
Programming Logic
and Design

Fourth Edition

Joyce Farrell
Farrell

 Thomson Course Technology is part of the Thomson Learning
family of companies—dedicated to providing innovative
approaches to lifelong learning. Thomson is learning.

Programming Logic and Design, Comprehensive, Fourth Edition introduces the
beginning programmer to programming concepts early. Joyce Farrell
maintains her successful pedagogy by combining text explanation with
fl owcharts and pseudocode examples to provide students with alternative
means of expressing structured logic. Full-program exercises at the end of
every chapter are included to assist in the illustration of concepts. Get your
start in programming with the book that demonstrates proven success —
Programming Logic and Design, Comprehensive, Fourth Edition!

About the Author
Joyce Farrell is also the author of Java Programming, Microsoft Visual C# .NET, and
Object-Oriented Programming Using C++, all of which are published by Thomson Course
Technology. She has been a full-time instructor of Computer Information Systems at
Harper College in Palatine, IL, the University of Wisconsin–Stevens Point, and McHenry
County College in Crystal Lake, IL.

Key Features
• NEW! Each chapter includes a “Find the Bugs” section in which programming
 examples are presented with errors for the student to fi nd and correct.

• NEW! “Detective Work” sections have been added that present programming-related
 topics for the student to research.

• NEW! “Up For Discussion” sections present personal and ethical issues that
 programmers must consider.

• Can be bundled with Visual Logic software, allowing students to easily create
 fl owcharts and diagrams while working through the text.

• Translates easily to modern languages, such as C#, C++, Java, and Visual Basic.

Comprehensive

Programming Logic and Design
Comprehensive
Fourth Edition

An Object-Oriented Approach to
Programming Logic and Design

By Joyce Farrell

ISBN: 0-619-21563-1

Object-Oriented Programming
Using C++, Third Edition

By Joyce Farrell

ISBN: 1-4188-3626-5

Also available

What’s on the CD-ROM? Microsoft® Offi ce Visio® Professional 2003 60-day version

 Visit Thomson Course Technology
online at www.course.com

For your lifelong learning needs,
www.thomsonlearning.com

P
rogram

m
ing Logic and D

esign, C
om

prehensive
Fourth E

dition

B

B

PROGRAMMING
LOGIC AND DESIGN
COMPREHENSIVE
FOURTH EDITION

Joyce Farrell

Programming Logic and Design, Comprehensive, Fourth Edition
by Joyce Farrell

Managing Editor:
William Pitkin III

Senior Acquisitions Editor:
Drew Strawbridge

Senior Product Manager:
Tricia Boyle

Development Editor:
Dan Seiter

Marketing Manager:
Brian Berkeley

Associate Product Manager:
Sarah Santoro

Editorial Assistant:
Allison Murphy

Production Editor:
Jennifer Goguen McGrail

Cover Designer:
Steve Deschene

Interior Designer:
Betsy Young

Compositor:
GEX Publishing Services

Manufacturing Coordinator:
Justin Palmeiro

COPYRIGHT © 2007 Thomson
Course Technology, a division of
Thomson Learning, Inc. Thomson
Learning™ is a trademark used
herein under license.

Printed in the United States of
America

1 2 3 4 5 6 7 8 9 BU 09 08 07 06

For more information, contact
Course Technology, 25 Thomson
Place, Boston, Massachusetts, 02210.

Or find us on the World Wide
Web at: www.course.com

ALL RIGHTS RESERVED. No part of
this work covered by the copyright
hereon may be reproduced or used
in any form or by any means—
graphic, electronic, or mechanical,
including photocopying, recording,
taping, Web distribution, or
information storage and retrieval
systems—without the written
permission of the publisher.

For permission to use material
from this text or product, submit
a request online at
www.thomsonrights.com

Any additional questions about per-
missions can be submitted by e-mail
to thomsonrights@thomson.com

Disclaimer
Thomson Course Technology
reserves the right to revise this
publication and make changes
from time to time in its content
without notice.

ISBN 1-4188-3633-8

BRIEF CONTENTS
PREFACE xi

CHAPTER ONE
An Overview of Computers and Logic 1

CHAPTER TWO
Understanding Structure 39

CHAPTER THREE
Modules, Hierarchy Charts, and Documentation 81

CHAPTER FOUR
Designing And Writing a Complete Program 117

CHAPTER FIVE
Making Decisions 161

CHAPTER SIX
Looping 221

CHAPTER SEVEN
Control Breaks 263

CHAPTER EIGHT
Arrays 311

CHAPTER NINE
Advanced Array Manipulation 361

CHAPTER TEN
USING MENUS AND VALIDATING INPUT 405

CHAPTER ELEVEN
Sequential File Merging, Matching, and Updating 449

CHAPTER TWELVE
Advanced Modularization Techniques 495

CHAPTER THIRTEEN
Object-Oriented Programming 537

CHAPTER FOURTEEN
Event-Driven Programming with Graphical User Interfaces 569

CHAPTER FIFTEEN
System Modeling With the UML 599

CHAPTER SIXTEEN
Using Relational Databases 629

APPENDIX A
Solving Difficult Structuring Problems A-1

APPENDIX B
Understanding Numbering Systems and Computer Codes B-1

APPENDIX C
Using a Large Decision Table C-1

GLOSSARY G-1

INDEX I-1

TABLE OF CONTENTS

PREFACE xi
CHAPTER ONE
An Overview of Computers and Logic 1

Understanding Computer Components and Operations 2
Understanding the Programming Process 6

Understanding the Problem 6
Planning the Logic 7
Coding the Program 7
Using Software to Translate the Program into Machine Language 8
Testing the Program 9
Putting the Program into Production 10

Understanding the Data Hierarchy 11
Using Flowchart Symbols and Pseudocode Statements 12
Using and Naming Variables 17
Ending a Program by Using Sentinel Values 19
Using the Connector 21
Assigning Values to Variables 22
Understanding Data Types 24
Understanding the Evolution of Programming Techniques 26
Chapter Summary 28
Key Terms 28
Review Questions 31
Find The Bugs 34
Exercises 35
Detective Work 38
Up For Discussion 38

CHAPTER TWO
Understanding Structure 39

Understanding Unstructured Spaghetti Code 40
Understanding the Three Basic Structures 42
Using the Priming Read 49
Understanding the Reasons for Structure 55
Recognizing Structure 58
Three Special Structures—Case, Do While, and Do Until 65

The Case Structure 65
The Do-While and Do-Until Loops 67

Chapter Summary 71
Key Terms 71
Review Questions 72
Find The Bugs 75
Exercises 76
Detective Work 80
Up for Discussion 80

CHAPTER THREE
Modules, Hierarchy Charts, and Documentation 81

Modules, Subroutines, Procedures, Functions, or Methods 82
Modularization Provides Abstraction 82
Modularization Allows Multiple Programmers to Work on a Problem 83
Modularization Allows You to Reuse Your Work 83
Modularization Makes it Easier to Identify Structures 84

Modularizing a Program 85

Modules Calling Other Modules 89
Declaring Variables 90
Creating Hierarchy Charts 93
Understanding Documentation 95
Output Documentation 95
Input Documentation 98
Completing the Documentation 103
Chapter Summary 105
Key Terms 105
Review Questions 107
Find The Bugs 110
Exercises 112
Detective Work 116
Up for Discussion 116

CHAPTER FOUR
Designing And Writing a Complete Program 117

Understanding the Mainline Logical Flow Through a Program 118
Housekeeping Tasks 122

Declaring Variables 122
Opening Files 128
A One-Time-Only Task—Printing Headings 128
Reading the First Input Record 128
Checking for the End of the File 129

Writing the Main Loop 134
Performing End-Of-Job Tasks 137
Understanding the Need for Good Program Design 140
Storing Program Components in Separate Files 141
Selecting Variable and Module Names 143
Designing Clear Module Statements 144

Avoiding Confusing Line Breaks 145
Using Temporary Variables to Clarify Long Statements 145
Using Constants Where Appropriate 146

Maintaining Good Programming Habits 147
Chapter Summary 148
Key Terms 148
Review Questions 149
Find the Bugs 153
Exercises 155
Detective Work 159
Up for Discussion 159

CHAPTER FIVE
Making Decisions 161

Evaluating Boolean Expressions to Make Comparisons 162
Using the Relational Comparison Operators 164
Understanding AND Logic 168

Writing Nested AND Decisions for Efficiency 173
Combining Decisions in an AND Selection 175
Avoiding Common Errors in an AND Selection 176

Understanding OR Logic 178
Avoiding Common Errors in an OR Selection 180
Writing OR Decisions for Efficiency 183
Combining Decisions in an OR Selection 185

Table of Contents v

Using Selections within Ranges 186
Common Errors Using Range Checks 188

Understanding Precedence When Combining AND and OR Selections 190
Understanding the Case Structure 193
Using Decision Tables 194
Chapter Summary 202
Key Terms 203
Review Questions 204
Find the Bugs 208
Exercises 213
Detective Work 219
Up for Discussion 219

CHAPTER SIX
Looping 221

Understanding the Advantages of Looping 222
Using a While Loop with a Loop Control Variable 222
Using a Counter to Control Looping 225
Looping with a Variable Sentinel Value 229
Looping by Decrementing 231
Avoiding Common Loop Mistakes 232

Neglecting to Initialize the Loop Control Variable 232
Neglecting to Alter the Loop Control Variable 232
Using the Wrong Comparison with the Loop Control Variable 233
Including Statements Inside the Loop that Belong Outside the Loop 233
Initializing a Variable That Does Not Require Initialization 235

Using the For Statement 235
Using the Do While and Do Until Loops 238
Recognizing the Characteristics Shared by All Loops 241
Nesting Loops 242
Using a Loop to Accumulate Totals 247
Chapter Summary 250
Key Terms 251
Review Questions 251
Find the Bugs 256
Exercises 258
Detective Work 262
Up for Discussion 262

CHAPTER SEVEN
Control Breaks 263

Understanding Control Break Logic 264
Performing a Single-Level Control Break to Start a New Page 265
Using Control Data within a Heading in a Control Break Module 273
Using Control Data within a Footer in a Control Break Module 275
Performing Control Breaks with Totals 278
Performing Multiple-Level Control Breaks 283
Performing Page Breaks 290
Chapter Summary 296
Key Terms 296
Review Questions 297
Find the Bugs 302
Exercises 305
Detective Work 308
Up for Discussion 309

Programming Logic and Design, Comprehensive, Fourth Editionvi

CHAPTER EIGHT
Arrays 311

Understanding Arrays 312
How Arrays Occupy Computer Memory 312
Manipulating an Array to Replace Nested Decisions 314
Array Declaration and Initialization 324
Declaring and Initializing Constant Arrays 326
Loading an Array from a File 330
Searching for an Exact Match in an Array 331
Using Parallel Arrays 333
Remaining within Array Bounds 337
Improving Search Efficiency Using an Early Exit 339
Searching an Array for a Range Match 341
Chapter Summary 345
Key Terms 345
Review Questions 346
Find the Bugs 349
Exercises 354
Detective Work 360
Up for Discussion 360

CHAPTER NINE
Advanced Array Manipulation 361

Understanding the Need for Sorting Records 362
Understanding How to Swap Two Values 363
Using a Bubble Sort 364

Refining the Bubble Sort by Using a constant for the Array Size 371
Sorting a List of Variable Size 374
Refining the Bubble Sort by Reducing Unnecessary Comparisons 377
Refining the Bubble Sort by Eliminating Unnecessary Passes 379

Using an Insertion Sort 381
Using a Selection Sort 384
Using Indexed Files 386
Using Linked Lists 387
Using Multidimensional Arrays 389
Chapter Summary 393
Key Terms 394
Review Questions 395
Find the Bugs 399
Exercises 402
Detective Work 404
Up for Discussion 404

CHAPTER TEN
Using Menus and Validating Input 405

Using Interactive Programs 406
Using a Single-Level Menu 407
Coding Modules as Black Boxes 411
Making Improvements to a Menu Program 416
Using the Case Structure to Manage a Menu 421
Using Multilevel Menus 425
Validating Input 432
Understanding Types of Data Validation 434

Validating a Data Type 434
Validating a Data Range 435

Table of Contents vii

Validating Reasonableness and Consistency of Data 436
Validating Presence of Data 436

Chapter Summary 437
Key Terms 438
Review Questions 439
Find the Bugs 442
Exercises 445
Detective Work 448
Up for Discussion 448

CHAPTER ELEVEN
Sequential File Merging, Matching, and Updating 449

Understanding Sequential Data Files and the Need For Merging Files 450
Creating the Mainline and housekeeping() Logic for a Merge Program 451
Creating the mergeFiles() and finishUp() Modules for a Merge Program 454
Modifying the housekeeping() Module in the Merge Program to Check for eof 459
Master and Transaction File Processing 461
Matching Files to Update Fields in Master File Records 462
Allowing Multiple Transactions for a Single Master File Record 468
Updating Records in Sequential Files 470
Chapter Summary 481
Key Terms 481
Review Questions 482
Find the Bugs 486
Exercises 487
Detective Work 493
Up for Discussion 493

CHAPTER TWELVE
Advanced Modularization Techniques 495

Understanding Local and Global Variables and Encapsulation 496
Passing A Single Value to a Module 502
Passing Multiple Values to a Module 509
Returning a Value from a Module 512
Using Prewritten, Built-in Modules 515
Using an IPO Chart 518
Understanding the Advantages of Encapsulation 518
Reducing Coupling and Increasing Cohesion 520

Reducing Coupling 520
Increasing Cohesion 522

Chapter Summary 525
Key Terms 525
Review Questions 527
Find the Bugs 530
Exercises 532
Detective Work 535
Up for Discussion 535

CHAPTER THIRTEEN
Object-Oriented Programming 537

An Overview of Object-Oriented Programming 538
Objects and Classes 539
Methods 539
Inheritance 540
Encapsulation 540

Programming Logic and Design, Comprehensive, Fourth Editionviii

Defining Classes and Creating Class Diagrams 541
Understanding Public and Private Access 544
Instantiating and Using Objects 546
Understanding Inheritance 547
Understanding Polymorphism 551
Understanding Protected Access 552
Understanding the Role of the this Reference 553
Using Constructors and Destructors 555
One Example of Using Predefined Classes: Creating GUI Objects 556
Understanding the Advantages of Object-Oriented Programming 557
Chapter Summary 558
Key Terms 559
Review Questions 561
Find the Bugs 564
Exercises 566
Detective Work 568
Up for Discussion 568

CHAPTER FOURTEEN
Event-Driven Programming with Graphical User Interfaces 569

Understanding Event-Driven Programming 570
User-Initiated Actions and GUI Components 571
Designing Graphical User Interfaces 573

The Interface Should be Natural and Predictable 573
The Screen Design Should Be Attractive and User-Friendly 574
It’s Helpful If The User Can Customize Your Applications 575
The Program Should Be Forgiving 575
The GUI Is Only a Means To an End 575

Modifying The Attributes Of GUI Components 575
The Steps to Developing an Event-Driven Application 576

Understanding The Problem 577
Creating Storyboards 577
Defining the Objects In An Object Dictionary 578
Defining The Connections Between the User Screens 578
Planning the Logic 579

Understanding The Disadvantages of Traditional
Error-Handling Techniques 580
Understanding the Advantages of Object-Oriented Exception Handling 583
Chapter Summary 588
Key Terms 589
Review Questions 590
Find the Bugs 593
Exercises 595
Detective Work 597
Up for Discussion 597

CHAPTER FIFTEEN
System Modeling With the UML 599

Understanding the Need for System Modeling 600
What Is UML? 601
Using Use Case Diagrams 603
Using Class and Object Diagrams 608
Using Sequence and Communication Diagrams 612
Using State Machine Diagrams 614

Table of Contents ix

Using Activity Diagrams 615
Using Component and Deployment Diagrams 618
Diagramming Exception Handling 620
Deciding Which UML Diagrams to Use 621
Chapter Summary 622
Key Terms 623
Review Questions 624
Find the Bugs 627
Exercises 627
Detective Work 628
Up for Discussion 628

CHAPTER SIXTEEN
Using Relational Databases 629

Understanding relational Database Fundamentals 630
Creating Databases and Table Descriptions 632

Identifying Primary Keys 634
Understanding Database Structure Notation 636
Adding, Deleting, and Updating Records within Tables 636
Sorting the Records in a Table 637
Creating Queries 637

Understanding Table Relationships 639
Understanding One-to-Many Relationships 640
Understanding Many-to-Many Relationships 641
Understanding One-to-One Relationships 645

Recognizing Poor Table Design 645
Understanding Anomalies, Normal Forms, and the Normalization Process 647

First Normal Form 648
Second Normal Form 650
Third Normal Form 652

Database Performance and Security Issues 655
Providing Data Integrity 655
Recovering Lost Data 655
Avoiding Concurrent Update Problems 656
Providing Authentication and Permissions 656
Providing Encryption 656

Chapter Summary 657
Key Terms 658
Review Questions 661
Find the Bugs 665
Exercises 666
Detective Work 670
Up for Discussion 671

APPENDIX A A-1
Solving Difficult Structuring Problems
APPENDIX B B-1
Understanding Numbering Systems and Computer Codes
APPENDIX C C-1
Using a Large Decision Table
GLOSSARY G-1
INDEX I-1

Programming Logic and Design, Comprehensive, Fourth Editionx

PREFACE

Programming Logic and Design, Comprehensive, Fourth Edition provides the beginning programmer with a guide to devel-
oping structured program logic. This textbook assumes no programming language experience. The writing is nontechni-
cal and emphasizes good programming practices. The examples are business examples; they do not assume
mathematical background beyond high school business math. Additionally, the examples illustrate one or two major
points; they do not contain so many features that students become lost following irrelevant and extraneous details.

The examples in Programming Logic and Design have been created to provide students with a sound background in
logic, no matter what programming languages they eventually use to write programs. This book can be used in a stand-
alone logic course that students take as a prerequisite to a programming course, or as a companion book to an intro-
ductory programming text using any programming language.

Organization and Coverage

Programming Logic and Design, Comprehensive, Fourth Edition introduces students to programming concepts and enforces
good style and logical thinking. General programming concepts are introduced in Chapter 1. Chapter 2 discusses the key
concepts of structure, including what structure is, how to recognize it, and, most importantly, the advantages to writing
structured programs. Chapter 3 extends the information on structured programming to the area of modules. By Chapter 4
students can develop complete, structured business programs. Chapters 5 and 6 explore the intricacies of decision mak-
ing and looping. Students learn to develop sophisticated programs that use control breaks and arrays in Chapters 7 and 8.

Chapters 9, 10, and 11 allow students to make more sophisticated applications, expanding on the concepts learned in the
first eight chapters. Chapter 9 provides instruction on advanced array manipulation. In Chapter 10, students explore the intri-
cacies of interactive menu programs, including validating input. Chapter 11 covers file merging, matching, and updating.

In Chapter 12, students learn how methods are implemented in modern programming languages, exploring the concepts
of parameter passing, returning values, and hiding information. In Chapter 13, students learn the concepts and vocabu-
lary necessary to understand object-oriented programming. Chapter 14 deals more specifically with issues in interactive,
event-driven GUI programs.

Chapters 15 and 16 cover additional topics that all professional programmers should learn. Chapter 15 explores the
UML, a powerful system design tool, and Chapter 16 provides a thorough tutorial in database creation and use—the
basis for many modern programming applications.

Three appendices allow students to gain extra experience with structuring large unstructured programs, using the binary
numbering system, and working with large decision tables.

Programming Logic and Design combines text explanation with flowcharts and pseudocode examples to provide students
with alternative means of expressing structured logic. Numerous detailed, full-program exercises at the end of each
chapter illustrate the concepts explained within the chapter, and reinforce understanding and retention of the material
presented.

Programming Logic and Design distinguishes itself from other programming logic books in the following ways:

� It is written and designed to be non-language specific. The logic used in this book can be applied to
any programming language.

� The examples are everyday business examples; no special knowledge of mathematics, accounting,
or other disciplines is assumed.

� The concept of structure is covered earlier than in many other texts. Students are exposed to struc-
ture naturally, so they will automatically create properly designed programs.

� Text explanation is interspersed with both flowcharts and pseudocode so students can become com-
fortable with both logic development tools and understand their interrelationship.

� Complex programs are built through the use of complete business examples. Students see how an
application is built from start to finish instead of studying only segments of programs.

Features of the Text

This edition of the text includes several new features to help students become better programmers and understand the
big picture in program development. Because examining programs critically and closely is a crucial programming skill,
each chapter includes a “Find the Bugs” section in which programming examples are presented that contain syntax
errors and logical errors for the student to find and correct. Each chapter contains a new “Detective Work” section that
presents programming-related topics for the student to research. Each chapter also contains a new section called “Up
For Discussion,” in which questions present personal and ethical issues that programmers must consider. These ques-
tions can be used for written assignments or as a starting point for classroom discussions.

To improve students’ comprehension of arrays as they are used in most modern programming languages, arrays are now
covered as zero-based arrays. Learning about arrays in this way will help students make the transition to using arrays
effectively in languages such as C++, Java, and C#.

Each chapter lists key terms and their definitions; the list appears in the order the terms are encountered in the chapter.
Along with the chapter summary, the list of key terms provides a snapshot overview of a chapter’s main ideas. A glossary
at the end of the book lists all the key terms in alphabetical order, along with working definitions.

Multiple-choice review questions appear at the end of every chapter to allow students to test their comprehension of the
major ideas and techniques presented. Additionally, multiple end-of-chapter flowcharting and pseudocoding exercises
are included so students have more opportunities to practice concepts as they learn them.

Programming Logic and Design is a superior textbook because it includes the following features:

� Microsoft® Office Visio® Professional 2003, 60-day version: This text includes Visio 2003, a dia-
gramming program that helps users create flowcharts and diagrams easily while working through
the text, enabling them to visualize concepts and learn more effectively.

Programming Logic and Design, Comprehensive, Fourth Editionxii

New! � Visual Logic™, version 2.0: Visual Logic™ is a simple but powerful tool for teaching programming
logic and design without traditional high-level programming language syntax. Visual Logic uses
flowcharts to explain essential programming concepts, including variables, input, assignment, output,
conditions, loops, procedures, graphics, arrays, and files. It also has the ability to interpret and
execute flowcharts, providing students with immediate and accurate feedback about their solutions.
By executing student solutions, Visual Logic combines the power of a high-level language with the
ease and simplicity of flowcharts.

You have the option to bundle this software with your text! Please contact your Course Technology
sales representative for more information.

� Interior design: A highly visual, full-color interior presents material in a way that is engaging and
appealing to the reader.

� Objectives: Each chapter begins with a list of objectives so the student knows the topics that will be
presented in the chapter. In addition to providing a quick reference to topics covered, this feature pro-
vides a useful study aid.

� Flowcharts: This book has plenty of figures and illustrations, including flowcharts, which provide the
reader with a visual learning experience, rather than one that involves simply studying text. You can
see an example of a flowchart in the sample page shown in this Preface.

� Pseudocode: This book also includes numerous examples of pseudocode, which illustrate correct
usage of the programming logic and design concepts being taught. You can see an example of
pseudocode in the sample page shown in this Preface.

� Tips: These notes provide additional information—for example, another location in the book that
expands on a topic, or a common error to watch out for. You can see an example of a tip in the sam-
ple page shown in this Preface.

� Chapter summaries: Following each chapter is a summary that recaps the programming concepts
and techniques covered in the chapter. This feature provides a concise means for students to review
and check their understanding of the main points in each chapter.

� Key terms: Chapters end with a collection of all the key terms found throughout the chapter, as
shown in the following sample. Definitions are included in sentence format and in the order in which
they appear in the chapter.

KEY TERMS

The mainline logic of a program is the overall logic of the main program from
beginning to end.

A housekeeping module includes steps you must perform at the beginning of a pro-
gram, to get ready for the rest of the program.

The main loop of a program contains the steps that are repeated for every record.

SAMPLE LIST OF END-OF-CHAPTER KEY TERMS

Preface xiii

� Review questions: Review questions at the end of each chapter reinforce the main ideas introduced
in the chapter, as shown in the following sample. Successfully answering these questions demon-
strates mastery of the concepts and information presented.

� Exercises: Each chapter concludes with meaningful programming exercises that provide students with
additional practice of the skills and concepts they have learned. These exercises increase in difficulty
and are designed to allow students to explore logical programming concepts. Each exercise can be
completed using flowcharts, pseudocode, or both. In addition, instructors can choose to assign the
exercises as programming problems to be coded and executed in a programming language.

New! � Each chapter contains at least one debugging exercise. Reading others’ programs and desk-checking
them is an important programming skill. The debugging exercises provide pseudocode with syntax
errors and logical errors that the student can correct.

New! � Each chapter contains “Detective Work” questions that provide research opportunities for students to
learn more about an issue or programming topic. Each chapter also includes “Up For Discussion” ques-
tions, which allow students to express an opinion about controversial or ethical programming issues.

The following figure shows an example of our highly visual design, including an example of the numbered lists, tips, flow-
charts, and pseudocode seen throughout the text.

SAMPLE REVIEW QUESTIONS

REVIEW QUESTIONS

1. Input records usually contain .

a. less data than an application needs
b. more data than an application needs
c. exactly the amount of data an application needs
d. none of the data an application needs

2. A program in which one operation follows another from the beginning
until the end is a program.

a. modular
b. functional
c. procedural
d. object-oriented

Programming Logic and Design, Comprehensive, Fourth Editionxiv

117Understanding the Mainline Logical Flow Through a Program

follows another from the beginning until the end. You write the entire set of instructions for a procedural program, and when
the program executes, instructions take place one at a time, following your program’s logic. The overall logic, or mainline
logic, of almost every procedural computer program can follow a general structure that consists of three distinct parts:

1. Performing housekeeping, or initialization tasks. Housekeeping includes steps you must perform

at the beginning of a program to get ready for the rest of the program.

2. Performing the main loop repeatedly within the program. The main loop contains the instructions

that are executed for every record until you reach the end of the input of records, or eof.

3. Performing the end-of-job routine. The end-of-job routine holds the steps you take at the end of

the program to finish the application.

Not all programs are procedural; some are object-oriented. A distinguishing feature of
many (but not all) object-oriented programs is that they are event-driven; often the user
determines the timing of events in the main loop of the program by using an input device
such as a mouse. As you advance in your knowledge of programming, you will learn more
about object-oriented techniques.

You can write any procedural program as one long series of programming language statements, but most programmers pre-
fer to break their programs into at least three parts. The main program can call the three major modules, as shown in the
flowchart and pseudocode in Figure 4-6. The module or subroutine names, of course, are entirely up to the programmer.

Reducing a large program into more manageable modules is sometimes called functional
decomposition.

start
 perform housekeeping()
 while not eof
 perform mainLoop()
 endwhile
 perform finishUp()
stop

Yes

eof? mainLoop()

finishUp()

No

housekeeping()

stop

start

FIGURE 4-6: FLOWCHART AND PSEUDOCODE OF MAINLINE LOGIC

TIP�

TIP�

Preface xv

SAMPLE PAGE SHOWING KEY ELEMENTS FOUND IN THE TEXT

Teaching Tools

The following supplemental materials are available when this book is used in a classroom setting. All of the teaching tools
available with this book are provided to the instructor on a single CD-ROM.

Electronic Instructor’s Manual. The Instructor’s Manual that accompanies this textbook provides additional instruc-
tional material to assist in class preparation, including items such as Sample Syllabi, Chapter Outlines, Technical Notes,
Lecture Notes, Quick Quizzes, Teaching Tips, Discussion Topics, and Key Terms.

ExamView®. This textbook is accompanied by ExamView, a powerful testing software package that allows instructors to
create and administer printed, computer (LAN-based), and Internet exams. ExamView includes hundreds of questions
that correspond to the topics covered in this text, enabling students to generate detailed study guides that include page
references for further review. The computer-based and Internet testing components allow students to take exams at their
computers, and save the instructor time by grading each exam automatically.

PowerPoint Presentations. This book comes with Microsoft PowerPoint slides for each chapter. These are included as
a teaching aid for classroom presentation, to make available to students on your network for chapter review, or to be
printed for classroom distribution. Instructors can add their own slides for additional topics they introduce to the class.

Solutions. Suggested solutions to Review Questions and Exercises are provided on the Teaching Tools CD-ROM and may
also be found on the Course Technology Web site at www.course.com. The solutions are password protected.

Distance Learning. Course Technology offers online WebCT and Blackboard (versions 5.0 and 6.0) courses for this text to
provide the most complete and dynamic learning experience possible. When you add online content to one of your courses,
you’re adding a lot: automated tests, topic reviews, quick quizzes, and additional case projects with solutions. For more
information on how to bring distance learning to your course, contact your local Course Technology sales representative.

Acknowledgments

I would like to thank all of the people who helped to make this book a reality, especially Dan Seiter, Development Editor,
whose hard work and attention to detail have made this a quality textbook. Dan suggested improvements that I had never
considered in the first three editions, and this is a better book for his efforts. Thanks, Dan, for knowing what changes I
meant to make even if I forgot to make them. Thanks also to Tricia Boyle, Senior Product Manager; Will Pitkin, Managing
Editor; Jennifer Goguen McGrail, Production Editor; and John Bosco, Technical Editor. I am grateful to be able to work with
so many fine people who are dedicated to producing quality instructional materials.

I am grateful to the many reviewers who provided helpful and insightful comments during the development of this book,
including Reni Abraham, Houston Community College; Nelson Capaz, Pasco Hernando Community College; Betty Clay,
Southeastern Oklahoma State University; Michael Mick, Purdue University Calumet; Judy Scholl, Austin Community
College; and Catherine Wyman, DeVry University, Phoenix.

Thanks, too, to my husband, Geoff, who acts as friend and advisor in the book-writing process. This book is, as were its
previous editions, dedicated to him and to my daughters, Andrea and Audrey.

–Joyce Farrell

Programming Logic and Design, Comprehensive, Fourth Editionxvi

1
After studying Chapter 1, you should be able to:

� Understand computer components and operations

� Describe the steps involved in the programming process

� Describe the data hierarchy

� Understand how to use flowchart symbols and pseudocode statements

� Use and name variables

� Use a sentinel, or dummy value, to end a program

� Use a connector symbol

� Assign values to variables

� Recognize the proper format of assignment statements

� Describe data types

� Understand the evolution of programming techniques

AN OVERVIEW OF COMPUTERS
AND LOGIC

1

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 1

2 Chapter 1 • An Overview of Computers and Logic

UNDERSTANDING COMPUTER COMPONENTS AND OPERATIONS

Hardware and software are the two major components of any computer system. Hardware is the equipment, or the
devices, associated with a computer. For a computer to be useful, however, it needs more than equipment; a computer
needs to be given instructions. The instructions that tell the computer what to do are called software, or programs, and
are written by programmers. This book focuses on the process of writing these instructions.

Software can be classified as application software or system software. Application soft-
ware comprises all the programs you apply to a task—word-processing programs, spread-
sheets, payroll and inventory programs, and even games. System software comprises the
programs that you use to manage your computer—operating systems, such as Windows,
Linux, or UNIX. This book focuses on the logic used to write application software pro-
grams, although many of the concepts apply to both types of software.

Together, computer hardware and software accomplish four major operations:

1. Input

2. Processing

3. Output

4. Storage

Hardware devices that perform input include keyboards and mice. Through these devices, data, or facts, enter the
computer system. Processing data items may involve organizing them, checking them for accuracy, or performing
mathematical operations on them. The piece of hardware that performs these sorts of tasks is the central processing
unit, or CPU. After data items have been processed, the resulting information is sent to a printer, monitor, or some other
output device so people can view, interpret, and use the results. Often, you also want to store the output information on
storage hardware, such as magnetic disks, tapes, compact discs, or flash media. Computer software consists of all the
instructions that control how and when the data items are input, how they are processed, and the form in which they
are output or stored.

Data includes all the text, numbers, and other information that are processed by a com-
puter. However, many computer professionals reserve the term “information” for data that
has been processed. For example, your name, Social Security number, and hourly pay rate
are data items, but your paycheck holds information.

Computer hardware by itself is useless without a programmer’s instructions, or software, just as your stereo equipment
doesn’t do much until you provide music on a CD or tape. You can buy prewritten software that is stored on a disk or
that you download from the Internet, or you can write your own software instructions. You can enter instructions into a
computer system through any of the hardware devices you use for data; most often, you type your instructions using a
keyboard and store them on a device such as a disk or CD.

You write computer instructions in a computer programming language, such as Visual Basic, C#, C++, Java, or
COBOL. Just as some people speak English and others speak Japanese, programmers also write programs in different

TIP�

TIP�

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 2

3Understanding Computer Components and Operations

languages. Some programmers work exclusively in one language, whereas others know several and use the one that
seems most appropriate for the task at hand.

No matter which programming language a computer programmer uses, the language has rules governing its word
usage and punctuation. These rules are called the language’s syntax. If you ask, “How the get to store do I?” in English,
most people can figure out what you probably mean, even though you have not used proper English syntax. However,
computers are not nearly as smart as most people; with a computer, you might as well have asked, “Xpu mxv ot dodnm
cadf B?” Unless the syntax is perfect, the computer cannot interpret the programming language instruction at all.

Every computer operates on circuitry that consists of millions of on/off switches. Each programming language uses a
piece of software to translate the specific programming language into the computer’s on/off circuitry language, or
machine language. The language translation software is called a compiler or interpreter, and it tells you if you have
used a programming language incorrectly. Therefore, syntax errors are relatively easy to locate and correct—the com-
piler or interpreter you use highlights every syntax error. If you write a computer program using a language such as
C++ but spell one of its words incorrectly or reverse the proper order of two words, the translator lets you know that it
found a mistake by displaying an error message as soon as you try to translate the program.

Although there are differences in how compilers and interpreters work, their basic function
is the same—to translate your programming statements into code the computer can use.
When you use a compiler, an entire program is translated before it can execute; when you
use an interpreter, each instruction is translated just prior to execution. Usually, you do not
choose which type of translation to use—it depends on the programming language.
However, there are some languages for which both compilers and interpreters are available.

A program without syntax errors can be executed on a computer, but it might not produce correct results. For a pro-
gram to work properly, you must give the instructions to the computer in a specific sequence, you must not leave any
instructions out, and you must not add extraneous instructions. By doing this, you are developing the logic of the com-
puter program. Suppose you instruct someone to make a cake as follows:

Stir
Add two eggs
Add a gallon of gasoline
Bake at 350 degrees for 45 minutes
Add three cups of flour

Even though you have used the English language syntax correctly, the instructions are out of sequence, some instruc-
tions are missing, and some instructions belong to procedures other than baking a cake. If you follow these instruc-
tions, you are not going to end up with an edible cake, and you may end up with a disaster. Logical errors are much
more difficult to locate than syntax errors; it is easier for you to determine whether “eggs” is spelled incorrectly in a
recipe than it is for you to tell if there are too many eggs or if they are added too soon.

Programmers often call logical errors semantic errors. For example, if you misspell a pro-
gramming language word, you commit a syntax error, but if you use an otherwise correct
word that does not make any sense in the current context, you commit a semantic error.

TIP�

TIP�

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 3

4 Chapter 1 • An Overview of Computers and Logic

Just as baking directions can be given correctly in French, German, or Spanish, the same logic of a program can be
expressed in any number of programming languages. This book is almost exclusively concerned with the logic develop-
ment process. Because this book is not concerned with any specific language, the programming examples could have
been written in Japanese, C++, or Java. The logic is the same in any language. For convenience, the book uses English!

Once instructions have been input to the computer and translated into machine language, a program can be run, or
executed. You can write a program that takes a number (an input step), doubles it (processing), and tells you the
answer (output) in a programming language such as Java or C++, but if you were to write it using English-like state-
ments, it would look like this:

Get inputNumber.
Compute calculatedAnswer as inputNumber times 2.
Print calculatedAnswer.

You will learn about the odd elimination of the space between words like “input” and
“Number” and “calculated” and “Answer” in the next few pages.

The instruction to Get inputNumber is an example of an input operation. When the computer interprets this
instruction, it knows to look to an input device to obtain a number. Computers often have several input devices, perhaps
a keyboard, a mouse, a CD drive, and two or more disk drives. When you learn a specific programming language, you
learn how to tell the computer which of those input devices to access for input. Logically, however, it doesn’t really
matter which hardware device is used, as long as the computer knows to look for a number. The logic of the input
operation—that the computer must obtain a number for input, and that the computer must obtain it before multiplying
it by two—remains the same regardless of any specific input hardware device. The same is true in your daily life. If you
follow the instruction “Get eggs from store,” it does not really matter if you are following a handwritten instruction from
a list or a voice-mail instruction left on your cell phone—the process of getting the eggs, and the result of doing so, are
the same.

Many computer professionals categorize disk drives and CD drives as storage devices
rather than input devices. Such devices actually can be used for input, storage, and output.

Processing is the step that occurs when the arithmetic is performed to double the inputNumber; the statement
Compute calculatedAnswer as inputNumber times 2 represents processing. Mathematical oper-
ations are not the only kind of processing, but they are very typical. After you write a program, the program can be used
on computers of different brand names, sizes, and speeds. Whether you use an IBM, Macintosh, Linux, or UNIX operat-
ing system, and whether you use a personal computer that sits on your desk or a mainframe that costs hundreds of
thousands of dollars and resides in a special building in a university, multiplying by 2 is the same process. The hard-
ware is not important; the processing will be the same.

In the number-doubling program, the Print calculatedAnswer statement represents output. Within a partic-
ular program, this statement could cause the output to appear on the monitor (which might be a flat panel screen or a
cathode-ray tube), or the output could go to a printer (which could be laser or ink-jet), or the output could be written to
a disk or CD. The logic of the process called “Print” is the same no matter what hardware device you use.

TIP�

TIP�

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 4

5Understanding Computer Components and Operations

Besides input, processing, and output, the fourth operation in any computer system is storage. When computers pro-
duce output, it is for human consumption. For example, output might be displayed on a monitor or sent to a printer.
Storage, on the other hand, is meant for future computer use (for example, when data items are saved on a disk).

Computer storage comes in two broad categories. All computers have internal storage, often referred to as memory,
main memory, primary memory, or random access memory (RAM). This storage is located inside the system unit
of the machine. (For example, if you own a microcomputer, the system unit is the large case that holds your CD or other
disk drives. On a laptop computer, the system unit is located beneath the keyboard.) Internal storage is the type of stor-
age most often discussed in this book.

Computers also use external storage, which is persistent (relatively permanent) storage on a device such as a floppy
disk, hard disk, flash media, or magnetic tape. In other words, external storage is outside the main memory, not neces-
sarily outside the computer. Both programs and data sometimes are stored on each of these kinds of media.

To use computer programs, you must first load them into memory. You might type a program into memory from the key-
board, or you might use a program that has already been written and stored on a disk. Either way, a copy of the instruc-
tions must be placed in memory before the program can be run.

A computer system needs both internal memory and external storage. Internal memory is needed to run the programs,
but internal memory is volatile—that is, its contents are lost every time the computer loses power. Therefore, if you are
going to use a program more than once, you must store it, or save it, on some nonvolatile medium. Otherwise, the pro-
gram in main memory is lost forever when the computer is turned off. External storage (usually disks or tape) provides a
nonvolatile (or persistent) medium.

Even though a hard disk drive is located inside your computer, the hard disk is not main,
internal memory. Internal memory is temporary and volatile; a hard drive is permanent,
nonvolatile storage. After one or two “tragedies” of losing several pages of a typed com-
puter program due to a power failure or other hardware problem, most programmers learn
to periodically save the programs they are in the process of writing, using a nonvolatile
medium such as a disk.

Once you have a copy of a program in main memory, you want to execute, or run, the program. To do so, you must also
place any data that the program requires into memory. For example, after you place the following program into memory
and start to run it, you need to provide an actual inputNumber—for example, 8—that you also place in main
memory.

Get inputNumber.
Compute calculatedAnswer as inputNumber times 2.
Print calculatedAnswer.

The inputNumber is placed in memory at a specific memory location that the program will call inputNumber.
Then, and only then, can the calculatedAnswer, in this case 16, be calculated and printed.

TIP�

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 5

6 Chapter 1 • An Overview of Computers and Logic

Computer memory consists of millions of numbered locations where data can be stored.
The memory location of inputNumber has a specific numeric address, for example,
48604. Your program associates inputNumber with that address. Every time you refer
to inputNumber within a program, the computer retrieves the value at the associated
memory location. When you write programs, you seldom need to be concerned with the
value of the memory address; instead, you simply use the easy-to-remember name you
created.
Computer programmers often refer to memory addresses using hexadecimal notation, or
base 16. Using this system, they might use a value like 42FF01A to refer to a memory
address. Despite the use of letters, such an address is still a number. When you use the
hexadecimal numbering system, the letters A through F stand for the values 10 through 15.

UNDERSTANDING THE PROGRAMMING PROCESS

A programmer’s job involves writing instructions (such as the three instructions in the doubling program in the preced-
ing section), but a professional programmer usually does not just sit down at a computer keyboard and start typing. The
programmer’s job can be broken down into six programming steps:

1. Understanding the problem

2. Planning the logic

3. Coding the program

4. Using software to translate the program into machine language

5. Testing the program

6. Putting the program into production

UNDERSTANDING THE PROBLEM

Professional computer programmers write programs to satisfy the needs of others. Examples could include a Human
Resources Department that needs a printed list of all employees, a Billing Department that wants a list of clients who
are 30 or more days overdue on their payments, and an office manager who wants to be notified when specific sup-
plies reach the reorder point. Because programmers are providing a service to these users, programmers must first
understand what it is the users want.

Suppose the director of human resources says to a programmer, “Our department needs a list of all employees who
have been here over five years, because we want to invite them to a special thank-you dinner.” On the surface, this
seems like a simple enough request. An experienced programmer, however, will know that he or she may not yet under-
stand the whole problem. Does the director want a list of full-time employees only, or a list of full- and part-time
employees together? Does she want people who have worked for the company on a month-to-month contractual basis
over the past five years, or only regular, permanent employees? Do the listed employees need to have worked for the
organization for five years as of today, as of the date of the dinner, or as of some other cutoff date? What about an
employee who worked three years, took a two-year leave of absence, and has been back for three years? Does he or
she qualify? The programmer cannot make any of these decisions; the user is the one who must address these questions.

TIP�

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 6

7Understanding the Programming Process

More decisions still might be required. For example, what does the user want the report of five-year employees to look
like? Should it contain both first and last names? Social Security numbers? Phone numbers? Addresses? Is all this data
available? Several pieces of documentation are often provided to help the programmer understand the problem. This
documentation includes print layout charts and file specifications, which you will learn about in Chapter 3.

Really understanding the problem may be one of the most difficult aspects of programming. On any job, the description
of what the user needs may be vague—worse yet, the user may not even really know what he or she wants, and users
who think they know what they want frequently change their minds after seeing sample output. A good programmer is
often part counselor, part detective!

PLANNING THE LOGIC

The heart of the programming process lies in planning the program’s logic. During this phase of the programming
process, the programmer plans the steps of the program, deciding what steps to include and how to order them. You
can plan the solution to a problem in many ways. The two most common planning tools are flowcharts and
pseudocode. Both tools involve writing the steps of the program in English, much as you would plan a trip on paper
before getting into the car, or plan a party theme before going shopping for food and favors.

You may hear programmers refer to planning a program as “developing an algorithm.” An
algorithm is the sequence of steps necessary to solve any problem. You will learn more
about flowcharts and pseudocode later in this chapter.

The programmer doesn’t worry about the syntax of any particular language at this point, just about figuring out what
sequence of events will lead from the available input to the desired output. Planning the logic includes thinking carefully
about all the possible data values a program might encounter and how you want the program to handle each scenario. The
process of walking through a program’s logic on paper before you actually write the program is called desk-checking. You
will learn more about planning the logic later; in fact, this book focuses on this crucial step almost exclusively.

CODING THE PROGRAM

Once the programmer has developed the logic of a program, only then can he or she write the program in one of more
than 400 programming languages. Programmers choose a particular language because some languages have built-in
capabilities that make them more efficient than others at handling certain types of operations. Despite their differences,
programming languages are quite alike—each can handle input operations, arithmetic processing, output operations,
and other standard functions. The logic developed to solve a programming problem can be executed using any number
of languages. It is only after a language is chosen that the programmer must worry about each command being spelled
correctly and all of the punctuation getting into the right spots—in other words, using the correct syntax.

Some very experienced programmers can successfully combine the logic planning and the actual instruction writing, or
coding, of the program in one step. This may work for planning and writing a very simple program, just as you can plan
and write a postcard to a friend using one step. A good term paper or a Hollywood screenplay, however, needs planning
before writing, and so do most programs.

TIP�

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 7

8 Chapter 1 • An Overview of Computers and Logic

Which step is harder, planning the logic or coding the program? Right now, it may seem to you that writing in a pro-
gramming language is a very difficult task, considering all the spelling and grammar rules you must learn. However, the
planning step is actually more difficult. Which is more difficult: thinking up the twists and turns to the plot of a best-
selling mystery novel, or writing a translation of an already written novel from English to Spanish? And who do you think
gets paid more, the writer who creates the plot or the translator? (Try asking friends to name any famous translator!)

USING SOFTWARE TO TRANSLATE THE PROGRAM INTO MACHINE LANGUAGE

Even though there are many programming languages, each computer knows only one language, its machine language,
which consists of many 1s and 0s. Computers understand machine language because computers themselves are made
up of thousands of tiny electrical switches, each of which can be set in either the on or off state, which is represented
by a 1 or 0, respectively.

Languages like Java or Visual Basic are available for programmers to use because someone has written a translator
program (a compiler or interpreter) that changes the English-like high-level programming language in which the pro-
grammer writes into the low-level machine language that the computer understands. If you write a programming lan-
guage statement incorrectly (for example, by misspelling a word, using a word that doesn’t exist in the language, or
using “illegal” grammar), the translator program doesn’t know what to do and issues an error message identifying a
syntax error, or misuse of a language’s grammar rules. You receive the same response when you speak nonsense to a
human-language translator. Imagine trying to look up a list of words in a Spanish-English dictionary if some of the listed
words are misspelled—you can’t complete the task until the words are spelled correctly. Although making errors is
never desirable, syntax errors are not a major concern to programmers, because the compiler or interpreter catches
every syntax error, and the computer will not execute a program that contains them.

A computer program must be free of syntax errors before you can execute it. Typically, a programmer develops a pro-
gram’s logic, writes the code, and then compiles the program, receiving a list of syntax errors. The programmer then
corrects the syntax errors, and compiles the program again. Correcting the first set of errors frequently reveals a new
set of errors that originally were not apparent to the compiler. For example, if you could use an English compiler and
submit the sentence The grl go to school, the compiler at first would point out only one syntax error to you.
The second word, grl, is illegal because it is not part of the English language. Only after you corrected the word
girl would the compiler find another syntax error on the third word, go, because it is the wrong verb form for the
subject girl. This doesn’t mean go is necessarily the wrong word. Maybe girl is wrong; perhaps the subject
should be girls, in which case go is right. Compilers don’t always know exactly what you mean, nor do they know
what the proper correction should be, but they do know when something is wrong with your syntax.

When writing a program, a programmer might need to recompile the code several times. An executable program is cre-
ated only when the code is free of syntax errors. When you run an executable program, it typically also might require
input data. Figure 1-1 shows a diagram of this entire process.

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 8

9Understanding the Programming Process

TESTING THE PROGRAM

A program that is free of syntax errors is not necessarily free of logical errors. For example, the sentence The girl
goes to school, although syntactically perfect, is not logically correct if the girl is a baby or a dropout.

Once a program is free from syntax errors, the programmer can test it—that is, execute it with some sample data to
see whether the results are logically correct. Recall the number-doubling program:

Get inputNumber.
Compute calculatedAnswer as inputNumber times 2.
Print calculatedAnswer.

If you provide the value 2 as input to the program and the answer 4 prints, you have executed one successful test run
of the program.

However, if the answer 40 prints, maybe it’s because the program contains a logical error. Maybe the second line of
code was mistyped with an extra zero, so that the program reads:

Get inputNumber.
Compute calculatedAnswer as inputNumber times 20.
Print calculatedAnswer.

The error of placing 20 instead of 2 in the multiplication statement caused a logical error. Notice that nothing is syntac-
tically wrong with this second program—it is just as reasonable to multiply a number by 20 as by 2—but if the pro-
grammer intends only to double the inputNumber, then a logical error has occurred.

Write and correct
the program code

Compile the
program

Executable
program

Data that the
program uses

If there are no
syntax errors

List of
syntax
error

messages

Program
output

If there are
syntax errors

FIGURE 1-1: CREATING AN EXECUTABLE PROGRAM

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 9

10 Chapter 1 • An Overview of Computers and Logic

Programs should be tested with many sets of data. For example, if you write the program to double a number and
enter 2 and get an output value of 4, that doesn’t necessarily mean you have a correct program. Perhaps you have
typed this program by mistake:

Get inputNumber.
Compute calculatedAnswer as inputNumber plus 2.
Print calculatedAnswer.

An input of 2 results in an answer of 4, but that doesn’t mean your program doubles numbers—it actually only adds 2
to them. If you test your program with additional data and get the wrong answer—for example, if you use a 3 and get
an answer of 5—you know there is a problem with your code.

Selecting test data is somewhat of an art in itself, and it should be done carefully. If the Human Resources Department
wants a list of the names of five-year employees, it would be a mistake to test the program with a small sample file of
only long-term employees. If no newer employees are part of the data being used for testing, you don’t really know if
the program would have eliminated them from the five-year list. Many companies don’t know that their software has a
problem until an unusual circumstance occurs—for example, the first time an employee has more than nine depen-
dents, the first time a customer orders more than 999 items at a time, or when (in an example that was well-documented
in the popular press) a new century begins.

PUTTING THE PROGRAM INTO PRODUCTION

Once the program is tested adequately, it is ready for the organization to use. Putting the program into production might
mean simply running the program once, if it was written to satisfy a user’s request for a special list. However, the
process might take months if the program will be run on a regular basis, or if it is one of a large system of programs
being developed. Perhaps data-entry people must be trained to prepare the input for the new program, users must be
trained to understand the output, or existing data in the company must be changed to an entirely new format to accom-
modate this program. Conversion, the entire set of actions an organization must take to switch over to using a new
program or set of programs, can sometimes take months or years to accomplish.

You might consider maintaining programs as a seventh step in the programming process.
After programs are put into production, making required changes is called maintenance.
Maintenance is necessary for many reasons: for example, new tax rates are legislated, the
format of an input file is altered, or the end user requires additional information not
included in the original output specifications. Frequently, your first programming job will
require maintaining previously written programs. When you maintain the programs others
have written, you will appreciate the effort the original programmer put into writing clear
code, using reasonable variable names, and documenting his or her work.
You might consider retiring the program as the eighth and final step in the programming
process. A program is retired when it is no longer needed by an organization—usually
when a new program is in the process of being put into production.

TIP�

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 10

11Understanding the Data Hierarchy

UNDERSTANDING THE DATA HIERARCHY

Some very simple programs require very simple data. For example, the number-doubling program requires just one
value as input. Most business programs, however, use much more data—inventory files list thousands of items, per-
sonnel and customer files list thousands of people. When data items are stored for use on computer systems, they are
often stored in what is known as a data hierarchy, where the smallest usable unit of data is the character. Characters
are letters, numbers, and special symbols, such as “A”, “7”, and “$”. Anything you can type from the keyboard in one
keystroke (including a space or a tab) is a character. Characters are made up of smaller elements called bits, but just as
most human beings can use a pencil without caring whether atoms are flying around inside it, most computer users
can store characters without caring about these bits.

Computers also recognize characters you cannot enter from the keyboard, such as foreign
alphabet characters like ϕ or Σ.

Characters are grouped together to form a field. A field is a single data item, such as lastName, streetAddress,
or annualSalary. For most of us, an “S”, an “m”, an “i”, a “t”, and an “h” don’t have much meaning individually, but if
the combination of characters makes up your last name, “Smith”, then as a group, the characters have useful meaning.

Related fields are often grouped together to form a record. Records are groups of fields that go together for some logi-
cal reason. A random name, address, and salary aren’t very useful, but if they’re your name, your address, and your
salary, then that’s your record. An inventory record might contain fields for item number, color, size, and price; a student
record might contain ID number, grade point average, and major.

Related records, in turn, are grouped together to form a file. Files are groups of records that go together for some logi-
cal reason. The individual records of each student in your class might go together in a file called STUDENTS. Records of
each person at your company might be in a file called PERSONNEL. Items you sell might be in an INVENTORY file.

Some files can have just a few records; others, such as the file of credit-card holders for a major department-store
chain or policyholders of an insurance company, can contain thousands or even millions of records.

Finally, many organizations use database software to organize many files. A database holds a group of files, often
called tables, that together serve the information needs of an organization. Database software establishes and main-
tains relationships between fields in these tables, so that users can write questions called queries. Queries pull related
data items together in a format that allows businesspeople to make managerial decisions efficiently. Chapter 16 of the
Comprehensive version of this text covers database creation.

In summary, you can picture the data hierarchy, as shown in Figure 1-2.

Database
 File
 Record
 Field
 Character

FIGURE 1-2: THE DATA HIERARCHY

TIP�

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 11

12 Chapter 1 • An Overview of Computers and Logic

A database contains many files. A file contains many records. Each record in a file has the same fields. Each record’s
fields contain different data items that consist of one or more stored characters in each field.

As an example, you can picture a file as a set of index cards, as shown in Figure 1-3. The stack of cards is the
EMPLOYEE file, in which each card represents one employee record. On each card, each line holds one field—name,
address, or salary. Almost all the program examples in this book use files that are organized in this way.

USING FLOWCHART SYMBOLS AND PSEUDOCODE STATEMENTS

When programmers plan the logic for a solution to a programming problem, they often use one of two tools, flowcharts
or pseudocode (pronounced “sue-doe-code”). A flowchart is a pictorial representation of the logical steps it takes to
solve a problem. Pseudocode is an English-like representation of the same thing. Pseudo is a prefix that means “false,”
and to code a program means to put it in a programming language; therefore, pseudocode simply means “false code,”
or sentences that appear to have been written in a computer programming language but don’t necessarily follow all the
syntax rules of any specific language.

You have already seen examples of statements that represent pseudocode earlier in this chapter, and there is nothing mys-
terious about them. The following five statements constitute a pseudocode representation of a number-doubling problem:

start
get inputNumber
compute calculatedAnswer as inputNumber times 2
print calculatedAnswer

stop

FIGURE 1-3: EMPLOYEE FILE REPRESENTED AS A STACK OF INDEX CARDS

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 12

13Using Flowchart Symbols and Pseudocode Statements

Using pseudocode involves writing down all the steps you will use in a program. Usually, programmers preface their
pseudocode statements with a beginning statement like “start” and end them with a terminating statement like “stop”.
The statements between “start” and “stop” look like English and are indented slightly so that “start” and “stop” stand
out. Most programmers do not bother with punctuation such as periods at the end of pseudocode statements, although
it would not be wrong to use them if you prefer that style. Similarly, there is no need to capitalize the first word in a sen-
tence, although you might choose to do so. This book follows the conventions of using lowercase letters for verbs that
begin pseudocode statements and omitting periods at the end of statements.

Some professional programmers prefer writing pseudocode to drawing flowcharts, because using pseudocode is more
similar to writing the final statements in the programming language. Others prefer drawing flowcharts to represent the
logical flow, because flowcharts allow programmers to visualize more easily how the program statements will connect.
Especially for beginning programmers, flowcharts are an excellent tool to help visualize how the statements in a pro-
gram are interrelated.

Almost every program involves the steps of input, processing, and output. Therefore, most flowcharts need some
graphical way to separate these three steps. When you create a flowchart, you draw geometric shapes around the indi-
vidual statements and connect them with arrows.

When you draw a flowchart, you use a parallelogram to represent an input symbol, which indicates an input operation.
You write an input statement, in English, inside the parallelogram, as shown in Figure 1-4.

When you want to represent entering two or more values in a program, you can use one or
multiple flowchart symbols or pseudocode statements—whichever seems more reason-
able and clear to you. For example, the pseudocode to input a user’s name and address
might be written as:

get inputName
get inputAddress

or as:

get inputName,inputAddress

The first version implies two separate input operations, whereas the second implies a single
input operation retrieving two data items. If your application will accept user input from a
keyboard, using two separate input statements might make sense, because the user will type
one item at a time. If your application will accept data from a storage device, obtaining all
the data at once is more common. Logically, either format represents the retrieval of two
data items. The end result is the same in both cases—after the statements have executed,
inputName and inputAddress will have received values from an input device.

get
inputNumber

FIGURE 1-4: INPUT SYMBOL

TIP�

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 13

14 Chapter 1 • An Overview of Computers and Logic

Arithmetic operation statements are examples of processing. In a flowchart, you use a rectangle as the processing
symbol that contains a processing statement, as shown in Figure 1-5.

To represent an output statement, you use the same symbol as for input statements—the output symbol is a parallel-
ogram, as shown in Figure 1-6.

As with input, output statements can be organized in whatever way seems most reason-
able. A program that prints the length and width of a room might use the statement:

print length
print width

or:

print length, width

In some programming languages, using two print statements places the output values on
two separate lines on the monitor or printer, whereas using a single print statement places
the values next to each other on the same line. This book follows the convention of using
one print statement per line of output.

To show the correct sequence of these statements, you use arrows, or flowlines, to connect the steps. Whenever pos-
sible, most of a flowchart should read from top to bottom or from left to right on a page. That’s the way we read
English, so when flowcharts follow this convention, they are easier for us to understand.

To be complete, a flowchart should include two more elements: a terminal symbol, or start/stop symbol, at each end.
Often, you place a word like “start” or “begin” in the first terminal symbol and a word like “end” or “stop” in the other.
The standard terminal symbol is shaped like a racetrack; many programmers refer to this shape as a lozenge, because
it resembles the shape of a medicated candy lozenge you might use to soothe a sore throat. Figure 1-7 shows a com-
plete flowchart for the program that doubles a number, and the pseudocode for the same problem.

print
calculatedAnswer

FIGURE 1-6: OUTPUT SYMBOL

compute calculatedAnswer
as inputNumber times 2

FIGURE 1-5: PROCESSING SYMBOL

TIP�

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 14

15Using Flowchart Symbols and Pseudocode Statements

Programmers seldom create both pseudocode and a flowchart for the same problem. You
usually use one or the other.

The logic for the program represented by the flowchart and pseudocode in Figure 1-7 is correct no matter what pro-
gramming language the programmer eventually uses to write the corresponding code. Just as the same statements
could be translated into Italian or Chinese without losing their meaning, they also can be coded in C#, Java, or any
other programming language.

After the flowchart or pseudocode has been developed, the programmer only needs to: (1) buy a computer, (2) buy a
language compiler, (3) learn a programming language, (4) code the program, (5) attempt to compile it, (6) fix the syntax
errors, (7) compile it again, (8) test it with several sets of data, and (9) put it into production.

“Whoa!” you are probably saying to yourself. “This is simply not worth it! All that work to create a flowchart or
pseudocode, and then all those other steps? For five dollars, I can buy a pocket calculator that will double any number
for me instantly!” You are absolutely right. If this were a real computer program, and all it did was double the value of a
number, it simply would not be worth all the effort. Writing a computer program would be worth the effort only if you
had many—let’s say 10,000—numbers to double in a limited amount of time—let’s say the next two minutes. Then, it
would be worth your while to create a computer program.

Unfortunately, the number-doubling program represented in Figure 1-7 does not double 10,000 numbers; it doubles
only one. You could execute the program 10,000 times, of course, but that would require you to sit at the computer
telling it to run the program over and over again. You would be better off with a program that could process
10,000 numbers, one after the other.

start

stop

get
inputNumber

compute calculatedAnswer
as inputNumber times 2

print
calculatedAnswer

start
 get inputNumber
 compute calculatedAnswer as
 inputNumber times 2
 print calculatedAnswer
stop

FIGURE 1-7: FLOWCHART AND PSEUDOCODE OF PROGRAM THAT DOUBLES A NUMBER

TIP�

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 15

16 Chapter 1 • An Overview of Computers and Logic

One solution is to write the program as shown in Figure 1-8 and execute the same steps 10,000 times. Of course, writ-
ing this program would be very time-consuming; you might as well buy the calculator.

A better solution is to have the computer execute the same set of three instructions over and over again, as shown in
Figure 1-9. With this approach, the computer gets a number, doubles it, prints the answer, and then starts over again
with the first instruction. The same spot in memory, called inputNumber, is reused for the second number and for
any subsequent numbers. The spot in memory named calculatedAnswer is reused each time to store the result
of the multiplication operation. The logic illustrated in the flowchart shown in Figure 1-9 contains a major problem—the
sequence of instructions never ends. You will learn to handle this problem later in this chapter.

start

compute calculatedAnswer
as inputNumber times 2

get
inputNumber

print
calculatedAnswer

FIGURE 1-9: FLOWCHART OF INFINITE NUMBER-DOUBLING PROGRAM

start
ƒƒƒƒƒget inputNumber
ƒƒƒƒƒcompute calculatedAnswer as inputNumber times 2
ƒƒƒƒƒprint calculatedAnswer
ƒƒƒƒƒget inputNumber
ƒƒƒƒƒcompute calculatedAnswer as inputNumber times 2
ƒƒƒƒƒprint calculatedAnswer
ƒƒƒƒƒget inputNumber
ƒƒƒƒƒcompute calculatedAnswer as inputNumber times 2
ƒƒƒƒƒprint calculatedAnswer
ƒƒƒƒƒ. . . and so on

FIGURE 1-8: INEFFICIENT PSEUDOCODE FOR PROGRAM THAT DOUBLES 10,000 NUMBERS

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 16

17Using and Naming Variables

USING AND NAMING VARIABLES

Programmers commonly refer to the locations in memory called inputNumber and calculatedAnswer as
variables. Variables are memory locations, whose contents can vary or differ over time. Sometimes, inputNumber
can hold a 2 and calculatedAnswer will hold a 4; at other times, inputNumber can hold a 6 and
calculatedAnswer will hold a 12. It is the ability of memory variables to change in value that makes computers
and programming worthwhile. Because one memory location can be used over and over again with different values, you
can write program instructions once and then use them for thousands of separate calculations. One set of payroll
instructions at your company produces each individual’s paycheck, and one set of instructions at your electric company
produces each household’s bill.

The number-doubling example requires two variables, inputNumber and calculatedAnswer. These can just
as well be named userEntry and programSolution, or inputValue and twiceTheValue. As a pro-
grammer, you choose reasonable names for your variables. The language interpreter then associates the names you
choose with specific memory addresses.

A variable name is also called an identifier. Every computer programming language has its own set of rules for naming
identifiers. Most languages allow both letters and digits within variable names. Some languages allow hyphens in vari-
able names—for example, hourly-wage. Others allow underscores, as in hourly_wage. Still others allow nei-
ther. Some languages allow dollar signs or other special characters in variable names (for example, hourly$); others
allow foreign alphabet characters, such as π or Ω.

You also can refer to a variable name as a mnemonic. In everyday language, a mnemonic
is a memory device, like the sentence “Every good boy does fine,” which makes it easier
to remember the notes that occupy the lines on the staff in sheet music. In programming,
a variable name is a device that makes it easier to reference a memory address.

Different languages put different limits on the length of variable names, although in general,
newer languages allow longer names. For example, in some very old versions of BASIC, a
variable name could consist of only one or two letters and one or two digits. You could have
some cryptic variable names like hw or a3 or re02. Fortunately, most modern languages
allow variable names to be much longer; in the newest versions of C++, C#, and Java, the
length of identifiers is virtually unlimited. Variable names in these languages usually consist of
lowercase letters, don’t allow hyphens, but do allow underscores, so you can use a name like
price_of_item. These languages are case sensitive, so HOURLYWAGE, hourlywage, and
hourlyWage are considered three separate variable names, although the last example, in
which the new word begins with an uppercase letter, is easiest to read. Most programmers who
use the more modern languages employ the format in which multiple-word variable names are
run together, and each new word within the variable name begins with an uppercase letter. This
format is called camel casing, because such variable names, like hourlyWage, have a
“hump” in the middle. The variable names in this text are shown using camel casing.

TIP�

TIP�

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 17

18 Chapter 1 • An Overview of Computers and Logic

Even though every language has its own rules for naming variables, when designing the logic of a computer program,
you should not concern yourself with the specific syntax of any particular computer language. The logic, after all, works
with any language. The variable names used throughout this book follow only two rules:

1. Variable names must be one word. The name can contain letters, digits, hyphens, underscores, or

any other characters you choose, with the exception of spaces. Therefore, r is a legal variable

name, as is rate, as is interestRate. The variable name interest rate is not

allowed because of the space. No programming language allows spaces within a variable name. If

you see a name such as interest rate in a flowchart or pseudocode, you should assume

that the programmer is discussing two variables, interest and rate, each of which individu-

ally would be a fine variable name.

As a convention, this book begins variable names with a lowercase letter. You might find
programming texts in languages such as Visual Basic and C++ in which the author has
chosen to begin variable names with an uppercase letter. As long as you adopt a conven-
tion and use it consistently, your programs will be easier to read and understand.

When you write a program using an editor that is packaged with a compiler, the compiler
may display variable names in a different color from the rest of the program. This visual aid
helps your variable names stand out from words that are part of the programming language.

2. Variable names should have some appropriate meaning. This is not a rule of any programming

language. When computing an interest rate in a program, the computer does not care if you call the

variable g, u84, or fred. As long as the correct numeric result is placed in the variable, its actual

name doesn’t really matter. However, it’s much easier to follow the logic of a program with a state-

ment in it like compute finalBalance as equal to initialInvestment

times interestRate than one with a statement in it like compute someBanana

as equal to j89 times myFriendLinda. You might think you will remember how

you intended to use a cryptic variable name within a program, but several months or years later

when a program requires changes, you, and other programmers working with you, will appreciate

clear, descriptive variable names.

Notice that the flowchart in Figure 1-9 follows these two rules for variables: both variable names, inputNumber and
calculatedAnswer, are one word, and they have appropriate meanings. Some programmers have fun with their
variable names by naming them after friends or creating puns with them, but such behavior is unprofessional and
marks those programmers as amateurs. Table 1-1 lists some possible variable names that might be used to hold an
employee’s last name and provides a rationale for the appropriateness of each one.

Another general rule in all programming languages is that variable names may not begin
with a digit, although usually they may contain digits. Thus, in most languages budget2013
is a legal variable name, but 2013Budget is not.

TIP�

TIP�

TIP�

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 18

19Ending a Program by Using Sentinel Values

ENDING A PROGRAM BY USING SENTINEL VALUES

Recall that the logic in the flowchart for doubling numbers, shown in Figure 1-9, has a major flaw—the program never
ends. This programming situation is known as an infinite loop—a repeating flow of logic with no end. If, for example,
the input numbers are being entered at the keyboard, the program will keep accepting numbers and printing doubles
forever. Of course, the user could refuse to type in any more numbers. But the computer is very patient, and if you
refuse to give it any more numbers, it will sit and wait forever. When you finally type in a number, the program will dou-
ble it, print the result, and wait for another. The program cannot progress any further while it is waiting for input; mean-
while, the program is occupying computer memory and tying up operating system resources. Refusing to enter any
more numbers is not a practical solution. Another way to end the program is simply to turn the computer off. But again,
that’s neither the best nor an elegant way to bring the program to an end.

A superior way to end the program is to set a predetermined value for inputNumber that means “Stop the pro-
gram!” For example, the programmer and the user could agree that the user will never need to know the double of 0
(zero), so the user could enter a 0 when he or she wants to stop. The program could then test any incoming value con-
tained in inputNumber and, if it is a 0, stop the program. Testing a value is also called making a decision.

You represent a decision in a flowchart by drawing a decision symbol, which is shaped like a diamond. The diamond
usually contains a question, the answer to which is one of two mutually exclusive options—often yes or no. All good
computer questions have only two mutually exclusive answers, such as yes and no or true and false. For example, “What
day of the year is your birthday?” is not a good computer question because there are 366 possible answers. But “Is your
birthday June 24?” is a good computer question because, for everyone in the world, the answer is either yes or no.

A yes-or-no decision is called a binary decision, because there are two possible outcomes.

TABLE 1-1: VALID AND INVALID VARIABLE NAMES FOR AN EMPLOYEE’S LAST NAME

Suggested variable names for Comments
employee's last name

employeeLastName Good

employeeLast Good—most people would interpret Last as meaning

Last Name

empLast Good—emp is short for employee

emlstnam Legal—but cryptic

lastNameOfTheEmployeeInQuestion Legal—but awkward

last name Not legal—embedded space

employeelastname Legal—but hard to read without camel casing

TIP�

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 19

20 Chapter 1 • An Overview of Computers and Logic

The question to stop the doubling program should be “Is the inputNumber just entered equal to 0?” or
“inputNumber = 0?” for short. The complete flowchart will now look like the one shown in Figure 1-10.

One drawback to using 0 to stop a program, of course, is that it won’t work if the user does need to find the double of
0. In that case, some other data-entry value that the user never will need, such as 999 or –1, could be selected to sig-
nal that the program should end. A preselected value that stops the execution of a program is often called a dummy
value because it does not represent real data, but just a signal to stop. Sometimes, such a value is called a sentinel
value because it represents an entry or exit point, like a sentinel who guards a fortress.

Not all programs rely on user data entry from a keyboard; many read data from an input device, such as a disk or tape
drive. When organizations store data on a disk or other storage device, they do not commonly use a dummy value to sig-
nal the end of the file. For one thing, an input record might have hundreds of fields, and if you store a dummy record in
every file, you are wasting a large quantity of storage on “non-data.” Additionally, it is often difficult to choose sentinel val-
ues for fields in a company’s data files. Any balanceDue, even a zero or a negative number, can be a legitimate
value, and any customerName, even “ZZ”, could be someone’s name. Fortunately, programming languages can

start

inputNumber
= 0?

Yes

No

get
inputNumber

stop

compute
calculatedAnswer
as inputNumber

times 2

print
calculatedAnswer

FIGURE 1-10: FLOWCHART FOR NUMBER-DOUBLING PROGRAM WITH SENTINEL VALUE OF 0

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 20

21Using the Connector

recognize the end of data in a file automatically, through a code that is stored at the end of the data. Many program-
ming languages use the term eof (for “end of file”) to talk about this marker that automatically acts as a sentinel. This
book, therefore, uses eof to indicate the end of data, regardless of whether the code is a special disk marker or a
dummy value such as 0 that comes from the keyboard. Therefore, the flowchart and pseudocode can look like the
examples shown in Figure 1-11.

USING THE CONNECTOR

By using just the input, processing, output, decision, and terminal symbols, you can represent the flowcharting logic for
many diverse applications. When drawing a flowchart segment, you might use another symbol, the connector. You can
use a connector when limited page size forces you to continue a flowchart in an unconnected location or on another
page. If a flowchart has six processing steps and a page provides room for only three, you might represent the logic as
shown in Figure 1-12.

start

eof?
Yes

No

get
inputNumber

stop

compute
calculatedAnswer
as inputNumber

times 2

print
calculatedAnswer

FIGURE 1-11: FLOWCHART USING eof

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 21

22 Chapter 1 • An Overview of Computers and Logic

By convention, programmers use a circle as an on-page connector symbol, and a symbol that looks like a square with a
pointed bottom as an off-page connector symbol. The on-page connector at the bottom of the left column in Figure 1-12
tells someone reading the flowchart that there is more to the flowchart. The circle should contain a number or letter that
can then be matched to another number or letter somewhere else, in this case on the right. If a large flowchart needed
more connectors, new numbers or letters would be assigned in sequence (1, 2, 3... or A, B, C...) to each successive
pair of connectors. The off-page connector at the bottom of the right column in Figure 1-12 tells a reader that there is
more to the flowchart on another page.

When you are creating your own flowcharts, you should avoid using any connectors, if at all possible; flowcharts are
more difficult to follow when their segments do not fit together on a page. Some programmers would even say that if a
flowchart must connect to another page, it is a sign of poor design. Your instructor or future programming supervisor
may require that long flowcharts be redrawn so you don’t need to use the connector symbol. However, when continuing
to a new location or page is unavoidable, the connector provides the means.

ASSIGNING VALUES TO VARIABLES

When you create a flowchart or pseudocode for a program that doubles numbers, you can include the statement
compute calculatedAnswer as inputNumber times 2. This statement incorporates two actions.
First, the computer calculates the arithmetic value of inputNumber times 2. Second, the computed value is

start

step 1

step 2

step 3

1

1

step 4

step 5

step 6

p.2
A

FIGURE 1-12: FLOWCHART USING THE CONNECTOR

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 22

23Assigning Values to Variables

stored in the calculatedAnswer memory location. Most programming languages allow a shorthand expression for
assignment statements such as compute calculatedAnswer as inputNumber times 2. The
shorthand takes the form calculatedAnswer = inputNumber * 2. The equal sign is the assignment
operator; it always requires the name of a memory location on its left side—the name of the location where the result will
be stored.

When they write pseudocode or draw a flowchart, most programmers use the asterisk (*)
to represent multiplication. When you write pseudocode, you can use an X or a dot for
multiplication (as most mathematicians do), but you will be using an unconventional for-
mat. This book will always use an asterisk to represent multiplication.

According to the rules of algebra, a statement like calculatedAnswer = inputNumber * 2 should be
exactly equivalent to the statement inputNumber * 2 = calculatedAnswer. That’s because in algebra,
the equal sign always represents equivalency. In most programming languages, however, the equal sign represents
assignment, and calculatedAnswer = inputNumber * 2 means “multiply inputNumber by 2 and
store the result in the variable called calculatedAnswer.” Whatever operation is performed to the right of the
equal sign results in a value that is placed in the memory location to the left of the equal sign. Therefore, the incorrect
statement inputNumber * 2 = calculatedAnswer means to attempt to take the value of
calculatedAnswer and store it in a location called inputNumber * 2, but there can’t be a location called
inputNumber * 2. For one thing, you should recognize that the expression inputNumber * 2 can’t be a
variable because it has spaces in it. For another, a location can’t be multiplied. Its contents can be multiplied, but the
location itself cannot be. The backward statement inputNumber * 2 = calculatedAnswer contains a
syntax error, no matter what programming language you use; a program with such a statement will not execute.

When you create an assignment statement, it may help to imagine the word “let” in
front of the statement. Thus, you can read the statement calculatedAnswerƒ=
inputNumberƒ*ƒ2 as “Let calculatedAnswer equal inputNumber times
two.” The BASIC programming language allows you to use the word “let” in such
statements. You might also imagine the word “gets” or “receives” in place of the assign-
ment operator. In other words, calculatedAnswerƒ=ƒinputNumberƒ*ƒ2 means
both calculatedAnswerƒgetsƒinputNumberƒ*ƒ2 and calculatedAnswer
receivesƒinputNumberƒ*ƒ2.

Computer memory is made up of millions of distinct locations, each of which has an address. Fifty or sixty years ago,
programmers had to deal with these addresses and had to remember, for instance, that they had stored a salary in
location 6428 of their computer. Today, we are very fortunate that high-level computer languages allow us to pick a rea-
sonable “English” name for a memory address and let the computer keep track of where it is. Just as it is easier for you
to remember that the president lives in the White House than at 1600 Pennsylvania Avenue, Washington, D.C., it is also
easier for you to remember that your salary is in a variable called mySalary than at memory location 6428104.

Similarly, it does not usually make sense to perform mathematical operations on names given to memory addresses,
but it does make sense to perform mathematical operations on the contents of memory addresses. If you live in

TIP�

TIP�

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 23

24 Chapter 1 • An Overview of Computers and Logic

blueSplitLevelOnTheCorner, adding 1 to that would be meaningless, but you certainly can add 1 person to
the number of people already in that house. For our purposes, then, the statement calculatedAnswer =
inputNumber * 2 means exactly the same thing as the statement calculate inputNumber * 2 (that
is, double the contents in the memory location named inputNumber) and store the result in the

memory location named calculatedAnswer.

Many programming languages allow you to create named constants. A named constant
is a named memory location, similar to a variable, except its value never changes dur-
ing the execution of a program. If you are working with a programming language that
allows it, you might create a constant for a value such as PIƒ=ƒ3.14 or
COUNTY_SALES_TAX_RATEƒ=ƒ.06. Many programmers follow the convention of
using camel casing for variable identifiers but all capital letters for constant identifiers.

UNDERSTANDING DATA TYPES

Computers deal with two basic types of data—text and numeric. When you use a specific numeric value, such as 43,
within a program, you write it using the digits and no quotation marks. A specific numeric value is often called a
numeric constant, because it does not change—a 43 always has the value 43. When you use a specific text value, or
string of characters, such as “Amanda”, you enclose the string constant, or character constant, within
quotation marks.

Some languages require single quotation marks surrounding character constants, whereas
others require double quotation marks. Many languages, including C++, C#, and Java,
reserve single quotes for a single character such as ‘A’, and double quotes for a character
string such as “Amanda”.

Similarly, most computer languages allow at least two distinct types of variables. A variable’s data type describes the
kind of values the variable can hold and the types of operations that can be performed with it. One type of variable can
hold a number, and is often called a numeric variable. A numeric variable is one that can have mathematical opera-
tions performed on it; it can hold digits, and usually can hold a decimal point and a sign indicating positive or negative if
you want. In the statement calculatedAnswer = inputNumber * 2, both calculatedAnswer and
inputNumber are numeric variables; that is, their intended contents are numeric values, such as 6 and 3, 150 and
75, or –18 and –9.

Most programming languages have a separate type of variable that can hold letters of the alphabet and other special
characters such as punctuation marks. Depending on the language, these variables are called character, text, or
string variables. If a working program contains the statement lastName = “Lincoln”, then lastName is a
character or string variable.

Programmers must distinguish between numeric and character variables, because computers handle the two types of
data differently. Therefore, means are provided within the syntax rules of computer programming languages to tell the

TIP�

TIP�

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 24

25Understanding Data Types

computer which type of data to expect. How this is done is different in every language; some languages have different
rules for naming the variables, but with others you must include a simple statement (called a declaration) telling the
computer which type of data to expect.

Some languages allow for several types of numeric data. Languages such as C++, C#, Visual Basic, and Java distin-
guish between integer (whole number) numeric variables and floating-point (fractional) numeric variables that contain
a decimal point. Thus, in some languages, the values 4 and 4.3 would be stored in different types of numeric variables.

Some programming languages allow even more specific variable types, but the character versus numeric distinction is
universal. For the programs you develop in this book, assume that each variable is one of the two broad types. If a vari-
able called taxRate is supposed to hold a value of 2.5, assume that it is a numeric variable. If a variable called
inventoryItem is supposed to hold a value of “monitor”, assume that it is a character variable.

Values such as “monitor” and 2.5 are called constants or literal constants because they
never change. A variable value can change. Thus, inventoryItem can hold “monitor”
at one moment during the execution of a program, and later you can change its value
to “modem”.

Some languages allow you to invent your own data type. In Chapter 12 of the
Comprehensive version of this book, you will learn that object-oriented programming
languages allow you to create new data types called classes.

By convention, this book encloses character data like “monitor” within quotation marks to distinguish the characters
from yet another variable name. Also by convention, numeric data values are not enclosed within quotation marks.
According to these conventions, then, taxRate = 2.5 and inventoryItem = “monitor” are both valid
statements. The statement inventoryItem = monitor is a valid statement only if monitor is also a char-
acter variable. In other words, if monitor = ”color”, and subsequently inventoryItem = monitor,
then the end result is that the memory address named inventoryItem contains the string of characters “color”.

Every computer handles text or character data differently from the way it handles numeric data. You may have experi-
enced these differences if you have used application software such as spreadsheets or database programs. For exam-
ple, in a spreadsheet, you cannot sum a column of words. Similarly, every programming language requires that you
distinguish variables as to their correct type, and that you use each type of variable appropriately. Identifying your vari-
ables correctly as numeric or character is one of the first steps you have to take when writing programs in any pro-
gramming language. Table 1-2 provides you with a few examples of legal and illegal variable assignment statements.

The process of naming program variables and assigning a type to them is called making
declarations, or declaring variables. You will learn how to declare variables in
Chapter 4.

TIP�

TIP�

TIP�

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 25

26 Chapter 1 • An Overview of Computers and Logic

UNDERSTANDING THE EVOLUTION OF PROGRAMMING TECHNIQUES

People have been writing computer programs since the 1940s. The oldest programming languages required program-
mers to work with memory addresses and to memorize awkward codes associated with machine languages. Newer
programming languages look much more like natural language and are easier for programmers to use. Part of the rea-
son it is easier to use newer programming languages is that they allow programmers to name variables instead of using
awkward memory addresses. Another reason is that newer programming languages provide programmers with the
means to create self-contained modules or program segments that can be pieced together in a variety of ways. The
oldest computer programs were written in one piece, from start to finish; modern programs are rarely written that
way—they are created by teams of programmers, each developing his or her own reusable and connectable program
procedures. Writing several small modules is easier than writing one large program, and most large tasks are easier
when you break the work into units and get other workers to help with some of the units.

You will learn to create program modules in Chapter 3.

TABLE 1-2: SOME EXAMPLES OF LEGAL AND ILLEGAL ASSIGNMENTS

Assume lastName and firstName are character variables.

Assume quizScore and homeworkScore are numeric variables.

Examples of valid Examples of invalid Explanation of
assignments assignments invalid examples

lastName = “Parker” lastName = Parker If Parker is the last name,

it requires quotes. If

Parker is a named string

variable, this assignment

would be allowed.

firstName = “Laura” “Parker” = lastName Value on left must be a vari-

able name, not a constant

lastName = firstName lastName = quizScore The data types do not match

quizScore = 86 homeworkScore = firstName The data types do not match

homeworkScore = quizScore homeworkScore = “92” The data types do not match

homeworkScore = 92 quizScore = “zero” The data types do not match

quizScore = homeworkScore + 25 firstName = 23 The data types do not match

homeworkScore = 3 * 10 100 = homeworkScore Value on left must be a vari-

able name, not a constant

TIP�

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 26

27Understanding the Evolution of Programming Techniques

Currently, there are two major techniques used to develop programs and their procedures. One technique, called
procedural programming, focuses on the procedures that programmers create. That is, procedural programmers
focus on the actions that are carried out—for example, getting input data for an employee and writing the calculations
needed to produce a paycheck from the data. Procedural programmers would approach the job of producing a pay-
check by breaking down the paycheck-producing process into manageable subtasks.

The other popular programming technique, called object-oriented programming, focuses on objects, or “things,” and
describes their features, or attributes, and their behaviors. For example, object-oriented programmers might design a
payroll application by thinking about employees and paychecks, and describing their attributes (such as last name or
check amount) and behaviors (such as the calculations that result in the check amount).

With either approach, procedural or object-oriented, you can produce a correct paycheck, and both techniques employ
reusable program modules. The major difference lies in the focus the programmer takes during the earliest planning
stages of a project. Object-oriented programming employs a large vocabulary; you can learn this terminology in
Chapter 13 of the Comprehensive version of this book. For now, this book focuses on procedural programming tech-
niques. The skills you gain in programming procedurally—declaring variables, accepting input, making decisions, pro-
ducing output, and so on—will serve you well whether you eventually write programs in a procedural or object-oriented
fashion, or in both.

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 27

Chapter 1 • An Overview of Computers and Logic28

CHAPTER SUMMARY

� Together, computer hardware (equipment) and software (instructions) accomplish four major operations:

input, processing, output, and storage. You write computer instructions in a computer programming lan-

guage that requires specific syntax; the instructions are translated into machine language by a compiler

or interpreter. When both the syntax and logic of a program are correct, you can run, or execute, the

program to produce the desired results.

� A programmer’s job involves understanding the problem, planning the logic, coding the program, trans-

lating the program into machine language, testing the program, and putting the program into production.

� When data items are stored for use on computer systems, they are stored in a data hierarchy of charac-

ter, field, record, file, and database.

� When programmers plan the logic for a solution to a programming problem, they often use flowcharts or

pseudocode. When you draw a flowchart, you use parallelograms to represent input and output opera-

tions, and rectangles to represent processing.

� Variables are named memory locations, the contents of which can vary. As a programmer, you choose

reasonable names for your variables. Every computer programming language has its own set of rules for

naming variables; however, all variable names must be written as one word without embedded spaces,

and should have appropriate meaning.

� Testing a value involves making a decision. You represent a decision in a flowchart by drawing a

diamond-shaped decision symbol containing a question, the answer to which is either yes or no. You can

stop a program’s execution by using a decision to test for a sentinel value.

� A connector symbol is used to continue a flowchart that does not fit together on a page, or must con-

tinue on an additional page.

� Most programming languages use the equal sign to assign values to variables. Assignment always takes

place from right to left.

� Programmers must distinguish between numeric and character variables, because computers handle the

two types of data differently. A variable declaration tells the computer which type of data to expect. By

convention, character data values are included within quotation marks.

� Procedural and object-oriented programmers approach program problems differently. Procedural pro-

grammers concentrate on the actions performed with data. Object-oriented programmers focus on

objects and their behaviors and attributes.

KEY TERMS

Hardware is the equipment of a computer system.

Software consists of the programs that tell the computer what to do.

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 28

Key Terms 29

Input devices include keyboards and mice; through these devices, data items enter the computer system. Data can
also enter a system from storage devices such as magnetic disks and CDs.

Data includes all the text, numbers, and other information that are processed by a computer.

Processing data items may involve organizing them, checking them for accuracy, or performing mathematical opera-
tions on them.

The central processing unit, or CPU, is the piece of hardware that processes data.

Information is sent to a printer, monitor, or some other output device so people can view, interpret, and work with the
results.

Programming languages, such as Visual Basic, C#, C++, Java, or COBOL, are used to write programs.

The syntax of a language consists of its rules.

Machine language is a computer’s on/off circuitry language.

A compiler or interpreter translates a high-level language into machine language and tells you if you have used a
programming language incorrectly.

You develop the logic of the computer program when you give instructions to the computer in a specific sequence,
without leaving any instructions out or adding extraneous instructions.

A semantic error occurs when a correct word is used in an incorrect context.

The running, or executing, of a program occurs when the computer actually uses the written and compiled program.

Internal storage is called memory, main memory, primary memory, or random access memory (RAM).

External storage is persistent (relatively permanent) storage outside the main memory of the machine, on a device
such as a floppy disk, hard disk, or magnetic tape.

Internal memory is volatile—that is, its contents are lost every time the computer loses power.

You save a program on some nonvolatile medium.

An algorithm is the sequence of steps necessary to solve any problem.

Desk-checking is the process of walking through a program solution on paper.

Coding a program means writing the statements in a programming language.

High-level programming languages are English-like.

Machine language is the low-level language made up of 1s and 0s that the computer understands.

A syntax error is an error in language or grammar.

Logical errors occur when incorrect instructions are performed, or when instructions are performed in the wrong order.

Conversion is the entire set of actions an organization must take to switch over to using a new program or set of
programs.

The data hierarchy represents the relationship of databases, files, records, fields, and characters.

Characters are letters, numbers, and special symbols such as “A”, “7”, and “$”.

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 29

Chapter 1 • An Overview of Computers and Logic30

A field is a single data item, such as lastName, streetAddress, or annualSalary.

Records are groups of fields that go together for some logical reason.

Files are groups of records that go together for some logical reason.

A database holds a group of files, often called tables, that together serve the information needs of an organization.

Queries are questions that pull related data items together from a database in a format that enhances efficient man-
agement decision making.

A flowchart is a pictorial representation of the logical steps it takes to solve a problem.

Pseudocode is an English-like representation of the logical steps it takes to solve a problem.

Input symbols, which indicate input operations, are represented as parallelograms in flowcharts.

Processing symbols are represented as rectangles in flowcharts.

Output symbols, which indicate output operations, are represented as parallelograms in flowcharts.

Flowlines, or arrows, connect the steps in a flowchart.

A terminal symbol, or start/stop symbol, is used at each end of a flowchart. Its shape is a lozenge.

Variables are memory locations, whose contents can vary or differ over time.

A variable name is also called an identifier.

A mnemonic is a memory device; variable identifiers act as mnemonics for hard-to-remember memory addresses.

Camel casing is the format for naming variables in which multiple-word variable names are run together, and each
new word within the variable name begins with an uppercase letter.

An infinite loop is a repeating flow of logic without an ending.

Testing a value is also called making a decision.

You represent a decision in a flowchart by drawing a decision symbol, which is shaped like a diamond.

A yes-or-no decision is called a binary decision, because there are two possible outcomes.

A dummy value is a preselected value that stops the execution of a program. Such a value is sometimes called a
sentinel value because it represents an entry or exit point, like a sentinel who guards a fortress.

Many programming languages use the term eof (for “end of file”) to talk about an end-of-data file marker.

A connector is a flowchart symbol used when limited page size forces you to continue the flowchart elsewhere on the
same page or on the following page.

An assignment statement stores the result of any calculation performed on its right side to the named location on its
left side.

The equal sign is the assignment operator; it always requires the name of a memory location on its left side.

A numeric constant is a specific numeric value.

A string constant, or character constant, is enclosed within quotation marks.

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 30

Review Questions 31

A variable’s data type describes the kind of values the variable can hold and the types of operations that can be
performed with it.

Numeric variables hold numeric values.

Character, text, or string variables hold character values. If a working program contains the statement lastName
= “Lincoln”, then lastName is a character or string variable.

A declaration is a statement that names a variable and tells the computer which type of data to expect.

Integer values are whole-number, numeric variables.

Floating-point values are fractional, numeric variables that contain a decimal point.

The process of naming program variables and assigning a type to them is called making declarations, or declaring
variables.

The technique known as procedural programming focuses on the procedures that programmers create.

The technique known as object-oriented programming focuses on objects, or “things,” and describes their features,
or attributes, and their behaviors.

REVIEW QUESTIONS

1. The two major components of any computer system are its .

a. input and output
b. data and programs
c. hardware and software
d. memory and disk drives

2. The major computer operations include .

a. hardware and software
b. input, processing, output, and storage
c. sequence and looping
d. spreadsheets, word processing, and data communications

3. Another term meaning “computer instructions” is .

a. hardware
b. software
c. queries
d. data

4. Visual Basic, C++, and Java are all examples of computer .

a. operating systems
b. hardware
c. machine languages
d. programming languages

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 31

Chapter 1 • An Overview of Computers and Logic32

5. A programming language’s rules are its .

a. syntax
b. logic
c. format
d. options

6. The most important task of a compiler or interpreter is to .

a. create the rules for a programming language
b. translate English statements into a language such as Java
c. translate programming language statements into machine language
d. execute machine language programs to perform useful tasks

7. Which of the following is a typical input instruction?

a. get accountNumber
b. calculate balanceDue
c. print customerIdentificationNumber
d. total = janPurchase + febPurchase

8. Which of the following is a typical processing instruction?

a. print answer
b. get userName
c. pctCorrect = rightAnswers / allAnswers
d. print calculatedPercentage

9. Which of the following is not associated with internal storage?

a. main memory
b. hard disk
c. primary memory
d. volatile

10. Which of the following pairs of steps in the programming process is in the correct order?

a. code the program, plan the logic
b. test the program, translate it into machine language
c. put the program into production, understand the problem
d. code the program, translate it into machine language

11. The two most commonly used tools for planning a program’s logic are .

a. flowcharts and pseudocode
b. ASCII and EBCDIC
c. Java and Visual Basic
d. word processors and spreadsheets

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 32

Review Questions 33

12. The most important thing a programmer must do before planning the logic to a program is
.

a. decide which programming language to use
b. code the problem
c. train the users of the program
d. understand the problem

13. Writing a program in a language such as C++ or Java is known as the program.

a. translating
b. coding
c. interpreting
d. compiling

14. A compiler would find all of the following programming errors except .

a. the misspelled word “prrint” in a language that includes the word “print”
b. the use of an “X” for multiplication in a language that requires an asterisk
c. a newBalanceDue calculated by adding a customerPayment to an oldBalanceDue

instead of subtracting it
d. an arithmetic statement written as regularSales + discountedSales = totalSales

15. Which of the following is true regarding the data hierarchy?

a. files contain records
b. characters contain fields
c. fields contain files
d. fields contain records

16. The parallelogram is the flowchart symbol representing .

a. input
b. output
c. both a and b
d. none of the above

17. Which of the following is not a legal variable name in any programming language?
a. semester grade
b. fall2005_grade
c. GradeInCIS100
d. MY_GRADE

18. In flowcharts, the decision symbol is a .

a. parallelogram
b. rectangle
c. lozenge
d. diamond

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 33

Chapter 1 • An Overview of Computers and Logic34

19. The term “eof” represents .

a. a standard input device
b. a generic sentinel value
c. a condition in which no more memory is available for storage
d. the logical flow in a program

20. The two broadest types of data are .

a. internal and external
b. volatile and constant
c. character and numeric
d. permanent and temporary

FIND THE BUGS

Since the early days of computer programming, program errors have been called “bugs.” The term is often said to have
originated from an actual moth that was discovered trapped in the circuitry of a computer at Harvard University in
1945. Actually, the term “bug” was in use prior to 1945 to mean trouble with any electrical apparatus; even during
Thomas Edison’s life, it meant an “industrial defect.” However, the process of finding and correcting program errors has
come to be known as debugging.

Each of the following pseudocode segments contains one or more bugs that you must find and correct.

1. This pseudocode segment is intended to describe computing your average score of two
classroom tests.

input midtermGrade
input finalGrade
average = (inputGrade + final) / 3
print average

2. This pseudocode segment is intended to describe computing the number of miles per gallon you
get with your automobile.

input milesTraveled
input gallonsOfGasUsed
gallonsOfGasUsed / milesTravelled = milesPerGallon
print milesPerGal

3. This pseudocode segment is intended to describe computing the cost per day and the cost per
week for a vacation.

input totalDollarsSpent
input daysOnTrip
costPerDay = totalMoneySpent * daysOnTrip
weeks = daysOnTrip / 7
costPerWeek = daysOnTrip / numberOfWeeks
print costPerDay, week

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 34

Exercises 35

EXERCISES

1. Match the definition with the appropriate term.

1. Computer system equipment a. compiler
2. Another word for programs b. syntax
3. Language rules c. logic
4. Order of instructions d. hardware
5. Language translator e. software

2. In your own words, describe the steps to writing a computer program.

3. Consider a student file that contains the following data:

GRADE POINT
LAST NAME FIRST NAME MAJOR AVERAGE
Andrews David Psychology 3.4
Broederdorf Melissa Computer Science 4.0
Brogan Lindsey Biology 3.8
Carson Joshua Computer Science 2.8
Eisfelder Katie Mathematics 3.5
Faris Natalie Biology 2.8
Fredricks Zachary Psychology 2.0
Gonzales Eduardo Biology 3.1

Would this set of data be suitable and sufficient to use to test each of the following programs?
Explain why or why not.

a. a program that prints a list of Psychology majors
b. a program that prints a list of Art majors
c. a program that prints a list of students on academic probation—those with a grade point average under 2.0
d. a program that prints a list of students on the dean’s list
e. a program that prints a list of students from Wisconsin
f. a program that prints a list of female students

4. Suggest a good set of test data to use for a program that gives an employee a $50 bonus check if
the employee has produced more than 1,000 items in a week.

5. Suggest a good set of test data for a program that computes gross paychecks (that is, before any
taxes or other deductions) based on hours worked and rate of pay. The program computes gross as
hours times rate, unless hours are over 40. If so, the program computes gross as regular rate of
pay for 40 hours, plus one and a half times the rate of pay for the hours over 40.

6. Suggest a good set of test data for a program that is intended to output a student’s grade point
average based on letter grades (A, B, C, D, or F) in five courses.

7. Suggest a good set of test data for a program for an automobile insurance company that wants to
increase its premiums by $50 per month for every ticket a driver receives in a three-year period.

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 35

Chapter 1 • An Overview of Computers and Logic36

8. Assume that a grocery store keeps a file for inventory, where each grocery item has its own record.
Two fields within each record are the name of the manufacturer and the weight of the item. Name
at least six more fields that might be stored for each record. Provide an example of the data for one
record. For example, for one product the manufacturer is DelMonte, and the weight is 12 ounces.

9. Assume that a library keeps a file with data about its collection, one record for each item the
library lends out. Name at least eight fields that might be stored for each record. Provide an exam-
ple of the data for one record.

10. Match the term with the appropriate shape.

11. Which of the following names seem like good variable names to you? If a name doesn’t seem like a
good variable name, explain why not.

a. c
b. cost
c. costAmount
d. cost amount

1. Input

2. Processing

3. Decision

4. Terminal

5. Connector

A.

B.

C.

D.

E.

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 36

Exercises 37

e. cstofdngbsns
f. costOfDoingBusinessThisFiscalYear
g. cost2004

12. If myAge and yourRate are numeric variables, and departmentCode is a character variable,
which of the following statements are valid assignments? If a statement is not valid, explain
why not.

a. myAge = 23
b. myAge = yourRate
c. myAge = departmentCode
d. myAge = “departmentCode”
e. 42 = myAge
f. yourRate = 3.5
g. yourRate = myAge
h. yourRate = departmentCode
i. 6.91 = yourRate
j. departmentCode = Personnel
k. departmentCode = “Personnel”
l. departmentCode = 413
m. departmentCode = “413”
n. departmentCode = myAge
o. departmentCode = yourRate
p. 413 = departmentCode
q. “413” = departmentCode

13. Complete the following tasks:

a. Draw a flowchart to represent the logic of a program that allows the user to enter a value. The program mul-
tiplies the value by 10 and prints the result.

b. Write pseudocode for the same problem.

14. Complete the following tasks:

a. Draw a flowchart to represent the logic of a program that allows the user to enter a value that represents
the radius of a circle. The program calculates the diameter (by multiplying the radius by 2), and then calcu-
lates the circumference (by multiplying the diameter by 3.14). The program prints both the diameter and the
circumference.

b. Write pseudocode for the same problem.

15. Complete the following tasks:

a. Draw a flowchart to represent the logic of a program that allows the user to enter two values. The program
prints the sum of the two values.

b. Write pseudocode for the same problem.

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 37

Chapter 1 • An Overview of Computers and Logic38

16. Complete the following tasks:

a. Draw a flowchart to represent the logic of a program that allows the user to enter three values. The first
value represents hourly pay rate, the second represents the number of hours worked this pay period, and
the third represents the percentage of gross salary that is withheld. The program multiplies the hourly pay
rate by the number of hours worked, giving the gross pay; then, it multiplies the gross pay by the withhold-
ing percentage, giving the withholding amount. Finally, it subtracts the withholding amount from the gross
pay, giving the net pay after taxes. The program prints the net pay.

b. Write pseudocode for the same problem.

DETECTIVE WORK

1. Even Shakespeare referred to a “bug” as a negative occurrence. Name the work in which he wrote,
“Warwick was a bug that fear’d us all.”

2. What are the distinguishing features of the programming language called Short Code? When was it
invented?

3. What is the difference between a compiler and an interpreter? Under what conditions would you
prefer to use one over the other?

UP FOR DISCUSSION

1. Which is the better tool for learning programming—flowcharts or pseudocode? Cite any educa-
tional research you can find.

2. What is the image of the computer programmer in popular culture? Is the image different in books
than in TV shows and movies? Would you like that image for yourself?

1 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 38

2
After studying Chapter 2, you should be able to:

� Describe the features of unstructured spaghetti code

� Describe the three basic structures—sequence, selection, and loop

� Use a priming read

� Appreciate the need for structure

� Recognize structure

� Describe three special structures—case, do-while, and do-until

UNDERSTANDING STRUCTURE

39

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 39

40 Chapter 2 • Understanding Structure

UNDERSTANDING UNSTRUCTURED SPAGHETTI CODE

Professional computer programs usually get far more complicated than the number-doubling program from Chapter 1,
shown in Figure 2-1.

Imagine the number of instructions in the computer program that NASA uses to calculate the launch angle of a space
shuttle, or in the program the IRS uses to audit your income tax return. Even the program that produces a paycheck for
you on your job contains many, many instructions. Designing the logic for such a program can be a time-consuming
task. When you add several thousand instructions to a program, including several hundred decisions, it is easy to create
a complicated mess. The popular name for logically snarled program statements is spaghetti code. The reason for the
name should be obvious—the code is as confusing to read as following one noodle through a plate of spaghetti.

For example, suppose you are in charge of admissions at a college, and you’ve decided you will admit prospective stu-
dents based on the following criteria:

� You will admit students who score 90 or better on the admissions test your college gives, as long
as they are in the upper 75 percent of their high-school graduating class. (These are smart stu-
dents who score well on the admissions test. Maybe they didn’t do so well in high school
because it was a tough school, or maybe they have matured.)

� You will admit students who score at least 80 on the admissions test if they are in the upper
50 percent of their high-school graduating class. (These students score fairly well on the test,
and do fairly well in school.)

� You will admit students who score as low as 70 on your test if they are in the top 25 percent of
their class. (Maybe these students don’t take tests well, but obviously they are achievers.)

Table 2-1 summarizes the admission requirements.

get inputNumber
calculatedAnswer = inputNumber * 2
print calculatedAnswer

FIGURE 2-1: NUMBER-DOUBLING PROGRAM

TABLE 2-1: ADMISSION REQUIREMENTS

Test score High-school rank

90–100 Upper 75 percent (from 25th to 100th percentile)

80–89 Upper half (from 50th to 100th percentile)

70–79 Upper 25 percent (from 75th to 100th percentile)

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 40

41Understanding Unstructured Spaghetti Code

The flowchart for this program could look like the one in Figure 2-2. This kind of flowchart is an example of spaghetti
code. Many computer programs (especially older computer programs) bear a striking resemblance to the flowchart in
Figure 2-2. Such programs might “work”—that is, they might produce correct results—but they are very difficult to
read and maintain, and their logic is difficult to follow.

FIGURE 2-2: SPAGHETTI CODE EXAMPLE

read
testScore,
classRank

print
“Reject”

print
“Accept”

No

No

Yes

Yes

Yes

No No Yes

No

Yes
No

Yes

start

testScore
>= 90?

classRank
>= 25?

testScore
>= 80?

classRank
>= 50?

testScore
>= 70?

classRank
>= 75?

stop

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 41

42 Chapter 2 • Understanding Structure

UNDERSTANDING THE THREE BASIC STRUCTURES

In the mid-1960s, mathematicians proved that any program, no matter how complicated, can be constructed using one
or more of only three structures. A structure is a basic unit of programming logic; each structure is a sequence, selec-
tion, or loop. With these three structures alone, you can diagram any task, from doubling a number to performing brain
surgery. You can diagram each structure with a specific configuration of flowchart symbols.

The first of these structures is a sequence, as shown in Figure 2-3. With a sequence structure, you perform an action
or task, and then you perform the next action, in order. A sequence can contain any number of tasks, but there is no
chance to branch off and skip any of the tasks. Once you start a series of actions in a sequence, you must continue
step-by-step until the sequence ends.

The second structure is called a selection structure or decision structure, as shown in Figure 2-4. With this struc-
ture, you ask a question, and, depending on the answer, you take one of two courses of action. Then, no matter which
path you follow, you continue with the next task.

FIGURE 2-4: SELECTION STRUCTURE

FIGURE 2-3: SEQUENCE STRUCTURE

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 42

43Understanding the Three Basic Structures

Some people call the selection structure an if-then-else because it fits the following statement:

ifƒsomeConditionƒisƒtrueƒthen
ƒƒƒdoƒoneProcess
else
ƒƒƒdoƒtheOtherProcess

For example, while cooking you may decide the following:

ifƒweƒhaveƒbrownSugarƒthen
ƒƒƒuseƒbrownSugar
else
ƒƒƒuseƒwhiteSugar

Similarly, a payroll program might include a statement such as:

ifƒhoursWorkedƒisƒmoreƒthanƒ40ƒthen
ƒƒƒcalculateƒregularPayƒandƒovertimePay
else
ƒƒƒcalculateƒregularPay

The previous examples can also be called dual-alternative ifs, because they contain two alternatives—the action
taken when the tested condition is true and the action taken when it is false. Note that it is perfectly correct for one
branch of the selection to be a “do nothing” branch. For example:

ifƒitƒisƒrainingƒthen
ƒƒƒtakeƒanUmbrella

or

ifƒemployeeƒbelongsƒtoƒdentalPlanƒthen
ƒƒƒdeductƒ$40ƒfromƒemployeeGrossPay

The previous examples are single-alternative ifs, and a diagram of their structure is shown in Figure 2-5. In these
cases, you don’t take any special action if it is not raining or if the employee does not belong to the dental plan. The
case where nothing is done is often called the null case.

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 43

44 Chapter 2 • Understanding Structure

The third structure, shown in Figure 2-6, is a loop. In a loop structure, you continue to repeat actions based on the
answer to a question. In the most common type of loop, you first ask a question; if the answer requires an action, you
perform the action and ask the original question again. If the answer requires that the action be taken again, you take the
action and then ask the original question again. This continues until the answer to the question is such that the action is
no longer required; then you exit the structure. You may hear programmers refer to looping as repetition or iteration.

