
2
After studying Chapter 2, you should be able to:

� Describe the features of unstructured spaghetti code

� Describe the three basic structures—sequence, selection, and loop

� Use a priming read

� Appreciate the need for structure

� Recognize structure

� Describe three special structures—case, do-while, and do-until

UNDERSTANDING STRUCTURE

39

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 39

40 Chapter 2 • Understanding Structure

UNDERSTANDING UNSTRUCTURED SPAGHETTI CODE

Professional computer programs usually get far more complicated than the number-doubling program from Chapter 1,
shown in Figure 2-1.

Imagine the number of instructions in the computer program that NASA uses to calculate the launch angle of a space
shuttle, or in the program the IRS uses to audit your income tax return. Even the program that produces a paycheck for
you on your job contains many, many instructions. Designing the logic for such a program can be a time-consuming
task. When you add several thousand instructions to a program, including several hundred decisions, it is easy to create
a complicated mess. The popular name for logically snarled program statements is spaghetti code. The reason for the
name should be obvious—the code is as confusing to read as following one noodle through a plate of spaghetti.

For example, suppose you are in charge of admissions at a college, and you’ve decided you will admit prospective stu-
dents based on the following criteria:

� You will admit students who score 90 or better on the admissions test your college gives, as long
as they are in the upper 75 percent of their high-school graduating class. (These are smart stu-
dents who score well on the admissions test. Maybe they didn’t do so well in high school
because it was a tough school, or maybe they have matured.)

� You will admit students who score at least 80 on the admissions test if they are in the upper
50 percent of their high-school graduating class. (These students score fairly well on the test,
and do fairly well in school.)

� You will admit students who score as low as 70 on your test if they are in the top 25 percent of
their class. (Maybe these students don’t take tests well, but obviously they are achievers.)

Table 2-1 summarizes the admission requirements.

get inputNumber
calculatedAnswer = inputNumber * 2
print calculatedAnswer

FIGURE 2-1: NUMBER-DOUBLING PROGRAM

TABLE 2-1: ADMISSION REQUIREMENTS

Test score High-school rank

90–100 Upper 75 percent (from 25th to 100th percentile)

80–89 Upper half (from 50th to 100th percentile)

70–79 Upper 25 percent (from 75th to 100th percentile)

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 40

41Understanding Unstructured Spaghetti Code

The flowchart for this program could look like the one in Figure 2-2. This kind of flowchart is an example of spaghetti
code. Many computer programs (especially older computer programs) bear a striking resemblance to the flowchart in
Figure 2-2. Such programs might “work”—that is, they might produce correct results—but they are very difficult to
read and maintain, and their logic is difficult to follow.

FIGURE 2-2: SPAGHETTI CODE EXAMPLE

read
testScore,
classRank

print
“Reject”

print
“Accept”

No

No

Yes

Yes

Yes

No No Yes

No

Yes
No

Yes

start

testScore
>= 90?

classRank
>= 25?

testScore
>= 80?

classRank
>= 50?

testScore
>= 70?

classRank
>= 75?

stop

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 41

42 Chapter 2 • Understanding Structure

UNDERSTANDING THE THREE BASIC STRUCTURES

In the mid-1960s, mathematicians proved that any program, no matter how complicated, can be constructed using one
or more of only three structures. A structure is a basic unit of programming logic; each structure is a sequence, selec-
tion, or loop. With these three structures alone, you can diagram any task, from doubling a number to performing brain
surgery. You can diagram each structure with a specific configuration of flowchart symbols.

The first of these structures is a sequence, as shown in Figure 2-3. With a sequence structure, you perform an action
or task, and then you perform the next action, in order. A sequence can contain any number of tasks, but there is no
chance to branch off and skip any of the tasks. Once you start a series of actions in a sequence, you must continue
step-by-step until the sequence ends.

The second structure is called a selection structure or decision structure, as shown in Figure 2-4. With this struc-
ture, you ask a question, and, depending on the answer, you take one of two courses of action. Then, no matter which
path you follow, you continue with the next task.

FIGURE 2-4: SELECTION STRUCTURE

FIGURE 2-3: SEQUENCE STRUCTURE

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 42

43Understanding the Three Basic Structures

Some people call the selection structure an if-then-else because it fits the following statement:

ifƒsomeConditionƒisƒtrueƒthen
ƒƒƒdoƒoneProcess
else
ƒƒƒdoƒtheOtherProcess

For example, while cooking you may decide the following:

ifƒweƒhaveƒbrownSugarƒthen
ƒƒƒuseƒbrownSugar
else
ƒƒƒuseƒwhiteSugar

Similarly, a payroll program might include a statement such as:

ifƒhoursWorkedƒisƒmoreƒthanƒ40ƒthen
ƒƒƒcalculateƒregularPayƒandƒovertimePay
else
ƒƒƒcalculateƒregularPay

The previous examples can also be called dual-alternative ifs, because they contain two alternatives—the action
taken when the tested condition is true and the action taken when it is false. Note that it is perfectly correct for one
branch of the selection to be a “do nothing” branch. For example:

ifƒitƒisƒrainingƒthen
ƒƒƒtakeƒanUmbrella

or

ifƒemployeeƒbelongsƒtoƒdentalPlanƒthen
ƒƒƒdeductƒ$40ƒfromƒemployeeGrossPay

The previous examples are single-alternative ifs, and a diagram of their structure is shown in Figure 2-5. In these
cases, you don’t take any special action if it is not raining or if the employee does not belong to the dental plan. The
case where nothing is done is often called the null case.

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 43

44 Chapter 2 • Understanding Structure

The third structure, shown in Figure 2-6, is a loop. In a loop structure, you continue to repeat actions based on the
answer to a question. In the most common type of loop, you first ask a question; if the answer requires an action, you
perform the action and ask the original question again. If the answer requires that the action be taken again, you take the
action and then ask the original question again. This continues until the answer to the question is such that the action is
no longer required; then you exit the structure. You may hear programmers refer to looping as repetition or iteration.

Some programmers call this structure a while...do, or more simply, a while loop, because it fits the following
statement:

whileƒtestConditionƒcontinuesƒtoƒbeƒtrue
ƒƒƒdoƒsomeProcess

You encounter examples of looping every day, as in:

whileƒyouƒcontinueƒtoƒbeHungry
ƒƒƒtakeƒanotherBiteOfFood

or

whileƒunreadPagesƒremainƒinƒtheƒreadingAssignment
ƒƒƒreadƒanotherƒunreadPage

FIGURE 2-6: LOOP STRUCTURE

FIGURE 2-5: SINGLE-ALTERNATIVE DECISION STRUCTURE

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 44

45Understanding the Three Basic Structures

In a business program, you might write:

whileƒquantityInInventoryƒremainsƒlow
ƒƒƒcontinueƒtoƒorderItems

or

whileƒthereƒareƒmoreƒretailPricesƒtoƒbeƒdiscounted
ƒƒƒcomputeƒaƒdiscount

All logic problems can be solved using only these three structures—sequence, selection, and loop. The three struc-
tures, of course, can be combined in an infinite number of ways. For example, you can have a sequence of tasks fol-
lowed by a selection, or a loop followed by a sequence. Attaching structures end-to-end is called stacking structures.
For example, Figure 2-7 shows a structured flowchart achieved by stacking structures, and shows pseudocode that
might follow that flowchart logic.

