
13
After studying Chapter 13, you should be able to:

� Understand the basic principles of object-oriented programming

� Define classes and create class diagrams

� Understand public and private access

� Instantiate and use objects

� Understand inheritance

� Understand polymorphism

� Understand protected access

� Understand the role of the this reference

� Use constructors and destructors

� Describe GUI classes as an example of built-in classes

� Understand the advantages of object-oriented programming

OBJECT-ORIENTED
PROGRAMMING

537

538 Chapter 13 • Object-Oriented Programming

AN OVERVIEW OF OBJECT-ORIENTED PROGRAMMING

Object-oriented programming (OOP) is a style of programming that focuses on an application’s data and the methods
you need to manipulate that data. Object-oriented programming uses all of the concepts you are familiar with from
modular procedural programming, such as variables, modules, and passing values to modules. Modules in object-
oriented programs continue to use sequence, selection, and looping structures and make use of arrays. However,
object-oriented programming adds several new concepts to programming and involves a different way of thinking. A
considerable amount of new vocabulary is involved as well. First, you will read about object-oriented programming con-
cepts in general; then you will learn the specific terminology.

Objects both in the real world and in object-oriented programming are made up of attributes and methods. Attributes
are the characteristics that define an object as part of a class. For example, some of your automobile’s attributes are its
make, model, year, and purchase price. Other attributes include whether the automobile is currently running, its gear, its
speed, and whether it is dirty. All automobiles possess the same attributes, but not, of course, the same values for those
attributes. Similarly, your dog has the attributes of its breed, name, age, and whether his or her shots are current.

In grammar, a noun is similar to an object in object-oriented programs, and the values of
an object’s attributes are like adjectives—they describe the characteristics of the objects.
Programmers also call the values of an object’s attributes the properties of the object. The
state of an object is the collective value of all its attributes at any point in time. Later in
this chapter, you will learn about the methods in a class, which are equivalent to verbs.

In object-oriented terminology, a class is a term that describes a group or collection of objects with common properties.
An instance of a class is an existing object of a class. Therefore, your red Chevrolet Automobile with the
dent can be considered an instance of the class that is made up of all automobiles, and your Golden Retriever
Dog named Ginger is an instance of the class that is made up of all dogs. Thinking of items as instances of a class
allows you to apply your general knowledge of the class to individual members of the class. A particular instance of an
object takes its attributes from the general category. If your friend purchases an Automobile, you know it has a
model name, and if your friend gets a Dog, you know the dog has a breed. You might not know the current state of
your friend’s Automobile, such as its current speed, or the status of her Dog’s shots, but you do know what attrib-
utes exist for the Automobile and Dog classes, and this allows you to imagine these objects reasonably well
before you see them. When you visit your friend and see the Automobile or Dog for the first time, you probably will
recognize it as the new acquisition. As another example, when you use a new application on your computer, you expect
each component to have specific, consistent attributes, such as a button being clickable or a window being closeable,
because each component gains these attributes as a member of the general class of GUI (graphical user interface)
components.

When you approach a new programming assignment using object-oriented programming techniques:

� You analyze the objects you are working with and the tasks that need to be performed with, and
on, those objects. Then you design classes that encapsulate the attributes and functionality of
those objects.

TIP�

539An Overview of Object-Oriented Programming

� You pass messages to objects, requesting the objects to take action. The same message works
differently (and appropriately) when applied to different objects. This means that, if well-
designed, you can use a single module or procedure name to work appropriately with different
types of data it receives.

� Objects can share or inherit traits of objects that have already been created, reducing the time it
takes to create new objects.

� Encapsulation and information hiding are emphasized.

OBJECTS AND CLASSES

The real world is full of objects. Consider a door. A door needs to be opened and closed. You open a door with an easy-
to-use interface known as a doorknob. Object-oriented programmers would say you are “passing a message” to the
door when you “tell” it to open by turning its knob. The same message (turning a knob) has a different result when
applied to your radio than when applied to a door. The procedure you use to open something—call it the “open”
procedure—works differently on a door to a room than it does on a desk drawer, a bank account, a computer file, or
your eyes, but, even though these procedures operate differently using the different objects, you can call all of these
procedures “open.” In object-oriented programming, procedures are called methods.

With object-oriented programming, you focus on the objects that will be manipulated by the program—for example, a
customer invoice, a loan application, or a menu from which the user will select an option. You define the characteristics
of those objects and the methods each of the objects will use; you also define the information that must be passed to
those methods.

METHODS

You can create multiple methods with the same name, which will act differently and appropriately when used with dif-
ferent types of objects. This concept is polymorphism, which literally means “many forms”—a method can have many
configurations that each work appropriately based on the context in which they are used. In most object-oriented pro-
gramming languages, method names are followed by a set of parentheses; this helps you distinguish method names
from variable names. You have been using this style throughout this book. For example, a method named display()
might be usable to display the characteristics of an Automobile, Dog, or CustomerInvoice. Because you
can use the same method name, display(), to describe the different actions needed to display these diverse
objects, you can write statements in object-oriented programming languages that are more like English; you can use
the same method name to describe the same type of action, no matter what type of object is being acted upon. Using
the method name display() is easier than remembering displayAutomobile(), displayDog(), and
so on. In English, you understand the difference between “running a race,” “running a business,” and “running a com-
puter program.” Object-oriented languages understand verbs in context, just as people do. In object-oriented programs,
when you create multiple methods with the same name but different argument lists, you overload the method.

540 Chapter 13 • Object-Oriented Programming

Purists find a subtle difference between overloading and polymorphism. Some reserve the
term “polymorphism” (or pure polymorphism) for situations in which one function body
is used with a variety of arguments. For example, a single function that can be used with
any type of object is polymorphic. The term “overloading” is applied to situations in
which you define multiple functions with a single name (for example, three functions, all
named display(), that display a number, an employee, and a student, respectively.
Certainly, the two terms are related; both refer to the ability to use a single name to
communicate multiple meanings. For now, think of overloading as a primitive type of
polymorphism.

As another example of the advantages to using one name for a variety of objects, consider a screen you might design
for a user to enter data into an application you are writing. Suppose the screen contains a variety of objects—some
forms, buttons, scroll bars, dialog boxes, and so on. Suppose also that you decide to make all the objects blue. Instead
of having to memorize the names that these objects use to change color—perhaps changeFormColor(),
changeButtonColor(), and so on—your job would be easier if the creators of all those objects had developed
a setColor() method that works appropriately and in the same way with each type of object.

INHERITANCE

Another important concept in object-oriented programming is inheritance, which is the process of acquiring the traits
of one’s predecessors. In the real world, a new door with a stained glass window inherits most of its traits from a stan-
dard door. It has the same purpose, it opens and closes in the same way, and it has the same knob and hinges. The
door with the stained glass window simply has one additional trait—its window. Even if you have never seen a door
with a stained glass window, when you encounter one you know what it is and how to use it because you understand
the characteristics of all doors. Similarly, you understand the traits of a Convertible because it inherits almost all
of its features from an Automobile and you understand most of the characteristics of a Poodle if you know it is a
Dog. With object-oriented programming, once you create an object, you can develop new objects that possess all the
traits of the original object plus any new traits you desire. If you develop a customerBill object, there is no need
to develop an overdueCustomerBill object from scratch. You can create the new type of object to contain all
the characteristics of the already developed object, and simply add necessary new characteristics. This not only
reduces the work involved in creating new objects, it makes them easier to understand because they possess most of
the characteristics of already developed objects.

