
16
After studying Chapter 16, you should be able to:

� Understand relational database fundamentals

� Create databases and table descriptions

� Identify primary keys

� Understand database structure notation

� Understand the principles of adding, deleting, updating, and sorting records within a table

� Write queries

� Understand relationships between tables and functional dependence between columns

� Recognize poor table design

� Understand anomalies, normal forms, and the normalization process

� Understand the performance and security issues connected to database administration

USING RELATIONAL DATABASES

629

630 Chapter 16 • Using Relational Databases

UNDERSTANDING RELATIONAL DATABASE FUNDAMENTALS

When you store data items for use within computer systems, they are often stored in what is known as a data
hierarchy, where the smallest usable unit of data is the character, often a letter or number. Characters are grouped
together to form fields, such as firstName, lastName, and socialSecurityNumber. Related fields are
often grouped together to form records—groups of fields that go together because they represent attributes of some
entity, such as an employee, a customer, an inventory item, or a bank account. Files are composed of related records;
for example, a file might contain a record for each employee in a company or each account at a bank.

You first learned about the data hierarchy in Chapter 1 of this book. The terms character,
field, record, and file were defined there, and you have been using these terms throughout
this book.

Most organizations store many files that contain the data they need to operate their businesses; for example,
businesses often need to maintain files containing data about employees, customers, inventory items, and orders. Many
organizations use database software to organize the information in these files. A database holds a group of files that an
organization needs to support its applications. In a database, the files often are called tables because you can arrange
their contents in rows and columns. Real-life examples of database-like tables abound. For example, consider the
listings in a telephone book. Each listing in a city directory might contain four columns, as shown in Figure 16-1—last
name, first name, street address, and phone number. Although your local phone directory might not store its data in the
rigid columnar format shown in the figure, it could. You can see that each column represents a field and that each row
represents one record. You can picture a table within a database in the same way.

One record or row is also sometimes called an entity; however, many definitions of
“entity” exist in database texts. One column (field) can also be called an attribute.

Figure 16-1 includes five records, each representing a unique person. It is relatively easy to scan this short list of
names to find a person’s phone number; of course, telephone books contain many more records. Some telephone book
users, such as telemarketers or even the phone company, might prefer to look up a number in a book in which the
records are organized in telephone-number order. Others, such as door-to-door salespeople, might prefer a telephone
book in which the records are organized in street-address order. Most people, however, prefer a telephone book in

FIGURE 16-1: A TELEPHONE BOOK TABLE

Last name First name Address Phone

Abbott William 123 Oak Lane 490-8920

Ackerman Kimberly 467 Elm Drive 787-2781

Adams Stanley 8120 Pine Street 787-0129

Adams Violet 347 Oak Lane 490-8912

Adams William 12 Second Street 490-3667

TIP�

TIP�

631Understanding Relational Database Fundamentals

which the records are organized as shown, in alphabetical order by last name. It is most convenient for different users
when computerized databases can sort records in various orders based on the contents of different columns.

Unless you are reading a telephone book for a very small town, a last name alone often is not sufficient to identify a
person. In the example in Figure 16-1, three people have the last name of Adams. For these records, you need to
examine the first name before you can determine the correct phone number. In a large city, many people might have
the same first and last names; in that case, you might also need to examine the street address to identify a person. As
with the telephone book, in most computerized database tables, it is important to have a way to uniquely identify each
record, even if it means using multiple columns. A value that uniquely identifies a record is called a primary key, or a
key for short. Key fields often are defined as a single table column, but as with the telephone book, keys can be
constructed from multiple columns; a key constructed from multiple columns is a compound key.

You learn more about key fields and compound keys later in this chapter. Compound keys
also are known as composite keys.

Telephone books are republished periodically because changes have occurred—new people have moved into the city
and become telephone customers, and others have left, canceled service, or changed phone numbers. With
computerized database tables, you also need to add, delete, and modify records, although usually far more frequently
than phone books are published.

Telephone books often contain thousands of records. Computerized database tables also frequently contain thousands
of records, or rows, and each row might contain entries in dozens of columns. Handling and organizing all the data
contained in an organization’s tables requires sophisticated software. Database management software is a set of
programs that allows users to:

� Create table descriptions.

� Identify keys.

� Add, delete, and update records within a table.

� Arrange records within a table so they are sorted by different fields.

� Write questions that select specific records from a table for viewing.

� Write questions that combine information from multiple tables. This is possible because the
database management software establishes and maintains relationships between the columns
in the tables. A group of database tables from which you can make these connections is a
relational database.

� Create reports that allow users to easily interpret your data, and create forms that allow users to
view and enter data using an easy-to-manage interactive screen.

� Keep data secure by employing sophisticated security measures.

If you have used different word-processing or spreadsheet programs, you know that each version works a little
differently, although each carries out the same types of tasks. Like other computer programs, each database
management software package operates differently; however, with each, you need to perform the same types of tasks.

TIP�

632 Chapter 16 • Using Relational Databases

CREATING DATABASES AND TABLE DESCRIPTIONS

Creating a useful database requires a lot of planning and analysis. You must decide what data will be stored, how that
data will be divided between tables, and how the tables will interrelate. Before you create any tables, you must create
the database itself. With most database software packages, creating the database that will hold the tables requires
nothing more than providing a name for the database and indicating the physical location, perhaps a hard disk drive,
where the database will be stored. When you save a table, it is conventional to provide it with a name that begins with
the prefix “tbl”—for example, tblCustomers. Your databases often become filled with a variety of objects—tables,
forms that users can use for data entry, reports that organize the data for viewing, queries that select subsets of data
for viewing, and so on. Using naming conventions, such as beginning each table name with a prefix that identifies it as
a table, helps you to keep track of the various objects in your system.

Many database management programs suggest that you use a generic name such as Table1
when you save a table description. Usually, a more descriptive name is more useful to you
as you continue to create objects.

Before you can enter any data into a database table, you must design the table. At minimum, this involves two tasks:

� You must decide what columns your table needs, and provide names for them.

� You must provide a data type for each column.

For example, assume you are designing a customer database table. Figure 16-2 shows some column names and data
types you might use.

A table description closely resembles the record descriptions you have used with data
files throughout this book.

It is important to think carefully about the original design of a database. After the data-
base has been created and data has been entered, it could be difficult and time-consuming
to make changes.

FIGURE 16-2: CUSTOMER TABLE DESCRIPTION

Column Data type

customerID text

lastName text

firstName text

streetAddress text

balanceOwed numeric

TIP�

TIP�

TIP�

633Creating Databases and Table Descriptions

The table description in Figure 16-2 uses just two data types—text and numeric. Text columns can hold any type of
characters—letters or digits. Numeric columns can hold numbers only. Depending on the database management
software you use, you might have many more sophisticated data types at your disposal. For example, some database
software divides the numeric data type into several subcategories such as integer (whole number only) values and
double-precision numbers (numbers that contain decimals). Other options might include special categories for currency
numbers (representing dollars and cents), dates, and Boolean columns (representing true or false). At the least, all
database software recognizes the distinction between text and numeric data.

You have been aware of the distinction that computers make between character and
numeric data throughout this book. Because of the way computers handle data, every type
of software observes this distinction. Throughout this book, the term “char” has been used
to describe text fields. The term “text” is used in this chapter only because it is the term
that popular database packages use.

Unassigned variables within computer programs might be empty (containing a null
value), or might contain unknown or garbage values. Similarly, columns in database
tables might also contain null or unknown values. When a field in a database contains a
null value, it does not mean that the field holds a 0 or a space; it means that no data has
been entered for the field at all. Although “null” and “empty” are used synonymously by
many database developers, the terms have slightly different meanings to Visual Basic
programmers.

The table description in Figure 16-2 uses one-word column names and camel casing, in the same way that variable
names have been defined throughout this book. Many database software packages do not require that data column
names be single words without embedded spaces, but many database table designers prefer single-word names
because they resemble variable names in programs. In addition, when you write programs that access a database
table, the single-word field names can be used “as is,” without special syntax to indicate the names that represent a
single field. As a further advantage, when you use a single word to label each database column, it is easier to
understand whether just one column is being referenced, or several.

The customerID column in Figure 16-2 is defined as a text field or text column. If customerID numbers are
composed entirely of digits, this column could also be defined as numeric. However, many database designers feel that
columns should be defined as numeric only if they need to be—that is, only if they might be used in arithmetic
calculations. The description in Figure 16-2 follows this convention by declaring customerID to be a text column.

Many database management software packages allow you to add a narrative description of each data column to a
table. This allows you to make comments that become part of the table. These comments do not affect the way the
table operates; they simply serve as documentation for those who are reading a table description. For example, you
might want to make a note that customerID should consist of five digits, or that balanceOwed should not exceed
a given limit. Some software allows you to specify that values for a certain column are required—the user cannot create a
record without providing data for these columns. In addition, you might be able to indicate value limits for a column—high and
low numbers between which the column contents must fall.

TIP�

TIP�

634 Chapter 16 • Using Relational Databases

IDENTIFYING PRIMARY KEYS

In most tables you create for a database, you want to identify a column, or possibly a combination of columns, as the
table’s key column or field, also called the primary key. The primary key in a table is the column that makes each record
different from all others. For example, in the customer table in Figure 16-2, the logical choice for a primary key is the
customerID column—each customer record that is entered into the customer table has a unique value in this
column. Many customers might have the same first name or last name (or both), and multiple customers also might
have the same street address or balance due. However, each customer possesses a unique ID number.

Other typical examples of primary keys include:

� A student ID number in a table that contains college student information

� A part number in a table that contains inventory items

� A Social Security number in a table that contains employee information

In each of these examples, the primary key uniquely identifies the row. For example, each student has a unique ID
number assigned by the college. Other columns in a student table would not be adequate keys—many students have
the same last name, first name, hometown, or major.

It is no coincidence that each of the preceding examples of a key is a number, such as a
student ID number or item number. Usually, assigning a number to each row in a table is
the simplest and most efficient method of obtaining a useful key. However, it is possible
that a table’s key could be a text field.

The primary key is important for several reasons:

� You can configure your database software to prevent multiple records from containing the same
value in this column, thus avoiding data-entry errors.

