
6
After studying Chapter 6, you should be able to:

� Understand the advantages of looping

� Control a while loop using a loop control variable

� Increment a counter to control a loop

� Loop with a variable sentinel value

� Control a loop by decrementing a loop control variable

� Avoid common loop mistakes

� Use a for statement

� Use do while and do until loops

� Recognize the characteristics shared by all loops

� Nest loops

� Use a loop to accumulate totals

LOOPING

221

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 221

222 Chapter 6 • Looping

UNDERSTANDING THE ADVANTAGES OF LOOPING

If making decisions is what makes computers seem intelligent, it’s looping that makes computer programming worth-
while. When you use a loop within a computer program, you can write one set of instructions that operates on multiple,
unique sets of data. Consider the following set of tasks required for each employee in a typical payroll program:

� Determine regular pay.

� Determine overtime pay, if any.

� Determine federal withholding tax based on gross wages and number of dependents.

� Determine state withholding tax based on gross wages, number of dependents, and state of
residence.

� Determine insurance deduction based on insurance code.

� Determine Social Security deduction based on gross pay.

� Subtract federal tax, state tax, Social Security, and insurance from gross pay.

In reality, this list is too short—companies deduct stock option plans, charitable contributions, union dues, and other
items from checks in addition to the items mentioned in this list. Also, they might pay bonuses and commissions and
provide sick days and vacation days that must be taken into account and handled appropriately. As you can see, payroll
programs are complicated.

The advantage of having a computer perform payroll calculations is that all of the deduction instructions need to be
written only once and can be repeated over and over again for each paycheck using a loop, the structure that repeats
actions while some condition continues.

USING A WHILE LOOP WITH A LOOP CONTROL VARIABLE

Recall the loop, or while structure, that you learned about in Chapter 2. (See Figure 6-1.) In Chapter 4, you learned
that almost every program has a main loop, or a basic set of instructions that is repeated for every record. The main
loop is a typical loop—within it, you write one set of instructions that executes repeatedly while records continue to be
read from an input file. Several housekeeping tasks execute at the start of most programs, and a few cleanup tasks
execute at the end. However, most of a program’s tasks are located in a main loop; these tasks repeat over and over for
many records (sometimes hundreds, thousands, or millions).

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 222

223Using a While Loop with a Loop Control Variable

In addition to this main loop, loops also appear within a program’s modules. They are used any time you need to perform a
task several times and don’t want to write identical or similar instructions over and over. Suppose, for example, as part of a
much larger program, you want to print a warning message on the computer screen when the user has made a potentially
dangerous menu selection (for example, “Delete all files”). To get the user’s attention, you want to print the message four
times. You can write this program segment as a sequence of four steps, as shown in Figure 6-2, but you can also use a loop,
as shown in Figure 6-3.

print "Warning!"
print "Warning!"
print "Warning!"
print "Warning!"

FIGURE 6-2: PRINTING FOUR WARNING MESSAGES IN SEQUENCE

print
“Warning!”

print
“Warning!”

print
“Warning!”

print
“Warning!”

FIGURE 6-1: THE while LOOP

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 223

224 Chapter 6 • Looping

The flowchart and pseudocode segments in Figure 6-3 show three steps that should occur in every loop:

1. You initialize a variable that will control the loop. The variable in this case is named rep.

2. You compare the variable to some value that controls whether the loop continues or stops. In this

case, you compare rep to the value 5.

3. Within the loop, you alter the variable that controls the loop. In this case, you alter rep by

adding 1 to it.

On each pass through the loop, the value in the rep variable determines whether the loop will continue. Therefore,
variables like rep are known as loop control variables. Any variable that determines whether a loop will continue to
execute is a loop control variable. To stop a loop’s execution, you compare the loop control value to a sentinel value
(also known as a limit or ending value), in this case the value 5. The decision that controls every loop is always based
on a Boolean comparison. You can use any of the six comparison operators that you learned about in Chapter 5 to con-
trol a loop—equal to, greater than, less than, greater than or equal to, less than or equal to, and not equal to.

Just as with a selection, the Boolean comparison that controls a while loop must com-
pare same-type values: numeric values are compared to other numeric values, and charac-
ter values to other character values.

The statements that execute within a loop are known as the loop body. The body of a loop might contain any number
of statements, including method calls, sequences, decisions, and other loops. Once your program enters the body of a
structured loop, the entire loop body must execute. Your program can leave a structured loop only at the comparison
that tests the loop control variable.

rep = 1
while rep < 5
 print "Warning!"
 rep = rep + 1
endwhile

FIGURE 6-3: PRINTING FOUR WARNING MESSAGES IN A LOOP

No

Yes print
“Warning!”

rep = 1

rep =
rep + 1

rep < 5?

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 224

225Using a Counter to Control Looping

USING A COUNTER TO CONTROL LOOPING

Suppose you own a factory and have decided to place a label on every product you manufacture. The label contains the
words “Made for you personally by ” followed by the first name of one of your employees. For one week’s production,
suppose you need 100 personalized labels for each employee.

Assume you already have a personnel file that can be used for input. This file has more information than you’ll need for
this program: an employee last name, first name, Social Security number, address, date hired, and salary. The important
feature of the file is that it does contain each employee’s name stored in a separate record. The input file description
appears in Figure 6-4.

In the mainline logic of this program, you call three modules: a housekeeping module (housekeep()), a main loop
module (createLabels()), and a finish routine (finishUp()). See Figure 6-5.

start
 perform housekeep()
 while not eof
 perform createLabels()
 endwhile
 perform finishUp()
stop

FIGURE 6-5: MAINLINE LOGIC FOR LABEL-MAKING PROGRAM

Yes

No

start

housekeep()

eof?

finishUp()

createLabels()

stop

File Name: EMPFILE
FIELD DESCRIPTION DATA TYPE COMMENTS
Employee Last Name Character 20 characters
Employee First Name Character 15 characters
Social Security Number Numeric 0 decimal places
Address Character 15 characters
Date Hired Numeric 8 digits, YYYYMMDD
Hourly Salary Numeric 2 decimal places

FIGURE 6-4: EMPLOYEE FILE DESCRIPTION

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 225

226 Chapter 6 • Looping

The first task for the label-making program is to name the fields in the input record so you can refer to them within the
program. As a programmer, you can choose any variable names you like, for example: inLastName,
inFirstName, inSSN, inAddress, inDate, and inSalary.

In Chapter 4 you learned that starting all field names in the input record with the same
prefix, such as in, is a common programming technique to help identify these fields in a
large program and differentiate them from work areas and output areas that will have
other names. Another benefit to using a prefix like in is that some language compilers
produce a dictionary of variable names when you compile your program. These dictionar-
ies show at which lines in the program each data name is referenced. If all your input field
names start with the same prefix, they will be together alphabetically in the dictionary,
and perhaps be easier to find and work with.

You also can set up a variable to hold the characters “Made for you personally by ” and name it labelLine. You
eventually will print this labelLine variable followed by the employee’s first name (inFirstName).

You will need one more variable: a location to be used as a counter. A counter is any numeric variable you use to count
the number of times an event has occurred; in this example, you need a counter to keep track of how many labels have
been printed at any point. Each time you read an employee record, the counter variable is set to 0. Then every time a
label is printed, you add 1 to the counter. Adding to a variable is called incrementing the variable; programmers often
use the term “incrementing” specifically to mean “increasing by one.” Before the next employee label is printed, the
program checks the variable to see if it has reached 100 yet. When it has, that means 100 labels have been printed,
and the job is done for that employee. While the counter remains below 100, you continue to print labels. As with all
variables, the programmer can choose any name for a counter; this program uses labelCounter. In this example,
labelCounter is the loop control variable.

The housekeep() module for the label program, shown in Figure 6-6, includes a step to open the files: the
employee file and the printer. Unlike a program that produces a report, this program produces no headings, so the next
and last task performed in housekeep() is to read the first input record.

Remember, you can give any name to modules within your programs. This program uses
housekeep() for its first routine, but housekeeping(), startUp(),
prep(), or any other name with the same general meaning could be used.

If you don’t know why the first record is read in the housekeep() module, go back
and review the concept of the priming read, presented in Chapter 2.

TIP�

TIP�

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 226

227Using a Counter to Control Looping

The label-making program could be interactive instead of reading data from a file. An
easy way to make the program interactive would be to replace the read empRecord
statement with a series of statements or a call to a module that provides a prompt and a
read statement for each of the six data fields needed for each employee. A user could then
enter these values from the keyboard. (If this were an interactive program, the program-
mer would likely require the user to enter data only in the field that is necessary for out-
put—the employee’s name.) Also, if this were an interactive program, the user might be
asked to type a sentinel value, such as “XXX”, when finished. This program is discussed
as one that reads from a file to reduce the number of statements you must view to under-
stand the logical process.

