
4
After studying Chapter 4, you should be able to:

� Plan the mainline logic for a complete program

� Describe typical housekeeping tasks

� Describe tasks typically performed in the main loop of a program

� Describe tasks performed in the end-of-job module

� Understand the need for good program design

� Appreciate the advantages of storing program components in separate files

� Select superior variable and module names

� Design clear module statements

� Understand the need for maintaining good programming habits

DESIGNING AND WRITING A
COMPLETE PROGRAM

117

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 117



118 Chapter 4 • Designing and Writing a Complete Program

UNDERSTANDING THE MAINLINE LOGICAL FLOW THROUGH A
PROGRAM

In the first chapters of this book, you gained an understanding of programming structures, and learned about the docu-
mentation needed for program input, processing, and output. Now, you’re ready to plan the logic for your first complete
computer program. The output is an inventory report; a print chart is shown in Figure 4-1. The report lists inventory
items along with the price, cost, and profit of each item.

Figure 4-2 shows the input INVENTORY file description, Figure 4-3 shows some typical data that might exist in the input
file, and Figure 4-4 shows how the output would actually look if the input file in Figure 4-3 were used.

cotton shirt     01995     01457     2500
wool scarf       01450     01125     0060
silk blouse      16500     04850     0525
cotton shorts    01750     01420     1500

FIGURE 4-3: TYPICAL DATA THAT MIGHT BE STORED IN INVENTORY FILE

INVENTORY FILE DESCRIPTION
File name: INVENTORY
FIELD DESCRIPTION      DATA TYPE    COMMENTS
Item name              Character    15 bytes
Price                  Numeric      2 decimal places
Cost                   Numeric      2 decimal places
Quantity in stock      Numeric      0 decimal places

FIGURE 4-2: INVENTORY FILE DESCRIPTION

1

FIGURE 4-1: PRINT CHART FOR INVENTORY REPORT

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5
1 2 3 4 5 67 8 90 1 2 3 4 5 6 7 8 9 01 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 01 2 3 4 5 6 7 8 9 0

R E P O R T

1 2 3 4 5 6 7 8 9
5 5 5 5 5 5 5 5

O R YI N V E N T
1
2
3
4
5
6
7
8
9
10
11
12
13
14

I T E M
D E S C R I P T I O N

R E T A I L P R I C E M A N U F A C T U R I N G P R O F I P E RT

X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X

E A C H C O S T E A C H I T E M

9 9 9 . 9 9
9 9 9 . 9 9

9 9 9 . 9 9
9 9 9 . 9 9

9 9 9 . 9 9
9 9 9 . 9 9

0
6 6

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 118



119Understanding the Mainline Logical Flow through a Program

In some older operating systems, file names are limited to eight characters, in which case
INVENTORY might be an unacceptable file name.

Examine the print chart and the input file description. Your first task is to make sure you understand what the report
requires; your next job is to determine whether you have all the data you need to produce the report. (Figure 4-5 shows
this process.) The output requires the item name, price, and cost, and you can see that all three are data items in the
input file. The output also requires a profit figure for each item; you need to understand how profit is calculated—which
could be done differently in various companies. If there is any doubt as to what a term used in the output means or how
a value is calculated, you must ask the user, or your client—the person who has requested the program and who will
read and use the report to make management decisions. In this case, suppose you are told you can determine the profit
by subtracting an item’s cost from its selling price. The input record contains an additional field, “Quantity in stock”.
Input records often contain more data than an application needs; in this example, you will not use the quantity field. You
have all the necessary data, so you can begin to plan the program.

FIGURE 4-4: TYPICAL OUTPUT FOR INVENTORY REPORT PROGRAM

                     INVENTORY REPORT

   ITEM             RETAIL PRICE  MANUFACTURING  PROFIT PER
   DESCRIPTION      EACH          COST EACH      ITEM

   cotton shirt      19.95         14.57           5.38
   wool scarf        14.50         11.25           3.25
   silk blouse      165.00         48.50         116.50
   cotton shorts     17.50         14.20           3.30

TIP�

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 119



120 Chapter 4 • Designing and Writing a Complete Program

It is very common for input records to contain more data than an application uses. For
example, although your doctor stores your blood pressure in your patient record, that field
does not appear on your bill, and although your school stores your grades from your first
semester, they do not appear on your report card for your second semester.

Where should you begin? It’s wise to try to understand the big picture first. You can write a program that reads records
from an input file and produces a printed report as a procedural program—that is, a program in which one procedure
follows another from the beginning until the end. You write the entire set of instructions for a procedural program, and
when the program executes, instructions take place one at a time, following your program’s logic. The overall logic, or
mainline logic, of almost every procedural computer program can follow a general structure that consists of three dis-
tinct parts:

1. Performing housekeeping, or initialization tasks. Housekeeping includes steps you must perform

at the beginning of a program to get ready for the rest of the program.

2. Performing the main loop repeatedly within the program. The main loop contains the instructions

that are executed for every record until you reach the end of the input of records, or eof.

3. Performing the end-of-job routine. The end-of-job routine holds the steps you take at the end of

the program to finish the application.

Not all programs are procedural; some are object-oriented. A distinguishing feature of
many (but not all) object-oriented programs is that they are event-driven; often the user
determines the timing of events in the main loop of the program by using an input device
such as a mouse. As you advance in your knowledge of programming, you will learn more
about object-oriented techniques.

FIGURE 4-5: STEPS TO CREATING A PROGRAM

Develop the logic that will
produce the desired output.

Code the logic using a
programming language.

private sub command()

   housekeeping()
   while not eof

NO

YES

COMP = BASEPAY

+50

START

NO

YES

DECLARE

VARIABLES

READ EMPLOYEE ID,

BASEPAY, HRSWORKED, DEPT

DEPT=1?

DEPT=2?

COMP = BASEPAY+

1.50 * HRSWORKED

COMP = BASEPAY-*

1.10

PRINT EMPLOYEEID, COMP

STOP

Understand the user’s
needs. Examine input
and output specifications.

TIP�

TIP�

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 120



121Understanding the Mainline Logical Flow through a Program

You can write any procedural program as one long series of programming language statements, but programs are eas-
ier to understand if you break their logic down into at least three parts, or modules. The main program can call the
three major modules, as shown in the flowchart and pseudocode in Figure 4-6. Of course, the names of the modules,
or subroutines, are entirely up to the programmer.

Reducing a large program into more manageable modules is sometimes called functional
decomposition.

In later examples, this book will use more descriptive names for the mainLoop() mod-
ule. For example, in this program, appropriate names for the mainLoop() might be
processRecord() or createInventoryReport().

Figure 4-7 shows the hierarchy chart for this program.

In summary, breaking down a big program into three basic procedures, or modularizing the program, helps keep the job
manageable, allowing you to tackle a large job one step at a time. Dividing the work into routines also might allow you
to assign the three major procedures to three different programmers, if you choose. It also helps you keep the program
structured.

start
   perform housekeeping()
   while not eof
      perform mainLoop()
   endwhile
   perform finishUp()
stop

Yes

eof? mainLoop()

finishUp()

No

housekeeping()

stop

start

FIGURE 4-6: FLOWCHART AND PSEUDOCODE OF MAINLINE LOGIC

TIP�

TIP�

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 121



122 Chapter 4 • Designing and Writing a Complete Program

HOUSEKEEPING TASKS

Housekeeping tasks include all the steps that must take place at the beginning of a program. Very often, this includes
four major tasks:

� You declare variables.

� You open files.

� You perform any one-time-only tasks that should occur at the beginning of the program, such as
printing headings at the beginning of a report.

� You read the first input record.

DECLARING VARIABLES

Your first task in writing any program is to declare variables. When you declare variables, you assign reasonable names
(identifiers) to memory locations, so you can store and retrieve data there. Declaring a variable involves selecting a
name and a type. When you declare a variable in program code, the operating system reserves space in memory to
hold the contents of the variable. It uses the type (num or char) to determine how to store the information; it stores
numeric and character values in different formats.

For example, within the inventory report program, you need to supply variable names for the data fields that appear in
each input record. You might decide on the variable names and types shown in Figure 4-8.

Some languages require that you provide storage size, in addition to a type and name, for
each variable. Other languages provide a predetermined amount of storage based on the
variable type: for example, four bytes for an integer or one byte for a character. Also,
many languages require you to provide a length for strings of characters. For simplicity,
this book just declares variables as either character or numeric.

char  invItemName
num   invPrice
num   invCost
num   invQuantity

FIGURE 4-8: VARIABLE DECLARATIONS FOR THE INVENTORY FILE

FIGURE 4-7: HIERARCHY CHART FOR INVENTORY REPORT PROGRAM

main()

mainLoop() finishUp()housekeeping()

TIP�

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 122



123Housekeeping Tasks

You can provide any names you choose for your variables. When you write another program that uses the same input
file, you are free to choose completely new variable names. Similarly, other programmers can write programs that use
the same file and choose their own variable names. The variable names just represent memory positions, and are inter-
nal to your program. The files do not contain any variable names; files contain only data. When you read the characters
“cotton shirt” from an input file, it doesn’t matter whether you store those characters at a memory location named
invItemName, nameOfItem, productDescription, or any other one-word variable name. The variable
name is simply an easy-to-remember name for a specific memory address where those characters are stored.