ENCAPSULATION

Real-world objects often employ encapsulation and information hiding. Encapsulation is the process of combining all
of an object’s attributes and methods into a single package. Information hiding is the concept that other classes
should not alter an object’s attributes—only the methods of an object’s own class should have that privilege. Outside
classes should only be allowed to make a request that an attribute be altered; then it is up to the class methods to
determine whether the request is appropriate. When using a door, you usually are unconcerned with the latch or hinge
construction features, and you don’t have access to the interior workings of the knob or know what color of paint might
have been used on the inside of the door panel. You care only about the functionality and the interface, the user-
friendly boundary between the user and the internal mechanisms of the device. Similarly, the detailed workings of
objects you create within object-oriented programs can be hidden from outside programs and modules if you want

TIP�

541Defining Classes and Creating Class Diagrams

them to be. When the details are hidden, programmers can focus on the functionality and the interface, as people do
with real-life objects.

Information hiding is also called data hiding.

In summary, to understand object-oriented programming, you must consider five concepts that are integral components
of all object-oriented programming languages:

� Classes

� Objects

� Inheritance

� Polymorphism

� Encapsulation

DEFINING CLASSES AND CREATING CLASS DIAGRAMS

A class is a category of things; an object is a specific instance of a class. A class definition is a set of program
statements that tell you the characteristics of the class’s objects and the methods that can be applied to its objects.

For example, Dish is a class. When you know an object is a Dish, you know it can be held in your hand and you can
eat from it. The specific object myBlueDinnerPlateWithTheChipOnTheEdge is an instance of the Dish
class; so is auntJanesAntiquePunchBowl and myCatsFoodBowl. You can use the phrase is-a to test
whether an object is an instance of a class. Because you can say, “My plate is a Dish,” you can discern the object-
class relationship. On the other hand, you cannot say, “A Dish is my plate,” because many dishes are not my plate.
Each button on the toolbar of a word-processing program is an instance of a Button class. In a program used to
manage a hotel, thePentHouse, theBridalSuite, room201, and room202 all are instances of
HotelRoom. Although each room is a different object, as members of the same class they share characteristics—
each has a maximum number of occupants, a square footage, and a price.

In object-oriented languages such as C++ and Java, by convention, most class names are
written with the initial letter of each new word in uppercase, as in Dish or HotelRoom.
Specific objects’ names usually are written in lowercase or using camel casing.

Object-oriented programmers also use the term “is-a” to describe class-to-class inheri-
tance relationships.

A class can contain three parts:

� Every class has a name.

� Most classes contain data, although this is not required.

� Most classes contain methods, although this is not required.

TIP�

TIP�

TIP�

542 Chapter 13 • Object-Oriented Programming

For example, you can create a class named Employee. Each Employee object will represent one employee who
works for an organization. Data members, or attributes of the Employee class, include fields such as idNum,
lastName, hourlyWage, and weeklyPay.

The methods of a class include all actions you want to perform with the class. Appropriate methods for an Employee
class might include setFieldValues(), calculateWeeklyPay(), and printFieldValues(). The
job of setFieldValues() is to provide values for an Employee’s data fields, the purpose of
calculateWeeklyPay() is to multiply the Employee’s hourlyWage by 40 to calculate a weekly salary,
and the purpose of printFieldValues() is to print the values in the Employee’s data fields. With object-
oriented languages, you think of the class name, data, and methods as a single encapsulated unit.

Programmers often use a class diagram to illustrate class features. A class diagram consists of a rectangle divided
into three sections, as shown in Figure 13-1. The top section contains the name of the class, the middle section
contains the names and data types of the attributes, and the bottom section contains the methods. This generic class
diagram shows two attributes and three methods, but for a given class there might be any number of either, including
none. Figure 13-2 shows the class diagram for the Employee class.

Later in this chapter, you will learn to add access specifiers to your class diagrams.

Some class designers prefer to define any field that never will be used in a computation as
a non-numeric data type. For example, in the Employee class diagram in Figure 13-2,
you might prefer to define Employee idNum as a field that can contain characters.

FIGURE 13-2: Employee CLASS DIAGRAM

Employee

idNum: num
lastName: char
hourlyWage: num
weeklyPay: num

setFieldValues(num, char, num)
calculateWeeklyPay()
printFieldValues()

FIGURE 13-1: GENERIC CLASS DIAGRAM

Class name

Attribute 1: data type
Attribute 2: data type

Method 1
Method 2
Method 3

TIP�

TIP�

543Defining Classes and Creating Class Diagrams

Figures 13-1 and 13-2 both show that a class diagram is intended to be only an overview of class attributes and meth-
ods. A class diagram shows what data items and methods the class will use, not the details of the methods nor when
they will be used. It is a design tool that helps you see the big picture in terms of class requirements. Later, when you
plan the code that actually creates the class, you include method implementation details; at that point, you might draw
a flowchart or write pseudocode for each method, as you have been doing throughout this book.

In Figure 13-2 in the setFieldValues() method, the class diagram indicates that three items will be sent into the
method—a numeric data item, a character data item, and another numeric data item. When you view the class diagram, you
don’t know how these will be used, but when you write the class definition, their use is defined. For example, Figure 13-3
shows some pseudocode you can use to show the details for the methods contained within the Employee class.

In Figure 13-3, the Employee class attributes or fields are identified with a data type and a field name. In addition to
listing the data fields required, Figure 13-3 shows the complete methods for the Employee class. The purpose of
two of the methods is to communicate with the outside world—the setFieldValues() method takes values that
come in from the outside and assigns them to the Employee’s attributes, and the printFieldValues()
method displays the Employee’s attributes on an output device. The purpose of the calculateWeeklyPay()
module is to multiply hourlyWage by 40. Each method can contain elements with which you are familiar from
non-object-oriented programs. For example, the setFieldValues() method declares a constant and makes a
decision on how to set the Employee’s pay rate based on the value of the constant.

class Employee
 num idNum
 char lastName
 num hourlyWage
 num weeklyPay

 setFieldValues(num id, char last, num rate)
 const num MAX_RATE = 25.00
 idNum = id
 lastName = last
 if rate <= MAX_RATE then
 hourlyWage = rate
 else
 hourlyWage = MAX_RATE
 endif
 return

 calculateWeeklyPay()
 const num WORK_WEEK = 40
 weeklyPay = hourlyWage * WORK_WEEK
 return

 printFieldValues()
 print idNum, lastName, hourlyWage, weeklyPay
 return
endClass

FIGURE 13-3: Employee CLASS PSEUDOCODE WITHOUT ACCESS SPECIFIERS

544 Chapter 13 • Object-Oriented Programming

UNDERSTANDING PUBLIC AND PRIVATE ACCESS

When you buy a product with a warranty, one of the conditions of the warranty is usually that the manufacturer must
perform all repair work. For example, if your computer has a warranty and something goes wrong with its operation, you
cannot open the CPU yourself, remove and replace parts, and then expect to get your money back for a device that
does not work properly. Instead, when something goes wrong with your computer, you must take the device to the man-
ufacturer. The manufacturer guarantees that your machine will work properly only if the manufacturer can control how
the internal mechanisms of the machine are modified.