The pseudocode in Figure 2-7 shows two end-structure statements—endif and endwhile. You can use an
endif statement to clearly show where the actions that depend on a decision end. The instruction that follows if
occurs when its tested condition is true, the instruction that follows else occurs when the tested condition is false, and
the instruction that follows endif occurs in either case—it is not dependent on the if statement at all. In other
words, statements beyond the endif statement are “outside” the decision structure. Similarly, you use an endwhile

do stepA
do stepB
if conditionC is true then
 do stepD
else
 do stepE
endif
while conditionF is true
 do stepG
endwhile

No Yes

No

Yes

Sequence

Selection

Loop

stepA

stepB

conditionC?

stepE stepD

conditionF? stepG

FIGURE 2-7: STRUCTURED FLOWCHART AND PSEUDOCODE

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 45

46 Chapter 2 • Understanding Structure

statement to show where a loop structure ends. In Figure 2-7, while conditionF continues to be true, stepG
continues to execute. If any statements followed the endwhile statement, they would be outside of, and not a part
of, the loop.

Whether you are drawing a flowchart or writing pseudocode, you can use either of the fol-
lowing pairs to represent decision outcomes: yes and no or true and false. This book fol-
lows the convention of using yes and no in flowchart diagrams and true and false in
pseudocode.

Besides stacking structures, you can replace any individual tasks or steps in a structured flowchart diagram or
pseudocode segment with additional structures. In other words, any sequence, selection, or loop can contain other
sequences, selections, or loops. For example, you can have a sequence of three tasks on one side of a selection, as
shown in Figure 2-8. Placing a structure within another structure is called nesting the structures.

When you write the pseudocode for the logic shown in Figure 2-8, the convention is to indent all statements that
depend on one branch of the decision, as shown in the pseudocode. The indentation and the endif statement both
show that all three statements (do stepB, do stepC, and do stepD) must execute if conditionA is not true.
The three statements constitute a block, or a group of statements that execute as a single unit.

In place of one of the steps in the sequence in Figure 2-8, you can insert a selection. In Figure 2-9, the process named
stepC has been replaced with a selection structure that begins with a test of the condition named conditionF.

if conditionA is true then
 do stepE
else
 do stepB
 do stepC
 do stepD
endif

No

stepB

stepC

conditionA?

stepE

Yes

stepD

FIGURE 2-8: FLOWCHART AND PSEUDOCODE SHOWING A SEQUENCE NESTED WITHIN A SELECTION

TIP�

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 46

47Understanding the Three Basic Structures

In the pseudocode shown in Figure 2-9, notice that do stepB, if conditionF is true then, else,
endif, and do stepD all align vertically with each other. This shows that they are all “on the same level.” If you
look at the same problem flowcharted in Figure 2-9, you see that you could draw a vertical line through the symbols
containing stepB, conditionF, and stepD. The flowchart and the pseudocode represent exactly the same logic.
The stepH and stepG processes, on the other hand, are one level “down”; they are dependent on the answer to the
conditionF question. Therefore, the do stepH and do stepG statements are indented one additional level in
the pseudocode.

Also notice that the pseudocode in Figure 2-9 has two endif statements. Each is aligned to correspond to an if. An
endif always partners with the most recent if that does not already have an endif partner, and an endif
should always align vertically with its if partner.

In place of do stepH on one side of the new selection in Figure 2-9, you can insert a loop. This loop, based on
conditionI, appears inside the selection that is within the sequence that constitutes the “No” side of the original
conditionA selection. In the pseudocode in Figure 2-10, notice that the while aligns with the endwhile, and
that the entire while structure is indented within the true (“Yes”) half of the if structure that begins with the deci-
sion based on conditionF. The indentation used in the pseudocode reflects the logic you can see laid out graphi-
cally in the flowchart.

if conditionA is true then
 do stepE
else
 do stepB
 if conditionF is true then
 do stepH
 else
 do stepG
 endif
 do stepD
endif

No Yes

No Yes

stepB

conditionA?

stepE

conditionF?

stepG stepH

stepD

FIGURE 2-9: SELECTION IN A SEQUENCE WITHIN A SELECTION

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 47

48 Chapter 2 • Understanding Structure

The combinations are endless, but each of a structured program’s segments is a sequence, a selection, or a loop. The
three structures are shown together in Figure 2-11. Notice that each structure has one entry and one exit point. One
structure can attach to another only at one of these points.

entryentryentry

exit

exit

exit

SEQUENCE SELECTION LOOP

FIGURE 2-11: THE THREE STRUCTURES

if conditionA is true then
 do stepE
else
 do stepB
 if conditionF is true then
 while conditionI is true
 do stepJ
 endwhile
 else
 do stepG
 endif
 do stepD
endif

No

stepB

conditionA?

stepE

Yes

No
conditionF?

Yes

stepG stepJ

stepD

conditionI?
Yes

No

FIGURE 2-10: FLOWCHART AND PSEUDOCODE FOR LOOP WITHIN SELECTION WITHIN SEQUENCE WITHIN
SELECTION

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 48

49Using the Priming Read

Try to imagine physically picking up any of the three structures using the “handles”
marked entry and exit. These are the spots at which you could connect a structure to any
of the others. Similarly, any complete structure, from its entry point to its exit point, can
be inserted within the process symbol of any other structure.

In summary, a structured program has the following characteristics:

� A structured program includes only combinations of the three basic structures—sequence, selec-
tion, and loop. Any structured program might contain one, two, or all three types of structures.

� Structures can be stacked or connected to one another only at their entry or exit points.

� Any structure can be nested within another structure.

A structured program is never required to contain examples of all three structures; a struc-
tured program might contain only one or two of them. For example, many simple pro-
grams contain only a sequence of several tasks that execute from start to finish without
any needed selections or loops. As another example, a program might display a series of
numbers, looping to do so, but never making any decisions about the numbers.

USING THE PRIMING READ

For a program to be structured and work the way you want it to, sometimes you need to add extra steps. The priming
read is one kind of added step. A priming read or priming input is the statement that reads the first input data record.
If a program will read 100 data records, you read the first data record in a statement that is separate from the other 99.
You must do this to keep the program structured.

At the end of Chapter 1, you read about a program like the one in Figure 2-12. The program gets a number and checks
for the end-of-file condition. If it is not the end of file, then the number is doubled, the answer is printed, and the next
number is input.

TIP�

TIP�

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 49

50 Chapter 2 • Understanding Structure

Is the program represented by Figure 2-12 structured? At first, it might be hard to tell. The three allowed structures
were illustrated in Figure 2-11.

The flowchart in Figure 2-12 does not look exactly like any of the three shapes shown in Figure 2-11. However,
because you may stack and nest structures while retaining overall structure, it might be difficult to determine whether a
flowchart as a whole is structured. It’s easiest to analyze the flowchart in Figure 2-12 one step at a time. The beginning
of the flowchart looks like Figure 2-13.

