz

FIG. 20.42

Series resonant circuit to be analyzed using PSpice.

The quality factor is

which is relatively high and should give us a nice sharp response.
The bandwidth is

which will be verified using our cursor options.
For the ac source, choose VSIN. All the parameters are set by double-

clicking on the source symbol and entering the values in the Property
Editor dialog box. For each, select Name and Value under Display fol-
lowed by Apply before leaving the dialog box.

In the Simulation Settings dialog box, select AC Sweep/Noise and
set the Start Frequency at 1 kHz, the End Frequency at 10 kHz, and the
Points/Decade at 10,000. The Logarithmic scale and Decade settings re-
main at their default values. Choose 10,000 for Points/Decade to ensure
a number of data points near the peak value. When the SCHEMATIC1

BW �
fs

Ql

�
2.91 kHz

13.7
 � 212 Hz

Ql �
XL

Rl

�
546.64 �

40 �
 � 13.7
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screen in Fig. 20.43 appears, Trace-Add Trace-I(R)-OK results in a
logarithmic plot that peaks just to the left of 3 kHz. The spacing be-
tween grid lines on the X-axis should be increased, so select Plot-Axis
Settings-X Grid-unable Automatic-Spacing-Log-0.1-OK. Next, select
the Toggle cursor icon, and right-click to move the right cursor as close
to 7.07 mA as possible (0.707 of the peak value to define the bandwidth)
to obtain A1 with a frequency of 2.80 kHz at a level of 7.09 mA—the best
we can do with the 10,000 data points per decade. Now left-click, and
place the left cursor as close to the same level as possible. The result is
3.01 kHz at a level of 7.07 mA for A2. The cursors were set in the order
above to obtain a positive answer for the difference of the two as appear-
ing in the third line of the Probe Cursor box. The resulting 211.49 Hz is
an excellent match with the calculated value of 212 Hz.

Parallel Resonance Let us now investigate the parallel resonant cir-
cuit in Fig. 20.33 and compare the results with the longhand solution. The
network appears in Fig. 20.44 using ISRC as the ac source voltage. Under
the Property Editor heading, set the following values: DC � 0 A, AC �
2 mA, and TRAN � 0. Under Display, select Do Not Display for both DC
and TRAN since they do not play a part in our analysis. In the Simulation
Settings dialog box, select AC Sweep/Noise, and select the Start Fre-
quency at 10 kHz since we know that it will resonate near 30 kHz. Choose
the End Frequency as 100 kHz for a first run to see the results. Set the
Points/Decade at 10,000 to ensure a good number of data points for the
peaking region. After simulation, Trace-Add Trace-V(C:1)-OK results
in the plot in Fig. 20.45 with a resonant frequency near 30 kHz. The se-
lected range appears to be a good one, but the initial plot needed more grid
lines on the x-axis, so use Plot-Axis Settings-X-Grid-unenable
Automatic-Spacing-Log-0.1-OK to obtain a grid line at 10 kHz intervals.
Next select the Toggle cursor pad and a left-click cursor is established on
the screen. Choose the Cursor Peak pad to find the peak value of the
curve. The result is A1 � 319.45 mV at 28.94 kHz which is a very close
match with the calculated value of 318.68 mV at 28.57 kHz for the maxi-
mum value of VC . The bandwidth is defined at a level of 0.707(319.45 mV)

FIG. 20.43

Resonance curve for the current of the circuit in Fig. 20.42.
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� 225.85 mV. Using the right-click cursor, you find that the closest value
is 224.57 mV for the 10,000 points of data per decade. The resulting fre-
quency is 34.69 kHz as shown in the Probe Cursor box in Fig. 20.45.

Now use the left-click cursor to find the same level to the left of the
peak value so that you can determine the bandwidth. The closest that the
left-click cursor can come to 225.85 mV is 224.96 mV at a frequency of
23.97 kHz. The bandwidth then appears as 10.72 kHz in the Probe Cur-
sor box, comparing very well with the longhand solution of 10.68 kHz in
Example 20.7.

FIG. 20.44

Parallel resonant network to be analyzed using PSpice.