Similarly, in object-oriented design, usually you do not want any outside programs or methods to alter your class’s data
fields unless you have control over the process. For example, you might design a class that performs a complicated
statistical analysis on some data and stores the result. You would not want others to be able to alter your carefully
crafted product. As another example, you might design a class from which others can create an innovative and useful
GUI screen object. In this case, you would not want others altering the dimensions of your artistic design. In the
Employee class in Figure 13-3, you do not want hourlyWage to be initialized to more than $25.00.

To prevent outsiders from changing your data fields in ways you do not endorse, you force other programs and methods
to use a method that is part of the class, such as setFieldValues(), to alter data. (You have already learned
that the principle of keeping data private and inaccessible to outside classes is called information or data hiding.)
Object-oriented programmers usually specify that their data fields will have private access—that is, the data cannot
be accessed by any method that is not part of the class. The methods themselves, like setFieldValues(), allow
public access, which means that other programs and methods may use the methods. An access specifier (or access
modifier) is an adjective that defines the type of access outside classes will have to the attribute or method (public
or private). Figure 13-4 shows a complete Employee class to which shaded access specifiers have been added
to describe each attribute and method.

Classes can contain public data and private methods, but it is common for most data to be
private and most methods to be public.

In some object-oriented programming languages, such as C++, you can label a set of data
fields or methods as public or private using the access specifier name just once. In other
languages, such as Java, you use the specifier public or private with each field or
method. For clarity, this book will label each field and method as public or private.

Many object-oriented languages provide more specific access specifiers than just public
and private. Later in this chapter, you learn about the protected access specifier.

Notice that the last line in the Employee class in both Figures 13-3 and 13-4 is an
endClass statement. Similar to the way this book has used endif and endwhile to
mark the end of if and while blocks of code, this book will use endClass to indicate
the end of a class definition.

TIP�

TIP�

TIP�

TIP�

545Understanding Public and Private Access

When creating a class diagram, many programmers like to specify whether each data item and method in a class is
public or private. Figure 13-5 shows the conventions that are typically used. A minus sign (–) precedes items that are
private; a plus sign (+) precedes those that are public.

When you learn more about inheritance later in this chapter, you will learn about the
protected access specifier. You use an octothorpe, also called a pound sign or number
sign (#), to indicate protected access.

FIGURE 13-5: Employee CLASS DIAGRAM WITH public AND private ACCESS SPECIFIERS

Employee

-idNum: num
-lastName: char
-hourlyWage: num
-weeklyPay: num

+setFieldValues(num, char, num)
+calculateWeeklyPay()
+printFieldValues()

class Employee
 private num idNum
 private char lastName
 private num hourlyWage
 private num weeklyPay

 public setFieldValues(num id, char last, num rate)
 const num MAX_RATE = 25.00
 idNum = id
 lastName = last
 if rate <= MAX_RATE then
 hourlyWage = rate
 else
 hourlyWage = MAX_RATE
 endif
 return

 public calculateWeeklyPay()
 const num WORK_WEEK = 40
 weeklyPay = hourlyWage * WORK_WEEK
 return

 public printFieldValues()
 print idNum, lastName, hourlyWage, weeklyPay
 return
endClass

FIGURE 13-4: Employee CLASS USING private AND public ACCESS SPECIFIERS

TIP�

546 Chapter 13 • Object-Oriented Programming

INSTANTIATING AND USING OBJECTS

When you write an object-oriented program, you create objects that are members of a class. You instantiate (or create)
a class object (or instance) with a statement that includes the type of object and an identifying name. For example, the
following statement creates an Employee object named myAssistant:

Employee myAssistant

In some object-oriented programming languages, you need to add more to the declaration
statement to actually create an Employee object. For example, in Java, you would write:

Employee myAssistant = new Employee();

This syntax, using the class name followed by parentheses, will be explained later in this
chapter when you learn about constructor methods.

When you declare myAssistant as an Employee object, the myAssistant object contains all of the data
fields or attributes defined in the class, and has access to all the class’s methods. You can use any of an Employee’s
methods—setFieldValues(), calculateWeeklyPay(), and printFieldValues()—with the
myAssistant object. The usual syntax is to provide an object name, a dot (period), and a method name. For exam-
ple, you can write a program that contains statements such as the ones shown in the pseudocode in Figure 13-6.

Besides referring to Employee as a class, many programmers would refer to it as a user-
defined type; a more accurate term is programmer-defined type. Programming lan-
guages in which you can create your own data types are extensible, meaning extendable.
A class is also an abstract data type (ADT)—a type whose internal form is hidden
behind a set of methods you use to access the data.

The following statements contain method calls:

myAssistant.setFieldValues(123, “Tyler”, 12.50)
myAssistant.calculateWeeklyPay()
myAssistant.printFieldValues()

These calls are similar to module or method calls you have seen throughout this book, but in this case the methods
themselves are part of the Employee class, which is why an Employee object can use them. You can think of the

start
 declare variables
 Employee myAssistant
 myAssistant.setFieldValues(123, “Tyler”, 12.50)
 myAssistant.calculateWeeklyPay()
 myAssistant.printFieldValues()
stop

FIGURE 13-6: PROGRAM THAT USES AN Employee OBJECT

TIP�

TIP�

547Understanding Inheritance

Employee object myAssistant as “owning” or “driving” those methods; when those methods refer to data
fields, they refer to the myAssistant object’s data fields and not the data fields of any other Employee.

When you write the program in Figure 13-6, you do not need to know what statements are written within the methods
of the Employee class, although you could make an educated guess based on the methods’ names. Before you
could execute the application in Figure 13-6, you would have to write appropriate statements within the Employee
class’s methods, but if another programmer has already written the methods, then you can use the application in
Figure 13-6 without knowing the details contained in the methods. The ability to use methods without knowing the
details of their contents is a feature of encapsulation.

Programmers like to say the method details are contained in a black box—a device you
can use without knowing how its contents operate. You first learned the term “black box”
in Chapter 10.

A program or method that uses a class object is a client of the class. Many programmers write only client programs,
never creating classes themselves, but using only classes that others have created. In the client program in Figure 13-6,
the focus is on the object—the Employee named myAssistant—and the methods you can use with that
object. This is the essence of object-oriented programming.

Of course, the program in Figure 13-6 is very short. In a more useful real-life program,
you might read employee data from a data file before assigning it to the object’s fields,
and you might create hundreds of objects in turn.

In older object-oriented programming languages, simple numbers and characters are said
to be primitive data types; this distinguishes them from objects that are class types. In
the newest programming languages, such as C#, every item you name, even one that is a
num or char type, really is an object that is an instance of a class that contains both data
and methods.

When you instantiate objects, the data fields of each are stored at separate memory loca-
tions. However, all members of the same class share one copy of the class methods.

UNDERSTANDING INHERITANCE

The concept of class is useful because of its reusability; you can create new classes that are descendents of existing
classes. The descendent classes (or child classes) can inherit all of the attributes of the original class (or parent
class), or the descendent class can override those attributes that are inappropriate. For example, if you have created a
class named BankLoan, it probably contains fields such as the account number, the name, address, and phone num-
ber of the loan recipient, the amount of the loan, and the interest rate. The class probably also contains methods that
set, display, and manipulate these values. When you need a more specific class for a CarLoan that contains data
about the car, or HomeImprovementLoan that contains data about the home improvement, you do not want to
have to start from scratch. It makes sense to inherit existing features from the BankLoan class, adding only the new
features that the more specific loans require.

TIP�

TIP�

TIP�

TIP�

548 Chapter 13 • Object-Oriented Programming

You can call a parent class a base class or superclass. You can refer to a child class as a
derived class or subclass.

