
5
After studying Chapter 5, you should be able to:

� Evaluate Boolean expressions to make comparisons

� Use the relational comparison operators

� Understand AND logic

� Understand OR logic

� Use selections within ranges

� Understand precedence when combining AND and OR selections

� Understand the case structure

� Use decision tables

MAKING DECISIONS

161

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 161

162 Chapter 5 • Making Decisions

EVALUATING BOOLEAN EXPRESSIONS TO MAKE COMPARISONS

One reason people think computers are smart lies in a computer program’s ability to make decisions. For example, a
medical diagnosis program that can decide if your symptoms fit various disease profiles seems quite intelligent, as does
a program that can offer you potential vacation routes based on your destination.

The selection structure (also called the decision structure) involved in such programs is not new to you—it’s one of the
basic structures of structured programming. See Figures 5-1 and 5-2.

You can refer to the structure in Figure 5-1 as a dual-alternative, or binary, selection because there is an action asso-
ciated with each of two possible outcomes. Depending on the answer to the question represented by the diamond, the
logical flow proceeds either to the left branch of the structure or to the right. The choices are mutually exclusive; that is,
the logic can flow only to one of the two alternatives, never to both. This selection structure is also called an if-then-
else structure because it fits the statement:

if the answer to the question is yes, then
do something

else
do somethingElse

endif

The flowchart segment in Figure 5-2 represents a single-alternative, or unary, selection where action is required for
only one outcome of the question. You call this form of the if-then-else structure an if-then, because no alternative or
“else” action is included or necessary.

You can call a single-alternative decision (or selection) a single-sided decision.
Similarly, a dual-alternative decision (or selection) is a double-sided decision.

FIGURE 5-2: THE SINGLE-ALTERNATIVE SELECTION
STRUCTURE

FIGURE 5-1: THE DUAL-ALTERNATIVE SELECTION
STRUCTURE

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 162

163Evaluating Boolean Expressions to Make Comparisons

For example, Figure 5-3 shows the flowchart and pseudocode for a typical if-then-else decision in a business program.
Many organizations pay employees time and a half (one and one-half times their usual hourly rate) for hours in excess
of 40 per week. The logic segments in the figure show this decision.

In the example in Figure 5-3, the longer calculation that adds a time-and-a-half factor to an employee’s gross pay exe-
cutes only when the expression hoursWorked > 40 is true. The overtime calculation exists in the if clause of the
decision—the part of the decision that holds the action or actions that execute when the tested condition in the deci-
sion is true. The shorter, regular pay calculation, which produces grossPay by multiplying hoursWorked by
rate, constitutes the else clause of the decision—the part that executes only when the tested condition in the deci-
sion is false.

The typical if-then decision in Figure 5-4 shows an employee’s paycheck being reduced if the employee participates in
the dental plan. No action is taken if the employee is not a dental plan participant.

if dentalPlanCode = "Y" then
grossPay = grossPay - 23.50

endif

FIGURE 5-4: FLOWCHART AND PSEUDOCODE FOR DENTAL PLAN DECISION

dentalPlanCode =
“Y”?

YesNo

grossPay =
grossPay – 23.50

if hoursWorked > 40 then
grossPay = 40 * rate +
(hoursWorked - 40) * 1.5 * rate

else
grossPay = hoursWorked * rate

endif

FIGURE 5-3: FLOWCHART AND PSEUDOCODE FOR OVERTIME PAY DECISION

TrueFalse
hoursWorked

> 40

grossPay = 40
* rate +

(hoursWorked – 40)
* 1.5 * rate

grossPay =
hoursWorked

* rate

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 163

164 Chapter 5 • Making Decisions

The expressions hoursWorked > 40 and dentalPlanCode = “Y” that appear in Figures 5-3 and 5-4,
respectively, are Boolean expressions. In Chapter 4, you learned that in programming, an expression is a statement, or
part of a statement, that has a value. For example, an arithmetic expression is one that performs arithmetic, resulting in
a value. A Boolean expression is one that represents only one of two states, usually expressed as true or false. Every
decision you make in a computer program involves evaluating a Boolean expression. True/false evaluation is “natural”
from a computer’s standpoint, because computer circuitry consists of two-state, on-off switches, often represented by
1 or 0. Every computer decision yields a true-or-false, yes-or-no, 1-or-0 result.

George Boole was a mathematician who lived from 1815 to 1864. He approached logic
more simply than his predecessors did, by expressing logical selections with common
algebraic symbols. He is considered a pioneer in mathematical logic, and Boolean
(true/false) expressions are named for him.

USING THE RELATIONAL COMPARISON OPERATORS

Usually, you can compare only values that are of the same type; that is, you can compare numeric values to other num-
bers and character values to other characters. You can ask every programming question by using one of only six types
of comparison operators in a Boolean expression. For any two values that are the same type, you can decide whether:

� The two values are equal.

� The first value is greater than the second value.

� The first value is less than the second value.

� The first value is greater than or equal to the second value.

� The first value is less than or equal to the second value.

� The two values are not equal.

Usually, character variables are not considered to be equal unless they are identical,
including the spacing and whether they appear in uppercase or lowercase. For example,
“black pen” is not equal to “blackpen”, “BLACK PEN”, or “Black Pen”.

Some programming languages allow you to compare a character to a number. If this is the
case, then a single character’s numeric code value is used in the comparison. For example,
most microcomputers use either the ASCII or Unicode coding system. In both of these
systems, an uppercase “A” is represented numerically as a 65, an uppercase “B” is a 66,
and so on. See Appendix B for more information on ASCII code and how numbers are
used to store data.

In any Boolean expression, the two values used can be either variables or constants. For example, the expression
currentTotal = 100? compares the value stored in a variable, currentTotal, to a numeric constant,
100. Depending on the currentTotal value, the expression is true or false. In the expression currentTotal
= previousTotal? both values are variables, and the result is also true or false depending on the values stored
in each of the two variables. Although it’s legal to do so, you would never use expressions in which you compare two

TIP�

TIP�

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 164

165Using the Relational Comparison Operators

unnamed constants—for example,20 = 20? or 30 = 40?. Such expressions are considered trivial because each will
always evaluate to the same result: true for the first expression and false for the second.

Each programming language supports its own set of relational comparison operators, or comparison symbols, that
express these Boolean tests. For example, many languages such as Visual Basic and Pascal use the equal sign (=) to
express testing for equivalency, so balanceDue = 0 compares balanceDue to zero. COBOL programmers can
use the equal sign, but they also can spell out the expression, as in balanceDue equal to 0. RPG program-
mers use the two-letter operator EQ in place of a symbol. C#, C++, and Java programmers use two equal signs to test
for equivalency, so they write balanceDue == 0 to compare the two values. Although each programming lan-
guage supports its own syntax for comparing values’ equivalency, all languages provide for the same logical concept of
equivalency.

Visual Basic uses the single equal sign both for assignment and when testing for equiva-
lency; the interpretation of the operator depends on the context. The reason some lan-
guages use two equal signs for comparisons is to avoid confusion with assignment
statements such as balanceDue = 0. In C++, C#, or Java, this statement only assigns
the value 0 to balanceDue; it does not compare balanceDue to zero.

Whenever you use a comparison operator, you must provide a value on each side of the
operator. Comparison operators are sometimes called binary operators because of
this requirement. Some programmers use the terms “comparison operator,” “relational
operator,” and “logical operator” interchangeably. However, many prefer to reserve the
term “logical operator” for manipulations on single bits.

Most languages allow you to use the algebraic signs for greater than (>) and less than (<) to make the corresponding
comparisons. Additionally, COBOL, which is very similar to English, allows you to spell out the comparisons in expres-
sions such as daysPastDue is greater than 30 or packageWeight is less than
maximumWeightAllowed. RPG uses the two-letter abbreviations GT and LT to represent greater than or less
than. When you create a flowchart or pseudocode, you can use any form of notation you want to express “greater than”
and “less than.” It’s simplest to use the symbols > and < if you are comfortable with their meaning. As with equiva-
lency, the syntax changes when you change languages, but the concepts of greater than and less than exist in all pro-
gramming languages.

Most programming languages allow you to express “greater than or equal to” by typing a greater-than sign immediately
followed by an equal sign (>=). When you are drawing a flowchart or writing pseudocode, you might prefer a greater-
than sign with a line under it (≥) because mathematicians use that symbol to mean “greater than or equal to.” However,
when you write a program, you type >= as two separate characters, because no single key on the keyboard expresses
this concept. Similarly, “less than or equal to” is written with two symbols, < immediately followed by =.

The operators >= and <= are always treated as a single unit; no spaces separate the two
parts of the operator. Also, the equal sign always appears second. No programming lan-
guage allows => or =< as a comparison operator.

TIP�

TIP�

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 165

166 Chapter 5 • Making Decisions

Any logical situation can be expressed using just three types of comparisons: equal, greater than, and less than. You
never need the three additional comparisons (greater than or equal to, less than or equal to, or not equal to), but using them
often makes decisions more convenient. For example, assume you need to issue a 10 percent discount to any cus-
tomer whose age is 65 or greater, and charge full price to other customers. You can use the greater-than-or-equal-to
symbol to write the logic as follows:

if customerAge >= 65 then
discount = 0.10

else
discount = 0

endif

As an alternative, if you want to use only one of the three basic comparisons (=, >, and <), you can express the same
logic by writing:

if customerAge < 65 then
discount = 0

else
discount = 0.10

endif

In any decision for which a >= b is true, then a < b is false. Conversely, if a >= b is false, then a < b is true.
By rephrasing the question and swapping the actions taken based on the outcome, you can make the same decision in
multiple ways. The clearest route is often to ask a question so the positive or true outcome results in the unusual
action. For example, assume that charging a customer full price is the ordinary course, and that providing a discount is
the unusual occurrence. When your company policy is to “provide a discount for those who are 65 and older,” the
phrase “greater than or equal to” comes to mind, so it is the most natural to use. Conversely, if your policy is to “provide
no discount for those under 65,” then it is more natural to use the “less than” syntax. Either way, the same people
receive a discount.

Comparing two amounts to decide if they are not equal to each other is the most confusing of all the comparisons.
Using “not equal to” in decisions involves thinking in double negatives, which makes you prone to include logical errors
in your programs. For example, consider the flowchart segment in Figure 5-5.

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 166

167Using the Relational Comparison Operators

In Figure 5-5, if the value of customerCode is equal to 1, the logical flow follows the false branch of the selection.
If customerCode not equal to 1 is true, the discount is 0.25; if customerCode not equal
to 1 is not true, it means the customerCode is 1, and the discount is 0.50. Even using the phrase
“customerCode not equal to 1 is not true” is awkward.

Figure 5-6 shows the same decision, this time asked in the positive. Making the decision if customerCode is 1
then discount = 0.50 is clearer than trying to determine what customerCode is not.

