DO NOT
BEND

USING MENUS AND
VALIDATING INPUT

After studying Chapter 10, you should be able to:

Understand the need for interactive, menu-driven programs
Create a program that uses a single-level menu

Code modules as black boxes

Improve menu programs

Use a case structure to manage a menu

Create a program that uses a multilevel menu

Validate input

Understand types of data validation

405

406 Chapter 10 e Using Menus and Validating Input

USING INTERACTIVE PROGRAMS

You can divide computer programs into two broad categories based on how they get their data. Programs for which all
the data items are gathered prior to running use batch processing. Programs that depend on user input while the pro-
grams are running use interactive processing.

Many computer programs use batch processing with sequential files of data records that have been collected for pro-
cessing. All standard billing, inventory, payroll, and similar programs work this way, and all the program logic you have
developed while working through this text also works like this. Records used for batch processing are gathered over a
period of time—hours, days, or even months. Programs that use batch processing typically read an input record,
process it according to coded instructions, output the result, and then read another record. Batch processing gets its
name because the data records are not processed at the time they are created; instead, they are “saved” and
processed in a batch. For example, you do not receive a credit card bill immediately after every purchase, when the
record is created. All purchases during a one-month period are gathered and processed at the end of that hilling period.

Many computer programs cannot be run in batches. Instead, they must run interactively—that is, they must interact with a
user while they are running. Ticket reservation programs for airlines and theaters must select tickets while you are interact-
ing with them, not at the end of the month. A computerized library catalog system must respond to library patrons’ requests
immediately, while the patrons are searching, not at the end of every week. Interactive computer programs are often called
real-time applications, because they run while a transaction is taking place, not at some later time. You also can refer to
interactive processing as online processing, because the user’s data or requests are gathered during the execution of the
program, while the computer is operating. A batch processing system can be offline; that is, you can collect data such as
time cards or purchase information well ahead of the actual computer processing of the paychecks or bills.

A menu program is a common type of interactive program in which the user sees a number of options on the screen and
can select any one of them. For example, an educational program that drills you on elementary arithmetic skills might display
three options, as shown in the two menus in Figure 10-1. The menu on the left is used in console applications, those that
require the user to enter a choice using the keyboard; the menu style on the right is used in graphical user interface
applications, those that allow the user to use a mouse or other pointing device to make selections. The style you use partly
depends on the programming language you choose; with languages that allow either style, the program developer decides
on the format based on considerations such as the preferences of users and the amount of time available for development.

FIGURE 10-1: ARITHMETIC DRILL MENUS

e C:\WINDOWS\system32\cmd.exe =10l x|

Addition Problems
b ion Problems

rogramn
s a number to make your selection € [1] Addition Problems

(2] Sublraction Problems

€ [3] Quit the Program

Fleaze presz a number to make your selection

Using a Single-Level Menu 407

TI P You could include a title or further instructions on the menus shown in Figure 10-1, as
0000) well as on the other menus in this chapter. They are eliminated here to keep the examples

as simple as possible.

The final option in each menu in Figure 10-1, Quit the Program, is very important; without it, there would be no elegant
way for the program to terminate. A menu without a Quit option is very frustrating to the user.

Some menu programs require the user to enter a number to choose a menu option. For example, the user enters a 2to
perform a subtraction drill from the first menu shown in Figure 10-1. Other menu programs require the user to enter a
letter of the alphabet—for example, S for a subtraction drill. Still other programs allow the user to use a pointing device
such as a mouse to point to a choice on the screen, as with the menu on the right side of Figure 10-1. The most
sophisticated programs allow users to employ the selection method that is most convenient at the time.

'I'l P Many organizations provide an audio menu to callers to handle routing of telephone calls.
oogono iy you have ever called an organization and heard a message like “Press 1 for the Sales

Department,” then you have used an interactive menu.

USING A SINGLE-LEVEL MENU

Suppose you want to write a program that displays a menu like the one shown in Figure 10-1. The program drills a stu-
dent’s arithmetic skills—if the student chooses the first option, four addition problems are displayed, and if the student
chooses the second option, four subtraction problems are displayed. This program uses a single-level menu; that is,
the user makes a selection from only one menu before using the program for its ultimate purpose—arithmetic practice.
With more complicated programs, a user’s choice from an initial menu often leads to other menus from which the user
must make several selections before reaching the desired destination.

Suppose you want to write a program that requires the user to enter a digit to make a menu choice. The mainline logic for
an interactive menu program is not substantially different from any of the other sequential file programs you've seen so far
in this book. You can create startUp(), looping(), and cleanUp () modules, as shown in Figure 10-2.

The only difference between the mainline logic in Figure 10-2 and that of other programs you have worked with lies in the
main loop control question. When a program’s input data comes from a data file, asking whether the input file is at the
end-of-file (eo£) condition is appropriate. An interactive, menu-driven program is not controlled by an end-of-file condition,
but by a user’s menu response. The mainline logic, then, is more appropriately controlled by the user’s response. For
example, Figure 10-2 shows the mainline logic containing the question response = 32.

The startUp () module in the arithmetic drill program defines variables and opens files. The name of one of the variables
is response; this is the numeric variable that will hold the user’s menu choice. The startUp () module also displays
the menu for the first time, so that the user can make a choice. See Figure 10-3.

408 Chapter 10 ¢ Using Menus and Validating Input

FIGURE 10-2: MAINLINE LOGIC FOR THE ARITHMETIC DRILL MENU PROGRAM

tart start
sta perform startUp()

while response not = 3
¢ perform looping()
endwhile

perform cleanUp()
startUp() stop

¢:

No
response) —-)
P looping()

¢ Yes
cleanUp()

FIGURE 10-3: THE startUp () MODULE FOR THE ARITHMETIC DRILL PROGRAM

startUp()
startUp() declare variables
open files
¢ perform displayMenu()
return
d?d”e ————— 4 num response
variables
open
files
displayMenu()

TlP In many programming languages, if the keyboard is the default input device and the monitor is
0000 | the default output device for an application, an explicit open files statement is frequently
not needed.

Using a Single-Level Menu 409

You can include the set of instructions that displays the user menu directly in the startUp () module, or, as shown
here, you can place the instructions in their own module. For example, Figure 10-4 shows the displayMenu ()
module that the startUp () module in Figure 10-3 calls. The displayMenu () module writes four menu lines
on the screen, and then a read response statement reads the user’s numeric choice from the keyboard.

FIGURE 10-4: THE displayMenu () MODULE FOR THE ARITHMETIC DRILL PROGRAM

displayMenu()
print " (1) Addition Problems"
print "(2) Subtraction Problems"
¢ print "(3) Quit the Program"
print "Please press a number to make your selection"
read response
return

displayMenu()

print
“(1) Addition
Problems”

{

print
“(2) Subtraction
Problems”

}

print
“(3) Quit the
Program”

}

print
“Please press a
number to make
your selection”

}

read
response

Tl P Sooo You might choose to add a command to clear the screen before printing any of the menu
options. The precise syntax of the command differs from programming language to pro-

gramming language. When you clear the screen, all previous messages and responses are
removed, thus providing a cleaner look to the screen. Often, you clear a screen in the same
circumstances when you start a new page in a printed report—at the beginning of the pro-
gram or after a specified number of lines of output have been displayed.

By the time the logic of the arithmetic drill program leaves the startUp () module, the user has entered a value for
response. In the mainline logic (Figure 10-2), if response is not 3 (for the Quit the Program option), then the program

410 Chapter 10 e Using Menus and Validating Input

enters the Looping () module. The Llooping () module makes decisions about the user’s input, and either per-
forms one of two submodules, addition () or subtraction(); or, if the user has entered a number other than
1,2, or 3, the module performs no submodule. Following the performance of the chosen arithmetic drill, the program calls
the displayMenu () module again, and the user has the opportunity to select the same arithmetic drill, a different
one, or the Quit the Program option. See Figure 10-5.

