
9
After studying Chapter 9, you should be able to:

� Describe the need for sorting data

� Swap two values in computer memory

� Use a bubble sort

� Use an insertion sort

� Use a selection sort

� Use indexed files

� Use a linked list

� Use multidimensional arrays

ADVANCED ARRAY MANIPULATION

361

362 Chapter 9 • Advanced Array Manipulation

UNDERSTANDING THE NEED FOR SORTING RECORDS

When you store data records, they exist in some sort of order; that is, one record is first, another second, and so on.
When records are in sequential order, they are arranged one after another on the basis of the value in some field.
Examples of records in sequential order include employee records stored in numeric order by Social Security number or
department number, or in alphabetic order by last name or department name. Even if the records are stored in a ran-
dom order—for example, the order in which a data-entry clerk felt like entering them—they still are in some order,
although probably not the order desired for processing or viewing. When this is the case, the data records need to be
sorted, or placed in order, based on the contents of one or more fields. When you sort data, you can sort either in
ascending order, arranging records from lowest to highest value within a field, or descending order, arranging
records from highest to lowest value. Here are some examples of occasions when you would need to sort records:

� A college stores students’ records in ascending order by student ID number, but the registrar
wants to view the data in descending order by credit hours earned so he can contact students
who are close to graduation.

� A department store maintains customer records in ascending order by customer number, but at
the end of a billing period, the credit manager wants to contact customers whose balances are 90
or more days overdue. The manager wants to list these overdue customers in descending order
by the amount owed, so the customers maintaining the biggest debt can be contacted first.

� A sales manager keeps records for her salespeople in alphabetical order by last name, but
needs to list the annual sales figure for each salesperson so she can determine the median
annual sale amount. The median value in a list is the value of the middle item when the values
are listed in order; it is not the same as the arithmetic average, or mean.

To help you understand the difference between median and mean, consider the following
five values: 0, 7, 10, 11, 12. The median value is the middle position’s value (when the
values are listed in numerical order), or 10. The mean, however, is the sum (40) divided by
the number of values (5), which evaluates to 8. The median is used as a statistic in many
cases because it represents a more typical case—half the values are below it and half are
above it. Unlike the median, the mean is skewed by a few very high or low values.

Sorting is usually reserved for a relatively small number of data items. If thousands of
customer records are stored, and they frequently need to be accessed in order based on
different fields (alphabetical order by customer name one day, zip code order the next),
the records would probably not be sorted at all, but would be indexed or linked. You learn
about indexing and linking later in this chapter.

When computers sort data, they always use numeric values when making comparisons between values. This is clear when
you sort records by fields such as a numeric customer ID or balance due. However, even alphabetic sorts are numeric,
because everything that is stored in a computer is stored as a number using a series of 0s and 1s. In every popular com-
puter coding scheme, “B” is numerically one greater than “A”, and “y” is numerically one less than “z”. Unfortunately,
whether “A” is represented by a number that is greater or smaller than the number representing “a” depends on your sys-
tem. Therefore, to obtain the most useful and accurate list of alphabetically sorted records, either the data-entry personnel
should be consistent in the use of capitalization, or the programmer should convert all the data to consistent capitalization.

TIP�

TIP�

363Understanding How to Swap Two Values

Because “A” is always less than “B”, alphabetic sorts are always considered ascending
sorts. The most popular coding schemes include ASCII, Unicode, and EBCDIC. Each is a
code in which a number represents every computer character. Appendix B contains addi-
tional information about these codes.

It’s possible that as a professional programmer, you will never have to write a program
that sorts records, because organizations can purchase prewritten, or “canned,” sorting
programs. Additionally, many popular language compilers come with built-in methods
that can sort data for you. However, it is beneficial to understand the sorting process so
that you can write a special-purpose sort when needed. Understanding sorting also
improves your array-manipulating skills.

UNDERSTANDING HOW TO SWAP TWO VALUES

Many sorting techniques have been developed. A concept that is central to most sorting techniques involves swapping
two values. When you swap the values stored in two variables, you reverse their positions; you set the first variable
equal to the value of the second, and the second variable equal to the value of the first. However, there is a trick to
reversing any two values. Assume you have declared two variables as follows:

num score1 = 90
num score2 = 85

You want to swap the values so that score1 is 85 and score2 is 90. If you first assign score1 to score2
using a statement such as score2 = score1, both score1 and score2 hold 90 and the value 85 is lost.
Similarly, if you first assign score2 to score1 using a statement such as score1 = score2, both variables
hold 85 and the value 90 is lost.

The solution to swapping the values lies in creating a temporary variable to hold one of the scores; then, you can
accomplish the swap as shown in Figure 9-1. First, the value in score2, 85, is assigned to a temporary holding vari-
able, named temp. Then, the score1 value, 90, is assigned to score2. At this point, both score1 and score2
hold 90. Then, the 85 in temp is assigned to score1. Therefore, after the swap process, score1 holds 85 and
score2 holds 90.

TIP�

TIP�

364 Chapter 9 • Advanced Array Manipulation

In Figure 9-1, you can accomplish identical results by assigning score1 to temp, assign-
ing score2 to score1, and finally assigning temp to score2.

USING A BUBBLE SORT

One of the simplest sorting techniques to understand is a bubble sort. You can use a bubble sort to arrange records in
either ascending or descending order. In a bubble sort, items in a list are compared with each other in pairs, and when
an item is out of order, it swaps values with the item below it. With an ascending bubble sort, after each adjacent pair of
items in a list has been compared once, the largest item in the list will have “sunk” to the bottom. After many passes
through the list, the smallest items rise to the top like bubbles in a carbonated drink.

A bubble sort is sometimes called a sinking sort.

Assume that five student test scores are stored in a file and you want to sort them in ascending order for printing.
To begin, you can define three modules in the mainline logic, as shown in Figure 9-2: housekeeping(),
sortScores(), and finishUp().

The housekeeping() module of this program defines a variable name for each individual score in the input file
(inScore) and sets up an array of five elements (score) in which to store the five scores. The entire file is then
read into memory, one score at a time, and each score is stored in one element of the array. See Figure 9-3.

switchTwoValues()
 temp = score2
 score2 = score1
 score1 = temp
return

FIGURE 9-1: A MODULE THAT SWAPS TWO VALUES

switchTwoValues()

temp =
score2

return

score2 =
score1

score1 =
temp

TIP�

TIP�

365Using a Bubble Sort

housekeeping()
 declare variables
 open files
 read inScore
 while not eof
 score[x] = inScore
 x = x + 1
 read inScore
 endwhile
return

num inScore
num score[5]
num x = 0
num temp

eof?

FIGURE 9-3: THE housekeeping() MODULE FOR THE SCORE-SORTING PROGRAM

read
inScore

score[x]
= inScore

x = x + 1
read

inScore
No

Yes

housekeeping()

declare
variables

open
files

return

start
 perform housekeeping()
 perform sortScores()
 perform finishUp()
stop

FIGURE 9-2: MAINLINE LOGIC FOR THE SCORE-SORTING PROGRAM

start

stop

housekeeping()

sortScores()

finishUp()

366 Chapter 9 • Advanced Array Manipulation

When the program logic leaves the housekeeping() module and enters the sortScores() module, five
scores have been placed in the array. For example, assume they are:

score[0] = 90
score[1] = 85
score[2] = 65
score[3] = 95
score[4] = 75

To begin sorting this list of scores, you compare the first two scores. If they are out of order, you reverse their positions,
or swap their values. That is, if score[0] is more than score[1], then score[0] assumes the value 85 and
score[1] takes on the value 90. After this swap, the scores are in slightly better order than they were originally.

You could reverse the values of score[0] and score[1] using the following code:

switchValues()
temp = score[1]
score[1] = score[0]
score[0] = temp

return

However, this code segment’s usefulness is limited because it switches only the first two elements of the score array.
If you use hard values such as 0 and 1 as subscripts, then you must write additional statements to swap the values in
positions 1 and 2, 2 and 3, and 3 and 4. A more universal switchValues() module is shown in Figure 9-4. This
module switches any two adjacent elements in the score array when the variable x represents the position of the
first of the two elements, and the value x + 1 represents the subsequent position.

switchValues()
 temp = score[x + 1]
 score[x + 1] = score[x]
 score[x] = temp
return

FIGURE 9-4: THE switchValues() MODULE THAT SWAPS ANY TWO ADJACENT VALUES IN AN ARRAY

switchValues()

temp =
score[x + 1]

return

score[x + 1] =
score[x]

score[x] =
temp

367Using a Bubble Sort

For an ascending sort, you need to perform the switchValues() module whenever any given element x of the
score array has a value greater than the next element, x + 1, of the score array. For any x, if the xth element is
not greater than the element at position x + 1, the switch should not take place. For example, when score[x] is
90 and score[x + 1] is 85, a swap should occur. On the other hand, when score[x] is 65 and score[x + 1]
is 95, then no swap should occur. See Figure 9-5.