Programmers always must decide between descriptive, but long, variable names and cryp-
tic, but short, variable names. In general, more descriptive names are better, but certain
abbreviations are almost always acceptable in the business world. For example, SSN is
commonly used as an abbreviation for Social Security number, and if you use it as a vari-
able name, it will be interpreted correctly by most of your associates who read your
program.

Each of the four variable declarations in Figure 4-8 contains a type (character or numeric) and an identifier. You can
choose any one-word name to identify the variable, but a typical practice involves beginning similar variables with a
common prefix—for example, inv. In a large program in which you eventually declare dozens of variables, the inv
prefix will help you immediately identify a variable as part of the inventory file.

Organizations sometimes enforce different rules for programmers to follow when naming
variables. Some use a variable-naming convention called Hungarian notation, in which
a variable’s data type or other information is stored as part of the name. For example, a
numeric field might always start with the prefix num.

Creating the inventory report as planned in Figure 4-1 involves using the invItemName, invPrice, and
invCost fields, but you do not need to use the invQuantity field in this program. However, the information
regarding quantity does take room in the input file, so you typically declare the variable to allocate space for it when it is
read into memory. If you imagine the surface of a disk as pictured in Figure 4-9, you can envision how the data fields
follow one another in the file.

TIP�

TIP�

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 123



124 Chapter 4 • Designing and Writing a Complete Program

When you ask the program to read an inventory record, four “chunks” of data will be transferred from the input device
to the computer’s main memory: name, price, cost, and quantity. When you declare the variables that represent the
input data, you must provide a memory position for each of the four pieces of data, whether or not they all are used
within this program.

Some languages do not require you to use a unique name for each data field in an input
record. For example, in COBOL, you can use the generic name FILLER for all unused
data positions. This frees you from the task of creating variable names for items you do
not intend to use. Because it is common to do so using newer languages, the examples in
this book always provide a unique identifier for each variable in a file.

Considering that dozens of programs within the organization might access the INVENTORY
file, some organizations create the data file descriptions for you. This system is efficient
because the description of variable names and types is stored in one location, and each
programmer who uses the file simply imports the data file description into his or her own
program. Of course, the organization must provide the programmer with documentation
specifying and describing the chosen names.

In most programming languages, you can give a group of associated variables a group name. This allows you to han-
dle several associated variables using a single instruction. Just as it is easier to refer to “The Andersons” than it is to list
“Nancy, Bud, Jim, Tom, Julie, Jane, Kate, and John,” the benefit of using a group name is the ability to reference several
variables with one all-encompassing name. For example, if you group four fields together and call them invRecord,
then you can write a statement such as read invRecord. This is simpler than writing read invItemName,
invPrice, invCost, and invQuantity. The way you assign a group name to several variables differs in each
programming language. This book follows the convention of underlining any group name and indenting the group mem-
bers beneath, as shown in Figure 4-10.

FIGURE 4-9: HOW TYPICAL DATA ITEMS LOOK WITHIN AN INVENTORY FILE

cotton shirt

01995
01475

2500

wool scarf

01450

01
12

5
00

60

silk
 blouse 16500

04850
0525

1500

01
42

0

01750
cotton shorts

TIP�

TIP�

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 124



125Housekeeping Tasks

A group of variables is often called a data structure, or more simply, a structure.
Some object-oriented languages refer to a group as a class, although a class often con-
tains method definitions as well as variables.

In many programming languages, you can use the group name along with the field name,
separated by a dot. For example, you might refer to invRecord.invItemName. This
book will use the field name only, for simplicity.

The ability to group variable names does not automatically provide you with the ability to
perform every sort of operation with a group. For example, you cannot multiply or divide
one invRecord by another (unless, with some languages, you write special code to do
so). In this book, assume that you can use one input or output statement on a set of fields
that constitute a record.

In addition to declaring variables, sometimes you want to provide a variable with an initial value. Providing a variable with a
value when you create it is known as initializing, or defining, the variable. For example, for the inventory report print
chart shown in Figure 4-1, you might want to create a variable named mainHeading and store the value “INVENTORY
REPORT” in that variable. The declaration is char mainHeading = “INVENTORY REPORT”. This indicates that
mainHeading is a character variable, and that the character contents are the words “INVENTORY REPORT”.

Declaring a variable provides it with a name and type. Defining, or declaring and
initializing, a variable also provides it with a value. If you declare a variable, but do not
provide a value, you can always initialize it later.

In some programming languages, you can declare a variable such as mainHeading to be
constant, or never changing. Even though invItemName, invPrice, and the other
fields in the input file will hold a variety of values when a program executes, the
mainHeading value will never change.

In many programming languages, if you do not provide an initial value when declaring a variable, then the value is
unknown, or garbage. Some programming languages do provide you with an automatic starting value; for example, in
Java, Visual Basic, BASIC, or RPG, all numeric variables automatically begin with the value zero. However, in C++, C#,
Pascal, and COBOL, variables generally do not receive any initial value unless you provide one. No matter which pro-
gramming language you use, it is always clearest to provide a value for those variables that require them.

Be especially careful to make sure all variables you use in calculations have initial values.
If you attempt to perform arithmetic with garbage values, either the program will fail to
execute, or worse, the result will also contain garbage.

invRecord
   char   invItemName
   num    invPrice
   num    invCost
   num    invQuantity

FIGURE 4-10: VARIABLE DECLARATIONS FOR THE INVENTORY FILE INCLUDING A GROUP NAME

TIP�

TIP�

TIP�

TIP�

TIP�

TIP�

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 125



126 Chapter 4 • Designing and Writing a Complete Program

When you declare the variables invItemName, invPrice, invCost, and invQuantity, you do not provide
them with any initial value. The values for these variables will be assigned when the first file record is read into memory.
It would be legal to assign a value to input file record variables—for example, invItemName = “cotton
shirt”—but it would be a waste of time and might mislead others who read your program. The first invItemName
will come from an input device, and may or may not be “cotton shirt”.

The report illustrated in Figure 4-1 contains three individual heading lines. The most common practice is to declare one
variable or constant for each of these lines. The three declarations are as follows:

charƒmainHeadingƒ=ƒ“INVENTORYƒREPORT”
charƒcolumnHead1ƒ=ƒ“ITEMƒƒƒƒƒƒƒƒƒRETAILƒPRICE
ƒƒƒƒMANUFACTURINGƒƒƒƒƒƒƒPROFITƒPER”
charƒcolumnHead2ƒ=ƒ“DESCRIPTIONƒƒEACH
ƒƒƒƒCOSTƒEACHƒƒƒƒƒƒƒƒƒƒƒITEM”

Within the program, when it is time to write the heading lines to an output device, you will code:

printƒmainHeading
printƒcolumnHead1
printƒcolumnHead2

You are not required to create variables for your headings. Your program can contain the following statements, in which
you use literal strings of characters instead of variable names. The printed results are the same either way.

printƒ“INVENTORYƒREPORT”
printƒ“ITEMƒƒƒƒƒƒƒƒƒƒRETAILƒPRICEƒƒƒMANUFACTURINGƒƒƒƒPROFITƒPER”
printƒ“DESCRIPTIONƒƒƒEACHƒƒƒƒƒƒƒƒƒƒƒCOSTƒEACHƒƒƒƒƒƒƒƒITEM”

Using variable names, as in print mainHeading, is usually more convenient than spelling out the heading’s
contents within the statement that prints, especially if you will use the headings in multiple locations within your pro-
gram. Additionally, if the contents of all of a program’s heading lines can be found in one location at the start of the pro-
gram, it is easier to locate them all if changes need to be made in the future.

When you write a program, you type spaces between the words within column headings
so the spacing matches the print chart you created for the program. For convenience,
some languages provide you with a tab character. Other languages let you specify a
numeric position where a column heading will display. The goal is to provide well-spaced
output in readable columns.

Dividing the headings into three lines is not required either, but it is a common practice. In most programming lan-
guages, you could write all the headings in one statement, using a code that indicates a new line at every appropriate
position. Alternatively, most programming languages let you produce a character for output without advancing to a new
line. You could write out the headings using separate print statements to display one character at a time, advancing to a

TIP�

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 126



127Housekeeping Tasks

new line only after all the line’s characters were individually printed, although this approach seems painstakingly
detailed. Storing and writing one complete line at a time is a reasonable compromise.

Every programming language provides you with a means to physically advance printer paper to the top of a page when
you print the first heading. Similarly, every language provides you with a means to produce double- and triple-spaced
lines of text by sending specific codes to the printer or monitor. Because the methods and codes differ from language to
language, examples in this book assume that if a print chart or sample output shows a heading that prints at the top of
the page and then skips a line, any corresponding variable you create, such as mainHeading, will also print in this
manner. You can add the appropriate language-specific codes to implement the mainHeading spacing when you
write the actual computer program. Similarly, if you create a print chart that shows detail lines as double-spaced,
assume your detail lines will double-space when you execute the step to write them.

Often, you must create dozens of variables when you write a computer program. If you are using a flowchart to diagram
the logic, it is physically impossible to fit the variables in one flowchart box. Therefore, you might want to use an anno-
tation symbol. The beginning of a flowchart for the housekeeping() module of the inventory report program is
shown in Figure 4-11.

You learned about the annotation symbol in Chapter 3.

Notice that the three heading variables defined in Figure 4-11 are not indented under invRecord as the
invRecord fields are. This shows that although invItemName, invPrice, invCost, and invQuantity
are part of the invRecord group, mainHeading, columnHead1, and columnHead2 are not.