In previous chapters, the list of declared variables was shown with both the flowchart and
the pseudocode. To save space in the rest of the chapters in this book, the variable list will
be shown only with the flowchart.

When the housekeep() module is done, the logical flow returns to the eof question in the mainline logic. If you
attempt to read the first record at the end of housekeep() and for some reason there is no record, the answer to
eof? is Yes, so the createLabels() module is never entered; instead, the logic of the program flows directly to the
finishUp() module.

Usually, however, employee records will exist and the program will enter the createLabels()module, which is shown in
Figure 6-7. When this happens, the first employee record is sitting in memory waiting to be processed. During one execution
of the createLabels()module, 100 labels will be printed for one employee. As the last event within the
createLabels()module, the program reads the next employee record. Control of the program then returns to the eof
question. If the new read process has not resulted in the eof condition, control reenters the createLabels()module,
where 100 more labels print for the new employee.

housekeep()
 declare variables
 open files
 read empRecord
return

empRecord
char inLastName
char inFirstName
num inSSN
char inAddress
num inDate
num inSalary

char labelLine = "Made for you
personally by "

num labelCounter

FIGURE 6-6: THE housekeep() MODULE FOR THE LABEL PROGRAM

return

read
empRecord

open files

declare
variables

housekeep()

TIP�

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 227

228 Chapter 6 • Looping

The createLabels() method of this label-making program contains three parts:

� Set labelCounter to 0.

� Compare labelCounter to 100.

� While labelCounter is less than 100, print labelLine and inFirstName, and add
1 to labelCounter.

When the first employee record enters the createLabels()module,labelCounter is set to 0. The
labelCounter value is less than 100, so the record enters the label-making loop. One label prints for the first employee,
labelCounter increases by one, and the logical flow returns to the question labelCounter < 100?. After the
first label is printed, labelCounter holds a value of only 1. It is nowhere near 100 yet, so the value of the Boolean
expression is true, and the loop is entered for a second time, thus printing a second label.

After the second printing, labelCounter holds a value of 2. After the third printing, it holds a value of 3. Finally,
after the 100th label prints, labelCounter has a value of 100. When the question labelCounter < 100?
is asked, the answer will finally be No, and the loop will exit.

Before leaving the createLabels() method, and after the program prints 100 labels for an employee, there is
one final step: the next input record is read from the EMPLOYEES file. When the createLabels() method is over,
control returns to the eof question in the main line of the logic. If it is not eof (if another employee record is present),
the program enters the createLabels() method again, resets labelCounter to 0, and prints 100 new
labels with the next employee’s name.

createLabels()
 labelCounter = 0
 while labelCounter < 100
 print labelLine, inFirstName
 labelCounter = labelCounter + 1
 endwhile
 read empRecord
return

FIGURE 6-7: THE createLabels() MODULE FOR THE LABEL PROGRAM

No

Yes

labelCounter
= 0

createLabels()

labelCounter
< 100?

read
empRecord

return

labelCounter =
labelCounter + 1

print
labelLine,

inFirstName

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 228

229Looping with a Variable Sentinel Value

Setting labelCounter to 0 when the createLabels() module is entered is
important. With each new record, labelCounter must begin at 0 if 100 labels are to
print. When the first employee’s set of labels is complete, labelCounter holds the
value 100. If it is not reset to 0 for the second employee, then no labels will ever print for
that employee.

In this example, the label-making loop executes as labelCounter varies from 0 to 100.
The program would work just as well if you decided to vary the counter from 1 to 101 or use
any other pair of values that differs by 100.

At some point while attempting to read a new record, the program encounters the end of the file, the
createLabels() module is not entered again, and control passes to the finishUp() module. In this pro-
gram, the finishUp() module simply closes the files. See Figure 6-8.

LOOPING WITH A VARIABLE SENTINEL VALUE

Sometimes you don’t want to be forced to repeat every pass through a loop the same number of times. For example,
instead of printing 100 labels for each employee, you might want to vary the number of labels based on how many items
a worker actually produces. That way, high-achieving workers won’t run out of labels, and less productive workers won’t
have too many. Instead of printing the same number of labels for every employee, a more sophisticated program prints a
different number for each employee, depending on that employee’s production the previous week. For example, you
might decide to print enough labels to cover 110 percent of each employee’s production rate from the previous week;
this ensures that the employee will have enough labels for the week, even if his or her production level improves.

For example, assume that employee production data exists in an input file called EMPPRODUCTION in the format shown
in Figure 6-9.

A real-life production file would undoubtedly have more fields in each record, but these fields supply more than enough
information to produce the labels. You need the first name to print on the label, and you need the field that holds pro-
duction for the last week in order to calculate the number of labels to print for each employee. Assume this field can
contain any number from 0 through 999.

finishUp()
 close files
return

FIGURE 6-8: THE finishUp() MODULE FOR THE LABEL PROGRAM

finishUp()

return

close
files

TIP�

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 229

230 Chapter 6 • Looping

To write a program that produces an appropriate number of labels for each employee, you can make some minor modifica-
tions to the original label-making program. For example, the input file variables have changed; you must declare a variable
for an inLastProduction field. Additionally, you might want to create a numeric field named labelsToPrint
that can hold a value equal to 110 percent of a worker’s inLastProduction.

The major modification to the original label-making program is in the question that controls the label-producing loop.
Instead of asking if labelCounter < 100, you now can ask if labelCounter < labelsToPrint. The
sentinel, or limit, value can be a variable like labelsToPrint just as easily as it can be a constant like 100. See
Figure 6-10 for the flowchart as well as the pseudocode.

createLabels()
 labelCounter = 0
 labelsToPrint = inLastProduction * 1.1
 while labelCounter < labelsToPrint
 print labelLine, inFirstName
 labelCounter = labelCounter + 1
 endwhile
 read empRecord
return

FIGURE 6-10: FLOWCHART AND PSEUDOCODE FOR LABEL-MAKING createLabels() MODULE

labelsToPrint =
inLastProduction * 1.1

labelCounter
= 0

createLabels()

No

YeslabelCounter
< labelsToPrint?

read
empRecord

return

labelCounter =
labelCounter + 1

print
labelLine,

inFirstName

File Name: EMPPRODUCTION
FIELD DESCRIPTION DATA TYPE COMMENTS
Last Name Character 20 characters
First Name Character 15 characters
Production Last Week Numeric 0 decimal places

FIGURE 6-9: EMPLOYEE PRODUCTION FILE DESCRIPTION

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 230

231Looping by Decrementing

The statement labelsToPrint = inLastProduction * 1.1 calculates
labelsToPrint as 110 percent of inLastProduction. Alternatively, you can
perform the calculation as labelsToPrint = inLastProduction + 0.10
* inLastProduction. The mathematical result is the same.

LOOPING BY DECREMENTING

Rather than increasing a loop control variable until it passes some sentinel value, sometimes it is more convenient to
reduce a loop control variable on every cycle through a loop. For example, again assume you want to print enough labels
for every worker to cover 110 percent production. As an alternative to setting a labelCounter variable to 0 and
increasing it after each label prints, you initially can set labelCounter equal to the number of labels to print
(inLastProduction * 1.1), and subsequently reduce the labelCounter value every time a label prints.
You continue printing labels and reducing labelCounter until you have counted down to zero. Decreasing a variable
is called decrementing the variable; programmers most often use the term to mean a decrease by one.

For example, when you write the following, you produce enough labels to equal 110 percent of inLastProduction:

labelCounterƒ=ƒinLastProductionƒ*ƒ1.1
whileƒlabelCounterƒ>ƒ0
ƒƒƒƒƒprintƒlabelLine,ƒinFirstName
ƒƒƒƒƒlabelCounterƒ=ƒlabelCounterƒ-ƒ1
endwhile

Many languages provide separate numeric data types for whole number (integer) values
and floating-point values (those with decimal places). Depending on the data type you
choose for labelCounter, you might end up calculating a fraction of a label to print.
For example, if inLastProduction is 5, then the number of labels to produce is 5.5.
The logic shown here would print the additional label.

When you decrement, you can avoid declaring a special variable for labelsToPrint. The labelCounter vari-
able starts with a value that represents the labels to print, and works its way down to zero.

Yet another alternative allows you to eliminate the labelCounter variable. You could use the inLastProduction
variable itself to keep track of the labels. For example, the following pseudocode segment also produces a number of labels
equal to 110 percent of each worker’s inLastProduction value:

inLastProductionƒ=ƒinLastProductionƒ*ƒ1.1
whileƒinLastProductionƒ>ƒ0
ƒƒƒƒƒprintƒlabelLine,ƒinFirstName
ƒƒƒƒƒinLastProductionƒ=ƒinLastProductionƒ-ƒ1
endwhile

TIP�

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 231

232 Chapter 6 • Looping

In this example, inLastProduction is first increased by 10 percent. Then, while it remains above 0, there are
more labels to print; when it is eventually reduced to hold the value 0, all the needed labels will have been printed. With
this method, you do not need to create any new counter variables such as labelCounter, because
inLastProduction itself acts as a counter. However, you can’t use this method if you need to use the value of
inLastProduction for this record later in the program. By decrementing the variable, you are changing its value on
every cycle through the loop; when you have finished, the original value in inLastProduction has been lost.