As another example, to accommodate part-time workers in your personnel programs, you might want to create a child
class from the Employee class. Part-time workers need an ID, name, and hourly wage, just as regular employees
do, but the regular Employee pay calculation assumes a 40-hour workweek. You might want to create a
PartTimeEmployee class that inherits all the data fields contained in Employee, but adds a new one—
hoursWorked. In addition, you want to create a modified setFieldValues() method that includes
assigning a value to hoursWorked, and a new calculateWeeklyPay() method that operates correctly for
PartTimeEmployee objects. This new method multiplies hourlyWage by hoursWorked instead of by 40.
The printFieldValues() module that already exists within the Employee class works appropriately for
both the Employee and the PartTimeEmployee classes, so there is no need to include a new version of this
module within the PartTimeEmployee class; PartTimeEmployee objects can simply use their parent’s
existing method.

You can think of a child class as being more specific than a parent class. For example,
PartTimeEmployee is a specific type of Employee.

A child class contains all the data fields and methods of its parent, plus any new ones you
define. A parent class does not gain any child class members.

When you create a child class, you can show its relationship to the parent with a class diagram like the one for
PartTimeEmployee in Figure 13-7. The complete PartTimeEmployee class appears in Figure 13-8.

FIGURE 13-7: PartTimeEmployee CLASS DIAGRAM

Employee

idNum
lastName
hourlyWage
weeklyPay

setFieldValues(num, char, num)
calculateWeeklyPay()
printFieldValues()

PartTimeEmployee descends from Employee

hoursWorked

setFieldValues(num, char, num, num)
calculateWeeklyPay()

TIP�

TIP�

TIP�

549Understanding Inheritance

The class in Figure 13-8 uses the phrase “descends from” to indicate inheritance. Each
programming language uses its own syntax. For example, using Java, you would write
“extends”, in Visual Basic .NET you would write “inherits”, and in C++ and C# you
would use a colon between the class name and its parent.

The PartTimeEmployee class shown in Figure 13-8 contains five data fields—all the fields that Employee
contains plus one new one, hoursWorked. The PartTimeEmployee class also contains three methods. Two of
the methods, setFieldValues() and calculateWeeklyPay(), have been rewritten for the
PartTimeEmployee child class, because they will operate differently when used with PartTimeEmployee
than when used with Employee. The other method, printFieldValues(), is not rewritten because the
parent class version is a usable version for the child class.

In Figure 13-8, the PartTimeEmployee class setFieldValues() method takes four arguments. Three are
passed to the parent class setFieldValues() method, where they can be assigned to the class fields. Because
the parent class method already provides statements that set the values of three of the class fields, the
PartTimeEmployee class can take advantage of the fact that part of the work has been done. Being able to reuse
code is an advantage of inheritance. In Figure 13-8, calling the parent class method is indicated by the phrase
“Employee class version:”. The actual syntax you use when writing code varies among programming languages.

The fourth argument to the PartTimeEmployee class setFieldValues() method, hours, is assigned to
hoursWorked in the child class method because the parent class does not contain that field.

The calculateWeeklyPay() method in the PartTimeEmployee class uses the variable hoursWorked
instead of the constant 40 to calculate weekly pay. The methods in the child class that have the same name and
argument list as those in the parent class are said to override, or take precedence over, the parent class methods.

A child class method overrides a parent’s method when it has the same name and argu-
ment list. It overloads a parent’s method just as any method is overloaded—when it has
the same name as another, but a different argument list.

class PartTimeEmployee descends from Employee
 private num hoursWorked
 public void setFieldValues(num id, char last, num rate, num hours)
 Employee class version: setFieldValues(id, last, rate)
 hoursWorked = hours
 return
 public void calculateWeeklyPay()
 weeklyPay = hourlyWage * hoursWorked
 return
endClass

FIGURE 13-8: THE PartTimeEmployee CLASS

TIP�

TIP�

550 Chapter 13 • Object-Oriented Programming

Before the PartTimeEmployee child class can use the hourlyWage and weeklyPay
fields, object-oriented programming languages require one additional modification to the
Employee parent class. You will learn about this modification, making the parent class
fields protected, later in this chapter.

The PartTimeEmployee class also contains the printFieldValues() method, which it inherits unchanged
from its parent. You do not see a copy of the printFieldValues() method in the PartTimeEmployee class
in Figure 13-8, because the phrase descends from Employee in the first line of the class means that all
Employee class members automatically are included in the child class unless they have been overridden. When you
write an application such as the one shown in Figure 13-9, declaring Employee as well as PartTimeEmployee
objects, different setFieldValues() and calculateWeeklyPay() methods containing different state-
ments are called for each object, but the same printFieldValues() method is called in each case.

In the program in Figure 13-9, two objects are declared. The myAssistant object is a “plain” Employee; the
myDriver object is a more specific PartTimeEmployee. The statement myDriver.setFieldValues()
calls a different method than myAssistant.setFieldValues(); the two methods have the same name, but
belong to different classes. The compiler knows which method to call based on the type of object, but the programmer
can use one easy-to-remember method name in both cases. The method name setFieldValues() can be used
with either type of object, and it works appropriately with either type.

In Figure 13-9, the two calls to calculateWeeklyPay() cause two different method executions; the compiler
knows which version to use because the objects associated with the calls belong to different classes.

The final two statements before the stop statement in Figure 13-9 call the printFieldValues() method with
each of the two objects. In these statements, the same method is called each time. Naturally, the myAssistant
object uses the printFieldValues() method contained in the Employee class. The myDriver object also
uses the printFieldValues() method from the Employee class because of the following reasoning:

� myDriver is a PartTimeEmployee.

� The PartTimeEmployee class does not contain its own version of the
printFieldValues() method.

start
 declare variables
 Employee myAssistant
 PartTimeEmployee myDriver
 myAssistant.setFieldValues(123, “Tyler”, 12.50)
 myDriver.setFieldValues(234, “Mitchell”, 15.00, 20)
 myAssistant.calculateWeeklyPay()
 myDriver.calculateWeeklyPay()
 myAssistant.printFieldValues()
 myDriver.printFieldValues()
stop

FIGURE 13-9: APPLICATION THAT USES Employee AND PartTimeEmployee OBJECTS

TIP�

551Understanding Polymorphism

� The PartTimeEmployee class is a child class of Employee.

� The Employee class contains a printFieldValues() method that the myDriver
object can use.

A child class will use its parent class methods unless the child class has its own version that either overrides or
overloads the parent’s version.

A good way to determine whether a class is a parent or a child is to use the “is-a” test. A
child “is an” example of its parent. For example, it is always true that a
PartTimeEmployee “is an” Employee. However, it is not necessarily true that an
Employee “is a” PartTimeEmployee.

When you create a class that is meant only to be a parent class and not to have objects of
its own, you create an abstract class. For example, suppose you create an Employee
class and two child classes, PartTimeEmployee and FullTimeEmployee. If your
intention is that every object belongs to one of the two child classes and that there are no
“plain” Employee objects, then Employee is an abstract class.

In some programming languages, such as C# and Java, every class you create is a child of
one ultimate base class, often called the Object class. The Object class usually
provides you with some basic functionality that all the classes you create inherit—for
example, the ability to show its memory location and name.

Some, but not all, programming languages allow multiple inheritance, in which classes
you create can have many parents, inheriting all the attributes and methods of each.