In Figure 4-11, notice that columnHead1 contains only the words that appear in the first line of column headings, in
row 4 of the print chart in Figure 4-1: “ITEM     RETAIL PRICE     MANUFACTURING     PROFIT PER”. Similarly,
columnHead2 contains only the words that appear in the second row of column headings.

invRecord
char  invItemName
num   invPrice

 num   invCost
num   invQuantity

char mainHeading = "INVENTORY REPORT"
char columnHead1 = "ITEM         RETAIL PRICE

MANUFACTURING        PROFIT PER"
char columnHead2 = "DESCRIPTION  EACH

COST EACH            ITEM"

housekeeping()

declare
variables

FIGURE 4-11: BEGINNING OF FLOWCHART FOR housekeeping() MODULE FOR THE INVENTORY REPORT
PROGRAM

TIP�

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 127



128 Chapter 4 • Designing and Writing a Complete Program

OPENING FILES

If a program will use input files, you must tell the computer where the input is coming from—for example, a specific
disk drive, CD, or tape drive. You also must indicate the name (and possibly the path, the list of folders or directories in
which the file resides) for the file. Then you must issue a command to open the file, or prepare it for reading. In many lan-
guages, if no input file is opened, input is accepted from a default or standard input device, most often the keyboard.

If a program will have output, you must also open a file for output. Perhaps the output file will be sent to a disk or tape.
Although you might not think of a printed report as a file, computers treat a printer as just another output device, and if
output will go to a printer, then you must open the printer output device as well. Again, if no file is opened, a default or
standard output device, usually the monitor, is used.

When you create a flowchart, you usually write the command to open the files within a parallelogram. You use the par-
allelogram because it is the input/output symbol, and you are opening the input and output devices. You can use an
annotation box to list the files that you open, as shown in Figure 4-12.

A ONE-TIME-ONLY TASK—PRINTING HEADINGS

Within a program’s housekeeping module, besides declaring variables and opening files, you perform any other tasks
that occur only at the beginning of the program. A common housekeeping task involves printing headings at the top of a
report. In the inventory report example, three lines of headings appear at the beginning of the report. In this example,
printing the heading lines is straightforward:

printƒmainHeading
printƒcolumnHead1
printƒcolumnHead2

READING THE FIRST INPUT RECORD

The last task you execute in the housekeeping module of most computer programs is to read the first data record into
memory. In this example, the input data is read from a stored file. Other applications might be interactive
applications—that is, applications that interact with a user who types data at a keyboard. When you write your first
computer programs, you probably will use interactive input so that you don’t have to complicate the programs by
including the statements necessary to locate and open an input file. To read the necessary data interactively from the
user, you could issue a statement such as the following:

INVENTORY, Printer
open
files

FIGURE 4-12: SPECIFYING FILES THAT YOU OPEN

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 128



129Housekeeping Tasks

readƒinvItemName,ƒinvPrice,ƒinvCost,ƒinvQuantity

The statement would pause program execution until the user typed four values from the keyboard, typically separating
them with a delimiter, or character produced by a keystroke that separates data items. Depending on the program-
ming language, the delimiter might be the Enter key, the tab character, or a comma.

Requiring a user to type four values in the proper order is asking a lot. More frequently, the read statement would be
separated into four distinct read statements, each preceded by an output statement called a prompt that asks the user
for a specific item. For example, the following set of statements prompts the user for and accepts each of the neces-
sary data items for the inventory program:

printƒ“Pleaseƒenterƒtheƒinventoryƒitemƒname”
readƒinvItemName
printƒ“Enterƒtheƒprice”
readƒinvPrice
printƒ“Enterƒtheƒcostƒofƒtheƒitem”
readƒinvCost
printƒ“Enterƒtheƒquantityƒinƒstock”
readƒinvQuantity

If the four data fields have already been stored and are input from a data file instead of interactively, then no prompts
are needed, and you can write the following:

readƒinvItemName,ƒinvPrice,ƒinvCost,ƒinvQuantity

In most programming languages, if you have declared a group name such as invRecord, it is simpler to obtain values
for all the data fields by writing the following:

readƒinvRecord

This statement fills the entire group item with values from the input file. Using the group name is a shortcut for writing
each field name. When you write your first programs, you might get your data interactively, in which case you will write
prompts and separate input statements, or you might obtain input from a data file, but delay studying how to create
group items, so you might list each field separately. For simplicity, most of the input statements in this book will assume
the data comes from files and is grouped; this assumption will allow the book to use the shortest version of the state-
ment that simply means “obtain all the data fields this application needs.”

CHECKING FOR THE END OF THE FILE

The last task within the housekeeping() module is to read the first invRecord; the first task following
housekeeping() is to check for eof on the file that contains the inventory records. If the program is an interac-
tive one, the user might indicate that input is complete by typing a predetermined value from the keyboard, or using a
mouse to select a screen option indicating completion of data entry. If the program reads data from an input file stored
on a disk, tape, or other storage device, the input device recognizes that it has reached the end of a file when it

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 129



130 Chapter 4 • Designing and Writing a Complete Program

attempts to read a record and finds no records available. Recall the mainline logic of the inventory report program from
Figure 4-6—eof is tested immediately after housekeeping() ends.

If the input file has no records, when you read the first record the computer recognizes the end-of-file condition and
proceeds to the finishUp() module, never executing mainLoop(). More commonly, an input file does have
records, and after the first read the computer determines that the eof condition is false, and the logic proceeds to
mainLoop().

Immediately after reading from a file, the next step always should determine whether eof was encountered. Notice in
Figure 4-6 that the eof question always follows both the housekeeping() module and the mainLoop()
module. When the last instruction in each of these modules reads a record, then the eof question correctly follows
each read instruction immediately.

Not reading the first record within the housekeeping() module is a mistake. If housekeeping() does not
include a step to read a record from the input file, you must read a record as the first step in mainLoop(), as
shown on the left side of Figure 4-13. In this program, a record is read, a profit is calculated, and a line is printed. Then,
if it is not eof, another record is read, a profit calculated, and a line printed. The program works well, reading records,
calculating profits, and printing information until reaching a read command in which the computer encounters the
eof condition. When this last read occurs, the next steps involve computing a profit and writing a line—but there isn’t
any data to process. Depending on the programming language you use, either garbage data will calculate and print, or
a repeat of the data from the last record before eof will print.

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 130



131Housekeeping Tasks

start

eof?
No

Yes

housekeeping()
(without

read)

read
invRecord

profit =
invPrice

 –
invCost

print
invItemName,

invPrice,
invCost, profit

start

eof?
No

Yes

read
invRecord

profit =
invPrice

 –
invCost

print
invItemName,

invPrice,
invCost, profit

housekeeping()
(with read)

FAULTY RECORD-READING LOGIC

CORRECT RECORD-READING LOGIC

start
     perform housekeeping() (without read)
     while not eof
          read invRecord
          profit = invPrice – invCost
          print invItemName, invPrice, invCost, profit
     endwhile

start
     perform housekeeping() (with read)
     while not eof
          profit = invPrice – invCost
          print invItemName, invPrice, invCost, profit
          read invRecord
     endwhile

FIGURE 4-13: COMPARING FAULTY AND CORRECT RECORD-READING LOGIC

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 131



132 Chapter 4 • Designing and Writing a Complete Program

Reading an input record in the housekeeping() module is an example of a priming
read. You learned about the priming read in Chapter 2.

In some modern programming languages, such as Visual Basic, file read commands can
look ahead to determine if the next record is empty. With these languages, the priming
read is no longer necessary. Because most languages do not currently have this type of read
statement, and because the priming read is always necessary when input is based on user
response rather than reading from a file, this book uses the conventional priming read.

The flowchart in the lower part of Figure 4-13 shows correct record-reading logic. The appropriate place for the priming
record read is at the end of the preliminary housekeeping steps, and the appropriate place for all subsequent reads is
at the end of the main processing loop.

Figure 4-14 shows a completed housekeeping() routine for the inventory program in both flowchart and
pseudocode versions.