Besides being awkward to use, the “not equal to” comparison operator is the one most likely to be different in the vari-
ous programming languages you may use. COBOL allows you to write “not equal to”; Visual Basic and Pascal use a
less-than sign followed immediately by a greater-than sign (<>); C#, C++, C, and Java use an exclamation point fol-
lowed by an equal sign (!=). In a flowchart or in pseudocode, you can use the symbol that mathematicians use to mean
“not equal,” an equal sign with a slash through it (≠). When you program, you will not be able to use this symbol,
because no single key on the keyboard produces it.

if customerCode = 1 then
discount = 0.50

else
discount = 0.25

endifYesNo

FIGURE 5-6: USING THE POSITIVE EQUIVALENT OF THE NEGATIVE COMPARISON IN FIGURE 5-5

customerCode
= 1?

discount
= 0.25

discount
= 0.50

if customerCode not equal to 1 then
discount = 0.25

else
discount = 0.50

endifYesNo

FIGURE 5-5: USING A NEGATIVE COMPARISON

customerCode
not equal to 1?

discount
= 0.50

discount
= 0.25

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 167

168 Chapter 5 • Making Decisions

Although NOT comparisons can be awkward to use, there are times when your meaning
is clearest if you use one. Frequently, this occurs when you take action only when some
comparison is expressed negatively—for example, when one value is not equal to another
value. Examples of situations in which a negative comparison makes sense include the
following:

if customerZipCode is not equal to localZipCode then
add DELIVERY_CHARGE to total

endif

if creditCardBalance is not 0 then
financeCharge = balance * INTEREST_RATE

endif

In these cases, action is taken when two values are not equal. The mainline logic of many
programs, including those you have worked with in this book, includes a negative com-
parison that controls a loop. The pseudocode you have seen for almost every program
includes a statement similar to: while not eof, perform mainLoop().

Figure 5-7 summarizes the six comparison operators and contrasts trivial (both true and false) examples with typical
examples of their use.

FIGURE 5-7: RELATIONAL COMPARISONS

Comparison Trivial true example Trivial false example Typical example

Equal to 7 = 7? 7 = 4? amtOrdered = 12?

Greater than 12 > 3? 4 > 9? hoursWorked > 40?

Less than 1 < 8? 13 < 10? hourlyWage < 5.65?

Greater than 5 >= 5? 3 >= 9? customerAge >= 65?

or equal to

Less than or 4 <= 4? 8 <= 2? daysOverdue <= 60?

equal to

Not equal to 16 <> 3? 18 <> 18? customerBalance <> 0?

TIP�

UNDERSTANDING AND LOGIC

Often, you need more than one selection structure to determine whether an action should take place. For example, sup-
pose that your employer wants a report that lists workers who have registered for both insurance plans offered by the
company: the medical plan and the dental plan. This type of situation is known as an AND decision because the
employee’s record must pass two tests—participation in the medical plan and participation in the dental plan—before
you write that employee’s information on the report. A compound, or AND, decision requires a nested decision, or a
nested if. A nested decision is a decision “inside of” another decision. The logic looks like Figure 5-8.

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 168

169Understanding AND Logic

You first learned about nesting structures in Chapter 2.

A series of nested if statements can also be called a cascading if statement.

The AND decision shown in Figure 5-8 is part of a much larger program. To help you develop this program, suppose
your employer provides you with the employee data file description shown in Figure 5-9, and you learn that the medical
and dental insurance fields contain a single character, “Y” or “N”, indicating each employee’s participation status. With
your employer’s approval, you develop the sample output shown in Figure 5-10.

EMPLOYEE FILE DESCRIPTION
File Name: EMPFILE
FIELD DESCRIPTION DATA TYPE COMMENTS
ID Number Numeric 4 digits, 0 decimal places
Last Name Character 15 characters
First Name Character 15 characters
Department Numeric 1 digit
Hourly Rate Numeric 2 decimal places
Medical Plan Character 1 character, Y or N
Dental Plan Character 1 character, Y or N
Number of Dependents Numeric 0 decimal places

FIGURE 5-9: EMPLOYEE FILE DESCRIPTION

if empMedicalIns = "Y" then
if empDentalIns = "Y" then

print empIdNumber,
empLastName,
empFirstName

 endif
endif

FIGURE 5-8: FLOWCHART AND PSEUDOCODE OF AN AND DECISION

YesNo

YesNo

print
empldNumber,
empLastName,
empFirstName

empDentalIns
= “Y”?

empMedicalIns
= “Y”?

TIP�

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 169

170 Chapter 5 • Making Decisions

The mainline logic and housekeeping() routines for this program are diagrammed in Figures 5-11 and 5-12.

start
perform housekeeping()
while not eof

perform createReport()
endwhile
perform finishUp()

stop

FIGURE 5-11: FLOWCHART AND PSEUDOCODE OF MAINLINE LOGIC FOR MEDICAL AND DENTAL PARTICIPANT
REPORT

Yes

No

start

housekeeping()

eof?

finishUp()

createReport()

stop

FIGURE 5-10: SAMPLE REPORT LISTING EMPLOYEES PARTICIPATING IN BOTH INSURANCE PLANS

Employees with Medical and Dental Insurance

ID Number Last Name First Name

1246 Kroening Virginia
1419 Lewis Kathleen
2765 Bowman Bradley
3872 Daniels James

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 170

171Understanding AND Logic

At the end of the housekeeping() module, the first employee record is read into computer memory. Assuming
that the eof condition is not yet met, the logical flow proceeds to the createReport() method. If the program
required data for all employees to be printed, this method would simply print the information from the current record
and get the next record. However, in this case, the output should contain only the names of those employees who par-
ticipate in both the medical and dental insurance plans. Therefore, within the createReport() module of this pro-
gram, you ask the questions that determine whether the current employee’s record will print; if the employee’s data meet
the medical and dental insurance requirements, then you print the record. Whether or not you take the path that prints
the record, the last thing you do in the createReport() method is to read the next input record. Figure 5-13 shows
the createReport() module.

housekeeping()
 declare variables
 open files
 print heading1
 print heading2
 read empRecord
return

 empRecord
 num empIdNumber
 char empLastName
 char empFirstName
 num empDept
 num empRate
 char empMedicalIns
 char empDentalIns
 num empDependents
 char heading1 = "Employees with Medical
 and Dental Insurance"
 char heading2 = "ID number Last name First name"

FIGURE 5-12: FLOWCHART AND PSEUDOCODE OF housekeeping() MODULE FOR MEDICAL AND DENTAL
PARTICIPANT REPORT

declare
variables

housekeeping()

open
files

print
heading1

print
heading2

read
empRecord

return

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 171

172 Chapter 5 • Making Decisions

At the end of the housekeeping() module in Figure 5-12, instead of the statement
read empRecord, an interactive program might prompt the user for values for each of
the eight data fields. Instead of the single read statement, you might choose to call a
method containing eight pairs of statements, such as print “Please enter
employee ID number” and read empIdNumber. The programs in this chapter
read data from a file to keep them simpler.

The createReport() module works like this: If the employee has medical insurance, then and only then test to
see if the employee has dental insurance. If so, then and only then print the employee’s data. The dental insurance
question is nested entirely within half of the medical insurance question structure. If an employee does not carry med-
ical insurance, there is no need to ask about the dental insurance; the employee is already disqualified from the report.
Pseudocode for the entire program is shown in Figure 5-14. Notice how the second (dental insurance) decision within
the createReport() method is indented within the first (medical insurance) decision. This technique shows that
the second question is asked only when the result of the first comparison is true.

createReport()
if empMedicalIns = "Y" then

if empDentalIns = "Y" then
print empIdNumber, empLastName, empFirstName

endif
endif
read empRecord

return

FIGURE 5-13: THE createReport() MODULE OF A PROGRAM THAT LISTS EMPLOYEES WHO ARE BOTH
MEDICAL AND DENTAL INSURANCE PROGRAM PARTICIPANTS

YesNo

YesNo

print
empIdNumber,
empLastName,
empFirstName

empDentalIns
= “Y”?

empMedicalIns
= “Y”?

createReport()

read
empRecord

return

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 172

173Understanding AND Logic

WRITING NESTED AND DECISIONS FOR EFFICIENCY

When you nest decisions because the resulting action requires that two conditions be true, you must decide which of
the two decisions to make first. Logically, either selection in an AND decision can come first. However, when there are
two selections, you often can improve your program’s performance by making an appropriate choice as to which selec-
tion to make first.

For example, Figure 5-15 shows the nested decision structure in the createReport() method logic of the pro-
gram that produces a report of employees who participate in both the medical and dental insurance plans. Alternatively,
you can write the decision as in Figure 5-16.

if empMedicalIns = “Y” then
if empDentalIns = “Y” then

print empIdNumber, empLastName, empFirstName
endif

endif

FIGURE 5-15: FINDING MEDICAL AND DENTAL PLAN PARTICIPANTS, CHECKING MEDICAL FIRST

start
perform housekeeping()
while not eof
perform createReport()

 endwhile
perform finishUp()

stop

housekeeping()
declare variables
open files
print heading1
print heading2
read empRecord

return

createReport()
if empMedicalIns = “Y” then

if empDentalIns = “Y” then
print empIdNumber, empLastName, empFirstName

endif
endif
read empRecord

return

finishUp()
close files

return

 empRecord
 num empIdNumber
 char empLastName
 char empFirstName
 num empDept
 num empRate
 char empMedicalIns
 char empDentalIns
 num empDependents
 char heading1 = "Employees with Medical

and Dental Insurance"
 char heading2 = "ID number Last name First name"

FIGURE 5-14: PSEUDOCODE OF PROGRAM THAT PRINTS RECORDS OF EMPLOYEES WHO PARTICIPATE IN BOTH
THE MEDICAL AND DENTAL INSURANCE PLANS

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 173

174 Chapter 5 • Making Decisions

Examine the decision statements in Figures 5-15 and 5-16. If you want to print employees who participate in the medical
AND dental plans, you can ask about the medical plan first, eliminate those employees who do not participate, and ask
about the dental plan only for those employees who “pass” the medical insurance test. Or, you could ask about the dental
plan first, eliminate those who do not participate, and ask about the medical plan only for those employees who “pass”
the dental insurance test. Either way, the final list contains only those employees who have both kinds of insurance.

Does it make a difference which question is asked first? As far as the output goes, no. Either way, the same employee
names appear on the report—those with both types of insurance. As far as program efficiency goes, however, it might

make a difference which question is asked first.

Assume you know that out of 1,000 employees in your company, about 90 percent, or 900, participate in the medical
insurance plan. Assume you also know that out of 1,000 employees, only about half, or 500, participate in the dental plan.

The medical and dental insurance program will ask the first question in the createReport() method 1,000 times dur-
ing its execution—once for each employee record contained in the input file. If the program uses the logic in Figure 5-15, it
asks the first question empMedicalIns = “Y”? 1,000 times. For approximately 90 percent of the employees, or
900 of the records, the answer is true, meaning the empMedicalIns field contains the character “Y”. So 100 employ-
ees are eliminated, and 900 proceed to the next question about dental insurance. Only about half of the employees partici-
pate in the dental plan, so 450 out of the 900 will appear on the printed report.

Using the alternate logic in Figure 5-16, the program asks the first question empDentalIns = “Y”? 1,000 times.
Because only about half of the company’s employees participate, only 500 will “pass” this test and proceed to the med-
ical insurance question. Then about 90 percent of the 500, or 450 employees, will appear on the printed report.
Whether you use the logic in Figure 5-15 or 5-16, the same 450 employees who have both types of insurance appear
on the report.

The difference lies in the fact that when you use the logic in Figure 5-15, the program must ask 1,900 questions to
produce the report—the medical insurance question tests all 1,000 employee records, and 900 continue to the dental
insurance question. If you use the logic in Figure 5-16 to produce the report, the program asks only 1,500 questions—
all 1,000 records are tested for dental insurance, but only 500 proceed to the medical insurance question. By asking
about the dental insurance first, you “save” 400 decisions.