Is this portion of the flowchart structured? Yes, it’s a sequence. (Even a single task can be a sequence—it’s just a brief
sequence.) Adding the next piece of the flowchart looks like Figure 2-14.

start

get
inputNumber

FIGURE 2-13: BEGINNING OF A NUMBER-DOUBLING FLOWCHART

start

eof?
Yes

No

get
inputNumber

stop

print
calculatedAnswer

calculatedAnswer =
inputNumber * 2

FIGURE 2-12: UNSTRUCTURED FLOWCHART OF A NUMBER-DOUBLING PROGRAM

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 50

51Using the Priming Read

The sequence is finished; either a selection or a loop is starting. You might not know which one, but you do know the sequence
is not continuing, because sequences can’t contain questions. With a sequence, each task or step must follow without
any opportunity to branch off. Therefore, which type of structure starts with the question in Figure 2-14? Is it a selection
or a loop?

With a selection structure, the logic goes in one of two directions after the question, and then the flow comes back
together; the question is not asked a second time. However, in a loop, if the answer to the question results in the loop
being entered and the loop statements executing, then the logic returns to the question that started the loop; when the
body of a loop executes, the question that controls the loop is always asked again.

In the number-doubling problem in the original Figure 2-12, if it is not eof (that is, if the end-of-file condition is not
met), then some math is done, an answer is printed, a new number is obtained, and the eof question is asked again.
In other words, while the answer to the eof question continues to be no, eventually the logic will return to the eof
question. (Another way to phrase this is that while it continues to be true that eof has not yet been reached, the logic
keeps returning to the same question.) Therefore, the number-doubling problem contains a structure beginning with the
eof question that is more like the beginning of a loop than it is like a selection.

The number-doubling problem does contain a loop, but it’s not a structured loop. In a structured loop, the rules are:

1. You ask a question.

2. If the answer indicates you should take some action or perform a procedure, then you do so.

3. If you perform the procedure, then you must go right back to repeat the question.

The flowchart in Figure 2-12 asks a question; if the answer is no (that is, while it is true that the eof condition has not
been met), then the program performs two tasks: it does the arithmetic and it prints the results. Doing two things is
acceptable because two tasks with no possible branching constitute a sequence, and it is fine to nest a structure within
another structure. However, when the sequence ends, the logic doesn’t flow right back to the question. Instead, it goes

start

eof?

get
inputNumber

FIGURE 2-14: NUMBER-DOUBLING FLOWCHART

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 51

52 Chapter 2 • Understanding Structure

above the question to get another number. For the loop in Figure 2-12 to be a structured loop, the logic must return to
the eof question when the embedded sequence ends.

The flowchart in Figure 2-15 shows the flow of logic returning to the eof immediately after the sequence. Figure 2-15
shows a structured flowchart, but the flowchart has one major flaw—it doesn’t do the job of continuously doubling dif-
ferent numbers.

Follow the flowchart in Figure 2-15 through a typical program run. Suppose when the program starts, the user enters a 9 for
the value of inputNumber. That’s not eof, so the number doubles, and 18 prints out as the calculatedAnswer.
Then the question eof? is asked again. It can’t be eof because a new value representing the sentinel (ending) value can’t
be entered. The logic never returns to the get inputNumber task, so the value of inputNumber never changes.
Therefore, 9 doubles again and the answer 18 prints again. It’s still not eof, so the same steps are repeated. This goes on
forever, with the answer 18 printing repeatedly. The program logic shown in Figure 2-15 is structured, but it doesn’t work as
intended; the program in Figure 2-16 works, but it isn’t structured!

start

eof?
No

Yes

get
inputNumber

print
calculatedAnswer

calculatedAnswer =
inputNumber * 2

FIGURE 2-16: FUNCTIONAL BUT NONSTRUCTURED FLOWCHART

start

eof?
No

Yes

get
inputNumber

print
calculatedAnswer

calculatedAnswer =
inputNumber * 2

FIGURE 2-15: STRUCTURED, BUT NONFUNCTIONAL, FLOWCHART OF NUMBER-DOUBLING PROBLEM

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 52

53Using the Priming Read

The loop in Figure 2-16 is not structured because in a structured loop, after the tasks exe-
cute within the loop, the flow of logic must return directly to the loop-controlling ques-
tion. In Figure 2-16, the logic does not return to the loop-controlling question; instead, it
goes “too high” outside the loop to repeat the get inputNumber task.

How can the number-doubling problem be both structured and work as intended? Often, for a program to be struc-
tured, you must add something extra. In this case, it’s an extra get inputNumber step. Consider the solution in
Figure 2-17; it’s structured and it does what it’s supposed to do. The program logic illustrated in Figure 2-17 contains a
sequence and a loop. The loop contains another sequence.

The additional get inputNumber step is typical in structured programs. The first of the two input steps is the
priming input, or priming read. The term priming comes from the fact that the read is first, or primary (what gets the
process going, as in “priming the pump”). The purpose of the priming read step is to control the upcoming loop that
begins with the eof question. The last element within the structured loop gets the next, and all subsequent, input val-
ues. This is also typical in structured loops—the last step executed within the loop alters the condition tested in the
question that begins the loop, which in this case is the eof question.

As an additional way to determine whether a flowchart segment is structured, you can try to write pseudocode for it.
Examine the unstructured flowchart in Figure 2-12 again. To write pseudocode for it, you would begin with the following:

start
ƒƒƒƒƒgetƒinputNumber

start
 get inputNumber
 while not eof
 calculatedAnswer = inputNumber * 2
 print calculatedAnswer
 get inputNumber
 endwhile
stop

start

eof?
No

Yes

get
inputNumber

print
calculatedAnswer

stop

get
inputNumber

FIGURE 2-17: FUNCTIONAL, STRUCTURED FLOWCHART AND PSEUDOCODE FOR THE NUMBER-DOUBLING
PROBLEM

calculatedAnswer =
inputNumber * 2

Priming read

TIP�

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 53

54 Chapter 2 • Understanding Structure

When you encounter the eof question in the flowchart, you know that either a selection or loop structure should begin.
Because you return to a location higher in the flowchart when the answer to the eof question is no (that is, while the
not eof condition continues to be true), you know that a loop is beginning. So you continue to write the pseudocode
as follows:

start
ƒƒƒƒƒgetƒinputNumber
ƒƒƒƒƒwhileƒnotƒeof
ƒƒƒƒƒƒƒƒƒƒcalculatedAnswerƒ=ƒinputNumberƒ*ƒ2
ƒƒƒƒƒƒƒƒƒƒprintƒcalculatedAnswer

Continuing, the step after print calculatedAnswer is get inputNumber. This ends the while loop
that began with the eof question. So the pseudocode becomes:

start
ƒƒƒƒƒgetƒinputNumber
ƒƒƒƒƒwhileƒnotƒeof
ƒƒƒƒƒƒƒƒƒƒcalculatedAnswerƒ=ƒinputNumberƒ*ƒ2
ƒƒƒƒƒƒƒƒƒƒprintƒcalculatedAnswer
ƒƒƒƒƒƒƒƒƒƒgetƒinputNumber
ƒƒƒƒƒendwhile
stop

This pseudocode is identical to the pseudocode in Figure 2-17 and now matches the flowchart in the same figure. It
does not match the flowchart in Figure 2-12, because that flowchart contains only one get inputNumber step.
Creating the pseudocode correctly using the while statement requires you to repeat the get inputNumber
statement. The structured pseudocode makes use of a priming read and forces the logic to become structured—a
sequence followed by a loop that contains a sequence of three statements.