INVENTORY, Printer

invRecord
     char  invItemName
     num   invPrice
     num   invCost
     num   invQuantity
char mainHeading = "INVENTORY REPORT"
char columnHead1 = "ITEM RETAIL PRICE MANUFACTURING PROFIT PER"
char columnHead2 = "DESCRIPTION EACH COST EACHƒƒƒƒƒITEM"

housekeeping( )

declare
variables

open
files

print
columnHead1

print
columnHead2

read
invRecord

return

print
mainHeading

housekeeping()
   declare variables
      invRecord
         char invItemName
         num  invPrice
         num  invCost
         num  invQuantity
      char mainHeading = "INVENTORY REPORT"
      char columnHead1 =
       "ITEM     RETAIL PRICE  MANUFACTURING  PROFIT PER"
      char columnHead2 =
       "DESCRIPTION EACH        COST EACH  ITEM"
   open files
   INVENTORY, Printer
   print mainHeading
   print columnHead1
   print columnHead2
   read invRecord
return

FIGURE 4-14: FLOWCHART AND PSEUDOCODE FOR housekeeping() ROUTINE IN INVENTORY REPORT
PROGRAM

TIP�

TIP�

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 132



133Housekeeping Tasks

As an alternative to including print mainHeading, print columnHead1, and print columnHead2
within the housekeeping() module, you can place the three heading line statements in their own module. In this
case, the flowchart and pseudocode for housekeeping() will look like Figure 4-15, with the steps in the newly
created headings() module appearing in Figure 4-16. Either approach is fine; the logic of the program is the same
whether or not the heading line statements are segregated into their own routine. The programmer can decide on the
program organization that makes the most sense.

invRecord
     char  invItemName
     num   invPrice
     num   invCost
     num   invQuantity
char mainHeading = “INVENTORY REPORT”
char columnHead1 = “ITEM RETAIL PRICE MANUFACTURING PROFIT PER”
char columnHead2 = “DESCRIPTION EACH  COST EACH     ITEM”

INVENTORY, Printer

housekeeping()
declare variables

invRecord
char invItemName

    num invPrice
        num invCost

    num invQuantity
     char mainHeading = "INVENTORY REPORT”
     char columnHead1 = "ITEM   RETAIL PRICE   MANUFACTURING

PROFIT PER"
     char columnHead2 = "DESCRIPTION EACH COST EACH ITEM"
open files

INVENTORY, Printer
perform headings()
read invRecord

return

FIGURE 4-15: FLOWCHART AND PSEUDOCODE FOR ALTERNATIVE housekeeping() MODULE THAT CALLS
headings() MODULE

housekeeping()

declare
variables

open
files

read
invRecord

return

headings()

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 133



134 Chapter 4 • Designing and Writing a Complete Program

WRITING THE MAIN LOOP

After you declare the variables for a program and perform the housekeeping tasks, the “real work” of the program
begins. The inventory report described at the beginning of this chapter and depicted in Figure 4-1 needs just one set of
variables and one set of headings, yet there might be hundreds or thousands of inventory items to process. The main
loop of a program, controlled by the eof decision, is the program’s “workhorse.” Each data record will pass once
through the main loop, where calculations are performed with the data and the results printed.

If the inventory report contains more records than will fit on a page of output, you proba-
bly will want to print a new set of headings at the top of each page. You will learn how to
do this in Chapter 7. 

For the inventory report program to work, the mainLoop() module must include three steps:

1. Calculate the profit for an item.

2. Print the item information on the report.

3. Read the next inventory record.

At the end of housekeeping(), you read one data record into the computer’s memory. As the first step in
mainLoop(), you can calculate an item’s profit by subtracting its manufacturing cost from its retail price: profit
= invPrice - invCost. The name profit is the programmer-created variable name for a new spot in com-
puter memory where the value of the profit is stored. Although it is legal to use any variable name to represent profit,
naming it invProfit would be misleading. Using the inv prefix would lead those who read your program to

headings()
   print mainHeading
   print columnHead1
   print columnHead2
return

print
columnHead2

return

print
columnHead1

print
mainHeading

headings()

FIGURE 4-16: FLOWCHART AND PSEUDOCODE FOR headings() MODULE CALLED BY MAINLINE IN
FIGURE 4-15

TIP�

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 134



135Writing the Main Loop

believe that profit was part of the input record, like the other variable names that start with inv. The profit value is not
part of the input record, however; it represents a memory location used to store the arithmetic difference between two
other variables.

Recall that the standard way to express mathematical statements is to assign values 
from the right side of an assignment operator to the left. That is,
profitƒ=ƒinvPriceƒ-ƒinvCost assigns a value to profit. The statement
invPriceƒ-ƒinvCostƒ=ƒprofit is an illegal statement.

Because you have a new variable, you must add profit to the list of declared variables at the beginning of the pro-
gram. Programmers often work back and forth between the variable list and the logical steps during the creation of a
program, listing some of the variables they will need as soon as they start to plan, and adding others later as they think
of them. Because profit will hold the result of a mathematical calculation, you should declare it as a numeric vari-
able when you add it to the variable list, as shown in Figure 4-17. Notice that, like the headings, profit is not
indented under invRecord. You want to show that profit is not part of the invRecord group; instead, it is a
separate variable that you are declaring to store a calculated value.

You can declare mainHeading, columnHead1, columnHead2, and profit in any
order. The important point is that none of these four variables is part of the
invRecord group.

After you determine an item’s profit, you can write a detail line of information on the inventory report: print
invItemName, invPrice, invCost, profit. Notice that in the flowchart and pseudocode for the
mainLoop() routine in Figure 4-18, the output statement is not print invRecord. For one thing, the entire
invRecord is not printed—the quantity is not part of the report. Also, the calculated profit is included in the detail
line—it does not appear on the input record. Even if the report detail lines listed each of the invRecord fields in the
exact same order as on the input file, the print statement still would most often be written listing the individual fields to
be printed. Usually, you would include a formatting statement with each printed field to control the spacing within the
detail line. Because the way you space fields on detail lines differs greatly in programming languages, discussion of the
syntax to space fields is not included in this book. However, the fields that are printed are listed separately, as you
would usually do when coding in a specific programming language.

invRecord
   char  invItemName
   num   invPrice
   num   invCost
   num   invQuantity
char mainHeading = "INVENTORY REPORT"
char columnHead1 = "ITEM            RETAIL PRICE     MANUFACTURING     PROFIT PER"
char columnHead2 = "DESCRIPTION     EACH             COST EACH         ITEM"
num profit

FIGURE 4-17: VARIABLE LIST FOR INVENTORY REPORT PROGRAM, INCLUDING PROFIT

TIP�

TIP�

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 135



136 Chapter 4 • Designing and Writing a Complete Program

The last step in the mainLoop() module of the inventory report program involves reading the next invRecord.
Figure 4-18 shows the flowchart and pseudocode for mainLoop().

Just as headings are printed one full line at a time, detail lines are also printed one line at a time. You can print each
field separately, as in the following code, but it is clearer and more efficient to write one full line at a time, as shown in
Figure 4-18.

printƒinvItemName
printƒinvPrice
printƒinvCost
printƒprofit

In most programming languages, you also have the option of calculating the profit and printing it in one statement, as in
the following:

printƒinvItemName,ƒinvPrice,ƒinvCost,ƒinvPriceƒ-ƒinvCost

If the language you use allows this type of statement, in which a calculation takes place within the output statement, it
is up to you to decide which format to use. Performing the arithmetic as part of the print statement allows you to
avoid declaring a profit variable. However, if you need the profit figure for further calculations, then it makes

mainLoop()
   profit = invPrice - invCost
   print invItemName, invPrice, invCost, profit
   read invRecord
return

mainLoop()

profit =
invPrice

–
invCost

print
invItemName,

invPrice,
invCost, profit

read
invRecord

return

FIGURE 4-18: FLOWCHART AND PSEUDOCODE FOR mainLoop() OF INVENTORY REPORT PROGRAM

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 136



137Performing End-of-Job Tasks

sense to compute the profit and store it in a profit field. Using a separate work variable, or work field, such as
profit to temporarily hold a calculation is never wrong, and often it’s the clearest course of action.

As with performing arithmetic within a print statement, different languages often provide
multiple ways to combine several steps into one. For example, many languages allow you
to print multiple lines of output or read a record and check for the end of the file using one
statement. This book uses only the most common combinations, such as performing arith-
metic within a print statement.

Although a language may allow you to combine actions into a single statement, you are never required to do so. If the
program is clearer using separate statements, then that is what you should do.

After the detail line containing the item name, price, cost, and profit has been written, the last step you take before
leaving the mainLoop() module is to read the next record from the input file into memory. When you exit
mainLoop(), the logic flows back to the eof question in the mainline logic. If it is not eof—that is, if an addi-
tional data record exists—then you enter mainLoop() again, compute profit on the second record, print the detail
line, and read the third record.

Eventually, during an execution of mainLoop(), the program will read a new record and encounter the end of the
file. Then, when you ask the eof question in the mainline of the program, the answer will be yes, and the program will
not enter mainLoop() again. Instead, the program logic will enter the finishUp() routine.

PERFORMING END-OF-JOB TASKS

Within any program, the end-of-job routine holds the steps you must take at the end of the program, after all input
records are processed. Some end-of-job modules print summaries or grand totals at the end of a report. Others might
print a message such as “End of Report”, so readers can be confident that they have received all the information that
should be included. Such end-of-job message lines often are called footer lines, or footers for short. Very often, end-
of-job modules must close any open files.

The end-of-job module for the inventory report program is very simple. The print chart does not indicate that any spe-
cial messages, such as “Thank you for reading this report”, print after the detail lines end. Likewise, there are no
required summary or total lines; nothing special happens. Only one task needs to be performed in the end-of-job rou-
tine that this program calls finishUp(). In housekeeping(), you opened files; in finishUp(), you close
them. The complete finishUp() module is flowcharted and written in pseudocode in Figure 4-19.

TIP�

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 137



138 Chapter 4 • Designing and Writing a Complete Program

Many programmers wouldn’t bother with a subroutine for just one statement, but as you create more complicated pro-
grams, your end-of-job routines will get bigger, and it will make more sense to see the necessary job-finishing tasks
together in a module.