The 400-question difference between the first set of decisions and the second set really doesn’t take much time on
most computers. But it will take some time, and if there are hundreds of thousands of employees instead of only 1,000,
or if many such decisions have to be made within a program, performance time can be significantly improved by asking
questions in the proper order.

if empDentalIns = “Y” then
if empMedicalIns = “Y” then

print empIdNumber, empLastName, empFirstName
endif

endif

FIGURE 5-16: FINDING DENTAL AND MEDICAL PLAN PARTICIPANTS, CHECKING DENTAL FIRST

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 174

175Understanding AND Logic

In many AND decisions, you have no idea which of two events is more likely to occur; in that case, you can legitimately ask either
question first. In addition, even though you know the probability of each of two conditions, the two events might not be mutually
exclusive; that is, one might depend on the other. For example, if employees with dental insurance are significantly more likely to
carry medical insurance than those who don’t carry dental insurance, the order in which to ask the questions might matter less or
not matter at all. However, if you do know the probabilities of the conditions, or can make a reasonable guess, the general rule is:
In an AND decision, first ask the question that is less likely to be true. This eliminates as many records as possible from having to
go through the second decision, which speeds up processing time.

COMBINING DECISIONS IN AN AND SELECTION

Most programming languages allow you to ask two or more questions in a single comparison by using a logical AND

operator. For example, if you want to select employees who carry both medical and dental insurance, you can use
nested ifs, or you can include both decisions in a single statement by writing empDentalIns = “Y” AND
empMedicalIns = “Y”?. When you use one or more AND operators to combine two or more Boolean expres-
sions, each Boolean expression must be true in order for the entire expression to be evaluated as true. For example, if
you ask, “Are you at least 18, and are you a registered voter, and did you vote in the last election?”, the answer to all
three parts of the question must be “yes” before the response can be a single, summarizing “yes”. If any part of the
question is false, then the entire question is false.

You can think of an AND expression in an algebraic way if you consider 0 to be false and
any nonzero value to be true. The AND operator works like multiplication (not addition,
as you might suspect). A true expression AND a true expression yields a true result
because 1 * 1 is 1. Any other combination yields a false result because 1 * 0, 0 * 1, and 0
* 0 all result in 0.

If the programming language you use allows an AND operator (and almost all do), you still must realize that the question
you place first is the question that will be asked first, and cases that are eliminated based on the first question will not
proceed to the second question. The computer can ask only one question at a time; even when your logic follows the
flowchart segment in Figure 5-17, the computer will execute the logic in the flowchart in Figure 5-18.

if empDentalIns = "Y" AND empMedicalIns = "Y" then
 print empIdNumber, empLastName, empFirstName
endif

YesNo

FIGURE 5-17: FLOWCHART AND PSEUDOCODE OF AN AND DECISION USING AN AND OPERATOR

empDentalIns
= “Y” AND

empMedicalIns
= “Y”?

print
empldNumber,
empLastName,
empFirstName

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 175

176 Chapter 5 • Making Decisions

The AND operator in Java, C++, and C# consists of two ampersands, with no spaces between
them (&&).

Using an AND operator in a decision that involves multiple conditions does not eliminate
your responsibility for determining which of the conditions to test first. Even when you
use an AND operator, the computer makes decisions one at a time, and makes them in the
order you ask them. If the first question in an AND expression evaluates to false, then the
entire expression is false, and the second question will not even be tested. Not bothering
to test the second expression when it would make no difference in the ultimate result is
called short-circuiting. (Some languages—for example, VB .NET—provide special non-
short-circuiting operators. However, the standard AND operator is short-circuiting.)

AVOIDING COMMON ERRORS IN AN AND SELECTION

When you must satisfy two or more criteria to initiate an event in a program, you must make sure that the second deci-
sion is made entirely within the first decision. For example, if a program’s objective is to print a report of those employ-
ees who carry both medical and dental insurance, then the program segment shown in Figure 5-19 contains three
different types of logic errors.

if empDentalIns = "Y" then
 if empMedicalIns = "Y" then
 print empIdNumber, empLastName, empFirstName
 endif
endifYesNo

FIGURE 5-18: FLOWCHART AND PSEUDOCODE OF COMPUTER LOGIC OF PROGRAM CONTAINING AN AND
OPERATOR IN THE DECISION (THE COMPUTER STILL MAKES TWO SEPARATE DECISIONS, EVEN
THOUGH AN AND OPERATOR IS USED)

print
empldNumber,
empLastName,
empFirstName

empMedicalIns
= “Y”?

empDentalIns
= “Y”?

YesNo

TIP�

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 176

177Understanding AND Logic

The diagram shows that the program asks the dental insurance question first. However, if an employee participates in
the dental program, the employee’s record prints immediately. The employee record should not print, because the
employee might not have the medical insurance. In addition, the program should eliminate an employee without dental
insurance from the next selection, but every employee’s record proceeds to the medical insurance question, where it
might print, whether the employee has dental insurance or not. Additionally, any employee who has both medical and
dental insurance, having passed each test successfully, will appear twice on this report. For many reasons, the logic
shown in Figure 5-19 is not correct for this problem.

Beginning programmers often make another type of error when they must make two comparisons on the same field
when using a logical AND operator. For example, suppose you want to list employees who make between $10.00 and
$11.99 per hour, inclusive. When you make this type of decision, you are basing it on a range of values—every value
between low and high limits. For example, you want to select employees whose empRate is greater than or equal to

if empDentalIns = "Y" then
 print empIdNumber, empLastName, empFirstName
endif
if empMedicalIns = "Y" then
 print empIdNumber, empLastName, empFirstName
endifYesNo

YesNo

FIGURE 5-19: INCORRECT LOGIC TO PRODUCE REPORT CONTAINING EMPLOYEES WHO PARTICIPATE IN BOTH
MEDICAL AND DENTAL INSURANCE PLANS

empDentalIns
= “Y”?

print
empldNumber,
empLastName,
empFirstName

empMedicalIns
= “Y”?

print
empldNumber,
empLastName,
empFirstName

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 177

178 Chapter 5 • Making Decisions

10.00 AND whose empRate is less than 12.00; therefore, you need to make two comparisons on the same field.
Without the logical AND operator, the comparison is:

if empRate >= 10.00 then
if empRate < 12.00 then

print empIdNumber, empLastName, empFirstName
endif

endif

To check for empRate values that are 10.00 or greater, you can use either empRate >
9.99? or empRate >= 10.00?. To check for empRate values under 12.00, you can
write empRate <= 11.99? or empRate < 12.00?.

The correct way to make this comparison with the AND operator is as follows:

if empRate >= 10.00 AND empRate < 12.00 then
print empIdNumber, empLastName, empFirstName

endif

You substitute the AND operator for the phrase then if. However, some programmers might try to make the com-
parison as follows:

if empRate >= 10.00 AND < 12.00 then
print empIdNumber, empLastName, empFirstName

endif

In most languages, the phrase empRate >= 10.00 AND < 12.00 is incorrect. The logical AND is usually a binary
operator that requires a complete Boolean expression on each side. The expression to the right of the AND,< 12.00, is not
a complete Boolean expression; you must indicate what is being compared to 12.00.

In some programming languages, such as COBOL and RPG, you can write the equivalent
of empRate >= 10.00 AND < 12.00? and the empRate variable is implied for
both comparisons. Still, it is clearer, and therefore preferable, to use the two full expres-
sions, empRate >= 10.00 AND empRate < 12.00?.

UNDERSTANDING OR LOGIC

Sometimes, you want to take action when one or the other of two conditions is true. This is called an OR decision because
either a first condition must be met or a second condition must be met for an event to take place. If someone asks you,
“Are you free Friday or Saturday?”, only one of the two conditions has to be true in order for the answer to the whole ques-
tion to be “yes”; only if the answers to both halves of the question are false is the value of the entire expression false.

You can think of an OR expression in an algebraic way if you consider 0 to be false and
any nonzero value to be true. The OR operator works like addition. A false expression OR
a false expression yields a false result because 0 + 0 is 0. Any other combination yields a
true result because 1 + 0, 0 + 1, and 1 + 1 all result in nonzero values.

TIP�

TIP�

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 178

179Understanding OR Logic

For example, suppose your employer wants a list of all employees who participate in either the medical or dental plan.
Assuming you are using the same input file described in Figure 5-9, the mainline logic and housekeeping()
module for this program are identical to those used in Figures 5-11 and 5-12. You only need to change the heading on
the sample output (Figure 5-10) and change the heading1 variable in Figure 5-12 from heading1 =
“Employees with Medical and Dental Insurance” to heading1 = “Employees with
Medical or Dental Insurance”. The only substantial changes to the program occur in the
createReport() module.

Figure 5-20 shows the possible logic for the createReport() method in this OR selection. As each record enters
the createReport() method, you ask the question empMedicalIns = “Y”?, and if the result is true, you
print the employee data. Because the employee needs to participate in only one of the two insurance plans to be
selected for printing, there is no need for further questioning after you have determined that an employee has medical
insurance. If the employee does not participate in the medical insurance plan, only then do you need to ask if
empDentalIns = “Y”?. If the employee does not have medical insurance, but does have dental, you want this
employee information to print on the report.

createReport()
if empMedicalIns = "Y" then

print empIdNumber, empLastName, empFirstName
else

if empDentalIns = "Y" then
 print empIdNumber, empLastName,

empFirstName
endif

endif
read empRecord

return

YesNo

YesNo

FIGURE 5-20: FLOWCHART AND PSEUDOCODE FOR createReport() MODULE OF PROGRAM THAT PRINTS
RECORDS OF EMPLOYEES WHO PARTICIPATE IN EITHER THE MEDICAL OR DENTAL INSURANCE PLAN

createReport()

print
empldNumber,
empLastName,
empFirstName

empMedicalIns
= “Y”?

empDentalIns
= “Y”?

read
empRecord

return

print
empldNumber,
empLastName,
empFirstName

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 179

180 Chapter 5 • Making Decisions

AVOIDING COMMON ERRORS IN AN OR SELECTION

You might have noticed that the statement print empIdNumber, empLastName, empFirstName appears
twice in the flowchart and in the pseudocode shown in Figure 5-20. The temptation is to redraw the flowchart in Figure 5-20
to look like Figure 5-21. Logically, you can argue that the flowchart in Figure 5-21 is correct because the correct employee
records print. However, this flowchart is not allowed because it is not structured.

If you do not see that Figure 5-21 is not structured, go back and review Chapter 2. In par-
ticular, review the example that begins at Figure 2-21.

An additional source of error that is specific to the OR selection stems from a problem
with language and the way people use it too casually. When your boss needs a report of all
employees who carry medical or dental insurance, she is likely to say, “I need a report of
all the people who have medical insurance and all those who have dental insurance.” The
request contains the word “and,” and the report contains people who have one type of
insurance “and” people who have another. However, the records you want to print are
those from employees who have medical insurance OR dental insurance OR both. The
logical situation requires an OR decision. Instead of saying “people who have medical
insurance and people who have dental insurance,” it would be clearer if your boss asked
for “people who have medical or dental insurance.” In other words, it would be more cor-
rect to put the question-joining “or” conjunction between the insurance types held by each
person than between the people, but bosses and other human beings often do not speak
like computers. As a programmer, you have the job of clarifying what really is being
requested, and determining that often a request for A and B means a request for A or B.

The way we casually use English can cause another type of error when you require a decision based on a value falling
within a range of values. For example, a movie theater manager might say, “Provide a discount to patrons who are

YesNo

Yes

No

empDentalIns
= “Y”?

FIGURE 5-21: INCORRECT FLOWCHART FOR createReport() MODULE

createReport()

print
empldNumber,
empLastName,
empFirstName

empMedicalIns
= “Y”?

