ARRAYS

After studying Chapter 8, you should be able to:

Understand how arrays are used

Understand how arrays occupy computer memory
Manipulate an array to replace nested decisions
Declare and initialize an array

Declare and initialize constant arrays

Load array values from a file

Search an array for an exact match

Use parallel arrays

Force subscripts to remain within array bounds
Improve search efficiency by using an early exit

Search an array for a range match
311

312

Chapter 8 e Arrays

An array is a series or list of variables in computer memory, all of which have the same name but are differentiated
with special numbers called subscripts. A subscript is a number that indicates the position of a particular item within
an array. Whenever you require multiple storage locations for objects, you are using a real-life counterpart of a pro-
gramming array. For example, if you store important papers in a series of file folders and label each folder with a con-
secutive letter of the alphabet, then you are using the equivalent of an array. If you store mementos in a series of
stacked shoeboxes, each labeled with a year, or if you sort mail into slots, each labeled with a name, then you are also
using a real-life equivalent of a programming array.

Besides the term “subscript,” programmers also use the term “index” to refer to the num-
ber that indicates a position within an array.

When you look down the left side of a tax table to find your income level before looking to the right to find your income
tax obligation, you are using an array. Similarly, if you look down the left side of a train schedule to find your station
before looking to the right to find the train’s arrival time, you also are using an array.

Each of these real-life arrays helps you organize real-life objects. You could store all your papers or mementos in one
huge cardboard box, or find your tax rate or train’s arrival time if both were printed randomly in one large book.
However, using an organized storage and display system makes your life easier in each case. Using a programming
array accomplishes the same results for your data.

Some programmers refer to an array as a fable or a matrix.

When you declare an array, you declare a programming structure that contains multiple variables. Each variable within
an array has the same name and the same data type; each separate array variable is one element of the array. Each
array element occupies an area in memory next to, or contiguous to, the others, as shown in Figure 8-1. You indicate
the number of elements an array will hold—the size of the array—when you declare the array along with your other
variables.

FIGURE 8-1: APPEARANCE OF A THREE-ELEMENT ARRAY AND A SINGLE VARIABLE IN COMPUTER MEMORY

someVals[0] someVals[1] someVals[2]
/ e

V4
L2 el |[@]

aNumber >

How Arrays Occupy Computer Memory 313 S

All array elements have the same group name, but each individual element also has a unique subscript indicating how
far away it is from the first element. Therefore, any array’s subscripts are always a sequence of integers, such as 0
through 5 or 0 through 10. Depending on the syntax rules of the programming language you use, you place the sub-
script within either parentheses or square brackets following the group name; when writing pseudocode or drawing a
flowchart, you can use either form of notation. This text uses square brackets to hold array element subscripts so that
you don’t mistake array names for method names. For example, Figure 8-1 shows how a single variable and an array
are stored in computer memory. The single variable named aNumbexr holds the value 15. The array named
someVals contains three elements, so the elements are somevals[0], someVals[1],and
someVals[2].The value stored in somevals[0] is 25, someVals[1] holds 36, and somevals[2]
holds 47. From the diagram in Figure 8-1, you can see that the memory location somevals[0] iS zero elements
away from the beginning of the array, the location of somevals[1] is one memory location away, and the location
of somevals[2] is two elements away from the start of the array.

T l P In general, older programming languages such as COBOL and RPG use parentheses to hold
Ooo0oono . . S
their array subscripts. Newer languages such as C#, C++, and Java use square brackets.

TI P In many modern languages (for example, Java, Visual Basic .NET, C#, and C++), the first
SRERER array element’s subscript is 0; in others (for example, COBOL and RPQG), it is 1. In Pascal,
you can identify the starting number as any value you want. In languages in which the
first subscript is 0, the subscript alone indicates the distance from the start of the array. In
languages that use a starting subscript value other than 0, the compiler does the arithmetic
for you to calculate the number of elements past the start of the array that you want to
access. In all languages, however, the subscript values must be integers (whole numbers)

and sequential.

Because the first element in an array in most programming languages is accessed using a subscript of value 0, the
array is called a zero-based array. Because the lowest subscript you can use with an array is 0, the highest subscript
you are allowed to use with an array is one less than the number of elements in the array. For example, an array with
10 elements uses subscripts 0 through 9, and an array with 200 elements uses subscripts 0 through 199. When you
use arrays, you must always keep the limits of subscript values in mind.

TI P oooo If you treat an array as though its lowest legal subscript is 1, when in fact it is 0, you will
commit off-by-one errors. If you use an invalid subscript—for example, using a 10 in a
10-element array for which the subscripts should be 0 through 9—some language com-
pilers will issue an error message and stop program execution, but others will allow you
to make the mistake, resulting in incorrect output.

You are never required to use arrays within your programs, but learning to use arrays correctly can make many pro-
gramming tasks far more efficient and professional. When you understand how to use arrays, you will be able to provide
elegant solutions to problems that otherwise would require tedious programming steps.

Tl P S ooo When you describe people or events as “elegant,” you mean they possess a refined grace-
fulness. Similarly, programmers use the term “elegant” to describe programs that are
| well-designed and easy to understand and maintain.

314 Chapter 8 ¢ Arrays

Consider a program that keeps statistics for requests about apartments in a large apartment complex. The developer
wants to keep track of inquiries so that future building projects are more likely to satisfy customer needs. In particular,
the developer wants to keep track of how many requests there are for studio, one-, two-, and three-bedroom apart-
ments. Each time an apartment request is received, a clerk adds a record to a file in the format shown in Figure 8-2.

FIGURE 8-2: FILE DESCRIPTION FOR APARTMENT REQUEST RECORDS

APARTMENT INQUIRY FILE DESCRIPTION
File name: APTREQUESTS

FIELD DESCRIPTION DATA TYPE COMMENTS
Day of the month Numeric 1 - 31, day request was made
Bedrooms requested Numeric 0, 1, 2 or 3 for studio apartment

or number of bedrooms

For example, if a call comes in on the third day of the month for a studio apartment, one record is created with a 3 in the
date field and a 0 in the number of bedrooms field. If the next call is on the fourth day of the month for a three-bedroom
apartment, a record with 4 and 3 is created. The contents of the data file appear as a series of numbers, as follows:

...and so on.

At the end of the month, after all the records have been collected, the file might contain hundreds of records, each
holding a number that represents a date and another number (0, 1, 2, or 3) that represents the number of bedrooms
the caller wanted. You want to write a program that summarizes the total number of each type of apartment requested
during the month. A typical report appears in Figure 8-3.

FIGURE 8-3: TYPICAL APARTMENT REQUEST REPORT

Apartment Request Report
Bedrooms Inquiries

0 91
1 44
2 67
3 102

L

ﬂ.
Manipulating an Array to Replace Nested Decisions 315 3

If all the records were sorted in order by the number of bedrooms requested, this report could be a control break report.
You would simply read each record representing an inquiry on a studio apartment (zero bedrooms), counting the num-
ber of inquiries. When you read the first record requesting a different number of bedrooms, you would print the count
for the previous apartment type, reset the count to zero, and update the control break field before continuing.

Tl P oo oo | Youlearned about control break logic in Chapter 7.

Assume, however, that the records have not been sorted by apartment type. Without using an array, could you write a
program that would accumulate the four apartment-type totals? Of course you could. The program would have the
same mainline logic as most of the other programs you have seen, as shown in Figure 8-4.

FIGURE 8-4: FLOWCHART AND PSEUDOCODE FOR MAINLINE LOGIC OF APARTMENT REQUEST REPORT PROGRAM

tart start
sta perform housekeeping()

while not eof
i perform countCategories()
endwhile
housekeeping() . perform finish()
stop

No
~—> | countCategories()
i Yes

finish()

Tl P S ooo The program shown in Figures 8-4 through 8-7 accomplishes its purpose, but is cumber-
some. Follow its logic here, so that you understand how the program works. Later in this
chapter, you will see how to write the apartment request report program much more effi-

ciently using arrays.

In the housekeeping () module of the apartment request report program (Figure 8-5), you declare variables
including day and bedrooms. Then, you open the files and read the first record into memory. The headings could
printin housekeeping () or—because no other printing takes place in this program until the £inish()
module—you can choose to wait and print the headings there.

316 Chapter 8 ¢ Arrays

FIGURE 8-5: THE housekeeping () MODULE FOR THE APARTMENT REQUEST PROGRAM WITHOUT AN ARRAY

housekeeping() aptRequest
num day
num bedrooms
declare char headl = "Apartment Request Report"
variables char head2 = "Bedrooms Inquiries"
num count0 = 0
num countl = 0
num count2 = 0
open num count3 = 0
files
read housekeeping().
aptRequest declare variables
aEtReguest
num day
num bedrooms
char headl = "Apartment Request Report"
char head2 = "Bedrooms Inquiries"

num count0 = 0
num countl = 0
num count2 = 0
num count3 = 0
open files
read aptRequest
return

In Figure 8-5, the variable list is identical for the flowchart and the pseudocode. It is
included twice in this figure and in the next few for clarity because arrays are a new and
complicated topic. In later examples in this book, the duplication of the variable list will
be eliminated.