Tl P In the looping () module in Figure 10-5, a user who has entered a value such as 4 or 5
O0o0oan : . . . , [

receives no explanation, but is shown the menu again. You will improve this module later

in this chapter.

FIGURE 10-5: THE looping () MODULE FOR THE ARITHMETIC DRILL PROGRAM

. looping()
looping() if response = 1 then
perform addition()
L else
if response = 2 then
perform subtraction()
response endif
=17 endif
perform displayMenu()
return

response addition()

=2?

subtraction()

|
v

displayMenu()

When the 1looping () module ends, control passes to the main program. If the user has entered a value of 3 to
select the Quit the Program option during a displayMenu () module, the outcome of the question response
= 37? sends the program to the cleanUp () module. That module simply closes the files, as shown in Figure 10-6.

Coding Modules as Black Boxes

FIGURE 10-6: THE cleanUp () MODULE FOR THE ARITHMETIC DRILL PROGRAM

cleanUp()
cleanUp() close files
¢ return

close files

CODING MODULES AS BLACK BOXES

Any steps you want can occur within the addition () and subtraction () modules in the arithmetic drill program.
The contents of these modules should not affect the main structure of the program in any way. You can write an addition ()
module that requires the user to solve simple addition problems, suchas 3 + 4, or you can write an addition () module
that requires the user to solve more difficult, multidigit problems, such as 9267 + 3488. You can write the module to contain
a single problem for the user to solve, or dozens. As you will recall from Chapter 2, part of the advantage of modular, structured
programs lies in your ability to break programs into modules that can be assigned to any number of programmers and then pieced
back together at each module’s single entry or exit point. Thus, any number of addition() or subtraction()
modules can be used within the arithmetic drill program, and a new one can be substituted at any time.

Programmers often refer to the code in modules such as addition () and subtraction () as existing within a black
box, meaning that the module statements are encapsulated in a container that makes them “invisible” to the rest of the program.
You probably own many real-life objects that are black boxes to you—a television or a stereo, for example. You might not know
how these devices work internally, and if someone substituted new internal mechanisms in your devices, you might not know or
care, so long as the devices continued to work properly. Similarly, many different addition() or subtraction () mod-
ules could be “plugged into” the arithmetic drill menu program and it would continue to function appropriately.

When first developing a program, programmers frequently don’t bother with module details at all, because many versions of a
module can substitute for one another. Instead, programmers concentrate on the mainline logic and on understanding what
the called modules will do, not on how they will do it. When programmers develop systems containing many modules, they
often code “empty” black box procedures, called stubs. That way, they can develop the overall project logic without worrying
about the minor details. Later, they can code the details in the stub modules.

Figure 10-7 shows a possible addition () module. The module displays four addition problems one at a time, waits for
the user’s response, and displays a message indicating whether the user is correct.

TI P Sooo You can write a subtraction () module using a format that is almost identical to the
| addition () module. The only necessary change is the computation operation used in

the actual problems.

411

412 Chapter 10 Using Menus and Validating Input

FIGURE 10-7: THE addition () MODULE, VERSION 1

addition()

\

print
“2+37

\A

read
response

1\

response
=5?

print print

“Wrong” “Right”

L_____;_____J

print
“3+47”

\i

read
response

e

response
=7

print print

“Wrong” “Right”

L_____V_____J

print
“6+27"

\

read
response

\]

response
=8?

print print

“Wrong” “Right”

L_____V_____J

print
“34+1?7”

\i

read
response

1\

response
=4?

print print

“Wrong” “Right”

addition()
print "2 + 32"
read response
if response = 5 then
print "Right"
else
print "Wrong"
endif
print "3 + 42"
read response
if response = 7 then
print "Right"
else
print "Wrong"
endif
print "6 + 22"
read response
if response = 8 then
print "Right"
else
print "Wrong"
endif
print "3 + 12"
read response
if response = 4 then
print "Right"
else
print "Wrong"
endif
return

Coding Modules as Black Boxes 413

The addition () module shown in Figure 10-7 works, but it is repetitious; a basic set of statements repeats four times,
changing only the actual problem values that the user should add, and the correct answer to which the user’s response is
compared. A more elegant solution involves storing the problem values in arrays and using a loop. For example, if you declare
two arrays, as shown in Figure 10-8, then the loop in Figure 10-9 displays and checks four problems. The power of using an
array allows you to alter a subscript in order to display four separate addition problems.

FIGURE 10-8: ARRAYS FOR ADDITION PROBLEMS

num probvValFirst[O0]
num probValFirst[1]
num probvValFirst[2]
num probValFirst[3]

w o wN

num probValSecond[0]
num probValSecond[1]
num probValSecond[2]
num probValSecond[3]

=N s W

'l'l P To use the addition() module shown in Figure 10-9, besides the problem value
nooo arrays, you also have to declare the numeric variable count.

In Figure 10-9, the addition (') module sets a count variable to 0. Then, because count remains less than 4,
a problem is displayed for the student. The problem display is constructed in four parts—the first probvalFirst
element, a plus sign, the first probvalSecond element, and a question mark. The module reads the user’s answer
and compares it to the calculated sum of the two operands in the addition problem, printing either “Right” or “Wrong”.

Calculating the correct answer is an improvement over the original version of the program for two reasons. First, a hard-coded
answer might be typed incorrectly by the programmer, whereas a calculated answer will always be correct. Second, if the pro-
grammer decides to alter the values used in the arithmetic problem, the calculated answer will be recomputed automatically.

After the user receives feedback on the arithmetic problem, count is increased, and if it remains in range, the arith-
metic drill proceeds with the next addition problem.

The addition () module in Figure 10-9 is more compact and efficient than the module shown in Figure 10-7.
However, it still contains flaws. A student will not want to use the addition () module more than two or three times.
Every time a user executes the program, the same four addition problems are displayed. Once students have solved all
the addition problems, they probably will be able to provide memorized answers without practicing arithmetic skills at all.
Fortunately, most programming languages provide you with built-in modules, or functions, that automatically provide a
mathematical value such as a square root, absolute value, or random number. Functions that generate a random number
usually take a form similar to random (x), where x is a value you provide for the maximum random number you
want. Different computer systems use different formulas for generating a random number; for example, many use part of
the current clock time when the random number function is called. However, a programming language’s built-in functions
can operate as black boxes, just as your program modules do, so you need not know exactly how the functions do their
jobs. You can use the random number function without knowing how it determines the specific random number.

414 Chapter 10 e Using Menus and Validating Input

FIGURE 10-9: THE addition () MODULE, VERSION 2, USING ARRAYS
addition()
count=0
Yes
count < 4? *
print probValFirst [count],
No e
probValSecond [count],
wor
read
response
response =
probValFirst [count]
+
probValSecond [count]
?
print print
“Wrong” “Right”
2
Y count =
count + 1
[
addition()
count = 0
while count < 4
print probvalFirst[count], "+", probValSecond[count], "2"
read response
if response = probvalFirst[count] + probvValSecond[count] then
print "Right"
else
print "Wrong"
endif
count = count + 1
endwhile
return

Coding Modules as Black Boxes 415

Figure 10-10 shows an addition () module in which two random numbers, each 10 or less, are generated for
each of four arithmetic problems. Using this technique, you do not have to store values in an array, and users encounter
different addition problems every time they use the program.