Years ago, programmers could avoid using structure by inserting a “go to” statement into
their pseudocode. A “go to” statement would say something like “after print answer, go to
the first get number box”, and would be the equivalent of drawing an arrow starting after
“print answer” and pointing directly to the first “get number” box in the flowchart.
Because “go to” statements cause spaghetti code, they are not allowed in structured pro-
gramming. Some programmers call structured programming “goto-less” programming.

Figure 2-18 shows another way you might attempt to draw the logic for the number-doubling program.At first glance, the figure
might seem to show an acceptable solution to the problem—it is structured, containing a single loop with a sequence of three
steps within it, and it appears to eliminate the need for the priming input statement.When the program starts, the eof question
is asked.The answer is no, so the program gets an input number, doubles it, and prints it. Then, if it is still not eof, the program
gets another number, doubles it, and prints it. The program continues until eof is encountered when getting input. The last time
the get inputNumber statement executes, it encounters eof, but the program does not stop—instead, it calculates and

TIP�

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 54

55Understanding the Reasons for Structure

prints one last time.This last output is extraneous—the eof value should not be doubled and printed.As a general rule, an
eof question should always come immediately after an input statement. Therefore, the best solution to the number-doubling
problem remains the one shown in Figure 2-17—the solution containing the priming input statement.

A few languages do not require the priming read. For example, programs written using
the Visual Basic programming language can “look ahead” to determine whether the end
of file will be reached on the next input record. However, most programming languages
cannot predict the end of file until an actual read operation is performed, and they require
a priming read to properly handle file data.

UNDERSTANDING THE REASONS FOR STRUCTURE

At this point, you may very well be saying, “I liked the original number-doubling program just fine. I could follow it. Also,
the first program had one less step in it, so it was less work. Who cares if a program is structured?”

Until you have some programming experience, it is difficult to appreciate the reasons for using only the three structures—
sequence, selection, and loop. However, staying with these three structures is better for the following reasons:

� Clarity—The number-doubling program is a small program. As programs get bigger, they get
more confusing if they’re not structured.

� Professionalism—All other programmers (and programming teachers you might encounter)
expect your programs to be structured. It’s the way things are done professionally.

� Efficiency—Most newer computer languages are structured languages with syntax that lets you
deal efficiently with sequence, selection, and looping. Older languages, such as assembly lan-
guages, COBOL, and RPG, were developed before the principles of structured programming
were discovered. However, even programs that use those older languages can be written in a
structured form, and structured programming is expected on the job today. Newer languages
such as C#, C++, and Java enforce structure by their syntax.

start

eof?
No

Yes

print
calculatedAnswer

stop

get
inputNumber

calculatedAnswer =
inputNumber * 2

FIGURE 2-18: STRUCTURED BUT INCORRECT SOLUTION TO THE NUMBER-DOUBLING PROBLEM

TIP�

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 55

56 Chapter 2 • Understanding Structure

� Maintenance—You, as well as other programmers, will find it easier to modify and maintain
structured programs as changes are required in the future.

� Modularity—Structured programs can be easily broken down into routines or modules that can
be assigned to any number of programmers. The routines are then pieced back together like
modular furniture at each routine’s single entry or exit point. Additionally, often a module can be
used in multiple programs, saving development time in the new project.

Most programs that you purchase are huge, consisting of thousands or millions of statements. If you’ve worked with a
word-processing program or spreadsheet, think of the number of menu options and keystroke combinations available to
the user. Such programs are not the work of one programmer. The modular nature of structured programs means that
work can be divided among many programmers; then the modules can be connected, and a large program can be
developed much more quickly. Money is often a motivating factor—the faster you write a program and make it avail-
able for use, the sooner it begins making money for the developer.

Consider the college admissions program from the beginning of this chapter. It has been rewritten in structured form in
Figure 2-19 and is easier to follow now. Figure 2-19 also shows structured pseudocode for the same problem.

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 56

57Understanding the Reasons for Structure

start
 read testScore, classRank
 if testScore >= 90 then
 if classRank >= 25 then
 print "Accept"
 else
 print "Reject"
 endif
 else
 if testScore >= 80 then
 if classRank >= 50 then
 print "Accept"
 else
 print "Reject"
 endif
 else
 if testScore >= 70 then
 if classRank >= 75 then
 print "Accept"
 else
 print "Reject"
 endif
 else
 print "Reject"
 endif
 endif
 endif
stop

start

read testScore,
classRank

testScore
>=90?

testScore
>=80?

classRank
>=25?

testScore
>=70?

classRank
>=50?

classRank
>=75?

stop

No Yes

No Yes

No Yes

No Yes

No Yes

No Yes

FIGURE 2-19: FLOWCHART AND PSEUDOCODE OF STRUCTURED COLLEGE ADMISSION PROGRAM

start
read testScore, classRank
if testScore >= 90 then

if classRank >= 25 then
print "Accept"

else
print "Reject"

endif
else

if testScore >= 80 then
if classRank >= 50 then

print "Accept"
else

print "Reject"
endif

else
if testScore >= 70 then

if classRank >= 75 then
print "Accept"

print "Reject"
endif

else

else
print "Reject"

endif
endif

endif
stop

print
"Reject"

print
"Reject"

print
"Reject"

print
"Accept"

print
"Accept"

print
"Reject"

print
"Accept"

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 57

58 Chapter 2 • Understanding Structure

Don’t be alarmed if it is difficult for you to follow the many nested ifs within the
pseudocode in Figure 2-19. After you study the selection process in more detail, reading
this type of pseudocode will become much easier for you.

In the lower portion of Figure 2-19, the pseudocode is repeated using colored backgrounds to help you identify the
indentations that match, distinguishing the different levels of the nested structures.

As you examine Figure 2-19, notice that the bottoms of the three testScore decision
structures join at the bottom of the diagram. These three joinings correspond to the last
three endif statements in the pseudocode.

RECOGNIZING STRUCTURE

Any set of instructions can be expressed in a structured format. If you can teach someone how to perform any ordinary
activity, then you can express it in a structured way. For example, suppose you wanted to teach a child how to play
Rock, Paper, Scissors. In this game, two players simultaneously show each other one hand, in one of three positions—
clenched in a fist, representing a rock; opened flat, representing a piece of paper; or with two fingers extended in a V,
representing scissors. The goal is to guess which hand position your opponent might show, so that you can show the
one that beats it. The rules are that a flat hand beats a fist (because a piece of paper can cover a rock), a fist beats a
hand with two extended fingers (because a rock can smash a pair of scissors), and a hand with two extended fingers
beats a flat hand (because scissors can cut paper). Figure 2-20 shows the pseudocode for the game.