Some programmers call this structure a while...do, or more simply, a while loop, because it fits the following
statement:

whileƒtestConditionƒcontinuesƒtoƒbeƒtrue
ƒƒƒdoƒsomeProcess

You encounter examples of looping every day, as in:

whileƒyouƒcontinueƒtoƒbeHungry
ƒƒƒtakeƒanotherBiteOfFood

or

whileƒunreadPagesƒremainƒinƒtheƒreadingAssignment
ƒƒƒreadƒanotherƒunreadPage

FIGURE 2-6: LOOP STRUCTURE

FIGURE 2-5: SINGLE-ALTERNATIVE DECISION STRUCTURE

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 44

45Understanding the Three Basic Structures

In a business program, you might write:

whileƒquantityInInventoryƒremainsƒlow
ƒƒƒcontinueƒtoƒorderItems

or

whileƒthereƒareƒmoreƒretailPricesƒtoƒbeƒdiscounted
ƒƒƒcomputeƒaƒdiscount

All logic problems can be solved using only these three structures—sequence, selection, and loop. The three struc-
tures, of course, can be combined in an infinite number of ways. For example, you can have a sequence of tasks fol-
lowed by a selection, or a loop followed by a sequence. Attaching structures end-to-end is called stacking structures.
For example, Figure 2-7 shows a structured flowchart achieved by stacking structures, and shows pseudocode that
might follow that flowchart logic.

The pseudocode in Figure 2-7 shows two end-structure statements—endif and endwhile. You can use an
endif statement to clearly show where the actions that depend on a decision end. The instruction that follows if
occurs when its tested condition is true, the instruction that follows else occurs when the tested condition is false, and
the instruction that follows endif occurs in either case—it is not dependent on the if statement at all. In other
words, statements beyond the endif statement are “outside” the decision structure. Similarly, you use an endwhile

do stepA
do stepB
if conditionC is true then
 do stepD
else
 do stepE
endif
while conditionF is true
 do stepG
endwhile

No Yes

No

Yes

Sequence

Selection

Loop

stepA

stepB

conditionC?

stepE stepD

conditionF? stepG

FIGURE 2-7: STRUCTURED FLOWCHART AND PSEUDOCODE

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 45

46 Chapter 2 • Understanding Structure

statement to show where a loop structure ends. In Figure 2-7, while conditionF continues to be true, stepG
continues to execute. If any statements followed the endwhile statement, they would be outside of, and not a part
of, the loop.

Whether you are drawing a flowchart or writing pseudocode, you can use either of the fol-
lowing pairs to represent decision outcomes: yes and no or true and false. This book fol-
lows the convention of using yes and no in flowchart diagrams and true and false in
pseudocode.

Besides stacking structures, you can replace any individual tasks or steps in a structured flowchart diagram or
pseudocode segment with additional structures. In other words, any sequence, selection, or loop can contain other
sequences, selections, or loops. For example, you can have a sequence of three tasks on one side of a selection, as
shown in Figure 2-8. Placing a structure within another structure is called nesting the structures.

When you write the pseudocode for the logic shown in Figure 2-8, the convention is to indent all statements that
depend on one branch of the decision, as shown in the pseudocode. The indentation and the endif statement both
show that all three statements (do stepB, do stepC, and do stepD) must execute if conditionA is not true.
The three statements constitute a block, or a group of statements that execute as a single unit.

In place of one of the steps in the sequence in Figure 2-8, you can insert a selection. In Figure 2-9, the process named
stepC has been replaced with a selection structure that begins with a test of the condition named conditionF.

if conditionA is true then
 do stepE
else
 do stepB
 do stepC
 do stepD
endif

No

stepB

stepC

conditionA?

stepE

Yes

stepD

FIGURE 2-8: FLOWCHART AND PSEUDOCODE SHOWING A SEQUENCE NESTED WITHIN A SELECTION

TIP�

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 46

47Understanding the Three Basic Structures

In the pseudocode shown in Figure 2-9, notice that do stepB, if conditionF is true then, else,
endif, and do stepD all align vertically with each other. This shows that they are all “on the same level.” If you
look at the same problem flowcharted in Figure 2-9, you see that you could draw a vertical line through the symbols
containing stepB, conditionF, and stepD. The flowchart and the pseudocode represent exactly the same logic.
The stepH and stepG processes, on the other hand, are one level “down”; they are dependent on the answer to the
conditionF question. Therefore, the do stepH and do stepG statements are indented one additional level in
the pseudocode.

Also notice that the pseudocode in Figure 2-9 has two endif statements. Each is aligned to correspond to an if. An
endif always partners with the most recent if that does not already have an endif partner, and an endif
should always align vertically with its if partner.

In place of do stepH on one side of the new selection in Figure 2-9, you can insert a loop. This loop, based on
conditionI, appears inside the selection that is within the sequence that constitutes the “No” side of the original
conditionA selection. In the pseudocode in Figure 2-10, notice that the while aligns with the endwhile, and
that the entire while structure is indented within the true (“Yes”) half of the if structure that begins with the deci-
sion based on conditionF. The indentation used in the pseudocode reflects the logic you can see laid out graphi-
cally in the flowchart.

if conditionA is true then
 do stepE
else
 do stepB
 if conditionF is true then
 do stepH
 else
 do stepG
 endif
 do stepD
endif

No Yes

No Yes

stepB

conditionA?

stepE

conditionF?

stepG stepH

stepD

FIGURE 2-9: SELECTION IN A SEQUENCE WITHIN A SELECTION

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 47

48 Chapter 2 • Understanding Structure

The combinations are endless, but each of a structured program’s segments is a sequence, a selection, or a loop. The
three structures are shown together in Figure 2-11. Notice that each structure has one entry and one exit point. One
structure can attach to another only at one of these points.

entryentryentry

exit

exit

exit

SEQUENCE SELECTION LOOP

FIGURE 2-11: THE THREE STRUCTURES

if conditionA is true then
 do stepE
else
 do stepB
 if conditionF is true then
 while conditionI is true
 do stepJ
 endwhile
 else
 do stepG
 endif
 do stepD
endif

No

stepB

conditionA?

stepE

Yes

No
conditionF?

Yes

stepG stepJ

stepD

conditionI?
Yes

No

FIGURE 2-10: FLOWCHART AND PSEUDOCODE FOR LOOP WITHIN SELECTION WITHIN SEQUENCE WITHIN
SELECTION

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 48

49Using the Priming Read

Try to imagine physically picking up any of the three structures using the “handles”
marked entry and exit. These are the spots at which you could connect a structure to any
of the others. Similarly, any complete structure, from its entry point to its exit point, can
be inserted within the process symbol of any other structure.

In summary, a structured program has the following characteristics:

� A structured program includes only combinations of the three basic structures—sequence, selec-
tion, and loop. Any structured program might contain one, two, or all three types of structures.

� Structures can be stacked or connected to one another only at their entry or exit points.

� Any structure can be nested within another structure.

A structured program is never required to contain examples of all three structures; a struc-
tured program might contain only one or two of them. For example, many simple pro-
grams contain only a sequence of several tasks that execute from start to finish without
any needed selections or loops. As another example, a program might display a series of
numbers, looping to do so, but never making any decisions about the numbers.

USING THE PRIMING READ

For a program to be structured and work the way you want it to, sometimes you need to add extra steps. The priming
read is one kind of added step. A priming read or priming input is the statement that reads the first input data record.
If a program will read 100 data records, you read the first data record in a statement that is separate from the other 99.
You must do this to keep the program structured.

At the end of Chapter 1, you read about a program like the one in Figure 2-12. The program gets a number and checks
for the end-of-file condition. If it is not the end of file, then the number is doubled, the answer is printed, and the next
number is input.

TIP�

TIP�

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 49

50 Chapter 2 • Understanding Structure

Is the program represented by Figure 2-12 structured? At first, it might be hard to tell. The three allowed structures
were illustrated in Figure 2-11.

The flowchart in Figure 2-12 does not look exactly like any of the three shapes shown in Figure 2-11. However,
because you may stack and nest structures while retaining overall structure, it might be difficult to determine whether a
flowchart as a whole is structured. It’s easiest to analyze the flowchart in Figure 2-12 one step at a time. The beginning
of the flowchart looks like Figure 2-13.

Is this portion of the flowchart structured? Yes, it’s a sequence. (Even a single task can be a sequence—it’s just a brief
sequence.) Adding the next piece of the flowchart looks like Figure 2-14.

start

get
inputNumber

FIGURE 2-13: BEGINNING OF A NUMBER-DOUBLING FLOWCHART

start

eof?
Yes

No

get
inputNumber

stop

print
calculatedAnswer

calculatedAnswer =
inputNumber * 2

FIGURE 2-12: UNSTRUCTURED FLOWCHART OF A NUMBER-DOUBLING PROGRAM

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 50

51Using the Priming Read

The sequence is finished; either a selection or a loop is starting. You might not know which one, but you do know the sequence
is not continuing, because sequences can’t contain questions. With a sequence, each task or step must follow without
any opportunity to branch off. Therefore, which type of structure starts with the question in Figure 2-14? Is it a selection
or a loop?

With a selection structure, the logic goes in one of two directions after the question, and then the flow comes back
together; the question is not asked a second time. However, in a loop, if the answer to the question results in the loop
being entered and the loop statements executing, then the logic returns to the question that started the loop; when the
body of a loop executes, the question that controls the loop is always asked again.

In the number-doubling problem in the original Figure 2-12, if it is not eof (that is, if the end-of-file condition is not
met), then some math is done, an answer is printed, a new number is obtained, and the eof question is asked again.
In other words, while the answer to the eof question continues to be no, eventually the logic will return to the eof
question. (Another way to phrase this is that while it continues to be true that eof has not yet been reached, the logic
keeps returning to the same question.) Therefore, the number-doubling problem contains a structure beginning with the
eof question that is more like the beginning of a loop than it is like a selection.

The number-doubling problem does contain a loop, but it’s not a structured loop. In a structured loop, the rules are:

1. You ask a question.

2. If the answer indicates you should take some action or perform a procedure, then you do so.

3. If you perform the procedure, then you must go right back to repeat the question.

The flowchart in Figure 2-12 asks a question; if the answer is no (that is, while it is true that the eof condition has not
been met), then the program performs two tasks: it does the arithmetic and it prints the results. Doing two things is
acceptable because two tasks with no possible branching constitute a sequence, and it is fine to nest a structure within
another structure. However, when the sequence ends, the logic doesn’t flow right back to the question. Instead, it goes

start

eof?

get
inputNumber

FIGURE 2-14: NUMBER-DOUBLING FLOWCHART

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 51

52 Chapter 2 • Understanding Structure

above the question to get another number. For the loop in Figure 2-12 to be a structured loop, the logic must return to
the eof question when the embedded sequence ends.

The flowchart in Figure 2-15 shows the flow of logic returning to the eof immediately after the sequence. Figure 2-15
shows a structured flowchart, but the flowchart has one major flaw—it doesn’t do the job of continuously doubling dif-
ferent numbers.

Follow the flowchart in Figure 2-15 through a typical program run. Suppose when the program starts, the user enters a 9 for
the value of inputNumber. That’s not eof, so the number doubles, and 18 prints out as the calculatedAnswer.
Then the question eof? is asked again. It can’t be eof because a new value representing the sentinel (ending) value can’t
be entered. The logic never returns to the get inputNumber task, so the value of inputNumber never changes.
Therefore, 9 doubles again and the answer 18 prints again. It’s still not eof, so the same steps are repeated. This goes on
forever, with the answer 18 printing repeatedly. The program logic shown in Figure 2-15 is structured, but it doesn’t work as
intended; the program in Figure 2-16 works, but it isn’t structured!

start

eof?
No

Yes

get
inputNumber

print
calculatedAnswer

calculatedAnswer =
inputNumber * 2

FIGURE 2-16: FUNCTIONAL BUT NONSTRUCTURED FLOWCHART

start

eof?
No

Yes

get
inputNumber

print
calculatedAnswer

calculatedAnswer =
inputNumber * 2

FIGURE 2-15: STRUCTURED, BUT NONFUNCTIONAL, FLOWCHART OF NUMBER-DOUBLING PROBLEM

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 52

53Using the Priming Read

The loop in Figure 2-16 is not structured because in a structured loop, after the tasks exe-
cute within the loop, the flow of logic must return directly to the loop-controlling ques-
tion. In Figure 2-16, the logic does not return to the loop-controlling question; instead, it
goes “too high” outside the loop to repeat the get inputNumber task.

How can the number-doubling problem be both structured and work as intended? Often, for a program to be struc-
tured, you must add something extra. In this case, it’s an extra get inputNumber step. Consider the solution in
Figure 2-17; it’s structured and it does what it’s supposed to do. The program logic illustrated in Figure 2-17 contains a
sequence and a loop. The loop contains another sequence.

The additional get inputNumber step is typical in structured programs. The first of the two input steps is the
priming input, or priming read. The term priming comes from the fact that the read is first, or primary (what gets the
process going, as in “priming the pump”). The purpose of the priming read step is to control the upcoming loop that
begins with the eof question. The last element within the structured loop gets the next, and all subsequent, input val-
ues. This is also typical in structured loops—the last step executed within the loop alters the condition tested in the
question that begins the loop, which in this case is the eof question.

As an additional way to determine whether a flowchart segment is structured, you can try to write pseudocode for it.
Examine the unstructured flowchart in Figure 2-12 again. To write pseudocode for it, you would begin with the following:

start
ƒƒƒƒƒgetƒinputNumber

start
 get inputNumber
 while not eof
 calculatedAnswer = inputNumber * 2
 print calculatedAnswer
 get inputNumber
 endwhile
stop

start

eof?
No

Yes

get
inputNumber

print
calculatedAnswer

stop

get
inputNumber

FIGURE 2-17: FUNCTIONAL, STRUCTURED FLOWCHART AND PSEUDOCODE FOR THE NUMBER-DOUBLING
PROBLEM

calculatedAnswer =
inputNumber * 2

Priming read

TIP�

2 Chapter CXXXX 35539.ps 10-13-05 8:31 AM Page 53

54 Chapter 2 • Understanding Structure

When you encounter the eof question in the flowchart, you know that either a selection or loop structure should begin.
Because you return to a location higher in the flowchart when the answer to the eof question is no (that is, while the
not eof condition continues to be true), you know that a loop is beginning. So you continue to write the pseudocode
as follows:

start
ƒƒƒƒƒgetƒinputNumber
ƒƒƒƒƒwhileƒnotƒeof
ƒƒƒƒƒƒƒƒƒƒcalculatedAnswerƒ=ƒinputNumberƒ*ƒ2
ƒƒƒƒƒƒƒƒƒƒprintƒcalculatedAnswer

Continuing, the step after print calculatedAnswer is get inputNumber. This ends the while loop
that began with the eof question. So the pseudocode becomes:

start
ƒƒƒƒƒgetƒinputNumber
ƒƒƒƒƒwhileƒnotƒeof
ƒƒƒƒƒƒƒƒƒƒcalculatedAnswerƒ=ƒinputNumberƒ*ƒ2
ƒƒƒƒƒƒƒƒƒƒprintƒcalculatedAnswer
ƒƒƒƒƒƒƒƒƒƒgetƒinputNumber
ƒƒƒƒƒendwhile
stop

This pseudocode is identical to the pseudocode in Figure 2-17 and now matches the flowchart in the same figure. It
does not match the flowchart in Figure 2-12, because that flowchart contains only one get inputNumber step.
Creating the pseudocode correctly using the while statement requires you to repeat the get inputNumber
statement. The structured pseudocode makes use of a priming read and forces the logic to become structured—a
sequence followed by a loop that contains a sequence of three statements.

Years ago, programmers could avoid using structure by inserting a “go to” statement into
their pseudocode. A “go to” statement would say something like “after print answer, go to
the first get number box”, and would be the equivalent of drawing an arrow starting after
“print answer” and pointing directly to the first “get number” box in the flowchart.
Because “go to” statements cause spaghetti code, they are not allowed in structured pro-
gramming. Some programmers call structured programming “goto-less” programming.

Figure 2-18 shows another way you might attempt to draw the logic for the number-doubling program.At first glance, the figure
might seem to show an acceptable solution to the problem—it is structured, containing a single loop with a sequence of three
steps within it, and it appears to eliminate the need for the priming input statement.When the program starts, the eof question
is asked.The answer is no, so the program gets an input number, doubles it, and prints it. Then, if it is still not eof, the program
gets another number, doubles it, and prints it. The program continues until eof is encountered when getting input. The last time
the get inputNumber statement executes, it encounters eof, but the program does not stop—instead, it calculates and

TIP�

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 54

55Understanding the Reasons for Structure

prints one last time.This last output is extraneous—the eof value should not be doubled and printed.As a general rule, an
eof question should always come immediately after an input statement. Therefore, the best solution to the number-doubling
problem remains the one shown in Figure 2-17—the solution containing the priming input statement.

A few languages do not require the priming read. For example, programs written using
the Visual Basic programming language can “look ahead” to determine whether the end
of file will be reached on the next input record. However, most programming languages
cannot predict the end of file until an actual read operation is performed, and they require
a priming read to properly handle file data.

UNDERSTANDING THE REASONS FOR STRUCTURE

At this point, you may very well be saying, “I liked the original number-doubling program just fine. I could follow it. Also,
the first program had one less step in it, so it was less work. Who cares if a program is structured?”

Until you have some programming experience, it is difficult to appreciate the reasons for using only the three structures—
sequence, selection, and loop. However, staying with these three structures is better for the following reasons:

� Clarity—The number-doubling program is a small program. As programs get bigger, they get
more confusing if they’re not structured.

� Professionalism—All other programmers (and programming teachers you might encounter)
expect your programs to be structured. It’s the way things are done professionally.

� Efficiency—Most newer computer languages are structured languages with syntax that lets you
deal efficiently with sequence, selection, and looping. Older languages, such as assembly lan-
guages, COBOL, and RPG, were developed before the principles of structured programming
were discovered. However, even programs that use those older languages can be written in a
structured form, and structured programming is expected on the job today. Newer languages
such as C#, C++, and Java enforce structure by their syntax.

start

eof?
No

Yes

print
calculatedAnswer

stop

get
inputNumber

calculatedAnswer =
inputNumber * 2

FIGURE 2-18: STRUCTURED BUT INCORRECT SOLUTION TO THE NUMBER-DOUBLING PROBLEM

TIP�

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 55

56 Chapter 2 • Understanding Structure

� Maintenance—You, as well as other programmers, will find it easier to modify and maintain
structured programs as changes are required in the future.

� Modularity—Structured programs can be easily broken down into routines or modules that can
be assigned to any number of programmers. The routines are then pieced back together like
modular furniture at each routine’s single entry or exit point. Additionally, often a module can be
used in multiple programs, saving development time in the new project.

Most programs that you purchase are huge, consisting of thousands or millions of statements. If you’ve worked with a
word-processing program or spreadsheet, think of the number of menu options and keystroke combinations available to
the user. Such programs are not the work of one programmer. The modular nature of structured programs means that
work can be divided among many programmers; then the modules can be connected, and a large program can be
developed much more quickly. Money is often a motivating factor—the faster you write a program and make it avail-
able for use, the sooner it begins making money for the developer.

Consider the college admissions program from the beginning of this chapter. It has been rewritten in structured form in
Figure 2-19 and is easier to follow now. Figure 2-19 also shows structured pseudocode for the same problem.

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 56

57Understanding the Reasons for Structure

start
 read testScore, classRank
 if testScore >= 90 then
 if classRank >= 25 then
 print "Accept"
 else
 print "Reject"
 endif
 else
 if testScore >= 80 then
 if classRank >= 50 then
 print "Accept"
 else
 print "Reject"
 endif
 else
 if testScore >= 70 then
 if classRank >= 75 then
 print "Accept"
 else
 print "Reject"
 endif
 else
 print "Reject"
 endif
 endif
 endif
stop

start

read testScore,
classRank

testScore
>=90?

testScore
>=80?

classRank
>=25?

testScore
>=70?

classRank
>=50?

classRank
>=75?

stop

No Yes

No Yes

No Yes

No Yes

No Yes

No Yes

FIGURE 2-19: FLOWCHART AND PSEUDOCODE OF STRUCTURED COLLEGE ADMISSION PROGRAM

start
read testScore, classRank
if testScore >= 90 then

if classRank >= 25 then
print "Accept"

else
print "Reject"

endif
else

if testScore >= 80 then
if classRank >= 50 then

print "Accept"
else

print "Reject"
endif

else
if testScore >= 70 then

if classRank >= 75 then
print "Accept"

print "Reject"
endif

else

else
print "Reject"

endif
endif

endif
stop

print
"Reject"

print
"Reject"

print
"Reject"

print
"Accept"

print
"Accept"

print
"Reject"

print
"Accept"

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 57

58 Chapter 2 • Understanding Structure

Don’t be alarmed if it is difficult for you to follow the many nested ifs within the
pseudocode in Figure 2-19. After you study the selection process in more detail, reading
this type of pseudocode will become much easier for you.

In the lower portion of Figure 2-19, the pseudocode is repeated using colored backgrounds to help you identify the
indentations that match, distinguishing the different levels of the nested structures.

As you examine Figure 2-19, notice that the bottoms of the three testScore decision
structures join at the bottom of the diagram. These three joinings correspond to the last
three endif statements in the pseudocode.

RECOGNIZING STRUCTURE

Any set of instructions can be expressed in a structured format. If you can teach someone how to perform any ordinary
activity, then you can express it in a structured way. For example, suppose you wanted to teach a child how to play
Rock, Paper, Scissors. In this game, two players simultaneously show each other one hand, in one of three positions—
clenched in a fist, representing a rock; opened flat, representing a piece of paper; or with two fingers extended in a V,
representing scissors. The goal is to guess which hand position your opponent might show, so that you can show the
one that beats it. The rules are that a flat hand beats a fist (because a piece of paper can cover a rock), a fist beats a
hand with two extended fingers (because a rock can smash a pair of scissors), and a hand with two extended fingers
beats a flat hand (because scissors can cut paper). Figure 2-20 shows the pseudocode for the game.

Figure 2-20 also shows a fairly complicated set of statements. Its purpose is not to teach you how to play a game
(although you could learn how to play by following the logic), but rather to convince you that any task to which you can
apply rules can be expressed logically using only combinations of sequence, selection, and looping. In this example, a
game continues while a friend agrees to play, and within that loop, several decisions must be made in order to deter-
mine the winner.

TIP�

TIP�

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 58

59Recognizing Structure

When you are just learning about structured program design, it is difficult to detect whether a flowchart of a program’s
logic is structured. For example, is the flowchart segment in Figure 2-21 structured?

FIGURE 2-20: PSEUDOCODE FOR THE ROCK, PAPER, SCISSORS GAME

start
 ask friend to play a game of Rock, Paper, Scissors
 while answer is yes
 extend yourHand and myHand
 if yourHand = "Paper" then
 if myHand = "Rock" then
 winner = yourHand
 else
 if myHand = "Scissors" then
 winner = myHand
 else
 winner = tie
 endif
 endif
 else
 if yourHand = "Scissors" then
 if myHand = "Rock" then
 winner = myHand
 else
 if myHand = "Paper" then
 winner = yourHand
 else
 winner = tie
 endif
 endif
 else
 if myHand = "Rock" then
 winner = tie
 else
 if myHand = "Paper" then
 winner = myHand
 else
 winner = yourHand
 endif
 endif
 endif
 endif
 ask friend to play a game of Rock, Paper, Scissors
 endwhile
stop

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 59

60 Chapter 2 • Understanding Structure

Yes, it is. It has a sequence and a selection structure.

Is the flowchart segment in Figure 2-22 structured?

Yes, it is. It has a loop, and within the loop is a selection.

Is the flowchart segment in Figure 2-23 structured? (The symbols are lettered so you can better follow the discussion.)

FIGURE 2-22: EXAMPLE 2

FIGURE 2-21: EXAMPLE 1

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 60

61Recognizing Structure

No, it isn’t; it is not constructed from the three basic structures. One way to straighten out a flowchart segment that
isn’t structured is to use what you can call the “spaghetti bowl” method; that is, picture the flowchart as a bowl of
spaghetti that you must untangle. Imagine you can grab one piece of pasta at the top of the bowl, and start pulling. As
you “pull” each symbol out of the tangled mess, you can untangle the separate paths until the entire segment is struc-
tured. For example, with the diagram in Figure 2-23, if you start pulling at the top, you encounter a procedure box,
labeled A. (See Figure 2-24.)

A single process like A is part of an acceptable structure—it constitutes at least the beginning of a sequence structure.
Imagine you continue pulling symbols from the tangled segment. The next item in the flowchart is a question that tests
a condition labeled B, as you can see in Figure 2-25.

A

FIGURE 2-24: UNTANGLING EXAMPLE 3, FIRST STEP

B?

E

D?

C

No Yes

No Yes

A

FIGURE 2-23: EXAMPLE 3

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 61

62 Chapter 2 • Understanding Structure

At this point, you know the sequence that started with A has ended. Sequences never have decisions in them, so the
sequence is finished; either a selection or a loop is beginning. A loop must return to the question at some later point. You
can see from the original logic in Figure 2-23 that whether the answer to B is yes or no, the logic never returns to B.
Therefore, B begins a selection structure, not a loop structure.

To continue detangling the logic, you (imaginarily) pull up on the flowline that emerges from the left side (the “No” side) of
Question B. You encounter C, as shown in Figure 2-26. When you continue beyond C, you reach the end of the flowchart.

Now you can turn your attention to the “Yes” side (the right side) of the condition tested in B. When you pull up on the
right side, you encounter Question D. (See Figure 2-27.)

B?

C

No

A

FIGURE 2-26: UNTANGLING EXAMPLE 3, THIRD STEP

B?

A

FIGURE 2-25: UNTANGLING EXAMPLE 3, SECOND STEP

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 62

63Recognizing Structure

In Figure 2-23, follow the line on the left side of Question D. The line extending from the selection is attached to a task
outside the selection. The line emerging from the left side of selection D is attached to Step C. You might say the D
selection is becoming entangled with the B selection, so you must untangle the structures by repeating the step that is
causing the tangle. (In this example, you repeat Step C to untangle it from the other usage of C.) Continue pulling on the
flowline that emerges from Step C until you reach the end of the program segment, as shown in Figure 2-28.

Now pull on the right side of Question D. Process E pops up, as shown in Figure 2-29; then you reach the end.

B?
Yes

A

No

C D?

C

No

FIGURE 2-28: UNTANGLING EXAMPLE 3, FIFTH STEP

B?

D?

C

No Yes

A

FIGURE 2-27: UNTANGLING EXAMPLE 3, FOURTH STEP

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 63

64 Chapter 2 • Understanding Structure

At this point, the untangled flowchart has three loose ends. The loose ends of Question D can be brought together to
form a selection structure; then the loose ends of Question B can be brought together to form another selection struc-
ture. The result is the flowchart shown in Figure 2-30. The entire flowchart segment is structured—it has a sequence
(A) followed by a selection inside a selection.

YesNo
B?

C
YesNo

D?

C E

A

do A
if B is true then
 if D is true then
 do E
 else
 do C
 endif
else
 do C
endif

FIGURE 2-30: FINISHED FLOWCHART AND PSEUDOCODE FOR UNTANGLING EXAMPLE 3

YesNo
B?

C
YesNo

D?

C E

A

FIGURE 2-29: UNTANGLING EXAMPLE 3, SIXTH STEP

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 64

65Three Special Structures—Case, Do While, and Do Until

If you want to try structuring a very difficult example of an unstructured program, see
Appendix A.

THREE SPECIAL STRUCTURES—CASE, DO WHILE, AND DO UNTIL

You can skip this section for now without any loss in continuity. Your instructor may pre-
fer to discuss the case structure with the Decision chapter (Chapter 5), and the do-while
and do-until loops with the Looping chapter (Chapter 6).

You can solve any logic problem you might encounter using only the three structures: sequence, selection, and loop.
However, many programming languages allow three more structures: the case structure and the do-while and do-until
loops. These structures are never needed to solve any problem—you can always use a series of selections instead of
the case structure, and you can always use a sequence plus a while loop in place of the do-while or do-until loops.
However, sometimes these additional structures are convenient. Programmers consider them all to be acceptable, legal
structures.

THE CASE STRUCTURE

You can use the case structure when there are several distinct possible values for a single variable you are testing,
and each value requires a different course of action. Suppose you administer a school at which tuition is $75, $50,
$30, or $10 per credit hour, depending on whether a student is a freshman, sophomore, junior, or senior. The structured
flowchart and pseudocode in Figure 2-31 show a series of decisions that assigns the correct tuition to a student.

FIGURE 2-31: FLOWCHART AND PSEUDOCODE OF TUITION DECISIONS

YesNo

YesNo

class=
“Freshman”?

YesNo

tuitionFee = 75
class=

“Sophomore”?

tuitionFee = 50
class=

“Junior”?

tuitionFee = 10 tuitionFee = 30

if class = "Freshman" then
 tuitionFee = 75
else
 if class = "Sophomore" then
 tuitionFee = 50
 else
 if class = "Junior" then
 tuitionFee = 30
 else
 tuitionFee = 10
 endif
 endif
endif

TIP�

TIP�

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 65

66 Chapter 2 • Understanding Structure

The indentation in the pseudocode in Figure 2-31 reflects the nested nature of the deci-
sions, as illustrated in the flowchart. For clarity, some programmers might prefer to write
the pseudocode as follows:

if class = “Freshman” then
tuitionFee = 75

else if class = “Sophomore” then

tuitionFee = 50

else if class = “Junior” then

tuitionFee = 30

endif

This style, with else and the next if on the same line and a single endif at the end, is
often preferred by Visual Basic programmers because it resembles a style they use in their
programs. However, this book will use the style shown in Figure 2-31, with each endif
aligned with its corresponding if statement.

The logic shown in Figure 2-31 is absolutely correct and completely structured. The class=”Junior” selection
structure is contained within the class=”Sophomore” structure, which is contained within the
class=”Freshman” structure. Note that there is no need to ask if a student is a senior, because if a student is not
a freshman, sophomore, or junior, it is assumed the student is a senior.

Even though the program segments in Figure 2-31 are correct and structured, many programming languages permit
using a case structure, as shown in Figure 2-32. When using the case structure, you test a variable against a series of
values, taking appropriate action based on the variable’s value. To many, such programs seem easier to read, and the
case structure is allowed because the same results could be achieved with a series of structured selections (thus mak-
ing the program structured). That is, if the first program is structured and the second one reflects the first one point by
point, then the second one must be structured also.

case based on class
 case "Freshman"
 tuitionFee = 75
 case "Sophomore"
 tuitionFee = 50
 case "Junior"
 tuitionFee = 30
 default
 tuitionFee = 10
endcase

class = ?

tuitionFee = 75 tuitionFee = 50 tuitionFee = 30 tuitionFee = 10

“Freshman” “Sophomore” “Junior” default

FIGURE 2-32: FLOWCHART AND PSEUDOCODE OF CASE STRUCTURE

TIP�

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 66

67Three Special Structures—Case, Do While, and Do Until

The term “default” used in Figure 2-32 means “if none of the other cases were true.” Each
programming language you learn may use a different syntax for the default case.

Even though a programming language permits you to use the case structure, you should understand that the case
structure is just a convenience that might make a flowchart, pseudocode, or actual program code easier to understand
at first glance. When you write a series of decisions using the case structure, the computer still makes a series of indi-
vidual decisions, just as though you had used many if-then-else combinations. In other words, you might prefer looking
at the diagram in Figure 2-32 to understand the tuition fees charged by a school, but a computer actually makes the
decisions as shown in Figure 2-31—one at a time. When you write your own programs, it is always acceptable to
express a complicated decision-making process as a series of individual selections.

You usually use the case structure only when a series of decisions is based on different
values stored in a single variable. If multiple variables are tested, then most programmers
use a series of decisions.

THE DO-WHILE AND DO-UNTIL LOOPS

Recall that a structured loop (often called a while loop) looks like Figure 2-33. A special-case loop called a do-while or
do-until loop looks like Figure 2-34.

An important difference exists between these two structures. In a while loop, you ask a question and, depending on the
answer, you might or might not enter the loop to execute the loop’s procedure. Conversely, in do-while and do-until
loops, you ensure that the procedure executes at least once; then, depending on the answer to the controlling question,
the loop may or may not execute additional times. In a do-while loop, the loop body continues to execute as long as the
answer to the controlling question is yes, or true. In a do-until loop, the loop body continues to execute as long as the
answer to the controlling question is no, or false; that is, the body executes until the controlling question is yes or true.

Notice that the word “do” begins the names of both the do-while and do-until loops. This
should remind you that the action you “do” precedes testing the condition.

FIGURE 2-34: STRUCTURE OF A DO-WHILE OR
DO-UNTIL (POSTTEST) LOOP

FIGURE 2-33: WHILE LOOP

TIP�

TIP�

TIP�

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 67

68 Chapter 2 • Understanding Structure

In a while loop, the question that controls a loop comes at the beginning, or “top,” of the loop body. A while loop is also
called a pretest loop because a condition is tested before entering the loop even once. In a do-while or do-until loop,
the question that controls the loop comes at the end, or “bottom,” of the loop body. Do-while and do-until loops are also
called posttest loops because a condition is tested after the loop body has executed.

You encounter examples of do-until looping every day. For example:

do
ƒƒƒƒƒpayƒbills
untilƒallƒbillsƒareƒpaid

and
do
ƒƒƒƒƒwashƒdishes
untilƒallƒdishesƒareƒwashed

Similarly, you encounter examples of do-while looping every day. For example:

do
ƒƒƒƒƒpayƒbills
whileƒmoreƒbillsƒremainƒtoƒbeƒpaid

and
do
ƒƒƒƒƒwashƒdishes
whileƒmoreƒdishesƒremainƒtoƒbeƒwashed

In these examples, the activity (paying bills or washing dishes) must occur at least one time. You ask the question that
determines whether you continue only after the activity has been executed at least once. The only difference in these
structures is whether the answer to the bottom loop-controlling question must be false for the loop to continue (as in all
bills are paid), which is a do-until loop, or true for the loop to continue (as in more bills remain to be paid), which is a
do-while loop.

You are never required to use a posttest loop. You can duplicate the same series of actions generated by any posttest
loop by creating a sequence followed by a standard, pretest while loop. For example, the following code performs the
bill-paying task once, then asks the loop-controlling question at the top of a while loop, in which the action might be
performed again:

payƒbills
whileƒthereƒareƒmoreƒbillsƒtoƒpay
ƒƒƒƒƒpayƒbills
endwhile

Consider the flowcharts and pseudocode in Figures 2-35 and 2-36.

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 68

69Three Special Structures—Case, Do While, and Do Until

In Figure 2-35, A is done, and then B is asked. If B is yes, then A is done and B is asked again. In Figure 2-36, A is
done, and then B is asked. If B is yes, then A is done and B is asked again. In other words, both flowcharts and
pseudocode segments do exactly the same thing.

Because programmers understand that any posttest loop (do-while or do-until) can be expressed with a sequence fol-
lowed by a while loop, most languages allow the posttest loop. (Frequently, languages allow one type of posttest loop or
the other.) Again, you are never required to use a posttest loop; you can always accomplish the same tasks with a
sequence followed by a pretest while loop.

Figure 2-37 shows an unstructured loop. It is neither a while loop (which begins with a decision and, after an action,
returns to the decision) nor a do-while or do-until loop (which begins with an action and ends with a decision that might
repeat the action). Instead, it begins like a posttest loop (a do-while or a do-until loop), with a process followed by a
decision, but one branch of the decision does not repeat the initial process; instead, it performs an additional new
action before repeating the initial process. If you need to use the logic shown in Figure 2-37—performing a task, ask-
ing a question, and perhaps performing an additional task before looping back to the first process—then the way to
make the logic structured is to repeat the initial process within the loop, at the end of the loop. Figure 2-38 shows the
same logic as Figure 2-37, but now it is structured logic, with a sequence of two actions occurring within the loop.

A

B?
Yes

No

A

do A
while B is true
 do A
endwhile

FIGURE 2-36: FLOWCHART AND PSEUDOCODE FOR SEQUENCE FOLLOWED BY WHILE LOOP

A

B?
Yes

No

do
 A
while B is true

FIGURE 2-35: FLOWCHART AND PSEUDOCODE FOR DO-WHILE LOOP

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 69

70 Chapter 2 • Understanding Structure

Does this diagram look familiar to you? It uses the same technique of repeating a needed step that you saw earlier in
this chapter, when you learned the rationale for the priming read.

It is difficult for beginning programmers to distinguish among while, do-while, and do-until loops. A while loop asks the
question first—for example, while you are hungry, eat. The answer to the question might never be true and the loop
body might never execute. A while loop is the only type of loop you ever need in order to solve a problem. You can think
of a do-while loop as one that continues to execute while a condition remains true—for example, process records while
not end of file is true, or eat food while hungry is true. On the other hand, a do-until loop continues while a condition is
false, or, in other words, until the condition becomes true—for example, address envelopes until there are no more
envelopes, or eat food until you are full. When you use a do-while or a do-until loop, at least one performance of the
action always occurs.

Especially when you are first mastering structured logic, you might prefer to only use the
three basic structures—sequence, selection, and while loop. Every logical problem can be
solved using only these three structures, and you can understand all of the examples in the
rest of this book using only these three.

B?
Yes

No

A

C A

FIGURE 2-38: SEQUENCE AND STRUCTURED LOOP THAT ACCOMPLISH THE SAME TASKS AS FIGURE 2-37

B?
Yes

No

A

C

FIGURE 2-37: UNSTRUCTURED LOOP

TIP�

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 70

Key Terms 71

CHAPTER SUMMARY

� The popular name for snarled program statements is spaghetti code.

� Clearer programs can be constructed using only three basic structures: sequence, selection, and loop.

These three structures can be combined in an infinite number of ways by stacking and nesting them. Each

structure has one entry and one exit point; one structure can attach to another only at one of these points.

� A priming read or priming input is the statement that reads the first input data record prior to starting a

structured loop. The last step within the loop gets the next, and all subsequent, input values.

� You use structured techniques to promote clarity, professionalism, efficiency, and modularity.

� One way to straighten a flowchart segment that isn’t structured is to imagine the flowchart as a bowl of

spaghetti that you must untangle.

� You can use a case structure when there are several distinct possible values for a variable you are test-

ing. When you write a series of decisions using the case structure, the computer still makes a series of

individual decisions.

� In a pretest while loop, you ask a question and, depending on the answer, you might never enter the loop

to execute the loop’s body. In a posttest do-while loop (which executes as long as the answer to the

controlling question is true) or a posttest do-until loop (which executes as long as the answer to the con-

trolling question is false), you ensure that the loop body executes at least once. You can duplicate the

same series of actions generated by any posttest loop by creating a sequence followed by a while loop.

KEY TERMS

Spaghetti code is snarled, unstructured program logic.

A structure is a basic unit of programming logic; each structure is a sequence, selection, or loop.

With a sequence structure, you perform an action or task, and then you perform the next action, in order. A sequence
can contain any number of tasks, but there is no chance to branch off and skip any of the tasks.

With a selection, or decision, structure, you ask a question, and, depending on the answer, you take one of two
courses of action. Then, no matter which path you follow, you continue with the next task.

An if-then-else is another name for a selection structure.

Dual-alternative ifs define one action to be taken when the tested condition is true, and another action to be taken
when it is false.

Single-alternative ifs take action on just one branch of the decision.

The null case is the branch of a decision in which no action is taken.

With a loop structure, you continue to repeat actions based on the answer to a question.

Repetition and iteration are alternate names for a loop structure.

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 71

Chapter 2 • Understanding Structure72

A while...do, or more simply, a while loop, is a loop in which a process continues while some condition continues to
be true.

Attaching structures end-to-end is called stacking structures.

Placing a structure within another structure is called nesting the structures.

A block is a group of statements that execute as a single unit.

A priming read or priming input is the statement that reads the first input data record prior to starting a structured loop.

You can use the case structure when there are several distinct possible values for a single variable you are testing,
and each requires a different course of action.

In do-while and do-until loops, you ensure that a procedure executes at least once; then, depending on the answer
to the controlling question, the loop may or may not execute additional times.

A while loop is also called a pretest loop because a condition is tested before entering the loop even once.

Do-while and do-until loops are also called posttest loops because a condition is tested after the loop body has executed.

REVIEW QUESTIONS

1. Snarled program logic is called code.

a. snake
b. spaghetti
c. string
d. gnarly

2. A sequence structure can contain .

a. only one task
b. exactly three tasks
c. no more than three tasks
d. any number of tasks

3. Which of the following is not another term for a selection structure?

a. decision structure
b. if-then-else structure
c. loop structure
d. dual-alternative if structure

4. The structure in which you ask a question, and, depending on the answer, take some action and
then ask the question again, can be called all of the following except .

a. if-then-else
b. loop
c. repetition
d. iteration

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 72

Review Questions 73

5. Placing a structure within another structure is called the structures.

a. stacking
b. nesting
c. building
d. untangling

6. Attaching structures end-to-end is called .

a. stacking
b. nesting
c. building
d. untangling

7. The statement if age >= 65 then seniorDiscount = “yes” is an example of a
.

a. single-alternative if
b. loop
c. dual-alternative if
d. sequence

8. The statement while temperature remains below 60, leave the furnace on is
an example of a .

a. single-alternative if
b. loop
c. dual-alternative if
d. sequence

9. The statement if age < 13 then movieTicket = 4.00 else movieTicket = 8.50
is an example of a .

a. single-alternative if
b. loop
c. dual-alternative if
d. sequence

10. Which of the following attributes do all three basic structures share?

a. Their flowcharts all contain exactly three processing symbols.
b. They all contain a decision.
c. They all begin with a process.
d. They all have one entry and one exit point.

11. When you read input data in a loop within a program, the input statement that precedes the loop
.

a. is called a priming input
b. cannot result in eof
c. is the only part of a program allowed to be unstructured
d. executes hundreds or even thousands of times in most business programs

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 73

Chapter 2 • Understanding Structure74

12. A group of statements that execute as a unit is a .

a. cohort
b. family
c. chunk
d. block

13. Which of the following is acceptable in a structured program?

a. placing a sequence within the true half of a dual-alternative decision
b. placing a decision within a loop
c. placing a loop within one of the steps in a sequence
d. All of these are acceptable.

14. Which of the following is not a reason for enforcing structure rules in computer programs?

a. Structured programs are clearer to understand than unstructured ones.
b. Other professional programmers will expect programs to be structured.
c. Structured programs can be broken down into modules easily.
d. Structured programs usually are shorter than unstructured ones.

15. Which of the following is not a benefit of modularizing programs?

a. Modular programs are easier to read and understand than nonmodular ones.
b. Modular components are reusable in other programs.
c. If you use modules, you can ignore the rules of structure.
d. Multiple programmers can work on different modules at the same time.

16. Which of the following is true of structured logic?

a. Any task can be described using some combination of the three structures.
b. You can use structured logic with newer programming languages, such as Java and C#, but not with older ones.
c. Structured programs require that you break the code into easy-to-handle modules that each contain no

more than five actions.
d. All of these are true.

17. The structure that you can use when you must make a decision with several possible outcomes,
depending on the value of a single variable, is the .

a. multiple-alternative if structure
b. case structure
c. do-while structure
d. do-until structure

18. Which type of loop ensures that an action will take place at least one time?

a. a do-until loop
b. a while loop
c. a do-over loop
d. any structured loop

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 74

Find the Bugs 75

19. A do-until loop can always be converted to .

a. a while followed by a sequence
b. a sequence followed by a while
c. a case structure
d. a selection followed by a while

20. Which of the following structures is never required by any program?

a. a while
b. a do-until
c. a selection
d. a sequence

FIND THE BUGS

As you learned in Chapter 1, program errors have been called “bugs” since the early days of computer programming.
The term is often said to have originated from an actual moth that was discovered trapped in the circuitry of a com-
puter at Harvard University in 1945. Actually, the term “bug” was in use prior to 1945 to mean trouble with any electri-
cal apparatus; even during Thomas Edison’s life, it meant an “industrial defect.” However, the process of finding and
correcting program errors has come to be known as debugging.

Each of the following pseudocode segments contains one or more bugs that you must find and correct.

1. This pseudocode segment is intended to describe determining whether you have passed or failed a
course based on the average score of two classroom tests.

inputƒmidtermGrade
inputƒfinalGrade
averageƒ=ƒ(midGradeƒ+ƒfinalGrade)ƒ/ƒ2
printƒavg
ifƒaverageƒ>=ƒ60ƒthen
ƒƒƒprintƒ“Pass”
endif
else
ƒƒƒprintƒ“Fail”

2. This pseudocode segment is intended to describe computing the number of miles per gallon you
get with your automobile. The program segment should continue as long as the user enters a posi-
tive value for miles traveled.

inputƒgallonsOfGasUsed
inputƒmilesTraveled
whileƒmilesTraveledƒ>ƒ0
ƒƒƒƒƒƒƒmilesPerGallonƒ=ƒgallonsOfGasUsedƒ/ƒmilesTraveled
ƒƒƒƒƒƒƒƒprintƒmilesPerGal
endwhile

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 75

Chapter 2 • Understanding Structure76

3. This pseudocode segment is intended to describe computing the cost per day for a vacation. The
user enters a value for total dollars available to spend and can continue to enter new dollar
amounts while the amount entered is not 0. For each new amount entered, if the amount of money
available to spend per day is below $100, a message displays.

inputƒtotalDollarsAvailable
whileƒtotalDollarsAvailableƒnotƒ=ƒ0
ƒƒƒdollarsPerDayƒ=ƒtotalMoneyAvailableƒ/ƒ7
ƒƒƒprintƒdollarsPerDayƒ
endwhile
inputƒtotalDollarsAvailable
ifƒdollarsPerDayƒ>ƒ100ƒthen
ƒƒƒprintƒ“Youƒbetterƒsearchƒforƒaƒbargainƒvacation”
endwhile

EXERCISES

1. Match the term with the structure diagram. (Because the structures go by more than one name,
there are more terms than diagrams.)

1. sequence 5. decision
2. selection 6. if-then-else
3. loop 7. iteration
4. do-while

c.b.a.

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 76

Exercises 77

2. Match the term with the pseudocode segment. (Because the structures go by more than one name,
there are more terms than pseudocode segments.)

1. sequence 4. decision
2. selection 5. if-then-else
3. loop 6. iteration

a. while not eof
print theAnswer

endwhile
b. if inventoryQuantity > 0 then

do fillOrderProcess
else

do backOrderNotification
endif

c. do localTaxCalculation
do stateTaxCalculation
do federalTaxCalculation

3. Is each of the following segments structured, or unstructured? If unstructured, redraw it so that it
does the same thing but is structured.

D

E?
YesNo

b.

IF

JH

G?
Yes

No

a.

A

B?
Yes

No

C

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 77

Chapter 2 • Understanding Structure78

d.

R

S?
YesNo

TV

YX

W?
Yes

No

U?
Yes

No

e.

A?
YesNo

B

K

D

L

C?
Yes

I?

No

J

M

YesNo

E

G H

YesNo

N

F?

YesNo

c.

K?
YesNo

L

QP?
Yes

No

M?

ON

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 78

Exercises 79

4. Write pseudocode for each example (a through e) in Exercise 3.

5. Assume you have created a mechanical arm that can hold a pen. The arm can perform the follow-
ing tasks:

� Lower the pen to a piece of paper.

� Raise the pen from the paper.

� Move the pen one inch along a straight line. (If the pen is lowered, this action draws a one-inch line

from left to right; if the pen is raised, this action just repositions the pen one inch to the right.)

� Turn 90 degrees to the right.

� Draw a circle that is one inch in diameter.

Draw a structured flowchart or write pseudocode describing the logic that would cause the arm to
draw the following:

a. a one-inch square
b. a two-inch by one-inch rectangle
c. a string of three beads

Have a fellow student act as the mechanical arm and carry out your instructions.

6. Assume you have created a mechanical robot that can perform the following tasks:

� Stand up.

� Sit down.

� Turn left 90 degrees.

� Turn right 90 degrees.

� Take a step.

Additionally, the robot can determine the answer to one test condition:

� Am I touching something?

Place two chairs 20 feet apart, directly facing each other. Draw a structured flowchart or write
pseudocode describing the logic that would allow the robot to start from a sitting position in one
chair, cross the room, and end up sitting in the other chair.

Have a fellow student act as the robot and carry out your instructions.

7. Draw a structured flowchart or write structured pseudocode describing your preparation to go to
work or school in the morning. Include at least two decisions and two loops.

8. Draw a structured flowchart or write structured pseudocode describing your preparation to go to
bed at night. Include at least two decisions and two loops.

9. Choose a very simple children’s game and describe its logic, using a structured flowchart or
pseudocode. For example, you might try to explain Musical Chairs; Duck, Duck, Goose; the card
game War; or the elimination game Eenie, Meenie, Minie, Moe.

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 79

Chapter 2 • Understanding Structure80

10. Draw a structured flowchart or write structured pseudocode describing how your paycheck is cal-
culated. Include at least two decisions.

11. Draw a structured flowchart or write structured pseudocode describing the steps a retail store
employee should follow to process a customer purchase. Include at least two decisions.

DETECTIVE WORK

1. In this chapter, you learned what spaghetti code is. What is “ravioli code”?

2. Who was Edsger Dijkstra? What programming statement did he want to eliminate?

3. Who were Bohm and Jacopini? What contribution did they make to programming?

UP FOR DISCUSSION

1. Just because every logical program can be solved using only three structures (sequence, selection,
and loop) does not mean there cannot be other useful structures. For example, the case, do-while,
and do-until structures are never required, but they exist in many programming languages and can
be quite useful. Try to design a new structure of your own and explain situations in which it would
be useful.

2 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 80

3
After studying Chapter 3, you should be able to:

� Describe the advantages of modularization

� Modularize a program

� Understand how a module can call another module

� Explain how to declare variables

� Create hierarchy charts

� Understand documentation

� Design output

� Interpret file descriptions

� Understand the attributes of complete documentation

MODULES, HIERARCHY CHARTS,
AND DOCUMENTATION

81

3 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 81

82 Chapter 3 • Modules, Hierarchy Charts, and Documentation

MODULES, SUBROUTINES, PROCEDURES, FUNCTIONS, OR METHODS

Programmers seldom write programs as one long series of steps. Instead, they break down the programming problem
into reasonable units, and tackle one small task at a time. These reasonable units are called modules. Programmers
also refer to them as subroutines, procedures, functions, or methods.

The name that programmers use for their modules usually reflects the programming lan-
guage they use. For example, Visual Basic programmers use “procedure” (or “subproce-
dure”). C and C++ programmers call their modules “functions,” whereas C#, Java, and
other object-oriented language programmers are more likely to use “method.”
Programmers in COBOL, RPG, and BASIC (all older languages) are most likely to use
“subroutine.”

The process of breaking down a large program into modules is called modularization. You are never required to break
down a large program into modules, but there are at least four reasons for doing so:

� Modularization provides abstraction.

� Modularization allows multiple programmers to work on a problem.

� Modularization allows you to reuse your work.

� Modularization makes it easier to identify structures.

MODULARIZATION PROVIDES ABSTRACTION

One reason modularized programs are easier to understand is that they enable a programmer to see the big picture.
Abstraction is the process of paying attention to important properties while ignoring nonessential details. Abstraction is selec-
tive ignorance. Life would be tedious without abstraction. For example, you can create a list of things to accomplish today:

Do laundry
Call Aunt Nan
Start term paper

Without abstraction, the list of chores would begin:

Pick up laundry basket
Put laundry basket in car
Drive to laundromat
Get out of car with basket
Walk into laundromat
Set basket down
Find quarters for washing machine
. . . and so on.

You might list a dozen more steps before you finish the laundry and move on to the second chore on your original list. If you had
to consider every small, low-level detail of every task in your day, you would probably never make it out of bed in the morning.
Using a higher-level, more abstract list makes your day manageable.Abstraction makes complex tasks look simple.

TIP�

3 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 82

83Modules, Subroutines, Procedures, Functions, or Methods

Abstract artists create paintings in which they see only the “big picture”—color and
form—and ignore the details. Abstraction has a similar meaning among programmers.

Likewise, some level of abstraction occurs in every computer program. Fifty years ago, a programmer had to under-
stand the low-level circuitry instructions the computer used. But now, newer high-level programming languages allow
you to use English-like vocabulary in which one broad statement corresponds to dozens of machine instructions. No
matter which high-level programming language you use, if you display a message on the monitor, you are never
required to understand how a monitor works to create each pixel on the screen. You write an instruction like print
message and the details of the hardware operations are handled for you.

Modules or subroutines provide another way to achieve abstraction. For example, a payroll program can call a module
named computeFederalWithholdingTax. You can write the mathematical details of the function later,
someone else can write them, or you can purchase them from an outside source. When you plan your main payroll program,
your only concern is that a federal withholding tax will have to be calculated; you save the details for later.

MODULARIZATION ALLOWS MULTIPLE PROGRAMMERS TO WORK ON A PROBLEM

When you dissect any large task into modules, you gain the ability to divide the task among various people. Rarely does a
single programmer write a commercial program that you buy. Consider any word-processing, spreadsheet, or database
program you have used. Each program has so many options, and responds to user selections in so many possible ways,
that it would take years for a single programmer to write all the instructions. Professional software developers can write
new programs in weeks or months, instead of years, by dividing large programs into modules and assigning each module
to an individual programmer or programming team.

MODULARIZATION ALLOWS YOU TO REUSE YOUR WORK

If a subroutine or function is useful and well-written, you may want to use it more than once within a program or in other
programs. For example, a routine that checks the current date to make sure it is valid (the month is not lower than 1 or
higher than 12, the day is not lower than 1 or higher than 31 if the month is 1, and so on) is useful in many programs
written for a business. A program that uses a personnel file containing each employee’s birth date, hire date, last promo-
tion date, and termination date can use the date-validation module four times with each employee record. Other pro-
grams in an organization can also use the module; these include programs that ship customer orders, plan employees’
birthday parties, and calculate when loan payments should be made. If you write the date-checking instructions so they
are entangled with other statements in a program, they are difficult to extract and reuse. On the other hand, if you place
the instructions in their own module, the unit is easy to use and portable to other applications. The feature of modular
programs that allows individual modules to be used in a variety of applications is known as reusability.

You can find many real-world examples of reusability. When you build a house, you don’t invent plumbing and heating
systems; you incorporate systems with proven designs. This certainly reduces the time and effort it takes to build a
house. Assuming the plumbing and electrical systems you choose are also in service in other houses, they also
improve the reliability of your house’s systems—they have been tested under a variety of circumstances and have
been proven to function correctly. Similarly, software that is reusable is more reliable. Reliability is the feature of pro-
grams that assures you a module has been tested and proven to function correctly. Reliable software saves time and
money. If you create the functional components of your programs as stand-alone modules and test them in your current
programs, much of the work will already be done when you use the modules in future applications.

TIP�

3 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 83

84 Chapter 3 • Modules, Hierarchy Charts, and Documentation

MODULARIZATION MAKES IT EASIER TO IDENTIFY STRUCTURES

When you combine several programming tasks into modules, it may be easier for you to identify structures. For example,
you learned in Chapter 2 that the selection structure looks like Figure 3-1.

When you work with a program segment that looks like Figure 3-2, you may question whether it is structured. If you
can modularize some of the statements and give them a more abstract group name, as in Figure 3-3, it is easier to see
that the program involves a major selection (whether the hours value is greater than 40) that determines the type of pay
(regular or overtime). In Figure 3-3, it is also easier to see that the program segment is structured.

hoursWorked>40
No Yes

No Yes

grossPay =
hoursWorked
* rateOfPay

overtimePay =
(hoursWorked - 40)
* 1.5 * rateOfPay

overtimePay = 0

grossPay =
40 * rateOfPay
+ overtimePay

FIGURE 3-2: SECTION OF LOGIC FROM A PAYROLL
PROGRAM

category
=

“Salaried”

FIGURE 3-1: SELECTION STRUCTURE

3 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 84

85Modularizing a Program

The single program segment shown in Figure 3-2 accomplishes the same steps as the two program segments shown
together in Figure 3-3; both program segments are structured. The structure may be more obvious in the program seg-
ments in Figure 3-3 because you can see two distinct parts—a decision structure calls a subroutine named
overtimeModule(), and that module contains another decision structure, which is followed by a sequence.
Neither of the program segments shown in Figures 3-2 and 3-3 is superior to the other in terms of functionality, but you
may prefer to modularize to help you identify structures.

A professional programmer will never modularize simply to identify whether a program is
structured—he or she modularizes for reasons of abstraction, ease of dividing the work,
and reusability. However, for a beginning programmer, being able to see and identify
structure is important.

MODULARIZING A PROGRAM

Most programs contain a main module which contains the mainline logic; this module then accesses other modules or
subroutines. When you create a module or subroutine, you give it a name. The rules for naming modules are different in
every programming language, but they often are similar to the language’s rules for variable names. In this text, module
names follow the same two rules used for variable names:

� Module names must be one word.

� Module names should have some meaning.

Yes

overtimeModule()

grossPay =
40 * rateOfPay
+ overtimePay

No

overtimePay =
(hoursWorked - 40)
* 1.5 * rateOfPay

hoursWorked
> 40

return

overtimePay = 0

overtimeModule()

grossPay =
hoursWorked
* rateOfPay

category
=

“Salaried”

YesNo

FIGURE 3-3: MODULARIZED LOGIC FROM A PAYROLL PROGRAM

TIP�

3 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 85

86 Chapter 3 • Modules, Hierarchy Charts, and Documentation

Additionally, in this text, module names are followed by a set of parentheses. This will help you distinguish module
names from variable names. This style corresponds to the way modules are named in many programming languages,
such as Java, C++, and C#.

Table 3-1 lists some possible module names for a module that calculates an employee’s gross pay, and provides a
rationale for the appropriateness of each one.

TABLE 3-1: VALID AND INVALID MODULE NAMES FOR A MODULE THAT CALCULATES AN EMPLOYEE’S GROSS PAY

Suggested module names for a Comments
module that calculates an
employee’s gross pay

calculateGrossPay() Good

calculateGross() Good—most people would interpret “Gross” to be short for

“Gross pay”

calGrPy() Legal, but cryptic

calculateGrossPayForOneEmployee() Legal, but awkward

calculate gross() Not legal—embedded space

calculategrosspay() Legal, but hard to read without camel casing

As you learn more about modules in specific programming languages, you will find that
you sometimes place variable names within the parentheses of module names. Any vari-
ables enclosed in the parentheses contain information you want to send to the module. For
now, the parentheses we use at the end of module names will be empty.

Most programming languages require that module names begin with an alphabetic character.
This text follows that convention.

Although it is not a requirement of any programming language, it frequently makes sense to
use a verb as all or part of a module’s name, because modules perform some action. Typical
module names begin with words such as get, compute, and print. When you program in
visual languages that use screen components such as buttons and text boxes, the module
names frequently contain verbs representing user actions, such as click and drag.

When a program or module uses another module, you can refer to the main program as the calling program (or calling
module), because it “calls” the module’s name when it wants to use the module. The flowchart symbol used to call a
module is a rectangle with a bar across the top. You place the name of the module you are calling inside the rectangle.

When one module calls another, the called module is a submodule.

TIP�

TIP�

TIP�

TIP�

3 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 86

87Modularizing a Program

Instead of placing only the name of the module they are calling in the flowchart, many
programmers insert an appropriate verb, such as “perform” or “do,” before the module
name. These verbs help clarify that the module represents an action to be carried out.

A module can call another module, and the called module can call another. The number of
chained calls is limited only by the amount of memory available on your computer.

You draw each module separately with its own sentinel symbols. The symbol that is the equivalent of the start
symbol in a program contains the name of the module. This name must be identical to the name used in the calling
program. The symbol that is the equivalent of the stop symbol in a program does not contain “stop”; after all, the
program is not ending. Instead, the module ends with a “gentler,” less final term, such as exit or return. These
words correctly indicate that when the module ends, the logical progression of statements will return to the calling
program.

A flowchart and pseudocode for a program that calculates the arithmetic average of two numbers a user enters can
look like Figure 3-4. Here the main program, or program that runs from start to stop and calls other modules, calls
three modules: getInput(), calculateAverage(), and printResult().

The logic of the program in Figure 3-4 proceeds as follows:

1. The main program starts.

2. The main program calls the getInput() module.

3. Within the getInput() module, the prompt “Enter a number” appears. A prompt is a

message that is displayed on a monitor, asking the user for a response.

4. Within the getInput() module, the program accepts a value into the firstNumber

variable.

5. Within the getInput() module, the prompt “Enter another number” appears.

6. Within the getInput() module, the program accepts a value into the secondNumber

variable.

7. The getInput() module ends, and control returns to the main calling program.

8. The main program calls the calculateAverage() module.

9. Within the calculateAverage() module, a value for the variable average is calculated.

10. The calculateAverage() module ends, and control returns to the main calling program.

11. The main program calls the printResult() module.

12. Within the printResult() module, the value of average is displayed.

13. Within the printResult() module, a thank-you message is displayed.

14. The printResult() module ends, and control returns to the main calling program.

15. The main program ends.

TIP�

TIP�

3 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 87

88 Chapter 3 • Modules, Hierarchy Charts, and Documentation

Whenever a main program calls a module, the logic transfers to the module. When the module ends, the logical flow
transfers back to the main calling program and resumes where it left off.

The computer keeps track of the correct memory address to which it should return after
executing a module by recording the memory address in a location known as the stack.

start
 perform getInput()
 perform calculateAverage()
 perform printResult()
stop

getInput()
 print “Enter a number”
 read firstNumber
 print “Enter another number”
 read secondNumber
return

calculateAverage()
 average = (firstNumber + secondNumber) / 2
return

printResult()
 print average
 print “Thank you”
return

return

read
secondNumber

print
“Enter

another
number”

read
firstNumber

getInput()

print average

print
“Thank you”

return

printResult()

print
“Enter

a
number”

FIGURE 3-4: FLOWCHART AND PSEUDOCODE FOR AVERAGING PROGRAM WITH MODULES

start

getInput()

calculateAverage()

printResult()

stop

calculateAverage()

return

average =
(firstNumber +
secondNumber)

/ 2

TIP�

3 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 88

89Modules Calling Other Modules

MODULES CALLING OTHER MODULES

Just as a program can call a module or subroutine, any module can call another module. For example, the program
illustrated in Figure 3-4 can be broken down further, as shown in Figure 3-5.

start
 perform getInput()
 perform calculateAverage()
 perform printResult()
stop

getInput()
 perform getFirstValue()
 perform getSecondValue()
return

getFirstValue()
 print “Enter a number”
 read firstNumber
return

getSecondValue()
 print “Enter another number”
 read secondNumber
return

calculateAverage()
 average = (firstNumber + secondNumber) / 2
return

printResult()
 print average
 print “Thank you”
return

return

getSecondValue()

read
secondNumber

print
“Enter

another
number”calculateAverage()

return

average =
(firstNumber +
secondNumber)

/ 2

FIGURE 3-5: FLOWCHART AND PSEUDOCODE FOR AVERAGING PROGRAM WITH SUBMODULES

return

printResult()

print
“Thank you”

print average

getInput()

getFirstValue()

return

getSecondValue()

getFirstValue()

print
“Enter

a number”

read
firstNumber

return

start

getInput()

calculateAverage()

printResult()

stop

3 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 89

90 Chapter 3 • Modules, Hierarchy Charts, and Documentation

After the program in Figure 3-5 begins:

1. The main program calls the getInput() module, and the logical flow transfers to that module.

2. From there, the getInput() module calls the getFirstValue() module, and the logical

flow immediately transfers to the getFirstValue() module.

3. The getFirstValue() module displays a prompt and reads a number. When

getFirstValue() ends, control passes back to getInput(), where

getSecondValue() is called.

4. Control passes to getSecondValue(), which displays a prompt and retrieves a second

value from the user. When this module ends, control passes back to the getInput() module.

5. When the getInput() module ends, control returns to the main program.

6. Then, calculateAverage() and printResult() execute as before.

Determining when to break down any particular module into its own subroutines or submodules is an art. Programmers
do follow some guidelines when deciding how far to break down subroutines, or how much to put in each of them.
Some companies may have arbitrary rules, such as “a subroutine should never take more than a page,” or “a module
should never have more than 30 statements in it,” or “never have a method or function with only one statement in it.”

Rather than use such arbitrary rules, a better policy is to place together statements that contribute to one specific task.
The more the statements contribute to the same job, the greater the functional cohesion of the module. A routine that
checks the validity of a date variable’s value, or one that prompts a user and allows the user to type in a value, is
considered cohesive. A routine that checks date validity, deducts insurance premiums, and computes federal withhold-
ing tax for an employee would be less cohesive.

Date-checking is an example of a commonly used module in business programs, and one
that is quite functionally cohesive. In business programs, many dates are represented using
six or eight digits in month-day-year format. For example, January 21, 2007 might be
stored as 012107 or 01212007. However, you might also see day-month-year format, as in
21012007. The current International Organization for Standardization (ISO) standard for
representing dates is to use eight digits, with the year first, followed by the month and day.
For example, January 21, 2007 is 20070121 and would be displayed as 2007-01-21. The
ISO creates standards for businesses that make products more reliable and trade between
countries easier and fairer.

DECLARING VARIABLES

The primary work of most modules in most programs you write is to manipulate data—for example, to calculate the fig-
ures needed for a paycheck, customer bill, or sales report. You store your program data in variables.

Many program languages require you to declare all variables before you use them. Declaring a variable involves pro-
viding a name for the memory location where the computer will store the variable value, and notifying the computer of

TIP�

3 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 90

91Declaring Variables

what type of data to expect. Every programming language requires that you follow specific rules when declaring vari-
ables, but all the rules involve identifying at least two attributes for every variable:

� You must declare a data type.

� You must give the variable a name.

You learned in Chapter 1 that different programming languages provide different variable types, but that all allow at
least the distinction between character and numeric data. The rest of this book uses just two data types—num, which
holds number values, and char, which holds all other values, including those that contain letters and combinations of
letters and numbers.

Remember, you also learned in Chapter 1 that variable names must not contain spaces, so this book uses statements
such as char lastName and num weeklySalary to declare two variables of different types.

Although it is not a requirement of any programming language, it usually makes sense to
give a variable a name that is a noun, because it represents a thing.

Some programming languages, such as Visual Basic and BASIC, do not require you to name any variable until the first
time you use it. However, other languages, including COBOL, C++, C#, and Java, require that you declare variables with
a name and a data type. Some languages require that you declare all variables at the beginning of a program, before
you write any executable statements; others allow you to declare variables at any point, but require the declaration
before you can use the variable. For our purposes, this book follows the convention of declaring all variables at the
beginning of a program.

In many modern programming languages, variables typically are declared within each module that uses them. Such
variables are known as local variables. As you continue your study of programming logic, you will learn how to use
local variables and understand their advantages. For now, this text will use global variables—variables that are given
a type and name once, and then used in all modules of the program.

For example, to complete the averaging program shown in Figure 3-5 so that its variables are properly declared, you
can redraw the main program flowchart to look like the one shown in Figure 3-6. Three variables are required:
firstNumber, secondNumber, and average. The variables are declared as the first step in the program,
before you use any of them, and each is correctly identified as numeric. They appear to the side of the “declare vari-
ables” step in an annotation symbol or annotation box, which is simply an attached box containing notes. You can
use an annotation symbol any time you have more to write than you can conveniently fit within a flowchart symbol, or
any time you want to add an explanatory comment to a flowchart.

TIP�

3 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 91

92 Chapter 3 • Modules, Hierarchy Charts, and Documentation

Many programming languages support more specific numeric types with names like int
(for integers or whole numbers), float or single (for single-precision, floating-point val-
ues; that is, values that contain one or more decimal-place digits), and double (for double-
precision, floating-point values, which means more memory space is reserved). Many
languages distinguish even more precisely. For example, in addition to whole-number
integers, C++, C#, and Java allow short integers and long integers, which require less and
more memory, respectively.

Many programming languages support more specific character types. Often, program-
ming languages provide a distinction between single-character variables (such as an ini-
tial or a grade in a class) and string variables (such as a last name), which hold multiple
characters.

Figure 3-6 also shows pseudocode for the same program. Because pseudocode is written and not drawn, you might
choose to list the variable names below the declare variables statement, as shown.

getInput()

calculateAverage()

printResult()

stop

start
start
 declare variables

num firstNumber
num secondNumber
num average

perform getInput()
 perform calculateAverage()

perform printResult()
stop

FIGURE 3-6: FLOWCHART AND PSEUDOCODE FOR MAINLINE LOGIC FOR AVERAGING PROGRAM SHOWING
DECLARED VARIABLES

declare
variables

num firstNumber
num secondNumber
num average

TIP�

TIP�

3 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 92

93Creating Hierarchy Charts

Programmers sometimes create a data dictionary, which is a list of every variable name used in a program, along with
its type, size, and description. When a data dictionary is created, it becomes part of the program documentation.

After you name a variable, you must use that exact name every time you refer to the variable
within your program. In many programming languages, even the case matters, so a variable
name like firstNumber represents a different memory location than firstnumber or
FirstNumber.

CREATING HIERARCHY CHARTS

Besides describing program logic with a flowchart or pseudocode, when a program has several modules calling other
modules, programmers often use a tool to show the overall picture of how these modules are related to one another.
You can use a hierarchy chart to illustrate modules’ relationships. A hierarchy chart does not tell you what tasks are to
be performed within a module; it doesn’t tell you when or how a module executes. It tells you only which routines exist
within a program and which routines call which other routines.

The hierarchy chart for the last version of the number-averaging program looks like Figure 3-7, and shows which mod-
ules call which others. You don’t know when the modules are called or why they are called; that information is in the
flowchart or pseudocode. A hierarchy chart just tells you which modules are called by other modules.

You may have seen hierarchy charts for organizations, such as the one in Figure 3-8. The chart shows who reports to
whom, not when or how often they report. Program hierarchy charts operate in an identical manner.

Figure 3-9 shows an example of a hierarchy chart for the billing program of a mail-order company. The hierarchy chart
supplies module names only; it provides a general overview of the tasks to be performed, without specifying any details.

main()

printResult()getInput()

getFirstValue() getSecondValue()

calculateAverage()

FIGURE 3-7: HIERARCHY CHART FOR NUMBER-AVERAGING PROGRAM IN FIGURE 3-6

TIP�

3 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 93

94 Chapter 3 • Modules, Hierarchy Charts, and Documentation

Because program modules are reusable, a specific module may be called from several locations within a program. For
example, in the billing program hierarchy chart in Figure 3-9, you can see that the printCustomerData() mod-
ule is used twice. By convention, you blacken a corner of each box representing a module used more than once. This
action alerts readers that any change to this module will affect more than one location.

The hierarchy chart can be a useful tool when a program must be modified months or years after the original writing. For
example, if a tax law changes, a programmer might be asked to rewrite the calculateTax() module in the billing
program diagrammed in Figure 3-9. As the programmer changes the calculateTax() routine, the hierarchy chart
shows what other dependent routines might be affected. If a change is made to printCustomerData(), the pro-
grammer is alerted that changes will occur in multiple locations. A hierarchy chart is useful for “getting the big picture” in
a complex program.

FIGURE 3-9: BILLING PROGRAM HIERARCHY CHART

main()

receiveOrder() processOrder() billCustomer()

calculateBill() calculateTax() printBill()confirm() checkAvailability()

printCustomerData() printItemData() printCustomerData() printRestOfBill()

PROGRAMMERSALES REP SALES REP SALES REP

FIGURE 3-8: AN ORGANIZATIONAL HIERARCHY CHART

EASTERN
 SALES MANAGER

VP OF INFORMATIONVP OF MARKETING

PROGRAMMING
 MANAGER

OPERATIONS
MANAGER

EVENING
OPERATOR

PROGRAMMER

WESTERN
 SALES MANAGER

SALES REPSALES REP

CEO

3 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 94

95Output Documentation

Hierarchy charts are used in procedural programming, but they are infrequently used in
object-oriented programming. Other types of diagrams frequently are used in object-oriented
environments. In Chapter 15 of the Comprehensive edition of this book, you learn about the
Unified Modeling Language, which is a set of diagrams you use to describe a system.

UNDERSTANDING DOCUMENTATION

Documentation refers to all of the supporting material that goes with a program. Two broad categories of documenta-
tion are the documentation intended for users and the documentation intended for programmers. People who use com-
puter programs are called end users, or users for short. Most likely, you have been the end user of an application such
as a word-processing program or a game. When you purchase software that other programmers have written, you
appreciate clearly written instructions on how to install and use the software. These instructions constitute user docu-
mentation. In a small organization, programmers may write user documentation, but in most organizations, systems
analysts or technical writers produce end-user instructions. These instructions may take the form of a printed manual,
or may be presented online through a Web site or on a compact disc.

When programmers begin to plan the logic of a computer program, they require instructions known as program documen-
tation. End users never see program documentation; rather, programmers use it when planning or modifying programs.

Program documentation falls into two categories: internal and external. Internal program documentation consists of
program comments, or nonexecuting statements that programmers place within their code to explain program state-
ments in English. Comments serve only to clarify code; they do not affect the running of a program. Because methods
for inserting comments vary, you will learn how to insert comments when you learn a specific programming language.

In Visual Basic, program comments begin with the letters REM (for REMark) or with a sin-
gle apostrophe. In C++, C#, and Java, comments can begin with two forward slashes (//).
Some newer programming languages such as C# and Java provide a tool that automatically
converts the programmer’s internal comments to external documentation.

External program documentation includes all the supporting paperwork that programmers develop before they write
a program. Because most programs have input, processing, and output, usually there is documentation for each of
these functions.

OUTPUT DOCUMENTATION

Output documentation is usually the first to be written. This may seem backwards, but if you’re planning a trip, which
do you decide first: how to get to your destination or where you’re going?

Most requests for programs arise because a user needs particular information to be output, so the planning of program
output is usually done in consultation with the person or persons who will be using it. Only after the desired output is
known can the programmer hope to plan the processes needed to produce the output.

TIP�

TIP�

3 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 95

96 Chapter 3 • Modules, Hierarchy Charts, and Documentation

Often the programmer does not design the output. Instead, the user who requests the output presents the programmer
(or programming team) with an example or sketch of the desired result. Then the programmer might work with the user
to refine the request, suggest improvements in the design, or clarify the user’s needs. If you don’t determine precisely
what the user wants or needs at this point, you will write a program that the user soon wants redesigned and rewritten.

A very common type of output is a printed report. You can design a printed report on a printer spacing chart, which is
also referred to as a print chart or a print layout. Figure 3-10 shows a printer spacing chart, which basically looks like
graph paper. The chart has many boxes, and in each box the designer places one character that will be printed.

For example, suppose you want to create a printed report with the following features:

� A printed title, INVENTORY REPORT, that begins 11 spaces over from the left of the page and
one line down

� Column headings for ITEM NAME, PRICE, and QUANTITY IN STOCK two lines below the title and
centered over the actual data items that display

� Variable data appearing below each of the column headings

With these features, the print chart you create would resemble the one in Figure 3-10.

The exact spacing and the use of uppercase or lowercase characters in the print chart make a difference. Notice that
the constant data in the output, the items that do not vary but remain the same in every execution of the report, do not
need to follow the same rules as variable names in the program. Within a report, constants like INVENTORY REPORT
and ITEM NAME can contain spaces. These headings exist to help readers understand the information presented in the
report—not for a computer to interpret; there is no need to run the names together, as you do when choosing identi-
fiers for variables.

FIGURE 3-10: PLANNED PRINT CHART

1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5
1 2 3 4 5 6 7 8 9

I N V E N T O R E P O R T

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
1 5 5 5 5 5 5 5

R Y
1
2
3
4
5
6
7
8
9
10
11
12
13
14

I T E M N A M E P R I C E Q U A N T I T Y I N S T O C K

X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X

9 9 9 . 9 9
9 9 9 . 9 9

9 9 9 9
9 9 9 9

3 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 96

97Output Documentation

A print layout typically shows how the variable data will appear on the report. Of course, the data will probably be differ-
ent every time the report is run. Thus, instead of writing in actual item names and prices, the users and programmers
usually use Xs to represent generic variable character data and 9s to represent generic variable numeric data. (Some
programmers use Xs for both character and numeric data.) Each line containing Xs and 9s representing data is a detail
line, or a line that displays the data details. Detail lines typically appear many times per page, as opposed to heading
lines, which contain the title and any column headings, and usually appear only once per page.

Even though an actual inventory report might eventually go on for hundreds or thousands of detail lines, writing two or
three rows of Xs and 9s is sufficient to show how the data will appear. For example, if a report contains employee
names and salaries, those data items will occupy the same print positions on output for line after line, whether the out-
put eventually contains 10 employees or 10,000. A few rows of identically positioned Xs and 9s are sufficient to estab-
lish the pattern.

In any report layout, then, you write in constant data (such as headings) that will be the same on every run of the report.
You write Xs and 9s to represent the variable data (such as the items, their prices, and their quantities) that will change
from run to run.

Besides header lines and detail lines, reports often include special lines at the end of a report. These may contain a
message that indicates the report is done (so that users do not worry there might be additional pages they are missing),
or numeric statistics such as totals or averages. Even though lines at the end of a report don’t always contain numeric
totals, they are usually referred to generically as total lines or summary lines.

Printed reports do not necessarily contain detail lines. A report might contain only headers and summary lines. For
example, a payroll report might contain only a heading and a total gross payroll figure for each department in the com-
pany, or a college might print a report showing how many students have declared each available major. These reports
contain no detail—no information about individual employees or students—but they do contain summaries. Instead of
creating a print chart, you might choose to create a less formal plan for output. For example, you might just sketch a
plan using paper and pencil. Many programmers never use formal print charts, but they are discussed here so you will
be familiar with them if you encounter them on the job. Besides using handwritten print charts, you also can design
report layouts on a computer using a word-processing program or design software.

Not all program output takes the form of printed reports. If your program’s output will appear on a monitor screen, partic-
ularly if you are working in a GUI (graphical user interface) environment like Windows, your design issues will differ. In a
GUI program, the user sees a screen and can typically make selections using a mouse or other pointing device. Instead of
a print chart, your output design might resemble a sketch of a screen. Figure 3-11 shows a hand-drawn sketch of a win-
dow that displays inventory records in a graphical environment. On a monitor, you might choose to allow the user to see
only one or a few records at a time, so one concern is providing a means for users to scroll through displayed records. In
Figure 3-11, records are accessed using a single button that the user can click to read the next record; in a more sophis-
ticated design, the user might be able to “jump” to the first or last record, or look up a specific record.

3 Chapter CXXXX 35539.ps 10-13-05 8:32 AM Page 97

98 Chapter 3 • Modules, Hierarchy Charts, and Documentation

A printed report is also called a hard copy, whereas screen output is referred to as a soft copy.

Achieving good screen design is an art that requires much study and thought to master.
Besides being visually pleasing, good screen design also requires ease of use and accessibility.

GUI programs often include several different screen formats that a user will see while
running a program. In such cases, you would design several screens.

INPUT DOCUMENTATION

Once you have planned the design of the output, you need to know what input is available to produce this output. If you
are producing a report from stored data, you frequently will be provided with a file description that describes the data
contained in a file. You usually find a file’s description as part of an organization’s information systems documentation;
physically, the description might be on paper in a binder in the Information Systems department, or it might be stored
on a disk. If the file you will use comes from an outside source, the person requesting the report will have to provide
you with a description of the data stored on the file. Figure 3-12 shows an example of an inventory file description.

INVENTORY FILE DESCRIPTION
File name: INVENTORY
FIELD DESCRIPTION DATA TYPE COMMENTS
Name of item Character 15 bytes
Price of item Numeric 2 decimal places
Quantity in stock Numeric 0 decimal places

FIGURE 3-12: INVENTORY FILE DESCRIPTION

Inventory Report

Item name

Price

Quantity in stock

XXXXXXXXXXXXXXX

999.99

9999

Click here to see next record

FIGURE 3-11: INVENTORY RECORDS DISPLAYED IN A GUI ENVIRONMENT

TIP�

TIP�

TIP�

3 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 98

99Input Documentation

Not all programs use previously stored input files. Some use interactive input data sup-
plied by a user during the execution of a program. In the next chapter, you will see that
whether input comes from a file or from user input, the process is very similar.

Some programs do not produce a printed report or screen display, but instead produce an
output file that is stored directly on a storage device, such as a disk. If your program pro-
duces file output, you will create a file description for your output. Other programs then
may use your output file description as an input description.

The inventory file description in Figure 3-12 shows that each item’s name is character data that occupies the first
15 bytes of each record in the file. A byte is a unit of computer storage that can contain any of 256 combinations of 0s
and 1s that often represent a character. The code of 0s and 1s depends on the type of computer system you are using.
Popular coding schemes include ASCII (American Standard Code for Information Interchange), EBCDIC (Extended Binary
Coded Decimal Interchange Code), and Unicode. Each of these codes uses a different combination of 1s and 0s to repre-
sent characters—you can see a listing of each code’s values in Appendix B. For example, in ASCII, an uppercase “A” is
represented by 01000001. Programmers seldom care about the code used; for example, if an “A” is stored as part of a
person’s name, the programmer’s only concern is that the “A” in the name appears correctly on output—not the combi-
nation of 0s and 1s that represents it. This book assumes that one stored character occupies one byte in an input file.

Some item names may require all 15 positions allowed for the name in the input file—for example, “12 by 16 carpet”,
which contains exactly 15 characters, including spaces. Other item names require fewer than the allotted 15 positions—
for example, “door mat”. In such cases, the remaining allotted positions might remain blank, or the short description
might be followed by a string-terminating character. (For example, in some systems, a string is followed by a special
character in which all the bits are 0s.) On the other hand, when only 15 storage positions are allowed for a name, some
names might be too long and have to be truncated or abbreviated. For example, “hand woven carpet” might be stored
as “hand woven carp”. Whether the item name requires all 15 positions or not, you can see from the input file descrip-
tion in Figure 3-12 that the price for each item begins after the description name, in position 16 of each input record.

The price of any item in the inventory file is numeric. In different storage systems, a number might occupy a different
number of physical file positions. Additionally, numbers with decimal places frequently are stored using more bytes than
integer numbers, even when the integer number is a “bigger” number. For example, in many systems, 5678 might be
stored in a four-byte numeric integer field, while 2.2 might be stored in an eight-byte floating-point numeric field. When
thinking logically about numeric fields, you do not care how many bytes of storage they occupy; what’s important is that
they hold numbers. For convenience, this book will simply designate numeric values as such, and let you know whether
decimal places are included.

Repeated characters whose position is assumed frequently are not stored in data files. For
example, dashes in Social Security numbers or telephone numbers, dollar signs on money
amounts, or a period after a middle initial are seldom stored in data files. These symbols
are used on printed reports, where it is important for the reader to be able to easily inter-
pret these values.

TIP�

TIP�

TIP�

3 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 99

100 Chapter 3 • Modules, Hierarchy Charts, and Documentation

Typically, programmers create one program variable for each field that is part of the input file. In addition to the field
descriptions contained in the input documentation, the programmer might be given specific variable names to use for
each field, particularly if such variable names must agree with the ones that other programmers working on the project
are using. In many cases, however, programmers are allowed to choose their own variable names. Therefore, you can
choose itemName, nameOfItem, itemDescription, or any other reasonable one-word variable name
when you refer to the inventory item name within your program. The variable names you use within your program need
not match constants, such as column headings, that might be printed on a hard copy report. Thus, the variable
itemName might hold the characters that will print under the column heading NAME OF ITEM.

For example, examine the input file description in Figure 3-12. When this file is used for a project in which the pro-
grammer can choose variable names, he or she might choose the following variable declaration list:

char itemName
num itemPrice
num itemQuantity

Each data field in the list is declared using the data type that corresponds to the data type indicated in the file descrip-
tion, and has an appropriate, easy-to-read, single-word variable name.

Some programmers argue that starting each field with a prefix indicating the file name
(for example, “item” in itemName and itemPrice), helps to identify those variables as
“belonging together.” Others argue that repeating the “item” prefix is redundant and
requires unnecessary typing by the programmer; these programmers would argue that
“name”, “price”, and “quantity” are descriptive enough.

When a programmer uses an identifier like itemName, that variable identifier exists in
computer memory only for the duration of the program in which the variable is declared.
Another program can use the same input file and refer to the same field as nameOfItem.
Variable names exist in memory during the run of a program—they are not stored in the
data file. Variable names simply represent memory addresses at which pieces of data are
stored while a program executes.

Recall the data hierarchy relationship introduced in Chapter 1:

� Database

� File

� Record

� Field

� Character

Whether the inventory file is part of a database or not, it will contain many records; each record will contain an
item name, price, and quantity, which are fields. In turn, the field that holds the name of an item might contain up to
15 characters—for example, “12 by 16 carpet”, “blue miniblinds”, or “diskette holder”.

TIP�

TIP�

3 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 100

101Input Documentation

Organizations may use different forms to relay the information about records and fields, but the very least the program-
mer needs to know is:

� What is the name of the file?

� What data fields does it contain, and in what order?

� What type of data can be stored in each field—character or numeric?

Notice that a data field’s position on the input file never has to correspond with the same item’s position in an output
file or in a print chart. For example, you can use the data file described in Figure 3-12 to produce the report shown in
Figure 3-10. In the input data file, the item name appears in positions 1 through 15. However, on the printed report, the
same information appears in columns 4 through 18. In an input file, data are “squeezed” together—no human being
will read this file, and there is no need for it to be attractively spaced. However, on printed output, you typically include
spaces between data items so they are legible as well as attractive. Figure 3-13 illustrates how input fields are read by
the program and converted to output fields.

You are never required to output all the available characters that exist in a field in an input
record. For example, even though the item name in the input file description in Figure 3-12
shows that each item contains 15 stored characters, you might decide to display only 10 of
them on output, especially if your output report contained many columns and you were
“crunched” for space.

12
BY 16 CARPET

289952000
DOOR MAT

029000185HAND
WOVEN

CARP650000045

 INVENTORY REPORT

 ITEM NAME PRICE QUANTITY IN STOCK

 12 BY 16 CARPET 289.95 2000
 DOOR MAT 29.00 185
 HAND WOVEN CARP 650.00 45

INVENTORY REPORT

print itemName, itemPrice, itemQuantity

read itemName, itemPrice, itemQuantity

INVENTORY PROGRAM

DISK CONTAINING INVENTORY FILE

FIGURE 3-13: STORAGE OF INPUT AND DISPLAY OF OUTPUT

TIP�

3 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 101

102 Chapter 3 • Modules, Hierarchy Charts, and Documentation

The inventory file description in Figure 3-12 contains all the data the programmer needs to create the output requested
in Figure 3-10—the output lists each item’s name, price, and quantity, and the input records clearly contain that data.
Often, however, a file description more closely resembles the description in Figure 3-14.

The file description in Figure 3-14 contains nine fields. With this file description, it’s harder to pinpoint the information
needed for the report, but the necessary data fields are available, and you still can write the program. The input file
contains more information than you need for the report you want to print, so you will ignore some of the input fields,
such as Item Number and Sales rep. These fields certainly may be used in other reports within the company. Typically,
data input files contain more data than any one program requires. For example, your credit card company stores histori-
cal data about your past purchases, but these are not included on every bill. Similarly, your school records contain more
data than are printed on each report card or tuition bill.

However, if the input file description resembles Figure 3-15, there are not enough data items to produce the requested
report. In the file description in Figure 3-15, there is no indication that the input file contains a value for quantity in
stock. If the user really needs (or wants) the report as requested, it’s out of the programmer’s hands until the data can
be collected from some source and stored in a file the programmer can use.

INVENTORY FILE DESCRIPTION
File name: INVENTORY
FIELD DESCRIPTION DATA TYPE COMMENTS
Item Number Numeric 0 decimal places
Name of item Character 15 bytes
Size Numeric 0 decimal places
Manufacturing cost of item Numeric 2 decimal places
Retail price of item Numeric 2 decimal places
Reorder point Numeric 0 decimal places
Sales rep Character 10 bytes
Sales last year Numeric 2 decimal places

FIGURE 3-15: INSUFFICIENT INVENTORY FILE DESCRIPTION IF QUANTITY IN STOCK IS NEEDED FOR OUTPUT

INVENTORY FILE DESCRIPTION
File name: INVENTORY
FIELD DESCRIPTION DATA TYPE COMMENTS
Item Number Numeric 0 decimal places
Name of item Character 15 bytes
Size Numeric 0 decimal places
Manufacturing cost of item Numeric 2 decimal places
Retail price of item Numeric 2 decimal places
Quantity in stock Numeric 0 decimal places
Reorder point Numeric 0 decimal places
Sales rep Character 10 bytes
Sales last year Numeric 2 decimal places

FIGURE 3-14: EXPANDED INVENTORY FILE DESCRIPTION

3 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 102

103Completing the Documentation

Each field printed on a report does not need to exist on the input file. Assume that a user requests a report in the for-
mat shown in the example in Figure 3-16, which includes a column labeled “Profit”, and that the input file description is
the one in Figure 3-14. In this case, it’s difficult to determine whether you can create the requested report, because the
input file does not contain a profit field. However, because the input data include the company’s cost and selling
price for each item, you can (after consulting with the user to make sure you agree on the definition of “profit”) calcu-
late the profit within your program by subtracting the cost from the price, and then produce the desired output.

COMPLETING THE DOCUMENTATION

When you have designed the output and confirmed that it is possible to produce it from the input, then you can plan the
logic of the program, code the program, and test the program. The original output design, input description, flowchart or
pseudocode, and program code all become part of the program documentation. These pieces of documentation are
typically stored together in a binder within the programming department of an organization, where they can be studied
later when program changes become necessary.

In addition to this program documentation, you typically must create user documentation. User documentation includes
all the manuals or other instructional materials that nontechnical people use, as well as the operating instructions that
computer operators and data-entry personnel need. It needs to be written clearly, in plain language, with reasonable
expectations of the users’ expertise. Within a small organization, the programmer may prepare the user documentation.
In a large organization, user documentation is usually prepared by technical writers or systems analysts, who oversee
programmers’ work and coordinate programmers’ efforts. These professionals consult with the programmer to ensure
that the user documentation is complete and accurate.

The areas addressed in user documentation may include:

� How to prepare input for the program

� To whom the output should be distributed

� How to interpret the normal output

� How to interpret and react to any error message generated by the program

� How frequently the program needs to run

 Profit Report

Item Number Price Cost Profit

 1265 9.99 8.50 1.49
 1288 15.00 12.62 2.38
 1376 18.89 16.00 2.89
 1644 21.99 14.50 7.49

FIGURE 3-16: SAMPLE PROFIT REPORT

3 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 103

104 Chapter 3 • Modules, Hierarchy Charts, and Documentation

Complete documentation also might include operations support documentation. This type
of documentation provides backup and recovery information, run-time instructions, and
security considerations for computer center personnel who run large applications within
data centers.

All these issues must be addressed before a program can be fully functional in an organization. When users throughout
an organization can supply input data to computer programs and obtain the information they need in order to do their
jobs well, then a skilled programmer has provided a complete piece of work.

TIP�

3 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 104

Key Terms 105

CHAPTER SUMMARY

� Programmers break down programming problems into smaller, reasonable units called modules, subroutines,

procedures, functions, or methods. Modularization provides abstraction, allows multiple programmers to work

on a problem, makes it easy to reuse your work, and allows you to identify structures more easily.

� When you create a module or subroutine, you give the module a name that a calling program uses when

the module is about to execute. The flowchart symbol used to call a subroutine is a rectangle with a bar

across the top; the name of the module that you are calling is inside the rectangle. You draw a flowchart

for each module separately, with its own sentinel symbols.

� A module can call other modules.

� Declaring a variable involves providing a name for the memory location where the computer will store the

variable value, and notifying the computer of what type of data to expect.

� You can use a hierarchy chart to illustrate modules’ relationships.

� Documentation refers to all of the supporting material that goes with a program.

� Output documentation is usually written first. You can design a printed report on a printer spacing chart to

represent both constant and variable data. You also can design report layouts on a computer using a

word-processing program or design software, or draw diagrams of planned screen output.

� A file description lists the data contained in a file, including a description, data type, and any other necessary

information, such as number of decimal places in numeric data.

� In addition to program documentation, you typically must create user documentation, which includes the

manuals or other instructional materials that nontechnical people use, as well as the operating instruc-

tions that computer operators and data-entry personnel may need.

KEY TERMS

Modules are small program units that you can use together to make a program. Programmers also refer to modules
as subroutines, procedures, functions, or methods.

The process of breaking down a program into modules is called modularization.

Abstraction is the process of paying attention to important properties while ignoring nonessential details.

Low-level details are small, nonabstract steps.

High-level programming languages allow you to use English-like vocabulary in which one broad statement corre-
sponds to dozens of machine instructions.

Reusability is the feature of modular programs that allows individual modules to be used in a variety of applications.

Reliability is the feature of modular programs that assures you that a module has been tested and proven to function
correctly.

3 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 105

Chapter 3 • Modules, Hierarchy Charts, and Documentation106

The mainline logic is the logic used in the main module that calls other program modules.

A calling program or calling module is one that calls a module.

A module that is called by another is a submodule.

A main program runs from start to stop and calls other modules.

A prompt is a message that is displayed on a monitor, asking the user for a response.

The functional cohesion of a module is a measure of the degree to which all the module statements contribute to the
same task.

Declaring a variable involves providing a name for the memory location where the computer will store the variable
value, and notifying the computer of what type of data to expect.

Local variables are declared within each module that uses them.

Global variables are given a type and name once, and then are used in all modules of the program.

An annotation symbol or annotation box is a flowchart symbol that represents an attached box containing notes.

A data dictionary is a list of every variable name used in a program, along with its type, size, and description.

A hierarchy chart is a diagram that illustrates modules’ relationships to each other.

Documentation refers to all of the supporting material that goes with a program.

End users, or users, are people who use computer programs.

Program documentation is the set of instructions that programmers use when they begin to plan the logic of a program.

Internal program documentation is documentation within a program.

Program comments are nonexecuting statements that programmers place within their code to explain program
statements in English.

External program documentation includes all the supporting paperwork that programmers develop before they write
a program.

A printer spacing chart, which is also referred to as a print chart or a print layout, is a tool for planning program output.

A detail line on a report is a line that contains data details. Most reports contain many detail lines.

Heading lines on a report contain the title and any column headings, and usually appear only once per page.

Total lines or summary lines contain end-of-report information.

A GUI, or graphical user interface, environment uses screens to display program output. Users interact with GUI programs
with a device such as a mouse.

A hard copy is a printed copy.

A soft copy is a screen copy.

A file description is a document that describes the data contained in a file.

A byte is a unit of computer storage that can contain any of 256 combinations of 0s and 1s that often represent a character.

User documentation includes all the manuals or other instructional materials that nontechnical people use, as well as
the operating instructions that computer operators and data-entry personnel need.

3 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 106

Review Questions 107

REVIEW QUESTIONS

1. Which of the following is not a term used as a synonym for “module” in any programming language?

a. structure
b. procedure
c. method
d. function

2. Which of the following is not a reason to use modularization?

a. Modularization provides abstraction.
b. Modularization allows multiple programmers to work on a problem.
c. Modularization allows you to reuse your work.
d. Modularization eliminates the need for structure.

3. What is the name for the process of paying attention to important properties while ignoring
nonessential details?

a. structure
b. iteration
c. abstraction
d. modularization

4. All modern programming languages that use English-like vocabulary to create statements that
correspond to dozens of machine instructions are referred to as .

a. high-level
b. object-oriented
c. modular
d. obtuse

5. Modularizing a program makes it to identify structures.

a. unnecessary
b. easier
c. more difficult
d. impossible

6. Programmers say that one module can another, meaning that the first module causes
the second module to execute.

a. declare
b. define
c. enact
d. call

7. A message that appears on a monitor, asking the user for a response, is a .

a. call
b. prompt
c. command
d. declaration

3 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 107

Chapter 3 • Modules, Hierarchy Charts, and Documentation108

8. The more that a module’s statements contribute to the same job, the greater the of
the module.

a. structure
b. modularity
c. functional cohesion
d. size

9. When you declare a variable, you must provide .

a. a name
b. a name and a type
c. a name, a type, and a value
d. a name, a type, a value, and a purpose

10. A is a list of every variable name used in a program, along with its type, size, and
description.

a. flowchart
b. hierarchy chart
c. data dictionary
d. variable map

11. A hierarchy chart tells you .

a. what tasks are to be performed within each program module
b. when a module executes
c. which routines call which other routines
d. all of the above

12. Two broad categories of documentation are the documentation intended for .

a. management and workers
b. end users and programmers
c. people and the computer
d. defining variables and defining actions

13. Nonexecuting statements that programmers place within their code to explain program statements
in English are called .

a. comments
b. pseudocode
c. trivia
d. user documentation

14. The first type of documentation usually created when writing a program pertains to .

a. end users
b. input
c. output
d. data

3 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 108

Review Questions 109

15. Lines of output that never change, no matter what data values are input, are referred to as
.

a. detail lines
b. headers
c. rigid
d. constant

16. Report lines that contain the information stored in individual data records are known as .

a. headers
b. footers
c. detail lines
d. X-lines

17. Summary lines appear .

a. at the end of every printed report
b. at the end of some printed reports
c. in printed reports, but never in screen output
d. only when detail lines also appear

18. If an input file description stores a first name followed by a last name, then .

a. the first name must appear first on any output
b. the first name must not appear first on any output
c. the first and last names must both appear on output
d. None of the above are true.

19. Of the following items, which does a programmer usually not need to know about an input file?

a. the name of the file
b. the number of records in the file
c. the order of the data fields in the file
d. whether each field in each record is numeric or character

20. A field holding a student’s last name is stored in bytes 10 through 29 of each student record.
Therefore, when you design a print chart for a report that contains each student’s last name,

.

a. the name must print in positions 10 through 29 of the print chart
b. the name must occupy exactly 20 positions on the print chart
c. Both of these are true.
d. Neither of these is true.

3 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 109

Chapter 3 • Modules, Hierarchy Charts, and Documentation110

FIND THE BUGS

Each of the following pseudocode segments contains one or more bugs that you must find and correct.

1. This pseudocode is intended to describe determining whether you have passed or failed a course
based on the average score of two classroom tests. The main program calls three modules—one
that gets the input values, one that performs the average calculation, and another that displays the
results.

start
ƒƒƒdeclareƒvariables
ƒƒƒƒƒƒnumƒtest1Score
ƒƒƒƒƒƒnumƒtest2Score
ƒƒƒƒƒƒcharƒletterGrade
ƒƒƒperformƒgetInputValues()
ƒƒƒperformƒcomputeAvg()
ƒƒƒperformƒdisplayResults()
stop

getInput()
ƒƒƒinputƒtest1Score
ƒƒƒinputƒtest2Score
return

computeAverage()
ƒƒƒaverageƒ=ƒ(test1Scoreƒ+ƒtest2Score)ƒ/ƒ2
ƒƒƒifƒaverageƒ>=ƒ60ƒthen
ƒƒƒƒƒƒletterGradeƒ=ƒ“P”
ƒƒƒelse
ƒƒƒƒƒƒaverageƒ=ƒ“F”
ƒƒƒendif
return

displayResults()
ƒƒƒprintƒaverage
ƒƒƒprintƒletter
return

3 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 110

Find the Bugs 111

2. This pseudocode is intended to describe computing the number of miles per gallon you get with
your automobile as well as the cost of gasoline per mile. The main program calls modules that
allow the user to enter data, compute statistics, and display results.

start
ƒƒƒdeclareƒvariables
ƒƒƒƒƒƒnumƒgallonsOfGasUsed
ƒƒƒƒƒƒnumƒmilesTraveled
ƒƒƒƒƒƒnumƒpricePerGallon
ƒƒƒƒƒƒnumƒmilesPerGallon
ƒƒƒƒƒƒnumƒcostPerMile
ƒƒƒperformƒinputData()
ƒƒƒperformƒcomputeStatistics()
ƒƒƒperformƒdisplayResults()

inputData()
ƒƒƒinputƒgallonsOfGasUsed
ƒƒƒinputƒmilesTravelled
ƒƒƒinputƒpricePerGallonOfGas
return

computeStatistics()
ƒƒƒmilesPerGallonƒ=ƒgallonsOfGasUsedƒ/ƒmilesTraveled
ƒƒƒcostPerMileƒ=ƒpricePerGallonƒ-ƒmilesPerGallon
return

displayResults()
ƒƒƒprintƒmilesPerGal
ƒƒƒprintƒcostPerMile
return
stop

3. This pseudocode segment is intended to describe computing the cost per day for a vacation. The
user enters a value for total dollars available to spend and can continue to enter new dollar
amounts while the amount entered is not 0. For each new amount entered, a module is called that
calculates the amount of money available to spend per day.

start
ƒƒƒdeclareƒvariables
ƒƒƒƒƒƒnumƒtotalDollars
ƒƒƒƒƒƒnumƒcostPerDay
ƒƒƒinputƒtotalDollarsSpent
ƒƒƒwhileƒtotalDollarsSpentƒ=ƒ0
ƒƒƒƒƒƒperformƒcaclulateCost()
ƒƒƒendwhile
end
calculateCost()
ƒƒƒcostPerDayƒ=ƒtotalMoneySpentƒ/ƒ7
ƒƒƒprintƒcostPerDayƒ
endwhile

3 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 111

Chapter 3 • Modules, Hierarchy Charts, and Documentation112

EXERCISES

1. Redraw the following flowchart so that the decisions and compensation calculations are in a module.

2. Rewrite the following pseudocode so the discount decisions and calculations are in a module.

start
ƒƒƒreadƒcustomerRecord
ƒƒƒifƒquantityOrderedƒ>ƒ100ƒthen
ƒƒƒƒƒƒƒƒdiscountƒ=ƒ.20
ƒƒƒelse
ƒƒƒƒƒƒƒƒifƒquantityOrderedƒ>ƒ12ƒthen
ƒƒƒƒƒƒƒƒƒƒƒƒƒdiscountƒ=ƒ.10
ƒƒƒƒƒƒƒƒendif
ƒƒƒendif
ƒƒƒtotalƒ=ƒpriceEachƒ*ƒquantityOrdered
ƒƒƒtotalƒ=ƒtotalƒ-ƒdiscountƒ*ƒtotal
ƒƒƒprintƒtotal

stop

No Yes

comp =
basePay + 50

start

No Yes

declare
variables

read employeeID,
basePay, hrsWorked, dept

dept = 1?

dept = 2?
comp = basePay+
1.50 * hrsWorked

comp =
basePay * 1.10

print employeeID, comp

stop

num employeeID
num basePay
num hrsWorked
num dept
num comp

3 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 112

Exercises 113

3. What are the final values of variables a, b, and c after the following program runs?
start
ƒƒƒƒƒaƒ=ƒ2
ƒƒƒƒƒbƒ=ƒ4
ƒƒƒƒƒcƒ=ƒ10
ƒƒƒƒƒwhileƒcƒ>ƒ6
ƒƒƒƒƒƒƒƒƒƒperformƒchangeBAndC()
ƒƒƒƒƒendwhile
ƒƒƒƒƒifƒaƒ=ƒ2ƒthen
ƒƒƒƒƒƒƒƒƒƒperformƒchangeAAndB()
ƒƒƒƒƒendif
ƒƒƒƒƒifƒcƒ=ƒ10ƒthen
ƒƒƒƒƒƒƒƒƒƒperformƒchangeAAndB()
ƒƒƒƒƒelse
ƒƒƒƒƒƒƒƒƒƒperformƒchangeBAndC()
ƒƒƒƒƒendif
ƒƒƒƒƒprintƒa,ƒb,ƒc
stop

changeBAndC()
ƒƒƒƒƒbƒ=ƒbƒ+ƒ1
ƒƒƒƒƒcƒ=ƒcƒ-ƒ1
return

changeAAndB()
ƒƒƒƒƒaƒ=ƒaƒ+ƒ1
ƒƒƒƒƒbƒ=ƒbƒ-ƒ1
return

4. What are the final values of variables d, e, and f after the following program runs?
start
ƒƒƒƒƒdƒ=ƒ1
ƒƒƒƒƒeƒ=ƒ3
ƒƒƒƒƒfƒ=ƒ100
ƒƒƒƒƒwhileƒeƒ>ƒd
ƒƒƒƒƒƒƒƒƒƒperformƒmodule1()
ƒƒƒƒƒendwhile
ƒƒƒƒƒifƒfƒ>ƒ0ƒthen
ƒƒƒƒƒƒƒƒƒƒperformƒmodule2()
ƒƒƒƒƒelse
ƒƒƒƒƒƒƒƒƒƒdƒ=ƒdƒ+ƒ5
ƒƒƒƒƒendif
ƒƒƒƒƒprintƒd,ƒe,ƒf
stop
module1()
ƒƒƒƒƒfƒ=ƒfƒ-ƒ50
ƒƒƒƒƒeƒ=ƒeƒ+ƒ1
ƒƒƒƒƒdƒ=ƒdƒ+ƒ3
return

module2()
ƒƒƒƒƒfƒ=ƒfƒ+ƒ13
ƒƒƒƒƒdƒ=ƒdƒ*ƒ10
return

3 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 113

Chapter 3 • Modules, Hierarchy Charts, and Documentation114

5. Draw a typical hierarchy chart for a paycheck-producing program. Try to think of at least 10 sepa-
rate modules that might be included. For example, one module might calculate an employee’s den-
tal insurance premium.