TIP�

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 180

181Understanding OR Logic

under 13 years old and those who are over 64 years old; otherwise, charge the full price.” Because the manager has used
the word “and” in the request, you might be tempted to create the decision shown in Figure 5-22; however, this logic will
not provide a discounted price for any movie patron. You must remember that every time the decision in Figure 5-22 is
made, it is made using a single data record. If the age field in that record contains an age lower than 13, then it cannot
possibly contain an age over 64. Similarly, if it contains an age over 64, then there is no way it can contain an age under
that. Therefore, there is no value that could be stored in the age field of a movie patron record for which both parts of the
AND question are true—and the price will never be set to the discountPrice for any record. Figure 5-23 shows the
correct logic.

A similar error can occur in your logic if the theater manager says something like, “Don’t give a discount—that is,
charge full price—if a patron is over 12 or under 65.” Because the word “or” appears in the request, you might plan
your logic like that shown in Figure 5-24.

if patronAge < 13 OR patronAge > 64 then
 price = discountPrice

else
price = fullPrice

endif
YesNo

FIGURE 5-23: CORRECT LOGIC THAT PROVIDES A DISCOUNT FOR MOVIE PATRONS UNDER 13 AND FOR MOVIE
PATRONS OVER 64

patronAge < 13
OR patronAge >

64?

price = fullPrice price = discountPrice

if patronAge < 13 AND patronAge > 64 then
price = discountPrice

else
price = fullPrice

endif
YesNo

FIGURE 5-22: INCORRECT LOGIC THAT ATTEMPTS TO PROVIDE A DISCOUNT FOR MOVIE PATRONS UNDER 13 AND
FOR MOVIE PATRONS OVER 64

patronAge < 13
AND patronAge >

64?

price = fullPrice price = discountPrice

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 181

182 Chapter 5 • Making Decisions

As in Figure 5-22, in Figure 5-24, no patron ever receives a discount, because every patron is either over 12 or under
65. Remember, in an OR decision, only one of the conditions needs to be true in order for the entire expression to be
evaluated as true. So, for example, because a patron who is 10 is under 65, the full price is charged, and because a
patron who is 70 is over 12, the full price also is charged. Figure 5-25 shows the correct logic for this decision.

Using an OR operator in a decision that involves multiple conditions does not eliminate
your responsibility for determining which of the conditions to test first. Even when you
use an OR operator, the computer makes decisions one at a time, and makes them in the
order you ask them. If the first question in an OR expression evaluates to true, then the
entire expression is true, and the second question will not even be tested.

if patronAge > 12 AND patronAge < 65 then
 price = fullPrice
else

price = discountPrice
endif

YesNo

FIGURE 5-25: CORRECT LOGIC THAT CHARGES FULL PRICE FOR MOVIE PATRONS OVER 12 AND UNDER 65

patronAge > 12
AND patronAge <

65?

price = fullPriceprice = discountPrice

if patronAge > 12 OR patronAge < 65 then
price = fullPrice

else
price = discountPrice

endif
YesNo

FIGURE 5-24: INCORRECT LOGIC THAT ATTEMPTS TO CHARGE FULL PRICE FOR MOVIE PATRONS OVER 12 AND
UNDER 65

patronAge > 12
OR patronAge <

65?

price = fullPriceprice = discountPrice

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 182

183Understanding OR Logic

WRITING OR DECISIONS FOR EFFICIENCY

You can write a program that creates a report containing all employees who have either medical or dental insurance by
using the createReport() method in either Figure 5-26 or Figure 5-27.

createReport()
if empMedicalIns = "Y" then

print empIdNumber, empLastName, empFirstName
else

if empDentalIns = "Y" then
 print empIdNumber, empLastName,

 empFirstName
endif

endif
read empRecord

return

YesNo

YesNo

FIGURE 5-26: THE createReport() MODULE TO SELECT EMPLOYEES WITH MEDICAL OR DENTAL INSURANCE,
USING MEDICAL DECISION FIRST

createReport()

print
empldNumber,
empLastName,
empFirstName

empMedicalIns
= “Y”?

empDentalIns
= “Y”?

print
empldNumber,
empLastName,
empFirstName

read
empRecord

return

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 183

184 Chapter 5 • Making Decisions

You might have guessed that one of these selections is superior to the other, if you have some background information
about the relative likelihood of each condition you are testing. For example, once again assume you know that out of
1,000 employees in your company, about 90 percent, or 900, participate in the medical insurance plan, and about half,
or 500, participate in the dental plan.

When you use the logic shown in Figure 5-26 to select employees who participate in either insurance plan, you first ask about
medical insurance. For 900 employees, the answer is true; you print these employee records. Only about 100 records con-
tinue to the next question regarding dental insurance, where about half, or 50, fulfill the requirements to print. In the end, you
print about 950 employees.

If you use Figure 5-27, you ask empDentalIns = “Y”? first. The result is true for 50 percent, or 500 employ-
ees, whose names then print. Five hundred employee records then progress to the medical insurance question, after
which 90 percent, or 450, of them print.

createReport()
if empDentalIns = "Y" then

print empIdNumber, empLastName, empFirstName
else

if empMedicalIns = "Y" then
print empIdNumber, empLastName,

empFirstName
endif

endif
read empRecord

return

FIGURE 5-27: ALTERNATE createReport() MODULE TO SELECT EMPLOYEES WITH MEDICAL OR DENTAL
INSURANCE, USING DENTAL DECISION FIRST

YesNo

YesNo

createReport()

print
empldNumber,
empLastName,
empFirstName

empDentalIns
= “Y”?

empMedicalIns
= “Y”?

print
empldNumber,
empLastName,
empFirstName

read
empRecord

return

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 184

185Understanding OR Logic

Using either scenario, 950 employee records appear on the list, but the logic used in Figure 5-26 requires 1,100 decisions,
whereas the logic used in Figure 5-27 requires 1,500 decisions. The general rule is: In an OR decision, first ask the question
that is more likely to be true. Because a record qualifies for printing as soon as it passes one test, asking the more likely ques-
tion first eliminates as many records as possible from having to go through the second decision. The time it takes to execute
the program is decreased.

COMBINING DECISIONS IN AN OR SELECTION

When you need to take action when either one or the other of two conditions is met, you can use two separate, nested
selection structures, as in the previous examples. However, most programming languages allow you to ask two or more
questions in a single comparison by using a logical OR operator—for example, empDentalIns = “Y” OR
empMedicalIns = “Y”. When you use the logical OR operator, only one of the listed conditions must be met for
the resulting action to take place. If the programming language you use allows this construct, you still must realize that
the question you place first is the question that will be asked first, and cases eliminated by the first question will not
proceed to the second question. The computer can ask only one question at a time; even when you draw the flowchart
in Figure 5-28, the computer will execute the logic in the flowchart in Figure 5-29.

C#, C++, C, and Java use the symbol || to represent the logical OR.

if empDentalIns = “Y” OR empMedicalIns = "Y" then
print empIdNumber, empLastName, empFirstName

endif

No Yes

print
empIdNumber,
empLastName,
empFirstName

empDentalIns
= “Y” OR

empMedicalIns
= “Y”?

FIGURE 5-28: FLOWCHART AND PSEUDOCODE OF AN OR DECISION USING AN OR OPERATOR

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 185

186 Chapter 5 • Making Decisions

USING SELECTIONS WITHIN RANGES

Business programs often need to make selections based on a variable falling within a range of values. For example,
suppose you want to print a list of all employees and the names of their supervisors. An employee’s supervisor is
assigned according to the employee’s department number, as shown in Figure 5-30.

When you write the program that reads each employee’s record, you could make nine decisions before printing the
supervisor’s name, such as empDept = 1?, empDept = 2?, and so on. However, it is more convenient to find
the supervisor by using a range check.

When you use a range check, you compare a variable to a series of values between limits. To perform a range check,
make comparisons using either the lowest or highest value in each range of values you are using. For example, to find
each employee’s supervisor as listed in Figure 5-30, either use the values 1, 4, and 8, which represent the low ends of
each supervisor’s department range, or use the values 3, 7, and 9, which represent the high ends.

DEPARTMENT NUMBER SUPERVISOR
1–3 Dillon
4—7 Escher
8—9 Fontana

FIGURE 5-30: SUPERVISORS BY DEPARTMENT

if empDentalIns = "Y" then
 print empIdNumber, empLastName, empFirstName
else
 if empMedicalIns = "Y" then
 print empIdNumber, empLastName, empFirstName
 endif
endif

YesNo

YesNo

FIGURE 5-29: FLOWCHART AND PSEUDOCODE OF COMPUTER LOGIC OF PROGRAM CONTAINING AN OR
OPERATOR IN THE DECISION; THE COMPUTER STILL MAKES TWO SEPARATE DECISIONS EVEN
THOUGH AN OR OPERATOR IS USED

print
empldNumber,
empLastName,
empFirstName

empDentalIns
= “Y”?

empMedicalIns
= “Y”?

print
empldNumber,
empLastName,
empFirstName

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 186

187Using Selections within Ranges

Figure 5-31 shows the flowchart and pseudocode that represent the logic for choosing a supervisor name by using the
high-end range values. You test the empDept value for less than or equal to the high end of the lowest range group. If
the comparison evaluates as true, you know the intended value of supervisorName. If not, you continue checking.

In Figure 5-31, notice how each else aligns vertically with its corresponding if.

For example, consider records containing three different values for empDept, and compare how they would be han-
dled by the set of decisions in Figure 5-31.

� First, assume that the value of empDept for a record is 2. Using the logic in Figure 5-31, the
value of the Boolean expression empDept <= 3 is true, supervisorName is set to
“Dillon”, and the if structure ends. In this case, the second decision, empDept <= 7, is
never made, because the else half of empDept <= 3 never executes.

� Next, assume that for another record, the value of empDept is 7. Then, empDept <= 3
evaluates as false, so the else clause of the decision executes. There, empDept <= 7 is
evaluated, and found to be true, so supervisorName becomes “Escher”.

� Finally, assume that the value of empDept is 9. In this case, the first decision, empDept
<= 3, is false, so the else clause executes. Then, the second decision, empDept <=7,
also evaluates as false, so the else clause of the second decision executes, and
supervisorName is set to “Fontana”. In this example, “Fontana” can be called a default
value, because if neither of the two decision expressions is true,supervisorName becomes
“Fontana” by default. A default value is the value assigned after a series of selections are all false.

if empDept <= 3 then
 supervisorName = "Dillon"
else
 if empDept <= 7 then
 supervisorName = "Escher"
 else
 supervisorName = "Fontana"
 endif
endif

FIGURE 5-31: USING HIGH-END VALUES FOR A RANGE CHECK

YesNo

YesNo

empDept
<= 3?

empDept
<= 7?

supervisorName
= “Dillon”

supervisorName
= “Escher”

supervisorName
= “Fontana”

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 187

188 Chapter 5 • Making Decisions

Using the logic in Figure 5-31, supervisorName becomes “Fontana” even if
empDept is a high, invalid value such as 10, 12, or even 300. The example is intended to
be simple, using only two decisions. However, in a business application, you might con-
sider amending the logic so an additional, third decision is made that compares empDept
less than or equal to 9. Then, you could assign “Fontana” as the supervisor name if empDept
is less than or equal to 9, and issue an error message if empDept is not. You might also want to
insert a similar decision at the beginning of the program segment to make sure empDept is not
less than 1.

The flowchart and pseudocode for choosing a supervisor name using the reverse of this method, by comparing the
employee department to the low end of the range values that represent each supervisor’s area, appear in Figure 5-32.
Using the technique shown in Figure 5-32, you compare empDept to the low end (8) of the highest range (8 to 9)
first; if empDept falls in the range, supervisorName is known; otherwise, you check the next lower group. In
this example, “Dillon” becomes the default value. That is, if the department number is not greater than or equal to 8,
and it is also not greater than or equal to 4, then by default, supervisorName is set to “Dillon”.