FIG. 20.45

Resonance curve for the voltage across the capacitor in Fig. 20.44.
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You can now look at the phase angle of the voltage across the parallel
network to find the frequency when the network appears resistive and the
phase angle is 0°. First use Trace-Delete All Traces, and call up
P(V(C:1)) followed by OK. The result is the plot in Fig. 20.46, revealing
that the phase angle is close to �90° at very high frequencies as the ca-
pacitive element with its decreasing reactance takes over the characteris-
tics of the parallel network. At 10 kHz, the inductive element has a lower
reactance than the capacitive element, and the network has a positive
phase angle. Using the cursor option, move the left cursor along the hori-
zontal axis until the phase angle is at its minimum value. As shown in Fig.
20.46, the smallest angle available with the determined data points is
49.86 mdegrees � 0.05° which is certainly very close to 0°. The corre-
sponding frequency is 27.046 kHz which is essentially an exact match with
the longhand solution of 27.051 kHz. Clearly, therefore, the frequency at
which the phase angle is zero and the total impedance appears resistive is
less than the frequency at which the output voltage is a maximum.

FIG. 20.46

Phase plot for the voltage yC for the parallel resonant network in Fig. 20.44.

Multisim

The results of Example 20.9 are now confirmed using Multisim. The net-
work in Fig. 20.36 appears as shown in Fig. 20.47 after all the elements
have been placed as described in earlier chapters. In particular, note that
the frequency assigned to the 2 mA ac current source is 100 kHz. Since we
have some idea that the resonant frequency is a few hundred kilohertz, it
seems appropriate that the starting frequency for the plot begins at 100 kHz
and extends to 1 MHz. Also, be sure that the AC Magnitude is set to 2 mA
in the Analysis Setup within the AC Current dialog box.

For simulation, first select the sequence Simulate-Analyses-AC
Analysis to obtain the AC Analysis dialog box. Set the Start frequency
at 100 kHz, the Stop frequency at 1 MHz, Sweep type at Decade, Num-
ber of points per decade at 1000, and the Vertical scale at Linear. Un-
der Output variables, select node number 1 as a Variable for analysis
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followed by Simulate to run the program. The results are the magnitude
and phase plots in Fig. 20.48. Starting with the Voltage plot, select the
Show/Hide Grid key, Show/Hide Legend key, and Show/Hide Cursors
key. You will immediately note under the AC Analysis cursor box that the
maximum value is 95.24 V and the minimum value is 6.94 V. By moving
the cursor until you reach 95.24 V (y1), you can find the resonant fre-

FIG. 20.47

Using Multisim to confirm the results of Example 20.9.

FIG. 20.48

Magnitude and phase plots for the voltage yC of the network in Fig. 20.47.
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quency. As shown in the top cursor dialog box in Fig. 20.48, this is
achieved at 318.97 kHz (x1). The other (blue) cursor can be used to de-
fine the high cutoff frequency for the bandwidth by first calculating the
0.707 level of the output voltage. The result is 0.707(95.24 V) � 67.33 V.
The closest you can come to this level with the cursor is 67.42 V (y2)
which defines a frequency of 353.71 kHz (x2). If you now use the red cur-
sor to find the corresponding level below the resonant frequency, you find
a level of 67.49 V (y1) at 287.08 kHz (x1). The resulting bandwidth is
therefore 353.71 kHz � 287.08 kHz � 66.63 kHz.

You can now determine the resonant frequency if you define resonance
as that frequency that results in a phase angle of 0° for the output voltage.
By repeating the process described above for the phase plot, set the red cur-
sor as close to 0° as possible. The result is 2.24° (y1) at 316.98 kHz (x1),
clearly revealing that the resonant frequency defined by the phase angle
is less than that defined by the peak voltage. However, with a Ql of about
100, the difference of 1.99 kHz is not significant. Also note that when the
second cursor was set on 359.19 kHz, the phase angle of �49.37° is close
to the 45° expected at the cutoff frequency.

Again, the computer solution is a very close match with the longhand
solution in Example 20.9 with a perfect match of 95.24 V for the peak
value and only a small difference in bandwidth with 66.87 kHz in Ex-
ample 20.9 and 66.63 kHz here. For the high cutoff frequency, the com-
puter generated a result of 353.71 kHz, while the theoretical solution was
351.7 kHz. For the low cutoff frequency, the computer responded with
287.08 kHz compared to a theoretical solution of 284 kHz.

