
7
After studying Chapter 7, you should be able to:

� Understand control break logic

� Perform single-level control breaks

� Use control data within a heading in a control break module

� Use control data within a footer in a control break module

� Perform control breaks with totals

� Perform multiple-level control breaks

� Perform page breaks

CONTROL BREAKS

263

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 263

264 Chapter 7 • Control Breaks

UNDERSTANDING CONTROL BREAK LOGIC

A control break is a temporary detour in the logic of a program. In particular, programmers refer to a program as a
control break program when a change in the value of a variable initiates special actions or causes special or unusual
processing to occur. You usually write control break programs to organize output for programs that handle data records
that are organized logically in groups based on the value in a field. As you read records, you examine the same field in
each record, and when you encounter a record that contains a different value from the ones that preceded it, you per-
form a special action. If you have ever read a report that lists items in groups, with each group followed by a subtotal,
then you have read a type of control break report. For example, you might generate a report that lists all company
clients in order by state of residence, with a count of clients after each state’s client list. See Figure 7-1 for an example
of a report that breaks after each change in state.

Some other examples of control break reports produced by control break programs include:

� All employees listed in order by department number, with a new page started for each
department

� All books for sale in a bookstore in order by category (such as reference or self-help), with a
count following each category of book

� All items sold in order by date of sale, with a different ink color for each new month

FIGURE 7-1: A CONTROL BREAK REPORT WITH TOTALS AFTER EACH STATE

Company Clients by State of Residence

Name City State

Albertson Birmingham Alabama
Davis Birmingham Alabama
Lawrence Montgomery Alabama
 Count for Alabama 3

Smith Anchorage Alaska
Young Anchorage Alaska
Davis Fairbanks Alaska
Mitchell Juneau Alaska
Zimmer Juneau Alaska
 Count for Alaska 5

Edwards Phoenix Arizona
 Count for Arizona 1

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 264

265Performing a Single-Level Control Break to Start a New Page

Each of these reports shares two traits:

� The records used in each report are listed in order by a specific variable: department, state,
category, or date.

� When that variable changes, the program takes special action: starts a new page, prints a count
or total, or switches ink color.

To generate a control break report, your input records must be organized in sequential order based on the field that will
cause the breaks. In other words, if you are going to write a program that produces a report that lists customers by
state, like the one in Figure 7-1, then the records must be grouped by state before you begin processing. Frequently,
grouping by state will mean placing the records in alphabetical order by state, although they could just as easily be
placed in order by population, governor’s last name, or any other factor as long as all of one state’s records are
together. As you grow more proficient in programming logic, you will learn techniques for writing programs that sort
records before you proceed with creating a program that contains control break logic. Programs that sort records take
records that are not in order and rearrange them to be in order, according to the data in some field. For now, assume
that a sorting program has already been used to presort your records before you begin the part of a program that deter-
mines control breaks.

To use control break logic, either the records must arrive already in order in the input file
or you must sort the records yourself. You will learn techniques for processing unsorted
records in Chapter 8. In Chapter 9, you will learn to sort records. It is easier to work with
sorted records than unsorted ones, so you are learning the easier techniques first.

PERFORMING A SINGLE-LEVEL CONTROL BREAK TO START A
NEW PAGE

Suppose you want to print a list of employees, advancing to a new page for each department. Figure 7-2 shows the
input file description, from which you can see that the employee department is a numeric field, and that the file has
been presorted so that the records will arrive in a program in department-number order. Figure 7-3 shows a sample
report with the desired output—a simple list of employee names, with one department per page.

File name: EMPSBYDEPT
Sorted by: Department
FIELD DESCRIPTION DATA TYPE COMMENTS
Department Numeric 0 decimals
Last Name Character 15 characters
First Name Character 15 characters

FIGURE 7-2: EMPLOYEE FILE DESCRIPTION

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 265

266 Chapter 7 • Control Breaks

In the report in Figure 7-3, each new page contains employees from a new department.
Later in this chapter, department numbers will be added to the headings, making this
point clearer to those who read the report.

The basic logic of the program works like this: Each time you read an employee record from the input file, you will determine
whether the employee belongs to the same department as the previous employee. If so, you simply print the employee record
and read another record, without any special processing. If there are 20 employees in a department, these steps are repeated
20 times in a row—read an employee record and print the employee record. However, eventually you will read an employee
record that does not belong to the same department. At that point, before you print the employee record from the new depart-
ment, you must print headings at the top of a new page. Then, you can proceed to read and print employee records that
belong to the new department, and you continue to do so until the next time you encounter an employee in a different depart-
ment. This type of program contains a single-level control break, a break in the logic of the program (pausing or detouring
to print new headings) that is based on the value of a single variable (the department number).

However, there is a slight problem you must solve before you can determine whether a new input record contains the
same department number as the previous input record. When you read a record from an input file, you copy the data
from storage locations (for example, from a disk) to temporary computer memory locations. After they are read, the data
items that represent department, last name, and first name occupy specific physical locations in computer memory. For
each new record that is read from storage, new data must occupy the same positions in memory as the previous record
occupied, and the previous set of data is lost. For example, if you read a record containing data for Donald Travis in
Department 1, when you read the next record for Mary Billings in Department 2, “Mary” replaces “Donald”, “Billings”
replaces “Travis”, and 2 replaces 1. After you read a new record into memory, there is no way to look back at the

FIGURE 7-3: SAMPLE CONTROL BREAK REPORT LISTING EMPLOYEES, WITH EACH DEPARTMENT ON A NEW PAGE

 EMPLOYEES BY DEPARTMENT

LAST NAME FIRST NAME

Anderson Kathryn
Bell George
Garcia Maria
Thompson Olivia

 EMPLOYEES BY DEPARTMENT

LAST NAME FIRST NAME

Billings Mary
Fortune Carol
Jenkins Justin
Sosa Charles

 EMPLOYEES BY DEPARTMENT

LAST NAME FIRST NAME

Kenner Patricia
Lester Linda
Noonan Robert
Travis Donald

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 266

267Performing a Single-Level Control Break to Start a New Page

previous record to determine whether that record had a different department number. The previous record’s data
has been replaced in memory by the new record’s data.

The technique you must use to “remember” the old department number is to create a special variable, called a control
break field, to hold the previous department number. With a control break field, every time you read a record and print
it, you also can save the crucial part of the record that will signal the change or control the program break. In this case,
you want to store the department number in this specially created variable. Comparing the new and old department-
number values will determine when it is time to print headings at the top of a new page.

The mainline logic for the Employees by Department report is the same as the mainline logic for all the other programs
you’ve analyzed so far. It performs a housekeeping() module, after which an eof question controls execution of
a mainLoop() module. At eof, a finish() module executes. See Figure 7-4.

The housekeeping() module for this program begins like others you have seen. You declare variables as shown
in Figure 7-5, including those you will use for the input data: empDept, empLast, and empFirst. You can also
declare variables to hold the headings, and an additional variable that is named oldDept in this example. The pur-
pose of oldDept is to serve as the control break field. Every time you read a record from a new department, you can
save its department number in oldDept before you read the next record. The oldDept field provides you with a
comparison for each new department so you can determine whether there has been a change in value.

start
 perform housekeeping()
 while not eof
 perform mainLoop()
 endwhile
 perform finish()
stop

Yes

eof? mainLoop()

finish()

No

housekeeping()

stop

start

FIGURE 7-4: MAINLINE LOGIC FOR EMPLOYEES BY DEPARTMENT REPORT PROGRAM

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 267

268 Chapter 7 • Control Breaks

Note that it would be incorrect to initialize oldDept to the value of empDept when you declare oldDept in the
housekeeping() module. When you declare variables at the beginning of the housekeeping() module, you
have not yet read the first record; therefore, empDept does not yet have any usable value. You use the value of the
first empDept variable at the end of the module, only after you read the first input record.

In the housekeeping() module, after declaring variables, you also open files, print headings, and read the first
input record. Before you leave the housekeeping() module, you can set the oldDept variable to equal the
empDept value in the first input record. You will write the mainLoop() module of the program to check for any
change in department number; that’s the signal to print headings at the top of a new page. Because you just printed
headings and read the first record, you do not want to print headings again for this first record, so you want to ensure
that empDept and oldDept are equal when you enter mainLoop().

As an alternative to the housekeeping() logic shown here, you can remove printing
headings from the housekeeping() module and set oldDept to any impossible
value—for example, –1. Then, in mainLoop(), the first record will force the control
break, and the headings will print in the newPage() control break routine.

 empRec
 num empDept
 char empLast
 char empFirst
 char head1 = "EMPLOYEES BY DEPARTMENT"
 char head2 = "LAST NAME FIRST NAME"
 num oldDept

declare
variables

open
files

print
head2

read
empRec

return

print
head1

housekeeping()

oldDept
=

empDept

housekeeping()
 declare variables
 open files
 print head1
 print head2
 read empRec
 oldDept = empDept
return

FIGURE 7-5: THE housekeeping() MODULE FOR EMPLOYEES BY DEPARTMENT REPORT PROGRAM

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 268

269Performing a Single-Level Control Break to Start a New Page

The first task within the mainLoop() module is to check whether empDept holds the same value as oldDept.
For the first record, on the first pass through mainLoop(), the values are equal; you set them to be equal in the
housekeeping() module. Therefore, you proceed without performing the newPage() module, printing the first
employee’s record and reading a second record. At the end of the mainLoop() module, shown in Figure 7-6, the
logical flow returns to the mainline logic, shown in Figure 7-4. If it is not eof, the flow travels back into the
mainLoop() module. There, you compare the second record’s empDept to oldDept. If the second record holds
an employee from the same department as the first employee, then you simply print that second employee’s record and
read a third record into memory. As long as each new record holds the same empDept value, you continue reading
and printing, never pausing to perform the newPage() module.