Within the housekeeping () module, you can declare four variables, count0, countl, count2, and
count 3; the purpose of these variables is to keep running counts of the number of requests for the four apartment
types. Each of these four counter variables needs to be initialized to 0. You can tell by looking at the planned output that
you need two heading lines, so head1 is defined as “Apartment Request Report” and head?2 as “Bedrooms
Inquiries”.

Eventually, four summary lines will be printed in the report, each with a number of bedrooms and a count of inquiries
for that apartment type. These lines cannot be printed until the £inish () module, however, because you won't have
a complete count of each apartment type’s requests until all input records have been read.

The logic within the countCategories () module of the program requires adding a 1 10 count0, countl,
count2, 0r count3, depending on the bedrooms variable. After 1 has been added to one of the four counters,
you read the next record, and if it is not eof, you repeat the decision-making and counting process. When all records
have been read, you proceed to the £inish () module, where you print the four summary lines with the counts for
the four apartment types. See Figures 8-6 and 8-7.

].ll, oooao

o

Manipulating an Array to Replace Nested Decisions 317 5

In the apartment request report program, assume that the input data has been previously
edited to ensure that all apartment requests are for zero, one, two, or three bedrooms. In

other words, there is no bad data. If this were not true, then the program would also need
to include a step to check for incorrect data and take some appropriate action—perhaps
ignoring it, or counting it in an error category.

FIGURE 8-6: THE countCategories () MODULE FOR THE APARTMENT REQUEST PROGRAM WITHOUT

AN ARRAY

(:countCategories(i)

bedrooms = 1?

v

bedrooms = 0?

count0 =
count0 + 1

bedrooms = 2?

countl =
countl + 1

countCategories()

count3 =
count3 + 1

count2 =
count2 + 1

I

count0 = count
else
if bedrooms =

else
if bedrooms
count2 =

return

v

read
aptRequest

\

else
count3 =
endif
endif
endif
read aptRequest
return

if bedrooms = 0 then

0+ 1

1 then

countl = countl + 1

= 2 then
count2 + 1

count3 + 1

318 Chapter 8 e Arrays

FIGURE 8-7: THE £inish () MODULE FOR THE APARTMENT REQUEST PROGRAM WITHOUT AN ARRAY

— finish()
finish() print headl
print head2
print 0, count0
print head1 D o
print 2, count2
print 3, count3
close files
return
print head2
print 0,
count0
print 1,
count1
print 2,
count2
print 3,
count3
close files

return

The apartment request report program works just fing, and there is absolutely nothing wrong with it logically; a decision
is made for each of the first three types of apartments, defaulting to a three-bedroom apartment if the request is not for
Zero, one, or two bedrooms. But what if there were four types of apartments, or 12, or 30?7 With any of these scenarios,
the basic logic of the program would remain the same; however, you would need to declare many additional counter
variables. You also would need many additional decisions within the countCategories () module and many
additional print statements within the £inish () module to complete the processing.

Using an array provides an alternative approach to this programming problem, and greatly reduces the number of state-
ments you need. When you declare an array, you provide a group name for a number of associated variables in memory.
For example, the four apartment-type counters can be redefined as a single array named count. The individual ele-
ments become count[0],count[1],count[2],and count[3], as shown in the new housekeeping()
module in Figure 8-8.

Manipulating an Array to Replace Nested Decisions 319 5

FIGURE 8-8: MODIFIED housekeeping () MODULE FOR APARTMENT REQUEST PROGRAM THAT DECLARES
AN ARRAY TO COUNT REQUESTS

housekeeping() aptRequest
num day
+ num bedrooms
declare char headl = "Apartment Request Report"
vaiables [T~ T T 7 char head2 = "Bedrooms Inquiries"
num count[0] = 0
¢ num count[1l] = 0
num count[2] = 0
open num count[3] = 0
files T
\

housekeeping()

read decl bl
aptRequest eclare variables
aptRequest
¢ num day

num bedrooms
char headl = "Apartment Request Report"
char head2 = "Bedrooms Inquiries"
num count[0] = 0
num count[1]
num count[2]
num count[3]
open files
read aptRequest
return

0
0
0

With the change to housekeeping () shown in Figure 8-8, the countCategories () module changes to the
version shown in Figure 8-9.

320 Chapter 8 ¢ Arrays

FIGURE 8-9: MODIFIED countCategories () MODULE THAT USES count ARRAY

(countCategories ())

bedrooms = 0? i
No Yes count[0] =
bedrooms = 1? count[0] + 1
No Yes count[1l] =
bedrooms = 27 count{l} + 1 countCategories()
if bedrooms =
count[0] =
count[3] = count[2] = else
count[3] + 1 count[2] + 1 if bedrooms =
count[1l] =
else
if bedrooms
count[2]
else
read ?Ountm]
aptRequest (.andlf
endif
endif

return

read aptRequest
return

0 then
count[0] + 1

1 then
count[1l] + 1

2 then
count[2] + 1

count[3] + 1

Figure 8-9 shows that when the bedrooms variable value is 0, one is added t0 count [0]; when the bedrooms
value is 3, one is added to count [3]. In other words, one is added to one of the elements of the count array
instead of to a single variable named count0, countl, count2, 0r count3. IS this a big improvement over the
original? Of course it isn’t. You still have not taken advantage of the benefits of using the array in this program.

The true benefit of using an array lies in your ability to use a variable as a subscript to the array, instead of using a con-
stant such as 1 or 4. Notice in the countCategories () module in Figure 8-9 that within each decision, the value
you are comparing to bedrooms and the constant you are using as a subscript in the resulting “Yes” process are
always identical. That is, when the bedrooms valuge is 0, the subscript used to add 1 to the count array is 0; when
the bedrooms value is 1, the subscript used for the count array is 1, and so on. Therefore, why not just use the
value of bedrooms as a subscript? You can rewrite the countCategories () module as shown in Figure 8-10.

Manipulating an Array to Replace Nested Decisions 321 5

FIGURE 8-10: MODIFIED countCategories () MODULE USING THE VARIABLE bedrooms AS A
SUBSCRIPT TO THE count ARRAY

bedrooms = 2?

(:countCategories(E)

\

bedrooms = 0?

count[bedrooms] =
count[bedrooms] + 1

bedrooms = 1?

count [bedrooms]
count[bedrooms] + 1

count [bedrooms]
count[bedrooms] + 1

count [bedrooms]
count[bedrooms] + 1

countCategories()
if bedrooms

else
if bedrooms

else
if bedrooms

else

endif
endif
endif
read aptRequest
return

0 then
count [bedrooms]

count [bedrooms]

count [bedrooms]

count [bedrooms]

v

read
aptRequest

v

return

count[bedrooms] + 1

1 then

count[bedrooms] + 1

2 then

count[bedrooms] + 1

count[bedrooms] + 1

322 C(Chapter 8 e Arrays

Of course, the code segment in Figure 8-10 looks no more efficient than the one in Figure 8-9. However, notice that in
Figure 8-10 the process that occurs after each decision is exactly the same. In each case, no matter what the value of
bedrooms, you always add one t0 count [bedrooms]. If you are always going to take the same action no mat-
ter what the answer to a question is, why ask the question? Instead, you can write the countCategories ()
module as shown in Figure 8-11.

FIGURE 8-11: MODIFED countCategories () MODULE, ELIMINATING NESTED DECISIONS

countCategories()
count[bedrooms] = count[bedrooms] + 1
CcountCategories ()) read aptRequest
return

count[bedrooms] =
count[bedrooms] + 1

read
aptRequest

return

The two steps in Figure 8-11 represent the entire countCategories () module! When the value of bedrooms
is 0, one is added to count [0 1; when the value of bedrooms is 1, one is added to count [11, and so on. Now,
you have a big improvement to the previous countCategories () module from Figure 8-9. What's more, this
countCategories () module does not change whether there are eight, 30, or any other number of types of apart-
ment requests and count array elements, as long as the values in the bedrooms variable are numbered sequen-
tially. To use more than four counters, you would declare additional count elements in the housekeeping ()
module, but the countCategories () logic would remain the same as it is in Figure 8-11.

The £inish () module originally shown in Figure 8-7 can also be improved. Instead of four separate print statements,
you can use a variable to control a printing loop, as shown in Figure 8-12. Because the £inish () module follows the
eof condition, all input records have been used, and the bedrooms variable is not currently holding any needed infor-
mation. In £inish (), you can set bedrooms 10 0, and then print bedrooms and count [bedrooms]. Then
add 1 to bedrooms and use the same set of instructions again. You can use bedrooms as a loop control variable to
print the four individual count values. The improvement in this £inish () module over the one shown in Figure 8-7
is not as dramatic as the improvement in the countCategories () module, but in a program with more count
elements, the only change to the £inish () module would be in the constant value you use to control the end of the
loop. Twelve or 30 count values can print as easily as four if they are stored in an array.