For a descending sort, in which you want to end up with the highest value first, write the
decision so that you perform the switch when score[x] is less than score[x + 1].

In the sort, you could use either greater than (>) or greater than or equal to (>=) to com-
pare adjacent values. Using the greater than comparison to determine when to switch val-
ues in the sort is more efficient than using greater than or equal to, because if two
compared values are equal, there is no need to swap them.

You must execute the decision score[x] > score[x + 1]? four times—when x is 0, 1, 2, and 3. You should
not attempt to make the decision when x is 4, because then you would compare score[4] to score[4 + 1],
and there is no valid position for score[5] in the array. (Remember that the valid subscripts in a five-element array
are the values 0 through 4.) Therefore, Figure 9-6 shows the correct loop, which compares the first two array elements,
swapping them if they are out of order, increases the subscript, and continues to test array element values and make
appropriate swaps while the array subscript, x, is less than 4.

if score[x] > score[x + 1] then
 perform switchValues()
endif

FIGURE 9-5: DECISION SHOWING WHEN TO CALL switchValues() MODULE

YesNo

switchValues()

score[x] >
score[x + 1]?

TIP�

TIP�

368 Chapter 9 • Advanced Array Manipulation

If you have these original scores:
score[0] = 90
score[1] = 85
score[2] = 65
score[3] = 95
score[4] = 75

then the logic proceeds like this:

1. Set x to 0.

2. The value of x is less than 4, so enter the loop.

3. Compare score[x], 90, to score[x + 1], 85. The two scores are out of order, so they

are switched.

The list is now:
score[0] = 85
score[1] = 90
score[2] = 65
score[3] = 95
score[4] = 75

x = 0
while x < 4
 if score[x] > score[x + 1] then
 perform switchValues()
 endif
 x = x + 1
endwhile

FIGURE 9-6: LOOP THAT COMPARES ENTIRE LIST OF FIVE SCORES, MAKING NECESSARY SWAPS

YesNo

switchValues()

score[x] >
score[x + 1]?

x < 4?

x = x + 1

x = 0

Yes

No

369Using a Bubble Sort

4. After the swap, add 1 to x so x is 1.

5. Return to the top of the loop. The value of x is less than 4, so enter the loop a second time.

6. Compare score[x], 90, to score[x + 1], 65. These two values are out of order, so swap them.

Now the result is:

score[0] = 85
score[1] = 65
score[2] = 90
score[3] = 95
score[4] = 75

7. Add 1 to x, so x is now 2.

8. Return to the top of the loop. The value of x is less than 4, so enter the loop.

9. Compare score[x], 90, to score[x + 1], 95. These values are in order, so no switch is made.

10. Add 1 to x, making it 3.

11. Return to the top of the loop. The value of x is less than 4, so enter the loop.

12. Compare score[x], 95, to score[x + 1], 75. These two values are out of order, so

switch them.

Now the list is as follows:

score[0] = 85
score[1] = 65
score[2] = 90
score[3] = 75
score[4] = 95

13. Add 1 to x, making it 4.

14. Return to the top of the loop. The value of x is 4, so do not enter the loop again.

When x reaches 4, every element in the list has been compared with the one adjacent to it. The highest score, a 95, has
“sunk” to the bottom of the list. However, the scores still are not in order. They are in slightly better ascending order than they
were to begin with, because the largest value is at the bottom of the list, but they are still out of order. You need to repeat the
entire procedure illustrated in Figure 9-6 so that 85 and 65 (the current score[0] and score[1] values) can switch
places, and 90 and 75 (the current score[2] and score[3] values) can switch places. Then, the scores will be 65,
85, 75, 90, and 95. You will have to perform the procedure to go through the list yet again to swap the 85 and 75.

As a matter of fact, if the scores had started out in the worst possible order (95, 90, 85, 75, 65), the process shown in
Figure 9-6 would have to take place four times. In other words, you would have to pass through the list of values four
times, making appropriate swaps, before the numbers would appear in perfect ascending order. You need to place the
loop in Figure 9-6 within another loop that executes four times.

370 Chapter 9 • Advanced Array Manipulation

Figure 9-7 shows the complete logic for the sortScores() module. The sortScores() module uses a loop
control variable named y to cycle through the list of scores four times. The y variable is added to the variable list
declared in housekeeping(). With an array of five elements, it takes four comparisons to work through the array
once, comparing each pair, and it takes four sets of those comparisons to ensure that every element in the entire array
is in sorted order.

sortScores()
 y = 0
 while y < 4
 x = 0
 while x < 4
 if score[x] > score[x + 1] then
 perform switchValues()
 endif
 x = x + 1
 endwhile
 y = y + 1
 endwhile
return

FIGURE 9-7: THE sortScores() MODULE

YesNo score[x] >
score[x + 1]?

switchValues()

x < 4?

x = x + 1

x = 0

y = y + 1

y < 4?

y = 0

Yes

No

Yes

No

sortScores()

return

371Using a Bubble Sort

When you sort the elements in an array this way, you use nested loops—an inner loop within an outer loop. The general rule is
that, whatever the number of elements in the array, the greatest number of pair comparisons you need to make during each
loop is one less than the number of elements in the array. You use an inner loop to make the pair comparisons. In addition, the
number of times you need to process the list of values is one less than the number of elements in the array. You use an outer
loop to control the number of times you walk through the list. As an example, if you want to sort a 10-element array, you make
nine pair comparisons on each of nine rotations through the loop, executing a total of 81 score comparison statements.

In many cases, you do not want to sort a single data item such as a score. Instead, you
might want to sort data records that contain fields such as ID number, name, and score,
placing the records in score order. The sorting procedure remains basically the same, but
you need to store entire records in an array. Then, you make your comparisons based on a
single field, but you make your swaps using entire records.

REFINING THE BUBBLE SORT BY USING A CONSTANT FOR THE ARRAY SIZE

Keep in mind that when performing a bubble sort, you need to perform one fewer pair comparison than you have ele-
ments. You also pass through the list of elements one fewer time than you have elements. In Figure 9-7, you sorted a
five-element loop, so you performed the inner loop while x was less than 4 and the outer loop while y was less than 4.
You can add a refinement that makes the sorting logic easier to understand. When performing a bubble sort on an
array, you compare two separate loop control variables with a value that equals the number of elements in the list. If the
number of elements in the array is stored in a constant named ELEMENTS, the general logic for a bubble sort is
shown in Figure 9-8.

To use the logic shown in Figure 9-8, you must declare ELEMENTS along with any other variables and constants in
the housekeeping() module. There you can set the value of ELEMENTS to 5, because you know there are five
elements in the array to be sorted. Besides being useful for sorting, the ELEMENTS constant is also useful in any
module that prints the scores, sums them, or performs any other activity with the list. For example, Figure 9-9 shows an
entire program that uses a bubble sort. Not only does the sortScores() module use ELEMENTS to control the
number of passes through the array to perform the sort, but the finishUp() module in Figure 9-9 also uses the
ELEMENTS constant to control the print loop. One advantage to using a named constant instead of an unnamed, lit-
eral constant (such as 5) in your program is that if you modify the program array to accommodate more or fewer scores
in the future, you can simply change the value in the named constant once where it is defined. Then, you do not need to
alter every instance of a literal constant number throughout the program; the named location automatically holds the
correct value in each place in the program where it is used.

Figure 9-9 shows pseudocode for the finishUp() module only; pseudocode for the other modules has been
shown in previous figures in this chapter.