FIGURE 10-10: THE addition () MODULE, VERSION 3, USING RANDOM VALUES
addition()
count =0
¢€
Yes
count < 4? +
No first =
random(10)
second =
random(10) L
addition()
count = 0
¢ while count < 4
rint first. “+” first = random(10)
P P second = random(10)
second, “? X .
print first, "+", second, "?"
¢ read response
if response = first + second then
read print "Right"
response else
print "Wrong"
¢ endif
count = count + 1
endwhile
return
second?
print print
“Wrong” “Right”
| |
7 count =
count + 1
1
TlP | The module in Figure 10-10 would require two new variable declarations in the
ooono

startUp() module in Figure 10-3: num first and num second.

Tl P | Popular spreadsheet programs also contain functions. As in programming, they are built-in
oooo modules that return requested values such as square root or absolute value. Most spread-

‘ sheets also contain dozens of specialized functions to support financial applications, such
as computing the future value of an investment and calculating a loan payment.

416 Chapter 10 Using Menus and Validating Input

You can make many additional improvements to any of the addition (') modules shown in Figures 10-7, 10-9, and
10-10. For example, you might want to give the user several chances to calculate the correct answer, or you might want
to vary the messages displayed in response to correct and incorrect answers. However you change the

addition() or subtraction /() modules in the future, the main structure of the menu program does not have
to change; modularization has made your program easily modifiable to meet changing needs and user preferences.

MAKING IMPROVEMENTS TO A MENU PROGRAM

When the menu appears at the end of the 1looping (') module of the arithmetic drill program, if the user selects
anything other than 3, the Tlooping (') module is entered again. Note that if the user chooses 4 or 9 or any other
invalid menu item, the menu simply reappears. Unfortunately, the repeated display of the menu can confuse the user.
Perhaps the user is familiar with another program in which option 9 has always meant Quit. When using the arithmetic
drill program, the user who does not read the menu carefully might press 9, get the menu back, press 9, and get the
menu back again. The programmer can assist the user by displaying a message when the selected response value
is not one of the allowable menu options, as shown in Figure 10-11,

FIGURE 10-11: ADDING AN ERROR MESSAGE TO THE Looping () MODULE OF THE ARITHMETIC
DRILL PROGRAM

looping()

|

response
=1?

response addition()
=27
print “You
must select)
1.2,0r3" subtraction()
I |
¢ looping()
if response = 1 then
perform addition()
displayMenu() else
if response = 2 then
perform subtraction()
¢ else
print "You must select 1, 2, or 3"
endif
perform displayMenu()
return

Making Improvements to a Menu Program

'I" P When you code the displayMenu () module in a programming language, you might
0000 |choose to write it so that it clears the screen of all old output before showing the menu

options. If so, then in the 1looping () module in Figure 10-11, you would be required to
place a statement that pauses the program—for example, requiring the user to press a key
or using a built-in function available in many languages that waits for a number of speci-
fied seconds before continuing. Without such a pause, the message “You must select 1, 2,
or 3” would be displayed on the screen, then be replaced by the menu almost

instantaneously, denying the user enough time to read the message.

Among programmers, there is a saying that no program is ever really completed. You always can continue to make improve-
ments. For example, the Looping (') module in Figure 10-11 shows that a helpful message (“You must select 1, 2, or
3”) appears when the user selects an inappropriate option. However, if users do not understand the message, or simply do
not stop to read the message, they might keep entering invalid data. As a user-friendly improvement to your program, you
can add a counter that keeps track of a user’s invalid responses. For example, you can decide that after three invalid entries,
you will issue a stronger message, such as “Please see the system administrator for help.” Figure 10-12 shows this logic. Of
course, to use this module, you must remember to declare errorCount in your variable list in the startUp () mod-
ule, and initialize it to 0. Then, each time the user chooses an invalid response and you display the message “You must select
1,2,0r 3", you can add 1 t0o errorCount. When errorCount exceeds 2, you display the stronger message.

You can make an additional improvement to the Looping (') module in Figure 10-12. Suppose the user starts the
program and enters a 5. The value of response isnot 1, 2, or 3, so you add 1 t0 errorCount, display the mes-
sage “You must select 1, 2, or 37, and display the menu. Suppose the user enters a 5 again. Once again the response is
not 1,2, or 3,50 you add 1 to errorCount, which is now 2, display the message “You must select 1, 2, or 3", and
display the menu. If the user enters a 5 again, errorCount exceeds 2 and the user receives the message “Please
see the system administrator for help.” Assume the user gets help and figures out that he or she must type 1, 2, or 3.
The user then might successfully use the program for several more minutes. However, the next time the user makes a
selection error, errorCount will increase to 4 and the stronger “system administrator” message appears immedi-
ately, even though this is only the user’s first “new” mistake. If you want to give the user three more chances before the
stronger message appears again, then you should reset errorCount to 0 every time the user makes a valid choice.
This technique allows the user to make three bad selections after any good selection before the stronger message
appears. See Figure 10-13 for a flowchart and pseudocode of a complete program containing all the improvements.

417

418 Chapter 10 » Using Menus and Validating Input

FIGURE 10-12: THE looping () MODULE WITHA STRONGER ERROR MESSAGE AFTER THREE ERRORS

response
=1?

response
=2?

addition()

errorCount =
errorCount + 1 subtraction()

v

errorCount
> 27

print “You print “Please
must select see the system
1,2.0r3" administrator
o for help’
L I

[

v

displayMenu()

v

looping()
if response = 1 then
perform addition()
else
if response = 2 then
perform subtraction()
else
errorCount = errorCount + 1
if errorCount > 2 then
print "Please see the system administrator for help"
else
print "You must select 1, 2, or 3"
endif
endif
endif
perform displayMenu()
return

Making Improvements to a Menu Program 419

FIGURE 10-13: COMPLETE PROGRAM ALLOWING THREE ATTEMPTS AT SUCCESSFUL MENU SELECTION
BEFORE STRONGER MESSAGE APPEARS

start
perform startUp()
while response not = 3
¢ perform looping()
endwhile
perform cleanUp()
stop

startUp()

displayMenu() displayMenu()

N print "(1) Addition Problems"
\ o print "(2) Subtraction Problems"
- looping() + print "(3) Quit the Program"
print "Please press a number to make your selection"

read response

print "
+ e (1) Addition reeurn

Problems”

cleanUp() +

print
+ “(2) Subtraction

Problems”

v

print
“(3) Quit the
Program”

\d

startUp() print
declare variables “Please press a
open files number to make

perform displayMenu() our selection” errorCount = - l
+ return v errorCount + 1 subtraction()

Yes
response
=1?

addition()

variables | num response
num errorCount
+ num first

declare + * + errorCount = 0

read
response

num second

open +
files print “You print “Please
must select e Sys‘em

+ administrator

12,03 for help”

errorCoun errorCount = 0

>2?

displayMenu()

\

displayMenu()

v

looping()
if response = 1 then
perform addition()
errorCount = 0
else
if response = 2 then
perform subtraction()
errorCount = 0
else
errorCount = errorCount + 1
if errorCount > 2 then
print "Please see the system administrator for help"
else
print "You must select 1, 2, or 3"
endif
endif
endif
perform displayMenu()
return

420 Chapter 10 ¢ Using Menus and Validating Input

FIGURE 10-13: COMPLETE PROGRAM ALLOWING THREE ATTEMPTS AT SUCCESSFUL MENU SELECTION
BEFORE STRONGER MESSAGE APPEARS (CONTINUED)

count =0 count=0
Ve '
Yes
Yes
No first = No first =
random(10) random(10)
second = second =
random(10) random(10)
print first, “-",
second, “?”
read read
response response
print print P » Pr—
" ‘Wrong Right
“Wrong” “Right”
L 7 g g Y . A
— =
count =
count = count + 1
count + 1
T %
addition() subtraction()
count = 0 count = 0
while count < 4 while count < 4

first = random(10)

second = random(10)

print first, "-", second, "?"
read response

if response = first - second then

first = random(10)

second = random(10)

print first, "+, second, "?"
read response

if response = first + second then print "Right"
print "Right" else

else print "Wrong"
print "Wrong" endif

endif count = count + 1

count = count + 1 endwhile

endwhile return
return
cleanUp() cleanp()
close files
return

\

close files

Using the Case Structure to Manage a Menu

USING THE CASE STRUCTURE TO MANAGE A MENU

The arithmetic drill program contains just three valid user options: numeric entries that represent addition, subtraction,
or quitting the program. Many menus include more than three options, but the main logic of such programs is not sub-
stantially different from that in programs with only three. You just include more decisions that lead to additional sub-
modules. For example, Figure 10-14 shows the main logic for a menu program with four optional arithmetic drills.