Figure 2-20 also shows a fairly complicated set of statements. Its purpose is not to teach you how to play a game
(although you could learn how to play by following the logic), but rather to convince you that any task to which you can
apply rules can be expressed logically using only combinations of sequence, selection, and looping. In this example, a
game continues while a friend agrees to play, and within that loop, several decisions must be made in order to deter-
mine the winner.

TIP�

TIP�

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 58

59Recognizing Structure

When you are just learning about structured program design, it is difficult to detect whether a flowchart of a program’s
logic is structured. For example, is the flowchart segment in Figure 2-21 structured?

FIGURE 2-20: PSEUDOCODE FOR THE ROCK, PAPER, SCISSORS GAME

start
 ask friend to play a game of Rock, Paper, Scissors
 while answer is yes
 extend yourHand and myHand
 if yourHand = "Paper" then
 if myHand = "Rock" then
 winner = yourHand
 else
 if myHand = "Scissors" then
 winner = myHand
 else
 winner = tie
 endif
 endif
 else
 if yourHand = "Scissors" then
 if myHand = "Rock" then
 winner = myHand
 else
 if myHand = "Paper" then
 winner = yourHand
 else
 winner = tie
 endif
 endif
 else
 if myHand = "Rock" then
 winner = tie
 else
 if myHand = "Paper" then
 winner = myHand
 else
 winner = yourHand
 endif
 endif
 endif
 endif
 ask friend to play a game of Rock, Paper, Scissors
 endwhile
stop

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 59

60 Chapter 2 • Understanding Structure

Yes, it is. It has a sequence and a selection structure.

Is the flowchart segment in Figure 2-22 structured?

Yes, it is. It has a loop, and within the loop is a selection.

Is the flowchart segment in Figure 2-23 structured? (The symbols are lettered so you can better follow the discussion.)

FIGURE 2-22: EXAMPLE 2

FIGURE 2-21: EXAMPLE 1

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 60

61Recognizing Structure

No, it isn’t; it is not constructed from the three basic structures. One way to straighten out a flowchart segment that
isn’t structured is to use what you can call the “spaghetti bowl” method; that is, picture the flowchart as a bowl of
spaghetti that you must untangle. Imagine you can grab one piece of pasta at the top of the bowl, and start pulling. As
you “pull” each symbol out of the tangled mess, you can untangle the separate paths until the entire segment is struc-
tured. For example, with the diagram in Figure 2-23, if you start pulling at the top, you encounter a procedure box,
labeled A. (See Figure 2-24.)

A single process like A is part of an acceptable structure—it constitutes at least the beginning of a sequence structure.
Imagine you continue pulling symbols from the tangled segment. The next item in the flowchart is a question that tests
a condition labeled B, as you can see in Figure 2-25.

A

FIGURE 2-24: UNTANGLING EXAMPLE 3, FIRST STEP

B?

E

D?

C

No Yes

No Yes

A

FIGURE 2-23: EXAMPLE 3

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 61

62 Chapter 2 • Understanding Structure

At this point, you know the sequence that started with A has ended. Sequences never have decisions in them, so the
sequence is finished; either a selection or a loop is beginning. A loop must return to the question at some later point. You
can see from the original logic in Figure 2-23 that whether the answer to B is yes or no, the logic never returns to B.
Therefore, B begins a selection structure, not a loop structure.

To continue detangling the logic, you (imaginarily) pull up on the flowline that emerges from the left side (the “No” side) of
Question B. You encounter C, as shown in Figure 2-26. When you continue beyond C, you reach the end of the flowchart.

Now you can turn your attention to the “Yes” side (the right side) of the condition tested in B. When you pull up on the
right side, you encounter Question D. (See Figure 2-27.)

B?

C

No

A

FIGURE 2-26: UNTANGLING EXAMPLE 3, THIRD STEP

B?

A

FIGURE 2-25: UNTANGLING EXAMPLE 3, SECOND STEP

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 62

63Recognizing Structure

In Figure 2-23, follow the line on the left side of Question D. The line extending from the selection is attached to a task
outside the selection. The line emerging from the left side of selection D is attached to Step C. You might say the D
selection is becoming entangled with the B selection, so you must untangle the structures by repeating the step that is
causing the tangle. (In this example, you repeat Step C to untangle it from the other usage of C.) Continue pulling on the
flowline that emerges from Step C until you reach the end of the program segment, as shown in Figure 2-28.

Now pull on the right side of Question D. Process E pops up, as shown in Figure 2-29; then you reach the end.

B?
Yes

A

No

C D?

C

No

FIGURE 2-28: UNTANGLING EXAMPLE 3, FIFTH STEP

B?

D?

C

No Yes

A

FIGURE 2-27: UNTANGLING EXAMPLE 3, FOURTH STEP

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 63

64 Chapter 2 • Understanding Structure

At this point, the untangled flowchart has three loose ends. The loose ends of Question D can be brought together to
form a selection structure; then the loose ends of Question B can be brought together to form another selection struc-
ture. The result is the flowchart shown in Figure 2-30. The entire flowchart segment is structured—it has a sequence
(A) followed by a selection inside a selection.

YesNo
B?

C
YesNo

D?

C E

A

do A
if B is true then
 if D is true then
 do E
 else
 do C
 endif
else
 do C
endif

FIGURE 2-30: FINISHED FLOWCHART AND PSEUDOCODE FOR UNTANGLING EXAMPLE 3

YesNo
B?

C
YesNo

D?

C E

A

FIGURE 2-29: UNTANGLING EXAMPLE 3, SIXTH STEP

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 64

65Three Special Structures—Case, Do While, and Do Until

If you want to try structuring a very difficult example of an unstructured program, see
Appendix A.

THREE SPECIAL STRUCTURES—CASE, DO WHILE, AND DO UNTIL

You can skip this section for now without any loss in continuity. Your instructor may pre-
fer to discuss the case structure with the Decision chapter (Chapter 5), and the do-while
and do-until loops with the Looping chapter (Chapter 6).

You can solve any logic problem you might encounter using only the three structures: sequence, selection, and loop.
However, many programming languages allow three more structures: the case structure and the do-while and do-until
loops. These structures are never needed to solve any problem—you can always use a series of selections instead of
the case structure, and you can always use a sequence plus a while loop in place of the do-while or do-until loops.
However, sometimes these additional structures are convenient. Programmers consider them all to be acceptable, legal
structures.

THE CASE STRUCTURE

You can use the case structure when there are several distinct possible values for a single variable you are testing,
and each value requires a different course of action. Suppose you administer a school at which tuition is $75, $50,
$30, or $10 per credit hour, depending on whether a student is a freshman, sophomore, junior, or senior. The structured
flowchart and pseudocode in Figure 2-31 show a series of decisions that assigns the correct tuition to a student.

FIGURE 2-31: FLOWCHART AND PSEUDOCODE OF TUITION DECISIONS

YesNo

YesNo

class=
“Freshman”?