6. a. Design a print chart for a payroll roster that is intended to list the following items for every employee:
employee’s first name, last name, and salary.

b. Design sample output for the same report, including at least three lines of data.

7. a. Design a print chart for a payroll roster that is intended to list the following items for every employee:
employee’s first name, last name, hours worked, rate per hour, gross pay, federal withholding tax, state with-
holding tax, union dues, and net pay.

b. Design sample output for the same report, including at least three lines of data.

8. Given the following input file description, determine whether there is enough information provided
to produce each of the requested reports:
INSURANCE PREMIUM LIST
File name: INSPREM
FIELD DESCRIPTION DATA TYPE COMMENTS
Name of insured driver Character 40 bytes
Birth date Numeric 8 digits (for example, 19820624)
Gender Numeric 1 or 2 for male or female
Make of car Character 10 bytes
Year of car Numeric 4 digits
Miles driven per year Numeric 0 decimal places
Number of traffic tickets Numeric 0 decimal places
Balance owed Numeric 2 decimal places

a. a list of the names of all insured drivers
b. a list of very high-risk insured drivers, defined as male, under 25 years old, with more than two tickets
c. a list of low-risk insured drivers, defined as those with no tickets in the last three years, and over 30 years old
d. a list of insured drivers to contact about a special premium offer for those with a passenger car who drive

under 10,000 miles per year
e. a list of the names of female drivers whose balance owed is more than $99.99

9. Given the INSPREM file description in Exercise 8, design a print chart or sample report to satisfy
each of the following requests:

a. a list of every driver’s name and make of car
b. a list of the names of all insured drivers who drive more than 20,000 miles per year
c. a list of the name, gender, make of car, and year of car for all drivers who have more than two tickets
d. a report that summarizes the number of tickets held by drivers who were born in 1940 or before, from

1941–1960, from 1961–1980, and from 1981 on
e. a report that summarizes the number of tickets held by drivers in the four birth-date categories listed in

part d, grouped by gender

3 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 114

Exercises 115

10. A program calculates the gown size that a student needs for a graduation ceremony. The program
accepts as input a student’s height in feet and inches and weight in pounds. It converts the stu-
dent’s height to centimeters and weight to grams. Then, it calculates the graduation gown size
needed by adding 1⁄3 of the weight in grams to the value of the height in centimeters. Finally, the
program prints the results. There are 2.54 centimeters in an inch and 453.59 grams in a pound.
Write the pseudocode that matches the following flowchart.

11. A program calculates the service charge a customer owes for writing a bad check. The program
accepts a customer’s name, the date the check was written (year, month, and day), the current
date (year, month, and day), and the amount of the check in dollars and cents. The service charge
is $20 plus 2 percent of the amount of the check, plus $5 for every month that has passed since the
check was written. Draw the flowchart that matches the pseudocode.

print “Size is ”,
stuSize

printResults()

return

declare
variables

num stuFeet
num stuInches
num stuPounds
num stuCm
num stuGrams
num stuSize

start

getInput()

calculateSize()

printResults()

stop

getInput()

print “Enter your height
in feet and inches”

PRINT “ENTER YOUR HEIGHT
IN FEET AND INCHES”

input stuFeet

input stuInches

print “Enter
your weight”

input stuPounds

return

calculateSize()

stuInches =
stuInches + 12 *
stuFeet

return

stuCm =
stuInches * 2.54

stuGrams =
stuPounds * 453.59

stuSize = stuCm
+ stuGrams / 3

3 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 115

Chapter 3 • Modules, Hierarchy Charts, and Documentation116

(This pseudocode assumes that all checks entered are already written—that is, their dates are prior to
today’s date. Additionally, a check is one month late as soon as a new month starts—so a bad
check written on September 30 is one month overdue on October 1.)
start getDates()
ƒƒƒƒƒdeclare variables ƒƒƒƒprint “Enter the date of the check”
ƒƒƒƒƒƒƒƒƒƒchar custName ƒƒƒƒinput checkYear
ƒƒƒƒƒƒƒƒƒƒnum checkYear ƒƒƒƒinput checkMonth
ƒƒƒƒƒƒƒƒƒƒnum checkMonth ƒƒƒƒinput checkDay
ƒƒƒƒƒƒƒƒƒƒnum checkDay ƒƒƒƒprint “Enter today’s date”
ƒƒƒƒƒƒƒƒƒƒnum todayYear ƒƒƒƒinput todayYear
ƒƒƒƒƒƒƒƒƒƒnum todayMonth ƒƒƒƒinput todayMonth
ƒƒƒƒƒƒƒƒƒƒnum todayDay ƒƒƒƒinput todayDay

ƒƒƒƒƒƒƒƒƒƒnum checkAmount return
ƒƒƒƒƒƒƒƒƒƒnum serviceCharge
ƒƒƒƒƒƒƒƒƒƒnum baseCharge calculateServiceCharge()
ƒƒƒƒƒƒƒƒƒƒnum extraCharge ƒƒƒƒbaseCharge = 20.00
ƒƒƒƒƒƒƒƒƒƒnum yearsLate ƒƒƒƒextraCharge = .02 * checkAmount
ƒƒƒƒƒƒƒƒƒƒnum monthsLate ƒƒƒƒyearsLate = todayYear - checkYear
ƒƒƒƒƒƒƒƒƒƒnum todayWorkField ƒƒƒƒtodayWorkField = yearsLate * 12 +
ƒƒƒƒƒperform getInput() ƒƒƒƒƒƒƒƒtodayMonth
ƒƒƒƒƒperform calculateServiceCharge() ƒƒƒƒmonthsLate = todayWorkField -
ƒƒƒƒƒperform printResults() ƒƒƒƒƒƒƒƒcheckMonth
ƒ ƒƒƒƒserviceCharge = baseCharge +
stop ƒƒƒƒƒƒƒƒextraCharge + monthsLate * 5
ƒƒƒreturnƒƒƒƒƒ
getInput()
ƒƒƒƒƒprint “Enter customer name”
ƒƒƒƒƒinput custName printResults()
ƒƒƒƒƒperform getDates() ƒƒƒƒprint custName, serviceCharge
ƒƒƒƒƒprint “Enter check amount” return
ƒƒƒƒƒinput checkAmount
return

12. Draw the hierarchy chart that corresponds to the pseudocode presented in Exercise 11.

DETECTIVE WORK

1. Explore the job opportunities in technical writing. What are the job responsibilities? What is the
average starting salary? What is the outlook for growth?

2. What is subject-oriented programming?

UP FOR DISCUSSION

1. Would you prefer to be a programmer, write documentation, or both? Why?

2. Would you prefer to write a large program by yourself, or work on a team in which each programmer
produces one or more modules? Why?

3. Can you think of any disadvantages to providing program documentation for other programmers or
for the user?

3 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 116

4
After studying Chapter 4, you should be able to:

� Plan the mainline logic for a complete program

� Describe typical housekeeping tasks

� Describe tasks typically performed in the main loop of a program

� Describe tasks performed in the end-of-job module

� Understand the need for good program design

� Appreciate the advantages of storing program components in separate files

� Select superior variable and module names

� Design clear module statements

� Understand the need for maintaining good programming habits

DESIGNING AND WRITING A
COMPLETE PROGRAM

117

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 117

118 Chapter 4 • Designing and Writing a Complete Program

UNDERSTANDING THE MAINLINE LOGICAL FLOW THROUGH A
PROGRAM

In the first chapters of this book, you gained an understanding of programming structures, and learned about the docu-
mentation needed for program input, processing, and output. Now, you’re ready to plan the logic for your first complete
computer program. The output is an inventory report; a print chart is shown in Figure 4-1. The report lists inventory
items along with the price, cost, and profit of each item.

Figure 4-2 shows the input INVENTORY file description, Figure 4-3 shows some typical data that might exist in the input
file, and Figure 4-4 shows how the output would actually look if the input file in Figure 4-3 were used.

cotton shirt 01995 01457 2500
wool scarf 01450 01125 0060
silk blouse 16500 04850 0525
cotton shorts 01750 01420 1500

FIGURE 4-3: TYPICAL DATA THAT MIGHT BE STORED IN INVENTORY FILE

INVENTORY FILE DESCRIPTION
File name: INVENTORY
FIELD DESCRIPTION DATA TYPE COMMENTS
Item name Character 15 bytes
Price Numeric 2 decimal places
Cost Numeric 2 decimal places
Quantity in stock Numeric 0 decimal places

FIGURE 4-2: INVENTORY FILE DESCRIPTION

1

FIGURE 4-1: PRINT CHART FOR INVENTORY REPORT

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5
1 2 3 4 5 67 8 90 1 2 3 4 5 6 7 8 9 01 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 01 2 3 4 5 6 7 8 9 0

R E P O R T

1 2 3 4 5 6 7 8 9
5 5 5 5 5 5 5 5

O R YI N V E N T
1
2
3
4
5
6
7
8
9
10
11
12
13
14

I T E M
D E S C R I P T I O N

R E T A I L P R I C E M A N U F A C T U R I N G P R O F I P E RT

X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X

E A C H C O S T E A C H I T E M

9 9 9 . 9 9
9 9 9 . 9 9

9 9 9 . 9 9
9 9 9 . 9 9

9 9 9 . 9 9
9 9 9 . 9 9

0
6 6

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 118

119Understanding the Mainline Logical Flow through a Program

In some older operating systems, file names are limited to eight characters, in which case
INVENTORY might be an unacceptable file name.

Examine the print chart and the input file description. Your first task is to make sure you understand what the report
requires; your next job is to determine whether you have all the data you need to produce the report. (Figure 4-5 shows
this process.) The output requires the item name, price, and cost, and you can see that all three are data items in the
input file. The output also requires a profit figure for each item; you need to understand how profit is calculated—which
could be done differently in various companies. If there is any doubt as to what a term used in the output means or how
a value is calculated, you must ask the user, or your client—the person who has requested the program and who will
read and use the report to make management decisions. In this case, suppose you are told you can determine the profit
by subtracting an item’s cost from its selling price. The input record contains an additional field, “Quantity in stock”.
Input records often contain more data than an application needs; in this example, you will not use the quantity field. You
have all the necessary data, so you can begin to plan the program.

FIGURE 4-4: TYPICAL OUTPUT FOR INVENTORY REPORT PROGRAM

 INVENTORY REPORT

 ITEM RETAIL PRICE MANUFACTURING PROFIT PER
 DESCRIPTION EACH COST EACH ITEM

 cotton shirt 19.95 14.57 5.38
 wool scarf 14.50 11.25 3.25
 silk blouse 165.00 48.50 116.50
 cotton shorts 17.50 14.20 3.30

TIP�

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 119

120 Chapter 4 • Designing and Writing a Complete Program

It is very common for input records to contain more data than an application uses. For
example, although your doctor stores your blood pressure in your patient record, that field
does not appear on your bill, and although your school stores your grades from your first
semester, they do not appear on your report card for your second semester.

Where should you begin? It’s wise to try to understand the big picture first. You can write a program that reads records
from an input file and produces a printed report as a procedural program—that is, a program in which one procedure
follows another from the beginning until the end. You write the entire set of instructions for a procedural program, and
when the program executes, instructions take place one at a time, following your program’s logic. The overall logic, or
mainline logic, of almost every procedural computer program can follow a general structure that consists of three dis-
tinct parts:

1. Performing housekeeping, or initialization tasks. Housekeeping includes steps you must perform

at the beginning of a program to get ready for the rest of the program.

2. Performing the main loop repeatedly within the program. The main loop contains the instructions

that are executed for every record until you reach the end of the input of records, or eof.

3. Performing the end-of-job routine. The end-of-job routine holds the steps you take at the end of

the program to finish the application.

Not all programs are procedural; some are object-oriented. A distinguishing feature of
many (but not all) object-oriented programs is that they are event-driven; often the user
determines the timing of events in the main loop of the program by using an input device
such as a mouse. As you advance in your knowledge of programming, you will learn more
about object-oriented techniques.

FIGURE 4-5: STEPS TO CREATING A PROGRAM

Develop the logic that will
produce the desired output.

Code the logic using a
programming language.

private sub command()

 housekeeping()
 while not eof

NO

YES

COMP = BASEPAY

+50

START

NO

YES

DECLARE

VARIABLES

READ EMPLOYEE ID,

BASEPAY, HRSWORKED, DEPT

DEPT=1?

DEPT=2?

COMP = BASEPAY+

1.50 * HRSWORKED

COMP = BASEPAY-*

1.10

PRINT EMPLOYEEID, COMP

STOP

Understand the user’s
needs. Examine input
and output specifications.

TIP�

TIP�

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 120

121Understanding the Mainline Logical Flow through a Program

You can write any procedural program as one long series of programming language statements, but programs are eas-
ier to understand if you break their logic down into at least three parts, or modules. The main program can call the
three major modules, as shown in the flowchart and pseudocode in Figure 4-6. Of course, the names of the modules,
or subroutines, are entirely up to the programmer.

Reducing a large program into more manageable modules is sometimes called functional
decomposition.

In later examples, this book will use more descriptive names for the mainLoop() mod-
ule. For example, in this program, appropriate names for the mainLoop() might be
processRecord() or createInventoryReport().

Figure 4-7 shows the hierarchy chart for this program.

In summary, breaking down a big program into three basic procedures, or modularizing the program, helps keep the job
manageable, allowing you to tackle a large job one step at a time. Dividing the work into routines also might allow you
to assign the three major procedures to three different programmers, if you choose. It also helps you keep the program
structured.

start
 perform housekeeping()
 while not eof
 perform mainLoop()
 endwhile
 perform finishUp()
stop

Yes

eof? mainLoop()

finishUp()

No

housekeeping()

stop

start

FIGURE 4-6: FLOWCHART AND PSEUDOCODE OF MAINLINE LOGIC

TIP�

TIP�

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 121

122 Chapter 4 • Designing and Writing a Complete Program

HOUSEKEEPING TASKS

Housekeeping tasks include all the steps that must take place at the beginning of a program. Very often, this includes
four major tasks:

� You declare variables.

� You open files.

� You perform any one-time-only tasks that should occur at the beginning of the program, such as
printing headings at the beginning of a report.

� You read the first input record.

DECLARING VARIABLES

Your first task in writing any program is to declare variables. When you declare variables, you assign reasonable names
(identifiers) to memory locations, so you can store and retrieve data there. Declaring a variable involves selecting a
name and a type. When you declare a variable in program code, the operating system reserves space in memory to
hold the contents of the variable. It uses the type (num or char) to determine how to store the information; it stores
numeric and character values in different formats.

For example, within the inventory report program, you need to supply variable names for the data fields that appear in
each input record. You might decide on the variable names and types shown in Figure 4-8.

Some languages require that you provide storage size, in addition to a type and name, for
each variable. Other languages provide a predetermined amount of storage based on the
variable type: for example, four bytes for an integer or one byte for a character. Also,
many languages require you to provide a length for strings of characters. For simplicity,
this book just declares variables as either character or numeric.

char invItemName
num invPrice
num invCost
num invQuantity

FIGURE 4-8: VARIABLE DECLARATIONS FOR THE INVENTORY FILE

FIGURE 4-7: HIERARCHY CHART FOR INVENTORY REPORT PROGRAM

main()

mainLoop() finishUp()housekeeping()

TIP�

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 122

123Housekeeping Tasks

You can provide any names you choose for your variables. When you write another program that uses the same input
file, you are free to choose completely new variable names. Similarly, other programmers can write programs that use
the same file and choose their own variable names. The variable names just represent memory positions, and are inter-
nal to your program. The files do not contain any variable names; files contain only data. When you read the characters
“cotton shirt” from an input file, it doesn’t matter whether you store those characters at a memory location named
invItemName, nameOfItem, productDescription, or any other one-word variable name. The variable
name is simply an easy-to-remember name for a specific memory address where those characters are stored.

Programmers always must decide between descriptive, but long, variable names and cryp-
tic, but short, variable names. In general, more descriptive names are better, but certain
abbreviations are almost always acceptable in the business world. For example, SSN is
commonly used as an abbreviation for Social Security number, and if you use it as a vari-
able name, it will be interpreted correctly by most of your associates who read your
program.

Each of the four variable declarations in Figure 4-8 contains a type (character or numeric) and an identifier. You can
choose any one-word name to identify the variable, but a typical practice involves beginning similar variables with a
common prefix—for example, inv. In a large program in which you eventually declare dozens of variables, the inv
prefix will help you immediately identify a variable as part of the inventory file.

Organizations sometimes enforce different rules for programmers to follow when naming
variables. Some use a variable-naming convention called Hungarian notation, in which
a variable’s data type or other information is stored as part of the name. For example, a
numeric field might always start with the prefix num.

Creating the inventory report as planned in Figure 4-1 involves using the invItemName, invPrice, and
invCost fields, but you do not need to use the invQuantity field in this program. However, the information
regarding quantity does take room in the input file, so you typically declare the variable to allocate space for it when it is
read into memory. If you imagine the surface of a disk as pictured in Figure 4-9, you can envision how the data fields
follow one another in the file.

TIP�

TIP�

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 123

124 Chapter 4 • Designing and Writing a Complete Program

When you ask the program to read an inventory record, four “chunks” of data will be transferred from the input device
to the computer’s main memory: name, price, cost, and quantity. When you declare the variables that represent the
input data, you must provide a memory position for each of the four pieces of data, whether or not they all are used
within this program.

Some languages do not require you to use a unique name for each data field in an input
record. For example, in COBOL, you can use the generic name FILLER for all unused
data positions. This frees you from the task of creating variable names for items you do
not intend to use. Because it is common to do so using newer languages, the examples in
this book always provide a unique identifier for each variable in a file.

Considering that dozens of programs within the organization might access the INVENTORY
file, some organizations create the data file descriptions for you. This system is efficient
because the description of variable names and types is stored in one location, and each
programmer who uses the file simply imports the data file description into his or her own
program. Of course, the organization must provide the programmer with documentation
specifying and describing the chosen names.

In most programming languages, you can give a group of associated variables a group name. This allows you to han-
dle several associated variables using a single instruction. Just as it is easier to refer to “The Andersons” than it is to list
“Nancy, Bud, Jim, Tom, Julie, Jane, Kate, and John,” the benefit of using a group name is the ability to reference several
variables with one all-encompassing name. For example, if you group four fields together and call them invRecord,
then you can write a statement such as read invRecord. This is simpler than writing read invItemName,
invPrice, invCost, and invQuantity. The way you assign a group name to several variables differs in each
programming language. This book follows the convention of underlining any group name and indenting the group mem-
bers beneath, as shown in Figure 4-10.

FIGURE 4-9: HOW TYPICAL DATA ITEMS LOOK WITHIN AN INVENTORY FILE

cotton shirt

01995
01475

2500

wool scarf

01450

01
12

5
00

60

silk
 blouse 16500

04850
0525

1500

01
42

0

01750
cotton shorts

TIP�

TIP�

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 124

125Housekeeping Tasks

A group of variables is often called a data structure, or more simply, a structure.
Some object-oriented languages refer to a group as a class, although a class often con-
tains method definitions as well as variables.

In many programming languages, you can use the group name along with the field name,
separated by a dot. For example, you might refer to invRecord.invItemName. This
book will use the field name only, for simplicity.

The ability to group variable names does not automatically provide you with the ability to
perform every sort of operation with a group. For example, you cannot multiply or divide
one invRecord by another (unless, with some languages, you write special code to do
so). In this book, assume that you can use one input or output statement on a set of fields
that constitute a record.

In addition to declaring variables, sometimes you want to provide a variable with an initial value. Providing a variable with a
value when you create it is known as initializing, or defining, the variable. For example, for the inventory report print
chart shown in Figure 4-1, you might want to create a variable named mainHeading and store the value “INVENTORY
REPORT” in that variable. The declaration is char mainHeading = “INVENTORY REPORT”. This indicates that
mainHeading is a character variable, and that the character contents are the words “INVENTORY REPORT”.

Declaring a variable provides it with a name and type. Defining, or declaring and
initializing, a variable also provides it with a value. If you declare a variable, but do not
provide a value, you can always initialize it later.

In some programming languages, you can declare a variable such as mainHeading to be
constant, or never changing. Even though invItemName, invPrice, and the other
fields in the input file will hold a variety of values when a program executes, the
mainHeading value will never change.

In many programming languages, if you do not provide an initial value when declaring a variable, then the value is
unknown, or garbage. Some programming languages do provide you with an automatic starting value; for example, in
Java, Visual Basic, BASIC, or RPG, all numeric variables automatically begin with the value zero. However, in C++, C#,
Pascal, and COBOL, variables generally do not receive any initial value unless you provide one. No matter which pro-
gramming language you use, it is always clearest to provide a value for those variables that require them.

Be especially careful to make sure all variables you use in calculations have initial values.
If you attempt to perform arithmetic with garbage values, either the program will fail to
execute, or worse, the result will also contain garbage.

invRecord
 char invItemName
 num invPrice
 num invCost
 num invQuantity

FIGURE 4-10: VARIABLE DECLARATIONS FOR THE INVENTORY FILE INCLUDING A GROUP NAME

TIP�

TIP�

TIP�

TIP�

TIP�

TIP�

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 125

126 Chapter 4 • Designing and Writing a Complete Program

When you declare the variables invItemName, invPrice, invCost, and invQuantity, you do not provide
them with any initial value. The values for these variables will be assigned when the first file record is read into memory.
It would be legal to assign a value to input file record variables—for example, invItemName = “cotton
shirt”—but it would be a waste of time and might mislead others who read your program. The first invItemName
will come from an input device, and may or may not be “cotton shirt”.

The report illustrated in Figure 4-1 contains three individual heading lines. The most common practice is to declare one
variable or constant for each of these lines. The three declarations are as follows:

charƒmainHeadingƒ=ƒ“INVENTORYƒREPORT”
charƒcolumnHead1ƒ=ƒ“ITEMƒƒƒƒƒƒƒƒƒRETAILƒPRICE
ƒƒƒƒMANUFACTURINGƒƒƒƒƒƒƒPROFITƒPER”
charƒcolumnHead2ƒ=ƒ“DESCRIPTIONƒƒEACH
ƒƒƒƒCOSTƒEACHƒƒƒƒƒƒƒƒƒƒƒITEM”

Within the program, when it is time to write the heading lines to an output device, you will code:

printƒmainHeading
printƒcolumnHead1
printƒcolumnHead2

You are not required to create variables for your headings. Your program can contain the following statements, in which
you use literal strings of characters instead of variable names. The printed results are the same either way.

printƒ“INVENTORYƒREPORT”
printƒ“ITEMƒƒƒƒƒƒƒƒƒƒRETAILƒPRICEƒƒƒMANUFACTURINGƒƒƒƒPROFITƒPER”
printƒ“DESCRIPTIONƒƒƒEACHƒƒƒƒƒƒƒƒƒƒƒCOSTƒEACHƒƒƒƒƒƒƒƒITEM”

Using variable names, as in print mainHeading, is usually more convenient than spelling out the heading’s
contents within the statement that prints, especially if you will use the headings in multiple locations within your pro-
gram. Additionally, if the contents of all of a program’s heading lines can be found in one location at the start of the pro-
gram, it is easier to locate them all if changes need to be made in the future.

When you write a program, you type spaces between the words within column headings
so the spacing matches the print chart you created for the program. For convenience,
some languages provide you with a tab character. Other languages let you specify a
numeric position where a column heading will display. The goal is to provide well-spaced
output in readable columns.

Dividing the headings into three lines is not required either, but it is a common practice. In most programming lan-
guages, you could write all the headings in one statement, using a code that indicates a new line at every appropriate
position. Alternatively, most programming languages let you produce a character for output without advancing to a new
line. You could write out the headings using separate print statements to display one character at a time, advancing to a

TIP�

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 126

127Housekeeping Tasks

new line only after all the line’s characters were individually printed, although this approach seems painstakingly
detailed. Storing and writing one complete line at a time is a reasonable compromise.

Every programming language provides you with a means to physically advance printer paper to the top of a page when
you print the first heading. Similarly, every language provides you with a means to produce double- and triple-spaced
lines of text by sending specific codes to the printer or monitor. Because the methods and codes differ from language to
language, examples in this book assume that if a print chart or sample output shows a heading that prints at the top of
the page and then skips a line, any corresponding variable you create, such as mainHeading, will also print in this
manner. You can add the appropriate language-specific codes to implement the mainHeading spacing when you
write the actual computer program. Similarly, if you create a print chart that shows detail lines as double-spaced,
assume your detail lines will double-space when you execute the step to write them.

Often, you must create dozens of variables when you write a computer program. If you are using a flowchart to diagram
the logic, it is physically impossible to fit the variables in one flowchart box. Therefore, you might want to use an anno-
tation symbol. The beginning of a flowchart for the housekeeping() module of the inventory report program is
shown in Figure 4-11.

You learned about the annotation symbol in Chapter 3.

Notice that the three heading variables defined in Figure 4-11 are not indented under invRecord as the
invRecord fields are. This shows that although invItemName, invPrice, invCost, and invQuantity
are part of the invRecord group, mainHeading, columnHead1, and columnHead2 are not.

In Figure 4-11, notice that columnHead1 contains only the words that appear in the first line of column headings, in
row 4 of the print chart in Figure 4-1: “ITEM RETAIL PRICE MANUFACTURING PROFIT PER”. Similarly,
columnHead2 contains only the words that appear in the second row of column headings.

invRecord
char invItemName
num invPrice

 num invCost
num invQuantity

char mainHeading = "INVENTORY REPORT"
char columnHead1 = "ITEM RETAIL PRICE

MANUFACTURING PROFIT PER"
char columnHead2 = "DESCRIPTION EACH

COST EACH ITEM"

housekeeping()

declare
variables

FIGURE 4-11: BEGINNING OF FLOWCHART FOR housekeeping() MODULE FOR THE INVENTORY REPORT
PROGRAM

TIP�

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 127

128 Chapter 4 • Designing and Writing a Complete Program

OPENING FILES

If a program will use input files, you must tell the computer where the input is coming from—for example, a specific
disk drive, CD, or tape drive. You also must indicate the name (and possibly the path, the list of folders or directories in
which the file resides) for the file. Then you must issue a command to open the file, or prepare it for reading. In many lan-
guages, if no input file is opened, input is accepted from a default or standard input device, most often the keyboard.

If a program will have output, you must also open a file for output. Perhaps the output file will be sent to a disk or tape.
Although you might not think of a printed report as a file, computers treat a printer as just another output device, and if
output will go to a printer, then you must open the printer output device as well. Again, if no file is opened, a default or
standard output device, usually the monitor, is used.

When you create a flowchart, you usually write the command to open the files within a parallelogram. You use the par-
allelogram because it is the input/output symbol, and you are opening the input and output devices. You can use an
annotation box to list the files that you open, as shown in Figure 4-12.

A ONE-TIME-ONLY TASK—PRINTING HEADINGS

Within a program’s housekeeping module, besides declaring variables and opening files, you perform any other tasks
that occur only at the beginning of the program. A common housekeeping task involves printing headings at the top of a
report. In the inventory report example, three lines of headings appear at the beginning of the report. In this example,
printing the heading lines is straightforward:

printƒmainHeading
printƒcolumnHead1
printƒcolumnHead2

READING THE FIRST INPUT RECORD

The last task you execute in the housekeeping module of most computer programs is to read the first data record into
memory. In this example, the input data is read from a stored file. Other applications might be interactive
applications—that is, applications that interact with a user who types data at a keyboard. When you write your first
computer programs, you probably will use interactive input so that you don’t have to complicate the programs by
including the statements necessary to locate and open an input file. To read the necessary data interactively from the
user, you could issue a statement such as the following:

INVENTORY, Printer
open
files

FIGURE 4-12: SPECIFYING FILES THAT YOU OPEN

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 128

129Housekeeping Tasks

readƒinvItemName,ƒinvPrice,ƒinvCost,ƒinvQuantity

The statement would pause program execution until the user typed four values from the keyboard, typically separating
them with a delimiter, or character produced by a keystroke that separates data items. Depending on the program-
ming language, the delimiter might be the Enter key, the tab character, or a comma.

Requiring a user to type four values in the proper order is asking a lot. More frequently, the read statement would be
separated into four distinct read statements, each preceded by an output statement called a prompt that asks the user
for a specific item. For example, the following set of statements prompts the user for and accepts each of the neces-
sary data items for the inventory program:

printƒ“Pleaseƒenterƒtheƒinventoryƒitemƒname”
readƒinvItemName
printƒ“Enterƒtheƒprice”
readƒinvPrice
printƒ“Enterƒtheƒcostƒofƒtheƒitem”
readƒinvCost
printƒ“Enterƒtheƒquantityƒinƒstock”
readƒinvQuantity

If the four data fields have already been stored and are input from a data file instead of interactively, then no prompts
are needed, and you can write the following:

readƒinvItemName,ƒinvPrice,ƒinvCost,ƒinvQuantity

In most programming languages, if you have declared a group name such as invRecord, it is simpler to obtain values
for all the data fields by writing the following:

readƒinvRecord

This statement fills the entire group item with values from the input file. Using the group name is a shortcut for writing
each field name. When you write your first programs, you might get your data interactively, in which case you will write
prompts and separate input statements, or you might obtain input from a data file, but delay studying how to create
group items, so you might list each field separately. For simplicity, most of the input statements in this book will assume
the data comes from files and is grouped; this assumption will allow the book to use the shortest version of the state-
ment that simply means “obtain all the data fields this application needs.”

CHECKING FOR THE END OF THE FILE

The last task within the housekeeping() module is to read the first invRecord; the first task following
housekeeping() is to check for eof on the file that contains the inventory records. If the program is an interac-
tive one, the user might indicate that input is complete by typing a predetermined value from the keyboard, or using a
mouse to select a screen option indicating completion of data entry. If the program reads data from an input file stored
on a disk, tape, or other storage device, the input device recognizes that it has reached the end of a file when it

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 129

130 Chapter 4 • Designing and Writing a Complete Program

attempts to read a record and finds no records available. Recall the mainline logic of the inventory report program from
Figure 4-6—eof is tested immediately after housekeeping() ends.

If the input file has no records, when you read the first record the computer recognizes the end-of-file condition and
proceeds to the finishUp() module, never executing mainLoop(). More commonly, an input file does have
records, and after the first read the computer determines that the eof condition is false, and the logic proceeds to
mainLoop().

Immediately after reading from a file, the next step always should determine whether eof was encountered. Notice in
Figure 4-6 that the eof question always follows both the housekeeping() module and the mainLoop()
module. When the last instruction in each of these modules reads a record, then the eof question correctly follows
each read instruction immediately.

Not reading the first record within the housekeeping() module is a mistake. If housekeeping() does not
include a step to read a record from the input file, you must read a record as the first step in mainLoop(), as
shown on the left side of Figure 4-13. In this program, a record is read, a profit is calculated, and a line is printed. Then,
if it is not eof, another record is read, a profit calculated, and a line printed. The program works well, reading records,
calculating profits, and printing information until reaching a read command in which the computer encounters the
eof condition. When this last read occurs, the next steps involve computing a profit and writing a line—but there isn’t
any data to process. Depending on the programming language you use, either garbage data will calculate and print, or
a repeat of the data from the last record before eof will print.

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 130

131Housekeeping Tasks

start

eof?
No

Yes

housekeeping()
(without

read)

read
invRecord

profit =
invPrice

 –
invCost

print
invItemName,

invPrice,
invCost, profit

start

eof?
No

Yes

read
invRecord

profit =
invPrice

 –
invCost

print
invItemName,

invPrice,
invCost, profit

housekeeping()
(with read)

FAULTY RECORD-READING LOGIC

CORRECT RECORD-READING LOGIC

start
 perform housekeeping() (without read)
 while not eof
 read invRecord
 profit = invPrice – invCost
 print invItemName, invPrice, invCost, profit
 endwhile

start
 perform housekeeping() (with read)
 while not eof
 profit = invPrice – invCost
 print invItemName, invPrice, invCost, profit
 read invRecord
 endwhile

FIGURE 4-13: COMPARING FAULTY AND CORRECT RECORD-READING LOGIC

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 131

132 Chapter 4 • Designing and Writing a Complete Program

Reading an input record in the housekeeping() module is an example of a priming
read. You learned about the priming read in Chapter 2.

In some modern programming languages, such as Visual Basic, file read commands can
look ahead to determine if the next record is empty. With these languages, the priming
read is no longer necessary. Because most languages do not currently have this type of read
statement, and because the priming read is always necessary when input is based on user
response rather than reading from a file, this book uses the conventional priming read.

The flowchart in the lower part of Figure 4-13 shows correct record-reading logic. The appropriate place for the priming
record read is at the end of the preliminary housekeeping steps, and the appropriate place for all subsequent reads is
at the end of the main processing loop.

Figure 4-14 shows a completed housekeeping() routine for the inventory program in both flowchart and
pseudocode versions.

INVENTORY, Printer

invRecord
 char invItemName
 num invPrice
 num invCost
 num invQuantity
char mainHeading = "INVENTORY REPORT"
char columnHead1 = "ITEM RETAIL PRICE MANUFACTURING PROFIT PER"
char columnHead2 = "DESCRIPTION EACH COST EACHƒƒƒƒƒITEM"

housekeeping()

declare
variables

open
files

print
columnHead1

print
columnHead2

read
invRecord

return

print
mainHeading

housekeeping()
 declare variables
 invRecord
 char invItemName
 num invPrice
 num invCost
 num invQuantity
 char mainHeading = "INVENTORY REPORT"
 char columnHead1 =
 "ITEM RETAIL PRICE MANUFACTURING PROFIT PER"
 char columnHead2 =
 "DESCRIPTION EACH COST EACH ITEM"
 open files
 INVENTORY, Printer
 print mainHeading
 print columnHead1
 print columnHead2
 read invRecord
return

FIGURE 4-14: FLOWCHART AND PSEUDOCODE FOR housekeeping() ROUTINE IN INVENTORY REPORT
PROGRAM

TIP�

TIP�

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 132

133Housekeeping Tasks

As an alternative to including print mainHeading, print columnHead1, and print columnHead2
within the housekeeping() module, you can place the three heading line statements in their own module. In this
case, the flowchart and pseudocode for housekeeping() will look like Figure 4-15, with the steps in the newly
created headings() module appearing in Figure 4-16. Either approach is fine; the logic of the program is the same
whether or not the heading line statements are segregated into their own routine. The programmer can decide on the
program organization that makes the most sense.

invRecord
 char invItemName
 num invPrice
 num invCost
 num invQuantity
char mainHeading = “INVENTORY REPORT”
char columnHead1 = “ITEM RETAIL PRICE MANUFACTURING PROFIT PER”
char columnHead2 = “DESCRIPTION EACH COST EACH ITEM”

INVENTORY, Printer

housekeeping()
declare variables

invRecord
char invItemName

 num invPrice
 num invCost

 num invQuantity
 char mainHeading = "INVENTORY REPORT”
 char columnHead1 = "ITEM RETAIL PRICE MANUFACTURING

PROFIT PER"
 char columnHead2 = "DESCRIPTION EACH COST EACH ITEM"
open files

INVENTORY, Printer
perform headings()
read invRecord

return

FIGURE 4-15: FLOWCHART AND PSEUDOCODE FOR ALTERNATIVE housekeeping() MODULE THAT CALLS
headings() MODULE

housekeeping()

declare
variables

open
files

read
invRecord

return

headings()

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 133

134 Chapter 4 • Designing and Writing a Complete Program

WRITING THE MAIN LOOP

After you declare the variables for a program and perform the housekeeping tasks, the “real work” of the program
begins. The inventory report described at the beginning of this chapter and depicted in Figure 4-1 needs just one set of
variables and one set of headings, yet there might be hundreds or thousands of inventory items to process. The main
loop of a program, controlled by the eof decision, is the program’s “workhorse.” Each data record will pass once
through the main loop, where calculations are performed with the data and the results printed.

If the inventory report contains more records than will fit on a page of output, you proba-
bly will want to print a new set of headings at the top of each page. You will learn how to
do this in Chapter 7.

For the inventory report program to work, the mainLoop() module must include three steps:

1. Calculate the profit for an item.

2. Print the item information on the report.

3. Read the next inventory record.

At the end of housekeeping(), you read one data record into the computer’s memory. As the first step in
mainLoop(), you can calculate an item’s profit by subtracting its manufacturing cost from its retail price: profit
= invPrice - invCost. The name profit is the programmer-created variable name for a new spot in com-
puter memory where the value of the profit is stored. Although it is legal to use any variable name to represent profit,
naming it invProfit would be misleading. Using the inv prefix would lead those who read your program to

headings()
 print mainHeading
 print columnHead1
 print columnHead2
return

print
columnHead2

return

print
columnHead1

print
mainHeading

headings()

FIGURE 4-16: FLOWCHART AND PSEUDOCODE FOR headings() MODULE CALLED BY MAINLINE IN
FIGURE 4-15

TIP�

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 134

135Writing the Main Loop

believe that profit was part of the input record, like the other variable names that start with inv. The profit value is not
part of the input record, however; it represents a memory location used to store the arithmetic difference between two
other variables.

Recall that the standard way to express mathematical statements is to assign values
from the right side of an assignment operator to the left. That is,
profitƒ=ƒinvPriceƒ-ƒinvCost assigns a value to profit. The statement
invPriceƒ-ƒinvCostƒ=ƒprofit is an illegal statement.

Because you have a new variable, you must add profit to the list of declared variables at the beginning of the pro-
gram. Programmers often work back and forth between the variable list and the logical steps during the creation of a
program, listing some of the variables they will need as soon as they start to plan, and adding others later as they think
of them. Because profit will hold the result of a mathematical calculation, you should declare it as a numeric vari-
able when you add it to the variable list, as shown in Figure 4-17. Notice that, like the headings, profit is not
indented under invRecord. You want to show that profit is not part of the invRecord group; instead, it is a
separate variable that you are declaring to store a calculated value.

You can declare mainHeading, columnHead1, columnHead2, and profit in any
order. The important point is that none of these four variables is part of the
invRecord group.

After you determine an item’s profit, you can write a detail line of information on the inventory report: print
invItemName, invPrice, invCost, profit. Notice that in the flowchart and pseudocode for the
mainLoop() routine in Figure 4-18, the output statement is not print invRecord. For one thing, the entire
invRecord is not printed—the quantity is not part of the report. Also, the calculated profit is included in the detail
line—it does not appear on the input record. Even if the report detail lines listed each of the invRecord fields in the
exact same order as on the input file, the print statement still would most often be written listing the individual fields to
be printed. Usually, you would include a formatting statement with each printed field to control the spacing within the
detail line. Because the way you space fields on detail lines differs greatly in programming languages, discussion of the
syntax to space fields is not included in this book. However, the fields that are printed are listed separately, as you
would usually do when coding in a specific programming language.

invRecord
 char invItemName
 num invPrice
 num invCost
 num invQuantity
char mainHeading = "INVENTORY REPORT"
char columnHead1 = "ITEM RETAIL PRICE MANUFACTURING PROFIT PER"
char columnHead2 = "DESCRIPTION EACH COST EACH ITEM"
num profit

FIGURE 4-17: VARIABLE LIST FOR INVENTORY REPORT PROGRAM, INCLUDING PROFIT

TIP�

TIP�

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 135

136 Chapter 4 • Designing and Writing a Complete Program

The last step in the mainLoop() module of the inventory report program involves reading the next invRecord.
Figure 4-18 shows the flowchart and pseudocode for mainLoop().

Just as headings are printed one full line at a time, detail lines are also printed one line at a time. You can print each
field separately, as in the following code, but it is clearer and more efficient to write one full line at a time, as shown in
Figure 4-18.

printƒinvItemName
printƒinvPrice
printƒinvCost
printƒprofit

In most programming languages, you also have the option of calculating the profit and printing it in one statement, as in
the following:

printƒinvItemName,ƒinvPrice,ƒinvCost,ƒinvPriceƒ-ƒinvCost

If the language you use allows this type of statement, in which a calculation takes place within the output statement, it
is up to you to decide which format to use. Performing the arithmetic as part of the print statement allows you to
avoid declaring a profit variable. However, if you need the profit figure for further calculations, then it makes

mainLoop()
 profit = invPrice - invCost
 print invItemName, invPrice, invCost, profit
 read invRecord
return

mainLoop()

profit =
invPrice

–
invCost

print
invItemName,

invPrice,
invCost, profit

read
invRecord

return

FIGURE 4-18: FLOWCHART AND PSEUDOCODE FOR mainLoop() OF INVENTORY REPORT PROGRAM

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 136

137Performing End-of-Job Tasks

sense to compute the profit and store it in a profit field. Using a separate work variable, or work field, such as
profit to temporarily hold a calculation is never wrong, and often it’s the clearest course of action.

As with performing arithmetic within a print statement, different languages often provide
multiple ways to combine several steps into one. For example, many languages allow you
to print multiple lines of output or read a record and check for the end of the file using one
statement. This book uses only the most common combinations, such as performing arith-
metic within a print statement.

Although a language may allow you to combine actions into a single statement, you are never required to do so. If the
program is clearer using separate statements, then that is what you should do.

After the detail line containing the item name, price, cost, and profit has been written, the last step you take before
leaving the mainLoop() module is to read the next record from the input file into memory. When you exit
mainLoop(), the logic flows back to the eof question in the mainline logic. If it is not eof—that is, if an addi-
tional data record exists—then you enter mainLoop() again, compute profit on the second record, print the detail
line, and read the third record.

Eventually, during an execution of mainLoop(), the program will read a new record and encounter the end of the
file. Then, when you ask the eof question in the mainline of the program, the answer will be yes, and the program will
not enter mainLoop() again. Instead, the program logic will enter the finishUp() routine.

PERFORMING END-OF-JOB TASKS

Within any program, the end-of-job routine holds the steps you must take at the end of the program, after all input
records are processed. Some end-of-job modules print summaries or grand totals at the end of a report. Others might
print a message such as “End of Report”, so readers can be confident that they have received all the information that
should be included. Such end-of-job message lines often are called footer lines, or footers for short. Very often, end-
of-job modules must close any open files.

The end-of-job module for the inventory report program is very simple. The print chart does not indicate that any spe-
cial messages, such as “Thank you for reading this report”, print after the detail lines end. Likewise, there are no
required summary or total lines; nothing special happens. Only one task needs to be performed in the end-of-job rou-
tine that this program calls finishUp(). In housekeeping(), you opened files; in finishUp(), you close
them. The complete finishUp() module is flowcharted and written in pseudocode in Figure 4-19.

TIP�

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 137

138 Chapter 4 • Designing and Writing a Complete Program

Many programmers wouldn’t bother with a subroutine for just one statement, but as you create more complicated pro-
grams, your end-of-job routines will get bigger, and it will make more sense to see the necessary job-finishing tasks
together in a module.

For your convenience, Figure 4-20 shows the flowchart and pseudocode for the entire inventory report program. Make
sure you understand the importance of each flowchart symbol and each pseudocode line. There is nothing superfluous—
each is included to accomplish a specific part of the program that creates the completed inventory report.

finishUp()
 close files

INVENTORY, Printer
return

finishUp()

close
files

return

INVENTORY,
Printer

FIGURE 4-19: FLOWCHART AND PSEUDOCODE OF finishUp() MODULE

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 138

139Performing End-of-Job Tasks

finishUp()

close
files

return

mainLoop()

profit =
invPrice

–
invCost

read
invRecord

return

print
invItemName,

invPrice,
invCost, profit

declare
variables

open
files

print
columnHead1

print
columnHead2

read
invRecord

return

print
mainHeading

housekeeping()

Yes

eof? mainLoop()

finishUp()

No

housekeeping()

stop

start invRecord
 char invItemName
 num invPrice
 num invCost
 num invQuantity
char mainHeading = "INVENTORY REPORT"
char columnHead1 = "ITEM RETAIL PRICE
 MANUFACTURING PROFIT PER"
char columnHead2 = "DESCRIPTION EACH
 COST EACHƒƒƒƒƒITEM"
num profit

FIGURE 4-20: FLOWCHART AND PSEUDOCODE FOR INVENTORY REPORT PROGRAM

INVENTORY, Printer

INVENTORY, Printer

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 139

140 Chapter 4 • Designing and Writing a Complete Program

UNDERSTANDING THE NEED FOR GOOD PROGRAM DESIGN

As your programs become larger and more complicated, the need for good planning and design increases. Think of an
application you use, such as a word processor or a spreadsheet. The number and variety of user options are stagger-
ing. Not only would it be impossible for a single programmer to write such an application, but without thorough planning
and design, the components would never work together properly. Ideally, each program module you design needs to
work well as a stand-alone module and as an element of larger systems. Just as a house with poor plumbing or a car
with bad brakes is fatally flawed, a computer-based application can be great only if each component is designed well.

start
 perform housekeeping()
 while not eof
 perform mainLoop()
 endwhile
 perform finishUp()
stop

housekeeping()
 declare variables
 invRecord
 char invItemName
 num invPrice
 num invCost
 num invQuantity
 char mainHeading = "INVENTORY REPORT"
 char columnHead1 =
 "ITEM RETAIL PRICE MANUFACTURING PROFIT PER"
 char columnHead2 =
 "DESCRIPTION EACH COST EACH ITEM"
 num profit
 open files

INVENTORY, Printer
 print mainHeading
 print columnHead1
 print columnHead2
 read invRecord
return

mainLoop()
 profit = invPrice - invCost
 print invItemName, invPrice, invCost, profit
 read invRecord
return

finishUp()
 close files

INVENTORY, Printer
return

FIGURE 4-20: FLOWCHART AND PSEUDOCODE FOR INVENTORY REPORT PROGRAM (CONTINUED)

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 140

141Storing Program Components in Separate Files

STORING PROGRAM COMPONENTS IN SEPARATE FILES

When you start to work on professional programs, you will see that many of them are quite lengthy, with some contain-
ing hundreds of variables and thousands of lines of code. Earlier in this chapter, you learned you can manage lengthy
procedural programs by breaking them down into modules. Although modularization helps you to organize your pro-
grams, sometimes it is still difficult to manage all of a program’s components.

Most modern programming languages allow you to store program components in separate files. If you write a module
and store it in the same file as the program that uses it, your program files become large and hard to work with,
whether you are trying to read them on a screen or on multiple printed pages. In addition, when you define a useful
module, you might want to use it in many programs. Of course, you can copy module definitions from one file to
another, but this method is time-consuming as well as prone to error. A better solution (if you are using a language that
allows it) is to store your modules in individual files and use an instruction to include them in any program that uses
them. The statement needed to access modules from separate files varies from language to language, but it usually
involves using a verb such as include, import, or copy, followed by the name of the file that contains the module.

For example, suppose your company has a standard employee record definition, part of which is shown in Figure 4-21.
Files with the same format are used in many applications within the organization—personnel reports, production
reports, payroll, and so on. It would be a tremendous waste of resources if every programmer rewrote this file definition
in multiple applications. Instead, once a programmer writes the statements that constitute the file definition, those
statements should be imported in their entirety into any program that uses a record with the same structure. For exam-
ple, Figure 4-22 shows how the data fields in Figure 4-21 would be defined in the C++ programming language. If the
statements in Figure 4-22 are saved in a file named Employees, then any C++ program can contain the statement
#include Employees and all the data fields are automatically declared.

When you include a file in a C++ program, all the fields in the file are automatically
declared. However, they might not be accessible without further manipulation because the
fields are private by default. You will learn more about making data public or private and
how to handle each type when you study object-oriented programming in Chapter 12.

The pound sign (#) is used with the include statement in C++ to notify the compiler
that it is part of a special type of statement called a pre-processor directive.

TIP�

TIP�

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 141

142 Chapter 4 • Designing and Writing a Complete Program

Don’t be concerned with the syntax used in the file description in Figure 4-22. The words
class, int, string, long, and double are all part of the C++ programming language
and are not important to you now. Simply concentrate on how the variable names reflect
the field descriptions in Figure 4-21.

Suppose you write a useful module that checks dates to guarantee their validity. For example, the two digits that represent
a month can be neither less than 01 nor greater than 12, and the two digits that represent the day can contain different
possible values, depending on the month. Any program that uses the employee file description shown in Figure 4-21 might
want to call the date-validating module several times in order to validate any employee’s hire date, birth date, and termina-
tion date. Not only do you want to call this module from several locations within any one program, you want to call it from
many programs. For example, programs used for company ordering and billing would each contain several dates. If the
date-validating module is useful and well-written, you might even want to market it to other companies. By storing the
module in its own file, you enable its use to be flexible. When you write a program of any length, you should consider stor-
ing each of its components in its own file.

FIGURE 4-22: DATA FIELDS IN FIGURE 4-21 DEFINED IN THE C++ LANGUAGE

class Employee
{
 int employeeID;
 string lastName;
 string firstName;
 long hireDate;
 double hourlyWage;
 long birthDate;
 long terminationDate;
};

EMPLOYEES FILE DESCRIPTION
File name: EMPLOYEES
FIELD DESCRIPTION DATA TYPE COMMENTS
Employee ID Character 5 bytes
Last Name Character 20 bytes
First Name Character 15 bytes
Hire Date Numeric 8 digits yyyymmdd
Hourly Wage Numeric 2 decimal places
Birth Date Numeric 8 digits yyyymmdd
Termination Date Numeric 8 digits yyyymmdd

FIGURE 4-21: PARTIAL EMPLOYEES FILE DESCRIPTION

TIP�

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 142

143Selecting Variable and Module Names

Storing components in separate files can provide an advantage beyond ease of reuse. When you let others use your
programs or modules, you often provide them with only the compiled (that is, machine-language) version of your code,
not the source code, which is composed of readable statements. Storing your program statements in a separate, non-
readable, compiled file is an example of implementation hiding, or hiding the details of how the program or module
works. Other programmers can use your code, but cannot see the statements you used to create it. A programmer who
cannot see your well-designed modules is more likely to use them simply as they were intended; the programmer also
will not be able to attempt to make adjustments to your code, thereby introducing error. Of course, in order to work with
your modules or data definitions, a programmer must know the names and types of data you are using. Typically, you
provide programmers who use your definitions with written documentation of the data names and purposes.

Recall from Chapter 1 that when you write a program in a programming language, you
must compile or interpret it into machine language before the computer can actually carry
out your instructions.

SELECTING VARIABLE AND MODULE NAMES

An often-overlooked element in program design is the selection of good data and module names (sometimes generi-
cally called identifiers). In Chapter 1, you learned that every programming language has specific rules for the construc-
tion of names—some languages limit the number of characters, some allow dashes, and so on—but there are other
general guidelines:

� Use meaningful names. Creating a data field named someData or a module named
firstModule() makes a program cryptic. Not only will others find it hard to read your pro-
grams, but you will forget the purpose of these identifiers even within your own programs. All pro-
grammers occasionally use short, nondescriptive names such as x or temp in a quick program
written to test a procedure; however, in most cases, data and module names should be meaning-
ful. Programmers refer to programs that contain meaningful names as self-documenting. This
means that even without further documentation, the program code explains itself to readers.

� Usually, you should use pronounceable names. A variable name like pzf is neither pronounce-
able nor meaningful. A name that looks meaningful when you write it might not be as meaningful
when someone else reads it; for instance, preparead() might mean “Prepare ad” to you,
but “Prep a read” to others. Look at your names critically to make sure they are pronounceable.
Very standard abbreviations do not have to be pronounceable. For example, most business peo-
ple would interpret ssn as Social Security number.

Don’t forget that not all programmers share your culture. An abbreviation whose meaning
seems obvious to you might be cryptic to someone in a different part of the world.

� Be judicious in your use of abbreviations. You can save a few keystrokes when creating a module
called getStat(), but is its purpose to find the state in which a city is located, output some
statistics, or determine the status of some variables? Similarly, is a variable named fn meant to
hold a first name, file number, or something else?

TIP�

TIP�

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 143

144 Chapter 4 • Designing and Writing a Complete Program

To save typing time when you develop a program, you can use a short name like efn. After
the program operates correctly, you can use an editor’s Search and Replace feature to
replace your coded name with a more meaningful name such as employeeFirstName.
Some newer compilers support an automatic statement completion feature that saves typ-
ing time. After the first time you use a name like employeeFirstName, you need to
type only the first few letters before the compiler editor offers a list of available names
from which to choose. The list is constructed from all the names you have used in the file
that begin with the same characters.

� Usually, avoid digits in a name. Zeroes get confused with the letter “O”, and lowercase “l”s are
misread as the numeral 1. Of course, use your judgment: budgetFor2007 is probably not
going to be misinterpreted.

� Use the system your language allows to separate words in long, multiword variable names. For
example, if the programming language you use allows dashes or underscores, then use a method
name like initialize-data() or initialize_data(), which is easier to read than
initializedata(). If you use a language that allows camel casing, then use
initializeData(). If you use a language that is case sensitive, it is legal but confusing to
use variable names that differ only in case—for example, empName, EmpName, and Empname.

� Consider including a form of the verb to be, such as is or are, in names for variables that are
intended to hold a status. For example, use isFinished as a flag variable that holds a “Y” or
“N” to indicate whether a file is exhausted. The shorter name finished is more likely to be
confused with a module that executes when a program is done.

When you begin to write programs, the process of determining what data variables and modules you will need and
what to name them all might seem overwhelming. The design process is crucial, however. When you acquire your first
professional programming assignment, the design process might very well be completed already. Most likely, your first
assignment will be to write or make modifications to one small member module of a much larger application. The more
the original programmers stuck to these guidelines, the better the original design was, and the easier your job of modi-
fication will be.

DESIGNING CLEAR MODULE STATEMENTS

In addition to selecting good identifiers, you can use the following tactics to contribute to the clarity of the statements
within your program modules:

� Avoid confusing line breaks.

� Use temporary variables to clarify long statements.

� Use constants where appropriate.

TIP�

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 144

145Designing Clear Module Statements

AVOIDING CONFUSING LINE BREAKS

Some older programming languages require that program statements be placed in specific columns. Most modern pro-
gramming languages are free-form; you can arrange your lines of code any way you see fit. As in real life, with freedom
comes responsibility; when you have flexibility in arranging your lines of code, you must take care to make sure your
meaning is clear. With free-form code, programmers often do not provide enough line breaks, or they provide inappro-
priate ones.

Figure 4-23 shows an example of code (part of the housekeeping() module from Figure 4-14) that does not pro-
vide enough line breaks for clarity. If you have been following the examples used throughout this book, the code in
Figure 4-24 looks clearer to you; it will also look clearer to most other programmers.

Figure 4-24 shows that more, but shorter, lines usually improve your ability to understand a program’s logic; appropri-
ately breaking lines will become even more important as you introduce decisions and loops into your programs in the
next chapters.

USING TEMPORARY VARIABLES TO CLARIFY LONG STATEMENTS

When you need several mathematical operations to determine a result, consider using a series of temporary variables
to hold intermediate results. For example, Figure 4-25 shows two ways to calculate a value for a real estate
salespersonCommission variable. Each method achieves the same result—the salesperson’s commission is
based on the square feet multiplied by the price per square foot, plus any premium for a lot with special features, such
as a wooded or waterfront lot. However, the second example uses two temporary variables, sqFootPrice and
totalPrice. When the computation is broken down into less complicated, individual steps, it is easier to see how
the total price is calculated. In calculations with even more computation steps, performing the arithmetic in stages
would become increasingly helpful.

FIGURE 4-24: PART OF A housekeeping() MODULE WITH APPROPRIATE LINE BREAKS

open files
print mainHeading
print columnHead1
print columnHead2
read invRecord

FIGURE 4-23: PART OF A housekeeping() MODULE WITH INSUFFICIENT LINE BREAKS

open files print mainHeading print columnHead1
 print columnHead2 read invRecord

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 145

146 Chapter 4 • Designing and Writing a Complete Program

A statement, or part of a statement, that performs arithmetic and has a resulting value is
called an arithmetic expression. For example, 2 + 3 is an arithmetic expression with the
value 5.

Programmers might say using temporary variables, like the example in Figure 4-25, is
cheap. When executing a lengthy arithmetic statement, even if you don’t explicitly name
temporary variables, the programming language compiler creates them behind the scenes,
so declaring them yourself does not cost much in terms of program execution time.

USING CONSTANTS WHERE APPROPRIATE

Whenever possible, use named values in your programs. If your program contains a statement like salesTax =
price * taxRate instead of salesTax = price * .06, you gain two benefits:

� It is easier for readers to know that the price is being multiplied by a tax rate instead of a dis-
count, commission, or some other rate represented by .06.

� When the tax rate changes, you make one change to the value where taxRate is defined,
rather than searching through a program for every instance of .06.

Named values can be variables or constants. For example, if a taxRate is one value when a price is over $100 and a
different value when the price is not over $100, then you can store the appropriate value in a variable named taxRate,
and use it when computing the sales tax. A named value also can be declared to be a named constant, meaning its
value will never change during the execution of the program. For example, the program segment in Figure 4-26 uses the
constants TUITION_PER_CREDIT_HOUR and ATHLETIC_FEE. Because the fields are declared to be constant, using the
modifier const, you know that their values will not change during the execution of the program. If the values of either of
these should change in the future, then the values assigned to the constants can be made in the declaration list, the code
can be recompiled, and the actual program statements that perform the arithmetic with the values do not have to be dis-
turbed. By convention, many programmers use all capital letters in constant names, so they stand out as distinct from
variables.

FIGURE 4-25: TWO WAYS OF ACHIEVING THE SAME salespersonCommission RESULT

salespersonCommission = (sqFeet * pricePerSquareFoot + lotPremium) * commissionRate

sqFootPrice = sqFeet * pricePerSquareFoot
totalPrice = sqFootPrice + lotPremium
salespersonCommission = totalPrice * commissionRate

TIP�

TIP�

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 146

147Maintaining Good Programming Habits

Some programmers refer to unnamed numeric constants as “magic numbers.” They feel
that using magic numbers should always be avoided, and that you should provide a
descriptive name for every numeric constant you use.

MAINTAINING GOOD PROGRAMMING HABITS

When you learn a programming language and begin to write lines of program code, it is easy to forget the principles
you have learned in this text. Having some programming knowledge and a keyboard at your fingertips can lure you into
typing lines of code before you think things through. But every program you write will be better if you plan before you
code. If you maintain the habits of first drawing flowcharts or writing pseudocode, as you have learned here, your future
programming projects will go more smoothly. If you walk through your program logic on paper (called desk-checking)
before starting to type statements in C++, COBOL, Visual Basic, or Java, your programs will run correctly sooner. If you
think carefully about the variable and module names you use, and design your program statements so they are easy for
others to read, you will be rewarded with programs that are easier to get up and running, and are easier to maintain
as well.

declare variables
 studentRecord
 num studentId
 num creditsEnrolled
 num tuitionDue
 num totalDue
 const num TUITION_PER_CREDIT_HOUR = 74.50
 const num ATHLETIC_FEE = 25.00
read studentRecord
tuitionDue = creditsEnrolled * TUITION_PER_CREDIT_HOUR
totalDue = tuitionDue + ATHLETIC_FEE

FIGURE 4-26: PROGRAM SEGMENT THAT CALCULATES STUDENT BALANCE DUE USING DEFINED CONSTANTS

TIP�

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 147

Chapter 4 • Designing and Writing a Complete Program148

CHAPTER SUMMARY

� When you write a complete program, you first determine whether you have all the necessary data to

produce the output. Then, you plan the mainline logic, which usually includes modules to perform house-

keeping, a main loop that contains the steps that repeat for every record, and an end-of-job routine.

� Housekeeping tasks include all steps that must take place at the beginning of a program. These tasks

include declaring variables, opening files, performing any one-time-only tasks—such as printing head-

ings at the beginning of a report—and reading the first input record.

� The main loop of a program is controlled by the eof decision. Each data record passes once through

the main loop, where calculations are performed with the data and results are printed.

� Within any program, the end-of-job module holds the steps you must take at the end of the program,

after all the input records have been processed. Typical tasks include printing summaries, grand totals, or

final messages at the end of a report, and closing all open files.

� As your programs become larger and more complicated, the need for good planning and design

increases.

� Most modern programming languages allow you to store program components in separate files and use

instructions to include them in any program that uses them. Storing components in separate files can

provide the advantages of easy reuse and implementation hiding.

� When selecting data and module names, use meaningful, pronounceable names. Be judicious in your

use of abbreviations, avoid digits in a name, and visually separate words in multiword names. Consider

including a form of the verb to be, such as is or are, in names for variables that are intended to hold

a status.

� When writing program statements, you should avoid confusing line breaks, use temporary variables to

clarify long statements, and use constants where appropriate.

KEY TERMS

A user, or client, is a person who requests a program, and who will actually use the output of the program.

A procedural program is a program in which one procedure follows another from the beginning until the end.

The mainline logic of a program is the overall logic of the main program from beginning to end.

A housekeeping module includes steps you must perform at the beginning of a program to get ready for the rest of
the program.

The main loop of a program contains the steps that are repeated for every record.

The end-of-job routine holds the steps you take at the end of the program to finish the application.

Functional decomposition is the act of reducing a large program into more manageable modules.

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 148

Review Questions 149

A prefix is a set of characters used at the beginning of related variable names.

Hungarian notation is a variable-naming convention in which a variable’s data type or other information is stored as
part of its name.

A group name is a name for a group of associated variables.

Initializing, or defining, a variable is the process of providing a variable with a value, as well as a name and a type,
when you create it.

Garbage is the unknown value of an undefined variable.

Opening a file is the process of telling the computer where the input is coming from, the name of the file (and possibly
the folder), and preparing the file for reading.

The standard input device is the default device from which input comes, most often the keyboard.

The standard output device is the default device to which output is sent, usually the monitor.

Interactive applications are applications that interact with a user who types data at a keyboard.

A delimiter is a keystroke that separates data items.

An output statement called a prompt asks the user for a specific item.

A work variable, or work field, is a variable you use to temporarily hold a calculation.

Footer lines, or footers, are end-of-job message lines.

Source code is the readable statements of a program, written in a programming language.

Implementation hiding is hiding the details of the way a program or module works.

Identifiers are the names of variables and modules.

Self-documenting programs are those that contain meaningful data and module names that describe the programs’
purpose.

An arithmetic expression is a statement, or part of a statement, that performs arithmetic and has a value.

A named constant holds a value that never changes during the execution of a program.

Desk-checking is the process of walking through a program’s logic on paper.

REVIEW QUESTIONS

1. Input records usually contain .

a. less data than an application needs
b. more data than an application needs
c. exactly the amount of data an application needs
d. none of the data an application needs

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 149

Chapter 4 • Designing and Writing a Complete Program150

2. A program in which one operation follows another from the beginning until the end is a
program.

a. modular
b. functional
c. procedural
d. object-oriented

3. The mainline logic of many computer programs contains .

a. calls to housekeeping, record processing, and finishing routines
b. steps to declare variables, open files, and read the first record
c. arithmetic instructions that are performed for each record in the input file
d. steps to print totals and close files

4. Modularizing a program .

a. keeps large jobs manageable
b. allows work to be divided easily
c. helps keep a program structured
d. all of the above

5. Which of the following is not a typical housekeeping module task?

a. declaring variables
b. printing summaries
c. opening files
d. performing a priming read

6. When a programmer uses a data file and names the first field stored in each record idNumber,
then other programmers who use the same file in their programs.

a. must also name the field idNumber
b. might name the field idNumber
c. cannot name the field idNumber
d. cannot name the field

7. If you use a data file containing student records, and the first field is the student’s last name, then
you can name the field .

a. stuLastName
b. studentLastName
c. lastName
d. any of the above

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 150

Review Questions 151

8. If a field in a data file used for program input contains “Johnson”, then the best choice among the
following names for a programmer to use when declaring a memory location for the data is

.

a. Johnson
b. n
c. lastName
d. A programmer cannot declare a variable name for this field; it is already called Johnson.

9. The purpose of using a group name is .

a. to be able to handle several variables with a single instruction
b. to eliminate the need for machine-level instructions
c. to be able to use both character and numeric values within the same program
d. to be able to use multiple input files concurrently

10. Defining a variable means the same as it and providing a starting value for it.

a. declaring
b. initializing
c. deleting
d. assigning

11. In most programming languages, the initial value of unassigned variables is .

a. 0
b. spaces
c. 0 or spaces, depending on whether the variable is numeric or character
d. unknown

12. The types of variables you usually do not initialize are .

a. those that will never change value during a program
b. those representing fields in an input file
c. those that will be used in mathematical statements
d. those that will not be used in mathematical statements

13. The name programmers use for unknown variable values is .

a. default
b. trash
c. naive
d. garbage

14. Preparing an input device to deliver data records to a program is called a file.

a. prompting
b. opening
c. refreshing
d. initializing

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 151

Chapter 4 • Designing and Writing a Complete Program152

15. A computer system’s standard input device is most often a .

a. mouse
b. floppy disk
c. keyboard
d. compact disc

16. The last task performed in a housekeeping module is most often to .

a. open files
b. close files
c. check for eof
d. read an input record

17. Most business programs contain a that executes once for each record in an input file.

a. housekeeping module
b. main loop
c. finish routine
d. terminal symbol

18. Which of the following pseudocode statements is equivalent to this pseudocode:

salePriceƒ=ƒsalePriceƒ-ƒdiscount
finalPriceƒ=ƒsalePriceƒ+ƒtax
printƒfinalPrice

a. print salePrice + tax
b. print salePrice - discount
c. print salePrice - discount + tax
d. print discount + tax - salePrice

19. Common end-of-job module tasks in programs include all of the following except .

a. opening files
b. printing totals
c. printing end-of-job messages
d. closing files

20. Which of the following is least likely to be performed in an end-of-job module?

a. closing files
b. checking for eof
c. printing the message “End of report”
d. adding two values

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 152

Find the Bugs 153

FIND THE BUGS

Each of the following pseudocode segments contains one or more bugs that you must find and correct.

1. This pseudocode should create a report containing first-quarter profit statistics for a retail store.
Input records contain a department name (for example, “Cosmetics”), expenses for each of the
months January, February, and March, and sales for each of the same three months. Profit is deter-
mined by subtracting total expenses from total sales. The main program calls three modules—
housekeeping(), mainLoop(), and finishUp(). The housekeeping() module calls
printHeadings().

start
ƒƒƒperformƒhousekeeping()
ƒƒƒwhileƒeof
ƒƒƒƒƒƒperformƒmainLoop()
ƒƒƒperformƒfinishUp()
stop

housekeeping()
ƒƒƒdeclareƒvariables
ƒƒƒƒƒƒƒƒprofitRec
ƒƒƒƒƒƒƒƒƒƒƒƒcharƒdepartment
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒjanExpenses
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒfebExpensesƒ
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒmarExpensesƒ
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒjanSalesƒ
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒfebSalesƒ
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒmarSales
ƒƒƒƒƒƒƒcharƒmainHeaderƒ=ƒ“FirstƒQuarterƒProfitƒReport”
ƒƒƒƒƒƒƒcharƒcolumnHeadersƒ=ƒ“DepartmentƒƒƒƒƒƒƒProfit”
ƒƒƒopenƒfiles
ƒƒƒperformƒheadings()
ƒƒƒreadƒprofitRec
stop

printHeadings()
ƒƒƒprintƒmainHeader
ƒƒƒprintƒcolumnHeaders
return

mainLoop()
ƒƒƒtotalSalesƒ=ƒjanSalesƒ+ƒfebSalesƒ+ƒfebSales
ƒƒƒtotalExpensesƒ=ƒjanExpensesƒ+ƒmarExpensesƒ+ƒmarExpenses
ƒƒƒprofitƒ=ƒtotalSalesƒ–ƒtotalExpenses
ƒƒƒprintƒdepartment,ƒtotalProfit
return

finishUp()
ƒƒƒcloseƒfiles
return

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 153

Chapter 4 • Designing and Writing a Complete Program154

2. This pseudocode should create a report containing rental agents’ commissions at an apartment
complex. Input records contain each salesperson’s ID number and name, as well as number of
three-bedroom, two-bedroom, one-bedroom, and studio apartments rented during the month.
The commission for each apartment rented is $50 times the number of bedrooms, except for
studio apartments, for which the commission is $35. The main program calls three modules—
housekeeping(), calculateCommission(), and finishUp(). The housekeeping()
module calls displayHeaders().
start
ƒƒƒperformƒhousekeeping()
ƒƒƒwhileƒnotƒeof
ƒƒƒƒƒƒperformƒcalcCommission()
ƒƒƒperformƒfinishUp()
stop

housekeeping()
ƒƒƒdeclareƒvariables
ƒƒƒƒƒƒƒƒrentalRecord
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒsalesPersonID
ƒƒƒƒƒƒƒƒƒƒƒƒcharƒsalesPersonName
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒnumThreeBedroomAptsRented
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒnumTwoBedroomAptsƒ
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒnumOneBedroomAptsRentedƒ
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒnumStudioAptsRentedƒ
ƒƒƒƒƒƒƒcharƒmainHeaderƒ=ƒ“CommissionƒReport”
ƒƒƒƒƒƒƒcharƒcolumnHeadersƒ=ƒ

“SalespersonƒIDƒƒƒƒƒƒƒƒNameƒƒƒƒƒƒƒCommissionƒEarned”
ƒƒƒƒƒƒƒnumƒcommissionEarned
ƒƒƒƒƒƒƒnumƒregRateƒ=ƒ50.00
ƒƒƒƒƒƒƒcharƒstudioRateƒ=ƒ35.00
ƒƒƒopenƒfiles
ƒƒƒperformƒdisplayHeaders()
stop

displayHeader()
ƒƒƒprintƒmainHeader
ƒƒƒprintƒcolumnHeaders
return

calculateCommission()
ƒƒƒcommissionEarnedƒ=ƒ(numThreeBedroomAptsRentedƒ*ƒ2ƒ+ƒ

numTwoBedroomAptsRented
ƒ*ƒ3ƒ+ƒnumOneBedroomAptsRented)ƒ*ƒregRateƒ+ƒ

(numStudioAptsRentedƒ*ƒstudioRate)
ƒƒƒprintƒsalespersonID,ƒsalespersonName,ƒcommissionEarned
return

finishUp()
ƒƒƒcloseƒfiles
return

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 154

Exercises 155

EXERCISES

1. A pet store owner needs a weekly sales report. The output consists of a printed report titled PET
SALES, with column headings TYPE OF ANIMAL and PRICE. Fields printed on output are: type of ani-
mal and price. After all records print, a footer line END OF REPORT prints. The input file description
is shown below.

Fileƒname:ƒPETS
FIELDƒDESCRIPTIONƒƒƒƒƒDATAƒTYPEƒƒƒƒƒCOMMENTS
TypeƒofƒAnimalƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ20ƒcharacters
PriceƒofƒAnimalƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ2ƒdecimalƒplaces

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

2. An employer wants to produce a personnel report. The output consists of a printed report titled
ACTIVE PERSONNEL. Fields printed on output are: last name of employee, first name of employee,
and current weekly salary. Include appropriate column headings and a footer. The input file
description is shown below.

Fileƒname:ƒPERSONNEL
FIELDƒDESCRIPTIONƒƒƒƒƒDATAƒTYPEƒƒƒƒƒCOMMENTS
LastƒNameƒƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ15ƒcharacters
FirstƒNameƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ15ƒcharacters
Soc.ƒSec.ƒNumberƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ9ƒdigits,ƒ0ƒdecimalƒplaces
DepartmentƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ2ƒdigits,ƒ0ƒdecimalƒplaces
CurrentƒSalaryƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ2ƒdecimalƒplaces

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

3. An employer wants to produce a personnel report that shows the end result if she gives everyone a
10 percent raise in salary. The output consists of a printed report entitled PROJECTED RAISES.
Fields printed on output are: last name of employee, first name of employee, current weekly salary,
and projected weekly salary. The input file description is shown below.

Fileƒname:ƒPERSONNEL
FIELDƒDESCRIPTIONƒƒƒƒƒDATAƒTYPEƒƒƒƒƒCOMMENTS
LastƒNameƒƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ15ƒcharacters
FirstƒNameƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ15ƒcharacters
Soc.ƒSec.ƒNumberƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ9ƒdigits,ƒ0ƒdecimalƒplaces
DepartmentƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ2ƒdigits,ƒ0ƒdecimalƒplaces
CurrentƒSalaryƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ2ƒdecimalƒplaces

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 155

Chapter 4 • Designing and Writing a Complete Program156

4. A furniture store maintains an inventory file that includes data about every item it sells. The man-
ager wants a report that lists each stock number, description, and profit, which is the retail price
minus the wholesale price. The fields include a stock number, description, wholesale price, and
retail price. The input file description is shown below.

Fileƒname:ƒFURNITURE
FIELDƒDESCRIPTIONƒƒƒƒƒDATAƒTYPEƒƒƒƒƒCOMMENTS
StockƒNumberƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ4ƒdigits,ƒ0ƒdecimalƒplaces
DescriptionƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ25ƒcharacters
WholesaleƒPriceƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ2ƒdecimalƒplaces
RetailƒPriceƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ2ƒdecimalƒplaces

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

5. A summer camp keeps a record for every camper, including first name, last name, birth date, and
skill scores that range from 1 to 10 in four areas: swimming, tennis, horsemanship, and crafts. (The
birth date is stored in the format YYYYMMDD without any punctuation. For example, January 21,
1991 is 19910121.) The camp wants a printed report listing each camper’s data, plus a total score
that is the sum of the camper’s four skill scores. The input file description is shown below.

Fileƒname:ƒCAMPERS
FIELDƒDESCRIPTIONƒƒƒƒƒDATAƒTYPEƒƒƒƒƒCOMMENTS
FirstƒNameƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ15ƒcharacters
LastƒNameƒƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ15ƒcharacters
BirthƒDateƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ8ƒdigits,ƒ0ƒdecimals
SwimmingƒSkillƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ0ƒdecimals
TennisƒSkillƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ0ƒdecimals
HorsemanshipƒSkillƒƒƒƒNumericƒƒƒƒƒƒƒ0ƒdecimals
CraftsƒSkillƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ0ƒdecimals

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 156

Exercises 157

6. An employer needs to determine how much tax to withhold for each employee. This withholding
amount computes as 20 percent of each employee’s weekly pay. The output consists of a printed
report titled WITHHOLDING FOR EACH EMPLOYEE. Fields printed on output are: last name of
employee, first name of employee, hourly pay, weekly pay based on a 40-hour workweek, and with-
holding amount per week. The input file description is shown below.

Fileƒname:ƒEMPLOYEES
FIELDƒDESCRIPTIONƒƒƒƒƒDATAƒTYPEƒƒƒƒƒCOMMENTS
CompanyƒIDƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ5ƒdigits,ƒ0ƒdecimals
FirstƒNameƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ12ƒcharacters
LastƒNameƒƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ12ƒcharacters
HourlyƒRateƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ2ƒdecimalƒplaces

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

7. A baseball team manager wants a report showing her players’ batting statistics. A batting average
is computed as hits divided by at-bats, and it is usually expressed to three decimal positions (for
example, .235). The output consists of a printed report titled TEAM STATISTICS. Fields printed on
output are: player number, first name, last name, and batting average. The input file description is
shown below.

Fileƒname:ƒBASEBALL
FIELDƒDESCRIPTIONƒƒƒƒƒDATAƒTYPEƒƒƒƒƒCOMMENTS
PlayerƒNumberƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ2ƒdigits,ƒ0ƒdecimals
FirstƒNameƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ16ƒcharacters
LastƒNameƒƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒ17ƒcharacters
At-batsƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒneverƒmoreƒthanƒ999,ƒ0ƒdecimals
HitsƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒneverƒmoreƒthanƒ999,ƒ0ƒdecimals

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 157

Chapter 4 • Designing and Writing a Complete Program158

8. A car rental company manager wants a report showing the revenue earned per mile on vehicles
rented each week. An automobile’s miles traveled are computed by subtracting the odometer read-
ing when the car is rented from the odometer reading when the car is returned. The amount earned
per mile is computed by dividing the rental fee by the miles traveled. The output consists of a
printed report titled CAR RENTAL REVENUE STATISTICS. Fields printed on output are: vehicle identi-
fication number, odometer reading out, odometer reading in, miles traveled, rental fee, and amount
earned per mile. The input file description is shown below.

Fileƒname:ƒAUTORENTALS
FIELDƒDESCRIPTIONƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒDATAƒTYPEƒƒƒƒƒCOMMENTS
VehicleƒIdentificationƒNumberƒƒƒƒƒƒƒƒNumeric ƒƒƒƒƒ12ƒdigits
OdometerƒReadingƒOutƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ0ƒdecimals
OdometerƒReadingƒInƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ0ƒdecimals
RentalƒfeeƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒ2ƒdecimals
a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

9. Professor Smith provides her programming logic students with a final grade that is based on their
performance in attendance (a percentage based on 16 class meetings), homework (a percentage
based on 10 assignments that might total up to 100 points), and exams (a percentage based on two
100-point exams). A student’s final percentage for the course is determined using a weighted aver-
age of these figures, with exams counting twice as much as attendance or homework. For exam-
ple, a student who attended 12 class meetings (75%), achieved 90 points on homework
assignments (90%), and scored an average of 60% on tests would have a final average of 71.25%
(75 + 90 + 2 * 60) / 4. Professor Smith wants a report that shows each student’s ID number and his
or her final percentage score.

Fileƒname:ƒSTUDENTSCORES
FIELDƒDESCRIPTION DATAƒTYPE COMMENTS
StudentƒIDƒNumber Numeric 6ƒdigits,ƒ0ƒdecimal places
Classesƒattended Numeric aƒvalueƒofƒ16ƒorƒlower,ƒ0 decimals
Homeworkƒ1 Numeric aƒvalueƒofƒ10ƒorƒlower,ƒ0 decimals
Homeworkƒ2 Numeric aƒvalueƒofƒ10ƒorƒlower,ƒ0 decimals
Homeworkƒ3 Numeric aƒvalueƒofƒ10ƒorƒlower,ƒ0 decimals
Homeworkƒ4 Numeric aƒvalueƒofƒ10ƒorƒlower,ƒ0 decimals
Homeworkƒ5 Numeric aƒvalueƒofƒ10ƒorƒlower,ƒ0 decimals
Homeworkƒ6 Numeric aƒvalueƒofƒ10ƒorƒlower,ƒ0 decimals
Homeworkƒ7 Numeric aƒvalueƒofƒ10ƒorƒlower,ƒ0 decimals
Homeworkƒ8 Numeric aƒvalueƒofƒ10ƒorƒlower,ƒ0 decimals
Homeworkƒ9 Numeric aƒvalueƒofƒ10ƒorƒlower,ƒ0 decimals
Homeworkƒ10 Numeric aƒvalueƒofƒ10ƒorƒlower,ƒ0 decimals
Testƒ1 Numeric aƒvalueƒofƒ100ƒorƒlower,ƒ2 decimals
Testƒ2 Numeric aƒvalueƒofƒ100ƒorƒlower,ƒ2 decimals

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 158

Up for Discussion 159

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

DETECTIVE WORK

1. Explore the job opportunities in programming. What are the job responsibilities? What is the aver-
age starting salary? What is the outlook for growth?

2. Many style guides are published on the Web. These guides suggest good identifiers, standard
indentation rules, and similar issues in specific programming languages. Find style guides for at
least two languages (for example, C++, Java, Visual Basic, C#, COBOL, RPG, or Pascal) and list any
differences you notice.

UP FOR DISCUSSION

1. When you write computer programs, you will generate errors. Syntax errors are errors in the
language—for example, misspellings. Logical errors are caused by statements with correct syntax
but that perform an incorrect task, or a correct task at the wrong time. Which is more dangerous?
How could the number of occurrences of both types of errors be reduced?

2. Extreme programming is a system for rapidly developing software. One of its tenets is that all pro-
duction code is written by two programmers sitting at one machine. Is this a good idea? Does
working this way as a programmer appeal to you?

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 159

4 Chapter CXXXX 35539.ps 10-13-05 8:33 AM Page 160

5
After studying Chapter 5, you should be able to:

� Evaluate Boolean expressions to make comparisons

� Use the relational comparison operators

� Understand AND logic

� Understand OR logic

� Use selections within ranges

� Understand precedence when combining AND and OR selections

� Understand the case structure

� Use decision tables

MAKING DECISIONS

161

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 161

162 Chapter 5 • Making Decisions

EVALUATING BOOLEAN EXPRESSIONS TO MAKE COMPARISONS

One reason people think computers are smart lies in a computer program’s ability to make decisions. For example, a
medical diagnosis program that can decide if your symptoms fit various disease profiles seems quite intelligent, as does
a program that can offer you potential vacation routes based on your destination.

The selection structure (also called the decision structure) involved in such programs is not new to you—it’s one of the
basic structures of structured programming. See Figures 5-1 and 5-2.

You can refer to the structure in Figure 5-1 as a dual-alternative, or binary, selection because there is an action asso-
ciated with each of two possible outcomes. Depending on the answer to the question represented by the diamond, the
logical flow proceeds either to the left branch of the structure or to the right. The choices are mutually exclusive; that is,
the logic can flow only to one of the two alternatives, never to both. This selection structure is also called an if-then-
else structure because it fits the statement:

if the answer to the question is yes, then
do something

else
do somethingElse

endif

The flowchart segment in Figure 5-2 represents a single-alternative, or unary, selection where action is required for
only one outcome of the question. You call this form of the if-then-else structure an if-then, because no alternative or
“else” action is included or necessary.

You can call a single-alternative decision (or selection) a single-sided decision.
Similarly, a dual-alternative decision (or selection) is a double-sided decision.

FIGURE 5-2: THE SINGLE-ALTERNATIVE SELECTION
STRUCTURE

FIGURE 5-1: THE DUAL-ALTERNATIVE SELECTION
STRUCTURE

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 162

163Evaluating Boolean Expressions to Make Comparisons

For example, Figure 5-3 shows the flowchart and pseudocode for a typical if-then-else decision in a business program.
Many organizations pay employees time and a half (one and one-half times their usual hourly rate) for hours in excess
of 40 per week. The logic segments in the figure show this decision.

In the example in Figure 5-3, the longer calculation that adds a time-and-a-half factor to an employee’s gross pay exe-
cutes only when the expression hoursWorked > 40 is true. The overtime calculation exists in the if clause of the
decision—the part of the decision that holds the action or actions that execute when the tested condition in the deci-
sion is true. The shorter, regular pay calculation, which produces grossPay by multiplying hoursWorked by
rate, constitutes the else clause of the decision—the part that executes only when the tested condition in the deci-
sion is false.

The typical if-then decision in Figure 5-4 shows an employee’s paycheck being reduced if the employee participates in
the dental plan. No action is taken if the employee is not a dental plan participant.

if dentalPlanCode = "Y" then
grossPay = grossPay - 23.50

endif

FIGURE 5-4: FLOWCHART AND PSEUDOCODE FOR DENTAL PLAN DECISION

dentalPlanCode =
“Y”?

YesNo

grossPay =
grossPay – 23.50

if hoursWorked > 40 then
grossPay = 40 * rate +
(hoursWorked - 40) * 1.5 * rate

else
grossPay = hoursWorked * rate

endif

FIGURE 5-3: FLOWCHART AND PSEUDOCODE FOR OVERTIME PAY DECISION

TrueFalse
hoursWorked

> 40

grossPay = 40
* rate +

(hoursWorked – 40)
* 1.5 * rate

grossPay =
hoursWorked

* rate

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 163

164 Chapter 5 • Making Decisions

The expressions hoursWorked > 40 and dentalPlanCode = “Y” that appear in Figures 5-3 and 5-4,
respectively, are Boolean expressions. In Chapter 4, you learned that in programming, an expression is a statement, or
part of a statement, that has a value. For example, an arithmetic expression is one that performs arithmetic, resulting in
a value. A Boolean expression is one that represents only one of two states, usually expressed as true or false. Every
decision you make in a computer program involves evaluating a Boolean expression. True/false evaluation is “natural”
from a computer’s standpoint, because computer circuitry consists of two-state, on-off switches, often represented by
1 or 0. Every computer decision yields a true-or-false, yes-or-no, 1-or-0 result.

George Boole was a mathematician who lived from 1815 to 1864. He approached logic
more simply than his predecessors did, by expressing logical selections with common
algebraic symbols. He is considered a pioneer in mathematical logic, and Boolean
(true/false) expressions are named for him.

USING THE RELATIONAL COMPARISON OPERATORS

Usually, you can compare only values that are of the same type; that is, you can compare numeric values to other num-
bers and character values to other characters. You can ask every programming question by using one of only six types
of comparison operators in a Boolean expression. For any two values that are the same type, you can decide whether:

� The two values are equal.

� The first value is greater than the second value.

� The first value is less than the second value.

� The first value is greater than or equal to the second value.

� The first value is less than or equal to the second value.

� The two values are not equal.

Usually, character variables are not considered to be equal unless they are identical,
including the spacing and whether they appear in uppercase or lowercase. For example,
“black pen” is not equal to “blackpen”, “BLACK PEN”, or “Black Pen”.

Some programming languages allow you to compare a character to a number. If this is the
case, then a single character’s numeric code value is used in the comparison. For example,
most microcomputers use either the ASCII or Unicode coding system. In both of these
systems, an uppercase “A” is represented numerically as a 65, an uppercase “B” is a 66,
and so on. See Appendix B for more information on ASCII code and how numbers are
used to store data.

In any Boolean expression, the two values used can be either variables or constants. For example, the expression
currentTotal = 100? compares the value stored in a variable, currentTotal, to a numeric constant,
100. Depending on the currentTotal value, the expression is true or false. In the expression currentTotal
= previousTotal? both values are variables, and the result is also true or false depending on the values stored
in each of the two variables. Although it’s legal to do so, you would never use expressions in which you compare two

TIP�

TIP�

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 164

165Using the Relational Comparison Operators

unnamed constants—for example,20 = 20? or 30 = 40?. Such expressions are considered trivial because each will
always evaluate to the same result: true for the first expression and false for the second.

Each programming language supports its own set of relational comparison operators, or comparison symbols, that
express these Boolean tests. For example, many languages such as Visual Basic and Pascal use the equal sign (=) to
express testing for equivalency, so balanceDue = 0 compares balanceDue to zero. COBOL programmers can
use the equal sign, but they also can spell out the expression, as in balanceDue equal to 0. RPG program-
mers use the two-letter operator EQ in place of a symbol. C#, C++, and Java programmers use two equal signs to test
for equivalency, so they write balanceDue == 0 to compare the two values. Although each programming lan-
guage supports its own syntax for comparing values’ equivalency, all languages provide for the same logical concept of
equivalency.

Visual Basic uses the single equal sign both for assignment and when testing for equiva-
lency; the interpretation of the operator depends on the context. The reason some lan-
guages use two equal signs for comparisons is to avoid confusion with assignment
statements such as balanceDue = 0. In C++, C#, or Java, this statement only assigns
the value 0 to balanceDue; it does not compare balanceDue to zero.

Whenever you use a comparison operator, you must provide a value on each side of the
operator. Comparison operators are sometimes called binary operators because of
this requirement. Some programmers use the terms “comparison operator,” “relational
operator,” and “logical operator” interchangeably. However, many prefer to reserve the
term “logical operator” for manipulations on single bits.

Most languages allow you to use the algebraic signs for greater than (>) and less than (<) to make the corresponding
comparisons. Additionally, COBOL, which is very similar to English, allows you to spell out the comparisons in expres-
sions such as daysPastDue is greater than 30 or packageWeight is less than
maximumWeightAllowed. RPG uses the two-letter abbreviations GT and LT to represent greater than or less
than. When you create a flowchart or pseudocode, you can use any form of notation you want to express “greater than”
and “less than.” It’s simplest to use the symbols > and < if you are comfortable with their meaning. As with equiva-
lency, the syntax changes when you change languages, but the concepts of greater than and less than exist in all pro-
gramming languages.

Most programming languages allow you to express “greater than or equal to” by typing a greater-than sign immediately
followed by an equal sign (>=). When you are drawing a flowchart or writing pseudocode, you might prefer a greater-
than sign with a line under it (≥) because mathematicians use that symbol to mean “greater than or equal to.” However,
when you write a program, you type >= as two separate characters, because no single key on the keyboard expresses
this concept. Similarly, “less than or equal to” is written with two symbols, < immediately followed by =.

The operators >= and <= are always treated as a single unit; no spaces separate the two
parts of the operator. Also, the equal sign always appears second. No programming lan-
guage allows => or =< as a comparison operator.

TIP�

TIP�

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 165

166 Chapter 5 • Making Decisions

Any logical situation can be expressed using just three types of comparisons: equal, greater than, and less than. You
never need the three additional comparisons (greater than or equal to, less than or equal to, or not equal to), but using them
often makes decisions more convenient. For example, assume you need to issue a 10 percent discount to any cus-
tomer whose age is 65 or greater, and charge full price to other customers. You can use the greater-than-or-equal-to
symbol to write the logic as follows:

if customerAge >= 65 then
discount = 0.10

else
discount = 0

endif

As an alternative, if you want to use only one of the three basic comparisons (=, >, and <), you can express the same
logic by writing:

if customerAge < 65 then
discount = 0

else
discount = 0.10

endif

In any decision for which a >= b is true, then a < b is false. Conversely, if a >= b is false, then a < b is true.
By rephrasing the question and swapping the actions taken based on the outcome, you can make the same decision in
multiple ways. The clearest route is often to ask a question so the positive or true outcome results in the unusual
action. For example, assume that charging a customer full price is the ordinary course, and that providing a discount is
the unusual occurrence. When your company policy is to “provide a discount for those who are 65 and older,” the
phrase “greater than or equal to” comes to mind, so it is the most natural to use. Conversely, if your policy is to “provide
no discount for those under 65,” then it is more natural to use the “less than” syntax. Either way, the same people
receive a discount.

Comparing two amounts to decide if they are not equal to each other is the most confusing of all the comparisons.
Using “not equal to” in decisions involves thinking in double negatives, which makes you prone to include logical errors
in your programs. For example, consider the flowchart segment in Figure 5-5.

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 166

167Using the Relational Comparison Operators

In Figure 5-5, if the value of customerCode is equal to 1, the logical flow follows the false branch of the selection.
If customerCode not equal to 1 is true, the discount is 0.25; if customerCode not equal
to 1 is not true, it means the customerCode is 1, and the discount is 0.50. Even using the phrase
“customerCode not equal to 1 is not true” is awkward.

Figure 5-6 shows the same decision, this time asked in the positive. Making the decision if customerCode is 1
then discount = 0.50 is clearer than trying to determine what customerCode is not.

Besides being awkward to use, the “not equal to” comparison operator is the one most likely to be different in the vari-
ous programming languages you may use. COBOL allows you to write “not equal to”; Visual Basic and Pascal use a
less-than sign followed immediately by a greater-than sign (<>); C#, C++, C, and Java use an exclamation point fol-
lowed by an equal sign (!=). In a flowchart or in pseudocode, you can use the symbol that mathematicians use to mean
“not equal,” an equal sign with a slash through it (≠). When you program, you will not be able to use this symbol,
because no single key on the keyboard produces it.

if customerCode = 1 then
discount = 0.50

else
discount = 0.25

endifYesNo

FIGURE 5-6: USING THE POSITIVE EQUIVALENT OF THE NEGATIVE COMPARISON IN FIGURE 5-5

customerCode
= 1?

discount
= 0.25

discount
= 0.50

if customerCode not equal to 1 then
discount = 0.25

else
discount = 0.50

endifYesNo

FIGURE 5-5: USING A NEGATIVE COMPARISON

customerCode
not equal to 1?

discount
= 0.50

discount
= 0.25

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 167

168 Chapter 5 • Making Decisions

Although NOT comparisons can be awkward to use, there are times when your meaning
is clearest if you use one. Frequently, this occurs when you take action only when some
comparison is expressed negatively—for example, when one value is not equal to another
value. Examples of situations in which a negative comparison makes sense include the
following:

if customerZipCode is not equal to localZipCode then
add DELIVERY_CHARGE to total

endif

if creditCardBalance is not 0 then
financeCharge = balance * INTEREST_RATE

endif

In these cases, action is taken when two values are not equal. The mainline logic of many
programs, including those you have worked with in this book, includes a negative com-
parison that controls a loop. The pseudocode you have seen for almost every program
includes a statement similar to: while not eof, perform mainLoop().

Figure 5-7 summarizes the six comparison operators and contrasts trivial (both true and false) examples with typical
examples of their use.

FIGURE 5-7: RELATIONAL COMPARISONS

Comparison Trivial true example Trivial false example Typical example

Equal to 7 = 7? 7 = 4? amtOrdered = 12?

Greater than 12 > 3? 4 > 9? hoursWorked > 40?

Less than 1 < 8? 13 < 10? hourlyWage < 5.65?

Greater than 5 >= 5? 3 >= 9? customerAge >= 65?

or equal to

Less than or 4 <= 4? 8 <= 2? daysOverdue <= 60?

equal to

Not equal to 16 <> 3? 18 <> 18? customerBalance <> 0?

TIP�

UNDERSTANDING AND LOGIC

Often, you need more than one selection structure to determine whether an action should take place. For example, sup-
pose that your employer wants a report that lists workers who have registered for both insurance plans offered by the
company: the medical plan and the dental plan. This type of situation is known as an AND decision because the
employee’s record must pass two tests—participation in the medical plan and participation in the dental plan—before
you write that employee’s information on the report. A compound, or AND, decision requires a nested decision, or a
nested if. A nested decision is a decision “inside of” another decision. The logic looks like Figure 5-8.

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 168

169Understanding AND Logic

You first learned about nesting structures in Chapter 2.

A series of nested if statements can also be called a cascading if statement.

The AND decision shown in Figure 5-8 is part of a much larger program. To help you develop this program, suppose
your employer provides you with the employee data file description shown in Figure 5-9, and you learn that the medical
and dental insurance fields contain a single character, “Y” or “N”, indicating each employee’s participation status. With
your employer’s approval, you develop the sample output shown in Figure 5-10.

EMPLOYEE FILE DESCRIPTION
File Name: EMPFILE
FIELD DESCRIPTION DATA TYPE COMMENTS
ID Number Numeric 4 digits, 0 decimal places
Last Name Character 15 characters
First Name Character 15 characters
Department Numeric 1 digit
Hourly Rate Numeric 2 decimal places
Medical Plan Character 1 character, Y or N
Dental Plan Character 1 character, Y or N
Number of Dependents Numeric 0 decimal places

FIGURE 5-9: EMPLOYEE FILE DESCRIPTION

if empMedicalIns = "Y" then
if empDentalIns = "Y" then

print empIdNumber,
empLastName,
empFirstName

 endif
endif

FIGURE 5-8: FLOWCHART AND PSEUDOCODE OF AN AND DECISION

YesNo

YesNo

print
empldNumber,
empLastName,
empFirstName

empDentalIns
= “Y”?

empMedicalIns
= “Y”?

TIP�

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 169

170 Chapter 5 • Making Decisions

The mainline logic and housekeeping() routines for this program are diagrammed in Figures 5-11 and 5-12.

start
perform housekeeping()
while not eof

perform createReport()
endwhile
perform finishUp()

stop

FIGURE 5-11: FLOWCHART AND PSEUDOCODE OF MAINLINE LOGIC FOR MEDICAL AND DENTAL PARTICIPANT
REPORT

Yes

No

start

housekeeping()

eof?

finishUp()

createReport()

stop

FIGURE 5-10: SAMPLE REPORT LISTING EMPLOYEES PARTICIPATING IN BOTH INSURANCE PLANS

Employees with Medical and Dental Insurance

ID Number Last Name First Name

1246 Kroening Virginia
1419 Lewis Kathleen
2765 Bowman Bradley
3872 Daniels James

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 170

171Understanding AND Logic

At the end of the housekeeping() module, the first employee record is read into computer memory. Assuming
that the eof condition is not yet met, the logical flow proceeds to the createReport() method. If the program
required data for all employees to be printed, this method would simply print the information from the current record
and get the next record. However, in this case, the output should contain only the names of those employees who par-
ticipate in both the medical and dental insurance plans. Therefore, within the createReport() module of this pro-
gram, you ask the questions that determine whether the current employee’s record will print; if the employee’s data meet
the medical and dental insurance requirements, then you print the record. Whether or not you take the path that prints
the record, the last thing you do in the createReport() method is to read the next input record. Figure 5-13 shows
the createReport() module.

housekeeping()
 declare variables
 open files
 print heading1
 print heading2
 read empRecord
return

 empRecord
 num empIdNumber
 char empLastName
 char empFirstName
 num empDept
 num empRate
 char empMedicalIns
 char empDentalIns
 num empDependents
 char heading1 = "Employees with Medical
 and Dental Insurance"
 char heading2 = "ID number Last name First name"

FIGURE 5-12: FLOWCHART AND PSEUDOCODE OF housekeeping() MODULE FOR MEDICAL AND DENTAL
PARTICIPANT REPORT

declare
variables

housekeeping()

open
files

print
heading1

print
heading2

read
empRecord

return

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 171

172 Chapter 5 • Making Decisions

At the end of the housekeeping() module in Figure 5-12, instead of the statement
read empRecord, an interactive program might prompt the user for values for each of
the eight data fields. Instead of the single read statement, you might choose to call a
method containing eight pairs of statements, such as print “Please enter
employee ID number” and read empIdNumber. The programs in this chapter
read data from a file to keep them simpler.

The createReport() module works like this: If the employee has medical insurance, then and only then test to
see if the employee has dental insurance. If so, then and only then print the employee’s data. The dental insurance
question is nested entirely within half of the medical insurance question structure. If an employee does not carry med-
ical insurance, there is no need to ask about the dental insurance; the employee is already disqualified from the report.
Pseudocode for the entire program is shown in Figure 5-14. Notice how the second (dental insurance) decision within
the createReport() method is indented within the first (medical insurance) decision. This technique shows that
the second question is asked only when the result of the first comparison is true.

createReport()
if empMedicalIns = "Y" then

if empDentalIns = "Y" then
print empIdNumber, empLastName, empFirstName

endif
endif
read empRecord

return

FIGURE 5-13: THE createReport() MODULE OF A PROGRAM THAT LISTS EMPLOYEES WHO ARE BOTH
MEDICAL AND DENTAL INSURANCE PROGRAM PARTICIPANTS

YesNo

YesNo

print
empIdNumber,
empLastName,
empFirstName

empDentalIns
= “Y”?

empMedicalIns
= “Y”?

createReport()

read
empRecord

return

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 172

173Understanding AND Logic

WRITING NESTED AND DECISIONS FOR EFFICIENCY

When you nest decisions because the resulting action requires that two conditions be true, you must decide which of
the two decisions to make first. Logically, either selection in an AND decision can come first. However, when there are
two selections, you often can improve your program’s performance by making an appropriate choice as to which selec-
tion to make first.

For example, Figure 5-15 shows the nested decision structure in the createReport() method logic of the pro-
gram that produces a report of employees who participate in both the medical and dental insurance plans. Alternatively,
you can write the decision as in Figure 5-16.

if empMedicalIns = “Y” then
if empDentalIns = “Y” then

print empIdNumber, empLastName, empFirstName
endif

endif

FIGURE 5-15: FINDING MEDICAL AND DENTAL PLAN PARTICIPANTS, CHECKING MEDICAL FIRST

start
perform housekeeping()
while not eof
perform createReport()

 endwhile
perform finishUp()

stop

housekeeping()
declare variables
open files
print heading1
print heading2
read empRecord

return

createReport()
if empMedicalIns = “Y” then

if empDentalIns = “Y” then
print empIdNumber, empLastName, empFirstName

endif
endif
read empRecord

return

finishUp()
close files

return

 empRecord
 num empIdNumber
 char empLastName
 char empFirstName
 num empDept
 num empRate
 char empMedicalIns
 char empDentalIns
 num empDependents
 char heading1 = "Employees with Medical

and Dental Insurance"
 char heading2 = "ID number Last name First name"

FIGURE 5-14: PSEUDOCODE OF PROGRAM THAT PRINTS RECORDS OF EMPLOYEES WHO PARTICIPATE IN BOTH
THE MEDICAL AND DENTAL INSURANCE PLANS

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 173

174 Chapter 5 • Making Decisions

Examine the decision statements in Figures 5-15 and 5-16. If you want to print employees who participate in the medical
AND dental plans, you can ask about the medical plan first, eliminate those employees who do not participate, and ask
about the dental plan only for those employees who “pass” the medical insurance test. Or, you could ask about the dental
plan first, eliminate those who do not participate, and ask about the medical plan only for those employees who “pass”
the dental insurance test. Either way, the final list contains only those employees who have both kinds of insurance.

Does it make a difference which question is asked first? As far as the output goes, no. Either way, the same employee
names appear on the report—those with both types of insurance. As far as program efficiency goes, however, it might

make a difference which question is asked first.

Assume you know that out of 1,000 employees in your company, about 90 percent, or 900, participate in the medical
insurance plan. Assume you also know that out of 1,000 employees, only about half, or 500, participate in the dental plan.

The medical and dental insurance program will ask the first question in the createReport() method 1,000 times dur-
ing its execution—once for each employee record contained in the input file. If the program uses the logic in Figure 5-15, it
asks the first question empMedicalIns = “Y”? 1,000 times. For approximately 90 percent of the employees, or
900 of the records, the answer is true, meaning the empMedicalIns field contains the character “Y”. So 100 employ-
ees are eliminated, and 900 proceed to the next question about dental insurance. Only about half of the employees partici-
pate in the dental plan, so 450 out of the 900 will appear on the printed report.

Using the alternate logic in Figure 5-16, the program asks the first question empDentalIns = “Y”? 1,000 times.
Because only about half of the company’s employees participate, only 500 will “pass” this test and proceed to the med-
ical insurance question. Then about 90 percent of the 500, or 450 employees, will appear on the printed report.
Whether you use the logic in Figure 5-15 or 5-16, the same 450 employees who have both types of insurance appear
on the report.

The difference lies in the fact that when you use the logic in Figure 5-15, the program must ask 1,900 questions to
produce the report—the medical insurance question tests all 1,000 employee records, and 900 continue to the dental
insurance question. If you use the logic in Figure 5-16 to produce the report, the program asks only 1,500 questions—
all 1,000 records are tested for dental insurance, but only 500 proceed to the medical insurance question. By asking
about the dental insurance first, you “save” 400 decisions.

The 400-question difference between the first set of decisions and the second set really doesn’t take much time on
most computers. But it will take some time, and if there are hundreds of thousands of employees instead of only 1,000,
or if many such decisions have to be made within a program, performance time can be significantly improved by asking
questions in the proper order.

if empDentalIns = “Y” then
if empMedicalIns = “Y” then

print empIdNumber, empLastName, empFirstName
endif

endif

FIGURE 5-16: FINDING DENTAL AND MEDICAL PLAN PARTICIPANTS, CHECKING DENTAL FIRST

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 174

175Understanding AND Logic

In many AND decisions, you have no idea which of two events is more likely to occur; in that case, you can legitimately ask either
question first. In addition, even though you know the probability of each of two conditions, the two events might not be mutually
exclusive; that is, one might depend on the other. For example, if employees with dental insurance are significantly more likely to
carry medical insurance than those who don’t carry dental insurance, the order in which to ask the questions might matter less or
not matter at all. However, if you do know the probabilities of the conditions, or can make a reasonable guess, the general rule is:
In an AND decision, first ask the question that is less likely to be true. This eliminates as many records as possible from having to
go through the second decision, which speeds up processing time.

COMBINING DECISIONS IN AN AND SELECTION

Most programming languages allow you to ask two or more questions in a single comparison by using a logical AND

operator. For example, if you want to select employees who carry both medical and dental insurance, you can use
nested ifs, or you can include both decisions in a single statement by writing empDentalIns = “Y” AND
empMedicalIns = “Y”?. When you use one or more AND operators to combine two or more Boolean expres-
sions, each Boolean expression must be true in order for the entire expression to be evaluated as true. For example, if
you ask, “Are you at least 18, and are you a registered voter, and did you vote in the last election?”, the answer to all
three parts of the question must be “yes” before the response can be a single, summarizing “yes”. If any part of the
question is false, then the entire question is false.