In Chapter 2 and again in Chapter 5, you learned about the case structure. You can use the case structure to make decisions
when you need to test a single variable against several possible values. The case structure is particularly convenient to use
in menu-driven programs, because you decide from among several courses of action based on the value in the user’s
response variable. The case structure often is a more convenient way to express a series of individual decisions.

As you have learned, the syntax of case structures in most programming languages allows you to make a series of
comparisons, and if none is true, an Other or Default option executes. Using a default option is a great convenience in a
menu-driven program, because a user usually can enter many more invalid responses than valid ones. Figure 10-15
shows the logic of a four-option arithmetic drill program that uses the case structure.

All menu-driven programs should be user-friendly, meaning that they should make it easy for the user to make
desired choices. Instead of requiring a user to type numbers to select an arithmetic drill, you can improve the menu
program by allowing the user the additional option of typing the first letter of the desired option—for example, A for
addition. To enable the menu program to accept alphabetic characters as a variable named response, you must
make sure you declare response as a character variable in the startUp () module. Numeric variables can hold
only numbers, but character variables can hold alphabetic characters (such as A) as well as numbers.

a21

422

Chapter 10 ¢ Using Menus and Validating Input

FIGURE 10-14: MAIN LOGIC OF PROGRAM CONTAINING FOUR OPTIONAL ARITHMETIC DRILLS

response
=1?

No " response \, Yes addition()
=2?

response subtraction()

=3?

response multiplication()

)

print “You
must select -
1,2,3,0r4” division()
' I
[
[
—
displayMenu()
\d
looping()

if response = 1 then
perform addition()
else
if response = 2 then
perform subtraction()
else
if response = 3 then
perform multiplication()

else
if response = 4 then
perform division()
else
print "You must select 1, 2, 3, or 4"
endif
endif
endif

endif
perform displayMenu()
return

Using the Case Structure to Manage a Menu 423

FIGURE 10-15: MENU PROGRAM USING THE CASE STRUCTURE

looping()

{

response?

[12 1s 4 | Default

print “You
" . o _— must select
addition() subtraction() multiplication() division() 1.2.3,0r 4"
[| ¢ | [I
displayMenu()

looping()

case based on response
case 1
perform addition()
case 2
perform subtraction()
case 3
perform multiplication()
case 4
perform division()
default
print "You must select 1, 2, 3, or 4"
endcase
perform displayMenu()
return

a2a4 C(Chapter 10 ¢ Using Menus and Validating Input

Programmers sometimes overlook the fact that computers recognize uppercase letters as being different from their
lowercase counterparts. Thus, a response of A is different from a response of a. A good menu-driven program probably
would allow any of three responses for the first option of (7) Addition—1, A, or a. Figure 10-16 shows the case structure
that performs the menu option selection when the user can enter a variety of responses for each menu choice.

FIGURE 10-16: MENU PROGRAM USING THE CASE STRUCTURE WITH MULTIPLE ALLOWED RESPONSES

looping()

|

response?

v

¢“1 " upy gy ¢2$s ¢3Mm ¢4Dd ¢ Default
print “You must
") L select 1,2, 3,4,
addition() subtraction() multiplication() division() A.S.M,or D"
I | ¢ | [|
displayMenu()

looping()

case based on response
case "1", "A", "a"
perform addition()
case "2", "s", "s"
perform subtraction()
case "3", "M", "m"
perform multiplication()
case "4", "D", "d"
perform division()
default
print "You must select 1, 2, 3, 4,
A, S, M, or D"
endcase
perform displayMenu()
return

Using Multilevel Menus 425

USING MULTILEVEL MENUS

Sometimes, a program requires more options than can easily fit in one menu. When you need to present the user with a
large number of options, you invite several potential problems:

m If there are too many options to fit on the display at one time, the user might not realize that
additional options are available.

m The screen is too crowded to be visually pleasing when you try to force all the options to fit on
the screen.

m Users become confused and frustrated when you present them with too many choices.

When you have many menu options to present, using a multilevel menu might be more effective than using a single-
level menu. With a multilevel menu, the selection of a menu option leads to another menu from which the user can
make further, more refined selections.

For example, an arithmetic drill program might contain three difficulty levels for each type of problem. After the user
sees a menu like the one shown in Figure 10-17, he or she can choose to quit the program immediately, without
selecting an arithmetic drill. You refer to a menu that controls whether the program will continue as the main menu of
a program. Alternatively, the user can choose to continue the program, selecting an Addition, Subtraction, Multiplication,
or Division arithmetic drill. No matter which drill the user chooses, you can display a second menu like the one shown in
Figure 10-18. A second-level (or later-level) menu is a submenu.

FIGURE 10-17: FIRST OR MAIN MENU FOR ARITHMETIC DRILL PROGRAM

IS [=1 B3

®

(1) Addition Problems

(2) Subtraction Problems
(3] Multiplication Problems
(4] Division Problems

(5) Quit the Pragram

% B % @

Please press a number to make your selection

426 C(Chapter 10 Using Menus and Validating Input

FIGURE 10-18: SECOND OR SUBMENU FOR ARITHMETIC DRILL PROGRAM

I [=] E3

")

(1) Easy

(2) Medium

(3] Difficult

(4] Quit this menu

B @

Flease piess a number to make your selection

The mainline logic of this multilevel menu arithmetic program calls a staxrtUp () module in which the first menu pre-
sents options for the four types of arithmetic problems—Ad(dition, Subtraction, Multiplication, and Division—as well as an
option to quit. When the user makes a selection—for example, Addition—the mainline logic determines that response
is not the quit option, so the Looping () module executes. Figures 10-19, 10-20, and 10-21 show flowcharts and
pseudocode for the mainline logic, startUp () module, and displayMenu () module, respectively.

FIGURE 10-19: FLOWCHART AND PSEUDOCODE FOR MAINLINE LOGIC FOR MULTILEVEL MENU PROGRAM

tart start
sta perform startUp()

while response not equal to quitValue
i perform looping()
endwhile
perform cleanUp()

startUp() stop

looping()

Using Multilevel Menus a2z

FIGURE 10-20: FLOWCHART AND PSEUDOCODE FOR startUp () MODULE FOR MULTILEVEL MENU PROGRAM
startUp() startUp()
P declare variables
open files
i perform displayMenu()
return
declare num response
variables |~ num difficultyResponse
num quitvalue = 5
open
files
displayMenu()

When the program begins, unless the user chooses to quit by entering the quitvalue () for the response in
the startUp () module, the Looping () module executes. The looping () module uses a case structure to
select one of five actions. Either the user has entered the correct response to select addition, subtraction, multipli-
cation, or division problems, or the user has selected an invalid option. If the user selects an invalid option, an error
message “Sorry. Invalid entry.” appears. Whether or not the user selects an entry that performs one of the four arith-
metic drill modules, the final step in the Looping () module displays the menu again and waits for the next
response. Back in the mainline logic, the new response value is tested, and if the user has entered anything
other than the quitValue, the looping () module executes again. Figure 10-22 shows the flowchart and
pseudocode for this version of the Looping (') module.