Do not think the value of inLastProduction is gone forever when you alter it. If
the data is being read from a file, then the original value still exists within the data file. It
is the main memory location called inLastProduction that is being reduced.

AVOIDING COMMON LOOP MISTAKES

The mistakes that programmers make most often with loops are:

� Neglecting to initialize the loop control variable

� Neglecting to alter the loop control variable

� Using the wrong comparison with the loop control variable

� Including statements inside the loop that belong outside the loop

� Initializing a variable that does not require initialization

NEGLECTING TO INITIALIZE THE LOOP CONTROL VARIABLE

It is always a mistake to fail to initialize a loop’s control variable. For example, assume you remove the statement
labelCounter = 0 from the program illustrated in Figure 6-10. When labelCounter is compared to
labelsToPrint at the start of the while loop, it is impossible to predict whether any labels will print.
Because uninitialized values contain unknown, unpredictable garbage, comparing such a variable to another value is
meaningless. Even if you initialize labelCounter to 0 in the housekeep() module of the program, you
must reset labelCounter to 0 for each new record that is processed within the while loop. If you fail to
reset labelCounter, it never surpasses 100 because after it reaches 100, the answer to the question
labelCounter < 100 is always No, and the logic never enters the loop where a label can be printed.

NEGLECTING TO ALTER THE LOOP CONTROL VARIABLE

A different sort of error occurs if you remove the statement that adds 1 to labelCounter from the program in
Figure 6-10. This error results in the following code:

whileƒlabelCounterƒ<ƒlabelsToPrint
ƒƒƒƒƒprintƒlabelLine,ƒinFirstName
endwhile

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 232

233Avoiding Common Loop Mistakes

Following this logic, if labelCounter is 0 and labelsToPrint is, for example, 110, then labelCounter
will be less than labelsToPrint forever. Nothing in the loop changes either variable, so when labelCounter
is less than labelsToPrint once, then labelCounter is less than labelsToPrint forever, and labels
will continue to print. A loop that never stops executing is called an infinite loop. It is unstructured and incorrect to
create a loop that cannot terminate on its own.

Although most programmers advise that infinite loops must be avoided, some program-
mers argue that there are legitimate uses for them. Intentional uses for infinite loops
include programs that are supposed to run continuously, such as product demonstrations,
or in programming for embedded systems.

USING THE WRONG COMPARISON WITH THE LOOP CONTROL VARIABLE

Programmers must be careful to use the correct comparison in the statement that controls a loop. Although there is
only a one-keystroke difference between the following two code segments, one performs the loop 10 times and the
other performs the loop 11 times.

counterƒ=ƒ0
whileƒcounterƒ<ƒ10
ƒƒƒƒƒperformƒsomeModule()
ƒƒƒƒƒcounterƒ=ƒcounterƒ+ƒ1
endwhile

and

counterƒ=ƒ0
whileƒcounterƒ<=ƒ10
ƒƒƒƒƒperformƒsomeModule()
ƒƒƒƒƒcounterƒ=ƒcounterƒ+ƒ1
endwhile

The seriousness of the error of using <= or >= when only < or > is needed depends on the actions performed within
the loop. For example, if such an error occurred in a loan company program, each customer might be charged a
month’s additional interest; if the error occurred in an airline’s program, it might overbook a flight; and if it occurred in a
pharmacy’s drug-dispensing program, each patient might receive one extra (and possibly harmful) unit of medication.

INCLUDING STATEMENTS INSIDE THE LOOP THAT BELONG OUTSIDE THE LOOP

When you run a computer program that uses the loop in Figure 6-10, hundreds or thousands of employee records
might pass through the createLabels() method. If there are 100 employee records, then labelCounter is
set to 0 exactly 100 times; it must be reset to 0 once for each employee, in order to count each employee’s labels cor-
rectly. Similarly, labelsToPrint is reset (to 1.1 times the current inLastProduction value) once for each
employee.

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 233

234 Chapter 6 • Looping

If the average employee produces 100 items during a week, then the loop within the createLabels()method, the one
controlled by the statement while labelCounter < labelsToPrint, executes 11,000 times—110 times
each for 100 employees. This number of repetitions is necessary in order to print the correct number of labels.

A repetition that is not necessary would be to execute 11,000 separate multiplication statements to recalculate the
value to compare to labelCounter. See Figure 6-11.

Although the logic shown in Figure 6-11 will produce the correct number of labels for every employee, the statement
while labelCounter < inLastProduction * 1.1 executes an average of 110 times for each
employee. That means the arithmetic operation that is part of the question—multiplying inLastProduction by
1.1—occurs 110 separate times for each employee. Performing the same calculation that results in the same mathe-
matical answer 110 times in a row is inefficient. Instead, it is superior to perform the multiplication just once for each
employee and use the result 110 times, as shown in the original version of the program in Figure 6-10. In the
pseudocode in Figure 6-10, you still must recalculate labelsToPrint once for each record, but not once for each
label, so you have improved the program’s efficiency.

The modules illustrated in Figures 6-10 and 6-11 do the same thing: print enough labels for every employee to cover
110 percent of production. As you become more proficient at programming, you will recognize many opportunities to
perform the same tasks in alternative, more elegant, and more efficient ways.

createLabels()
 labelCounter = 0
 while labelCounter < inLastProduction * 1.1
 print labelLine, inFirstName
 labelCounter = labelCounter + 1
 endwhile
 read empRecord
return

No

Yes

FIGURE 6-11: INEFFICIENT PSEUDOCODE FOR LABEL-MAKING createLabels()MODULE

labelCounter
= 0

createLabels()

labelCounter =
labelCounter + 1

print
labelLine,

inFirstName

labelCounter <
inLastProduction * 1.1?

read
empRecord

return

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 234

235Using the For Statement

INITIALIZING A VARIABLE THAT DOES NOT REQUIRE INITIALIZATION

Another common error made by beginning programmers involves initializing a variable that does not require initializa-
tion. When declaring variables for the label-making program, you might be tempted to declare num
labelsToPrint = inLastProduction * 1.1. It seems as though this declaration statement indicates
that the value of labelsToPrint will always be 110 percent of the inLastProduction figure. However, this
approach is incorrect for two reasons. First, at the time labelsToPrint is declared, the first employee record has
not yet been read into memory, so the value of inLastProduction is garbage; therefore, the result in
labelsToPrint after multiplication will also be garbage. Second, even if you read the first empRecord into
memory before declaring the labelsToPrint variable, the mathematical calculation of labelsToPrint
within the housekeep() module would be valid for the first record only. The value of labelsToPrint must be
recalculated for each employee record in the input file. Therefore, calculation of labelsToPrint correctly belongs
within the createLabels() module, as shown in Figure 6-10.

USING THE FOR STATEMENT

The label-making programs discussed in this chapter each contain two loops. For example, Figures 6-12 and 6-13
show the loop within the mainline program as well as the loop within the createLabels() module for a program
that produces exactly 100 labels for each employee. (These flowcharts were shown earlier in this chapter.)

No

Yes

FIGURE 6-13: THE createLabels() LOGIC
FOR LABEL-MAKING PROGRAM

createLabels()

return

print
labelLine,

inFirstName

labelCounter
= 0

labelCounter
< 100?

labelCounter
=

labelCounter
+ 1

read
empRecord

FIGURE 6-12: MAINLINE LOGIC FOR LABEL-MAKING
PROGRAM

Yes

No

start

housekeep()

eof?

finishUp()

createLabels()

stop

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 235

236 Chapter 6 • Looping

Entry to the createLabels() module in the mainline logic of the label-making program is controlled by the eof deci-
sion. Within the createLabels() method, the loop that produces labels is controlled by the labelCounter deci-
sion. When you execute the mainline logic, you cannot predict how many times the createLabels() module will
execute. Depending on the size of the input file (that is, depending on the number of employees who require labels), any
number of records might be processed; while the program runs, you don’t know what the total number of records finally will
be. Until you attempt to read a record and encounter the end of the file, you don’t know if more records are going to become
available. Of course, not being able to predict the number of input records is valuable—it allows the program to function cor-
rectly no matter how many employees exist from week to week or year to year. Because you can’t determine ahead of time
how many records there might be and, therefore, how many times the loop might execute, the mainline loop in the label-
making program is called an indeterminate, or indefinite, loop.