TIP�

372 Chapter 9 • Advanced Array Manipulation

sortScores()
 y = 0
 while y < (ELEMENTS - 1)
 x = 0
 while x < (ELEMENTS - 1)
 if score[x] > score[x + 1] then
 perform switchValues()
 endif
 x = x + 1
 endwhile
 y = y + 1
 endwhile
return

FIGURE 9-8: GENERIC BUBBLE SORT MODULE USING A NAMED CONSTANT FOR NUMBER OF ELEMENTS

YesNo score[x] >
score[x + 1]?

switchValues()

x <
(ELEMENTS - 1)?

x = x + 1

x = 0

y = y + 1

y <
(ELEMENTS - 1)?

y = 0

Yes

No

Yes

No

sortScores()

return

373Using a Bubble Sort

x <
ELEMENTS?

x = 0

x = x + 1

Yes

No

print
score[x]

finishUp()

return

close
files

finishUp()
 x = 0
 while x < ELEMENTS
 print score[x]
 x = x + 1
 endwhile
 close files
return

FIGURE 9-9: A COMPLETE SCORE-SORTING PROGRAM THAT PRINTS THE SORTED SCORES

YesNo score[x] >
score[x + 1]?

switchValues()

x <
(ELEMENTS - 1)?

x = x + 1

x = 0

y = y + 1

y <
(ELEMENTS - 1)?

y = 0

Yes

No

Yes

No

sortScores()

return

switchValues()

temp =
score[x + 1]

return

score[x + 1] =
score[x]

score[x] =
temp

const num ELEMENTS = 5
num inScore
num score[ELEMENTS]
num x = 0
num y = 0
num temp

eof?

read
inScore

score[x]
= inScore

x = x + 1
read

inScore
No

Yes

housekeeping()

declare
variables

open
files

return

start

stop

housekeeping()

sortScores()

finishUp()

374 Chapter 9 • Advanced Array Manipulation

SORTING A LIST OF VARIABLE SIZE

In the score-sorting program in Figure 9-9, an ELEMENTS constant was initialized to the number of elements to be
sorted near the start of the program—within the housekeeping() module. Sometimes, you don’t want to create a
constant such as ELEMENTS at the start of the program. You might not know how many array elements will hold valid
values—for example, sometimes when you run the program, the input file contains only three or four scores to sort,
and sometimes it contains 20. In other words, what if the size of the list to be sorted varies? Rather than initializing a
constant to a fixed value, you can count the input scores, and then give a variable the value of the number of array ele-
ments to use after you know how many scores exist.

To keep track of the number of elements stored in an array, you can create a housekeeping() module such as
the one shown in Figure 9-10. When you read each inScore during housekeeping(), you increase x by 1 in
order to place each new score into a successive element of the score array. In this example, the score array is cre-
ated to hold 100 elements, a number larger than you anticipate you will need. The variable x is initialized to 0. After you
read one inScore value and place it in the first element of the array, x is increased to 1. After a second score is
read and placed in score[1], x is increased to 2, and so on. After you reach eof, x holds the number of elements
that have been placed in the array, so you can set a variable named numberOfEls to the value of x. With this
approach, it doesn’t matter if there are not enough inScore values to fill the array. You simply make one fewer pair
comparison than the number of the value held in numberOfEls. Using this technique, you avoid always making a
larger fixed number of pair comparisons. For example, if there are 35 scores in the input file, numberOfEls will be
set to 35 in the housekeeping() module, and when the program sorts, it will use 35 as a cutoff point for the
number of pair comparisons to make. The sorting program will never make pair comparisons on array elements 36
through 100—those elements will just “sit there,” never being involved in a comparison or swap.

375Using a Bubble Sort

When you count the input records and use the numberOfEls variable, it does not matter if there are not enough
scores to fill the array. However, it does matter if there are more scores than the array can hold. Every array must have
a finite size, and it is an error to try to store data past the end of the array. When you don’t know how many elements
will be stored in an array, you must overestimate the number of elements you declare. If the number of scores in the
score array can be 100 or fewer, then you can declare the score array to have a size of 100, and you can use
100 elements or fewer. Figure 9-11 shows the pseudocode that provides one possibility for an additional improvement
to the housekeeping() module in Figure 9-10. If you use the logic in Figure 9-11, you read inScore values
until eof, but if the array subscript x equals or exceeds 100, you display a warning message and do not attempt to
store any additional inScore values in the score array. When a program uses the housekeeping() logic
shown in Figure 9-11, after x becomes 100, only a warning message is displayed—no new elements are added to the
array. To provide additional information to the user, extra elements are counted when they exist, and a message is dis-
played so the user understands exactly how many unsorted elements exist in the input file.

housekeeping()
 declare variables
 open files
 read inScore
 while not eof
 score[x] = inScore
 x = x + 1
 read inScore
 endwhile
 numberOfEls = x
return

FIGURE 9-10: THE housekeeping() MODULE FOR A SCORE-SORTING PROGRAM THAT ACCOMMODATES
A VARIABLE-SIZE INPUT FILE

num inScore
num score[100]
num x = 0
num numberOfEls

eof?

read
inScore

score[x]
= inScore

read
inScore

numberOfEls
= x

No

Yes

housekeeping()

declare
variables

open
files

return

x = x + 1

376 Chapter 9 • Advanced Array Manipulation

num inScore
num score[100]
num x = 0
num y
num numberOfEls
num extraEls = 0
num temp

housekeeping()
 declare variables
 open files
 read inScore
 while not eof
 if x >= 100 then
 print "Warning! Too many scores"
 extraEls = extraEls + 1
 else
 score[x] = inScore
 endif
 x = x + 1
 read inScore
 endwhile
 numberOfEls = x - extraEls
 if extraEls > 0 then
 print "Warning.", extraEls,
 " elements from the input file will not be
 included in the sort."
 endif
return

FIGURE 9-11: FLOWCHART AND PSEUDOCODE FOR housekeeping() THAT PREVENTS OVEREXTENDING
THE ARRAY

read
inScore

numberOfEls = x
- extraEls

eof?

extraEls > 0?

print “Warning.”,
extraEls,

“ elements from the
input file will not be
included in the sort.”

x >= 100?

x = x + 1

read inScore

score[x]
= inScore

print “Warning!
Too many scores”

extraEls =
extraEls + 1

No

Yes

YesNo

YesNo

housekeeping()

declare
variables

open
files

return

377Using a Bubble Sort

REFINING THE BUBBLE SORT BY REDUCING UNNECESSARY COMPARISONS

You can make additional improvements to the bubble sort created in the previous sections. As illustrated in Figure 9-8,
when performing the sorting module for a bubble sort, you pass through a list, making comparisons and swapping val-
ues if two values are out of order. If you are performing an ascending sort, then after you have made one pass through
the list, the largest value is guaranteed to be in its correct final position at the bottom of the list. Similarly, the second-
largest element is guaranteed to be in its correct second-to-last position after the second pass through the list, and so
on. If you continue to compare every element pair in the list on every pass through the list, you are comparing elements
that are already guaranteed to be in their final correct position.

On each pass through the array, you can afford to stop your pair comparisons one element sooner. In other words, after the
first pass through the list, there is no longer a need to check the bottom element; after the second pass, there is no need to
check the two bottom elements. You can avoid comparing these already-in-place values by creating a new variable,
pairsToCompare, and setting it equal to the value of numberOfEls – 1. On the first pass through the list, every
pair of elements is compared, so pairsToCompare should equal numberOfEls – 1. In other words, with five
array elements to sort, there are four pairs to compare. For each subsequent pass through the list,pairsToCompare
should be reduced by 1, because after the first pass there’s no need to check the bottom element anymore. See Figure 9-12
to examine the use of the pairsToCompare variable.

378 Chapter 9 • Advanced Array Manipulation

sortScores()
 pairsToCompare = numberOfEls - 1
 y = 0
 while y < numberOfEls
 x = 0
 while x < pairsToCompare
 if score[x] > score[x + 1] then
 perform switchValues()
 endif
 x = x + 1
 endwhile
 y = y + 1
 pairsToCompare = pairsToCompare – 1
 endwhile
return

FIGURE 9-12: FLOWCHART AND PSEUDOCODE FOR sortScores() MODULE USING
pairsToCompare VARIABLE

y < numberOfEls?

x = 0

y = y + 1

switchValues()

score[x] >
score[x + 1]?

x = x + 1

x <
pairsToCompare?

pairsToCompare =
pairsToCompare - 1

Yes

No

Yes

Yes

No
No

sortScores()

pairsToCompare =
numberOfEls - 1

return

y = 0

379Using a Bubble Sort

REFINING THE BUBBLE SORT BY ELIMINATING UNNECESSARY PASSES

A final improvement that could be made to the bubble sort module in Figure 9-12 is one that reduces the number of
passes through the array. If array elements are so badly out of order that they are in reverse order, then it takes many
passes through the list to place it in order; it takes one fewer pass than the value in numberOfEls to complete all
the comparisons and swaps needed to get the list in order. However, when the array elements are in order or nearly in
order to start, all the elements might be correctly arranged after only a few passes through the list. All subsequent
passes result in no swaps. For example, assume the original scores are as follows:

score[0] = 65
score[1] = 75
score[2] = 85
score[3] = 90
score[4] = 95

The bubble sort module in Figure 9-12 would pass through the array list four times, making four sets of pair compar-
isons. It would always find that each score[x] is not greater than the corresponding score[x + 1], so no
switches would ever be made. The scores would end up in the proper order, but they were in the proper order in the
first place; therefore, a lot of time would be wasted.