COMMON ERRORS USING RANGE CHECKS

Two common errors that occur when programmers perform range checks both entail doing more work than is neces-
sary. Figure 5-33 shows a range check in which the programmer has asked one question too many. If you know that all
empDept values are positive numbers, then if empDept is not greater than or equal to 8, and it is also not greater
than or equal to 4, then by default it must be greater than or equal to 1. Asking whether empDept is greater than or
equal to 1 is a waste of time; no employee record can ever travel the logical path on the far left. You might say that the
path that can never be traveled is a dead or unreachable path, and that the statements written there constitute dead
or unreachable code. Providing such a path is always a logical error.

if empDept >= 8 then
 supervisorName = "Fontana"
else
 if empDept >= 4 then
 supervisorName = "Escher"
 else
 supervisorName = "Dillon"
 endif
endif

FIGURE 5-32: USING LOW-END VALUES OF RANGES TO DETERMINE EMPLOYEE’S SUPERVISOR

YesNo

YesNo

empDept
>= 8?

empDept
>= 4?

supervisorName
= “Fontana”

supervisorName
= “Escher”

supervisorName
= “Dillon”

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 188

189Using Selections within Ranges

When you ask questions of human beings, you sometimes ask a question to which you
already know the answer. For example, in court, a good trial lawyer seldom asks a ques-
tion if the answer will be a surprise. With computer logic, however, such questions are an
inefficient waste of time.

Another error that programmers make when writing the logic to perform a range check also involves asking unneces-
sary questions. You should never ask a question if there is only one possible answer or outcome. Figure 5-34 shows an
inefficient range selection that asks two unneeded questions. In the figure, if empDept is greater than or equal to 8,
“Fontana” is the supervisor. If empDept is not greater than or equal to 8, then it must be less than 8, so the next
question does not have to check for less than 8. The computer logic will never execute the second decision unless
empDept is already less than 8—that is, unless it follows the false branch of the first selection. If you use the logic in
Figure 5-34, you are wasting computer time asking a question that has previously been answered. Similarly, if
empDept is not greater than or equal to 8 and it is also not greater than or equal to 4, then it must be less than 4.
Therefore, there is no reason to compare empDept to 4 to determine whether “Dillon” is the supervisor. If the logic
makes it past the first two if statements in Figure 5-34, then the supervisor must be “Dillon”.

if empDept >=8 then
 supervisorName = "Fontana"
else
 if empDept >= 4 then
 supervisorName = "Escher"
 else
 if empDept >= 1 then
 supervisorName = "Dillon"
 endif
 endif
endif

FIGURE 5-33: INEFFICIENT RANGE SELECTION INCLUDING UNREACHABLE PATH

YesNo

YesNo

YesNo

empDept
>= 8?

empDept
>= 4?

supervisorName
= “Fontana”

supervisorName
= “Escher”empDept

>= 1?

supervisorName
= “Dillon”

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 189

190 Chapter 5 • Making Decisions

Beginning programmers sometimes justify their use of unnecessary questions as “just
making really sure.” Such caution is unnecessary when writing computer logic.

UNDERSTANDING PRECEDENCE WHEN COMBINING AND AND OR
SELECTIONS

Most programming languages allow you to combine as many AND and OR operators in an expression as you need. For
example, assume you need to achieve a score of at least 75 on each of three tests in order to pass a course. When
multiple conditions must be true before performing an action, you can use an expression like the following:

if score1 >= 75 AND score2 >= 75 AND score3 >= 75 then
classGrade = “Pass”

else
classGrade = “Fail”

endif

if empDept >= 8 then
 supervisorName = "Fontana"
else
 if empDept < 8 AND empDept >= 4 then
 supervisorName = "Escher"
 else
 if empDept < 4 then
 supervisorName = "Dillon"
 endif
 endif
endif

YesNo

YesNo

YesNo

FIGURE 5-34: INEFFICIENT RANGE SELECTION INCLUDING UNNECESSARY QUESTION

supervisorName
= “Escher”

supervisorName
= “Dillon”

supervisorName
= “Fontana”

empDept
>= 8?

empDept
< 8 AND

empDept >= 4?

empDept
< 4?

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 190

191Understanding Precedence When Combining AND and OR Selections

On the other hand, if you need to pass only one test in order to pass the course, then the logic is as follows:

if score1 >= 75 OR score2 >= 75 OR score3 >= 75 then
classGrade = “Pass”

else
classGrade = “Fail”

endif

The logic becomes more complicated when you combine AND and OR operators within the same statement. When you
combine AND and OR operators, the AND operators take precedence, meaning their Boolean values are evaluated first.

For example, consider a program that determines whether a movie theater patron can purchase a discounted ticket. Assume
discounts are allowed for children (age 12 and under) and senior citizens (age 65 and older) who attend “G”-rated movies. The
following code looks reasonable, but produces incorrect results, because the AND operator evaluates before the OR.

if age <= 12 OR age >= 65 AND rating = “G” then
print “Discount applies”

For example, assume a movie patron is 10 years old and the movie rating is “R”. The patron should not receive a discount—or
be allowed to see the movie! However, within the previous if statement, the part of the expression containing the AND,
age >= 65 AND rating = “G”, evaluates first. For a 10-year-old and an “R”-rated movie, the question is
false (on both counts), so the entire if statement becomes the equivalent of the following:

if age <= 12 OR aFalseExpression

Because the patron is 10, age <= 12 is true, so the original if statement becomes the equivalent of:

if aTrueExpression OR aFalseExpression

which evaluates as true. Therefore, the statement “Discount applies” prints when it should not.

Many programming languages allow you to use parentheses to correct the logic and force the expression age <=
12 OR age >= 65 to evaluate first, as shown in the following pseudocode:

if (age <= 12 OR age >= 65) AND rating = “G” then
print “Discount applies”

With the added parentheses, if the patron’s age is 12 or under OR 65 or over, the expression is evaluated as:

if aTrueExpression AND rating = “G”

When the age value qualifies a patron for a discount, then the rating value must also be acceptable before the discount
applies. This was the original intention of the statement.

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 191

192 Chapter 5 • Making Decisions

You always can avoid the confusion of mixing AND and OR decisions by nesting if statements instead of using ANDs
and ORs. With the flowchart and pseudocode shown in Figure 5-35, it is clear which movie patrons receive the dis-
count. In the flowchart in the figure, you can see that the OR is nested entirely within the Yes branch of the rating
= “G”? selection. Similarly, by examining the pseudocode in Figure 5-35, you can see by the alignment that if the
rating is not “G”, the logic proceeds directly to the last endif statement, bypassing any checking of the age at all.

In every programming language, multiplication has precedence over addition in an arith-
metic statement. That is, the value of 2 + 3 * 4 is 14 because the multiplication occurs
before the addition. Similarly, in every programming language, AND has precedence over
OR. That’s because computer circuitry treats the AND operator as multiplication and the
OR operator as addition. In every programming language, 1 represents true and 0 repre-
sents false. So, for example, aTrueExpression AND aTrueExpression results
in true, because 1 * 1 is 1, and aTrueExpression AND aFalseExpression is
false, because 1 * 0 is 0. Similarly, aFalseExpression OR aFalseExpression
AND aTrueExpression evaluates to aFalseExpression because 0 + 0 * 1 is 0,
whereas aFalseExpressionAND aFalseExpressionOR aTrueExpression
evaluates to aTrueExpression because 0 * 0 + 1 is 1.

if rating = "G" then
 if age <= 12 then
 print "Discount applies"
 else
 if age >= 65 then
 print "Discount applies"
 endif
 endif
endif

FIGURE 5-35: NESTED if LOGIC THAT DETERMINES MOVIE PATRON DISCOUNTS

YesNo

age <= 12?
YesNo

YesNo

rating = “G” ?

age >= 65?

print
“Discount
applies”

print
“Discount
applies”

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 192

193Understanding the Case Structure

UNDERSTANDING THE CASE STRUCTURE

When you have a series of decisions based on the value stored in a single variable, most languages allow you to use a
case structure. You first learned about the case structure in Chapter 2. There, you learned that you can solve any pro-
gramming problem using only the three basic structures—sequence, selection, and loop. You are never required to use a
case structure—you can always substitute a series of nested selections. The case structure simply provides a conve-
nient alternative to using a series of decisions when you must make choices based on the value stored in a single
variable.

In some languages, the case structure is called the switch statement.

For example, suppose you work for a real estate developer who is selling houses that have one of three different floor plans.
The logic segment of a program that determines the base price of the house might look like the logic shown in Figure 5-36.

The logic shown in Figure 5-36 is completely structured. However, rewriting the logic using a case structure, as shown
in Figure 5-37, might make it easier to understand. When using the case structure, you test a variable against a series
of values, taking appropriate action based on the variable’s value.

if model = "Arlington" then
 basePrice = 150000
else
 if model = "BelAire" then
 basePrice = 170000
 else
 if model = "Carrington" then
 basePrice = 185000
 else
 basePrice = 0
 print "Error – invalid model name"
 endif
 endif
endif

FIGURE 5-36: FLOWCHART AND PSEUDOCODE DETERMINING HOUSE MODEL PRICE USING ifS

YesNo

YesNo

YesNo

basePrice = 150000

model =
“Arlington”?

model =
“BelAire”?

model =
“Carrington”?

basePrice = 170000

basePrice = 185000basePrice = 0

print “Error –
 invalid model

name”

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 193

194 Chapter 5 • Making Decisions

In Figure 5-37, the model variable is compared in turn with “Arlington”, “BelAire”, and “Carrington”, and an appropri-
ate basePrice value is set. The default case is the case that executes in the event no other cases execute. The
logic shown in Figure 5-36 is identical to that shown in Figure 5-37; your choice of method to set the housing model
prices is entirely a matter of preference.

When you look at a nested if-else structure containing an outer and inner selection, if the
inner nested if is within the if portion of the outer if, the program segment is a candi-
date for AND logic. On the other hand, if the inner if is within the else portion of the
outer if, the program segment might be a candidate for the case structure.

Some languages require a break statement at the end of each case selection segment. In
those languages, once a case is true, all the following cases execute until a break state-
ment is encountered. When you study a specific programming language, you will learn
how to use break statements if they are required in that language.

USING DECISION TABLES

Some programs require multiple decisions to produce the correct output. Managing all possible outcomes of multiple
decisions can be a difficult task, so programmers sometimes use a tool called a decision table to help organize the pos-
sible decision outcome combinations.

case based on model
 case "Arlington"
 basePrice = 150000
 case "BelAire"
 basePrice = 170000
 case "Carrington"
 basePrice = 185000
 default
 basePrice = 0
 print "Error – invalid model name"
endcase

FIGURE 5-37: FLOWCHART AND PSEUDOCODE DETERMINING HOUSE MODEL PRICE USING THE CASE
STRUCTURE

model?

basePrice =

150000

print “Error –

 invalid model

name”

“Arlington”

basePrice =

170000

“BelAire”

basePrice =

185000

“Carrington”

basePrice =

0

Default

TIP�

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 194

195Using Decision Tables

A decision table is a problem-analysis tool that consists of four parts:

� Conditions

� Possible combinations of Boolean values for the conditions

� Possible actions based on the conditions

� The specific action that corresponds to each Boolean value of each condition

For example, suppose a college collects input data like that shown in Figure 5-38. Each student’s data record includes
the student’s age and a variable that indicates whether the student has requested a residence hall that enforces quiet
study hours.