Manipulating an Array to Replace Nested Decisions 323

FIGURE 8-12: MODIFIED £inish () MODULE THAT USES AN ARRAY

. finish()
finish() print headl
¢ print head2
bedrooms = 0
print head1 while bedrooms <= 3
print bedrooms, count[bedrooms]
bedrooms = bedrooms + 1
* endwhile
close files
print head2 return
\
bedrooms =0

¢<

Yes

bedrooms <= 3?

print bedrooms,

No + count[bedrooms]
close files +
bedrooms =
+ bedrooms + 1

——

TI P In the £inish () module in Figure 8-12, instead of reusing the bedrooms variable as
ooodod i, subscript, many programmers prefer to declare a separate numeric work variable to ini-
tialize to 0, use it as a subscript to the array while printing, and increment it during each
cycle through the loop. Their reasoning is that bedrooms is part of the input record and
should be used only to hold actual data being input—not used as a work variable in the
program. Use this approach if it makes more sense to you. You might be required to use
this technique if the input data is accessed from databases containing an input field that is
no longer available after the input has reached the eof condition.

Within the £inish () module in Figure 8-12, the bedrooms variable is handy to use as a subscript, but any vari-
able could have been used as long as it was:

= Numeric with no decimal places

= Initialized to 0
m Incremented by 1 each time the logic passed through the loop

324 Chapter 8 ¢ Arrays

In other words, nothing is linking bedrooms t0 the count array per se; within the £inish () module, you can
simply use the bedrooms variable as a subscript to indicate each successive element within the count array.

The apartment request report program worked when the countCategories () module contained a long series of
decisions and the £inish () module contained a long series of print statements, but the program is easier to write
when you employ arrays. Additionally, the program is more efficient, easier for other programmers to understand, and
easier to maintain. Arrays are never mandatory, but often they can drastically cut down on your programming time and
make a program easier to understand.

ARRAY DECLARATION AND INITIALIZATION

In the apartment request report program, the four count array elements were declared and initialized to 0s in the
housekeeping () module. The count values need to start at 0 so they can be added to during the course of the
program. Originally (see Figure 8-8), you provided initialization in the housekeeping () module as:

num count[0]

num count[1l]

num count[2]

o O o o

num count[3]

Separately declaring and initializing each count element is acceptable only if there are a small number of counts. If
the apartment request report program were updated to keep track of 30 types of apartments, you would have to initial-
ize 30 separate count fields. It would be tedious to write 30 separate declaration statements.

Programming languages do not require the programmer to name each of the 30 counts: count[0], count[1],
and so on. Instead, you can make a declaration such as one of those in Figure 8-13.

FIGURE 8-13: DECLARING A 30-ELEMENT ARRAY NAMED count IN SEVERAL COMMON LANGUAGES
Declaration Programming Language
DIM COUNT(30) BASIC, Visual Basic
int count[30]; C#, C++
int[] count = new int[30]; Java
COUNT OCCURS 30 TIMES PICTURE 9999. COBOL
array count [1..30] of integer; Pascal
C, C++, C#, and Java programmers typically use lowercase variable names. COBOL and

BASIC programmers often use all uppercase. Visual Basic programmers are likely to
begin with an uppercase letter.

The terms int and integer in the code samples within Figure 8-13 both indicate that
the count array will hold whole-number values. The value 9999 in the COBOL example
indicates that each count will be a four-digit integer. These terms are more specific than
the num identifier this book uses to declare all numeric variables.

R

Array Declaration and Initialization 325 E __-\

All the declarations in Figure 8-13 have two things in common: They name the count array and indicate that there
will be 30 separate numeric elements. For flowcharting or pseudocode purposes, a statement such as num
count [30] indicates the same thing.

Declaring a numeric array does not necessarily set its individual elements to O (although it does in some programming
languages, such as BASIC, Visual Basic, and Java). Most programming languages allow the equivalent of num
count[30] all set to 0;Yyou should use a statement like this when you want to initialize an array in your
flowcharts or pseudocode. Explicitly initializing all variables is a good programming practice; assuming anything about
noninitialized variable values is a dangerous practice. Array elements are no exception to this rule.

Alternatively, to start all array elements with the same initial value, you can use an initialization loop within the
housekeeping () module. An initialization loop is a loop structure that provides initial values for every element in
any array. To create an initialization loop, you must use a numeric variable as a subscript. For example, if you declare a
field named sub, and initialize sub to 0, then you can use a loop like the one shown in the housekeeping ()
module in Figure 8-14 to set all the array elements to 0. As the value of sub increases from 0 through 29, each
corresponding count element is assigned 0.

Y R BN .. 4 4

FIGURE 8-14: A housekeeping () MODULE DEMONSTRATING ONE METHOD OF INITIALIZING ARRAY
ELEMENTS
housekeeping() aptRequest
+ num day
num bedrooms
declare [char headl = "Apartment Request Report"
variables char head2 = "Bedrooms Inquiries"
num SIZE = 30
+ num count|[SIZE]
open | num sub
files
* housekeeping()
declare variables
sub=0 aptRequest
num day
*: num bedrooms
char headl = "Apartment Request Report"
Yes char head2 = "Bedrooms Inquiries"
sub < SIZE? num SIZE = 30
¢ num count[SIZE]
num sub
_ open files
No ¢ count[sub] =0 p——
read while sub < SIZE
aptRequest * count[sub] = 0
sub = sub + 1 e i
¢ sub =sub + 1 endwhile
read aptRequest

326 Chapter 8 ¢ Arrays

'I'l P In Figure 8-14, a named constant SIZE is initialized to 30. This constant is then used in
0000 Ihoth the array declaration and the loop that controls how many elements are set to 0.
Using a constant such as SIZE is a convenient way to make sure you access all the array
elements. Additionally, if you want to alter the program to handle some other number of
apartment types, the only change you need to make to the program is to provide a differ-
ent value for the constant. You first learned about named constants in Chapter 4.

DECLARING AND INITIALIZING CONSTANT ARRAYS

The array that you used to accumulate apartment-type requests in the previous section contained four variables whose
values were altered during the execution of the program. The values in which you were most interested, the count of
the number of requests for each type of apartment, were created during an actual run, or execution, of the program. In
other words, if 1,000 prospective tenants are interested in studio apartments, you don’t know that fact at the beginning
of the program. Instead, that value is accumulated during the execution of the program and not known until the end.

Some arrays are not variable, but are meant to be constant. With some arrays, the final desired values are fixed at the
beginning of the program.

For example, let’s say you own an apartment building with five floors, including a basement, and you have records for
all your tenants with the information shown in Figure 8-15. The combination of each tenant’s floor number and apart-
ment letter provides you with a specific apartment—for example, apartment 0D or 3B.

FIGURE 8-15: TENANT FILE DESCRIPTION

TENANT FILE DESCRIPTION
File name: TENANTS

FIELD DESCRIPTION DATA TYPE COMMENTS

Tenant name Character Full name, first and last
Floor number Numeric 0 through 4 - 0 is basement
Apartment letter Character Single letter - A through F

Every month, you print a rent bill for each tenant. Your rent charges are based on the floor of the building, as shown in
Figure 8-16.

FIGURE 8-16: RENTS BY FLOOR

Floor Rent in $
0 (the basement) 350
1 400
2 475
3 600
4 (the penthouse) 1000

-

Declaring and Initializing Constant Arrays 327 5

To create a computer program that prints each tenant’s name and rent due, you could use five decisions concerning the
floor number. However, it is more efficient to use an array to hold the five rent figures. The array’s values are constant
because you set them once at the beginning of the program, and they never change.

Tl P R —_ Remember that another name for an array is a fable. If you can use paper and pencil to list
items like tenants’ rent values in a table format, then using an array is an appropriate pro-
gramming option.

TI P S oon In most programming languages, you would include a modifier such as const or
final in front of the array name to declare it to be truly constant, so that you could not
alter any of its elements’ values later in the program.

T l P —_ Some programmers use the term “compile-time arrays” to refer to arrays that receive their
usable values through initialization at the start of a program, whereas arrays that do not
receive their ultimate values until the program is being used are run-time arrays.

The mainline logic for this program is shown in Figure 8-17. The housekeeping module is named prep (). When you

declare variables within the prep () module, you create an array for the five rent figures and set num rent[0] =
350, num rent[1] = 400, and soon. The rent amounts are hard coded into the array; that is, they are explic-

itly assigned to the array elements. The prep () module is shown in Figure 8-18.

Tl P S oon The prep () module name was chosen as a change of pace from housekeeping(),
which has been used in many examples in this book. Some programmers advocate being
consistent in naming modules from program to program; others prefer varying names as

long as the names are meaningful.