UNDERSTANDING POLYMORPHISM

Object-oriented programs use a feature called polymorphism to allow the same request—that is, the same method
call—to be carried out differently, depending on the context; this is seldom allowed in non-object-oriented languages.
With the Employee and PartTimeEmployee classes, you need a different calculateWeeklyPay()
method, depending on the type of object you use. Without polymorphism, you must write a different module with a unique
name for each method because two methods with the same name cannot coexist in a program. Just as your blender can
produce juice whether you insert a fruit or a vegetable, with polymorphism a calculateWeeklyPay() method
produces a correct result whether it operates on an Employee or a PartTimeEmployee. Similarly, you may want
a computeGradePointAverage() method to operate differently for a pass-fail course than it does for a graded
one, or you might want a word-processing program to produce different results when you press Delete with one word
highlighted in a document than when you press Delete with a file name highlighted.

When you write a polymorphic method in an object-oriented programming language, you must write each version of the
method, and that can entail a lot of work. The benefits of polymorphism do not seem obvious while you are writing the
methods, but the benefits are realized when you can use the methods in all sorts of applications. When you can use a
single, simple, easy-to-understand method name such as printFieldValues() with all sorts of objects, such

TIP�TIP�

TIP�

TIP�

TIP�

552 Chapter 13 • Object-Oriented Programming

as Employees, PartTimeEmployees, InventoryItems, and BankTransactions, then your objects
behave more like their real-world counterparts and your programs are easier to understand.

UNDERSTANDING PROTECTED ACCESS

Making data private is an important object-oriented programming concept. By making data fields private, and allowing
access to them only through a class’s methods, you protect the ways in which data can be altered.

When a data field within a class is private, no outside class can use it—including a child class. It can be inconvenient
when a child class’s methods cannot directly access its own inherited data. However, the principle of data hiding would
be lost if you had to make a class’s data public (and therefore available for use by anyone) just so a child class could
access its inherited fields. Therefore, object-oriented programming languages allow a medium-security access specifier
that is more restrictive than public but less restrictive than private. The protected access modifier is used
when you want no outside classes to be able to use a data field directly, except classes that are children of the original
class. Figure 13-10 shows a rewritten Employee class that uses the protected access modifier on its data
fields (see highlighting). When this modified class is used as a base class for another class such as
PartTimeEmployee, the child class’s methods will be able to access each of the protected fields originally
defined in the parent class.

class Employee
 protected num idNum
 protected char lastName
 protected num hourlyWage
 protected num weeklyPay

 public setFieldValues(num id, char last, num rate)
 const num MAX_RATE = 25.00
 idNum = id
 lastName = last
 if rate <= MAX_RATE then
 hourlyWage = rate
 else
 hourlyWage = MAX_RATE
 endif
 return

 public calculateWeeklyPay()
 const num WORK_WEEK = 40
 weeklyPay = hourlyWage * WORK_WEEK
 return

 public printFieldValues()
 print idNum, lastName, hourlyWage, weeklyPay
 return
endClass

FIGURE 13-10: Employee CLASS USING protected AND public ACCESS SPECIFIERS

553Understanding the Role of the this Reference

Although a child class’s methods can access nonprivate data fields originally defined in
the parent class, a parent class’s methods have no special privileges regarding any of its
child’s data fields. That is, unless the child class’s data fields are public, a parent, just like
any other unrelated class, cannot access them.

Figure 13-11 contains the class diagram for the version of the Employee class shown in Figure 13-10. Notice the
octothorpe (#) is used to indicate protected class members.

Instead of creating the parent class fields to be protected, you might choose to keep them
private and provide protected or public methods that each return a field value. For
example, the Employee class could contain a method such as the following:

public num getID()
return idNum

The child class would then use the public method to access idNum, just as any other
method would. Using this technique, the parent class data would remain private,
satisfying those who feel that all data within classes should be private.

UNDERSTANDING THE ROLE OF THE this REFERENCE

After you create a class such as the Employee class in Figure 13-10, any number of Employee objects might
eventually be instantiated from it. Each Employee will have its own idNum, lastName, and other values, and
enough computer memory must be set aside to hold all the attributes needed for each individual Employee. Each
Employee object also will have access to each method within the class, but because each Employee uses the
same set of methods, it would be a waste of memory resources to store a separate copy of each method for each
Employee. Luckily, in OOP languages, just one copy of each method in a class is stored, and all instantiated objects
can use that copy.

When you use an instance method with an object, you use the object name, a dot, and the method name—for exam-
ple, clerk.setFieldValues(). When you execute the clerk.setFieldValues() method, you are
running the general, shared Employee class setFieldValues() method; the clerk object has access to
the method because it is a member of the Employee class. However, within the setFieldValues() method,
when you access the idNum field, you access the clerk’s private, individual copy of the field. Because many

FIGURE 13-11: Employee CLASS DIAGRAM WITH protected AND public ACCESS SPECIFIERS

Employee

#idNum: num
#lastName: char
#hourlyWage: num
#weeklyPay: num

+setFieldValues(num, char, num)
+calculateWeeklyPay()
+printFieldValues()

TIP�

TIP�

554 Chapter 13 • Object-Oriented Programming

Employee objects might exist, but just one copy of the method exists no matter how many Employees there are,
when you call clerk.setFieldValues(), the compiler must determine whose copy of the idNum value
should be set by the single setFieldValues() method.

The compiler accesses the correct object’s field because when you make the function calls, you implicitly (automatically)
pass the memory address of clerk to the setFieldValues() method. Depending on the language you use to write
your programs, an object’s memory address is called a reference or is said to be held in a reference variable or pointer
variable. Therefore, the memory address of an object that is passed to any instance method of the same class is called the
this reference or the this pointer. The word this is a reserved word in most OOP languages, and the syntax you
employ to use it is a little different in each language. However, you can write pseudocode like that shown in Figure 13-12 to
explicitly use the this reference. The two setFieldValues() methods shown in Figure 13-12 perform identically.
The first method simply uses the this reference without you being aware of it; the second method uses the this
reference explicitly. In Figure 13-12, you can interpret this.idNum to mean the ID number of “this current instance of
the class”—that is, the specific instance of the Employee class that was used to call the setFieldValues()
method. Similarly, this.lastName and this.hourlyWage refer to the data fields for the current object.

Frequently, you neither want nor need to refer to the this reference within the methods you write, but the this
reference is always there, working behind the scenes, so that the data field for the correct object can be accessed.

In most object-oriented programming languages, you can create class methods that do not
receive a this reference and do not require an object to execute. Such methods are
called static methods.

public setFieldValues(num id, char last, num rate)
 const num MAX_RATE = 25.00
 idNum = id
 lastName = last
 if rate <= MAX_RATE then
 hourlyWage = rate
 else
 hourlyWage = MAX_RATE
 endif
return

public setFieldValues(num id, char last, num rate)
 const num MAX_RATE = 25.00
 this.idNum = id
 this.lastName = last
 if rate <= MAX_RATE then
 this.hourlyWage = rate
 else
 this.hourlyWage = MAX_RATE
 endif
return

FIGURE 13-12: TWO VERSIONS OF THE setFieldValues() METHOD, WITH AND WITHOUT AN EXPLICIT
this REFERENCE

TIP�

555Using Constructors and Destructors

USING CONSTRUCTORS AND DESTRUCTORS

When you create a class such as Employee, and instantiate an object with a statement such as Employee
chauffeur, you are actually calling a method named Employee() that is provided by default by the compiler of
the object-oriented language in which you are working. A constructor method, or more simply, a constructor, is a
method that establishes an object. A constructor has the same name as its class.