You can think of an AND expression in an algebraic way if you consider 0 to be false and
any nonzero value to be true. The AND operator works like multiplication (not addition,
as you might suspect). A true expression AND a true expression yields a true result
because 1 * 1 is 1. Any other combination yields a false result because 1 * 0, 0 * 1, and 0
* 0 all result in 0.

If the programming language you use allows an AND operator (and almost all do), you still must realize that the question
you place first is the question that will be asked first, and cases that are eliminated based on the first question will not
proceed to the second question. The computer can ask only one question at a time; even when your logic follows the
flowchart segment in Figure 5-17, the computer will execute the logic in the flowchart in Figure 5-18.

if empDentalIns = "Y" AND empMedicalIns = "Y" then
 print empIdNumber, empLastName, empFirstName
endif

YesNo

FIGURE 5-17: FLOWCHART AND PSEUDOCODE OF AN AND DECISION USING AN AND OPERATOR

empDentalIns
= “Y” AND

empMedicalIns
= “Y”?

print
empldNumber,
empLastName,
empFirstName

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 175

176 Chapter 5 • Making Decisions

The AND operator in Java, C++, and C# consists of two ampersands, with no spaces between
them (&&).

Using an AND operator in a decision that involves multiple conditions does not eliminate
your responsibility for determining which of the conditions to test first. Even when you
use an AND operator, the computer makes decisions one at a time, and makes them in the
order you ask them. If the first question in an AND expression evaluates to false, then the
entire expression is false, and the second question will not even be tested. Not bothering
to test the second expression when it would make no difference in the ultimate result is
called short-circuiting. (Some languages—for example, VB .NET—provide special non-
short-circuiting operators. However, the standard AND operator is short-circuiting.)

AVOIDING COMMON ERRORS IN AN AND SELECTION

When you must satisfy two or more criteria to initiate an event in a program, you must make sure that the second deci-
sion is made entirely within the first decision. For example, if a program’s objective is to print a report of those employ-
ees who carry both medical and dental insurance, then the program segment shown in Figure 5-19 contains three
different types of logic errors.

if empDentalIns = "Y" then
 if empMedicalIns = "Y" then
 print empIdNumber, empLastName, empFirstName
 endif
endifYesNo

FIGURE 5-18: FLOWCHART AND PSEUDOCODE OF COMPUTER LOGIC OF PROGRAM CONTAINING AN AND
OPERATOR IN THE DECISION (THE COMPUTER STILL MAKES TWO SEPARATE DECISIONS, EVEN
THOUGH AN AND OPERATOR IS USED)

print
empldNumber,
empLastName,
empFirstName

empMedicalIns
= “Y”?

empDentalIns
= “Y”?

YesNo

TIP�

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 176

177Understanding AND Logic

The diagram shows that the program asks the dental insurance question first. However, if an employee participates in
the dental program, the employee’s record prints immediately. The employee record should not print, because the
employee might not have the medical insurance. In addition, the program should eliminate an employee without dental
insurance from the next selection, but every employee’s record proceeds to the medical insurance question, where it
might print, whether the employee has dental insurance or not. Additionally, any employee who has both medical and
dental insurance, having passed each test successfully, will appear twice on this report. For many reasons, the logic
shown in Figure 5-19 is not correct for this problem.

Beginning programmers often make another type of error when they must make two comparisons on the same field
when using a logical AND operator. For example, suppose you want to list employees who make between $10.00 and
$11.99 per hour, inclusive. When you make this type of decision, you are basing it on a range of values—every value
between low and high limits. For example, you want to select employees whose empRate is greater than or equal to

if empDentalIns = "Y" then
 print empIdNumber, empLastName, empFirstName
endif
if empMedicalIns = "Y" then
 print empIdNumber, empLastName, empFirstName
endifYesNo

YesNo

FIGURE 5-19: INCORRECT LOGIC TO PRODUCE REPORT CONTAINING EMPLOYEES WHO PARTICIPATE IN BOTH
MEDICAL AND DENTAL INSURANCE PLANS

empDentalIns
= “Y”?

print
empldNumber,
empLastName,
empFirstName

empMedicalIns
= “Y”?

print
empldNumber,
empLastName,
empFirstName

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 177

178 Chapter 5 • Making Decisions

10.00 AND whose empRate is less than 12.00; therefore, you need to make two comparisons on the same field.
Without the logical AND operator, the comparison is:

if empRate >= 10.00 then
if empRate < 12.00 then

print empIdNumber, empLastName, empFirstName
endif

endif

To check for empRate values that are 10.00 or greater, you can use either empRate >
9.99? or empRate >= 10.00?. To check for empRate values under 12.00, you can
write empRate <= 11.99? or empRate < 12.00?.

The correct way to make this comparison with the AND operator is as follows:

if empRate >= 10.00 AND empRate < 12.00 then
print empIdNumber, empLastName, empFirstName

endif

You substitute the AND operator for the phrase then if. However, some programmers might try to make the com-
parison as follows:

if empRate >= 10.00 AND < 12.00 then
print empIdNumber, empLastName, empFirstName

endif

In most languages, the phrase empRate >= 10.00 AND < 12.00 is incorrect. The logical AND is usually a binary
operator that requires a complete Boolean expression on each side. The expression to the right of the AND,< 12.00, is not
a complete Boolean expression; you must indicate what is being compared to 12.00.

In some programming languages, such as COBOL and RPG, you can write the equivalent
of empRate >= 10.00 AND < 12.00? and the empRate variable is implied for
both comparisons. Still, it is clearer, and therefore preferable, to use the two full expres-
sions, empRate >= 10.00 AND empRate < 12.00?.

UNDERSTANDING OR LOGIC

Sometimes, you want to take action when one or the other of two conditions is true. This is called an OR decision because
either a first condition must be met or a second condition must be met for an event to take place. If someone asks you,
“Are you free Friday or Saturday?”, only one of the two conditions has to be true in order for the answer to the whole ques-
tion to be “yes”; only if the answers to both halves of the question are false is the value of the entire expression false.

You can think of an OR expression in an algebraic way if you consider 0 to be false and
any nonzero value to be true. The OR operator works like addition. A false expression OR
a false expression yields a false result because 0 + 0 is 0. Any other combination yields a
true result because 1 + 0, 0 + 1, and 1 + 1 all result in nonzero values.

TIP�

TIP�

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 178

179Understanding OR Logic

For example, suppose your employer wants a list of all employees who participate in either the medical or dental plan.
Assuming you are using the same input file described in Figure 5-9, the mainline logic and housekeeping()
module for this program are identical to those used in Figures 5-11 and 5-12. You only need to change the heading on
the sample output (Figure 5-10) and change the heading1 variable in Figure 5-12 from heading1 =
“Employees with Medical and Dental Insurance” to heading1 = “Employees with
Medical or Dental Insurance”. The only substantial changes to the program occur in the
createReport() module.

Figure 5-20 shows the possible logic for the createReport() method in this OR selection. As each record enters
the createReport() method, you ask the question empMedicalIns = “Y”?, and if the result is true, you
print the employee data. Because the employee needs to participate in only one of the two insurance plans to be
selected for printing, there is no need for further questioning after you have determined that an employee has medical
insurance. If the employee does not participate in the medical insurance plan, only then do you need to ask if
empDentalIns = “Y”?. If the employee does not have medical insurance, but does have dental, you want this
employee information to print on the report.

createReport()
if empMedicalIns = "Y" then

print empIdNumber, empLastName, empFirstName
else

if empDentalIns = "Y" then
 print empIdNumber, empLastName,

empFirstName
endif

endif
read empRecord

return

YesNo

YesNo

FIGURE 5-20: FLOWCHART AND PSEUDOCODE FOR createReport() MODULE OF PROGRAM THAT PRINTS
RECORDS OF EMPLOYEES WHO PARTICIPATE IN EITHER THE MEDICAL OR DENTAL INSURANCE PLAN

createReport()

print
empldNumber,
empLastName,
empFirstName

empMedicalIns
= “Y”?

empDentalIns
= “Y”?

read
empRecord

return

print
empldNumber,
empLastName,
empFirstName

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 179

180 Chapter 5 • Making Decisions

AVOIDING COMMON ERRORS IN AN OR SELECTION

You might have noticed that the statement print empIdNumber, empLastName, empFirstName appears
twice in the flowchart and in the pseudocode shown in Figure 5-20. The temptation is to redraw the flowchart in Figure 5-20
to look like Figure 5-21. Logically, you can argue that the flowchart in Figure 5-21 is correct because the correct employee
records print. However, this flowchart is not allowed because it is not structured.

If you do not see that Figure 5-21 is not structured, go back and review Chapter 2. In par-
ticular, review the example that begins at Figure 2-21.

An additional source of error that is specific to the OR selection stems from a problem
with language and the way people use it too casually. When your boss needs a report of all
employees who carry medical or dental insurance, she is likely to say, “I need a report of
all the people who have medical insurance and all those who have dental insurance.” The
request contains the word “and,” and the report contains people who have one type of
insurance “and” people who have another. However, the records you want to print are
those from employees who have medical insurance OR dental insurance OR both. The
logical situation requires an OR decision. Instead of saying “people who have medical
insurance and people who have dental insurance,” it would be clearer if your boss asked
for “people who have medical or dental insurance.” In other words, it would be more cor-
rect to put the question-joining “or” conjunction between the insurance types held by each
person than between the people, but bosses and other human beings often do not speak
like computers. As a programmer, you have the job of clarifying what really is being
requested, and determining that often a request for A and B means a request for A or B.

The way we casually use English can cause another type of error when you require a decision based on a value falling
within a range of values. For example, a movie theater manager might say, “Provide a discount to patrons who are

YesNo

Yes

No

empDentalIns
= “Y”?

FIGURE 5-21: INCORRECT FLOWCHART FOR createReport() MODULE

createReport()

print
empldNumber,
empLastName,
empFirstName

empMedicalIns
= “Y”?

TIP�

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 180

181Understanding OR Logic

under 13 years old and those who are over 64 years old; otherwise, charge the full price.” Because the manager has used
the word “and” in the request, you might be tempted to create the decision shown in Figure 5-22; however, this logic will
not provide a discounted price for any movie patron. You must remember that every time the decision in Figure 5-22 is
made, it is made using a single data record. If the age field in that record contains an age lower than 13, then it cannot
possibly contain an age over 64. Similarly, if it contains an age over 64, then there is no way it can contain an age under
that. Therefore, there is no value that could be stored in the age field of a movie patron record for which both parts of the
AND question are true—and the price will never be set to the discountPrice for any record. Figure 5-23 shows the
correct logic.

A similar error can occur in your logic if the theater manager says something like, “Don’t give a discount—that is,
charge full price—if a patron is over 12 or under 65.” Because the word “or” appears in the request, you might plan
your logic like that shown in Figure 5-24.

if patronAge < 13 OR patronAge > 64 then
 price = discountPrice

else
price = fullPrice

endif
YesNo

FIGURE 5-23: CORRECT LOGIC THAT PROVIDES A DISCOUNT FOR MOVIE PATRONS UNDER 13 AND FOR MOVIE
PATRONS OVER 64

patronAge < 13
OR patronAge >

64?

price = fullPrice price = discountPrice

if patronAge < 13 AND patronAge > 64 then
price = discountPrice

else
price = fullPrice

endif
YesNo

FIGURE 5-22: INCORRECT LOGIC THAT ATTEMPTS TO PROVIDE A DISCOUNT FOR MOVIE PATRONS UNDER 13 AND
FOR MOVIE PATRONS OVER 64

patronAge < 13
AND patronAge >

64?

price = fullPrice price = discountPrice

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 181

182 Chapter 5 • Making Decisions

As in Figure 5-22, in Figure 5-24, no patron ever receives a discount, because every patron is either over 12 or under
65. Remember, in an OR decision, only one of the conditions needs to be true in order for the entire expression to be
evaluated as true. So, for example, because a patron who is 10 is under 65, the full price is charged, and because a
patron who is 70 is over 12, the full price also is charged. Figure 5-25 shows the correct logic for this decision.

Using an OR operator in a decision that involves multiple conditions does not eliminate
your responsibility for determining which of the conditions to test first. Even when you
use an OR operator, the computer makes decisions one at a time, and makes them in the
order you ask them. If the first question in an OR expression evaluates to true, then the
entire expression is true, and the second question will not even be tested.

if patronAge > 12 AND patronAge < 65 then
 price = fullPrice
else

price = discountPrice
endif

YesNo

FIGURE 5-25: CORRECT LOGIC THAT CHARGES FULL PRICE FOR MOVIE PATRONS OVER 12 AND UNDER 65

patronAge > 12
AND patronAge <

65?

price = fullPriceprice = discountPrice

if patronAge > 12 OR patronAge < 65 then
price = fullPrice

else
price = discountPrice

endif
YesNo

FIGURE 5-24: INCORRECT LOGIC THAT ATTEMPTS TO CHARGE FULL PRICE FOR MOVIE PATRONS OVER 12 AND
UNDER 65

patronAge > 12
OR patronAge <

65?

price = fullPriceprice = discountPrice

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 182

183Understanding OR Logic

WRITING OR DECISIONS FOR EFFICIENCY

You can write a program that creates a report containing all employees who have either medical or dental insurance by
using the createReport() method in either Figure 5-26 or Figure 5-27.

createReport()
if empMedicalIns = "Y" then

print empIdNumber, empLastName, empFirstName
else

if empDentalIns = "Y" then
 print empIdNumber, empLastName,

 empFirstName
endif

endif
read empRecord

return

YesNo

YesNo

FIGURE 5-26: THE createReport() MODULE TO SELECT EMPLOYEES WITH MEDICAL OR DENTAL INSURANCE,
USING MEDICAL DECISION FIRST

createReport()

print
empldNumber,
empLastName,
empFirstName

empMedicalIns
= “Y”?

empDentalIns
= “Y”?

print
empldNumber,
empLastName,
empFirstName

read
empRecord

return

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 183

184 Chapter 5 • Making Decisions

You might have guessed that one of these selections is superior to the other, if you have some background information
about the relative likelihood of each condition you are testing. For example, once again assume you know that out of
1,000 employees in your company, about 90 percent, or 900, participate in the medical insurance plan, and about half,
or 500, participate in the dental plan.

When you use the logic shown in Figure 5-26 to select employees who participate in either insurance plan, you first ask about
medical insurance. For 900 employees, the answer is true; you print these employee records. Only about 100 records con-
tinue to the next question regarding dental insurance, where about half, or 50, fulfill the requirements to print. In the end, you
print about 950 employees.

If you use Figure 5-27, you ask empDentalIns = “Y”? first. The result is true for 50 percent, or 500 employ-
ees, whose names then print. Five hundred employee records then progress to the medical insurance question, after
which 90 percent, or 450, of them print.

createReport()
if empDentalIns = "Y" then

print empIdNumber, empLastName, empFirstName
else

if empMedicalIns = "Y" then
print empIdNumber, empLastName,

empFirstName
endif

endif
read empRecord

return

FIGURE 5-27: ALTERNATE createReport() MODULE TO SELECT EMPLOYEES WITH MEDICAL OR DENTAL
INSURANCE, USING DENTAL DECISION FIRST

YesNo

YesNo

createReport()

print
empldNumber,
empLastName,
empFirstName

empDentalIns
= “Y”?

empMedicalIns
= “Y”?

print
empldNumber,
empLastName,
empFirstName

read
empRecord

return

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 184

185Understanding OR Logic

Using either scenario, 950 employee records appear on the list, but the logic used in Figure 5-26 requires 1,100 decisions,
whereas the logic used in Figure 5-27 requires 1,500 decisions. The general rule is: In an OR decision, first ask the question
that is more likely to be true. Because a record qualifies for printing as soon as it passes one test, asking the more likely ques-
tion first eliminates as many records as possible from having to go through the second decision. The time it takes to execute
the program is decreased.

COMBINING DECISIONS IN AN OR SELECTION

When you need to take action when either one or the other of two conditions is met, you can use two separate, nested
selection structures, as in the previous examples. However, most programming languages allow you to ask two or more
questions in a single comparison by using a logical OR operator—for example, empDentalIns = “Y” OR
empMedicalIns = “Y”. When you use the logical OR operator, only one of the listed conditions must be met for
the resulting action to take place. If the programming language you use allows this construct, you still must realize that
the question you place first is the question that will be asked first, and cases eliminated by the first question will not
proceed to the second question. The computer can ask only one question at a time; even when you draw the flowchart
in Figure 5-28, the computer will execute the logic in the flowchart in Figure 5-29.

C#, C++, C, and Java use the symbol || to represent the logical OR.

if empDentalIns = “Y” OR empMedicalIns = "Y" then
print empIdNumber, empLastName, empFirstName

endif

No Yes

print
empIdNumber,
empLastName,
empFirstName

empDentalIns
= “Y” OR

empMedicalIns
= “Y”?

FIGURE 5-28: FLOWCHART AND PSEUDOCODE OF AN OR DECISION USING AN OR OPERATOR

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 185

186 Chapter 5 • Making Decisions

USING SELECTIONS WITHIN RANGES

Business programs often need to make selections based on a variable falling within a range of values. For example,
suppose you want to print a list of all employees and the names of their supervisors. An employee’s supervisor is
assigned according to the employee’s department number, as shown in Figure 5-30.

When you write the program that reads each employee’s record, you could make nine decisions before printing the
supervisor’s name, such as empDept = 1?, empDept = 2?, and so on. However, it is more convenient to find
the supervisor by using a range check.

When you use a range check, you compare a variable to a series of values between limits. To perform a range check,
make comparisons using either the lowest or highest value in each range of values you are using. For example, to find
each employee’s supervisor as listed in Figure 5-30, either use the values 1, 4, and 8, which represent the low ends of
each supervisor’s department range, or use the values 3, 7, and 9, which represent the high ends.

DEPARTMENT NUMBER SUPERVISOR
1–3 Dillon
4—7 Escher
8—9 Fontana

FIGURE 5-30: SUPERVISORS BY DEPARTMENT

if empDentalIns = "Y" then
 print empIdNumber, empLastName, empFirstName
else
 if empMedicalIns = "Y" then
 print empIdNumber, empLastName, empFirstName
 endif
endif

YesNo

YesNo

FIGURE 5-29: FLOWCHART AND PSEUDOCODE OF COMPUTER LOGIC OF PROGRAM CONTAINING AN OR
OPERATOR IN THE DECISION; THE COMPUTER STILL MAKES TWO SEPARATE DECISIONS EVEN
THOUGH AN OR OPERATOR IS USED

print
empldNumber,
empLastName,
empFirstName

empDentalIns
= “Y”?

empMedicalIns
= “Y”?

print
empldNumber,
empLastName,
empFirstName

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 186

187Using Selections within Ranges

Figure 5-31 shows the flowchart and pseudocode that represent the logic for choosing a supervisor name by using the
high-end range values. You test the empDept value for less than or equal to the high end of the lowest range group. If
the comparison evaluates as true, you know the intended value of supervisorName. If not, you continue checking.

In Figure 5-31, notice how each else aligns vertically with its corresponding if.

For example, consider records containing three different values for empDept, and compare how they would be han-
dled by the set of decisions in Figure 5-31.

� First, assume that the value of empDept for a record is 2. Using the logic in Figure 5-31, the
value of the Boolean expression empDept <= 3 is true, supervisorName is set to
“Dillon”, and the if structure ends. In this case, the second decision, empDept <= 7, is
never made, because the else half of empDept <= 3 never executes.

� Next, assume that for another record, the value of empDept is 7. Then, empDept <= 3
evaluates as false, so the else clause of the decision executes. There, empDept <= 7 is
evaluated, and found to be true, so supervisorName becomes “Escher”.

� Finally, assume that the value of empDept is 9. In this case, the first decision, empDept
<= 3, is false, so the else clause executes. Then, the second decision, empDept <=7,
also evaluates as false, so the else clause of the second decision executes, and
supervisorName is set to “Fontana”. In this example, “Fontana” can be called a default
value, because if neither of the two decision expressions is true,supervisorName becomes
“Fontana” by default. A default value is the value assigned after a series of selections are all false.

if empDept <= 3 then
 supervisorName = "Dillon"
else
 if empDept <= 7 then
 supervisorName = "Escher"
 else
 supervisorName = "Fontana"
 endif
endif

FIGURE 5-31: USING HIGH-END VALUES FOR A RANGE CHECK

YesNo

YesNo

empDept
<= 3?

empDept
<= 7?

supervisorName
= “Dillon”

supervisorName
= “Escher”

supervisorName
= “Fontana”

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 187

188 Chapter 5 • Making Decisions

Using the logic in Figure 5-31, supervisorName becomes “Fontana” even if
empDept is a high, invalid value such as 10, 12, or even 300. The example is intended to
be simple, using only two decisions. However, in a business application, you might con-
sider amending the logic so an additional, third decision is made that compares empDept
less than or equal to 9. Then, you could assign “Fontana” as the supervisor name if empDept
is less than or equal to 9, and issue an error message if empDept is not. You might also want to
insert a similar decision at the beginning of the program segment to make sure empDept is not
less than 1.

The flowchart and pseudocode for choosing a supervisor name using the reverse of this method, by comparing the
employee department to the low end of the range values that represent each supervisor’s area, appear in Figure 5-32.
Using the technique shown in Figure 5-32, you compare empDept to the low end (8) of the highest range (8 to 9)
first; if empDept falls in the range, supervisorName is known; otherwise, you check the next lower group. In
this example, “Dillon” becomes the default value. That is, if the department number is not greater than or equal to 8,
and it is also not greater than or equal to 4, then by default, supervisorName is set to “Dillon”.

COMMON ERRORS USING RANGE CHECKS

Two common errors that occur when programmers perform range checks both entail doing more work than is neces-
sary. Figure 5-33 shows a range check in which the programmer has asked one question too many. If you know that all
empDept values are positive numbers, then if empDept is not greater than or equal to 8, and it is also not greater
than or equal to 4, then by default it must be greater than or equal to 1. Asking whether empDept is greater than or
equal to 1 is a waste of time; no employee record can ever travel the logical path on the far left. You might say that the
path that can never be traveled is a dead or unreachable path, and that the statements written there constitute dead
or unreachable code. Providing such a path is always a logical error.

if empDept >= 8 then
 supervisorName = "Fontana"
else
 if empDept >= 4 then
 supervisorName = "Escher"
 else
 supervisorName = "Dillon"
 endif
endif

FIGURE 5-32: USING LOW-END VALUES OF RANGES TO DETERMINE EMPLOYEE’S SUPERVISOR

YesNo

YesNo

empDept
>= 8?

empDept
>= 4?

supervisorName
= “Fontana”

supervisorName
= “Escher”

supervisorName
= “Dillon”

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 188

189Using Selections within Ranges

When you ask questions of human beings, you sometimes ask a question to which you
already know the answer. For example, in court, a good trial lawyer seldom asks a ques-
tion if the answer will be a surprise. With computer logic, however, such questions are an
inefficient waste of time.

Another error that programmers make when writing the logic to perform a range check also involves asking unneces-
sary questions. You should never ask a question if there is only one possible answer or outcome. Figure 5-34 shows an
inefficient range selection that asks two unneeded questions. In the figure, if empDept is greater than or equal to 8,
“Fontana” is the supervisor. If empDept is not greater than or equal to 8, then it must be less than 8, so the next
question does not have to check for less than 8. The computer logic will never execute the second decision unless
empDept is already less than 8—that is, unless it follows the false branch of the first selection. If you use the logic in
Figure 5-34, you are wasting computer time asking a question that has previously been answered. Similarly, if
empDept is not greater than or equal to 8 and it is also not greater than or equal to 4, then it must be less than 4.
Therefore, there is no reason to compare empDept to 4 to determine whether “Dillon” is the supervisor. If the logic
makes it past the first two if statements in Figure 5-34, then the supervisor must be “Dillon”.

if empDept >=8 then
 supervisorName = "Fontana"
else
 if empDept >= 4 then
 supervisorName = "Escher"
 else
 if empDept >= 1 then
 supervisorName = "Dillon"
 endif
 endif
endif

FIGURE 5-33: INEFFICIENT RANGE SELECTION INCLUDING UNREACHABLE PATH

YesNo

YesNo

YesNo

empDept
>= 8?

empDept
>= 4?

supervisorName
= “Fontana”

supervisorName
= “Escher”empDept

>= 1?

supervisorName
= “Dillon”

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 189

190 Chapter 5 • Making Decisions

Beginning programmers sometimes justify their use of unnecessary questions as “just
making really sure.” Such caution is unnecessary when writing computer logic.

UNDERSTANDING PRECEDENCE WHEN COMBINING AND AND OR
SELECTIONS

Most programming languages allow you to combine as many AND and OR operators in an expression as you need. For
example, assume you need to achieve a score of at least 75 on each of three tests in order to pass a course. When
multiple conditions must be true before performing an action, you can use an expression like the following:

if score1 >= 75 AND score2 >= 75 AND score3 >= 75 then
classGrade = “Pass”

else
classGrade = “Fail”

endif

if empDept >= 8 then
 supervisorName = "Fontana"
else
 if empDept < 8 AND empDept >= 4 then
 supervisorName = "Escher"
 else
 if empDept < 4 then
 supervisorName = "Dillon"
 endif
 endif
endif

YesNo

YesNo

YesNo

FIGURE 5-34: INEFFICIENT RANGE SELECTION INCLUDING UNNECESSARY QUESTION

supervisorName
= “Escher”

supervisorName
= “Dillon”

supervisorName
= “Fontana”

empDept
>= 8?

empDept
< 8 AND

empDept >= 4?

empDept
< 4?

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 190

191Understanding Precedence When Combining AND and OR Selections

On the other hand, if you need to pass only one test in order to pass the course, then the logic is as follows:

if score1 >= 75 OR score2 >= 75 OR score3 >= 75 then
classGrade = “Pass”

else
classGrade = “Fail”

endif

The logic becomes more complicated when you combine AND and OR operators within the same statement. When you
combine AND and OR operators, the AND operators take precedence, meaning their Boolean values are evaluated first.

For example, consider a program that determines whether a movie theater patron can purchase a discounted ticket. Assume
discounts are allowed for children (age 12 and under) and senior citizens (age 65 and older) who attend “G”-rated movies. The
following code looks reasonable, but produces incorrect results, because the AND operator evaluates before the OR.

if age <= 12 OR age >= 65 AND rating = “G” then
print “Discount applies”

For example, assume a movie patron is 10 years old and the movie rating is “R”. The patron should not receive a discount—or
be allowed to see the movie! However, within the previous if statement, the part of the expression containing the AND,
age >= 65 AND rating = “G”, evaluates first. For a 10-year-old and an “R”-rated movie, the question is
false (on both counts), so the entire if statement becomes the equivalent of the following:

if age <= 12 OR aFalseExpression

Because the patron is 10, age <= 12 is true, so the original if statement becomes the equivalent of:

if aTrueExpression OR aFalseExpression

which evaluates as true. Therefore, the statement “Discount applies” prints when it should not.

Many programming languages allow you to use parentheses to correct the logic and force the expression age <=
12 OR age >= 65 to evaluate first, as shown in the following pseudocode:

if (age <= 12 OR age >= 65) AND rating = “G” then
print “Discount applies”

With the added parentheses, if the patron’s age is 12 or under OR 65 or over, the expression is evaluated as:

if aTrueExpression AND rating = “G”

When the age value qualifies a patron for a discount, then the rating value must also be acceptable before the discount
applies. This was the original intention of the statement.

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 191

192 Chapter 5 • Making Decisions

You always can avoid the confusion of mixing AND and OR decisions by nesting if statements instead of using ANDs
and ORs. With the flowchart and pseudocode shown in Figure 5-35, it is clear which movie patrons receive the dis-
count. In the flowchart in the figure, you can see that the OR is nested entirely within the Yes branch of the rating
= “G”? selection. Similarly, by examining the pseudocode in Figure 5-35, you can see by the alignment that if the
rating is not “G”, the logic proceeds directly to the last endif statement, bypassing any checking of the age at all.

In every programming language, multiplication has precedence over addition in an arith-
metic statement. That is, the value of 2 + 3 * 4 is 14 because the multiplication occurs
before the addition. Similarly, in every programming language, AND has precedence over
OR. That’s because computer circuitry treats the AND operator as multiplication and the
OR operator as addition. In every programming language, 1 represents true and 0 repre-
sents false. So, for example, aTrueExpression AND aTrueExpression results
in true, because 1 * 1 is 1, and aTrueExpression AND aFalseExpression is
false, because 1 * 0 is 0. Similarly, aFalseExpression OR aFalseExpression
AND aTrueExpression evaluates to aFalseExpression because 0 + 0 * 1 is 0,
whereas aFalseExpressionAND aFalseExpressionOR aTrueExpression
evaluates to aTrueExpression because 0 * 0 + 1 is 1.

if rating = "G" then
 if age <= 12 then
 print "Discount applies"
 else
 if age >= 65 then
 print "Discount applies"
 endif
 endif
endif

FIGURE 5-35: NESTED if LOGIC THAT DETERMINES MOVIE PATRON DISCOUNTS

YesNo

age <= 12?
YesNo

YesNo

rating = “G” ?

age >= 65?

print
“Discount
applies”

print
“Discount
applies”

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 192

193Understanding the Case Structure

UNDERSTANDING THE CASE STRUCTURE

When you have a series of decisions based on the value stored in a single variable, most languages allow you to use a
case structure. You first learned about the case structure in Chapter 2. There, you learned that you can solve any pro-
gramming problem using only the three basic structures—sequence, selection, and loop. You are never required to use a
case structure—you can always substitute a series of nested selections. The case structure simply provides a conve-
nient alternative to using a series of decisions when you must make choices based on the value stored in a single
variable.

In some languages, the case structure is called the switch statement.

For example, suppose you work for a real estate developer who is selling houses that have one of three different floor plans.
The logic segment of a program that determines the base price of the house might look like the logic shown in Figure 5-36.

The logic shown in Figure 5-36 is completely structured. However, rewriting the logic using a case structure, as shown
in Figure 5-37, might make it easier to understand. When using the case structure, you test a variable against a series
of values, taking appropriate action based on the variable’s value.

if model = "Arlington" then
 basePrice = 150000
else
 if model = "BelAire" then
 basePrice = 170000
 else
 if model = "Carrington" then
 basePrice = 185000
 else
 basePrice = 0
 print "Error – invalid model name"
 endif
 endif
endif

FIGURE 5-36: FLOWCHART AND PSEUDOCODE DETERMINING HOUSE MODEL PRICE USING ifS

YesNo

YesNo

YesNo

basePrice = 150000

model =
“Arlington”?

model =
“BelAire”?

model =
“Carrington”?

basePrice = 170000

basePrice = 185000basePrice = 0

print “Error –
 invalid model

name”

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 193

194 Chapter 5 • Making Decisions

In Figure 5-37, the model variable is compared in turn with “Arlington”, “BelAire”, and “Carrington”, and an appropri-
ate basePrice value is set. The default case is the case that executes in the event no other cases execute. The
logic shown in Figure 5-36 is identical to that shown in Figure 5-37; your choice of method to set the housing model
prices is entirely a matter of preference.

When you look at a nested if-else structure containing an outer and inner selection, if the
inner nested if is within the if portion of the outer if, the program segment is a candi-
date for AND logic. On the other hand, if the inner if is within the else portion of the
outer if, the program segment might be a candidate for the case structure.

Some languages require a break statement at the end of each case selection segment. In
those languages, once a case is true, all the following cases execute until a break state-
ment is encountered. When you study a specific programming language, you will learn
how to use break statements if they are required in that language.

USING DECISION TABLES

Some programs require multiple decisions to produce the correct output. Managing all possible outcomes of multiple
decisions can be a difficult task, so programmers sometimes use a tool called a decision table to help organize the pos-
sible decision outcome combinations.

case based on model
 case "Arlington"
 basePrice = 150000
 case "BelAire"
 basePrice = 170000
 case "Carrington"
 basePrice = 185000
 default
 basePrice = 0
 print "Error – invalid model name"
endcase

FIGURE 5-37: FLOWCHART AND PSEUDOCODE DETERMINING HOUSE MODEL PRICE USING THE CASE
STRUCTURE

model?

basePrice =

150000

print “Error –

 invalid model

name”

“Arlington”

basePrice =

170000

“BelAire”

basePrice =

185000

“Carrington”

basePrice =

0

Default

TIP�

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 194

195Using Decision Tables

A decision table is a problem-analysis tool that consists of four parts:

� Conditions

� Possible combinations of Boolean values for the conditions

� Possible actions based on the conditions

� The specific action that corresponds to each Boolean value of each condition

For example, suppose a college collects input data like that shown in Figure 5-38. Each student’s data record includes
the student’s age and a variable that indicates whether the student has requested a residence hall that enforces quiet
study hours.

Assume that the residence hall director makes residence hall assignments based on the following rules:

� Students who are under 21 years old and who request a residence hall with quiet study hours
are assigned to Addams Hall.

� Students who are under 21 years old and who do not request a residence hall with quiet study
hours are assigned to Grant Hall.

� Students who are 21 years old and over and who request a residence hall with quiet study hours
are assigned to Lincoln Hall.

� Students who are 21 years old and over and who do not request a residence hall with quiet
study hours are also assigned to Lincoln Hall.

You can create a program that assigns each student to the appropriate residence hall and prints a list of students along
with each student’s hall assignment. A sample report is shown in Figure 5-39. The mainline logic for this program
appears in Figure 5-40. Most programs you write will contain the same basic mainline logic: Each performs start-up or
housekeeping tasks, a main loop that acts repeatedly—once for each input record—and a finishing module that per-
forms any necessary program-ending tasks, including closing the open files.

STUDENT RESIDENCE FILE DESCRIPTION
File Name: STURESFILE
FIELD DESCRIPTION DATA TYPE COMMENTS
ID Number Numeric 4 digits, 0 decimal places
Last Name Character 15 characters
First Name Character 15 characters
Age Numeric 0 decimal places
Request for Hall Character 1 character, Y or N

with Quiet Hours

FIGURE 5-38: STUDENT RESIDENCE FILE DESCRIPTION

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 195

196 Chapter 5 • Making Decisions

The getReady() module for the program that produces the residence hall report is shown in Figure 5-41. It
declares variables, opens the files, prints the report headings, and reads the first data record into memory.

start
 perform getReady()
 while not eof
 perform processRequest()
 endwhile
 perform closing()
stop

FIGURE 5-40: FLOWCHART AND PSEUDOCODE OF MAINLINE LOGIC FOR STUDENT RESIDENCE HALL
ASSIGNMENTS REPORT

Yes

No

start

getReady()

eof?

closing()

processRequest()

stop

FIGURE 5-39: SAMPLE REPORT LISTING STUDENT RESIDENCE HALL ASSIGNMENTS

Student Residence Hall Assignments

Student ID Age Request for Quiet Assigned Hall

1288 21 Y Lincoln
1567 20 Y Addams
5612 24 N Lincoln
7610 18 N Grant
7723 20 N Grant
8012 19 Y Addams

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 196

197Using Decision Tables

Before you draw a flowchart or write the pseudocode for the processRequest()module, you can create a decision
table to help you manage all the decisions. You can begin to create a decision table by listing all possible conditions. They are:

� stuAge < 21, or not

� stuQuietRequest = “Y”, or not

Next, determine how many possible Boolean value combinations exist for the conditions. In this case, there are four
possible combinations, shown in Figure 5-42. A student can be under 21, request a residence hall with quiet hours,
both, or neither. Because each condition has two outcomes and there are two conditions, there are 2 * 2, or four, possi-
bilities. Three conditions would produce eight possible outcome combinations (2 * 2 * 2); four conditions would produce
16 possible outcome combinations (2 * 2 * 2 * 2), and so on.

 studentRec
 num stuId
 char stuLastName
 char stuFirstName
 num stuAge
 char stuQuietRequest
 char reportHead =
 "Student Residence Hall Assignments"
 char columnHeads = "Student ID Age
 Request for Quiet Assigned Hall"
 char assignedHall

getReady()
 declare variables
 open files
 print reportHead
 print columnHeads
 read studentRec
return

FIGURE 5-41: FLOWCHART AND PSEUDOCODE OF getReady() MODULE FOR STUDENT RESIDENCE HALL
ASSIGNMENTS REPORT

declare
variables

getReady()

open
files

print
reportHead

print
columnHeads

read
studentRec

return

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 197

198 Chapter 5 • Making Decisions

Next, add rows to the decision table to list the possible outcome actions. A student might be assigned to Addams,
Grant, or Lincoln Hall. Figure 5-43 shows an expanded decision table that includes these three possible outcomes.

You choose one required outcome for each possible combination of conditions. As shown in Figure 5-44, you place an
X in the Addams Hall row when stuAge is less than 21 and the student requests a residence hall with quiet study
hours. You place an X in the Grant Hall row when a student is under 21 but does not request a residence hall with quiet
hours. Finally, you place Xs in the Lincoln Hall row for both stuQuietRequest values when a student is not under
21 years old—only one residence hall is available for students 21 and over, whether they have requested a hall with
quiet hours or not.

The decision table is complete (count the Xs—there are four possible outcomes). Take a moment and confirm that each
residence hall selection is the appropriate value based on the original specifications. Now that the decision table is
complete, you can start to plan the logic.

FIGURE 5-44: COMPLETED DECISION TABLE FOR RESIDENCE HALL SELECTION

Condition Outcome

stuAge < 21 T T F F

stuQuietRequest = "Y" T F T F

assignedHall = "Addams" X

assignedHall = "Grant" X

assignedHall = "Lincoln" X X

FIGURE 5-43: DECISION TABLE INCLUDING POSSIBLE OUTCOMES OF RESIDENCE HALL DECISIONS

Condition Outcome

stuAge < 21 T T F F

stuQuietRequest = "Y" T F T F

assignedHall = "Addams"

assignedHall = "Grant"

assignedHall = "Lincoln"

FIGURE 5-42: POSSIBLE OUTCOMES OF RESIDENCE HALL REQUEST CONDITIONS

Condition Outcome

stuAge < 21 T T F F

stuQuietRequest = "Y" T F T F

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 198

199Using Decision Tables

If you choose to use a flowchart to express the logic, you start by drawing a path to the outcome shown in the first col-
umn. This result (which occurs when stuAge < 21 and stuQuietRequest = “Y”) sets the residence hall
to “Addams”. Next, add the resulting action shown in the second column of the decision table, which occurs when
stuAge < 21 is true and stuQuietRequest = “Y” is false. In those cases, the residence hall becomes
“Grant”. See Figure 5-45.

Next, on the false outcome side of the stuAge < 21 question, you add the resulting action shown in the third col-
umn of the decision table—set the residence hall to “Lincoln”. This action occurs when stuAge < 21 is false and
stuQuietRequest = “Y” is true. Finally, add the resulting action shown in the fourth column of the decision
table, which occurs when both conditions are false. When a student is not under 21 and does not request a hall with
quiet study hours, then the assigned hall is “Lincoln”. See Figure 5-46.

stuAge < 21?
Yes

stuQuietRequest
= “Y”?

Yes No

FIGURE 5-45: PARTIALLY COMPLETED FLOWCHART SEGMENT FOR RESIDENCE HALL SELECTION

processRequest()

assignedHall
= “Addams”

assignedHall
= “Grant”

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 199

200 Chapter 5 • Making Decisions

The decision making in the flowchart segment is now complete and accurately assigns each student to the correct resi-
dence hall. To finish it, all you need to do is tie up the loose ends of the decision structure, print a student’s ID number
and residence hall assignment, and read the next record. However, if you examine the two result boxes on the far right
in Figure 5-46, you see that the assigned residence hall is identical—“Lincoln” in both cases. When a student is not
under 21, whether the stuQuietRequest equals “Y” or not, the residence hall assignment is the same; therefore,
there is no point in asking the stuQuietRequest question. Additionally, many programmers prefer that the True
or Yes side of a flowchart decision always appears on the right side of a flowchart. Figure 5-47 shows the complete
residence hall assignment program, including the redrawn processRequest() module, which has only one
“Lincoln” assignment statement and True results to the right of each selection. Figure 5-47 also shows the pseudocode
for the same problem.

Perhaps you could have created the final decision-making processRequest() module without creating the deci-
sion table first. If so, you need not use the table. Decision tables are more useful to the programmer when the decision-
making process becomes more complicated. Additionally, they serve as a useful graphic tool when you want to explain
the decision-making process of a program to a user who is not familiar with flowcharting symbols.

In Appendix C, you can walk through the process used to create a larger decision table.

stuAge < 21?
Yes No

Yes No Yes No

FIGURE 5-46: MOSTLY COMPLETED FLOWCHART SEGMENT FOR RESIDENCE HALL SELECTION

processRequest()

assignedHall
= “Addams”

assignedHall
= “Grant”

stuQuietRequest
= “Y”?

assignedHall
= “Lincoln”

assignedHall
= “Lincoln”

stuQuietRequest
= “Y”?

TIP�

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 200

201Using Decision Tables

studentRec
 num stuId
 char stuLastName
 char stuFirstName
 num stuAge
 char stuQuietRequest
char reportHead =
 "Student Residence Hall Assignments"
char columnHeads = "Student ID Age
 Request for Quiet Assigned Hall"
char assignedHall

No

Yes

start
 perform getReady()
 while not eof
 perform processRequest()
 endwhile
 perform closing()
stop
getReady()
 declare variables
 open files
 print reportHead
 print columnHeads
 read studentRec
return
processRequest()
 if stuAge < 21 then
 if stuQuietRequest = "Y" then
 assignedHall = "Addams"
 else
 assignedHall = "Grant"
 endif
 else
 assignedHall = "Lincoln"
 endif
 print stuId, age, stuQuietRequest,

 assignedHall
 read studentRec
return
closing()
 close files
return

FIGURE 5-47: COMPLETE FLOWCHART AND PSEUDOCODE FOR RESIDENCE HALL SELECTION PROBLEM

start

processRequest()

getReady()

declare
variables

open
files

print
reportHead

print
columnHeads

read
studentRec

return

getReady()

eof?

closing()

stop

No Yes

No Yes

processRequest()

stuAge < 21?

assignedHall
= “Grant”

stuQuietRequest
= “Y”?

assignedHall
= “Addams”

assignedHall
= “Lincoln”

return

print stuId, age,
stuQuietRequest,

assignedHall

read
studentRec

closing()

close files

return

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 201

Chapter 5 • Making Decisions202

CHAPTER SUMMARY

� Every decision you make in a computer program involves evaluating a Boolean expression. You can use

dual-alternative, or binary, selections or if-then-else structures to choose between two possible out-

comes. You also can use single-alternative, or unary, selections or if-then structures when there is only

one outcome for the question where an action is required.

� For any two values that are the same type, you can use relational comparison operators to decide whether

the two values are equal, the first value is greater than the second value, or the first value is less than the

second value. The two values used in a Boolean expression can be either variables or constants.

� An AND decision occurs when two conditions must be true in order for a resulting action to take place.

An AND decision requires a nested decision, or a nested if.

� In an AND decision, first ask the question that is less likely to be true. This eliminates as many records as

possible from having to go through the second decision, which speeds up processing time.

� Most programming languages allow you to ask two or more questions in a single comparison by using a

logical AND operator.

� When you must satisfy two or more criteria to initiate an event in a program, you must make sure that

the second decision is made entirely within the first decision, and that you use a complete Boolean

expression on both sides of the AND.

� An OR decision occurs when you want to take action when one or the other of two conditions is true.

� Errors occur in OR decisions when programmers do not maintain structure. An additional source of errors

that are particular to the OR selection stems from people using the word AND to express OR requirements.

� In an OR decision, first ask the question that is more likely to be true.

� Most programming languages allow you to ask two or more questions in a single comparison by using a

logical OR operator.

� To perform a range check, make comparisons with either the lowest or highest value in each range of

values you are using.

� Common errors that occur when programmers perform range checks include asking unnecessary and

previously answered questions.

� The case structure provides a convenient alternative to using a series of decisions when you must make

choices based on the value stored in a single variable.

� A decision table is a problem-analysis tool that consists of conditions, possible combinations of Boolean

values for the conditions, possible actions based on the conditions, and the action that corresponds to

each Boolean value of each condition.

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 202

Key Terms 203

KEY TERMS

A dual-alternative, or binary, selection structure offers two actions, each associated with one of two possible out-
comes. It is also called an if-then-else structure.

In a single-alternative, or unary, selection structure, an action is required for only one outcome of the question. You
call this form of the selection structure an if-then, because no “else” action is necessary.

The if clause of a decision holds the action or actions that execute when a Boolean expression in a decision is true.

The else clause of a decision holds the action or actions that execute when the Boolean expression in a decision
is false.

A Boolean expression is one that represents only one of two states, usually expressed as true or false.

A trivial Boolean expression is one that always evaluates to the same result.

Relational comparison operators are the symbols that express Boolean comparisons. Examples include =, >, <, >=,
<=, and <>.

A logical operator (as the term is most often used) compares single bits. However, some programmers use the term
synonymously with “relational comparison operator.”

With an AND decision, two conditions must both be true for an action to take place. An AND decision requires a
nested decision, or a nested if—that is, a decision “inside of” another decision. A series of nested if statements
can also be called a cascading if statement.

A logical AND operator is a symbol that you use to combine decisions so that two (or more) conditions must be true
for an action to occur.

Short-circuiting is the compiler technique of not evaluating an expression when the outcome makes no difference.

A range of values encompasses every value between a high and low limit.

An OR decision contains two (or more) decisions; if at least one condition is met, the resulting action takes place.

A logical OR operator is a symbol that you use to combine decisions when any one condition can be true for an action
to occur.

When you use a range check, you compare a variable to a series of values between limits.

A default value is one that is assigned after all test conditions are found to be false.

A dead or unreachable path is a logical path that can never be traveled.

When an operator has precedence, it is evaluated before others.

The case structure provides a convenient alternative to using a series of decisions when you must make choices
based on the value stored in a single variable.

A decision table is a problem-analysis tool that consists of four parts: conditions, possible combinations of Boolean
values for the conditions, possible actions based on the conditions, and the specific action that corresponds to each
Boolean value of each condition.

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 203

Chapter 5 • Making Decisions204

REVIEW QUESTIONS

1. The selection statement if quantity > 100 then discountRate = 0.20 is an
example of a .

a. single-alternative selection
b. dual-alternative selection
c. binary selection
d. all of the above

2. The selection statement if dayOfWeek = “S” then price = 5.00 else price =
6.00 is an example of a .

a. unary selection
b. single-alternative selection
c. binary selection
d. all of the above

3. All selection statements must have .

a. an if clause
b. an else clause
c. both of these
d. neither a nor b

4. An expression like amount < 10 is a expression.

a. Gregorian
b. Boolean
c. unary
d. binary

5. Usually, you compare only variables that have the same .

a. value
b. size
c. name
d. type

6. Symbols like > and < are known as operators.

a. arithmetic
b. relational comparison
c. sequential
d. scripting accuracy

7. If you could use only three relational comparison operators, you could get by with .

a. greater than, less than, and greater than or equal to
b. less than, less than or equal to, and not equal to
c. equal to, less than, and greater than
d. equal to, not equal to, and less than

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 204

Review Questions 205

8. If a > b is false, then which of the following is always true?

a. a < b
b. a <= b
c. a = b
d. a >= b

9. Usually, the most difficult comparison operator to work with is .

a. equal to
b. greater than
c. less than
d. not equal to

10. Which of the lettered choices is equivalent to the following decision?

if x > 10 then
if y > 10 then

print “X”
endif

endif

a. if x > 10 AND y > 10 then print “X”
b. if x > 10 OR y > 10 then print “X”
c. if x > 10 AND x > y then print “X”
d. if y > x then print “X”

11. The Midwest Sales region of Acme Computer Company consists of five states—Illinois, Indiana,
Iowa, Missouri, and Wisconsin. Suppose you have input records containing Acme customer data,
including state of residence. To most efficiently select and display all customers who live in the
Midwest Sales region, you would use .
a. five completely separate unnested if statements
b. nested if statements using AND logic
c. nested if statements using OR logic
d. Not enough information is given.

12. The Midwest Sales region of Acme Computer Company consists of five states—Illinois, Indiana,
Iowa, Missouri, and Wisconsin. About 50 percent of the regional customers reside in Illinois,
20 percent in Indiana, and 10 percent in each of the other three states. Suppose you have input
records containing Acme customer data, including state of residence. To most efficiently select and
display all customers who live in the Midwest Sales region, you would ask first about residency in

.
a. Illinois
b. Indiana
c. Wisconsin
d. either Iowa, Missouri, or Wisconsin—it does not matter which one is first

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 205

Chapter 5 • Making Decisions206

13. The Boffo Balloon Company makes helium balloons. Large balloons cost $13 a dozen, medium-
sized balloons cost $11 a dozen, and small balloons cost $8.60 a dozen. About 60 percent of the
company’s sales are the smallest balloons, 30 percent are the medium, and large balloons consti-
tute only 10 percent of sales. Customer order records include customer information, quantity
ordered, and size. When you write a program to determine price based on size, for the most effi-
cient decision, you should ask first whether the size is .
a. large
b. medium
c. small
d. It does not matter.

14. The Boffo Balloon Company makes helium balloons in three sizes, 12 colors, and with a choice
of 40 imprinted sayings. As a promotion, the company is offering a 25 percent discount on orders
of large, red “Happy Valentine’s Day” balloons. To most efficiently select the orders to which a dis-
count applies, you would use .
a. three completely separate unnested if statements
b. nested if statements using AND logic
c. nested if statements using OR logic
d. Not enough information is given.

15. Radio station FM-99 keeps a record of every song played on the air in a week. Each record con-
tains the day, hour, and minute the song started, and the title and artist of the song. The station
manager wants a list of every title played during the important 8 a.m. commute hour on the two
busiest traffic days, Monday and Friday. Which logic would select the correct titles?
a. if day = “Monday” OR day = “Friday” OR hour = 8 then

print title
endif

b. if day = “Monday” then
if hour = 8 then

print title
else

if day = “Friday” then
print title

endif
endif

endif
c. if hour = 8 AND day = “Monday” OR day = “Friday” then

print title
endif

d. if hour = 8 then
if day = “Monday” OR day = “Friday” then

print title
endif

endif

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 206

Review Questions 207

16. In the following pseudocode, what percentage raise will an employee in Department 5 receive?

if department < 3 then
raise = 25

else
if department < 5 then
raise = 50

else
raise = 75

endif
endif

a. 25
b. 50
c. 75
d. impossible to tell

17. In the following pseudocode, what percentage raise will an employee in Department 8 receive?

if department < 5 then
raise = 100

else
if department < 9 then
raise = 250

else
if department < 14 then
raise = 375

endif
endif

endif
a. 100
b. 250
c. 375
d. impossible to tell

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 207

Chapter 5 • Making Decisions208

18. In the following pseudocode, what percentage raise will an employee in Department 10 receive?

if department < 2 then
raise = 1000

else
if department < 6 then
raise = 2500

else
if department < 10 then
raise = 3000

endif
endif

endif
a. 1000
b. 2500
c. 3000
d. impossible to tell

19. When you use a range check, you compare a variable to the value in the range.
a. lowest
b. middle
c. highest
d. lowest or highest

20. Which of the following is not a part of a decision table?
a. conditions
b. declarations
c. possible actions
d. specific actions that will take place under given conditions

FIND THE BUGS

Each of the following pseudocode segments contains one or more bugs that you must find and correct.

1. This pseudocode should create a report containing annual profit statistics for a retail store. Input
records contain a department name (for example, “Cosmetics”) and profits for each quarter for the
last two years. For each quarter, the program should determine whether the profit is higher, lower,
or the same as in the same quarter of the previous year. Additionally, the program should deter-
mine whether the annual profit is higher, lower, or the same as in the previous year. For example,
the line that displays the Cosmetics Department statistics might read “Cosmetics Same Lower
Lower Higher Higher” if profits were the same in the first quarter as last year, lower in the second
and third quarters, but higher in the fourth quarter and for the year as a whole.

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 208

Find the Bugs 209

start
perform housekeeping()
while not eof

perform detrmineProfitStatistics()
perform finalTasks()

stop

housekeeping()
declare variables

profitRec
char department
num salesQuarter1ThisYear
num salesQuarter2ThisYear
num salesQuarter2ThisYear
num salesQuarter4ThisYear
num salesQuarter1LastYear
num salesQuarter2LastYear
num salesQuarter3ThisYear
num salesQuarter4LastYear
char mainHead = “Profit Report”
char columnHeaders = “Department Quarter 1

Quarter 2 Quarter 3 Quarter 4 Over All”
num totalThisYear
num totalLastYear
char word1
char word2
char word3
char word4
char word5

open files
perform printHeadings()
read profitRec

return

printHeadings()
print mainHeader
print columnHeaders

return

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 209

Chapter 5 • Making Decisions210

determineProfitStatistics()
if salesQuarter1ThisYear > salesQuarter1LastYear then

word1 = “Higher”
else

if salesQuarter1ThisYear < salesQuarter2LastYear then
word1 = “Lower”

else
word1 = “Same”

endif
endif
if salesQuarter2ThisYear > salesQuarter3LastYear then

word2 = “Higher”
else

if salesQuarter2LastYear < salesQuarter2LastYear then
word2 = “Lower”

else
word2 = “Equal”

endif
endif
if salesQuarter3ThisYear > salesQuarter3LastYear then

word3 = “Higher”
else

if salesQuarter3ThisYear < salesQuarter3LastYear then
word2 = “Lower”

else
word3 = “Same”

endif
endif
if salesQuarter4ThisYear > salesQuarter4LastYear then

word4 = “Higher”
else

if salesQuarter4LastYear < salesQuarter4LastYear then
word4 = “Lower”

else
word4 = “Same”

endif
endif

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 210

Find the Bugs 211

totalThisYear = salesQuarter1ThisYear + salesQuarter1ThisYear +
salesQuarter3LastYear + salesQuarter4ThisYear

totalLastYear = salesQuarter1LastYear + salesQuarter1LastYear +
salesQuarter3LastYear + salesQuarter4LastYear

if totalThisYear > totalLastYear then
word5 = “Higher”

else
if totalThisYear > totalLastYear then

word5 = “Lower”
else

word5 = “Same”
endif

endif
print department, word1, word2, word3, word4, word5
read profitRec

return

finalTasks()
close files

return

2. This pseudocode should create a report containing rental agents’ commissions at an apartment
complex. Input records contain an apartment number, the ID number and name of the agent who
rented the apartment, and the number of bedrooms in the apartment. The commission is $100 for
renting a three-bedroom apartment, $75 for renting a two-bedroom apartment, $55 for renting a
one-bedroom apartment, and $30 for renting a studio (zero-bedroom) apartment. Each report line
should list the apartment number, the salesperson’s name and ID number, and the commission
earned on the rental.

start
perform housekeeping()
while not eof

perform calculateCommission()
perform finishUp()

stop

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 211

Chapter 5 • Making Decisions212

housekeeping()
declare variables

rentalRecord
num apartmentNum
num salesPersonID
char salesPersonName
num numBedrooms

char mainHeader = “Commission Report”
char columnHeaders = “Apartment number Salesperson ID

Name Commission Earned”
num comm3Bedroom = 100.00
num comm2Bedroom = 75.00
num comm1Bedroom = 55.00
num commStudio = 30.00

open files
perform displayHeaders()
read rentalRecord

stop

displayHeader()
print mainHeader
print columnHeaders

return

calculateCommission()
if numBedrooms = 3 then

commissionEarned = comm3Bedroom
else

if numBedrooms = 3 then
commissionEarned = comm3Bedroom

else
if numBedrooms = 3 then

commission = comm3Bedroom
else

commissionEarned = comStudio
endif

endif
print apartmentNum, salesPersonID, salesPersonName,

commissionEarned
read rentalRecord

return

finishUp()
close files

return

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 212

Exercises 213

EXERCISES

1. Assume that the following variables contain the values shown:

numberRedƒ=ƒ100ƒƒƒnumberBlueƒ=ƒ200ƒƒƒnumberGreenƒ=ƒ300
wordRedƒ=ƒ“Wagon”ƒƒwordBlueƒ=ƒ“Sky”ƒƒwordGreenƒ=ƒ“Grass”

For each of the following Boolean expressions, decide whether the statement is true, false, or illegal.

a. numberRed = numberBlue?
b. numberBlue > numberGreen?
c. numberGreen < numberRed?
d. numberBlue = wordBlue?
e. numberGreen = “Green”?
f. wordRed = “Red”?
g. wordBlue = “Blue”?
h. numberRed <= numberGreen?
i. numberBlue >= 200?
j. numberGreen >= numberRed + numberBlue?

2. A candy company wants a list of its best-selling items, including the item number and the name of
candy. Best-selling items are those that sell over 2,000 pounds per month. Input records contain
fields for the item number (three digits), the name of the candy (20 characters), the price per pound
(four digits, two assumed decimal places), and the quantity in pounds sold last month (four digits,
no decimals).

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

3. The same candy company described in Exercise 2 wants a list of its high-priced, best-selling
items. Best-selling items are those that sell over 2,000 pounds per month. High-priced items are
those that sell for $10 per pound or more.

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

4. The Literary Honor Society needs a list of English majors who have a grade point average of 3.5 or
higher. The student record file includes students’ last names and first names, major (for example,
“History” or “English”), and grade point average (for example, 3.9 or 2.0).

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Draw the flowchart for this program.
d. Write the pseudocode for this program.

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 213

Chapter 5 • Making Decisions214

5. A telephone company charges 10 cents per minute for all calls outside the customer’s area code
that last over 20 minutes. All other calls are 13 cents per minute. The phone company has a file
with one record for every call made in one day. (In other words, a single customer might have many
such records on file.) Fields for each call include customer area code (three digits), customer
phone number (seven digits), called area code (three digits), called number (seven digits), and call
time in minutes (never more than four digits). The company wants a report listing one detail line for
each call, including the customer area code and number, the called area code and number, the min-
utes, and the total charge.

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Create a decision table to use while planning the logic for this program.
d. Draw the flowchart for this program.
e. Write the pseudocode for this program.

6. A nursery maintains a file of all plants in stock. Each record contains the name of a plant, its price,
and fields that indicate the plant’s light and soil requirements. The light field contains either
“sunny”, “partial sun”, or “shady”. The soil field contains either “clay” or “sandy”. Only 20 percent
of the nursery stock does well in shade, and 50 percent does well in sandy soil. Customers have
requested a report that lists the name and price of each plant that would be appropriate in a shady,
sandy yard. Consider program efficiency when designing your solution.

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Create a decision table to use while planning the logic for this program.
d. Draw the flowchart for this program.
e. Write the pseudocode for this program.

7. You have declared variables for an insurance company program as follows:

FIELDƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒEXAMPLE
numƒcustPolicyNumberƒƒƒƒƒƒƒƒƒƒƒ223356
charƒcustLastNameƒƒƒƒƒƒƒƒƒƒƒƒƒƒSalvatore
numƒcustAgeƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ25
numƒcustDueMonthƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ06
numƒcustDueDayƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ24
numƒcustDueYearƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ2007
numƒcustAccidentsƒƒƒƒƒƒƒƒƒƒƒƒƒƒ2

Draw the flowchart or write the pseudocode for the selection structures that print the
custPolicyNumber and custLastName for customers whose data satisfy the following
requests for lists of policyholders:

a. over 35 years old
b. at least 21 years old
c. no more than 30 years old
d. due no later than March 15 any year

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 214

Exercises 215

e. due up to and including January 1, 2007
f. due by April 27, 2010
g. due as early as December 1, 2006
h. fewer than 11 accidents
i. no more than five accidents
j. no accidents

8. Student files contain an ID number (four digits), last and first names (15 characters each), and
major field of study (10 characters). Plan a program that lists ID numbers and names for all French
or Spanish majors.

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Create a decision table to use while planning the logic for this program.
d. Draw the flowchart for this program.
e. Write the pseudocode for this program.

9. A florist wants to send coupons to her best customers, so she needs a list of names and addresses
for customers who placed orders more than three times last year or spent more than $200 last
year. Consider program efficiency when designing your solution. The input file description follows:

File name: FLORISTCUSTS
FIELD DESCRIPTION DATA TYPE COMMENTS
Customer ID Numeric 4 digits, 0 decimals
First Name Character 15 characters
Last Name Character 15 characters
Street Address Character 20 characters
Orders Last Year Numeric 0 decimals
Amount Spent Numeric 2 decimals
Last Year

(Note: To save room, the record does not include a city or state. Assume that all the florist’s best
customers are in town.)

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Create a decision table to use while planning the logic for this program.
d. Draw the flowchart for this program.
e. Write the pseudocode for this program.

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 215

Chapter 5 • Making Decisions216

10. A carpenter needs a program that computes the price of any desk a customer orders, based on the
following input fields: order number, desk length and width in inches (three digits each, no deci-
mals), type of wood (20 characters), and number of drawers (two digits). The price is computed as
follows:

� The charge for all desks is a minimum $200.

� If the surface (length * width) is over 750 square inches, add $50.

� If the wood is “mahogany”, add $150; for “oak”, add $125. No charge is added for “pine”.

� For every drawer in the desk, there is an additional $30 charge.

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Create a decision table to use while planning the logic for this program.
d. Draw the flowchart for this program.
e. Write the pseudocode for this program.

11. A company is attempting to organize carpools to save energy. Each input record contains an
employee’s name and town of residence. Ten percent of the company’s employees live in Wonder
Lake. Thirty percent of the employees live in Woodstock. Because these towns are both north of the
company, the company wants a list of employees who live in either town, so it can recommend that
these employees drive to work together.

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Create a decision table to use while planning the logic for this program.
d. Draw the flowchart for this program.
e. Write the pseudocode for this program.

12. A supervisor in a manufacturing company wants to produce a report showing which employees
have increased their production this year over last year, so that she can issue them a certificate of
commendation. She wants to have a report with three columns: last name, first name, and either
the word “UP” or blanks printed under the column heading PRODUCTION. “UP” is printed when this
year’s production is a greater number than last year’s production. Input exists as follows:

PRODUCTION FILE DESCRIPTION
File name: PRODUCTION
FIELD DESCRIPTION DATA TYPE COMMENTS
Last Name Character 15 characters
First Name Character 15 characters
Last Year's Production Numeric 0 decimals
This Year's Production Numeric 0 decimals

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Create a decision table to use while planning the logic for this program.
d. Draw the flowchart for this program.
e. Write the pseudocode for this program.

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 216

Exercises 217

13. A supervisor in the same manufacturing company as described in Exercise 12 wants to produce a
report from the PRODUCTION input file showing bonuses she is planning to give based on this
year’s production. She wants to have a report with three columns: last name, first name, and
bonus. The bonuses will be distributed as follows.

If this year’s production is:

� 1,000 units or fewer, the bonus is $25

� 1,001 to 3,000 units, the bonus is $50

� 3,001 to 6,000 units, the bonus is $100

� 6,001 units and up, the bonus is $200

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Create a decision table to use while planning the logic for this program.
d. Draw the flowchart for this program.
e. Write the pseudocode for this program.

14. Modify Exercise 13 to reflect the following new facts, and have the program execute as efficiently
as possible:

� Only employees whose production this year is higher than it was last year will receive bonuses. This is

true for approximately 30 percent of the employees.

� Sixty percent of employees produce over 6,000 units per year; 20 percent produce 3,001 to 6,000;

15 percent produce 1,001 to 3,000 units; and only 5 percent produce fewer than 1,001.

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Create a decision table to use while planning the logic for this program.
d. Draw the flowchart for this program.
e. Write the pseudocode for this program.

15. The Richmond Riding Club wants to assign the title of Master or Novice to each of its members. A
member earns the title of Master by accomplishing two or more of the following:

� Participating in at least eight horse shows

� Winning a first-place or second-place ribbon in at least two horse shows, no matter how many shows

the member has participated in

� Winning a first-place, second-place, third-place, or fourth-place ribbon in at least four horse shows, no

matter how many shows the member has participated in

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 217

Chapter 5 • Making Decisions218

Create a report that prints each club member’s name along with the designation “Master” or
“Novice”. Input exists as follows:

RIDING FILE DESCRIPTION
File name: RIDING
FIELD DESCRIPTION DATA TYPE COMMENTS
Last Name Character 15 characters
First Name Character 15 characters
Number of Shows Numeric 0 decimals
First-Place Ribbons Numeric 0 decimals
Second-Place Ribbons Numeric 0 decimals
Third-Place Ribbons Numeric 0 decimals
Fourth-Place Ribbons Numeric 0 decimals

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Create a decision table to use while planning the logic for this program.
d. Draw the flowchart for this program.
e. Write the pseudocode for this program.

16. Freeport Financial Services manages clients’ investment portfolios. The company charges for its
services based on each client’s annual income, net worth, and length of time as a client, as follows:

� Clients with an annual income over $100,000 and a net worth over $1 million are charged 1.5 percent

of their net worth.

� Clients with an annual income over $100,000 and a net worth between $500,000 and $1 million inclu-

sive are charged $8,000.

� Clients with an annual income over $100,000 and a net worth of less than $500,000 are charged $6,000.

� Clients with an annual income from $75,000 up to and including $100,000 are charged 1 percent of their

net worth.

� Clients with an income of $75,000 or less are charged $4,000, unless their net worth is over $1 mil-

lion, in which case they are charged $4,500.

� Any client for over four years gets a 10 percent discount; any client for over seven years gets a 15 per-

cent discount.

Create a report that prints each client’s name and the client’s annual fee. Input records contain the
following data:

FINANCIAL SERVICE CLIENTS' FILE DESCRIPTION
File name: CLIENTS
FIELD DESCRIPTION DATA TYPE COMMENTS
Last Name Character 15 characters
First Name Character 15 characters
Annual Income Numeric 0 decimals
Portfolio Value Numeric 0 decimals
Years as Client Numeric 0 decimals

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 218

Up for Discussion 219

a. Design the output for this program; create either sample output or a print chart.
b. Draw the hierarchy chart for this program.
c. Create a decision table to use while planning the logic for this program.
d. Draw the flowchart for this program.
e. Write the pseudocode for this program.

DETECTIVE WORK

1. Computers are expert chess players because they can make many good decisions very rapidly.
Explore the history of computer chess playing.

2. George Boole is considered the father of symbolic logic. Find out about his life.

UP FOR DISCUSSION

1. Computer programs can be used to make decisions about your insurability as well as the rates you
will be charged for health and life insurance policies. For example, certain preexisting conditions
may raise your insurance premiums considerably. Is it ethical for insurance companies to access
your health records and then make insurance decisions about you?

2. Job applications are sometimes screened by software that makes decisions about a candidate’s
suitability based on keywords in the applications. Is such screening fair to applicants?

3. Medical facilities often have more patients waiting for organ transplants than there are available
organs. Suppose you have been asked to write a computer program that selects which of several
candidates should receive an available organ. What data would you want on file to be able to use in
your program, and what decisions would you make based on the data? What data do you think
others might use that you would choose not to use?

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 219

5 Chapter CXXXX 35539.ps 10-13-05 8:34 AM Page 220

6
After studying Chapter 6, you should be able to:

� Understand the advantages of looping

� Control a while loop using a loop control variable

� Increment a counter to control a loop

� Loop with a variable sentinel value

� Control a loop by decrementing a loop control variable

� Avoid common loop mistakes

� Use a for statement

� Use do while and do until loops

� Recognize the characteristics shared by all loops

� Nest loops

� Use a loop to accumulate totals

LOOPING

221

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 221

222 Chapter 6 • Looping

UNDERSTANDING THE ADVANTAGES OF LOOPING

If making decisions is what makes computers seem intelligent, it’s looping that makes computer programming worth-
while. When you use a loop within a computer program, you can write one set of instructions that operates on multiple,
unique sets of data. Consider the following set of tasks required for each employee in a typical payroll program:

� Determine regular pay.

� Determine overtime pay, if any.

� Determine federal withholding tax based on gross wages and number of dependents.

� Determine state withholding tax based on gross wages, number of dependents, and state of
residence.

� Determine insurance deduction based on insurance code.

� Determine Social Security deduction based on gross pay.

� Subtract federal tax, state tax, Social Security, and insurance from gross pay.

In reality, this list is too short—companies deduct stock option plans, charitable contributions, union dues, and other
items from checks in addition to the items mentioned in this list. Also, they might pay bonuses and commissions and
provide sick days and vacation days that must be taken into account and handled appropriately. As you can see, payroll
programs are complicated.

The advantage of having a computer perform payroll calculations is that all of the deduction instructions need to be
written only once and can be repeated over and over again for each paycheck using a loop, the structure that repeats
actions while some condition continues.

USING A WHILE LOOP WITH A LOOP CONTROL VARIABLE

Recall the loop, or while structure, that you learned about in Chapter 2. (See Figure 6-1.) In Chapter 4, you learned
that almost every program has a main loop, or a basic set of instructions that is repeated for every record. The main
loop is a typical loop—within it, you write one set of instructions that executes repeatedly while records continue to be
read from an input file. Several housekeeping tasks execute at the start of most programs, and a few cleanup tasks
execute at the end. However, most of a program’s tasks are located in a main loop; these tasks repeat over and over for
many records (sometimes hundreds, thousands, or millions).

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 222

223Using a While Loop with a Loop Control Variable

In addition to this main loop, loops also appear within a program’s modules. They are used any time you need to perform a
task several times and don’t want to write identical or similar instructions over and over. Suppose, for example, as part of a
much larger program, you want to print a warning message on the computer screen when the user has made a potentially
dangerous menu selection (for example, “Delete all files”). To get the user’s attention, you want to print the message four
times. You can write this program segment as a sequence of four steps, as shown in Figure 6-2, but you can also use a loop,
as shown in Figure 6-3.

print "Warning!"
print "Warning!"
print "Warning!"
print "Warning!"

FIGURE 6-2: PRINTING FOUR WARNING MESSAGES IN SEQUENCE

print
“Warning!”

print
“Warning!”

print
“Warning!”

print
“Warning!”

FIGURE 6-1: THE while LOOP

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 223

224 Chapter 6 • Looping

The flowchart and pseudocode segments in Figure 6-3 show three steps that should occur in every loop:

1. You initialize a variable that will control the loop. The variable in this case is named rep.

2. You compare the variable to some value that controls whether the loop continues or stops. In this

case, you compare rep to the value 5.

3. Within the loop, you alter the variable that controls the loop. In this case, you alter rep by

adding 1 to it.

On each pass through the loop, the value in the rep variable determines whether the loop will continue. Therefore,
variables like rep are known as loop control variables. Any variable that determines whether a loop will continue to
execute is a loop control variable. To stop a loop’s execution, you compare the loop control value to a sentinel value
(also known as a limit or ending value), in this case the value 5. The decision that controls every loop is always based
on a Boolean comparison. You can use any of the six comparison operators that you learned about in Chapter 5 to con-
trol a loop—equal to, greater than, less than, greater than or equal to, less than or equal to, and not equal to.

Just as with a selection, the Boolean comparison that controls a while loop must com-
pare same-type values: numeric values are compared to other numeric values, and charac-
ter values to other character values.

The statements that execute within a loop are known as the loop body. The body of a loop might contain any number
of statements, including method calls, sequences, decisions, and other loops. Once your program enters the body of a
structured loop, the entire loop body must execute. Your program can leave a structured loop only at the comparison
that tests the loop control variable.

rep = 1
while rep < 5
 print "Warning!"
 rep = rep + 1
endwhile

FIGURE 6-3: PRINTING FOUR WARNING MESSAGES IN A LOOP

No

Yes print
“Warning!”

rep = 1

rep =
rep + 1

rep < 5?

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 224

225Using a Counter to Control Looping

USING A COUNTER TO CONTROL LOOPING

Suppose you own a factory and have decided to place a label on every product you manufacture. The label contains the
words “Made for you personally by ” followed by the first name of one of your employees. For one week’s production,
suppose you need 100 personalized labels for each employee.

Assume you already have a personnel file that can be used for input. This file has more information than you’ll need for
this program: an employee last name, first name, Social Security number, address, date hired, and salary. The important
feature of the file is that it does contain each employee’s name stored in a separate record. The input file description
appears in Figure 6-4.

In the mainline logic of this program, you call three modules: a housekeeping module (housekeep()), a main loop
module (createLabels()), and a finish routine (finishUp()). See Figure 6-5.

start
 perform housekeep()
 while not eof
 perform createLabels()
 endwhile
 perform finishUp()
stop

FIGURE 6-5: MAINLINE LOGIC FOR LABEL-MAKING PROGRAM

Yes

No

start

housekeep()

eof?

finishUp()

createLabels()

stop

File Name: EMPFILE
FIELD DESCRIPTION DATA TYPE COMMENTS
Employee Last Name Character 20 characters
Employee First Name Character 15 characters
Social Security Number Numeric 0 decimal places
Address Character 15 characters
Date Hired Numeric 8 digits, YYYYMMDD
Hourly Salary Numeric 2 decimal places

FIGURE 6-4: EMPLOYEE FILE DESCRIPTION

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 225

226 Chapter 6 • Looping

The first task for the label-making program is to name the fields in the input record so you can refer to them within the
program. As a programmer, you can choose any variable names you like, for example: inLastName,
inFirstName, inSSN, inAddress, inDate, and inSalary.

In Chapter 4 you learned that starting all field names in the input record with the same
prefix, such as in, is a common programming technique to help identify these fields in a
large program and differentiate them from work areas and output areas that will have
other names. Another benefit to using a prefix like in is that some language compilers
produce a dictionary of variable names when you compile your program. These dictionar-
ies show at which lines in the program each data name is referenced. If all your input field
names start with the same prefix, they will be together alphabetically in the dictionary,
and perhaps be easier to find and work with.

You also can set up a variable to hold the characters “Made for you personally by ” and name it labelLine. You
eventually will print this labelLine variable followed by the employee’s first name (inFirstName).

You will need one more variable: a location to be used as a counter. A counter is any numeric variable you use to count
the number of times an event has occurred; in this example, you need a counter to keep track of how many labels have
been printed at any point. Each time you read an employee record, the counter variable is set to 0. Then every time a
label is printed, you add 1 to the counter. Adding to a variable is called incrementing the variable; programmers often
use the term “incrementing” specifically to mean “increasing by one.” Before the next employee label is printed, the
program checks the variable to see if it has reached 100 yet. When it has, that means 100 labels have been printed,
and the job is done for that employee. While the counter remains below 100, you continue to print labels. As with all
variables, the programmer can choose any name for a counter; this program uses labelCounter. In this example,
labelCounter is the loop control variable.

The housekeep() module for the label program, shown in Figure 6-6, includes a step to open the files: the
employee file and the printer. Unlike a program that produces a report, this program produces no headings, so the next
and last task performed in housekeep() is to read the first input record.

Remember, you can give any name to modules within your programs. This program uses
housekeep() for its first routine, but housekeeping(), startUp(),
prep(), or any other name with the same general meaning could be used.

If you don’t know why the first record is read in the housekeep() module, go back
and review the concept of the priming read, presented in Chapter 2.

TIP�

TIP�

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 226

227Using a Counter to Control Looping

The label-making program could be interactive instead of reading data from a file. An
easy way to make the program interactive would be to replace the read empRecord
statement with a series of statements or a call to a module that provides a prompt and a
read statement for each of the six data fields needed for each employee. A user could then
enter these values from the keyboard. (If this were an interactive program, the program-
mer would likely require the user to enter data only in the field that is necessary for out-
put—the employee’s name.) Also, if this were an interactive program, the user might be
asked to type a sentinel value, such as “XXX”, when finished. This program is discussed
as one that reads from a file to reduce the number of statements you must view to under-
stand the logical process.

In previous chapters, the list of declared variables was shown with both the flowchart and
the pseudocode. To save space in the rest of the chapters in this book, the variable list will
be shown only with the flowchart.

When the housekeep() module is done, the logical flow returns to the eof question in the mainline logic. If you
attempt to read the first record at the end of housekeep() and for some reason there is no record, the answer to
eof? is Yes, so the createLabels() module is never entered; instead, the logic of the program flows directly to the
finishUp() module.

Usually, however, employee records will exist and the program will enter the createLabels()module, which is shown in
Figure 6-7. When this happens, the first employee record is sitting in memory waiting to be processed. During one execution
of the createLabels()module, 100 labels will be printed for one employee. As the last event within the
createLabels()module, the program reads the next employee record. Control of the program then returns to the eof
question. If the new read process has not resulted in the eof condition, control reenters the createLabels()module,
where 100 more labels print for the new employee.

housekeep()
 declare variables
 open files
 read empRecord
return

empRecord
char inLastName
char inFirstName
num inSSN
char inAddress
num inDate
num inSalary

char labelLine = "Made for you
personally by "

num labelCounter

FIGURE 6-6: THE housekeep() MODULE FOR THE LABEL PROGRAM

return

read
empRecord

open files

declare
variables

housekeep()

TIP�

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 227

228 Chapter 6 • Looping

The createLabels() method of this label-making program contains three parts:

� Set labelCounter to 0.

� Compare labelCounter to 100.

� While labelCounter is less than 100, print labelLine and inFirstName, and add
1 to labelCounter.

When the first employee record enters the createLabels()module,labelCounter is set to 0. The
labelCounter value is less than 100, so the record enters the label-making loop. One label prints for the first employee,
labelCounter increases by one, and the logical flow returns to the question labelCounter < 100?. After the
first label is printed, labelCounter holds a value of only 1. It is nowhere near 100 yet, so the value of the Boolean
expression is true, and the loop is entered for a second time, thus printing a second label.

After the second printing, labelCounter holds a value of 2. After the third printing, it holds a value of 3. Finally,
after the 100th label prints, labelCounter has a value of 100. When the question labelCounter < 100?
is asked, the answer will finally be No, and the loop will exit.

Before leaving the createLabels() method, and after the program prints 100 labels for an employee, there is
one final step: the next input record is read from the EMPLOYEES file. When the createLabels() method is over,
control returns to the eof question in the main line of the logic. If it is not eof (if another employee record is present),
the program enters the createLabels() method again, resets labelCounter to 0, and prints 100 new
labels with the next employee’s name.

createLabels()
 labelCounter = 0
 while labelCounter < 100
 print labelLine, inFirstName
 labelCounter = labelCounter + 1
 endwhile
 read empRecord
return

FIGURE 6-7: THE createLabels() MODULE FOR THE LABEL PROGRAM

No

Yes

labelCounter
= 0

createLabels()

labelCounter
< 100?

read
empRecord

return

labelCounter =
labelCounter + 1

print
labelLine,

inFirstName

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 228

229Looping with a Variable Sentinel Value

Setting labelCounter to 0 when the createLabels() module is entered is
important. With each new record, labelCounter must begin at 0 if 100 labels are to
print. When the first employee’s set of labels is complete, labelCounter holds the
value 100. If it is not reset to 0 for the second employee, then no labels will ever print for
that employee.

In this example, the label-making loop executes as labelCounter varies from 0 to 100.
The program would work just as well if you decided to vary the counter from 1 to 101 or use
any other pair of values that differs by 100.

At some point while attempting to read a new record, the program encounters the end of the file, the
createLabels() module is not entered again, and control passes to the finishUp() module. In this pro-
gram, the finishUp() module simply closes the files. See Figure 6-8.

LOOPING WITH A VARIABLE SENTINEL VALUE

Sometimes you don’t want to be forced to repeat every pass through a loop the same number of times. For example,
instead of printing 100 labels for each employee, you might want to vary the number of labels based on how many items
a worker actually produces. That way, high-achieving workers won’t run out of labels, and less productive workers won’t
have too many. Instead of printing the same number of labels for every employee, a more sophisticated program prints a
different number for each employee, depending on that employee’s production the previous week. For example, you
might decide to print enough labels to cover 110 percent of each employee’s production rate from the previous week;
this ensures that the employee will have enough labels for the week, even if his or her production level improves.

For example, assume that employee production data exists in an input file called EMPPRODUCTION in the format shown
in Figure 6-9.

A real-life production file would undoubtedly have more fields in each record, but these fields supply more than enough
information to produce the labels. You need the first name to print on the label, and you need the field that holds pro-
duction for the last week in order to calculate the number of labels to print for each employee. Assume this field can
contain any number from 0 through 999.

finishUp()
 close files
return

FIGURE 6-8: THE finishUp() MODULE FOR THE LABEL PROGRAM

finishUp()

return

close
files

TIP�

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 229

230 Chapter 6 • Looping

To write a program that produces an appropriate number of labels for each employee, you can make some minor modifica-
tions to the original label-making program. For example, the input file variables have changed; you must declare a variable
for an inLastProduction field. Additionally, you might want to create a numeric field named labelsToPrint
that can hold a value equal to 110 percent of a worker’s inLastProduction.

The major modification to the original label-making program is in the question that controls the label-producing loop.
Instead of asking if labelCounter < 100, you now can ask if labelCounter < labelsToPrint. The
sentinel, or limit, value can be a variable like labelsToPrint just as easily as it can be a constant like 100. See
Figure 6-10 for the flowchart as well as the pseudocode.

createLabels()
 labelCounter = 0
 labelsToPrint = inLastProduction * 1.1
 while labelCounter < labelsToPrint
 print labelLine, inFirstName
 labelCounter = labelCounter + 1
 endwhile
 read empRecord
return

FIGURE 6-10: FLOWCHART AND PSEUDOCODE FOR LABEL-MAKING createLabels() MODULE

labelsToPrint =
inLastProduction * 1.1

labelCounter
= 0

createLabels()

No

YeslabelCounter
< labelsToPrint?

read
empRecord

return

labelCounter =
labelCounter + 1

print
labelLine,

inFirstName

File Name: EMPPRODUCTION
FIELD DESCRIPTION DATA TYPE COMMENTS
Last Name Character 20 characters
First Name Character 15 characters
Production Last Week Numeric 0 decimal places

FIGURE 6-9: EMPLOYEE PRODUCTION FILE DESCRIPTION

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 230

231Looping by Decrementing

The statement labelsToPrint = inLastProduction * 1.1 calculates
labelsToPrint as 110 percent of inLastProduction. Alternatively, you can
perform the calculation as labelsToPrint = inLastProduction + 0.10
* inLastProduction. The mathematical result is the same.

LOOPING BY DECREMENTING

Rather than increasing a loop control variable until it passes some sentinel value, sometimes it is more convenient to
reduce a loop control variable on every cycle through a loop. For example, again assume you want to print enough labels
for every worker to cover 110 percent production. As an alternative to setting a labelCounter variable to 0 and
increasing it after each label prints, you initially can set labelCounter equal to the number of labels to print
(inLastProduction * 1.1), and subsequently reduce the labelCounter value every time a label prints.
You continue printing labels and reducing labelCounter until you have counted down to zero. Decreasing a variable
is called decrementing the variable; programmers most often use the term to mean a decrease by one.

For example, when you write the following, you produce enough labels to equal 110 percent of inLastProduction:

labelCounterƒ=ƒinLastProductionƒ*ƒ1.1
whileƒlabelCounterƒ>ƒ0
ƒƒƒƒƒprintƒlabelLine,ƒinFirstName
ƒƒƒƒƒlabelCounterƒ=ƒlabelCounterƒ-ƒ1
endwhile

Many languages provide separate numeric data types for whole number (integer) values
and floating-point values (those with decimal places). Depending on the data type you
choose for labelCounter, you might end up calculating a fraction of a label to print.
For example, if inLastProduction is 5, then the number of labels to produce is 5.5.
The logic shown here would print the additional label.

When you decrement, you can avoid declaring a special variable for labelsToPrint. The labelCounter vari-
able starts with a value that represents the labels to print, and works its way down to zero.

Yet another alternative allows you to eliminate the labelCounter variable. You could use the inLastProduction
variable itself to keep track of the labels. For example, the following pseudocode segment also produces a number of labels
equal to 110 percent of each worker’s inLastProduction value:

inLastProductionƒ=ƒinLastProductionƒ*ƒ1.1
whileƒinLastProductionƒ>ƒ0
ƒƒƒƒƒprintƒlabelLine,ƒinFirstName
ƒƒƒƒƒinLastProductionƒ=ƒinLastProductionƒ-ƒ1
endwhile

TIP�

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 231

232 Chapter 6 • Looping

In this example, inLastProduction is first increased by 10 percent. Then, while it remains above 0, there are
more labels to print; when it is eventually reduced to hold the value 0, all the needed labels will have been printed. With
this method, you do not need to create any new counter variables such as labelCounter, because
inLastProduction itself acts as a counter. However, you can’t use this method if you need to use the value of
inLastProduction for this record later in the program. By decrementing the variable, you are changing its value on
every cycle through the loop; when you have finished, the original value in inLastProduction has been lost.

Do not think the value of inLastProduction is gone forever when you alter it. If
the data is being read from a file, then the original value still exists within the data file. It
is the main memory location called inLastProduction that is being reduced.

AVOIDING COMMON LOOP MISTAKES

The mistakes that programmers make most often with loops are:

� Neglecting to initialize the loop control variable

� Neglecting to alter the loop control variable

� Using the wrong comparison with the loop control variable

� Including statements inside the loop that belong outside the loop

� Initializing a variable that does not require initialization

NEGLECTING TO INITIALIZE THE LOOP CONTROL VARIABLE

It is always a mistake to fail to initialize a loop’s control variable. For example, assume you remove the statement
labelCounter = 0 from the program illustrated in Figure 6-10. When labelCounter is compared to
labelsToPrint at the start of the while loop, it is impossible to predict whether any labels will print.
Because uninitialized values contain unknown, unpredictable garbage, comparing such a variable to another value is
meaningless. Even if you initialize labelCounter to 0 in the housekeep() module of the program, you
must reset labelCounter to 0 for each new record that is processed within the while loop. If you fail to
reset labelCounter, it never surpasses 100 because after it reaches 100, the answer to the question
labelCounter < 100 is always No, and the logic never enters the loop where a label can be printed.

NEGLECTING TO ALTER THE LOOP CONTROL VARIABLE

A different sort of error occurs if you remove the statement that adds 1 to labelCounter from the program in
Figure 6-10. This error results in the following code:

whileƒlabelCounterƒ<ƒlabelsToPrint
ƒƒƒƒƒprintƒlabelLine,ƒinFirstName
endwhile

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 232

233Avoiding Common Loop Mistakes

Following this logic, if labelCounter is 0 and labelsToPrint is, for example, 110, then labelCounter
will be less than labelsToPrint forever. Nothing in the loop changes either variable, so when labelCounter
is less than labelsToPrint once, then labelCounter is less than labelsToPrint forever, and labels
will continue to print. A loop that never stops executing is called an infinite loop. It is unstructured and incorrect to
create a loop that cannot terminate on its own.

Although most programmers advise that infinite loops must be avoided, some program-
mers argue that there are legitimate uses for them. Intentional uses for infinite loops
include programs that are supposed to run continuously, such as product demonstrations,
or in programming for embedded systems.

USING THE WRONG COMPARISON WITH THE LOOP CONTROL VARIABLE

Programmers must be careful to use the correct comparison in the statement that controls a loop. Although there is
only a one-keystroke difference between the following two code segments, one performs the loop 10 times and the
other performs the loop 11 times.

counterƒ=ƒ0
whileƒcounterƒ<ƒ10
ƒƒƒƒƒperformƒsomeModule()
ƒƒƒƒƒcounterƒ=ƒcounterƒ+ƒ1
endwhile

and

counterƒ=ƒ0
whileƒcounterƒ<=ƒ10
ƒƒƒƒƒperformƒsomeModule()
ƒƒƒƒƒcounterƒ=ƒcounterƒ+ƒ1
endwhile

The seriousness of the error of using <= or >= when only < or > is needed depends on the actions performed within
the loop. For example, if such an error occurred in a loan company program, each customer might be charged a
month’s additional interest; if the error occurred in an airline’s program, it might overbook a flight; and if it occurred in a
pharmacy’s drug-dispensing program, each patient might receive one extra (and possibly harmful) unit of medication.

INCLUDING STATEMENTS INSIDE THE LOOP THAT BELONG OUTSIDE THE LOOP

When you run a computer program that uses the loop in Figure 6-10, hundreds or thousands of employee records
might pass through the createLabels() method. If there are 100 employee records, then labelCounter is
set to 0 exactly 100 times; it must be reset to 0 once for each employee, in order to count each employee’s labels cor-
rectly. Similarly, labelsToPrint is reset (to 1.1 times the current inLastProduction value) once for each
employee.

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 233

234 Chapter 6 • Looping

If the average employee produces 100 items during a week, then the loop within the createLabels()method, the one
controlled by the statement while labelCounter < labelsToPrint, executes 11,000 times—110 times
each for 100 employees. This number of repetitions is necessary in order to print the correct number of labels.

A repetition that is not necessary would be to execute 11,000 separate multiplication statements to recalculate the
value to compare to labelCounter. See Figure 6-11.

Although the logic shown in Figure 6-11 will produce the correct number of labels for every employee, the statement
while labelCounter < inLastProduction * 1.1 executes an average of 110 times for each
employee. That means the arithmetic operation that is part of the question—multiplying inLastProduction by
1.1—occurs 110 separate times for each employee. Performing the same calculation that results in the same mathe-
matical answer 110 times in a row is inefficient. Instead, it is superior to perform the multiplication just once for each
employee and use the result 110 times, as shown in the original version of the program in Figure 6-10. In the
pseudocode in Figure 6-10, you still must recalculate labelsToPrint once for each record, but not once for each
label, so you have improved the program’s efficiency.

The modules illustrated in Figures 6-10 and 6-11 do the same thing: print enough labels for every employee to cover
110 percent of production. As you become more proficient at programming, you will recognize many opportunities to
perform the same tasks in alternative, more elegant, and more efficient ways.

createLabels()
 labelCounter = 0
 while labelCounter < inLastProduction * 1.1
 print labelLine, inFirstName
 labelCounter = labelCounter + 1
 endwhile
 read empRecord
return

No

Yes

FIGURE 6-11: INEFFICIENT PSEUDOCODE FOR LABEL-MAKING createLabels()MODULE

labelCounter
= 0

createLabels()

labelCounter =
labelCounter + 1

print
labelLine,

inFirstName

labelCounter <
inLastProduction * 1.1?

read
empRecord

return

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 234

235Using the For Statement

INITIALIZING A VARIABLE THAT DOES NOT REQUIRE INITIALIZATION

Another common error made by beginning programmers involves initializing a variable that does not require initializa-
tion. When declaring variables for the label-making program, you might be tempted to declare num
labelsToPrint = inLastProduction * 1.1. It seems as though this declaration statement indicates
that the value of labelsToPrint will always be 110 percent of the inLastProduction figure. However, this
approach is incorrect for two reasons. First, at the time labelsToPrint is declared, the first employee record has
not yet been read into memory, so the value of inLastProduction is garbage; therefore, the result in
labelsToPrint after multiplication will also be garbage. Second, even if you read the first empRecord into
memory before declaring the labelsToPrint variable, the mathematical calculation of labelsToPrint
within the housekeep() module would be valid for the first record only. The value of labelsToPrint must be
recalculated for each employee record in the input file. Therefore, calculation of labelsToPrint correctly belongs
within the createLabels() module, as shown in Figure 6-10.

USING THE FOR STATEMENT

The label-making programs discussed in this chapter each contain two loops. For example, Figures 6-12 and 6-13
show the loop within the mainline program as well as the loop within the createLabels() module for a program
that produces exactly 100 labels for each employee. (These flowcharts were shown earlier in this chapter.)

No

Yes

FIGURE 6-13: THE createLabels() LOGIC
FOR LABEL-MAKING PROGRAM

createLabels()

return

print
labelLine,

inFirstName

labelCounter
= 0

labelCounter
< 100?

labelCounter
=

labelCounter
+ 1

read
empRecord

FIGURE 6-12: MAINLINE LOGIC FOR LABEL-MAKING
PROGRAM

Yes

No

start

housekeep()

eof?

finishUp()

createLabels()

stop

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 235

236 Chapter 6 • Looping

Entry to the createLabels() module in the mainline logic of the label-making program is controlled by the eof deci-
sion. Within the createLabels() method, the loop that produces labels is controlled by the labelCounter deci-
sion. When you execute the mainline logic, you cannot predict how many times the createLabels() module will
execute. Depending on the size of the input file (that is, depending on the number of employees who require labels), any
number of records might be processed; while the program runs, you don’t know what the total number of records finally will
be. Until you attempt to read a record and encounter the end of the file, you don’t know if more records are going to become
available. Of course, not being able to predict the number of input records is valuable—it allows the program to function cor-
rectly no matter how many employees exist from week to week or year to year. Because you can’t determine ahead of time
how many records there might be and, therefore, how many times the loop might execute, the mainline loop in the label-
making program is called an indeterminate, or indefinite, loop.

With some loops, you know exactly how many times they will execute. If every employee needs 100 printed labels, then
the loop within the createLabels() module executes exactly 100 times for each employee. This kind of loop, in
which you definitely know the repetition factor, is a definite loop.

Every high-level computer programming language contains a while statement that you can use to code any loop,
including indefinite loops (like the mainline loop) and definite loops (like the label-printing loop). You can write state-
ments like the following:

whileƒnotƒeof
ƒƒƒƒƒperformƒcreateLabels()
endwhile

and

whileƒlabelCounterƒ<ƒ100
ƒƒƒƒƒprintƒlabelLine,ƒinFirstName
ƒƒƒƒƒlabelCounterƒ=ƒlabelCounterƒ+ƒ1
endwhile

In addition to the while statement, most computer languages also support a for statement. You can use the for
statement with definite loops—those for which you know how many times the loop will repeat. The for statement
provides you with three actions in one compact statement. The for statement:

� initializes the loop control variable

� evaluates the loop control variable

� alters the loop control variable (typically by incrementing it)

The for statement usually takes the form:

forƒinitialValueƒtoƒfinalValue
ƒƒƒƒƒdoƒsomething
endfor

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 236

237Using the For Statement

For example, to print 100 labels you can write:

forƒlabelCounterƒ=ƒ0ƒtoƒ99
ƒƒƒƒƒprintƒlabelLine,ƒinFirstName
endfor

This for statement accomplishes several tasks at once in a compact form:

� The for statement initializes labelCounter to 0.

� The for statement checks labelCounter against the limit value 99 and makes sure that
labelCounter is less than or equal to that value.

� If the evaluation is true, the for statement body that prints the label executes.

� After the for statement body executes, labelCounter increases by 1 and the comparison
to the limit value is made again.

As an alternative to using the loop for labelCounter = 0 to 99, you can use
for labelCounter = 1 to 100. You can use any combination of values, as
long as there are 100 whole number values between (and including) the two limits.

The for statement does not represent a new structure; it simply provides a compact way to write a pretest loop. You
are never required to use a for statement; the label loop executes correctly using a while statement with
labelCounter as a loop control variable. However, when a loop is based on a loop control variable progressing
from a known starting value to a known ending value in equal increments, the for statement presents you with a con-
venient shorthand.

The programmer needs to know neither the starting nor the ending value for the loop con-
trol variable; only the program must know those values. For example, you don’t know the
value of a worker’s inLastProduction, but when you tell the program to read a
record, the program knows. To use this value as a limit value, you can write a for state-
ment that begins for labelCounter = 1 to inLastProduction.

In most programming languages, you can provide a for statement with a step value. A
step value is a number you use to increase (or decrease) a loop control variable on each
pass through a loop. In most programming languages, the default loop step value is 1. You
specify a step value when you want each pass through the loop to change the loop control
variable by a value other than 1.

In Java, C++, C#, and other modern languages, the for statement is written using the key-
word for followed by parentheses that contain the increment test, which alters portions of
the loop. For example, the following for statement could be used in several languages:

for(labelCounter = 0; labelCounter < 100; labelCounter = labelCounter + 1)

ƒƒƒprint labelLine, inFirstName

In this example, the first section within the parentheses initializes the loop control vari-
able, the middle section tests it, and the last section alters it. In languages that use this for-
mat, you can use the for statement for indefinite loops as well as definite loops.

TIP�

TIP�

TIP�

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 237

238 Chapter 6 • Looping

USING THE DO WHILE AND DO UNTIL LOOPS

When you use either a while loop or a for statement, the body of the loop may never execute. For example, in the
mainline logic in Figure 6-5, the last action in the housekeep() module is to read an input record. If the input file
contains no records, the result of the eof decision is true, and the program executes the finishUp() module
without ever entering the createLabels() module.

Similarly, when you produce labels within the createLabels() module shown in Figure 6-10, labels are produced
while labelCounter < labelsToPrint. Suppose an employee record contains a 0 in the
inLastProduction field—for example, in the case of a new employee or an employee who was on vacation dur-
ing the previous week. In such a case, the value of labelsToPrint would be 0, and the label-producing body of
the loop would never execute. With a while loop, you evaluate the loop control variable prior to executing the loop
body, and the evaluation might indicate that you can’t enter the loop.

With a while loop, the loop body might not execute. When you want to ensure that a loop’s body executes at least one time,
you can use either a do while or a do until loop. In both types of loops, the loop control variable is evaluated after the
loop body executes, instead of before. Therefore, the body always executes at least one time. Although the loops have similari-
ties, as explained above, they are different in that the do while loop continues when the result of the test of the loop con-
trol variable is true, but the do until loop continues when the result of the test of the loop control variable is false. In other
words, the difference between the two loops is simply in how the question at the bottom of the loop is phrased.

You first learned about the do while and do until loops in Chapter 2. Review
Chapter 2 to reinforce your understanding of the differences between a while loop and
the do while and do until loops.

Because the question that controls a while loop is asked before you enter the loop body,
programmers say a while loop is a pretest loop. Because the question that controls do
while and do until loops occurs after the loop body executes, programmers say
these loops are posttest loops.

For example, suppose you want to produce one label for each employee to wear as identification, before you produce
enough labels to cover 110 percent of last week’s production. You can write the do until loop that appears in
Figure 6-14.

TIP�

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 238

239Using the Do While and Do Until Loops

In Figure 6-14, the labelCounter variable is set to 0 and labelsToPrint is calculated. Suppose
labelsToPrint is computed to be 0. The do until loop will be entered, a label will print, 1 will be added
to labelCounter, and then and only then will labelCounter be compared to labelsToPrint. Because
labelCounter is now 1 and labelsToPrint is only 0, the loop is exited, having printed a single identification
label and no product labels.

createLabels()
 labelCounter = 0
 labelsToPrint = inLastProduction * 1.1
 do
 print labelLine, inFirstName
 labelCounter = labelCounter + 1
 until labelCounter > labelsToPrint
 read empRecord
return

FIGURE 6-14: USING A do until LOOP TO PRINT ONE IDENTIFICATION LABEL, THEN PRINT ENOUGH TO
COVER PRODUCTION REQUIREMENTS

Yes

No

labelCounter
= 0

createLabels()

labelCounter
> labelsToPrint?

return

print
labelLine,

inFirstName

labelsToPrint =
inLastProduction

* 1.1

labelCounter =
labelCounter + 1

read
empRecord

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 239

240 Chapter 6 • Looping

As a different example using the logic in Figure 6-14, suppose that for a worker labelsToPrint is calculated to be 1. In
this case, the loop is entered, a label prints, and 1 is added to labelCounter. Now, the value of labelCounter is
not yet greater than the value of labelsToPrint, so the loop repeats, a second label prints, and labelCounter is
incremented again. This time labelCounter (with a value of 2) does exceed labelsToPrint (with a value of 1), so
the loop ends. This employee gets an identification label as well as one product label.

Of course, you could achieve the same results by printing one label, then entering a while loop, as in Figure 6-15. In
this example, one label prints before labelCounter is compared to labelsToPrint. No matter what the
value of labelsToPrint is, one identification label is produced.

createLabels()
 labelCounter = 0
 labelsToPrint = inLastProduction * 1.1
 print labelLine, inFirstName
 while labelCounter < labelsToPrint
 print labelLine, inFirstName
 labelCounter = labelCounter + 1
 endwhile
 read empRecord
return

No

Yes

FIGURE 6-15: USING A while LOOP TO PRINT ONE IDENTIFICATION LABEL, THEN PRINT ENOUGH TO COVER
PRODUCTION REQUIREMENTS

labelCounter
= 0

createLabels()

labelCounter
< labelsToPrint?

return

labelsToPrint =
inLastProduction * 1.1

labelCounter =
labelCounter + 1

print
labelLine,

inFirstName

print
labelLine,

inFirstName

read
empRecord

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 240

241Recognizing the Characteristics Shared by All Loops

The logic in Figure 6-15, in which you print one label and then test a value to determine
whether you will print more, takes the same form as the mainline logic in most of the pro-
grams you have worked with so far. When you read records from a file, you read one
record (the priming read) and then test for eof before continuing. In effect, the first label
printed in Figure 6-15 is a “priming label.”

The results of the programs shown in Figures 6-14 and 6-15 are the same. Using either, every employee will receive an
identification label and enough labels to cover production. Each module works correctly, and neither is logically superior
to the other. There is almost always more than one way to solve the same programming problem. As you learned in
Chapter 2, a posttest loop (do while or do until) can always be replaced by pairing a sequence and a pretest
while loop. Which method you choose depends on your (or your instructor’s or supervisor’s) preference.

There are several additional ways to approach the logic shown in the programs in Figures 6-14
and 6-15. For example, after calculating labelsToPrint, you could immediately add 1 to
the value. Then, you could use the logic in Figure 6-14, as long as you change the loop-ending
question to labelCounter >= labelsToPrint (instead of only >). Alternatively,
using the logic in Figure 6-15, after adding 1 to labelsToPrint, you could remove the
lone first label-printing instruction; that way, one identification label would always be printed,
even if the last production figure was 0.

RECOGNIZING THE CHARACTERISTICS SHARED BY ALL LOOPS

You can see from Figure 6-15 that you are never required to use posttest loops (either a do while loop or a do
until loop). The same results always can be achieved by performing the loop body steps once before entering a
while loop. If you follow the logic of either of the loops shown in Figures 6-14 and 6-15, you will discover that when
an employee has an inLastProduction value of 3, then exactly four labels print. Likewise, when an employee
has an inLastProduction value of 0, then exactly one label prints. You can accomplish the same results with
either type of loop; the posttest do while and do until loops simply are a convenience when you need a loop’s
statements to execute at least one time.

In some languages, the do until loop is called a repeat until loop.

If you can express the logic you want to perform by saying “while a is true, keep doing b,” you probably want to use a
while loop. If what you want to accomplish seems to fit the statement “do a until b is true,” you can probably use a do
until loop. If the statement “do a while b is true” makes more sense, then you might choose to use a do while loop.

As you examine Figures 6-14 and 6-15, notice that with the do until loop in Figure 6-14, the loop-controlling
question is placed at the end of the sequence of the steps that repeat. With the while loop, the loop-controlling ques-
tion is placed at the beginning of the steps that repeat. All structured loops (whether they are while loops, do
while loops, or do until loops) share these characteristics:

� The loop-controlling question provides either entry to or exit from the repeating structure.

� The loop-controlling question provides the only entry to or exit from the repeating structure.

TIP�

TIP�

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 241

242 Chapter 6 • Looping

You should also notice the difference between unstructured loops and the structured do until and while loops.
Figure 6-16 diagrams the outline of two unstructured loops. In each case, the decision labeled X breaks out of the loop prema-
turely. In each case, the loop control variable (labeled LC) does not provide the only entry to or exit from the loop.

NESTING LOOPS

Program logic gets more complicated when you must use loops within loops, or nesting loops. When one loop
appears inside another, the loop that contains the other loop is called the outer loop, and the loop that is contained is
called the inner loop. For example, suppose you work for a company that pays workers twice per month. The company
has decided on an incentive plan to provide each employee with a one-fourth of one percent raise for each pay period
during the coming year, and it wants a report for each employee like that shown in Figure 6-17. A list will be printed
for each employee showing the exact paycheck amounts for each of the next 24 pay periods—two per month for
12 months. A description of the employee input record is shown in Figure 6-18.

FIGURE 6-16: EXAMPLES OF UNSTRUCTURED LOOPS

LC? X?

X?

LC?

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 242

243Nesting Loops

To produce the Projected Payroll report, you need to maintain two separate counters to control two separate loops. One
counter will keep track of the month (1 through 12), and another will keep track of the pay period within the month (1
through 2). When nesting loops, you must maintain individual loop control variables—one for each loop—and alter
each at the appropriate time.

Figure 6-19 shows the mainline, housekeeping(), and finish() logic for the program. These modules are
standard. Besides the input file variables and the headers that print for each employee, the list of declared variables
includes two counters. One, named monthCounter, keeps track of the month that is currently printing. The other,
named checkCounter, keeps track of which check within the month is currently printing. Three additional declara-
tions hold the number of months in a year (12), the number of checks in a month (2), and the rate of increase (0.0025).
Declaring these constants is not required; the program could just use the numeric constants 12, 2, and 0.0025 within
its statements, but providing those values with names serves two purposes. First, the program becomes more self-
documenting—that is, it describes itself to the reader because the choice of variable names is clear. When other pro-
grammers read a program and encounter a number like 2, they might wonder about the meaning. Instead, if the value
is named CHECKS_IN_A_MONTH, the meaning of the value is much clearer. Second, after the program is in pro-
duction, the company might choose to change one of the values—for example, by going to an 11-month year, produc-
ing more or fewer paychecks in a month, or changing the raise rate. In those cases, the person who modifies the
program would not have to search for appropriate spots to make those changes, but would simply redefine the values
assigned to the appropriate named constants.