FIGURE 8-17: FLOWCHART AND PSEUDOCODE FOR MAINLINE LOGIC OF RENT PROGRAM

prep()

start

¢: _‘ perform prep()

while not eof

perform figureRent()
endwhile
perform cleanUp()

¢Yes stop

No
—> | figureRent()

cleanUp()

328 Chapter 8 ¢ Arrays

FIGURE 8-18: FLOWCHART AND PSEUDOCODE FOR prep () MODULE OF RENT PROGRAM

prep() _tenantRec

char tenName
¢ num tenFloor

char tenAptLetter

deFls;e - — — - num rent[0] = 350
variables num rent[1l] = 400
l num rent[2] j 475 prep()
num rent[3] = 600 declare variables
open | num rent[4] = 1000 open files
files read tenantRec
¢ return
read
tenantRec

As an alternative to defining rent[0], rent[1], and so on, as in Figure §-18, most
programming languages allow a more concise version that takes the general form num
rent[5] = 350, 400, 475, 600, 1000.When you use this form of array ini-
tialization, the first value you list is assigned to the first array element, and the subsequent
values are assigned in order. Most programming languages allow you to assign fewer val-
ues than there are array elements declared, but none allow you to assign more values.

At the end of the prep () module, you read a first record into memory. The record contains a tenant name
(tenName), floor (tenFloor), and apartment letter (tenAptLetter). When the logic enters figureRent ()
(the main loop), you can print three items: “Dear ”, tenName, and “, Here is your monthly rent bill” (the quote begins
with a comma that follows the recipient’s name). Then, you must print the rent amount. Instead of making a series of
selections suchas if tenFloor = 0 then print rent[0]andif tenFloor = 1 then
print rent[1],you want to take advantage of the rent array. The solution is to create a £igureRent ()
module that looks like Figure 8-19. You use the tenFloor variable as a subscript to access the correct rent array
element. When deciding which variable to use as a subscript with an array, ask yourself, “Of all the values available in
the array, what does the correct selection depend on?” When printing a rent value, the rent you use depends on the
floor on which the tenant lives, so the correct action is print rent[tenFloor].

Declaring and Initializing Constant Arrays 329 3

FIGURE 8-19: FLOWCHART AND PSEUDOCODE FOR THE £igureRent () MODULE OF THE RENT PROGRAM

print “Dear ”,
tenName, “, Here

is your monthly rent bill” figureRent ()

print "Dear ", tenName, ", Here is your monthly rent bill"
¢ print rent[tenFloor]
read tenantRec

print return

rent[tenFloor]

}

read
tenantRec

Tl P SOoono Every programming language provides ways to space your output for easy reading. For
example, a common technique to separate “Dear” from the tenant’s name is to include a
space after the 7 in Dear, as in print "Dear ", tenName.

The cleanUp () module for this program is very simple—just close the files. See Figure 8-20.

FIGURE 8-20: THE cleanUp () MODULE FOR THE RENT PROGRAM

cleanUp()
¢ cleanUp()
close files
close return
files

Without a rent array, the figureRent () module would have to contain four decisions and five different resulting

actions. With the rent array, there are no decisions. Each tenant’s rent is simply based on the rent element that
corresponds to the tenFloor variable because the floor number indicates the positional value of the corresponding
rent. Arrays can really lighten the workload required to write a program.

330 Chapter 8 ¢ Arrays

Writing the rent program from the previous section requires you to set values for five rent array elements within the
prep () module. If you write the rent program for a skyscraper, you may have to initialize 100 array elements.
Additionally, when the building management changes the rent amounts, you must alter the array element values within
the program to reflect the new rent charges. If the rent values change frequently, it is inconvenient to have hard-coded
values in your program. Instead, you can write your program so that it loads the array rent amounts from a file. The
array of rent values is an example of an array that gets its values during the execution of the program.

A file that contains all the rent amounts can be updated by apartment building management as frequently as needed.
Suppose you periodically receive a file named RENTFILE that is created by the building management and always con-
tains the current rent values. You can write the rent program so that it accepts all records from this input file within the
prep () module. Figure 8-21 shows how this is accomplished.

FIGURE 8-21: FLOWCHART AND PSEUDOCODE FOR prep () MODULE THAT READS RENT VALUES FROM AN

prep()

declare
variables

open
files

count=0

read
rentRec

No

Yes

read
tenantRec

return

INPUT FILE

rentRec

num rentAmt
tenantRec

char tenName

num tenFloor

char tenAptLetter
num rent[5]
num count

rent[count] = count =
rentAmt count + 1

prep()
declare variables
open files
count = 0
read rentRec
while not eof
rent[count] = rentAmt
count = count + 1
read rentRec
endwhile
read tenantRec
return

read
rentRec

Searching for an Exact Match in an Array 331

In the prep () module in Figure 8-21, you set the variable count to 0 and read a rentRec record from
RENTFILE. Each record in RENTFILE contains just one field—a numeric rentAmt value. For this program, assume
that the rent records in RENTFILE are stored in order by floor. When you read the first rentAmt, you store it in the
first element of the rent array. You increase the count to 1, read the second record, and, assuming it's not eo£,
you store the second rent in the second element of the rent array. After RENTFILE is exhausted and the rent array
is filled with appropriate rent amounts for each floor, you begin to read the file containing the tenantRec records,
and then the program proceeds as usual.

Tl P R —_ You could choose to close RENTFILE at the end of the prep () module. Unlike the tenant
file and the printer, it will not be used again in the program. Alternatively, you can wait
and close all the files at the end of the program.

When you use this method—reading the rents from an input file instead of hard coding them into the program—clerical
employees can update the rentRec values in RENTFILE. Your program takes care of loading the rents into the pro-
gram array from the most recent copy of RENTFILE, ensuring that each rent is always accurate and up to date. Using this
technique, you avoid the necessity of changing code within the program with each rent update.

Tl P Another way to organize RENTFILE is to include two fields within each record—for exam-
Jees ple, rentFloor and rentAmt. Then, the records would not have to be read into your
program in floor-number order. Instead, you could use the rentFloor variable as a sub-
script to indicate which position in the array to use to store the rentAmt.

sl |

Tl P You might question how the program knows which file’s eof condition is tested when a
ER program uses two or more input files. In some programming languages, the eof condi-
tion is tested on the file most recently read. In many programming languages, you have to
provide more specific information along with the eof question, perhaps rentRec
eof? or tenantRec eof?

T l P The RENTFILE example assumes that management provides you with a file that contains no
00808 | ore records than the number of rents your program is prepared to hold. A more elegant
program would check to make sure there are not too many rents. You will learn how to
perform such checks later in this chapter.

K

SEARCHING FOR AN EXACT MATCH IN AN ARRAY

In both the apartment request program and the rent program that you've seen in this chapter, the fields that the arrays
depend on conveniently hold small whole numbers. The number of bedrooms available in apartments are zero through
three, and the floors of the building are zero through four. Unfortunately, real life doesn’t always happen in small inte-
gers. Sometimes, you don't have a variable that conveniently holds an array position; sometimes, you have to search
through an array to find a value you need.

Consider a mail-order business in which orders come in with a customer name, address, item number ordered, and
quantity ordered, as shown in Figure 8-22.

332 Chapter 8 ¢ Arrays

FIGURE 8-22: MAIL-ORDER CUSTOMER FILE DESCRIPTION

MAIL-ORDER CUSTOMER FILE DESCRIPTION
File name: CUSTREC

FIELD DESCRIPTION DATA TYPE COMMENTS

Customer name Character

Address Character

Item number Numeric A 3-digit number
Quantity Numeric A value from 1 through 99

The item numbers are three-digit numbers, but perhaps they are not consecutive 000 through 999. Instead, over the
years, items have been deleted and new items have been added. For example, there might no longer be an item with
number 005 or 129. Sometimes, there might be a hundred-number gap or more between items.

For example, let’s say that this season you are down to the items shown in Figure 8-23. When a customer orders an
item, you want to determine whether the order is for a valid item number. You could use a series of six decisions to
determine whether the ordered item is valid; in turn, you would compare whether each customer’s item number is
equal to one of the six allowed values. However, a superior approach is to create an array that holds the list of valid item
numbers. Then, you can search through the array for an exact match to the ordered item. If you search through the
entire array without finding a match for the item the customer ordered, you can print an error message, such as “No
such item.”

Suppose you create an array with the six elements shown in Figure 8-24. If a customer orders item 307, a clerical
worker can tell whether it is valid by looking down the list and verifying that 307 is a member of the list. In a similar
fashion, you can use a loop to test each validItem against the ordered item number.

FIGURE 8-23: AVAILABLE ITEMS IN MAIL-ORDER COMPANY FIGURE 8-24: ARRAY OF VALID ITEM NUMBERS

ITEM NUMBER num validItem[0] = 106
106 num validItem[1l] = 108
108 num validItem[2] = 307
307 num validItem[3] = 405
405 num validItem[4] = 457
457 num validItem[5] = 688
688

The technique for verifying that an item number exists involves setting a subscript to 0 so that you can start searching
from the first array element, and initializing a flag variable to indicate that you have not yet determined whether the cus-
tomer’s order is valid. A flag is a variable that you set to indicate whether some event has occurred; frequently, it holds
a True or False value. For example, you can set a character variable named foundIt to “N”, indicating “No”. Then
you compare the customer’s ordered item number to the first item in the array. If the customer-ordered item matches
the first item in the array, you can set the flag variable to “Y”, or any other value that is not “N”. If the items do not
match, you increase the subscript and continue to look down the list of numbers stored in the array. If you check all six
valid item numbers and the customer item matches none of them, then the flag variable found1t still holds the value
“N”. If the flag variable is “N” after you have looked through the entire list, you can issue an error message indicating

that no match was ever found. Assuming you declare the customer item as custItemNo and the subscript as x,

Using Parallel Arrays 333 S

then Figure 8-25 shows a flowchart segment and the pseudocode that accomplishes the item verification.