A possible remedy is to add a flag variable that you set to a “continue” value on any pass through the list in which any pair of
elements is swapped (even if just one pair), and that holds a different “finished” value when no swaps are made—that is, all
elements in the list are already in the correct order. For example, you can create a variable named switchOccurred and
set it to “No” at the start of each pass through the list. You can change its value to “Yes” each time the switchValues()
module is performed (that is, each time a switch is necessary).

If you ever “make it through” the entire list of pairs without making a switch, the switchOccurred flag will not have
been set to “Yes”, meaning that no switch has occurred and that the array elements must already be in the correct order.
This might be on the first or second pass through the array list, or it might not be until a much later pass. If the array ele-
ments are already in the correct order at any point, there is no need to make more passes through the list. You can stop
making passes through the list when switchOccurred is “No” after a complete trip through the array.

Figure 9-13 illustrates a module that sorts scores and uses a switchOccurred flag. At the beginning of the
sortScores() module, initialize switchOccurred to “Yes” before entering the comparison loop the first time.
Then, immediately set switchOccurred to “No”. When a switch occurs—that is, when the switchValues()
module executes—set switchOccurred to “Yes”.

Figure 9-13 shows pseudocode for the sortScores() module only; pseudocode for the other modules has been
shown in previous figures in this chapter.

380 Chapter 9 • Advanced Array Manipulation

x = 0

x = x + 1

Yes

No

print
score[x]

finishUp()

return

close
files

x <
numberOfEls?

FIGURE 9-13: BUBBLE SORT WITH switchOccurred FLAG

start

stop

housekeeping()

sortScores()

finishUp()

num inScore
num score[100]
num x = 0
num numberOfEls
num extraEls = 0
num temp
char switchOccurred
num pairsToCompare

read
inScore

numberOfEls = x
- extraEls

eof?

extraEls > 0?

print “Warning.”,
extraEls”,

“ elements from the
input file will not be
included in the sort.”

x > 100?

x = x + 1

read inScore

score[x]
= inScore

print “Warning!
Too many scores”

extraEls =
extraEls + 1

No

Yes

YesNo

YesNo

housekeeping()

declare
variables

open
files

return

sortScores()
 pairsToCompare = numberOfEls - 1
 switchOccurred = "Yes"
 while switchOccurred = "Yes"
 x = 0
 switchOccurred = "No"
 while x < pairsToCompare
 if score[x] > score[x + 1] then
 perform switchValues()
 switchOccurred = "Yes"
 endif
 x = x + 1
 endwhile
 pairsToCompare = pairsToCompare - 1
 endwhile
return

switchOccurred
= “Yes”?

x = 0

switchValues()

score[x] >
score[x + 1]?

x = x + 1

x <
pairsToCompare?

pairsToCompare =
pairsToCompare - 1

switchOccurred
= “No”

switchOccurred = “Yes”

Yes

No

Yes

Yes

No No

sortScores()

pairsToCompare =
numberOfEls - 1

return

switchOccurred
= “Yes”

381Using an Insertion Sort

With the addition of the flag variable in Figure 9-13, you no longer need the variable y,
which was keeping track of the number of passes through the list. Instead, you just keep
going through the list until you can make a complete pass without any switches. For a list
that starts in perfect order, you go through the loop only once. For a list that starts in the
worst possible order, you will make a switch with every pair each time through the loop
until pairsToCompare has been reduced to 0. In this case, on the last pass through
the loop, x is set to 1, switchOccurred is set to “No”, x is no longer less than or
equal to pairsToCompare, and the loop is exited.

USING AN INSERTION SORT

The bubble sort works well and is relatively easy for novice array users to understand and manipulate, but even with all
the improvements you added to the original bubble sort in previous sections, it is actually one of the least efficient sort-
ing methods available. An insertion sort provides an alternate method for sorting data, and it usually requires fewer
comparison operations.

Although a sort (such as the bubble sort) might be inefficient, it is easy to understand.
When programming, you frequently weigh the advantages of using simple solutions
against writing more complicated ones that perform more efficiently.

As with the bubble sort, when using an insertion sort, you also look at each pair of elements in an array. When you find
an element that is smaller than the one before it (for an ascending sort), this element is “out of order.” As soon as you
locate such an element, search the array backward from that point to see where an element smaller than the out-of-
order element is located. At that point, you open a new position for the out-of-order element by moving each subse-
quent element down one position. Then, you insert the out-of-order element into the newly opened position.

For example, consider these scores:

score[0] = 65
score[1] = 80
score[2] = 95
score[3] = 75
score[4] = 90

If you want to rearrange the scores in ascending order using an insertion sort, you begin by comparing score[0]
and score[1], which are 65 and 80, respectively. You determine that they are in order, and leave them alone. Then, you
compare score[1] and score[2], which are 80 and 95, and leave them alone. When you compare score[2], 95,
and score[3], 75, you determine that the 75 is “out of order.” Next, you look backward from the score[3] of 75. The
value of score[2] is not smaller than score[3], nor is score[1]; however, because score[0] is smaller than
score[3],score[3] should follow score[0]. So you store score[3] in a temporary variable, then move
score[1] and score[2] “down” the list to higher subscripted positions. You move score[2], 95, to the
score[3] position. Then, you move score[1], 80, to the score[2] position. Finally, you assign the value of the tem-
porary variable, 75, to the score[1] position. Figure 9-14 diagrams the movements as 75 moves up to the second posi-
tion and 80 and 95 move down.

TIP�

TIP�

382 Chapter 9 • Advanced Array Manipulation

After the sort finds the first element that was out of order and inserts it in a “better” location, the results are:

score[0] = 65
score[1] = 75
score[2] = 80
score[3] = 95
score[4] = 90

You then continue down the list, comparing each pair of variables. A complete insertion sort module is shown in
Figure 9-15.

The logic for the insertion sort is slightly more complicated than that for the bubble sort, but the insertion sort is more efficient
because, for the average out-of-order list, it takes fewer “switches” to put the list in order.

FIGURE 9-14: MOVEMENT OF THE VALUE "75" TO A "BETTER" ARRAY POSITION IN AN INSERTION SORT

65

80

95

75

90

65

75

80

95

90

383Using an Insertion Sort

insertionSort()
 y = 0
 while y < numberOfEls - 1
 x = 0
 while x < numberOfEls - 1
 if score[x + 1] < score[x] then
 temp = score[x + 1]
 pos = x
 while score[pos] > temp AND pos > 0
 score[pos + 1] = score[pos]
 pos = pos - 1
 endwhile
 score[pos + 1] = temp
 endif
 x = x + 1
 endwhile
 y = y + 1
 endwhile
return

FIGURE 9-15: SAMPLE INSERTION SORT MODULE

y <
numberOfEls - 1?

x = 0

score[x + 1]
< score[x]?

x = x + 1

x <
numberOfEls - 1?

y = y + 1

score[pos + 1] =
temp

score[pos] >
temp AND
pos > 0?

temp =
score[x + 1]

pos = x

score[pos + 1] =
score[pos]

pos = pos - 1

Yes

No

Yes

Yes

No
No

Yes

insertionSort()

return

y = 0

No

384 Chapter 9 • Advanced Array Manipulation

USING A SELECTION SORT

A selection sort provides another sorting option. In an ascending selection sort, the first element in the array is
assumed to be the smallest. Its value is stored in a variable—for example, smallest—and its position in the array,
0, is stored in another variable—for example, position. Then, every subsequent element in the array is tested. If one
with a smaller value than smallest is found, smallest is set to the new value, and position is set to that ele-
ment’s position. After the entire array has been searched, smallest holds the smallest value and position holds
its position.

The element originally in position[0] is then switched with the smallest value, so at the end of the first pass
through the array, the lowest value ends up in the first position, and the value that was in the first position is where the
smallest value used to be.

For example, assume you have the following list of scores:

score[0] = 95
score[1] = 80
score[2] = 75
score[3] = 65
score[4] = 90

First, you place 95 in smallest. Then check score[1]; it’s less than 95, so place 1 in position and 80 in
smallest. Then test score[2]; it’s smaller than smallest, so place 2 in position and 75 in
smallest. Then test score[3]; because it is smaller than smallest, place 3 in position and 65 in
smallest. Finally, check score[4]; it isn’t smaller than smallest.

So at the end of the first pass through the list, position is 3 and smallest is 65. You move the value 95 to
score[position], or score[3], and the value of smallest, 65, to score[0]. The list becomes:

score[0] = 65
score[1] = 80
score[2] = 75
score[3] = 95
score[4] = 90

Now that the smallest value is in the first position, you repeat the whole procedure starting with the second array ele-
ment, score[1]. After you have passed through the list numberOfEls - 1 times, all elements will be in the
correct order. Walk through the logic shown in Figure 9-16.