For your convenience, Figure 4-20 shows the flowchart and pseudocode for the entire inventory report program. Make
sure you understand the importance of each flowchart symbol and each pseudocode line. There is nothing superfluous—
each is included to accomplish a specific part of the program that creates the completed inventory report.

finishUp()
  close files

INVENTORY, Printer
return

finishUp()

close
files

return

INVENTORY,
Printer

FIGURE 4-19: FLOWCHART AND PSEUDOCODE OF finishUp() MODULE

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 138



139Performing End-of-Job Tasks

finishUp()

close
files

return

mainLoop()

profit =
invPrice

–
invCost

read
invRecord

return

print
invItemName,

invPrice,
invCost, profit

declare
variables

open
files

print
columnHead1

print
columnHead2

read
invRecord

return

print
mainHeading

housekeeping()

Yes

eof? mainLoop()

finishUp()

No

housekeeping()

stop

start invRecord
     char  invItemName
     num   invPrice
     num   invCost
     num   invQuantity
char mainHeading = "INVENTORY REPORT"
char columnHead1 = "ITEM RETAIL PRICE
     MANUFACTURING PROFIT PER"
char columnHead2 = "DESCRIPTION EACH
     COST EACHƒƒƒƒƒITEM"
num profit

FIGURE 4-20: FLOWCHART AND PSEUDOCODE FOR INVENTORY REPORT PROGRAM

INVENTORY, Printer

INVENTORY, Printer

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 139



140 Chapter 4 • Designing and Writing a Complete Program

UNDERSTANDING THE NEED FOR GOOD PROGRAM DESIGN

As your programs become larger and more complicated, the need for good planning and design increases. Think of an
application you use, such as a word processor or a spreadsheet. The number and variety of user options are stagger-
ing. Not only would it be impossible for a single programmer to write such an application, but without thorough planning
and design, the components would never work together properly. Ideally, each program module you design needs to
work well as a stand-alone module and as an element of larger systems. Just as a house with poor plumbing or a car
with bad brakes is fatally flawed, a computer-based application can be great only if each component is designed well.

start
   perform housekeeping()
   while not eof
       perform mainLoop()
   endwhile
   perform finishUp()
stop

housekeeping()
   declare variables
      invRecord
         char  invItemName
         num  invPrice
         num  invCost
         num  invQuantity
      char mainHeading = "INVENTORY REPORT"
      char columnHead1 =
       "ITEM     RETAIL PRICE  MANUFACTURING  PROFIT PER"
      char columnHead2 =
       "DESCRIPTION EACH COST EACH  ITEM"
      num profit
   open files

INVENTORY, Printer
   print mainHeading
   print columnHead1
   print columnHead2
   read invRecord
return

mainLoop()
   profit = invPrice - invCost
   print invItemName, invPrice, invCost,  profit
   read invRecord
return

finishUp()
  close files

INVENTORY, Printer
return

FIGURE 4-20: FLOWCHART AND PSEUDOCODE FOR INVENTORY REPORT PROGRAM (CONTINUED)

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 140



141Storing Program Components in Separate Files

STORING PROGRAM COMPONENTS IN SEPARATE FILES

When you start to work on professional programs, you will see that many of them are quite lengthy, with some contain-
ing hundreds of variables and thousands of lines of code. Earlier in this chapter, you learned you can manage lengthy
procedural programs by breaking them down into modules. Although modularization helps you to organize your pro-
grams, sometimes it is still difficult to manage all of a program’s components.

Most modern programming languages allow you to store program components in separate files. If you write a module
and store it in the same file as the program that uses it, your program files become large and hard to work with,
whether you are trying to read them on a screen or on multiple printed pages. In addition, when you define a useful
module, you might want to use it in many programs. Of course, you can copy module definitions from one file to
another, but this method is time-consuming as well as prone to error. A better solution (if you are using a language that
allows it) is to store your modules in individual files and use an instruction to include them in any program that uses
them. The statement needed to access modules from separate files varies from language to language, but it usually
involves using a verb such as include, import, or copy, followed by the name of the file that contains the module.

For example, suppose your company has a standard employee record definition, part of which is shown in Figure 4-21.
Files with the same format are used in many applications within the organization—personnel reports, production
reports, payroll, and so on. It would be a tremendous waste of resources if every programmer rewrote this file definition
in multiple applications. Instead, once a programmer writes the statements that constitute the file definition, those
statements should be imported in their entirety into any program that uses a record with the same structure. For exam-
ple, Figure 4-22 shows how the data fields in Figure 4-21 would be defined in the C++ programming language. If the
statements in Figure 4-22 are saved in a file named Employees, then any C++ program can contain the statement
#include Employees and all the data fields are automatically declared.

When you include a file in a C++ program, all the fields in the file are automatically
declared. However, they might not be accessible without further manipulation because the
fields are private by default. You will learn more about making data public or private and
how to handle each type when you study object-oriented programming in Chapter 12.

The pound sign (#) is used with the include statement in C++ to notify the compiler
that it is part of a special type of statement called a pre-processor directive.

TIP�

TIP�

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 141



142 Chapter 4 • Designing and Writing a Complete Program

Don’t be concerned with the syntax used in the file description in Figure 4-22. The words
class, int, string, long, and double are all part of the C++ programming language
and are not important to you now. Simply concentrate on how the variable names reflect
the field descriptions in Figure 4-21.

Suppose you write a useful module that checks dates to guarantee their validity. For example, the two digits that represent
a month can be neither less than 01 nor greater than 12, and the two digits that represent the day can contain different
possible values, depending on the month. Any program that uses the employee file description shown in Figure 4-21 might
want to call the date-validating module several times in order to validate any employee’s hire date, birth date, and termina-
tion date. Not only do you want to call this module from several locations within any one program, you want to call it from
many programs. For example, programs used for company ordering and billing would each contain several dates. If the
date-validating module is useful and well-written, you might even want to market it to other companies. By storing the
module in its own file, you enable its use to be flexible. When you write a program of any length, you should consider stor-
ing each of its components in its own file.

FIGURE 4-22: DATA FIELDS IN FIGURE 4-21 DEFINED IN THE C++ LANGUAGE

class Employee
{
      int employeeID;
      string lastName;
      string firstName;
      long hireDate;
      double hourlyWage;
      long birthDate;
      long terminationDate;
};

EMPLOYEES FILE DESCRIPTION
File name: EMPLOYEES
FIELD DESCRIPTION      DATA TYPE    COMMENTS
Employee ID            Character    5 bytes
Last Name              Character    20 bytes
First Name             Character    15 bytes
Hire Date              Numeric      8 digits yyyymmdd
Hourly Wage            Numeric      2 decimal places
Birth Date             Numeric      8 digits yyyymmdd
Termination Date       Numeric      8 digits yyyymmdd

FIGURE 4-21: PARTIAL EMPLOYEES FILE DESCRIPTION

TIP�

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 142



143Selecting Variable and Module Names

Storing components in separate files can provide an advantage beyond ease of reuse. When you let others use your
programs or modules, you often provide them with only the compiled (that is, machine-language) version of your code,
not the source code, which is composed of readable statements. Storing your program statements in a separate, non-
readable, compiled file is an example of implementation hiding, or hiding the details of how the program or module
works. Other programmers can use your code, but cannot see the statements you used to create it. A programmer who
cannot see your well-designed modules is more likely to use them simply as they were intended; the programmer also
will not be able to attempt to make adjustments to your code, thereby introducing error. Of course, in order to work with
your modules or data definitions, a programmer must know the names and types of data you are using. Typically, you
provide programmers who use your definitions with written documentation of the data names and purposes.

Recall from Chapter 1 that when you write a program in a programming language, you
must compile or interpret it into machine language before the computer can actually carry
out your instructions.

SELECTING VARIABLE AND MODULE NAMES

An often-overlooked element in program design is the selection of good data and module names (sometimes generi-
cally called identifiers). In Chapter 1, you learned that every programming language has specific rules for the construc-
tion of names—some languages limit the number of characters, some allow dashes, and so on—but there are other
general guidelines:

� Use meaningful names. Creating a data field named someData or a module named
firstModule() makes a program cryptic. Not only will others find it hard to read your pro-
grams, but you will forget the purpose of these identifiers even within your own programs. All pro-
grammers occasionally use short, nondescriptive names such as x or temp in a quick program
written to test a procedure; however, in most cases, data and module names should be meaning-
ful. Programmers refer to programs that contain meaningful names as self-documenting. This
means that even without further documentation, the program code explains itself to readers.

� Usually, you should use pronounceable names. A variable name like pzf is neither pronounce-
able nor meaningful. A name that looks meaningful when you write it might not be as meaningful
when someone else reads it; for instance, preparead() might mean “Prepare ad” to you,
but “Prep a read” to others. Look at your names critically to make sure they are pronounceable.
Very standard abbreviations do not have to be pronounceable. For example, most business peo-
ple would interpret ssn as Social Security number.

Don’t forget that not all programmers share your culture. An abbreviation whose meaning
seems obvious to you might be cryptic to someone in a different part of the world.

� Be judicious in your use of abbreviations. You can save a few keystrokes when creating a module
called getStat(), but is its purpose to find the state in which a city is located, output some
statistics, or determine the status of some variables? Similarly, is a variable named fn meant to
hold a first name, file number, or something else?

TIP�

TIP�

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 143



144 Chapter 4 • Designing and Writing a Complete Program

To save typing time when you develop a program, you can use a short name like efn. After
the program operates correctly, you can use an editor’s Search and Replace feature to
replace your coded name with a more meaningful name such as employeeFirstName.
Some newer compilers support an automatic statement completion feature that saves typ-
ing time. After the first time you use a name like employeeFirstName, you need to
type only the first few letters before the compiler editor offers a list of available names
from which to choose. The list is constructed from all the names you have used in the file
that begin with the same characters.