YesNo

tuitionFee = 75
class=

“Sophomore”?

tuitionFee = 50
class=

“Junior”?

tuitionFee = 10 tuitionFee = 30

if class = "Freshman" then
 tuitionFee = 75
else
 if class = "Sophomore" then
 tuitionFee = 50
 else
 if class = "Junior" then
 tuitionFee = 30
 else
 tuitionFee = 10
 endif
 endif
endif

TIP�

TIP�

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 65

66 Chapter 2 • Understanding Structure

The indentation in the pseudocode in Figure 2-31 reflects the nested nature of the deci-
sions, as illustrated in the flowchart. For clarity, some programmers might prefer to write
the pseudocode as follows:

if class = “Freshman” then
tuitionFee = 75

else if class = “Sophomore” then

tuitionFee = 50

else if class = “Junior” then

tuitionFee = 30

endif

This style, with else and the next if on the same line and a single endif at the end, is
often preferred by Visual Basic programmers because it resembles a style they use in their
programs. However, this book will use the style shown in Figure 2-31, with each endif
aligned with its corresponding if statement.

The logic shown in Figure 2-31 is absolutely correct and completely structured. The class=”Junior” selection
structure is contained within the class=”Sophomore” structure, which is contained within the
class=”Freshman” structure. Note that there is no need to ask if a student is a senior, because if a student is not
a freshman, sophomore, or junior, it is assumed the student is a senior.

Even though the program segments in Figure 2-31 are correct and structured, many programming languages permit
using a case structure, as shown in Figure 2-32. When using the case structure, you test a variable against a series of
values, taking appropriate action based on the variable’s value. To many, such programs seem easier to read, and the
case structure is allowed because the same results could be achieved with a series of structured selections (thus mak-
ing the program structured). That is, if the first program is structured and the second one reflects the first one point by
point, then the second one must be structured also.

case based on class
 case "Freshman"
 tuitionFee = 75
 case "Sophomore"
 tuitionFee = 50
 case "Junior"
 tuitionFee = 30
 default
 tuitionFee = 10
endcase

class = ?

tuitionFee = 75 tuitionFee = 50 tuitionFee = 30 tuitionFee = 10

“Freshman” “Sophomore” “Junior” default

FIGURE 2-32: FLOWCHART AND PSEUDOCODE OF CASE STRUCTURE

TIP�

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 66

67Three Special Structures—Case, Do While, and Do Until

The term “default” used in Figure 2-32 means “if none of the other cases were true.” Each
programming language you learn may use a different syntax for the default case.

Even though a programming language permits you to use the case structure, you should understand that the case
structure is just a convenience that might make a flowchart, pseudocode, or actual program code easier to understand
at first glance. When you write a series of decisions using the case structure, the computer still makes a series of indi-
vidual decisions, just as though you had used many if-then-else combinations. In other words, you might prefer looking
at the diagram in Figure 2-32 to understand the tuition fees charged by a school, but a computer actually makes the
decisions as shown in Figure 2-31—one at a time. When you write your own programs, it is always acceptable to
express a complicated decision-making process as a series of individual selections.

You usually use the case structure only when a series of decisions is based on different
values stored in a single variable. If multiple variables are tested, then most programmers
use a series of decisions.

THE DO-WHILE AND DO-UNTIL LOOPS

Recall that a structured loop (often called a while loop) looks like Figure 2-33. A special-case loop called a do-while or
do-until loop looks like Figure 2-34.

An important difference exists between these two structures. In a while loop, you ask a question and, depending on the
answer, you might or might not enter the loop to execute the loop’s procedure. Conversely, in do-while and do-until
loops, you ensure that the procedure executes at least once; then, depending on the answer to the controlling question,
the loop may or may not execute additional times. In a do-while loop, the loop body continues to execute as long as the
answer to the controlling question is yes, or true. In a do-until loop, the loop body continues to execute as long as the
answer to the controlling question is no, or false; that is, the body executes until the controlling question is yes or true.

Notice that the word “do” begins the names of both the do-while and do-until loops. This
should remind you that the action you “do” precedes testing the condition.

FIGURE 2-34: STRUCTURE OF A DO-WHILE OR
DO-UNTIL (POSTTEST) LOOP

FIGURE 2-33: WHILE LOOP

TIP�

TIP�

TIP�

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 67

68 Chapter 2 • Understanding Structure

In a while loop, the question that controls a loop comes at the beginning, or “top,” of the loop body. A while loop is also
called a pretest loop because a condition is tested before entering the loop even once. In a do-while or do-until loop,
the question that controls the loop comes at the end, or “bottom,” of the loop body. Do-while and do-until loops are also
called posttest loops because a condition is tested after the loop body has executed.

You encounter examples of do-until looping every day. For example:

do
ƒƒƒƒƒpayƒbills
untilƒallƒbillsƒareƒpaid

and
do
ƒƒƒƒƒwashƒdishes
untilƒallƒdishesƒareƒwashed

Similarly, you encounter examples of do-while looping every day. For example:

do
ƒƒƒƒƒpayƒbills
whileƒmoreƒbillsƒremainƒtoƒbeƒpaid

and
do
ƒƒƒƒƒwashƒdishes
whileƒmoreƒdishesƒremainƒtoƒbeƒwashed

In these examples, the activity (paying bills or washing dishes) must occur at least one time. You ask the question that
determines whether you continue only after the activity has been executed at least once. The only difference in these
structures is whether the answer to the bottom loop-controlling question must be false for the loop to continue (as in all
bills are paid), which is a do-until loop, or true for the loop to continue (as in more bills remain to be paid), which is a
do-while loop.

You are never required to use a posttest loop. You can duplicate the same series of actions generated by any posttest
loop by creating a sequence followed by a standard, pretest while loop. For example, the following code performs the
bill-paying task once, then asks the loop-controlling question at the top of a while loop, in which the action might be
performed again:

payƒbills
whileƒthereƒareƒmoreƒbillsƒtoƒpay
ƒƒƒƒƒpayƒbills
endwhile

Consider the flowcharts and pseudocode in Figures 2-35 and 2-36.

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 68

69Three Special Structures—Case, Do While, and Do Until

In Figure 2-35, A is done, and then B is asked. If B is yes, then A is done and B is asked again. In Figure 2-36, A is
done, and then B is asked. If B is yes, then A is done and B is asked again. In other words, both flowcharts and
pseudocode segments do exactly the same thing.

Because programmers understand that any posttest loop (do-while or do-until) can be expressed with a sequence fol-
lowed by a while loop, most languages allow the posttest loop. (Frequently, languages allow one type of posttest loop or
the other.) Again, you are never required to use a posttest loop; you can always accomplish the same tasks with a
sequence followed by a pretest while loop.

Figure 2-37 shows an unstructured loop. It is neither a while loop (which begins with a decision and, after an action,
returns to the decision) nor a do-while or do-until loop (which begins with an action and ends with a decision that might
repeat the action). Instead, it begins like a posttest loop (a do-while or a do-until loop), with a process followed by a
decision, but one branch of the decision does not repeat the initial process; instead, it performs an additional new
action before repeating the initial process. If you need to use the logic shown in Figure 2-37—performing a task, ask-
ing a question, and perhaps performing an additional task before looping back to the first process—then the way to
make the logic structured is to repeat the initial process within the loop, at the end of the loop. Figure 2-38 shows the
same logic as Figure 2-37, but now it is structured logic, with a sequence of two actions occurring within the loop.