FIGURE 8-25: FLOWCHART AND PSEUDOCODE SEGMENTS FOR FINDING AN EXACT MATCH TO A CUSTOMER

ITEM NUMBER

foundlt = “N”

x =0
foundIt = "N"
while x < 6
if custItemNo
foundIt
endif
x=x+1
endwhile
if foundIt = "N" then
print "No such item"
endif

validItem[x] then
wyn

X<67? ¢

No
No

print
“No such item”

<:::::::>4‘_-“‘\ <_-‘li| N
A

custltemNo Yes

validitem[x]?

foundIt = “Y”

X=X+1

i

USING PARALLEL ARRAYS

In a mail-order company, when you read a customer’s order, you usually want to accomplish more than simply verifying
that the item exists. You want to determine the price of the ordered item, multiply that price by the quantity ordered, and

print a bill. Suppose you have prices for six available items, as shown in Figure 8-26.

334 Chapter 8 ¢ Arrays

FIGURE 8-26: AVAILABLE ITEMS WITH PRICES FOR MAIL-ORDER COMPANY

ITEM NUMBER ITEM PRICE
106 0.59
108 0.99
307 4.50
405 15.99
457 17.50
688 39.00

You could write a program in which you read a customer order record and then use the customer’s item number as a
subscript to pull a price from an array. To use this method, you need an array with at least 689 elements. If a customer
orders item 405, the price is found at validItem[custItemNo], whichis validItem[405], or the
406th element of the array (because the Oth element is the first element of the array). Such an array would need

689 elements (because the highest item number is 688), but because you sell only six items, you would waste 683 of
the memory positions. Instead of reserving a large quantity of memory that remains unused, you can set up this pro-
gram to use two arrays.

Consider the mainline logic in Figure 8-27 and the ready () module in Figure 8-28. Two arrays are set up within the
ready () module. One contains six elements named validItem; all Six elements are valid item numbers. The
other array also has six elements. These are named validItemPrice; all six elements are prices. Each price in
this validItemPrice array is conveniently and purposely in the same position as the corresponding item number
in the other validItem array. Two corresponding arrays such as these are parallel arrays because each element in
one array is associated with the element in the same relative position in the other array.

FIGURE 8-27: MAINLINE LOGIC FOR THE PRICE PROGRAM

start
start perform ready()

while not eof

perform getPrice()
endwhile
perform finishy()

ready() stop

No
getPrice()

Yes

finish()

Using Parallel Arrays 335 3

FIGURE 8-28: THE ready () MODULE FOR THE PRICE PROGRAM

¥

declare
variables

\J

open
files

\J

read
custRec

\

return

num
num
num
num
num
num

num
num
num
num
num
num

num
num

c_ustRec

char custName
char custAddress
num custItemNo
num custQuantity

validItem[0] =
validItem[1l] =

validItem[2]
validItem[3]
validItem[4]
validItem[5]

106
108
307
405

= 457
= 688

validItemPrice[0]
validItemPrice[1l]
validItemPrice[2]
validItemPrice[3]
validItemPrice[4]
validItemPrice[5]

totBill
X

char foundIt

ready()

declare variables

open files

read custRec
return

= 0.59

0.99

= 4.50

15.99
17.50

= 39.00

You can write the getPrice () module as shown in Figure 8-29. The general procedure is to read each item num-
ber, look through each of the validItem values separately, and when a match for the custItemNo variable on
the input record is found, pull the corresponding parallel price out of the list of validItemPrice values.

336 Chapter 8 ¢ Arrays

FIGURE 8-29: THE getPrice () MODULE FOR THE PRICE PROGRAM

etPrice
getPrice() g x = ((),

while custItemNo not equal to validItem[x]
¢ x=x+ 1
endwhile
x=0 totBill = validItemPrice[x] * custQuantity
print custName, totBill
| read custRec
+ return

validitem[x|? | x=xed

¢ Yes

totBill =
validltemPrice[x]
* custQuantity

v

print custName,
totBill

v

read
custRec

v

Tl P SOoono In this book, you have repeatedly seen the flowchart decision that asks the eof question
phrased as a positive question (“eof?”) so the program continues while the answer is No.
You also have seen the pseudocode decision that asks the eof question in a negative form
(“while not eof”)so that the program continues while the condition is true. Figure 8-29
follows the same convention—the flowchart compares the customer item number to a valid
item using a positive question so the loop continues while the answer is No, whereas the
pseudocode asks if the customer item number is not equal to a valid item number, continuing
while the answer is Yes. The logic is the same either way.

You must create a variable to use as a subscript for the arrays. If you name the subscript x (see the declaration of x in
the variable list in Figure 8-28), then you can start by setting x equal to 0. Then, if cust ItemNo is the same as
validItem[x],Yyou can use the corresponding price from the other table, validItemPrice[x], o calculate
the customer’s bill.

e

Remaining within Array Bounds 337 _____‘;

Some programmers object to using a cryptic variable name such as x because it is not
descriptive. These programmers would prefer a name such as priceIndex. Others
approve of short names like x when the variable is used only in a limited area of a pro-
gram, as it is used here, to step through an array. There are many style issues on which
programmers disagree. As a programmer, it is your responsibility to find out what con-
ventions are used among your peers in your organization.

Within the getPrice () module, the variable used as a subscript, x, is set to 0. If cust ItemNo is not the same
asvalidItem[x],thenadd 1to x. Because x now holds the value 1, you next compare the customer’s requested
item number to validItem[1]. The value of x keeps increasing, and eventually a match between custItemNo
and some validItem[x] should be found.

After you find a match for the cust I temNo variable in the validItem array, you know that the price of that item
is in the same position in the other array, validItemPrice. When validItem[x] is the correct item,
validItemPrice[x] mustbe the correct price.

Suppose that a customer orders item 457, and walk through the flowchart yourself to see if you come up with the cor-
rect price.

REMAINING WITHIN ARRAY BOUNDS

The getPrice () module in Figure 8-29 is not perfect. The logic makes one dangerous assumption: that every cus-
tomer will order a valid item number. If a customer is looking at an old catalog and orders item 107, the program will
never find a match. The value of x will just continue to increase until it reaches a value higher than the number of ele-
ments in the array. At that point, one of two things happens. When you use a subscript value that is higher than the
number of elements in an array, some programming languages stop execution of the program and issue an error mes-
sage. Other programming languages do not issue an error message but continue to search through computer memory
beyond the end of the array. Either way, the program doesn’t end elegantly. When you use a subscript that is not within
the range of acceptable subscripts, your subscript is said to be out of bounds. Ordering a wrong item number is a
frequent customer error; a good program should be able to handle the mistake and not allow the subscript to go out

of bounds.

You can improve the price-finding program by adding a flag variable and a test to the getPrice () module. You can
set the flag when you find a valid item in the validItem array, and after searching the array, check whether the flag
has been altered. See Figure 8-30.

338 Chapter 8 ¢ Arrays

FIGURE 8-30: THE getPrice () MODULE USING THE foundIt FLAG

v

read
custRec

v

getPrice()
foundIt = "No"
x =0
while x < 6
if custItemNo = validItem[x] then
. totBill = validItemPrice[x] * custQuantity
getPrice() print custName, totBill
foundIt = "Yes"
+ Xx=x+ 1
else
fotlndl"f x=x+ 1
="No endif
endwhile
+ if foundIt not equal to "Yes" then
print "Error"
endif
x=0 read custRec
return
B
X< 6? Yes *
No custitemNo =
validitem[x]?
totBill =
X=X+1 validltemPrice[x]
\ * custQuantity
foundit +
— “Yes™ print
custName,
totBill
print +
“Error”
foundit
="“Yes”

X=X+1

return

Improving Search Efficiency Using an Early Exit 339 E

In the ready () module, you can declare a variable named foundI+t that acts as a flag. When you enter the
getPrice () module, you can set foundIt equal to “No”. Then, after setting x to 0, check to see if x is still less
than 6. If it is, compare custItemNo t0 validItem[x]. If they are equal, you know the position of the item’s
price, and you can use the price to print the customer’s bill and set the found1t flag to “Yes”. If cust ItemNo is
not equal to validItem[x], you increase x by 1 and continue to search through the array. When x is 6, you
shouldn’t look through the array anymore; you've gone through all six legitimate items, and you've reached the end.
The legitimate subscripts for a six-element array are 0 through 5; your subscript variable should not be used with the
array when it reaches 6. If foundIt doesn’t have a “Yes” in it at this point, it means you never found a match for the
ordered item number; you never took the Yes path leading from the custItemNo = validItem[x]? question.
If foundIt does not have “Yes” stored in it, you should print an error message; the customer has ordered a nonexis-
tent item.