� Usually, avoid digits in a name. Zeroes get confused with the letter “O”, and lowercase “l”s are
misread as the numeral 1. Of course, use your judgment: budgetFor2007 is probably not
going to be misinterpreted.

� Use the system your language allows to separate words in long, multiword variable names. For
example, if the programming language you use allows dashes or underscores, then use a method
name like initialize-data() or initialize_data(), which is easier to read than
initializedata(). If you use a language that allows camel casing, then use
initializeData(). If you use a language that is case sensitive, it is legal but confusing to
use variable names that differ only in case—for example, empName, EmpName, and Empname.

� Consider including a form of the verb to be, such as is or are, in names for variables that are
intended to hold a status. For example, use isFinished as a flag variable that holds a “Y” or
“N” to indicate whether a file is exhausted. The shorter name finished is more likely to be
confused with a module that executes when a program is done.

When you begin to write programs, the process of determining what data variables and modules you will need and
what to name them all might seem overwhelming. The design process is crucial, however. When you acquire your first
professional programming assignment, the design process might very well be completed already. Most likely, your first
assignment will be to write or make modifications to one small member module of a much larger application. The more
the original programmers stuck to these guidelines, the better the original design was, and the easier your job of modi-
fication will be.

DESIGNING CLEAR MODULE STATEMENTS

In addition to selecting good identifiers, you can use the following tactics to contribute to the clarity of the statements
within your program modules:

� Avoid confusing line breaks.

� Use temporary variables to clarify long statements.

� Use constants where appropriate.

TIP�

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 144



145Designing Clear Module Statements

AVOIDING CONFUSING LINE BREAKS

Some older programming languages require that program statements be placed in specific columns. Most modern pro-
gramming languages are free-form; you can arrange your lines of code any way you see fit. As in real life, with freedom
comes responsibility; when you have flexibility in arranging your lines of code, you must take care to make sure your
meaning is clear. With free-form code, programmers often do not provide enough line breaks, or they provide inappro-
priate ones.

Figure 4-23 shows an example of code (part of the housekeeping() module from Figure 4-14) that does not pro-
vide enough line breaks for clarity. If you have been following the examples used throughout this book, the code in
Figure 4-24 looks clearer to you; it will also look clearer to most other programmers.

Figure 4-24 shows that more, but shorter, lines usually improve your ability to understand a program’s logic; appropri-
ately breaking lines will become even more important as you introduce decisions and loops into your programs in the
next chapters.

USING TEMPORARY VARIABLES TO CLARIFY LONG STATEMENTS

When you need several mathematical operations to determine a result, consider using a series of temporary variables
to hold intermediate results. For example, Figure 4-25 shows two ways to calculate a value for a real estate
salespersonCommission variable. Each method achieves the same result—the salesperson’s commission is
based on the square feet multiplied by the price per square foot, plus any premium for a lot with special features, such
as a wooded or waterfront lot. However, the second example uses two temporary variables, sqFootPrice and
totalPrice. When the computation is broken down into less complicated, individual steps, it is easier to see how
the total price is calculated. In calculations with even more computation steps, performing the arithmetic in stages
would become increasingly helpful.

FIGURE 4-24: PART OF A housekeeping() MODULE WITH APPROPRIATE LINE BREAKS

open files
print mainHeading
print columnHead1
print columnHead2
read invRecord

FIGURE 4-23: PART OF A housekeeping() MODULE WITH INSUFFICIENT LINE BREAKS

open files  print mainHeading  print columnHead1
 print columnHead2  read invRecord

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 145



146 Chapter 4 • Designing and Writing a Complete Program

A statement, or part of a statement, that performs arithmetic and has a resulting value is
called an arithmetic expression. For example, 2 + 3 is an arithmetic expression with the
value 5.

Programmers might say using temporary variables, like the example in Figure 4-25, is
cheap. When executing a lengthy arithmetic statement, even if you don’t explicitly name
temporary variables, the programming language compiler creates them behind the scenes,
so declaring them yourself does not cost much in terms of program execution time.

USING CONSTANTS WHERE APPROPRIATE

Whenever possible, use named values in your programs. If your program contains a statement like salesTax =
price * taxRate instead of salesTax = price * .06, you gain two benefits:

� It is easier for readers to know that the price is being multiplied by a tax rate instead of a dis-
count, commission, or some other rate represented by .06.

� When the tax rate changes, you make one change to the value where taxRate is defined,
rather than searching through a program for every instance of .06.

Named values can be variables or constants. For example, if a taxRate is one value when a price is over $100 and a
different value when the price is not over $100, then you can store the appropriate value in a variable named taxRate,
and use it when computing the sales tax. A named value also can be declared to be a named constant, meaning its
value will never change during the execution of the program. For example, the program segment in Figure 4-26 uses the
constants TUITION_PER_CREDIT_HOUR and ATHLETIC_FEE. Because the fields are declared to be constant, using the
modifier const, you know that their values will not change during the execution of the program. If the values of either of
these should change in the future, then the values assigned to the constants can be made in the declaration list, the code
can be recompiled, and the actual program statements that perform the arithmetic with the values do not have to be dis-
turbed. By convention, many programmers use all capital letters in constant names, so they stand out as distinct from
variables.

FIGURE 4-25: TWO WAYS OF ACHIEVING THE SAME salespersonCommission RESULT

salespersonCommission = (sqFeet * pricePerSquareFoot + lotPremium) * commissionRate

sqFootPrice = sqFeet * pricePerSquareFoot
totalPrice = sqFootPrice + lotPremium
salespersonCommission = totalPrice * commissionRate

TIP�

TIP�

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 146



147Maintaining Good Programming Habits

Some programmers refer to unnamed numeric constants as “magic numbers.” They feel
that using magic numbers should always be avoided, and that you should provide a
descriptive name for every numeric constant you use.

MAINTAINING GOOD PROGRAMMING HABITS

When you learn a programming language and begin to write lines of program code, it is easy to forget the principles
you have learned in this text. Having some programming knowledge and a keyboard at your fingertips can lure you into
typing lines of code before you think things through. But every program you write will be better if you plan before you
code. If you maintain the habits of first drawing flowcharts or writing pseudocode, as you have learned here, your future
programming projects will go more smoothly. If you walk through your program logic on paper (called desk-checking)
before starting to type statements in C++, COBOL, Visual Basic, or Java, your programs will run correctly sooner. If you
think carefully about the variable and module names you use, and design your program statements so they are easy for
others to read, you will be rewarded with programs that are easier to get up and running, and are easier to maintain
as well.

declare variables
   studentRecord
      num studentId
      num creditsEnrolled
   num tuitionDue
   num totalDue
   const num TUITION_PER_CREDIT_HOUR = 74.50
   const num ATHLETIC_FEE = 25.00
read studentRecord
tuitionDue = creditsEnrolled * TUITION_PER_CREDIT_HOUR
totalDue = tuitionDue + ATHLETIC_FEE

FIGURE 4-26: PROGRAM SEGMENT THAT CALCULATES STUDENT BALANCE DUE USING DEFINED CONSTANTS

TIP�

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 147



Chapter 4 • Designing and Writing a Complete Program148

CHAPTER SUMMARY

� When you write a complete program, you first determine whether you have all the necessary data to

produce the output. Then, you plan the mainline logic, which usually includes modules to perform house-

keeping, a main loop that contains the steps that repeat for every record, and an end-of-job routine.

� Housekeeping tasks include all steps that must take place at the beginning of a program. These tasks

include declaring variables, opening files, performing any one-time-only tasks—such as printing head-

ings at the beginning of a report—and reading the first input record.

� The main loop of a program is controlled by the eof decision. Each data record passes once through

the main loop, where calculations are performed with the data and results are printed.

� Within any program, the end-of-job module holds the steps you must take at the end of the program,

after all the input records have been processed. Typical tasks include printing summaries, grand totals, or

final messages at the end of a report, and closing all open files.

� As your programs become larger and more complicated, the need for good planning and design

increases.

� Most modern programming languages allow you to store program components in separate files and use

instructions to include them in any program that uses them. Storing components in separate files can

provide the advantages of easy reuse and implementation hiding.

� When selecting data and module names, use meaningful, pronounceable names. Be judicious in your

use of abbreviations, avoid digits in a name, and visually separate words in multiword names. Consider

including a form of the verb to be, such as is or are, in names for variables that are intended to hold

a status.

� When writing program statements, you should avoid confusing line breaks, use temporary variables to

clarify long statements, and use constants where appropriate.

KEY TERMS

A user, or client, is a person who requests a program, and who will actually use the output of the program.

A procedural program is a program in which one procedure follows another from the beginning until the end.

The mainline logic of a program is the overall logic of the main program from beginning to end.

A housekeeping module includes steps you must perform at the beginning of a program to get ready for the rest of
the program.

The main loop of a program contains the steps that are repeated for every record.

The end-of-job routine holds the steps you take at the end of the program to finish the application.

Functional decomposition is the act of reducing a large program into more manageable modules.

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 148



Review Questions 149

A prefix is a set of characters used at the beginning of related variable names.

Hungarian notation is a variable-naming convention in which a variable’s data type or other information is stored as
part of its name.

A group name is a name for a group of associated variables.

Initializing, or defining, a variable is the process of providing a variable with a value, as well as a name and a type,
when you create it.

Garbage is the unknown value of an undefined variable.

Opening a file is the process of telling the computer where the input is coming from, the name of the file (and possibly
the folder), and preparing the file for reading.