385Using a Selection Sort

Like the insertion sort, the selection sort almost always requires fewer switches than the bubble sort, but the variables
might be a little harder to keep track of, because the logic is a little more complex. Thoroughly understanding at least
one of these sorting techniques provides you with a valuable tool for arranging data and increases your understanding
of the capabilities of arrays.

selectionSort()
 position = 0
 while position < numberOfEls - 1
 x = position
 smallest = score[x]
 y = x + 1
 while y <= numberOfEls
 if score[y] < smallest then
 x = y
 smallest = score[y]
 endif
 y = y + 1
 endwhile
 score[x] = score[position]
 score[position] = smallest
 position = position + 1
 endwhile
return

FIGURE 9-16: SAMPLE SELECTION SORT MODULE

position <
numberOfEls - 1?

x = position

score[y] <
smallest?

y = y + 1

y <=
numberofEls?

score[x] =
score[position]

x = y

smallest =
score[y]

Yes

No

selectionSort()

return

position = 0

smallest = score[x]

y = x + 1

score[position]
= smallest

position =
position + 1

No Yes

Yes

No

386 Chapter 9 • Advanced Array Manipulation

USING INDEXED FILES

Sorting a list of five scores does not require significant computer resources. However, many data files contain thou-
sands of records, and each record might contain dozens of data fields. Sorting large numbers of data records requires
considerable time and computer memory. When a large data file needs to be processed in ascending or descending
order based on some field, it is usually more efficient to store and access records based on their logical order than to
sort and access them in their physical order. When records are stored, they are stored in some physical order. For
example, if you write the names of 10 friends, each one on an index card, the stack of cards has a physical order—
that is, a “real” order. You can arrange the cards alphabetically by the friends’ last names, chronologically by age of the
friendship, or randomly by throwing the cards in the air and picking them up as you find them. Whichever way you do it,
the records still follow each other in some order. In addition to their current physical order, you can think of the cards as
having a logical order; that is, a virtual order, based on any criterion you choose—from the tallest friend to the short-
est, from the one who lives farthest away to the closest, and so on. Sorting the cards in a new physical order can take a
lot of time; using the cards in their logical order without physically rearranging them is often more efficient.

A common method of accessing records in logical order is to use an index. Using an index involves identifying a key
field for each record. A record’s key field is the field whose contents make the record unique among all records in a
file. For example, multiple employees can have the same last name, first name, salary, or street address, but each
employee possesses a unique Social Security number, so a Social Security number field might make a good key field
for a personnel file. (Because of security issues, a company-assigned employee ID number might make a better key
field.) Similarly, a product number makes a good key field on an inventory file.

When you index records, you store a list of key fields paired with the storage address for the corresponding data
record. When you use an index, you can store records on a random-access storage device, such as a disk, from
which records can be accessed in any logical order. Each record can be placed in any physical location on the disk, and
you can use the index as you would use the index in the back of a book. If you pick up a 600-page American history
text because you need some facts about Betsy Ross, you do not want to start on page one and work your way through
the text. Instead, you turn to the index, discover that Betsy Ross is discussed on page 418, and go directly to that page.

As pages in a book have numbers, computer memory and storage locations have addresses. In Chapter 1, you learned
that every variable has a numeric address in computer memory; likewise, every data record on a disk has a numeric
address where it is stored. You can store records in any physical order on the disk, but the index can find the records in
order based on their addresses. For example, you might store a list of employees on a disk in the order in which they
were hired. However, you often need to process the employees in Social Security number order. When adding a new
employee to such a file, you can physically place the employee anywhere there is room available on the disk. Her Social
Security number is inserted in proper order in the index, along with the physical address where her record is located.

You do not need to determine a record’s exact physical address in order to use it. A com-
puter’s operating system takes care of locating available storage for your records.

You can picture an index based on Social Security numbers by looking at Table 9-1.

TIP�

387Using Linked Lists

When you want to access the data for employee 333-55-1234, you tell your computer to look through the Social
Security numbers in the index, find a match, and then proceed to the memory location specified. Similarly, when you
want to process records in order based on Social Security number, you tell your system to retrieve records at the loca-
tions in the index in sequence. Thus, even though employee 111-22-3456 may have been hired last and the record is
stored at the highest physical address on the disk, if the employee record has the lowest Social Security number, it will
be accessed first during any ordered processing.

When a record is removed from an indexed file, it does not have to be physically removed. Its reference can simply be
deleted from the index, and then it will not be part of any further processing.

USING LINKED LISTS

Another way to access records in a desired order, even though they might not be physically stored in that order, is to
create a linked list. In its simplest form, creating a linked list involves creating one extra field in every record of stored
data. This extra field holds the physical address of the next logical record. For example, a record that holds a cus-
tomer’s ID, name, and phone number might contain the fields:

custId
custName
custPhoneNum
custNextCustAddress

Every time you use a record, you access the next record based on the address held in the
custNextCustAddress field.

Every time you add a new record to a linked list, you search through the list for the correct logical location for the new
record. For example, assume that customer records are stored at the addresses shown in Table 9-2 and that they are
linked in customer ID order. Notice that the addresses are not shown in sequential order. The records are shown in their
logical order, with each one’s custNextCustAddress field holding the address of the record shown in the fol-
lowing line.

TABLE 9-1: SAMPLE INDEX

Social Security number Location

111-22-3456 6400

222-44-7654 4800

333-55-1234 2400

444-88-9812 5200

388 Chapter 9 • Advanced Array Manipulation

You can see from Table 9-2 that each customer’s record contains a custNextCustAddress field that stores the
address of the next customer who follows in customer ID number order (and not necessarily in address order). For any
individual customer, the next logical customer’s address might be physically distant. Each customer record, besides
containing data about that customer, contains a custNextCustAddress field that associates the customer with
the next customer who follows in custId value order.

Examine the file shown in Table 9-2, and suppose a new customer with number 245 and the name Newberg is
acquired. Also suppose the computer operating system finds an available storage location for Newberg’s data at
address 8400. In this case, the procedure to add Newberg to the list is:

1. Create a variable named currentAddress to hold the address of the record in the list you

are currently examining. Store the address of the first record in the list, 0000, in this variable.

2. Compare the new customer Newberg’s ID, 245, with the current (first) record’s ID, 111 (in other words,

the ID at address 0000). The value 245 is higher than 111, so you save the first customer’s address

(the address you are currently examining), 0000, in a variable you can name saveAddress. The

saveAddress variable always holds the address you just finished examining. The first customer’s

record contains a link to the address of the next logical customer—7200. Store the 7200 in the

currentAddress variable.

3. Examine the second customer record, the one that physically exists at the address 7200, which is cur-

rently held in the currentAddress variable.

4. Compare Newberg’s ID, 245, with the ID stored in the record at currentAddress, 222. The value

245 is higher, so save the current address, 7200, in saveAddress and store its

custNextCustAddress address field, 4400, in the currentAddress variable.

5. Compare Newberg’s ID, 245, with 333, which is the ID at currentAddress (4400). Up to this

point, 245 had been higher than each ID tested, but this time the value 245 is lower, so that means cus-

tomer 245 should logically precede customer 333. Set the custNextCustAddress field in

Newberg’s record (customer 245) to 4400, which is the address of customer 333 and the address cur-

rently stored in currentAddress. This means that in any future processing, Newberg’s record will

logically be followed by the record containing 333. Also set the custNextCustAddress field of

the record located at saveAddress (7200, Vincent, customer 222, the customer who logically pre-

ceded Newberg) to the new customer Newberg’s address, 8400. The updated list appears in Table 9-3.

TABLE 9-2: LINKED CUSTOMER LIST

Address custId custName custPhoneNum custNextCustAddress
of record

0000 111 Baker 234-5676 7200

7200 222 Vincent 456-2345 4400

4400 333 Silvers 543-0912 6000

6000 444 Donovan 329-8744 eof

389Using Multidimensional Arrays

TABLE 9-3: UPDATED CUSTOMER LIST

Address custId custName custPhoneNum custNextCustAddress
of record

0000 111 Baker 234-5676 7200

7200 222 Vincent 456-2345 8400

8400 245 Newberg 222-9876 4400

4400 333 Silvers 543-0912 6000

6000 444 Donovan 329-8744 eof

As with indexing, when removing records from a linked list, the records do not need to be physically deleted from the
medium on which they are stored. If you need to remove customer 333 from the preceding list, all you need to do is
change Newberg’s custNextCustAddress field to the value in Silvers’ custNextCustAddress field,
which is Donovan’s address: 6000. In other words, the value of 6000 is obtained not by knowing who Newberg should
point to, but by knowing who Silvers used to point to. When Newberg’s record points to Donovan, Silvers’ record is then
bypassed during any further processing that uses the links to travel from one record to the next.