� You can sort your records in this order before displaying or printing them.

� You use this column when setting up relationships between this table and others that will
become part of the same database.

� In addition, you need to understand the concept of the primary key when you normalize
a database—a concept you will learn more about later in this chapter.

In some database software packages, such as Microsoft Access, you indicate a primary
key simply by selecting a column name and clicking a button that is labeled with
a key icon.

In some tables, when no identifying number has been assigned to the rows, more than one column is required to
construct a primary key. A multicolumn key is a compound key. For example, consider Figure 16-3, which might be
used by a residence hall administrator to store data about students living on a university campus. Each room in a
building has a number and two students, each assigned to either bed A or bed B.

TIP�

TIP�

635Creating Databases and Table Descriptions

In Figure 16-3, no single column can serve as a primary key. Many students live in the same residence hall, and the
same room numbers exist in the different residence halls. In addition, some students have the same last name, first
name, or major. It is even possible that two students with the same first name, last name, or major are assigned to the
same room. In this case, the best primary key is a multicolumn key that combines residence hall, room number, and
bed number (hall, room, and bed). “Adams 101 A” identifies a single room and student, as does “Churchill 102 B”.

A primary key should be immutable, meaning that a value does not change during
normal operation. In other words, in Figure 16-3, “Adams 102 A” will always pertain to a
fixed location, even though the resident or her major might change. Of course, the school
might choose to change the name of a residence hall—for example, to honor a
benefactor—but that action would fall outside the range of “normal operation.” (In
object-oriented programming, a class is immutable if it contains no methods that allow
changes to its attributes after construction.)

Sometimes, there are several columns that could serve as the key. For example, if an
employee record contains both a company-assigned employee ID and a Social Security
number, then both columns are candidate keys. After you choose a primary key from
among candidate keys, the remaining candidate keys become alternate keys.

Even if there were only one student named Smith, for example, or only one Psychology
major in the table in Figure 16-3, those fields still would not be good primary key candi-
dates because of the potential for future Smiths and Psychology majors within the data-
base. Analyzing existing data is not a foolproof way to select a good key; you must also
consider likely future data.

FIGURE 16-3: TABLE CONTAINING RESIDENCE HALL STUDENT RECORDS

hall room bed lastName firstName major

Adams 101 A Fredricks Madison Chemistry

Adams 101 B Garza Lupe Psychology

Adams 102 A Liu Jennifer CIS

Adams 102 B Smith Crystal CIS

Browning 101 A Patel Sarita CIS

Browning 101 B Smith Margaret Biology

Browning 102 A Jefferson Martha Psychology

Browning 102 B Bartlett Donna Spanish

Churchill 101 A Wong Cheryl CIS

Churchill 101 B Smith Madison Chemistry

Churchill 102 A Patel Jennifer Psychology

Churchill 102 B Jones Elizabeth CIS

TIP�

TIP�

TIP�

636 Chapter 16 • Using Relational Databases

As an alternative to selecting three columns to create the compound key for the table in
Figure 16-3, many database designers prefer to simply add a new column containing a
bed location ID number that would uniquely identify each row. Many database designers
feel that a primary key should be short to minimize the amount of storage required for it
in all the tables that refer to it.

Usually, after you have identified the necessary fields and their data types, and identified the primary key, you are ready
to save your table description and begin to enter data.

UNDERSTANDING DATABASE STRUCTURE NOTATION

A shorthand way to describe a table is to use the table name followed by parentheses containing all the field names,
with the primary key underlined. Thus, when a table is named tblStudents and contains columns named
idNumber, lastName, firstName, and gradePointAverage, and idNumber is the key, you can
reference the table using the following notation:

tblStudents(idNumber, lastName, firstName, gradePointAverage)

Although this shorthand notation does not provide you with information about data types or range limits on values, it
does provide you with a quick overview of the structure of a table.

Some database designers insert an asterisk after the key instead of underlining it.

The key does not have to be the first attribute listed in a table reference, but frequently it is.

ADDING, DELETING, AND UPDATING RECORDS WITHIN TABLES

Entering data into an already created table is not difficult, but it requires a good deal of time and accurate typing.
Depending on the application, the contents of the tables might be entered over the course of many months or years by
any number of data-entry personnel. Entering data of the wrong type is not allowed by most database software. In
addition, you might have set up your table to prevent duplicate data in specific fields, or to prevent data entry outside of
specified bounds in other fields. With some database software, you type data into rows representing each record, and
columns representing each field in each record, much as you would enter data into a spreadsheet. With other software,
you can create on-screen forms to make data entry more user-friendly. Some software does not allow you to enter a
partial record; that is, you might not be allowed to leave any fields blank.

Computer professionals use the acronym GIGO, which stands for “garbage in, garbage
out.” It means that if you enter invalid input data into an application, the output results
will be worthless. You first learned this expression in Chapter 10.

Deleting records from and modifying records within a database table are also relatively easy tasks. In most
organizations, most of the important data is in a constant state of change. Maintaining the data records so they are up
to date is a vital part of any database management system.

TIP�

TIP�

TIP�

TIP�

637Creating Databases and Table Descriptions

In many database systems, some “deleted” records are not physically removed. Instead,
they are just marked as deleted so they will not be used to process active records. For
example, a company might want to retain data about former employees, but not process
them with current personnel reports. On the other hand, an employee record that was
entered by mistake would be permanently removed from the database.

SORTING THE RECORDS IN A TABLE

Database management software generally allows you to sort a table based on any column, letting you view your data in
the way that is most useful to you. For example, you might want to view inventory items in alphabetical order, or from
the most to the least expensive. You also can sort by multiple columns—for example, you might sort employees by first
name within last name (so that Aaron Black is listed before Andrea Black), or by department within first name within last
name (so that Aaron Black in Department 1 is listed before another Aaron Black in Department 6).

When performing sorts on multiple fields, the software sorts first by a primary sort—
for example, last name. After all those with the same primary sort key are grouped, the
software sorts by the secondary key—for example, first name.

After rows are sorted, they usually can be grouped. For example, you might want to sort customers by their zip code, or
employees by the department in which they work; in addition, you might want counts or subtotals at the end of each
group. Database software provides the means to create displays in the formats that suit your present information needs.

When a database program includes counts or totals at the end of each sorted group, it is
creating a control break report. You learned about control break reports in Chapter 7.

CREATING QUERIES

Data tables often contain hundreds or thousands of rows; making sense out of that much information is a daunting
task. Frequently, you want to cull subsets of data from a table you have created. For example, you might want to view
only those customers with an address in a specific state, only those inventory items whose quantity in stock has fallen
below the normal reorder point, or only those employees who participate in an insurance plan. Besides limiting records,
you might also want to limit the columns that you view. For example, student records might contain dozens of fields, but
a school administrator might only be interested in looking at names and grade point averages. The questions that cause
the database software to extract the appropriate records from a table and specify the fields to be viewed are called
queries; a query is simply a question asked using the syntax that the database software can understand.

Depending on the software you use, you might create a query by filling in blanks (a process called query by example) or
by writing statements similar to those in many programming languages. The most common language that database admin-
istrators use to access data in their tables is Structured Query Language, or SQL. The basic form of the SQL command
that retrieves selected records from a table is SELECT-FROM-WHERE. The SELECT-FROM-WHERE SQL statement:

� Selects the columns you want to view

� From a specific table

� Where one or more conditions are met

TIP�

TIP�

TIP�

638 Chapter 16 • Using Relational Databases

“SQL” frequently is pronounced “sequel”; however, several SQL product Web sites insist
that the official pronunciation is “S-Q-L.” Similarly, some people pronounce GUI as
“gooey” and others insist that it should be “G-U-I.” In general, a preferred pronunciation
evolves in an organization. The TLA, or three-letter abbreviation, is the most popular type
of abbreviation in technical terminology.

For example, suppose a customer table named tblCustomer contains data about your business customers and
that the structure of the table is tblCustomer(custId, lastName, state). Then, a statement such as:

SELECT custId, lastName FROM tblCustomer WHERE state = “WI”

would display a new table containing two columns—custId and lastName—and only as many rows as needed
to hold those customers whose state column contains “WI”. Besides using = to mean “equal to,” you can use the
comparison conditions > (greater than), < (less than), >= (greater than or equal to), and <= (less than or equal to). As
you have already learned from working with programming variables throughout this book, text field values are always
contained within quotes, whereas numeric values are not.

Conventionally, SQL keywords such as SELECT appear in all uppercase; this book
follows that convention.

In database management systems, a particular way of looking at a database is sometimes
called a view. Typically, a view arranges records in some order and makes only certain
fields visible. The different views provided by database software are virtual; that is, they
do not affect the physical organization of the database.

To select all fields for each record in a table, you can use the asterisk as a wildcard; a wildcard is a symbol that means
“any” or “all.” For example, SELECT * from tblCustomer WHERE state = “WI” would select all columns
for every customer whose state is “WI”, not just specifically named columns. To select all customers from a table, you
can omit the WHERE clause in a SELECT-FROM-WHERE statement. In other words, SELECT * FROM
tblCustomer selects all columns for all customers.

You learned about making selections in computer programs much earlier in this book, and you have probably noticed
that SELECT-FROM-WHERE statements serve the same purpose as programming decisions. As with decision
statements in programs, when using SQL, you can create compound conditions using AND or OR operators. In addi-
tion, you can precede any condition with a NOT operator to achieve a negative result. In summary, Figure 16-4 shows
a database table named tblInventory with the following structure: tblInventory(itemNumber,
description, quantityInStock, price). The table contains five records. Figure 16-5 lists several
typical SQL SELECT statements you might use with tblInventory, and explains each.

TIP�

TIP�

TIP�

639Understanding Table Relationships

UNDERSTANDING TABLE RELATIONSHIPS

Most database applications require many tables, and these applications also require that the tables be related. The
connection between two tables is a relationship, and the database containing the relationships is called a relational
database. Connecting two tables based on the values in a common column is called a join operation, or more simply, a
join; the column on which they are connected is the join column. A virtual, or imaginary, table that is displayed as the
result of the query takes some of its data from each joined table. For example, in Figure 16-6, the customerNumber
column is the join column that could produce a virtual image when a user makes a query. When a user asks to see the

FIGURE 16-5: SAMPLE SQL STATEMENTS AND EXPLANATIONS

SQL statement Explanation

SELECT itemNumber, price FROM Shows only the item number and price for

tblInventory all five records.