428 C(Chapter 10 e Using Menus and Validating Input

FIGURE 10-21: FLOWCHART AND PSEUDOCODE FOR displayMenu () MODULE FOR MULTILEVEL
MENU PROGRAM

displayMenu()
print " (1) Addition Problems"
print "(2) Subtraction Problems"
¢ print "(3) Multiplication Problems"
print "(4) Division Problems"

displayMenu()

print print "(5) Quit the Program"
“(1) Addition Problems” print "Please press a number to make your selection"
read response
¢ return
print

“(2) Subtraction Problems”

b

print
“(3) Multiplication Problems”

}

print
“(4) Division Problems”

b

print
“(5) Quit the Program”

|

print
“Please press a
number to make
your selection”

|

read
response

|

return

Inthe Looping (') module in Figure 10-22, if the user selects a valid option, then the module executes one of the four
arithmetic drill modules. For example, if the user selects 7 for Addition Problems, then the addition () module executes.

Using Multilevel Menus 429

FIGURE 10-22: FLOWCHART AND PSEUDOCODE FOR Looping () MODULE FOR MULTILEVEL MENU PROGRAM

looping()

V

response = ?

\ v2 v3 v | Defauit

print “Sorry.
addition() subtraction() multiplication() division() Invalid entry.”
[| ¢ | [I
displayMenu()

\

return

looping()
case based on response
case 1
perform addition()
case 2
perform subtraction()
case 3
perform multiplication()
case 4
perform division()
default
print "Sorry. Invalid entry."
endcase
perform displayMenu()
return

Within the addition () module, the first task is to allow the user to select a problem-difficulty level from a submenu
like the one shown in Figure 10-18. Figure 10-23 shows the flowchart and pseudocode for the addition () module.
Within the addition () module, you call another module to display the difficulty level. Shown in Figure 10-24, this
module allows the user to choose easy, medium, or difficult addition problems. If the user selects to quit this menu by
entering a 4, then the user will leave the addition () module and return to the main menu to choose a different type
of arithmetic problem, choose addition again, or quit the program. In the displayDifficultyMenu () module,
if the user makes a selection other than 4, the case structure in the addition () module determines one of four
actions: either one of three addition problem modules executes, or the user is informed that the choice is invalid. In any

430 Chapter 10 e Using Menus and Validating Input

case, the last action of the addition () module is to display the difficulty level menu again. As long as users choose
options other than 4, they can continue to select addition problem drills at any of the three difficulty levels.

FIGURE 10-23: FLOWCHART AND PSEUDOCODE FOR addition () MODULE FOR MULTILEVEL MENU PROGRAM

addition()

displayDifficultyMenu()

y <

difficultyResponse

Yes difficultyResponse
‘L1 »L Default
print “Sorry.
easyAddProblems() mediumAddProblems() difficultAddProblems() Invalid entry.”
[| ¢ | I
v displayDifficultyMenu()
|
addition()

perform displayDifficultyMenu()
while difficultyResponse is not equal to 4
case based on difficultyResponse

case 1
perform easyAddProblems ()
case 2
perform mediumAddProblems ()
case 3
perform difficultAddProblems()
default
print "Sorry. Invalid entry."
endcase
perform displayDifficultyMenu()
endwhile

return

Using Multilevel Menus

FIGURE 10-24: FLOWCHART AND PSEUDOCODE FOR displayDifficultyMenu () MODULE FOR
MULTILEVEL MENU PROGRAM

displayDifficultyMenu()
print " (1) Easy"
print "(2) Medium"
¢ print "(3) Difficult"
print "(4) Quit this menu"

displayDifficultyMenu()

print print "Please press a number to make your selection"
“(1) Easy” read difficultyResponse
return

}

print
“(2) Medium”

{

print
“(3) Difficult”

{

print
“(4) Quit this menu”

{

print
“Please press a
number to make
your selection”

}

read
difficultyResponse

The subtraction(),multiplication(),and division () modules can contain code similar to that
inthe addition () module. Thatis, each module can display a submenu of difficulty levels. The actual arithmetic
problems do not execute until the user reaches the easyAddProblems () module or one of its counterparts.

Many programs have multiple menu levels. For example, you might want the easyAddProblems () module to
display a new menu asking the user for the number of problems to attempt. Figure 10-25 shows a possible menu.

a31

432 C(Chapter 10 e Using Menus and Validating Input

FIGURE 10-25: THIRD MENU FOR ARITHMETIC DRILL PROGRAM

IS[=] E3

O

(1) Short quiz - 5 problems
[2) Regular test - 20 problems

e B

(3] Final exam - 100 problems

C (4) Quit this menu
Please press a number to make your selection

You would not need to learn any new techniques to create as many levels of menus as the application warrants. The
module that controls each new level can:

= Display a menu.
m Accept a response.

m Perform another module based on the selection (or inform the user of an error) while the user
does not select the Quit option for the specific menu level.

m Display the menu and accept a response again.

VALIDATING INPUT

Menu programs rely on a user’s input to select one of several paths of action. Other types of programs also require a user to
enter data. Unfortunately, you cannot count on users to enter valid data, whether they are using a menu or supplying informa-
tion to a program. Users will make incorrect choices because they don’t understand the valid choices, or simply because they
make typographical errors. Therefore, the programs you write will be improved if you employ defensive programming,
which means trying to prepare for all possible errors before they occur. Incorrect user entries are by far the most common
source of computer errors.

You can circumvent potential problems caused by a user’s invalid data entries by validating the user’s input. Validating input
involves checking the user’s responses to ensure they fall within acceptable bounds. Validating input does not eliminate all
program errors. For example, if a user can choose option 7 or option 2from a menu, validating the input means you check to
make sure the user response is 7 or 2. If the user enters a 3, you can issue an error message. However, if the user enters a 2
when she really wants a 7, there is no way you can validate the response. Similarly, if a user must enter his birth date, you
can validate that the month falls between 1 and 12; you usually cannot verify that the user has typed his true birth date.

Validating Input 433

The correct action to take when you find invalid data depends on the application. Within an interactive program, you might
require the user to reenter the data. If your program uses a data file, you might print a message so someone can correct
the invalid data. Alternatively, you can force the invalid data to a default value. Forcing a field to a value means you over-
ride incorrect data by setting the field to a specific value. For example, you might decide that if a month value does not fall
between 1 and 12, you will force the field to 0 or 99. This indicates to those who use the data that no valid value exists.

New programmers often make the following two kinds of mistakes when validating data:

m They use incorrect logic to check for valid responses when there is more than one possible
correct entry.
m They fail to account for the user making multiple invalid entries.

For example, assume a user is required to respond with a Y or N'to a yes-or-no question. The pseudocode in
Figure 10-26 appears to check for valid responses.

FIGURE 10-26: INVALID METHOD FOR VALIDATING USER RESPONSE

print "Do you want to continue? Enter Y or N."

read userAnswer

if userAnswer not equal to "Y" OR userAnswer not equal to "N" then
print "Invalid response. Please type Y or N"
read userAnswer

endif

The logic shown in Figure 10-26 intends to make sure that the user enters a Y or an . However, if you use the logic
shown in Figure 10-26, all users will see the “Invalid response” error message, no matter what they type. Remember, when
you use OR logic, only one of the two expressions used in each half of the OR expression must be true for the whole
expression to be true. For example, if the user types a B, then userAnswer is not equal to Y. Therefore,
userAnswer not equal to "Y"istrue, and the “Invalid response” message is displayed. However, if the
user types an N, userAnswer also is not equal to Y. Again, the condition in the i £ statement is true, and the “Invalid
response” message prints, even though the response is actually valid. Similarly, if the user types a ¥, userAnswer
not equal to "Y"isfalse butuserAnswer not equal to "N" istrue, soagain “Invalid response”
prints. Every character that exists is either not'Y or not N, even “Y” and “N”. The correct logic prints the “Invalid response”
message when userAnswer is notY and it is also not N. See Figure 10-27.