With some loops, you know exactly how many times they will execute. If every employee needs 100 printed labels, then
the loop within the createLabels() module executes exactly 100 times for each employee. This kind of loop, in
which you definitely know the repetition factor, is a definite loop.

Every high-level computer programming language contains a while statement that you can use to code any loop,
including indefinite loops (like the mainline loop) and definite loops (like the label-printing loop). You can write state-
ments like the following:

whileƒnotƒeof
ƒƒƒƒƒperformƒcreateLabels()
endwhile

and

whileƒlabelCounterƒ<ƒ100
ƒƒƒƒƒprintƒlabelLine,ƒinFirstName
ƒƒƒƒƒlabelCounterƒ=ƒlabelCounterƒ+ƒ1
endwhile

In addition to the while statement, most computer languages also support a for statement. You can use the for
statement with definite loops—those for which you know how many times the loop will repeat. The for statement
provides you with three actions in one compact statement. The for statement:

� initializes the loop control variable

� evaluates the loop control variable

� alters the loop control variable (typically by incrementing it)

The for statement usually takes the form:

forƒinitialValueƒtoƒfinalValue
ƒƒƒƒƒdoƒsomething
endfor

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 236

237Using the For Statement

For example, to print 100 labels you can write:

forƒlabelCounterƒ=ƒ0ƒtoƒ99
ƒƒƒƒƒprintƒlabelLine,ƒinFirstName
endfor

This for statement accomplishes several tasks at once in a compact form:

� The for statement initializes labelCounter to 0.

� The for statement checks labelCounter against the limit value 99 and makes sure that
labelCounter is less than or equal to that value.

� If the evaluation is true, the for statement body that prints the label executes.

� After the for statement body executes, labelCounter increases by 1 and the comparison
to the limit value is made again.

As an alternative to using the loop for labelCounter = 0 to 99, you can use
for labelCounter = 1 to 100. You can use any combination of values, as
long as there are 100 whole number values between (and including) the two limits.

The for statement does not represent a new structure; it simply provides a compact way to write a pretest loop. You
are never required to use a for statement; the label loop executes correctly using a while statement with
labelCounter as a loop control variable. However, when a loop is based on a loop control variable progressing
from a known starting value to a known ending value in equal increments, the for statement presents you with a con-
venient shorthand.

The programmer needs to know neither the starting nor the ending value for the loop con-
trol variable; only the program must know those values. For example, you don’t know the
value of a worker’s inLastProduction, but when you tell the program to read a
record, the program knows. To use this value as a limit value, you can write a for state-
ment that begins for labelCounter = 1 to inLastProduction.

In most programming languages, you can provide a for statement with a step value. A
step value is a number you use to increase (or decrease) a loop control variable on each
pass through a loop. In most programming languages, the default loop step value is 1. You
specify a step value when you want each pass through the loop to change the loop control
variable by a value other than 1.

In Java, C++, C#, and other modern languages, the for statement is written using the key-
word for followed by parentheses that contain the increment test, which alters portions of
the loop. For example, the following for statement could be used in several languages:

for(labelCounter = 0; labelCounter < 100; labelCounter = labelCounter + 1)

ƒƒƒprint labelLine, inFirstName

In this example, the first section within the parentheses initializes the loop control vari-
able, the middle section tests it, and the last section alters it. In languages that use this for-
mat, you can use the for statement for indefinite loops as well as definite loops.

TIP�

TIP�

TIP�

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 237

238 Chapter 6 • Looping

USING THE DO WHILE AND DO UNTIL LOOPS

When you use either a while loop or a for statement, the body of the loop may never execute. For example, in the
mainline logic in Figure 6-5, the last action in the housekeep() module is to read an input record. If the input file
contains no records, the result of the eof decision is true, and the program executes the finishUp() module
without ever entering the createLabels() module.

Similarly, when you produce labels within the createLabels() module shown in Figure 6-10, labels are produced
while labelCounter < labelsToPrint. Suppose an employee record contains a 0 in the
inLastProduction field—for example, in the case of a new employee or an employee who was on vacation dur-
ing the previous week. In such a case, the value of labelsToPrint would be 0, and the label-producing body of
the loop would never execute. With a while loop, you evaluate the loop control variable prior to executing the loop
body, and the evaluation might indicate that you can’t enter the loop.

With a while loop, the loop body might not execute. When you want to ensure that a loop’s body executes at least one time,
you can use either a do while or a do until loop. In both types of loops, the loop control variable is evaluated after the
loop body executes, instead of before. Therefore, the body always executes at least one time. Although the loops have similari-
ties, as explained above, they are different in that the do while loop continues when the result of the test of the loop con-
trol variable is true, but the do until loop continues when the result of the test of the loop control variable is false. In other
words, the difference between the two loops is simply in how the question at the bottom of the loop is phrased.

You first learned about the do while and do until loops in Chapter 2. Review
Chapter 2 to reinforce your understanding of the differences between a while loop and
the do while and do until loops.

Because the question that controls a while loop is asked before you enter the loop body,
programmers say a while loop is a pretest loop. Because the question that controls do
while and do until loops occurs after the loop body executes, programmers say
these loops are posttest loops.

For example, suppose you want to produce one label for each employee to wear as identification, before you produce
enough labels to cover 110 percent of last week’s production. You can write the do until loop that appears in
Figure 6-14.

TIP�

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 238

239Using the Do While and Do Until Loops

In Figure 6-14, the labelCounter variable is set to 0 and labelsToPrint is calculated. Suppose
labelsToPrint is computed to be 0. The do until loop will be entered, a label will print, 1 will be added
to labelCounter, and then and only then will labelCounter be compared to labelsToPrint. Because
labelCounter is now 1 and labelsToPrint is only 0, the loop is exited, having printed a single identification
label and no product labels.

createLabels()
 labelCounter = 0
 labelsToPrint = inLastProduction * 1.1
 do
 print labelLine, inFirstName
 labelCounter = labelCounter + 1
 until labelCounter > labelsToPrint
 read empRecord
return

FIGURE 6-14: USING A do until LOOP TO PRINT ONE IDENTIFICATION LABEL, THEN PRINT ENOUGH TO
COVER PRODUCTION REQUIREMENTS

Yes

No

labelCounter
= 0

createLabels()

labelCounter
> labelsToPrint?

return

print
labelLine,

inFirstName

labelsToPrint =
inLastProduction

* 1.1

labelCounter =
labelCounter + 1

read
empRecord

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 239

240 Chapter 6 • Looping

As a different example using the logic in Figure 6-14, suppose that for a worker labelsToPrint is calculated to be 1. In
this case, the loop is entered, a label prints, and 1 is added to labelCounter. Now, the value of labelCounter is
not yet greater than the value of labelsToPrint, so the loop repeats, a second label prints, and labelCounter is
incremented again. This time labelCounter (with a value of 2) does exceed labelsToPrint (with a value of 1), so
the loop ends. This employee gets an identification label as well as one product label.

Of course, you could achieve the same results by printing one label, then entering a while loop, as in Figure 6-15. In
this example, one label prints before labelCounter is compared to labelsToPrint. No matter what the
value of labelsToPrint is, one identification label is produced.

createLabels()
 labelCounter = 0
 labelsToPrint = inLastProduction * 1.1
 print labelLine, inFirstName
 while labelCounter < labelsToPrint
 print labelLine, inFirstName
 labelCounter = labelCounter + 1
 endwhile
 read empRecord
return

No

Yes

FIGURE 6-15: USING A while LOOP TO PRINT ONE IDENTIFICATION LABEL, THEN PRINT ENOUGH TO COVER
PRODUCTION REQUIREMENTS

labelCounter
= 0

createLabels()

labelCounter
< labelsToPrint?

return

labelsToPrint =
inLastProduction * 1.1

labelCounter =
labelCounter + 1

print
labelLine,

inFirstName

print
labelLine,

inFirstName

read
empRecord

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 240

241Recognizing the Characteristics Shared by All Loops

The logic in Figure 6-15, in which you print one label and then test a value to determine
whether you will print more, takes the same form as the mainline logic in most of the pro-
grams you have worked with so far. When you read records from a file, you read one
record (the priming read) and then test for eof before continuing. In effect, the first label
printed in Figure 6-15 is a “priming label.”

The results of the programs shown in Figures 6-14 and 6-15 are the same. Using either, every employee will receive an
identification label and enough labels to cover production. Each module works correctly, and neither is logically superior
to the other. There is almost always more than one way to solve the same programming problem. As you learned in
Chapter 2, a posttest loop (do while or do until) can always be replaced by pairing a sequence and a pretest
while loop. Which method you choose depends on your (or your instructor’s or supervisor’s) preference.