More sophisticated linked lists store two additional fields with each record. One field stores the address of the next
record, and the other field stores the address of the previous record so that the list can be accessed either forward or
backward.

USING MULTIDIMENSIONAL ARRAYS

An array that represents a single list of values is a single-dimensional array or one-dimensional array. For example,
an array that holds five rent figures that apply to five floors of a building can be displayed in a single column, as in
Figure 9-17.

You used the single-dimensional rent array in Chapter 8.

rent[0]ƒ=ƒ350
rent[1]ƒ=ƒ400
rent[2]ƒ=ƒ475
rent[3]ƒ=ƒ600
rent[4]ƒ=ƒ1000

FIGURE 9-17: A SINGLE-DIMENSIONAL rent ARRAY

TIP�

390 Chapter 9 • Advanced Array Manipulation

The location of any rent value in Figure 9-17 depends on only a single variable—the floor of the building.
Sometimes, however, locating a value in an array depends on more than one variable. If you must represent values in a
table or grid that contains rows and columns instead of a single list, then you might want to use a multidimensional
array—specifically in this case, a two-dimensional array.

Assume that the floor is not the only factor determining rent in your building, but that another variable,
numberOfBedrooms, also needs to be taken into account. The rent schedule might be the one shown in Table 9-4.

TABLE 9-4: RENT SCHEDULE BASED ON FLOOR AND NUMBER OF BEDROOMS

Floor Studio 1-bedroom 2-bedroom
apartment apartment apartment

0 350 390 435

1 400 440 480

2 475 530 575

3 600 650 700

4 1000 1075 1150

Each element in a two-dimensional array requires two subscripts to reference it—one subscript to determine the row
and a second to determine the column. Thus, the 15 separate rent values for a two-dimensional array based on the
rent table in Table 9-4 would be those shown in Figure 9-18.

Suppose you want to read records that store a floor and number of bedrooms in an apartment, and print the appropriate rent

for that apartment. If you store tenant records that contain two fields named floor and numberOfBedrooms, then
the correct rent can be printed with the statement: print rent[floor][numberOfBedrooms]. The first
subscript represents the array row; the second subscript represents the array column.

Some languages access two-dimensional array elements with commas separating the sub-
script values; for example, the first-floor, two-bedroom rate might be written
rent[1,2]. In every language, you provide a subscript for the row first and for the col-
umn second.

rent[0][0]ƒ=ƒ350
rent[0][1]ƒ=ƒ390
rent[0][2]ƒ=ƒ435
rent[1][0]ƒ=ƒ400
rent[1][1]ƒ=ƒ440
rent[1][2]ƒ=ƒ480
.
.
.
rent[4][2]ƒ=ƒ1150

FIGURE 9-18: TWO-DIMENSIONAL rent ARRAY VALUES BASED ON FLOOR AND NUMBER OF BEDROOMS

TIP�

391Using Multidimensional Arrays

Just as within a one-dimensional array, each element in a multidimensional array must be
the same data type.

Two-dimensional arrays are never actually required in order to achieve a useful program. The same 15 categories of
rent information could be stored in three separate single-dimensional arrays of five elements each. Of course, don’t for-
get that even one-dimensional arrays are never required for you to be able to solve a problem. You could also declare
15 separate rent variables and make 15 separate decisions to determine the rent.

Figure 9-19 shows an entire program that produces a report that determines rent amounts for tenant records stored in
a file. Notice that although significant setup is required to provide all the values for the rents, the mainLoop() mod-
ule is extremely brief and easy to follow.

Some languages allow multidimensional arrays containing three levels, or three-dimensional arrays, in which you
access array values using three subscripts. For example, rent might not only be determined by the two factors floor
and numberOfBedrooms. There might also be 12 different buildings. The third dimension of a three-dimensional
array to hold all these different rents would be a variable such as buildingNumber.

Some languages allow even more dimensions. It’s usually hard for people to keep track of more than three dimensions,
but if five variables determine rent—for example, floor number, number of bedrooms, building number, city number,
and state number—you might want to try using a five-dimensional array.

TIP�

392 Chapter 9 • Advanced Array Manipulation

start
 perform housekeeping()
 while not eof
 perform mainLoop()
 endwhile
 perform finishUp()
stop
housekeeping()
 declare variables
 open files
 print heading
 read tenantRecord
return
mainLoop()
 print tenantName, rent[floor][numberOfBedrooms]
 read tenantRecord
return
finishUp()
 close files
return

FIGURE 9-19: RENT-DETERMINING PROGRAM

housekeeping()

finishUp()

eof? mainLoop()
No

Yes

start

stop

tenantRecord
 char tenantName
 num floor
 num numberOfBedrooms
char heading =
 "Name Rent"
rent[0][0] = 350
rent[0][1] = 390
rent[0][2] = 435
rent[1][0] = 400
rent[1][1] = 440
rent[1][2] = 480
rent[2][0] = 475
rent[2][1] = 530
rent[2][2] = 575
rent[3][0] = 600
rent[3][1] = 650
rent[3][2] = 700
rent[4][0] = 1000
rent[4][1] = 1075
rent[4][2] = 1150

housekeeping()

declare
variables

open
files

return

print
heading

read
tenantRecord

finishUp()

return

close files

read
tenantRecord

mainLoop()

return

print tenantName,
rent[floor]

[numberOfBedrooms]

Chapter Summary 393

CHAPTER SUMMARY

� When the sequential order of data records is not the order desired for processing or viewing, the data

needs to be sorted in ascending or descending order based on the contents of one or more fields.

� You can swap two values by creating a temporary variable to hold one of the values. Then, you can

assign the second value to the temporary variable, assign the first value to the second, and assign the

temporary value to the first variable.

� In a bubble sort, items in a list are compared in pairs, and when an item is out of order, it swaps with the

item below it. With an ascending bubble sort, after each adjacent pair of items in a list has been com-

pared once, the largest item in the list will have “sunk” to the bottom.

� When performing a bubble sort on an array, you compare two separate loop control variables with a

value that equals the number of elements in the list. An advantage to using a variable instead of a con-

stant to hold the number of elements is that if you modify the program array to accommodate more or

fewer elements in the future, you can simply change the value in the variable once, where it is defined.

� On each pass through an array that is being sorted using a bubble sort, you can afford to stop your pair

comparisons one element sooner than the time before.

� To avoid making unnecessary passes through a list while performing a bubble sort, you can add a flag that

you test on every pass through the list, to determine when all elements are already in the correct order.

� When using an insertion sort, you look at each pair of elements in an array. When you find an element

that is out of order, search the array backward from that point, find an element smaller than the out-of-

order element, move each subsequent element down one position, and insert the out-of-order element

into the list at the newly opened position.

� In an ascending selection sort, the first element in the array is assumed to be the smallest. Its value and

position are stored. Then, every subsequent element in the array is tested, and if one has a smaller

value, the new value and position are stored. After searching the entire array, you switch the original first

value with the smallest value. Then you repeat the process with each subsequent list value.

� You can use an index to access data records in a logical order that differs from their physical order.

Using an index involves identifying a key field for each record.

� Creating a linked list involves creating an extra field within every record, to hold the physical address of

the next logical record.

� You use a multidimensional array whenever locating a value in an array depends on more than one variable.

Chapter 9 • Advanced Array Manipulation394

KEY TERMS

When records are in sequential order, they are arranged one after another on the basis of the value in some field.

Sorted records are in order based on the contents of one or more fields.

Records in ascending order are arranged from lowest to highest, based on a value within a field.

Records in descending order are arranged from highest to lowest, based on a value within a field.

The median value in a list is the value in the middle position when the values are sorted.

The mean value in a list is the arithmetic average.

Swapping two values is the process of setting the first variable equal to the value of the second, and the second
variable equal to the value of the first.

A bubble sort is a sort in which you arrange records in either ascending or descending order by comparing items in a
list in pairs; when an item is out of order, it swaps values with the item below it.

A sinking sort is another name for a bubble sort.

When using an insertion sort, you look at each pair of elements in an array. For example, for an ascending insertion
sort, when you find an element that is smaller than the one before it, you search the array backward from that point to
see where an element smaller than the out-of-order element is located. At that point, you open a new position for the
out-of-order element by moving each subsequent element down one position. Then, you insert the out-of-order
element into the newly opened position.

In an ascending selection sort, you search for the smallest list value, and then swap it with the value in the first
position. You then repeat the process with each subsequent list position.

A list’s physical order is the order in which it is actually stored.

A list’s logical order is the order in which you use it, even though it is not necessarily physically stored in that order.

A record’s key field is the field whose contents make the record unique among all records in a file.