FIGURE 10-27: IMPROVED METHOD FOR VALIDATING USER RESPONSE

print "Do you want to continue? Enter Y or N."

read userAnswer

if userAnswer not equal to "Y" AND userAnswer not equal to "N" then
print "Invalid response. Please type Y or N"
read userAnswer

endif

434 Chapter 10 ¢ Using Menus and Validating Input

TI P o o oo | You first learned about OR decision logic in Chapter 5.

If you use the logic shown in Figure 10-27, when the user types an invalid response, you will correctly display the error
message and get a new userAnswer. However, you have not made allowance for the user typing an invalid
response a second time. Instead of using a decision statement to check for a valid response, you can use a loop to
continue to issue error messages and get new input as long as the user continues to make invalid selections.

Figure 10-28 shows the logic for the best method for validating user input.

FIGURE 10-28: BEST METHOD FOR VALIDATING USER RESPONSE

print "Do you want to continue? Enter Y or N."

read userAnswer

while userAnswer not equal to "Y" AND userAnswer not equal to "N"
print "Invalid response. Please type Y or N"
read userAnswer

endwhile

UNDERSTANDING TYPES OF DATA VALIDATION

The data you use within computer programs is varied. It stands to reason that validating data requires a variety of
methods. In the last section, you learned to check for an exact match of a user response to the character “Y” or “N”. In
addition, some of the techniques you want to master include validating:

Data type
= Range

Reasonableness and consistency of data
Presence of data

VALIDATING A DATA TYPE

Some programming languages allow you to check data items to make sure they are the correct data type. Although this
technique varies from language to language, you can often make a statement like the one shown in Figure 10-29. In
this program segment, isNumeric () represents a method call; it is used to check whether the entered
employeeSalary falls within the category of numeric data. A method such as isNumeric () is most often
provided with the language translator you use to write your programs. Such a method operates as a black box; you can
use its results without understanding its internal statements.

Understanding Types of Data Validation 435

FIGURE 10-29: METHOD FOR CHECKING DATA FOR CORRECT TYPE

print "Enter salary."

read employeeSalary

while employeeSalary not isNumeric()
print "Salary not numeric. Please reenter."
read employeeSalary

endwhile

'l'l P Some languages require you to check data against the actual machine codes (such as
0000 | ASCII or EBCDIC) used to store the data, to determine if the data is the appropriate type.

Besides allowing you to check whether a value is numeric, some languages contain methods with names like
isChar () (for “is the value a character data type?”), iswhitespace () (meaning “is the value a nonprinting
character such as a space, a tab, or the Enter key?”), isUpper () (meaning “is the value a capital letter?”), and
isLower () (meaning “is the value a lowercase letter?”).

In many languages, you accept all user data as a string of characters, and then use built-in methods to attempt to con-
vert the characters to the correct data type for your application. When the conversion methods succeed, you have use-

ful data; when the conversion methods fail because the user has entered the wrong data type, you can take appropriate
action, such as issuing an error message, reprompting the user, or forcing the data to a default value.

VALIDATING A DATA RANGE

Sometimes, a user response or other data must fall within a range of values. For example, when the user enters a
month, you typically require it to fall between 1 and 12, inclusive. The method you use to check for a valid range is sim-
ilar to one you use to check for an exact match; you continue to prompt for and receive responses while the user’s
response is out of range. See Figure 10-30.

FIGURE 10-30: METHOD FOR VALIDATING USER RESPONSE WITHIN RANGE

print "Enter month."

read userAnswer

while userAnswer < 1 OR userAnswer > 12
print "Invalid response. Please enter month 1 through 12."
read userAnswer

endwhile

436 Chapter 10 e Using Menus and Validating Input

VALIDATING REASONABLENESS AND CONSISTENCY OF DATA

Data items can be the correct type and within range, but still be incorrect. You have experienced this phenomenon yourself
if anyone has ever misspelled your name or overbilled you. The data might have been the correct type—that is, alphabetic
letters were used in your name—~but the name itself was incorrect. There are many data items that you cannot check for
reasonableness; it is just as reasonable that your name is Catherine as it is that your name is Katherine or Kathryn.

However, there are many data items that you can check for reasonableness. If you make a purchase on May 3, 2007, then
the payment cannot possibly be due prior to that date. Perhaps within your organization, if you work in Department 12, you
cannot possibly make more than $20.00 per hour. If your zip code is 90201, your state of residence cannot be New York. If
your pet’s breed is stored as “Great Dane,” then its species cannot be “bird.” Each of these examples involves comparing
two data fields for reasonableness and consistency. You should consider making as many such comparisons as possible
when writing your own programs.

VALIDATING PRESENCE OF DATA

Sometimes, data is missing from a file, either for a reason or by accident. A job applicant might fail to submit an entry
for the salaryAtPreviousdJob field, or a client might have no entry for the emailAddress field. A data-
entry clerk might accidentally skip a field when typing records. Many programming languages allow you to check for
missing data and take appropriate action with a statement similarto 1f emailAddress is blank
perform noEmailModule ().You can place any instructions you like within noEmailModule (),
including forcing the field to a default value or issuing an error message.

Good defensive programs try to foresee all possible inconsistencies and errors. The more accurate your data, the more
useful information you will produce as output from your programs.

Chapter Summary 437

CHAPTER SUMMARY

0O Programs for which all the data items are gathered prior to running use batch processing. Programs that
depend on user input while they are running use interactive, real-time, online processing. A menu pro-
gram is a common type of interactive program in which the user sees a number of options on the screen
and can select any one of them.

0O When you create a single-level menu, the user makes a selection from only one menu before using the
program for its ultimate purpose. The user's response controls the mainling logic of a menu program.

O When you code a module as a black box, the module statements are invisible to the rest of the program.
Many versions of a module can substitute for one another. When programmers develop systems containing
many modules, they often code “empty” black box procedures, called stubs; later they can code the details
in the stub modules. In addition, most programming languages provide you with built-in black box functions.

O A programmer can improve a menu program and assist the user by displaying a message when the
selected response is not one of the allowable menu options. Another user-friendly improvement to a pro-
gram adds a counter that keeps track of a user’s invalid responses and issues a stronger message after
a specific number of invalid responses.

O You can use the case structure to make decisions when you need 1o test a single variable against several
possible values. The case structure is particularly convenient to use in menu-driven programs, because
you decide from among several courses of action based on the value in the user’s response variable.

O When a program requires more options than can easily fit in one menu, you can use a multilevel menu.
With a multilevel menu, the selection of an option from a main menu leads to a submenu from which the
user can make further, more refined selections. With multilevel menus, the module that controls each
new level can display a menu, accept a response, and—uwhile the user does not select the quit option
for that menu level—perform another module based on the selection (or inform the user of an error).
Finally, the module for each menu level displays the menu and accepts a response again.

O You can circumvent potential problems caused by a user’s invalid data entries by validating the user's
input. Validating input involves checking the user’s responses to ensure they fall within acceptable
bounds, and taking one of several possible actions. Common mistakes when validating data include
using incorrect logic and failing to account for the user making multiple invalid entries.