In the flowchart in Figure 7-6, you could change the decision to empDept not =
oldDept. Then, the Yes branch of the decision structure would perform the
newPage() module, and the No branch would be null. This format would more closely
resemble the pseudocode in Figure 7-6, but the logic would be identical to the version
shown here. In other words, you perform newPage() when empDept = oldDept is
false or when empDept not = oldDept is true.

mainLoop()
 if empDept not = oldDept then
 perform newPage()
 endif
 print empLast, empFirst
 read empRec
return

No Yes

newPage()

mainLoop()

empDept
=

oldDept?

print
empLast,
empFirst

return

read
empRec

FIGURE 7-6: THE mainLoop() MODULE FOR EMPLOYEES BY DEPARTMENT REPORT PROGRAM

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 269

270 Chapter 7 • Control Breaks

Eventually, you will read in an employee whose empDept is not the same as oldDept. That’s when the control
break routine, newPage(), executes. The newPage() module must perform two tasks:

� It must print headings at the top of a new page.

� It must update the control break field.

Figure 7-7 shows the newPage() module.

Notice that the steps in the newPage() module mimic steps in the housekeeping()
module. You take advantage of this coincidence later in this chapter.

In Chapter 4, you learned that specific programming languages each provide you with a
means to physically advance printer paper to the top of a page. Usually, you insert a
language-specific code just before the first character in the first heading that will appear
on a page. For this book, if a sample report or print chart shows a heading printing at the
top of the page, then you can assume that printing the heading causes the paper in the
printer to advance to the top of a new page. The appropriate language-specific codes can
be added when you code the program.

When you read an employee record in which empDept is not the same as oldDept, you cause a break in the nor-
mal flow of the program. The new employee record must “wait” while headings print and the control break field
oldDept acquires a new value. After the oldDept field has been updated, and before the mainLoop() module
ends, the waiting employee record prints on the new page. When you read the next employee record (and it is not
eof), the mainLoop() module is reentered and the next employee’s empDept field is compared to the updated
oldDept field. If the new employee works in the same department as the one just preceding, then normal processing
continues with the print-and-read statements.

newPage()
 print head1
 print head2
 oldDept = empDept
return

return

print
head2

print
head1

newPage()

oldDept
=

empDept

FIGURE 7-7: THE newPage() MODULE FOR EMPLOYEES BY DEPARTMENT REPORT PROGRAM

TIP�

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 270

271Performing a Single-Level Control Break to Start a New Page

The newPage() module in the employee report program performs two tasks required in all control break modules:

� It performs any necessary processing for the new group—in this case, it prints headings.

� It updates the control break field—in this case, the oldDept field.

As an alternative to updating the control break field within the control break routine, you
could set oldDept equal to empDept just before you read each record. However, if
there are 200 employees in Department 55, then you set oldDept to the same value 200
times. It’s more efficient to set oldDept to a different value only when there is a change
in the value of the department.

The finish() module for the Employees by Department report program requires only that you close the files. See
Figure 7-8.

Notice that in the control break program described in Figures 7-4 through 7-8, the department numbers of employees
in the input file do not have to follow each other incrementally. That is, the departments might be 1, 2, 3, and so on, but
they also might be 1, 4, 12, 35, and so on. A control break occurs when there is a change in the control break field; the
change does not necessarily have to be a numeric change of 1.

Figure 7-9 shows the entire Employees by Department control break program.

finish()
 close files
return

return

close
files

 finish()

FIGURE 7-8: THE finish() MODULE FOR EMPLOYEES BY DEPARTMENT REPORT PROGRAM

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 271

272 Chapter 7 • Control Breaks

start
 perform housekeeping()
 while not eof
 perform mainLoop()
 endwhile
 perform finish()
stop

housekeeping()
 declare variables
 open files
 print head1
 print head2
 read empRec
 oldDept = empDept
return

mainLoop()
 if empDept not = oldDept then
 perform newPage()
 endif
 print empLast, empFirst
 read empRec
return

newPage()
 print head1
 print head2
 oldDept = empDept
return

finish()
 close files
returnNo Yes

newPage()

mainLoop()

empDept
=

oldDept?

print
empLast,
empFirst

return

read
empRec

return

print
head2

print
head1

newPage()

oldDept
=

empDept

return

close
files

 finish()

FIGURE 7-9: THE EMPLOYEES BY DEPARTMENT CONTROL BREAK PROGRAM

Yes

eof? mainLoop()

finish()

No

housekeeping()

stop

start

 empRec
 num empDept
 char empLast
 char empFirst
 char head1 = "EMPLOYEES BY DEPARTMENT"
 char head2 = "LAST NAME FIRST NAME"
 num oldDept

declare
variables

open
files

print
head2

read
empRec

return

print
head1

housekeeping()

oldDept
=

empDept

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 272

273Using Control Data within a Heading in a Control Break Module

USING CONTROL DATA WITHIN A HEADING IN A CONTROL
BREAK MODULE

In the Employees by Department report program example in Figure 7-9, the control break module printed constant
headings at the top of each new page; in other words, each page heading was the same. However, sometimes you
need to use control data within the heading. For example, consider the sample report shown in Figure 7-10.

The difference between Figure 7-3 and Figure 7-10 lies in the heading. Figure 7-10 shows variable data in the heading—
a different department number prints at the top of each page of employees. To create this kind of program, you must
make two changes in the existing program. First, you modify the newPage() module, as shown in Figure 7-11.
Instead of printing a fixed heading on each new page, you print a heading that contains two parts: a constant beginning
(“EMPLOYEES FOR DEPARTMENT”) and a variable ending (the department number for the employees who appear on
the page). Notice that you use the empDept number that belongs to the employee record that is waiting to be printed
while this control break module executes. Additionally, you must modify the housekeeping() module to ensure
that the first heading on the report prints correctly. As Figure 7-11 shows, you must modify the housekeeping()
module from Figure 7-5 so that you read the first empRec prior to printing the headings. The reason is that you must
know the first employee’s department number before you can print the heading for the top of the first page.

FIGURE 7-10: SAMPLE REPORT FOR EMPLOYEES BY DEPARTMENT IN WHICH DEPARTMENT NUMBERS APPEAR
IN THE HEADING

 EMPLOYEES BY DEPARTMENT 7

LAST NAME FIRST NAME

Anderson Kathryn
Bell George
Garcia Maria
Thompson Olivia

 EMPLOYEES BY DEPARTMENT 5

LAST NAME FIRST NAME

Billings Mary
Fortune Carol
Jenkins Justin
Sosa Charles

 EMPLOYEES BY DEPARTMENT 1

LAST NAME FIRST NAME

Kenner Patricia
Lester Linda
Noonan Robert
Travis Donald

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 273

274 Chapter 7 • Control Breaks

newPage()
 print "EMPLOYEES FOR
 DEPARTMENT ", empDept
 print head2
 oldDept = empDept
return

housekeeping()
 declare variables
 open files
 read empRec
 oldDept = empDept
 print "EMPLOYEES FOR
 DEPARTMENT ", empDept
 print head2
return

FIGURE 7-11: MODIFIED newPage() AND housekeeping() MODULES FOR EMPLOYEES BY
DEPARTMENT REPORT THAT DISPLAYS THE DEPARTMENT NUMBER IN THE HEADING

newPage()

print “EMPLOYEES FOR
DEPARTMENT ”, empDept

oldDept =
empDept

return

housekeeping()

declare
variables

open files

read empRec

oldDept =
empDept

print “EMPLOYEES FOR
DEPARTMENT ”, empDept

print head2

return

print head2

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 274

275Using Control Data within a Footer in a Control Break Module

USING CONTROL DATA WITHIN A FOOTER IN A CONTROL
BREAK MODULE

In the previous section, you learned how to use control break data in a heading. Figure 7-12 shows a different report
format. For this report, the department number prints following the employee list for the department. A message that
prints at the end of a page or other section of a report is called a footer. Headings usually require information about the
next record; footers usually require information about the previous record.

Figure 7-13 shows a program that prints a list of employees by department, including a footer that displays the depart-
ment number at the end of each department’s list. When you write a program that produces the report like the one
shown in Figure 7-12, you continuously read records with empLast, empFirst, and empDept fields. Each time
empDept does not equal oldDept, it means that you have reached a department break and that you should per-
form the newPage() module. The newPage() module has three tasks:

� It must print the footer for the previous department at the bottom of the employee list.

� It must print headings at the top of a new page.

� It must update the control break field.