File Name: EMPPAY
FIELD DESCRIPTION DATA TYPE COMMENTS
Employee Last Name Character 12 characters
Employee First Name Character 8 characters
Weekly salary at Numeric 2 decimal places
 start of year

FIGURE 6-18: EMPLOYEE PAYROLL RECORD DATA FILE DESCRIPTION

FIGURE 6-17: SAMPLE PROJECTED PAYROLL REPORT FOR ONE EMPLOYEE

1 1 501.25
1 2 502.50
2 1 503.76
2 2 505.02
3 1 506.28

Projected Payroll for
Roberto Martinez

Month Check Amount

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 243

244 Chapter 6 • Looping

In Chapter 1 you learned that by convention, many programmers use all uppercase letters
when naming constants.

payRec
 char lastName

char firstName
num weekSal

char head1 = "Projected Payroll for"
char head2 = "Month Check Amount"
num monthCounter
num checkCounter
const num MONTH_IN_A_YEAR = 12
const num CHECKS_IN_A_MONTH = 2
const num RAISE-RATE = 0.0025

start
 perform housekeeping()
 while not eof
 perform produceReport()
 endwhile
 perform finish()
stop

housekeeping()
 declare variables
 open files
 read payRec
return

finish()
 close files
return

No

Yes

FIGURE 6-19: MAINLINE LOGIC, housekeeping(), AND finish() MODULES FOR PROJECTED
PAYROLL REPORT PROGRAM

produceReport()

housekeeping()

eof?

stop

start

finish()

open files

housekeeping()

return

declare
variables

close files

return

finish()

read
payRec

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 244

245Nesting Loops

At the end of the housekeeping() module in Figure 6-19, the first employee record is read into main memory.
Figure 6-20 shows how the record is processed in the produceReport() module. The program proceeds as follows:

1. The first heading prints, followed by the employee name and the column headings.

2. The monthCounter variable is set to 1; monthCounter is the loop control variable for the

outer loop, and this step provides it with its initial value.

3. The monthCounter variable is compared to the number of months in a year, and because the

comparison evaluates as true, the outer loop is entered. Within this loop, the checkCounter

variable is used as a loop control variable for an inner loop.

4. The checkCounter variable is initialized to 1, and then compared to the number of checks in

a month. Because this comparison evaluates as true, the inner loop is entered.

5. Within this inner loop, the employee’s weekly salary is increased by one-fourth of one percent (the

old salary plus 0.0025 of the old salary).

6. The month number (currently 1), check number (also currently 1), and newly calculated salary are printed.

7. The check number is increased (to 2), and the inner loop reaches its end; this causes the logical control

to return to the top of the inner loop, where the while condition is tested again. Because the check

number (2) is still less than or equal to the number of checks in a month, the inner loop is entered again.

8. The pay amount increases, and the month (still 1), check number (2), and new salary are printed.

9. Then, the check number becomes 3. Now, when the loop condition is tested for the third time, the check

number is no longer less than or equal to the number of checks in a month, so the inner loop ends.

10. As the last step in the outer loop, monthCounter becomes 2.

11. After monthCounter increases to 2, control returns to the entry point of the outer loop.

12. The while condition is tested, and because 2 is not greater than the number of months in a

year, the outer loop is entered for a second time.

13. The checkCounter variable is reset to 1 so that it will correctly count two checks for

this month.

14. Because the newly reset checkCounter is not more than the number of checks in a month,

the salary is increased, and the amount prints for month 2, check 1.

15. The checkCounter variable increases to 2 and another value is printed for month 2, check 2

before the inner loop ends and monthCounter is increased to 3.

16. Then, month 3, check 1 prints, followed by month 3, check 2. The inner loop is evaluated again.

The checkCounter value is 3, so the evaluation result is false.

17. The produceReport() module continues printing two check amounts for each of 12 months

before the outer loop is finished, when monthCounter eventually exceeds 12. Only then is the

next employee record read into memory, and control leaves the produceReport() module

and returns to the mainline logic, where the end of file is tested. If a new record exists, control

returns to the produceReport() module for the new employee, for whom headings are

printed, and monthCounter is set to 1 to start the set of 24 calculations for this employee.

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 245

246 Chapter 6 • Looping

produceReport()
 print head1
 print firstName, lastName
 print head2
 monthCounter = 1
 while monthCounter <= MONTHS_IN_A_YEAR
 checkCounter = 1
 while checkCounter <= CHECKS_IN_A_MONTH
 weekSal = weekSal + weekSal * RAISE_RATE
 print monthCounter, checkCounter, weekSal
 checkCounter = checkCounter + 1
 endwhile
 monthCounter = monthCounter + 1
 endwhile
 read payRec
return

Yes

No

Yes

No

weekSal = weekSal +
weekSal * RAISE_RATE

FIGURE 6-20: THE produceReport() MODULE FOR THE PROJECTED PAYROLL REPORT PROGRAM

print firstName,
lastName

monthCounter = 1

produceReport()

monthCounter <=
MONTHS_IN_A_YEAR?

print head2

print head1

checkCounter <=
CHECKS_IN_A_MONTH?

checkCounter = 1

checkCounter =
checkCounter + 1

print monthCounter,
checkCounter,

weekSal

monthCounter =
monthCounter + 1

return

read payRec

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 246

247Using a Loop to Accumulate Totals

If you have trouble seeing that the flowchart in Figure 6-20 is structured, consider moving
the checkCounter loop and its three resulting actions to its own module. Then you
should see that the monthCounter loop contains a sequence of three steps and that the
middle step is a loop.

There is no limit to the number of loop-nesting levels a program can contain. For instance, suppose that in the pro-
jected payroll example, the company wanted to provide a slight raise each hour or each day of each pay period in each
month for each of several years. No matter how many levels deep the nesting goes, each loop must still contain a loop
control variable that is initialized, tested, and altered.

USING A LOOP TO ACCUMULATE TOTALS

Business reports often include totals. The supervisor requesting a list of employees who participate in the company dental
plan is often as much interested in how many such employees there are as in who they are. When you receive your tele-
phone bill at the end of the month, you are usually more interested in the total than in the charges for the individual calls.
Some business reports list no individual detail records, just totals or other overall statistics such as averages. Such reports
are called summary reports. Many business reports list both the details of individual records and totals at the end.

For example, a real estate broker might maintain a file of company real estate listings. Each record in the file contains
the street address and the asking price of a property for sale. The broker wants a listing of all the properties for sale;
she also wants a total value for all the company’s listings. A typical report appears in Figure 6-21.

When you read a real estate listing record, besides printing it you must add its value to an accumulator. An accumulator
is a variable that you use to gather, or accumulate, values. An accumulator is very similar to a counter. The difference
lies in the value that you add to the variable; usually, you add just 1 to a counter, whereas you add some other value to
an accumulator. If the real estate broker wants to know how many listings the company holds, you count them. When
she wants to know total real estate value, you accumulate it.

In order to accumulate total real estate prices, you declare a numeric variable at the beginning of the program, as
shown in the housekeep() module in Figure 6-22. You must initialize the accumulator, accumValue, to 0. In

FIGURE 6-21: TYPICAL REAL ESTATE REPORT

12 Carpenter Road 218,000
312 Howard Street 119,900
416 Mockingbird Lane 349,900
58 Flowerwood Path 249,900
5914 Wisteria Lane 499,999

PROPERTIES FOR SALE

STREET ADDRESS ASKING PRICE

TOTAL VALUE 1,437,699

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 247

248 Chapter 6 • Looping

Chapter 4, you learned that when using most programming languages, declared variables do not automatically assume
any particular value; the unknown value is called garbage. When you read the first real estate record, you will add its
value to the accumulator. If the accumulator contains garbage, the addition will not work. Some programming lan-
guages issue an error message if you don’t initialize a variable you use for accumulating; others let you accumulate, but
the results are worthless because you start with garbage.

start
 perform housekeep()
 while not eof
 perform displayProperties()
 endwhile
 perform finishUp()
stop

housekeep()
 declare variables
 open files
 perform headings()
 read realRecord
return

displayProperties()
 print realAddress, realPrice
 accumValue = accumValue + realPrice
 read realRecord
return

headings()
 print heading1
 print heading2
return

finishUp()
 print “TOTAL VALUE”, accumValue
 close files
return

return

headings()

print heading2

print heading1

read
realRecord

displayProperties()

return

print
realAddress,

realPrice

accumValue =
accumValue +

realPrice

close files

return

finishUp()

print
“TOTAL VALUE”,

accumValue

realRecord
 char realAddress

num realPrice
char heading1 = "PROPERTIES FOR SALE"
char heading2 = "STREET ADDRESS

ASKING PRICE"
num accumValue = 0

No

Yes

open
files

headings()

read
realRecord

housekeep()

return

declare
variables

displayProperties()

housekeep()

eof?

stop

start

finishUp()

FIGURE 6-22: THE REAL ESTATE PROGRAM

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 248

249Using a Loop to Accumulate Totals

If you name the input record fields realAddress and realPrice, then the displayProperties() mod-
ule of the real estate listing program can be written as shown in Figure 6-22. For each real estate record, you print it
and add its value to the accumulator accumValue. Then you can read the next record.

After the program reaches the end of the file, the accumulator will hold the grand total of all the real estate values.
When you reach the end of the file, the finishUp() module executes, and it is within the finishUp() module
that you print the accumulated value, accumValue. After printing the total, you can close both the input and the out-
put files and return to the mainline logic, where the program ends.

New programmers often want to reset the accumValue to 0 after printing it. Although you can take this step without harm-
ing the execution of the program, it does not serve any useful purpose. You cannot set accumValue to 0 in anticipation of
having it ready for the next program, or even for the next time you execute this program. Program variables exist only for the
life of the program, and even if a future program happens to contain a variable named accumValue, the variable will
not necessarily occupy the same memory location as this one. Even if you run the program a second time, the variables
might occupy physical memory locations different from those they occupied during the first run. At the beginning of the
program, it is the programmer’s responsibility to initialize all variables that must start with a specific value. There is no
benefit to changing a variable’s value when it will never be used again during the current execution of the program.

It is especially important to avoid changing the value of a variable unnecessarily when the
change occurs within a loop. One extra, unnecessary statement in a loop that executes
hundreds of thousands of times can significantly slow a program’s performance speed.

TIP�

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 249

Chapter 6 • Looping250

CHAPTER SUMMARY

� When you use a loop within a computer program, you can write one set of instructions that operates on

multiple, separate sets of data.

� Three steps must occur in every loop: You must initialize a loop control variable, compare the variable

to some value that controls whether the loop continues or stops, and alter the variable that controls

the loop.

� A counter is a numeric variable you use to count the number of times an event has occurred. You can

count occurrences by incrementing or decrementing a variable.

� You can use a variable sentinel value to control a loop.

� Sometimes it is convenient to reduce, or decrement, a loop control variable on every cycle through

a loop.

� Mistakes that programmers often make with loops include neglecting to initialize the loop control variable

and neglecting to alter the loop control variable. Other mistakes include using the wrong comparison with

the loop control variable, including statements inside the loop that belong outside the loop, and initializing

a variable that does not require initialization.

� Most computer languages support a for statement that you can use with definite loops when you

know how many times a loop will repeat. The for statement uses a loop control variable that it auto-

matically initializes, evaluates, and increments.

� When you want to ensure that a loop’s body executes at least one time, you can use a do while

loop or a do until loop, in which the loop control variable is evaluated after the loop body executes.

� All structured loops share these characteristics: The loop-controlling question provides either entry to or

exit from the repeating structure, and the loop-controlling question provides the only entry to or exit from

the repeating structure.

� When you must use loops within loops, you are using nested loops. When you create nested loops, you

must maintain two individual loop control variables and alter each at the appropriate time.

� Business reports often include totals. Summary reports list no detail records—only totals. An accumula-

tor is a variable that you use to gather or accumulate values.

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 250

Review Questions 251

KEY TERMS

A loop is a structure that repeats actions while some condition continues.

A main loop is a basic set of instructions that is repeated for every record.

A loop control variable is a variable that determines whether a loop will continue.

A sentinel value is a limit or ending value.

A loop body is the set of statements that executes within a loop.

A counter is any numeric variable you use to count the number of times an event has occurred.

Adding to a variable (often, adding one) is called incrementing the variable.

Decreasing a variable (often by one) is called decrementing the variable.

A loop that never stops executing is called an infinite loop.

An indeterminate, or indefinite, loop is one for which you cannot predetermine the number of executions.

A loop for which you definitely know the repetition factor is a definite loop.

A while statement can be used to code any loop.

A for statement frequently is used to code a definite loop. Most often, it contains a loop control variable that it
initializes, evaluates, and increments.

Nesting loops are loops within loops.

When one loop appears inside another, the loop that contains the other loop is called the outer loop, and the loop that
is contained is called the inner loop.

A summary report lists only totals and other statistics, without individual detail records.

An accumulator is a variable that you use to gather, or accumulate, values.

REVIEW QUESTIONS

1. The structure that allows you to write one set of instructions that operates on multiple, separate
sets of data is the .

a. sequence
b. selection
c. loop
d. case

2. Which of the following is not a step that must occur in every loop?

a. Initialize a loop control variable.
b. Compare the loop control value to a sentinel.
c. Set the loop control value equal to a sentinel.
d. Alter the loop control variable.

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 251

Chapter 6 • Looping252

3. The statements executed within a loop are known collectively as the .

a. sentinels
b. loop controls
c. sequences
d. loop body

4. A counter keeps track of .

a. the number of times an event has occurred
b. the number of modules in a program
c. the number of loop structures within a program
d. a total that prints at the end of a summary report

5. Adding 1 to a variable is also called .

a. digesting
b. incrementing
c. decrementing
d. resetting

6. In the following pseudocode, what is printed?

aƒ=ƒ1
bƒ=ƒ2
cƒ=ƒ5
whileƒaƒ<ƒc
ƒƒƒƒƒaƒ=ƒaƒ+ƒ1
ƒƒƒƒƒbƒ=ƒbƒ+ƒc
endwhileƒ
printƒa,ƒb,ƒc

a. 1 2 5
b. 5 22 5
c. 5 6 5
d. 6 22 9

7. In the following pseudocode, what is printed?

d = 4
e = 6
f = 7
while d > f

d = d + 1
e = e - 1

endwhile
print d, e, f

a. 7 3 7
b. 8 2 8
c. 4 6 7
d. 5 5 7

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 252

Review Questions 253

8. When you decrement a variable, most frequently you .

a. set it to 0
b. reduce it by one-tenth
c. subtract 1 from it
d. remove it from a program

9. In the following pseudocode, what is printed?

gƒ=ƒ4
hƒ=ƒ6
whileƒgƒ<ƒh
ƒƒƒƒƒgƒ=ƒgƒ+ƒ1
endwhileƒ
printƒg,ƒh

a. nothing
b. 4 6
c. 5 6
d. 6 6

10. Most programmers use a for statement .

a. for every loop they write
b. as a compact version of the while statement
c. when they do not know the exact number of times a loop will repeat
d. when a loop will not repeat

11. Unlike a while loop, you use a do until loop when .

a. you can predict the exact number of loop repetitions
b. the loop body might never execute
c. the loop body must execute exactly one time
d. the loop body must execute at least one time

12. Which of the following is a characteristic shared by all loops—while, do while, and do
until loops?

a. They all have one entry and one exit.
b. They all have a body that executes at least once.
c. They all compare a loop control variable at the top of the loop.
d. All of these are true.

13. A comparison with a loop control variable provides .

a. the only entry to a while loop
b. the only exit from a do until loop
c. both of the above
d. none of the above

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 253

Chapter 6 • Looping254

14. When two loops are nested, the loop that is contained by the other is the loop.

a. inner
b. outer
c. unstructured
d. captive

15. In the following pseudocode, how many times is “Hello” printed?

jƒ=ƒ2
kƒ=ƒ5
mƒ=ƒ6
nƒ=ƒ9
whileƒjƒ<ƒk
ƒƒƒƒƒwhileƒmƒ<ƒn
ƒƒƒƒƒƒƒƒƒƒprintƒ“Hello”
ƒƒƒƒƒƒƒƒƒƒmƒ=ƒmƒ+ƒ1
ƒƒƒƒƒendwhile
ƒƒƒƒƒjƒ=ƒjƒ+ƒ1
endwhileƒ

a. zero
b. three
c. six
d. nine

16. In the following pseudocode, how many times is “Hello” printed?

jƒ=ƒ2
kƒ=ƒ5
nƒ=ƒ9
whileƒjƒ<ƒk
ƒƒƒƒƒmƒ=ƒ6
ƒƒƒƒƒwhileƒmƒ<ƒn
ƒƒƒƒƒƒƒƒƒƒprintƒ“Hello”
ƒƒƒƒƒƒƒƒƒƒmƒ=ƒmƒ+ƒ1
ƒƒƒƒƒendwhile
ƒƒƒƒƒjƒ=ƒjƒ+ƒ1
endwhileƒ

a. zero
b. three
c. six
d. nine

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 254

Review Questions 255

17. In the following pseudocode, how many times is “Hello” printed?

pƒ=ƒ2
qƒ=ƒ4
whileƒpƒ<ƒq
ƒƒƒƒƒprintƒ“Hello”
ƒƒƒƒƒrƒ=ƒ1
ƒƒƒƒƒwhileƒrƒ<ƒq
ƒƒƒƒƒƒƒƒƒƒprintƒ“Hello”
ƒƒƒƒƒƒƒƒƒƒrƒ=ƒrƒ+ƒ1
ƒƒƒƒƒendwhile
ƒƒƒƒƒpƒ=ƒpƒ+ƒ1
endwhile

a. zero
b. four
c. six
d. eight

18. A report that lists no details about individual records, but totals only, is a(n) report.

a. accumulator
b. final
c. summary
d. detailless

19. Typically, the value added to a counter variable is .

a. 0
b. 1
c. 10
d. 100

20. Typically, the value added to an accumulator variable is .

a. 0
b. 1
c. at least 1000
d. Any value might be added to an accumulator variable.

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 255

Chapter 6 • Looping256

FIND THE BUGS

Each of the following pseudocode segments contains one or more bugs that you must find and correct.

1. This method is supposed to print every fifth year starting with 2005; that is, 2005, 2010, 2015, and
so on, for 30 years.

printEveryFifthYear()
ƒƒƒconstƒnumƒYEARƒ=ƒ2005
ƒƒƒnumƒfactorƒ=ƒ5
ƒƒƒconstƒnumƒEND_YEARƒ=ƒ2035
ƒƒƒwhileƒyearƒ>ƒEND_YEAR
ƒƒƒƒƒƒprintƒyear
ƒƒƒƒƒƒyearƒ=ƒyearƒ+ƒ1
ƒƒƒendwhile
return

2. A standard mortgage is paid monthly over 30 years. This method is intended to print 360 payment
coupons for a new borrower. Each coupon lists the month number, year number, and a friendly
reminder.

printCoupons()

ƒƒƒconstƒnumƒMONTHSƒ=ƒ12

ƒƒƒconstƒnumƒYEARSƒ=ƒ30

ƒƒƒnumƒmonthCounter

ƒƒƒnumƒyearCounter

ƒƒƒwhileƒyearCounterƒ<=ƒYEARS

ƒƒƒƒƒƒwhileƒmonthCounterƒ<=ƒ12

ƒƒƒƒƒƒƒƒƒprintƒmonth,ƒyear,ƒ“Rememberƒtoƒsendƒyourƒpaymentƒbyƒtheƒ10th”

ƒƒƒƒƒƒƒƒƒyearCounterƒ=ƒyearCounterƒ+ƒ1

ƒƒƒƒƒƒendwhile

ƒƒƒendwhile

return

3. This application is intended to print estimated monthly payment amounts for customers of the
EZ Credit Loan Company. The application reads customer records, each containing an account
number, name and address, requested original loan amount, term in months, and annual interest
rate. The interest rate per month is calculated by dividing the annual interest rate by 12. The cus-
tomer’s total payback amount is calculated by charging the monthly interest rate on the original
balance every month for the term of the loan. The customer’s monthly payment is then calculated
by dividing the total payback amount by the number of months in the loan. The application pro-
duces a notice containing the customer’s name, address, and estimated monthly payment amount.

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 256

Find the Bugs 257

start

ƒƒƒperformƒgetReady()

ƒƒƒwhileƒnotƒeof

ƒƒƒƒƒƒperformƒproduceEstimate()

ƒƒƒperformƒending()

stop

startUp()

ƒƒƒdeclareƒvariables

ƒƒƒcustRecord

ƒƒƒƒƒƒnumƒacctNumber

ƒƒƒƒƒƒcharƒname

ƒƒƒƒƒƒcharƒaddress

ƒƒƒƒƒƒnumƒoriginalLoanAmount

ƒƒƒƒƒƒnumƒtermInMonths

ƒƒƒƒƒƒnumƒannualRate

ƒƒƒconstƒnumƒMONTHS_IN_YEARƒ=ƒ12

ƒƒƒconstƒnumƒtotalPayback

ƒƒƒnumƒmonthlyRate

ƒƒƒnumƒcount

ƒƒƒopenƒfiles

ƒƒƒreadƒcustRecord

return

produceEstimate()

ƒƒƒcountƒ=ƒ1

ƒƒƒmonthlyRateƒ=ƒannualRateƒ/ƒmonthsInYear

ƒƒƒwhileƒcountƒ=ƒtermInMonths

ƒƒƒƒƒƒtotalPaybackƒ=ƒtotalPaybackƒ+ƒmonthlyRateƒ*ƒoriginalLoanAmount

ƒƒƒƒƒƒcountƒ=ƒcountƒ+ƒ1

ƒƒƒendwhile

ƒƒƒmonthlyPaymentƒ=ƒtotalPaybackƒ/ƒMONTHS_IN_YEAR

ƒƒƒprintƒ“LoanƒPaymentƒEstimateƒfor:”

ƒƒƒprintƒname

ƒƒƒprintƒaddress

ƒƒƒprintƒ“$”,ƒmonthPayment

return

ending()

ƒƒƒcloseƒfiles

return

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 257

Chapter 6 • Looping258

EXERCISES

1. Design the logic for a module that would print every number from 1 through 10.

a. Draw the flowchart.
b. Design the pseudocode.

2. Design the logic for a module that would print every number from 1 through 10 along with its
square and cube.

a. Draw the flowchart.
b. Design the pseudocode.

3. Design a program that reads credit card account records and prints payoff schedules for cus-
tomers. Input records contain an account number, customer name, and balance due. For each cus-
tomer, print the account number and name; then print the customer’s projected balance each
month for the next 10 months. Assume that there is no finance charge on this account, that the
customer makes no new purchases, and that the customer pays off the balance with equal monthly
payments, which are 10 percent of the original bill.

a. Design the output for this program; create either sample output or a print chart.
b. Design the hierarchy chart for this program.
c. Design the flowchart for this program.
d. Write pseudocode for this program.

4. Design a program that reads credit card account records and prints payoff schedules for cus-
tomers. Input records contain an account number, customer name, and balance due. For each cus-
tomer, print the account number and name; then print the customer’s payment amount and new
balance each month until the card is paid off. Assume that when the balance reaches $10 or less,
the customer can pay off the account. At the beginning of every month, 1.5 percent interest is
added to the balance, and then the customer makes a payment equal to 5 percent of the current
balance. Assume the customer makes no new purchases.

a. Design the output for this program; create either sample output or a print chart.
b. Design the hierarchy chart for this program.
c. Design the flowchart for this program.
d. Write pseudocode for this program.

5. Assume you have a bank account that compounds interest on a yearly basis. In other words, if you
deposit $100 for two years at 4 percent interest, at the end of one year you will have $104. At the
end of two years, you will have the $104 plus 4 percent of that, or $108.16. Create the logic for a
program that would (1) read in records containing a deposit amount, a term in years, and an inter-
est rate, and (2) for each record, print the running total balance for each year of the term.

a. Design the output for this program; create either sample output or a print chart.
b. Design the hierarchy chart for this program.
c. Design the flowchart for this program.
d. Write pseudocode for this program.

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 258

Exercises 259

6. A school maintains class records in the following format:

CLASS FILE DESCRIPTION
File name: CLASS
FIELD DESCRIPTION DATA TYPE EXAMPLE
Class Code Character CIS111
Section No. Numeric 101
Teacher Name Character Gable
Enrollment Numeric 24
Room Character A213

There is one record for each class section offered in the college. Design the program that would
print as many stickers as a class needs to provide one for each enrolled student, plus one for the
teacher. Each sticker would leave a blank for the student’s (or teacher’s) name, like this:

The border is preprinted, but you must design the program to print all the text you see on the
sticker. (You do not need to worry about the differing font sizes of the sticker text. You do not need
to design a print chart or sample output—the image of the sticker serves as a print chart.)

a. Design the hierarchy chart for this program.
b. Design the flowchart for this program.
c. Write pseudocode for this program.

7. A mail-order company often sends multiple packages per order. For each customer order, print
enough mailing labels to use on each of the separate boxes that will be mailed. The mailing labels
contain the customer’s complete name and address, along with a box number in the form “Box 9 of
9”. For example, an order that requires three boxes produces three labels: Box 1 of 3, Box 2 of 3,
and Box 3 of 3. The file description is as follows:

SHIPPING FILE DESCRIPTION
File name: ORDERS
FIELD DESCRIPTION DATA TYPE EXAMPLE
Title Character Ms
First Name Character Kathy
Last Name Character Lewis
Street Character 847 Pine

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 259

Chapter 6 • Looping260

City Character Aurora
State Character IL
Boxes Numeric 3
Balance Due Numeric 129.95

a. Design the output for this program; create either sample output or a print chart.
b. Design the hierarchy chart for this program.
c. Design the flowchart for this program.
d. Write pseudocode for this program.

8. A secondhand store is having a seven-day sale during which the price of any unsold item drops
10 percent each day. The inventory file includes an item number, description, and original price on
day one. For example, an item that costs $10.00 on the first day costs 10 percent less, or $9.00, on
the second day. On the third day, the same item is 10 percent less than $9.00, or $8.10. Produce a
report that shows the price of the item on each day, one through seven.

a. Design the output for this program; create either sample output or a print chart.
b. Design the hierarchy chart for this program.
c. Design the flowchart for this program.
d. Write pseudocode for this program.

9. The state of Florida maintains a census file in which each record contains the name of a county,
the current population, and a number representing the rate at which the population is increasing
per year. The governor wants a report listing each county and the number of years it will take for
the population of the county to double, assuming the present rate of growth remains constant.

CENSUS FILE DESCRIPTION
File name: CENSUS
FIELD DESCRIPTION DATA TYPE EXAMPLE
County Name Character Dade
Current Population Numeric 525000
Rate of Growth Numeric 0.07

a. Design the output for this program; create either sample output or a print chart.
b. Design the hierarchy chart for this program.
c. Design the flowchart for this program.
d. Write pseudocode for this program.

10. A Human Resources Department wants a report that shows its employees the benefits of saving for
retirement. Produce a report that shows 12 predicted retirement account values for each
employee—the values if the employee saves 5, 10, or 15 percent of his or her annual salary for 10,
20, 30, or 40 years. The department maintains a file in which each record contains the name of an
employee and the employee’s current annual salary. Assume that savings grow at a rate of 8 per-
cent per year.

a. Design the output for this program; create either sample output or a print chart.
b. Design the hierarchy chart for this program.
c. Design the flowchart for this program.
d. Write pseudocode for this program.

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 260

Exercises 261

11. Randy’s Recreational Vehicles pays its salespeople once every three months. Salespeople receive
one-quarter of their annual base salary plus 7 percent of all sales made in the last three-month
period. Randy creates an input file with four records for each salesperson. The first of the four
records contains the salesperson’s name and annual base salary, while each of the three records
that follow contains the name of a month and the monthly sales figure. For example, the first eight
records in the file might contain the following data:

Kimball 20000
April 30000
May 40000
June 60000
Johnson 15000
April 65000
May 78000
June 135500

Because the two types of records contain data in the same format—a character field followed by a
numeric field—you can define one input record format containing two variables that you use with
either type of record. Design the logic for the program that reads a salesperson’s record, and if not
at eof, reads the next three records in a loop, accumulating sales and computing commissions.
For each salesperson, print the quarterly base salary, the three commission amounts, and the total
salary, which is the quarterly base plus the three commission amounts.

a. Design the output for this program; create either sample output or a print chart.
b. Design the hierarchy chart for this program.
c. Design the flowchart for this program.
d. Write pseudocode for this program.

12. Mr. Furly owns 20 apartment buildings. Each building contains 15 units that he rents for $800 per month
each. Design the logic for the program that would print 12 payment coupons for each of the 15 apart-
ments in each of the 20 buildings. Each coupon should contain the building number (1 through 20), the
apartment number (1 through 15), the month (1 through 12), and the amount of rent due.

a. Design the output for this program; create either sample output or a print chart.
b. Design the hierarchy chart for this program.
c. Design the flowchart for this program.
d. Write pseudocode for this program.

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 261

Chapter 6 • Looping262

13. Mr. Furly owns 20 apartment buildings. Each building contains 15 units that he rents. The usual
monthly rent for apartments numbered 1 through 9 in each building is $700; the monthly rent is $850
for apartments numbered 10 through 15. The usual rent is due every month except July and December;
in those months Mr. Furly gives his renters a 50 percent credit, so they owe only half the usual amount.
Design the logic for the program that would print 12 payment coupons for each of the 15 apartments in
each of the 20 buildings. Each coupon should contain the building number (1 through 20), the apart-
ment number (1 through 15), the month (1 through 12), and the amount of rent due.

a. Design the output for this program; create either sample output or a print chart.
b. Design the hierarchy chart for this program.
c. Design the flowchart for this program.
d. Write pseudocode for this program.

DETECTIVE WORK

1. What company’s address is at One Infinite Loop, Cupertino, California?

2. What are fractals? How do they use loops? Find some examples of fractal art on the Web.

UP FOR DISCUSSION

1. If programs could only make decisions or loops, but not both, which structure would you prefer
to retain?

2. Suppose you wrote a program that you suspect is in an infinite loop because it just keeps running
for several minutes with no output and without ending. What would you add to your program to
help you discover the origin of the problem?

3. Suppose you know that every employee in your organization has a seven-digit ID number used for
logging on to the computer system to retrieve sensitive information about their own customers. A
loop would be useful to guess every combination of seven digits in an ID. Are there any circum-
stances in which you should try to guess another employee’s ID number?

6 Chapter Cxxxx 35539.ps 10-13-05 8:35 AM Page 262

7
After studying Chapter 7, you should be able to:

� Understand control break logic

� Perform single-level control breaks

� Use control data within a heading in a control break module

� Use control data within a footer in a control break module

� Perform control breaks with totals

� Perform multiple-level control breaks

� Perform page breaks

CONTROL BREAKS

263

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 263

264 Chapter 7 • Control Breaks

UNDERSTANDING CONTROL BREAK LOGIC

A control break is a temporary detour in the logic of a program. In particular, programmers refer to a program as a
control break program when a change in the value of a variable initiates special actions or causes special or unusual
processing to occur. You usually write control break programs to organize output for programs that handle data records
that are organized logically in groups based on the value in a field. As you read records, you examine the same field in
each record, and when you encounter a record that contains a different value from the ones that preceded it, you per-
form a special action. If you have ever read a report that lists items in groups, with each group followed by a subtotal,
then you have read a type of control break report. For example, you might generate a report that lists all company
clients in order by state of residence, with a count of clients after each state’s client list. See Figure 7-1 for an example
of a report that breaks after each change in state.

Some other examples of control break reports produced by control break programs include:

� All employees listed in order by department number, with a new page started for each
department

� All books for sale in a bookstore in order by category (such as reference or self-help), with a
count following each category of book

� All items sold in order by date of sale, with a different ink color for each new month

FIGURE 7-1: A CONTROL BREAK REPORT WITH TOTALS AFTER EACH STATE

Company Clients by State of Residence

Name City State

Albertson Birmingham Alabama
Davis Birmingham Alabama
Lawrence Montgomery Alabama
 Count for Alabama 3

Smith Anchorage Alaska
Young Anchorage Alaska
Davis Fairbanks Alaska
Mitchell Juneau Alaska
Zimmer Juneau Alaska
 Count for Alaska 5

Edwards Phoenix Arizona
 Count for Arizona 1

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 264

265Performing a Single-Level Control Break to Start a New Page

Each of these reports shares two traits:

� The records used in each report are listed in order by a specific variable: department, state,
category, or date.

� When that variable changes, the program takes special action: starts a new page, prints a count
or total, or switches ink color.

To generate a control break report, your input records must be organized in sequential order based on the field that will
cause the breaks. In other words, if you are going to write a program that produces a report that lists customers by
state, like the one in Figure 7-1, then the records must be grouped by state before you begin processing. Frequently,
grouping by state will mean placing the records in alphabetical order by state, although they could just as easily be
placed in order by population, governor’s last name, or any other factor as long as all of one state’s records are
together. As you grow more proficient in programming logic, you will learn techniques for writing programs that sort
records before you proceed with creating a program that contains control break logic. Programs that sort records take
records that are not in order and rearrange them to be in order, according to the data in some field. For now, assume
that a sorting program has already been used to presort your records before you begin the part of a program that deter-
mines control breaks.

To use control break logic, either the records must arrive already in order in the input file
or you must sort the records yourself. You will learn techniques for processing unsorted
records in Chapter 8. In Chapter 9, you will learn to sort records. It is easier to work with
sorted records than unsorted ones, so you are learning the easier techniques first.

PERFORMING A SINGLE-LEVEL CONTROL BREAK TO START A
NEW PAGE

Suppose you want to print a list of employees, advancing to a new page for each department. Figure 7-2 shows the
input file description, from which you can see that the employee department is a numeric field, and that the file has
been presorted so that the records will arrive in a program in department-number order. Figure 7-3 shows a sample
report with the desired output—a simple list of employee names, with one department per page.

File name: EMPSBYDEPT
Sorted by: Department
FIELD DESCRIPTION DATA TYPE COMMENTS
Department Numeric 0 decimals
Last Name Character 15 characters
First Name Character 15 characters

FIGURE 7-2: EMPLOYEE FILE DESCRIPTION

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 265

266 Chapter 7 • Control Breaks

In the report in Figure 7-3, each new page contains employees from a new department.
Later in this chapter, department numbers will be added to the headings, making this
point clearer to those who read the report.

The basic logic of the program works like this: Each time you read an employee record from the input file, you will determine
whether the employee belongs to the same department as the previous employee. If so, you simply print the employee record
and read another record, without any special processing. If there are 20 employees in a department, these steps are repeated
20 times in a row—read an employee record and print the employee record. However, eventually you will read an employee
record that does not belong to the same department. At that point, before you print the employee record from the new depart-
ment, you must print headings at the top of a new page. Then, you can proceed to read and print employee records that
belong to the new department, and you continue to do so until the next time you encounter an employee in a different depart-
ment. This type of program contains a single-level control break, a break in the logic of the program (pausing or detouring
to print new headings) that is based on the value of a single variable (the department number).

However, there is a slight problem you must solve before you can determine whether a new input record contains the
same department number as the previous input record. When you read a record from an input file, you copy the data
from storage locations (for example, from a disk) to temporary computer memory locations. After they are read, the data
items that represent department, last name, and first name occupy specific physical locations in computer memory. For
each new record that is read from storage, new data must occupy the same positions in memory as the previous record
occupied, and the previous set of data is lost. For example, if you read a record containing data for Donald Travis in
Department 1, when you read the next record for Mary Billings in Department 2, “Mary” replaces “Donald”, “Billings”
replaces “Travis”, and 2 replaces 1. After you read a new record into memory, there is no way to look back at the

FIGURE 7-3: SAMPLE CONTROL BREAK REPORT LISTING EMPLOYEES, WITH EACH DEPARTMENT ON A NEW PAGE

 EMPLOYEES BY DEPARTMENT

LAST NAME FIRST NAME

Anderson Kathryn
Bell George
Garcia Maria
Thompson Olivia

 EMPLOYEES BY DEPARTMENT

LAST NAME FIRST NAME

Billings Mary
Fortune Carol
Jenkins Justin
Sosa Charles

 EMPLOYEES BY DEPARTMENT

LAST NAME FIRST NAME

Kenner Patricia
Lester Linda
Noonan Robert
Travis Donald

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 266

267Performing a Single-Level Control Break to Start a New Page

previous record to determine whether that record had a different department number. The previous record’s data
has been replaced in memory by the new record’s data.

The technique you must use to “remember” the old department number is to create a special variable, called a control
break field, to hold the previous department number. With a control break field, every time you read a record and print
it, you also can save the crucial part of the record that will signal the change or control the program break. In this case,
you want to store the department number in this specially created variable. Comparing the new and old department-
number values will determine when it is time to print headings at the top of a new page.

The mainline logic for the Employees by Department report is the same as the mainline logic for all the other programs
you’ve analyzed so far. It performs a housekeeping() module, after which an eof question controls execution of
a mainLoop() module. At eof, a finish() module executes. See Figure 7-4.

The housekeeping() module for this program begins like others you have seen. You declare variables as shown
in Figure 7-5, including those you will use for the input data: empDept, empLast, and empFirst. You can also
declare variables to hold the headings, and an additional variable that is named oldDept in this example. The pur-
pose of oldDept is to serve as the control break field. Every time you read a record from a new department, you can
save its department number in oldDept before you read the next record. The oldDept field provides you with a
comparison for each new department so you can determine whether there has been a change in value.

start
 perform housekeeping()
 while not eof
 perform mainLoop()
 endwhile
 perform finish()
stop

Yes

eof? mainLoop()

finish()

No

housekeeping()

stop

start

FIGURE 7-4: MAINLINE LOGIC FOR EMPLOYEES BY DEPARTMENT REPORT PROGRAM

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 267

268 Chapter 7 • Control Breaks

Note that it would be incorrect to initialize oldDept to the value of empDept when you declare oldDept in the
housekeeping() module. When you declare variables at the beginning of the housekeeping() module, you
have not yet read the first record; therefore, empDept does not yet have any usable value. You use the value of the
first empDept variable at the end of the module, only after you read the first input record.

In the housekeeping() module, after declaring variables, you also open files, print headings, and read the first
input record. Before you leave the housekeeping() module, you can set the oldDept variable to equal the
empDept value in the first input record. You will write the mainLoop() module of the program to check for any
change in department number; that’s the signal to print headings at the top of a new page. Because you just printed
headings and read the first record, you do not want to print headings again for this first record, so you want to ensure
that empDept and oldDept are equal when you enter mainLoop().

As an alternative to the housekeeping() logic shown here, you can remove printing
headings from the housekeeping() module and set oldDept to any impossible
value—for example, –1. Then, in mainLoop(), the first record will force the control
break, and the headings will print in the newPage() control break routine.

 empRec
 num empDept
 char empLast
 char empFirst
 char head1 = "EMPLOYEES BY DEPARTMENT"
 char head2 = "LAST NAME FIRST NAME"
 num oldDept

declare
variables

open
files

print
head2

read
empRec

return

print
head1

housekeeping()

oldDept
=

empDept

housekeeping()
 declare variables
 open files
 print head1
 print head2
 read empRec
 oldDept = empDept
return

FIGURE 7-5: THE housekeeping() MODULE FOR EMPLOYEES BY DEPARTMENT REPORT PROGRAM

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 268

269Performing a Single-Level Control Break to Start a New Page

The first task within the mainLoop() module is to check whether empDept holds the same value as oldDept.
For the first record, on the first pass through mainLoop(), the values are equal; you set them to be equal in the
housekeeping() module. Therefore, you proceed without performing the newPage() module, printing the first
employee’s record and reading a second record. At the end of the mainLoop() module, shown in Figure 7-6, the
logical flow returns to the mainline logic, shown in Figure 7-4. If it is not eof, the flow travels back into the
mainLoop() module. There, you compare the second record’s empDept to oldDept. If the second record holds
an employee from the same department as the first employee, then you simply print that second employee’s record and
read a third record into memory. As long as each new record holds the same empDept value, you continue reading
and printing, never pausing to perform the newPage() module.

In the flowchart in Figure 7-6, you could change the decision to empDept not =
oldDept. Then, the Yes branch of the decision structure would perform the
newPage() module, and the No branch would be null. This format would more closely
resemble the pseudocode in Figure 7-6, but the logic would be identical to the version
shown here. In other words, you perform newPage() when empDept = oldDept is
false or when empDept not = oldDept is true.

mainLoop()
 if empDept not = oldDept then
 perform newPage()
 endif
 print empLast, empFirst
 read empRec
return

No Yes

newPage()

mainLoop()

empDept
=

oldDept?

print
empLast,
empFirst

return

read
empRec

FIGURE 7-6: THE mainLoop() MODULE FOR EMPLOYEES BY DEPARTMENT REPORT PROGRAM

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 269

270 Chapter 7 • Control Breaks

Eventually, you will read in an employee whose empDept is not the same as oldDept. That’s when the control
break routine, newPage(), executes. The newPage() module must perform two tasks:

� It must print headings at the top of a new page.

� It must update the control break field.

Figure 7-7 shows the newPage() module.

Notice that the steps in the newPage() module mimic steps in the housekeeping()
module. You take advantage of this coincidence later in this chapter.

In Chapter 4, you learned that specific programming languages each provide you with a
means to physically advance printer paper to the top of a page. Usually, you insert a
language-specific code just before the first character in the first heading that will appear
on a page. For this book, if a sample report or print chart shows a heading printing at the
top of the page, then you can assume that printing the heading causes the paper in the
printer to advance to the top of a new page. The appropriate language-specific codes can
be added when you code the program.

When you read an employee record in which empDept is not the same as oldDept, you cause a break in the nor-
mal flow of the program. The new employee record must “wait” while headings print and the control break field
oldDept acquires a new value. After the oldDept field has been updated, and before the mainLoop() module
ends, the waiting employee record prints on the new page. When you read the next employee record (and it is not
eof), the mainLoop() module is reentered and the next employee’s empDept field is compared to the updated
oldDept field. If the new employee works in the same department as the one just preceding, then normal processing
continues with the print-and-read statements.

newPage()
 print head1
 print head2
 oldDept = empDept
return

return

print
head2

print
head1

newPage()

oldDept
=

empDept

FIGURE 7-7: THE newPage() MODULE FOR EMPLOYEES BY DEPARTMENT REPORT PROGRAM

TIP�

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 270

271Performing a Single-Level Control Break to Start a New Page

The newPage() module in the employee report program performs two tasks required in all control break modules:

� It performs any necessary processing for the new group—in this case, it prints headings.

� It updates the control break field—in this case, the oldDept field.

As an alternative to updating the control break field within the control break routine, you
could set oldDept equal to empDept just before you read each record. However, if
there are 200 employees in Department 55, then you set oldDept to the same value 200
times. It’s more efficient to set oldDept to a different value only when there is a change
in the value of the department.

The finish() module for the Employees by Department report program requires only that you close the files. See
Figure 7-8.

Notice that in the control break program described in Figures 7-4 through 7-8, the department numbers of employees
in the input file do not have to follow each other incrementally. That is, the departments might be 1, 2, 3, and so on, but
they also might be 1, 4, 12, 35, and so on. A control break occurs when there is a change in the control break field; the
change does not necessarily have to be a numeric change of 1.

Figure 7-9 shows the entire Employees by Department control break program.

finish()
 close files
return

return

close
files

 finish()

FIGURE 7-8: THE finish() MODULE FOR EMPLOYEES BY DEPARTMENT REPORT PROGRAM

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 271

272 Chapter 7 • Control Breaks

start
 perform housekeeping()
 while not eof
 perform mainLoop()
 endwhile
 perform finish()
stop

housekeeping()
 declare variables
 open files
 print head1
 print head2
 read empRec
 oldDept = empDept
return

mainLoop()
 if empDept not = oldDept then
 perform newPage()
 endif
 print empLast, empFirst
 read empRec
return

newPage()
 print head1
 print head2
 oldDept = empDept
return

finish()
 close files
returnNo Yes

newPage()

mainLoop()

empDept
=

oldDept?

print
empLast,
empFirst

return

read
empRec

return

print
head2

print
head1

newPage()

oldDept
=

empDept

return

close
files

 finish()

FIGURE 7-9: THE EMPLOYEES BY DEPARTMENT CONTROL BREAK PROGRAM

Yes

eof? mainLoop()

finish()

No

housekeeping()

stop

start

 empRec
 num empDept
 char empLast
 char empFirst
 char head1 = "EMPLOYEES BY DEPARTMENT"
 char head2 = "LAST NAME FIRST NAME"
 num oldDept

declare
variables

open
files

print
head2

read
empRec

return

print
head1

housekeeping()

oldDept
=

empDept

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 272

273Using Control Data within a Heading in a Control Break Module

USING CONTROL DATA WITHIN A HEADING IN A CONTROL
BREAK MODULE

In the Employees by Department report program example in Figure 7-9, the control break module printed constant
headings at the top of each new page; in other words, each page heading was the same. However, sometimes you
need to use control data within the heading. For example, consider the sample report shown in Figure 7-10.

The difference between Figure 7-3 and Figure 7-10 lies in the heading. Figure 7-10 shows variable data in the heading—
a different department number prints at the top of each page of employees. To create this kind of program, you must
make two changes in the existing program. First, you modify the newPage() module, as shown in Figure 7-11.
Instead of printing a fixed heading on each new page, you print a heading that contains two parts: a constant beginning
(“EMPLOYEES FOR DEPARTMENT”) and a variable ending (the department number for the employees who appear on
the page). Notice that you use the empDept number that belongs to the employee record that is waiting to be printed
while this control break module executes. Additionally, you must modify the housekeeping() module to ensure
that the first heading on the report prints correctly. As Figure 7-11 shows, you must modify the housekeeping()
module from Figure 7-5 so that you read the first empRec prior to printing the headings. The reason is that you must
know the first employee’s department number before you can print the heading for the top of the first page.

FIGURE 7-10: SAMPLE REPORT FOR EMPLOYEES BY DEPARTMENT IN WHICH DEPARTMENT NUMBERS APPEAR
IN THE HEADING

 EMPLOYEES BY DEPARTMENT 7

LAST NAME FIRST NAME

Anderson Kathryn
Bell George
Garcia Maria
Thompson Olivia

 EMPLOYEES BY DEPARTMENT 5

LAST NAME FIRST NAME

Billings Mary
Fortune Carol
Jenkins Justin
Sosa Charles

 EMPLOYEES BY DEPARTMENT 1

LAST NAME FIRST NAME

Kenner Patricia
Lester Linda
Noonan Robert
Travis Donald

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 273

274 Chapter 7 • Control Breaks

newPage()
 print "EMPLOYEES FOR
 DEPARTMENT ", empDept
 print head2
 oldDept = empDept
return

housekeeping()
 declare variables
 open files
 read empRec
 oldDept = empDept
 print "EMPLOYEES FOR
 DEPARTMENT ", empDept
 print head2
return

FIGURE 7-11: MODIFIED newPage() AND housekeeping() MODULES FOR EMPLOYEES BY
DEPARTMENT REPORT THAT DISPLAYS THE DEPARTMENT NUMBER IN THE HEADING

newPage()

print “EMPLOYEES FOR
DEPARTMENT ”, empDept

oldDept =
empDept

return

housekeeping()

declare
variables

open files

read empRec

oldDept =
empDept

print “EMPLOYEES FOR
DEPARTMENT ”, empDept

print head2

return

print head2

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 274

275Using Control Data within a Footer in a Control Break Module

USING CONTROL DATA WITHIN A FOOTER IN A CONTROL
BREAK MODULE

In the previous section, you learned how to use control break data in a heading. Figure 7-12 shows a different report
format. For this report, the department number prints following the employee list for the department. A message that
prints at the end of a page or other section of a report is called a footer. Headings usually require information about the
next record; footers usually require information about the previous record.

Figure 7-13 shows a program that prints a list of employees by department, including a footer that displays the depart-
ment number at the end of each department’s list. When you write a program that produces the report like the one
shown in Figure 7-12, you continuously read records with empLast, empFirst, and empDept fields. Each time
empDept does not equal oldDept, it means that you have reached a department break and that you should per-
form the newPage() module. The newPage() module has three tasks:

� It must print the footer for the previous department at the bottom of the employee list.

� It must print headings at the top of a new page.

� It must update the control break field.

FIGURE 7-12: SAMPLE REPORT FOR EMPLOYEES BY DEPARTMENT IN WHICH DEPARTMENT NUMBERS APPEAR
IN THE FOOTER

 EMPLOYEES BY DEPARTMENT

LAST NAME FIRST NAME

Anderson Kathryn
Bell George
Garcia Maria
Thompson Olivia

END OF DEPARTMENT 7 EMPLOYEES BY DEPARTMENT

LAST NAME FIRST NAME

Billings Mary
Fortune Carol
Jenkins Justin
Sosa Charles

END OF DEPARTMENT 5 EMPLOYEES BY DEPARTMENT

LAST NAME FIRST NAME

Kenner Patricia
Lester Linda
Noonan Robert
Travis Donald

END OF DEPARTMENT 1

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 275

276 Chapter 7 • Control Breaks

start
 perform housekeeping()
 while not eof
 perform mainLoop()
 endwhile
 perform finish()
stop

housekeeping()
 declare variables
 open files
 print head1
 print head2
 read empRec
 oldDept = empDept
return

mainLoop()
 if empDept not = oldDept then
 perform newPage()
 endif
 print empLast, empFirst
 read empRec

return

newPage()
 print foot, oldDept
 print head1
 print head2
 oldDept = empDept

return

finish()
 print foot, oldDept
 close files

return

Yes

eof? mainLoop()

finish()

No

housekeeping()

stop

start

finish()

print foot,
oldDept

close files

return

print foot,
oldDept

print head1

print head2

oldDept = empDept

return

newPage()

YesempDept =
oldDept?

newPage()

No

print empLast,
empFirst

read empRec

return

mainLoop()

open files

print head1

print head2

read empRec

 empRec
 num empDept
 char empLast
 char empFirst
 char head1 = “EMPLOYEES BY DEPARTMENT”
 char head2 = “LAST NAME FIRST NAME”
 char foot = “END OF DEPARTMENT”
 num oldDept

return

housekeeping()

declare variables

oldDept = empDept

FIGURE 7-13: PROGRAM THAT LISTS EMPLOYEES BY DEPARTMENT, INCLUDING DEPARTMENT NUMBER
IN THE FOOTER

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 276

277Using Control Data within a Footer in a Control Break Module

When the newPage() module prints the footer at the bottom of the old page, you must use the oldDept number.
For example, assume you have printed several employees from Department 12. When you read a record with an
employee from Department 13 (or any other department), the first thing you must do is print “END OF DEPARTMENT 12”.
You print the correct department number by accessing the value of oldDept, not empDept. Then, you can print the
other headings at the top of a new page and update oldDept to the current empDept, which in this example is 13.

The newPage() module in Figure 7-13 performs three tasks required in all control break routines: it processes the
previous group, processes the new group, and updates the control break field.

When you printed the department number in the header in the example in the previous section, you needed a special step in
the housekeeping() module. When you print the department number in the footer, the finish() module requires
an extra step. Imagine that the last five records in the input file include two employees from Department 78, Amy and Bill,
and three employees from Department 85, Carol, Don, and Ellen. The logical flow proceeds as follows:

1. After the first Department 78 employee (Amy) prints, you read the second Department 78 employee (Bill).

2. At the top of the mainLoop() module, Bill’s department is compared to oldDept. The depart-

ments are the same, so the second Department 78 employee (Bill) is printed. Then, you read the

first Department 85 employee (Carol).

3. At the top of mainLoop(), Carol’s empDept and oldDept are different, so you perform

the newPage() module while Carol’s record waits in memory.

4. In the newPage() module, you print “END OF DEPARTMENT 78”. Then, you print headings at

the top of the next page. Finally, you set oldDept to 85, and then return to mainLoop().

5. Back in mainLoop(), you print a line of data for the first Department 85 employee (Carol),

whose record waited while newPage() executed. Then, you read the record for the second

Department 85 employee (Don).

6. At the top of mainLoop(), you compare Don’s department number to oldDept. The numbers

are the same, so you print Don’s employee data and read in the last Department 85 employee (Ellen).

7. At the top of mainLoop(), you determine that Ellen has the same department number, so you

print Ellen’s data and attempt to read from the input file, where you encounter eof.

8. The eof decision in the mainline logic sends you to the finish() module.

You have printed the last Department 85 employee (Ellen), but the department footer for Department 85 has not
printed. That’s because every time you attempt to read an input record, you don’t know whether there will be more
records. The mainline logic checks for the eof condition, but if it determines that it is eof, the logic does not flow
back into the mainLoop() module, where the newPage() module can execute.

To print the footer for the last department, you must print a footer one last time within the finish() routine. The
finish() module that is part of the complete program in Figure 7-13 illustrates this point. Taking this action is simi-
lar to printing the first heading in the housekeeping() module. The very first heading prints separately from all
the others at the beginning; the very last footer must print separately from all the others at the end.

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 277

278 Chapter 7 • Control Breaks

PERFORMING CONTROL BREAKS WITH TOTALS

Suppose you run a bookstore, and one of the files you maintain is called BOOKFILE, which has one record for every book title
that you carry. Each record has fields such as bookTitle, bookAuthor, bookCategory (fiction, reference, self-
help, and so on), bookPublisher, and bookPrice, as shown in the file description in Figure 7-14.

Suppose you want to print a list of all the books that your store carries, with a total number of books at the bottom of the list,
as shown in the sample report in Figure 7-15. You can use the logic shown in Figure 7-16. In the main loop module, named
bookListLoop(), you print a book title, add 1 to grandTotal, and read the next record. At the end of the program,
in the closeDown() module, you print grandTotal before you close the files. You can’t print grandTotal any
earlier in the program because the grandTotal value isn’t complete until the last record has been read.

FIGURE 7-15: SAMPLE BOOK LIST REPORT

BOOK LIST

A Brief History of Time

The Scarlet Letter

Math Magic

She’s Come Undone

The Joy of Cooking

Walden

A Bridge Too Far

The Time Traveler’s Wife

The DaVinci Code

Programming Logic and Design

Forever Amber

Total number of book titles 512

File name: BOOKFILE
Sorted by: Category
FIELD DESCRIPTION DATA TYPE COMMENTS
Title Character 30 characters
Author Character 15 characters
Category Character 15 characters
Publisher Character 15 characters
Price Numeric 2 decimals

FIGURE 7-14: BOOKFILE FILE DESCRIPTION

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 278

279Performing Control Breaks with Totals

bookRec
 char bookTitle
 char bookAuthor
 char bookCategory
 char bookPublisher
 num bookPrice
char heading = "BOOK LIST"
num grandTotal = 0

Yes

eof? bookListLoop()

closeDown()

No

startUp()

stop

start

open
files

read
bookRec

return

print
heading

startUp()

declare
variables

bookListLoop()

print
bookTitle

return

grandTotal =
grandTotal +1

read
bookRec

closeDown()

print “Total number
of book titles”,

grandTotal

return

close
files

start
 perform startUp()
 while not eof
 perform bookListLoop()
 endwhile
 perform closeDown()
stop

startUp()
 declare variables
 open files
 print heading
 read bookRec
return

bookListLoop()
 print bookTitle
 grandTotal = grandTotal + 1
 read bookRec
return

closeDown()
 print "Total number of book titles", grandTotal
 close files
return

FIGURE 7-16: FLOWCHART AND PSEUDOCODE FOR BOOKSTORE PROGRAM

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 279

280 Chapter 7 • Control Breaks

The logic of the book list report program is pretty straightforward. Suppose, however, that you decide you want a count for
each category of book rather than just one grand total. For example, if all the book records contain a category that is either fic-
tion, reference, or self-help, then the book records might be sorted in alphabetical order by category, and the output would
consist of a list of all fiction books first, followed by a count; then all reference books, followed by a count; and finally all self-
help books, followed by a count. The report is a control break report, and the control break field is bookCategory. See
Figure 7-17 for a sample report.

To produce the report with subtotals by category, you must declare two new variables:previousCategory and
categoryTotal. Every time you read a book record, you compare bookCategory to previousCategory;
when there is a category change, you print the count of books for the previous category. The categoryTotal vari-
able holds that count. See Figure 7-18.

FIGURE 7-17: SAMPLE REPORT LISTING BOOKS BY CATEGORY WITH CATEGORY COUNTS

BOOK LIST

The Scarlet Letter
She’s Come Undone
A Bridge Too Far
The Time Traveler’s Wife
The DaVinci Code
Forever Amber

 Category Count 6

A Brief History of Time
Math Magic

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 280

281Performing Control Breaks with Totals

Yes

eof? bookListLoop()

closeDown()

No

startUp()

stop

start

start
 perform startUp()
 while not eof
 perform bookListLoop()
 endwhile
 perform closeDown()
stop

startUp()
 declare variables
 open files
 print heading
 read bookRec
 previousCategory = bookCategory
return

bookListLoop()
 if bookCategory not equal to previousCategory then
 perform categoryChange()
 endif
 print bookTitle
 categoryTotal = categoryTotal + 1
 read bookRec
return

categoryChange()
 print "Category count", categoryTotal
 grandTotal = grandTotal + categoryTotal
 categoryTotal = 0
 previousCategory = bookCategory
return

closeDown()
 perform categoryChange()
 print "Total number of book titles", grandTotal
 close files
return

bookRec
 char bookTitle
 char bookAuthor
 char bookCategory
 char bookPublisher
 num bookPrice
char heading = "BOOK LIST"
num grandTotal = 0
num categoryTotal = 0
char previousCategory

open
files

read
bookRec

return

print
heading

startUp()

declare
variables

previousCategory
= bookCategory

categoryChange()

print “Category
count”,

categoryTotal

return

grandTotal = grandTotal
+ categoryTotal

previousCategory
= bookCategory

categoryTotal = 0

closeDown()

return

close
files

categoryChange()

print “Total
number of book titles”,

grandTotal

print
bookTitle

categoryTotal =
categoryTotal + 1

read
bookRec

YesNo bookCategory
=

previousCategory?

categoryChange()

bookListLoop()

return

FIGURE 7-18: FLOWCHART AND PSEUDOCODE FOR BOOKSTORE PROGRAM CONTAINING A COUNT AFTER EACH
BOOK CATEGORY GROUP

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 281

282 Chapter 7 • Control Breaks

When you draw a flowchart, it usually is clearer to ask questions positively, as in
“bookCategory = previousCategory?”, and draw appropriate actions on the
Yes or No side of the decision. In pseudocode, when action occurs only on the No side of
a decision, it is usually clearer to ask negatively, as in “bookCategory not equal
to previousCategory?” Figure 7-18 uses these tactics.

When you read the first record from the input file in the startUp() module of the program in Figure 7-18, you save the
value of bookCategory in the previousCategory variable. Every time a record enters the
bookListLoop() module, the program checks to see if the current record represents a new category of work, by
comparing bookCategory to previousCategory. When you process the first record, the categories match,
so the book title prints, the categoryTotal increases by 1, and you read the next record. If this next record’s
bookCategory value matches the previousCategory value, processing continues as usual: printing a line
and adding 1 to categoryTotal.

At some point, bookCategory for an input record does not match previousCategory. At that point, you
perform the categoryChange() module. Within the categoryChange() module, you print the count of the
previous category of books. Then, you add categoryTotal to grandTotal. Adding a total to a higher-level
total is called rolling up the totals.

You could write bookListLoop() so that as you process each book, you add 1 to categoryTotal and add 1
to grandTotal. Then, there would be no need to roll totals up in the categoryChange() module. If there are
120 fiction books, you add 1 to categoryTotal 120 times; you also would add 1 to grandTotal 120 times.
This technique would yield correct results, but you can eliminate executing 119 addition instructions by waiting until
you have accumulated all 120 category counts before adding the total figure to grandTotal.

This control break report containing totals performs the five tasks required in all control break routines that include totals:

� It performs any necessary processing for the previous group—in this case, it prints
categoryTotal.

� It rolls up the current-level totals to the next higher level—in this case, it adds
categoryTotal to grandTotal.

� It resets the current level’s totals to zero—in this case, categoryTotal is set to zero.

� It performs any necessary processing for the new group—in this case, there is none.

� It updates the control break field—in this case, previousCategory.

The closeDown() routine for this type of program is more complicated than it might first appear. It seems as
though you should print grandTotal, close the files, and return to the mainline logic. However, when you read the
last record, the mainline eof decision sends the logical flow to the closeDown() routine. You have not printed the
last categoryTotal, nor have you added the count for the last category to grandTotal. You must take care
of both these tasks before printing grandTotal. You can perform these two tasks as separate steps in
closeDown(), but it is often simplest just to remember to perform the control break routine
categoryChange() one last time. The categoryChange() module already executes after every previous
category completes—that is, every time you encounter a new category during the execution of the program. You also

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 282

283Performing Multiple-Level Control Breaks

can execute this module after the final category completes, at the end of the file. Encountering the end of the file is
really just another form of break; it signals that the last category has finally completed. The categoryChange()
module prints the category total and rolls the totals up to the grandTotal level.

When you call the categoryChange() module from within closeDown(), it per-
forms a few tasks you don’t need, such as setting the value of previousCategory.
You have to weigh the convenience of calling the already-written categoryChange()
module, and executing a few unneeded statements, against taking the time to write a new
module that would execute only the statements that are absolutely necessary.

It is very important to note that this control break program works whether there are three categories of books or 300.
Note further that it does not matter what the categories of books are. For example, the program never asks
bookCategory = “fiction”?. Instead, the control of the program breaks when the category field changes,
and it is in no way dependent on what that change is.

PERFORMING MULTIPLE-LEVEL CONTROL BREAKS

Let’s say your bookstore from the last example is so successful that you have a chain of them across the country.
Every time a sale is made, you create a record with the fields bookTitle, bookPrice, bookCity, and
bookState. You want a report that prints a summary of books sold in each city and each state, similar to the one
shown in Figure 7-19. A report such as this one, which does not include any information about individual records, but
instead includes only group totals, is a summary report.

This program contains a multiple-level control break—that is, the normal flow of control (reading records and count-
ing book sales) breaks away to print totals in response to more than just one change in condition. In this report, a con-
trol break occurs in response to either (or both) of two conditions: when the value of the bookCity variable changes,
as well as when the value of the bookState variable changes.

Just as the file you use to create a single-level control break report must be presorted, so must the input file you use
to create a multiple-level control break report. The input file that you use for the book sales report must be sorted by
bookCity within bookState. That is, all of one state’s records—for example, all records from IA—come first;
then all of the records from another state, such as IL, follow. Within any one state, all of one city’s records come first;
then all of the next city’s records follow. For example, the input file that produces the report shown in Figure 7-19 con-
tains 200 records for book sales in Ames, IA, followed by 814 records for book sales in Des Moines, IA. The basic pro-
cessing entails reading a book sale record, adding 1 to a counter, and reading the next book sale record. At the end of
any city’s records, you print a total for that city; at the end of a state’s records, you print a total for that state.

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 283

284 Chapter 7 • Control Breaks

The housekeeping() module of the Book Sales by City and State report program looks similar to the house-
keeping() module in the previous control break program, in which there was a single control break for change in
category of book. In each program, you declare variables, open files, and read the first record. This time, however, there
are multiple fields to save and compare to the old fields. Here, you declare two special variables, prevCity and
prevState, as shown in Figure 7-20. In addition, the Book Sales report shows three kinds of totals, so you declare
three new variables that will serve as holding places for the totals in the Book Sales report: cityCounter,
stateCounter, and grandTotal, which are all initialized to zero.

FIGURE 7-19: SAMPLE RUN OF BOOK SALES BY CITY AND STATE REPORT

BOOK SALES BY CITY AND STATE

Ames 200
Des Moines 814
Iowa City 291

Total for IA 1305
Chicago 1093
Crystal Lake 564
McHenry 213
Springfield 365

Total for IL 2235
Springfield 289
Worcester 100

Total for MA 389
Grand Total 3929

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 284

285Performing Multiple-Level Control Breaks

This program prints both bookState and bookCity totals, so you need two control break modules,
cityBreak() and stateBreak(). Every time there is a change in the bookCity field, the cityBreak()
routine performs these standard control break tasks:

� It performs any necessary processing for the previous group—in this case, it prints totals for the
previous city.

� It rolls up the current-level totals to the next higher level—in this case, it adds the city count to
the state count.

� It resets the current level’s totals to zero—in this case, it sets the city count to zero.

� It performs any necessary processing for the new group—in this case, there is none.

� It updates the control break field—in this case, it sets prevCity to bookCity.

Within the stateBreak() module, you must perform one new type of task, as well as the control break tasks you
are familiar with. The new task is the first task: Within the stateBreak() module, you must first perform

housekeeping()
 declare variables
 open files
 perform headings()
 read bookRec
 prevCity = bookCity
 prevState = bookState
return

bookRec
 char bookTitle
 num bookPrice
 char bookCity
 char bookState
char head1 ="BOOK SALES BY CITY AND STATE"
char prevCity
char prevState
num cityCounter = 0
num stateCounter = 0
num grandTotal = 0

open
files

read
bookRec

return

housekeeping()

declare
variables

prevCity =
bookCity

prevState =
bookState

headings()

FIGURE 7-20: FLOWCHART AND PSEUDOCODE FOR housekeeping() MODULE IN BOOK SALES BY CITY
AND STATE REPORT PROGRAM

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 285

286 Chapter 7 • Control Breaks

cityBreak() automatically (because if there is a change in the state, there must also be a change in the city). The
stateBreak() module does the following:

� It processes the lower-level break—in this case, cityBreak().

� It performs any necessary processing for the previous group—in this case, it prints totals for the
previous state.

� It rolls up the current-level totals to the next higher level—in this case, it adds the state count to
the grand total.

� It resets the current level’s totals to zero—in this case, it sets the state count to zero.

� It performs any necessary processing for the new group—in this case, there is none.

� It updates the control break field—in this case, it sets prevState to bookState.

The mainLoop() module of this multiple-level control break program checks for any change in two different variables:
bookCity and bookState. When bookCity changes, a city total is printed, and when bookState
changes, a state total is printed. As you can see from the sample report in Figure 7-19, all city totals for each state print
before the state total for the same state, so it might seem logical to check for a change in bookCity before check-
ing for a change in bookState. However, the opposite is true. For the totals to be correct, you must check for any
bookState change first. You do so because when bookCity changes, bookState also might be changing,
but when bookState changes, it means bookCity must be changing.

Consider the sample input records shown in Figure 7-21, which are sorted by bookCity within bookState. When
you get to the point in the program where you read the first Illinois record (The Scarlet Letter), “Iowa City” is the value
stored in the field prevCity, and “IA” is the value stored in prevState. Because the values in the bookCity
and bookState variables in the new record are both different from the prevCity and prevState fields, both a
city and state total will print. However, consider the problem when you read the first record for Springfield, MA (Walden).
At this point in the program, prevState is IL, but prevCity is the same as the current bookCity; both contain
Springfield. If you check for a change in bookCity, you won’t find one at all, and no city total will print, even though
Springfield, MA, is definitely a different city from Springfield, IL.

Cities in different states can have the same name; if two cities with the same name follow each other in your control break pro-
gram and you have written it to check for a change in city name first, the program will not recognize that you are working with a

FIGURE 7-21: SAMPLE DATA FOR BOOK SALES BY CITY AND STATE REPORT

TITLE PRICE CITY STATE

A Brief History of Time 20.00 Iowa City IA
The Scarlet Letter 15.99 Chicago IL
Math Magic 4.95 Chicago IL
She’s Come Undone 12.00 Springfield IL
The Joy of Cooking 2.50 Springfield IL
Walden 9.95 Springfield MA
A Bridge Too Far 3.50 Springfield MA

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 286

287Performing Multiple-Level Control Breaks

new city. Instead, you should always check for the major-level break first. If the records are sorted by bookCity within
bookState, then a change in bookState causes a major-level break, and a change in bookCity causes a minor-
level break.When the bookState value “MA” is not equal to the prevState value “IL”, you force cityBreak(),
printing a city total for Springfield, IL, before a state total for IL and before continuing with the Springfield, MA, record. You check
for a change in bookState first, and if there is one, you perform cityBreak(). In other words, if there is a change in
bookState, there is an implied change in bookCity, even if the cities happen to have the same name.

If you needed totals to print by bookCitywithin a field defined as bookCounty within
bookState, you could say you have minor-, intermediate-, and major-level breaks.

Figure 7-22 shows the mainLoop() module for the Book Sales by City and State report program. You check for a change
in the bookState value. If there is no change, you check for a change in the bookCity value. If there is no change
there either, you add 1 to the counter for the city and read the next record. When there is a change in the bookCity
value, you print the city total and add the city total to the state total. When there is a change in the bookState value, you
perform the break routine for the last city in the state, and then you print the state total and add it to the grand total.

mainLoop()
ƒƒƒƒƒifƒbookStateƒnotƒequalƒprevStateƒthen
ƒƒƒƒƒƒƒƒƒƒƒperformƒstateBreak()
ƒƒƒƒƒelse
ƒƒƒƒƒƒƒƒƒƒƒifƒbookCityƒnotƒequalƒprevCityƒthen
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒperformƒcityBreak()
ƒƒƒƒƒƒƒƒƒƒƒendif
ƒƒƒƒƒendif
ƒƒƒƒƒcityCounterƒ=ƒcityCounterƒ+ƒ1
ƒƒƒƒƒreadƒbookRec
return

No Yes

No YesstateBreak()

FIGURE 7-22: FLOWCHART AND PSEUDOCODE FOR mainLoop() FOR BOOK SALES BY CITY AND STATE
REPORT PROGRAM

mainLoop()

cityBreak()

bookCity
=

prevCity?

return

cityCounter =
cityCounter + 1

read
bookRec

bookState
=

prevState?

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 287

288 Chapter 7 • Control Breaks

Figures 7-23 and 7-24 show the stateBreak() and cityBreak() modules. The two modules are very similar;
the stateBreak() routine contains just one extra type of task. When there is a change in bookState, you per-
form cityBreak() automatically before you perform any of the other necessary steps to change states.

The sample report containing book sales by city and state shows that you print the grand total for all book sales, so
within the closeDown() module, you must print the grandTotal variable. Before you can do so, however, you
must perform both the cityBreak() and the stateBreak() modules one last time. You can accomplish this
by performing stateBreak(), because the first step within stateBreak() is to perform cityBreak().

Consider the sample data shown in Figure 7-21. While you continue to read records for books sold in Springfield, MA,
you continue to add to the cityCounter for that city. At the moment you attempt to read one more record past the

FIGURE 7-24: FLOWCHART AND PSEUDOCODE FOR
cityBreak() MODULE

print prevCity,
cityCounter

cityBreak()

return

stateCounter =
stateCounter +

cityCounter

cityCounter = 0

prevCity =
bookCity

cityBreak()
ƒƒƒƒ print prevCity, cityCounter
ƒƒƒƒƒstateCounter = stateCounter + cityCounter
ƒƒƒƒƒcityCounter = 0
ƒƒƒƒƒprevCity = bookCity
return

FIGURE 7-23: FLOWCHART AND PSEUDOCODE FOR
stateBreak() MODULE

cityBreak()

stateBreak()

return

stateCounter = 0

print “Total for”,
prevState,

stateCounter

grandTotal =
grandTotal +
stateCounter

prevState =
bookState

stateBreak()
ƒƒƒƒƒperform cityBreak()
ƒƒƒƒƒprint "Total for", prevState, stateCounter
ƒƒƒƒƒgrandTotal = grandTotal + stateCounter
ƒƒƒƒƒstateCounter = 0
ƒƒƒƒƒprevState = bookState
return

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 288

289Performing Page Breaks

end of the file, you do not know whether there will be more records; therefore, you have not yet printed either the
cityCounter for Springfield or the stateCounter for MA. In the closeDown() module, you perform
stateBreak(), which immediately performs cityBreak(). Within cityBreak(), the count for Springfield
prints and rolls up to the stateCounter. Then, after the logic transfers back to the stateBreak() module, the
total for MA prints and rolls up to grandTotal. Finally, you can print grandTotal, as shown in Figure 7-25.

Every time you write a program where you need control break routines, you should check whether you need to com-
plete each of the following tasks within the modules:

� Performing the lower-level break, if any

� Performing any control break processing for the previous group

� Rolling up the current-level totals to the next higher level

� Resetting the current level’s totals to zero

� Performing any control break processing for the new group

� Updating the control break field

closeDown()
ƒƒƒƒƒperform stateBreak()
ƒƒƒƒƒprint "Grand Total", grandTotal
ƒƒƒƒƒclose files
return

FIGURE 7-25: FLOWCHART AND PSEUDOCODE FOR closeDown() MODULE

stateBreak()

closeDown()

return

print
“Grand Total”,

grandTotal

close files

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 289

290 Chapter 7 • Control Breaks

PERFORMING PAGE BREAKS

Many business programs use a form of control break logic to start a new page when a printed page fills up with output.
In other words, you might want the change to a new page to be based on the number of lines already printed, rather
than on the contents of an input field, such as department number. The logic in these programs involves counting the
lines printed, pausing to print headings when the counter reaches some predetermined value, and then going on. This
common business task is just another example of providing a break in the usual flow of control.

Some programmers may prefer to reserve the term control break for situations in which
the break is based on the contents of one of the fields in an input record, rather than on the
contents of a work field such as a line counter.

Let’s say you have a file called CUSTOMERFILE containing 1000 customers, with two character fields that you have
decided to call custLast and custFirst. You want to print a list of these customers, 60 detail lines to a page.
The mainline logic of the program is familiar (see Figure 7-26). The only new feature is a variable called a line counter.
You will use a line-counter variable to keep track of the number of printed lines, so that you can break to a new page
after printing 60 lines.

You first learned about detail lines in Chapter 3. Detail lines contain individual record
data, as opposed to summary lines, which typically contain counts, totals, or other group
information culled from multiple records.

start
 perform getReady()
 while not eof
 perform produceReport()
 endwhile
 perform cleanUp()
stop

Yes

eof? produceReport()

cleanUp()

No

getReady()

stop

start

FIGURE 7-26: MAINLINE LOGIC OF CUSTOMER REPORT PROGRAM

TIP�

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 290

291Performing Page Breaks

When creating a printed report, you need to clarify whether the user wants a specific
number of total lines per page, including headings, or a specific number of detail lines
per page following the headings. In other words, you must determine whether headings
should “count” as part of the number of lines requested.

Although you might require any specific number of lines per page, this example uses 60
because it represents a commonly used limit. Printing is most legible with the least waste
at about six lines per inch, so 60 lines fit comfortably on standard 11-inch paper.

Within the getReady() module (Figure 7-27), you declare the variables, open the files, print the headings, and read
the first record. Within the produceReport() module (Figure 7-28), you compare lineCounter to 60. When
you process the first record, lineCounter is 0, so you print the record, add 1 to lineCounter, and read the
next record.

getReady()
 declare variables
 open files
 print head1
 print head2
 read custRec
return

custRec
 char custLast
 char custFirst
char head1 = "Customer List"
char head2 = "Last name First name"
num lineCounter = 0

open files

return

getReady()

declare variables

print head1

print head2

read custRec

FIGURE 7-27: THE getReady() MODULE FOR CUSTOMER REPORT PROGRAM

TIP�

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 291

292 Chapter 7 • Control Breaks

In Figure 7-27, instead of printing head1 and head2, you could perform a module that starts a new page. Figure 7-29
shows a startNewPage()module that the getReady()module could call.

startNewPage()
 print head1
 print head2
 lineCounter = 0
return

FIGURE 7-29: THE startNewPage() MODULE FOR CUSTOMER REPORT PROGRAM

print head1

lineCounter = 0

print head2

return

startNewPage()

produceReport()
 if lineCounter = 60 then
 perform startNewPage()
 endif
 print custLast, custFirst
 lineCounter = lineCounter + 1
 read custRec
return

FIGURE 7-28: THE produceReport() MODULE FOR CUSTOMER REPORT PROGRAM

lineCounter
= 60?

startNewPage()

Yes

print custLast,
custFirst

lineCounter =
lineCounter + 1

read custRec

No

return

produceReport()

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 292

293Performing Page Breaks

On every cycle through the produceReport() module, you check the line counter to see if it is 60 yet. When the
first record is printed, lineCounter is 1. You read the second record, and if there is a second record (that is, if it is
not eof), you return to the top of the produceReport() module. In that module, you compare lineCounter
to 60, print another line, and add 1 to lineCounter, making it equal to 2.

After 60 records are read and printed,lineCounter holds a value of 60. When you read the 61st record (and if it is
not eof), you enter the produceReport() module for the 61st time. The answer to the question
lineCounter = 60? is Yes, and you break to perform the startNewPage() module. The
startNewPage() module is a control break routine.

The startNewPage() module, shown in Figure 7-29, must print the headings that appear at the top of a new
page, and it must set lineCounter back to zero. If you neglect to reset lineCounter, its value will increase
with each successive record and never be equal to 60 again. When resetting lineCounter for a new page, you
force execution of the startNewPage() module after 60 more records (120 total) print.

The startNewPage() module is simpler than many control break modules because no record counters or accumu-
lators are being maintained. In fact, the startNewPage() module must perform only two of the tasks you have
seen required by control break routines.

� It does not perform the lower-level break, because there is none.

� It does not perform any control break processing for the previous group, because there is none.

� It does not roll up the current-level totals to the next higher level, because there are no totals.

� It does not reset the current level’s totals to zero, because there are no totals (other than
lineCounter, which is the control break field).

� It does perform control break processing for the new group by printing headings at the top of the
new page.

� It does update the control break field—the line counter.

You might want to employ one little trick to remove the statements that print the headings from the getReady()
module. If you initialize lineCounter to 60 when defining the variables at the beginning of the program, on the first
pass through produceReport(), you can “fool” the computer into printing the first set of headings automatically.
When you initialize lineCounter to 60, you can remove the statements print head1 and print head2
from the getReady() module. With this change, when you enter the produceReport() module for the first
time, lineCounter is already set to 60, and the startNewPage() module prints the headings and resets
lineCounter to zero before processing the first record from the input file and starting to count the first page’s
detail lines. Figure 7-30 shows the entire program.

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 293

294 Chapter 7 • Control Breaks

start
 perform getReady()
 while not eof
 perform produceReport()
 endwhile
 perform cleanUp()
stop

getReady()
 declare variables
 open files
 print head1
 print head2
 read custRec
return

produceReport()
 if lineCounter = 60 then
 perform startNewPage()
 endif
 print custLast, custFirst
 lineCounter = lineCounter + 1
 read custRec
return

startNewPage()
 print head1
 print head2
 lineCounter = 0
return

cleanUp()
close files

return

FIGURE 7-30: THE COMPLETE CUSTOMER REPORT PROGRAM

lineCounter
= 60?

startNewPage()

Yes

print custLast,
custFirst

lineCounter =
lineCounter + 1

read custRec

No

return

produceReport()

print head1

lineCounter = 0

print head2

return

startNewPage()

Yes

eof? produceReport()

cleanUp()

No

getReady()

stop

start

custRec
 char custLast
 char custFirst
char head1 = "Customer Report"
char head2 = "Last name First name"
num lineCounter = 0

open files

return

getReady()

declare variables

print head1

print head2

read custRec

close files

return

cleanUp()

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 294

295Performing Page Breaks

In the program in Figure 7-30, you might prefer to create a constant named
LINES_PER_PAGE and set it to be equal to 60. Then, in the produceReport() mod-
ule, you would compare lineCounter to this constant. Doing this would provide you
with two advantages. First, the meaning of LINES_PER_PAGE would be clearer than the
number 60. Second, if you needed to change the number of lines per page, you could do so
using the declaration list instead of searching through the program to find the reference.

As with control break report programs that break based on the contents of one of a record’s fields, in any program that
starts new pages based on a line count, you always must update the line-counting variable that causes the unusual
action. Using page breaks or control breaks (or both) within reports adds a new degree of organization to your printed
output and makes it easier for the user to interpret and use.

TIP�

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 295

Chapter 7 • Control Breaks296

CHAPTER SUMMARY

� A control break is a temporary detour in the logic of a program; programmers refer to a program as a

control break program when a change in the value of a variable initiates special actions or causes special

or unusual processing to occur. To generate a control break report, your input records must be organized

in sorted order based on the field that will cause the breaks.

� You use a control break field to hold data from a previous record. You decide when to perform a control

break routine by comparing the value in the control break field to the corresponding value in the current

record. At minimum, the simplest control break routines perform necessary processing for the new

group and update the control break field.

� Sometimes, you need to use control data within a control break module, such as in a heading that

requires information about the next record, or in a footer that requires information about the previous

record. The very first heading prints separately from all the others at the beginning; the very last footer

must print separately from all the others at the end.

� A control break report contains and prints totals for the previous group, rolls up the current-level totals to

the next higher level, resets the current level’s totals to zero, performs any other needed control break

processing, and updates the control break field.

� In a program containing a multiple-level control break, the normal flow of control breaks away for special

processing in response to a change in more than one field. You should always test for a major-level break

before a minor-level break, and include a call to the minor break routine within the major break module.

� Every time you write a program in which you need control break routines, you should check whether you

need to perform each of the following tasks within the routines: any lower-level break, any control break

processing for the previous group, rolling up the current-level totals to the next higher level, resetting the

current level’s totals to zero, any control break processing for the new group, and updating the control

break field.

� To perform page breaks, you count the lines printed and pause to print headings when the counter

reaches some predetermined value.

KEY TERMS

A control break is a temporary detour in the logic of a program.

A control break program is one in which a change in the value of a variable initiates special actions or causes special
or unusual processing to occur.

A control break report lists items in groups. Frequently, each group is followed by a subtotal.

Programs that sort records take records that are not in order and rearrange them to be in order based on some field.

A single-level control break is a break in the logic of a program based on the value of a single variable.

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 296

Review Questions 297

A control break field is a variable that holds the value that signals a break in a program.

A footer is a message that prints at the end of a page or other section of a report.

Rolling up the totals is the process of adding a total to a higher-level total.

A summary report is one that does not include any information about individual records, but instead includes only
group totals.

A multiple-level control break is one in which the normal flow of control breaks away for special processing in
response to a change in more than one field.

A major-level break is a break in the flow of logic that is caused by a change in the value of a higher-level field.

A minor-level break is a break in the flow of logic that is caused by a change in the value of a lower-level field.

A line-counter variable keeps track of the number of printed lines on a page.

REVIEW QUESTIONS

1. A control break occurs when a program .

a. takes one of two alternate courses of action for every record
b. pauses to perform special processing based on the value of a field
c. ends prematurely, before all records have been processed
d. passes logical control to a module contained within another program

2. Which of the following is an example of a control break report?

a. a list of all employees in a company, with a message “Retain” or “Dismiss” following each employee record
b. a list of all students in a school, arranged in alphabetical order, with a total count at the end of the report
c. a list of all customers of a business in zip code order, with a count of the number of customers who reside in

each zip code
d. a list of some of the patients of a medical clinic—those who have not seen a doctor for at least two years

3. Placing records in sequential order based on the value in one of the fields is called .

a. sorting
b. collating
c. merging
d. categorizing

4. In a program with a single-level control break, .

a. the input file must contain a variable that contains a single digit
b. the hierarchy chart must contain a single level below the main level
c. special processing occurs based on the value in a single field
d. the control break module must not contain any submodules

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 297

Chapter 7 • Control Breaks298

5. A control break field .

a. always prints prior to any group of records on a control break report
b. always prints after any group of records on a control break report
c. never prints on a report
d. causes special processing to occur

6. The value stored in a control break field .

a. can be printed at the end of each group of records
b. can be printed with each record
c. both of these
d. neither a nor b

7. Within any control break module, you must .

a. declare a control break field
b. set the control break field to zero
c. print the control break field
d. update the value in the control break field

8. An insurance agency employs 10 agents and wants to print a report of claims based on the insur-
ance agent who sold each policy. The agent’s name should appear in a heading prior to the list of
each agent’s claims. In the housekeeping module for this program, you should .

a. read the first record before printing the first heading
b. print the first heading before reading the first record
c. read all the records that represent clients of the first agent before printing the heading
d. print the first heading, but do not read the first record until the main loop

9. In contrast to using control break data in a heading, when you use control break data in a footer,
you usually need data from the record in the input data file.

a. previous
b. next
c. first
d. priming

10. An automobile dealer wants a list of cars sold, grouped by model, with a total dollar amount sold
at the end of each group. The program contains four modules, appropriately named
housekeeping(), mainLoop(),modelBreak(), and finish(). The total for the last car
model group should be printed in the .

a. mainLoop() module, after the last time the control break module is called
b. mainLoop() module, as the last step in the module
c. modelBreak() module when it is called from within the mainLoop() module
d. modelBreak() module when it is called from within the finish() module

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 298

Review Questions 299

11. The Hampton City Zoo has a file that contains information about each of the animals it houses.
Each animal record contains such information as the animal’s ID number, date acquired by the zoo,
and species. The zoo wants to print a list of animals, grouped by species, with a count after each
group. As an example, a typical summary line might be “Species: Giraffe Count: 7”. Which of the
following happens within the control break module that prints the count?
a. The previous species count prints, and then the previous species field is updated.
b. The previous species field is updated, and then the previous species count prints.
c. Either of these will produce the desired results.
d. Neither a nor b will produce the desired results.

12. Adding a total to a higher-level total is called the totals.

a. sliding
b. advancing
c. rolling up
d. replacing

13. The Academic Dean of Creighton College wants a count of the number of students who have
declared each of the college’s 45 major courses of study, as well as a grand total count of students
enrolled in the college. Individual student records contain each student’s name, ID number, major,
and other data, and are sorted in alphabetical order by major. A control break module executes
when the program encounters a change in student major. Within this module, what must occur?

a. The total count for the previous major prints.
b. The total count for the previous major prints, and the total count is added to the grand total.
c. The total count for the previous major prints, the total count for the major is added to the grand total, and

the total count for the major is reset to zero.
d. The total count for the previous major prints, the total count for the major is added to the grand total, the

total count for the major is reset to zero, and the grand total is reset to zero.

14. In a control break program containing printed group totals and a grand total, the final module that
executes must .

a. print the group total for the last group
b. roll up the total for the last group
c. both of these
d. neither a nor b

15. A summary report .

a. contains detail lines
b. contains total lines
c. both of these
d. neither a nor b

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 299

Chapter 7 • Control Breaks300

16. The Cityscape Real Estate Agency wants a list of all housing units sold last year, including a subto-
tal of sales that occurred each month. Within each month group, there are also subtotals of each
type of property—single-family homes, condominiums, commercial properties, and so on. This
report is a control break report.

a. single-level
b. multiple-level
c. semilevel
d. trilevel

17. The Packerville Parks Commission has a file that contains picnic permit information for the coming
season. They need a report that lists each day’s picnic permit information, including permit number
and name of permit holder, starting on a separate page each day of the picnic season. (Figure 7-31
shows a sample page of output for the Packerville Parks report.) Within each day’s permits, they
want subtotals that count permits in each of the city’s 30 parks. The permit records have been
sorted by park name within date. In the main loop of the report program, the first decision should
check for a change in .

a. park name
b. date
c. permit number
d. any of these

FIGURE 7-31: SAMPLE PARKS REPORT

 Packerville Parks Commission – Daily Count of Permits by Park
Day: June 24

 Permit Number Permit Holder
 200501932 Paul Martin
 200502003 Brownie Troop 176
 200502015 Dorothy Wintergreen
 Alcott Park Count – 3
 200500080 YMCA Day Camp
 200501200 Packerville Rotary Club
 200501453 Harold Martinez
 200502003 Wendy Sudo
 Browning Park Count – 4

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 300

Review Questions 301

18. Which of the following is not a task you need to complete in any control break module that has
multiple levels and totals at each level?

a. Perform lower-level breaks.
b. Roll up the totals.
c. Update the control break field.
d. Reset the current-level totals to the previous-level totals.

19. The election commission for the state of Illinois maintains a file that contains the name of each
registered voter, the voter’s county, and the voter’s precinct within the county. The commission
wants to produce a report that counts the voters in each precinct and county. The file should be
sorted in .

a. county order within precinct
b. last name order within precinct
c. last name order within county
d. precinct order within county

20. A variable that determines when a new page should start based on the number of detail lines
printed on a page is a .

a. detail counter
b. line counter
c. page counter
d. break counter

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 301

Chapter 7 • Control Breaks302

FIND THE BUGS

Each of the following pseudocode segments contains one or more bugs that you must find and correct.

1. This application prints a student report for an elementary school. Students have been sorted by
grade level. A new page is started for each grade level, and the numeric grade level prints as part
of the heading of the page.

start
ƒƒƒƒƒperformƒgetReady()
ƒƒƒƒƒwhileƒnotƒeof
ƒƒƒƒƒƒƒƒƒƒperformƒproduceReport()
ƒƒƒƒƒendwhile
ƒƒƒƒƒperformƒfinishUp()
stop

getReady()
ƒƒƒƒƒdeclareƒvariables
ƒƒƒƒƒƒƒƒƒstudentRec
ƒƒƒƒƒƒƒƒƒƒƒƒƒnumƒstudentID
ƒƒƒƒƒƒƒƒƒƒƒƒƒcharƒname
ƒƒƒƒƒƒƒƒƒƒƒƒƒnumƒgradeLevel
ƒƒƒƒƒƒƒƒƒƒcharƒheading1ƒ=ƒ“StudentƒReportƒbyƒGradeƒLevel”
ƒƒƒƒƒƒƒƒƒƒcharƒheading2ƒ=ƒ“StudentsƒinƒGradeƒ“ƒƒƒ
ƒƒƒƒƒopenƒfiles
ƒƒƒƒƒprintƒheading1
ƒƒƒƒƒprintƒheading2,ƒgradeLevel
ƒƒƒƒƒreadƒstudentRec
return

produceReport()
ƒƒƒƒƒifƒgradeLevelƒ=ƒholdGradeLevelƒthen
ƒƒƒƒƒƒƒƒƒperformƒnewGrade()
ƒƒƒƒƒendif
ƒƒƒƒƒprintƒstudentId,ƒname
ƒƒƒƒƒreadƒstudentRec
return

newGrade()
ƒƒƒƒƒprintƒheading1
ƒƒƒƒƒprintƒheading2,ƒholdGradeLevel
ƒƒƒƒƒƒholdGradeLevelƒ=ƒgradeLevel
return

finishUp()
ƒƒƒƒƒcloseƒfiles
return

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 302

Find the Bugs 303

2. The Friendly Insurance Company makes a point to phone a birthday greeting to each of its clients
on his or her birthday. The following program is intended to produce a report that lists the clients a
salesperson should call each day for the coming year. Input records include the client’s name and
phone number as well as a numeric month and day. The records have been sorted by day within
month, and each day’s list appears on a new page. (It is very likely that some days of the year do
not have a client birthday.) At the end of each page is a count of the number of calls that should be
made that day. Two pages of a sample report are shown in Figure 7-32.

start
ƒƒƒƒƒperformƒprepare()
ƒƒƒƒƒwhileƒnotƒeof
ƒƒƒƒƒƒƒƒƒƒperformƒproduceReport()
ƒƒƒƒƒendwhile
ƒƒƒƒƒperformƒfinish()
stop

prepare()
ƒƒƒƒƒdeclareƒvariables
ƒƒƒƒƒƒƒƒƒappointmentRec
ƒƒƒƒƒƒƒƒƒƒƒƒƒcharƒclientName
ƒƒƒƒƒƒƒƒƒƒƒƒƒcharƒphoneNumber
ƒƒƒƒƒƒƒƒƒƒƒƒƒnumƒmonth
ƒƒƒƒƒƒƒƒƒƒƒƒƒnumƒday
ƒƒƒƒƒƒƒƒƒƒnumƒoldMonth
ƒƒƒƒƒƒƒƒƒƒnumƒoldDay
ƒƒƒƒƒƒƒƒƒƒcharƒheading1ƒ=ƒ“Callsƒtoƒmakeƒonƒdayƒ”
ƒƒƒƒƒƒƒƒƒƒcharƒheading2ƒ=ƒ“ofƒmonthƒ“
ƒƒƒƒƒƒƒƒƒƒcharƒfooterƒ=ƒ“Callsƒtoƒmakeƒtoday:ƒ“
ƒƒƒƒƒƒƒƒƒƒnumƒcountAppointments

FIGURE 7-32: SAMPLE REPORT

Calls to make on day 2
Of month 1

 Jeffrey Edman 920-654-1212
 Martin Richards 414-543-8845
 Brandy Unger 414-712-0019
 George Williams

 Calls to make today: 3

Calls to make on day 1
Of month 1

 Enrique Nova 920-534-0912
 Barbara Nuance 920-787-1290
 Allison Sellman 414-712-0019

 Calls to make today: 3

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 303

Chapter 7 • Control Breaks304

ƒƒƒƒƒopenƒfiles
ƒƒƒƒƒreadƒappointmentRec
ƒƒƒƒƒprintƒhead1,ƒday
ƒƒƒƒƒprintƒheading2,ƒmonth
ƒƒƒƒƒmonthƒ=ƒoldMonth
ƒƒƒƒƒdayƒ=ƒoldDay
return

produceReport()
ƒƒƒƒƒifƒdayƒnotƒ=ƒoldDayƒthen
ƒƒƒƒƒƒƒƒƒperformƒnewDay()
ƒƒƒƒƒƒelse
ƒƒƒƒƒƒƒƒƒƒƒƒifƒmonthƒnotƒ=ƒoldMonth
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒperformƒnewMonth()
ƒƒƒƒƒƒƒƒƒƒƒƒendif
ƒƒƒƒƒendif
ƒƒƒƒƒprintƒclientName,ƒphoneNumber
ƒƒƒƒƒcountAppointmentsƒ=ƒcountAppointmentsƒ+ƒ1
return

newMonth()
ƒƒƒƒƒperformƒnewDay()
ƒƒƒƒƒoldMonthƒ=ƒmonth
return

newDay()
ƒƒƒƒperformƒnewMonth()
ƒƒƒƒprintƒfooter,ƒcountAppointments
ƒƒƒƒprintƒheading1,ƒday
ƒƒƒƒprintƒheading1,ƒmonth
ƒƒƒƒoldDayƒ=ƒday
return

finish()
ƒƒƒƒƒcloseƒfiles
return

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 304

Exercises 305

EXERCISES

1. What fields might you want to use as the control break fields to produce a report that lists all
inventory items in a grocery store? (For example, you might choose to group items by grocery store
department.) Design a sample report.

2. What fields might you want to use as the control break fields to produce a report that lists all the
people you know? (For example, you might choose to group friends by city of residence.) Design a
sample report.

3. Cool’s Department Store keeps a record of every sale in the following format:

DEPARTMENT STORE SALES FILE DESCRIPTION
Fileƒname:ƒDEPTSALES
Sortedƒby:ƒDepartment
FIELDƒDESCRIPTIONƒƒƒƒƒƒƒDATAƒTYPEƒƒƒƒƒƒƒƒƒƒƒCOMMENTS
TransactionƒNumberƒƒƒƒƒƒNumericƒƒƒƒƒƒƒƒƒƒƒƒƒaƒ6-digitƒnumber
AmountƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒƒƒƒƒƒƒ2ƒdecimalƒplaces
DepartmentƒƒƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒƒƒƒƒƒƒaƒ3-digitƒnumber

Create the logic for a program that would print each transaction’s details, with a total at the end of
each department.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.
c. Create the flowchart.
d. Create the pseudocode.

4. A used-car dealer keeps track of sales in the following format:

AUTO SALES FILE DESCRIPTION

Fileƒname:ƒAUTO

Sortedƒby:ƒSalesperson

FIELDƒDESCRIPTIONƒƒƒƒƒƒƒDATAƒTYPEƒƒƒƒƒƒƒEXAMPLE

SalespersonƒƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒƒƒMiller

MakeƒofƒCarƒƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒƒƒFord

VehicleƒTypeƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒƒƒSedan

SaleƒPriceƒƒƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒƒƒ0ƒdecimalƒplaces;ƒforƒexample,ƒ15000

By the end of the week, a salesperson may have sold no cars, one car, or many cars. Create the
logic of a program that would print one line for each salesperson, with that salesperson’s total
sales for the week and commission earned, which is 4 percent of the total sales.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.
c. Create the flowchart.
d. Create the pseudocode.

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 305

Chapter 7 • Control Breaks306

5. A community college maintains student records in the following format:

STUDENT FILE DESCRIPTION
Fileƒname:ƒSTUDENTS
Sortedƒby:ƒHourƒofƒFirstƒClass
FIELDƒDESCRIPTIONƒƒƒƒƒƒƒDATAƒTYPEƒƒƒƒƒƒƒƒƒEXAMPLE
StudentƒNameƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒƒƒƒƒAmyƒLee
CityƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒƒƒƒƒWoodstock
HourƒofƒFirstƒClassƒƒƒƒƒNumericƒƒƒƒƒƒƒƒƒƒƒ08ƒforƒ8ƒa.m.ƒorƒ14ƒforƒ2ƒp.m.
PhoneƒNumberƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒƒƒƒƒ8154379823

The records have been sorted by hour of the day. The Hour of First Class is a two-digit number
based on a 24-hour clock (for example, a 1 p.m. first class is recorded as 13).

Create a report that students can use to organize carpools. The report lists the names and phone
numbers of students from the city of Huntley. Note that some students come from cities other than
Huntley; these students should not be listed on the report.

Start a new page for each hour of the day, so that all students starting classes at the same hour are
listed on the same page. Include the hour that each page represents in the heading for that page.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.
c. Create the flowchart.
d. Create the pseudocode.

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 306

Exercises 307

6. The Stanton Insurance Agency needs a report summarizing the counts of life, health, and other
types of insurance policies it sells. Input records contain policy number, name of insured, policy
value, and type of policy, and have been sorted in alphabetical order by type of policy. At the end of
the report, display a count of all the policies.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.
c. Create the flowchart.
d. Create the pseudocode.

7. If a university is organized into colleges (such as Liberal Arts), divisions (such as Languages), and
departments (such as French), what would constitute the major, intermediate, and minor control
breaks in a report that prints all classes offered by the university?

8. A zoo keeps track of the expense of feeding the animals it houses. Each record holds one animal’s
ID number, name, species (elephant, rhinoceros, tiger, lion, and so on), zoo residence (pachyderm
house, large-cat house, and so on), and weekly food budget. The records take the following form:

ANIMAL FEED RECORDS

Fileƒname:ƒANIMFOOD

Sortedƒby:ƒSpeciesƒwithinƒhouse

FIELDƒDESCRIPTIONƒƒƒƒƒƒƒDATAƒTYPEƒƒƒƒƒƒƒEXAMPLE

AnimalƒIDƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒƒƒ4116

AnimalƒNameƒƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒƒƒElmo

SpeciesƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒƒƒElephant

HouseƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒCharacterƒƒƒƒƒƒƒPachyderm

WeeklyƒFoodƒƒƒƒƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒƒƒ0ƒdecimals,ƒwholeƒdollars;ƒforƒexample,ƒ75

ƒƒƒBudgetƒinƒDollars

Design a report that lists each animal’s ID, name, and budgeted food amount. At the end of each
species group, print a total budget for the species. At the end of each house (for example, the
species lion, tiger, and leopard are all in the large-cat house), print the house total. At the end of
the report, print the grand total.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.
c. Create the flowchart.
d. Create the pseudocode.

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 307

Chapter 7 • Control Breaks308

9. A soft-drink manufacturer produces several flavors of drink—for example, cola, orange, and
lemon. Additionally, each flavor has several versions, such as regular, diet, and caffeine-free. The
manufacturer operates factories in several states.

Assume you have input records that list version, flavor, yearly production in gallons, and state (for
example: Regular Cola 5000 Kansas). The records have been sorted in alphabetical order by version
within flavor within state. Design the report that lists each version and flavor, with minor total pro-
duction figures for each flavor and major total production figures for each state.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.
c. Create the flowchart.
d. Create the pseudocode.

10. An art shop owner maintains records for each item in the shop, including the title of the work, the
artist who made the item, the medium (for example, watercolor, oil, or clay), and the monetary
value. The records are sorted by artist within medium. Design a report that lists all items in the
store, with a minor total value following each artist’s work, and a major total value following each
medium. Allow only 40 detail lines per page.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.
c. Create the flowchart.
d. Create the pseudocode.

DETECTIVE WORK

1. Control break reports are just one type of frequently printed business report. Has paper consump-
tion increased or decreased since computers became common office tools? How soon do experts
predict we will have the “paperless office”?

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 308

Up For Discussion 309

UP FOR DISCUSSION

1. Suppose your employer asks you to write a control break program that lists all the company’s
employees, their salaries, and their ages, with breaks at each department to list a count of employ-
ees in that department. You are provided with the personnel file to use as input. You decide to take
the file home with you so you can work on creating the report over the weekend. Is this accept-
able? What if the file contained only employees’ names and departments, and not more sensitive
data such as salaries and ages?

2. Suppose your supervisor asks you to create a report that lists all employees by department and
includes a break after each department to display the highest-paid employee in that department.
Suppose you also know that your employer will use this report to lay off the highest-paid employee
in each department. Would you agree to write the program? Instead, what if the report’s purpose
was to list the worst performer in each department in terms of sales? What if the report grouped
employees by gender? What if the report grouped employees by race?

3. Suppose your supervisor asks you to write a control break report that lists employees in groups by
the dollar value of medical insurance claims they have in a year. You fear the employer will use the
report to eliminate workers who are driving up the organization’s medical insurance policy costs.
Do you agree to write the report? What if you know for certain that the purpose of the report is to
eliminate workers?

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 309

7 Chapter Cxxxx 35539.ps 10-13-05 8:36 AM Page 310

8
After studying Chapter 8, you should be able to:

� Understand how arrays are used

� Understand how arrays occupy computer memory

� Manipulate an array to replace nested decisions

� Declare and initialize an array

� Declare and initialize constant arrays

� Load array values from a file

� Search an array for an exact match

� Use parallel arrays

� Force subscripts to remain within array bounds

� Improve search efficiency by using an early exit

� Search an array for a range match

ARRAYS

311

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 311

312 Chapter 8 • Arrays

UNDERSTANDING ARRAYS

An array is a series or list of variables in computer memory, all of which have the same name but are differentiated
with special numbers called subscripts. A subscript is a number that indicates the position of a particular item within
an array. Whenever you require multiple storage locations for objects, you are using a real-life counterpart of a pro-
gramming array. For example, if you store important papers in a series of file folders and label each folder with a con-
secutive letter of the alphabet, then you are using the equivalent of an array. If you store mementos in a series of
stacked shoeboxes, each labeled with a year, or if you sort mail into slots, each labeled with a name, then you are also
using a real-life equivalent of a programming array.

Besides the term “subscript,” programmers also use the term “index” to refer to the num-
ber that indicates a position within an array.

When you look down the left side of a tax table to find your income level before looking to the right to find your income
tax obligation, you are using an array. Similarly, if you look down the left side of a train schedule to find your station
before looking to the right to find the train’s arrival time, you also are using an array.

Each of these real-life arrays helps you organize real-life objects. You could store all your papers or mementos in one
huge cardboard box, or find your tax rate or train’s arrival time if both were printed randomly in one large book.
However, using an organized storage and display system makes your life easier in each case. Using a programming
array accomplishes the same results for your data.

Some programmers refer to an array as a table or a matrix.

HOW ARRAYS OCCUPY COMPUTER MEMORY

When you declare an array, you declare a programming structure that contains multiple variables. Each variable within
an array has the same name and the same data type; each separate array variable is one element of the array. Each
array element occupies an area in memory next to, or contiguous to, the others, as shown in Figure 8-1. You indicate
the number of elements an array will hold—the size of the array—when you declare the array along with your other
variables.

FIGURE 8-1: APPEARANCE OF A THREE-ELEMENT ARRAY AND A SINGLE VARIABLE IN COMPUTER MEMORY

aNumber

someVals[0] someVals[1] someVals[2]

25 36 47

15

25

TIP�

TIP�

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 312

313How Arrays Occupy Computer Memory

All array elements have the same group name, but each individual element also has a unique subscript indicating how
far away it is from the first element. Therefore, any array’s subscripts are always a sequence of integers, such as 0
through 5 or 0 through 10. Depending on the syntax rules of the programming language you use, you place the sub-
script within either parentheses or square brackets following the group name; when writing pseudocode or drawing a
flowchart, you can use either form of notation. This text uses square brackets to hold array element subscripts so that
you don’t mistake array names for method names. For example, Figure 8-1 shows how a single variable and an array
are stored in computer memory. The single variable named aNumber holds the value 15. The array named
someVals contains three elements, so the elements are someVals[0], someVals[1], and
someVals[2]. The value stored in someVals[0] is 25, someVals[1] holds 36, and someVals[2]
holds 47. From the diagram in Figure 8-1, you can see that the memory location someVals[0] is zero elements
away from the beginning of the array, the location of someVals[1] is one memory location away, and the location
of someVals[2] is two elements away from the start of the array.