There are several additional ways to approach the logic shown in the programs in Figures 6-14
and 6-15. For example, after calculating labelsToPrint, you could immediately add 1 to
the value. Then, you could use the logic in Figure 6-14, as long as you change the loop-ending
question to labelCounter >= labelsToPrint (instead of only >). Alternatively,
using the logic in Figure 6-15, after adding 1 to labelsToPrint, you could remove the
lone first label-printing instruction; that way, one identification label would always be printed,
even if the last production figure was 0.

RECOGNIZING THE CHARACTERISTICS SHARED BY ALL LOOPS

You can see from Figure 6-15 that you are never required to use posttest loops (either a do while loop or a do
until loop). The same results always can be achieved by performing the loop body steps once before entering a
while loop. If you follow the logic of either of the loops shown in Figures 6-14 and 6-15, you will discover that when
an employee has an inLastProduction value of 3, then exactly four labels print. Likewise, when an employee
has an inLastProduction value of 0, then exactly one label prints. You can accomplish the same results with
either type of loop; the posttest do while and do until loops simply are a convenience when you need a loop’s
statements to execute at least one time.

In some languages, the do until loop is called a repeat until loop.

If you can express the logic you want to perform by saying “while a is true, keep doing b,” you probably want to use a
while loop. If what you want to accomplish seems to fit the statement “do a until b is true,” you can probably use a do
until loop. If the statement “do a while b is true” makes more sense, then you might choose to use a do while loop.

As you examine Figures 6-14 and 6-15, notice that with the do until loop in Figure 6-14, the loop-controlling
question is placed at the end of the sequence of the steps that repeat. With the while loop, the loop-controlling ques-
tion is placed at the beginning of the steps that repeat. All structured loops (whether they are while loops, do
while loops, or do until loops) share these characteristics:

� The loop-controlling question provides either entry to or exit from the repeating structure.

� The loop-controlling question provides the only entry to or exit from the repeating structure.

TIP�

TIP�

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 241

242 Chapter 6 • Looping

You should also notice the difference between unstructured loops and the structured do until and while loops.
Figure 6-16 diagrams the outline of two unstructured loops. In each case, the decision labeled X breaks out of the loop prema-
turely. In each case, the loop control variable (labeled LC) does not provide the only entry to or exit from the loop.

NESTING LOOPS

Program logic gets more complicated when you must use loops within loops, or nesting loops. When one loop
appears inside another, the loop that contains the other loop is called the outer loop, and the loop that is contained is
called the inner loop. For example, suppose you work for a company that pays workers twice per month. The company
has decided on an incentive plan to provide each employee with a one-fourth of one percent raise for each pay period
during the coming year, and it wants a report for each employee like that shown in Figure 6-17. A list will be printed
for each employee showing the exact paycheck amounts for each of the next 24 pay periods—two per month for
12 months. A description of the employee input record is shown in Figure 6-18.

FIGURE 6-16: EXAMPLES OF UNSTRUCTURED LOOPS

LC? X?

X?

LC?

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 242

243Nesting Loops

To produce the Projected Payroll report, you need to maintain two separate counters to control two separate loops. One
counter will keep track of the month (1 through 12), and another will keep track of the pay period within the month (1
through 2). When nesting loops, you must maintain individual loop control variables—one for each loop—and alter
each at the appropriate time.

Figure 6-19 shows the mainline, housekeeping(), and finish() logic for the program. These modules are
standard. Besides the input file variables and the headers that print for each employee, the list of declared variables
includes two counters. One, named monthCounter, keeps track of the month that is currently printing. The other,
named checkCounter, keeps track of which check within the month is currently printing. Three additional declara-
tions hold the number of months in a year (12), the number of checks in a month (2), and the rate of increase (0.0025).
Declaring these constants is not required; the program could just use the numeric constants 12, 2, and 0.0025 within
its statements, but providing those values with names serves two purposes. First, the program becomes more self-
documenting—that is, it describes itself to the reader because the choice of variable names is clear. When other pro-
grammers read a program and encounter a number like 2, they might wonder about the meaning. Instead, if the value
is named CHECKS_IN_A_MONTH, the meaning of the value is much clearer. Second, after the program is in pro-
duction, the company might choose to change one of the values—for example, by going to an 11-month year, produc-
ing more or fewer paychecks in a month, or changing the raise rate. In those cases, the person who modifies the
program would not have to search for appropriate spots to make those changes, but would simply redefine the values
assigned to the appropriate named constants.

File Name: EMPPAY
FIELD DESCRIPTION DATA TYPE COMMENTS
Employee Last Name Character 12 characters
Employee First Name Character 8 characters
Weekly salary at Numeric 2 decimal places
 start of year

FIGURE 6-18: EMPLOYEE PAYROLL RECORD DATA FILE DESCRIPTION

FIGURE 6-17: SAMPLE PROJECTED PAYROLL REPORT FOR ONE EMPLOYEE

1 1 501.25
1 2 502.50
2 1 503.76
2 2 505.02
3 1 506.28

Projected Payroll for
Roberto Martinez

Month Check Amount

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 243

244 Chapter 6 • Looping

In Chapter 1 you learned that by convention, many programmers use all uppercase letters
when naming constants.

payRec
 char lastName

char firstName
num weekSal

char head1 = "Projected Payroll for"
char head2 = "Month Check Amount"
num monthCounter
num checkCounter
const num MONTH_IN_A_YEAR = 12
const num CHECKS_IN_A_MONTH = 2
const num RAISE-RATE = 0.0025

start
 perform housekeeping()
 while not eof
 perform produceReport()
 endwhile
 perform finish()
stop

housekeeping()
 declare variables
 open files
 read payRec
return

finish()
 close files
return

No

Yes

FIGURE 6-19: MAINLINE LOGIC, housekeeping(), AND finish() MODULES FOR PROJECTED
PAYROLL REPORT PROGRAM

produceReport()

housekeeping()

eof?

stop

start

finish()

open files

housekeeping()

return

declare
variables

close files

return

finish()

read
payRec

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 244

245Nesting Loops

At the end of the housekeeping() module in Figure 6-19, the first employee record is read into main memory.
Figure 6-20 shows how the record is processed in the produceReport() module. The program proceeds as follows:

1. The first heading prints, followed by the employee name and the column headings.

2. The monthCounter variable is set to 1; monthCounter is the loop control variable for the

outer loop, and this step provides it with its initial value.

3. The monthCounter variable is compared to the number of months in a year, and because the

comparison evaluates as true, the outer loop is entered. Within this loop, the checkCounter

variable is used as a loop control variable for an inner loop.

4. The checkCounter variable is initialized to 1, and then compared to the number of checks in

a month. Because this comparison evaluates as true, the inner loop is entered.

5. Within this inner loop, the employee’s weekly salary is increased by one-fourth of one percent (the

old salary plus 0.0025 of the old salary).

6. The month number (currently 1), check number (also currently 1), and newly calculated salary are printed.

7. The check number is increased (to 2), and the inner loop reaches its end; this causes the logical control

to return to the top of the inner loop, where the while condition is tested again. Because the check

number (2) is still less than or equal to the number of checks in a month, the inner loop is entered again.

8. The pay amount increases, and the month (still 1), check number (2), and new salary are printed.

9. Then, the check number becomes 3. Now, when the loop condition is tested for the third time, the check

number is no longer less than or equal to the number of checks in a month, so the inner loop ends.

10. As the last step in the outer loop, monthCounter becomes 2.

11. After monthCounter increases to 2, control returns to the entry point of the outer loop.

12. The while condition is tested, and because 2 is not greater than the number of months in a

year, the outer loop is entered for a second time.

13. The checkCounter variable is reset to 1 so that it will correctly count two checks for

this month.

14. Because the newly reset checkCounter is not more than the number of checks in a month,

the salary is increased, and the amount prints for month 2, check 1.

15. The checkCounter variable increases to 2 and another value is printed for month 2, check 2

before the inner loop ends and monthCounter is increased to 3.

16. Then, month 3, check 1 prints, followed by month 3, check 2. The inner loop is evaluated again.

The checkCounter value is 3, so the evaluation result is false.

17. The produceReport() module continues printing two check amounts for each of 12 months

before the outer loop is finished, when monthCounter eventually exceeds 12. Only then is the

next employee record read into memory, and control leaves the produceReport() module

and returns to the mainline logic, where the end of file is tested. If a new record exists, control

returns to the produceReport() module for the new employee, for whom headings are

printed, and monthCounter is set to 1 to start the set of 24 calculations for this employee.