SELECT * FROM tblInventory WHERE Shows all fields from only those records

price > 5.00 where price is over $5.00—items 144

and 312.

SELECT itemNumber FROM tblInventory Shows item number 144—the only record

WHERE quantityInStock > 200 AND that has a quantity greater than 200 as

price > 10.00 well as a price greater than $10.00.

SELECT description, price FROM Shows the description and price fields

tblInventory WHERE description = for the package of 12 party plates and

“Pkg 20 napkins” OR itemNumber < 200 the package of 20 napkins. Each selected

record must satisfy only one of the two

criteria.

SELECT itemNumber FROM tblInventory Shows the item number for the only

WHERE NOT price < 14.00 record where the price is not less

than $14.00—item 144.

FIGURE 16-4: THE tblInventory TABLE

itemNumber description quantityInStock price

144 Pkgƒ12ƒpartyƒplates 250 $14.99

231 Heliumƒballoons 180 ƒ$2.50

267 Paperƒstreamers ƒ68 ƒ$1.89

312 Disposableƒtablecloth ƒ20 ƒ$6.99

383 Pkgƒ20ƒnapkins 315 ƒ$2.39

640 Chapter 16 • Using Relational Databases

name of a customer associated with a specific order number, or a list of all the names of customers who have ordered a
specific item, then a joined table is produced. The three types of relationships that can exist between tables are:

� One-to-many

� Many-to-many

� One-to-one

UNDERSTANDING ONE-TO-MANY RELATIONSHIPS

A one-to-many relationship is one in which one row in a table can be related to many rows in another table. It is the
most common type of relationship between tables. Consider the following tables:

tblCustomers(customerNumber, customerName)
tblOrders(orderNumber, customerNumber, orderQuantity, orderItem, orderDate)

The tblCustomers table contains one row for each customer, and customerNumber is the primary key. The
tblOrders table contains one row for each order, and each order is assigned an orderNumber, which is the
primary key in this table.

In most businesses, a single customer can place many orders. For example, in the sample data in Figure 16-6,
customer 215 has placed three orders. One row in the tblCustomers table can correspond to, and can be related
to, many rows in the tblOrders table. This means there is a one-to-many relationship between the two tables
tblCustomers and tblOrders. The “one” table (tblCustomers) is the base table in this relationship, and
the “many” table (tblOrders) is the related table.

When two tables are related in a one-to-many relationship, the relationship occurs based on the values in one or more
columns in the tables. In this example, the column, or attribute, that links the two tables together is the
customerNumber attribute. In the tblCustomers table,customerNumber is the primary key, but in the
tblOrders table,customerNumber is not a key—it is a non-key attribute. When a column that is not a key in a

tblCustomers

customerNumber

214

215

216

217

218

customerName

Kowalski

Jackson

Lopez

Thompson

Vitale

tblOrders

orderNumber

10467

10468

10469

10470

10471

10472

10473

customerNumber

215

218

215

216

214

215

217

orderQuantity

2

1

4

12

4

1

10

orderDate

10/15/2007

10/15/2007

10/16/2007

10/16/2007

10/16/2007

10/16/2007

10/17/2007

orderItem

HP203

JK109

HP203

ML318

JK109

HP203

JK109

FIGURE 16-6: SAMPLE CUSTOMERS AND ORDERS

641Understanding Table Relationships

table contains an attribute that is a key in a related table, the column is called a foreign key. When a base table is linked to a
related table in a one-to-many relationship, it is always the primary key of the base table that is related to the foreign key in the
related table. In this example,customerNumber in the tblOrders table is a foreign key.

A key in a base table and the foreign key in the related table do not need to have the same
name; they only need to contain the same type of data. Some database management soft-
ware programs automatically create a relationship for you if the columns in two tables you
select have the same name and data type. However, if this is not the case (for example, if
the column is named customerNumber in one table and custID in another), you can
explicitly instruct the software to create the relationship.

UNDERSTANDING MANY-TO-MANY RELATIONSHIPS

Another example of a one-to-many relationship is depicted with the following tables:

tblItems(itemNumber, itemName, itemPurchaseDate, itemPurchasePrice,
itemCategoryId)

tblCategories(categoryId, categoryName, categoryInsuredAmount)

Assume you are creating these tables to keep track of all the items in your household for insurance purposes. You want
to store data about items such as your sofa, stereo, refrigerator, and so on. The tblItems table contains the name,
purchase date, and purchase price of each item. In addition, this table contains the ID number of the item category
(Appliance, Jewelry, Antique, and so on) to which the item belongs. You need the category of each item because your
insurance policy has specific coverage limits for different types of property. For example, with many insurance policies,
antiques might have a different coverage limit than appliances, or jewelry might have a different limit than furniture.
Sample data for these tables is shown in Figure 16-7.

The primary key of the tblItems table is itemNumber, a unique identifying number that you have assigned to
each item that you own. (You might even prepare labels with these numbers and stick a label on each item in an
inconspicuous place.) The tblCategories table contains the category names and the maximum insured amounts
for the specific categories. For example, one row in this table may have a categoryName of “Jewelry” and a
categoryInsuredAmount of $15,000. The primary key for the tblCategories table is categoryId,
which is simply a uniquely assigned value for each property category.

The two tables in Figure 16-7 have a one-to-many relationship. Which is the “one” table and which is the “many” table?
Or, asked in another way, which is the base table and which is the related table? You have probably determined that the
tblCategories table is the base table (the “one” table) because one category can describe many items that you
own. Therefore, the tblItems table is the related table (the “many” table); that is, there are many items that fall into
each category. The two tables are linked with the categoryId attribute, which is the primary key in the base table
(tblCategories) and a foreign key in the related table (tblItems).

TIP�

642 Chapter 16 • Using Relational Databases

In the tables in Figure 16-7, one row in the tblCategories table relates to multiple items you own. The opposite
is not true—that is, one item in the tblItems table cannot relate to multiple categories in the tblCategories
table. The row in the tblItems table that describes the “rectangular pine coffee table” relates to one specific
category in the tblCategories table—the Furniture category. However, what if you own a rectangular pine coffee
table that has a built-in DVD player, or a diamond ring that is an antique, or a stereo that could also be worn as a hat on
a rainy day? Even though this last example is humorous, it does bring up an important consideration.

The structure of the tables shown in Figure 16-7 and the relationship between those tables are designed to support a
particular application—keeping track of possessions for insurance purposes. If you acquired a sofa with a built-in CD
player and speakers, what would you do? For guidance, you probably would call your insurance agent. If the agent said,
“Well, for insurance purposes that item is considered a piece of furniture,” then the existing table structures and
relationships are adequate.

However, if the insurance agent said, “Well, actually a sofa with a CD player is considered a special type of hybrid item,
and that category of property has a specific maximum insured amount,” then you could simply create a new row in the
tblCategories table to describe this special hybrid category—perhaps Electronic Furniture. This new category
would acquire a category number, and then you could associate the CD-sofa to the new category using the foreign key
in the tblItems table.

tblItems

itemNumber

1

2

3

4

5

6

7

itemName

Sofa

Stereo

Refrigerator

Diamond ring

TV

Rectangular pine coffee table

Round pine end table

itemPurchaseDate

1/13/2001

2/10/2003

5/12/2003

2/12/2004

7/11/2004

4/21/2005

4/21/2005

$6,500

$1,200

$750

$42,000

$285

$300

$200

itemCategoryId

5

6

1

2

6

5

5

tblCategories

categoryId

1

2

3

4

5

6

7

categoryName

Appliance

Jewelry

Antique

Clothing

Furniture

Electronics

Miscellaneous

$30,000

$15,000

$10,000

$25,000

$5,000

$2,500

$5,000

FIGURE 16-7: SAMPLE ITEMS AND CATEGORIES: A ONE-TO-MANY RELATIONSHIP

categoryInsuredAmount

itemPurchasePrice

643Understanding Table Relationships

However, what if your insurance agent said, “You know, that’s a good question. We’ve never had that come up before—
a sofa with a CD player. What we would probably do if you filed a claim because the sofa was damaged is to take a look
at it to try to determine whether the sofa is mostly a piece of furniture or mostly a piece of electronics.” This answer
presents a problem to your database. You may want to categorize your new sofa as both a furniture item and an
electronic item. The existing table structures, with their one-to-many relationship, would not support this because the
current design limits any specific item to one and only one category. When you insert a row into the tblItems table
to describe the new CD-sofa, you can assign the Furniture code to the foreign key itemCategory, or you can
assign the Electronics code, but not both.

If you want to assign the new CD-sofa to both categories (Furniture and Electronics), you have to change the design of
the table structures and relationships, because there is no longer a one-to-many relationship between the two tables.
Now, there is a many-to-many relationship—one in which multiple rows in each table can correspond to multiple
rows in the other. That is, in this example, one row in the tblCategories table (for example, Furniture) can relate
to many rows in the tblItems table (for example, sofa and coffee table), and one row in the tblItems table (for
example, the sofa with the built-in CD player) can relate to multiple rows in the tblCategories table.

The tblItems table contains a foreign key named itemCategoryId. If you want to change the application so
that one specific row in the tblItems table can link to many rows (and, therefore, many categoryIds) in the
tblCategories table, you cannot continue to maintain the foreign key itemCategoryId in the tblItems
table, because one item may be assigned to many categories. You could change the structure of the tblItems table
so that you can assign multiple itemCategoryIds to one specific row in that table, but as you will learn later in
this chapter, that approach leads to many problems using the data. Therefore, it is not an option.