PROBLEMS

SECTIONS 20.2 THROUGH 20.7 Series Resonance

1. Find the resonant vs and fs for the series circuit with the fol-
lowing parameters:
a. R � 10 �, L � 1 H, C � 16 mF
b. R � 300 �, L � 0.5 H, C � 0.16 mF
c. R � 20 �, L � 0.28 mH, C � 7.46 mF

2. For the series circuit in Fig. 20.49:
a. Find the value of XC for resonance.
b. Determine the total impedance of the circuit at resonance.
c. Find the magnitude of the current I.
d. Calculate the voltages VR , VL , and VC at resonance. How

are VL and VC related? How does VR compare to the ap-
plied voltage E?

e. What is the quality factor of the circuit? Is it a high or
low Q circuit?

f. What is the power dissipated by the circuit at resonance?

3. For the series circuit in Fig. 20.50:
a. Find the value of XL for resonance.
b. Determine the magnitude of the current I at resonance.
c. Find the voltages VR , VL , and VC at resonance, and com-

pare their magnitudes.
d. Determine the quality factor of the circuit. Is it a high or

low Q circuit?
e. If the resonant frequency is 5 kHz, determine the value

of L and C.
f. Find the bandwidth of the response if the resonant fre-

quency is 5 kHz.
g. What are the low and high cutoff frequencies?

VR

R  =  10 �
+

–

E 50 mV

VL+ –

+

–
XC VC

I XL  =  30 �

+ –

FIG. 20.49

Problem 2.

XC

VR

R  =  2 � XLI

+ – VL+ –

VC

+

–

+

–

E 20 mV 40 �

FIG. 20.50

Problem 3.
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5. a. Find the bandwidth of a series resonant circuit having a
resonant frequency of 6000 Hz and a Qs of 15.

b. Find the cutoff frequencies.
c. If the resistance of the circuit at resonance is 3 �, what

are the values of XL and XC in ohms?
d. What is the power dissipated at the half-power frequen-

cies if the maximum current flowing through the circuit
is 0.5 A?

6. A series circuit has a resonant frequency of 10 kHz. The re-
sistance of the circuit is 5 �, and XC at resonance is 200 �.
a. Find the bandwidth.
b. Find the cutoff frequencies.
c. Find Qs .
d. If the input voltage is 30 V �0°, find the voltage across

the coil and capacitor in phasor form.
e. Find the power dissipated at resonance.

7. a. The bandwidth of a series resonant circuit is 200 Hz. If
the resonant frequency is 2000 Hz, what is the value of
Qs for the circuit?

b. If R � 2 �, what is the value of XL at resonance?
c. Find the value of L and C at resonance.
d. Find the cutoff frequencies.

8. The cutoff frequencies of a series resonant circuit are
5400 Hz and 6000 Hz.
a. Find the bandwidth of the circuit.
b. If Qs is 9.5, find the resonant frequency of the circuit.
c. If the resistance of the circuit is 2 �, find the value of XL

and XC at resonance.
d. Find the value of L and C at resonance.

*9. Design a series resonant circuit with an input voltage of
5 V �0° to have the following specifications:
a. A peak current of 500 mA at resonance
b. A bandwidth of 120 Hz

c. A resonant frequency of 8400 Hz
d. Find the value of L and C and the cutoff frequencies.

*10. Design a series resonant circuit to have a bandwidth of
400 Hz using a coil with a Ql of 20 and a resistance of 2 �.
Find the values of L and C and the cutoff frequencies.

*11. A series resonant circuit is to resonate at vs � 2π � 106 rad/s
and draw 20 W from a 120 V source at resonance. If the frac-
tional bandwidth is 0.16:
a. Determine the resonant frequency in hertz.
b. Calculate the bandwidth in hertz.
c. Determine the values of R, L, and C.
d. Find the resistance of the coil if Ql � 80.

*12. A series resonant circuit will resonate at a frequency of
1 MHz with a fractional bandwidth of 0.2. If the quality fac-
tor of the coil at resonance is 12.5 and its inductance is
100 mH, determine the following:
a. The resistance of the coil.
b. The additional resistance required to establish the indi-

cated fractional bandwidth.
c. The required value of capacitance.