When you index records, you store a list of key fields paired with the storage address for the corresponding data
record.

A random-access storage device, such as a disk, is one from which records can be accessed in any order.

Computer memory and storage locations have addresses.

Creating a linked list involves creating one extra field in every record of stored data. This extra field holds the physical
address of the next logical record.

An array that represents a single list of values is a single-dimensional array or one-dimensional array.

An array that represents a table or grid containing rows and columns is a multidimensional array—for example, a
two-dimensional array.

Some languages allow three-dimensional arrays, in which you access values using three subscripts.

Review Questions 395

REVIEW QUESTIONS

1. Employee records stored in order from highest-paid to lowest-paid have been sorted in
order.

a. ascending
b. descending
c. staggered
d. recursive

2. Student records stored in alphabetical order by last name have been sorted in order.

a. ascending
b. descending
c. staggered
d. recursive

3. In the series of numbers 7, 5, 5, 5, 3, 2, and 1, what is the mean?

a. 3
b. 4
c. 5
d. 6

4. When computers sort data, they always .

a. place items in ascending order
b. use a bubble sort
c. begin the process by locating the position of the lowest value
d. use numeric values when making comparisons

5. Which of the following code segments correctly swaps the values of variables named x and y?

a. x = y
y = temp
x = temp

b. x = y
temp = x
y = temp

c. temp = x
x = y
y = temp

d. temp = x
y = x
x = temp

Chapter 9 • Advanced Array Manipulation396

6. Which type of sort compares list items in pairs, swapping any two adjacent values that are out
of order?

a. bubble sort
b. selection sort
c. insertion sort
d. indexed sort

7. Which type of sort compares pairs of values, looking for an out-of-order element, then searches the
array backward from that point to see where an element smaller than the out-of-order element is
located?

a. bubble sort
b. selection sort
c. insertion sort
d. indexed sort

8. Which type of sort tests each value in a list, looking for the smallest, then switches the element in
the first list position with the smallest value?

a. bubble sort
b. selection sort
c. insertion sort
d. indexed sort

9. To sort a list of eight values using a bubble sort, the greatest number of times you would have to
pass through the list making comparisons is .

a. six
b. seven
c. eight
d. nine

10. To sort a list of eight values using a bubble sort, the greatest number of pair comparisons you
would have to make before the sort is complete is .

a. seven
b. eight
c. 49
d. 64

11. When you do not know how many items need to be sorted in a program, you create an array that
has .

a. at least one element less than the number you predict you will need
b. at least as many elements as the number you predict you will need
c. variable-sized elements
d. a variable number of elements

Review Questions 397

12. In a bubble sort, on each pass through the list that must be sorted, you can stop making pair
comparisons .

a. one comparison sooner
b. two comparisons sooner
c. one comparison later
d. two comparisons later

13. When performing a bubble sort on a list of 10 values, you can stop making passes through the list
of values as soon as on a single pass through the list.

a. no more than 10 swaps are made
b. no more than nine swaps are made
c. exactly one swap is made
d. no swaps are made

14. Student records are stored in ID number order, but accessed by grade point average for a report.
Grade point average order is a(n) order.

a. imaginary
b. physical
c. logical
d. illogical

15. With a linked list, every record .

a. is stored in sequential order
b. contains a field that holds the address of another record
c. contains a code that indicates the record’s position in an imaginary list
d. is stored in a physical location that corresponds to a key field

16. Data stored in a table that can be accessed using row and column numbers is stored as a
array.

a. single-dimensional
b. two-dimensional
c. three-dimensional
d. nondimensional

Chapter 9 • Advanced Array Manipulation398

17. The Funland Amusement Park charges entrance fees as shown in the following table. The table is
stored as an array named price in a program that determines ticket price based on two factors—
number of tickets purchased and month of the year. A clerk enters the month (5 through 9 for May
through September), from which 5 is subtracted, so the month value becomes 0 through 4. A clerk
also enters the number of tickets being purchased; if the number is over 6, it is forced to be 6.
One is subtracted from the number of people, so the value is 0 through 5.

Adjusted month number
People in party 0 1 2 3 4

0 29.00 34.00 36.00 36.00 29.00

1 28.00 32.00 34.00 34.00 28.00

2 26.00 30.00 32.00 32.00 26.00

3 24.00 26.00 27.00 28.00 25.00

4 23.00 25.00 26.00 27.00 23.00

5 20.00 23.00 24.00 25.00 21.00

What is the price of a ticket for any party purchasing tickets?

a. price[tickets][month]
b. price[month][tickets]
c. month[tickets][price]
d. tickets[price][month]

18. Using the same table as in Question 17, where is the ticket price stored for a party of four purchas-
ing tickets in September?

a. price[4][9]
b. price[3][4]
c. price[4][3]
d. price[9][4]

19. In a four-dimensional array, you would need to use subscript(s) to access a
single item.

a. one
b. two
c. three
d. four

20. In a two-dimensional array, the second subscript needed to access an item refers to the
.

a. row
b. column
c. page
d. record

Find the Bugs 399

FIND THE BUGS

Each of the following pseudocode segments contains one or more bugs that you must find and correct.

1. This application reads a file containing employee data, including salaries, for 1,000 employees. The
salaries are sorted so the median salary in the organization can be displayed.

start
ƒƒƒƒƒperformƒhousekeeping()
ƒƒƒƒƒperformƒsortSalaries()
ƒƒƒƒƒperformƒfinishUp()
stop

housekeeping()
ƒƒƒƒƒdeclareƒvariables
ƒƒƒƒƒƒƒƒinRec
ƒƒƒƒƒƒƒƒƒƒcharƒname
ƒƒƒƒƒƒƒƒƒƒnumƒpay
ƒƒƒƒƒƒƒƒƒƒnumƒxƒ=ƒ0
ƒƒƒƒƒƒƒƒƒƒnumƒyƒ=ƒ0
ƒƒƒƒƒƒƒƒƒƒconstƒnumƒSIZEƒ=ƒ1000
ƒƒƒƒƒƒƒƒƒƒnumƒsalary[SIZE]
ƒƒƒƒƒƒƒƒƒƒnumƒtemp
ƒƒƒƒƒƒƒƒƒƒnumƒmidNum
ƒƒƒƒƒopenƒfiles
ƒƒƒƒƒreadƒinRec
ƒƒƒƒƒwhileƒnotƒeof
ƒƒƒƒƒƒƒƒƒƒsalary[SIZE]ƒ=ƒpay
ƒƒƒƒƒƒƒƒƒƒxƒ=ƒxƒ+ƒ1
ƒƒƒƒƒƒƒƒƒƒreadƒinRec
ƒƒƒƒƒendwhile
return

sortSalaries()
ƒƒƒƒƒyƒ=ƒ0
ƒƒƒƒƒwhileƒyƒ>ƒSIZEƒ-ƒ1
ƒƒƒƒƒƒƒƒƒƒxƒ=ƒ0
ƒƒƒƒƒƒƒƒƒƒwhileƒxƒ<ƒSIZE
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒifƒsalary[x]ƒ>ƒsalary[x]ƒthen
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒperformƒswitchValues()
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒendif
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒxƒ=ƒxƒ+ƒ1
ƒƒƒƒƒƒƒƒƒƒendwhile
ƒƒƒƒƒƒƒƒƒƒyƒ=ƒyƒ+ƒ1
ƒƒƒƒƒendwhile
return

Chapter 9 • Advanced Array Manipulation400

switchValues()
ƒƒƒƒƒtempƒ=ƒsalary[xƒ+ƒ1]
ƒƒƒƒƒsalary[x]ƒ=ƒsalary[x]
ƒƒƒƒƒsalary[x]ƒ=ƒtemp
return

finishUp()
ƒƒƒƒƒmidNumƒ=ƒSIZEƒ/ƒ2
ƒƒƒƒƒprintƒ“Medianƒsalaryƒisƒ“,ƒsalary[midNum]
ƒƒƒƒƒcloseƒfiles
return

2. This application reads student typing test records. The records contain the student’s ID number
and name, the number of errors on the test, and the number of words typed per minute. Grades are
assigned based on the following table:

Errors
Speed 0 1 2 or more

0–30 C D F

31–50 C C F

51–80 B C D

81–100 A B C

101 and up A A B

start
ƒƒƒƒƒperformƒhousekeeping()
ƒƒƒƒƒwhileƒnotƒeof
ƒƒƒƒƒƒƒƒƒƒperformƒmainLoop()
ƒƒƒƒƒendwhile
ƒƒƒƒƒperformƒfinishUp()
stop

housekeeping()
ƒƒƒƒƒdeclareƒvariables
ƒƒƒƒƒƒƒƒƒƒstuRecord
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒid
ƒƒƒƒƒƒƒƒƒƒƒƒcharƒname
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒerrors
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒspeed
ƒƒƒƒƒƒƒƒƒƒnumƒspeedArray[0]ƒ=ƒ0
ƒƒƒƒƒƒƒƒƒƒnumƒspeedArray[1]ƒ=ƒ31
ƒƒƒƒƒƒƒƒƒƒnumƒspeedArray[2]ƒ=ƒ51