FIGURE 7-12: SAMPLE REPORT FOR EMPLOYEES BY DEPARTMENT IN WHICH DEPARTMENT NUMBERS APPEAR
IN THE FOOTER

 EMPLOYEES BY DEPARTMENT

LAST NAME FIRST NAME

Anderson Kathryn
Bell George
Garcia Maria
Thompson Olivia

END OF DEPARTMENT 7 EMPLOYEES BY DEPARTMENT

LAST NAME FIRST NAME

Billings Mary
Fortune Carol
Jenkins Justin
Sosa Charles

END OF DEPARTMENT 5 EMPLOYEES BY DEPARTMENT

LAST NAME FIRST NAME

Kenner Patricia
Lester Linda
Noonan Robert
Travis Donald

END OF DEPARTMENT 1

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 275

276 Chapter 7 • Control Breaks

start
 perform housekeeping()
 while not eof
 perform mainLoop()
 endwhile
 perform finish()
stop

housekeeping()
 declare variables
 open files
 print head1
 print head2
 read empRec
 oldDept = empDept
return

mainLoop()
 if empDept not = oldDept then
 perform newPage()
 endif
 print empLast, empFirst
 read empRec

return

newPage()
 print foot, oldDept
 print head1
 print head2
 oldDept = empDept

return

finish()
 print foot, oldDept
 close files

return

Yes

eof? mainLoop()

finish()

No

housekeeping()

stop

start

finish()

print foot,
oldDept

close files

return

print foot,
oldDept

print head1

print head2

oldDept = empDept

return

newPage()

YesempDept =
oldDept?

newPage()

No

print empLast,
empFirst

read empRec

return

mainLoop()

open files

print head1

print head2

read empRec

 empRec
 num empDept
 char empLast
 char empFirst
 char head1 = “EMPLOYEES BY DEPARTMENT”
 char head2 = “LAST NAME FIRST NAME”
 char foot = “END OF DEPARTMENT”
 num oldDept

return

housekeeping()

declare variables

oldDept = empDept

FIGURE 7-13: PROGRAM THAT LISTS EMPLOYEES BY DEPARTMENT, INCLUDING DEPARTMENT NUMBER
IN THE FOOTER

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 276

277Using Control Data within a Footer in a Control Break Module

When the newPage() module prints the footer at the bottom of the old page, you must use the oldDept number.
For example, assume you have printed several employees from Department 12. When you read a record with an
employee from Department 13 (or any other department), the first thing you must do is print “END OF DEPARTMENT 12”.
You print the correct department number by accessing the value of oldDept, not empDept. Then, you can print the
other headings at the top of a new page and update oldDept to the current empDept, which in this example is 13.

The newPage() module in Figure 7-13 performs three tasks required in all control break routines: it processes the
previous group, processes the new group, and updates the control break field.

When you printed the department number in the header in the example in the previous section, you needed a special step in
the housekeeping() module. When you print the department number in the footer, the finish() module requires
an extra step. Imagine that the last five records in the input file include two employees from Department 78, Amy and Bill,
and three employees from Department 85, Carol, Don, and Ellen. The logical flow proceeds as follows:

1. After the first Department 78 employee (Amy) prints, you read the second Department 78 employee (Bill).

2. At the top of the mainLoop() module, Bill’s department is compared to oldDept. The depart-

ments are the same, so the second Department 78 employee (Bill) is printed. Then, you read the

first Department 85 employee (Carol).

3. At the top of mainLoop(), Carol’s empDept and oldDept are different, so you perform

the newPage() module while Carol’s record waits in memory.

4. In the newPage() module, you print “END OF DEPARTMENT 78”. Then, you print headings at

the top of the next page. Finally, you set oldDept to 85, and then return to mainLoop().

5. Back in mainLoop(), you print a line of data for the first Department 85 employee (Carol),

whose record waited while newPage() executed. Then, you read the record for the second

Department 85 employee (Don).

6. At the top of mainLoop(), you compare Don’s department number to oldDept. The numbers

are the same, so you print Don’s employee data and read in the last Department 85 employee (Ellen).

7. At the top of mainLoop(), you determine that Ellen has the same department number, so you

print Ellen’s data and attempt to read from the input file, where you encounter eof.

8. The eof decision in the mainline logic sends you to the finish() module.

You have printed the last Department 85 employee (Ellen), but the department footer for Department 85 has not
printed. That’s because every time you attempt to read an input record, you don’t know whether there will be more
records. The mainline logic checks for the eof condition, but if it determines that it is eof, the logic does not flow
back into the mainLoop() module, where the newPage() module can execute.

To print the footer for the last department, you must print a footer one last time within the finish() routine. The
finish() module that is part of the complete program in Figure 7-13 illustrates this point. Taking this action is simi-
lar to printing the first heading in the housekeeping() module. The very first heading prints separately from all
the others at the beginning; the very last footer must print separately from all the others at the end.

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 277

278 Chapter 7 • Control Breaks

PERFORMING CONTROL BREAKS WITH TOTALS

Suppose you run a bookstore, and one of the files you maintain is called BOOKFILE, which has one record for every book title
that you carry. Each record has fields such as bookTitle, bookAuthor, bookCategory (fiction, reference, self-
help, and so on), bookPublisher, and bookPrice, as shown in the file description in Figure 7-14.

Suppose you want to print a list of all the books that your store carries, with a total number of books at the bottom of the list,
as shown in the sample report in Figure 7-15. You can use the logic shown in Figure 7-16. In the main loop module, named
bookListLoop(), you print a book title, add 1 to grandTotal, and read the next record. At the end of the program,
in the closeDown() module, you print grandTotal before you close the files. You can’t print grandTotal any
earlier in the program because the grandTotal value isn’t complete until the last record has been read.

FIGURE 7-15: SAMPLE BOOK LIST REPORT

BOOK LIST

A Brief History of Time

The Scarlet Letter

Math Magic

She’s Come Undone

The Joy of Cooking

Walden

A Bridge Too Far

The Time Traveler’s Wife

The DaVinci Code

Programming Logic and Design

Forever Amber

Total number of book titles 512

File name: BOOKFILE
Sorted by: Category
FIELD DESCRIPTION DATA TYPE COMMENTS
Title Character 30 characters
Author Character 15 characters
Category Character 15 characters
Publisher Character 15 characters
Price Numeric 2 decimals

FIGURE 7-14: BOOKFILE FILE DESCRIPTION

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 278

279Performing Control Breaks with Totals

bookRec
 char bookTitle
 char bookAuthor
 char bookCategory
 char bookPublisher
 num bookPrice
char heading = "BOOK LIST"
num grandTotal = 0

Yes

eof? bookListLoop()

closeDown()

No

startUp()

stop

start

open
files

read
bookRec

return

print
heading

startUp()

declare
variables

bookListLoop()

print
bookTitle

return

grandTotal =
grandTotal +1

read
bookRec

closeDown()

print “Total number
of book titles”,

grandTotal

return

close
files

start
 perform startUp()
 while not eof
 perform bookListLoop()
 endwhile
 perform closeDown()
stop

startUp()
 declare variables
 open files
 print heading
 read bookRec
return

bookListLoop()
 print bookTitle
 grandTotal = grandTotal + 1
 read bookRec
return

closeDown()
 print "Total number of book titles", grandTotal
 close files
return

FIGURE 7-16: FLOWCHART AND PSEUDOCODE FOR BOOKSTORE PROGRAM

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 279

280 Chapter 7 • Control Breaks

The logic of the book list report program is pretty straightforward. Suppose, however, that you decide you want a count for
each category of book rather than just one grand total. For example, if all the book records contain a category that is either fic-
tion, reference, or self-help, then the book records might be sorted in alphabetical order by category, and the output would
consist of a list of all fiction books first, followed by a count; then all reference books, followed by a count; and finally all self-
help books, followed by a count. The report is a control break report, and the control break field is bookCategory. See
Figure 7-17 for a sample report.

To produce the report with subtotals by category, you must declare two new variables:previousCategory and
categoryTotal. Every time you read a book record, you compare bookCategory to previousCategory;
when there is a category change, you print the count of books for the previous category. The categoryTotal vari-
able holds that count. See Figure 7-18.