In general, older programming languages such as COBOL and RPG use parentheses to hold
their array subscripts. Newer languages such as C#, C++, and Java use square brackets.

In many modern languages (for example, Java, Visual Basic .NET, C#, and C++), the first
array element’s subscript is 0; in others (for example, COBOL and RPG), it is 1. In Pascal,
you can identify the starting number as any value you want. In languages in which the
first subscript is 0, the subscript alone indicates the distance from the start of the array. In
languages that use a starting subscript value other than 0, the compiler does the arithmetic
for you to calculate the number of elements past the start of the array that you want to
access. In all languages, however, the subscript values must be integers (whole numbers)
and sequential.

Because the first element in an array in most programming languages is accessed using a subscript of value 0, the
array is called a zero-based array. Because the lowest subscript you can use with an array is 0, the highest subscript
you are allowed to use with an array is one less than the number of elements in the array. For example, an array with
10 elements uses subscripts 0 through 9, and an array with 200 elements uses subscripts 0 through 199. When you
use arrays, you must always keep the limits of subscript values in mind.

If you treat an array as though its lowest legal subscript is 1, when in fact it is 0, you will
commit off-by-one errors. If you use an invalid subscript—for example, using a 10 in a
10-element array for which the subscripts should be 0 through 9—some language com-
pilers will issue an error message and stop program execution, but others will allow you
to make the mistake, resulting in incorrect output.

You are never required to use arrays within your programs, but learning to use arrays correctly can make many pro-
gramming tasks far more efficient and professional. When you understand how to use arrays, you will be able to provide
elegant solutions to problems that otherwise would require tedious programming steps.

When you describe people or events as “elegant,” you mean they possess a refined grace-
fulness. Similarly, programmers use the term “elegant” to describe programs that are
well-designed and easy to understand and maintain.

TIP�

TIP�

TIP�

TIP�

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 313

314 Chapter 8 • Arrays

MANIPULATING AN ARRAY TO REPLACE NESTED DECISIONS

Consider a program that keeps statistics for requests about apartments in a large apartment complex. The developer
wants to keep track of inquiries so that future building projects are more likely to satisfy customer needs. In particular,
the developer wants to keep track of how many requests there are for studio, one-, two-, and three-bedroom apart-
ments. Each time an apartment request is received, a clerk adds a record to a file in the format shown in Figure 8-2.

For example, if a call comes in on the third day of the month for a studio apartment, one record is created with a 3 in the
date field and a 0 in the number of bedrooms field. If the next call is on the fourth day of the month for a three-bedroom
apartment, a record with 4 and 3 is created. The contents of the data file appear as a series of numbers, as follows:

3 0
4 3
4 0

... and so on.

At the end of the month, after all the records have been collected, the file might contain hundreds of records, each
holding a number that represents a date and another number (0, 1, 2, or 3) that represents the number of bedrooms
the caller wanted. You want to write a program that summarizes the total number of each type of apartment requested
during the month. A typical report appears in Figure 8-3.

FIGURE 8-3: TYPICAL APARTMENT REQUEST REPORT

Apartment Request Report

Bedrooms Inquiries

 0 91
 1 44
 2 67
 3 102

APARTMENT INQUIRY FILE DESCRIPTION
File name: APTREQUESTS
FIELD DESCRIPTION DATA TYPE COMMENTS
Day of the month Numeric 1 - 31, day request was made
Bedrooms requested Numeric 0, 1, 2 or 3 for studio apartment
 or number of bedrooms

FIGURE 8-2: FILE DESCRIPTION FOR APARTMENT REQUEST RECORDS

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 314

315Manipulating an Array to Replace Nested Decisions

If all the records were sorted in order by the number of bedrooms requested, this report could be a control break report.
You would simply read each record representing an inquiry on a studio apartment (zero bedrooms), counting the num-
ber of inquiries. When you read the first record requesting a different number of bedrooms, you would print the count
for the previous apartment type, reset the count to zero, and update the control break field before continuing.

You learned about control break logic in Chapter 7.

Assume, however, that the records have not been sorted by apartment type. Without using an array, could you write a
program that would accumulate the four apartment-type totals? Of course you could. The program would have the
same mainline logic as most of the other programs you have seen, as shown in Figure 8-4.

The program shown in Figures 8-4 through 8-7 accomplishes its purpose, but is cumber-
some. Follow its logic here, so that you understand how the program works. Later in this
chapter, you will see how to write the apartment request report program much more effi-
ciently using arrays.

In the housekeeping() module of the apartment request report program (Figure 8-5), you declare variables
including day and bedrooms. Then, you open the files and read the first record into memory. The headings could
print in housekeeping() or—because no other printing takes place in this program until the finish()
module—you can choose to wait and print the headings there.

start
 perform housekeeping()
 while not eof
 perform countCategories()
 endwhile
 perform finish()
stop

FIGURE 8-4: FLOWCHART AND PSEUDOCODE FOR MAINLINE LOGIC OF APARTMENT REQUEST REPORT PROGRAM

No

Yes

housekeeping()

countCategories()

finish()

start

eof?

stop

TIP�

TIP�

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 315

316 Chapter 8 • Arrays

In Figure 8-5, the variable list is identical for the flowchart and the pseudocode. It is
included twice in this figure and in the next few for clarity because arrays are a new and
complicated topic. In later examples in this book, the duplication of the variable list will
be eliminated.

Within the housekeeping() module, you can declare four variables, count0, count1, count2, and
count3; the purpose of these variables is to keep running counts of the number of requests for the four apartment
types. Each of these four counter variables needs to be initialized to 0. You can tell by looking at the planned output that
you need two heading lines, so head1 is defined as “Apartment Request Report” and head2 as “Bedrooms
Inquiries”.

Eventually, four summary lines will be printed in the report, each with a number of bedrooms and a count of inquiries
for that apartment type. These lines cannot be printed until the finish() module, however, because you won’t have
a complete count of each apartment type’s requests until all input records have been read.

The logic within the countCategories() module of the program requires adding a 1 to count0, count1,
count2, or count3, depending on the bedrooms variable. After 1 has been added to one of the four counters,
you read the next record, and if it is not eof, you repeat the decision-making and counting process. When all records
have been read, you proceed to the finish() module, where you print the four summary lines with the counts for
the four apartment types. See Figures 8-6 and 8-7.

housekeeping()
 declare variables
 aptRequest
 num day
 num bedrooms
 char head1 = “Apartment Request Report”
 char head2 = “Bedrooms Inquiries”
 num count0 = 0
 num count1 = 0
 num count2 = 0
 num count3 = 0
 open files
 read aptRequest
return

FIGURE 8-5: THE housekeeping() MODULE FOR THE APARTMENT REQUEST PROGRAM WITHOUT AN ARRAY

aptRequest
 num day
 num bedrooms
char head1 = “Apartment Request Report”
char head2 = “Bedrooms Inquiries”
num count0 = 0
num count1 = 0
num count2 = 0
num count3 = 0

return

read
aptRequest

open
files

declare
variables

housekeeping()

TIP�

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 316

317Manipulating an Array to Replace Nested Decisions

In the apartment request report program, assume that the input data has been previously
edited to ensure that all apartment requests are for zero, one, two, or three bedrooms. In
other words, there is no bad data. If this were not true, then the program would also need
to include a step to check for incorrect data and take some appropriate action—perhaps
ignoring it, or counting it in an error category.

No Yes

No Yes

No Yes

FIGURE 8-6: THE countCategories() MODULE FOR THE APARTMENT REQUEST PROGRAM WITHOUT
AN ARRAY

return

read
aptRequest

bedrooms = 1?

bedrooms = 0?

bedrooms = 2?

count3 =
count3 + 1

count2 =
count2 + 1

count1 =
count1 + 1

count0 =
count0 + 1

countCategories()
 if bedrooms = 0 then
 count0 = count0 + 1
 else
 if bedrooms = 1 then
 count1 = count1 + 1
 else
 if bedrooms = 2 then
 count2 = count2 + 1
 else
 count3 = count3 + 1
 endif
 endif
 endif
 read aptRequest
return

countCategories()

TIP�

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 317

318 Chapter 8 • Arrays

The apartment request report program works just fine, and there is absolutely nothing wrong with it logically; a decision
is made for each of the first three types of apartments, defaulting to a three-bedroom apartment if the request is not for
zero, one, or two bedrooms. But what if there were four types of apartments, or 12, or 30? With any of these scenarios,
the basic logic of the program would remain the same; however, you would need to declare many additional counter
variables. You also would need many additional decisions within the countCategories() module and many
additional print statements within the finish() module to complete the processing.

Using an array provides an alternative approach to this programming problem, and greatly reduces the number of state-
ments you need. When you declare an array, you provide a group name for a number of associated variables in memory.
For example, the four apartment-type counters can be redefined as a single array named count. The individual ele-
ments become count[0], count[1], count[2], and count[3], as shown in the new housekeeping()
module in Figure 8-8.

finish()
 print head1
 print head2
 print 0, count0
 print 1, count1
 print 2, count2
 print 3, count3
 close files
return

FIGURE 8-7: THE finish() MODULE FOR THE APARTMENT REQUEST PROGRAM WITHOUT AN ARRAY

return

finish()

close files

print 3,
count3

print 2,
count2

print 1,
count1

print 0,
count0

print head2

print head1

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 318

319Manipulating an Array to Replace Nested Decisions

With the change to housekeeping() shown in Figure 8-8, the countCategories() module changes to the
version shown in Figure 8-9.

housekeeping()
 declare variables
 aptRequest
 num day
 num bedrooms
 char head1 = “Apartment Request Report”
 char head2 = “Bedrooms Inquiries”
 num count[0] = 0
 num count[1] = 0
 num count[2] = 0
 num count[3] = 0
 open files
 read aptRequest
return

aptRequest
 num day
 num bedrooms
char head1 = “Apartment Request Report”
char head2 = “Bedrooms Inquiries”
num count[0] = 0
num count[1] = 0
num count[2] = 0
num count[3] = 0

FIGURE 8-8: MODIFIED housekeeping() MODULE FOR APARTMENT REQUEST PROGRAM THAT DECLARES
AN ARRAY TO COUNT REQUESTS

return

read
aptRequest

open
files

declare
variables

housekeeping()

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 319

320 Chapter 8 • Arrays

Figure 8-9 shows that when the bedrooms variable value is 0, one is added to count[0]; when the bedrooms
value is 3, one is added to count[3]. In other words, one is added to one of the elements of the count array
instead of to a single variable named count0, count1, count2, or count3. Is this a big improvement over the
original? Of course it isn’t. You still have not taken advantage of the benefits of using the array in this program.

The true benefit of using an array lies in your ability to use a variable as a subscript to the array, instead of using a con-
stant such as 1 or 4. Notice in the countCategories() module in Figure 8-9 that within each decision, the value
you are comparing to bedrooms and the constant you are using as a subscript in the resulting “Yes” process are
always identical. That is, when the bedrooms value is 0, the subscript used to add 1 to the count array is 0; when
the bedrooms value is 1, the subscript used for the count array is 1, and so on. Therefore, why not just use the
value of bedrooms as a subscript? You can rewrite the countCategories() module as shown in Figure 8-10.

countCategories()
 if bedrooms = 0 then
 count[0] = count[0] + 1
 else
 if bedrooms = 1 then
 count[1] = count[1] + 1
 else
 if bedrooms = 2 then
 count[2] = count[2] + 1
 else
 count[3] = count[3] + 1
 endif
 endif
 endif
 read aptRequest
return

No Yes

No Yes

No Yes

FIGURE 8-9: MODIFIED countCategories() MODULE THAT USES count ARRAY

return

read
aptRequest

bedrooms = 1?

bedrooms = 0?

bedrooms = 2?

count[0] =
count[0] + 1

count[1] =
count[1] + 1

count[2] =
count[2] + 1

count[3] =
count[3] + 1

countCategories()

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 320

321Manipulating an Array to Replace Nested Decisions

FIGURE 8-10: MODIFIED countCategories() MODULE USING THE VARIABLE bedrooms AS A
SUBSCRIPT TO THE count ARRAY

No Yes

No Yes

No Yes

return

read
aptRequest

bedrooms = 1?

bedrooms = 0?

bedrooms = 2?

count[bedrooms] =
count[bedrooms] + 1

count[bedrooms] =
count[bedrooms] + 1

count[bedrooms] =
count[bedrooms] + 1

count[bedrooms] =
count[bedrooms] + 1

countCategories()
 if bedrooms = 0 then
 count[bedrooms] = count[bedrooms] + 1
 else
 if bedrooms = 1 then
 count[bedrooms] = count[bedrooms] + 1
 else
 if bedrooms = 2 then
 count[bedrooms] = count[bedrooms] + 1
 else
 count[bedrooms] = count[bedrooms] + 1
 endif
 endif
 endif
 read aptRequest
return

countCategories()

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 321

322 Chapter 8 • Arrays

Of course, the code segment in Figure 8-10 looks no more efficient than the one in Figure 8-9. However, notice that in
Figure 8-10 the process that occurs after each decision is exactly the same. In each case, no matter what the value of
bedrooms, you always add one to count[bedrooms]. If you are always going to take the same action no mat-
ter what the answer to a question is, why ask the question? Instead, you can write the countCategories()
module as shown in Figure 8-11.

The two steps in Figure 8-11 represent the entire countCategories() module! When the value of bedrooms
is 0, one is added to count[0]; when the value of bedrooms is 1, one is added to count[1], and so on. Now,
you have a big improvement to the previous countCategories() module from Figure 8-9. What’s more, this
countCategories() module does not change whether there are eight, 30, or any other number of types of apart-
ment requests and count array elements, as long as the values in the bedrooms variable are numbered sequen-
tially. To use more than four counters, you would declare additional count elements in the housekeeping()
module, but the countCategories() logic would remain the same as it is in Figure 8-11.

The finish() module originally shown in Figure 8-7 can also be improved. Instead of four separate print statements,
you can use a variable to control a printing loop, as shown in Figure 8-12. Because the finish() module follows the
eof condition, all input records have been used, and the bedrooms variable is not currently holding any needed infor-
mation. In finish(), you can set bedrooms to 0, and then print bedrooms and count[bedrooms]. Then
add 1 to bedrooms and use the same set of instructions again. You can use bedrooms as a loop control variable to
print the four individual count values. The improvement in this finish() module over the one shown in Figure 8-7
is not as dramatic as the improvement in the countCategories() module, but in a program with more count
elements, the only change to the finish() module would be in the constant value you use to control the end of the
loop. Twelve or 30 count values can print as easily as four if they are stored in an array.

countCategories()
 count[bedrooms] = count[bedrooms] + 1
 read aptRequest
return

FIGURE 8-11: MODIFIED countCategories() MODULE, ELIMINATING NESTED DECISIONS

return

read
aptRequest

print 1,
count 1

count[bedrooms] =
count[bedrooms] + 1

countCategories()

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 322

323Manipulating an Array to Replace Nested Decisions

In the finish() module in Figure 8-12, instead of reusing the bedrooms variable as
a subscript, many programmers prefer to declare a separate numeric work variable to ini-
tialize to 0, use it as a subscript to the array while printing, and increment it during each
cycle through the loop. Their reasoning is that bedrooms is part of the input record and
should be used only to hold actual data being input—not used as a work variable in the
program. Use this approach if it makes more sense to you. You might be required to use
this technique if the input data is accessed from databases containing an input field that is
no longer available after the input has reached the eof condition.

Within the finish() module in Figure 8-12, the bedrooms variable is handy to use as a subscript, but any vari-
able could have been used as long as it was:

� Numeric with no decimal places

� Initialized to 0

� Incremented by 1 each time the logic passed through the loop

finish()
 print head1
 print head2
 bedrooms = 0
 while bedrooms <= 3
 print bedrooms, count[bedrooms]
 bedrooms = bedrooms + 1
 endwhile
 close files
return

No

Yes

FIGURE 8-12: MODIFIED finish() MODULE THAT USES AN ARRAY

return

finish()

close files

print head2

print head1

bedrooms = 0

print bedrooms,
count[bedrooms]

bedrooms <= 3?

bedrooms =
bedrooms + 1

TIP�

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 323

324 Chapter 8 • Arrays

In other words, nothing is linking bedrooms to the count array per se; within the finish() module, you can
simply use the bedrooms variable as a subscript to indicate each successive element within the count array.

The apartment request report program worked when the countCategories() module contained a long series of
decisions and the finish() module contained a long series of print statements, but the program is easier to write
when you employ arrays. Additionally, the program is more efficient, easier for other programmers to understand, and
easier to maintain. Arrays are never mandatory, but often they can drastically cut down on your programming time and
make a program easier to understand.

ARRAY DECLARATION AND INITIALIZATION

In the apartment request report program, the four count array elements were declared and initialized to 0s in the
housekeeping() module. The count values need to start at 0 so they can be added to during the course of the
program. Originally (see Figure 8-8), you provided initialization in the housekeeping() module as:

num count[0] = 0
num count[1] = 0
num count[2] = 0
num count[3] = 0

Separately declaring and initializing each count element is acceptable only if there are a small number of counts. If
the apartment request report program were updated to keep track of 30 types of apartments, you would have to initial-
ize 30 separate count fields. It would be tedious to write 30 separate declaration statements.

Programming languages do not require the programmer to name each of the 30 counts: count[0], count[1],
and so on. Instead, you can make a declaration such as one of those in Figure 8-13.

C, C++, C#, and Java programmers typically use lowercase variable names. COBOL and
BASIC programmers often use all uppercase. Visual Basic programmers are likely to
begin with an uppercase letter.

The terms int and integer in the code samples within Figure 8-13 both indicate that
the count array will hold whole-number values. The value 9999 in the COBOL example
indicates that each count will be a four-digit integer. These terms are more specific than
the num identifier this book uses to declare all numeric variables.

Declaration Programming Language
DIM COUNT(30) BASIC, Visual Basic
int count[30]; C#, C++
int[] count = new int[30]; Java
COUNT OCCURS 30 TIMES PICTURE 9999. COBOL
array count [1..30] of integer; Pascal

FIGURE 8-13: DECLARING A 30-ELEMENT ARRAY NAMED count IN SEVERAL COMMON LANGUAGES

TIP�

TIP�

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 324

325Array Declaration and Initialization

All the declarations in Figure 8-13 have two things in common: They name the count array and indicate that there
will be 30 separate numeric elements. For flowcharting or pseudocode purposes, a statement such as num
count[30] indicates the same thing.

Declaring a numeric array does not necessarily set its individual elements to 0 (although it does in some programming
languages, such as BASIC, Visual Basic, and Java). Most programming languages allow the equivalent of num
count[30] all set to 0; you should use a statement like this when you want to initialize an array in your
flowcharts or pseudocode. Explicitly initializing all variables is a good programming practice; assuming anything about
noninitialized variable values is a dangerous practice. Array elements are no exception to this rule.

Alternatively, to start all array elements with the same initial value, you can use an initialization loop within the
housekeeping() module. An initialization loop is a loop structure that provides initial values for every element in
any array. To create an initialization loop, you must use a numeric variable as a subscript. For example, if you declare a
field named sub, and initialize sub to 0, then you can use a loop like the one shown in the housekeeping()
module in Figure 8-14 to set all the array elements to 0. As the value of sub increases from 0 through 29, each
corresponding count element is assigned 0.

housekeeping()
 declare variables
 aptRequest
 num day
 num bedrooms
 char head1 = “Apartment Request Report”
 char head2 = “Bedrooms Inquiries”
 num SIZE = 30
 num count[SIZE]
 num sub
 open files
 sub = 0
 while sub < SIZE
 count[sub] = 0
 sub = sub + 1
 endwhile
 read aptRequest
return

FIGURE 8-14: A housekeeping() MODULE DEMONSTRATING ONE METHOD OF INITIALIZING ARRAY
ELEMENTS

No

Yes

aptRequest
 num day
 num bedrooms
char head1 = “Apartment Request Report”
char head2 = “Bedrooms Inquiries”
num SIZE = 30
num count[SIZE]
num sub

return

sub = 0

open
files

declare
variables

housekeeping()

sub < SIZE?

read
aptRequest

count[sub] = 0

sub = sub + 1

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 325

326 Chapter 8 • Arrays

In Figure 8-14, a named constant SIZE is initialized to 30. This constant is then used in
both the array declaration and the loop that controls how many elements are set to 0.
Using a constant such as SIZE is a convenient way to make sure you access all the array
elements. Additionally, if you want to alter the program to handle some other number of
apartment types, the only change you need to make to the program is to provide a differ-
ent value for the constant. You first learned about named constants in Chapter 4.

DECLARING AND INITIALIZING CONSTANT ARRAYS

The array that you used to accumulate apartment-type requests in the previous section contained four variables whose
values were altered during the execution of the program. The values in which you were most interested, the count of
the number of requests for each type of apartment, were created during an actual run, or execution, of the program. In
other words, if 1,000 prospective tenants are interested in studio apartments, you don’t know that fact at the beginning
of the program. Instead, that value is accumulated during the execution of the program and not known until the end.

Some arrays are not variable, but are meant to be constant. With some arrays, the final desired values are fixed at the
beginning of the program.

For example, let’s say you own an apartment building with five floors, including a basement, and you have records for
all your tenants with the information shown in Figure 8-15. The combination of each tenant’s floor number and apart-
ment letter provides you with a specific apartment—for example, apartment 0D or 3B.

Every month, you print a rent bill for each tenant. Your rent charges are based on the floor of the building, as shown in
Figure 8-16.

Floor Rent in $
0 (the basement) 350
1 400
2 475
3 600
4 (the penthouse) 1000

FIGURE 8-16: RENTS BY FLOOR

TENANT FILE DESCRIPTION
File name: TENANTS
FIELD DESCRIPTION DATA TYPE COMMENTS
Tenant name Character Full name, first and last
Floor number Numeric 0 through 4 - 0 is basement
Apartment letter Character Single letter - A through F

FIGURE 8-15: TENANT FILE DESCRIPTION

TIP�

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 326

327Declaring and Initializing Constant Arrays

To create a computer program that prints each tenant’s name and rent due, you could use five decisions concerning the
floor number. However, it is more efficient to use an array to hold the five rent figures. The array’s values are constant
because you set them once at the beginning of the program, and they never change.

Remember that another name for an array is a table. If you can use paper and pencil to list
items like tenants’ rent values in a table format, then using an array is an appropriate pro-
gramming option.

In most programming languages, you would include a modifier such as const or
final in front of the array name to declare it to be truly constant, so that you could not
alter any of its elements’ values later in the program.

Some programmers use the term “compile-time arrays” to refer to arrays that receive their
usable values through initialization at the start of a program, whereas arrays that do not
receive their ultimate values until the program is being used are run-time arrays.

The mainline logic for this program is shown in Figure 8-17. The housekeeping module is named prep(). When you
declare variables within the prep() module, you create an array for the five rent figures and set num rent[0] =
350, num rent[1] = 400, and so on. The rent amounts are hard coded into the array; that is, they are explic-
itly assigned to the array elements. The prep() module is shown in Figure 8-18.

The prep() module name was chosen as a change of pace from housekeeping(),
which has been used in many examples in this book. Some programmers advocate being
consistent in naming modules from program to program; others prefer varying names as
long as the names are meaningful.

FIGURE 8-17: FLOWCHART AND PSEUDOCODE FOR MAINLINE LOGIC OF RENT PROGRAM

start
ƒƒƒperformƒprep()
ƒƒƒwhileƒnot eof
ƒƒƒƒƒƒperformƒfigureRent()
ƒƒƒendwhile
ƒƒƒperformƒcleanUp()
stopYes

eof? figureRent()

cleanUp()

No

prep()

stop

start

TIP�

TIP�

TIP�

TIP�

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 327

328 Chapter 8 • Arrays

As an alternative to defining rent[0], rent[1], and so on, as in Figure 8-18, most
programming languages allow a more concise version that takes the general form num
rent[5] = 350, 400, 475, 600, 1000. When you use this form of array ini-
tialization, the first value you list is assigned to the first array element, and the subsequent
values are assigned in order. Most programming languages allow you to assign fewer val-
ues than there are array elements declared, but none allow you to assign more values.

At the end of the prep() module, you read a first record into memory. The record contains a tenant name
(tenName), floor (tenFloor), and apartment letter (tenAptLetter). When the logic enters figureRent()
(the main loop), you can print three items: “Dear ”, tenName, and “, Here is your monthly rent bill” (the quote begins
with a comma that follows the recipient’s name). Then, you must print the rent amount. Instead of making a series of
selections such as if tenFloor = 0 then print rent[0] and if tenFloor = 1 then
print rent[1], you want to take advantage of the rent array. The solution is to create a figureRent()
module that looks like Figure 8-19. You use the tenFloor variable as a subscript to access the correct rent array
element. When deciding which variable to use as a subscript with an array, ask yourself, “Of all the values available in
the array, what does the correct selection depend on?” When printing a rent value, the rent you use depends on the
floor on which the tenant lives, so the correct action is print rent[tenFloor].

tenantRec
char tenName
num tenFloor
char tenAptLetter

num rent[0] = 350
num rent[1] = 400
num rent[2] = 475
num rent[3] = 600
num rent[4] = 1000

FIGURE 8-18: FLOWCHART AND PSEUDOCODE FOR prep() MODULE OF RENT PROGRAM

prep()
ƒƒƒƒƒdeclare variables
ƒƒƒƒƒopen files
ƒƒƒƒƒread tenantRec
return

prep()

declare
variables

open
files

read
tenantRec

return

TIP�

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 328

329Declaring and Initializing Constant Arrays

Every programming language provides ways to space your output for easy reading. For
example, a common technique to separate “Dear” from the tenant’s name is to include a
space after the r in Dear, as in print “Dear “, tenName.

The cleanUp() module for this program is very simple—just close the files. See Figure 8-20.

Without a rent array, the figureRent() module would have to contain four decisions and five different resulting
actions. With the rent array, there are no decisions. Each tenant’s rent is simply based on the rent element that
corresponds to the tenFloor variable because the floor number indicates the positional value of the corresponding
rent. Arrays can really lighten the workload required to write a program.

FIGURE 8-20: THE cleanUp() MODULE FOR THE RENT PROGRAM

return

close
files

cleanUp()

cleanUp()
ƒƒƒƒƒclose files
return

FIGURE 8-19: FLOWCHART AND PSEUDOCODE FOR THE figureRent() MODULE OF THE RENT PROGRAM

figureRent()
ƒƒƒƒƒprint "Dear ", tenName, ", Here is your monthly rent bill"
ƒƒƒƒƒprint rent[tenFloor]
ƒƒƒƒƒread tenantRec
return

figureRent()

print
rent[tenFloor]

read
tenantRec

return

print “Dear ”,
tenName, “, Here

is your monthly rent bill”

TIP�

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 329

330 Chapter 8 • Arrays

LOADING AN ARRAY FROM A FILE

Writing the rent program from the previous section requires you to set values for five rent array elements within the
prep() module. If you write the rent program for a skyscraper, you may have to initialize 100 array elements.
Additionally, when the building management changes the rent amounts, you must alter the array element values within
the program to reflect the new rent charges. If the rent values change frequently, it is inconvenient to have hard-coded
values in your program. Instead, you can write your program so that it loads the array rent amounts from a file. The
array of rent values is an example of an array that gets its values during the execution of the program.

A file that contains all the rent amounts can be updated by apartment building management as frequently as needed.
Suppose you periodically receive a file named RENTFILE that is created by the building management and always con-
tains the current rent values. You can write the rent program so that it accepts all records from this input file within the
prep() module. Figure 8-21 shows how this is accomplished.

FIGURE 8-21: FLOWCHART AND PSEUDOCODE FOR prep() MODULE THAT READS RENT VALUES FROM AN
INPUT FILE

prep()
ƒƒƒƒƒƒdeclare variables
ƒƒƒƒƒƒopenƒfiles
ƒƒƒƒƒƒcountƒ=ƒ0
ƒƒƒƒƒƒreadƒrentRec
ƒƒƒƒƒƒwhileƒnotƒeof
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒrent[count] = rentAmt
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒcountƒ=ƒcountƒ+ƒ1
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒreadƒrentRec
ƒƒƒƒƒƒendwhile
ƒƒƒƒƒƒreadƒtenantRec
return

rentRec
num rentAmt

tenantRec
char tenName
num tenFloor
char tenAptLetter

num rent[5]
num count

declare
variables

prep()

open
files

read
rentRec

return

count = 0

Yes

eof? rent[count] =
rentAmt

count =
count + 1

read
rentRec

No

read
tenantRec

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 330

331Searching for an Exact Match in an Array

In the prep() module in Figure 8-21, you set the variable count to 0 and read a rentRec record from
RENTFILE. Each record in RENTFILE contains just one field—a numeric rentAmt value. For this program, assume
that the rent records in RENTFILE are stored in order by floor. When you read the first rentAmt, you store it in the
first element of the rent array. You increase the count to 1, read the second record, and, assuming it’s not eof,
you store the second rent in the second element of the rent array. After RENTFILE is exhausted and the rent array
is filled with appropriate rent amounts for each floor, you begin to read the file containing the tenantRec records,
and then the program proceeds as usual.

You could choose to close RENTFILE at the end of the prep() module. Unlike the tenant
file and the printer, it will not be used again in the program. Alternatively, you can wait
and close all the files at the end of the program.

When you use this method—reading the rents from an input file instead of hard coding them into the program—clerical
employees can update the rentRec values in RENTFILE. Your program takes care of loading the rents into the pro-
gram array from the most recent copy of RENTFILE, ensuring that each rent is always accurate and up to date. Using this
technique, you avoid the necessity of changing code within the program with each rent update.

Another way to organize RENTFILE is to include two fields within each record—for exam-
ple, rentFloor and rentAmt. Then, the records would not have to be read into your
program in floor-number order. Instead, you could use the rentFloor variable as a sub-
script to indicate which position in the array to use to store the rentAmt.

You might question how the program knows which file’s eof condition is tested when a
program uses two or more input files. In some programming languages, the eof condi-
tion is tested on the file most recently read. In many programming languages, you have to
provide more specific information along with the eof question, perhaps rentRec
eof? or tenantRec eof?

The RENTFILE example assumes that management provides you with a file that contains no
more records than the number of rents your program is prepared to hold. A more elegant
program would check to make sure there are not too many rents. You will learn how to
perform such checks later in this chapter.

SEARCHING FOR AN EXACT MATCH IN AN ARRAY

In both the apartment request program and the rent program that you’ve seen in this chapter, the fields that the arrays
depend on conveniently hold small whole numbers. The number of bedrooms available in apartments are zero through
three, and the floors of the building are zero through four. Unfortunately, real life doesn’t always happen in small inte-
gers. Sometimes, you don’t have a variable that conveniently holds an array position; sometimes, you have to search
through an array to find a value you need.

Consider a mail-order business in which orders come in with a customer name, address, item number ordered, and
quantity ordered, as shown in Figure 8-22.

TIP�

TIP�

TIP�

TIP�

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 331

332 Chapter 8 • Arrays

The item numbers are three-digit numbers, but perhaps they are not consecutive 000 through 999. Instead, over the
years, items have been deleted and new items have been added. For example, there might no longer be an item with
number 005 or 129. Sometimes, there might be a hundred-number gap or more between items.

For example, let’s say that this season you are down to the items shown in Figure 8-23. When a customer orders an
item, you want to determine whether the order is for a valid item number. You could use a series of six decisions to
determine whether the ordered item is valid; in turn, you would compare whether each customer’s item number is
equal to one of the six allowed values. However, a superior approach is to create an array that holds the list of valid item
numbers. Then, you can search through the array for an exact match to the ordered item. If you search through the
entire array without finding a match for the item the customer ordered, you can print an error message, such as “No
such item.”

Suppose you create an array with the six elements shown in Figure 8-24. If a customer orders item 307, a clerical
worker can tell whether it is valid by looking down the list and verifying that 307 is a member of the list. In a similar
fashion, you can use a loop to test each validItem against the ordered item number.

The technique for verifying that an item number exists involves setting a subscript to 0 so that you can start searching
from the first array element, and initializing a flag variable to indicate that you have not yet determined whether the cus-
tomer’s order is valid. A flag is a variable that you set to indicate whether some event has occurred; frequently, it holds
a True or False value. For example, you can set a character variable named foundIt to “N”, indicating “No”. Then
you compare the customer’s ordered item number to the first item in the array. If the customer-ordered item matches
the first item in the array, you can set the flag variable to “Y”, or any other value that is not “N”. If the items do not
match, you increase the subscript and continue to look down the list of numbers stored in the array. If you check all six
valid item numbers and the customer item matches none of them, then the flag variable foundIt still holds the value
“N”. If the flag variable is “N” after you have looked through the entire list, you can issue an error message indicating

num validItem[0] = 106
num validItem[1] = 108
num validItem[2] = 307
num validItem[3] = 405
num validItem[4] = 457
num validItem[5] = 688

FIGURE 8-24: ARRAY OF VALID ITEM NUMBERS

ITEM NUMBER
106
108
307
405
457
688

FIGURE 8-23: AVAILABLE ITEMS IN MAIL-ORDER COMPANY

MAIL-ORDER CUSTOMER FILE DESCRIPTION
File name: CUSTREC
FIELD DESCRIPTION DATA TYPE COMMENTS
Customer name Character
Address Character
Item number Numeric A 3-digit number
Quantity Numeric A value from 1 through 99

FIGURE 8-22: MAIL-ORDER CUSTOMER FILE DESCRIPTION

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 332

333Using Parallel Arrays

that no match was ever found. Assuming you declare the customer item as custItemNo and the subscript as x,
then Figure 8-25 shows a flowchart segment and the pseudocode that accomplishes the item verification.

USING PARALLEL ARRAYS

In a mail-order company, when you read a customer’s order, you usually want to accomplish more than simply verifying
that the item exists. You want to determine the price of the ordered item, multiply that price by the quantity ordered, and
print a bill. Suppose you have prices for six available items, as shown in Figure 8-26.

xƒ=ƒ0
foundItƒ=ƒ"N"
whileƒxƒ<ƒ6
ƒƒƒƒƒƒifƒcustItemNoƒ=ƒvalidItem[x]ƒthen
ƒƒƒƒƒƒƒƒƒƒƒƒfoundItƒ=ƒ"Y"
ƒƒƒƒƒƒendif
ƒƒƒƒƒƒxƒ=ƒxƒ+ƒ1
endwhile
ifƒfoundItƒ=ƒ"N"ƒthen
ƒƒƒƒƒprintƒ"Noƒsuchƒitem"
endif

FIGURE 8-25: FLOWCHART AND PSEUDOCODE SEGMENTS FOR FINDING AN EXACT MATCH TO A CUSTOMER
ITEM NUMBER

foundIt = “N”

x = 0

print
“No such item”

YesNo

foundIt = “Y”

x = x +1

custItemNo
=

validItem[x]?

foundIt = “N”?
YesNo

Yes

No

x < 6 ?

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 333

334 Chapter 8 • Arrays

You could write a program in which you read a customer order record and then use the customer’s item number as a
subscript to pull a price from an array. To use this method, you need an array with at least 689 elements. If a customer
orders item 405, the price is found at validItem[custItemNo], which is validItem[405], or the
406th element of the array (because the 0th element is the first element of the array). Such an array would need
689 elements (because the highest item number is 688), but because you sell only six items, you would waste 683 of
the memory positions. Instead of reserving a large quantity of memory that remains unused, you can set up this pro-
gram to use two arrays.

Consider the mainline logic in Figure 8-27 and the ready() module in Figure 8-28. Two arrays are set up within the
ready() module. One contains six elements named validItem; all six elements are valid item numbers. The
other array also has six elements. These are named validItemPrice; all six elements are prices. Each price in
this validItemPrice array is conveniently and purposely in the same position as the corresponding item number
in the other validItem array. Two corresponding arrays such as these are parallel arrays because each element in
one array is associated with the element in the same relative position in the other array.

start
 perform ready()
 while not eof
 perform getPrice()
 endwhile
 perform finish()
stop

Yes

eof? getPrice()

finish()

No

ready()

stop

start

FIGURE 8-27: MAINLINE LOGIC FOR THE PRICE PROGRAM

FIGURE 8-26: AVAILABLE ITEMS WITH PRICES FOR MAIL-ORDER COMPANY

ITEM NUMBER
106
108
307
405
457
688

0.59
0.99
4.50
15.99
17.50
39.00

ITEM PRICE

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 334

335Using Parallel Arrays

You can write the getPrice() module as shown in Figure 8-29. The general procedure is to read each item num-
ber, look through each of the validItem values separately, and when a match for the custItemNo variable on
the input record is found, pull the corresponding parallel price out of the list of validItemPrice values.

custRec
char custName
char custAddress
num custItemNo
num custQuantity

num validItem[0] = 106
num validItem[1] = 108
num validItem[2] = 307
num validItem[3] = 405
num validItem[4] = 457
num validItem[5] = 688

num validItemPrice[0] = 0.59
num validItemPrice[1] = 0.99
num validItemPrice[2] = 4.50
num validItemPrice[3] = 15.99
num validItemPrice[4] = 17.50
num validItemPrice[5] = 39.00

num totBill
num x
char foundIt

declare
variables

FIGURE 8-28: THE ready() MODULE FOR THE PRICE PROGRAM

ready()

return

open
files

read
custRec

ready()
declare variables
open files
read custRec

return

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 335

336 Chapter 8 • Arrays

In this book, you have repeatedly seen the flowchart decision that asks the eof question
phrased as a positive question (“eof?”) so the program continues while the answer is No.
You also have seen the pseudocode decision that asks the eof question in a negative form
(“while not eof”) so that the program continues while the condition is true. Figure 8-29
follows the same convention—the flowchart compares the customer item number to a valid
item using a positive question so the loop continues while the answer is No, whereas the
pseudocode asks if the customer item number is not equal to a valid item number, continuing
while the answer is Yes. The logic is the same either way.

You must create a variable to use as a subscript for the arrays. If you name the subscript x (see the declaration of x in
the variable list in Figure 8-28), then you can start by setting x equal to 0. Then, if custItemNo is the same as
validItem[x], you can use the corresponding price from the other table, validItemPrice[x], to calculate
the customer’s bill.

getPrice()
x = 0
while custItemNo not equal to validItem[x]

x = x + 1
endwhile
totBill = validItemPrice[x] * custQuantity
print custName, totBill
read custRec

return

Yes

custItemNo =
validItem[x]?

x = x + 1

totBill =
validItemPrice[x]
* custQuantity

No

print custName,
totBill

read
custRec

FIGURE 8-29: THE getPrice() MODULE FOR THE PRICE PROGRAM

x = 0

return

getPrice()

TIP�

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 336

337Remaining within Array Bounds

Some programmers object to using a cryptic variable name such as x because it is not
descriptive. These programmers would prefer a name such as priceIndex. Others
approve of short names like x when the variable is used only in a limited area of a pro-
gram, as it is used here, to step through an array. There are many style issues on which
programmers disagree. As a programmer, it is your responsibility to find out what con-
ventions are used among your peers in your organization.

Within the getPrice() module, the variable used as a subscript, x, is set to 0. If custItemNo is not the same
as validItem[x], then add 1 to x. Because x now holds the value 1, you next compare the customer’s requested
item number to validItem[1]. The value of x keeps increasing, and eventually a match between custItemNo
and some validItem[x] should be found.

After you find a match for the custItemNo variable in the validItem array, you know that the price of that item
is in the same position in the other array, validItemPrice. When validItem[x] is the correct item,
validItemPrice[x] must be the correct price.

Suppose that a customer orders item 457, and walk through the flowchart yourself to see if you come up with the cor-
rect price.

REMAINING WITHIN ARRAY BOUNDS

The getPrice() module in Figure 8-29 is not perfect. The logic makes one dangerous assumption: that every cus-
tomer will order a valid item number. If a customer is looking at an old catalog and orders item 107, the program will
never find a match. The value of x will just continue to increase until it reaches a value higher than the number of ele-
ments in the array. At that point, one of two things happens. When you use a subscript value that is higher than the
number of elements in an array, some programming languages stop execution of the program and issue an error mes-
sage. Other programming languages do not issue an error message but continue to search through computer memory
beyond the end of the array. Either way, the program doesn’t end elegantly. When you use a subscript that is not within
the range of acceptable subscripts, your subscript is said to be out of bounds. Ordering a wrong item number is a
frequent customer error; a good program should be able to handle the mistake and not allow the subscript to go out
of bounds.

You can improve the price-finding program by adding a flag variable and a test to the getPrice() module. You can
set the flag when you find a valid item in the validItem array, and after searching the array, check whether the flag
has been altered. See Figure 8-30.

TIP�

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 337

338 Chapter 8 • Arrays

getPrice()
foundIt = “No”
x = 0
while x < 6

if custItemNo = validItem[x] then
totBill = validItemPrice[x] * custQuantity
print custName, totBill
foundIt = “Yes”
x = x + 1

else
x = x + 1

endif
endwhile
if foundIt not equal to “Yes” then

print “Error”
endif
read custRec

return

FIGURE 8-30: THE getPrice() MODULE USING THE foundIt FLAG

No

Yes

totBill =
validItemPrice[x]
* custQuantity

x = x + 1

print
custName,

totBill

foundIt
= “Yes”

getPrice()

print
“Error”

YesNo

foundIt
= “No”

x = 0

x = x + 1

read
custRec

return

YesNo

x < 6?

custItemNo =
validItem[x]?

foundIt
= “Yes”?

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 338

339Improving Search Efficiency Using an Early Exit

In the ready() module, you can declare a variable named foundIt that acts as a flag. When you enter the
getPrice() module, you can set foundIt equal to “No”. Then, after setting x to 0, check to see if x is still less
than 6. If it is, compare custItemNo to validItem[x]. If they are equal, you know the position of the item’s
price, and you can use the price to print the customer’s bill and set the foundIt flag to “Yes”. If custItemNo is
not equal to validItem[x], you increase x by 1 and continue to search through the array. When x is 6, you
shouldn’t look through the array anymore; you’ve gone through all six legitimate items, and you’ve reached the end.
The legitimate subscripts for a six-element array are 0 through 5; your subscript variable should not be used with the
array when it reaches 6. If foundIt doesn’t have a “Yes” in it at this point, it means you never found a match for the
ordered item number; you never took the Yes path leading from the custItemNo = validItem[x]? question.
If foundIt does not have “Yes” stored in it, you should print an error message; the customer has ordered a nonexis-
tent item.

IMPROVING SEARCH EFFICIENCY USING AN EARLY EXIT

The mail-order program is still a little inefficient. The problem is that if lots of customers order item 106 or 108, their
price is found on the first or second pass through the loop. The program continues searching through the item array,
however, until x reaches the value 6. One way to stop the search once the item has been found, and foundIt is set
to “Yes”, is to set x to 6 immediately. (Setting a variable to a specific value, particularly when the new value is an abrupt
change, is also called forcing the variable to that value.) Then, when the program loops back to check whether x is still
less than 6, the loop will be exited and the program won’t bother checking any of the higher item numbers. Leaving a
loop as soon as a match is found is called an early exit; it improves the program’s efficiency. The larger the array, the
more beneficial it becomes to exit the searching loop as soon as you find what you’re looking for.

Some programmers prefer to use a flag variable for early exits; others think it is fine to
force a loop control variable to a value that stops loop execution if that is more convenient.

Figure 8-31 shows the final version of the price program. Notice the improvement to the getPrice() module. You
search the validItem array, element by element. If an item number is not matched in a given location, the sub-
script is increased and the next location is checked. As soon as an item number is located in the array, you print a line,
turn on the flag, and force the subscript to a high number (6) so the program will not check the item number array any
further.

TIP�

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 339

340 Chapter 8 • Arrays

Yes

getPrice()

finish()

No

ready()

stop

start

eof?

custRec
char custName
char custAddress
num custItemNo
num custQuantity

num validItem[0] = 106
num validItem[1] = 108
num validItem[2] = 307
num validItem[3] = 405
num validItem[4] = 457
num validItem[5] = 688

num validItemPrice[0] = 0.59
num validItemPrice[1] = 0.99
num validItemPrice[2] = 4.50
num validItemPrice[3] = 15.99
num validItemPrice[4] = 17.50
num validItemPrice[5] = 39.00

num totBill
num x
char foundIt

declare
variables

FIGURE 8-31: THE FINAL VERSION OF THE PRICE PROGRAM THAT EFFICIENTLY SEARCHES FOR PRICES BASED
ON THE ITEM A CUSTOMER ORDERS

finish()

return

close
files

ready()

return

open
files

read
custRec

No

Yes

totBill =
validItemPrice[x]
* custQuantity

custItemNo =
validItem[x]?

x = x + 1

print
custName,

totBill

foundIt
= “Yes”

getPrice()

print
“Error”

YesNo

foundIt
= “No”

x = 0

x = 6

foundIt
= “Yes”?

read
custRec

return

YesNo

x < 6?

start
perform ready()
while not eof

perform getPrice()
endwhile
perform finish()

stop

ready()
declare variables
open files
read custRec

return

getPrice()
foundIt = “No”
x = 0
while x < 6

if custItemNo = validItem[x] then
totBill = validItemPrice[x] * custQuantity
print custName, totBill
foundIt = “Yes”
x = 6

else
x = x + 1

endif
endwhile
if foundIt not equal to “Yes” then

print “Error”
endif
read custRec

return

finish()
close files

return

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 340

341Searching an Array for a Range Match

Notice that the price program is most efficient when the most frequently ordered items are
stored at the beginning of the array. When you use this technique, only the seldom-
ordered items require many cycles through the searching loop before finding a match.

Remember that you can make programs that contain arrays more flexible by declaring a
constant to hold the size of the array. Then, whenever you need to refer to the size of the
array within the program—for example, when you loop through the array during a search
operation—you can use the variable name instead of a hard-coded value like 6. If the pro-
gram must be altered later to accommodate more or fewer array elements, you need to
make only one change—you change the value of the array-size variable where it is
declared.

SEARCHING AN ARRAY FOR A RANGE MATCH

In the previous example, customer item numbers needed to exactly match item numbers stored in a table to determine
the correct price of an item. Sometimes, however, instead of finding exact matches, programmers want to work with
ranges of values in arrays. A range of values is any set of contiguous values, such as 1 through 5.

Recall the customer file description from earlier in this chapter, shown again in Figure 8-32. Suppose the company
decides to offer quantity discounts, as shown in Figure 8-33.

You want to be able to read a record and determine a discount percentage based on the value in the quantity field. One
ill-advised approach might be to set up an array with as many elements as any customer might ever order, and store
the appropriate discount for each possible number, as shown in Figure 8-34.

Number of items orderedƒƒƒƒƒƒƒƒƒƒƒ Discount %
1-9 0
10-24 10
25-48 15
49 or more 25

FIGURE 8-33: DISCOUNTS ON ORDERS BY QUANTITY

MAIL-ORDER CUSTOMER FILE DESCRIPTION
File name: CUSTREC
FIELD DESCRIPTION DATA TYPE COMMENTS
Customer name Character
Address Character
Item number Numeric A 3-digit number
Quantity Numeric A value from 1 through 99

FIGURE 8-32: MAIL-ORDER CUSTOMER FILE DESCRIPTION

TIP�

TIP�

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 341

342 Chapter 8 • Arrays

This approach has three drawbacks:

� It requires a very large array that uses a lot of memory.

� You must store the same value repeatedly. For example, each of the first 10 elements receives
the same value, 0, because if a customer orders from zero through nine items, there is no dis-
count. Similarly, each of the next 15 elements receives the same value, 10.

� Where do you stop adding array elements? Is a customer order quantity of 75 items enough?
What if a customer orders 100 or 1,000 items? No matter how many elements you place in the
array, there’s always a chance that a customer will order more.

A better approach is to create just four discount array elements, one for each of the possible discount rates, as shown
in Figure 8-35.

With the new four-element discount array, you need a parallel array to search through, to find the appropriate level
for the discount. At first, beginning programmers might consider creating an array named discountRange and
testing whether the quantity ordered equals one of the four stored values. For example:

num discountRange[0] = 0 through 9
num discountRange[1] = 10 through 24
num discountRange[2] = 25 through 48
num discountRange[3] = 49 and higher

num discount[0] = 0
num discount[1] = 10
num discount[2] = 15
num discount[3] = 25

SUPERIOR DISCOUNT ARRAYFIGURE 8-35:

num discount[0] = 0
num discount[1] = 0
num discount[2] = 0
.
.
num discount[9] = 0
num discount[10] = 10
.
.
num discount[48] = 15
num discount[49] = 25
num discount[50] = 25
.
.

FIGURE 8-34: USABLE—BUT INEFFICIENT—DISCOUNT ARRAY

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 342

343Searching an Array for a Range Match

However, you cannot create an array like the previous one. Each element in any array is simply a single variable. Any
variable can hold a value such as 6 or 12, but it can’t hold every value 6 through 12. Similarly, the
discountRange[0] variable can hold a 1, 2, 9, or any other single value, but it can’t hold 0 through 9; there is no
such numeric value.

One solution is to create an array that holds only the low-end value of each range, as Figure 8-36 shows.

Using such an array, you can compare each custQuantity value with each discountRange value in turn. You
can start with the last range limit (discountRange[3]). If custQuantity is at least that value, 49, the customer
gets the highest discount rate (discount[3]). If custQuantity is not at least discountRange[3], then
you check to see if it is at least discountRange[2], or 25. If so, the customer receives discount[2], and so
on. If you declare a variable named rate to hold the correct discount rate, and another variable named sub to use as
a subscript, then you can use the determineDiscount() module shown in Figure 8-37. This module uses a
loop to find the appropriate discount rate for an order, then calculates and prints a customer bill.

num discountRange[0] = 0
num discountRange[1] = 10
num discountRange[2] = 25
num discountRange[3] = 49

THE discountRange ARRAY USING LOW END OF EACH DISCOUNT RANGEFIGURE 8-36:

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 343

344 Chapter 8 • Arrays

An alternative approach is to store the high end of every range in an array. Then, you start
with the lowest element and check for values less than or equal to each array element
value before using the appropriate discount in the parallel array.

When using an array to store range limits, you use a loop to make a series of comparisons that would otherwise require
many separate decisions. Your program is written using fewer instructions than would be required if you did not use an
array, and modifications to your program will be easier to make in the future.

determineDiscount()
sub = 3
while sub >= 0

if custQuantity >= discountRange[sub]
rate = discount[sub]
sub = — 1

else
sub = sub — 1

endif
endwhile
billAmt = custQuantity * priceEach
billAmt = billAmt — billAmt * rate
print custName, custAddress, billAmt
read custRec

return

Yes

No Yes

No

FIGURE 8-37: FLOWCHART AND PSEUDOCODE FOR DISCOUNT DETERMINATION

determineDiscount()

sub = sub – 1

custQuantity
>=

discountRange[sub]?

rate =
discount[sub]

sub = 3

return

print custName,
custAddress, billAmt

read
custRec

sub = — 1

billAmt =
custQuantity * priceEach

billAmt =
billAmt – billAmt * rate

sub >= 0?

TIP�

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 344

Key Terms 345

CHAPTER SUMMARY

� An array is a series or list of variables in computer memory, all of which have the same name but are dif-

ferentiated with special numbers called subscripts.

� When you declare an array, you declare a programming structure that contains multiple elements, each

of which has the same name and the same data type. Each array element has a unique integer subscript

indicating how far away the individual element is from the first element.

� You often can use a variable as a subscript to an array, replacing multiple nested decisions.

� You can declare and initialize all of the elements in an array using a single statement that provides a type, a

name, and a quantity of elements for the array. You also can initialize array values within an initialization loop.

� You can use a constant array when the final desired values are fixed at the beginning of the program.

� You can load an array from a file. This step is often performed in a program’s housekeeping module.

� Searching through an array to find a value you need involves initializing a subscript, using a loop to test

each array element, and setting a flag when a match is found.

� In parallel arrays, each element in one array is associated with the element in the same relative position in

the other array.

� Your programs should ensure that subscript values do not go out of bounds—that is, take on a value out

of the range of legal subscripts.

� When you need to compare a value to a range of values in an array, you can store either the low- or

high-end value of each range for comparison.

KEY TERMS

An array is a series or list of variables in computer memory, all of which have the same name but are differentiated
with special numbers called subscripts.

A subscript is a number that indicates the position of a particular item within an array.

An index is a subscript.

Each separate array variable is one element of the array.

The size of an array is the number of elements it can hold.

In a zero-based array, the first element is accessed using a subscript of 0.

Off-by-one errors usually occur when you assume an array’s first subscript is 1 but it actually is 0.

An initialization loop is a loop structure that provides initial values for every element in any array.

Hard-coded values are explicitly assigned.

A flag is a variable that you set to indicate whether some event has occurred.

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 345

Chapter 8 • Arrays346

Parallel arrays are two or more arrays in which each element in one array is associated with the element in the same
relative position in the other array or arrays.

When you use a subscript that is not within the range of acceptable subscripts, your subscript is said to be out
of bounds.

Forcing a variable to a value is assigning a specific value to it, particularly when the assignment causes a sudden
change in value.

Leaving a loop as soon as a match is found is called an early exit.

A range of values is any set of contiguous values.

REVIEW QUESTIONS

1. A subscript is a(n) .

a. element in an array
b. alternate name for an array
c. number that indicates the position of a particular item within an array
d. number that represents the highest value stored within an array

2. Each variable in an array must have the same as the others.

a. subscript
b. data type
c. value
d. memory location

3. Each variable in an array is called a(n) .

a. element
b. subscript
c. component
d. data type

4. The subscripts of any array are always .

a. characters
b. fractions
c. integers
d. strings of characters

5. Suppose you have an array named number, and two of its elements are number[1] and
number[4]. You know that .

a. the two elements hold the same value
b. the two elements are at the same memory location
c. the array holds exactly four elements
d. there are exactly two elements between those two elements

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 346

Review Questions 347

6. Suppose you want to write a program that reads customer records and prints a summary of the
number of customers who owe more than $1,000 each, in each of 12 sales regions. Customer fields
include name, zipCode, balanceDue, and regionNumber. At some point during record pro-
cessing, you would add 1 to an array element whose subscript would be represented by

.

a. name
b. zipCode
c. balanceDue
d. regionNumber

7. Arrays are most useful when you use a as a subscript.

a. numeric constant
b. character
c. variable
d. file name

8. Suppose you create a program with a seven-element array that contains the names of the days of
the week. In the housekeeping() module, you display the day names using a subscript named
dayNum . In the same program, you display the same array values again in the finish() module.
In the finish() module, you as a subscript to the array.

a. must use dayNum
b. can use dayNum, but can also use another variable
c. must not use dayNum
d. must use a numeric constant

9. Declaring a numeric array sets its individual elements’ values to .

a. zero in every programming language
b. zero in some programming languages
c. consecutive digits in every programming language
d. consecutive digits in some programming languages

10. A array is one in which the stored values are fixed permanently at the start of the
program.

a. constant
b. variable
c. persistent
d. continual

11. When you create an array of values that you explicitly set upon creation, using numeric constants,
the values are said to be .

a. postcoded
b. precoded
c. soft coded
d. hard coded

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 347

Chapter 8 • Arrays348

12. Many arrays contain values that change periodically. For example, a bank program that uses an
array containing mortgage rates for various terms might change several times a day. The newest
values are most likely .

a. typed into the program by a programmer who then recompiles the program before it is used
b. calculated by the program, based on historical trends
c. read into the program from a file that contains the current rates
d. typed in by a clerk each time the program is executed for a customer

13. A is a variable that you set to indicate a True or False state.

a. subscript
b. flag
c. counter
d. banner

14. Two arrays in which each element in one array is associated with the element in the same relative
position in the other array are arrays.

a. cohesive
b. perpendicular
c. hidden
d. parallel

15. In most programming languages, the subscript used to access the last element in an array
declared as num values[12] is .

a. 0
b. 11
c. 12
d. 13

16. In most programming languages, a subscript for a 10-element array is out of bounds when it
.

a. is lower than 0
b. is higher than 9
c. both of these
d. neither a nor b

17. If you perform an early exit from a loop while searching through an array for a match, you
.

a. quit searching as soon as you find a match
b. quit searching before you find a match
c. set a flag as soon as you find a match, but keep searching for additional matches
d. repeat a search only if the first search was unsuccessful

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 348

Find the Bugs 349

18. In programming terminology, the values 4 through 20 represent a(n) of values.

a. assortment
b. range
c. diversity
d. collection

19. Each element in a five-element array can hold value(s).

a. one
b. five
c. at least five
d. an unlimited number of

20. After the annual dog show in which the Barkley Dog Training Academy awards points to each par-
ticipant, the Academy assigns a status to each dog based on the following criteria:

Points Earned Level of Achievement
0–5 Good
6–7 Excellent
8–9 Superior
10 Unbelievable

The Academy needs a program that compares a dog’s points earned with the grading scale, in
order to award a certificate acknowledging the appropriate level of achievement. Of the following,
which set of values would be most useful for the contents of an array used in the program?

a. 0, 6, 9, 10
b. 5, 7, 8, 10
c. 5, 7, 9, 10
d. any of these

FIND THE BUGS

Each of the following pseudocode segments contains one or more bugs that you must find and correct.

1. This application prints a summary report for an aluminum can recycling drive at a high school.
When a student brings in cans, a record is created that contains two fields—the student’s year in
school (1, 2, 3, or 4) and the number of cans submitted. Student records have not been sorted. The
report lists each of the four classes and the total number of cans recycled for each class.

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 349

Chapter 8 • Arrays350

start
ƒƒƒƒƒperformƒhousekeeping()
ƒƒƒƒƒwhileƒnotƒeof
ƒƒƒƒƒƒƒƒƒƒperformƒaccumulateCans()
ƒƒƒƒƒendwhile
ƒƒƒƒƒperformƒfinish()
stop

housekepping()
ƒƒƒƒƒdeclareƒvariables
ƒƒƒƒƒƒƒƒƒstudentRec
ƒƒƒƒƒƒƒƒƒƒƒƒƒnumƒyear
ƒƒƒƒƒƒƒƒƒƒƒƒƒnumƒcans
ƒƒƒƒƒƒƒƒƒcharƒheading1ƒ=ƒ“CanƒRecyclingƒReport”
ƒƒƒƒƒƒƒƒƒcharƒheading2ƒ=ƒ“YearƒƒƒƒƒƒƒƒƒCans”
ƒƒƒƒƒƒƒƒƒconstƒnumƒSIZEƒ=ƒ4
ƒƒƒƒƒƒƒƒƒnumƒcollected[SIZE]ƒallƒsetƒtoƒ0
ƒƒƒƒƒopenƒfiles
ƒƒƒƒƒreadƒstudentRec
return

accumulateCans()
ƒƒƒƒƒifƒyearƒ<ƒ1ƒORƒyearƒ>=ƒSIZEƒthen
ƒƒƒƒƒƒƒƒƒƒƒyearƒ=ƒ0
ƒƒƒƒƒendif
ƒƒƒƒƒcollected[SIZE]ƒ=ƒcollected[SIZE]ƒ+ƒcans
ƒƒƒƒƒreadƒstudentRec
return

finish()
ƒƒƒƒƒprintƒheading1
ƒƒƒƒƒprintƒheading2
ƒƒƒƒƒyearƒ=ƒ1
ƒƒƒƒƒwhileƒyearƒ<ƒSIZE
ƒƒƒƒƒƒƒƒƒƒprintƒyear,ƒcollected[SIZE]
ƒƒƒƒƒƒƒƒƒƒyearƒ=ƒyearƒ+ƒ1
ƒƒƒƒƒendwhile
ƒƒƒƒƒcloseƒfiles
return

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 350

Find the Bugs 351

2. This application prints a report card for each student at Pedagogic College. A record has been cre-
ated for each student containing the student’s name, address, and zip code, as well as a numeric
average (from 0 through 100) for all the student’s work for the semester. A report card is printed
for each student containing the student’s name, address, city, state, and zip code, as well as a let-
ter grade based on the following scale:

90–100 A
80–89 B
70–79 C
60–69 D
59 and below F

The student’s city and state are determined from the student’s zip code. A file is read containing
three fields—zip code, city, and state—for each of the 100 zip codes the college serves. For this
program, assume that all the student averages have been verified to be between 0 and 100 inclu-
sive and that all the zip codes have been verified as valid and stored in the zip code file.

start
ƒƒƒƒƒperformƒhousekeeping()
ƒƒƒƒƒwhileƒnotƒeof
ƒƒƒƒƒƒƒƒƒƒperformƒproduceGradeReport()
ƒƒƒƒƒendwhile
ƒƒƒƒƒperformƒfinish()
stop

housekepping()
ƒƒƒƒƒdeclareƒvariables
ƒƒƒƒƒƒƒƒƒstudentRec
ƒƒƒƒƒƒƒƒƒƒƒƒƒcharƒname
ƒƒƒƒƒƒƒƒƒƒƒƒƒcharƒaddress
ƒƒƒƒƒƒƒƒƒƒƒƒƒnumƒzipCode
ƒƒƒƒƒƒƒƒƒƒƒƒƒnumƒaverage
ƒƒƒƒƒƒƒƒƒzipRec
ƒƒƒƒƒƒƒƒƒƒƒƒƒnumƒzip
ƒƒƒƒƒƒƒƒƒƒƒƒƒcharƒcity
ƒƒƒƒƒƒƒƒƒƒƒƒƒcharƒstate

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 351

Chapter 8 • Arrays352

ƒƒƒƒƒƒƒƒƒƒconstƒnumƒZIPSIZEƒ=ƒ100
ƒƒƒƒƒƒƒƒƒƒnumƒstoredZip[ZIPSIZE]
ƒƒƒƒƒƒƒƒƒƒcharƒstoredCity[ZIPSIZE]
ƒƒƒƒƒƒƒƒƒƒcharƒstoredState[SIZE]

ƒƒƒƒƒƒƒƒƒƒconstƒnumƒGRADESIZEƒ=ƒ5
ƒƒƒƒƒƒƒƒƒƒconstƒnumƒgradeLevel[1]ƒ=ƒ80
ƒƒƒƒƒƒƒƒƒƒconstƒnumƒgradeLevel[2]ƒ=ƒ70
ƒƒƒƒƒƒƒƒƒƒconstƒnumƒgradeLevel[3]ƒ=ƒ60
ƒƒƒƒƒƒƒƒƒƒconstƒnumƒgradeLevel[4]ƒ=ƒ0

ƒƒƒƒƒƒƒƒƒƒconstƒcharƒgrade[0]ƒ=ƒ'A'
ƒƒƒƒƒƒƒƒƒƒconstƒcharƒgrade[1]ƒ=ƒ'B'
ƒƒƒƒƒƒƒƒƒƒconstƒcharƒgrade[2]ƒ=ƒ'C'
ƒƒƒƒƒƒƒƒƒƒconstƒcharƒgrade[3]ƒ=ƒ'S'
ƒƒƒƒƒƒƒƒƒƒconstƒcharƒgrade[4]ƒ=ƒ'F'

ƒƒƒƒƒƒƒƒƒnumƒzipCodeCount
ƒƒƒƒƒƒƒƒƒcharƒzipFound
ƒƒƒƒƒƒƒƒƒnumƒsub
ƒƒƒƒƒopenƒfiles
ƒƒƒƒƒzipCodeCountƒ=ƒ0
ƒƒƒƒƒreadƒzipRec
ƒƒƒƒƒwhileƒnotƒeof
ƒƒƒƒƒƒƒƒƒƒzipƒ=ƒstoredZip[x]
ƒƒƒƒƒƒƒƒƒƒstoredCity[x]ƒ=ƒcity
ƒƒƒƒƒƒƒƒƒƒstoredState[x]ƒ=ƒstate
ƒƒƒƒƒƒƒƒƒƒzipCodeCountƒ=ƒzipCodeCountƒ+ƒ1
ƒƒƒƒƒƒƒƒƒreadƒzipRec
ƒƒƒƒƒendwhile
ƒƒƒƒƒreadƒstudentRec
return

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 352

Exercises 353

produceGradeReport()
ƒƒƒƒƒprintƒ“GradeƒReport”
ƒƒƒƒƒprintƒname
ƒƒƒƒƒprintƒaddress
ƒƒƒƒƒzipFoundƒ=ƒ“N”
ƒƒƒƒƒsubƒ=ƒ0
ƒƒƒƒƒwhileƒzipFoundƒ=ƒ“N”
ƒƒƒƒƒƒƒƒƒƒifƒzipCodeƒ=ƒstoredZip[ZIPCODESIZE]
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprintƒstoredCity[ZIPCODESIZE]
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprintƒstoredState[ZIPCODESIZE]
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprintƒzipCode
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒzipFoundƒ=ƒ“Y”
ƒƒƒƒƒƒƒƒƒƒendif
ƒƒƒƒƒƒƒƒƒƒsubƒ=ƒsubƒ+ƒ1
ƒƒƒƒƒƒendwhile
ƒƒƒƒƒƒsubƒ=ƒ0
ƒƒƒƒƒƒwhileƒsubƒ<ƒGRADESIZE
ƒƒƒƒƒƒƒƒƒƒifƒaverageƒ>=ƒgradeLevel[sub]ƒthen
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒprintƒgrade[sub]
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒsubƒ=ƒ0
ƒƒƒƒƒƒƒƒƒƒendif
ƒƒƒƒƒƒendwhile
ƒƒƒƒƒƒreadƒstudentRec
return

finish()
ƒƒƒƒƒcloseƒfiles
return

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 353

Chapter 8 • Arrays354

EXERCISES

1. The city of Cary is holding a special census. The census takers collect one record for each citizen,
as follows:

CENSUS FILE DESCRIPTION
File name: CENSUS
Not sorted
FIELD DESCRIPTION DATA TYPE EXAMPLE
Age Numeric 42
Gender Character F
Marital Status Character M
Voting District Numeric 18

The voting district field contains a number from 1 through 22.

Design the logic of a program that would produce a count of the number of citizens residing in
each of the 22 voting districts.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.
c. Draw the flowchart.
d. Write the pseudocode.

2. The Midville Park District maintains records containing information about players on its soccer
teams. Each record contains a player’s first name, last name, and team number. The teams are:

Soccer Teams
TEAM NUMBER TEAM NAME
1 Goal Getters
2 The Force
3 Top Guns
4 Shooting Stars
5 Midfield Monsters

Design the logic for a report that lists all players along with their team numbers and team names.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.
c. Draw the flowchart.
d. Write the pseudocode.

3. Create the logic for a program that produces a count of the number of players registered for each
team listed in Exercise 2.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.
c. Draw the flowchart.
d. Write the pseudocode.

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 354

Exercises 355

4. An elementary school contains 30 classrooms numbered 1 through 30. Each classroom can contain
any number of students up to 35. Each student takes an achievement test at the end of the school
year and receives a score from 0 through 100. One record is created for each student in the school;
each record contains a student ID, classroom number, and score on the achievement test. Design
the logic for a program that lists the total points scored for each of the 30 classroom groups.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.
c. Draw the flowchart.
d. Write the pseudocode.

5. Modify Exercise 4 so that each classroom’s average of the test scores prints, rather than each
classroom’s total.

6. The school in Exercises 4 and 5 maintains a file containing the teacher’s name for each classroom.
Each record in this file contains a room number from 1 through 30, and the last name of the
teacher. Modify Exercise 5 so that the correct teacher’s name appears on the list with his or her
class’s average.

7. A fast-food restaurant sells the following products:

Fast-Food Items
PRODUCT PRICE
Cheeseburger 2.49
Pepsi 1.00
Chips .59

Design the logic for a program that reads a record containing a customer number and item name,
and then prints either the correct price or the message “Sorry, we do not carry that” as output.

a. Draw the flowchart.
b. Write the pseudocode.

8. Each week, the home office for a fast-food restaurant franchise distributes a file containing new
prices for the items it carries. The file contains the item name and current price. Design the logic
for a program that loads the current values into arrays. Then, the program reads a record contain-
ing a customer number and item name, and prints either the correct price or the message “Sorry,
we do not carry that” as output.

a. Draw the flowchart.
b. Write the pseudocode.

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 355

Chapter 8 • Arrays356

9. The city of Redgranite is holding a special census. The census takers collect one record for each
citizen as follows:

CENSUS FILE DESCRIPTION
File name: CENSUS
Not sorted
FIELD DESCRIPTION DATA TYPE EXAMPLE
Age Numeric 42
Gender Character F
Marital Status Character M
Voting District Numeric 18

Design the logic of a program that produces a count of the number of citizens in each of the fol-
lowing age groups: under 18, 18 through 30, 31 through 45, 46 through 64, and 65 and older.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.
c. Draw the flowchart.
d. Write the pseudocode.

10. A company desires a breakdown of payroll by department. Input records are as follows:

PAYROLL FILE DESCRIPTION
File name: PAY
FIELD DESCRIPTION DATA TYPE EXAMPLE
Employee Last Name Character Dykeman
Employee First Name Character Ellen
Department Numeric 3
Hourly Salary Numeric 18.50
Hours Worked Numeric 40

Input records are organized in alphabetical order by employee, not in department number order.

The output is a list of the seven departments in the company (numbered 1 through 7) and the total
gross payroll (rate times hours) for each department.

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.
c. Draw the flowchart.
d. Write the pseudocode.

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 356

Exercises 357

11. Modify Exercise 10 so that the report lists department names as well as numbers. The department
names are:

Department Names and Numbers
DEPARTMENT NUMBER DEPARTMENT NAME
1 Personnel
2 Marketing
3 Manufacturing
4 Computer Services
5 Sales
6 Accounting
7 Shipping

12. Modify the report created in Exercise 11 so that it prints a line of information for each employee
before printing the department summary at the end of the report. Each detail line must contain the
employee’s name, department number, department name, hourly wage, hours worked, gross pay,
and withholding tax.

Withholding taxes are based on the following percentages of gross pay:

Withholding Taxes
WEEKLY SALARY WITHHOLDING %
0.00–200.00 10
200.01–350.00 14
350.01–500.00 18
500.01–up 22

13. The Perfect Party Catering Company keeps records concerning the events it caters as follows:

EVENT FILE DESCRIPTION
File name: CATER
FIELD DESCRIPTION DATA TYPE EXAMPLE
Event Number Numeric 15621
Host Name Character Profeta
Month Numeric 10
Day Numeric 15
Year Numeric 2007
Meal Selection Numeric 4
Number of Guests Numeric 150

Additionally, a meal file contains the meal selection codes (such as 4), name of entree (such as
“Roast beef”), and current price per guest (such as 19.50). Assume there are eight numbered meal
records in the file.

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 357

Chapter 8 • Arrays358

Design the logic for a program that produces a report that lists each event number, host name,
date, meal, guests, gross total price for the party, and price for the party after discount. Print the
month name—for example, “October”—rather than “10”. Print the meal selection—for example,
“Roast beef”—rather than “4”. The gross total price for the party is the price per guest for the
meal times the number of guests. The final price includes a discount based on the following table:

Discounts for Large Parties
NUMBER OF GUESTS DISCOUNT
1–25 $0
26–50 $75
51–100 $125
101–250 $200
251 and over $300

a. Design the output for this program; create either sample output or a print chart.
b. Create the hierarchy chart.
c. Draw the flowchart.
d. Write the pseudocode.

14. Daily Life Magazine wants an analysis of the demographic characteristics of its readers. The
Marketing Department has collected reader survey records in the following format:

Magazine Reader FILE DESCRIPTION
File name: MAGREADERS
Not sorted
FIELD DESCRIPTION DATA TYPE EXAMPLE
Age Numeric 31
Gender Character M
Marital Status Character S
Annual Income Numeric 45000

a. Create the logic for a program that would produce a count of readers by age groups as follows: under 20,
20–29, 30–39, 40–49, and 50 and older.

b. Create the logic for a program that would produce a count of readers by gender within age group—that is,
under 20 females, under 20 males, under 30 females, under 30 males, and so on.

c. Create the logic for a program that would produce a count of readers by income groups as follows: under
$20,000, $20,000–$24,999, $25,000–$34,999, $35,000–$49,999, and $50,000 and up.

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 358

Exercises 359

15. Glen Ross Vacation Property Sales employs seven salespeople as follows:

Salespeople
ID NUMBER NAME
103 Darwin
104 Kratz
201 Shulstad
319 Fortune
367 Wickert
388 Miller
435 Vick

When a salesperson makes a sale, a record is created including the date, time, and dollar amount
of the sale, as follows: The time is expressed in hours and minutes, based on a 24-hour clock. The
sale amount is expressed in whole dollars.

SALE FIELD DESCRIPTION
File name: SALES
FIELD DESCRIPTION DATA TYPE EXAMPLE
Salesperson Numeric 319
Month Numeric 02
Day Numeric 21
Year Numeric 2008
Time Numeric 1315
Sale Amount Numeric 95900

Salespeople earn a commission that differs for each sale, based on the following rate schedule:

Commission Rates
SALE AMOUNT RATE
$0–$50,000 .04
$50,001–$125,000 .05
$125,001–$200,000 .06
$200,001 and up .07

Design the output and either the flowchart or pseudocode that produces each of the following
reports:

a. A report listing each salesperson number, name, total sales, and total commissions
b. A report listing each month of the year as both a number and a word (for example, “01 January”), and the

total sales for the month for all salespeople
c. A report listing total sales as well as total commissions earned by all salespeople for each of the following

time frames, based on hour of the day: 00–05, 06–12, 13–18, and 19–23

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 359

Chapter 8 • Arrays360

DETECTIVE WORK

1. Find at least five definitions of an array.

2. Using Help in Microsoft Excel or another spreadsheet program, discover how to use the
vlookup() function. How is this function used?

3. What is a Fibonacci sequence? How do Fibonacci sequences apply to natural phenomena? Why do
programmers use an array when working with this mathematical concept?

UP FOR DISCUSSION

1. A train schedule is an everyday, real-life example of an array. Think of at least four more.

2. Every element in an array always has the same data type. Why is this necessary?

8 Chapter CXXXX 35539.ps 10-13-05 8:37 AM Page 360

9
After studying Chapter 9, you should be able to:

� Describe the need for sorting data

� Swap two values in computer memory

� Use a bubble sort

� Use an insertion sort

� Use a selection sort

� Use indexed files

� Use a linked list

� Use multidimensional arrays

ADVANCED ARRAY MANIPULATION

361

362 Chapter 9 • Advanced Array Manipulation

UNDERSTANDING THE NEED FOR SORTING RECORDS

When you store data records, they exist in some sort of order; that is, one record is first, another second, and so on.
When records are in sequential order, they are arranged one after another on the basis of the value in some field.
Examples of records in sequential order include employee records stored in numeric order by Social Security number or
department number, or in alphabetic order by last name or department name. Even if the records are stored in a ran-
dom order—for example, the order in which a data-entry clerk felt like entering them—they still are in some order,
although probably not the order desired for processing or viewing. When this is the case, the data records need to be
sorted, or placed in order, based on the contents of one or more fields. When you sort data, you can sort either in
ascending order, arranging records from lowest to highest value within a field, or descending order, arranging
records from highest to lowest value. Here are some examples of occasions when you would need to sort records:

� A college stores students’ records in ascending order by student ID number, but the registrar
wants to view the data in descending order by credit hours earned so he can contact students
who are close to graduation.

� A department store maintains customer records in ascending order by customer number, but at
the end of a billing period, the credit manager wants to contact customers whose balances are 90
or more days overdue. The manager wants to list these overdue customers in descending order
by the amount owed, so the customers maintaining the biggest debt can be contacted first.

� A sales manager keeps records for her salespeople in alphabetical order by last name, but
needs to list the annual sales figure for each salesperson so she can determine the median
annual sale amount. The median value in a list is the value of the middle item when the values
are listed in order; it is not the same as the arithmetic average, or mean.

To help you understand the difference between median and mean, consider the following
five values: 0, 7, 10, 11, 12. The median value is the middle position’s value (when the
values are listed in numerical order), or 10. The mean, however, is the sum (40) divided by
the number of values (5), which evaluates to 8. The median is used as a statistic in many
cases because it represents a more typical case—half the values are below it and half are
above it. Unlike the median, the mean is skewed by a few very high or low values.

Sorting is usually reserved for a relatively small number of data items. If thousands of
customer records are stored, and they frequently need to be accessed in order based on
different fields (alphabetical order by customer name one day, zip code order the next),
the records would probably not be sorted at all, but would be indexed or linked. You learn
about indexing and linking later in this chapter.

When computers sort data, they always use numeric values when making comparisons between values. This is clear when
you sort records by fields such as a numeric customer ID or balance due. However, even alphabetic sorts are numeric,
because everything that is stored in a computer is stored as a number using a series of 0s and 1s. In every popular com-
puter coding scheme, “B” is numerically one greater than “A”, and “y” is numerically one less than “z”. Unfortunately,
whether “A” is represented by a number that is greater or smaller than the number representing “a” depends on your sys-
tem. Therefore, to obtain the most useful and accurate list of alphabetically sorted records, either the data-entry personnel
should be consistent in the use of capitalization, or the programmer should convert all the data to consistent capitalization.

TIP�

TIP�

363Understanding How to Swap Two Values

Because “A” is always less than “B”, alphabetic sorts are always considered ascending
sorts. The most popular coding schemes include ASCII, Unicode, and EBCDIC. Each is a
code in which a number represents every computer character. Appendix B contains addi-
tional information about these codes.

It’s possible that as a professional programmer, you will never have to write a program
that sorts records, because organizations can purchase prewritten, or “canned,” sorting
programs. Additionally, many popular language compilers come with built-in methods
that can sort data for you. However, it is beneficial to understand the sorting process so
that you can write a special-purpose sort when needed. Understanding sorting also
improves your array-manipulating skills.

UNDERSTANDING HOW TO SWAP TWO VALUES

Many sorting techniques have been developed. A concept that is central to most sorting techniques involves swapping
two values. When you swap the values stored in two variables, you reverse their positions; you set the first variable
equal to the value of the second, and the second variable equal to the value of the first. However, there is a trick to
reversing any two values. Assume you have declared two variables as follows:

num score1 = 90
num score2 = 85

You want to swap the values so that score1 is 85 and score2 is 90. If you first assign score1 to score2
using a statement such as score2 = score1, both score1 and score2 hold 90 and the value 85 is lost.
Similarly, if you first assign score2 to score1 using a statement such as score1 = score2, both variables
hold 85 and the value 90 is lost.

The solution to swapping the values lies in creating a temporary variable to hold one of the scores; then, you can
accomplish the swap as shown in Figure 9-1. First, the value in score2, 85, is assigned to a temporary holding vari-
able, named temp. Then, the score1 value, 90, is assigned to score2. At this point, both score1 and score2
hold 90. Then, the 85 in temp is assigned to score1. Therefore, after the swap process, score1 holds 85 and
score2 holds 90.

TIP�

TIP�

364 Chapter 9 • Advanced Array Manipulation

In Figure 9-1, you can accomplish identical results by assigning score1 to temp, assign-
ing score2 to score1, and finally assigning temp to score2.

USING A BUBBLE SORT

One of the simplest sorting techniques to understand is a bubble sort. You can use a bubble sort to arrange records in
either ascending or descending order. In a bubble sort, items in a list are compared with each other in pairs, and when
an item is out of order, it swaps values with the item below it. With an ascending bubble sort, after each adjacent pair of
items in a list has been compared once, the largest item in the list will have “sunk” to the bottom. After many passes
through the list, the smallest items rise to the top like bubbles in a carbonated drink.

A bubble sort is sometimes called a sinking sort.

Assume that five student test scores are stored in a file and you want to sort them in ascending order for printing.
To begin, you can define three modules in the mainline logic, as shown in Figure 9-2: housekeeping(),
sortScores(), and finishUp().

The housekeeping() module of this program defines a variable name for each individual score in the input file
(inScore) and sets up an array of five elements (score) in which to store the five scores. The entire file is then
read into memory, one score at a time, and each score is stored in one element of the array. See Figure 9-3.

switchTwoValues()
 temp = score2
 score2 = score1
 score1 = temp
return

FIGURE 9-1: A MODULE THAT SWAPS TWO VALUES

switchTwoValues()

temp =
score2

return

score2 =
score1

score1 =
temp

TIP�

TIP�

365Using a Bubble Sort

housekeeping()
 declare variables
 open files
 read inScore
 while not eof
 score[x] = inScore
 x = x + 1
 read inScore
 endwhile
return

num inScore
num score[5]
num x = 0
num temp

eof?

FIGURE 9-3: THE housekeeping() MODULE FOR THE SCORE-SORTING PROGRAM

read
inScore

score[x]
= inScore

x = x + 1
read

inScore
No

Yes

housekeeping()

declare
variables

open
files

return

start
 perform housekeeping()
 perform sortScores()
 perform finishUp()
stop

FIGURE 9-2: MAINLINE LOGIC FOR THE SCORE-SORTING PROGRAM

start

stop

housekeeping()

sortScores()

finishUp()

366 Chapter 9 • Advanced Array Manipulation

When the program logic leaves the housekeeping() module and enters the sortScores() module, five
scores have been placed in the array. For example, assume they are:

score[0] = 90
score[1] = 85
score[2] = 65
score[3] = 95
score[4] = 75

To begin sorting this list of scores, you compare the first two scores. If they are out of order, you reverse their positions,
or swap their values. That is, if score[0] is more than score[1], then score[0] assumes the value 85 and
score[1] takes on the value 90. After this swap, the scores are in slightly better order than they were originally.

You could reverse the values of score[0] and score[1] using the following code:

switchValues()
temp = score[1]
score[1] = score[0]
score[0] = temp

return

However, this code segment’s usefulness is limited because it switches only the first two elements of the score array.
If you use hard values such as 0 and 1 as subscripts, then you must write additional statements to swap the values in
positions 1 and 2, 2 and 3, and 3 and 4. A more universal switchValues() module is shown in Figure 9-4. This
module switches any two adjacent elements in the score array when the variable x represents the position of the
first of the two elements, and the value x + 1 represents the subsequent position.

switchValues()
 temp = score[x + 1]
 score[x + 1] = score[x]
 score[x] = temp
return

FIGURE 9-4: THE switchValues() MODULE THAT SWAPS ANY TWO ADJACENT VALUES IN AN ARRAY

switchValues()

temp =
score[x + 1]

return

score[x + 1] =
score[x]

score[x] =
temp

367Using a Bubble Sort

For an ascending sort, you need to perform the switchValues() module whenever any given element x of the
score array has a value greater than the next element, x + 1, of the score array. For any x, if the xth element is
not greater than the element at position x + 1, the switch should not take place. For example, when score[x] is
90 and score[x + 1] is 85, a swap should occur. On the other hand, when score[x] is 65 and score[x + 1]
is 95, then no swap should occur. See Figure 9-5.

For a descending sort, in which you want to end up with the highest value first, write the
decision so that you perform the switch when score[x] is less than score[x + 1].

In the sort, you could use either greater than (>) or greater than or equal to (>=) to com-
pare adjacent values. Using the greater than comparison to determine when to switch val-
ues in the sort is more efficient than using greater than or equal to, because if two
compared values are equal, there is no need to swap them.

You must execute the decision score[x] > score[x + 1]? four times—when x is 0, 1, 2, and 3. You should
not attempt to make the decision when x is 4, because then you would compare score[4] to score[4 + 1],
and there is no valid position for score[5] in the array. (Remember that the valid subscripts in a five-element array
are the values 0 through 4.) Therefore, Figure 9-6 shows the correct loop, which compares the first two array elements,
swapping them if they are out of order, increases the subscript, and continues to test array element values and make
appropriate swaps while the array subscript, x, is less than 4.

if score[x] > score[x + 1] then
 perform switchValues()
endif

FIGURE 9-5: DECISION SHOWING WHEN TO CALL switchValues() MODULE

YesNo

switchValues()

score[x] >
score[x + 1]?

TIP�

TIP�

368 Chapter 9 • Advanced Array Manipulation

If you have these original scores:
score[0] = 90
score[1] = 85
score[2] = 65
score[3] = 95
score[4] = 75

then the logic proceeds like this:

1. Set x to 0.

2. The value of x is less than 4, so enter the loop.

3. Compare score[x], 90, to score[x + 1], 85. The two scores are out of order, so they

are switched.

The list is now:
score[0] = 85
score[1] = 90
score[2] = 65
score[3] = 95
score[4] = 75

x = 0
while x < 4
 if score[x] > score[x + 1] then
 perform switchValues()
 endif
 x = x + 1
endwhile

FIGURE 9-6: LOOP THAT COMPARES ENTIRE LIST OF FIVE SCORES, MAKING NECESSARY SWAPS

YesNo

switchValues()

score[x] >
score[x + 1]?

x < 4?

x = x + 1

x = 0

Yes

No

369Using a Bubble Sort

4. After the swap, add 1 to x so x is 1.

5. Return to the top of the loop. The value of x is less than 4, so enter the loop a second time.

6. Compare score[x], 90, to score[x + 1], 65. These two values are out of order, so swap them.

Now the result is:

score[0] = 85
score[1] = 65
score[2] = 90
score[3] = 95
score[4] = 75

7. Add 1 to x, so x is now 2.

8. Return to the top of the loop. The value of x is less than 4, so enter the loop.

9. Compare score[x], 90, to score[x + 1], 95. These values are in order, so no switch is made.

10. Add 1 to x, making it 3.

11. Return to the top of the loop. The value of x is less than 4, so enter the loop.

12. Compare score[x], 95, to score[x + 1], 75. These two values are out of order, so

switch them.

Now the list is as follows:

score[0] = 85
score[1] = 65
score[2] = 90
score[3] = 75
score[4] = 95

13. Add 1 to x, making it 4.

14. Return to the top of the loop. The value of x is 4, so do not enter the loop again.

When x reaches 4, every element in the list has been compared with the one adjacent to it. The highest score, a 95, has
“sunk” to the bottom of the list. However, the scores still are not in order. They are in slightly better ascending order than they
were to begin with, because the largest value is at the bottom of the list, but they are still out of order. You need to repeat the
entire procedure illustrated in Figure 9-6 so that 85 and 65 (the current score[0] and score[1] values) can switch
places, and 90 and 75 (the current score[2] and score[3] values) can switch places. Then, the scores will be 65,
85, 75, 90, and 95. You will have to perform the procedure to go through the list yet again to swap the 85 and 75.

As a matter of fact, if the scores had started out in the worst possible order (95, 90, 85, 75, 65), the process shown in
Figure 9-6 would have to take place four times. In other words, you would have to pass through the list of values four
times, making appropriate swaps, before the numbers would appear in perfect ascending order. You need to place the
loop in Figure 9-6 within another loop that executes four times.

370 Chapter 9 • Advanced Array Manipulation

Figure 9-7 shows the complete logic for the sortScores() module. The sortScores() module uses a loop
control variable named y to cycle through the list of scores four times. The y variable is added to the variable list
declared in housekeeping(). With an array of five elements, it takes four comparisons to work through the array
once, comparing each pair, and it takes four sets of those comparisons to ensure that every element in the entire array
is in sorted order.

sortScores()
 y = 0
 while y < 4
 x = 0
 while x < 4
 if score[x] > score[x + 1] then
 perform switchValues()
 endif
 x = x + 1
 endwhile
 y = y + 1
 endwhile
return

FIGURE 9-7: THE sortScores() MODULE

YesNo score[x] >
score[x + 1]?

switchValues()

x < 4?

x = x + 1

x = 0

y = y + 1

y < 4?

y = 0

Yes

No

Yes

No

sortScores()

return

371Using a Bubble Sort

When you sort the elements in an array this way, you use nested loops—an inner loop within an outer loop. The general rule is
that, whatever the number of elements in the array, the greatest number of pair comparisons you need to make during each
loop is one less than the number of elements in the array. You use an inner loop to make the pair comparisons. In addition, the
number of times you need to process the list of values is one less than the number of elements in the array. You use an outer
loop to control the number of times you walk through the list. As an example, if you want to sort a 10-element array, you make
nine pair comparisons on each of nine rotations through the loop, executing a total of 81 score comparison statements.

In many cases, you do not want to sort a single data item such as a score. Instead, you
might want to sort data records that contain fields such as ID number, name, and score,
placing the records in score order. The sorting procedure remains basically the same, but
you need to store entire records in an array. Then, you make your comparisons based on a
single field, but you make your swaps using entire records.

REFINING THE BUBBLE SORT BY USING A CONSTANT FOR THE ARRAY SIZE

Keep in mind that when performing a bubble sort, you need to perform one fewer pair comparison than you have ele-
ments. You also pass through the list of elements one fewer time than you have elements. In Figure 9-7, you sorted a
five-element loop, so you performed the inner loop while x was less than 4 and the outer loop while y was less than 4.
You can add a refinement that makes the sorting logic easier to understand. When performing a bubble sort on an
array, you compare two separate loop control variables with a value that equals the number of elements in the list. If the
number of elements in the array is stored in a constant named ELEMENTS, the general logic for a bubble sort is
shown in Figure 9-8.

To use the logic shown in Figure 9-8, you must declare ELEMENTS along with any other variables and constants in
the housekeeping() module. There you can set the value of ELEMENTS to 5, because you know there are five
elements in the array to be sorted. Besides being useful for sorting, the ELEMENTS constant is also useful in any
module that prints the scores, sums them, or performs any other activity with the list. For example, Figure 9-9 shows an
entire program that uses a bubble sort. Not only does the sortScores() module use ELEMENTS to control the
number of passes through the array to perform the sort, but the finishUp() module in Figure 9-9 also uses the
ELEMENTS constant to control the print loop. One advantage to using a named constant instead of an unnamed, lit-
eral constant (such as 5) in your program is that if you modify the program array to accommodate more or fewer scores
in the future, you can simply change the value in the named constant once where it is defined. Then, you do not need to
alter every instance of a literal constant number throughout the program; the named location automatically holds the
correct value in each place in the program where it is used.

Figure 9-9 shows pseudocode for the finishUp() module only; pseudocode for the other modules has been
shown in previous figures in this chapter.

TIP�

372 Chapter 9 • Advanced Array Manipulation

sortScores()
 y = 0
 while y < (ELEMENTS - 1)
 x = 0
 while x < (ELEMENTS - 1)
 if score[x] > score[x + 1] then
 perform switchValues()
 endif
 x = x + 1
 endwhile
 y = y + 1
 endwhile
return

FIGURE 9-8: GENERIC BUBBLE SORT MODULE USING A NAMED CONSTANT FOR NUMBER OF ELEMENTS

YesNo score[x] >
score[x + 1]?

switchValues()

x <
(ELEMENTS - 1)?

x = x + 1

x = 0

y = y + 1

y <
(ELEMENTS - 1)?

y = 0

Yes

No

Yes

No

sortScores()

return

373Using a Bubble Sort

x <
ELEMENTS?

x = 0

x = x + 1

Yes

No

print
score[x]

finishUp()

return

close
files

finishUp()
 x = 0
 while x < ELEMENTS
 print score[x]
 x = x + 1
 endwhile
 close files
return

FIGURE 9-9: A COMPLETE SCORE-SORTING PROGRAM THAT PRINTS THE SORTED SCORES

YesNo score[x] >
score[x + 1]?

switchValues()

x <
(ELEMENTS - 1)?

x = x + 1

x = 0

y = y + 1

y <
(ELEMENTS - 1)?

y = 0

Yes

No

Yes

No

sortScores()

return

switchValues()

temp =
score[x + 1]

return

score[x + 1] =
score[x]

score[x] =
temp

const num ELEMENTS = 5
num inScore
num score[ELEMENTS]
num x = 0
num y = 0
num temp

eof?

read
inScore

score[x]
= inScore

x = x + 1
read

inScore
No

Yes

housekeeping()

declare
variables

open
files

return

start

stop

housekeeping()

sortScores()

finishUp()

374 Chapter 9 • Advanced Array Manipulation

SORTING A LIST OF VARIABLE SIZE

In the score-sorting program in Figure 9-9, an ELEMENTS constant was initialized to the number of elements to be
sorted near the start of the program—within the housekeeping() module. Sometimes, you don’t want to create a
constant such as ELEMENTS at the start of the program. You might not know how many array elements will hold valid
values—for example, sometimes when you run the program, the input file contains only three or four scores to sort,
and sometimes it contains 20. In other words, what if the size of the list to be sorted varies? Rather than initializing a
constant to a fixed value, you can count the input scores, and then give a variable the value of the number of array ele-
ments to use after you know how many scores exist.

To keep track of the number of elements stored in an array, you can create a housekeeping() module such as
the one shown in Figure 9-10. When you read each inScore during housekeeping(), you increase x by 1 in
order to place each new score into a successive element of the score array. In this example, the score array is cre-
ated to hold 100 elements, a number larger than you anticipate you will need. The variable x is initialized to 0. After you
read one inScore value and place it in the first element of the array, x is increased to 1. After a second score is
read and placed in score[1], x is increased to 2, and so on. After you reach eof, x holds the number of elements
that have been placed in the array, so you can set a variable named numberOfEls to the value of x. With this
approach, it doesn’t matter if there are not enough inScore values to fill the array. You simply make one fewer pair
comparison than the number of the value held in numberOfEls. Using this technique, you avoid always making a
larger fixed number of pair comparisons. For example, if there are 35 scores in the input file, numberOfEls will be
set to 35 in the housekeeping() module, and when the program sorts, it will use 35 as a cutoff point for the
number of pair comparisons to make. The sorting program will never make pair comparisons on array elements 36
through 100—those elements will just “sit there,” never being involved in a comparison or swap.

375Using a Bubble Sort

When you count the input records and use the numberOfEls variable, it does not matter if there are not enough
scores to fill the array. However, it does matter if there are more scores than the array can hold. Every array must have
a finite size, and it is an error to try to store data past the end of the array. When you don’t know how many elements
will be stored in an array, you must overestimate the number of elements you declare. If the number of scores in the
score array can be 100 or fewer, then you can declare the score array to have a size of 100, and you can use
100 elements or fewer. Figure 9-11 shows the pseudocode that provides one possibility for an additional improvement
to the housekeeping() module in Figure 9-10. If you use the logic in Figure 9-11, you read inScore values
until eof, but if the array subscript x equals or exceeds 100, you display a warning message and do not attempt to
store any additional inScore values in the score array. When a program uses the housekeeping() logic
shown in Figure 9-11, after x becomes 100, only a warning message is displayed—no new elements are added to the
array. To provide additional information to the user, extra elements are counted when they exist, and a message is dis-
played so the user understands exactly how many unsorted elements exist in the input file.

housekeeping()
 declare variables
 open files
 read inScore
 while not eof
 score[x] = inScore
 x = x + 1
 read inScore
 endwhile
 numberOfEls = x
return

FIGURE 9-10: THE housekeeping() MODULE FOR A SCORE-SORTING PROGRAM THAT ACCOMMODATES
A VARIABLE-SIZE INPUT FILE

num inScore
num score[100]
num x = 0
num numberOfEls

eof?

read
inScore

score[x]
= inScore

read
inScore

numberOfEls
= x

No

Yes

housekeeping()

declare
variables

open
files

return

x = x + 1

376 Chapter 9 • Advanced Array Manipulation

num inScore
num score[100]
num x = 0
num y
num numberOfEls
num extraEls = 0
num temp

housekeeping()
 declare variables
 open files
 read inScore
 while not eof
 if x >= 100 then
 print "Warning! Too many scores"
 extraEls = extraEls + 1
 else
 score[x] = inScore
 endif
 x = x + 1
 read inScore
 endwhile
 numberOfEls = x - extraEls
 if extraEls > 0 then
 print "Warning.", extraEls,
 " elements from the input file will not be
 included in the sort."
 endif
return

FIGURE 9-11: FLOWCHART AND PSEUDOCODE FOR housekeeping() THAT PREVENTS OVEREXTENDING
THE ARRAY

read
inScore

numberOfEls = x
- extraEls

eof?

extraEls > 0?

print “Warning.”,
extraEls,

“ elements from the
input file will not be
included in the sort.”

x >= 100?

x = x + 1

read inScore

score[x]
= inScore

print “Warning!
Too many scores”

extraEls =
extraEls + 1

No

Yes

YesNo

YesNo

housekeeping()

declare
variables

open
files

return

377Using a Bubble Sort

REFINING THE BUBBLE SORT BY REDUCING UNNECESSARY COMPARISONS

You can make additional improvements to the bubble sort created in the previous sections. As illustrated in Figure 9-8,
when performing the sorting module for a bubble sort, you pass through a list, making comparisons and swapping val-
ues if two values are out of order. If you are performing an ascending sort, then after you have made one pass through
the list, the largest value is guaranteed to be in its correct final position at the bottom of the list. Similarly, the second-
largest element is guaranteed to be in its correct second-to-last position after the second pass through the list, and so
on. If you continue to compare every element pair in the list on every pass through the list, you are comparing elements
that are already guaranteed to be in their final correct position.

On each pass through the array, you can afford to stop your pair comparisons one element sooner. In other words, after the
first pass through the list, there is no longer a need to check the bottom element; after the second pass, there is no need to
check the two bottom elements. You can avoid comparing these already-in-place values by creating a new variable,
pairsToCompare, and setting it equal to the value of numberOfEls – 1. On the first pass through the list, every
pair of elements is compared, so pairsToCompare should equal numberOfEls – 1. In other words, with five
array elements to sort, there are four pairs to compare. For each subsequent pass through the list,pairsToCompare
should be reduced by 1, because after the first pass there’s no need to check the bottom element anymore. See Figure 9-12
to examine the use of the pairsToCompare variable.

378 Chapter 9 • Advanced Array Manipulation

sortScores()
 pairsToCompare = numberOfEls - 1
 y = 0
 while y < numberOfEls
 x = 0
 while x < pairsToCompare
 if score[x] > score[x + 1] then
 perform switchValues()
 endif
 x = x + 1
 endwhile
 y = y + 1
 pairsToCompare = pairsToCompare – 1
 endwhile
return

FIGURE 9-12: FLOWCHART AND PSEUDOCODE FOR sortScores() MODULE USING
pairsToCompare VARIABLE

y < numberOfEls?

x = 0

y = y + 1

switchValues()

score[x] >
score[x + 1]?

x = x + 1

x <
pairsToCompare?

pairsToCompare =
pairsToCompare - 1

Yes

No

Yes

Yes

No
No

sortScores()

pairsToCompare =
numberOfEls - 1

return

y = 0

379Using a Bubble Sort

REFINING THE BUBBLE SORT BY ELIMINATING UNNECESSARY PASSES

A final improvement that could be made to the bubble sort module in Figure 9-12 is one that reduces the number of
passes through the array. If array elements are so badly out of order that they are in reverse order, then it takes many
passes through the list to place it in order; it takes one fewer pass than the value in numberOfEls to complete all
the comparisons and swaps needed to get the list in order. However, when the array elements are in order or nearly in
order to start, all the elements might be correctly arranged after only a few passes through the list. All subsequent
passes result in no swaps. For example, assume the original scores are as follows:

score[0] = 65
score[1] = 75
score[2] = 85
score[3] = 90
score[4] = 95

The bubble sort module in Figure 9-12 would pass through the array list four times, making four sets of pair compar-
isons. It would always find that each score[x] is not greater than the corresponding score[x + 1], so no
switches would ever be made. The scores would end up in the proper order, but they were in the proper order in the
first place; therefore, a lot of time would be wasted.

A possible remedy is to add a flag variable that you set to a “continue” value on any pass through the list in which any pair of
elements is swapped (even if just one pair), and that holds a different “finished” value when no swaps are made—that is, all
elements in the list are already in the correct order. For example, you can create a variable named switchOccurred and
set it to “No” at the start of each pass through the list. You can change its value to “Yes” each time the switchValues()
module is performed (that is, each time a switch is necessary).

If you ever “make it through” the entire list of pairs without making a switch, the switchOccurred flag will not have
been set to “Yes”, meaning that no switch has occurred and that the array elements must already be in the correct order.
This might be on the first or second pass through the array list, or it might not be until a much later pass. If the array ele-
ments are already in the correct order at any point, there is no need to make more passes through the list. You can stop
making passes through the list when switchOccurred is “No” after a complete trip through the array.

Figure 9-13 illustrates a module that sorts scores and uses a switchOccurred flag. At the beginning of the
sortScores() module, initialize switchOccurred to “Yes” before entering the comparison loop the first time.
Then, immediately set switchOccurred to “No”. When a switch occurs—that is, when the switchValues()
module executes—set switchOccurred to “Yes”.

Figure 9-13 shows pseudocode for the sortScores() module only; pseudocode for the other modules has been
shown in previous figures in this chapter.

380 Chapter 9 • Advanced Array Manipulation

x = 0

x = x + 1

Yes

No

print
score[x]

finishUp()

return

close
files

x <
numberOfEls?

FIGURE 9-13: BUBBLE SORT WITH switchOccurred FLAG

start

stop

housekeeping()

sortScores()

finishUp()

num inScore
num score[100]
num x = 0
num numberOfEls
num extraEls = 0
num temp
char switchOccurred
num pairsToCompare

read
inScore

numberOfEls = x
- extraEls

eof?

extraEls > 0?

print “Warning.”,
extraEls”,

“ elements from the
input file will not be
included in the sort.”

x > 100?

x = x + 1

read inScore

score[x]
= inScore

print “Warning!
Too many scores”

extraEls =
extraEls + 1

No

Yes

YesNo

YesNo

housekeeping()

declare
variables

open
files

return

sortScores()
 pairsToCompare = numberOfEls - 1
 switchOccurred = "Yes"
 while switchOccurred = "Yes"
 x = 0
 switchOccurred = "No"
 while x < pairsToCompare
 if score[x] > score[x + 1] then
 perform switchValues()
 switchOccurred = "Yes"
 endif
 x = x + 1
 endwhile
 pairsToCompare = pairsToCompare - 1
 endwhile
return

switchOccurred
= “Yes”?

x = 0

switchValues()

score[x] >
score[x + 1]?

x = x + 1

x <
pairsToCompare?

pairsToCompare =
pairsToCompare - 1

switchOccurred
= “No”

switchOccurred = “Yes”

Yes

No

Yes

Yes

No No

sortScores()

pairsToCompare =
numberOfEls - 1

return

switchOccurred
= “Yes”

381Using an Insertion Sort

With the addition of the flag variable in Figure 9-13, you no longer need the variable y,
which was keeping track of the number of passes through the list. Instead, you just keep
going through the list until you can make a complete pass without any switches. For a list
that starts in perfect order, you go through the loop only once. For a list that starts in the
worst possible order, you will make a switch with every pair each time through the loop
until pairsToCompare has been reduced to 0. In this case, on the last pass through
the loop, x is set to 1, switchOccurred is set to “No”, x is no longer less than or
equal to pairsToCompare, and the loop is exited.

USING AN INSERTION SORT

The bubble sort works well and is relatively easy for novice array users to understand and manipulate, but even with all
the improvements you added to the original bubble sort in previous sections, it is actually one of the least efficient sort-
ing methods available. An insertion sort provides an alternate method for sorting data, and it usually requires fewer
comparison operations.

Although a sort (such as the bubble sort) might be inefficient, it is easy to understand.
When programming, you frequently weigh the advantages of using simple solutions
against writing more complicated ones that perform more efficiently.

As with the bubble sort, when using an insertion sort, you also look at each pair of elements in an array. When you find
an element that is smaller than the one before it (for an ascending sort), this element is “out of order.” As soon as you
locate such an element, search the array backward from that point to see where an element smaller than the out-of-
order element is located. At that point, you open a new position for the out-of-order element by moving each subse-
quent element down one position. Then, you insert the out-of-order element into the newly opened position.

For example, consider these scores:

score[0] = 65
score[1] = 80
score[2] = 95
score[3] = 75
score[4] = 90

If you want to rearrange the scores in ascending order using an insertion sort, you begin by comparing score[0]
and score[1], which are 65 and 80, respectively. You determine that they are in order, and leave them alone. Then, you
compare score[1] and score[2], which are 80 and 95, and leave them alone. When you compare score[2], 95,
and score[3], 75, you determine that the 75 is “out of order.” Next, you look backward from the score[3] of 75. The
value of score[2] is not smaller than score[3], nor is score[1]; however, because score[0] is smaller than
score[3],score[3] should follow score[0]. So you store score[3] in a temporary variable, then move
score[1] and score[2] “down” the list to higher subscripted positions. You move score[2], 95, to the
score[3] position. Then, you move score[1], 80, to the score[2] position. Finally, you assign the value of the tem-
porary variable, 75, to the score[1] position. Figure 9-14 diagrams the movements as 75 moves up to the second posi-
tion and 80 and 95 move down.

TIP�

TIP�

382 Chapter 9 • Advanced Array Manipulation

After the sort finds the first element that was out of order and inserts it in a “better” location, the results are:

score[0] = 65
score[1] = 75
score[2] = 80
score[3] = 95
score[4] = 90

You then continue down the list, comparing each pair of variables. A complete insertion sort module is shown in
Figure 9-15.