SECTIONS 20.8 THROUGH 20.12 Parallel Resonance

13. For the “ideal” parallel resonant circuit in Fig. 20.52:
a. Determine the resonant frequency (fp).
b. Find the voltage VC at resonance.
c. Determine the currents IL and IC at resonance.
d. Find Qp.

C

R

4.7 �I

L

+

–

e 2 mF20  �  10–3 sin qt

FIG. 20.51

Problem 4.

LRs 2 k� 0.1 mH C  =  10 nF VC

+

–

ICIL

I 2 mA

FIG. 20.52

Problem 13.

14. For the parallel resonant network in Fig. 20.53:
a. Calculate fs .
b. Determine Ql using f � fs . Can the approximate ap-

proach be applied?
c. Determine fp and fm .
d. Calculate XL and XC using fp . How do they compare?

L 0.5 mH

30 nF VC

+

–
I 10 mA

Rs  =  ∞ �

C

Rl 8 �

ZTp

FIG. 20.53

Problem 14.

4. For the circuit in Fig. 20.51:
a. Find the value of L in millihenries if the resonant fre-

quency is 1800 Hz.
b. Calculate XL and XC . How do they compare?
c. Find the magnitude of the current Irms at resonance.
d. Find the power dissipated by the circuit at resonance.
e. What is the apparent power delivered to the system at

resonance?
f. What is the power factor of the circuit at resonance?
g. Calculate the Q of the circuit and the resulting bandwidth.
h. Find the cutoff frequencies, and calculate the power dis-

sipated by the circuit at these frequencies.
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e. Find the total impedance at resonance (fp).
f. Calculate VC at resonance (fp).
g. Determine Qp and the BW using fp .
h. Calculate IL and IC at fp .

15. Repeat Problem 14 for the network in Fig. 20.54.

16. For the network in Fig. 20.55:
a. Find the value of XC at resonance (fp).
b. Find the total impedance at resonance (fp).
c. Find the currents IL and IC at resonance (fp).
d. If the resonant frequency is 20,000 Hz, find the value of

L and C at resonance.
e. Find Qp and the BW.

ZTp

L 0.1 mH

VC

+

–
I 2 mA

Rs  =  ∞ �

C

Rl 4 �

ZTp

2   F�

FIG. 20.54

Problem 15.

Rl

XC

IC20 �

XL 100 �

IL
ZTp

Rs 1 k�

I  =  5 mA ∠0°

FIG. 20.55

Problem 16.

17. Repeat Problem 16 for the network in Fig. 20.56.

Rl

XC

IC2 �

XL 30 �

IL
ZTp

Rs 450 �

I  =  80 mA ∠0°

FIG. 20.56

Problem 17.

Rl

C

IC1.5 �

L 80 mH

IL

ZTp

Rs 10 k�I 10 mA 0.03 mF VC

+

–

FIG. 20.57

Problem 18.

18. For the network in Fig. 20.57:
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XL

Rl 50 �

XCZT

FIG. 20.59

Problem 20.

a. Find the resonant frequencies fs , fp , and fm . What do the
results suggest about the Qp of the network?

b. Find the values of XL and XC at resonance (fp). How do
they compare?

c. Find the impedance at resonance (fp).
d. Calculate Qp and the BW.
e. Find the magnitude of currents IL and IC at resonance (fp).
f. Calculate the voltage VC at resonance (fp).

*19. Repeat Problem 18 for the network in Fig. 20.58.

ZTp

21. For the network in Fig. 20.60:
a. Find fp .
b. Calculate the magnitude of VC at resonance (fp).
c. Determine the power absorbed at resonance.
d. Find the BW.

Rl

C

IC8 �

L 0.5 mH

IL

ZTp

Rs 0.5 k�I 40 mA 1 mF VC

+

–

FIG. 20.58

Problems 19 and 29.

20. It is desired that the impedance ZT of the high Q circuit in
Fig. 20.59 be 50 k� �0° at resonance (fp).
a. Find the value of XL.
b. Compute XC.
c. Find the resonant frequency (fp) if L � 16 mH.
d. Find the value of C.