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 245

246 Chapter 6 • Looping

produceReport()
 print head1
 print firstName, lastName
 print head2
 monthCounter = 1
 while monthCounter <= MONTHS_IN_A_YEAR
 checkCounter = 1
 while checkCounter <= CHECKS_IN_A_MONTH
 weekSal = weekSal + weekSal * RAISE_RATE
 print monthCounter, checkCounter, weekSal
 checkCounter = checkCounter + 1
 endwhile
 monthCounter = monthCounter + 1
 endwhile
 read payRec
return

Yes

No

Yes

No

weekSal = weekSal +
weekSal * RAISE_RATE

FIGURE 6-20: THE produceReport() MODULE FOR THE PROJECTED PAYROLL REPORT PROGRAM

print firstName,
lastName

monthCounter = 1

produceReport()

monthCounter <=
MONTHS_IN_A_YEAR?

print head2

print head1

checkCounter <=
CHECKS_IN_A_MONTH?

checkCounter = 1

checkCounter =
checkCounter + 1

print monthCounter,
checkCounter,

weekSal

monthCounter =
monthCounter + 1

return

read payRec

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 246

247Using a Loop to Accumulate Totals

If you have trouble seeing that the flowchart in Figure 6-20 is structured, consider moving
the checkCounter loop and its three resulting actions to its own module. Then you
should see that the monthCounter loop contains a sequence of three steps and that the
middle step is a loop.

There is no limit to the number of loop-nesting levels a program can contain. For instance, suppose that in the pro-
jected payroll example, the company wanted to provide a slight raise each hour or each day of each pay period in each
month for each of several years. No matter how many levels deep the nesting goes, each loop must still contain a loop
control variable that is initialized, tested, and altered.

USING A LOOP TO ACCUMULATE TOTALS

Business reports often include totals. The supervisor requesting a list of employees who participate in the company dental
plan is often as much interested in how many such employees there are as in who they are. When you receive your tele-
phone bill at the end of the month, you are usually more interested in the total than in the charges for the individual calls.
Some business reports list no individual detail records, just totals or other overall statistics such as averages. Such reports
are called summary reports. Many business reports list both the details of individual records and totals at the end.

For example, a real estate broker might maintain a file of company real estate listings. Each record in the file contains
the street address and the asking price of a property for sale. The broker wants a listing of all the properties for sale;
she also wants a total value for all the company’s listings. A typical report appears in Figure 6-21.

When you read a real estate listing record, besides printing it you must add its value to an accumulator. An accumulator
is a variable that you use to gather, or accumulate, values. An accumulator is very similar to a counter. The difference
lies in the value that you add to the variable; usually, you add just 1 to a counter, whereas you add some other value to
an accumulator. If the real estate broker wants to know how many listings the company holds, you count them. When
she wants to know total real estate value, you accumulate it.

In order to accumulate total real estate prices, you declare a numeric variable at the beginning of the program, as
shown in the housekeep() module in Figure 6-22. You must initialize the accumulator, accumValue, to 0. In

FIGURE 6-21: TYPICAL REAL ESTATE REPORT

12 Carpenter Road 218,000
312 Howard Street 119,900
416 Mockingbird Lane 349,900
58 Flowerwood Path 249,900
5914 Wisteria Lane 499,999

PROPERTIES FOR SALE

STREET ADDRESS ASKING PRICE

TOTAL VALUE 1,437,699

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 247

248 Chapter 6 • Looping

Chapter 4, you learned that when using most programming languages, declared variables do not automatically assume
any particular value; the unknown value is called garbage. When you read the first real estate record, you will add its
value to the accumulator. If the accumulator contains garbage, the addition will not work. Some programming lan-
guages issue an error message if you don’t initialize a variable you use for accumulating; others let you accumulate, but
the results are worthless because you start with garbage.

start
 perform housekeep()
 while not eof
 perform displayProperties()
 endwhile
 perform finishUp()
stop

housekeep()
 declare variables
 open files
 perform headings()
 read realRecord
return

displayProperties()
 print realAddress, realPrice
 accumValue = accumValue + realPrice
 read realRecord
return

headings()
 print heading1
 print heading2
return

finishUp()
 print “TOTAL VALUE”, accumValue
 close files
return

return

headings()

print heading2

print heading1

read
realRecord

displayProperties()

return

print
realAddress,

realPrice

accumValue =
accumValue +

realPrice

close files

return

finishUp()

print
“TOTAL VALUE”,

accumValue

realRecord
 char realAddress

num realPrice
char heading1 = "PROPERTIES FOR SALE"
char heading2 = "STREET ADDRESS

ASKING PRICE"
num accumValue = 0

No

Yes

open
files

headings()

read
realRecord

housekeep()

return

declare
variables

displayProperties()

housekeep()

eof?

stop

start

finishUp()

FIGURE 6-22: THE REAL ESTATE PROGRAM

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 248

249Using a Loop to Accumulate Totals

If you name the input record fields realAddress and realPrice, then the displayProperties() mod-
ule of the real estate listing program can be written as shown in Figure 6-22. For each real estate record, you print it
and add its value to the accumulator accumValue. Then you can read the next record.

After the program reaches the end of the file, the accumulator will hold the grand total of all the real estate values.
When you reach the end of the file, the finishUp() module executes, and it is within the finishUp() module
that you print the accumulated value, accumValue. After printing the total, you can close both the input and the out-
put files and return to the mainline logic, where the program ends.

New programmers often want to reset the accumValue to 0 after printing it. Although you can take this step without harm-
ing the execution of the program, it does not serve any useful purpose. You cannot set accumValue to 0 in anticipation of
having it ready for the next program, or even for the next time you execute this program. Program variables exist only for the
life of the program, and even if a future program happens to contain a variable named accumValue, the variable will
not necessarily occupy the same memory location as this one. Even if you run the program a second time, the variables
might occupy physical memory locations different from those they occupied during the first run. At the beginning of the
program, it is the programmer’s responsibility to initialize all variables that must start with a specific value. There is no
benefit to changing a variable’s value when it will never be used again during the current execution of the program.

It is especially important to avoid changing the value of a variable unnecessarily when the
change occurs within a loop. One extra, unnecessary statement in a loop that executes
hundreds of thousands of times can significantly slow a program’s performance speed.

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 249

Chapter 6 • Looping250

CHAPTER SUMMARY

� When you use a loop within a computer program, you can write one set of instructions that operates on

multiple, separate sets of data.

� Three steps must occur in every loop: You must initialize a loop control variable, compare the variable

to some value that controls whether the loop continues or stops, and alter the variable that controls

the loop.

� A counter is a numeric variable you use to count the number of times an event has occurred. You can

count occurrences by incrementing or decrementing a variable.

� You can use a variable sentinel value to control a loop.

� Sometimes it is convenient to reduce, or decrement, a loop control variable on every cycle through

a loop.

� Mistakes that programmers often make with loops include neglecting to initialize the loop control variable

and neglecting to alter the loop control variable. Other mistakes include using the wrong comparison with

the loop control variable, including statements inside the loop that belong outside the loop, and initializing

a variable that does not require initialization.

� Most computer languages support a for statement that you can use with definite loops when you

know how many times a loop will repeat. The for statement uses a loop control variable that it auto-

matically initializes, evaluates, and increments.

� When you want to ensure that a loop’s body executes at least one time, you can use a do while

loop or a do until loop, in which the loop control variable is evaluated after the loop body executes.

� All structured loops share these characteristics: The loop-controlling question provides either entry to or

exit from the repeating structure, and the loop-controlling question provides the only entry to or exit from

the repeating structure.

� When you must use loops within loops, you are using nested loops. When you create nested loops, you

must maintain two individual loop control variables and alter each at the appropriate time.

� Business reports often include totals. Summary reports list no detail records—only totals. An accumula-

tor is a variable that you use to gather or accumulate values.

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 250

Review Questions 251

KEY TERMS

A loop is a structure that repeats actions while some condition continues.

A main loop is a basic set of instructions that is repeated for every record.

A loop control variable is a variable that determines whether a loop will continue.

A sentinel value is a limit or ending value.

A loop body is the set of statements that executes within a loop.

A counter is any numeric variable you use to count the number of times an event has occurred.

Adding to a variable (often, adding one) is called incrementing the variable.

Decreasing a variable (often by one) is called decrementing the variable.

A loop that never stops executing is called an infinite loop.

An indeterminate, or indefinite, loop is one for which you cannot predetermine the number of executions.

A loop for which you definitely know the repetition factor is a definite loop.

A while statement can be used to code any loop.

A for statement frequently is used to code a definite loop. Most often, it contains a loop control variable that it
initializes, evaluates, and increments.

Nesting loops are loops within loops.

When one loop appears inside another, the loop that contains the other loop is called the outer loop, and the loop that
is contained is called the inner loop.

A summary report lists only totals and other statistics, without individual detail records.

An accumulator is a variable that you use to gather, or accumulate, values.

REVIEW QUESTIONS

1. The structure that allows you to write one set of instructions that operates on multiple, separate
sets of data is the .

a. sequence
b. selection
c. loop
d. case

2. Which of the following is not a step that must occur in every loop?

a. Initialize a loop control variable.
b. Compare the loop control value to a sentinel.
c. Set the loop control value equal to a sentinel.
d. Alter the loop control variable.