Assume that the residence hall director makes residence hall assignments based on the following rules:

� Students who are under 21 years old and who request a residence hall with quiet study hours
are assigned to Addams Hall.

� Students who are under 21 years old and who do not request a residence hall with quiet study
hours are assigned to Grant Hall.

� Students who are 21 years old and over and who request a residence hall with quiet study hours
are assigned to Lincoln Hall.

� Students who are 21 years old and over and who do not request a residence hall with quiet
study hours are also assigned to Lincoln Hall.

You can create a program that assigns each student to the appropriate residence hall and prints a list of students along
with each student’s hall assignment. A sample report is shown in Figure 5-39. The mainline logic for this program
appears in Figure 5-40. Most programs you write will contain the same basic mainline logic: Each performs start-up or
housekeeping tasks, a main loop that acts repeatedly—once for each input record—and a finishing module that per-
forms any necessary program-ending tasks, including closing the open files.

STUDENT RESIDENCE FILE DESCRIPTION
File Name: STURESFILE
FIELD DESCRIPTION DATA TYPE COMMENTS
ID Number Numeric 4 digits, 0 decimal places
Last Name Character 15 characters
First Name Character 15 characters
Age Numeric 0 decimal places
Request for Hall Character 1 character, Y or N

with Quiet Hours

FIGURE 5-38: STUDENT RESIDENCE FILE DESCRIPTION

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 195

196 Chapter 5 • Making Decisions

The getReady() module for the program that produces the residence hall report is shown in Figure 5-41. It
declares variables, opens the files, prints the report headings, and reads the first data record into memory.

start
 perform getReady()
 while not eof
 perform processRequest()
 endwhile
 perform closing()
stop

FIGURE 5-40: FLOWCHART AND PSEUDOCODE OF MAINLINE LOGIC FOR STUDENT RESIDENCE HALL
ASSIGNMENTS REPORT

Yes

No

start

getReady()

eof?

closing()

processRequest()

stop

FIGURE 5-39: SAMPLE REPORT LISTING STUDENT RESIDENCE HALL ASSIGNMENTS

Student Residence Hall Assignments

Student ID Age Request for Quiet Assigned Hall

1288 21 Y Lincoln
1567 20 Y Addams
5612 24 N Lincoln
7610 18 N Grant
7723 20 N Grant
8012 19 Y Addams

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 196

197Using Decision Tables

Before you draw a flowchart or write the pseudocode for the processRequest()module, you can create a decision
table to help you manage all the decisions. You can begin to create a decision table by listing all possible conditions. They are:

� stuAge < 21, or not

� stuQuietRequest = “Y”, or not

Next, determine how many possible Boolean value combinations exist for the conditions. In this case, there are four
possible combinations, shown in Figure 5-42. A student can be under 21, request a residence hall with quiet hours,
both, or neither. Because each condition has two outcomes and there are two conditions, there are 2 * 2, or four, possi-
bilities. Three conditions would produce eight possible outcome combinations (2 * 2 * 2); four conditions would produce
16 possible outcome combinations (2 * 2 * 2 * 2), and so on.

 studentRec
 num stuId
 char stuLastName
 char stuFirstName
 num stuAge
 char stuQuietRequest
 char reportHead =
 "Student Residence Hall Assignments"
 char columnHeads = "Student ID Age
 Request for Quiet Assigned Hall"
 char assignedHall

getReady()
 declare variables
 open files
 print reportHead
 print columnHeads
 read studentRec
return

FIGURE 5-41: FLOWCHART AND PSEUDOCODE OF getReady() MODULE FOR STUDENT RESIDENCE HALL
ASSIGNMENTS REPORT

declare
variables

getReady()

open
files

print
reportHead

print
columnHeads

read
studentRec

return

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 197

198 Chapter 5 • Making Decisions

Next, add rows to the decision table to list the possible outcome actions. A student might be assigned to Addams,
Grant, or Lincoln Hall. Figure 5-43 shows an expanded decision table that includes these three possible outcomes.

You choose one required outcome for each possible combination of conditions. As shown in Figure 5-44, you place an
X in the Addams Hall row when stuAge is less than 21 and the student requests a residence hall with quiet study
hours. You place an X in the Grant Hall row when a student is under 21 but does not request a residence hall with quiet
hours. Finally, you place Xs in the Lincoln Hall row for both stuQuietRequest values when a student is not under
21 years old—only one residence hall is available for students 21 and over, whether they have requested a hall with
quiet hours or not.

The decision table is complete (count the Xs—there are four possible outcomes). Take a moment and confirm that each
residence hall selection is the appropriate value based on the original specifications. Now that the decision table is
complete, you can start to plan the logic.

FIGURE 5-44: COMPLETED DECISION TABLE FOR RESIDENCE HALL SELECTION

Condition Outcome

stuAge < 21 T T F F

stuQuietRequest = "Y" T F T F

assignedHall = "Addams" X

assignedHall = "Grant" X

assignedHall = "Lincoln" X X

FIGURE 5-43: DECISION TABLE INCLUDING POSSIBLE OUTCOMES OF RESIDENCE HALL DECISIONS

Condition Outcome

stuAge < 21 T T F F

stuQuietRequest = "Y" T F T F

assignedHall = "Addams"

assignedHall = "Grant"

assignedHall = "Lincoln"

FIGURE 5-42: POSSIBLE OUTCOMES OF RESIDENCE HALL REQUEST CONDITIONS

Condition Outcome

stuAge < 21 T T F F

stuQuietRequest = "Y" T F T F

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 198

199Using Decision Tables

If you choose to use a flowchart to express the logic, you start by drawing a path to the outcome shown in the first col-
umn. This result (which occurs when stuAge < 21 and stuQuietRequest = “Y”) sets the residence hall
to “Addams”. Next, add the resulting action shown in the second column of the decision table, which occurs when
stuAge < 21 is true and stuQuietRequest = “Y” is false. In those cases, the residence hall becomes
“Grant”. See Figure 5-45.

Next, on the false outcome side of the stuAge < 21 question, you add the resulting action shown in the third col-
umn of the decision table—set the residence hall to “Lincoln”. This action occurs when stuAge < 21 is false and
stuQuietRequest = “Y” is true. Finally, add the resulting action shown in the fourth column of the decision
table, which occurs when both conditions are false. When a student is not under 21 and does not request a hall with
quiet study hours, then the assigned hall is “Lincoln”. See Figure 5-46.

stuAge < 21?
Yes

stuQuietRequest
= “Y”?

Yes No

FIGURE 5-45: PARTIALLY COMPLETED FLOWCHART SEGMENT FOR RESIDENCE HALL SELECTION

processRequest()

assignedHall
= “Addams”

assignedHall
= “Grant”

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 199

200 Chapter 5 • Making Decisions

The decision making in the flowchart segment is now complete and accurately assigns each student to the correct resi-
dence hall. To finish it, all you need to do is tie up the loose ends of the decision structure, print a student’s ID number
and residence hall assignment, and read the next record. However, if you examine the two result boxes on the far right
in Figure 5-46, you see that the assigned residence hall is identical—“Lincoln” in both cases. When a student is not
under 21, whether the stuQuietRequest equals “Y” or not, the residence hall assignment is the same; therefore,
there is no point in asking the stuQuietRequest question. Additionally, many programmers prefer that the True
or Yes side of a flowchart decision always appears on the right side of a flowchart. Figure 5-47 shows the complete
residence hall assignment program, including the redrawn processRequest() module, which has only one
“Lincoln” assignment statement and True results to the right of each selection. Figure 5-47 also shows the pseudocode
for the same problem.

Perhaps you could have created the final decision-making processRequest() module without creating the deci-
sion table first. If so, you need not use the table. Decision tables are more useful to the programmer when the decision-
making process becomes more complicated. Additionally, they serve as a useful graphic tool when you want to explain
the decision-making process of a program to a user who is not familiar with flowcharting symbols.

In Appendix C, you can walk through the process used to create a larger decision table.

stuAge < 21?
Yes No

Yes No Yes No

FIGURE 5-46: MOSTLY COMPLETED FLOWCHART SEGMENT FOR RESIDENCE HALL SELECTION

processRequest()

assignedHall
= “Addams”

assignedHall
= “Grant”

stuQuietRequest
= “Y”?

assignedHall
= “Lincoln”

assignedHall
= “Lincoln”

stuQuietRequest
= “Y”?

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 200

201Using Decision Tables

studentRec
 num stuId
 char stuLastName
 char stuFirstName
 num stuAge
 char stuQuietRequest
char reportHead =
 "Student Residence Hall Assignments"
char columnHeads = "Student ID Age
 Request for Quiet Assigned Hall"
char assignedHall

No

Yes

start
 perform getReady()
 while not eof
 perform processRequest()
 endwhile
 perform closing()
stop
getReady()
 declare variables
 open files
 print reportHead
 print columnHeads
 read studentRec
return
processRequest()
 if stuAge < 21 then
 if stuQuietRequest = "Y" then
 assignedHall = "Addams"
 else
 assignedHall = "Grant"
 endif
 else
 assignedHall = "Lincoln"
 endif
 print stuId, age, stuQuietRequest,

 assignedHall
 read studentRec
return
closing()
 close files
return

FIGURE 5-47: COMPLETE FLOWCHART AND PSEUDOCODE FOR RESIDENCE HALL SELECTION PROBLEM

start

processRequest()

getReady()

declare
variables

open
files

print
reportHead

print
columnHeads

read
studentRec

return

getReady()

eof?

closing()

stop

No Yes

No Yes

processRequest()

stuAge < 21?

assignedHall
= “Grant”

stuQuietRequest
= “Y”?

assignedHall
= “Addams”

assignedHall
= “Lincoln”

return

print stuId, age,
stuQuietRequest,

assignedHall

read
studentRec

closing()

close files

return

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 201

Chapter 5 • Making Decisions202

CHAPTER SUMMARY

� Every decision you make in a computer program involves evaluating a Boolean expression. You can use

dual-alternative, or binary, selections or if-then-else structures to choose between two possible out-

comes. You also can use single-alternative, or unary, selections or if-then structures when there is only

one outcome for the question where an action is required.

� For any two values that are the same type, you can use relational comparison operators to decide whether

the two values are equal, the first value is greater than the second value, or the first value is less than the

second value. The two values used in a Boolean expression can be either variables or constants.

� An AND decision occurs when two conditions must be true in order for a resulting action to take place.

An AND decision requires a nested decision, or a nested if.

� In an AND decision, first ask the question that is less likely to be true. This eliminates as many records as

possible from having to go through the second decision, which speeds up processing time.

� Most programming languages allow you to ask two or more questions in a single comparison by using a

logical AND operator.

� When you must satisfy two or more criteria to initiate an event in a program, you must make sure that

the second decision is made entirely within the first decision, and that you use a complete Boolean

expression on both sides of the AND.

� An OR decision occurs when you want to take action when one or the other of two conditions is true.

� Errors occur in OR decisions when programmers do not maintain structure. An additional source of errors

that are particular to the OR selection stems from people using the word AND to express OR requirements.

� In an OR decision, first ask the question that is more likely to be true.

� Most programming languages allow you to ask two or more questions in a single comparison by using a

logical OR operator.

� To perform a range check, make comparisons with either the lowest or highest value in each range of

values you are using.

� Common errors that occur when programmers perform range checks include asking unnecessary and

previously answered questions.

� The case structure provides a convenient alternative to using a series of decisions when you must make

choices based on the value stored in a single variable.

� A decision table is a problem-analysis tool that consists of conditions, possible combinations of Boolean

values for the conditions, possible actions based on the conditions, and the action that corresponds to

each Boolean value of each condition.