When the automatically supplied, prewritten constructor method for the Employee class is called (the constructor is
the method named Employee()), it establishes one Employee object with the identifier provided—for example,
chauffeur. Depending on the programming language, a constructor might automatically provide initial values for
the object’s data fields. If you do not want an object’s fields to hold these default values, or if you want to perform addi-
tional tasks when you create an instance of a class, then you can write your own constructor. Any constructor you write
must have the same name as the class it constructs, and constructor methods cannot have a return type. Normally, you
declare constructors to be public so that other classes can instantiate objects that belong to the class.

For example, if you want every Employee object to have a starting salary of $300.00 per week, then you could write
the constructor method for the Employee class that appears in Figure 13-13. Any Employee object instantiated
will have a salary field value equal to 300.00, and the other Employee data fields will contain the default values.

You can create a method with a name like setDataFields() to assign values to indi-
vidual Employee objects after construction, but a constructor method assigns the values
at the time of creation.

Alternatively, you might choose to create Employee objects with initial idNum values that differ for each
Employee. To accomplish this when the object is instantiated, you can pass an employee number to the constructor;
that is, you can write constructor methods that receive arguments. A default constructor is one that requires no
arguments; a nondefault constructor requires arguments.

The automatically supplied constructor for a class is a default constructor. For any class
you write, you can create your own default constructors, your own nondefault construc-
tors, or both.

Figure 13-14 shows an Employee class containing a constructor that receives an argument. With this constructor
(shaded in the figure), an argument is passed using a statement, such as Employee chauffeur(881). When
the constructor executes, the numeric value within the method call is passed to Employee() as the argument id,
which is assigned to idNum within the constructor.

public Employee()
 salary = 300.00
return

FIGURE 13-13: AN Employee CLASS CONSTRUCTOR

TIP�

TIP�

556 Chapter 13 • Object-Oriented Programming

When you create an Employee class with a constructor such as the one shown in Figure 13-14, then you must
create every Employee object using a numeric argument (which can be a constant such as 881 or a variable). In
other words, with this new version of the class, the declaration statement Employee chauffeur no longer works.
Once you write a constructor for a class, you no longer receive the automatically written default constructor. If a class’s
only constructor requires an argument, then you must provide an argument for every object of that class that you
create. However, you can create multiple constructors for a class as long as every constructor has a different argument
list. So, if it suited your purposes, the Employee class could contain one default constructor, one that accepted a
single numeric argument, and one that accepted three arguments.

Object-oriented programming languages also provide an automatically called method that executes when an object is
destroyed. The method is a destructor. Like constructors, you can write your own destructors, although only one
version can exist for a class. Usually you write your own destructor if you need to complete cleanup tasks when an
object is destroyed, such as closing open files. Although you can purposely destroy an object, most often an object is
destroyed when the method in which it is declared ends.

A destructor has the same name as its class constructor (and therefore the same name as
the class). In Java, C++, and C#, a destructor name is preceded by a tilde (~).

ONE EXAMPLE OF USING PREDEFINED CLASSES: CREATING GUI
OBJECTS

When you purchase or download an object-oriented programming language compiler, it comes packaged with myriad
predefined, built-in classes. The classes are stored in libraries—collections of classes that serve related purposes.
Some of the most useful are the classes you can use to create GUI objects such as frames, buttons, labels, and text
boxes. You place these GUI components within interactive programs so that users can manipulate them using input
devices, most frequently a keyboard and a mouse. For example, using a language that supports GUI applications, if you
want to place a clickable button on the screen, you instantiate an object that belongs to the already created class
named Button. The Button class is already created and contains private data fields such as text and height
and public methods such as setText() and setHeight() that allow you to place instructions on your
Button object and to change its vertical size, respectively.

class Employee
 private num idNum
 // other data fields can be defined here
 public Employee(num id)
 idNum = id
 return
 // other methods can be defined here
endClass

FIGURE 13-14: Employee CLASS WITH CONSTRUCTOR THAT ACCEPTS A VALUE

TIP�

557Understanding the Advantages of Object-Oriented Programming

In some languages, such as Java, libraries are also called packages.

Languages that contain prewritten GUI object classes frequently refer to the class attrib-
utes as properties.

If no predefined GUI object classes existed, you could create your own. However, there would be several disadvantages
to doing this:

� It would be a lot of work. Creating graphical objects requires a lot of code, and at least a
modicum of artistic talent.

� It would be repetitious work. Almost all GUI programs require standard components such as
buttons and labels. If each programmer created the classes that represent these components
from scratch, a lot of work would be unnecessarily repeated.

� The components would look different in various applications. If each programmer created his or
her own component classes, then objects like buttons would vary in appearance and operation in
different applications. Users like standardization in their components—title bars on windows that
are a uniform height, buttons that appear to be pressed when clicked, frames and windows that
contain maximize and minimize buttons in predictable locations, and so on. By using standard
component classes, programmers are assured that the GUI components in their programs have
the same look and feel as those in other programs.

In programming languages that provide existing GUI classes, you often are provided with a visual development
environment in which you can create programs by dragging components such as buttons and labels onto a screen
and arranging them visually. Then you write programming statements to control the actions that take place when a user
manipulates the controls by clicking them using a mouse, for example. Many programmers never create any classes of
their own from which they will instantiate objects, but only write classes that are applications that use built-in GUI
component classes. Some languages, particularly Visual Basic, lend themselves very well to this type of programming.

UNDERSTANDING THE ADVANTAGES OF OBJECT-ORIENTED
PROGRAMMING

Using the features of object-oriented programming languages provides you with many benefits as you develop your
programs. Whether you use classes you have created or use those created by others, when you instantiate objects in
programs, you save development time because each object automatically includes appropriate, reliable methods and
attributes. When using inheritance, you can develop new classes more quickly by extending classes that already exist
and work; you need to concentrate only on new features that the new class adds. When using existing objects, you
need to concentrate only on the interface to those objects, not on the internal instructions that make them work. By
using polymorphism, you can use reasonable, easy-to-remember names for methods and concentrate on their purpose
rather than on memorizing different method names.

TIP�

TIP�

Chapter 13 • Object-Oriented Programming558

CHAPTER SUMMARY

� Object-oriented programming is a style of programming that focuses on an application’s data and the

methods you need to manipulate that data. Objects both in the real world and in object-oriented pro-

gramming are made up of attributes and methods. In object-oriented terminology, a class is a term that

describes a group or collection of objects with common properties. An instance of a class is an existing

object of a class. In object-oriented programming, procedures are called methods. Inheritance and poly-

morphism are important object-oriented programming concepts.

� A class definition is a set of program statements that tell you the characteristics of the class’s objects and

the methods that can be applied to its objects. A class contains three parts: a name, optional data, and

optional methods. A class diagram consists of a rectangle divided into three sections containing the

name, attributes, and methods.

� Data hiding is the principle of keeping data private and inaccessible to outside classes. Object-oriented pro-

grammers usually specify that their data fields will have private access—that is, the data cannot be

accessed by any method that is not part of the class. The methods themselves support public access, which

means that other programs and methods may use the methods that control access to the private data.

� When you write an object-oriented program, you create objects that are members of a class. You instan-

tiate (or create) a class object (or instance) with a statement that includes the type of object and an

identifying name. A program that uses a class object is a client of the class.