L

Rl

40 k� C
0.01 mF

VC

+

–

Ql  =  20

200 mH

Rs

I  =  5 mA ∠0°

FIG. 20.60

Problem 21.

*22. For the network in Fig. 20.61:
a. Find the value of XL for resonance.
b. Find Ql .
c. Find the resonant frequency (fp) if the bandwidth is 1 kHz.
d. Find the maximum value of the voltage VC .
e. Sketch the curve of VC versus frequency. Indicate its

peak value, resonant frequency, and band frequencies.

XL

Rl

20 k� XC 400 � VC

+

–

RsI  =  0.1 mA

8 �

FIG. 20.61

Problem 22.

*23. Repeat Problem 22 for the network in Fig. 20.62.

XL

Rl

40 k� XC 100 � VC

+

–

RsI  =  6 mA ∠0°

12 �

FIG. 20.62

Problem 23.
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*24. For the network in Fig. 20.63:
a. Find fs , fp , and fm .
b. Determine Ql and Qp at fp after a source conversion is

performed.
c. Find the input impedance 
d. Find the magnitude of the voltage VC .
e. Calculate the bandwidth using fp .
f. Determine the magnitude of the currents IC and IL .

ZTp
.

Rl 6 �

Rs

20 k�
IL

IC

C1 20 nF

C2 10 nF
VC

+

–
L 0.5 mH

E  =  80 V ∠0°

+

–
ZTp

FIG. 20.63

Problem 24.

*26. Design the network in Fig. 20.65 to have the following char-
acteristics:
a. BW � 500 Hz
b. Qp � 30
c. VCmax

� 1.8 V

*27. For the parallel resonant circuit in Fig. 20.66:
a. Determine the resonant frequency.
b. Find the total impedance at resonance.
c. Find Qp .
d. Calculate the BW.
e. Repeat parts (a) through (d) for L � 20mH and C � 20 nF.
f. Repeat parts (a) through (d) for L � 0.4 mH and C � 1 nF.
g. For the network in Fig. 20.66 and the parameters of parts

(e) and (f), determine the ratio L/C.
h. Do your results confirm the conclusions in Fig. 20.28 for

changes in the L/C ratio?

C

Rl

Ql

L

Rs

FIG. 20.64

Problem 25.

0.2 mA    0° C

L

Rl

I

Rs  =  ∞ �

FIG. 20.65

Problem 26.

Rl 20 �

40 k�

L 200 H�

C 2 nFZTp

FIG. 20.66

Problem 27.

SECTION 20.14 Computer Analysis

PSpice or Multisim

28. Verify the results in Example 20.8. That is, show that the
resonant frequency is 40 kHz, the cutoff frequencies are as
calculated, and the bandwidth is 1.85 kHz.

29. Find fp and fm for the parallel resonant network in Fig. 20.58,
and comment on the resulting bandwidth as it relates to the
quality factor of the network.

*25. For the network in Fig. 20.64, the following are specified:

fp � 20 kHz
BW � 1.8 kHz

L � 2 mH
Ql � 80

Find Rs and C.
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GLOSSARY

Band (cutoff, half-power, corner) frequencies Frequencies that
define the points on the resonance curve that are 0.707 of the
peak current or voltage value. In addition, they define the fre-
quencies at which the power transfer to the resonant circuit
will be half the maximum power level.

Bandwidth (BW) The range of frequencies between the band,
cutoff, or half-power frequencies.

Quality factor (Q) A ratio that provides an immediate indication
of the sharpness of the peak of a resonance curve. The higher
the Q, the sharper the peak and the more quickly it drops off to
the right and left of the resonant frequency.

Resonance A condition established by the application of a par-
ticular frequency (the resonant frequency) to a series or paral-
lel R-L-C network. The transfer of power to the system is a
maximum, and, for frequencies above and below, the power
transfer drops off to significantly lower levels.

Selectivity A characteristic of resonant networks directly related
to the bandwidth of the resonant system. High selectivity is as-
sociated with small bandwidth (high Q’s), and low selectivity
with larger bandwidths (low Q’s).

916 ⏐⏐⏐ RESONANCE ƒr

boy30444_ch20.qxd  3/24/06  3:15 PM  Page 916