IMPROVING SEARCH EFFICIENCY USING AN EARLY EXIT

The mail-order program is still a little inefficient. The problem is that if lots of customers order item 106 or 108, their
price is found on the first or second pass through the loop. The program continues searching through the item array,
however, until x reaches the value 6. One way to stop the search once the item has been found, and foundIt is set
to “Yes”, is to set x to 6 immediately. (Setting a variable to a specific value, particularly when the new value is an abrupt
change, is also called forcing the variable to that value.) Then, when the program loops back to check whether x is still
less than 6, the loop will be exited and the program won’t bother checking any of the higher item numbers. Leaving a
loop as soon as a match is found is called an early exit; it improves the program’s efficiency. The larger the array, the
more beneficial it becomes to exit the searching loop as soon as you find what you’re looking for.

Some programmers prefer to use a flag variable for early exits; others think it is fine to
force a loop control variable to a value that stops loop execution if that is more convenient.

Figure 8-31 shows the final version of the price program. Notice the improvement to the getPrice () module. You
search the validItem array, element by element. If an item number is not matched in a given location, the sub-
script is increased and the next location is checked. As soon as an item number is located in the array, you print a line,
turn on the flag, and force the subscript to a high number (6) so the program will not check the item number array any
further.

[
+

\

Y R BN .. 4 4

-,
=
b

340 Chapter 8 ® Arrays

FIGURE 8-31: THE FINAL VERSION OF THE PRICE PROGRAM THAT EFFICIENTLY SEARCHES FOR PRICES BASED
ON THE ITEM A CUSTOMER ORDERS

start getPrice()
foundlt
ready() ="“No”

* Yes VI:

finish()

v

custitemNo =
— validitem[x]?
custRec

T char custName

char custAddress

totBill =

num custItemNo X=x+1 validitemPrice[x]
num custQuantity * custQuantity
num validItem[0] = 106 *
num validItem[1] = 108 foundt
num validItem[2] = 307 —Yes pri
num validItem[3] = 405 custName,
open num val?dltem[4] = 457 totBill
files num validItem[5] = 688
. . print *
num validItemPrice[0] = 0.59 “Error”
v num validItemPrice[l] = 0.99
num validItemPrice[2] = 4.50 foundit
read num validItemPrice[3] = 15.99 ="Yes'
custRec num validItemPrice[4] = 17.50
num validItemPrice[5] = 39.00
\ X read *
num totBill custRec
char foundIt * X=6
start (return)
perform ready()

{_

while not eof
perform getPrice()
endwhile
perform finish()
stop

ready()
declare variables \ 4
open files
read custRec

return close
files
getPrice()
foundIt = "No" \ 4
x=0

while x < 6
if custItemNo = validItem[x] then

totBill = validTtemPrice[x] * custQuantity
print custName, totBill

foundIt = "Yes"
X =6
else
x=x+1
endif
endwhile

if foundIt not equal to "Yes" then
print "Error"
endif
read custRec
return

finish()
close files
return

Searching an Array for a Range Match 341

‘I‘I P Notice that the price program is most efficient when the most frequently ordered items are
0000 |stored at the beginning of the array. When you use this technique, only the seldom-
ordered items require many cycles through the searching loop before finding a match.

'I'l P Remember that you can make programs that contain arrays more flexible by declaring a

00008 | onstant to hold the size of the array. Then, whenever you need to refer to the size of the
array within the program—for example, when you loop through the array during a search
operation—you can use the variable name instead of a hard-coded value like 6. If the pro-
gram must be altered later to accommodate more or fewer array elements, you need to
make only one change—you change the value of the array-size variable where it is
declared.

SEARCHING AN ARRAY FOR A RANGE MATCH

In the previous example, customer item numbers needed to exactly match item numbers stored in a table to determine
the correct price of an item. Sometimes, however, instead of finding exact matches, programmers want to work with
ranges of values in arrays. A range of values is any set of contiguous values, such as 1 through 5.

Recall the customer file description from earlier in this chapter, shown again in Figure 8-32. Suppose the company
decides to offer quantity discounts, as shown in Figure 8-33.

FIGURE 8-32: MAIL-ORDER CUSTOMER FILE DESCRIPTION

MAIL-ORDER CUSTOMER FILE DESCRIPTION

File name: CUSTREC

FIELD DESCRIPTION DATA TYPE COMMENTS

Customer name Character

Address Character

Item number Numeric A 3-digit number
Quantity Numeric A value from 1 through 99

FIGURE 8-33: DISCOUNTS ON ORDERS BY QUANTITY

Number of items ordered Discount %
1-9 0
10-24 10
25-48 15
49 or more 25

You want to be able to read a record and determine a discount percentage based on the value in the quantity field. One
ill-advised approach might be to set up an array with as many elements as any customer might ever order, and store
the appropriate discount for each possible number, as shown in Figure 8-34.

342 Chapter

8 e Arrays

FIGURE 8-34: USABLE—BUT INEFFICIENT—DISCOUNT ARRAY

num
num
num

num
num

num
num
num

discount[0]
discount[1]
discount[2]

nonn
o

discount[9] 0
discount[10] = 10

discount[48] = 15
discount[49] = 25
discount[50] = 25

This approach has three drawbacks:

It requires a very large array that uses a lot of memory.

You must store the same value repeatedly. For example, each of the first 10 elements receives
the same value, O, because if a customer orders from zero through nine items, there is no dis-
count. Similarly, each of the next 15 elements receives the same value, 10.

Where do you stop adding array elements? Is a customer order quantity of 75 items enough?
What if a customer orders 100 or 1,000 items? No matter how many elements you place in the
array, there’s always a chance that a customer will order more.

A better approach is to create just four discount array elements, one for each of the possible discount rates, as shown
in Figure 8-35.

FIGURE 8-35: SUPERIOR DISCOUNT ARRAY

num
num
num
num

discount[0] 0

discount[1l] = 10
discount[2] = 15
discount[3] = 25

With the new four-element discount array, you need a parallel array to search through, to find the appropriate level
for the discount. At first, beginning programmers might consider creating an array named discountRange and
testing whether the quantity ordered equals one of the four stored values. For example:

num discountRange[0] = 0 through 9

10 through 24
25 through 48
49 and higher

num discountRange[1l]

num discountRange[2]

num discountRange[3]

Searching an Array for a Range Matich 343

However, you cannot create an array like the previous one. Each element in any array is simply a single variable. Any
variable can hold a value such as 6 or 12, but it can’t hold every value 6 through 12. Similarly, the

discountRange[0] variable can hold a 1, 2, 9, or any other single value, but it can’t hold O through 9; there is no
such numeric value.

One solution is to create an array that holds only the low-end value of each range, as Figure 8-36 shows.

FIGURE 8-36: THE discountRange ARRAY USING LOW END OF EACH DISCOUNT RANGE

num discountRange[0] 0

num discountRange[l] = 10
num discountRange[2] = 25
num discountRange[3] = 49

Using such an array, you can compare each custQuantity value with each discountRange value in turn. You
can start with the /fastrange limit (discountRange[3]). If custQuantity is at least that value, 49, the customer
gets the highest discount rate (discount[3]). If custQuantity is not at least discountRange([3], then
you check to see if it is at least discountRange[2], or 25. If so, the customer receives discount[2], and so
on. If you declare a variable named rate to hold the correct discount rate, and another variable named sub to use as
a subscript, then you can use the determineDiscount () module shown in Figure 8-37. This module uses a
loop to find the appropriate discount rate for an order, then calculates and prints a customer bill.

-

ﬁ

[,

34aa Chapter 8 ® Arrays

FIGURE 8-37: FLOWCHART AND PSEUDOCODE FOR DISCOUNT DETERMINATION

determineDiscount()

Yes
sub >7 ¢
No
No Yes
discountRange[sub]?
rate =
sub = sub —1 discountfsub]
Y
billAmt = ¢
custQuantity * priceEach
sub=— 1
v |
billAmt = [
billAmt — billAmt * rate determineDiscount ()

* sub = 3
while sub >= 0
if custQuantity >= discountRange[sub]

print custName, .
rate = discount[sub]

custAddress, billAmt

sub = — 1
else
* sub = sub — 1
read endif
custRec endwhile
billAmt = custQuantity * priceEach
¢ billAmt = billAmt — billAmt * rate

print custName, custAddress, billAmt

return read custRec
return

TI P — An alternative approach is to store the high end of every range in an array. Then, you start
with the lowest element and check for values less than or equal to each array element
| value before using the appropriate discount in the parallel array.

When using an array to store range limits, you use a loop to make a series of comparisons that would otherwise require
many separate decisions. Your program is written using fewer instructions than would be required if you did not use an
array, and modifications to your program will be easier to make in the future.

Key Terms 345

CHAPTER SUMMARY

0O An array is a series or list of variables in computer memory, all of which have the same name but are dif-
ferentiated with special numbers called subscripts.

0 When you declare an array, you declare a programming structure that contains multiple elements, each
of which has the same name and the same data type. Each array element has a unique integer subscript
indicating how far away the individual element is from the first element.