A

B?
Yes

No

A

do A
while B is true
 do A
endwhile

FIGURE 2-36: FLOWCHART AND PSEUDOCODE FOR SEQUENCE FOLLOWED BY WHILE LOOP

A

B?
Yes

No

do
 A
while B is true

FIGURE 2-35: FLOWCHART AND PSEUDOCODE FOR DO-WHILE LOOP

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 69

70 Chapter 2 • Understanding Structure

Does this diagram look familiar to you? It uses the same technique of repeating a needed step that you saw earlier in
this chapter, when you learned the rationale for the priming read.

It is difficult for beginning programmers to distinguish among while, do-while, and do-until loops. A while loop asks the
question first—for example, while you are hungry, eat. The answer to the question might never be true and the loop
body might never execute. A while loop is the only type of loop you ever need in order to solve a problem. You can think
of a do-while loop as one that continues to execute while a condition remains true—for example, process records while
not end of file is true, or eat food while hungry is true. On the other hand, a do-until loop continues while a condition is
false, or, in other words, until the condition becomes true—for example, address envelopes until there are no more
envelopes, or eat food until you are full. When you use a do-while or a do-until loop, at least one performance of the
action always occurs.

Especially when you are first mastering structured logic, you might prefer to only use the
three basic structures—sequence, selection, and while loop. Every logical problem can be
solved using only these three structures, and you can understand all of the examples in the
rest of this book using only these three.

B?
Yes

No

A

C A

FIGURE 2-38: SEQUENCE AND STRUCTURED LOOP THAT ACCOMPLISH THE SAME TASKS AS FIGURE 2-37

B?
Yes

No

A

C

FIGURE 2-37: UNSTRUCTURED LOOP

TIP�

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 70

Key Terms 71

CHAPTER SUMMARY

� The popular name for snarled program statements is spaghetti code.

� Clearer programs can be constructed using only three basic structures: sequence, selection, and loop.

These three structures can be combined in an infinite number of ways by stacking and nesting them. Each

structure has one entry and one exit point; one structure can attach to another only at one of these points.

� A priming read or priming input is the statement that reads the first input data record prior to starting a

structured loop. The last step within the loop gets the next, and all subsequent, input values.

� You use structured techniques to promote clarity, professionalism, efficiency, and modularity.

� One way to straighten a flowchart segment that isn’t structured is to imagine the flowchart as a bowl of

spaghetti that you must untangle.

� You can use a case structure when there are several distinct possible values for a variable you are test-

ing. When you write a series of decisions using the case structure, the computer still makes a series of

individual decisions.

� In a pretest while loop, you ask a question and, depending on the answer, you might never enter the loop

to execute the loop’s body. In a posttest do-while loop (which executes as long as the answer to the

controlling question is true) or a posttest do-until loop (which executes as long as the answer to the con-

trolling question is false), you ensure that the loop body executes at least once. You can duplicate the

same series of actions generated by any posttest loop by creating a sequence followed by a while loop.

KEY TERMS

Spaghetti code is snarled, unstructured program logic.

A structure is a basic unit of programming logic; each structure is a sequence, selection, or loop.

With a sequence structure, you perform an action or task, and then you perform the next action, in order. A sequence
can contain any number of tasks, but there is no chance to branch off and skip any of the tasks.

With a selection, or decision, structure, you ask a question, and, depending on the answer, you take one of two
courses of action. Then, no matter which path you follow, you continue with the next task.

An if-then-else is another name for a selection structure.

Dual-alternative ifs define one action to be taken when the tested condition is true, and another action to be taken
when it is false.

Single-alternative ifs take action on just one branch of the decision.

The null case is the branch of a decision in which no action is taken.

With a loop structure, you continue to repeat actions based on the answer to a question.

Repetition and iteration are alternate names for a loop structure.

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 71

Chapter 2 • Understanding Structure72

A while...do, or more simply, a while loop, is a loop in which a process continues while some condition continues to
be true.

Attaching structures end-to-end is called stacking structures.

Placing a structure within another structure is called nesting the structures.

A block is a group of statements that execute as a single unit.

A priming read or priming input is the statement that reads the first input data record prior to starting a structured loop.

You can use the case structure when there are several distinct possible values for a single variable you are testing,
and each requires a different course of action.

In do-while and do-until loops, you ensure that a procedure executes at least once; then, depending on the answer
to the controlling question, the loop may or may not execute additional times.

A while loop is also called a pretest loop because a condition is tested before entering the loop even once.

Do-while and do-until loops are also called posttest loops because a condition is tested after the loop body has executed.

REVIEW QUESTIONS

1. Snarled program logic is called code.

a. snake
b. spaghetti
c. string
d. gnarly

2. A sequence structure can contain .

a. only one task
b. exactly three tasks
c. no more than three tasks
d. any number of tasks

3. Which of the following is not another term for a selection structure?

a. decision structure
b. if-then-else structure
c. loop structure
d. dual-alternative if structure

4. The structure in which you ask a question, and, depending on the answer, take some action and
then ask the question again, can be called all of the following except .

a. if-then-else
b. loop
c. repetition
d. iteration

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 72

Review Questions 73

5. Placing a structure within another structure is called the structures.

a. stacking
b. nesting
c. building
d. untangling

6. Attaching structures end-to-end is called .

a. stacking
b. nesting
c. building
d. untangling

7. The statement if age >= 65 then seniorDiscount = “yes” is an example of a
.

a. single-alternative if
b. loop
c. dual-alternative if
d. sequence

8. The statement while temperature remains below 60, leave the furnace on is
an example of a .

a. single-alternative if
b. loop
c. dual-alternative if
d. sequence

9. The statement if age < 13 then movieTicket = 4.00 else movieTicket = 8.50
is an example of a .

a. single-alternative if
b. loop
c. dual-alternative if
d. sequence

10. Which of the following attributes do all three basic structures share?

a. Their flowcharts all contain exactly three processing symbols.
b. They all contain a decision.
c. They all begin with a process.
d. They all have one entry and one exit point.

11. When you read input data in a loop within a program, the input statement that precedes the loop
.

a. is called a priming input
b. cannot result in eof
c. is the only part of a program allowed to be unstructured
d. executes hundreds or even thousands of times in most business programs

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 73

Chapter 2 • Understanding Structure74

12. A group of statements that execute as a unit is a .

a. cohort
b. family
c. chunk
d. block

13. Which of the following is acceptable in a structured program?

a. placing a sequence within the true half of a dual-alternative decision
b. placing a decision within a loop
c. placing a loop within one of the steps in a sequence
d. All of these are acceptable.

14. Which of the following is not a reason for enforcing structure rules in computer programs?

a. Structured programs are clearer to understand than unstructured ones.
b. Other professional programmers will expect programs to be structured.
c. Structured programs can be broken down into modules easily.
d. Structured programs usually are shorter than unstructured ones.

15. Which of the following is not a benefit of modularizing programs?

a. Modular programs are easier to read and understand than nonmodular ones.
b. Modular components are reusable in other programs.
c. If you use modules, you can ignore the rules of structure.
d. Multiple programmers can work on different modules at the same time.