The standard input device is the default device from which input comes, most often the keyboard.

The standard output device is the default device to which output is sent, usually the monitor.

Interactive applications are applications that interact with a user who types data at a keyboard.

A delimiter is a keystroke that separates data items.

An output statement called a prompt asks the user for a specific item.

A work variable, or work field, is a variable you use to temporarily hold a calculation.

Footer lines, or footers, are end-of-job message lines.

Source code is the readable statements of a program, written in a programming language.

Implementation hiding is hiding the details of the way a program or module works.

Identifiers are the names of variables and modules.

Self-documenting programs are those that contain meaningful data and module names that describe the programs’
purpose.

An arithmetic expression is a statement, or part of a statement, that performs arithmetic and has a value.

A named constant holds a value that never changes during the execution of a program.

Desk-checking is the process of walking through a program’s logic on paper.

REVIEW QUESTIONS

1. Input records usually contain .

a. less data than an application needs
b. more data than an application needs
c. exactly the amount of data an application needs
d. none of the data an application needs

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 149



Chapter 4 • Designing and Writing a Complete Program150

2. A program in which one operation follows another from the beginning until the end is a
program.

a. modular
b. functional
c. procedural
d. object-oriented

3. The mainline logic of many computer programs contains .

a. calls to housekeeping, record processing, and finishing routines
b. steps to declare variables, open files, and read the first record
c. arithmetic instructions that are performed for each record in the input file
d. steps to print totals and close files

4. Modularizing a program .

a. keeps large jobs manageable
b. allows work to be divided easily
c. helps keep a program structured
d. all of the above

5. Which of the following is not a typical housekeeping module task?

a. declaring variables
b. printing summaries
c. opening files
d. performing a priming read

6. When a programmer uses a data file and names the first field stored in each record idNumber,
then other programmers who use the same file in their programs.

a. must also name the field idNumber
b. might name the field idNumber
c. cannot name the field idNumber
d. cannot name the field

7. If you use a data file containing student records, and the first field is the student’s last name, then
you can name the field .

a. stuLastName
b. studentLastName
c. lastName
d. any of the above

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 150



Review Questions 151

8. If a field in a data file used for program input contains “Johnson”, then the best choice among the
following names for a programmer to use when declaring a memory location for the data is

.

a. Johnson
b. n
c. lastName
d. A programmer cannot declare a variable name for this field; it is already called Johnson.

9. The purpose of using a group name is .

a. to be able to handle several variables with a single instruction
b. to eliminate the need for machine-level instructions
c. to be able to use both character and numeric values within the same program
d. to be able to use multiple input files concurrently 

10. Defining a variable means the same as it and providing a starting value for it.

a. declaring
b. initializing
c. deleting
d. assigning

11. In most programming languages, the initial value of unassigned variables is .

a. 0
b. spaces
c. 0 or spaces, depending on whether the variable is numeric or character
d. unknown

12. The types of variables you usually do not initialize are .

a. those that will never change value during a program
b. those representing fields in an input file
c. those that will be used in mathematical statements
d. those that will not be used in mathematical statements

13. The name programmers use for unknown variable values is .

a. default
b. trash
c. naive
d. garbage

14. Preparing an input device to deliver data records to a program is called a file.

a. prompting
b. opening
c. refreshing
d. initializing

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 151



Chapter 4 • Designing and Writing a Complete Program152

15. A computer system’s standard input device is most often a .

a. mouse
b. floppy disk
c. keyboard
d. compact disc

16. The last task performed in a housekeeping module is most often to .

a. open files
b. close files
c. check for eof
d. read an input record

17. Most business programs contain a that executes once for each record in an input file.

a. housekeeping module
b. main loop
c. finish routine
d. terminal symbol

18. Which of the following pseudocode statements is equivalent to this pseudocode:

salePriceƒ=ƒsalePriceƒ-ƒdiscount
finalPriceƒ=ƒsalePriceƒ+ƒtax
printƒfinalPrice

a. print salePrice + tax
b. print salePrice - discount
c. print salePrice - discount + tax
d. print discount + tax - salePrice

19. Common end-of-job module tasks in programs include all of the following except .

a. opening files
b. printing totals
c. printing end-of-job messages
d. closing files

20. Which of the following is least likely to be performed in an end-of-job module?

a. closing files
b. checking for eof
c. printing the message “End of report”
d. adding two values

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 152



Find the Bugs 153

FIND THE BUGS

Each of the following pseudocode segments contains one or more bugs that you must find and correct.

1. This pseudocode should create a report containing first-quarter profit statistics for a retail store.
Input records contain a department name (for example, “Cosmetics”), expenses for each of the
months January, February, and March, and sales for each of the same three months. Profit is deter-
mined by subtracting total expenses from total sales. The main program calls three modules—
housekeeping(), mainLoop(), and finishUp(). The housekeeping() module calls
printHeadings().

start
ƒƒƒperformƒhousekeeping()
ƒƒƒwhileƒeof
ƒƒƒƒƒƒperformƒmainLoop()
ƒƒƒperformƒfinishUp()
stop

housekeeping()
ƒƒƒdeclareƒvariables
ƒƒƒƒƒƒƒƒprofitRec
ƒƒƒƒƒƒƒƒƒƒƒƒcharƒdepartment
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒjanExpenses
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒfebExpensesƒ
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒmarExpensesƒ
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒjanSalesƒ
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒfebSalesƒ
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒmarSales
ƒƒƒƒƒƒƒcharƒmainHeaderƒ=ƒ“FirstƒQuarterƒProfitƒReport”
ƒƒƒƒƒƒƒcharƒcolumnHeadersƒ=ƒ“DepartmentƒƒƒƒƒƒƒProfit”
ƒƒƒopenƒfiles
ƒƒƒperformƒheadings()
ƒƒƒreadƒprofitRec
stop

printHeadings()
ƒƒƒprintƒmainHeader
ƒƒƒprintƒcolumnHeaders
return

mainLoop()
ƒƒƒtotalSalesƒ=ƒjanSalesƒ+ƒfebSalesƒ+ƒfebSales
ƒƒƒtotalExpensesƒ=ƒjanExpensesƒ+ƒmarExpensesƒ+ƒmarExpenses
ƒƒƒprofitƒ=ƒtotalSalesƒ–ƒtotalExpenses
ƒƒƒprintƒdepartment,ƒtotalProfit
return

finishUp()
ƒƒƒcloseƒfiles
return

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 153



Chapter 4 • Designing and Writing a Complete Program154

2. This pseudocode should create a report containing rental agents’ commissions at an apartment
complex. Input records contain each salesperson’s ID number and name, as well as number of
three-bedroom, two-bedroom, one-bedroom, and studio apartments rented during the month.
The commission for each apartment rented is $50 times the number of bedrooms, except for 
studio apartments, for which the commission is $35. The main program calls three modules—
housekeeping(), calculateCommission(), and finishUp(). The housekeeping()
module calls displayHeaders().
start
ƒƒƒperformƒhousekeeping()
ƒƒƒwhileƒnotƒeof
ƒƒƒƒƒƒperformƒcalcCommission()
ƒƒƒperformƒfinishUp()
stop

housekeeping()
ƒƒƒdeclareƒvariables
ƒƒƒƒƒƒƒƒrentalRecord
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒsalesPersonID
ƒƒƒƒƒƒƒƒƒƒƒƒcharƒsalesPersonName
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒnumThreeBedroomAptsRented
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒnumTwoBedroomAptsƒ
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒnumOneBedroomAptsRentedƒ
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒnumStudioAptsRentedƒ
ƒƒƒƒƒƒƒcharƒmainHeaderƒ=ƒ“CommissionƒReport”
ƒƒƒƒƒƒƒcharƒcolumnHeadersƒ=ƒ

“SalespersonƒIDƒƒƒƒƒƒƒƒNameƒƒƒƒƒƒƒCommissionƒEarned”
ƒƒƒƒƒƒƒnumƒcommissionEarned
ƒƒƒƒƒƒƒnumƒregRateƒ=ƒ50.00
ƒƒƒƒƒƒƒcharƒstudioRateƒ=ƒ35.00
ƒƒƒopenƒfiles
ƒƒƒperformƒdisplayHeaders()
stop

displayHeader()
ƒƒƒprintƒmainHeader
ƒƒƒprintƒcolumnHeaders
return

calculateCommission()
ƒƒƒcommissionEarnedƒ=ƒ(numThreeBedroomAptsRentedƒ*ƒ2ƒ+ƒ

numTwoBedroomAptsRented
ƒ*ƒ3ƒ+ƒnumOneBedroomAptsRented)ƒ*ƒregRateƒ+ƒ

(numStudioAptsRentedƒ*ƒstudioRate)
ƒƒƒprintƒsalespersonID,ƒsalespersonName,ƒcommissionEarned
return

finishUp()
ƒƒƒcloseƒfiles
return

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 154



Exercises 155

EXERCISES

1. A pet store owner needs a weekly sales report. The output consists of a printed report titled PET
SALES, with column headings TYPE OF ANIMAL and PRICE. Fields printed on output are: type of ani-
mal and price. After all records print, a footer line END OF REPORT prints. The input file description
is shown below.