FIGURE 7-17: SAMPLE REPORT LISTING BOOKS BY CATEGORY WITH CATEGORY COUNTS

BOOK LIST

The Scarlet Letter
She’s Come Undone
A Bridge Too Far
The Time Traveler’s Wife
The DaVinci Code
Forever Amber

 Category Count 6

A Brief History of Time
Math Magic

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 280

281Performing Control Breaks with Totals

Yes

eof? bookListLoop()

closeDown()

No

startUp()

stop

start

start
 perform startUp()
 while not eof
 perform bookListLoop()
 endwhile
 perform closeDown()
stop

startUp()
 declare variables
 open files
 print heading
 read bookRec
 previousCategory = bookCategory
return

bookListLoop()
 if bookCategory not equal to previousCategory then
 perform categoryChange()
 endif
 print bookTitle
 categoryTotal = categoryTotal + 1
 read bookRec
return

categoryChange()
 print "Category count", categoryTotal
 grandTotal = grandTotal + categoryTotal
 categoryTotal = 0
 previousCategory = bookCategory
return

closeDown()
 perform categoryChange()
 print "Total number of book titles", grandTotal
 close files
return

bookRec
 char bookTitle
 char bookAuthor
 char bookCategory
 char bookPublisher
 num bookPrice
char heading = "BOOK LIST"
num grandTotal = 0
num categoryTotal = 0
char previousCategory

open
files

read
bookRec

return

print
heading

startUp()

declare
variables

previousCategory
= bookCategory

categoryChange()

print “Category
count”,

categoryTotal

return

grandTotal = grandTotal
+ categoryTotal

previousCategory
= bookCategory

categoryTotal = 0

closeDown()

return

close
files

categoryChange()

print “Total
number of book titles”,

grandTotal

print
bookTitle

categoryTotal =
categoryTotal + 1

read
bookRec

YesNo bookCategory
=

previousCategory?

categoryChange()

bookListLoop()

return

FIGURE 7-18: FLOWCHART AND PSEUDOCODE FOR BOOKSTORE PROGRAM CONTAINING A COUNT AFTER EACH
BOOK CATEGORY GROUP

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 281

282 Chapter 7 • Control Breaks

When you draw a flowchart, it usually is clearer to ask questions positively, as in
“bookCategory = previousCategory?”, and draw appropriate actions on the
Yes or No side of the decision. In pseudocode, when action occurs only on the No side of
a decision, it is usually clearer to ask negatively, as in “bookCategory not equal
to previousCategory?” Figure 7-18 uses these tactics.

When you read the first record from the input file in the startUp() module of the program in Figure 7-18, you save the
value of bookCategory in the previousCategory variable. Every time a record enters the
bookListLoop() module, the program checks to see if the current record represents a new category of work, by
comparing bookCategory to previousCategory. When you process the first record, the categories match,
so the book title prints, the categoryTotal increases by 1, and you read the next record. If this next record’s
bookCategory value matches the previousCategory value, processing continues as usual: printing a line
and adding 1 to categoryTotal.

At some point, bookCategory for an input record does not match previousCategory. At that point, you
perform the categoryChange() module. Within the categoryChange() module, you print the count of the
previous category of books. Then, you add categoryTotal to grandTotal. Adding a total to a higher-level
total is called rolling up the totals.

You could write bookListLoop() so that as you process each book, you add 1 to categoryTotal and add 1
to grandTotal. Then, there would be no need to roll totals up in the categoryChange() module. If there are
120 fiction books, you add 1 to categoryTotal 120 times; you also would add 1 to grandTotal 120 times.
This technique would yield correct results, but you can eliminate executing 119 addition instructions by waiting until
you have accumulated all 120 category counts before adding the total figure to grandTotal.

This control break report containing totals performs the five tasks required in all control break routines that include totals:

� It performs any necessary processing for the previous group—in this case, it prints
categoryTotal.

� It rolls up the current-level totals to the next higher level—in this case, it adds
categoryTotal to grandTotal.

� It resets the current level’s totals to zero—in this case, categoryTotal is set to zero.

� It performs any necessary processing for the new group—in this case, there is none.

� It updates the control break field—in this case, previousCategory.

The closeDown() routine for this type of program is more complicated than it might first appear. It seems as
though you should print grandTotal, close the files, and return to the mainline logic. However, when you read the
last record, the mainline eof decision sends the logical flow to the closeDown() routine. You have not printed the
last categoryTotal, nor have you added the count for the last category to grandTotal. You must take care
of both these tasks before printing grandTotal. You can perform these two tasks as separate steps in
closeDown(), but it is often simplest just to remember to perform the control break routine
categoryChange() one last time. The categoryChange() module already executes after every previous
category completes—that is, every time you encounter a new category during the execution of the program. You also

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 282

283Performing Multiple-Level Control Breaks

can execute this module after the final category completes, at the end of the file. Encountering the end of the file is
really just another form of break; it signals that the last category has finally completed. The categoryChange()
module prints the category total and rolls the totals up to the grandTotal level.

When you call the categoryChange() module from within closeDown(), it per-
forms a few tasks you don’t need, such as setting the value of previousCategory.
You have to weigh the convenience of calling the already-written categoryChange()
module, and executing a few unneeded statements, against taking the time to write a new
module that would execute only the statements that are absolutely necessary.

It is very important to note that this control break program works whether there are three categories of books or 300.
Note further that it does not matter what the categories of books are. For example, the program never asks
bookCategory = “fiction”?. Instead, the control of the program breaks when the category field changes,
and it is in no way dependent on what that change is.

PERFORMING MULTIPLE-LEVEL CONTROL BREAKS

Let’s say your bookstore from the last example is so successful that you have a chain of them across the country.
Every time a sale is made, you create a record with the fields bookTitle, bookPrice, bookCity, and
bookState. You want a report that prints a summary of books sold in each city and each state, similar to the one
shown in Figure 7-19. A report such as this one, which does not include any information about individual records, but
instead includes only group totals, is a summary report.

This program contains a multiple-level control break—that is, the normal flow of control (reading records and count-
ing book sales) breaks away to print totals in response to more than just one change in condition. In this report, a con-
trol break occurs in response to either (or both) of two conditions: when the value of the bookCity variable changes,
as well as when the value of the bookState variable changes.

Just as the file you use to create a single-level control break report must be presorted, so must the input file you use
to create a multiple-level control break report. The input file that you use for the book sales report must be sorted by
bookCity within bookState. That is, all of one state’s records—for example, all records from IA—come first;
then all of the records from another state, such as IL, follow. Within any one state, all of one city’s records come first;
then all of the next city’s records follow. For example, the input file that produces the report shown in Figure 7-19 con-
tains 200 records for book sales in Ames, IA, followed by 814 records for book sales in Des Moines, IA. The basic pro-
cessing entails reading a book sale record, adding 1 to a counter, and reading the next book sale record. At the end of
any city’s records, you print a total for that city; at the end of a state’s records, you print a total for that state.

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 283

284 Chapter 7 • Control Breaks

The housekeeping() module of the Book Sales by City and State report program looks similar to the house-
keeping() module in the previous control break program, in which there was a single control break for change in
category of book. In each program, you declare variables, open files, and read the first record. This time, however, there
are multiple fields to save and compare to the old fields. Here, you declare two special variables, prevCity and
prevState, as shown in Figure 7-20. In addition, the Book Sales report shows three kinds of totals, so you declare
three new variables that will serve as holding places for the totals in the Book Sales report: cityCounter,
stateCounter, and grandTotal, which are all initialized to zero.

FIGURE 7-19: SAMPLE RUN OF BOOK SALES BY CITY AND STATE REPORT

BOOK SALES BY CITY AND STATE

Ames 200
Des Moines 814
Iowa City 291

Total for IA 1305
Chicago 1093
Crystal Lake 564
McHenry 213
Springfield 365

Total for IL 2235
Springfield 289
Worcester 100

Total for MA 389
Grand Total 3929

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 284

285Performing Multiple-Level Control Breaks

This program prints both bookState and bookCity totals, so you need two control break modules,
cityBreak() and stateBreak(). Every time there is a change in the bookCity field, the cityBreak()
routine performs these standard control break tasks:

� It performs any necessary processing for the previous group—in this case, it prints totals for the
previous city.

� It rolls up the current-level totals to the next higher level—in this case, it adds the city count to
the state count.

� It resets the current level’s totals to zero—in this case, it sets the city count to zero.

� It performs any necessary processing for the new group—in this case, there is none.

� It updates the control break field—in this case, it sets prevCity to bookCity.

Within the stateBreak() module, you must perform one new type of task, as well as the control break tasks you
are familiar with. The new task is the first task: Within the stateBreak() module, you must first perform

housekeeping()
 declare variables
 open files
 perform headings()
 read bookRec
 prevCity = bookCity
 prevState = bookState
return

bookRec
 char bookTitle
 num bookPrice
 char bookCity
 char bookState
char head1 ="BOOK SALES BY CITY AND STATE"
char prevCity
char prevState
num cityCounter = 0
num stateCounter = 0
num grandTotal = 0

open
files

read
bookRec

return

housekeeping()

declare
variables

prevCity =
bookCity

prevState =
bookState

headings()

FIGURE 7-20: FLOWCHART AND PSEUDOCODE FOR housekeeping() MODULE IN BOOK SALES BY CITY
AND STATE REPORT PROGRAM

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 285

286 Chapter 7 • Control Breaks

cityBreak() automatically (because if there is a change in the state, there must also be a change in the city). The
stateBreak() module does the following:

� It processes the lower-level break—in this case, cityBreak().

� It performs any necessary processing for the previous group—in this case, it prints totals for the
previous state.

� It rolls up the current-level totals to the next higher level—in this case, it adds the state count to
the grand total.

� It resets the current level’s totals to zero—in this case, it sets the state count to zero.

� It performs any necessary processing for the new group—in this case, there is none.

� It updates the control break field—in this case, it sets prevState to bookState.