O You often can use a variable as a subscript to an array, replacing multiple nested decisions.

0O You can declare and initialize all of the elements in an array using a single statement that provides a type, a
name, and a quantity of elements for the array. You also can initialize array values within an initialization loop.

0O You can use a constant array when the final desired values are fixed at the beginning of the program.
O You can load an array from a file. This step is often performed in a program’s housekeeping module.

O Searching through an array 1o find a value you need involves initializing a subscript, using a loop to test
each array element, and setting a flag when a match is found.

O In parallel arrays, each element in one array is associated with the element in the same relative position in
the other array.

O Your programs should ensure that subscript values do not go out of bounds—that is, take on a value out
of the range of legal subscripts.

O When you need to compare a value to a range of values in an array, you can store either the low- or
high-end value of each range for comparison.

KEY TERMS

An array is a series or list of variables in computer memory, all of which have the same name but are differentiated
with special numbers called subscripts.

A subscript is a number that indicates the position of a particular item within an array.

An index is a subscript.

Each separate array variable is one element of the array.

The size of an array is the number of elements it can hold.

In a zero-based array, the first element is accessed using a subscript of 0.

0ff-by-one errors usually occur when you assume an array’s first subscript is 1 but it actually is 0.
An initialization loop is a loop structure that provides initial values for every element in any array.
Hard-coded values are explicitly assigned.

Aflag is a variable that you set to indicate whether some event has occurred.

346 C(Chapter 8 ¢ Arrays

Parallel arrays are two or more arrays in which each element in one array is associated with the element in the same
relative position in the other array or arrays.

When you use a subscript that is not within the range of acceptable subscripts, your subscript is said to be out
of bounds.

Forcing a variable to a value is assigning a specific value to it, particularly when the assignment causes a sudden
change in value.

Leaving a loop as soon as a match is found is called an early exit.

Arange of values is any set of contiguous values.

REVIEW QUESTIONS

1. Asubscriptis a(n)

a. elementin an array

b. alternate name for an array

c. number that indicates the position of a particular item within an array
d. number that represents the highest value stored within an array

2. Each variable in an array must havethesame __ as the others.

a. subscript

b. data type

c. value

d. memory location

3. Each variable in an array is called a(n)

a. element
b. subscript
c. component
d. data type

4, The subscripts of any array are always

a. characters

b. fractions

c. integers

d. strings of characters

5. Suppose you have an array named number, and two of its elements are number[1] and
number [4]. You know that

a. the two elements hold the same value

b. the two elements are at the same memory location

c. the array holds exactly four elements

d. there are exactly two elements between those two elements

177
7
.;:gg-

[=4

Review Questions 347 RS

Qﬁm

!,
f
i

Suppose you want to write a program that reads customer records and prints a summary of the
number of customers who owe more than $1,000 each, in each of 12 sales regions. Customer fields
include name, zipCode, balanceDue, and regionNumber. At some point during record pro-
cessing, you would add 1 to an array element whose subscript would be represented by

name
zipCode
balanceDue

20 o

regionNumber

Arrays are most useful whenyouusea _ as a subscript.

a. numeric constant
b. character
c. variable
d. file name

Suppose you create a program with a seven-element array that contains the names of the days of
the week. In the housekeeping () module, you display the day names using a subscript named
dayNum. In the same program, you display the same array values again in the £inish () module.
Inthe f£inish() module,you __ as a subscript to the array.

a. must use dayNum

b. can use dayNum, but can also use another variable
€. must not use dayNum

d. must use a numeric constant

Declaring a numeric array sets its individual elements’valuesto .

a. zero in every programming language

b. zeroin some programming languages

¢. consecutive digits in every programming language
d. consecutive digits in some programming languages

A__ arrayis one in which the stored values are fixed permanently at the start of the
program.

a. constant
b. variable

c. persistent
d. continual

When you create an array of values that you explicitly set upon creation, using numeric constants,
the values are said to be

a. postcoded
b. precoded

c. soft coded
d. hard coded

348 Chapter 8 ¢ Arrays

12. Many arrays contain values that change periodically. For example, a bank program that uses an
array containing mortgage rates for various terms might change several times a day. The newest
values are most likely

a. typed into the program by a programmer who then recompiles the program before it is used
b. calculated by the program, based on historical trends
c. read into the program from a file that contains the current rates
d. typed in by a clerk each time the program is executed for a customer
13. A is a variable that you set to indicate a True or False state.
a. subscript
b. flag
Cc. counter
d. banner
14. Two arrays in which each element in one array is associated with the element in the same relative
position in the otherarrayare ___ arrays.
a. cohesive
b. perpendicular
c. hidden
d. parallel

15. In most programming languages, the subscript used to access the last element in an array
declared as num values[12] is

a. 0
b. 11
c. 12
d. 13

16. In most programming languages, a subscript for a 10-element array is out of bounds when it

a. is lower than 0
b. is higher than 9
c. both of these
d. neitheranorb

17. If you perform an early exit from a loop while searching through an array for a match, you

quit searching as soon as you find a match

quit searching before you find a match

set a flag as soon as you find a match, but keep searching for additional matches
repeat a search only if the first search was unsuccessful

oo oo

18.

19.

20.

Find the Bugs 349

In programming terminology, the values 4 through 20 representa(n) ___ of values.

a. assortment
b. range

c. diversity
d. collection

Each element in a five-element arraycanhold __ value(s).
a. one

b. five

c. atleast five

d. an unlimited number of

After the annual dog show in which the Barkley Dog Training Academy awards points to each par-
ticipant, the Academy assigns a status to each dog based on the following criteria:

Points Earned Level of Achievement
0-5 Good

6-7 Excellent

8-9 Superior

10 Unbelievable

The Academy needs a program that compares a dog’s points earned with the grading scale, in
order to award a certificate acknowledging the appropriate level of achievement. Of the following,
which set of values would be most useful for the contents of an array used in the program?

a. 0,6,9,10

b. 57,810

c. 57,910

d. any of these

FIND THE BUGS

Each of the following pseudocode segments contains one or more bugs that you must find and correct.

1.

This application prints a summary report for an aluminum can recycling drive at a high school.
When a student brings in cans, a record is created that contains two fields—the student’s year in
school (1,2, 3, or 4) and the number of cans submitted. Student records have not been sorted. The
report lists each of the four classes and the total number of cans recycled for each class.

350 Chapter 8 ¢ Arrays

start
perform housekeeping()
while not eof
perform accumulateCans/()
endwhile
perform finish()
stop

housekepping()
declare variables

studentRec

num year

num cans
char headingl = "Can Recycling Report"
char heading2 = "Year Cans"

const num SIZE = 4
num collected[SIZE] all set to 0
open files
read studentRec
return

accumulateCans ()
if year < 1 OR year >= SIZE then
year = 0
endif
collected[SIZE] = collected[SIZE] + cans
read studentRec
return

finish()
print headingl
print heading2
year =1
while year < SIZE
print year, collected[SIZE]
year = year + 1
endwhile
close files
return

Find the Bugs 351

This application prints a report card for each student at Pedagogic College. A record has been cre-
ated for each student containing the student’s name, address, and zip code, as well as a numeric
average (from 0 through 100) for all the student’s work for the semester. A report card is printed
for each student containing the student’s name, address, city, state, and zip code, as well as a let-
ter grade based on the following scale:

90-100 A
80-89 B
70-79C
60-69 D

59 and below F

The student’s city and state are determined from the student’s zip code. A file is read containing
three fields—zip code, city, and state—for each of the 100 zip codes the college serves. For this
program, assume that all the student averages have been verified to be between 0 and 100 inclu-
sive and that all the zip codes have been verified as valid and stored in the zip code file.

start
perform housekeeping()
while not eof
perform produceGradeReport()
endwhile
perform finish()
stop

housekepping()
declare variables

studentRec
char name
char address
num zipCode
num average

zipRec
num zip
char city
char state

J O
YL K4
2/
gor L7

:?’/;/

!,
f
i

352 Chapter 8 ¢ Arrays

const num ZIPSIZE = 100
num storedZip[ZIPSIZE]
char storedCity[ZIPSIZE]
char storedState[SIZE]

const num GRADESIZE = 5

const num gradeLevel[l] = 80
const num gradeLevel[2] = 70
const num gradelLevel[3] = 60
const num gradelLevel[4] = 0
const char grade[0] = 'A'
const char grade[l] = 'B'
const char grade[2] = 'C'
const char grade[3] = 'S’
const char grade[4] = 'F'

num zipCodeCount
char zipFound
num sub
open files
zipCodeCount = 0
read zipRec
while not eof
zip = storedZip[x]
storedCity[x] = city
storedState[x] = state
zipCodeCount = zipCodeCount + 1
read zipRec
endwhile
read studentRec
return

s e

Exercises 353 -\i\:‘.\.
T \
e

\‘)

produceGradeReport ()
print "Grade Report"
print name
print address

zipFound = "N"
sub = 0
while zipFound = "N"

if zipCode = storedZip[ZIPCODESIZE]
print storedCity[ZIPCODESIZE]
print storedState[ZIPCODESIZE]
print zipCode

zipFound = "Yy"
endif
sub = sub + 1
endwhile
sub = 0

while sub < GRADESIZE
if average >= gradeLevel[sub] then
print grade[sub]

sub = 0
endif
endwhile
read studentRec
return
finish()

close files
return

354 Chapter 8 ¢ Arrays

EXERCISES

1.