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 202

Key Terms 203

KEY TERMS

A dual-alternative, or binary, selection structure offers two actions, each associated with one of two possible out-
comes. It is also called an if-then-else structure.

In a single-alternative, or unary, selection structure, an action is required for only one outcome of the question. You
call this form of the selection structure an if-then, because no “else” action is necessary.

The if clause of a decision holds the action or actions that execute when a Boolean expression in a decision is true.

The else clause of a decision holds the action or actions that execute when the Boolean expression in a decision
is false.

A Boolean expression is one that represents only one of two states, usually expressed as true or false.

A trivial Boolean expression is one that always evaluates to the same result.

Relational comparison operators are the symbols that express Boolean comparisons. Examples include =, >, <, >=,
<=, and <>.

A logical operator (as the term is most often used) compares single bits. However, some programmers use the term
synonymously with “relational comparison operator.”

With an AND decision, two conditions must both be true for an action to take place. An AND decision requires a
nested decision, or a nested if—that is, a decision “inside of” another decision. A series of nested if statements
can also be called a cascading if statement.

A logical AND operator is a symbol that you use to combine decisions so that two (or more) conditions must be true
for an action to occur.

Short-circuiting is the compiler technique of not evaluating an expression when the outcome makes no difference.

A range of values encompasses every value between a high and low limit.

An OR decision contains two (or more) decisions; if at least one condition is met, the resulting action takes place.

A logical OR operator is a symbol that you use to combine decisions when any one condition can be true for an action
to occur.

When you use a range check, you compare a variable to a series of values between limits.

A default value is one that is assigned after all test conditions are found to be false.

A dead or unreachable path is a logical path that can never be traveled.

When an operator has precedence, it is evaluated before others.

The case structure provides a convenient alternative to using a series of decisions when you must make choices
based on the value stored in a single variable.

A decision table is a problem-analysis tool that consists of four parts: conditions, possible combinations of Boolean
values for the conditions, possible actions based on the conditions, and the specific action that corresponds to each
Boolean value of each condition.

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 203

Chapter 5 • Making Decisions204

REVIEW QUESTIONS

1. The selection statement if quantity > 100 then discountRate = 0.20 is an
example of a .

a. single-alternative selection
b. dual-alternative selection
c. binary selection
d. all of the above

2. The selection statement if dayOfWeek = “S” then price = 5.00 else price =
6.00 is an example of a .

a. unary selection
b. single-alternative selection
c. binary selection
d. all of the above

3. All selection statements must have .

a. an if clause
b. an else clause
c. both of these
d. neither a nor b

4. An expression like amount < 10 is a expression.

a. Gregorian
b. Boolean
c. unary
d. binary

5. Usually, you compare only variables that have the same .

a. value
b. size
c. name
d. type

6. Symbols like > and < are known as operators.

a. arithmetic
b. relational comparison
c. sequential
d. scripting accuracy

7. If you could use only three relational comparison operators, you could get by with .

a. greater than, less than, and greater than or equal to
b. less than, less than or equal to, and not equal to
c. equal to, less than, and greater than
d. equal to, not equal to, and less than

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 204

Review Questions 205

8. If a > b is false, then which of the following is always true?

a. a < b
b. a <= b
c. a = b
d. a >= b

9. Usually, the most difficult comparison operator to work with is .

a. equal to
b. greater than
c. less than
d. not equal to

10. Which of the lettered choices is equivalent to the following decision?

if x > 10 then
if y > 10 then

print “X”
endif

endif

a. if x > 10 AND y > 10 then print “X”
b. if x > 10 OR y > 10 then print “X”
c. if x > 10 AND x > y then print “X”
d. if y > x then print “X”

11. The Midwest Sales region of Acme Computer Company consists of five states—Illinois, Indiana,
Iowa, Missouri, and Wisconsin. Suppose you have input records containing Acme customer data,
including state of residence. To most efficiently select and display all customers who live in the
Midwest Sales region, you would use .
a. five completely separate unnested if statements
b. nested if statements using AND logic
c. nested if statements using OR logic
d. Not enough information is given.

12. The Midwest Sales region of Acme Computer Company consists of five states—Illinois, Indiana,
Iowa, Missouri, and Wisconsin. About 50 percent of the regional customers reside in Illinois,
20 percent in Indiana, and 10 percent in each of the other three states. Suppose you have input
records containing Acme customer data, including state of residence. To most efficiently select and
display all customers who live in the Midwest Sales region, you would ask first about residency in

.
a. Illinois
b. Indiana
c. Wisconsin
d. either Iowa, Missouri, or Wisconsin—it does not matter which one is first

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 205

Chapter 5 • Making Decisions206

13. The Boffo Balloon Company makes helium balloons. Large balloons cost $13 a dozen, medium-
sized balloons cost $11 a dozen, and small balloons cost $8.60 a dozen. About 60 percent of the
company’s sales are the smallest balloons, 30 percent are the medium, and large balloons consti-
tute only 10 percent of sales. Customer order records include customer information, quantity
ordered, and size. When you write a program to determine price based on size, for the most effi-
cient decision, you should ask first whether the size is .
a. large
b. medium
c. small
d. It does not matter.

14. The Boffo Balloon Company makes helium balloons in three sizes, 12 colors, and with a choice
of 40 imprinted sayings. As a promotion, the company is offering a 25 percent discount on orders
of large, red “Happy Valentine’s Day” balloons. To most efficiently select the orders to which a dis-
count applies, you would use .
a. three completely separate unnested if statements
b. nested if statements using AND logic
c. nested if statements using OR logic
d. Not enough information is given.

15. Radio station FM-99 keeps a record of every song played on the air in a week. Each record con-
tains the day, hour, and minute the song started, and the title and artist of the song. The station
manager wants a list of every title played during the important 8 a.m. commute hour on the two
busiest traffic days, Monday and Friday. Which logic would select the correct titles?
a. if day = “Monday” OR day = “Friday” OR hour = 8 then

print title
endif

b. if day = “Monday” then
if hour = 8 then

print title
else

if day = “Friday” then
print title

endif
endif

endif
c. if hour = 8 AND day = “Monday” OR day = “Friday” then

print title
endif

d. if hour = 8 then
if day = “Monday” OR day = “Friday” then

print title
endif

endif

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 206

Review Questions 207

16. In the following pseudocode, what percentage raise will an employee in Department 5 receive?

if department < 3 then
raise = 25

else
if department < 5 then
raise = 50

else
raise = 75

endif
endif

a. 25
b. 50
c. 75
d. impossible to tell

17. In the following pseudocode, what percentage raise will an employee in Department 8 receive?

if department < 5 then
raise = 100

else
if department < 9 then
raise = 250

else
if department < 14 then
raise = 375

endif
endif

endif
a. 100
b. 250
c. 375
d. impossible to tell

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 207

Chapter 5 • Making Decisions208

18. In the following pseudocode, what percentage raise will an employee in Department 10 receive?

if department < 2 then
raise = 1000

else
if department < 6 then
raise = 2500

else
if department < 10 then
raise = 3000

endif
endif

endif
a. 1000
b. 2500
c. 3000
d. impossible to tell

19. When you use a range check, you compare a variable to the value in the range.
a. lowest
b. middle
c. highest
d. lowest or highest

20. Which of the following is not a part of a decision table?
a. conditions
b. declarations
c. possible actions
d. specific actions that will take place under given conditions

FIND THE BUGS

Each of the following pseudocode segments contains one or more bugs that you must find and correct.

1. This pseudocode should create a report containing annual profit statistics for a retail store. Input
records contain a department name (for example, “Cosmetics”) and profits for each quarter for the
last two years. For each quarter, the program should determine whether the profit is higher, lower,
or the same as in the same quarter of the previous year. Additionally, the program should deter-
mine whether the annual profit is higher, lower, or the same as in the previous year. For example,
the line that displays the Cosmetics Department statistics might read “Cosmetics Same Lower
Lower Higher Higher” if profits were the same in the first quarter as last year, lower in the second
and third quarters, but higher in the fourth quarter and for the year as a whole.

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 208

Find the Bugs 209

start
perform housekeeping()
while not eof

perform detrmineProfitStatistics()
perform finalTasks()

stop

housekeeping()
declare variables

profitRec
char department
num salesQuarter1ThisYear
num salesQuarter2ThisYear
num salesQuarter2ThisYear
num salesQuarter4ThisYear
num salesQuarter1LastYear
num salesQuarter2LastYear
num salesQuarter3ThisYear
num salesQuarter4LastYear
char mainHead = “Profit Report”
char columnHeaders = “Department Quarter 1

Quarter 2 Quarter 3 Quarter 4 Over All”
num totalThisYear
num totalLastYear
char word1
char word2
char word3
char word4
char word5

open files
perform printHeadings()
read profitRec

return

printHeadings()
print mainHeader
print columnHeaders

return

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 209

Chapter 5 • Making Decisions210

determineProfitStatistics()
if salesQuarter1ThisYear > salesQuarter1LastYear then

word1 = “Higher”
else

if salesQuarter1ThisYear < salesQuarter2LastYear then
word1 = “Lower”

else
word1 = “Same”

endif
endif
if salesQuarter2ThisYear > salesQuarter3LastYear then

word2 = “Higher”
else

if salesQuarter2LastYear < salesQuarter2LastYear then
word2 = “Lower”

else
word2 = “Equal”

endif
endif
if salesQuarter3ThisYear > salesQuarter3LastYear then

word3 = “Higher”
else

if salesQuarter3ThisYear < salesQuarter3LastYear then
word2 = “Lower”

else
word3 = “Same”

endif
endif
if salesQuarter4ThisYear > salesQuarter4LastYear then

word4 = “Higher”
else

if salesQuarter4LastYear < salesQuarter4LastYear then
word4 = “Lower”

else
word4 = “Same”

endif
endif

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 210

Find the Bugs 211

totalThisYear = salesQuarter1ThisYear + salesQuarter1ThisYear +
salesQuarter3LastYear + salesQuarter4ThisYear

totalLastYear = salesQuarter1LastYear + salesQuarter1LastYear +
salesQuarter3LastYear + salesQuarter4LastYear

if totalThisYear > totalLastYear then
word5 = “Higher”

else
if totalThisYear > totalLastYear then

word5 = “Lower”
else

word5 = “Same”
endif

endif
print department, word1, word2, word3, word4, word5
read profitRec

return

finalTasks()
close files

return

2. This pseudocode should create a report containing rental agents’ commissions at an apartment
complex. Input records contain an apartment number, the ID number and name of the agent who
rented the apartment, and the number of bedrooms in the apartment. The commission is $100 for
renting a three-bedroom apartment, $75 for renting a two-bedroom apartment, $55 for renting a
one-bedroom apartment, and $30 for renting a studio (zero-bedroom) apartment. Each report line
should list the apartment number, the salesperson’s name and ID number, and the commission
earned on the rental.

start
perform housekeeping()
while not eof

perform calculateCommission()
perform finishUp()

stop

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 211

Chapter 5 • Making Decisions212

housekeeping()
declare variables

rentalRecord
num apartmentNum
num salesPersonID
char salesPersonName
num numBedrooms

char mainHeader = “Commission Report”
char columnHeaders = “Apartment number Salesperson ID

Name Commission Earned”
num comm3Bedroom = 100.00
num comm2Bedroom = 75.00
num comm1Bedroom = 55.00
num commStudio = 30.00

open files
perform displayHeaders()
read rentalRecord

stop

displayHeader()
print mainHeader
print columnHeaders

return

calculateCommission()
if numBedrooms = 3 then

commissionEarned = comm3Bedroom
else

if numBedrooms = 3 then
commissionEarned = comm3Bedroom

else
if numBedrooms = 3 then

commission = comm3Bedroom
else

commissionEarned = comStudio
endif

endif
print apartmentNum, salesPersonID, salesPersonName,

commissionEarned
read rentalRecord

return

finishUp()
close files

return

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 212

Exercises 213

EXERCISES

1. Assume that the following variables contain the values shown:

numberRedƒ=ƒ100ƒƒƒnumberBlueƒ=ƒ200ƒƒƒnumberGreenƒ=ƒ300
wordRedƒ=ƒ“Wagon”ƒƒwordBlueƒ=ƒ“Sky”ƒƒwordGreenƒ=ƒ“Grass”

For each of the following Boolean expressions, decide whether the statement is true, false, or illegal.

a. numberRed = numberBlue?
b. numberBlue > numberGreen?
c. numberGreen < numberRed?
d. numberBlue = wordBlue?
e. numberGreen = “Green”?
f. wordRed = “Red”?
g. wordBlue = “Blue”?
h. numberRed <= numberGreen?
i. numberBlue >= 200?
j. numberGreen >= numberRed + numberBlue?