The mainLoop() module of this multiple-level control break program checks for any change in two different variables:
bookCity and bookState. When bookCity changes, a city total is printed, and when bookState
changes, a state total is printed. As you can see from the sample report in Figure 7-19, all city totals for each state print
before the state total for the same state, so it might seem logical to check for a change in bookCity before check-
ing for a change in bookState. However, the opposite is true. For the totals to be correct, you must check for any
bookState change first. You do so because when bookCity changes, bookState also might be changing,
but when bookState changes, it means bookCity must be changing.

Consider the sample input records shown in Figure 7-21, which are sorted by bookCity within bookState. When
you get to the point in the program where you read the first Illinois record (The Scarlet Letter), “Iowa City” is the value
stored in the field prevCity, and “IA” is the value stored in prevState. Because the values in the bookCity
and bookState variables in the new record are both different from the prevCity and prevState fields, both a
city and state total will print. However, consider the problem when you read the first record for Springfield, MA (Walden).
At this point in the program, prevState is IL, but prevCity is the same as the current bookCity; both contain
Springfield. If you check for a change in bookCity, you won’t find one at all, and no city total will print, even though
Springfield, MA, is definitely a different city from Springfield, IL.

Cities in different states can have the same name; if two cities with the same name follow each other in your control break pro-
gram and you have written it to check for a change in city name first, the program will not recognize that you are working with a

FIGURE 7-21: SAMPLE DATA FOR BOOK SALES BY CITY AND STATE REPORT

TITLE PRICE CITY STATE

A Brief History of Time 20.00 Iowa City IA
The Scarlet Letter 15.99 Chicago IL
Math Magic 4.95 Chicago IL
She’s Come Undone 12.00 Springfield IL
The Joy of Cooking 2.50 Springfield IL
Walden 9.95 Springfield MA
A Bridge Too Far 3.50 Springfield MA

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 286

287Performing Multiple-Level Control Breaks

new city. Instead, you should always check for the major-level break first. If the records are sorted by bookCity within
bookState, then a change in bookState causes a major-level break, and a change in bookCity causes a minor-
level break.When the bookState value “MA” is not equal to the prevState value “IL”, you force cityBreak(),
printing a city total for Springfield, IL, before a state total for IL and before continuing with the Springfield, MA, record. You check
for a change in bookState first, and if there is one, you perform cityBreak(). In other words, if there is a change in
bookState, there is an implied change in bookCity, even if the cities happen to have the same name.

If you needed totals to print by bookCitywithin a field defined as bookCounty within
bookState, you could say you have minor-, intermediate-, and major-level breaks.

Figure 7-22 shows the mainLoop() module for the Book Sales by City and State report program. You check for a change
in the bookState value. If there is no change, you check for a change in the bookCity value. If there is no change
there either, you add 1 to the counter for the city and read the next record. When there is a change in the bookCity
value, you print the city total and add the city total to the state total. When there is a change in the bookState value, you
perform the break routine for the last city in the state, and then you print the state total and add it to the grand total.

mainLoop()
ƒƒƒƒƒifƒbookStateƒnotƒequalƒprevStateƒthen
ƒƒƒƒƒƒƒƒƒƒƒperformƒstateBreak()
ƒƒƒƒƒelse
ƒƒƒƒƒƒƒƒƒƒƒifƒbookCityƒnotƒequalƒprevCityƒthen
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒperformƒcityBreak()
ƒƒƒƒƒƒƒƒƒƒƒendif
ƒƒƒƒƒendif
ƒƒƒƒƒcityCounterƒ=ƒcityCounterƒ+ƒ1
ƒƒƒƒƒreadƒbookRec
return

No Yes

No YesstateBreak()

FIGURE 7-22: FLOWCHART AND PSEUDOCODE FOR mainLoop() FOR BOOK SALES BY CITY AND STATE
REPORT PROGRAM

mainLoop()

cityBreak()

bookCity
=

prevCity?

return

cityCounter =
cityCounter + 1

read
bookRec

bookState
=

prevState?

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 287

288 Chapter 7 • Control Breaks

Figures 7-23 and 7-24 show the stateBreak() and cityBreak() modules. The two modules are very similar;
the stateBreak() routine contains just one extra type of task. When there is a change in bookState, you per-
form cityBreak() automatically before you perform any of the other necessary steps to change states.

The sample report containing book sales by city and state shows that you print the grand total for all book sales, so
within the closeDown() module, you must print the grandTotal variable. Before you can do so, however, you
must perform both the cityBreak() and the stateBreak() modules one last time. You can accomplish this
by performing stateBreak(), because the first step within stateBreak() is to perform cityBreak().

Consider the sample data shown in Figure 7-21. While you continue to read records for books sold in Springfield, MA,
you continue to add to the cityCounter for that city. At the moment you attempt to read one more record past the

FIGURE 7-24: FLOWCHART AND PSEUDOCODE FOR
cityBreak() MODULE

print prevCity,
cityCounter

cityBreak()

return

stateCounter =
stateCounter +

cityCounter

cityCounter = 0

prevCity =
bookCity

cityBreak()
ƒƒƒƒ print prevCity, cityCounter
ƒƒƒƒƒstateCounter = stateCounter + cityCounter
ƒƒƒƒƒcityCounter = 0
ƒƒƒƒƒprevCity = bookCity
return

FIGURE 7-23: FLOWCHART AND PSEUDOCODE FOR
stateBreak() MODULE

cityBreak()

stateBreak()

return

stateCounter = 0

print “Total for”,
prevState,

stateCounter

grandTotal =
grandTotal +
stateCounter

prevState =
bookState

stateBreak()
ƒƒƒƒƒperform cityBreak()
ƒƒƒƒƒprint "Total for", prevState, stateCounter
ƒƒƒƒƒgrandTotal = grandTotal + stateCounter
ƒƒƒƒƒstateCounter = 0
ƒƒƒƒƒprevState = bookState
return

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 288

289Performing Page Breaks

end of the file, you do not know whether there will be more records; therefore, you have not yet printed either the
cityCounter for Springfield or the stateCounter for MA. In the closeDown() module, you perform
stateBreak(), which immediately performs cityBreak(). Within cityBreak(), the count for Springfield
prints and rolls up to the stateCounter. Then, after the logic transfers back to the stateBreak() module, the
total for MA prints and rolls up to grandTotal. Finally, you can print grandTotal, as shown in Figure 7-25.

Every time you write a program where you need control break routines, you should check whether you need to com-
plete each of the following tasks within the modules:

� Performing the lower-level break, if any

� Performing any control break processing for the previous group

� Rolling up the current-level totals to the next higher level

� Resetting the current level’s totals to zero

� Performing any control break processing for the new group

� Updating the control break field

closeDown()
ƒƒƒƒƒperform stateBreak()
ƒƒƒƒƒprint "Grand Total", grandTotal
ƒƒƒƒƒclose files
return

FIGURE 7-25: FLOWCHART AND PSEUDOCODE FOR closeDown() MODULE

stateBreak()

closeDown()

return

print
“Grand Total”,

grandTotal

close files

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 289

290 Chapter 7 • Control Breaks

PERFORMING PAGE BREAKS

Many business programs use a form of control break logic to start a new page when a printed page fills up with output.
In other words, you might want the change to a new page to be based on the number of lines already printed, rather
than on the contents of an input field, such as department number. The logic in these programs involves counting the
lines printed, pausing to print headings when the counter reaches some predetermined value, and then going on. This
common business task is just another example of providing a break in the usual flow of control.

Some programmers may prefer to reserve the term control break for situations in which
the break is based on the contents of one of the fields in an input record, rather than on the
contents of a work field such as a line counter.

Let’s say you have a file called CUSTOMERFILE containing 1000 customers, with two character fields that you have
decided to call custLast and custFirst. You want to print a list of these customers, 60 detail lines to a page.
The mainline logic of the program is familiar (see Figure 7-26). The only new feature is a variable called a line counter.
You will use a line-counter variable to keep track of the number of printed lines, so that you can break to a new page
after printing 60 lines.

You first learned about detail lines in Chapter 3. Detail lines contain individual record
data, as opposed to summary lines, which typically contain counts, totals, or other group
information culled from multiple records.

start
 perform getReady()
 while not eof
 perform produceReport()
 endwhile
 perform cleanUp()
stop

Yes

eof? produceReport()

cleanUp()

No

getReady()

stop

start

FIGURE 7-26: MAINLINE LOGIC OF CUSTOMER REPORT PROGRAM

TIP�

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 290

291Performing Page Breaks

When creating a printed report, you need to clarify whether the user wants a specific
number of total lines per page, including headings, or a specific number of detail lines
per page following the headings. In other words, you must determine whether headings
should “count” as part of the number of lines requested.

Although you might require any specific number of lines per page, this example uses 60
because it represents a commonly used limit. Printing is most legible with the least waste
at about six lines per inch, so 60 lines fit comfortably on standard 11-inch paper.