Find the Bugs 401

ƒƒƒƒƒƒƒƒƒƒnumƒspeedArray[3]ƒ=ƒ51
ƒƒƒƒƒƒƒƒƒƒnumƒspeedArray[4]ƒ=ƒ101
ƒƒƒƒƒƒƒƒƒƒnumƒx
ƒƒƒƒƒƒƒƒƒƒnumƒspeedCategory
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[0][0]ƒ=ƒ“C”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[0][1]ƒ=ƒ“C”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[0][2]ƒ=ƒ“C”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[1][0]ƒ=ƒ“C”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[1][1]ƒ=ƒ“C”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[1][2]ƒ=ƒ“C”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[2][0]ƒ=ƒ“C”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[2][1]ƒ=ƒ“C”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[2][2]ƒ=ƒ“A”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[3][0]ƒ=ƒ“A”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[3][1]ƒ=ƒ“A”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[3][2]ƒ=ƒ“A”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[4][0]ƒ=ƒ“A”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[4][1]ƒ=ƒ“A”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[4][2]ƒ=ƒ“A”
ƒƒƒƒƒopenƒfiles
ƒƒƒƒƒreadƒstuRecord
return

mainLoop()
ƒƒƒƒƒifƒerrorsƒ>ƒ2ƒthen
ƒƒƒƒƒƒƒƒƒerrorsƒ=ƒ2
ƒƒƒƒƒendif
ƒƒƒƒƒxƒ=ƒ4
ƒƒƒƒƒwhileƒxƒ>=ƒ0
ƒƒƒƒƒƒƒifƒspeedƒ=ƒspeedArray[speed]
ƒƒƒƒƒƒƒƒƒƒspeedCategoryƒ=ƒx
ƒƒƒƒƒƒƒƒƒƒxƒ=ƒ0
ƒƒƒƒƒƒƒƒendif
ƒƒƒƒƒƒƒƒxƒ=ƒxƒ+ƒ1
ƒƒƒƒƒendwhile
ƒƒƒƒƒprintƒid,ƒname,ƒgrade[speedCategory][errors]
ƒƒƒƒƒreadƒstuRecord
returnƒ

finishUp()
ƒƒƒƒƒcloseƒfiles
return

Chapter 9 • Advanced Array Manipulation402

EXERCISES

1. Professor Zak allows students to drop the two lowest scores on the ten 100-point quizzes she
gives during the semester. Develop the logic for a program that reads student records that contain
ID number, last name, first name, and 10 quiz scores. The output lists student ID, name, and total
points for the eight highest-scoring quizzes.

2. The Hinner College Foundation holds an annual fundraiser for which the foundation director main-
tains records. Each record contains a donor name and contribution amount. Assume that there are
never more than 300 donors. Develop the logic for a program that sorts the donation amounts in
descending order. The output lists the highest five donation amounts.

3. A greeting-card store maintains customer records with data fields for first name, last name,
address, and annual purchases in dollars. At the end of the year, the store manager invites the
100 customers with the highest annual purchases to an exclusive sale event. Develop the flowchart
or pseudocode that sorts up to 1,000 customer records by annual purchase amount and prints the
names and addresses for the top 100 customers.

4. The village of Ringwood has taken a special census. Every census record contains a household ID
number, number of occupants, and income. Ringwood has exactly 75 households. Village statisti-
cians are interested in the median household size and the median household income. Develop the
logic for a program that determines these figures. (Remember, a list must be sorted before you can
determine the median value.)

5. The village of Marengo has taken a special census and collected records that each contain a
household ID number, number of occupants, and income. The exact number of household records
has not yet been determined, but you know that there are fewer than 1,000 households in Marengo.
Develop the logic for a program that determines the median household size and the median house-
hold income.

6. Create the flowchart or pseudocode that reads a file of 10 employee salaries and prints them from
lowest to highest. Use an insertion sort.

7. Create the flowchart or pseudocode that reads a file of 10 employee salaries and prints them from
highest to lowest. Use a selection sort.

8. The MidAmerica Bus Company charges fares to passengers based on the number of travel zones
they cross. Additionally, discounts are provided for multiple passengers traveling together. Ticket
fares are shown in the following table:

Zones crossed
Passengers 0 1 2 3

1 7.50 10.00 12.00 12.75

2 14.00 18.50 22.00 23.00

3 20.00 21.00 32.00 33.00

4 25.00 27.50 36.00 37.00

Exercises 403

Develop the logic for a program that reads records containing number of passengers and zones
crossed. The output is the ticket charge.

9. In golf, par represents a standard number of strokes a player will need to complete a hole. Instead of
using an absolute score, players can compare their scores on a hole to the par figure and determine
whether they are above or below par. Families can play nine holes of miniature golf at the Family
Fun Miniature Golf Park. So that family members can compete fairly, the course provides a different
par for each hole, based on the player’s age. The par figures are shown in the following table:

Holes
Age 1 2 3 4 5 6 7 8 9

4 and under 8 8 9 7 5 7 8 5 8

5–7 7 7 8 6 5 6 7 5 6

8–11 6 5 6 5 4 5 5 4 5

12–15 5 4 4 4 3 4 3 3 4

16 and over 4 3 3 3 2 3 2 3 3

a. Develop the logic for a program that reads records containing a player’s name, age, and nine-hole score.
For each player, print a page that contains the player’s name and score on each of the nine holes, with one
of the phrases “Over par”, “Par”, or “Under par” next to each score.

b. Modify the program in Exercise 9a so that, at the end of each golfer’s report, the golfer’s total score is dis-
played. Include the figure indicating how many strokes over or under par the player is for the entire course.

10. Parker’s Consulting Services pays its employees an hourly rate based on two criteria—number of
years of service and last year’s performance rating, which is a whole number, 0 through 5.
Employee records contain ID number, last and first names, year hired, and performance score. The
salary schedule follows:

Performance score
Years of service 0 1 2 3 4 5

0 8.50 9.00 9.75 10.30 12.00 13.00

1 9.50 10.25 10.95 11.30 13.50 15.25

2 10.50 11.00 12.00 13.00 15.00 17.60

3 11.50 12.25 14.00 14.25 15.70 18.90

4 or more 12.50 13.75 15.25 15.50 17.00 20.00

In addition to the pay rates shown in the table, an employee with more than 10 years of service
receives an extra 5 percent per hour for each year over 10. Develop the logic for a program that
prints each employee’s ID number, name, and correct hourly salary for the current year.

Chapter 9 • Advanced Array Manipulation404

11. The Roadmaster Driving School allows students to sign up for any number of driving lessons. The
school allows up to four attempts to pass the driver’s license test; if all the attempts are unsuc-
cessful, then the student’s tuition is returned. The school maintains an archive containing student
records for those who have successfully passed the licensing test over the last 10 years. Each
record contains a student ID number, name, number of driving lessons completed, and the number
of the attempt on which the student passed the licensing test. The records are stored in alphabeti-
cal order by student name. The school administration is interested in examining the correlation
between the number of lessons taken and the number of attempts required to pass the test.
Develop the logic for a program that would produce a table for the school. Each row represents the
number of lessons taken: 0–9, 10–19, 20–29, and 30 or more. Each column represents the number
of test attempts in order to pass—1 through 4.

12. The Stevens College Testing Center creates a record each time a student takes a placement test.
Students can take a test in any of 12 subject areas: English, Math, Biology, Chemistry, History,
Sociology, Psychology, Art, Music, Spanish, German, or Computer Science. Each record contains the
date the test was taken, the student’s ID number, the test subject area, and a percent score on the
test. Records are maintained in the order they are entered as the tests are taken. The college wants
a report that lists each of the 12 tests along with a count of the number of students who have
received scores in each of the following categories: at least 90 percent, 80 through 89 percent, 70
through 79 percent, and below 70 percent. Develop the logic that produces the report.

DETECTIVE WORK

1. This chapter discussed the idea of using an employee’s Social Security number as a key field. Is a
Social Security number unique?

2. This chapter examines the bubble, insertion, and selection sorting algorithms. What other named
sort processes can you find?

UP FOR DISCUSSION

1. Now that you are becoming comfortable with arrays, you can see that programming is a complex
subject. Should all literate people understand how to program? If so, how much programming
should they understand?

2. What are language standards? At this point in your study of programming, what do they mean
to you?