O Some of the techniques you want to master include validating data type, range, reasonableness and con-
sistency of data, and presence of data.

\

438 C(Chapter 10 e Using Menus and Validating Input

KEY TERMS

Programs for which all the data items are gathered prior to running use batch processing.
Programs that depend on user input while the programs are running use interactive processing.

Interactive computer programs are often called real-time applications, because they run while a transaction is taking
place, not at some later time.

You also can refer to interactive processing as online processing, because the user’s data or requests are gathered
during the execution of the program, while the computer is operating.

A batch processing system can be offline; that is, you can collect data such as time cards or purchase information
well ahead of the actual computer processing of the paychecks or bills.

A menu program is a common type of interactive program in which the user sees a number of options on the screen
and can select any one of them.

Console applications are programs that require the user to enter choices using the keyboard.
Graphical user interface applications allow the user to use a mouse or other pointing device to enter choices.

A single-level menu is one from which a user makes a selection that results in the program’s ultimate purpose, as
opposed to displaying additional menus.

When code exists in a black box, module statements are “invisible” to the rest of the program.
Stubs are empty procedures, intended to be coded later.

Functions are modules that automatically provide a mathematical value such as a square root, absolute value, or
random number.

User-friendly programs are those that make it easy for the user to make desired choices.

With a multilevel menu, the selection of a menu option leads to another menu from which the user can make further,
more refined selections.

The main menu of a program is the menu that determines whether execution of the program will continue.
A second-level, or later-level, menu is a submenu.

Defensive programming involves trying to prepare for all possible errors before they occur.

Validating input involves checking the user’s responses to ensure they fall within acceptable bounds.

Forcing a field to a value means you override incorrect data by setting the field to a specific value.

Review Questions 439

REVIEW QUESTIONS

1.

Programs for which all the data items are gathered prior to runninguse _ processing.

a. batch
b. interactive
c. online
d. real-time

Programs that depend on user input while the programs are runninguse ~ processing.

a. artificial
b. delayed
c. batch

d. interactive

Which of the following means the same as interactive processing?

a. query processing
b. virtual processing
c. real-time processing
d. batch processing

A menu program is acommontypeof _ program.

a. batch

b. interactive
c. control break
d. offline

If a user makes a selection from only one menu before using the program for its ultimate purpose,
thenthemenuisa __ menu.

a. primary
b. single-level
c. focal

d. batch

When module statements are invisible to the rest of a program, they are said to exist within a

black hole
magic hat
mirror

d. black box

R e

Modules containing no code that are used as temporary placeholders are called

a. black boxes
b. stubs

c. fill-ins

d. padded

440 Chapter 10 e Using Menus and Validating Input

10.

11.

12.

13.

14.

Most programming languages provide you with built-in modulescalled ~ that
automatically provide a mathematical value such as a square root, absolute value, or random number.
a. functions

b. formulas

c. stubs

d. Dblack boxes

Writing a program that provides a user with increasingly detailed help messages as the user continues
to make data-entry errors requires that the program contain a

a. loop

b. counter

c. both of these
d. neither a nor b

The structure that provides a more convenient way to express a series of decisions that are based
on the value of a single variableisthe ~ structure.

a. loop

b. do until
. case

d. sequence

A program that makes it easy for a user to accomplish tasks is said to be

a. simplex

b. user-friendly
c. structured

d. accommodating

You might need to create a multilevel menu from a single-level one if

a. you do not have enough options to fill the screen
b. users are allowed only true-false choices

c. the screen appears too crowded

d. all of the above

Where is the user selection that ends a program most likely to appear?

a. inaprogram’s main menu
b. ina program’s first suomenu
c. inaprogram’s last submenu
d. inevery menu in a program

Writing programs that try to prepare for all possible user errors is known as
programming.

a. proactive

b. cautious

C. aggressive

d. defensive

15.

16.

17.

18.

19.

20.

Review Questions a41

Checking to ensure that data values fall within acceptable boundsisknownas _ data.

a. forcing

b. defending
c. classifying
d. validating

Which value for deptNumber would be considered valid using the following code?
if deptNumber not = 1 OR deptNumber not = 2 then
print "Invalid number"

else

print "valid number"
endif

a. 1
b. 2
c¢. Both 1 and 2 are valid.
d. Neither 1 nor 2 is valid.

Which value for deptNumber would be considered valid using the following code?
if deptNumber not = 5 AND deptNumber not = 6 then
print "Invalid number"
else
print "Valid number"
endif

a. 5
b. 6
c. Both 5 and 6 are valid.
d. Neither 5 nor 6 is valid.

Which of the following student data items could most easily be validated by a program used by
a college?

a. The name of the high school the student attended is spelled correctly.
b. The student’s middle name is correct.

c¢. The student’s grade point average is between 0.0 and 4.0, inclusive.
d. The student’s last tuition payment is for the correct amount.

Which of the following data items could least easily be validated by a program used by a grocery store?

a. The Universal Product Code for an item contains the correct number of digits (12).

b. The product name is alphabetic.

c. The date the product was last ordered from the manufacturer is a valid date and no more than two years old.
d. The product price is no more than any other store in the state is charging this week.

Good defensive programs

a. catch all errors

b. catch all range errors, but not necessarily other error types

c. catch many errors

d. seldom catch errors until the data is visually verified by clerical employees

aa4a2 Chapter 10 ¢ Using Menus and Validating Input

FIND THE BUGS

The following pseudocode contains one or more bugs that you must find and correct.

1. Head Gear, Inc. sells customized baseball caps embroidered with your team name or company logo.
This application allows a user to enter the phrase to be imprinted on a cap and a quantity. The
application then displays a menu from which a user can choose the color for the caps ordered.

The total amount due is displayed when the order is complete.

start
perform firstTasks()
while phrase not = QUIT
perform userChoices()
endwhile
perform finishUp()
stop

firstTasks ()
declare variables
char phrase
num quantity
num colorChoice
const num QUIT = "XXX"
const num LOWAMOUNT = 1
const num HIGHAMOUNT = 500
const num DISCOUNTPRICE = 6.99
const num REGPRICE = 8.99
const num CUTOFF = 100
const num CAMO_PREMIUM = 1.50
num price
open files
print "Enter phrase you want embroidered on caps
print " or enter ", QUIT, " to quit"
read phrase

return

userChoices()

display "Enter quantity"

while quantity < LOWAMOUNT OR quantity > HIGHAMOUNT
print "Invalid amount. Please re-enter quantity"
read quantity

endwhile

perform displayMenu()

perform computePrice()

print "Enter phrase you want embroidered on caps

Find the Bugs 443

print " or enter ", QUIT, " to quit"
return

displayMenu/()

colorChoice = 0

whileColorChoice < 1 OR colorChoice > 6
print "Choose a color from the following menu"
print " (1) Black"
print "(2) Red"
print "(3) Blue"
print "(4) Green"
print "(5) White"
print "(6) Camouflage"

endwhile

return

computePrice()
if quantity < = CUTOFF then
price = REGPRICE * quantity
elllse
price = DISCOUNTPRICE
endif

if colorChoice = 6 then
price = price + CAMO PREMIUM * quantity
endif
print "Total is $ ", price
return

finishUp()
close files
return

The Good Thoughts Web site lets users select whether they are in the mood for an inspirational,
motivational, or empathetic message. A message is randomly selected from a database of quotes
and displayed. (Assume that a random number can be obtained by passing a numeric argument to
a built-in rand () function that returns a value from 0 through one less than the argument.)

start
perform getReady ()
while entry not = QUIT
perform displayMessage()
endwhile
perform finishUp()
stop