The simplest way to support a many-to-many relationship between the tblItems and tblCategories tables is
to remove the itemCategoryId attribute (what was once the foreign key) from the tblItems table, producing:

tblItems(itemNumber, itemName, itemPurchaseDate, itemPurchasePrice)

The tblCategories table structure remains the same:

tblCategories(categoryId, categoryName, categoryInsuredAmount)

With just the preceding two tables, there is no way to know that any specific row(s) in the tblItems table link(s) to any
specific row(s) in the tblCategories table, so you create a new table called tblItemsCategories that con-
tains the primary keys from the two tables that you want to link in a many-to-many relationship. This table is depicted as:

tblItemsCategories(itemNumber, categoryId)

Notice that this new table contains a compound primary key—both itemNumber and categoryId are under-
lined. The itemNumber value of 1 might be associated with many categoryIds. Therefore, itemNumber
alone cannot be the primary key because the same value may occur in many rows. Similarly, a categoryId might
relate to many different itemNumbers; this would disallow using just the categoryId as the primary key.

644 Chapter 16 • Using Relational Databases

However, a combination of the two attributes itemNumber and categoryId results in a unique primary key
value for each row of the tblItemsCategories table.

The purpose of all this is to create a many-to-many relationship between the tblItems and tblCategories
tables. The tblItemsCategories table contains two attributes; together, these attributes are the primary key.
In addition, each of these attributes separately is a foreign key to one of the two original tables. The itemNumber
attribute in the tblItemsCategories table is a foreign key that links to the primary key of the tblItems
table. The categoryId attribute in the tblItemsCategories table links to the primary key of the
tblCategories table. Now, there is a one-to-many relationship between the tblItems table (the “one,” or
base table) and the tblItemsCategories table (the “many,” or related table) and a one-to-many relationship
between the tblCategories table (the “one,” or base table) and the tblItemsCategories table (the
“many,” or related table). This, in effect, implies a many-to-many relationship between the two base tables
(tblItems and tblCategories).

Figure 16-8 shows the new tables holding a few items. The sofa (itemNumber 1) in the tblItems table is
associated with the Furniture category (categoryId 5) in the tblCategories table because the first row of
the tblItemsCategories table contains a 1 and a 5. Similarly, the stereo (itemNumber 2) in the
tblItems table is associated with the Electronics category (categoryId 6) in the tblCategories table
because in the tblItemsCategories table there is a row containing the values 2, 6.

tblItems

itemNumber

1

2

3

4

5

itemName

Sofa

Stereo

Sofa with CD player

Table with DVD player

Granpa’s pocket watch

itemPurchaseDate

1/13/2001

2/10/2003

5/24/2005

6/24/2005

12/24/1927

$6,500

$1,200

$8,500

$12,000

$100

tblItemsCategories

itemNumber

1

2

3

3

4

4

5

5

categoryId

5

6

5

6

5

6

2

3

tblCategories

categoryId

1

2

3

4

5

6

7

categoryName

Appliance

Jewelry

Antique

Clothing

Furniture

Electronics

Miscellaneous

$30,000

$15,000

$10,000

$25,000

$5,000

$2,500

$5,000

FIGURE 16-8: SAMPLE ITEMS, CATEGORIES, AND ITEM CATEGORIES: A MANY-TO-MANY RELATIONSHIP

itemPurchasePrice

categoryInsuredAmount

645Recognizing Poor Table Design

The fancy sofa with the built-in CD player (itemNumber 3 in the tblItems table) occurs in two rows in the
tblItemsCategories table, once with a categoryId of 5 (Furniture) and once with a categoryId of 6
(Electronics). Similarly, the table with the DVD player and Grandpa’s pocket watch both belong to multiple categories. It
is the tblItemsCategories table, then, that allows the establishment of a many-to-many relationship between
the two base tables, tblItems and tblCategories.

UNDERSTANDING ONE-TO-ONE RELATIONSHIPS

In a one-to-one relationship, a row in one table corresponds to exactly one row in another table. This type of
relationship is easy to understand, but is the least frequently encountered. When one row in a table corresponds to a
row in another table, the columns could be combined into a single table. A common reason you create a one-to-one
relationship is security. For example, Figure 16-9 shows two tables, tblEmployees and tblSalaries. Each
employee in the tblEmployees table has exactly one salary in the tblSalaries table. The salaries could
have been added to the tblEmployees table as an additional column; the salaries are separate only because you
want some clerical workers to be allowed to view only names, addresses, and other nonsensitive data, so you give them
permission to access only the tblEmployees table. Others who work in payroll or administration can create
queries that allow them to view joined tables that include the salary information.

Another reason to create tables with one-to-one relationships is to avoid lots of empty
columns, or nulls, if a certain subset of columns is applicable only to specific types of
rows in the main table.

You learn more about security issues later in this chapter.

RECOGNIZING POOR TABLE DESIGN

As you create database tables that will hold the data an organization needs, you will encounter many occasions when
the table design, or structure, is inadequate to support the needs of the application. In other words, even if a table con-
tains all the attributes required by a specific application, the structural design of the table may make the application
cumbersome to use (you will see examples of this later) and prone to data errors.

tblEmployees

empId

101

102

103

empLast

Parker

Walters

Shannon

empFirst

Laura

David

Ewa

empDept

3

4

3

empHireDate

4/07/1998

1/19/1999

2/28/2003

tblSalaries

empId

101

102

103

empSalary

$42,500

$28,800

$36,000

FIGURE 16-9: EMPLOYEES AND SALARIES TABLES: A ONE-TO-ONE RELATIONSHIP

TIP�

TIP�

646 Chapter 16 • Using Relational Databases

For example, assume that you have been hired by an Internet-based college to design a database to keep track of its
students. After meeting with the college administrators, you determine that you need to know the following information:

� Students’ names

� Students’ addresses

� Students’ cities

� Students’ states

� Students’ zip codes

� ID numbers for classes in which students are enrolled

� Titles for classes in which students are enrolled

Of course, in a real-life example you could probably think of many other data require-
ments for the college, in addition to those listed here. The number of attributes is small
here for simplicity.

Figure 16-10 contains the Students table. Assume that because the Internet-based college is new, only three
students have already enrolled. Besides the columns you identified as being necessary, notice the addition of the
studentId attribute. Given the earlier discussions, you probably recognize that this is the best choice to use as a
primary key, because many students can have the same names and even the same addresses. Although the table in
Figure 16-10 contains a column for each of the data requirements decided upon with the college administration, the
table is poorly designed and will create many problems for the users of the database.

What if a college administrator wanted to view a list of courses offered by the Internet-based college? Can you answer
that question by reviewing the table? Well, you can see six courses listed for the three students, so you can assume that
at least six courses are offered. But, is it possible that there is also a Psychology course, or a class whose code is
CIS102? You can’t determine this from the table because no students have enrolled in those classes. Wouldn’t it be nice
to know all the classes that are offered by your institution, regardless of whether any students have enrolled in them?

Consider another potential problem: What if student Mason withdraws from the school, and, therefore, his row is
deleted from the table? You would lose some valuable information that really has nothing to do specifically with student

studentId

1

2

3

name

Rodriguez

Jones

Mason

address

123 Oak

234 Elm

456 Pine

city

Schaumburg

Wild Rose

Dubuque

state

IL

WI

IA

zip

60193

54984

52004

class

CIS101

PHI150

BIO200

CHM100

MTH200

HIS202

classTitle

Computer Literacy

Ethics

Genetics

Chemistry

Calculus

World History

FIGURE 16-10: Students TABLE BEFORE NORMALIZATION PROCESS

TIP�

647Understanding Anomalies, Normal Forms, and the Normalization Process

Mason, but that is very important for running the college. For instance, if Mason’s row is deleted from the table, you no
longer know, from the remaining data in the table, whether the college offers any History classes, because Mason was
the only student enrolled in the HIS202 class.

Why is it so important to discuss the deficiencies of the existing table structure? You have probably heard the saying, “Pay
me now or pay me later.” This is especially true as it relates to table design. If you do not take the time to ensure well-
designed table structures when you are initially designing your database, then you (or the users of your database) will
surely spend lots of time later fixing data errors, typing the same information multiple times, and being frustrated by the
inability to cull important subsets of information from the database. If you were really hired to create this database and this
table structure was your solution to the college’s needs, then it is unlikely you would be hired for future database projects.

UNDERSTANDING ANOMALIES, NORMAL FORMS, AND THE
NORMALIZATION PROCESS

Database management programs can maintain all the relationships you need. As you add records to, delete records
from, and modify records within your database tables, the software keeps track of all the relationships you have
established, so that you can view any needed joins any time you want. The software, however, can only maintain useful
relationships if you have planned ahead to create a set of tables that supports all the applications you will need. The
process of designing and creating a set of database tables that satisfies the users’ needs and avoids many potential
problems is normalization.

The normalization process helps you reduce data redundancies and anomalies. Data redundancy is the unnecessary
repetition of data. An anomaly is an irregularity in a database’s design that causes problems and inconveniences.
Three common types of anomalies are:

� Update anomalies

� Delete anomalies

� Insert anomalies

If you look ahead to the college database table in Figure 16-11, you will see an example of an update anomaly, or a
problem that occurs when the data in a table needs to be altered. Because the table contains redundant data, if student
Rodriguez moves to a new residence, you have to change the values stored as address, city, state, and zip in more than
one location. Of course, this table example is small; imagine if additional data were stored about Rodriguez, such as
birth date, e-mail address, major field of study, and previous schools attended.

The database table in Figure 16-10 contains a delete anomaly, or a problem that occurs when a row is deleted. If stu-
dent Jones withdraws from the college, and his entries are deleted from the table, important data regarding the classes
CHM100 and MTH200 are lost.

With an insert anomaly, problems occur when new rows are added to a table. In the table in Figure 16-10, if a new
student named Ramone has enrolled in the college, but has not yet registered for any specific classes, then you can’t
insert a complete row for student Ramone; the only way to do so would be to “invent” at least one phony class for him.

648 Chapter 16 • Using Relational Databases

It would certainly be valuable to the college to be able to maintain data on all enrolled students, regardless of whether
those students have registered for specific classes—for example, the college might want to send catalogs and
registration information to these students.

In some databases, you might be able to enter an incomplete row for a student.