� The concept of class is useful because of its reusability; you can create new classes that are descen-

dents of existing classes. The descendent classes (or child classes) can inherit all of the attributes of the

original class (or parent class), or the descendent class can override those attributes that are inappropri-

ate. Object-oriented programs use a feature called polymorphism to allow the same request—that is, the

same method call—to be carried out differently, depending on the context.

� Object-oriented programming languages allow a medium-security access specifier that is more restrictive

than public but less restrictive than private. The protected access modifier is used when

you want no outside classes to be able to use a data field directly, except classes that are children of the

original class.

� The compiler accesses the correct object’s field because when you make the function calls, you implicitly

(automatically) pass the memory address of the object to its class method. The memory address of an

object that is passed to any object’s instance method is called the this reference or the this pointer.

� When you create a class and instantiate an object with a statement, you are actually calling a constructor

that is provided by default by the compiler of the object-oriented language in which you are working. A

constructor is a method that establishes an object. Object-oriented programming languages also provide

an automatically called destructor that executes when an object is destroyed. You can write your own

constructors and destructors.

Key Terms 559

� When you purchase or download an object-oriented programming language compiler, it comes pack-

aged with myriad predefined, built-in classes. The classes are stored in libraries—collections of classes

that serve related purposes. Some of the most useful are the classes you can use to create graphical

user interface (GUI) objects such as frames, buttons, labels, and text boxes.

� Using the features of object-oriented programming languages provides you with many benefits as you

develop your programs. Whether you use classes you have created or use those created by others,

when you instantiate objects in programs you save development time.

KEY TERMS

Object-oriented programming is a style of programming that focuses on an application’s data and the methods you
need to manipulate that data.

Attributes are the characteristics that define an object as part of a class.

The properties of an object are the values of its attributes.

The state of an object is the collective value of all its attributes at any point in time.

A class is a term that describes a group or collection of objects with common properties.

An instance of a class is an existing object of a class.

In object-oriented programming, procedures are called methods.

Polymorphism is the object-oriented feature that allows you to create multiple methods with the same name, which
will act differently and appropriately when used with different types of objects.

In object-oriented programs, when you create multiple methods with the same name but different argument lists, you
overload the method.

Pure polymorphism occurs when one function body can be used with a variety of arguments.

Inheritance is the process of acquiring the traits of one’s predecessors.

Encapsulation is the process of combining all of an object’s attributes and methods into a single package.

Information hiding is the concept that other classes should not alter an object’s attributes—outside classes should
only be allowed to make a request that an attribute be altered; then it is up to the class methods to determine whether
the request is appropriate.

The interface is the user-friendly boundary between the user and the internal mechanisms of the device.

Information hiding is also called data hiding.

A class definition is a set of program statements that tell you the characteristics of the class’s objects and the
methods that can be applied to its objects.

Is-a is a phrase you can use to test whether an object is an instance of a class.

A field is a data item within, or attribute of, an object.

Chapter 13 • Object-Oriented Programming560

A class diagram is a tool used to describe a class; it consists of a rectangle divided into three sections.

Object-oriented programmers usually specify that their data fields will have private access, which means that the data
cannot be accessed by any method that is not part of the class.

Object-oriented programmers usually specify that their methods will have public access, which means that other pro-
grams and methods may use the methods that control access to the private data.

An access specifier or access modifier is the adjective that defines the type of access that outside classes will have
to an attribute or method.

To create a class object is to instantiate it.

A class is a user-defined type.

A class is a programmer-defined type.

A programming language is extensible when you can create new data types.

An abstract data type (ADT) is a type whose internal form is hidden behind a set of methods you use to access the data.

A client of a class is a program or method that uses a class object.

A primitive data type is a simple data type, as opposed to a class type.

A descendent class, also called a child class, derived class, or subclass, inherits the attributes of another class.

An original class, also called a parent class, base class, or superclass, is one that has descendents. In other
words, it is a class from which other classes are derived.

A child class method with the same name and argument list as a parent class method overrides, or takes precedence
over, the parent class version.

An abstract class is one that is created only to be a parent class and not to have objects of its own.

Some programming languages support multiple inheritance, in which a class can inherit from more than one parent.

The protected access modifier is used when you want no outside classes to be able to use a data field directly, except
classes that are children of the original class.

A reference is a memory address.

A reference variable holds a memory address.

A pointer variable holds a memory address.

The this reference or the this pointer holds an object’s memory address within a method of the object’s class.

A static method is a class method that does not receive a this reference and does not require an object to execute.

A constructor is a method that establishes an object.

A default constructor is one that requires no arguments.

A nondefault constructor is one that requires arguments.

A destructor is a method that destroys an object.

Libraries, or packages, are collections of classes that serve related purposes.

Review Questions 561

Properties are the attributes of prewritten GUI classes.

A visual development environment is one in which you can create programs by dragging components such as
buttons and labels onto a screen and arranging them visually.

REVIEW QUESTIONS

1. Which of the following is not a feature of object-oriented programming?

a. You pass messages to objects.
b. Programming objects mimic real-world objects.
c. Encapsulation is avoided.
d. Classes can inherit features of other classes.

2. With object-oriented programming, the same message .

a. works the same way with every object
b. works differently and appropriately when applied to different objects
c. can never be used more than once
d. all of the above

3. In object-oriented programming, the process of acquiring the traits of one’s predecessors is known
as .

a. inheritance
b. polymorphism
c. data redundancy
d. legacy programming

4. Class is to object as Dog is to .

a. animal
b. mammal
c. poodle
d. my dog Murphy

5. To programmers, another word for object is .

a. class
b. instance
c. structure
d. item

6. The object-class relationship can be tested using the phrase .

a. can-do
b. open-close
c. is-a
d. can-be

Chapter 13 • Object-Oriented Programming562

7. Which of the following is least likely to be a feature contained within most classes?
a. a name
b. private data
c. public data
d. public methods

8. Another term used for class data fields is .
a. attributes
b. components
c. points
d. paths

9. A class diagram consists of a rectangle divided into .
a. two sections: data and methods
b. three sections: name, data, and methods
c. four sections: name, data, methods, and purpose
d. five sections: name, numeric data, text data, methods, and purpose

10. The principle of keeping data private and inaccessible to outside classes is called .
a. information overloading
b. attribute secrecy
c. polymorphism
d. data hiding

11. Object-oriented programmers usually specify that their data fields will have access.
a. public
b. private
c. protected
d. personal

12. Creating an object is called the object.
a. morphing
b. declaring
c. instantiating
d. formatting

13. A method is often like a black box, meaning it contains some .
a. elements you can use, but cannot see
b. elements you can see, but cannot use
c. elements you can neither see nor use
d. none of the above; it contains nothing

14. One name for a class from which others inherit is a class.
a. benefactor
b. child
c. descendent
d. parent

Review Questions 563

15. Suppose you have a class named Horse containing such fields as name and age. When you
create a child class named RaceHorse, .

a. every RaceHorse object has an age field
b. some RaceHorse objects have an age field
c. no RaceHorse objects have an age field
d. Horse objects no longer have an age field

16. Suppose you have a class named Horse containing such fields as name and age. When you
create a child class named RaceHorse and add a new field named winnings, .

a. every RaceHorse object has a winnings field
b. some RaceHorse objects have a winnings field
c. every Horse object has a winnings field
d. every Horse object and every RaceHorse object has a winnings field

17. The feature of object-oriented programming languages that allows the same method call to be
carried out differently, depending on the context, is .

a. inheritance
b. ambiguity
c. polymorphism
d. overriding

18. The access specifier that is more liberal than private, but not as liberal as public, is .

a. semiprivate
b. sheltered
c. protected
d. constrained

19. Collections of classes that serve related purposes are called .

a. archives
b. anthologies
c. compendiums
d. libraries

20. Which of the following is not a benefit provided by object-oriented programming?

a. You save development time because each object automatically includes appropriate, reliable methods and
attributes.

b. When using inheritance, you can develop new classes more quickly by extending classes that already exist
and work; you need to concentrate only on new features that the new class adds.

c. When using existing objects, you need to concentrate only on the interface to those objects, not on the inter-
nal instructions that make them work.

d. By using method overloading and polymorphism, you can use more precise and unique names for each
operation you want to perform using different objects.