Within the getReady() module (Figure 7-27), you declare the variables, open the files, print the headings, and read
the first record. Within the produceReport() module (Figure 7-28), you compare lineCounter to 60. When
you process the first record, lineCounter is 0, so you print the record, add 1 to lineCounter, and read the
next record.

getReady()
 declare variables
 open files
 print head1
 print head2
 read custRec
return

custRec
 char custLast
 char custFirst
char head1 = "Customer List"
char head2 = "Last name First name"
num lineCounter = 0

open files

return

getReady()

declare variables

print head1

print head2

read custRec

FIGURE 7-27: THE getReady() MODULE FOR CUSTOMER REPORT PROGRAM

TIP�

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 291

292 Chapter 7 • Control Breaks

In Figure 7-27, instead of printing head1 and head2, you could perform a module that starts a new page. Figure 7-29
shows a startNewPage()module that the getReady()module could call.

startNewPage()
 print head1
 print head2
 lineCounter = 0
return

FIGURE 7-29: THE startNewPage() MODULE FOR CUSTOMER REPORT PROGRAM

print head1

lineCounter = 0

print head2

return

startNewPage()

produceReport()
 if lineCounter = 60 then
 perform startNewPage()
 endif
 print custLast, custFirst
 lineCounter = lineCounter + 1
 read custRec
return

FIGURE 7-28: THE produceReport() MODULE FOR CUSTOMER REPORT PROGRAM

lineCounter
= 60?

startNewPage()

Yes

print custLast,
custFirst

lineCounter =
lineCounter + 1

read custRec

No

return

produceReport()

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 292

293Performing Page Breaks

On every cycle through the produceReport() module, you check the line counter to see if it is 60 yet. When the
first record is printed, lineCounter is 1. You read the second record, and if there is a second record (that is, if it is
not eof), you return to the top of the produceReport() module. In that module, you compare lineCounter
to 60, print another line, and add 1 to lineCounter, making it equal to 2.

After 60 records are read and printed,lineCounter holds a value of 60. When you read the 61st record (and if it is
not eof), you enter the produceReport() module for the 61st time. The answer to the question
lineCounter = 60? is Yes, and you break to perform the startNewPage() module. The
startNewPage() module is a control break routine.

The startNewPage() module, shown in Figure 7-29, must print the headings that appear at the top of a new
page, and it must set lineCounter back to zero. If you neglect to reset lineCounter, its value will increase
with each successive record and never be equal to 60 again. When resetting lineCounter for a new page, you
force execution of the startNewPage() module after 60 more records (120 total) print.

The startNewPage() module is simpler than many control break modules because no record counters or accumu-
lators are being maintained. In fact, the startNewPage() module must perform only two of the tasks you have
seen required by control break routines.

� It does not perform the lower-level break, because there is none.

� It does not perform any control break processing for the previous group, because there is none.

� It does not roll up the current-level totals to the next higher level, because there are no totals.

� It does not reset the current level’s totals to zero, because there are no totals (other than
lineCounter, which is the control break field).

� It does perform control break processing for the new group by printing headings at the top of the
new page.

� It does update the control break field—the line counter.

You might want to employ one little trick to remove the statements that print the headings from the getReady()
module. If you initialize lineCounter to 60 when defining the variables at the beginning of the program, on the first
pass through produceReport(), you can “fool” the computer into printing the first set of headings automatically.
When you initialize lineCounter to 60, you can remove the statements print head1 and print head2
from the getReady() module. With this change, when you enter the produceReport() module for the first
time, lineCounter is already set to 60, and the startNewPage() module prints the headings and resets
lineCounter to zero before processing the first record from the input file and starting to count the first page’s
detail lines. Figure 7-30 shows the entire program.

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 293

294 Chapter 7 • Control Breaks

start
 perform getReady()
 while not eof
 perform produceReport()
 endwhile
 perform cleanUp()
stop

getReady()
 declare variables
 open files
 print head1
 print head2
 read custRec
return

produceReport()
 if lineCounter = 60 then
 perform startNewPage()
 endif
 print custLast, custFirst
 lineCounter = lineCounter + 1
 read custRec
return

startNewPage()
 print head1
 print head2
 lineCounter = 0
return

cleanUp()
close files

return

FIGURE 7-30: THE COMPLETE CUSTOMER REPORT PROGRAM

lineCounter
= 60?

startNewPage()

Yes

print custLast,
custFirst

lineCounter =
lineCounter + 1

read custRec

No

return

produceReport()

print head1

lineCounter = 0

print head2

return

startNewPage()

Yes

eof? produceReport()

cleanUp()

No

getReady()

stop

start

custRec
 char custLast
 char custFirst
char head1 = "Customer Report"
char head2 = "Last name First name"
num lineCounter = 0

open files

return

getReady()

declare variables

print head1

print head2

read custRec

close files

return

cleanUp()

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 294

295Performing Page Breaks

In the program in Figure 7-30, you might prefer to create a constant named
LINES_PER_PAGE and set it to be equal to 60. Then, in the produceReport() mod-
ule, you would compare lineCounter to this constant. Doing this would provide you
with two advantages. First, the meaning of LINES_PER_PAGE would be clearer than the
number 60. Second, if you needed to change the number of lines per page, you could do so
using the declaration list instead of searching through the program to find the reference.

As with control break report programs that break based on the contents of one of a record’s fields, in any program that
starts new pages based on a line count, you always must update the line-counting variable that causes the unusual
action. Using page breaks or control breaks (or both) within reports adds a new degree of organization to your printed
output and makes it easier for the user to interpret and use.

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 295

Chapter 7 • Control Breaks296

CHAPTER SUMMARY

� A control break is a temporary detour in the logic of a program; programmers refer to a program as a

control break program when a change in the value of a variable initiates special actions or causes special

or unusual processing to occur. To generate a control break report, your input records must be organized

in sorted order based on the field that will cause the breaks.

� You use a control break field to hold data from a previous record. You decide when to perform a control

break routine by comparing the value in the control break field to the corresponding value in the current

record. At minimum, the simplest control break routines perform necessary processing for the new

group and update the control break field.

� Sometimes, you need to use control data within a control break module, such as in a heading that

requires information about the next record, or in a footer that requires information about the previous

record. The very first heading prints separately from all the others at the beginning; the very last footer

must print separately from all the others at the end.

� A control break report contains and prints totals for the previous group, rolls up the current-level totals to

the next higher level, resets the current level’s totals to zero, performs any other needed control break

processing, and updates the control break field.

� In a program containing a multiple-level control break, the normal flow of control breaks away for special

processing in response to a change in more than one field. You should always test for a major-level break

before a minor-level break, and include a call to the minor break routine within the major break module.

� Every time you write a program in which you need control break routines, you should check whether you

need to perform each of the following tasks within the routines: any lower-level break, any control break

processing for the previous group, rolling up the current-level totals to the next higher level, resetting the

current level’s totals to zero, any control break processing for the new group, and updating the control

break field.

� To perform page breaks, you count the lines printed and pause to print headings when the counter

reaches some predetermined value.

KEY TERMS

A control break is a temporary detour in the logic of a program.

A control break program is one in which a change in the value of a variable initiates special actions or causes special
or unusual processing to occur.

A control break report lists items in groups. Frequently, each group is followed by a subtotal.

Programs that sort records take records that are not in order and rearrange them to be in order based on some field.

A single-level control break is a break in the logic of a program based on the value of a single variable.

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 296

Review Questions 297

A control break field is a variable that holds the value that signals a break in a program.

A footer is a message that prints at the end of a page or other section of a report.

Rolling up the totals is the process of adding a total to a higher-level total.

A summary report is one that does not include any information about individual records, but instead includes only
group totals.

A multiple-level control break is one in which the normal flow of control breaks away for special processing in
response to a change in more than one field.

A major-level break is a break in the flow of logic that is caused by a change in the value of a higher-level field.

A minor-level break is a break in the flow of logic that is caused by a change in the value of a lower-level field.

A line-counter variable keeps track of the number of printed lines on a page.

REVIEW QUESTIONS

1. A control break occurs when a program .

a. takes one of two alternate courses of action for every record
b. pauses to perform special processing based on the value of a field
c. ends prematurely, before all records have been processed
d. passes logical control to a module contained within another program

2. Which of the following is an example of a control break report?

a. a list of all employees in a company, with a message “Retain” or “Dismiss” following each employee record
b. a list of all students in a school, arranged in alphabetical order, with a total count at the end of the report
c. a list of all customers of a business in zip code order, with a count of the number of customers who reside in

each zip code
d. a list of some of the patients of a medical clinic—those who have not seen a doctor for at least two years

3. Placing records in sequential order based on the value in one of the fields is called .

a. sorting
b. collating
c. merging
d. categorizing

4. In a program with a single-level control break, .

a. the input file must contain a variable that contains a single digit
b. the hierarchy chart must contain a single level below the main level
c. special processing occurs based on the value in a single field
d. the control break module must not contain any submodules

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 297

Chapter 7 • Control Breaks298

5. A control break field .

a. always prints prior to any group of records on a control break report
b. always prints after any group of records on a control break report
c. never prints on a report
d. causes special processing to occur

6. The value stored in a control break field .

a. can be printed at the end of each group of records
b. can be printed with each record
c. both of these
d. neither a nor b

7. Within any control break module, you must .

a. declare a control break field
b. set the control break field to zero
c. print the control break field
d. update the value in the control break field