When you normalize a database table, you walk through a series of steps that allows you to remove redundancies and
anomalies. The normalization process involves altering a table so that it satisfies one or more of three normal forms, or
sets of rules for constructing a well-designed database. The three normal forms are:

� First normal form, also known as 1NF, in which you eliminate repeating groups

� Second normal form, also known as 2NF, in which you eliminate partial key dependencies

� Third normal form, also known as 3NF, in which you eliminate transitive dependencies

Each normal form is structurally better than the one preceding it. In any well-designed database, you almost always
want to convert all tables to 3NF.

In a 1970 paper titled “A Relational Model of Data for Large Shared Data Banks,” Dr. E.F.
Codd listed seven normal forms. For business applications, 3NF is usually sufficient, and so
only 1NF through 3NF are discussed in this chapter.

FIRST NORMAL FORM

A table that contains repeating groups is unnormalized. A repeating group is a subset of rows in a database table
that all depend on the same key. A table in 1NF contains no repeating groups of data.

The table in Figure 16-10 violates this 1NF rule. The class and classTitle attributes repeat multiple times for
some of the students. For example, student Rodriguez is taking three classes; her class attribute contains a repeat-
ing group. To remedy this situation, and to transform the table to 1NF, you simply repeat the rows for each repeating
group of data. Figure 16-11 contains the revised table.

The repeating groups have been eliminated from the table in Figure 16-11. However, as you look at the table, you will
notice a problem—the primary key, studentId, is no longer unique for each row in the table. For example, the table

studentId

1

1

1

2

2

3

name

Rodriguez

Rodriguez

Rodriguez

Jones

Jones

Mason

address

123 Oak

123 Oak

123 Oak

234 Elm

234 Elm

456 Pine

city

Schaumburg

Schaumburg

Schaumburg

Wild Rose

Wild Rose

Dubuque

state

IL

IL

IL

WI

WI

IA

zip

60193

60193

60193

54984

54984

52004

class

CIS101

PHI150

BIO200

CHM100

MTH200

HIS202

classTitle

Computer Literacy

Ethics

Genetics

Chemistry

Calculus

World History

FIGURE 16-11: Students TABLE IN 1NF

TIP�

TIP�

649Understanding Anomalies, Normal Forms, and the Normalization Process

in Figure 16-11 now contains three rows in which studentId equals 1. You can fix this problem, and create a pri-
mary key, by simply adding the class attribute to the primary key, creating a compound key. (Other problems still
exist, as you will see later in this chapter.) The table’s key then becomes a combination of studentId and class.
By knowing the studentId and class, you can identify one, and only one, row in the table—for example, a
combination of studentId 1 and class BIO200 identifies a single row. Using the notation discussed earlier in this
chapter, the table in Figure 16-11 can be described as:

tblStudents(studentId, name, address, city, state, zip, class, classTitle)

Both the studentId and class attributes are underlined, showing that they are both part of the key.

When you combine two columns to create a compound key, you are concatenating the
columns.

The table in Figure 16-11 is now in 1NF because there are no repeating groups and the primary key attributes are
defined. Satisfying the “no repeating groups” condition is also called making the columns atomic attributes; that is,
making them as small as possible, containing an undividable piece of data. In 1NF, all values for an intersection of a
row and column must be atomic. Recall the table in Figure 16-10 in which the class attribute for studentId 1
(Rodriguez) contained three entries: CIS101, PHI150, and BIO200. This violated the 1NF atomicity rule because these
three classes represented a set of values rather than one specific value. The table in Figure 16-11 does not repeat this
problem because, for each row in the table, the class attribute contains one and only one value. The same is true for
the other attributes that were part of the repeating group.

Database developers also refer to operations or transactions as atomic transactions when
they appear to execute completely or not at all.

Now, think back to the earlier discussion about why we want to normalize tables in the first place. Look at Figure 16-11.
Are there still redundancies? Are there still anomalies? Yes to both questions. Recall that you want to have your tables in
3NF before actually defining them to the database. Currently, the table in Figure 16-11 is only in 1NF.

In Figure 16-11, notice that Student 1, Rodriguez, is taking three classes. If you were the college employee who was
responsible for typing the data into this table, would you want to type this student’s name, address, city, state, and zip
code for each of the three classes Rodriguez is taking? It is very probable that you may, for one of her classes, type her
name as “Rodrigues” instead of “Rodriguez.” Or, you might misspell the city of “Schaumburg” as “Schamburg” for one
of Rodriguez’s classes. A college administrator looking at the table might not know whether Rodriguez’s correct city of
residence is Schaumburg or Schamburg. If you queried the database to select or count the number of classes being
taken by students residing in “Schaumburg,” one of Rodriguez’s classes would be missed.

Misspelling the student name “Rodriguez” is an example of a data integrity error. You
learn more about this type of error later in this chapter.

TIP�

TIP�

TIP�

650 Chapter 16 • Using Relational Databases

Consider the student Jones, who is taking two classes. If Jones changes his residence, how many times will you need
to retype his new address, state, city, and zip code? What if Jones is taking six classes?

SECOND NORMAL FORM

To improve the design of the table and bring the table in Figure 16-11 to 2NF, you need to eliminate all partial key
dependencies; that is, no column should depend on only part of the key. Restated, this means that for a table to be
in 2NF, it must be in 1NF and all non-key attributes must be dependent on the entire primary key.

In the table in Figure 16-11, the key is a combination of studentId and class. Consider the name attribute.
Does the name “Rodriguez” depend on the entire primary key? In other words, do you need to know that the
studentId is 1 and that the class is CIS101 to determine that the name is “Rodriguez”? No, it is sufficient to
know that the studentId is 1 to know that the name is “Rodriguez.” Therefore, the name attribute is only partially
dependent on the primary key, and so the table violates 2NF. The same is true for the other attributes of address,
city, state, and zip. If you know, for example, that studentId is 3, then you also know that the student’s
city is “Dubuque”; you do not need to know any class codes.

Similarly, examine the classTitle attribute in the first row in the table in Figure 16-11. This attribute has a value
of “Computer Literacy”. In this case, you do not need to know both the studentId and the class to predict the
classTitle “Computer Literacy”. Rather, just the class attribute, which is only part of the compound key, is
required. Looked at in another way, class “PHI150” will always have the associated classTitle “Ethics”, regard-
less of the particular students who are taking that class. So, classTitle represents a partial key dependency.

You bring a table into 2NF by eliminating the partial key dependencies. To accomplish this, you create multiple tables so
that each non-key attribute of each table is dependent on the entire primary key for the specific table within which the
attribute occurs. If the resulting tables are still in 1NF and there are no partial key dependencies, then those tables will
also be in 2NF.

Figure 16-12 contains three tables: tblStudents, tblClasses, and tblStudentClasses. To create the
tblStudents table, you simply take those attributes from the original table that depend on the studentId
attribute, and group them into a new table; name, address, city, state, and zip code all can be determined by the
studentId alone. The primary key to the tblStudents table is studentId. Similarly, you can create the
tblClasses table by simply grouping the attributes from the 1NF table that depend on the class attribute. In this
application, only one attribute from the original table, the classTitle attribute, depends on the class attribute.
The first two Figure 16-12 tables can be notated as:

tblStudents(studentId, name, address, city, state, zip)
tblClasses(class, classTitle)

651Understanding Anomalies, Normal Forms, and the Normalization Process

The tblStudents and tblClasses tables contain all the attributes from the original table. Remember the
prior redundancies and anomalies. Several improvements have occurred:

� You have eliminated the update anomalies. The name “Rodriguez” occurs just once in the
tblStudents table. The same is true for Rodriguez’s address, city, state, and zip code. The
original table contained three rows for student Rodriguez. By eliminating the redundancies, you
have fewer anomalies. If Rodriguez changes her residence, you only need to update one row in
the tblStudents table.

� You have eliminated the insert anomalies. With the new configuration, you can insert a complete
row into the tblStudents table even if the student has not yet enrolled in any classes.
Similarly, you can add a complete row for a new class offering to the tblClasses table even
though no students are currently taking the class.

� You have eliminated the delete anomalies. Recall from the original table that student Mason was
the only student taking HIS202. This caused a delete anomaly because the HIS202 class would
disappear if student Mason was removed. Now, if you delete Mason from the tblStudents
table in Figure 16-12, the HIS202 class remains in the tblClasses list.

If you create the first two tables shown in Figure 16-12, you have eliminated many of the problems associated with the
original version. However, if you have those two tables alone, you have lost some important information that you
originally had while at 1NF—specifically, which students are taking which classes or which classes are being taken by
which students. When breaking up a table into multiple tables, you need to consider the type of relationship among the
resulting tables—you are designing a relational database, after all.

tblStudents

studentId

1

2

3

name

Rodriguez

Jones

Mason

tblClasses

class

CIS101

PHI150

BIO200

CHM100

MTH200

HIS202

classTitle

Computer Literacy

Ethics

Genetics

Chemistry

Calculus

World History

address

123 Oak

234 Elm

456 Pine

city

Schaumburg

Wild Rose

Dubuque

state

IL

WI

IA

zip

60193

54984

52004

tblStudentClasses

studentId

1

1

1

2

2

3

class

CIS101

PHI150

BIO200

CHM100

MTH200

HIS202

FIGURE 16-12: Students TABLE IN 2NF

652 Chapter 16 • Using Relational Databases

You know that the Internet-based college application requires that you keep track of which students are taking which
classes. This implies a relationship between the tblStudents and tblClasses tables. Your job is to determine
what type of relationship exists between the two tables. Recall from earlier in the chapter that the two most common
types of relationships are one-to-many and many-to-many. This specific application requires that one specific student
can enroll in many different classes, and that one specific class can be taken by many different students. Therefore,
there is a many-to-many relationship between the tables tblStudents and tblClasses.

As you learned in the earlier example of categorizing insured items, you create a many-to-many relationship between
two tables by creating a third table that contains the primary keys from the two tables that you want to relate. In this
case, you create the tblStudentClasses table in Figure 16-12 as:

tblStudentClasses(studentId, class)

If you examine the rows in the tblStudentClasses table, you can see that the student with studentId 1,
Rodriguez, is enrolled in three classes; studentId 2, Jones, is taking two classes; and studentId 3, Mason, is
enrolled in only one class. Finally, the table requirements for the Internet-based college have been fulfilled.