2. A candy company wants a list of its best-selling items, including the item number and the name of
candy. Best-selling items are those that sell over 2,000 pounds per month. Input records contain
fields for the item number (three digits), the name of the candy (20 characters), the price per pound
(four digits, two assumed decimal places), and the quantity in pounds sold last month (four digits,
no decimals).

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

3. The same candy company described in Exercise 2 wants a list of its high-priced, best-selling
items. Best-selling items are those that sell over 2,000 pounds per month. High-priced items are
those that sell for $10 per pound or more.

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

4. The Literary Honor Society needs a list of English majors who have a grade point average of 3.5 or
higher. The student record file includes students’ last names and first names, major (for example,
“History” or “English”), and grade point average (for example, 3.9 or 2.0).

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 213

Chapter 5 • Making Decisions214

5. A telephone company charges 10 cents per minute for all calls outside the customer’s area code
that last over 20 minutes. All other calls are 13 cents per minute. The phone company has a file
with one record for every call made in one day. (In other words, a single customer might have many
such records on file.) Fields for each call include customer area code (three digits), customer
phone number (seven digits), called area code (three digits), called number (seven digits), and call
time in minutes (never more than four digits). The company wants a report listing one detail line for
each call, including the customer area code and number, the called area code and number, the min-
utes, and the total charge.

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Create a decision table to use while planning the logic for this program.
d. Draw the flowchart for this program.
e. Write the pseudocode for this program.

6. A nursery maintains a file of all plants in stock. Each record contains the name of a plant, its price,
and fields that indicate the plant’s light and soil requirements. The light field contains either
“sunny”, “partial sun”, or “shady”. The soil field contains either “clay” or “sandy”. Only 20 percent
of the nursery stock does well in shade, and 50 percent does well in sandy soil. Customers have
requested a report that lists the name and price of each plant that would be appropriate in a shady,
sandy yard. Consider program efficiency when designing your solution.

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Create a decision table to use while planning the logic for this program.
d. Draw the flowchart for this program.
e. Write the pseudocode for this program.

7. You have declared variables for an insurance company program as follows:

FIELDƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒEXAMPLE
numƒcustPolicyNumberƒƒƒƒƒƒƒƒƒƒƒ223356
charƒcustLastNameƒƒƒƒƒƒƒƒƒƒƒƒƒƒSalvatore
numƒcustAgeƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ25
numƒcustDueMonthƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ06
numƒcustDueDayƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ24
numƒcustDueYearƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ2007
numƒcustAccidentsƒƒƒƒƒƒƒƒƒƒƒƒƒƒ2

Draw the flowchart or write the pseudocode for the selection structures that print the
custPolicyNumber and custLastName for customers whose data satisfy the following
requests for lists of policyholders:

a. over 35 years old
b. at least 21 years old
c. no more than 30 years old
d. due no later than March 15 any year

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 214

Exercises 215

e. due up to and including January 1, 2007
f. due by April 27, 2010
g. due as early as December 1, 2006
h. fewer than 11 accidents
i. no more than five accidents
j. no accidents

8. Student files contain an ID number (four digits), last and first names (15 characters each), and
major field of study (10 characters). Plan a program that lists ID numbers and names for all French
or Spanish majors.

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Create a decision table to use while planning the logic for this program.
d. Draw the flowchart for this program.
e. Write the pseudocode for this program.

9. A florist wants to send coupons to her best customers, so she needs a list of names and addresses
for customers who placed orders more than three times last year or spent more than $200 last
year. Consider program efficiency when designing your solution. The input file description follows:

File name: FLORISTCUSTS
FIELD DESCRIPTION DATA TYPE COMMENTS
Customer ID Numeric 4 digits, 0 decimals
First Name Character 15 characters
Last Name Character 15 characters
Street Address Character 20 characters
Orders Last Year Numeric 0 decimals
Amount Spent Numeric 2 decimals
Last Year

(Note: To save room, the record does not include a city or state. Assume that all the florist’s best
customers are in town.)

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Create a decision table to use while planning the logic for this program.
d. Draw the flowchart for this program.
e. Write the pseudocode for this program.

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 215

Chapter 5 • Making Decisions216

10. A carpenter needs a program that computes the price of any desk a customer orders, based on the
following input fields: order number, desk length and width in inches (three digits each, no deci-
mals), type of wood (20 characters), and number of drawers (two digits). The price is computed as
follows:

� The charge for all desks is a minimum $200.

� If the surface (length * width) is over 750 square inches, add $50.

� If the wood is “mahogany”, add $150; for “oak”, add $125. No charge is added for “pine”.

� For every drawer in the desk, there is an additional $30 charge.

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Create a decision table to use while planning the logic for this program.
d. Draw the flowchart for this program.
e. Write the pseudocode for this program.

11. A company is attempting to organize carpools to save energy. Each input record contains an
employee’s name and town of residence. Ten percent of the company’s employees live in Wonder
Lake. Thirty percent of the employees live in Woodstock. Because these towns are both north of the
company, the company wants a list of employees who live in either town, so it can recommend that
these employees drive to work together.

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Create a decision table to use while planning the logic for this program.
d. Draw the flowchart for this program.
e. Write the pseudocode for this program.

12. A supervisor in a manufacturing company wants to produce a report showing which employees
have increased their production this year over last year, so that she can issue them a certificate of
commendation. She wants to have a report with three columns: last name, first name, and either
the word “UP” or blanks printed under the column heading PRODUCTION. “UP” is printed when this
year’s production is a greater number than last year’s production. Input exists as follows:

PRODUCTION FILE DESCRIPTION
File name: PRODUCTION
FIELD DESCRIPTION DATA TYPE COMMENTS
Last Name Character 15 characters
First Name Character 15 characters
Last Year's Production Numeric 0 decimals
This Year's Production Numeric 0 decimals

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Create a decision table to use while planning the logic for this program.
d. Draw the flowchart for this program.
e. Write the pseudocode for this program.

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 216

Exercises 217

13. A supervisor in the same manufacturing company as described in Exercise 12 wants to produce a
report from the PRODUCTION input file showing bonuses she is planning to give based on this
year’s production. She wants to have a report with three columns: last name, first name, and
bonus. The bonuses will be distributed as follows.

If this year’s production is:

� 1,000 units or fewer, the bonus is $25

� 1,001 to 3,000 units, the bonus is $50

� 3,001 to 6,000 units, the bonus is $100

� 6,001 units and up, the bonus is $200

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Create a decision table to use while planning the logic for this program.
d. Draw the flowchart for this program.
e. Write the pseudocode for this program.

14. Modify Exercise 13 to reflect the following new facts, and have the program execute as efficiently
as possible:

� Only employees whose production this year is higher than it was last year will receive bonuses. This is

true for approximately 30 percent of the employees.

� Sixty percent of employees produce over 6,000 units per year; 20 percent produce 3,001 to 6,000;

15 percent produce 1,001 to 3,000 units; and only 5 percent produce fewer than 1,001.

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Create a decision table to use while planning the logic for this program.
d. Draw the flowchart for this program.
e. Write the pseudocode for this program.

15. The Richmond Riding Club wants to assign the title of Master or Novice to each of its members. A
member earns the title of Master by accomplishing two or more of the following:

� Participating in at least eight horse shows

� Winning a first-place or second-place ribbon in at least two horse shows, no matter how many shows

the member has participated in

� Winning a first-place, second-place, third-place, or fourth-place ribbon in at least four horse shows, no

matter how many shows the member has participated in

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 217

Chapter 5 • Making Decisions218

Create a report that prints each club member’s name along with the designation “Master” or
“Novice”. Input exists as follows:

RIDING FILE DESCRIPTION
File name: RIDING
FIELD DESCRIPTION DATA TYPE COMMENTS
Last Name Character 15 characters
First Name Character 15 characters
Number of Shows Numeric 0 decimals
First-Place Ribbons Numeric 0 decimals
Second-Place Ribbons Numeric 0 decimals
Third-Place Ribbons Numeric 0 decimals
Fourth-Place Ribbons Numeric 0 decimals

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Create a decision table to use while planning the logic for this program.
d. Draw the flowchart for this program.
e. Write the pseudocode for this program.

16. Freeport Financial Services manages clients’ investment portfolios. The company charges for its
services based on each client’s annual income, net worth, and length of time as a client, as follows:

� Clients with an annual income over $100,000 and a net worth over $1 million are charged 1.5 percent

of their net worth.

� Clients with an annual income over $100,000 and a net worth between $500,000 and $1 million inclu-

sive are charged $8,000.

� Clients with an annual income over $100,000 and a net worth of less than $500,000 are charged $6,000.

� Clients with an annual income from $75,000 up to and including $100,000 are charged 1 percent of their

net worth.

� Clients with an income of $75,000 or less are charged $4,000, unless their net worth is over $1 mil-

lion, in which case they are charged $4,500.

� Any client for over four years gets a 10 percent discount; any client for over seven years gets a 15 per-

cent discount.

Create a report that prints each client’s name and the client’s annual fee. Input records contain the
following data:

FINANCIAL SERVICE CLIENTS' FILE DESCRIPTION
File name: CLIENTS
FIELD DESCRIPTION DATA TYPE COMMENTS
Last Name Character 15 characters
First Name Character 15 characters
Annual Income Numeric 0 decimals
Portfolio Value Numeric 0 decimals
Years as Client Numeric 0 decimals

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 218

Up for Discussion 219

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Create a decision table to use while planning the logic for this program.
d. Draw the flowchart for this program.
e. Write the pseudocode for this program.

DETECTIVE WORK

1. Computers are expert chess players because they can make many good decisions very rapidly.
Explore the history of computer chess playing.

2. George Boole is considered the father of symbolic logic. Find out about his life.

UP FOR DISCUSSION

1. Computer programs can be used to make decisions about your insurability as well as the rates you
will be charged for health and life insurance policies. For example, certain preexisting conditions
may raise your insurance premiums considerably. Is it ethical for insurance companies to access
your health records and then make insurance decisions about you?

2. Job applications are sometimes screened by software that makes decisions about a candidate’s
suitability based on keywords in the applications. Is such screening fair to applicants?

3. Medical facilities often have more patients waiting for organ transplants than there are available
organs. Suppose you have been asked to write a computer program that selects which of several
candidates should receive an available organ. What data would you want on file to be able to use in
your program, and what decisions would you make based on the data? What data do you think
others might use that you would choose not to use?

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 219

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 220