16. Which of the following is true of structured logic?

a. Any task can be described using some combination of the three structures.
b. You can use structured logic with newer programming languages, such as Java and C#, but not with older ones.
c. Structured programs require that you break the code into easy-to-handle modules that each contain no

more than five actions.
d. All of these are true.

17. The structure that you can use when you must make a decision with several possible outcomes,
depending on the value of a single variable, is the .

a. multiple-alternative if structure
b. case structure
c. do-while structure
d. do-until structure

18. Which type of loop ensures that an action will take place at least one time?

a. a do-until loop
b. a while loop
c. a do-over loop
d. any structured loop

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 74

Find the Bugs 75

19. A do-until loop can always be converted to .

a. a while followed by a sequence
b. a sequence followed by a while
c. a case structure
d. a selection followed by a while

20. Which of the following structures is never required by any program?

a. a while
b. a do-until
c. a selection
d. a sequence

FIND THE BUGS

As you learned in Chapter 1, program errors have been called “bugs” since the early days of computer programming.
The term is often said to have originated from an actual moth that was discovered trapped in the circuitry of a com-
puter at Harvard University in 1945. Actually, the term “bug” was in use prior to 1945 to mean trouble with any electri-
cal apparatus; even during Thomas Edison’s life, it meant an “industrial defect.” However, the process of finding and
correcting program errors has come to be known as debugging.

Each of the following pseudocode segments contains one or more bugs that you must find and correct.

1. This pseudocode segment is intended to describe determining whether you have passed or failed a
course based on the average score of two classroom tests.

inputƒmidtermGrade
inputƒfinalGrade
averageƒ=ƒ(midGradeƒ+ƒfinalGrade)ƒ/ƒ2
printƒavg
ifƒaverageƒ>=ƒ60ƒthen
ƒƒƒprintƒ“Pass”
endif
else
ƒƒƒprintƒ“Fail”

2. This pseudocode segment is intended to describe computing the number of miles per gallon you
get with your automobile. The program segment should continue as long as the user enters a posi-
tive value for miles traveled.

inputƒgallonsOfGasUsed
inputƒmilesTraveled
whileƒmilesTraveledƒ>ƒ0
ƒƒƒƒƒƒƒmilesPerGallonƒ=ƒgallonsOfGasUsedƒ/ƒmilesTraveled
ƒƒƒƒƒƒƒƒprintƒmilesPerGal
endwhile

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 75

Chapter 2 • Understanding Structure76

3. This pseudocode segment is intended to describe computing the cost per day for a vacation. The
user enters a value for total dollars available to spend and can continue to enter new dollar
amounts while the amount entered is not 0. For each new amount entered, if the amount of money
available to spend per day is below $100, a message displays.

inputƒtotalDollarsAvailable
whileƒtotalDollarsAvailableƒnotƒ=ƒ0
ƒƒƒdollarsPerDayƒ=ƒtotalMoneyAvailableƒ/ƒ7
ƒƒƒprintƒdollarsPerDayƒ
endwhile
inputƒtotalDollarsAvailable
ifƒdollarsPerDayƒ>ƒ100ƒthen
ƒƒƒprintƒ“Youƒbetterƒsearchƒforƒaƒbargainƒvacation”
endwhile

EXERCISES

1. Match the term with the structure diagram. (Because the structures go by more than one name,
there are more terms than diagrams.)

1. sequence 5. decision
2. selection 6. if-then-else
3. loop 7. iteration
4. do-while

c.b.a.

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 76

Exercises 77

2. Match the term with the pseudocode segment. (Because the structures go by more than one name,
there are more terms than pseudocode segments.)

1. sequence 4. decision
2. selection 5. if-then-else
3. loop 6. iteration

a. while not eof
print theAnswer

endwhile
b. if inventoryQuantity > 0 then

do fillOrderProcess
else

do backOrderNotification
endif

c. do localTaxCalculation
do stateTaxCalculation
do federalTaxCalculation

3. Is each of the following segments structured, or unstructured? If unstructured, redraw it so that it
does the same thing but is structured.

D

E?
YesNo

b.

IF

JH

G?
Yes

No

a.

A

B?
Yes

No

C

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 77

Chapter 2 • Understanding Structure78

d.

R

S?
YesNo

TV

YX

W?
Yes

No

U?
Yes

No

e.

A?
YesNo

B

K

D

L

C?
Yes

I?

No

J

M

YesNo

E

G H

YesNo

N

F?

YesNo

c.

K?
YesNo

L

QP?
Yes

No

M?

ON

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 78

Exercises 79

4. Write pseudocode for each example (a through e) in Exercise 3.

5. Assume you have created a mechanical arm that can hold a pen. The arm can perform the follow-
ing tasks:

� Lower the pen to a piece of paper.

� Raise the pen from the paper.

� Move the pen one inch along a straight line. (If the pen is lowered, this action draws a one-inch line

from left to right; if the pen is raised, this action just repositions the pen one inch to the right.)

� Turn 90 degrees to the right.

� Draw a circle that is one inch in diameter.

Draw a structured flowchart or write pseudocode describing the logic that would cause the arm to
draw the following:

a. a one-inch square
b. a two-inch by one-inch rectangle
c. a string of three beads

Have a fellow student act as the mechanical arm and carry out your instructions.

6. Assume you have created a mechanical robot that can perform the following tasks:

� Stand up.

� Sit down.

� Turn left 90 degrees.

� Turn right 90 degrees.

� Take a step.

Additionally, the robot can determine the answer to one test condition:

� Am I touching something?

Place two chairs 20 feet apart, directly facing each other. Draw a structured flowchart or write
pseudocode describing the logic that would allow the robot to start from a sitting position in one
chair, cross the room, and end up sitting in the other chair.

Have a fellow student act as the robot and carry out your instructions.

7. Draw a structured flowchart or write structured pseudocode describing your preparation to go to
work or school in the morning. Include at least two decisions and two loops.

8. Draw a structured flowchart or write structured pseudocode describing your preparation to go to
bed at night. Include at least two decisions and two loops.

9. Choose a very simple children’s game and describe its logic, using a structured flowchart or
pseudocode. For example, you might try to explain Musical Chairs; Duck, Duck, Goose; the card
game War; or the elimination game Eenie, Meenie, Minie, Moe.

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 79

Chapter 2 • Understanding Structure80

10. Draw a structured flowchart or write structured pseudocode describing how your paycheck is cal-
culated. Include at least two decisions.

11. Draw a structured flowchart or write structured pseudocode describing the steps a retail store
employee should follow to process a customer purchase. Include at least two decisions.

DETECTIVE WORK

1. In this chapter, you learned what spaghetti code is. What is “ravioli code”?

2. Who was Edsger Dijkstra? What programming statement did he want to eliminate?

3. Who were Bohm and Jacopini? What contribution did they make to programming?

UP FOR DISCUSSION

1. Just because every logical program can be solved using only three structures (sequence, selection,
and loop) does not mean there cannot be other useful structures. For example, the case, do-while,
and do-until structures are never required, but they exist in many programming languages and can
be quite useful. Try to design a new structure of your own and explain situations in which it would
be useful.

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 80