Or have they? Earlier, you saw the many redundancies and anomalies that were eliminated by structuring the tables into
2NF, and it is certainly true that the 2NF table structures result in a much “better” database than the 1NF structures.
But look again at the tblStudents table in Figure 16-12. What if, as the college expands, you need to add 50 new
students to this table, and all of the new students reside in Schaumburg, IL? If you were the data-entry person, would
you want to type the city of “Schaumburg”, the state of “IL”, and the zip code of “60193” 50 times? This data is
redundant, and you can improve the design of the tables to eliminate this redundancy.

THIRD NORMAL FORM

3NF requires that a table be in 2NF and that it have no transitive dependencies. A transitive dependency occurs when
the value of a non-key attribute determines, or predicts, the value of another non-key attribute. Clearly, the
studentId attribute of the tblStudents table in Figure 16-12 is a determinant—if you know a particular
studentId value, you can also know that student’s name, address, city, state, and zip. But this is not
considered a transitive dependency because the studentId attribute is the primary key for the tblStudents
table, and, after all, the primary key’s job is to determine the values of the other attributes in the row.

There is a problem, however, if a non-key attribute determines another non-key attribute. In the Figure 16-12
tblStudents table, there are five non-key attributes: name, address, city, state, and zip.

The name is a non-key attribute. If you know the value of name is “Rodriguez”, do you also know the one specific address
where Rodriguez resides? In other words, is this a transitive dependency? No, it isn’t. Even though only one student is named
“Rodriguez” now, there may be many more in the future. So, though it may be tempting to consider that the name attribute is
a determinant of address, it isn’t. Looked at another way, if your boss said, “Look at the tblStudents table and tell
me Jones’ address,” you wouldn’t be able to do so if you had 10 students named “Jones”.

The address attribute is a non-key attribute. Does it predict anything? If you know the value of address is “20 N. Main
Street”, can you, for instance, determine the name of the student who is associated with that address? No, because in the

653Understanding Anomalies, Normal Forms, and the Normalization Process

future, you might have many students who live at “20 N. Main Street,” but they might live in different cities, or you might have
two students who live at the same address in the same city. Therefore,address does not cause a transitive dependency.

Similarly, the city and state attributes are not keys, but they also are not determinants because knowing their
values alone is not sufficient to predict another non-key attribute value. You might argue that if you know a city’s name,
you know the state, but many states contain cities named, for example, Union or Springfield.

But what about the non-key attribute zip? If you know, for example, that the zip code is 60193, can you determine
the value of any other non-key attributes? Yes, a zip code of 60193 indicates that the city is Schaumburg and the
state is IL. This is the “culprit” that is causing the redundancies with regard to the city and state attributes.
The attribute zip is a determinant because it determines city and state; therefore, the tblStudents table
contains a transitive dependency and is not in 3NF.

To convert the tblStudents table to 3NF, simply remove the attributes that depend on, or are functionally depen-
dent on, the zip attribute. For example, if attribute zip determines attribute city, then attribute city is considered
to be functionally dependent on attribute zip. So, as Figure 16-13 shows, the new tblStudents table is defined as:

tblStudents(studentId, name, address, zip)

A functionally dependent relationship is sometimes written using an arrow that extends
from the depended-upon attribute to the dependent attribute—for example, zip → city.

Figure 16-13 also shows the tblZips table, which is defined as:

tblZips(zip, city, state)

tblStudents

studentId

1

2

3

name

Rodriguez

Jones

Mason

tblClasses

class

CIS101

PHI150

BIO200

CHM100

MTH200

HIS202

classTitle

Computer Literacy

Ethics

Genetics

Chemistry

Calculus

World History

address

123 Oak

234 Elm

456 Pine

zip

60193

54984

52004

tblStudentClasses

studentId

1

1

1

2

2

3

class

CIS101

PHI150

BIO200

CHM100

MTH200

HIS202

tblZips

zip

60193

54984

52004

city

Schaumburg

Wild Rose

Dubuque

state

IL

WI

IA

FIGURE 16-13: THE COMPLETE Students DATABASE

TIP�

654 Chapter 16 • Using Relational Databases

The new tblZips table is related to the tblStudents table by the zip attribute. Using the two tables together,
you can determine, for example, that studentId 3, Mason, in the tblStudents table resides in the city of
Dubuque and the state of IA, attributes stored in the tblZips table. When you encounter a table with a functional
dependence, you almost always can reduce data redundancy by creating two tables, as in Figure 16-13. With the new
configuration, a data-entry operator must still type a zip code for each student, but the drudgery of typing and the
possibility of introducing data-entry errors in city and state names for each student is eliminated.

Is the students-to-zip-codes relationship a one-to-many relationship, a many-to-many relationship, or a one-to-one
relationship? You know that one row in the tblZips table can relate to many rows in the tblStudents table—
that is, many students can reside in zip code 60193. However, the opposite is not true—one row in the
tblStudents table (a particular student) cannot relate to many rows in the tblZips table, because a particular
student can only reside in one zip code. Therefore, there is a one-to-many relationship between the base table,
tblZips, and the related table tblStudents. The link to the relationship is the zip attribute, which is a primary
key in the tblZips table and a foreign key in the tblStudents table.

This was a lot of work, but it was worth it. The tables are in 3NF, and the redundancies and anomalies that would have
contributed to an unwieldy, error-prone, inefficient database design have been eliminated.

Recall that the definition of 3NF is 2NF plus no transitive dependencies. What if you were considering changing the
structure of the tblStudents table by adding an attribute to hold the students’ Social Security numbers (ssn)? If
you know a specific ssn value, you also know a particular student name, address, and so on; in other words, a
specific value for ssn determines one and only one row in the tblStudents table. No two students have the same
Social Security number (ruling out identity theft, of course). However, studentId is the primary key; ssn is a non-
key determinant, which, by definition, seems to violate the requirements of 3NF. However, if you add ssn to the
tblStudents table, the table is still in 3NF because a determinant is allowed in 3NF if the determinant is also a
candidate key. Recall that a candidate key is an attribute that could qualify as the primary key but has not been used as
the primary key. In the example concerning the zip attribute of the tblStudents table (Figure 16-11), zip was a
determinant of the city and state attributes. Therefore, the tblStudents table was not in 3NF because many
rows in the tblStudents table can have the same value for zip, meaning zip is not a candidate key. The situa-
tion with the ssn column is different because ssn could be used as a primary key for the tblStudents table.

In general, you try to create a database in the highest normal form. However, when data
items are stored in multiple tables, it takes longer to access related information than when it
is all stored in a single table. So, sometimes, for performance, you might denormalize a
table, or reduce it to a lower normal form, by placing some repeated information back into
the table. Deciding on the best form in which to store a body of data is a sophisticated art.

In summary:

� A table is in first normal form when there are no repeating groups.

� A table is in second normal form if it is in first normal form and no non-key column depends on
just part of the primary key.

� A table is in third normal form if it is in second normal form and the only determinants are
candidate keys.

TIP�

655Database Performance and Security Issues

Not every table starts out denormalized. For example, a table might already be in third normal
form when you first encounter it. On the other hand, a table might not be normalized, but after
you put it in 1NF, you may find that it also satisfies the requirements for 2NF and 3NF.

DATABASE PERFORMANCE AND SECURITY ISSUES

Frequently, a company’s database is its most valuable resource. If buildings, equipment, or inventory items are
damaged or destroyed, they can be rebuilt or re-created. However, the information contained in a database is often
irreplaceable. A company that has spent years building valuable customer profiles cannot re-create them at the drop of
a hat; a company that loses billing or shipment information might not simply lose the current orders—it might also lose
the affected customers forever as they defect to competitors who can serve them better. Keeping an organization’s data
secure is often the most economically valuable responsibility in the company.

You can study entire books to learn all the details involved in data security. The major issues include:

� Providing data integrity

� Recovering lost data

� Avoiding concurrent update problems

� Providing authentication and permissions

� Providing encryption

PROVIDING DATA INTEGRITY

Database software provides the means to ensure that data integrity is enforced; a database has data integrity when it
follows a set of rules that makes the data accurate and consistent. For example, you might indicate that a quantity in an
inventory record can never be negative, or that a price can never be higher than a predetermined value. In addition, you
can enforce integrity between tables; for example, you might prohibit entering an insurance plan code for an employee
if the insurance plan code is not one of the types offered by the organization.

RECOVERING LOST DATA

An organization’s data can be destroyed in many ways—legitimate users can make mistakes, hackers or other
malicious users can enter invalid data, and hardware problems can wipe out records or entire databases. Recovery is
the process of returning the database to a correct form that existed before an error occurred.

Periodically making a backup copy of a database and keeping a record of every transaction together provide one of the
simplest approaches to recovery. When an error occurs, you can replace the database with an error-free version that
was saved at the last backup. Usually, there have also been changes to the database, called transactions, since the last
backup; if so, you must then reapply those transactions.

Many organizations keep a copy of their data off-site (sometimes hundreds or thousands
of miles away) so that if a disaster such as a fire or flood destroys data, the remotely
stored copy can serve as a backup.

TIP�

TIP�

656 Chapter 16 • Using Relational Databases

AVOIDING CONCURRENT UPDATE PROBLEMS

Large databases are accessible by many users at a time. The database is stored on a central computer, and users work
at terminals in diverse locations. For example, several order takers might be able to update customer and inventory
tables concurrently. A concurrent update problem occurs when two database users need to make changes to the
same record at the same time. Suppose two order processors take a phone order for item number 101 in an inventory
file. Each gets a copy of the quantity in stock—for example, 25—loaded into the memory of her terminal. Each accepts
her customer’s order and subtracts 1 from inventory. Now, in each local terminal, the quantity is 24. One order gets
written to the central database, then the other, and the final inventory is 24, not 23 as it should be.

Several approaches can be used to avoid this problem. With one approach, a lock can be placed on one record the
moment it is accessed. A lock is a mechanism that prevents changes to a database for a period of time. While one
order taker makes a change, the other cannot access the record. Potentially, a customer on the phone with the second
order taker could be inconvenienced while the first order taker maintains the lock, but the data in the inventory table
would remain accurate.