The city of Cary is holding a special census. The census takers collect one record for each citizen,
as follows:

CENSUS FILE DESCRIPTION
File name: CENSUS

Not sorted

FIELD DESCRIPTION DATA TYPE EXAMPLE
Age Numeric 42
Gender Character F
Marital Status Character M
Voting District Numeric 18

The voting district field contains a number from 1 through 22.

Design the logic of a program that would produce a count of the number of citizens residing in
each of the 22 voting districts.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.

c. Draw the flowchart.

d. Write the pseudocode.

The Midville Park District maintains records containing information about players on its soccer
teams. Each record contains a player’s first name, last name, and team number. The teams are:

Soccer Teams

TEAM NUMBER TEAM NAME

1 Goal Getters

2 The Force

3 Top Guns

4 Shooting Stars

5 Midfield Monsters

Design the logic for a report that lists all players along with their team numbers and team names.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.

c. Draw the flowchart.

d. Write the pseudocode.

Create the logic for a program that produces a count of the number of players registered for each
team listed in Exercise 2.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.

c. Draw the flowchart.

d. Write the pseudocode.

o7
T4
:"3,,?’/{
FETF

Exercises 355

An elementary school contains 30 classrooms numbered 1 through 30. Each classroom can contain
any number of students up to 35. Each student takes an achievement test at the end of the school
year and receives a score from 0 through 100. One record is created for each student in the school;
each record contains a student ID, classroom number, and score on the achievement test. Design
the logic for a program that lists the total points scored for each of the 30 classroom groups.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.

c. Draw the flowchart.

d. Write the pseudocode.

Modify Exercise 4 so that each classroom’s average of the test scores prints, rather than each
classroom’s total.

The school in Exercises 4 and 5 maintains a file containing the teacher’s name for each classroom.
Each record in this file contains a room number from 1 through 30, and the last name of the
teacher. Modify Exercise 5 so that the correct teacher’s name appears on the list with his or her
class’s average.

A fast-food restaurant sells the following products:
Fast-Food Items

PRODUCT PRICE
Cheeseburger 2.49
Pepsi 1.00
Chips .59

Design the logic for a program that reads a record containing a customer number and item name,
and then prints either the correct price or the message “Sorry, we do not carry that” as output.

a. Draw the flowchart.
b. Write the pseudocode.

Each week, the home office for a fast-food restaurant franchise distributes a file containing new
prices for the items it carries. The file contains the item name and current price. Design the logic
for a program that loads the current values into arrays. Then, the program reads a record contain-
ing a customer number and item name, and prints either the correct price or the message “Sorry,
we do not carry that” as output.

a. Draw the flowchart.
b. Write the pseudocode.

356 Chapter 8 ¢ Arrays

10.

The city of Redgranite is holding a special census. The census takers collect one record for each
citizen as follows:

CENSUS FILE DESCRIPTION
File name: CENSUS

Not sorted

FIELD DESCRIPTION DATA TYPE EXAMPLE
Age Numeric 42
Gender Character F
Marital Status Character M
Voting District Numeric 18

Design the logic of a program that produces a count of the number of citizens in each of the fol-
lowing age groups: under 18, 18 through 30, 31 through 45, 46 through 64, and 65 and older.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.

c. Draw the flowchart.

d. Write the pseudocode.

A company desires a breakdown of payroll by department. Input records are as follows:

PAYROLL FILE DESCRIPTION
File name: PAY

FIELD DESCRIPTION DATA TYPE EXAMPLE
Employee Last Name Character Dykeman
Employee First Name Character Ellen
Department Numeric 3
Hourly Salary Numeric 18.50
Hours Worked Numeric 40

Input records are organized in alphabetical order by employee, not in department number order.

The output is a list of the seven departments in the company (numbered 1 through 7) and the total
gross payroll (rate times hours) for each department.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.

c. Draw the flowchart.

d. Write the pseudocode.

11.

12.

13.

g o
IYEl L
FETF

Exercises 357 [l

Qﬁn\

!,
f
i

Modify Exercise 10 so that the report lists department names as well as numbers. The department
names are:

Department Names and Numbers

DEPARTMENT NUMBER DEPARTMENT NAME
Personnel
Marketing
Manufacturing
Computer Services
Sales

Accounting

N o o W N

Shipping

Modify the report created in Exercise 11 so that it prints a line of information for each employee
before printing the department summary at the end of the report. Each detail line must contain the
employee’s name, department number, department name, hourly wage, hours worked, gross pay,
and withholding tax.

Withholding taxes are based on the following percentages of gross pay:
Withholding Taxes

WEEKLY SALARY WITHHOLDING %
0.00-200.00 10
200.01-350.00 14
350.01-500.00 18
500.01-up 22

The Perfect Party Catering Company keeps records concerning the events it caters as follows:

EVENT FILE DESCRIPTION
File name: CATER

FIELD DESCRIPTION DATA TYPE EXAMPLE
Event Number Numeric 15621
Host Name Character Profeta
Month Numeric 10

Day Numeric 15

Year Numeric 2007
Meal Selection Numeric 4
Number of Guests Numeric 150

Additionally, a meal file contains the meal selection codes (such as 4), name of entree (such as
“Roast beef”), and current price per guest (such as 19.50). Assume there are eight numbered meal
records in the file.

358 Chapter 8 ¢ Arrays

14.

Design the logic for a program that produces a report that lists each event number, host name,
date, meal, guests, gross total price for the party, and price for the party after discount. Print the
month name—for example, “October”’—rather than “10”. Print the meal selection—for example,
“Roast beef”—rather than “4”. The gross total price for the party is the price per guest for the
meal times the number of guests. The final price includes a discount based on the following table:

Discounts for Large Parties

NUMBER OF GUESTS DISCOUNT
1-25 $0

26-50 $75
51-100 $125
101-250 $200

251 and over $300

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.

c. Draw the flowchart.

d. Write the pseudocode.

Daily Life Magazine wants an analysis of the demographic characteristics of its readers. The
Marketing Department has collected reader survey records in the following format:

Magazine Reader FILE DESCRIPTION
File name: MAGREADERS
Not sorted

FIELD DESCRIPTION DATA TYPE EXAMPLE
Age Numeric 31
Gender Character M
Marital Status Character S
Annual Income Numeric 45000

a. Create the logic for a program that would produce a count of readers by age groups as follows: under 20,
20-29, 30-39, 4049, and 50 and older.

b. Create the logic for a program that would produce a count of readers by gender within age group—that is,
under 20 females, under 20 males, under 30 females, under 30 males, and so on.

c. Create the logic for a program that would produce a count of readers by income groups as follows: under
$20,000, $20,000-$24,999, $25,000-$34,999, $35,000-$49,999, and $50,000 and up.

15.

Exercises 359

Glen Ross Vacation Property Sales employs seven salespeople as follows:

Salespeople

ID NUMBER NAME

103 Darwin
104 Kratz
201 Shulstad
319 Fortune
367 Wickert
388 Miller
435 Vick

When a salesperson makes a sale, a record is created including the date, time, and dollar amount
of the sale, as follows: The time is expressed in hours and minutes, based on a 24-hour clock. The
sale amount is expressed in whole dollars.

SALE FIELD DESCRIPTION
File name: SALES

FIELD DESCRIPTION DATA TYPE EXAMPLE
Salesperson Numeric 319
Month Numeric 02

Day Numeric 21

Year Numeric 2008
Time Numeric 1315
Sale Amount Numeric 95900

Salespeople earn a commission that differs for each sale, based on the following rate schedule:

Commission Rates

SALE AMOUNT RATE
$0-$50,000 .04
$50,001-$125,000 .05
$125,001-$200,000 .06
$200,001 and up .07

Design the output and either the flowchart or pseudocode that produces each of the following
reports:

a. Areport listing each salesperson number, name, total sales, and total commissions

b. Areport listing each month of the year as both a number and a word (for example, “01 January”), and the
total sales for the month for all salespeople

¢. Areport listing total sales as well as total commissions earned by all salespeople for each of the following
time frames, based on hour of the day: 00-05, 06—12, 13-18, and 19-23

360 Chapter 8 ¢ Arrays

DETECTIVE WORK

1. Find at least five definitions of an array.

2. Using Help in Microsoft Excel or another spreadsheet program, discover how to use the
vlookup () function. How is this function used?

3. What is a Fibonacci sequence? How do Fibonacci sequences apply to natural phenomena? Why do
programmers use an array when working with this mathematical concept?

UP FOR DISCUSSION

1. Atrain schedule is an everyday, real-life example of an array. Think of at least four more.

2. Every element in an array always has the same data type. Why is this necessary?