Fileƒname:ƒPETS
FIELDƒDESCRIPTIONƒƒƒƒƒDATAƒTYPEƒƒƒƒƒCOMMENTS
TypeƒofƒAnimalƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ20ƒcharacters
PriceƒofƒAnimalƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ2ƒdecimalƒplaces

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

2. An employer wants to produce a personnel report. The output consists of a printed report titled
ACTIVE PERSONNEL. Fields printed on output are: last name of employee, first name of employee,
and current weekly salary. Include appropriate column headings and a footer. The input file
description is shown below.

Fileƒname:ƒPERSONNEL
FIELDƒDESCRIPTIONƒƒƒƒƒDATAƒTYPEƒƒƒƒƒCOMMENTS
LastƒNameƒƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ15ƒcharacters
FirstƒNameƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ15ƒcharacters
Soc.ƒSec.ƒNumberƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ9ƒdigits,ƒ0ƒdecimalƒplaces
DepartmentƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ2ƒdigits,ƒ0ƒdecimalƒplaces
CurrentƒSalaryƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ2ƒdecimalƒplaces

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

3. An employer wants to produce a personnel report that shows the end result if she gives everyone a
10 percent raise in salary. The output consists of a printed report entitled PROJECTED RAISES.
Fields printed on output are: last name of employee, first name of employee, current weekly salary,
and projected weekly salary. The input file description is shown below.

Fileƒname:ƒPERSONNEL
FIELDƒDESCRIPTIONƒƒƒƒƒDATAƒTYPEƒƒƒƒƒCOMMENTS
LastƒNameƒƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ15ƒcharacters
FirstƒNameƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ15ƒcharacters
Soc.ƒSec.ƒNumberƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ9ƒdigits,ƒ0ƒdecimalƒplaces
DepartmentƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ2ƒdigits,ƒ0ƒdecimalƒplaces
CurrentƒSalaryƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ2ƒdecimalƒplaces

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 155



Chapter 4 • Designing and Writing a Complete Program156

4. A furniture store maintains an inventory file that includes data about every item it sells. The man-
ager wants a report that lists each stock number, description, and profit, which is the retail price
minus the wholesale price. The fields include a stock number, description, wholesale price, and
retail price. The input file description is shown below.

Fileƒname:ƒFURNITURE
FIELDƒDESCRIPTIONƒƒƒƒƒDATAƒTYPEƒƒƒƒƒCOMMENTS
StockƒNumberƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ4ƒdigits,ƒ0ƒdecimalƒplaces
DescriptionƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ25ƒcharacters
WholesaleƒPriceƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ2ƒdecimalƒplaces
RetailƒPriceƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ2ƒdecimalƒplaces

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

5. A summer camp keeps a record for every camper, including first name, last name, birth date, and
skill scores that range from 1 to 10 in four areas: swimming, tennis, horsemanship, and crafts. (The
birth date is stored in the format YYYYMMDD without any punctuation. For example, January 21,
1991 is 19910121.) The camp wants a printed report listing each camper’s data, plus a total score
that is the sum of the camper’s four skill scores. The input file description is shown below.

Fileƒname:ƒCAMPERS
FIELDƒDESCRIPTIONƒƒƒƒƒDATAƒTYPEƒƒƒƒƒCOMMENTS
FirstƒNameƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ15ƒcharacters
LastƒNameƒƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ15ƒcharacters
BirthƒDateƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ8ƒdigits,ƒ0ƒdecimals
SwimmingƒSkillƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ0ƒdecimals
TennisƒSkillƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ0ƒdecimals
HorsemanshipƒSkillƒƒƒƒNumericƒƒƒƒƒƒƒ0ƒdecimals
CraftsƒSkillƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ0ƒdecimals

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 156



Exercises 157

6. An employer needs to determine how much tax to withhold for each employee. This withholding
amount computes as 20 percent of each employee’s weekly pay. The output consists of a printed
report titled WITHHOLDING FOR EACH EMPLOYEE. Fields printed on output are: last name of
employee, first name of employee, hourly pay, weekly pay based on a 40-hour workweek, and with-
holding amount per week. The input file description is shown below.

Fileƒname:ƒEMPLOYEES
FIELDƒDESCRIPTIONƒƒƒƒƒDATAƒTYPEƒƒƒƒƒCOMMENTS
CompanyƒIDƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ5ƒdigits,ƒ0ƒdecimals
FirstƒNameƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ12ƒcharacters
LastƒNameƒƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ12ƒcharacters
HourlyƒRateƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ2ƒdecimalƒplaces

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

7. A baseball team manager wants a report showing her players’ batting statistics. A batting average
is computed as hits divided by at-bats, and it is usually expressed to three decimal positions (for
example, .235). The output consists of a printed report titled TEAM STATISTICS. Fields printed on
output are: player number, first name, last name, and batting average. The input file description is
shown below.

Fileƒname:ƒBASEBALL
FIELDƒDESCRIPTIONƒƒƒƒƒDATAƒTYPEƒƒƒƒƒCOMMENTS
PlayerƒNumberƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ2ƒdigits,ƒ0ƒdecimals
FirstƒNameƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ16ƒcharacters
LastƒNameƒƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ17ƒcharacters
At-batsƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒneverƒmoreƒthanƒ999,ƒ0ƒdecimals
HitsƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒneverƒmoreƒthanƒ999,ƒ0ƒdecimals

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 157



Chapter 4 • Designing and Writing a Complete Program158

8. A car rental company manager wants a report showing the revenue earned per mile on vehicles
rented each week. An automobile’s miles traveled are computed by subtracting the odometer read-
ing when the car is rented from the odometer reading when the car is returned. The amount earned
per mile is computed by dividing the rental fee by the miles traveled. The output consists of a
printed report titled CAR RENTAL REVENUE STATISTICS. Fields printed on output are: vehicle identi-
fication number, odometer reading out, odometer reading in, miles traveled, rental fee, and amount
earned per mile. The input file description is shown below.

Fileƒname:ƒAUTORENTALS
FIELDƒDESCRIPTIONƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒDATAƒTYPEƒƒƒƒƒCOMMENTS
VehicleƒIdentificationƒNumberƒƒƒƒƒƒƒƒNumeric ƒƒƒƒƒ12ƒdigits
OdometerƒReadingƒOutƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ0ƒdecimals
OdometerƒReadingƒInƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ0ƒdecimals
RentalƒfeeƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ2ƒdecimals
a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

9. Professor Smith provides her programming logic students with a final grade that is based on their
performance in attendance (a percentage based on 16 class meetings), homework (a percentage
based on 10 assignments that might total up to 100 points), and exams (a percentage based on two
100-point exams). A student’s final percentage for the course is determined using a weighted aver-
age of these figures, with exams counting twice as much as attendance or homework. For exam-
ple, a student who attended 12 class meetings (75%), achieved 90 points on homework
assignments (90%), and scored an average of 60% on tests would have a final average of 71.25%
(75 + 90 + 2 * 60) / 4. Professor Smith wants a report that shows each student’s ID number and his
or her final percentage score.

Fileƒname:ƒSTUDENTSCORES
FIELDƒDESCRIPTION DATAƒTYPE COMMENTS
StudentƒIDƒNumber Numeric 6ƒdigits,ƒ0ƒdecimal places
Classesƒattended Numeric aƒvalueƒofƒ16ƒorƒlower,ƒ0 decimals
Homeworkƒ1 Numeric aƒvalueƒofƒ10ƒorƒlower,ƒ0 decimals
Homeworkƒ2 Numeric aƒvalueƒofƒ10ƒorƒlower,ƒ0 decimals
Homeworkƒ3 Numeric aƒvalueƒofƒ10ƒorƒlower,ƒ0 decimals
Homeworkƒ4 Numeric aƒvalueƒofƒ10ƒorƒlower,ƒ0 decimals
Homeworkƒ5 Numeric aƒvalueƒofƒ10ƒorƒlower,ƒ0 decimals
Homeworkƒ6 Numeric aƒvalueƒofƒ10ƒorƒlower,ƒ0 decimals
Homeworkƒ7 Numeric aƒvalueƒofƒ10ƒorƒlower,ƒ0 decimals
Homeworkƒ8 Numeric aƒvalueƒofƒ10ƒorƒlower,ƒ0 decimals
Homeworkƒ9 Numeric aƒvalueƒofƒ10ƒorƒlower,ƒ0 decimals
Homeworkƒ10 Numeric aƒvalueƒofƒ10ƒorƒlower,ƒ0 decimals
Testƒ1 Numeric aƒvalueƒofƒ100ƒorƒlower,ƒ2 decimals
Testƒ2 Numeric aƒvalueƒofƒ100ƒorƒlower,ƒ2 decimals

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 158



Up for Discussion 159

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

DETECTIVE WORK

1. Explore the job opportunities in programming. What are the job responsibilities? What is the aver-
age starting salary? What is the outlook for growth?

2. Many style guides are published on the Web. These guides suggest good identifiers, standard
indentation rules, and similar issues in specific programming languages. Find style guides for at
least two languages (for example, C++, Java, Visual Basic, C#, COBOL, RPG, or Pascal) and list any
differences you notice.

UP FOR DISCUSSION

1. When you write computer programs, you will generate errors. Syntax errors are errors in the 
language—for example, misspellings. Logical errors are caused by statements with correct syntax
but that perform an incorrect task, or a correct task at the wrong time. Which is more dangerous?
How could the number of occurrences of both types of errors be reduced?

2. Extreme programming is a system for rapidly developing software. One of its tenets is that all pro-
duction code is written by two programmers sitting at one machine. Is this a good idea? Does
working this way as a programmer appeal to you?

4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 159



4 Chapter CXXXX 35539.ps  10-13-05  8:33 AM  Page 160