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 251

Chapter 6 • Looping252

3. The statements executed within a loop are known collectively as the .

a. sentinels
b. loop controls
c. sequences
d. loop body

4. A counter keeps track of .

a. the number of times an event has occurred
b. the number of modules in a program
c. the number of loop structures within a program
d. a total that prints at the end of a summary report

5. Adding 1 to a variable is also called .

a. digesting
b. incrementing
c. decrementing
d. resetting

6. In the following pseudocode, what is printed?

aƒ=ƒ1
bƒ=ƒ2
cƒ=ƒ5
whileƒaƒ<ƒc
ƒƒƒƒƒaƒ=ƒaƒ+ƒ1
ƒƒƒƒƒbƒ=ƒbƒ+ƒc
endwhileƒ
printƒa,ƒb,ƒc

a. 1 2 5
b. 5 22 5
c. 5 6 5
d. 6 22 9

7. In the following pseudocode, what is printed?

d = 4
e = 6
f = 7
while d > f

d = d + 1
e = e - 1

endwhile
print d, e, f

a. 7 3 7
b. 8 2 8
c. 4 6 7
d. 5 5 7

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 252

Review Questions 253

8. When you decrement a variable, most frequently you .

a. set it to 0
b. reduce it by one-tenth
c. subtract 1 from it
d. remove it from a program

9. In the following pseudocode, what is printed?

gƒ=ƒ4
hƒ=ƒ6
whileƒgƒ<ƒh
ƒƒƒƒƒgƒ=ƒgƒ+ƒ1
endwhileƒ
printƒg,ƒh

a. nothing
b. 4 6
c. 5 6
d. 6 6

10. Most programmers use a for statement .

a. for every loop they write
b. as a compact version of the while statement
c. when they do not know the exact number of times a loop will repeat
d. when a loop will not repeat

11. Unlike a while loop, you use a do until loop when .

a. you can predict the exact number of loop repetitions
b. the loop body might never execute
c. the loop body must execute exactly one time
d. the loop body must execute at least one time

12. Which of the following is a characteristic shared by all loops—while, do while, and do
until loops?

a. They all have one entry and one exit.
b. They all have a body that executes at least once.
c. They all compare a loop control variable at the top of the loop.
d. All of these are true.

13. A comparison with a loop control variable provides .

a. the only entry to a while loop
b. the only exit from a do until loop
c. both of the above
d. none of the above

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 253

Chapter 6 • Looping254

14. When two loops are nested, the loop that is contained by the other is the loop.

a. inner
b. outer
c. unstructured
d. captive

15. In the following pseudocode, how many times is “Hello” printed?

jƒ=ƒ2
kƒ=ƒ5
mƒ=ƒ6
nƒ=ƒ9
whileƒjƒ<ƒk
ƒƒƒƒƒwhileƒmƒ<ƒn
ƒƒƒƒƒƒƒƒƒƒprintƒ“Hello”
ƒƒƒƒƒƒƒƒƒƒmƒ=ƒmƒ+ƒ1
ƒƒƒƒƒendwhile
ƒƒƒƒƒjƒ=ƒjƒ+ƒ1
endwhileƒ

a. zero
b. three
c. six
d. nine

16. In the following pseudocode, how many times is “Hello” printed?

jƒ=ƒ2
kƒ=ƒ5
nƒ=ƒ9
whileƒjƒ<ƒk
ƒƒƒƒƒmƒ=ƒ6
ƒƒƒƒƒwhileƒmƒ<ƒn
ƒƒƒƒƒƒƒƒƒƒprintƒ“Hello”
ƒƒƒƒƒƒƒƒƒƒmƒ=ƒmƒ+ƒ1
ƒƒƒƒƒendwhile
ƒƒƒƒƒjƒ=ƒjƒ+ƒ1
endwhileƒ

a. zero
b. three
c. six
d. nine

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 254

Review Questions 255

17. In the following pseudocode, how many times is “Hello” printed?

pƒ=ƒ2
qƒ=ƒ4
whileƒpƒ<ƒq
ƒƒƒƒƒprintƒ“Hello”
ƒƒƒƒƒrƒ=ƒ1
ƒƒƒƒƒwhileƒrƒ<ƒq
ƒƒƒƒƒƒƒƒƒƒprintƒ“Hello”
ƒƒƒƒƒƒƒƒƒƒrƒ=ƒrƒ+ƒ1
ƒƒƒƒƒendwhile
ƒƒƒƒƒpƒ=ƒpƒ+ƒ1
endwhile

a. zero
b. four
c. six
d. eight

18. A report that lists no details about individual records, but totals only, is a(n) report.

a. accumulator
b. final
c. summary
d. detailless

19. Typically, the value added to a counter variable is .

a. 0
b. 1
c. 10
d. 100

20. Typically, the value added to an accumulator variable is .

a. 0
b. 1
c. at least 1000
d. Any value might be added to an accumulator variable.

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 255

Chapter 6 • Looping256

FIND THE BUGS

Each of the following pseudocode segments contains one or more bugs that you must find and correct.

1. This method is supposed to print every fifth year starting with 2005; that is, 2005, 2010, 2015, and
so on, for 30 years.

printEveryFifthYear()
ƒƒƒconstƒnumƒYEARƒ=ƒ2005
ƒƒƒnumƒfactorƒ=ƒ5
ƒƒƒconstƒnumƒEND_YEARƒ=ƒ2035
ƒƒƒwhileƒyearƒ>ƒEND_YEAR
ƒƒƒƒƒƒprintƒyear
ƒƒƒƒƒƒyearƒ=ƒyearƒ+ƒ1
ƒƒƒendwhile
return

2. A standard mortgage is paid monthly over 30 years. This method is intended to print 360 payment
coupons for a new borrower. Each coupon lists the month number, year number, and a friendly
reminder.

printCoupons()

ƒƒƒconstƒnumƒMONTHSƒ=ƒ12

ƒƒƒconstƒnumƒYEARSƒ=ƒ30

ƒƒƒnumƒmonthCounter

ƒƒƒnumƒyearCounter

ƒƒƒwhileƒyearCounterƒ<=ƒYEARS

ƒƒƒƒƒƒwhileƒmonthCounterƒ<=ƒ12

ƒƒƒƒƒƒƒƒƒprintƒmonth,ƒyear,ƒ“Rememberƒtoƒsendƒyourƒpaymentƒbyƒtheƒ10th”

ƒƒƒƒƒƒƒƒƒyearCounterƒ=ƒyearCounterƒ+ƒ1

ƒƒƒƒƒƒendwhile

ƒƒƒendwhile

return

3. This application is intended to print estimated monthly payment amounts for customers of the
EZ Credit Loan Company. The application reads customer records, each containing an account
number, name and address, requested original loan amount, term in months, and annual interest
rate. The interest rate per month is calculated by dividing the annual interest rate by 12. The cus-
tomer’s total payback amount is calculated by charging the monthly interest rate on the original
balance every month for the term of the loan. The customer’s monthly payment is then calculated
by dividing the total payback amount by the number of months in the loan. The application pro-
duces a notice containing the customer’s name, address, and estimated monthly payment amount.

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 256

Find the Bugs 257

start

ƒƒƒperformƒgetReady()

ƒƒƒwhileƒnotƒeof

ƒƒƒƒƒƒperformƒproduceEstimate()

ƒƒƒperformƒending()

stop

startUp()

ƒƒƒdeclareƒvariables

ƒƒƒcustRecord

ƒƒƒƒƒƒnumƒacctNumber

ƒƒƒƒƒƒcharƒname

ƒƒƒƒƒƒcharƒaddress

ƒƒƒƒƒƒnumƒoriginalLoanAmount

ƒƒƒƒƒƒnumƒtermInMonths

ƒƒƒƒƒƒnumƒannualRate

ƒƒƒconstƒnumƒMONTHS_IN_YEARƒ=ƒ12

ƒƒƒconstƒnumƒtotalPayback

ƒƒƒnumƒmonthlyRate

ƒƒƒnumƒcount

ƒƒƒopenƒfiles

ƒƒƒreadƒcustRecord

return

produceEstimate()

ƒƒƒcountƒ=ƒ1

ƒƒƒmonthlyRateƒ=ƒannualRateƒ/ƒmonthsInYear

ƒƒƒwhileƒcountƒ=ƒtermInMonths

ƒƒƒƒƒƒtotalPaybackƒ=ƒtotalPaybackƒ+ƒmonthlyRateƒ*ƒoriginalLoanAmount

ƒƒƒƒƒƒcountƒ=ƒcountƒ+ƒ1

ƒƒƒendwhile

ƒƒƒmonthlyPaymentƒ=ƒtotalPaybackƒ/ƒMONTHS_IN_YEAR

ƒƒƒprintƒ“LoanƒPaymentƒEstimateƒfor:”

ƒƒƒprintƒname

ƒƒƒprintƒaddress

ƒƒƒprintƒ“$”,ƒmonthPayment

return

ending()

ƒƒƒcloseƒfiles

return

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 257

Chapter 6 • Looping258

EXERCISES

1. Design the logic for a module that would print every number from 1 through 10.

a. Draw the flowchart.
b. Design the pseudocode.