8. An insurance agency employs 10 agents and wants to print a report of claims based on the insur-
ance agent who sold each policy. The agent’s name should appear in a heading prior to the list of
each agent’s claims. In the housekeeping module for this program, you should .

a. read the first record before printing the first heading
b. print the first heading before reading the first record
c. read all the records that represent clients of the first agent before printing the heading
d. print the first heading, but do not read the first record until the main loop

9. In contrast to using control break data in a heading, when you use control break data in a footer,
you usually need data from the record in the input data file.

a. previous
b. next
c. first
d. priming

10. An automobile dealer wants a list of cars sold, grouped by model, with a total dollar amount sold
at the end of each group. The program contains four modules, appropriately named
housekeeping(), mainLoop(),modelBreak(), and finish(). The total for the last car
model group should be printed in the .

a. mainLoop() module, after the last time the control break module is called
b. mainLoop() module, as the last step in the module
c. modelBreak() module when it is called from within the mainLoop() module
d. modelBreak() module when it is called from within the finish() module

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 298

Review Questions 299

11. The Hampton City Zoo has a file that contains information about each of the animals it houses.
Each animal record contains such information as the animal’s ID number, date acquired by the zoo,
and species. The zoo wants to print a list of animals, grouped by species, with a count after each
group. As an example, a typical summary line might be “Species: Giraffe Count: 7”. Which of the
following happens within the control break module that prints the count?
a. The previous species count prints, and then the previous species field is updated.
b. The previous species field is updated, and then the previous species count prints.
c. Either of these will produce the desired results.
d. Neither a nor b will produce the desired results.

12. Adding a total to a higher-level total is called the totals.

a. sliding
b. advancing
c. rolling up
d. replacing

13. The Academic Dean of Creighton College wants a count of the number of students who have
declared each of the college’s 45 major courses of study, as well as a grand total count of students
enrolled in the college. Individual student records contain each student’s name, ID number, major,
and other data, and are sorted in alphabetical order by major. A control break module executes
when the program encounters a change in student major. Within this module, what must occur?

a. The total count for the previous major prints.
b. The total count for the previous major prints, and the total count is added to the grand total.
c. The total count for the previous major prints, the total count for the major is added to the grand total, and

the total count for the major is reset to zero.
d. The total count for the previous major prints, the total count for the major is added to the grand total, the

total count for the major is reset to zero, and the grand total is reset to zero.

14. In a control break program containing printed group totals and a grand total, the final module that
executes must .

a. print the group total for the last group
b. roll up the total for the last group
c. both of these
d. neither a nor b

15. A summary report .

a. contains detail lines
b. contains total lines
c. both of these
d. neither a nor b

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 299

Chapter 7 • Control Breaks300

16. The Cityscape Real Estate Agency wants a list of all housing units sold last year, including a subto-
tal of sales that occurred each month. Within each month group, there are also subtotals of each
type of property—single-family homes, condominiums, commercial properties, and so on. This
report is a control break report.

a. single-level
b. multiple-level
c. semilevel
d. trilevel

17. The Packerville Parks Commission has a file that contains picnic permit information for the coming
season. They need a report that lists each day’s picnic permit information, including permit number
and name of permit holder, starting on a separate page each day of the picnic season. (Figure 7-31
shows a sample page of output for the Packerville Parks report.) Within each day’s permits, they
want subtotals that count permits in each of the city’s 30 parks. The permit records have been
sorted by park name within date. In the main loop of the report program, the first decision should
check for a change in .

a. park name
b. date
c. permit number
d. any of these

FIGURE 7-31: SAMPLE PARKS REPORT

 Packerville Parks Commission – Daily Count of Permits by Park
Day: June 24

 Permit Number Permit Holder
 200501932 Paul Martin
 200502003 Brownie Troop 176
 200502015 Dorothy Wintergreen
 Alcott Park Count – 3
 200500080 YMCA Day Camp
 200501200 Packerville Rotary Club
 200501453 Harold Martinez
 200502003 Wendy Sudo
 Browning Park Count – 4

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 300

Review Questions 301

18. Which of the following is not a task you need to complete in any control break module that has
multiple levels and totals at each level?

a. Perform lower-level breaks.
b. Roll up the totals.
c. Update the control break field.
d. Reset the current-level totals to the previous-level totals.

19. The election commission for the state of Illinois maintains a file that contains the name of each
registered voter, the voter’s county, and the voter’s precinct within the county. The commission
wants to produce a report that counts the voters in each precinct and county. The file should be
sorted in .

a. county order within precinct
b. last name order within precinct
c. last name order within county
d. precinct order within county

20. A variable that determines when a new page should start based on the number of detail lines
printed on a page is a .

a. detail counter
b. line counter
c. page counter
d. break counter

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 301

Chapter 7 • Control Breaks302

FIND THE BUGS

Each of the following pseudocode segments contains one or more bugs that you must find and correct.

1. This application prints a student report for an elementary school. Students have been sorted by
grade level. A new page is started for each grade level, and the numeric grade level prints as part
of the heading of the page.

start
ƒƒƒƒƒperformƒgetReady()
ƒƒƒƒƒwhileƒnotƒeof
ƒƒƒƒƒƒƒƒƒƒperformƒproduceReport()
ƒƒƒƒƒendwhile
ƒƒƒƒƒperformƒfinishUp()
stop

getReady()
ƒƒƒƒƒdeclareƒvariables
ƒƒƒƒƒƒƒƒƒstudentRec
ƒƒƒƒƒƒƒƒƒƒƒƒƒnumƒstudentID
ƒƒƒƒƒƒƒƒƒƒƒƒƒcharƒname
ƒƒƒƒƒƒƒƒƒƒƒƒƒnumƒgradeLevel
ƒƒƒƒƒƒƒƒƒƒcharƒheading1ƒ=ƒ“StudentƒReportƒbyƒGradeƒLevel”
ƒƒƒƒƒƒƒƒƒƒcharƒheading2ƒ=ƒ“StudentsƒinƒGradeƒ“ƒƒƒ
ƒƒƒƒƒopenƒfiles
ƒƒƒƒƒprintƒheading1
ƒƒƒƒƒprintƒheading2,ƒgradeLevel
ƒƒƒƒƒreadƒstudentRec
return

produceReport()
ƒƒƒƒƒifƒgradeLevelƒ=ƒholdGradeLevelƒthen
ƒƒƒƒƒƒƒƒƒperformƒnewGrade()
ƒƒƒƒƒendif
ƒƒƒƒƒprintƒstudentId,ƒname
ƒƒƒƒƒreadƒstudentRec
return

newGrade()
ƒƒƒƒƒprintƒheading1
ƒƒƒƒƒprintƒheading2,ƒholdGradeLevel
ƒƒƒƒƒƒholdGradeLevelƒ=ƒgradeLevel
return

finishUp()
ƒƒƒƒƒcloseƒfiles
return

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 302

Find the Bugs 303

2. The Friendly Insurance Company makes a point to phone a birthday greeting to each of its clients
on his or her birthday. The following program is intended to produce a report that lists the clients a
salesperson should call each day for the coming year. Input records include the client’s name and
phone number as well as a numeric month and day. The records have been sorted by day within
month, and each day’s list appears on a new page. (It is very likely that some days of the year do
not have a client birthday.) At the end of each page is a count of the number of calls that should be
made that day. Two pages of a sample report are shown in Figure 7-32.

start
ƒƒƒƒƒperformƒprepare()
ƒƒƒƒƒwhileƒnotƒeof
ƒƒƒƒƒƒƒƒƒƒperformƒproduceReport()
ƒƒƒƒƒendwhile
ƒƒƒƒƒperformƒfinish()
stop

prepare()
ƒƒƒƒƒdeclareƒvariables
ƒƒƒƒƒƒƒƒƒappointmentRec
ƒƒƒƒƒƒƒƒƒƒƒƒƒcharƒclientName
ƒƒƒƒƒƒƒƒƒƒƒƒƒcharƒphoneNumber
ƒƒƒƒƒƒƒƒƒƒƒƒƒnumƒmonth
ƒƒƒƒƒƒƒƒƒƒƒƒƒnumƒday
ƒƒƒƒƒƒƒƒƒƒnumƒoldMonth
ƒƒƒƒƒƒƒƒƒƒnumƒoldDay
ƒƒƒƒƒƒƒƒƒƒcharƒheading1ƒ=ƒ“Callsƒtoƒmakeƒonƒdayƒ”
ƒƒƒƒƒƒƒƒƒƒcharƒheading2ƒ=ƒ“ofƒmonthƒ“
ƒƒƒƒƒƒƒƒƒƒcharƒfooterƒ=ƒ“Callsƒtoƒmakeƒtoday:ƒ“
ƒƒƒƒƒƒƒƒƒƒnumƒcountAppointments

FIGURE 7-32: SAMPLE REPORT

Calls to make on day 2
Of month 1

 Jeffrey Edman 920-654-1212
 Martin Richards 414-543-8845
 Brandy Unger 414-712-0019
 George Williams

 Calls to make today: 3

Calls to make on day 1
Of month 1

 Enrique Nova 920-534-0912
 Barbara Nuance 920-787-1290
 Allison Sellman 414-712-0019