A persistent lock is a long-term database lock required when users want to maintain a
consistent view of their data while making modifications over a long transaction.

Another approach to preventing the concurrent update problem is to not allow the users to update the original database
at all, but to have them store transactions, which then can be applied to the database all at once, or in a batch, at a
later time—perhaps once or twice a day or after business hours. The problem with this approach is that as soon as the
first transaction occurs and until the batch processing takes place, the original database is out of date. For example, if
several order takers place orders for the same item, the item might actually be out of stock. However, none of the order
takers will realize the item is unavailable because the database will not reflect the orders until it is updated with the
current batch of transactions.

PROVIDING AUTHENTICATION AND PERMISSIONS

Most database software can authenticate that those who are attempting to access an organization’s data are legitimate
users. Authentication techniques include storing and verifying passwords or even using physical characteristics, such
as fingerprints or voice recognition, before users can view data. When a user is authenticated, the user typically
receives authorization to all or part of the database. The permissions assigned to a user indicate which parts of the
database the user can view, and which parts he or she can change or delete. For example, an order taker might not be
allowed to view or update personnel data, whereas a clerk in the personnel office might not be allowed to alter
inventory data.

PROVIDING ENCRYPTION

Database software can be used to encrypt data. Encryption is the process of coding data into a format that human
beings cannot read. If unauthorized users gain access to database files, the data will be in a coded format that is
useless to them. Only authorized users see the data in a readable format.

TIP�

Chapter Summary 657

CHAPTER SUMMARY

� A database holds a group of files that an organization needs to support its applications. In a database,

the files often are called tables because you can arrange their contents in rows and columns. A value that

uniquely identifies a record is called a primary key, a key field, or a key for short. Database management

software is a set of programs that allows users to create table descriptions; identify keys; add records to,

delete records from, and update records within a table; arrange records so they are sorted by different

fields; write questions that select specific records from a table for viewing; write questions that combine

information from multiple tables; create reports and forms; and keep data secure by employing

sophisticated security measures.

� Creating a useful database requires a lot of planning and analysis. You must decide what data will be

stored, how that data will be divided between tables, and how the tables will interrelate.

� In most tables you create for a database, you want to identify a column, or possibly a combination of

columns, as the table’s key column or field, also called the primary key. The primary key is important

because you can configure your software to prevent multiple records from containing the same value in

this column, thus avoiding data-entry errors. In addition, you can sort your records in primary key order

before displaying or printing them, and you need to use this column when setting up relationships

between the table and others that will become part of the same database.

� A shorthand way to describe a table is to use the table name followed by parentheses containing all the

field names, with the primary key underlined.

� Entering data into an already created table requires a good deal of time and accurate typing. Depending

on the application, the contents of the tables might be entered over the course of many months or years

by any number of data-entry personnel. Deleting records from and modifying records within a database

table are relatively easy tasks. In most organizations, most of the important data is in a constant state

of change.

� Database management software generally allows you to sort a table based on any column, letting you

view your data in the way that is most useful to you. After rows are sorted, they usually can be grouped.

Chapter 16 • Using Relational Databases658

� Frequently, you want to cull subsets of data from a table you have created. The questions that cause the

database software to extract the appropriate records from a table and specify the fields to be viewed are

called queries. Depending on the software you use, you might create a query by filling in blanks, a

process called query by example, or by writing statements similar to those in many programming lan-

guages. The most common language that database administrators use to access data in their tables is

Structured Query Language, or SQL.

� Most database applications require many tables, and these applications also require that the tables be
related. The three types of relationships are one-to-many, many-to-many, and one-to-one.

� As you create database tables that will hold the data an organization needs, you will encounter many

situations in which the table design, or structure, is inadequate to support the needs of the application.

� Normalization is the process of designing and creating a set of database tables that satisfies the users’

needs and avoids many potential problems. The normalization process helps you reduce data

redundancies, update anomalies, delete anomalies, and insert anomalies. The normalization process

involves altering a table so that it satisfies one or more of three normal forms, or rules, for constructing a

well-designed database. The three normal forms are first normal form, also known as 1NF, in which you

eliminate repeating groups; second normal form, also known as 2NF, in which you eliminate partial key

dependencies; and third normal form, also known as 3NF, in which you eliminate transitive

dependencies.

� Frequently, a company’s database is its most valuable resource. Major security issues include providing

data integrity, recovering lost data, avoiding concurrent update problems, providing authentication and

permissions, and providing encryption.

KEY TERMS

A database holds a group of files, or tables, that an organization needs to support its applications.

A database table contains data in rows and columns.

An entity is one record or row in a database table.

An attribute is one field or column in a database table.

A primary key, or key for short, is a field or column that uniquely identifies a record.

A compound key, also known as a composite key, is a key constructed from multiple columns.

Key Terms 659

Database management software is a set of programs that allows users to create table descriptions; identify key fields;
add records to, delete records from, and update records within a table; arrange records so they are sorted by different
fields; write questions that select specific records from a table for viewing; write questions that combine information
from multiple tables; create reports and forms; and keep data secure by employing sophisticated security measures.

A relational database contains a group of tables from which you can make connections to produce virtual tables.

Immutable means not changing during normal operation.

Candidate keys are columns or attributes that could serve as a primary key in a table.

After you choose a primary key from among candidate keys, the remaining candidate keys become alternate keys.

A query is a question asked using syntax that the database software can understand. Its purpose is often to display
a subset of data.

Query by example is the process of creating a query by filling in blanks.

Structured Query Language, or SQL, is a commonly used language for accessing data in database tables.

The SELECT-FROM-WHERE SQL statement is the command that selects the fields you want to view from a specific
table where one or more conditions are met.

A view is a particular way of looking at a database.

A relationship is a connection between two tables.

A join operation, or a join, connects two tables based on the values in a common column.

A join column is the column on which two tables are connected.

A one-to-many relationship is one in which one row in a table can be related to many rows in another table. It is the
most common type of relationship among tables.

The base table in a one-to-many relationship is the “one” table.

The related table in a one-to-many relationship is the “many” table.

A non-key attribute is any column in a table that is not a key.

A foreign key is a column that is not a key in a table, but contains an attribute that is a key in a related table.

A many-to-many relationship is one in which multiple rows in each of two tables can correspond to multiple rows in
the other.

In a one-to-one relationship, a row in one table corresponds to exactly one row in another table.

In a database, empty columns are nulls.

Normalization is the process of designing and creating a set of database tables that satisfies the users’ needs and
avoids redundancies and anomalies.

Chapter 16 • Using Relational Databases660

Data redundancy is the unnecessary repetition of data.

An anomaly is an irregularity in a database’s design that causes problems and inconveniences.

An update anomaly is a problem that occurs when the data in a table needs to be altered; the result is repeated data.

A delete anomaly is a problem that occurs when a row in a table is deleted; the result is loss of related data.

An insert anomaly is a problem that occurs when new rows are added to a table; the result is incomplete rows.

Normal forms are rules for constructing a well-designed database.

First normal form, also known as 1NF, is the normalization form in which you eliminate repeating groups.

Second normal form, also known as 2NF, is the normalization form in which you eliminate partial key dependencies.

Third normal form, also known as 3NF, is the normalization form in which you eliminate transitive dependencies.

An unnormalized table contains repeating groups.

A repeating group is a subset of rows in a database table that all depend on the same key.

To concatenate columns is to combine columns to produce a compound key.

Atomic attributes or columns are as small as possible so as to contain an undividable piece of data.

Atomic transactions appear to execute completely or not at all.

A partial key dependency occurs when a column in a table depends on only part of the table’s key.

A transitive dependency occurs when the value of a non-key attribute determines, or predicts, the value of another
non-key attribute.

An attribute is functionally dependent on another if it can be determined by the other attribute.

You might denormalize a table, or place it in a lower normal form, by placing some repeated information back into it.

A database has data integrity when it follows a set of rules that makes the data accurate and consistent.

Recovery is the process of returning the database to a correct form that existed before an error occurred.

A concurrent update problem occurs when two database users need to make changes to the same record at the
same time.

A lock is a mechanism that prevents changes to a database for a period of time.

A persistent lock is a long-term database lock required when users want to maintain a consistent view of their data
while making modifications over a long transaction.

Review Questions 661

A batch is a group of transactions applied all at once.

Authentication techniques include storing and verifying passwords or even using physical characteristics, such as
fingerprints or voice recognition, before users can view data.

The permissions assigned to a user indicate which parts of the database the user can view, and which parts he or she can
change or delete.

Encryption is the process of coding data into a format that human beings cannot read.

REVIEW QUESTIONS

1. A field or column that uniquely identifies a row in a database table is a(n) .

a. variable
b. identifier
c. principal
d. key

2. Which of the following is not a feature of most database management software?

a. sorting records in a table
b. creating reports
c. preventing poorly designed tables
d. relating tables

3. Before you can enter any data into a database table, you must do all of the following except
.

a. determine the attributes the table will hold
b. provide names for each attribute
c. provide data types for each attribute
d. determine maximum and minimum values for each attribute

4. Which of the following is the best key for a table containing a landlord’s rental properties?

a. numberOfBedrooms
b. amountOfMonthlyRent
c. streetAddress
d. tenantLastName

Chapter 16 • Using Relational Databases662

5. A table’s notation is: tblClients(socialSecNum, lastName, firstName,
clientNumber, balanceDue). You know that .

a. the primary key is socialSecNum
b. the primary key is clientNumber
c. there are four candidate keys
d. there is at least one numeric attribute

6. You can extract subsets of data from database tables using a(n) .

a. query
b. sort
c. investigation
d. subroutine

7. A database table has the structure tblPhoneOrders(orderNum, custName,
custPhoneNum, itemOrdered, quantity). Which SQL statement could be used to extract
all attributes for orders for item AB3333?

a. SELECT * FROM tblPhoneOrders WHERE itemOrdered = “AB3333”
b. SELECT tblPhoneOrders WHERE itemOrdered = “AB3333”
c. SELECT itemOrdered FROM tblPhoneOrders WHERE = “AB3333”
d. Two of these are correct.