The logic for the insertion sort is slightly more complicated than that for the bubble sort, but the insertion sort is more efficient
because, for the average out-of-order list, it takes fewer “switches” to put the list in order.

FIGURE 9-14: MOVEMENT OF THE VALUE "75" TO A "BETTER" ARRAY POSITION IN AN INSERTION SORT

65

80

95

75

90

65

75

80

95

90

383Using an Insertion Sort

insertionSort()
 y = 0
 while y < numberOfEls - 1
 x = 0
 while x < numberOfEls - 1
 if score[x + 1] < score[x] then
 temp = score[x + 1]
 pos = x
 while score[pos] > temp AND pos > 0
 score[pos + 1] = score[pos]
 pos = pos - 1
 endwhile
 score[pos + 1] = temp
 endif
 x = x + 1
 endwhile
 y = y + 1
 endwhile
return

FIGURE 9-15: SAMPLE INSERTION SORT MODULE

y <
numberOfEls - 1?

x = 0

score[x + 1]
< score[x]?

x = x + 1

x <
numberOfEls - 1?

y = y + 1

score[pos + 1] =
temp

score[pos] >
temp AND
pos > 0?

temp =
score[x + 1]

pos = x

score[pos + 1] =
score[pos]

pos = pos - 1

Yes

No

Yes

Yes

No
No

Yes

insertionSort()

return

y = 0

No

384 Chapter 9 • Advanced Array Manipulation

USING A SELECTION SORT

A selection sort provides another sorting option. In an ascending selection sort, the first element in the array is
assumed to be the smallest. Its value is stored in a variable—for example, smallest—and its position in the array,
0, is stored in another variable—for example, position. Then, every subsequent element in the array is tested. If one
with a smaller value than smallest is found, smallest is set to the new value, and position is set to that ele-
ment’s position. After the entire array has been searched, smallest holds the smallest value and position holds
its position.

The element originally in position[0] is then switched with the smallest value, so at the end of the first pass
through the array, the lowest value ends up in the first position, and the value that was in the first position is where the
smallest value used to be.

For example, assume you have the following list of scores:

score[0] = 95
score[1] = 80
score[2] = 75
score[3] = 65
score[4] = 90

First, you place 95 in smallest. Then check score[1]; it’s less than 95, so place 1 in position and 80 in
smallest. Then test score[2]; it’s smaller than smallest, so place 2 in position and 75 in
smallest. Then test score[3]; because it is smaller than smallest, place 3 in position and 65 in
smallest. Finally, check score[4]; it isn’t smaller than smallest.

So at the end of the first pass through the list, position is 3 and smallest is 65. You move the value 95 to
score[position], or score[3], and the value of smallest, 65, to score[0]. The list becomes:

score[0] = 65
score[1] = 80
score[2] = 75
score[3] = 95
score[4] = 90

Now that the smallest value is in the first position, you repeat the whole procedure starting with the second array ele-
ment, score[1]. After you have passed through the list numberOfEls - 1 times, all elements will be in the
correct order. Walk through the logic shown in Figure 9-16.

385Using a Selection Sort

Like the insertion sort, the selection sort almost always requires fewer switches than the bubble sort, but the variables
might be a little harder to keep track of, because the logic is a little more complex. Thoroughly understanding at least
one of these sorting techniques provides you with a valuable tool for arranging data and increases your understanding
of the capabilities of arrays.

selectionSort()
 position = 0
 while position < numberOfEls - 1
 x = position
 smallest = score[x]
 y = x + 1
 while y <= numberOfEls
 if score[y] < smallest then
 x = y
 smallest = score[y]
 endif
 y = y + 1
 endwhile
 score[x] = score[position]
 score[position] = smallest
 position = position + 1
 endwhile
return

FIGURE 9-16: SAMPLE SELECTION SORT MODULE

position <
numberOfEls - 1?

x = position

score[y] <
smallest?

y = y + 1

y <=
numberofEls?

score[x] =
score[position]

x = y

smallest =
score[y]

Yes

No

selectionSort()

return

position = 0

smallest = score[x]

y = x + 1

score[position]
= smallest

position =
position + 1

No Yes

Yes

No

386 Chapter 9 • Advanced Array Manipulation

USING INDEXED FILES

Sorting a list of five scores does not require significant computer resources. However, many data files contain thou-
sands of records, and each record might contain dozens of data fields. Sorting large numbers of data records requires
considerable time and computer memory. When a large data file needs to be processed in ascending or descending
order based on some field, it is usually more efficient to store and access records based on their logical order than to
sort and access them in their physical order. When records are stored, they are stored in some physical order. For
example, if you write the names of 10 friends, each one on an index card, the stack of cards has a physical order—
that is, a “real” order. You can arrange the cards alphabetically by the friends’ last names, chronologically by age of the
friendship, or randomly by throwing the cards in the air and picking them up as you find them. Whichever way you do it,
the records still follow each other in some order. In addition to their current physical order, you can think of the cards as
having a logical order; that is, a virtual order, based on any criterion you choose—from the tallest friend to the short-
est, from the one who lives farthest away to the closest, and so on. Sorting the cards in a new physical order can take a
lot of time; using the cards in their logical order without physically rearranging them is often more efficient.

A common method of accessing records in logical order is to use an index. Using an index involves identifying a key
field for each record. A record’s key field is the field whose contents make the record unique among all records in a
file. For example, multiple employees can have the same last name, first name, salary, or street address, but each
employee possesses a unique Social Security number, so a Social Security number field might make a good key field
for a personnel file. (Because of security issues, a company-assigned employee ID number might make a better key
field.) Similarly, a product number makes a good key field on an inventory file.

When you index records, you store a list of key fields paired with the storage address for the corresponding data
record. When you use an index, you can store records on a random-access storage device, such as a disk, from
which records can be accessed in any logical order. Each record can be placed in any physical location on the disk, and
you can use the index as you would use the index in the back of a book. If you pick up a 600-page American history
text because you need some facts about Betsy Ross, you do not want to start on page one and work your way through
the text. Instead, you turn to the index, discover that Betsy Ross is discussed on page 418, and go directly to that page.

As pages in a book have numbers, computer memory and storage locations have addresses. In Chapter 1, you learned
that every variable has a numeric address in computer memory; likewise, every data record on a disk has a numeric
address where it is stored. You can store records in any physical order on the disk, but the index can find the records in
order based on their addresses. For example, you might store a list of employees on a disk in the order in which they
were hired. However, you often need to process the employees in Social Security number order. When adding a new
employee to such a file, you can physically place the employee anywhere there is room available on the disk. Her Social
Security number is inserted in proper order in the index, along with the physical address where her record is located.

You do not need to determine a record’s exact physical address in order to use it. A com-
puter’s operating system takes care of locating available storage for your records.

You can picture an index based on Social Security numbers by looking at Table 9-1.

TIP�

387Using Linked Lists

When you want to access the data for employee 333-55-1234, you tell your computer to look through the Social
Security numbers in the index, find a match, and then proceed to the memory location specified. Similarly, when you
want to process records in order based on Social Security number, you tell your system to retrieve records at the loca-
tions in the index in sequence. Thus, even though employee 111-22-3456 may have been hired last and the record is
stored at the highest physical address on the disk, if the employee record has the lowest Social Security number, it will
be accessed first during any ordered processing.

When a record is removed from an indexed file, it does not have to be physically removed. Its reference can simply be
deleted from the index, and then it will not be part of any further processing.

USING LINKED LISTS

Another way to access records in a desired order, even though they might not be physically stored in that order, is to
create a linked list. In its simplest form, creating a linked list involves creating one extra field in every record of stored
data. This extra field holds the physical address of the next logical record. For example, a record that holds a cus-
tomer’s ID, name, and phone number might contain the fields:

custId
custName
custPhoneNum
custNextCustAddress

Every time you use a record, you access the next record based on the address held in the
custNextCustAddress field.

Every time you add a new record to a linked list, you search through the list for the correct logical location for the new
record. For example, assume that customer records are stored at the addresses shown in Table 9-2 and that they are
linked in customer ID order. Notice that the addresses are not shown in sequential order. The records are shown in their
logical order, with each one’s custNextCustAddress field holding the address of the record shown in the fol-
lowing line.

TABLE 9-1: SAMPLE INDEX

Social Security number Location

111-22-3456 6400

222-44-7654 4800

333-55-1234 2400

444-88-9812 5200

388 Chapter 9 • Advanced Array Manipulation

You can see from Table 9-2 that each customer’s record contains a custNextCustAddress field that stores the
address of the next customer who follows in customer ID number order (and not necessarily in address order). For any
individual customer, the next logical customer’s address might be physically distant. Each customer record, besides
containing data about that customer, contains a custNextCustAddress field that associates the customer with
the next customer who follows in custId value order.

Examine the file shown in Table 9-2, and suppose a new customer with number 245 and the name Newberg is
acquired. Also suppose the computer operating system finds an available storage location for Newberg’s data at
address 8400. In this case, the procedure to add Newberg to the list is:

1. Create a variable named currentAddress to hold the address of the record in the list you

are currently examining. Store the address of the first record in the list, 0000, in this variable.

2. Compare the new customer Newberg’s ID, 245, with the current (first) record’s ID, 111 (in other words,

the ID at address 0000). The value 245 is higher than 111, so you save the first customer’s address

(the address you are currently examining), 0000, in a variable you can name saveAddress. The

saveAddress variable always holds the address you just finished examining. The first customer’s

record contains a link to the address of the next logical customer—7200. Store the 7200 in the

currentAddress variable.

3. Examine the second customer record, the one that physically exists at the address 7200, which is cur-

rently held in the currentAddress variable.

4. Compare Newberg’s ID, 245, with the ID stored in the record at currentAddress, 222. The value

245 is higher, so save the current address, 7200, in saveAddress and store its

custNextCustAddress address field, 4400, in the currentAddress variable.

5. Compare Newberg’s ID, 245, with 333, which is the ID at currentAddress (4400). Up to this

point, 245 had been higher than each ID tested, but this time the value 245 is lower, so that means cus-

tomer 245 should logically precede customer 333. Set the custNextCustAddress field in

Newberg’s record (customer 245) to 4400, which is the address of customer 333 and the address cur-

rently stored in currentAddress. This means that in any future processing, Newberg’s record will

logically be followed by the record containing 333. Also set the custNextCustAddress field of

the record located at saveAddress (7200, Vincent, customer 222, the customer who logically pre-

ceded Newberg) to the new customer Newberg’s address, 8400. The updated list appears in Table 9-3.

TABLE 9-2: LINKED CUSTOMER LIST

Address custId custName custPhoneNum custNextCustAddress
of record

0000 111 Baker 234-5676 7200

7200 222 Vincent 456-2345 4400

4400 333 Silvers 543-0912 6000

6000 444 Donovan 329-8744 eof

389Using Multidimensional Arrays

TABLE 9-3: UPDATED CUSTOMER LIST

Address custId custName custPhoneNum custNextCustAddress
of record

0000 111 Baker 234-5676 7200

7200 222 Vincent 456-2345 8400

8400 245 Newberg 222-9876 4400

4400 333 Silvers 543-0912 6000

6000 444 Donovan 329-8744 eof

As with indexing, when removing records from a linked list, the records do not need to be physically deleted from the
medium on which they are stored. If you need to remove customer 333 from the preceding list, all you need to do is
change Newberg’s custNextCustAddress field to the value in Silvers’ custNextCustAddress field,
which is Donovan’s address: 6000. In other words, the value of 6000 is obtained not by knowing who Newberg should
point to, but by knowing who Silvers used to point to. When Newberg’s record points to Donovan, Silvers’ record is then
bypassed during any further processing that uses the links to travel from one record to the next.

More sophisticated linked lists store two additional fields with each record. One field stores the address of the next
record, and the other field stores the address of the previous record so that the list can be accessed either forward or
backward.

USING MULTIDIMENSIONAL ARRAYS

An array that represents a single list of values is a single-dimensional array or one-dimensional array. For example,
an array that holds five rent figures that apply to five floors of a building can be displayed in a single column, as in
Figure 9-17.

You used the single-dimensional rent array in Chapter 8.

rent[0]ƒ=ƒ350
rent[1]ƒ=ƒ400
rent[2]ƒ=ƒ475
rent[3]ƒ=ƒ600
rent[4]ƒ=ƒ1000

FIGURE 9-17: A SINGLE-DIMENSIONAL rent ARRAY

TIP�

390 Chapter 9 • Advanced Array Manipulation

The location of any rent value in Figure 9-17 depends on only a single variable—the floor of the building.
Sometimes, however, locating a value in an array depends on more than one variable. If you must represent values in a
table or grid that contains rows and columns instead of a single list, then you might want to use a multidimensional
array—specifically in this case, a two-dimensional array.

Assume that the floor is not the only factor determining rent in your building, but that another variable,
numberOfBedrooms, also needs to be taken into account. The rent schedule might be the one shown in Table 9-4.

TABLE 9-4: RENT SCHEDULE BASED ON FLOOR AND NUMBER OF BEDROOMS

Floor Studio 1-bedroom 2-bedroom
apartment apartment apartment

0 350 390 435

1 400 440 480

2 475 530 575

3 600 650 700

4 1000 1075 1150

Each element in a two-dimensional array requires two subscripts to reference it—one subscript to determine the row
and a second to determine the column. Thus, the 15 separate rent values for a two-dimensional array based on the
rent table in Table 9-4 would be those shown in Figure 9-18.

Suppose you want to read records that store a floor and number of bedrooms in an apartment, and print the appropriate rent

for that apartment. If you store tenant records that contain two fields named floor and numberOfBedrooms, then
the correct rent can be printed with the statement: print rent[floor][numberOfBedrooms]. The first
subscript represents the array row; the second subscript represents the array column.

Some languages access two-dimensional array elements with commas separating the sub-
script values; for example, the first-floor, two-bedroom rate might be written
rent[1,2]. In every language, you provide a subscript for the row first and for the col-
umn second.

rent[0][0]ƒ=ƒ350
rent[0][1]ƒ=ƒ390
rent[0][2]ƒ=ƒ435
rent[1][0]ƒ=ƒ400
rent[1][1]ƒ=ƒ440
rent[1][2]ƒ=ƒ480
.
.
.
rent[4][2]ƒ=ƒ1150

FIGURE 9-18: TWO-DIMENSIONAL rent ARRAY VALUES BASED ON FLOOR AND NUMBER OF BEDROOMS

TIP�

391Using Multidimensional Arrays

Just as within a one-dimensional array, each element in a multidimensional array must be
the same data type.

Two-dimensional arrays are never actually required in order to achieve a useful program. The same 15 categories of
rent information could be stored in three separate single-dimensional arrays of five elements each. Of course, don’t for-
get that even one-dimensional arrays are never required for you to be able to solve a problem. You could also declare
15 separate rent variables and make 15 separate decisions to determine the rent.

Figure 9-19 shows an entire program that produces a report that determines rent amounts for tenant records stored in
a file. Notice that although significant setup is required to provide all the values for the rents, the mainLoop() mod-
ule is extremely brief and easy to follow.

Some languages allow multidimensional arrays containing three levels, or three-dimensional arrays, in which you
access array values using three subscripts. For example, rent might not only be determined by the two factors floor
and numberOfBedrooms. There might also be 12 different buildings. The third dimension of a three-dimensional
array to hold all these different rents would be a variable such as buildingNumber.

Some languages allow even more dimensions. It’s usually hard for people to keep track of more than three dimensions,
but if five variables determine rent—for example, floor number, number of bedrooms, building number, city number,
and state number—you might want to try using a five-dimensional array.

TIP�

392 Chapter 9 • Advanced Array Manipulation

start
 perform housekeeping()
 while not eof
 perform mainLoop()
 endwhile
 perform finishUp()
stop
housekeeping()
 declare variables
 open files
 print heading
 read tenantRecord
return
mainLoop()
 print tenantName, rent[floor][numberOfBedrooms]
 read tenantRecord
return
finishUp()
 close files
return

FIGURE 9-19: RENT-DETERMINING PROGRAM

housekeeping()

finishUp()

eof? mainLoop()
No

Yes

start

stop

tenantRecord
 char tenantName
 num floor
 num numberOfBedrooms
char heading =
 "Name Rent"
rent[0][0] = 350
rent[0][1] = 390
rent[0][2] = 435
rent[1][0] = 400
rent[1][1] = 440
rent[1][2] = 480
rent[2][0] = 475
rent[2][1] = 530
rent[2][2] = 575
rent[3][0] = 600
rent[3][1] = 650
rent[3][2] = 700
rent[4][0] = 1000
rent[4][1] = 1075
rent[4][2] = 1150

housekeeping()

declare
variables

open
files

return

print
heading

read
tenantRecord

finishUp()

return

close files

read
tenantRecord

mainLoop()

return

print tenantName,
rent[floor]

[numberOfBedrooms]

Chapter Summary 393

CHAPTER SUMMARY

� When the sequential order of data records is not the order desired for processing or viewing, the data

needs to be sorted in ascending or descending order based on the contents of one or more fields.

� You can swap two values by creating a temporary variable to hold one of the values. Then, you can

assign the second value to the temporary variable, assign the first value to the second, and assign the

temporary value to the first variable.

� In a bubble sort, items in a list are compared in pairs, and when an item is out of order, it swaps with the

item below it. With an ascending bubble sort, after each adjacent pair of items in a list has been com-

pared once, the largest item in the list will have “sunk” to the bottom.

� When performing a bubble sort on an array, you compare two separate loop control variables with a

value that equals the number of elements in the list. An advantage to using a variable instead of a con-

stant to hold the number of elements is that if you modify the program array to accommodate more or

fewer elements in the future, you can simply change the value in the variable once, where it is defined.

� On each pass through an array that is being sorted using a bubble sort, you can afford to stop your pair

comparisons one element sooner than the time before.

� To avoid making unnecessary passes through a list while performing a bubble sort, you can add a flag that

you test on every pass through the list, to determine when all elements are already in the correct order.

� When using an insertion sort, you look at each pair of elements in an array. When you find an element

that is out of order, search the array backward from that point, find an element smaller than the out-of-

order element, move each subsequent element down one position, and insert the out-of-order element

into the list at the newly opened position.

� In an ascending selection sort, the first element in the array is assumed to be the smallest. Its value and

position are stored. Then, every subsequent element in the array is tested, and if one has a smaller

value, the new value and position are stored. After searching the entire array, you switch the original first

value with the smallest value. Then you repeat the process with each subsequent list value.

� You can use an index to access data records in a logical order that differs from their physical order.

Using an index involves identifying a key field for each record.

� Creating a linked list involves creating an extra field within every record, to hold the physical address of

the next logical record.

� You use a multidimensional array whenever locating a value in an array depends on more than one variable.

Chapter 9 • Advanced Array Manipulation394

KEY TERMS

When records are in sequential order, they are arranged one after another on the basis of the value in some field.

Sorted records are in order based on the contents of one or more fields.

Records in ascending order are arranged from lowest to highest, based on a value within a field.

Records in descending order are arranged from highest to lowest, based on a value within a field.

The median value in a list is the value in the middle position when the values are sorted.

The mean value in a list is the arithmetic average.

Swapping two values is the process of setting the first variable equal to the value of the second, and the second
variable equal to the value of the first.

A bubble sort is a sort in which you arrange records in either ascending or descending order by comparing items in a
list in pairs; when an item is out of order, it swaps values with the item below it.

A sinking sort is another name for a bubble sort.

When using an insertion sort, you look at each pair of elements in an array. For example, for an ascending insertion
sort, when you find an element that is smaller than the one before it, you search the array backward from that point to
see where an element smaller than the out-of-order element is located. At that point, you open a new position for the
out-of-order element by moving each subsequent element down one position. Then, you insert the out-of-order
element into the newly opened position.

In an ascending selection sort, you search for the smallest list value, and then swap it with the value in the first
position. You then repeat the process with each subsequent list position.

A list’s physical order is the order in which it is actually stored.

A list’s logical order is the order in which you use it, even though it is not necessarily physically stored in that order.

A record’s key field is the field whose contents make the record unique among all records in a file.

When you index records, you store a list of key fields paired with the storage address for the corresponding data
record.

A random-access storage device, such as a disk, is one from which records can be accessed in any order.

Computer memory and storage locations have addresses.

Creating a linked list involves creating one extra field in every record of stored data. This extra field holds the physical
address of the next logical record.

An array that represents a single list of values is a single-dimensional array or one-dimensional array.

An array that represents a table or grid containing rows and columns is a multidimensional array—for example, a
two-dimensional array.

Some languages allow three-dimensional arrays, in which you access values using three subscripts.

Review Questions 395

REVIEW QUESTIONS

1. Employee records stored in order from highest-paid to lowest-paid have been sorted in
order.

a. ascending
b. descending
c. staggered
d. recursive

2. Student records stored in alphabetical order by last name have been sorted in order.

a. ascending
b. descending
c. staggered
d. recursive

3. In the series of numbers 7, 5, 5, 5, 3, 2, and 1, what is the mean?

a. 3
b. 4
c. 5
d. 6

4. When computers sort data, they always .

a. place items in ascending order
b. use a bubble sort
c. begin the process by locating the position of the lowest value
d. use numeric values when making comparisons

5. Which of the following code segments correctly swaps the values of variables named x and y?

a. x = y
y = temp
x = temp

b. x = y
temp = x
y = temp

c. temp = x
x = y
y = temp

d. temp = x
y = x
x = temp

Chapter 9 • Advanced Array Manipulation396

6. Which type of sort compares list items in pairs, swapping any two adjacent values that are out
of order?

a. bubble sort
b. selection sort
c. insertion sort
d. indexed sort

7. Which type of sort compares pairs of values, looking for an out-of-order element, then searches the
array backward from that point to see where an element smaller than the out-of-order element is
located?

a. bubble sort
b. selection sort
c. insertion sort
d. indexed sort

8. Which type of sort tests each value in a list, looking for the smallest, then switches the element in
the first list position with the smallest value?

a. bubble sort
b. selection sort
c. insertion sort
d. indexed sort

9. To sort a list of eight values using a bubble sort, the greatest number of times you would have to
pass through the list making comparisons is .

a. six
b. seven
c. eight
d. nine

10. To sort a list of eight values using a bubble sort, the greatest number of pair comparisons you
would have to make before the sort is complete is .

a. seven
b. eight
c. 49
d. 64

11. When you do not know how many items need to be sorted in a program, you create an array that
has .

a. at least one element less than the number you predict you will need
b. at least as many elements as the number you predict you will need
c. variable-sized elements
d. a variable number of elements

Review Questions 397

12. In a bubble sort, on each pass through the list that must be sorted, you can stop making pair
comparisons .

a. one comparison sooner
b. two comparisons sooner
c. one comparison later
d. two comparisons later

13. When performing a bubble sort on a list of 10 values, you can stop making passes through the list
of values as soon as on a single pass through the list.

a. no more than 10 swaps are made
b. no more than nine swaps are made
c. exactly one swap is made
d. no swaps are made

14. Student records are stored in ID number order, but accessed by grade point average for a report.
Grade point average order is a(n) order.

a. imaginary
b. physical
c. logical
d. illogical

15. With a linked list, every record .

a. is stored in sequential order
b. contains a field that holds the address of another record
c. contains a code that indicates the record’s position in an imaginary list
d. is stored in a physical location that corresponds to a key field

16. Data stored in a table that can be accessed using row and column numbers is stored as a
array.

a. single-dimensional
b. two-dimensional
c. three-dimensional
d. nondimensional

Chapter 9 • Advanced Array Manipulation398

17. The Funland Amusement Park charges entrance fees as shown in the following table. The table is
stored as an array named price in a program that determines ticket price based on two factors—
number of tickets purchased and month of the year. A clerk enters the month (5 through 9 for May
through September), from which 5 is subtracted, so the month value becomes 0 through 4. A clerk
also enters the number of tickets being purchased; if the number is over 6, it is forced to be 6.
One is subtracted from the number of people, so the value is 0 through 5.

Adjusted month number
People in party 0 1 2 3 4

0 29.00 34.00 36.00 36.00 29.00

1 28.00 32.00 34.00 34.00 28.00

2 26.00 30.00 32.00 32.00 26.00

3 24.00 26.00 27.00 28.00 25.00

4 23.00 25.00 26.00 27.00 23.00

5 20.00 23.00 24.00 25.00 21.00

What is the price of a ticket for any party purchasing tickets?

a. price[tickets][month]
b. price[month][tickets]
c. month[tickets][price]
d. tickets[price][month]

18. Using the same table as in Question 17, where is the ticket price stored for a party of four purchas-
ing tickets in September?

a. price[4][9]
b. price[3][4]
c. price[4][3]
d. price[9][4]

19. In a four-dimensional array, you would need to use subscript(s) to access a
single item.

a. one
b. two
c. three
d. four

20. In a two-dimensional array, the second subscript needed to access an item refers to the
.

a. row
b. column
c. page
d. record

Find the Bugs 399

FIND THE BUGS

Each of the following pseudocode segments contains one or more bugs that you must find and correct.

1. This application reads a file containing employee data, including salaries, for 1,000 employees. The
salaries are sorted so the median salary in the organization can be displayed.

start
ƒƒƒƒƒperformƒhousekeeping()
ƒƒƒƒƒperformƒsortSalaries()
ƒƒƒƒƒperformƒfinishUp()
stop

housekeeping()
ƒƒƒƒƒdeclareƒvariables
ƒƒƒƒƒƒƒƒinRec
ƒƒƒƒƒƒƒƒƒƒcharƒname
ƒƒƒƒƒƒƒƒƒƒnumƒpay
ƒƒƒƒƒƒƒƒƒƒnumƒxƒ=ƒ0
ƒƒƒƒƒƒƒƒƒƒnumƒyƒ=ƒ0
ƒƒƒƒƒƒƒƒƒƒconstƒnumƒSIZEƒ=ƒ1000
ƒƒƒƒƒƒƒƒƒƒnumƒsalary[SIZE]
ƒƒƒƒƒƒƒƒƒƒnumƒtemp
ƒƒƒƒƒƒƒƒƒƒnumƒmidNum
ƒƒƒƒƒopenƒfiles
ƒƒƒƒƒreadƒinRec
ƒƒƒƒƒwhileƒnotƒeof
ƒƒƒƒƒƒƒƒƒƒsalary[SIZE]ƒ=ƒpay
ƒƒƒƒƒƒƒƒƒƒxƒ=ƒxƒ+ƒ1
ƒƒƒƒƒƒƒƒƒƒreadƒinRec
ƒƒƒƒƒendwhile
return

sortSalaries()
ƒƒƒƒƒyƒ=ƒ0
ƒƒƒƒƒwhileƒyƒ>ƒSIZEƒ-ƒ1
ƒƒƒƒƒƒƒƒƒƒxƒ=ƒ0
ƒƒƒƒƒƒƒƒƒƒwhileƒxƒ<ƒSIZE
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒifƒsalary[x]ƒ>ƒsalary[x]ƒthen
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒperformƒswitchValues()
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒendif
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒxƒ=ƒxƒ+ƒ1
ƒƒƒƒƒƒƒƒƒƒendwhile
ƒƒƒƒƒƒƒƒƒƒyƒ=ƒyƒ+ƒ1
ƒƒƒƒƒendwhile
return

Chapter 9 • Advanced Array Manipulation400

switchValues()
ƒƒƒƒƒtempƒ=ƒsalary[xƒ+ƒ1]
ƒƒƒƒƒsalary[x]ƒ=ƒsalary[x]
ƒƒƒƒƒsalary[x]ƒ=ƒtemp
return

finishUp()
ƒƒƒƒƒmidNumƒ=ƒSIZEƒ/ƒ2
ƒƒƒƒƒprintƒ“Medianƒsalaryƒisƒ“,ƒsalary[midNum]
ƒƒƒƒƒcloseƒfiles
return

2. This application reads student typing test records. The records contain the student’s ID number
and name, the number of errors on the test, and the number of words typed per minute. Grades are
assigned based on the following table:

Errors
Speed 0 1 2 or more

0–30 C D F

31–50 C C F

51–80 B C D

81–100 A B C

101 and up A A B

start
ƒƒƒƒƒperformƒhousekeeping()
ƒƒƒƒƒwhileƒnotƒeof
ƒƒƒƒƒƒƒƒƒƒperformƒmainLoop()
ƒƒƒƒƒendwhile
ƒƒƒƒƒperformƒfinishUp()
stop

housekeeping()
ƒƒƒƒƒdeclareƒvariables
ƒƒƒƒƒƒƒƒƒƒstuRecord
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒid
ƒƒƒƒƒƒƒƒƒƒƒƒcharƒname
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒerrors
ƒƒƒƒƒƒƒƒƒƒƒƒnumƒspeed
ƒƒƒƒƒƒƒƒƒƒnumƒspeedArray[0]ƒ=ƒ0
ƒƒƒƒƒƒƒƒƒƒnumƒspeedArray[1]ƒ=ƒ31
ƒƒƒƒƒƒƒƒƒƒnumƒspeedArray[2]ƒ=ƒ51

Find the Bugs 401

ƒƒƒƒƒƒƒƒƒƒnumƒspeedArray[3]ƒ=ƒ51
ƒƒƒƒƒƒƒƒƒƒnumƒspeedArray[4]ƒ=ƒ101
ƒƒƒƒƒƒƒƒƒƒnumƒx
ƒƒƒƒƒƒƒƒƒƒnumƒspeedCategory
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[0][0]ƒ=ƒ“C”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[0][1]ƒ=ƒ“C”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[0][2]ƒ=ƒ“C”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[1][0]ƒ=ƒ“C”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[1][1]ƒ=ƒ“C”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[1][2]ƒ=ƒ“C”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[2][0]ƒ=ƒ“C”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[2][1]ƒ=ƒ“C”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[2][2]ƒ=ƒ“A”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[3][0]ƒ=ƒ“A”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[3][1]ƒ=ƒ“A”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[3][2]ƒ=ƒ“A”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[4][0]ƒ=ƒ“A”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[4][1]ƒ=ƒ“A”
ƒƒƒƒƒƒƒƒƒƒnumƒgrade[4][2]ƒ=ƒ“A”
ƒƒƒƒƒopenƒfiles
ƒƒƒƒƒreadƒstuRecord
return

mainLoop()
ƒƒƒƒƒifƒerrorsƒ>ƒ2ƒthen
ƒƒƒƒƒƒƒƒƒerrorsƒ=ƒ2
ƒƒƒƒƒendif
ƒƒƒƒƒxƒ=ƒ4
ƒƒƒƒƒwhileƒxƒ>=ƒ0
ƒƒƒƒƒƒƒifƒspeedƒ=ƒspeedArray[speed]
ƒƒƒƒƒƒƒƒƒƒspeedCategoryƒ=ƒx
ƒƒƒƒƒƒƒƒƒƒxƒ=ƒ0
ƒƒƒƒƒƒƒƒendif
ƒƒƒƒƒƒƒƒxƒ=ƒxƒ+ƒ1
ƒƒƒƒƒendwhile
ƒƒƒƒƒprintƒid,ƒname,ƒgrade[speedCategory][errors]
ƒƒƒƒƒreadƒstuRecord
returnƒ

finishUp()
ƒƒƒƒƒcloseƒfiles
return

Chapter 9 • Advanced Array Manipulation402

EXERCISES

1. Professor Zak allows students to drop the two lowest scores on the ten 100-point quizzes she
gives during the semester. Develop the logic for a program that reads student records that contain
ID number, last name, first name, and 10 quiz scores. The output lists student ID, name, and total
points for the eight highest-scoring quizzes.

2. The Hinner College Foundation holds an annual fundraiser for which the foundation director main-
tains records. Each record contains a donor name and contribution amount. Assume that there are
never more than 300 donors. Develop the logic for a program that sorts the donation amounts in
descending order. The output lists the highest five donation amounts.

3. A greeting-card store maintains customer records with data fields for first name, last name,
address, and annual purchases in dollars. At the end of the year, the store manager invites the
100 customers with the highest annual purchases to an exclusive sale event. Develop the flowchart
or pseudocode that sorts up to 1,000 customer records by annual purchase amount and prints the
names and addresses for the top 100 customers.

4. The village of Ringwood has taken a special census. Every census record contains a household ID
number, number of occupants, and income. Ringwood has exactly 75 households. Village statisti-
cians are interested in the median household size and the median household income. Develop the
logic for a program that determines these figures. (Remember, a list must be sorted before you can
determine the median value.)

5. The village of Marengo has taken a special census and collected records that each contain a
household ID number, number of occupants, and income. The exact number of household records
has not yet been determined, but you know that there are fewer than 1,000 households in Marengo.
Develop the logic for a program that determines the median household size and the median house-
hold income.

6. Create the flowchart or pseudocode that reads a file of 10 employee salaries and prints them from
lowest to highest. Use an insertion sort.

7. Create the flowchart or pseudocode that reads a file of 10 employee salaries and prints them from
highest to lowest. Use a selection sort.

8. The MidAmerica Bus Company charges fares to passengers based on the number of travel zones
they cross. Additionally, discounts are provided for multiple passengers traveling together. Ticket
fares are shown in the following table:

Zones crossed
Passengers 0 1 2 3

1 7.50 10.00 12.00 12.75

2 14.00 18.50 22.00 23.00

3 20.00 21.00 32.00 33.00

4 25.00 27.50 36.00 37.00

Exercises 403

Develop the logic for a program that reads records containing number of passengers and zones
crossed. The output is the ticket charge.

9. In golf, par represents a standard number of strokes a player will need to complete a hole. Instead of
using an absolute score, players can compare their scores on a hole to the par figure and determine
whether they are above or below par. Families can play nine holes of miniature golf at the Family
Fun Miniature Golf Park. So that family members can compete fairly, the course provides a different
par for each hole, based on the player’s age. The par figures are shown in the following table:

Holes
Age 1 2 3 4 5 6 7 8 9

4 and under 8 8 9 7 5 7 8 5 8

5–7 7 7 8 6 5 6 7 5 6

8–11 6 5 6 5 4 5 5 4 5

12–15 5 4 4 4 3 4 3 3 4

16 and over 4 3 3 3 2 3 2 3 3

a. Develop the logic for a program that reads records containing a player’s name, age, and nine-hole score.
For each player, print a page that contains the player’s name and score on each of the nine holes, with one
of the phrases “Over par”, “Par”, or “Under par” next to each score.

b. Modify the program in Exercise 9a so that, at the end of each golfer’s report, the golfer’s total score is dis-
played. Include the figure indicating how many strokes over or under par the player is for the entire course.

10. Parker’s Consulting Services pays its employees an hourly rate based on two criteria—number of
years of service and last year’s performance rating, which is a whole number, 0 through 5.
Employee records contain ID number, last and first names, year hired, and performance score. The
salary schedule follows:

Performance score
Years of service 0 1 2 3 4 5

0 8.50 9.00 9.75 10.30 12.00 13.00

1 9.50 10.25 10.95 11.30 13.50 15.25

2 10.50 11.00 12.00 13.00 15.00 17.60

3 11.50 12.25 14.00 14.25 15.70 18.90

4 or more 12.50 13.75 15.25 15.50 17.00 20.00

In addition to the pay rates shown in the table, an employee with more than 10 years of service
receives an extra 5 percent per hour for each year over 10. Develop the logic for a program that
prints each employee’s ID number, name, and correct hourly salary for the current year.

Chapter 9 • Advanced Array Manipulation404

11. The Roadmaster Driving School allows students to sign up for any number of driving lessons. The
school allows up to four attempts to pass the driver’s license test; if all the attempts are unsuc-
cessful, then the student’s tuition is returned. The school maintains an archive containing student
records for those who have successfully passed the licensing test over the last 10 years. Each
record contains a student ID number, name, number of driving lessons completed, and the number
of the attempt on which the student passed the licensing test. The records are stored in alphabeti-
cal order by student name. The school administration is interested in examining the correlation
between the number of lessons taken and the number of attempts required to pass the test.
Develop the logic for a program that would produce a table for the school. Each row represents the
number of lessons taken: 0–9, 10–19, 20–29, and 30 or more. Each column represents the number
of test attempts in order to pass—1 through 4.

12. The Stevens College Testing Center creates a record each time a student takes a placement test.
Students can take a test in any of 12 subject areas: English, Math, Biology, Chemistry, History,
Sociology, Psychology, Art, Music, Spanish, German, or Computer Science. Each record contains the
date the test was taken, the student’s ID number, the test subject area, and a percent score on the
test. Records are maintained in the order they are entered as the tests are taken. The college wants
a report that lists each of the 12 tests along with a count of the number of students who have
received scores in each of the following categories: at least 90 percent, 80 through 89 percent, 70
through 79 percent, and below 70 percent. Develop the logic that produces the report.

DETECTIVE WORK

1. This chapter discussed the idea of using an employee’s Social Security number as a key field. Is a
Social Security number unique?

2. This chapter examines the bubble, insertion, and selection sorting algorithms. What other named
sort processes can you find?

UP FOR DISCUSSION

1. Now that you are becoming comfortable with arrays, you can see that programming is a complex
subject. Should all literate people understand how to program? If so, how much programming
should they understand?

2. What are language standards? At this point in your study of programming, what do they mean
to you?

10
After studying Chapter 10, you should be able to:

� Understand the need for interactive, menu-driven programs

� Create a program that uses a single-level menu

� Code modules as black boxes

� Improve menu programs

� Use a case structure to manage a menu

� Create a program that uses a multilevel menu

� Validate input

� Understand types of data validation

USING MENUS AND
VALIDATING INPUT

405

406 Chapter 10 • Using Menus and Validating Input

USING INTERACTIVE PROGRAMS

You can divide computer programs into two broad categories based on how they get their data. Programs for which all
the data items are gathered prior to running use batch processing. Programs that depend on user input while the pro-
grams are running use interactive processing.

Many computer programs use batch processing with sequential files of data records that have been collected for pro-
cessing. All standard billing, inventory, payroll, and similar programs work this way, and all the program logic you have
developed while working through this text also works like this. Records used for batch processing are gathered over a
period of time—hours, days, or even months. Programs that use batch processing typically read an input record,
process it according to coded instructions, output the result, and then read another record. Batch processing gets its
name because the data records are not processed at the time they are created; instead, they are “saved” and
processed in a batch. For example, you do not receive a credit card bill immediately after every purchase, when the
record is created. All purchases during a one-month period are gathered and processed at the end of that billing period.

Many computer programs cannot be run in batches. Instead, they must run interactively—that is, they must interact with a
user while they are running. Ticket reservation programs for airlines and theaters must select tickets while you are interact-
ing with them, not at the end of the month. A computerized library catalog system must respond to library patrons’ requests
immediately, while the patrons are searching, not at the end of every week. Interactive computer programs are often called
real-time applications, because they run while a transaction is taking place, not at some later time. You also can refer to
interactive processing as online processing, because the user’s data or requests are gathered during the execution of the
program, while the computer is operating. A batch processing system can be offline; that is, you can collect data such as
time cards or purchase information well ahead of the actual computer processing of the paychecks or bills.

A menu program is a common type of interactive program in which the user sees a number of options on the screen and
can select any one of them. For example, an educational program that drills you on elementary arithmetic skills might display
three options, as shown in the two menus in Figure 10-1. The menu on the left is used in console applications, those that
require the user to enter a choice using the keyboard; the menu style on the right is used in graphical user interface
applications, those that allow the user to use a mouse or other pointing device to make selections. The style you use partly
depends on the programming language you choose; with languages that allow either style, the program developer decides
on the format based on considerations such as the preferences of users and the amount of time available for development.

FIGURE 10-1: ARITHMETIC DRILL MENUS

407Using a Single-Level Menu

You could include a title or further instructions on the menus shown in Figure 10-1, as
well as on the other menus in this chapter. They are eliminated here to keep the examples
as simple as possible.

The final option in each menu in Figure 10-1, Quit the Program, is very important; without it, there would be no elegant
way for the program to terminate. A menu without a Quit option is very frustrating to the user.

Some menu programs require the user to enter a number to choose a menu option. For example, the user enters a 2 to
perform a subtraction drill from the first menu shown in Figure 10-1. Other menu programs require the user to enter a
letter of the alphabet—for example, S for a subtraction drill. Still other programs allow the user to use a pointing device
such as a mouse to point to a choice on the screen, as with the menu on the right side of Figure 10-1. The most
sophisticated programs allow users to employ the selection method that is most convenient at the time.

Many organizations provide an audio menu to callers to handle routing of telephone calls.
If you have ever called an organization and heard a message like “Press 1 for the Sales
Department,” then you have used an interactive menu.

USING A SINGLE-LEVEL MENU

Suppose you want to write a program that displays a menu like the one shown in Figure 10-1. The program drills a stu-
dent’s arithmetic skills—if the student chooses the first option, four addition problems are displayed, and if the student
chooses the second option, four subtraction problems are displayed. This program uses a single-level menu; that is,
the user makes a selection from only one menu before using the program for its ultimate purpose—arithmetic practice.
With more complicated programs, a user’s choice from an initial menu often leads to other menus from which the user
must make several selections before reaching the desired destination.

Suppose you want to write a program that requires the user to enter a digit to make a menu choice. The mainline logic for
an interactive menu program is not substantially different from any of the other sequential file programs you’ve seen so far
in this book. You can create startUp(), looping(), and cleanUp() modules, as shown in Figure 10-2.

The only difference between the mainline logic in Figure 10-2 and that of other programs you have worked with lies in the
main loop control question. When a program’s input data comes from a data file, asking whether the input file is at the
end-of-file (eof) condition is appropriate. An interactive, menu-driven program is not controlled by an end-of-file condition,
but by a user’s menu response. The mainline logic, then, is more appropriately controlled by the user’s response. For
example, Figure 10-2 shows the mainline logic containing the question response = 3?.

The startUp()module in the arithmetic drill program defines variables and opens files. The name of one of the variables
is response; this is the numeric variable that will hold the user’s menu choice. The startUp()module also displays
the menu for the first time, so that the user can make a choice. See Figure 10-3.

TIP�

TIP�

408 Chapter 10 • Using Menus and Validating Input

In many programming languages, if the keyboard is the default input device and the monitor is
the default output device for an application, an explicit open files statement is frequently
not needed.

startUp()
declare variables
open files
perform displayMenu()

return

num response

FIGURE 10-3: THE startUp() MODULE FOR THE ARITHMETIC DRILL PROGRAM

displayMenu()

startUp()

declare
variables

open
files

return

start
perform startUp()
while response not = 3

perform looping()
endwhile
perform cleanUp()

stop

FIGURE 10-2: MAINLINE LOGIC FOR THE ARITHMETIC DRILL MENU PROGRAM

startUp()

cleanUp()

response
= 3?

looping()
No

Yes

start

stop

TIP�

409Using a Single-Level Menu

You can include the set of instructions that displays the user menu directly in the startUp() module, or, as shown
here, you can place the instructions in their own module. For example, Figure 10-4 shows the displayMenu()
module that the startUp() module in Figure 10-3 calls. The displayMenu() module writes four menu lines
on the screen, and then a read response statement reads the user’s numeric choice from the keyboard.

You might choose to add a command to clear the screen before printing any of the menu
options. The precise syntax of the command differs from programming language to pro-
gramming language. When you clear the screen, all previous messages and responses are
removed, thus providing a cleaner look to the screen. Often, you clear a screen in the same
circumstances when you start a new page in a printed report—at the beginning of the pro-
gram or after a specified number of lines of output have been displayed.

By the time the logic of the arithmetic drill program leaves the startUp()module, the user has entered a value for
response. In the mainline logic (Figure 10-2), if response is not 3 (for the Quit the Program option), then the program

displayMenu()
print “(1) Addition Problems”
print “(2) Subtraction Problems”
print “(3) Quit the Program”
print “Please press a number to make your selection”
read response

return

FIGURE 10-4: THE displayMenu() MODULE FOR THE ARITHMETIC DRILL PROGRAM

displayMenu()

print
“(3) Quit the
Program”

return

print
“Please press a
number to make
your selection”

read
response

print
“(1) Addition
Problems”

print
“(2) Subtraction

Problems”

TIP�

410 Chapter 10 • Using Menus and Validating Input

enters the looping() module. The looping() module makes decisions about the user’s input, and either per-
forms one of two submodules, addition() or subtraction(); or, if the user has entered a number other than
1, 2, or 3, the module performs no submodule. Following the performance of the chosen arithmetic drill, the program calls
the displayMenu() module again, and the user has the opportunity to select the same arithmetic drill, a different
one, or the Quit the Program option. See Figure 10-5.

In the looping() module in Figure 10-5, a user who has entered a value such as 4 or 5
receives no explanation, but is shown the menu again. You will improve this module later
in this chapter.

When the looping() module ends, control passes to the main program. If the user has entered a value of 3 to
select the Quit the Program option during a displayMenu() module, the outcome of the question response
= 3? sends the program to the cleanUp() module. That module simply closes the files, as shown in Figure 10-6.

looping()
 if response = 1 then
 perform addition()
 else
 if response = 2 then
 perform subtraction()
 endif
 endif
 perform displayMenu()
return

No response
= 2?

looping()

return

response
= 1?

No

FIGURE 10-5: THE looping() MODULE FOR THE ARITHMETIC DRILL PROGRAM

subtraction()

displayMenu()

addition()

Yes

Yes

TIP�

411Coding Modules as Black Boxes

CODING MODULES AS BLACK BOXES

Any steps you want can occur within the addition() and subtraction()modules in the arithmetic drill program.
The contents of these modules should not affect the main structure of the program in any way.You can write an addition()
module that requires the user to solve simple addition problems, such as 3 + 4, or you can write an addition()module
that requires the user to solve more difficult, multidigit problems, such as 9267 + 3488. You can write the module to contain
a single problem for the user to solve, or dozens.As you will recall from Chapter 2, part of the advantage of modular, structured
programs lies in your ability to break programs into modules that can be assigned to any number of programmers and then pieced
back together at each module’s single entry or exit point.Thus, any number of addition() or subtraction()
modules can be used within the arithmetic drill program, and a new one can be substituted at any time.

Programmers often refer to the code in modules such as addition() and subtraction() as existing within a black
box, meaning that the module statements are encapsulated in a container that makes them “invisible” to the rest of the program.
You probably own many real-life objects that are black boxes to you—a television or a stereo, for example.You might not know
how these devices work internally, and if someone substituted new internal mechanisms in your devices, you might not know or
care, so long as the devices continued to work properly. Similarly, many different addition() or subtraction()mod-
ules could be “plugged into” the arithmetic drill menu program and it would continue to function appropriately.

When first developing a program, programmers frequently don’t bother with module details at all, because many versions of a
module can substitute for one another. Instead, programmers concentrate on the mainline logic and on understanding what
the called modules will do, not on how they will do it. When programmers develop systems containing many modules, they
often code “empty” black box procedures, called stubs. That way, they can develop the overall project logic without worrying
about the minor details. Later, they can code the details in the stub modules.

Figure 10-7 shows a possible addition()module. The module displays four addition problems one at a time, waits for
the user’s response, and displays a message indicating whether the user is correct.

You can write a subtraction() module using a format that is almost identical to the
addition() module. The only necessary change is the computation operation used in
the actual problems.

cleanUp()
 close files
return

FIGURE 10-6: THE cleanUp() MODULE FOR THE ARITHMETIC DRILL PROGRAM

cleanUp()

return

close files

TIP�

412 Chapter 10 • Using Menus and Validating Input

addition()
 print "2 + 3?"
 read response
 if response = 5 then
 print "Right"
 else
 print "Wrong"
 endif
 print "3 + 4?"
 read response
 if response = 7 then
 print "Right"

else
 print "Wrong"
 endif
 print "6 + 2?"
 read response
 if response = 8 then
 print "Right"
 else
 print "Wrong"
 endif
 print "3 + 1?"
 read response
 if response = 4 then
 print "Right"
 else
 print "Wrong"
 endif
return

FIGURE 10-7: THE addition() MODULE, VERSION 1

read
response

print
“Right”

print
“Wrong”

print
“3 + 4?”

read
response

print
“Right”

print
“Wrong”

print
“6 + 2?”

read
response

print
“Right”

print
“Wrong”

print
“3 + 1?”

read
response

print
“Right”

print
“Wrong”

No Yes

No Yes

No Yes

No Yes

addition()

print
“2 + 3?”

return

response
= 5?

response
= 7?

response
= 8?

response
= 4?

413Coding Modules as Black Boxes

The addition()module shown in Figure 10-7 works, but it is repetitious; a basic set of statements repeats four times,
changing only the actual problem values that the user should add, and the correct answer to which the user’s response is
compared. A more elegant solution involves storing the problem values in arrays and using a loop. For example, if you declare
two arrays, as shown in Figure 10-8, then the loop in Figure 10-9 displays and checks four problems. The power of using an
array allows you to alter a subscript in order to display four separate addition problems.

To use the addition() module shown in Figure 10-9, besides the problem value
arrays, you also have to declare the numeric variable count.

In Figure 10-9, the addition() module sets a count variable to 0. Then, because count remains less than 4,
a problem is displayed for the student. The problem display is constructed in four parts—the first probValFirst
element, a plus sign, the first probValSecond element, and a question mark. The module reads the user’s answer
and compares it to the calculated sum of the two operands in the addition problem, printing either “Right” or “Wrong”.

Calculating the correct answer is an improvement over the original version of the program for two reasons. First, a hard-coded
answer might be typed incorrectly by the programmer, whereas a calculated answer will always be correct. Second, if the pro-
grammer decides to alter the values used in the arithmetic problem, the calculated answer will be recomputed automatically.

After the user receives feedback on the arithmetic problem, count is increased, and if it remains in range, the arith-
metic drill proceeds with the next addition problem.

The addition() module in Figure 10-9 is more compact and efficient than the module shown in Figure 10-7.
However, it still contains flaws. A student will not want to use the addition() module more than two or three times.
Every time a user executes the program, the same four addition problems are displayed. Once students have solved all
the addition problems, they probably will be able to provide memorized answers without practicing arithmetic skills at all.
Fortunately, most programming languages provide you with built-in modules, or functions, that automatically provide a
mathematical value such as a square root, absolute value, or random number. Functions that generate a random number
usually take a form similar to random(x), where x is a value you provide for the maximum random number you
want. Different computer systems use different formulas for generating a random number; for example, many use part of
the current clock time when the random number function is called. However, a programming language’s built-in functions
can operate as black boxes, just as your program modules do, so you need not know exactly how the functions do their
jobs. You can use the random number function without knowing how it determines the specific random number.

num probValFirst[0] = 2
num probValFirst[1] = 3
num probValFirst[2] = 6
num probValFirst[3] = 3

num probValSecond[0] = 3
num probValSecond[1] = 4
num probValSecond[2] = 2
num probValSecond[3] = 1

FIGURE 10-8: ARRAYS FOR ADDITION PROBLEMS

TIP�

414 Chapter 10 • Using Menus and Validating Input

addition()
 count = 0
 while count < 4
 print probValFirst[count], "+", probValSecond[count], "?"
 read response
 if response = probValFirst[count] + probValSecond[count] then
 print "Right"
 else
 print "Wrong"
 endif
 count = count + 1
 endwhile
return

FIGURE 10-9: THE addition() MODULE, VERSION 2, USING ARRAYS

read
response

print probValFirst [count],
 “+”,

probValSecond [count],
“?”

print
“Right”

print
“Wrong”

count < 4?

response =
probValFirst [count]

+
probValSecond [count]

?

No

Yes

YesNo

addition()

count = 0

return

count =
count + 1

415Coding Modules as Black Boxes

Figure 10-10 shows an addition() module in which two random numbers, each 10 or less, are generated for
each of four arithmetic problems. Using this technique, you do not have to store values in an array, and users encounter
different addition problems every time they use the program.

The module in Figure 10-10 would require two new variable declarations in the
startUp() module in Figure 10-3: num first and num second.

Popular spreadsheet programs also contain functions. As in programming, they are built-in
modules that return requested values such as square root or absolute value. Most spread-
sheets also contain dozens of specialized functions to support financial applications, such
as computing the future value of an investment and calculating a loan payment.

addition()
 count = 0
 while count < 4
 first = random(10)
 second = random(10)
 print first, "+", second, "?"
 read response
 if response = first + second then
 print "Right"
 else
 print "Wrong"
 endif
 count = count + 1
 endwhile
return

read
response

print
“Right”

print
“Wrong”

print first, “+”,
second, “?”

count < 4?

response
= first +
second?

No

Yes

YesNo

addition()

count = 0

return

count =
count + 1

first =
random(10)

second =
random(10)

FIGURE 10-10: THE addition() MODULE, VERSION 3, USING RANDOM VALUES

TIP�

TIP�

416 Chapter 10 • Using Menus and Validating Input

You can make many additional improvements to any of the addition() modules shown in Figures 10-7, 10-9, and
10-10. For example, you might want to give the user several chances to calculate the correct answer, or you might want
to vary the messages displayed in response to correct and incorrect answers. However you change the
addition() or subtraction() modules in the future, the main structure of the menu program does not have
to change; modularization has made your program easily modifiable to meet changing needs and user preferences.

MAKING IMPROVEMENTS TO A MENU PROGRAM

When the menu appears at the end of the looping() module of the arithmetic drill program, if the user selects
anything other than 3, the looping() module is entered again. Note that if the user chooses 4 or 9 or any other
invalid menu item, the menu simply reappears. Unfortunately, the repeated display of the menu can confuse the user.
Perhaps the user is familiar with another program in which option 9 has always meant Quit. When using the arithmetic
drill program, the user who does not read the menu carefully might press 9, get the menu back, press 9, and get the
menu back again. The programmer can assist the user by displaying a message when the selected response value
is not one of the allowable menu options, as shown in Figure 10-11.

No

looping()

return

No

looping()
 if response = 1 then
 perform addition()
 else
 if response = 2 then
 perform subtraction()
 else
 print "You must select 1, 2, or 3"
 endif
 endif
 perform displayMenu()
return

response
= 1?

response
= 2?

FIGURE 10-11: ADDING AN ERROR MESSAGE TO THE looping() MODULE OF THE ARITHMETIC
DRILL PROGRAM

displayMenu()

print “You
must select
1, 2, or 3”

addition()

subtraction()

Yes

Yes

417Making Improvements to a Menu Program

When you code the displayMenu() module in a programming language, you might
choose to write it so that it clears the screen of all old output before showing the menu
options. If so, then in the looping() module in Figure 10-11, you would be required to
place a statement that pauses the program—for example, requiring the user to press a key
or using a built-in function available in many languages that waits for a number of speci-
fied seconds before continuing. Without such a pause, the message “You must select 1, 2,
or 3” would be displayed on the screen, then be replaced by the menu almost
instantaneously, denying the user enough time to read the message.

Among programmers, there is a saying that no program is ever really completed. You always can continue to make improve-
ments. For example, the looping() module in Figure 10-11 shows that a helpful message (“You must select 1, 2, or
3”) appears when the user selects an inappropriate option. However, if users do not understand the message, or simply do
not stop to read the message, they might keep entering invalid data. As a user-friendly improvement to your program, you
can add a counter that keeps track of a user’s invalid responses. For example, you can decide that after three invalid entries,
you will issue a stronger message, such as “Please see the system administrator for help.” Figure 10-12 shows this logic. Of
course, to use this module, you must remember to declare errorCount in your variable list in the startUp() mod-
ule, and initialize it to 0. Then, each time the user chooses an invalid response and you display the message “You must select
1, 2, or 3”, you can add 1 to errorCount. When errorCount exceeds 2, you display the stronger message.

You can make an additional improvement to the looping() module in Figure 10-12. Suppose the user starts the
program and enters a 5. The value of response is not 1, 2, or 3, so you add 1 to errorCount, display the mes-
sage “You must select 1, 2, or 3”, and display the menu. Suppose the user enters a 5 again. Once again the response is
not 1, 2, or 3, so you add 1 to errorCount, which is now 2, display the message “You must select 1, 2, or 3”, and
display the menu. If the user enters a 5 again, errorCount exceeds 2 and the user receives the message “Please
see the system administrator for help.” Assume the user gets help and figures out that he or she must type 1, 2, or 3.
The user then might successfully use the program for several more minutes. However, the next time the user makes a
selection error, errorCount will increase to 4 and the stronger “system administrator” message appears immedi-
ately, even though this is only the user’s first “new” mistake. If you want to give the user three more chances before the
stronger message appears again, then you should reset errorCount to 0 every time the user makes a valid choice.
This technique allows the user to make three bad selections after any good selection before the stronger message
appears. See Figure 10-13 for a flowchart and pseudocode of a complete program containing all the improvements.

TIP�

418 Chapter 10 • Using Menus and Validating Input

No response
= 2?

looping()

return

No

looping()
 if response = 1 then
 perform addition()
 else
 if response = 2 then
 perform subtraction()
 else
 errorCount = errorCount + 1
 if errorCount > 2 then
 print "Please see the system administrator for help"
 else
 print "You must select 1, 2, or 3"
 endif
 endif
 endif
 perform displayMenu()
return

No errorCount
> 2?

response
= 1?

FIGURE 10-12: THE looping() MODULE WITH A STRONGER ERROR MESSAGE AFTER THREE ERRORS

displayMenu()

addition()

print “You
must select
1, 2, or 3”

errorCount =
errorCount + 1

print “Please
see the system
administrator

for help”

subtraction()

Yes

Yes

Yes

419Making Improvements to a Menu Program

FIGURE 10-13: COMPLETE PROGRAM ALLOWING THREE ATTEMPTS AT SUCCESSFUL MENU SELECTION
BEFORE STRONGER MESSAGE APPEARS

looping()
 if response = 1 then
 perform addition()

errorCount = 0
 else
 if response = 2 then
 perform subtraction()

 errorCount = 0
 else
 errorCount = errorCount + 1
 if errorCount > 2 then
 print "Please see the system administrator for help"
 else
 print "You must select 1, 2, or 3"
 endif
 endif
 endif
 perform displayMenu()
return

No
response

= 2?

looping()

return

No

No
errorCount

> 2?

response
= 1?

displayMenu()

addition()

print “You
must select
1, 2, or 3”

errorCount =
errorCount + 1

print “Please
see the system
administrator

for help”

subtraction()

Yes

Yes

Yes errorCount = 0

errorCount = 0

displayMenu()

print
“(3) Quit the
Program”

return

print
“Please press a
number to make
your selection”

read
response

print
“(1) Addition
Problems”

print
“(2) Subtraction

Problems”

displayMenu()
 print "(1) Addition Problems"
 print "(2) Subtraction Problems"
 print "(3) Quit the Program"
 print "Please press a number to make your selection"
 read response
return

num response
num errorCount
num first
num second

displayMenu()

startUp()

declare
variables

open
files

return

startUp()
 declare variables
 open files
 perform displayMenu()
return

startUp()

cleanUp()

response
= 3?

looping()

No

Yes

start

stop

start
 perform startUp()
 while response not = 3
 perform looping()
 endwhile
 perform cleanUp()
stop

420 Chapter 10 • Using Menus and Validating Input

FIGURE 10-13: COMPLETE PROGRAM ALLOWING THREE ATTEMPTS AT SUCCESSFUL MENU SELECTION
BEFORE STRONGER MESSAGE APPEARS (CONTINUED)

cleanUp()

return

close files

cleanUp()
 close files
return

addition()
 count = 0
 while count < 4
 first = random(10)
 second = random(10)
 print first, "+", second, "?"
 read response
 if response = first + second then
 print "Right"
 else
 print "Wrong"
 endif
 count = count + 1
 endwhile
return

read
response

print
“Right”

print
“Wrong”

print first, “+”,
second, “?”

count < 4?

response
= first +
second?

No

Yes

YesNo

addition()

count = 0

return

count =
count + 1

first =
random(10)

second =
random(10)

read
response

print
“Right”

print
“Wrong”

print first, “-”,
second, “?”

count <4?

response
= first -
second?

No

Yes

YesNo

subtraction()

count = 0

return

count =
count + 1

first =
random(10)

second =
random(10)

subtraction()
 count = 0
 while count < 4
 first = random(10)
 second = random(10)
 print first, "-", second, "?"
 read response
 if response = first - second then
 print "Right"
 else
 print "Wrong"
 endif
 count = count + 1
 endwhile
return

421Using the Case Structure to Manage a Menu

USING THE CASE STRUCTURE TO MANAGE A MENU

The arithmetic drill program contains just three valid user options: numeric entries that represent addition, subtraction,
or quitting the program. Many menus include more than three options, but the main logic of such programs is not sub-
stantially different from that in programs with only three. You just include more decisions that lead to additional sub-
modules. For example, Figure 10-14 shows the main logic for a menu program with four optional arithmetic drills.

In Chapter 2 and again in Chapter 5, you learned about the case structure. You can use the case structure to make decisions
when you need to test a single variable against several possible values. The case structure is particularly convenient to use
in menu-driven programs, because you decide from among several courses of action based on the value in the user’s
response variable. The case structure often is a more convenient way to express a series of individual decisions.

As you have learned, the syntax of case structures in most programming languages allows you to make a series of
comparisons, and if none is true, an Other or Default option executes. Using a default option is a great convenience in a
menu-driven program, because a user usually can enter many more invalid responses than valid ones. Figure 10-15
shows the logic of a four-option arithmetic drill program that uses the case structure.

All menu-driven programs should be user-friendly, meaning that they should make it easy for the user to make
desired choices. Instead of requiring a user to type numbers to select an arithmetic drill, you can improve the menu
program by allowing the user the additional option of typing the first letter of the desired option—for example, A for
addition. To enable the menu program to accept alphabetic characters as a variable named response, you must
make sure you declare response as a character variable in the startUp() module. Numeric variables can hold
only numbers, but character variables can hold alphabetic characters (such as A) as well as numbers.

422 Chapter 10 • Using Menus and Validating Input

No response
= 4?

looping()

return

No response
= 3?

looping()
 if response = 1 then
 perform addition()
 else
 if response = 2 then
 perform subtraction()
 else
 if response = 3 then
 perform multiplication()
 else
 if response = 4 then
 perform division()
 else
 print "You must select 1, 2, 3, or 4"
 endif
 endif
 endif
 endif
 perform displayMenu()
return

No response
= 2?

No response
= 1?

FIGURE 10-14: MAIN LOGIC OF PROGRAM CONTAINING FOUR OPTIONAL ARITHMETIC DRILLS

division()

displayMenu()

multiplication()

print “You
must select
1, 2, 3, or 4”

subtraction()

addition()

Yes

Yes

Yes

Yes

423Using the Case Structure to Manage a Menu

looping()

return

looping()
 case based on response
 case 1
 perform addition()
 case 2
 perform subtraction()
 case 3
 perform multiplication()
 case 4
 perform division()
 default
 print "You must select 1, 2, 3, or 4"
 endcase
 perform displayMenu()
return

1

response?

FIGURE 10-15: MENU PROGRAM USING THE CASE STRUCTURE

displayMenu()

print “You
must select
1, 2, 3, or 4”

addition() division()subtraction() multiplication()

2 3 4 Default

424 Chapter 10 • Using Menus and Validating Input

Programmers sometimes overlook the fact that computers recognize uppercase letters as being different from their
lowercase counterparts. Thus, a response of A is different from a response of a. A good menu-driven program probably
would allow any of three responses for the first option of (1) Addition—1, A, or a. Figure 10-16 shows the case structure
that performs the menu option selection when the user can enter a variety of responses for each menu choice.

looping()

return

looping()
 case based on response
 case "1", "A", "a"
 perform addition()
 case "2", "S", "s"
 perform subtraction()
 case "3", "M", "m"
 perform multiplication()
 case "4", "D", "d"
 perform division()
 default
 print "You must select 1, 2, 3, 4,
 A, S, M, or D"
 endcase
 perform displayMenu()
return

“1”,“A”,“a”

response?

FIGURE 10-16: MENU PROGRAM USING THE CASE STRUCTURE WITH MULTIPLE ALLOWED RESPONSES

displayMenu()

print “You must
select 1, 2, 3, 4,
A, S, M, or D”

addition() division()subtraction() multiplication()

“2”,“S”,“s” “3”,“M”,“m” “4”,“D”,“d” Default

425Using Multilevel Menus

USING MULTILEVEL MENUS

Sometimes, a program requires more options than can easily fit in one menu. When you need to present the user with a
large number of options, you invite several potential problems:

� If there are too many options to fit on the display at one time, the user might not realize that
additional options are available.

� The screen is too crowded to be visually pleasing when you try to force all the options to fit on
the screen.

� Users become confused and frustrated when you present them with too many choices.

When you have many menu options to present, using a multilevel menu might be more effective than using a single-
level menu. With a multilevel menu, the selection of a menu option leads to another menu from which the user can
make further, more refined selections.

For example, an arithmetic drill program might contain three difficulty levels for each type of problem. After the user
sees a menu like the one shown in Figure 10-17, he or she can choose to quit the program immediately, without
selecting an arithmetic drill. You refer to a menu that controls whether the program will continue as the main menu of
a program. Alternatively, the user can choose to continue the program, selecting an Addition, Subtraction, Multiplication,
or Division arithmetic drill. No matter which drill the user chooses, you can display a second menu like the one shown in
Figure 10-18. A second-level (or later-level) menu is a submenu.

FIGURE 10-17: FIRST OR MAIN MENU FOR ARITHMETIC DRILL PROGRAM

426 Chapter 10 • Using Menus and Validating Input

The mainline logic of this multilevel menu arithmetic program calls a startUp() module in which the first menu pre-
sents options for the four types of arithmetic problems—Addition, Subtraction, Multiplication, and Division—as well as an
option to quit. When the user makes a selection—for example, Addition—the mainline logic determines that response
is not the quit option, so the looping() module executes. Figures 10-19, 10-20, and 10-21 show flowcharts and
pseudocode for the mainline logic, startUp() module, and displayMenu() module, respectively.

start
 perform startUp()
 while response not equal to quitValue
 perform looping()
 endwhile
 perform cleanUp()
stop

FIGURE 10-19: FLOWCHART AND PSEUDOCODE FOR MAINLINE LOGIC FOR MULTILEVEL MENU PROGRAM

startUp()

cleanUp()

response =
quitValue? looping()

No

Yes

start

stop

FIGURE 10-18: SECOND OR SUBMENU FOR ARITHMETIC DRILL PROGRAM

427Using Multilevel Menus

When the program begins, unless the user chooses to quit by entering the quitValue (5) for the response in
the startUp() module, the looping() module executes. The looping() module uses a case structure to
select one of five actions. Either the user has entered the correct response to select addition, subtraction, multipli-
cation, or division problems, or the user has selected an invalid option. If the user selects an invalid option, an error
message “Sorry. Invalid entry.” appears. Whether or not the user selects an entry that performs one of the four arith-
metic drill modules, the final step in the looping() module displays the menu again and waits for the next
response. Back in the mainline logic, the new response value is tested, and if the user has entered anything
other than the quitValue, the looping() module executes again. Figure 10-22 shows the flowchart and
pseudocode for this version of the looping() module.

startUp()
 declare variables
 open files
 perform displayMenu()
return

num response
num difficultyResponse
num quitValue = 5

FIGURE 10-20: FLOWCHART AND PSEUDOCODE FOR startUp() MODULE FOR MULTILEVEL MENU PROGRAM

displayMenu()

startUp()

declare
variables

open
files

return

428 Chapter 10 • Using Menus and Validating Input

In the looping()module in Figure 10-22, if the user selects a valid option, then the module executes one of the four
arithmetic drill modules. For example, if the user selects 1 for Addition Problems, then the addition()module executes.

displayMenu()
 print "(1) Addition Problems"
 print "(2) Subtraction Problems"
 print "(3) Multiplication Problems"
 print "(4) Division Problems"
 print "(5) Quit the Program"
 print "Please press a number to make your selection"
 read response
return

FIGURE 10-21: FLOWCHART AND PSEUDOCODE FOR displayMenu() MODULE FOR MULTILEVEL
MENU PROGRAM

displayMenu()

print
“(5) Quit the Program”

return

print
“Please press a
number to make
your selection”

read
response

print
“(1) Addition Problems”

print
“(2) Subtraction Problems”

print
“(3) Multiplication Problems”

print
“(4) Division Problems”

429Using Multilevel Menus

Within the addition() module, the first task is to allow the user to select a problem-difficulty level from a submenu
like the one shown in Figure 10-18. Figure 10-23 shows the flowchart and pseudocode for the addition() module.
Within the addition() module, you call another module to display the difficulty level. Shown in Figure 10-24, this
module allows the user to choose easy, medium, or difficult addition problems. If the user selects to quit this menu by
entering a 4, then the user will leave the addition() module and return to the main menu to choose a different type
of arithmetic problem, choose addition again, or quit the program. In the displayDifficultyMenu() module,
if the user makes a selection other than 4, the case structure in the addition() module determines one of four
actions: either one of three addition problem modules executes, or the user is informed that the choice is invalid. In any

looping()

return

looping()
 case based on response
 case 1
 perform addition()
 case 2
 perform subtraction()
 case 3
 perform multiplication()
 case 4
 perform division()
 default
 print "Sorry. Invalid entry."
 endcase
 perform displayMenu()
return

1

response = ?

FIGURE 10-22: FLOWCHART AND PSEUDOCODE FOR looping() MODULE FOR MULTILEVEL MENU PROGRAM

displayMenu()

print “Sorry.
Invalid entry.”addition() division()subtraction() multiplication()

2 3 4 Default

430 Chapter 10 • Using Menus and Validating Input

case, the last action of the addition() module is to display the difficulty level menu again. As long as users choose
options other than 4, they can continue to select addition problem drills at any of the three difficulty levels.

addition()

return

addition()
 perform displayDifficultyMenu()
 while difficultyResponse is not equal to 4
 case based on difficultyResponse
 case 1
 perform easyAddProblems()
 case 2
 perform mediumAddProblems()
 case 3
 perform difficultAddProblems()
 default
 print "Sorry. Invalid entry."
 endcase
 perform displayDifficultyMenu()
 endwhile
return

1

difficultyResponse
= 4?

difficultyResponse
= ?

FIGURE 10-23: FLOWCHART AND PSEUDOCODE FOR addition() MODULE FOR MULTILEVEL MENU PROGRAM

print “Sorry.
Invalid entry.”easyAddProblems() mediumAddProblems() difficultAddProblems()

displayDifficultyMenu()

displayDifficultyMenu()

2 3 Default

No

Yes

431Using Multilevel Menus

The subtraction(), multiplication(), and division() modules can contain code similar to that
in the addition() module. That is, each module can display a submenu of difficulty levels. The actual arithmetic
problems do not execute until the user reaches the easyAddProblems() module or one of its counterparts.

Many programs have multiple menu levels. For example, you might want the easyAddProblems() module to
display a new menu asking the user for the number of problems to attempt. Figure 10-25 shows a possible menu.

displayDifficultyMenu()
 print "(1) Easy"
 print "(2) Medium"
 print "(3) Difficult"
 print "(4) Quit this menu"
 print "Please press a number to make your selection"
 read difficultyResponse
return

FIGURE 10-24: FLOWCHART AND PSEUDOCODE FOR displayDifficultyMenu() MODULE FOR
MULTILEVEL MENU PROGRAM

displayDifficultyMenu()

return

print
“Please press a
number to make
your selection”

read
difficultyResponse

print
“(1) Easy”

print
“(2) Medium”

print
“(3) Difficult”

print
“(4) Quit this menu”

432 Chapter 10 • Using Menus and Validating Input

You would not need to learn any new techniques to create as many levels of menus as the application warrants. The
module that controls each new level can:

� Display a menu.

� Accept a response.

� Perform another module based on the selection (or inform the user of an error) while the user
does not select the Quit option for the specific menu level.

� Display the menu and accept a response again.

VALIDATING INPUT

Menu programs rely on a user’s input to select one of several paths of action. Other types of programs also require a user to
enter data. Unfortunately, you cannot count on users to enter valid data, whether they are using a menu or supplying informa-
tion to a program. Users will make incorrect choices because they don’t understand the valid choices, or simply because they
make typographical errors. Therefore, the programs you write will be improved if you employ defensive programming,
which means trying to prepare for all possible errors before they occur. Incorrect user entries are by far the most common
source of computer errors.

You can circumvent potential problems caused by a user’s invalid data entries by validating the user’s input. Validating input
involves checking the user’s responses to ensure they fall within acceptable bounds. Validating input does not eliminate all
program errors. For example, if a user can choose option 1 or option 2 from a menu, validating the input means you check to
make sure the user response is 1 or 2. If the user enters a 3, you can issue an error message. However, if the user enters a 2
when she really wants a 1, there is no way you can validate the response. Similarly, if a user must enter his birth date, you
can validate that the month falls between 1 and 12; you usually cannot verify that the user has typed his true birth date.

Validating input is also called editing data.

Programmers employ the acronym GIGO to mean “garbage in, garbage out.” It means that
if your input is incorrect, your output is worthless.

FIGURE 10-25: THIRD MENU FOR ARITHMETIC DRILL PROGRAM

TIP�

TIP�

433Validating Input

The correct action to take when you find invalid data depends on the application. Within an interactive program, you might
require the user to reenter the data. If your program uses a data file, you might print a message so someone can correct
the invalid data. Alternatively, you can force the invalid data to a default value. Forcing a field to a value means you over-
ride incorrect data by setting the field to a specific value. For example, you might decide that if a month value does not fall
between 1 and 12, you will force the field to 0 or 99. This indicates to those who use the data that no valid value exists.

New programmers often make the following two kinds of mistakes when validating data:

� They use incorrect logic to check for valid responses when there is more than one possible
correct entry.

� They fail to account for the user making multiple invalid entries.

For example, assume a user is required to respond with a Y or N to a yes-or-no question. The pseudocode in
Figure 10-26 appears to check for valid responses.

The logic shown in Figure 10-26 intends to make sure that the user enters a Y or an N. However, if you use the logic
shown in Figure 10-26, all users will see the “Invalid response” error message, no matter what they type. Remember, when
you use OR logic, only one of the two expressions used in each half of the OR expression must be true for the whole
expression to be true. For example, if the user types a B, then userAnswer is not equal to Y. Therefore,
userAnswer not equal to “Y” is true, and the “Invalid response” message is displayed. However, if the
user types an N, userAnswer also is not equal to Y. Again, the condition in the if statement is true, and the “Invalid
response” message prints, even though the response is actually valid. Similarly, if the user types a Y, userAnswer
not equal to “Y” is false, but userAnswer not equal to “N” is true, so again “Invalid response”
prints. Every character that exists is either not Y or not N, even “Y” and “N”. The correct logic prints the “Invalid response”
message when userAnswer is not Y and it is also not N. See Figure 10-27.

print "Do you want to continue? Enter Y or N."
read userAnswer
if userAnswer not equal to "Y" AND userAnswer not equal to "N" then
ƒƒƒƒƒƒƒprint "Invalid response. Please type Y or N"
ƒƒƒƒƒƒƒread userAnswer
endif

FIGURE 10-27: IMPROVED METHOD FOR VALIDATING USER RESPONSE

print "Do you want to continue? Enter Y or N."
read userAnswer
if userAnswer not equal to "Y" OR userAnswer not equal to "N" then
ƒƒƒƒƒƒƒprint "Invalid response. Please type Y or N"
ƒƒƒƒƒƒƒread userAnswer
endif

FIGURE 10-26: INVALID METHOD FOR VALIDATING USER RESPONSE

434 Chapter 10 • Using Menus and Validating Input

You first learned about OR decision logic in Chapter 5.

If you use the logic shown in Figure 10-27, when the user types an invalid response, you will correctly display the error
message and get a new userAnswer. However, you have not made allowance for the user typing an invalid
response a second time. Instead of using a decision statement to check for a valid response, you can use a loop to
continue to issue error messages and get new input as long as the user continues to make invalid selections.
Figure 10-28 shows the logic for the best method for validating user input.

UNDERSTANDING TYPES OF DATA VALIDATION

The data you use within computer programs is varied. It stands to reason that validating data requires a variety of
methods. In the last section, you learned to check for an exact match of a user response to the character “Y” or “N”. In
addition, some of the techniques you want to master include validating:

� Data type

� Range

� Reasonableness and consistency of data

� Presence of data

VALIDATING A DATA TYPE

Some programming languages allow you to check data items to make sure they are the correct data type. Although this
technique varies from language to language, you can often make a statement like the one shown in Figure 10-29. In
this program segment, isNumeric() represents a method call; it is used to check whether the entered
employeeSalary falls within the category of numeric data. A method such as isNumeric() is most often
provided with the language translator you use to write your programs. Such a method operates as a black box; you can
use its results without understanding its internal statements.

print "Do you want to continue? Enter Y or N."
read userAnswer
while userAnswer not equal to "Y" AND userAnswer not equal to "N"
ƒƒƒƒƒƒprint "Invalid response. Please type Y or N"
ƒƒƒƒƒƒread userAnswer
endwhile

FIGURE 10-28: BEST METHOD FOR VALIDATING USER RESPONSE

TIP�

435Understanding Types of Data Validation

Some languages require you to check data against the actual machine codes (such as
ASCII or EBCDIC) used to store the data, to determine if the data is the appropriate type.

Besides allowing you to check whether a value is numeric, some languages contain methods with names like
isChar() (for “is the value a character data type?”), isWhitespace() (meaning “is the value a nonprinting
character such as a space, a tab, or the Enter key?”), isUpper() (meaning “is the value a capital letter?”), and
isLower() (meaning “is the value a lowercase letter?”).

In many languages, you accept all user data as a string of characters, and then use built-in methods to attempt to con-
vert the characters to the correct data type for your application. When the conversion methods succeed, you have use-
ful data; when the conversion methods fail because the user has entered the wrong data type, you can take appropriate
action, such as issuing an error message, reprompting the user, or forcing the data to a default value.

VALIDATING A DATA RANGE

Sometimes, a user response or other data must fall within a range of values. For example, when the user enters a
month, you typically require it to fall between 1 and 12, inclusive. The method you use to check for a valid range is sim-
ilar to one you use to check for an exact match; you continue to prompt for and receive responses while the user’s
response is out of range. See Figure 10-30.

print "Enter month."
read userAnswer
while userAnswer < 1 OR userAnswer > 12
ƒƒƒƒƒƒƒprint "Invalid response. Please enter month 1 through 12."
ƒƒƒƒƒƒƒread userAnswer
endwhile

FIGURE 10-30: METHOD FOR VALIDATING USER RESPONSE WITHIN RANGE

print "Enter salary."
read employeeSalary
while employeeSalary not isNumeric()
ƒƒƒƒƒƒƒprint "Salary not numeric. Please reenter."
ƒƒƒƒƒƒƒread employeeSalary
endwhile

FIGURE 10-29: METHOD FOR CHECKING DATA FOR CORRECT TYPE

TIP�

436 Chapter 10 • Using Menus and Validating Input

VALIDATING REASONABLENESS AND CONSISTENCY OF DATA

Data items can be the correct type and within range, but still be incorrect. You have experienced this phenomenon yourself
if anyone has ever misspelled your name or overbilled you. The data might have been the correct type—that is, alphabetic
letters were used in your name—but the name itself was incorrect. There are many data items that you cannot check for
reasonableness; it is just as reasonable that your name is Catherine as it is that your name is Katherine or Kathryn.

However, there are many data items that you can check for reasonableness. If you make a purchase on May 3, 2007, then
the payment cannot possibly be due prior to that date. Perhaps within your organization, if you work in Department 12, you
cannot possibly make more than $20.00 per hour. If your zip code is 90201, your state of residence cannot be New York. If
your pet’s breed is stored as “Great Dane,” then its species cannot be “bird.” Each of these examples involves comparing
two data fields for reasonableness and consistency. You should consider making as many such comparisons as possible
when writing your own programs.

Frequently, testing for reasonableness and consistency involves using additional data
files. For example, to check that a user has entered a valid county of residence for a state,
you might use a file that contains every county name within every state in the United
States, and check the user’s county against those contained in the file.

VALIDATING PRESENCE OF DATA

Sometimes, data is missing from a file, either for a reason or by accident. A job applicant might fail to submit an entry
for the salaryAtPreviousJob field, or a client might have no entry for the emailAddress field. A data-
entry clerk might accidentally skip a field when typing records. Many programming languages allow you to check for
missing data and take appropriate action with a statement similar to if emailAddress is blank
perform noEmailModule(). You can place any instructions you like within noEmailModule(),
including forcing the field to a default value or issuing an error message.

Good defensive programs try to foresee all possible inconsistencies and errors. The more accurate your data, the more
useful information you will produce as output from your programs.

TIP�

Chapter Summary 437

CHAPTER SUMMARY

� Programs for which all the data items are gathered prior to running use batch processing. Programs that

depend on user input while they are running use interactive, real-time, online processing. A menu pro-

gram is a common type of interactive program in which the user sees a number of options on the screen

and can select any one of them.

� When you create a single-level menu, the user makes a selection from only one menu before using the

program for its ultimate purpose. The user’s response controls the mainline logic of a menu program.

� When you code a module as a black box, the module statements are invisible to the rest of the program.

Many versions of a module can substitute for one another. When programmers develop systems containing

many modules, they often code “empty” black box procedures, called stubs; later they can code the details

in the stub modules. In addition, most programming languages provide you with built-in black box functions.

� A programmer can improve a menu program and assist the user by displaying a message when the

selected response is not one of the allowable menu options. Another user-friendly improvement to a pro-

gram adds a counter that keeps track of a user’s invalid responses and issues a stronger message after

a specific number of invalid responses.

� You can use the case structure to make decisions when you need to test a single variable against several

possible values. The case structure is particularly convenient to use in menu-driven programs, because

you decide from among several courses of action based on the value in the user’s response variable.

� When a program requires more options than can easily fit in one menu, you can use a multilevel menu.

With a multilevel menu, the selection of an option from a main menu leads to a submenu from which the

user can make further, more refined selections. With multilevel menus, the module that controls each

new level can display a menu, accept a response, and—while the user does not select the quit option

for that menu level—perform another module based on the selection (or inform the user of an error).

Finally, the module for each menu level displays the menu and accepts a response again.

� You can circumvent potential problems caused by a user’s invalid data entries by validating the user’s

input. Validating input involves checking the user’s responses to ensure they fall within acceptable

bounds, and taking one of several possible actions. Common mistakes when validating data include

using incorrect logic and failing to account for the user making multiple invalid entries.

� Some of the techniques you want to master include validating data type, range, reasonableness and con-

sistency of data, and presence of data.

Chapter 10 • Using Menus and Validating Input438

KEY TERMS

Programs for which all the data items are gathered prior to running use batch processing.

Programs that depend on user input while the programs are running use interactive processing.

Interactive computer programs are often called real-time applications, because they run while a transaction is taking
place, not at some later time.

You also can refer to interactive processing as online processing, because the user’s data or requests are gathered
during the execution of the program, while the computer is operating.

A batch processing system can be offline; that is, you can collect data such as time cards or purchase information
well ahead of the actual computer processing of the paychecks or bills.

A menu program is a common type of interactive program in which the user sees a number of options on the screen
and can select any one of them.

Console applications are programs that require the user to enter choices using the keyboard.

Graphical user interface applications allow the user to use a mouse or other pointing device to enter choices.

A single-level menu is one from which a user makes a selection that results in the program’s ultimate purpose, as
opposed to displaying additional menus.

When code exists in a black box, module statements are “invisible” to the rest of the program.

Stubs are empty procedures, intended to be coded later.

Functions are modules that automatically provide a mathematical value such as a square root, absolute value, or
random number.

User-friendly programs are those that make it easy for the user to make desired choices.

With a multilevel menu, the selection of a menu option leads to another menu from which the user can make further,
more refined selections.

The main menu of a program is the menu that determines whether execution of the program will continue.

A second-level, or later-level, menu is a submenu.

Defensive programming involves trying to prepare for all possible errors before they occur.

Validating input involves checking the user’s responses to ensure they fall within acceptable bounds.

Forcing a field to a value means you override incorrect data by setting the field to a specific value.

Review Questions 439

REVIEW QUESTIONS

1. Programs for which all the data items are gathered prior to running use processing.

a. batch
b. interactive
c. online
d. real-time

2. Programs that depend on user input while the programs are running use processing.

a. artificial
b. delayed
c. batch
d. interactive

3. Which of the following means the same as interactive processing?

a. query processing
b. virtual processing
c. real-time processing
d. batch processing

4. A menu program is a common type of program.

a. batch
b. interactive
c. control break
d. offline

5. If a user makes a selection from only one menu before using the program for its ultimate purpose,
then the menu is a menu.

a. primary
b. single-level
c. focal
d. batch

6. When module statements are invisible to the rest of a program, they are said to exist within a
.

a. black hole
b. magic hat
c. mirror
d. black box

7. Modules containing no code that are used as temporary placeholders are called .

a. black boxes
b. stubs
c. fill-ins
d. padded

Chapter 10 • Using Menus and Validating Input440

8. Most programming languages provide you with built-in modules called that
automatically provide a mathematical value such as a square root, absolute value, or random number.

a. functions
b. formulas
c. stubs
d. black boxes

9. Writing a program that provides a user with increasingly detailed help messages as the user continues
to make data-entry errors requires that the program contain a .

a. loop
b. counter
c. both of these
d. neither a nor b

10. The structure that provides a more convenient way to express a series of decisions that are based
on the value of a single variable is the structure.

a. loop
b. do until
c. case
d. sequence

11. A program that makes it easy for a user to accomplish tasks is said to be .

a. simplex
b. user-friendly
c. structured
d. accommodating

12. You might need to create a multilevel menu from a single-level one if .

a. you do not have enough options to fill the screen
b. users are allowed only true-false choices
c. the screen appears too crowded
d. all of the above

13. Where is the user selection that ends a program most likely to appear?

a. in a program’s main menu
b. in a program’s first submenu
c. in a program’s last submenu
d. in every menu in a program

14. Writing programs that try to prepare for all possible user errors is known as
programming.

a. proactive
b. cautious
c. aggressive
d. defensive

Review Questions 441

15. Checking to ensure that data values fall within acceptable bounds is known as data.

a. forcing
b. defending
c. classifying
d. validating

16. Which value for deptNumber would be considered valid using the following code?
ifƒdeptNumberƒnotƒ=ƒ1ƒORƒdeptNumberƒnotƒ=ƒ2ƒthen
ƒƒƒƒƒprintƒ“Invalidƒnumber”
else
ƒƒƒƒƒprintƒ“Validƒnumber”
endif

a. 1
b. 2
c. Both 1 and 2 are valid.
d. Neither 1 nor 2 is valid.

17. Which value for deptNumber would be considered valid using the following code?
ifƒdeptNumberƒnotƒ=ƒ5ƒANDƒdeptNumberƒnotƒ=ƒ6ƒthen
ƒƒƒƒƒprintƒ“Invalidƒnumber”
else
ƒƒƒƒƒprintƒ“Validƒnumber”
endif

a. 5
b. 6
c. Both 5 and 6 are valid.
d. Neither 5 nor 6 is valid.

18. Which of the following student data items could most easily be validated by a program used by
a college?

a. The name of the high school the student attended is spelled correctly.
b. The student’s middle name is correct.
c. The student’s grade point average is between 0.0 and 4.0, inclusive.
d. The student’s last tuition payment is for the correct amount.

19. Which of the following data items could least easily be validated by a program used by a grocery store?

a. The Universal Product Code for an item contains the correct number of digits (12).
b. The product name is alphabetic.
c. The date the product was last ordered from the manufacturer is a valid date and no more than two years old.
d. The product price is no more than any other store in the state is charging this week.

20. Good defensive programs .

a. catch all errors
b. catch all range errors, but not necessarily other error types
c. catch many errors
d. seldom catch errors until the data is visually verified by clerical employees

Chapter 10 • Using Menus and Validating Input442

FIND THE BUGS

The following pseudocode contains one or more bugs that you must find and correct.

1. Head Gear, Inc. sells customized baseball caps embroidered with your team name or company logo.
This application allows a user to enter the phrase to be imprinted on a cap and a quantity. The
application then displays a menu from which a user can choose the color for the caps ordered.
The total amount due is displayed when the order is complete.

start
ƒƒƒƒƒperformƒfirstTasks()
ƒƒƒƒƒwhileƒphraseƒnotƒ=ƒQUIT
ƒƒƒƒƒƒƒƒƒƒperformƒuserChoices()
ƒƒƒƒƒendwhile
ƒƒƒƒƒperformƒfinishUp()
stop

firstTasks()
ƒƒƒƒƒdeclareƒvariables
ƒƒƒƒƒƒƒƒƒcharƒphrase
ƒƒƒƒƒƒƒƒƒnumƒquantity
ƒƒƒƒƒƒƒƒƒnumƒcolorChoice
ƒƒƒƒƒƒƒƒƒconstƒnumƒQUITƒ=ƒ“XXX”
ƒƒƒƒƒƒƒƒƒconstƒnumƒLOWAMOUNTƒ=ƒ1
ƒƒƒƒƒƒƒƒƒconstƒnumƒHIGHAMOUNTƒ=ƒ500
ƒƒƒƒƒƒƒƒƒconstƒnumƒDISCOUNTPRICEƒ=ƒ6.99
ƒƒƒƒƒƒƒƒƒconstƒnumƒREGPRICEƒ=ƒ8.99
ƒƒƒƒƒƒƒƒƒconstƒnumƒCUTOFFƒ=ƒ100
ƒƒƒƒƒƒƒƒƒconstƒnumƒCAMO_PREMIUMƒ=ƒ1.50
ƒƒƒƒƒƒƒƒƒnumƒprice
ƒƒƒƒƒopenƒfiles
ƒƒƒƒƒprintƒ“Enterƒphraseƒyouƒwantƒembroideredƒonƒcaps
ƒƒƒƒƒprintƒ“ƒorƒenterƒ”,ƒQUIT,ƒ“ƒtoƒquit”
ƒƒƒƒƒreadƒphrase
return

userChoices()
ƒƒƒƒƒdisplayƒ“Enterƒquantity”
ƒƒƒƒƒwhileƒquantityƒ<ƒLOWAMOUNTƒORƒquantityƒ>ƒHIGHAMOUNT
ƒƒƒƒƒƒƒƒprintƒ“Invalidƒamount.ƒPleaseƒre-enterƒquantity”
ƒƒƒƒƒƒƒƒreadƒquantity
ƒƒƒƒƒendwhile
ƒƒƒƒƒperformƒdisplayMenu()
ƒƒƒƒƒperformƒcomputePrice()
ƒƒƒƒƒprintƒ“Enterƒphraseƒyouƒwantƒembroideredƒonƒcaps

Find the Bugs 443

ƒƒƒƒƒprintƒ“ƒorƒenterƒ”,ƒQUIT,ƒ“ƒtoƒquit”
return

displayMenu()
ƒƒƒƒcolorChoiceƒ=ƒ0
ƒƒƒƒwhileColorChoiceƒ<ƒ1ƒORƒcolorChoiceƒ>ƒ6
ƒƒƒƒƒƒprintƒ“Chooseƒaƒcolorƒfromƒtheƒfollowingƒmenu”
ƒƒƒƒƒƒprintƒ“(1)ƒBlack”
ƒƒƒƒƒƒprintƒ“(2)ƒRed”
ƒƒƒƒƒƒprintƒ“(3)ƒBlue”
ƒƒƒƒƒƒprintƒ“(4)ƒGreen”

print “(5) White”
print “(6) Camouflage”

endwhile
return

computePrice()
if quantity < = CUTOFF then

price = REGPRICE * quantity
else

price = DISCOUNTPRICE
endif
if colorChoice = 6 then

price = price + CAMO_PREMIUM * quantity
endif
print “Total is $ ”, price

return

finishUp()
close files

return

2. The Good Thoughts Web site lets users select whether they are in the mood for an inspirational,
motivational, or empathetic message. A message is randomly selected from a database of quotes
and displayed. (Assume that a random number can be obtained by passing a numeric argument to
a built-in rand() function that returns a value from 0 through one less than the argument.)

start
perform getReady()
while entry not = QUIT

perform displayMessage()
endwhile
perform finishUp()

stop

Chapter 10 • Using Menus and Validating Input444

getReady()
declare variables

num entry
const num QUIT = 4

open files
perform menuSelect()

stop

menuSelect()
userInput = 1
whileUserInput < 1 OR userInput > QUIT
print “Choose a type of message for the day”
print “(1) Inspirational message”
print “(2) Motivational message”
print “(3) Empathetic message”
print “(4) Quit”

endwhile
return

displayMessage()
num SZ = 3
char inspirationMessages[SZ]
char motiveMessages[SZ]
char empathyMessages[SZ]
inspirationMessages message[0] =

“This is the first day of the rest of your life”
inspirationMessages [SZ] =

“The sun will come out tomorrow”
inspirationMessages [NUM] =

“The journey is the destination”
motiveMessages[SZ] = “Go the extra mile”
motiveMessages[2] = “Rome wasn't built in a day”
motiveMessages[3] =

“If at first you don't succeed, try, try again”
empathyMess [0] = “Poor baby”
empathyMess[1] = “I feel your pain”
empathyMess[2] = “I know where you are coming from”

randNum = rand(SZ)
// A prewritten function that returns 0, 1 or 2

if user = 1 then
print inspireMessage[SZ]

else

Exercises 445

if userInput = 2 then
print motiveMessage[5]

else
print empMess[randNum]

endif
endif
perform menuSelect()

return

finishUp()
close files

return

EXERCISES

1. Develop the logic for a program that gives you the following options for a trivia quiz:
(1) Movies
(2) Television
(3) Sports
(4) Quit

When the user selects an option, display a question that falls under the category. After the user
responds, display whether the answer is correct.
a. Draw the hierarchy chart.
b. Draw the flowchart.
c. Write the pseudocode.

2. Modify the program in Exercise 1 so that when the user selects a trivia quiz topic option, you dis-
play five questions in the category instead of just one.

3. Develop the logic for a program that presents you with the following options for a banking machine:
(1) Deposit
(2) Withdrawal
(3) Quit

After you select an option, the program asks you for the amount of money to deposit or withdraw,
then displays your balance and allows you to make another selection. When the user selects Quit,
display the final balance.
a. Draw the hierarchy chart.
b. Draw the flowchart.
c. Write the pseudocode.

4. Develop the logic for a program that gives you the following options:
(1) Hot dog 1.50
(2) Fries 1.00
(3) Lemonade .75
(4) End order

Chapter 10 • Using Menus and Validating Input446

You should be allowed to keep ordering from the menu until you press 4 for End order, at which
point you should see a total amount due for your entire order.
a. Draw the hierarchy chart.
b. Draw the flowchart.
c. Write the pseudocode.

5. Develop the logic for a program that gives you the following options when registering for college classes:
(1) English 101 3
(2) Math 260 5
(3) History 100 3
(4) Sociology 151 4
(5) Quit

You should be allowed to select as many classes as you want before you choose the Quit option,
but you should not be allowed to register for the same class twice. The program accumulates the
hours for which you have registered and displays your tuition bill at $50 per credit hour.
a. Draw the hierarchy chart.
b. Draw the flowchart.
c. Write the pseudocode.

6. Suggest two subsequent levels of menus for each of the first two options in this main menu:
(1) Print records from file
(2) Delete records from file
(3) Quit

7. Develop the logic for a program that displays the rules for a sport or a game. The user can select
from the following menu:
(1) Sports
(2) Games
(3) Quit

If the user chooses 1 for Sports, then display options for four different sports of your choice (for
example, soccer or basketball).

If the user chooses 2 for Games, display options for:
(1) Card games
(2) Board games
(3) Quit

Display options for at least two card games (for example, Hearts) and two board games (for exam-
ple, checkers) of your choice. Then display a one- or two-sentence summary of the game rules.
a. Draw the hierarchy chart.
b. Draw the flowchart.
c. Write the pseudocode.

Exercises 447

8. Draw the menus and then develop the logic for a program that displays United States travel and
tourism facts. The main menu should allow the user to choose a region of the country. The next
level should allow the user to select a state in that region. The final level should allow the user to
select a city, at which point the user can view facts such as the city’s population and average tem-
perature. Write the complete module for only one region, one state, and one city.
a. Draw the hierarchy chart.
b. Draw the flowchart.
c. Write the pseudocode.

9. Design the menus and then develop the logic for an interactive program for a florist. The first
screen asks the user to choose indoor plants, outdoor plants, nonplant items, or quit. When the
user chooses indoor or outdoor plants, list at least three appropriate plants of your choice. When
the user chooses a plant, display its correct price. If the user chooses the nonplant option, offer a
choice of gardening tools, gift items, or quit. Depending on the user selection, display at least three
gardening tools or gift items. When the user chooses one, display its price.
a. Draw the hierarchy chart.
b. Draw the flowchart.
c. Write the pseudocode.

10. Design the menus and then develop the logic for an interactive program for a company’s customer
database. Store the customers’ ID numbers in a 20-element array; store their balances due in a par-
allel 20-element array. The menu options include: add customers to the database, find a customer in
the database, print the database, and quit. If the user chooses to add customers, allow the user to
enter a customer ID and balance to the current list, but do not let the list exceed 20 customers. If the
user chooses to print, then print all existing IDs and balances; if there are none, issue a message. If
the user chooses to find a customer, issue a message if there are none; otherwise, provide a second
menu with three options—find by number, find by balance, or quit. Assume that every customer has
a unique ID number, but that there might be several customers with the same balance.
a. Draw the hierarchy chart.
b. Draw the flowchart.
c. Write the pseudocode.

11. Design the logic for a program that creates job applicant records, including all input data and start-
ing salary. The program asks users for their first name, middle initial, last name, birth date (month,
day, and year), current age, date of application (month, day, and year), and the job title for which
they are applying. Available jobs and starting salaries appear in the following table:
JOB TITLE SALARY
Clerk I 26,000
Clerk II 30,000
Administrative assistant 37,500
Technical writer 39,000
Programmer I 42,500
Programmer II 50,000

Chapter 10 • Using Menus and Validating Input448

Perform as many validation checks as you can think of to make sure that complete and accurate
records are created.
a. Draw the hierarchy chart.
b. Draw the flowchart.
c. Write the pseudocode.

12. Design the logic for a program that creates student records for Creighton Technical College and
assigns an advisor and a dormitory to each student. The program asks users for their first name,
last name, birth date (month, day, and year), and intended major. Advisors are assigned based on
major, as follows:
MAJOR ADVISOR LAST NAME
Business Brown for the first 100 students, then Davis
Computer Information Systems Cunningham for the first 100 students, then Lee
Heating and Air Conditioning Parke
Hospitality Hunter
Undeclared Ulster

Dormitories are assigned based on both major and age, as follows:
MAJOR AGE DORMITORY
Business under 21 Washington
Business 21 and over Adams
Computer Information Systems under 21 Jefferson
Computer Information Systems 21 and over Lincoln
Heating and Air Conditioning any Grant
Hospitality or Undeclared any Wilson

Perform as many validation checks as you can think of to make sure that complete and accurate
records are created.
a. Draw the hierarchy chart.
b. Draw the flowchart.
c. Write the pseudocode.

DETECTIVE WORK

1. Many programming languages make a distinction between the terms “function” and “procedure.”
To most programmers, what is the difference?

2. What is black box testing? What are the advantages and disadvantages of this type of testing?

3. What is defensive programming? What is Murphy’s law? What do the two have to do with each other?

UP FOR DISCUSSION

1. Obviously, you use a menu in a restaurant. Where else?

2. Have you ever used a telephone menu system that was inconvenient or frustrating? Describe the
problems you encountered. Can you develop a set of recommendations for telephone menu systems?

11
After studying Chapter 11, you should be able to:

� Understand sequential files and the need for merging them

� Create the mainline and housekeeping() logic for a merge program

� Create the mergeFiles() and finishUp() modules for a merge program

� Modify the housekeeping() module to check for eof

� Understand master and transaction file processing

� Match files to update master file fields

� Allow multiple transactions for a single master file record

� Update records in sequential files

SEQUENTIAL FILE MERGING,
MATCHING, AND UPDATING

449

450 Chapter 11 • Sequential File Merging, Matching, and Updating

UNDERSTANDING SEQUENTIAL DATA FILES AND THE NEED FOR
MERGING FILES

A sequential file is a file in which records are stored one after another in some order. One option is to store records in
a sequential file in the order in which the records are created. For example, if you maintain records of your friends, you
might store the records as you make the friends; you could say the records are stored in temporal order—that is, in
order based on time. At any point in time, the records of your friends will be stored in sequential order based on how
long you have known them—the data stored about your best friend from kindergarten is record 1, and the data about
the friend you just made last week could be record 30.

Instead of temporal order, records in a sequential file are more frequently stored based on the contents of one or more
fields within each record. Perhaps it is most useful for you to store your friends’ records sequentially in alphabetical
order by last name, or maybe in order by birthday.

Other examples of sequential files include:

� A file of employees stored in order by Social Security number

� A file of parts for a manufacturing company stored in order by part number

� A file of customers for a business stored in alphabetical order by last name

Recall from Chapter 9 that the field that makes a record unique from all records in a file
is the key field. Frequently, though not always, records are most conveniently stored in
order by their key fields.

Businesses often need to merge two or more sequential files. Merging files involves combining two or more files while
maintaining the sequential order. For example:

� Suppose you have a file of current employees in Social Security number order and a file of newly
hired employees, also in Social Security number order. You need to merge these two files into
one combined file before running this week’s payroll program.

� Suppose you have a file of parts manufactured in the Northside factory in part-number order and
a file of parts manufactured in the Southside factory, also in part-number order. You need to
merge these two files into one combined file, creating a master list of available parts.

� Suppose you have a file that lists last year’s customers in alphabetical order and another file that
lists this year’s customers in alphabetical order. You want to create a mailing list of all customers
in order by last name.

Before you can easily merge files, two conditions must be met:

� Each file must contain the same record layout.

� Each file used in the merge must be sorted in the same order (ascending or descending) based
on the same field.

TIP�

451Creating the Mainline and housekeeping() Logic for a Merge Program

For example, suppose your business has two locations, one on the East Coast and one on the West Coast, and each
location maintains a customer file in alphabetical order by customer name. Each file contains fields for name and cus-
tomer balance. You can call the fields in the East Coast file eastName and eastBalance, and the fields in the
West Coast file westName and westBalance. You want to merge the two files, creating one master file contain-
ing records for all customers. Figure 11-1 shows some sample data for the files; you want to create a merged file like
the one shown in Figure 11-2.

CREATING THE MAINLINE AND housekeeping() LOGIC FOR A MERGE
PROGRAM

The mainline logic for a program that merges two files is similar to the main logic you’ve used before in other
programs: it contains a housekeeping() module, a mergeFiles() module that repeats until the end of the
program, and a finishUp() module. Most programs you have written would repeat the main, central module (in
this program, the mergeFiles() module) until the eof condition occurs. In a program that merges files, there are
two input files, so checking for eof on one of them is insufficient. Instead, the mainline logic will check a flag variable
that you create with a name such as bothAtEof. You will set the bothAtEof flag to “Y” after you have encoun-
tered eof in both input files. Figure 11-3 shows the mainline logic.

mergedNameƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒmergedBalance
Ableƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 100.00
Brownƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 50.00
Chenƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 200.00
Doughertyƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 25.00
Edgarƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 125.00
Fellƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 75.00
Grandƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 100.00
Hansonƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 300.00
Ingramƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 400.00
Johnsonƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 30.00

FIGURE 11-2: MERGED CUSTOMER FILE

EastƒCoastƒFileƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒWestƒCoastƒFile
eastNameƒƒƒƒeastBalanceƒƒƒƒƒƒƒƒwestNameƒƒƒƒƒƒƒwestBalance
Ableƒƒƒƒƒƒƒƒ100.00ƒƒƒƒƒƒƒƒƒƒƒƒƒChenƒƒƒƒƒƒƒƒƒƒƒ200.00
Brownƒƒƒƒƒƒƒƒ50.00ƒƒƒƒƒƒƒƒƒƒƒƒƒEdgarƒƒƒƒƒƒƒƒƒƒ125.00
Doughertyƒƒƒƒ25.00ƒƒƒƒƒƒƒƒƒƒƒƒƒFellƒƒƒƒƒƒƒƒƒƒƒƒ75.00
Hansonƒƒƒƒƒƒ300.00ƒƒƒƒƒƒƒƒƒƒƒƒƒGrandƒƒƒƒƒƒƒƒƒƒ100.00
Ingramƒƒƒƒƒƒ400.00
Johnsonƒƒƒƒƒƒ30.00

FIGURE 11-1: SAMPLE DATA CONTAINED IN TWO CUSTOMER FILES

452 Chapter 11 • Sequential File Merging, Matching, and Updating

You first used flag variables in Chapter 8. A flag is a variable that keeps track of whether
an event has occurred.

When you declare variables within the housekeeping() module, you must declare the bothAtEof flag and ini-
tialize it to “N” to indicate that the input files have not yet reached the end-of-file condition. In addition, you need to
define two input files, one for the file from the East Coast office and one for the file from the West Coast office.
Figure 11-4 shows that the files are called eastFile and westFile. Their variable fields are eastName,
eastBalance, westName, and westBalance, respectively.