 Calls to make today: 3

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 303

Chapter 7 • Control Breaks304

ƒƒƒƒƒopenƒfiles
ƒƒƒƒƒreadƒappointmentRec
ƒƒƒƒƒprintƒhead1,ƒday
ƒƒƒƒƒprintƒheading2,ƒmonth
ƒƒƒƒƒmonthƒ=ƒoldMonth
ƒƒƒƒƒdayƒ=ƒoldDay
return

produceReport()
ƒƒƒƒƒifƒdayƒnotƒ=ƒoldDayƒthen
ƒƒƒƒƒƒƒƒƒperformƒnewDay()
ƒƒƒƒƒƒelse
ƒƒƒƒƒƒƒƒƒƒƒƒifƒmonthƒnotƒ=ƒoldMonth
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒperformƒnewMonth()
ƒƒƒƒƒƒƒƒƒƒƒƒendif
ƒƒƒƒƒendif
ƒƒƒƒƒprintƒclientName,ƒphoneNumber
ƒƒƒƒƒcountAppointmentsƒ=ƒcountAppointmentsƒ+ƒ1
return

newMonth()
ƒƒƒƒƒperformƒnewDay()
ƒƒƒƒƒoldMonthƒ=ƒmonth
return

newDay()
ƒƒƒƒperformƒnewMonth()
ƒƒƒƒprintƒfooter,ƒcountAppointments
ƒƒƒƒprintƒheading1,ƒday
ƒƒƒƒprintƒheading1,ƒmonth
ƒƒƒƒoldDayƒ=ƒday
return

finish()
ƒƒƒƒƒcloseƒfiles
return

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 304

Exercises 305

EXERCISES

1. What fields might you want to use as the control break fields to produce a report that lists all
inventory items in a grocery store? (For example, you might choose to group items by grocery store
department.) Design a sample report.

2. What fields might you want to use as the control break fields to produce a report that lists all the
people you know? (For example, you might choose to group friends by city of residence.) Design a
sample report.

3. Cool’s Department Store keeps a record of every sale in the following format:

DEPARTMENT STORE SALES FILE DESCRIPTION
Fileƒname:ƒDEPTSALES
Sortedƒby:ƒDepartment
FIELDƒDESCRIPTIONƒƒƒƒƒƒƒDATAƒTYPEƒƒƒƒƒƒƒƒƒƒƒCOMMENTS
TransactionƒNumberƒƒƒƒƒƒNumericƒƒƒƒƒƒƒƒƒƒƒƒƒaƒ6-digitƒnumber
AmountƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒƒƒƒƒƒƒ2ƒdecimalƒplaces
DepartmentƒƒƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒƒƒƒƒƒƒaƒ3-digitƒnumber

Create the logic for a program that would print each transaction’s details, with a total at the end of
each department.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.
c. Create the flowchart.
d. Create the pseudocode.

4. A used-car dealer keeps track of sales in the following format:

AUTO SALES FILE DESCRIPTION

Fileƒname:ƒAUTO

Sortedƒby:ƒSalesperson

FIELDƒDESCRIPTIONƒƒƒƒƒƒƒDATAƒTYPEƒƒƒƒƒƒƒEXAMPLE

SalespersonƒƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒƒƒMiller

MakeƒofƒCarƒƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒƒƒFord

VehicleƒTypeƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒƒƒSedan

SaleƒPriceƒƒƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒƒƒ0ƒdecimalƒplaces;ƒforƒexample,ƒ15000

By the end of the week, a salesperson may have sold no cars, one car, or many cars. Create the
logic of a program that would print one line for each salesperson, with that salesperson’s total
sales for the week and commission earned, which is 4 percent of the total sales.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.
c. Create the flowchart.
d. Create the pseudocode.

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 305

Chapter 7 • Control Breaks306

5. A community college maintains student records in the following format:

STUDENT FILE DESCRIPTION
Fileƒname:ƒSTUDENTS
Sortedƒby:ƒHourƒofƒFirstƒClass
FIELDƒDESCRIPTIONƒƒƒƒƒƒƒDATAƒTYPEƒƒƒƒƒƒƒƒƒEXAMPLE
StudentƒNameƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒƒƒƒƒAmyƒLee
CityƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒƒƒƒƒWoodstock
HourƒofƒFirstƒClassƒƒƒƒƒNumericƒƒƒƒƒƒƒƒƒƒƒ08ƒforƒ8ƒa.m.ƒorƒ14ƒforƒ2ƒp.m.
PhoneƒNumberƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒƒƒƒƒ8154379823

The records have been sorted by hour of the day. The Hour of First Class is a two-digit number
based on a 24-hour clock (for example, a 1 p.m. first class is recorded as 13).

Create a report that students can use to organize carpools. The report lists the names and phone
numbers of students from the city of Huntley. Note that some students come from cities other than
Huntley; these students should not be listed on the report.

Start a new page for each hour of the day, so that all students starting classes at the same hour are
listed on the same page. Include the hour that each page represents in the heading for that page.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.
c. Create the flowchart.
d. Create the pseudocode.

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 306

Exercises 307

6. The Stanton Insurance Agency needs a report summarizing the counts of life, health, and other
types of insurance policies it sells. Input records contain policy number, name of insured, policy
value, and type of policy, and have been sorted in alphabetical order by type of policy. At the end of
the report, display a count of all the policies.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.
c. Create the flowchart.
d. Create the pseudocode.

7. If a university is organized into colleges (such as Liberal Arts), divisions (such as Languages), and
departments (such as French), what would constitute the major, intermediate, and minor control
breaks in a report that prints all classes offered by the university?

8. A zoo keeps track of the expense of feeding the animals it houses. Each record holds one animal’s
ID number, name, species (elephant, rhinoceros, tiger, lion, and so on), zoo residence (pachyderm
house, large-cat house, and so on), and weekly food budget. The records take the following form:

ANIMAL FEED RECORDS

Fileƒname:ƒANIMFOOD

Sortedƒby:ƒSpeciesƒwithinƒhouse

FIELDƒDESCRIPTIONƒƒƒƒƒƒƒDATAƒTYPEƒƒƒƒƒƒƒEXAMPLE

AnimalƒIDƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒƒƒ4116

AnimalƒNameƒƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒƒƒElmo

SpeciesƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒƒƒElephant

HouseƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒƒƒPachyderm

WeeklyƒFoodƒƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒƒƒ0ƒdecimals,ƒwholeƒdollars;ƒforƒexample,ƒ75

ƒƒƒBudgetƒinƒDollars

Design a report that lists each animal’s ID, name, and budgeted food amount. At the end of each
species group, print a total budget for the species. At the end of each house (for example, the
species lion, tiger, and leopard are all in the large-cat house), print the house total. At the end of
the report, print the grand total.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.
c. Create the flowchart.
d. Create the pseudocode.

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 307

Chapter 7 • Control Breaks308

9. A soft-drink manufacturer produces several flavors of drink—for example, cola, orange, and
lemon. Additionally, each flavor has several versions, such as regular, diet, and caffeine-free. The
manufacturer operates factories in several states.

Assume you have input records that list version, flavor, yearly production in gallons, and state (for
example: Regular Cola 5000 Kansas). The records have been sorted in alphabetical order by version
within flavor within state. Design the report that lists each version and flavor, with minor total pro-
duction figures for each flavor and major total production figures for each state.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.
c. Create the flowchart.
d. Create the pseudocode.

10. An art shop owner maintains records for each item in the shop, including the title of the work, the
artist who made the item, the medium (for example, watercolor, oil, or clay), and the monetary
value. The records are sorted by artist within medium. Design a report that lists all items in the
store, with a minor total value following each artist’s work, and a major total value following each
medium. Allow only 40 detail lines per page.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.
c. Create the flowchart.
d. Create the pseudocode.

DETECTIVE WORK

1. Control break reports are just one type of frequently printed business report. Has paper consump-
tion increased or decreased since computers became common office tools? How soon do experts
predict we will have the “paperless office”?

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 308

Up For Discussion 309

UP FOR DISCUSSION

1. Suppose your employer asks you to write a control break program that lists all the company’s
employees, their salaries, and their ages, with breaks at each department to list a count of employ-
ees in that department. You are provided with the personnel file to use as input. You decide to take
the file home with you so you can work on creating the report over the weekend. Is this accept-
able? What if the file contained only employees’ names and departments, and not more sensitive
data such as salaries and ages?

2. Suppose your supervisor asks you to create a report that lists all employees by department and
includes a break after each department to display the highest-paid employee in that department.
Suppose you also know that your employer will use this report to lay off the highest-paid employee
in each department. Would you agree to write the program? Instead, what if the report’s purpose
was to list the worst performer in each department in terms of sales? What if the report grouped
employees by gender? What if the report grouped employees by race?

3. Suppose your supervisor asks you to write a control break report that lists employees in groups by
the dollar value of medical insurance claims they have in a year. You fear the employer will use the
report to eliminate workers who are driving up the organization’s medical insurance policy costs.
Do you agree to write the report? What if you know for certain that the purpose of the report is to
eliminate workers?

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 309

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 310