4a4aa4a Chapter 10 e Using Menus and Validating Input

getReady ()
declare variables
num entry
const num QUIT = 4
open files
perform menuSelect()
stop

menuSelect ()
userInput = 1
whileUserInput < 1 OR userInput > QUIT
print "Choose a type of message for the day"
print " (1) Inspirational message"
print "(2) Motivational message"
print " (3) Empathetic message"
print "(4) Quit"
endwhile
return

displayMessage()

num SZ = 3
char inspirationMessages[SZ]
char motiveMessages[SZ]
char empathyMessages[SZ]
inspirationMessages message[0] =

"This is the first day of the rest of your life"
inspirationMessages [SZ] =

"The sun will come out tomorrow"
inspirationMessages [NUM] =

"The journey is the destination"
motiveMessages[SZ] = "Go the extra mile"
motiveMessages[2] = "Rome wasn't built in a day"

motiveMessages|[3]
"If at first you don't succeed, try, try again"

empathyMess [0] = "Poor baby"

empathyMess[1l] = "I feel your pain"

empathyMess[2] = "I know where you are coming from"
randNum = rand(SZ)

// A prewritten function that returns 0, 1 or 2
if user = 1 then
print inspireMessage[SZ]
else

1.

Exercises aas

if userInput = 2 then
print motiveMessage[5]
else
print empMess|[randNum]
endif
endif
perform menuSelect()
return

finishUp()
close files

return

EXERCISES

Develop the logic for a program that gives you the following options for a trivia quiz:
(1) Movies

(2) Television
(3) Sports
(4) Quit
When the user selects an option, display a question that falls under the category. After the user
responds, display whether the answer is correct.

a. Draw the hierarchy chart.

b. Draw the flowchart.

c. Write the pseudocode.

Modify the program in Exercise 1 so that when the user selects a trivia quiz topic option, you dis-
play five questions in the category instead of just one.

Develop the logic for a program that presents you with the following options for a banking machine:
(1) Deposit

(2) Withdrawal

(3) Quit

After you select an option, the program asks you for the amount of money to deposit or withdraw,
then displays your balance and allows you to make another selection. When the user selects Quit,
display the final balance.

a. Draw the hierarchy chart.

b. Draw the flowchart.

c. Write the pseudocode.

Develop the logic for a program that gives you the following options:
(1) Hot dog 1.50

(2) Fries 1.00

(3) Lemonade .75

(4) End order

446 Chapter 10 e Using Menus and Validating Input

You should be allowed to keep ordering from the menu until you press 4 for End order, at which
point you should see a total amount due for your entire order.

a. Draw the hierarchy chart.

b. Draw the flowchart.

c¢. Write the pseudocode.

5. Develop the logic for a program that gives you the following options when registering for college classes:

(1) English 101 8
(2) Math 260 5
(3) History 100 8
(4) Sociology 151 4
(5) Quit

You should be allowed to select as many classes as you want before you choose the Quit option,
but you should not be allowed to register for the same class twice. The program accumulates the
hours for which you have registered and displays your tuition bill at $50 per credit hour.

a. Draw the hierarchy chart.

b. Draw the flowchart.

c. Write the pseudocode.

6. Suggest two subsequent levels of menus for each of the first two options in this main menu:
(1) Print records from file
(2) Delete records from file
(3) Quit

7. Develop the logic for a program that displays the rules for a sport or a game. The user can select
from the following menu:
(1) Sports
(2) Games
(3) Quit

If the user chooses 7 for Sports, then display options for four different sports of your choice (for
example, soccer or basketball).

If the user chooses 2 for Games, display options for:
(1) Card games

(2) Board games

(3) Quit

Display options for at least two card games (for example, Hearts) and two board games (for exam-
ple, checkers) of your choice. Then display a one- or two-sentence summary of the game rules.

a. Draw the hierarchy chart.

b. Draw the flowchart.

c. Write the pseudocode.

10.

11.

Exercises 447

Draw the menus and then develop the logic for a program that displays United States travel and
tourism facts. The main menu should allow the user to choose a region of the country. The next
level should allow the user to select a state in that region. The final level should allow the user to
select a city, at which point the user can view facts such as the city’s population and average tem-
perature. Write the complete module for only one region, one state, and one city.

a. Draw the hierarchy chart.

b. Draw the flowchart.

c¢. Write the pseudocode.

Design the menus and then develop the logic for an interactive program for a florist. The first
screen asks the user to choose indoor plants, outdoor plants, nonplant items, or quit. When the
user chooses indoor or outdoor plants, list at least three appropriate plants of your choice. When
the user chooses a plant, display its correct price. If the user chooses the nonplant option, offer a
choice of gardening tools, gift items, or quit. Depending on the user selection, display at least three
gardening tools or gift items. When the user chooses one, display its price.

a. Draw the hierarchy chart.

b. Draw the flowchart.

c. Write the pseudocode.

Design the menus and then develop the logic for an interactive program for a company’s customer
database. Store the customers’ ID numbers in a 20-element array; store their balances due in a par-
allel 20-element array. The menu options include: add customers to the database, find a customer in
the database, print the database, and quit. If the user chooses to add customers, allow the user to
enter a customer ID and balance to the current list, but do not let the list exceed 20 customers. If the
user chooses to print, then print all existing IDs and balances; if there are none, issue a message. If
the user chooses to find a customer, issue a message if there are none; otherwise, provide a second
menu with three options—find by number, find by balance, or quit. Assume that every customer has
a unique ID number, but that there might be several customers with the same balance.

a. Draw the hierarchy chart.

b. Draw the flowchart.

c. Write the pseudocode.

Design the logic for a program that creates job applicant records, including all input data and start-
ing salary. The program asks users for their first name, middle initial, last name, birth date (month,
day, and year), current age, date of application (month, day, and year), and the job title for which
they are applying. Available jobs and starting salaries appear in the following table:

JOBTITLE SALARY
Clerk | 26,000
Clerk Il 30,000
Administrative assistant 37,500
Technical writer 39,000
Programmer | 42,500

Programmer || 50,000

448 Chapter 10 e Using Menus and Validating Input

Perform as many validation checks as you can think of to make sure that complete and accurate
records are created.

a. Draw the hierarchy chart.

b. Draw the flowchart.

c¢. Write the pseudocode.

12. Design the logic for a program that creates student records for Creighton Technical College and
assigns an advisor and a dormitory to each student. The program asks users for their first name,
last name, birth date (month, day, and year), and intended major. Advisors are assigned based on
maijor, as follows:

MAJOR ADVISOR LAST NAME

Business Brown for the first 100 students, then Davis
Computer Information Systems Cunningham for the first 100 students, then Lee
Heating and Air Conditioning Parke

Hospitality Hunter

Undeclared Ulster

Dormitories are assigned based on both major and age, as follows:

MAJOR AGE DORMITORY
Business under 21 Washington
Business 21 and over Adams
Computer Information Systems under 21 Jefferson
Computer Information Systems 21 and over Lincoln
Heating and Air Conditioning any Grant
Hospitality or Undeclared any Wilson

Perform as many validation checks as you can think of to make sure that complete and accurate
records are created.

a. Draw the hierarchy chart.

b. Draw the flowchart.

c. Write the pseudocode.

DETECTIVE WORK

1. Many programming languages make a distinction between the terms “function” and “procedure.”
To most programmers, what is the difference?

2. What is black box testing? What are the advantages and disadvantages of this type of testing?

3. What is defensive programming? What is Murphy’s law? What do the two have to do with each other?

UP FOR DISCUSSION

1. Obviously, you use a menu in a restaurant. Where else?

2. Have you ever used a telephone menu system that was inconvenient or frustrating? Describe the
problems you encountered. Can you develop a set of recommendations for telephone menu systems?