2. Design the logic for a module that would print every number from 1 through 10 along with its
square and cube.

a. Draw the flowchart.
b. Design the pseudocode.

3. Design a program that reads credit card account records and prints payoff schedules for cus-
tomers. Input records contain an account number, customer name, and balance due. For each cus-
tomer, print the account number and name; then print the customer’s projected balance each
month for the next 10 months. Assume that there is no finance charge on this account, that the
customer makes no new purchases, and that the customer pays off the balance with equal monthly
payments, which are 10 percent of the original bill.

a. Design the output for this program; create either sample output or a print chart.
b. Design the hierarchy chart for this program.
c. Design the flowchart for this program.
d. Write pseudocode for this program.

4. Design a program that reads credit card account records and prints payoff schedules for cus-
tomers. Input records contain an account number, customer name, and balance due. For each cus-
tomer, print the account number and name; then print the customer’s payment amount and new
balance each month until the card is paid off. Assume that when the balance reaches $10 or less,
the customer can pay off the account. At the beginning of every month, 1.5 percent interest is
added to the balance, and then the customer makes a payment equal to 5 percent of the current
balance. Assume the customer makes no new purchases.

a. Design the output for this program; create either sample output or a print chart.
b. Design the hierarchy chart for this program.
c. Design the flowchart for this program.
d. Write pseudocode for this program.

5. Assume you have a bank account that compounds interest on a yearly basis. In other words, if you
deposit $100 for two years at 4 percent interest, at the end of one year you will have $104. At the
end of two years, you will have the $104 plus 4 percent of that, or $108.16. Create the logic for a
program that would (1) read in records containing a deposit amount, a term in years, and an inter-
est rate, and (2) for each record, print the running total balance for each year of the term.

a. Design the output for this program; create either sample output or a print chart.
b. Design the hierarchy chart for this program.
c. Design the flowchart for this program.
d. Write pseudocode for this program.

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 258

Exercises 259

6. A school maintains class records in the following format:

CLASS FILE DESCRIPTION
File name: CLASS
FIELD DESCRIPTION DATA TYPE EXAMPLE
Class Code Character CIS111
Section No. Numeric 101
Teacher Name Character Gable
Enrollment Numeric 24
Room Character A213

There is one record for each class section offered in the college. Design the program that would
print as many stickers as a class needs to provide one for each enrolled student, plus one for the
teacher. Each sticker would leave a blank for the student’s (or teacher’s) name, like this:

The border is preprinted, but you must design the program to print all the text you see on the
sticker. (You do not need to worry about the differing font sizes of the sticker text. You do not need
to design a print chart or sample output—the image of the sticker serves as a print chart.)

a. Design the hierarchy chart for this program.
b. Design the flowchart for this program.
c. Write pseudocode for this program.

7. A mail-order company often sends multiple packages per order. For each customer order, print
enough mailing labels to use on each of the separate boxes that will be mailed. The mailing labels
contain the customer’s complete name and address, along with a box number in the form “Box 9 of
9”. For example, an order that requires three boxes produces three labels: Box 1 of 3, Box 2 of 3,
and Box 3 of 3. The file description is as follows:

SHIPPING FILE DESCRIPTION
File name: ORDERS
FIELD DESCRIPTION DATA TYPE EXAMPLE
Title Character Ms
First Name Character Kathy
Last Name Character Lewis
Street Character 847 Pine

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 259

Chapter 6 • Looping260

City Character Aurora
State Character IL
Boxes Numeric 3
Balance Due Numeric 129.95

a. Design the output for this program; create either sample output or a print chart.
b. Design the hierarchy chart for this program.
c. Design the flowchart for this program.
d. Write pseudocode for this program.

8. A secondhand store is having a seven-day sale during which the price of any unsold item drops
10 percent each day. The inventory file includes an item number, description, and original price on
day one. For example, an item that costs $10.00 on the first day costs 10 percent less, or $9.00, on
the second day. On the third day, the same item is 10 percent less than $9.00, or $8.10. Produce a
report that shows the price of the item on each day, one through seven.

a. Design the output for this program; create either sample output or a print chart.
b. Design the hierarchy chart for this program.
c. Design the flowchart for this program.
d. Write pseudocode for this program.

9. The state of Florida maintains a census file in which each record contains the name of a county,
the current population, and a number representing the rate at which the population is increasing
per year. The governor wants a report listing each county and the number of years it will take for
the population of the county to double, assuming the present rate of growth remains constant.

CENSUS FILE DESCRIPTION
File name: CENSUS
FIELD DESCRIPTION DATA TYPE EXAMPLE
County Name Character Dade
Current Population Numeric 525000
Rate of Growth Numeric 0.07

a. Design the output for this program; create either sample output or a print chart.
b. Design the hierarchy chart for this program.
c. Design the flowchart for this program.
d. Write pseudocode for this program.

10. A Human Resources Department wants a report that shows its employees the benefits of saving for
retirement. Produce a report that shows 12 predicted retirement account values for each
employee—the values if the employee saves 5, 10, or 15 percent of his or her annual salary for 10,
20, 30, or 40 years. The department maintains a file in which each record contains the name of an
employee and the employee’s current annual salary. Assume that savings grow at a rate of 8 per-
cent per year.

a. Design the output for this program; create either sample output or a print chart.
b. Design the hierarchy chart for this program.
c. Design the flowchart for this program.
d. Write pseudocode for this program.

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 260

Exercises 261

11. Randy’s Recreational Vehicles pays its salespeople once every three months. Salespeople receive
one-quarter of their annual base salary plus 7 percent of all sales made in the last three-month
period. Randy creates an input file with four records for each salesperson. The first of the four
records contains the salesperson’s name and annual base salary, while each of the three records
that follow contains the name of a month and the monthly sales figure. For example, the first eight
records in the file might contain the following data:

Kimball 20000
April 30000
May 40000
June 60000
Johnson 15000
April 65000
May 78000
June 135500

Because the two types of records contain data in the same format—a character field followed by a
numeric field—you can define one input record format containing two variables that you use with
either type of record. Design the logic for the program that reads a salesperson’s record, and if not
at eof, reads the next three records in a loop, accumulating sales and computing commissions.
For each salesperson, print the quarterly base salary, the three commission amounts, and the total
salary, which is the quarterly base plus the three commission amounts.

a. Design the output for this program; create either sample output or a print chart.
b. Design the hierarchy chart for this program.
c. Design the flowchart for this program.
d. Write pseudocode for this program.

12. Mr. Furly owns 20 apartment buildings. Each building contains 15 units that he rents for $800 per month
each. Design the logic for the program that would print 12 payment coupons for each of the 15 apart-
ments in each of the 20 buildings. Each coupon should contain the building number (1 through 20), the
apartment number (1 through 15), the month (1 through 12), and the amount of rent due.

a. Design the output for this program; create either sample output or a print chart.
b. Design the hierarchy chart for this program.
c. Design the flowchart for this program.
d. Write pseudocode for this program.

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 261

Chapter 6 • Looping262

13. Mr. Furly owns 20 apartment buildings. Each building contains 15 units that he rents. The usual
monthly rent for apartments numbered 1 through 9 in each building is $700; the monthly rent is $850
for apartments numbered 10 through 15. The usual rent is due every month except July and December;
in those months Mr. Furly gives his renters a 50 percent credit, so they owe only half the usual amount.
Design the logic for the program that would print 12 payment coupons for each of the 15 apartments in
each of the 20 buildings. Each coupon should contain the building number (1 through 20), the apart-
ment number (1 through 15), the month (1 through 12), and the amount of rent due.

a. Design the output for this program; create either sample output or a print chart.
b. Design the hierarchy chart for this program.
c. Design the flowchart for this program.
d. Write pseudocode for this program.

DETECTIVE WORK

1. What company’s address is at One Infinite Loop, Cupertino, California?

2. What are fractals? How do they use loops? Find some examples of fractal art on the Web.

UP FOR DISCUSSION

1. If programs could only make decisions or loops, but not both, which structure would you prefer
to retain?

2. Suppose you wrote a program that you suspect is in an infinite loop because it just keeps running
for several minutes with no output and without ending. What would you add to your program to
help you discover the origin of the problem?

3. Suppose you know that every employee in your organization has a seven-digit ID number used for
logging on to the computer system to retrieve sensitive information about their own customers. A
loop would be useful to guess every combination of seven digits in an ID. Are there any circum-
stances in which you should try to guess another employee’s ID number?

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 262