8. Connecting two database tables based on the value of a column (producing a virtual view of a new
table) is a operation.

a. merge
b. concatenate
c. join
d. met

9. Heartland Medical Clinic maintains a database to keep track of patients. One table can be
described as: tblPatients(patientId, name, address, primaryPhysicianCode).
Another table contains physician codes along with other physician data; it is described as
tblPhysicians(physicianCode, name, officeNumber, phoneNumber,
daysOfWeekInOffice). In this example, the relationship is .

a. one-to-one
b. one-to-many
c. many-to-many
d. impossible to determine

Review Questions 663

10. Edgerton Insurance Agency sells life, home, health, and auto insurance policies. The agency main-
tains a database containing a table that holds customer data—each customer’s name, address,
and types of policies purchased. For example, customer Michael Robertson holds life and auto
policies. Another table contains information on each type of policy the agency sells—coverage
limits, term, and so on. In this example, the relationship is .

a. one-to-one
b. one-to-many
c. many-to-many
d. impossible to determine

11. Kratz Computer Repair maintains a database that contains a table that holds job information about
each repair job the company agrees to perform. The jobs table is described as: tblJobs(jobId,
dateStarted, customerId, technicianId, feeCharged). Each job has a unique ID
number that serves as a key to this table. The customerId and technicianId columns in the
table each link to other tables where customer information, such as name, address, and phone
number, and technician information, such as name, office extension, and hourly rate, are stored.
When the tblJobs and tblCustomers tables are joined, which is the base table?

a. tblJobs
b. tblCustomers
c. tblTechnicians
d. a combination of two tables

12. When a column that is not a key in a table contains an attribute that is a key in a related table, the
column is called a .

a. foreign key
b. merge column
c. internal key
d. primary column

13. The most common reason to construct a one-to-one relationship between two tables is
.

a. to save money
b. to save time
c. for security purposes
d. so that neither table is considered “inferior”

Chapter 16 • Using Relational Databases664

14. The process of designing and creating a set of database tables that satisfies the users’ needs and
avoids many potential problems is .

a. purification
b. normalization
c. standardization
d. structuring

15. The unnecessary repetition of data is called data .

a. amplification
b. echoing
c. redundancy
d. mining

16. Problems with database design are caused by irregularities known as .

a. glitches
b. anomalies
c. bugs
d. abnormalities

17. When you place a table into first normal form, you have eliminated .

a. transitive dependencies
b. partial key dependencies
c. repeating groups
d. all of the above

18. When you place a table into third normal form, you have eliminated .

a. transitive dependencies
b. partial key dependencies
c. repeating groups
d. all of the above

Find the Bugs 665

19. If a table contains no repeating groups, but a column depends on part of the table’s key, the table
is in normal form.

a. first
b. second
c. third
d. fourth

20. Which of the following is not a database security issue?

a. providing data integrity
b. recovering lost data
c. providing normalization
d. providing encryption

FIND THE BUGS

1. Create tables as needed so the following employee table is in 3NF.

2. Suppose you have started a collection of old records. You want to store them in a database so you
can select records by title, artist, or condition of the recording. Create tables as needed so the
following record collection table is in 3NF.

empID lastName firstName dept floor supervisor payRate

123 Henderson Robert HR 1 Rollings 11.00

124 Barker Anne MKTG 2 Jenkins 23.50

145 Lee Benjamin MFG 3 Liu 15.00

157 Davis Robert MFG 3 Liu 14.75

178 Nance Cody MKTG 2 Jenkins 24.00

184 Rice Paula HR 1 Rollings 12.45

189 Lee Anne MFG 3 Liu 15.55

243 Saunders Marcie MKTG 2 Jenkins 25.75

256 Freize Michael MFG 3 Liu 15.00

Chapter 16 • Using Relational Databases666

EXERCISES

1. The Lucky Dog Grooming Parlor maintains data about each of its clients in a table named
tblClients. Attributes include each dog’s name, breed, and owner’s name, all of which are text
attributes. The only numeric attributes are an ID number assigned to each dog and the balance due
on services. The table structure is tblClients(dogID, name, breed, owner,
balanceDue). Write the SQL statement that would select each of the following:

a. names and owners of all Great Danes
b. owners of all dogs with balance due over $100
c. all attributes of dogs named “Fluffy”
d. all attributes of poodles whose balance is no greater than $50

2. Consider the following table with the structure tblRecipes(recipeName,
timeToPrepare, ingredients). If necessary, redesign the table so it satisfies each of the
following:

a. 1NF
b. 2NF
c. 3NF

idNum title artists condition

11 Ebony and Ivory Paul McCartney Good

Stevie Wonder

12 Yesterday Paul McCartney Excellent

John Lennon

13 Just a Gigolo Louis Prima Fair

14 I’ve Got You Under My Skin Peggy Lee Fair

15 I’ve Got You Under My Skin Louis Prima Excellent

Keely Smith

Exercises 667

3. Consider the following table with the structure tblFriends(lastName, firstName,
address, birthday, phoneNumbers, emailAddresses). If necessary, redesign the table
so it satisfies each of the following:

a. 1NF
b. 2NF
c. 3NF

lastName firstName address birthday phoneNumbers emailAddresses

Gordon Alicia 34 Second St. 3/16 222-4343 agordon@mail.com

349-0012

Washington Edward 12 Main St. 12/12 222-7121 ewash@mail.com

coolguy@earth.com

Davis Olivia 55 Birch Ave. 10/3 222-9012 olivia@abc.com

333-8788

834-0112

recipeName timeToPrepare ingredients

Baked lasagna 1 hour 1 pound lasagna noodles
1⁄2 pound ground beef

16 ounces tomato sauce
1⁄2 pound ricotta cheese
1⁄2 pound parmesan cheese

1 onion

Fruit salad 10 minutes 1 apple

1 banana

1 bunch grapes

1 pint blueberries

Marinara sauce 30 minutes 16 ounces tomato sauce
1⁄4 pound parmesan cheese

1 onion

Chapter 16 • Using Relational Databases668

4. You have created the following table to keep track of your DVD collection. The structure is
tblDVDs(movie, year, stars). If necessary, redesign the table so it satisfies each of the
following:

a. 1NF
b. 2NF
c. 3NF

5. The Midtown Ladies Auxiliary is sponsoring a scholarship for local high-school students. They have
constructed a table with the structure tblScholarshipApplicants(appId, lastName,
hsAttended, hsAddress, gpa, honors, clubsActivities). The hsAttended and
hsAddress attributes represent high school attended and its street address, respectively. The
gpa attribute is a grade point average. The honors attribute holds awards received, and the
clubsActivities attribute holds the names of clubs and activities in which the student partici-
pated. If necessary, redesign the table so it satisfies each of the following:

a. 1NF
b. 2NF
c. 3NF

movie year stars

Jerry McGuire 1996 Tom Cruise

Renee Zellweger

Chicago 2002 Renee Zellweger

Catherine Zeta-Jones

Richard Gere

Risky Business 1983 Tom Cruise

Rebecca DeMornay

Exercises 669

6. Assume you want to create a database to store information about your music collection. You want
to be able to query the database for each of the following attributes:

� A particular title (for example, Tapestry or Beethoven’s Fifth Symphony)

� Artist (for example, Carole King or the Chicago Symphony Orchestra)

� Format of the recording (for example, CD or tape)

� Style of music (for example, rock or classical)

� Year recorded

� Year acquired as part of your collection

� Recording company

� Address of the recording company

Design the tables you would need so they are all in third normal form. Create at least five sample
data records for each table you create.

appId lastName hsAttended hsAddress gpa honors clubsActivities

1 Wong Central 1500 Main 3.8 Citizenship award Future teachers

Class officer Model airplane

Soccer MVP Newspaper

2 Jefferson Central 1500 Main 4.0 Valedictorian Pep

Citizenship award Yearbook

Homecoming court

Football MVP

3 Mitchell Highland 200 Airport 3.6 Class officer Pep

Homecoming court Future teachers

4 O’Malley St. Joseph 300 Fourth 4.0 Valedictorian Pep

Chess

5 Abel Central 1500 Main 3.7 Citizenship award Yearbook

Class officer

Chapter 16 • Using Relational Databases670

7. Design a group of database tables for the St. Charles Riding Academy. The Academy teaches
students to ride by starting them on horses that have been ranked as to their manageability, using
a numeric score from 1 to 4. The data you need to store includes the following attributes:

� Student’s last name

� Student’s first name

� Student’s address

� Student’s age

� Student’s emergency contact information—name and phone number

� Student’s riding level—1, 2, 3, or 4

� Each horse’s name

� Horse’s age

� Horse’s color

� Horse’s manageability level—1, 2, 3, or 4

� Horse’s veterinarian’s name

� Horse’s veterinarian’s phone number

Design the tables you would need so they are all in third normal form. Create at least five sample
data records for each table you create.

DETECTIVE WORK

1. What is data mining? Is it a good or bad thing?

2. How many free databases can you locate on the Web? What types of data do they offer?

3. What organization uses the world’s most heavily used database system?

Up for Discussion 671

UP FOR DISCUSSION

1. In this chapter, a phone book was mentioned as an example of a database you use frequently.
Name some other examples.

2. Suppose you have authority to browse your company’s database. The company keeps information
on each employee’s past jobs, health insurance claims, and any criminal record. Also suppose that
there is an employee at the company whom you want to ask out on a date. Should you use the
database to obtain information about the person? If so, are there any limits on the data you should
use? If not, should you be allowed to pay a private detective to discover similar data?

3. The FBI’s National Crime Information Center (NCIC) is a computerized database of criminal justice
information (for example, data on criminal histories, fugitives, stolen property, and missing
persons). It is available to federal, state, and local law enforcement and other criminal justice
agencies 24 hours a day, 365 days a year. It is almost inevitable that such large systems will
contain some inaccuracies. Various studies have indicated that perhaps less than half the records
in this database are complete, accurate, and unambiguous. Do you approve of this system or object
to it? Would you change your mind if there were no inaccuracies? Is there a level of inaccuracy you
would find acceptable to realize the benefits such a system provides?

4. What type of data might be useful to a community in the wake of a natural disaster? Who should
pay for the expense of gathering, storing, and maintaining this data?