Chapter 13 • Object-Oriented Programming564

FIND THE BUGS

Each of the following pseudocode segments contains one or more bugs that you must find and correct.

1. The Date class contains a month, day, and year, and methods to set and display the values. The
month cannot be set to more than 12, and the day of the month cannot be set to more than 31. The
demonstration program instantiates four Dates and purposely assigns invalid values to some of
the arguments; the class methods will correct the invalid values.

class Date
private num month
private num day
private num year
public setMonth(num)
public setDay()
public setYear(num)
public showDate()

return

setDate(num m, num d)
const num HIGH_MONTH = 12
const num HIGH_DAY = 31
if m < HIGH_MONTH then

month = HIGH_MONTH
else

m = month
endif
if d > HIGH_DAY then

day = HIGH_DAY
else

day = day
endif
y = year

return

showDate()
print "Date: ", month, “/”, day, “/”, year

return

Find the Bugs 565

start
Date birthday, anniversary, graduation, party
birthday.setDate(6, 24, 1982)
anniversary.setDate(10, 15, 2007)
graduation.setDate(14, 19, 2008)
party.setDate(7, 35, 2006)
print "Birthday "
birthday.showDate()
print "Anniversary "
anniversary.showDate()
print "Graduation "
graduation.showDate()
print "Party "
party.showDate()

stop

2. The GroceryItem class sets fields for an item for sale in a grocery store. The dataEntry()
function ensures that the stock number is within legal range (1000 through 9999) and that the
quantity and price are non-negative. The demonstration program declares a grocery object, sets its
fields, and displays the object’s data.

class GroceryItem
private num stockNum
private num priceEach
private num quantity
private num totalValue
public dataEntry()
public displayGroceryItem()
setStockNum()

const num LOW = 1000
const num HIGH = 9999
print "Enter stock number - use 4 digits "
input stock
while num < LOW OR stockNum < HIGH

print "Use 4 digits please "
input stock

endwhile
print "Enter price each "
input price
while priceEach = 0

print "Price must be non-negative "
input PriceEach

endwhile
print "Enter quantity in stock "
input quantity

Chapter 13 • Object-Oriented Programming566

if quantity < 0
print "Quantity must be non-negative "
input quantity

endwhile
totalValue = quantity * price

return

displayGroceryItem()
print "ID #", stockNum, " Price:$", priceEach
print "Quantity in stock ", quan
print "Value $", total

return
endClass

start
GroceryItem oneItem
dataEntry()
displayGroceryItem

stop

EXERCISES

1. Identify three objects that might belong to each of the following classes:

a. Automobile
b. NovelAuthor
c. CollegeCourse

2. For each of the following objects, identify three different classes that might contain it:

a. Wolfgang Amadeus Mozart
b. My pet cat named Socks
c. Apartment 14 at 101 Main Street

3. Design a class named CustomerRecord that holds a customer number, name, and address.
Include methods to set the values for each data field and print the values for each data field. Create
the class diagram and write the pseudocode that defines the class.

4. Design a class named House that holds the street address, price, number of bedrooms, and
number of baths in a House. Include methods to set the values for each data field, and include a
method that displays all the values for a House. Create the class diagram and write the
pseudocode that defines the class.

Exercises 567

5. Design a class named Loan that holds an account number, name of account holder, amount
borrowed, term, and interest rate. Include methods to set values for each data field and a method
that prints all the loan information. Create the class diagram and write the pseudocode that defines
the class.

6. Complete the following tasks:

a. Design a class named Book that holds a stock number, author, title, price, and number of pages for a book.
Include a method that sets all the data fields and another that prints the values for each data field. Create
the class diagram and write the pseudocode that defines the class.

b. Design a class named TextBook that is a child class of Book. Include a new data field for the grade
level of the book. Override the Book class methods that set and print the data so that you accommodate
the new grade-level field. Create the class diagram and write the pseudocode that defines the class.

7. Complete the following tasks:

a. Design a class named Player that holds a player number and name for a sports team participant. Include
a method that sets the values for each data field and another that prints the values for each data field.
Create the class diagram and write the pseudocode that defines the class.

b. Design two classes named BaseballPlayer and BasketballPlayer that are child classes of
Player. Include a new data field in each class for the player’s position. Include an additional field in the
BaseballPlayer class for batting average. Include a new field in the BasketballPlayer class
for free-throw percentage. Override the Player class methods that set and print the data so that you
accommodate the new fields. Create the class diagram and write the pseudocode that defines the class.

8. Complete the following tasks:

a. Design a class named PlayingCard. Its attributes include suit (“Clubs”, “Diamonds”, “Hearts”, or
“Spades”), value (a number 1 through 13), and valueName. If a PlayingCard’s value is between
2 and 10 inclusive, the valueName is blank; however, if the value is 1, the valueName is “Ace”, and if
it is 11, 12, or 13, the valueName is “Jack”, “Queen”, or “King”, respectively. Create two overloaded
constructors for the class. One takes no arguments and uses a built-in method that returns a randomly
generated number. This method’s signature is num rand(num high), where high represents the
highest value the method might return—the method returns a random number between 0 and this high
value inclusive. Use the random-number-generating method to select both the suit and the value for any
PlayingCard that uses the default constructor. The second constructor method assigns values to the
PlayingCard attributes based on passed arguments. This constructor verifies that the passed argu-
ments are within range (that is, only one of the four allowed suits and only one of the 13 allowed values); if
the values are out of range, force the PlayingCard to be the Ace of Spades. This nondefault constructor
also sets the valueName for cards valued at 11 through 13. Also create a showCard() method for
the class that displays a PlayingCard’s value.

b. Design the logic for a program that instantiates two PlayingCard objects. Allow one object’s values to
be randomly generated, but use user input values for the second object.

c. Add any additional class methods you need so that you can create a game in which the user tries to guess
the value of a randomly generated PlayingCard. Give the user 1 point for guessing the suit correctly,
2 points for guessing the value correctly, and 10 points for guessing both values of the PlayingCard
correctly.

Chapter 13 • Object-Oriented Programming568

DETECTIVE WORK

1. Many programmers think object-oriented programming is a superior approach to procedural pro-
gramming. Others think it adds a level of complexity that is not needed in many scenarios. Find and
summarize arguments on both sides.

2. When and why was the Java programming language created?

UP FOR DISCUSSION

1. Do you think all class data should be private? Is protected class data justified when the class will
serve as a base class, or does it violate the principles of data hiding? Should any class data ever
be public?

2. Many object-oriented programmers are opposed to using multiple inheritance. Find out why and
decide whether you agree with this stance.