You will modify the housekeeping() module in Figure 11-4 later in this chapter, after
you learn about the special techniques needed to handle the eof conditions in this program.

At the end of a housekeeping() module, typically you read the first file input record into memory. In this file-
merging program with two input files, you will read one record from each input file into memory at the end of the
housekeeping() module.

The output from the merge program is a new, merged file containing all records from the two original input files. Logically,
writing to a file and writing a printed report are very similar—each involves sending data to an output device. The major
difference is that when you write a data file, typically you do not include headings or other formatting for people to read, as
you do when creating a printed report. A data file contains only data for another computer program to read.

start
perform housekeeping()
while bothAtEof = “N”

perform mergeFiles()
endwhile
perform finishUp()

stop

FIGURE 11-3: FLOWCHART AND PSEUDOCODE FOR MAINLINE LOGIC OF THE MERGE PROGRAM

Yes

housekeeping()

bothAtEof
=“N”? mergeFiles()

finishUp()

stop

start

No

TIP�

TIP�

453Creating the Mainline and housekeeping() Logic for a Merge Program

Logically, the verbs “print,” “write,” and “display” mean the same thing—all produce out-
put. However, in conversations, programmers usually reserve the word “print” for situa-
tions in which they mean “produce hard copy output,” and are more likely to use “write”
when talking about sending records to a data file and “display” when sending records to a
monitor. In some programming languages, there is no difference in the verb you use for
output, no matter what type of hardware you use; you simply assign different output
devices (such as printers, monitors, and disk drives) as needed to programmer-named
objects that represent them.

In some programming languages, you might assign each input field to a named variable
designed specifically for output before writing. In many languages, such as Java, C++,
and C#, you can use the same variable as an input field and an output field—a convention
that is followed in this book.

In many organizations, both data files and printed report files are sent to disk storage
devices when they are created. Later, as time becomes available on the organization’s
busy printers (often after business hours), the report disk files are copied to paper.

eastFile
 char eastName
 num eastBalance
westFile

char westName
num westBalance

char bothAtEof = "N"

FIGURE 11-4: FLOWCHART AND PSEUDOCODE FOR THE housekeeping() MODULE IN THE MERGE PROGRAM,
VERSION 1

read
eastFile

read
westFile

housekeeping()

declare
variables

open
files

return

housekeeping()
 declare variables
 open files
 read eastFile
 read westFile
return

TIP�

TIP�

TIP�

454 Chapter 11 • Sequential File Merging, Matching, and Updating

CREATING THE mergeFiles(()) AND finishUp() MODULES FOR A
MERGE PROGRAM

When you begin the mergeFiles() module, two records—one from eastFile and one from westFile—
are sitting in the memory of the computer. One of these records needs to be written to the new output file first. Which
one? Because the two input files contain records stored in alphabetical order, and you want the new file to store records
in alphabetical order, you first output the input record that has the lower alphabetical value in the name field. Therefore,
the mergeFiles() module begins as shown in Figure 11-5.

Don’t be confused by a statement such as write eastName, eastBalance. Even
though eastName and eastBalance are input fields, writing them sends their contents
to a new output file, just as printing them sends them to a piece of paper. In some older pro-
gramming languages, you had to move input fields such as eastName and
eastBalance to an output area before you could write them to a file.

Using the sample data from Figure 11-1, you can see that the record from the East Coast file containing “Able” should
be written to the output file, while Chen’s record from the West Coast file waits in memory because the eastName
value “Able” is alphabetically lower than the westName value “Chen”.

After you write Able’s record, should Chen’s record be written to the output file next? Not necessarily. It depends on the
next eastName following Able’s record in eastFile. When data records are read into memory from a file, a pro-
gram typically does not “look ahead” to determine the values stored in the next record. Instead, a program usually reads
the record into memory before making decisions about its contents. In this program, you need to read the next
eastFile record into memory and compare it to “Chen”. Because in this case the next record in eastFile con-
tains the name “Brown”, another eastFile record is written; no westFile records are written yet.

After the first two eastFile records, is it Chen’s turn to be written now? You really don’t know until you read another
record from eastFile and compare its name value to “Chen”. Because this record contains the name “Dougherty”,

mergeFiles()
 if eastName < westName then
 write eastName, eastBalance
 …
 else
 write westName, westBalance
 …

FIGURE 11-5: BEGINNING OF THE mergeFiles() MODULE OF THE MERGE PROGRAM

mergeFiles()

eastName <
westName?

write
westName,

westBalance

No Yes

write
eastName,

eastBalance

TIP�

455Creating the mergeFiles() and finishUp() Modules for a Merge Program

it is indeed time to write Chen’s record. After Chen’s record is written to output, should you now write Dougherty’s
record? Until you read the next record from westFile, you don’t know whether that record should be placed before
or after Dougherty’s record.

Therefore, the mergeFiles() module proceeds like this: compare two records, write the record with the lower
alphabetical name, and read another record from the same input file. See Figure 11-6.

Recall the names from the two original files (see Figure 11-7) and walk through the processing steps.

1. Compare “Able” and “Chen”. Write Able’s record. Read Brown’s record from eastFile.

2. Compare “Brown” and “Chen”. Write Brown’s record. Read Dougherty’s record from eastFile.

3. Compare “Dougherty” and “Chen”. Write Chen’s record. Read Edgar’s record from westFile.

4. Compare “Dougherty” and “Edgar”. Write Dougherty’s record. Read Hanson’s record from

eastFile.

eastNameƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒwestName
AbleƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒChen
BrownƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒEdgar
DoughertyƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒFell
HansonƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒGrand
Ingram
Johnson

FIGURE 11-7: NAMES FROM TWO FILES TO MERGE

mergeFiles()
 if eastName < westName then
 write eastName, eastBalance
 read eastFile
 …
 else
 write westName, westBalance
 read westFile
 …

FIGURE 11-6: CONTINUATION OF THE mergeFiles() MODULE FOR THE MERGE PROGRAM

mergeFiles()

eastName <
westName?

write
westName,

westBalance

No Yes

write
eastName,

eastBalance

read
westFile

read
eastFile

456 Chapter 11 • Sequential File Merging, Matching, and Updating

5. Compare “Hanson” and “Edgar”. Write Edgar’s record. Read Fell’s record from westFile.

6. Compare “Hanson” and “Fell”. Write Fell’s record. Read Grand’s record from westFile.

7. Compare “Hanson” and “Grand”. Write Grand’s record. Read from westFile, encountering eof.

What happens when you reach the end of the West Coast file? Is the program over? It shouldn’t be, because records
for Hanson, Ingram, and Johnson all need to be included in the new output file, and none of them is written yet. You
need to find a way to write the Hanson record as well as read and write all the remaining eastFile records. And you
can’t just write statements to read and write from eastFile; sometimes, when you run this program, records in
eastFile will finish first alphabetically, and in that case you need to continue reading from westFile.

An elegant solution to this problem involves setting the field on which the merge is based to a “high” value when the
end of the file is encountered. A high value is one that is greater than any possible value in a field. Programmers often
use all 9s in a numeric field and all Zs in a character field to indicate a high value. Every time you read from
westFile you can check for eof, and when it occurs, set westName to “ZZZZZ”. Similarly, when reading
eastFile, set eastName to “ZZZZZ” when eof occurs. When both eastName and westName are “ZZZZZ”,
then you set the bothAtEof variable to “Y”. Figure 11-8 shows the complete mergeFiles() logic.

At the end of the file, you might choose to use 10 or 20 Zs in the eastName and
westName fields instead of using only five. Although it is unlikely that a person will
have the last name ZZZZZ, you should make sure that the value you choose for a high
value is actually a higher value than any legitimate value.

Several programming languages contain a name you can use for a value that occurs when
every bit in a byte is an “on” bit, creating a value that is even higher than all Zs or all 9s. For
example, in COBOL this value is called HIGH-VALUES, and in RPG it is called HIVAL.

Using the sample data in Figure 11-7, after Grand’s record is processed, westFile is read and eof is encountered,
so westName gets set to “ZZZZZ”. Now, when you enter the mergeFiles() module again, eastName and
westName are compared, and eastName is still “Hanson”. The eastName value (Hanson) is lower than the
westName value (ZZZZZ), so the data for eastName’s record writes to the output file, and another eastFile
record (Ingram) is read.

The complete run of the file-merging program now executes the first six of the seven steps as listed previously, and
then proceeds as shown in Figure 11-8 and as follows, starting with a modified Step 7:

7. Compare “Hanson” and “Grand”. Write Grand’s record. Read from westFile, encountering

eof and setting westName to “ZZZZZ”.

8. Compare “Hanson” and “ZZZZZ”. Write Hanson’s record. Read Ingram’s record.

9. Compare “Ingram” and “ZZZZZ”. Write Ingram’s record. Read Johnson’s record.

10. Compare “Johnson” and “ZZZZZ”. Write Johnson’s record. Read from the eastFile, encoun-

tering eof and setting eastName to “ZZZZZ”.

11. Now that both names are “ZZZZZ”, set the flag bothAtEof equal to “Y”.

TIP�

TIP�

457Creating the mergeFiles() and finishUp() Modules for a Merge Program

mergeFiles()
 if eastName < westName then
 write eastName, eastBalance
 read eastFile
 if eof then
 eastName = "ZZZZZ"
 endif
 else
 write westName, westBalance
 read westFile
 if eof then
 westName = "ZZZZZ"
 endif
 endif
 if eastName = "ZZZZZ" then
 if westName = "ZZZZZ" then
 bothAtEof = "Y"
 endif
 endif
return

FIGURE 11-8: THE mergeFiles() MODULE FOR THE MERGE PROGRAM, COMPLETED

No Yes

No Yes

mergeFiles()

eastName
<

westName?

write
westName,

westBalance

No Yes

write
eastName,

eastBalance

read
westFile

read
eastFile

No Yes
eof?

eastName
=

“ZZZZZ”?

westName
=

“ZZZZZ”?

eof?

westName
=

“ZZZZZ”

eastName
=

“ZZZZZ”

No Yes

bothAtEof
= “Y”

return

458 Chapter 11 • Sequential File Merging, Matching, and Updating

When the bothAtEof flag variable equals “Y” at the end of the mergeFiles() module, the mainline logic then
proceeds to the finishUp() module. See Figure 11-9.

Notice that if two names are equal during the merge process—for example, when there is
a “Hanson” record in each file—then both Hansons will be included in the final file.
When eastName and westName match, eastName is not lower than westName, so
you write the westFile “Hanson” record. After you read the next westFile record,
eastName will be lower than the next westName, and the eastFile “Hanson” record
will be output. A more complicated merge program could check another field, such as
first name, when last-name values match.

You can merge any number of files. To merge more than two files, the logic is only
slightly more complicated; you must compare the key fields from all three files before
deciding which file is the next candidate for output.

finishUp()
 close files
return

FIGURE 11-9: THE finishUp() MODULE FOR THE MERGE PROGRAM

return

finishUp()

close
files

TIP�

TIP�

459Modifying the housekeeping() Module in the Merge Program to Check for eof

MODIFYING THE housekeeping() MODULE IN THE MERGE PROGRAM
TO CHECK FOR eof

Recall that in the housekeeping() module for the merge program that combines East Coast and West Coast cus-
tomer files, you read one record from each of the two input files. Although it is unlikely that you will reach the end of the
file after attempting to read the first record in a file, it is good practice to check for eof every time you read. In the
housekeeping() module, you first read from one of the input files. Whether you encounter eof or not, you then
read from the second input file. If both files are at eof, then both name fields are set to “ZZZZZ”, and you can set the
bothAtEof flag to “Y”. Then, when the housekeeping() module ends, if the value of bothAtEof is “Y”, it
means that there are no records to merge, and the mainline logic will immediately send the program to the
finishUp() module. Figure 11-10 shows the complete merge program, including the newly modified
housekeeping() module that checks for the end of each input file.

start
perform housekeeping()
while bothAtEof = “N”

perform mergeFiles()
endwhile
perform finishUp()

stop

Yes

No

FIGURE 11-10: THE COMPLETE FILE MERGE PROGRAM

start

housekeeping()

mergeFiles()

finishUp()

stop

bothAtEof
=“N”?

460 Chapter 11 • Sequential File Merging, Matching, and Updating

housekeeping()
 declare variables
 open files
 read eastFile
 if eof then
 eastName = "ZZZZZ"
 endif
 read westFile
 if eof then
 westName = "ZZZZZ"
 endif
 if eastName = "ZZZZZ" then
 if westName = "ZZZZZ" then
 bothAtEof = "Y"
 endif
 endif
return

eastFile
 char eastName
 num eastBalance
westFile

char westName
num westBalance

char bothAtEof = "N"

finishUp()
 close files
return

mergeFiles()
 if eastName < westName then
 write eastName, eastBalance
 read eastFile
 if eof then
 eastName = “ZZZZZ”
 endif
 else
 write westName, westBalance
 read westFile
 if eof then
 westName = “ZZZZZ”
 endif
 endif
 if eastName = “ZZZZZ” then
 if westName = “ZZZZZ” then
 bothAtEof = “Y”
 endif
 endif
return

FIGURE 11-10: THE COMPLETE FILE MERGE PROGRAM (CONTINUED)

return

finishUp()

close files

read
eastFile

open files

read
westFile

read
westFile

No Yes
eof?

eastName
=

“ZZZZZ”

No Yes

No Yes

mergeFiles()

eastName
<

westName?

write
westName,

westBalance

No Yes

write
eastName,

eastBalance

No Yes
eof?

eastName
=

“ZZZZZ”?

westName
=

“ZZZZZ”?

eof?

westName
=

“ZZZZZ”

eastName
=

“ZZZZZ”

No Yes

bothAtEof
= “Y”

return

No Yes
eof?

westName
=

“ZZZZZ”

No Yes

eastName
=

“ZZZZZ”?

westName
=

“ZZZZZ”?

No Yes

bothAtEof
= “Y”

return

housekeeping()

declare variables

read
eastFile

461Master and Transaction File Processing

MASTER AND TRANSACTION FILE PROCESSING

When two related sequential files seem “equal,” in that they hold the same type of information—for example, when one
holds customers from the East Coast and one holds customers from the West Coast—you often need to merge the files
to use them as a single unit. When you merge records from two or more files, the records (almost) always contain the
same fields in the same order; in other words, every record in the merged file has the same format.

Some related sequential files, however, are unequal and you do not want to merge them. For example, you might have a
file containing records for all your customers, in which each record holds a customer ID number, name, address, and
balance due. You might have another file that contains data for every purchase made, containing the customer ID num-
ber and other purchase information such as a dollar amount. Although both files contain a customer ID number, the file
with the customer names and addresses is an example of a master file. You use a master file to hold relatively perma-
nent data, such as customers’ names. The file containing customer purchases is a transaction file, a file that holds
more temporary data generated by the actions of the customers. You may maintain certain customers’ names and
addresses for years, but the transaction file will contain new data daily, weekly, or monthly, depending on your organiza-
tion’s billing cycle. Commonly, you periodically use a transaction file to find a matching record in a master file—one
that contains data about the same customer. Sometimes, you match records so you can update the master file by
making changes to the values in its fields. For example, the file containing transaction purchase data might be used to
update each master file record’s balance due field. At other times, you might match a transaction file’s records to its
master file counterpart, creating an entity that draws information from both files—an invoice, for example. This type of
program requires matching, but no updating. Whether a program simply matches records in master and transaction
files, or updates the master file, depending on the application, there might be none, one, or many transaction records
corresponding to each master file record.

Here are a few other examples of files that have a master-transaction relationship:

� A library maintains a master file of all patrons and a transaction file with information about each
book or other items checked out.

� A college maintains a master file of all students and a transaction file for each course
registration.

� A telephone company maintains a master file for every telephone line (number) and a transaction
file with information about every call.

When you update a master file, you can take two approaches:

� You can actually change the information in the master file. When you use this approach, the
information that existed in the master file prior to the transaction processing is lost.

� You can create a copy of the master file, making the changes in the new version. Then, you can
store the previous version of the master file for a period of time, in case there are questions or
discrepancies regarding the update process. The saved version of a master file is the parent
file; the updated version is the child file. This approach is used later in this chapter.

462 Chapter 11 • Sequential File Merging, Matching, and Updating

When a child file is updated, it becomes a parent, and its parent becomes a grandparent.
Individual organizations create policies concerning the number of generations of backup
files they will save before discarding them.

The terms “parent” and “child” refer to file backup generations, but they also are used in
object-oriented programming. When you base a class on another using inheritance, the
original class is the parent and the derived class is the child. You will learn about these
concepts in Chapter 13.

MATCHING FILES TO UPDATE FIELDS IN MASTER FILE RECORDS

The logic you use to perform a match between master and transaction file records is similar to the logic you use to per-
form a merge. As with a merge, you must begin with both files sorted in the same order on the same field.

Assume you have a master file with the fields shown in Figure 11-11.

The custTotalSales field holds the total dollar amount of all purchases the customer has made previously; in
other words, it holds the total amount the customer has spent prior to the current week. At the end of each week, you
want to update this field with any new sales transaction that occurred during the week. Assume a transaction file con-
tains one record for every transaction that has occurred and that each record holds a transaction number, the number
of the customer who made the transaction, the transaction date, and the amount of the transaction. The fields in the
transaction file are shown in Figure 11-12.

TRANSACTION FILE DESCRIPTION
File name: TRANSACTIONS
FIELDƒDESCRIPTIONƒƒƒƒƒƒƒDATA TYPEƒƒƒƒƒƒCOMMENTS
Transaction numberƒƒƒƒƒƒNumericƒƒƒƒƒƒƒƒ7 digits
Customer numberƒƒƒƒƒƒƒƒƒNumericƒƒ 3 digits
Transaction dateƒƒƒƒƒƒƒƒNumericƒƒ 8 digits YYYYMMDD
Transaction amountƒƒƒƒƒƒNumericƒƒ 2 decimal places

FIGURE 11-12: TRANSACTION FILE DESCRIPTION

MASTER CUSTOMER FILE DESCRIPTION
File name: CUSTOMERS
FIELDƒDESCRIPTIONƒƒƒƒƒƒƒDATA TYPEƒƒƒƒƒƒCOMMENTS
Customer numberƒƒƒƒƒƒƒƒƒNumericƒƒƒƒƒƒƒƒ3 digits
Nameƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Character
Addressƒƒƒƒƒƒƒƒƒƒƒƒƒ Character
Phone numberƒƒƒƒƒƒƒƒƒƒƒ Character
Total salesƒƒƒƒƒƒƒƒƒƒ Numeric 2 decimal places

FIGURE 11-11: MASTER CUSTOMER FILE DESCRIPTION

TIP�

TIP�

463Matching Files to Update Fields in Master File Records

You want to create a new master file in which almost all information is the same as in the original file, but the
custTotalSales field increases to reflect the most recent transaction. The process involves going through the old
master file, one record at a time, and determining whether there is a new transaction for that customer. If there is no
transaction for a customer, the new customer record will contain exactly the same information as the old customer
record. However, if there is a transaction for a customer, the transAmount value adds to the custTotalSales
field before you write the updated master file record to output. Imagine you were going to update master file records by
hand instead of using a computer program, and imagine each master and transaction record was stored on a separate
piece of paper. The easiest way to accomplish the update would be to sort all the master records by customer number
and place them in a stack, and then sort all the transactions by customer number (not transaction number) and place
them in another stack. You then would examine the first transaction, and look through the master records until you
found a match. You would then correct the matching master record and examine the next transaction. The computer
program you write to perform the update works exactly the same way.

The mainline logic (see Figure 11-13) and housekeeping() module (see Figure 11-14) for this matching program
look similar to their counterparts in a file-merging program. Two records are read, one from the master file and one
from the transaction file. When you encounter eof for either file, store a high value (999) in the customer number field.
Using the readCust() and readTrans() modules moves the reading of files and checking for eof off into
their individual modules, as shown in Figure 11-15.

start
 perform housekeeping()
 while bothAtEof = "N"
 perform matchFiles()
 endwhile
 perform finishUp()
stop

FIGURE 11-13: MAINLINE LOGIC FOR THE FILE-MATCHING PROGRAM

bothAtEof
= “N”? matchFiles()

finishUp()

housekeeping()

stop

start

No

Yes

464 Chapter 11 • Sequential File Merging, Matching, and Updating

In the file-merging program earlier in this chapter, you placed “ZZZZZ” in the customer
name field at the end of the file because character fields were being compared. In this
example, because you are using numeric fields (customer numbers), you can store 999 in
them at the end of the file. The value 999 is the highest possible numeric value for a three-
digit number in the customer number field.

custRec
 num custNumber
 char custName
 char custAddress
 char custPhone
 num custTotalSales
transRec
 num transNumber
 num transCustNumber
 num transDate
 num transAmount
char bothAtEof = "N"

FIGURE 11-14: THE housekeeping() MODULE FOR THE FILE-MATCHING PROGRAM

housekeeping()

return

Yes

No custNumber
= 999?

transCustNumber
= 999?

Yes

No

declare variables

open files

readCust()

readTrans()

bothAtEof
= “Y”

housekeeping()
 declare variables
 open files
 perform readCust()
 perform readTrans()
 if custNumber = 999 then
 if transCustNumber = 999 then
 bothAtEof = "Y"
 endif
 endif
return

TIP�

465Matching Files to Update Fields in Master File Records

In the file-merging program, your first action in the mainline mergeFiles() module was to determine which file
held the record with the lower value; then, you wrote that file to output. In a main module within a matching program,
you need to determine more than whether one file’s comparison field is larger than another’s; it’s also important to
know if they are equal. In this example, you want to update the master file record’s custTotalSales field only if
the transaction record transCustNumber field contains an exact match for the customer number in the master

readTrans()ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
ƒƒƒƒreadƒtransRecƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
ƒƒƒƒifƒeofƒthenƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
ƒƒƒƒƒƒƒtransCustNumberƒ=ƒ999ƒƒƒƒƒƒƒƒƒƒƒƒƒ
ƒƒƒƒendifƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
returnƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

readCust()
ƒƒƒƒreadƒcustRec
ƒƒƒƒifƒeofƒthen
ƒƒƒƒƒƒƒcustNumberƒ=ƒ999
ƒƒƒƒendif
returnƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

FIGURE 11-15: THE readTrans() AND readCust() MODULES FOR THE FILE-MATCHING PROGRAM

read
transRec

readTrans()

return readCust()

YesNo

transCustNumber
= 999

YesNo

read
custRec

custNumber
= 999

return

eof?

eof?

466 Chapter 11 • Sequential File Merging, Matching, and Updating

file record. Therefore, in the file-matching module (called matchFiles() in this example), you compare
custNumber from custRec and transCustNumber from transRec. Three possibilities exist:

� The transCustNumber value equals custNumber.

� The transCustNumber value is higher than custNumber.

� The transCustNumber value is lower than custNumber.

When you compare records from the two input files, if custNumber and transCustNumber are equal, you add
transAmount to custTotalSales, and then write the updated master record to the output file. Then, you read
in both a new master record and a new transaction record.

The logic used here assumes there can be only one transaction per customer. Later in this
chapter, you will develop the logic for a program in which the customer can have multiple
transactions.

If transCustNumber is higher than custNumber, there wasn’t a sale for that customer. That’s all right; not every
customer makes a transaction every period. If transCustNumber is higher than custNumber when you com-
pare records, you simply write the original customer record to output with exactly the same information it contained when
input; then, you get the next customer record to see if this customer made the transaction currently under examination.

Finally, when you compare records from the master and transaction files, if transCustNumber is lower than
custNumber in the master file, you are trying to record a transaction for which no master record exists. That means
there must be an error, because a transaction should always have a master record. You can handle this error in a vari-
ety of ways; here, you will write an error message to an output device before reading the next transaction record. A
human operator can then read the message and take appropriate action.

Whether transCustNumber was higher than, lower than, or equal to custNumber, at the bottom of the
matchFiles() module you check whether both custNumber and transCustNumber are 999; when they
are, you set the bothAtEof flag to “Y”.

Figure 11-16 shows some sample data you can use to walk through the logic for this program, and Figure 11-17
shows the pseudocode and flowchart.

MasterƒFileƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒTransactionƒFile
custNumberƒƒƒcustTotalSalesƒƒƒƒƒƒƒƒƒƒtransCustNumberƒƒtransAmount
100ƒƒƒƒƒƒƒƒƒƒ1000.00ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ100ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ400.00
102ƒƒƒƒƒƒƒƒƒƒƒƒ50.00ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ105ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ700.00
103ƒƒƒƒƒƒƒƒƒƒƒ500.00ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ108ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ100.00
105ƒƒƒƒƒƒƒƒƒƒƒƒ75.00ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ110ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ400.00
106ƒƒƒƒƒƒƒƒƒƒ5000.00
109ƒƒƒƒƒƒƒƒƒƒ4000.00
110ƒƒƒƒƒƒƒƒƒƒƒ500.00

FIGURE 11-16: SAMPLE DATA FOR THE FILE-MATCHING PROGRAM

TIP�

467Matching Files to Update Fields in Master File Records

The program proceeds as follows:

1. Read customer 100 from the master file and customer 100 from the transaction file. Customer

numbers are equal, so 400.00 from the transaction file is added to 1000.00 in the master file,

and a new master file record is written with a 1400.00 total sales figure. Then, read a new record

from each input file.

matchFiles()
 if transCustNumber = custNumber then
 custTotalSales = custTotalSales + transAmount
 write custRec
 perform readCust()
 perform readTrans()
 else
 if transCustNumber > custNumber then
 write custRec
 perform readCust()
 else
 print "An error has occurred in transaction ",

transNumber
 print "There is no master record for customer ",

transCustNumber
 perform readTrans()
 endif
 endif
 if custNumber = 999 then
 if transCustNumber = 999 then
 bothAtEof = "Y"
 endif
 endif
return

YesNo transCustNumber
= custNumber?

No Yes

YesNo

YesNo

FIGURE 11-17: THE matchFiles() MODULE LOGIC FOR THE FILE-MATCHING PROGRAM

custTotalSales =
custTotalSales +

transAmount

write
custRec

readCust()

readTrans()

write
custRec

readCust()

readTrans()

matchFiles()

transCustNumber
> custNumber?

print “An error has
occurred in transaction ”,

transNumber

print “There is no master
record for customer ”,

transCustNumber

return

custNumber
= 999?

transCustNumber
= 999?

bothAtEof
= “Y”

468 Chapter 11 • Sequential File Merging, Matching, and Updating

2. The customer number in the master file is 102 and the customer number in the transaction file is

105, so there are no transactions today for customer 102. Write the master record exactly the way

it came in, and read a new master record.

3. Now, the master customer number is 103 and the transaction customer number is still 105. This

means customer 103 has no transactions, so you write the master record as is and read a

new one.

4. Now, the master customer number is 105 and the transaction number is 105. Because customer

105 had a 75.00 balance and now has a 700.00 transaction, the new total sales figure is 775.00,

and a new master record is written. Read one record from each file.

5. Now, the master number is 106 and the transaction number is 108. Write customer record 106 as

is, and read another master.

6. Now, the master number is 109 and the transaction number is 108. An error has occurred. The

transaction record indicates that you made a sale to customer 108, but there is no master

record for customer number 108. Either there is an error in the transaction’s customer number

or the transaction is correct but you have failed to create a master record. Either way, write an

error message so that a clerk is notified and can handle the problem. Then, get a new transac-

tion record.

7. Now, the master number is 109 and the transaction number is 110. Write master record 109 with

no changes and read a new one.

8. Now, the master number is 110 and the transaction number is 110. Add the 400.00 transaction to

the previous 500.00 figure, and write a new record with a 900.00 value in the

custTotalSales field. Read one record from each file.

9. Because both files are finished, end the job. The result is a new master file in which some records

contain exactly the same data they contained going in, but others (for which a transaction has

occurred) have been updated with a new total sales figure.

ALLOWING MULTIPLE TRANSACTIONS FOR A SINGLE MASTER FILE
RECORD

In the last example, the logic provided for, at most, one transaction record per master customer record. You would use
very similar logic if you wanted to allow multiple transactions for a single customer. Figure 11-18 shows the new
logic. A small but important difference exists between logic that allows multiple transactions and logic that allows only
a single transaction per master file record. If a customer can have multiple transactions, whenever a transaction
matches a customer, you add the transaction amount to the master total sales field. Then, you read only from the
transaction file. After you exit mainLoop() and reenter it, the next transaction might also pertain to the same mas-
ter customer. (Compare the first “Yes” branch in Figure 11-18 with the one in Figure 11-17; the readCust()

469Allowing Multiple Transactions for a Single Master File Record

module is removed in Figure 11-18.) Only when a transaction number is greater than a master file customer number
do you write the customer master record.

YesNo transCustNumber
= custNumber?

No Yes

YesNo

YesNo

matchFiles()
 if transCustNumber = custNumber then
 custTotalSales = custTotalSales + transAmount
 perform readTrans()
 else
 if transCustNumber > custNumber then
 write custRec
 perform readCust()
 else
 print "An error has occurred in transaction ",

transNumber
 print "There is no master record for customer ",

transCustNumber
 perform readTrans()
 endif
 endif
 if custNumber = 999 then
 if transCustNumber = 999 then
 bothAtEof = "Y"
 endif
 endif
return

transCustNumber
> custNumber?

FIGURE 11-18: THE matchFiles() LOGIC ALLOWING MULTIPLE TRANSACTIONS FOR EACH MASTER FILE
RECORD

custTotalSales =
custTotalSales +

transAmount

readTrans()

write
custRec

readCust()

readTrans()

matchFiles()

print “An error has
occurred in transaction ”,

transNumber

print “There is no master
record for customer ”,

transCustNumber

return

custNumber
= 999?

transCustNumber
= 999?

bothAtEof
= “Y”

470 Chapter 11 • Sequential File Merging, Matching, and Updating

UPDATING RECORDS IN SEQUENTIAL FILES

In the example in the preceding section, you needed to update a field in some of the records in a master file with new
data. A more sophisticated update program allows you not only to make changes to data in a master file record, but
also to update a master file either by adding new records or by eliminating the ones you no longer want.

Assume you have a master employee file, as shown on the left side of Figure 11-19. Sometimes, a new employee is
hired and a record must be added to this file, or an employee quits and the employee’s record must be removed from
the file. Sometimes, you need to change an employee record by recording a raise in salary, for example, or a change of
department.

For this kind of update program, it’s common to have a transaction file in which each record contains all the same fields
as the master file records do, with one exception. The transaction file has one extra field to indicate whether this trans-
action is meant to be an addition, a deletion, or a change—for example, a one-letter code of “A”, “D”, or “C”.
Figure 11-19 shows the master and transaction file layouts.

The master file records contain data in each of the fields shown in Figure 11-19—an employee number, name,
salary, and department number. The three types of transaction records stored in the transaction file would differ as
follows:

� An addition record in a transaction file actually represents a new master file record. An addition
record would contain data in each of the fields—the employee number, name, salary, and
department; because an addition record represents a new employee, data for all the fields must
be captured for the first time. Also, in this example, such a record contains an “A” for “Addition”
in the transaction code field.

� A deletion record in a transaction file flags a master file record that should be removed from
the file. In this example, a deletion record really needs data in only two fields—a “D” for
“Deletion” in the transaction code field and a number in the employee number field. If a “D”
transaction record’s employee number matches an employee number on a master record, then
you have identified a record you want to delete. You do not need data indicating the salary,
department, or anything else for a record you are deleting.

MASTER AND TRANSACTION FILES FOR THE UPDATE PROGRAM
Fileƒname:ƒEMPREC Fileƒname:ƒTRANSREC
FIELDƒDESCRIPTION DATA TYPE FIELDƒDESCRIPTION DATA TYPE
Employee numberƒƒƒƒƒNumeric Employee number Numeric
Name Character Name Character
Salary Numeric Salary Numeric
Department Numeric Department Numeric

Transaction code Character

FIGURE 11-19: MASTER AND TRANSACTION FILES FOR THE UPDATE PROGRAM

471Updating Records in Sequential Files

� A change record indicates an alteration that should be made to a master file record. In this
case, it contains a “C” code for “Change” and needs data only in the employee number field and
any fields that are going to be changed. In other words, if an employee’s salary is not changing,
the salary field in the transaction record will be blank; but if the employee is transferring to
Department 28, then the department field of the transaction record will hold a 28.

The mainline logic for an update program is very similar to the merging and matching programs shown in Figures 11-3
and 11-13, respectively. After housekeeping() and before finishUp(), the module that does the real work
of the program executes repeatedly. Within the housekeeping() module, you declare the variables, open the files,
and read the first record from each file. You can use the readEmp() and readTrans() modules to set the key
fields empNum and transEmpNum to high values at eof. See Figures 11-20, 11-21, and 11-22.

start
 perform housekeeping()
 while bothAtEof = "N"
 perform updateMaster()
 endwhile
 perform finishUp()
stop

FIGURE 11-20: THE MAINLINE LOGIC FOR THE UPDATE PROGRAM

bothAtEof
= “N”? updateMaster()

finishUp()

housekeeping()

stop

start

No

Yes

472 Chapter 11 • Sequential File Merging, Matching, and Updating

FIGURE 11-22: THE readEmp() AND readTrans() MODULES FOR THE UPDATE PROGRAM

readEmp()
 read empFile
 if eof then
 empNum = 999
 endif
return
readTrans()
 read transFile
 if eof then
 transEmpNum = 999
 endif
return

YesNo

transEmpNum
= 999

eof?

readTrans()

read
transFile

return

read
empFile

readEmp()

YesNo

empNum
= 999

return

eof?

empFile
 num empNum
 char empName
 num empSalary
 num empDept
transFile

num transEmpNum
char transName
num transSalary
num transDept
char transCode

char bothAtEof = "N"

FIGURE 11-21: THE housekeeping() MODULE FOR THE UPDATE PROGRAM

housekeeping()
 declare variables
 open files
 perform readEmp()
 perform readTrans()
 if empNum = 999 then
 if transEmpNum = 999 then
 bothAtEof = "Y"
 endif
 endif
return

transEmpNum
= 999?

bothAtEof
= “Y”

return

empNum
= 999?

housekeeping()

declare variables

open files

readEmp()

readTrans()

Yes

No Yes

No

473Updating Records in Sequential Files

The updateMaster() module of the update program begins like the matchFiles() module in the matching
program. You need to know whether empNum in the master file and transEmpNum in the transaction file are equal,
or, if not, then you need to know which value is higher. To keep the updateMaster() module simple, you can cre-
ate modules for each of the three possible scenarios: theyAreEqual(), empIsLargerThanTrans(), and
transIsLargerThanEmp(). (Of course, you might choose shorter module names; the long names used here
are intended to help you remember what condition preceded the execution of each module.) At the end of the
updateMaster() module, after one of the three submodules has finished, you can set the bothAtEof flag
variable to “Y” if both files have completed. Figure 11-23 shows the updateMaster() module.

updateMaster()
 if empNum = transEmpNum then
 perform theyAreEqual()
 else
 if empNum > transEmpNum then
 perform empIsLargerThanTrans()
 else
 perform transIsLargerThanEmp()
 endif
 endif
 if empNum = 999 then
 if transEmpNum = 999 then
 bothAtEof = "Y"
 endif
 endif
return

FIGURE 11-23: THE updateMaster() MODULE OF THE UPDATE PROGRAM

empNum =
transEmpNum?

empNum >
transEmpNum?

updateMaster()

YesNo

YesNo

theyAreEqual()

return

Yes

No empNum
= 999?

transEmpNum
= 999?

Yes

No

bothAtEof
= “Y”

emplsLargerThanTrans()translsLargerThanEmp()

474 Chapter 11 • Sequential File Merging, Matching, and Updating

You perform the theyAreEqual() module only if a record in the master file and a record in the transaction file
contain the same employee number. This should be the situation when a change is made to a record (for example, a
change in salary) or when a record is to be deleted. If the master file and the transaction file records are equal, but the
transCode value in the transaction record is an “A”, then an error has occurred. You should not attempt to add a full
employee record when the employee already exists in the master file.

As shown in Figure 11-24, within the theyAreEqual() module, you check transCode and perform one of
three actions:

� If the code is an “A”, print an error message. But what is the error? (Is the code wrong? Was this
meant to be a change or a deletion of an existing employee? Is the employee number wrong—
was this meant to be the addition of some new employee?) Because you’re not completely sure,
you can only print an error message to let an employee know that an error has occurred; then,
the employee can handle the error. You should also write the existing master record to output
exactly the same way it came in, without making any changes.

� If the code is a “C”, you need to make changes. You must check each field in the transaction
record. If any field is blank, the data in the new master record should come from the old master
record. If, however, a field in the transaction record contains data, this data is intended to consti-
tute a change, and the corresponding field in the new master record should be created from the
transaction record. Then, for each changed field, you replace the contents of the old field in the
master file with the new value in the corresponding field in the transaction file, and then write
the master file record.

� If the code is not an “A” or a “C”, it must be a “D” and the record should be deleted. How do you
delete a record from a new master file? Just don’t write it out to the new master file! In other
words, as Figure 11-24 shows, no action is necessary when a record is deleted.

Various programming languages have different ways of checking a field to determine if
it is blank. In some languages, you compare the field to an empty string, as in
transName = “”. The quotation marks with nothing between them indicate an empty
or null string. In some systems, you might need to compare the field to a space charac-
ter, as in transName = “ ”, in which a literal space is inserted between the quotation
marks. In other languages, you can use a predefined language-specific constant such as
BLANK, as in transName = BLANK.

To keep the illustration simple here, you can assume that all the transaction records have
been checked by a previous program, and all transCode values are “A”, “C”, or “D”. If
this were not the case, you could simply add one more decision to the theyAreEqual()
module. If transCode is not “C”, instead of assuming it is “D”, ask if it is “D”. If so,
delete the record (by not writing it); if not, it must be something other than “A”, “C”, or
“D”, so print an error message.

Finally, at the end of the theyAreEqual() module, after the appropriate action has been taken with the matching
master and transaction file records, you read one new record from each of the two input files.

TIP�

TIP�

475Updating Records in Sequential Files

FIGURE 11-24: THE theyAreEqual() MODULE FOR THE UPDATE PROGRAM

theyAreEqual()

transCode
= “A”?

write
empFile

return

empName
=

transName

transName
blank?

transSalary
blank?

write
empFile

transDept
blank?

empSalary
=

transSalary

empDept
=

transDept

readEmp()

readTrans()

print transEmpNum,
“Trying to add record
that already exists”

theyAreEqual()
 if transCode = "A" then
 print transEmpNum, "Trying to add

record that already exists"
 write empFile
 else
 if transCode = "C" then
 if transName not blank then
 empName = transName
 endif
 if transSalary not blank then
 empSalary = transSalary
 endif
 if transDept not blank then
 empDept = transDept
 endif
 write empFile
 endif
 endif
 perform readEmp()
 perform readTrans()
return

No

transCode
= “C”?

No Yes

Yes

No Yes

No Yes

No Yes

476 Chapter 11 • Sequential File Merging, Matching, and Updating

Suppose that within the updateMaster() module in Figure 11-23, the master file record and the transaction file
record do not match. If the master file record has a higher number than the transaction file record, this means you have
read a transaction record for which there is no master file record, so you execute the empIsLargerThanTrans()
module. See Figure 11-25.

FIGURE 11-25: THE empIsLargerThanTrans() MODULE

transCode
= “A”?

transCode
= “C”?

readTrans()

return

write
transEmpNum,

transName,
transSalary,
transDept

print transEmpNum,
“Trying to change

record that
does not exist”

empIsLargerThanTrans()

empIsLargerThanTrans()
 if transCode = "A" then
 write transEmpNum, transName, transSalary, transDept
 else
 if transCode = "C" then
 print transEmpNum, "Trying to change record that does not exist"
 else
 print transEmpNum, "Trying to delete record that does not exist"
 endif
 endif
 perform readTrans()
return

No Yes

No Yes

print transEmpNum,
“Trying to delete

record that
does not exist”

477Updating Records in Sequential Files

Within the empIsLargerThanTrans() module, if the transaction record contains code “A”, that’s fine because
an addition transaction shouldn’t have a master record. The transaction record data simply become the data for the
new master record, so each of its fields is written to the new output file.

However, if the transaction code is “C” or “D” in the empIsLargerThanTrans() module, an error has occurred.
Either you are attempting to make a change to a record that does not exist or you are attempting to delete a record that
does not exist. Either way, a mistake has been made, and you must print an error message.

At the end of the empIsLargerThanTrans() module, you should not read another master file record. After all,
there could be several more transactions that represent new additions to the master file. You want to keep reading
transactions until a transaction matches or is greater than a master record. Therefore, only a transaction record should
be read.

The final possibility in the updateMaster() module in Figure 11-23 is that a master file record’s empNum field
is smaller than the transaction file record’s transEmpNum field in memory. If there is no transaction for a given
master file record, it just means that the master file record has no changes or deletions; therefore, when you perform
the transIsLargerThanEmp() module, you simply write the new master record out exactly like the old mas-
ter record and read another master record. See Figure 11-26.

At some point, one of the files will reach eof. If the transaction file reaches the end first, transEmpNum is set to
999 in the readTrans() module. Each time the updateMaster() module is entered after transEmpNum
is set to 999, empNum will be lower than transEmpNum and the transIsLargerThanEmp() module will
execute. That module writes records from the master file without alteration, and this is exactly what you want to hap-
pen. Obviously, there were no transactions for these final records in the master file, because all the records in the
transaction file were used to apply to earlier master file records.

transIsLargerThanEmp()
 write empFile
 perform readEmp()
return

FIGURE 11-26: THE transIsLargerThanEmp() MODULE

transIsLargerThanEmp()

write
empFile

return

readEmp()

478 Chapter 11 • Sequential File Merging, Matching, and Updating

On the other hand, if the master file reaches its end first, empNum is set to 999 in the readEmp() module. Now,
each time the program enters the updateMaster() module, transEmpNum will be lower than empNum. The
empIsLargerThanTrans() module will execute for all remaining transaction records. In turn, each remaining
transaction will be compared to the possible code values. If any remaining transaction records are additions, they will
write to the new master as new records. However, if the remaining transaction records represent changes or deletions,
a mistake has been made, because there are no corresponding master file records. In other words, error messages will
then be printed for the remaining change and deletion transaction records as they go through the
updateMaster() process.

Whichever file reaches the end first, the other continues to be read and processed. When that file reaches eof, the
bothAtEof flag will finally be set to “Y”. Then, you can perform the finishUp() module, as shown with the
complete program in Figure 11-27.

Merging files, matching files, and updating a master file from a transaction file require a significant number of steps,
because as you read each new input record you must account for many possible scenarios. Planning the logic for pro-
grams like these takes a fair amount of time, but by planning the logic carefully, you can create programs that perform
valuable work for years to come. Separating the various outcomes into manageable modules keeps the program orga-
nized and allows you to develop the logic one step at a time.

479Updating Records in Sequential Files

updateMaster()
 if empNum = transEmpNum then
 perform theyAreEqual()
 else
 if empNum > transEmpNum then
 perform empIsLargerThanTrans()
 else
 perform transIsLargerThanEmp()
 endif
 endif
 if empNum = 999 then
 if transEmpNum = 999 then
 bothAtEof = "Y"
 endif
 endif
return

start
 perform housekeeping()
 while bothAtEof = "N"
 perform updateMaster()
 endwhile
 perform finishUp()
stop

FIGURE 11-27: COMPLETE PROGRAM THAT UPDATES MASTER FILE USING TRANSACTION RECORDS THAT
CONTAIN ADD, CHANGE, OR DELETE CODES

readEmp()
 read empFile
 if eof then
 empNum = 999
 endif
return

housekeeping()
 declare variables
 open files
 perform readEmp()
 perform readTrans()
 if empNum = 999 then
 if transEmpNum = 999 then
 bothAtEof = "Y"
 endif
 endif
return

readTrans()
 read transFile
 if eof then
 transEmpNum = 999
 endif
return

housekeeping()

bothAtEof
= “N”?

housekeeping()

No

finishUp()

updateMaster()

declare variables

open files

readEmp()

readTrans()

read
transFile

read
empFile

start

stop

return

readTrans()

return

updateMaster()

return

readEmp()

return

Yes

No

Yes

No Yes

No

No Yes No Yes

No Yes

Yes

YesNo

YesNo

empNum
= 999?

transEmpNum
= 999?

bothAtEof
= “Y”

eof?

transEmpNum
= 999

theyAreEqual()

empNum
= 999?

transEmpNum
= 999?

bothAtEof
= “Y”

emplsLargerThanTrans()translsLargerThanEmp()

empNum =
transEmpNum?

empNum >
transEmpNum?

eof?

empNum
= 999

480 Chapter 11 • Sequential File Merging, Matching, and Updating

if transSalary not blank then

FIGURE 11-27: COMPLETE PROGRAM THAT UPDATES MASTER FILE USING TRANSACTION RECORDS THAT
CONTAIN ADD, CHANGE, OR DELETE CODES (CONTINUED)

transCode
=“A”?

transCode
=“C”?

Key Terms 481

CHAPTER SUMMARY

� A sequential file is a file whose records are stored one after another in some order. The field on which

you sort records is the key field. Merging files involves combining two or more files while maintaining the

sequential order. Each file used in a merge must be sorted in the same order in the same field as

the others.

� The mainline logic for a program that merges two files contains a housekeeping module, a module that

matches files and repeats until the end of the program, and a final module that performs finishing tasks.

The mainline logic checks a flag variable that is turned on when both input files are finished.

� When beginning the repeating module that merges files in a merge program, you compare records from

each input file. You write the appropriate record from one of the files to output, and then read a record

from the same file. When you encounter eof on one of the two input files, set the field on which the

merge is based to a high value.

� You use a master file to hold relatively permanent data, and a transaction file to hold more temporary

data that corresponds to records in the master file. When you update a master file, you can take two

approaches: you can actually change the information in the master file, or you can create a copy of the

master file, making the changes in the new version.

� The logic you use to perform a match between master and transaction file records involves comparing

the files to determine whether there is a transaction for each master record; when there is, you update

the master record. When a master record has no transaction, you write the master record as is; when a

transaction record has no corresponding master, you have an error.

� Using the logic that allows multiple transactions per master file record, whenever a transaction matches a

master file record, you process the transaction and then you read only from the transaction file. Only

when a transaction file key field is greater than a master file key field do you write the master record.

� A sophisticated update program allows you to make changes to data in a record and update a master

file by adding new records or eliminating records you no longer want. For this kind of program, it’s com-

mon to have a transaction file in which each record contains all the same fields as the master file, with an

additional code that indicates the type of transaction.

KEY TERMS

A sequential file is a file in which records are stored one after another in some order.

Records that are stored in temporal order are stored in order based on their creation time.

Merging files involves combining two or more files while maintaining the sequential order.

A data file contains only data for another computer program to read, not headings or other formatting.

Chapter 11 • Sequential File Merging, Matching, and Updating482

A high value is one that is greater than any possible value in a field.

You use a master file to hold relatively permanent data.

A transaction file holds more temporary data generated by the entities represented in the master file.

A matching record is a transaction file record that contains data about the same entity in a master file record.

To update a master file means to make changes to the values in its fields based on transaction records.

The saved version of a master file is the parent file; the updated version is the child file.

An addition record in a transaction file is one that represents a new master record.

A deletion record in a transaction file flags a record that should be removed from a master file.

A change record in a transaction file indicates an alteration that should be made to a master file record.

REVIEW QUESTIONS

1. A file in which records are stored one after another in some order is a(n) file.

a. temporal
b. sequential
c. random
d. alphabetical

2. When you combine two or more sorted files while maintaining their sequential order based on a
field, you are the files.

a. tracking
b. collating
c. merging
d. absorbing

3. When you write a program that combines two sorted files into one larger, sorted file, you must cre-
ate an additional work variable whose purpose is to .

a. count the files
b. count the records
c. flag when both files encounter eof
d. flag when two records in the files contain identical data

4. Unlike when you print a report, when a program’s output is a data file, you do not .

a. include headings or other formatting
b. open the files
c. include all the fields represented as input
d. all of the above

Review Questions 483

5. In a program that merges two sorted files, the first task in the main mergeFiles() module is to
.

a. read a record from each input file
b. compare the values of the fields on which the files are sorted
c. output the record with the lower value in the field on which the files are sorted
d. output the record with the higher value in the field on which the files are sorted

6. Assume you are writing a program to merge two files named FallStudents and SpringStudents.
Each file contains a list of students enrolled in a programming logic course during the semester
indicated, and each file is sorted in student ID number order. After the program compares two
records and subsequently writes a Fall student to output, the next step is to .

a. read a SpringStudents record
b. read a FallStudents record
c. write a SpringStudents record
d. write another FallStudents record

7. A value that is greater than any possible legal value in a field is called a(n) value.

a. great
b. illegal
c. merging
d. high

8. When you merge records from two or more sequential files, the usual case is that the records in
the files .

a. contain the same data
b. have the same format
c. are identical in number
d. are sorted on different fields

9. A file that holds more permanent data than a transaction file is a file.

a. master
b. primary
c. key
d. mega-

10. A transaction file is often used to another file.

a. augment
b. remove
c. verify
d. update

Chapter 11 • Sequential File Merging, Matching, and Updating484

11. The saved version of a file that does not contain the most recently applied transactions is known
as a file.

a. master
b. child
c. parent
d. relative

12. Ambrose Bierce High School maintains a master file containing records for each student in a class.
Each record contains fields such as student ID, student name, home phone number, and grade on
each exam. A transaction file is created after each exam; it contains records that each hold a test
number, a student ID, and the student’s grade on the exam. You would write a matching program to
match the records in the field.

a. student ID
b. student name
c. test number
d. grade on the exam

13. Larry’s Service Station maintains a master file containing records for each vehicle Larry services.
Each record contains fields such as vehicle ID, owner name, date of last oil change, date of last tire
rotation, and so on. A transaction file is created each day; it contains records that hold a vehicle ID
and the name of the service performed. When Larry performs a match between these two files so
that the most recent date can be inserted into the master file, which of the following should cause
an error condition?

a. A specific vehicle is represented in each file.
b. A specific vehicle is represented in the master file, but not in the transaction file.
c. A specific vehicle is represented in the transaction file, but not in the master file.
d. A specific vehicle is not represented in either file.

14. Sally’s Sandwich Shop maintains a master file containing records for each preferred customer.
Each record contains a customer ID, name, e-mail address, and number of sandwiches purchased.
A transaction file record is created each time a customer makes a purchase; the fields include cus-
tomer ID and number of sandwiches purchased as part of the current transaction. After a customer
surpasses 12 sandwiches, Sally e-mails the customer a coupon for a free sandwich. When Sally
runs the match program with these two files so that the master file can be updated with the most
recent purchases, which of the following should indicate an error condition?

a. master ID is greater than transaction ID
b. master ID is equal to transaction ID
c. master ID is less than transaction ID
d. none of the above

Review Questions 485

15. Which of the following is true of master-transaction file-matching processing?

a. A master file record must never match more than one transaction record.
b. A transaction file record must never match any master records.
c. When master and transaction file records match, you must always immediately read another record from

each file.
d. A transaction record must match, at most, one master file record.

16. Which of the following is true of master-transaction file-matching processing?

a. A master file’s records must be sorted in some sequential order.
b. A transaction file’s records must be sorted on a different field than the master file’s records.
c. A master file’s records must contain more fields than a transaction file’s records.
d. A transaction file’s records must contain more fields than a master file’s records.

17. In a program that updates a master file, a transaction file record might cause a master file record
to be .

a. modified
b. deleted
c. either of these
d. neither a nor b

18. In a program that updates a master file, if a transaction record indicates a change, then it is an
error when the transaction record’s matching field is the field in a master file’s record.

a. greater than
b. less than
c. both of these
d. neither a nor b

19. In a program that updates a master file, if a master and transaction file match, then it is an error if
the transaction record is a(n) record.

a. addition
b. change
c. deletion
d. two of the above

20. In a program that updates a master file, if a master file’s comparison field is larger than a transac-
tion file’s comparison field, then it is an error if the transaction record is a(n) record.

a. addition
b. change
c. deletion
d. two of the above

Chapter 11 • Sequential File Merging, Matching, and Updating486

FIND THE BUGS

The following pseudocode contains one or more bugs that you must find and correct.

1. Each time a salesperson sells a car at the Pardeeville New and Used Auto Dealership, a record is
created containing the salesperson’s name and the amount of the sale. Sales of new and used cars
are kept in separate files because several reports are created for one type of sale or the other.
However, management has requested a merged file so that all of a salesperson’s sales, whether the
vehicle was new or used, are displayed together. The following code is intended to merge the files
that have already been sorted by salesperson ID number.

start
perform housekeeping()
while bothAtEOF = “Y”

perform mergeModule()
endwhile
perform finish()

return

housekeeping()
declare variables

newFile
char newIdNumber
num newSalePrice

usedFile
char usedIdNumber
num usedSalePrice

char bothAtEof
open files
read newFile
if eof then

newIdNumber = 9999999
endif
read usedFile
if eof then

usedIdNumber = 9999
endif
if newIdNumber = 9999999 then

if usedIdNumber = 9999999 then
bothAtEof = “Y”

endif
endif

return

Exercises 487

mergeModule()
if newIdNumber = usedIdNumber then

write newIdNumber, newSalePrice
read newFile
if eof then

newIdNumber = 9999999
endif

else
write usedIdNumber, usedSalePrice
read usedFile
if eof then

usedIdNumber = 999
endif

endif
if newIdNumber = 9999999 then

if usedIdNumber = 9999999 then
bothAtEof = “X”

endif
endif

return

finish()
close files

return

EXERCISES

1. The Springwater Township School District has two high schools—Jefferson and Audubon. Each
school maintains a student file with fields containing student ID, last name, first name, and
address. Each file is in student ID number order. Write the flowchart or pseudocode for a program
that merges the two files into one file containing a list of all students in the district, maintaining
student ID number order.

2. The Redgranite Library keeps a file of all books borrowed every month. Each file is in Library of
Congress number order and contains additional fields for author and title.

a. Write the flowchart or pseudocode for a program that merges the files for January and February to create a
list of all books borrowed in the two-month period.

b. Modify the program from Exercise 2a so that if there is more than one record for a book number, you print
the book information only once.

c. Modify the program from Exercise 2b so that if there is more than one record for a book number, you not
only print the book information only once, you print a count of the total number of times the book was
borrowed.

Chapter 11 • Sequential File Merging, Matching, and Updating488

3. Hearthside Realtors keeps a transaction file for each salesperson in the office. Each transaction
record contains the salesperson’s first name, date of the sale, and sale price. The records for the
year are sorted in descending sale price order. Two salespeople, Diane and Mark, have formed a
partnership. Write the flowchart or pseudocode that produces a merged list of their transactions
(including name of salesperson, date, and price) in descending order by price.

4. Dartmoor Medical Associates maintains two patient files—one for the Lakewood office and one for
the Hanover office. Each record contains the name, address, city, state, and zip code of a patient,
with the file maintained in zip code order. Write the flowchart or pseudocode that merges the two
files to produce one master name and address file that the Dartmoor office staff can use for
addressing the practice’s monthly Healthy Lifestyles newsletter mailing in zip code order.

5. The Willmington Walking Club maintains a master file that contains a record for each of its mem-
bers. Fields in the master file include the walker’s ID number, first name, last name, and total miles
walked to the nearest one-tenth of a mile. Every week, a transaction file is produced; the transaction
file contains a walker’s ID number and the number of miles the walker has logged that week. Each
file is sorted in walker ID number order.

a. Create the flowchart or pseudocode for a program that matches the master and transaction file records and
updates the total miles walked for each club member by adding the current week’s miles to the cumulative
total for each walker. Not all walkers submit walking reports each week. The output is the updated master
file and an error report listing any transaction records for which no master record exists.

b. Modify the program in Exercise 5a to print a certificate of achievement each time a walker exceeds the
500-mile mark. That is, the certificate—containing the walker’s name and an appropriate congratulatory
message—is printed during the run of the update program when a walker’s mile total changes from a value
below 500 to one that is 500 or greater.

6. The Timely Talent Temporary Help Agency maintains an employee master file that contains an
employee ID number, last name, first name, address, and hourly rate for each of the temporary
employees it sends out on assignments. The file has been sorted in employee ID number order.

Each week, a transaction file is created with a job number, address, customer name, employee ID,
and hours worked for every job filled by Timely Talent workers. The transaction file is also sorted in
employee ID order.

a. Create the flowchart or pseudocode for a program that matches the master and transaction file records, and
print one line for each transaction, indicating job number, employee ID number, hours worked, hourly rate,
and gross pay. Assume each temporary worker works at most one job per week; print one line for each
worker who has worked that week.

b. Modify Exercise 6a so that any individual temporary worker can work any number of separate jobs in a
week. Print one line for each job that week.

c. Modify Exercise 6b so that, although any worker can work any number of jobs in a week, you accumulate
the worker’s total pay for all jobs and print one line per worker.

Exercises 489

7. Claypool College maintains a student master file that contains a student ID number, last name, first
name, address, total credit hours completed, and cumulative grade point average for each of the
students who attend the college. The file has been sorted in student ID number order.

Each semester, a transaction file is created with the student’s ID, the number of credits completed
during the new semester, and the grade point average for the new semester. The transaction file is
also sorted in student ID order.

Create the flowchart or pseudocode for a program that matches the master and transaction file
records and updates the total credit hours completed and the cumulative grade point average on a
new master record. Calculate the new grade point average as follows:

� Multiply the credits in the master file by the grade point average in the master file, giving master honor

points—that is, honor points earned prior to any transaction. The honor points value is useful because it

is weighted—the value of the honor points is more for a student who has accumulated 100 credits with

a 3.0 grade point average than it is for a student who has accumulated only 20 credits with a 3.0 grade

point average.

� Multiply the credits in the transaction file by the grade point average in the transaction file, giving transac-

tion honor points.

� Add the two honor point values, giving total honor points.

� Add master and transaction credit hours, giving total credit hours.

� Divide total honor points by total credit hours, giving the new grade point average.

8. The Amelia Earhart High School basketball team maintains a record for each team player, including
player number, first and last name, minutes played during the season, baskets attempted, baskets
made, free throws attempted, free throws made, shooting average from the floor, and shooting
average from the free throw line. (Shooting average from the floor is calculated by dividing baskets
made by baskets attempted; free throw average is calculated by dividing free throws made by free
throws attempted.) The master records are maintained in player number order.

After each game, a transaction record is produced for any player who logged playing time. Fields in
each transaction record contain player number, minutes played during the game, baskets
attempted, baskets made, free throws attempted, and free throws made.

Design the flowchart or pseudocode for a program that updates the master file with the transaction
file, including recalculating shooting averages, if necessary.

Chapter 11 • Sequential File Merging, Matching, and Updating490

9. The Tip-Top Talent Agency books bands for social functions. The agency maintains a master file in
which the records are stored in order by band code. The records have the following format:

TALENT FILE DESCRIPTION
File name: BANDS
FIELD DESCRIPTION DATA TYPE COMMENTS EXAMPLE
Band Code Numeric 3-digit number 176
Band Name Character 20 characters The Polka Pals
Contact Person Character 20 characters Jay Sakowicz
Phone Numeric 10 digits 5554556012
Musical Style Character 8 characters Polka
Hourly Rate Numeric 2 decimal places 75.00

The agency has asked you to write an update program, so that once a month the agency can make
changes to the file, using transaction records with the same format as the master records, plus one
additional field that holds a transaction code. The transaction code is “A” if the agency is adding a
new band to the file, “C” if it is changing some of the data in an existing record, and “D” if it is
deleting a band from the file.

An addition transaction record contains a band code, an “A” in the transaction code field, and the
new band’s data. During processing, an error can occur if you attempt to add a band code that
already exists in the file. This is not allowed, and an error message is printed.

A change transaction record contains a band code, a “C” in the transaction code field, and data for
only those fields that are changing. For example, a band that is raising its hourly rate from $75 to
$100 would contain empty fields for the band name, contact person information, and style of
music, but the hourly rate field would contain the new rate. During processing, an error can occur if
you attempt to change data for a band number that doesn’t exist in the master file; print an error
message.

A deletion transaction record contains a band code, a “D” in the transaction code field, and no
other data. During processing, an error can occur if you attempt to delete a band number that
doesn’t exist in the master file; print an error message.

Two forms of output are created. One is the updated master file with all changes, additions, and
deletions. The other is a printed report of errors that occurred during processing. Rather than just a
list of error messages, each line of the printed output should list the appropriate band code along
with the corresponding message.

a. Design the print chart or create sample output for the error report.
b. Design the hierarchy chart for the program.
c. Create either a flowchart or pseudocode for the program.

Exercises 491

10. Cozy Cottage Realty maintains a master file in which records are stored in order by listing number,
in the following format:

REALTY FILE DESCRIPTION
File name: HOUSES
FIELD DESCRIPTION DATA TYPE COMMENTS EXAMPLE
Listing Number Numeric 6-digit number 200719
Address Character 20 characters 348 Alpine Road
List Price Numeric 0 decimals 139900
Bedrooms Numeric 0 decimals 3
Baths Numeric 1 decimal 1.5

The realty company has asked you to write an update program so that, every day, the company can
make changes to the file, using transaction records with the same format as the master records,
plus one additional field that holds a transaction code. The transaction code is “A” to add a new
listing, “C” to change some of the data in an existing record, and “D” to delete a listing that is sold
or no longer on the market.

An addition transaction record contains a listing number, an “A” in the transaction code field, and
the new house listing’s data. During processing, an error can occur if you attempt to add a listing
number that already exists in the file. This is not allowed, and an error message is printed.

A change transaction record contains a listing number, a “C” in the transaction code field, and data
for only those fields that are changing. For example, a listing that is dropping in price from
$139,900 to $133,000 would contain empty fields for the address, bedrooms, and baths, but the
price field would contain the new list price. During processing, an error can occur if you attempt to
change data for a listing number that doesn’t exist in the master file; print an error message.

A deletion transaction record contains a listing code number, a “D” in the transaction code field,
and no other data. During processing, an error can occur if you attempt to delete a listing number
that doesn’t exist in the master file; print an error message.

Two forms of output are created. One is the updated master file with all changes, additions, and
deletions. The other is a printed report of errors that occurred during processing. Rather than just a
list of error messages, each line of the printed output should list the appropriate house listing num-
ber along with the corresponding message.

a. Design the print chart or create sample output for the error report.
b. Design the hierarchy chart for the program.
c. Create either a flowchart or pseudocode for the program.

Chapter 11 • Sequential File Merging, Matching, and Updating492

11. Crown Greeting Cards maintains a master file of its customers stored in order by customer number,
in the following format:

CROWN CUSTOMER FILE DESCRIPTION
File name: CUSTS
FIELD DESCRIPTION DATA TYPE COMMENTS EXAMPLE
Customer Number Numeric 5 digits 34492
Name Character 20 characters Roberta Branch
Address Character 20 characters 32 Pinetree Lane
Phone Number Numeric 10 digits 5554448935
Value of Merchandise
Purchased This Year Numeric 2 decimal places 525.99

The card store has asked you to write an update program so that, every week, the store can make
changes to the file, using transaction records with the same format as the master records, plus one
additional field that holds a transaction code. The transaction code is “A” to add a new customer,
“C” to change some of the data in an existing record, and “D” to delete a customer. In a transaction
record, the amount field represents a new transaction instead of the total value of merchandise
purchased.

An addition transaction record contains a customer number, an “A” in the transaction code field,
and the new customer’s name, address, phone number, and first purchase amount. During process-
ing, an error can occur if you attempt to add a customer number that already exists in the file. This
is not allowed, and an error message is printed.

A change transaction record contains a customer number, a “C” in the transaction code field, and
data for only those fields that are changing. For example, a customer might have a new address or
phone number. In a change record, if a value appears in the merchandise value field, it represents
an amount that should be added to the total merchandise value in the master record. During pro-
cessing, an error can occur if you attempt to change data for a customer number that doesn’t exist
in the master file; print an error message.

A deletion transaction record contains a customer number, a “D” in the transaction code field, and
no other data. During processing, an error can occur if you attempt to delete a customer number
that doesn’t exist in the master file; print an error message.

Three forms of output are created. One is the updated master file with all changes, additions, and
deletions. The second output is a printed report of errors that occurred during processing. Rather
than just list error messages, each line of the printed output should list the appropriate customer
number along with the corresponding message. The third output is a report listing all customers
who have currently met or exceeded the $1,000 purchase threshold for the year.

a. Design the print chart or create sample output for the error report, along with the hierarchy chart and either
a flowchart or pseudocode for the program.

b. Modify the program in Exercise 11a so that the third output is not a report of all customers who have met or
exceeded the $1,000 purchase threshold this year, but a report listing all customers who have just passed
the $100 purchase threshold this week.

Up for Discussion 493

DETECTIVE WORK

1. What is a random file and how does it differ from a sequential file? In what types of applications
are sequential files most useful? In what types of applications are they least useful?

2. What is FIFO and how does it relate to file processing?

UP FOR DISCUSSION

1. In Chapter 5, you considered criteria to use for a program that selects possible candidates for
organ transplants. Suppose you are hired by a large hospital that has decided to avoid public criti-
cism of how potential recipients are chosen; they will display recipients sequentially in alphabeti-
cal order. The hospital’s doctors will consult this list if they have an organ that can be transplanted.
If more than 10 patients are waiting for a particular organ, the first 10 are displayed; the user can
either select one of these or move on to view the next set of 10 patients. You worry that this system
gives an unfair advantage to patients with last names that start with A, B, C, and D. Should you
write and install the program? If you do not, many transplant opportunities will be missed while
the hospital searches for another programmer who will write the program.

2. Suppose you are hired by a police department to write a program that matches arrest records with
court records detailing the ultimate outcome or verdict for each case. Your friend works in the per-
sonnel department of a large company and must perform background checks on potential employ-
ees. (The job applicants sign a form authorizing the check.) Your friend could look up police
records at the courthouse, but it takes many hours per week. As a convenience, should you provide
your friend with outcomes of any arrest records of job applicants?

12
After studying Chapter 12, you should be able to:

� Understand local and global variables and encapsulation

� Pass a single value to a module

� Pass multiple values to a module

� Return a value from a module

� Use prewritten, built-in modules

� Create an IPO chart

� Understand the advantages of encapsulation

� Reduce coupling and increase cohesion in your modules

ADVANCED MODULARIZATION
TECHNIQUES

495

496 Chapter 12 • Advanced Modularization Techniques

UNDERSTANDING LOCAL AND GLOBAL VARIABLES AND
ENCAPSULATION

Throughout most of computer programming history, which now totals about 60 years, the majority of programs were
written procedurally. A procedural program consists of a series of steps or procedures that take place one after another.
The programmer determines the exact conditions under which a procedure takes place, how often it takes place, and
when the program stops. The logic for every program you have developed so far using this book has been procedural.

You first learned the term procedural program in Chapter 4.

It is possible to write procedural programs as one long series of steps. However, by now you should appreciate the ben-
efits of modularization, or breaking down programs into reasonable units called modules, subroutines, functions, or
methods. The following are benefits of modularization:

� It provides abstraction; in other words, it makes it easier to see the “big picture.”

� It allows multiple programmers to work on a problem, each contributing one or more modules
that later can be combined into a whole program.

� It allows you to reuse your work; you can call the same module from multiple locations within a
program.

� It allows you to identify structures more easily.

You first learned the term modular in Chapter 2; you learned about abstraction in Chapter 3.

Languages that use only global variables are most likely to call their modules “subrou-
tines.” Languages that allow local variables and the passing of values are more likely to
call their modules “procedures,” “methods,” or “functions.”

Modularization provides many benefits, but using modules and methods in the way you have used them throughout this
book also has two major drawbacks:

� Although the modules you have used allow multiple programmers to work on a problem, each
programmer must know the names of all the variables used in other modules within the program.

� Although the modules you have used enable you to reuse your work by allowing you to call them
from multiple locations within a program, you can’t use the modules in other programs unless
these programs use the same variable names.

These two limitations have not caused significant problems for you in the programs you have designed so far, for
several reasons:

� You most likely have designed every program alone, without using others’ modules, so your vari-
able names did not need to agree with anyone else’s.

� You most likely have designed each program from beginning to end yourself, either at a single
sitting or at least within a relatively short time period, and so you knew and easily remembered
all the variable names you declared.

TIP�

TIP�

TIP�

497Understanding Local and Global Variables and Encapsulation

� Your programs have been relatively small, seldom with more than a few variable names to
remember.

However, when you become a professional programmer in the business world, many of your programming assignments
will involve large applications that will require dozens or even hundreds of modules written by many people. Some mod-
ules that you need to use might have been written by others years ago; some modules you write might not be used by
other programmers until years from now. Some modules might even be purchased from programmers who work out-
side your organization, perhaps in another country. It would be virtually impossible to create such programs without
some conflicting variable names in the various modules.

In addition, suppose that you have a well-written module that you want to reuse. Consider a module that formats a
name and address to fit on a mailing label. You would want to use this module in programs that mail letters to stock-
holders, invoices to current customers, orders to suppliers, and so on. It would be inconvenient and inefficient to write
separate modules containing statements such as print stockholderName, print customerName, and
print supplierName. Instead, you would want to create a single module containing a statement such as
print name, and allow that module to handle data stored in any variable that represents a name.

So that you could more easily understand how to write computer programs, the programs you have written so far have
been relatively small, and all the variables you have used throughout this book have been global variables. A global
variable is one that is available to every module in a program. That is, every module has access to the variable, can
use its value, and can change its value. When you declare a variable named grandTotal in a program’s
housekeeping() module, add a value to it in a mainLoop() module, and print it in a finish() module,
then grandTotal is a global variable within that program. If you tried to reuse the mainLoop() or finish()
module in another program in which the grand total value was named finalTotal—or any name other than
grandTotal—then the new program would fail.

With many older computer programming languages, all variables are global variables. Newer, more modularized lan-
guages allow you to use local variables as well. A local variable is one whose name and value are known only to its
own module. A local variable is declared within a module and ceases to exist when the module ends. Within a module, a
variable is said to be in scope—that is, existing and usable—from the moment it is declared until it ceases to exist;
then it is out of scope.

A locally declared variable always goes out of scope when its module ends. In some pro-
gramming languages, you can purposely destroy variables earlier.

When you declare local variables within modules, you usually do so as the first step within a module, but some languages
allow you to declare variables at any point within a module. Sometimes, you declare a local variable because the value is
needed only within one module. At other times, the variable is needed in other modules within a program, but you still
choose to declare local variables to gain some of the advantages they provide. When you use local variables:

� Programmers of other modules do not need to know the names of your variables.

� Each module becomes an enclosed unit, declaring all the variables it needs. Using this
approach, you can more easily reuse your modules in other programs, regardless of the names
of the other variables declared in those programs.

TIP�

498 Chapter 12 • Advanced Modularization Techniques

As an example of a program that uses local variables because they are needed within only one module, consider a
very simple program that asks a student just one arithmetic question. For simplicity, this example won’t loop; it pro-
vides a single user with a single question. A program such as this one could be contained in a single main module,
but you can divide it into three separate modules, as shown in Figure 12-1. The program contains three steps:
housekeeping(), askQuestion(), and finish().

Figure 12-2 shows the housekeeping() module, in which directions are displayed on the screen. Within
housekeeping(), you can declare variables named explanation and promptUser; these hold the
characters that the user will see as directions. The explanation and promptUser variables can be local to the
housekeeping() module because the askQuestion() and finish() modules never need access to
these variables; housekeeping() uses the variables, but the other modules do not need to use the two variables
or alter them in any way.

Programming languages that use local variables do not require you to modify the variable
declaration with the term local, as shown in Figure 12-2. The term local is used in
Figure 12-2 just for emphasis.

start
 perform housekeeping()
 perform askQuestion()
 perform finish()
stop

FIGURE 12-1: MAINLINE LOGIC FOR A PROGRAM THAT USES ONLY LOCAL VARIABLES

housekeeping()

askQuestion()

finish()

stop

start

TIP�

499Understanding Local and Global Variables and Encapsulation

Within the askQuestion() module of this arithmetic program, shown in Figure 12-3, you display an arithmetic
problem, accept an answer, determine whether the answer is correct, and write a message. The askQuestion()
module does not need to know about the explanation and promptUser variables, but the askQuestion()
module does need a problem variable to hold the arithmetic problem to present to the user, a userAnswer vari-
able in which to store the user’s answer to the arithmetic problem, and a correctAnswer variable to hold the
value to which the user’s answer will be compared. Within the askQuestion() module, you declare these vari-
ables and use them. By the time you reach the end of the askQuestion() module, the three variables have served
their purposes; there is no reason for any other module to have access to their values.

Figure 12-4 shows the finish() module for the arithmetic drill program. This module does not need to know the
values of any of the variables in the first two modules called by the program; instead, it needs only its own locally
declared endingMessage.

return

FIGURE 12-2: THE housekeeping() MODULE FOR A PROGRAM THAT USES ONLY LOCAL VARIABLES

housekeeping()

declare
variables

print
explanation

print
promptUser

housekeeping()
 declare variables
 print explanation
 print promptUser
return

local char explanation =
"This is an arithmetic drill."

local char promptUser =
"Can you provide the answer?"

500 Chapter 12 • Advanced Modularization Techniques

This arithmetic drill program employs a principle known as encapsulation, which means that program components are
bundled together. Encapsulation provides a means for information hiding, or data hiding, which means that the data
or variables you use are completely contained within—and accessible only to—the module in which they are declared.
In other words, the data and variables are “hidden from” the other program modules. Using encapsulation provides you
with several advantages:

� Because each module contains all its own variable names, each module can be inserted easily
into another program as a self-contained unit, requiring no changes within any modules in the
new program.

� Because each module needs to use only the variable names declared within it, multiple program-
mers can create the individual modules without knowing the data names used by the other modules.

� Because the variable names in each module are hidden from all other modules, programmers can
even use the same variable names as those used in other modules, and no conflict will arise.

FIGURE 12-3: THE askQuestion() MODULE FOR A PROGRAM THAT USES ONLY LOCAL VARIABLES

askQuestion()
 declare variables
 print problem
 read userAnswer
 if userAnswer = correctAnswer then
 print "Good job!"
 else
 print "Too bad – correct answer is ", correctAnswer
 endif
return

return

userAnswer =
correctAnswer?

print “Too bad –
correct answer is ”,

correctAnswer

declare
variables

print
problem

read
userAnswer

No Yes

askQuestion()

print
“Good job!”

local char problem = "4 + 5?"
local num userAnswer
local num correctAnswer = 9

501Understanding Local and Global Variables and Encapsulation

The terms “encapsulation” and “information hiding” are often used synonymously, but
encapsulation only facilitates (not guarantees) the hiding of information.

To illustrate this last point, consider the housekeeping() module for the arithmetic drill program shown in
Figure 12-2. Programmers who work on this module can give the local variables any name they want. For example, a
programmer could decide to call the promptUser variable userAnswer, as highlighted in Figure 12-5. In a
program that employs local variables, giving the housekeeping() module’s variable this name would have no
effect on the usefulness of the identically named variable defined in the askQuestion() module. The two
userAnswer variables are completely separate variables with unique memory addresses. One holds the character
prompt “Can you provide the answer?” and the other holds a numeric user answer. Changing the value of
userAnswer in one module (which is what happens when the user enters an arithmetic problem answer in the
askQuestion() module) has no effect whatsoever on the separate userAnswer variable in the other module.
A large program might contain dozens of modules, and each module might contain dozens of variable names. As
programs grow in size and complexity, it is a great convenience for a programmer who is working on one module not to
have to worry about conflicting with all the other variable names used in the program.

FIGURE 12-4: THE finish() MODULE FOR A PROGRAM THAT USES ONLY LOCAL VARIABLES

finish()
 declare variables
 print endingMessage
 close files
return

return

finish()

declare
variables

print
endingMessage

close
files

local char endingMessage =
“Thank you for using this program”

TIP�

502 Chapter 12 • Advanced Modularization Techniques

As an analogy, think of modules as households. Referring to a person named “Edward” in
the Johnson household causes no confusion with a person named “Edward” in another
household. The same name can be used locally within different households without con-
flict, in the same way that identical variable names can be used in multiple modules.
Conversely, although two men can legally be named “Edward” within the same house-
hold, families almost always apply a nickname or qualification to at least one of the like-
named people to avoid confusion, perhaps referring to “Ed” and “Eddie,” or “Big
Edward” and “Little Edward.” Similarly, within any module, variable names must differ,
if only by a single character.

PASSING A SINGLE VALUE TO A MODULE

It may be convenient for a programmer to use local variables without worrying about naming conflicts, but using local
variables produces a problem in many programs. By definition, a local variable is accessible to one module only; how-
ever, sometimes more than one module needs access to the same variable value. Consider a new arithmetic drill pro-
gram. Instead of a single arithmetic problem, it is more reasonable to expect such a program to ask the user a series of
problems and keep score. Figure 12-6 shows a revised askQuestion() module that accesses an array to provide
a series of five questions for the arithmetic drill. The module compares the user’s answer to the correct answer that is
stored in the corresponding position in a parallel array, and adds 1 to a correctCount variable when the answer is
correct. After the user completes all five problems, but before the module ends, the value of correctCount is
displayed.

FIGURE 12-5: THE MODIFIED housekeeping() MODULE CONTAINING userAnswer VARIABLE

housekeeping()
 declare variables
 print explanation
 print userAnswer
return

return

housekeeping()

declare
variables

print
explanation

print
userAnswer

local char explanation = "This is an
arithmetic drill."

local char userAnswer = "Can you
provide the answer?"

TIP�

503Passing a Single Value to a Module

FIGURE 12-6: THE MODIFIED askQuestion() MODULE THAT PROVIDES FIVE PROBLEMS AND
KEEPS SCORE

return

print “Too bad –
correct answer is ”,

answers[questionCounter]

declare variables

questionCounter = 0

questionCounter <
numQuestions?

print
questions[questionCounter]

read userAnswer

userAnswer =
answers[questionCounter]?

correctCount =
correctCount + 1

questionCounter = questionCounter + 1

print
“Good job!”

Yes

No

YesNo

askQuestion()

print “ You got ”,
correct Count,

“ correct ”

local num userAnswer
local num questionCounter
local num numQuestions = 5
local array questions[5]

questions[0] = "4 + 5?"
questions[1] = "3 + 3?"
questions[2] = "2 + 7?"
questions[3] = "1 + 2?"
questions[4] = "4 + 1?"

local array answers[5]
answers[0] = 9
answers[1] = 6
answers[2] = 9
answers[3] = 3
answers[4] = 5

local num correctCount = 0

504 Chapter 12 • Advanced Modularization Techniques

The module shown in Figure 12-6 correctly counts and displays the number of correct answers for the user.
However, suppose when the user completes the arithmetic drill, you want to print not only the count of correct
answers, but also the percentage of correct answers along with one of two messages based on the user’s perfor-
mance. With these additions to the post-problem-solving process, there are enough steps involved that you decide
to place these steps in their own module, named finalStatistics(). In other words, you want to be able to
add to the user’s correctCount value in the askQuestion() module, but you want to be able to determine
the correctCount percentage and display it from within the finalStatistics() module. You must
declare a correctCount variable, but where?

� If correctCount is declared locally within the askQuestion() module so you can add
to it when the user answers correctly, then the finalStatistics() module does not
have access to it.

� If correctCount is declared locally in the finalStatistics() module so you can
compute the correct percentage and display it, then the askQuestion() module cannot
add to it.

� If you attempt to solve the dilemma by declaring a local correctCount variable in each
module, they are not the same variable; that is, they do not have the same memory address.
Therefore, adding to the correctCount variable in one module does not alter the value of
the unique correctCount variable in the other module.

� If you decide not to use local variables but declare correctCount as a global variable, the
program will work, but you will have avoided using the principle of encapsulation and will have
lost the advantages it provides.

FIGURE 12-6: THE MODIFIED askQuestion() MODULE THAT PROVIDES FIVE PROBLEMS AND KEEPS
SCORE (CONTINUED)

askQuestion()
 declare variables
 questionCounter = 0
 while questionCounter < numQuestions
 print questions[questionCounter]
 read userAnswer
 if userAnswer = answers[questionCounter] then
 print "Good job!"
 correctCount = correctCount + 1
 else
 print "Too bad – correct answer is ", answers[questionCounter]
 endif
 questionCounter = questionCounter + 1
 endwhile
 print " You got " , correctCount, “ correct"
return

505Passing a Single Value to a Module

The solution to using a locally declared variable within another module lies in a program’s ability to pass the value of a
local variable from one module to the other. Passing a value means sending a copy of data in one module of a pro-
gram to another module for use. Exactly how you accomplish this differs slightly among languages, but it usually
involves including the name of the variable that holds the value you want to pass within parentheses in the call to the
module that needs to receive a copy of the value. Figure 12-7 provides an overview of the process. A value is sent from
the method call in the askQuestion() module into the finalStatistics() module. When the
finalStatistics() module is complete, program control returns to the askQuestion() module, where it
would proceed with any additional statements in the module; in this case, the next task is to return from the
askQuestion() module to the mainline program logic. Figure 12-8 shows the flowchart and pseudocode that
modify the askQuestion() module to pass a copy of the correctCount value to the
finalStatistics() module.

finalStatistics(num numRight)

FIGURE 12-7: PASSING correctCount TO THE finalStatistics() MODULE

return

body of function

return

askQuestion()

section that declares
variables and asks all the
questions

finalStatistics(correctCount)

506 Chapter 12 • Advanced Modularization Techniques

FIGURE 12-8: THE MODIFIED askQuestion() MODULE THAT PASSES correctCount TO A
finalStatistics() MODULE

return

print “Too bad –
correct answer is ”,

answers[questionCounter]

declare variables

questionCounter = 0

questionCounter <
numQuestions?

print
questions[questionCounter]

read userAnswer

userAnswer =
answers[questionCounter]?

correctCount =
correctCount + 1

questionCounter = questionCounter + 1

print
“Good job!”

No

Yes

YesNo

askQuestion() local num userAnswer
local num questionCounter
local num numQuestions = 5
local array questions[5]

questions[0] = "4 + 5?"
questions[1] = "3 + 3?"
questions[2] = "2 + 7?"
questions[3] = "1 + 2?"
questions[4] = "4 + 1?"

local array answers[5]
answers[0] = 9
answers[1] = 6
answers[2] = 9
answers[3] = 3
answers[4] = 5

local num correctCount = 0

finalStatistics(correctCount)

507Passing a Single Value to a Module

Figure 12-9 shows the finalStatistics() module for the program. To prepare this module to receive a copy of
the correctCount value, you declare a name for the passed value within parentheses in the module header, or
introductory title statement of the module. The passed variable named within the module header is a parameter to the
function.

The words “argument” and “parameter” are often used interchangeably, although many
programmers make a clear distinction between the two. An argument is the expression in
the comma-separated list in a function call, while a parameter is an object or reference
that is declared in a function prototype (declaration) or definition (header).

In Figure 12-9, the finalStatistics() module declares a numeric variable named numRight in its header
statement. Declaring a variable within the parentheses of the module header indicates that this variable is not a regular
variable declared locally within the module; it is a special variable that is local to the module but receives its value from
the outside. In Figure 12-9, numRight receives its value when the askQuestion() module in Figure 12-8 calls
the finalStatistics() module. The askQuestion() module passes the value of correctCount to
finalStatistics(); then, within the finalStatistics() module, numRight takes on the value of
correctCount, and the percentage of correct answers is calculated using numRight.

Passing a copy of a value to a module sometimes is called passing by value. Some lan-
guages allow you to pass the actual memory address of a variable to a module; this is
called passing by reference. When you pass by reference, you lose some of the advantages
of information hiding because the module has access to the address of the passed variable,
not just to a copy of the value of the passed variable. However, program performance
improves because the computer doesn’t have to make a copy of the value, thereby saving
time (and in the case of very large passed objects, saving significant memory). Both the
ability to pass by reference and the syntax to do so vary by programming language.

FIGURE 12-8: THE MODIFIED askQuestion() MODULE THAT PASSES correctCount TO A
finalStatistics() MODULE (CONTINUED)

askQuestion()
 declare variables
 questionCounter = 0
 while questionCounter < numQuestions
 print questions[questionCounter]
 read userAnswer
 if userAnswer = answers[questionCounter] then
 print "Good job!"
 correctCount = correctCount + 1
 else
 print "Too bad – correct answer is ", answers[questionCounter]
 endif
 questionCounter = questionCounter + 1
 endwhile
 perform finalStatistics(correctCount)
return

TIP�

TIP�

508 Chapter 12 • Advanced Modularization Techniques

The finalStatistics() module contains its own local variables, percentCorrect and cutOff. The
percentCorrect variable is used to hold a calculated percentage of correct answers based on five arithmetic
questions, and cutOff is used to compare the user’s final percentage score with a minimum acceptable percentage.
Any module can contain some values that are passed in, like numRight, and some that are stored in locally declared
variables, such as percentCorrect and cutOff. The only restriction is that within any module, each variable
must have a unique name; however, those names might or might not match any other variable names in other modules.
For example, within the finalStatistics() module of the arithmetic drill program, you could choose to name
the passed local value correctCount instead of numRight, giving it the same name as its counterpart in the
askQuestion() module. Whether the name of the variable that holds the count in finalStatistics() is
the same as that of the corresponding value in the askQuestion() module is irrelevant. The correctCount

FIGURE 12-9: THE finalStatistics() MODULE THAT RECEIVES correctCount VALUE AND
CALLS IT numRight

finalStatistics(num numRight)
 declare variables
 print "You got ", numRight, " correct"
 percentCorrect = numRight / 5 * 100
 print "Percent correct is ",
 percentCorrect
 if percentCorrect >= cutOff then
 print "Very good!"
 else
 print "You need more practice."
 endif
return

return

percentCorrect
 >= cutOff?

No Yes

finalStatistics(num numRight)

print
“Very good!”

declare
variables

print “You got ”,
numRight, “ correct”

percentCorrect =
numRight / 5 * 100

print “Percent correct is ”,
percentCorrect

print “You need
more practice.”

local num percentCorrect
local num cutOff = 80

509Passing Multiple Values to a Module

variable used as an argument to finalStatistics() within the askQuestion() module and the numeric
parameter in the finalStatistics() module represent two unique memory locations, no matter what name
you decide to give the variable that holds the count of right answers within the finalStatistics() module.

PASSING MULTIPLE VALUES TO A MODULE

In the finalStatistics() module of the arithmetic drill program in Figure 12-9, numRight,
percentCorrect, and cutOff all remain in scope from the point at which they are declared until the end of the
module. After the finalStatistics() module receives its parameter, it contains everything it needs to calculate
the percentage of addition problems that the user answered correctly and to determine which message to display. You
could easily insert this self-contained module into different programs that calculate correct percentages—for example,
programs that display subtraction or multiplication problems, or even those that ask history or grammar questions. As
long as those programs pass a value indicating the number of correct answers, no matter what the name of the counter
variable is in those programs, the finalStatistics() module works correctly—with one major flaw. The
finalStatistics() module calculates the correct percentage only when the calling program contains exactly
five problems—it divides the numRight variable by a constant, 5. A more useful finalStatistics() module
accepts two parameters—one containing the number of correct user answers, and another containing the total number
of possible correct answers. Then, whether you call finalStatistics() from a program containing a three-
question quiz or a 200-item exam, the percentage will be correct.

Figure 12-10 shows a module named quickQuiz() that includes a call to a finalStatistics() module that
accepts two parameters, numRight and numPossible. This version of the finalStatistics() module differs
from the version of the module in Figure 12-9 in only the highlighted areas. The addition of the numPossible parameter
makes the module more flexible. The series of parameters that appears in the module header is called a parameter list.
You could call this module from the askQuestion() module shown in Figure 12-8, replacing the current highlighted
call to finalStatistics() with the statement perform finalStatistics(correctCount,
numQuestions). With this call, the finalStatistics() module would accept the value of correctCount
and place it in numRight, and then accept the value of numQuestions and place it in numPossible.
Alternatively, as shown in Figure 12-10, you could use the same module with a two-question quiz, passing a variable
(right) and a constant (2), and the percentage correct would still be accurate.

Notice several important facts about the finalStatistics() method header in Figure 12-10:

� The two parameters in the header are separated by a comma. This is the convention in most
modern languages such as Java, C++, and C#—any number of parameters is acceptable, but
each must be separated from the others using a comma.

� Each parameter consists of both a data type and an identifier. This also is the convention in most
modern programming languages. The parameter list might contain any combination of numeric
and character items, but the data type of each must be explicitly mentioned with the identifier.

� Each identifier adheres to the rules for naming variables you have used throughout this book—
specifically, no spaces are allowed in the identifier names, but each identifier might contain let-
ters and digits.

510 Chapter 12 • Advanced Modularization Techniques

� The order of the parameters is very important. The only way that a module assigns values to the
variables named in its parameter list is based on the order in which the arguments are passed
from the calling module; the values passed into a module are assigned sequentially as they are
received. If, for example, you pass variables containing the values 5 and 100 to the
finalStatistics() module in that order, the module will display a 5 percent correct
result. However, if you reverse the order of the passed values, sending 100 and 5, the module
produces a very different result—2,000 percent correct.

quickQuiz()

return

FIGURE 12-10: THE quickQuiz() MODULE THAT PASSES TWO ARGUMENTS TO THE
finalStatistics() MODULE

declare variables

print “In what year
was George Washington

born?”

read response

print “What is the
square root of 2?”

read response

response = 1732?
No Yes

right = right + 1

response = 1732?
No Yes

right = right + 1

local num response
local num right = 0

finalStatistics(right, 2)

quickQuiz()
declare variables

 print "In what year was George
 Washington born?"

 read response
 if response = 1732 then
 right = right + 1
 endif
 print "What is the square root of 2?"
 read response
 if response = 1.732 then
 right = right + 1
 endif
 perform finalStatistics(right, 2)
return

511Passing Multiple Values to a Module

If you send arguments that are the wrong data types to a module, or you send too many or
too few, you receive a syntax error message and the program will not compile or execute.
However, if you send arguments that are the correct data types but that represent the
wrong values, then you create a logical error that produces incorrect output. For example,
if a module expects two numeric parameters representing a retail price and a discount in
that order, and you pass 100.00 and 20.00, the module might correctly bill a customer a
discounted price of $80.00. If you pass 20.00 and 100.00 by mistake, the module will per-
form a subtraction and produce a bill that indicates the customer has an $80.00 credit.

You can call a module from other modules in a variety of ways—you can use any combination of variables and con-
stants as arguments in a module call. For example, consider the module shown in Table 12-1. The
printCustOrder() module header shows that it accepts four parameters; the module uses the argument infor-
mation to calculate a price and print a customer order. To use that module, you could call it in any of the ways shown in
the middle section of the table, using any combination of variables and constants as arguments. The bottom part of the
table shows some illegal calls and explains why each is unacceptable.

FIGURE 12-10: THE quickQuiz() MODULE THAT PASSES TWO ARGUMENTS TO THE
finalStatistics() MODULE (CONTINUED)

local num percentCorrect
local num cutOff = 80

finalStatistics(num numRight, num numPossible)
 declare variables
 print "You got ", numRight, " correct"
 percentCorrect = numRight / numPossible
 * 100
 print "Percent correct is ",

 percentCorrect
 if percentCorrect >= cutOff then
 print "Very good!"
 else
 print "You need more practice."
 endif
return

No Yes

declare variables

print “You got ”,
numRight, “ correct”

print “Percent correct is ”,
percentCorrect

finalStatistics(num numRight, num numPossible)

percentCorrect = numRight /
numPossible * 100

percentCorrect
>= cutOff?

print “You need
more practice.”

print
“Very good”

return

TIP�

512 Chapter 12 • Advanced Modularization Techniques

RETURNING A VALUE FROM A MODULE

Suppose you decide to organize the arithmetic drill program from Figure 12-10 so that the finalStatistics()
module still computes the user’s correct percentage, but the calling module handles the printing of the final statistics.
In this case, you pass the values of the count of correct questions and the total number of questions available to the
finalStatistics() module as before, but the finalStatistics() module must return the value of the
calculated correct percentage back to the calling module. Just as you can pass a value into a module, you can pass back,
or return a value to a calling module. Usually, this is accomplished within the return statement of the called module. For
example, Figure 12-11 shows an overview of how a value is passed back from the finalStatistics() module
and stored in the giveQuiz() module. Figure 12-12 shows the flowchart and pseudocode for a giveQuiz()
module that calls a rewritten finalStatistics() module.

TABLE 12-1: THE printCustOrder() MODULE

Module header

printCustOrder(numƒitemNum,ƒnumƒquantity,ƒcharƒcustName,ƒcharƒcustAddress)

Legal calls from a module that contains declared variables named
stockNumber, amount, lastName, firstName, and streetAddress

Call using four variables printCustOrder(stockNumber,ƒamount,

lastName,ƒstreetAddress)

Call using three variables and a constant printCustOrder(stockNumber,ƒamount,

lastName,ƒ“Willƒpickƒup”)

Call using two variables and two constants printCustOrder(stockNumber,ƒ1,

“Resident”,ƒstreetAddress)

Call using four constants printCustOrder(1342,ƒ12,ƒ“Lewis",

“900ƒEvergreenƒAvenue”)

Illegal calls from a module that contains declared variables named
stockNumber, amount, lastName, and streetAddress

Not enough arguments printCustOrder(stockNumber,ƒamount,

lastName)

Too many arguments printCustOrder(stockNumber,ƒamount,

lastName,ƒfirstName,ƒstreetAddress)

Arguments do not exist as variables in the calling function printCustOrder(itemNum,ƒquantity,

custName,ƒcustAddress)

Arguments do not match order in module header printCustOrder(stockNumber,

lastName,ƒamount,ƒstreetAddress)

513Returning a Value from a Module

The giveQuiz() module in Figure 12-12 declares an array of questions and a parallel array holding correct
answers. The module displays each question in sequence, compares the user’s answer to the correct answer, and
determines whether to add 1 to a variable used to keep track of the number of correct responses. Notice that near the
end of the giveQuiz() module, you call the finalStatistics() module and pass in the userRight
and numQuestions values. In the same statement, you assign the return value of the finalStatistics()
module to the variable named pctCorrect. The pctCorrect variable is declared locally within the
giveQuiz() module; its purpose is to receive the value returned by the finalStatistics() module. Then,
you can use the value of the pctCorrect variable within the remainder of the giveQuiz() module.

Within the giveQuiz() module in Figure 12-12, the finalStatistics() module is
called without using the word perform. The module actually is performed in the same
way as all other modules you have performed using this book. In a flowchart or
pseudocode, it would be perfectly acceptable to write pctCorrect = perform
finalStatistics(userRight,numQuestions). However, in this book, the word
perform is eliminated in module examples that return a value, for two reasons: for sim-
plicity in an already-complicated statement, and because the resulting syntax (eliminating
perform) closely resembles that of popular modern languages such as C++, C#,
and Java.

Notice that the variable type name num is used as the first word in the header of the finalStatistics() mod-
ule in Figure 12-12. The use of a data type preceding the method header indicates the type of data that will be returned
by the module; this use follows the format for methods that return values in many programming languages, such as
C++, Java, and C#. The return type of a method is also called the method’s type or method’s return type.

num finalStatistics(num numRight, num numPossible)

return

giveQuiz()

FIGURE 12-11: RETURNING percent FROM THE finalStatistics() MODULE TO pctCorrect
IN THE giveQuiz() MODULE

body of function

return percent

section that declares
variables and asks all the
questions

section that prints results

pctCorrect =
finalStatistics(userRight,numQuestions)

TIP�

514 Chapter 12 • Advanced Modularization Techniques

FIGURE 12-12: A giveQuiz() MODULE THAT SENDS VALUES TO AND RECEIVES A VALUE RETURNED FROM
A finalStatistics() MODULE

num finalStatistics(num numRight, num numPossible)

percent = numRight / numPossible * 100

declare variables

return percent

userResponse =
answer[qCount]?

declare variables

return

qCount = 0

pctCorrect =
finalStatistics(userRight,numQuestions)

print "In this quiz,
you got ", pctCorrect,

"% correct!"

giveQuiz()

print
question[qCount]

read
userResponse

qCount = qCount + 1

userRight =
userRight + 1

No

Yes

YesNo

qCount <
numQuestions?

local char userResponse
local num userRight = 0
local num qCount
local num pctCorrect
local num numQuestions = 3
local char question occurs 3 times

question[0] = "Batman's butler?"
question[1] = "Fifth letter?"
question[2] = "Seinfeld's nemesis?"

local char answer occurs 3 times
answer[0] = "Alfred"
answer[1] = "E"
answer[2] = "Newman"

local num percent

515Using Prewritten, Built-in Modules

A function or module should have, at most, one return value, and the return statement
should always be the last statement in the module. Following these rules complies with
the principles of structured programming you have used throughout this book. Recall
from Chapter 2 that a structure can have only one entry point and one exit point; because
a return statement provides a module’s exit point, if the module is structured, it will
have only one return statement, and hence, one return value.

In several programming languages, such as Java, C++, and C#, if a module does not
return a value, then the return type you list in the header is void, and the method is
referred to as a void method. The word void means “empty” or “nothing.” You have seen
many modules that do not return values throughout this book; their return statement
simply contains return.

If you place statements within a module after the return statement, those statements
will never execute. They are examples of unreachable code, or dead code.

USING PREWRITTEN, BUILT-IN MODULES

Many programming languages contain built-in methods, or built-in functions—prewritten modules that perform fre-
quently needed tasks. For example, many languages contain a module that calculates the square root of a number.
Within a program, you could perform the necessary calculations yourself, but it’s a tedious process, and one that should
not have to be rewritten by every programmer who needs it. The creators of many language compilers include a square
root module so that programmers can use their valuable time to solve problems that are more unique to their business.

FIGURE 12-12: A giveQuiz() MODULE THAT SENDS VALUES TO AND RECEIVES A VALUE RETURNED FROM
A finalStatistics() MODULE (CONTINUED)

giveQuiz()
 declare variables
 qCount = 0
 while qCount < numQuestions
 print question[qCount]
 read userResponse
 if userResponse = answer[qCount] then
 userRight = userRight + 1
 endif
 qCount = qCount + 1
 endwhile
 pctCorrect = finalStatistics(userRight,numQuestions)
 print "In this quiz, you got ", pctCorrect, “% correct!"
return
num finalStatistics(num numRight, num numPossible)
 declare variables
 percent = numRight / numPossible * 100
return percent

TIP�

TIP�

TIP�

516 Chapter 12 • Advanced Modularization Techniques

The only way you can discover whether the language you are using contains a built-in module such as a square root
method is to examine the program language documentation; for example, you can read the manual that accompanies a
language compiler, search through online help, or examine language-specific textbooks. When you find an available
module that suits your needs, you need to discover three facts:

1. The name of the method

2. The arguments you need to pass to the method, if any

3. The type of value returned from the method, if any

As a matter of fact, these are the same three facts that another programmer needs to know to be able to use any method
you write. For example, you might discover that in a particular language, the documentation indicates that the format of its
square root function is num sqrt(num), indicating that the function name is sqrt, that it requires a single numeric
variable or constant as an argument, and that it returns a numeric value. A statement such as num sqrt(num) fully
describes how you can use the method. To use the method, you might create statements similar to the following:

num myValue = 16
num squareRootAnswer
squareRootAnswer = sqrt(myValue)

You use the method name sqrt, pass the value stored in myValue to it, and receive an answer back; the answer
can then be used in the same way you would use any other value of the same type—you can print it, assign it to a vari-
able, use it as part of a more complex arithmetic calculation, and so on. After the three preceding statements execute,
for example, the variable squareRootAnswer would hold 4, the square root of 16.

In some languages, such as C++ and Java, a function’s name and list of parameters are
called its signature. When the signature is combined with the method’s return type (and
other punctuation), it is called the method’s prototype.

As a programmer who uses a built-in method or function, you do not need to understand how the square root is calcu-
lated within the function; the method acts as a black box, or a device you can use without understanding its internal
processes. In real life, you use many black box items—for example, most of us can use a telephone very well without
having any idea how our voice is transported to friends and relatives around the world. Similarly, you can operate a tele-
vision set without any knowledge of how the images appear there. What you understand about black box devices is
their interface—the means of interaction, such as the buttons and speakers. Well-written program methods have the
same features—the user understands how to use them through the interface (the signature) but does not need to
understand their internal workings.

Consider the three abs() functions shown in Figure 12-13. Each version of the abs() method returns the absolute
value of a number. A number’s absolute value is the positive value of the number; as examples, the absolute value of
–5 is 5, and the absolute value of 17 is 17. In other words, taking the absolute value of a number removes the negative
sign, if the number has one. The set of statements within each of the three modules is different, yet a programmer
would use each of the modules in an identical fashion. To store the absolute value of myNumber in a variable named
answer, you write answer = abs(myNumber). Just as you do not really care whether your television

TIP�

517Using Prewritten, Built-in Modules

operates using household AC current or a battery, or is powered by a hamster on a wheel, as a programmer using a
black box method, you don’t really care which of the three versions of the abs() function shown in Figure 12-13
exists in the programming language you are using. Like the built-in methods, the internal operations of the methods you
write should be invisible to the user.

FIGURE 12-13: THREE VERSIONS OF AN abs() FUNCTION

num abs(num aValue)
 declare variables
 if aValue < 0 then
 answer = aValue * -1
 else
 answer = aValue
return answer

num abs(num someNum)
 declare variables
 if someNum >= 0 then
 result = someNum
 else
 result = 0 - someNum
return result

num abs(num x)
 declare variables
 opposite = -x
 if x < 0
 absVal = opposite
 else
 absVal = x
return absVal

return answer

aValue < 0?

declare variables

answer = aValue answer = aValue * -1

No Yes

num abs(num aValue)

local num answer

num abs(num someNum)

return result

someNum
>= 0?

declare variables

No Yes

result = someNumresult = 0 - someNum

local num result

num abs(num x)

return absVal

x < 0?

declare variables

No Yes

absVal = oppositeabsVal = x

opposite = -x

local num opposite
local num absVal

518 Chapter 12 • Advanced Modularization Techniques

In Figure 12-13, notice how the name of the numeric parameter in the function header can
be different in each version of the abs() method. The variable’s local name in no way
affects how the method is called from another module; any numeric value passed into a
method takes on the local name provided in the method header.

USING AN IPO CHART

When designing modules to use within larger programs, some programmers find it helpful to use an IPO chart, a tool
that identifies and categorizes each item needed within the module as pertaining to input, processing, or output. For
example, when you design the finalStatistics() module in the arithmetic drill program, you can start by
placing each of the module’s components in one of the three processing categories, as shown in Figure 12-14.

The IPO chart in Figure 12-14 provides you with an overview of the processing steps involved in the
finalStatistics() module. Like a flowchart or pseudocode, an IPO chart is just another tool to help you plan
the logic of your programs. Many programmers create an IPO chart only for specific modules in their programs and as
an alternative to flowcharting or writing pseudocode. IPO charts provide an overview of input to the module, the pro-
cessing steps that must occur, and the result.

This book emphasizes creating flowcharts and pseudocode. You can find many more
examples of IPO charts on the Web.

UNDERSTANDING THE ADVANTAGES OF ENCAPSULATION

When writing a module that receives a variable, you can give the variable any name you like. This feature is especially
beneficial if you consider that a well-written module may be used in dozens of programs, each supporting its own
unique variable names. To beginning programmers, using only global variables seems like a far simpler option than
declaring local variables and being required to pass them from one module to another. If a variable holds a count of
correct responses, why not create a single variable, call it correctCount, and let every module in the program
have access to the data stored there?

As an example of why this is a limiting idea, consider this: The finalStatistics() module of the arithmetic drill
program might be useful in other programs within the organization—maybe the company creates drills in subjects
other than arithmetic, but all drills require final statistics. If it is well-written, the finalStatistics() module can
be used by other programs in the company for years to come. If the variables that finalStatistics() uses are

FIGURE 12-14: IPO CHART FOR THE finalStatistics() MODULE

Input Processing Output

Correct count Divide correct count by total number of problems and multiply by 100, Percentage correct

producing percentage correct

TIP�

TIP�

519Understanding the Advantages of Encapsulation

not declared to be local, then every programmer working on every application within the organization will have to know
the names of those variables, to avoid conflict. If correctCount is global, then all programmers who use the mod-
ule must be aware of the name and purpose of the variable and avoid using it in any other context.

If the finalStatistics() module is so useful that you sell it to other companies, and if correctCount is
global, all programmers in those organizations will need to know its name and will have to avoid using it for any other
purpose in their programs. The name correctCount represents just one variable. Multiply the limitations on global
variable name usage by all the variable names used in the programs all over the world, and you can see that using
global variable names correctly will soon become impossible. The logistics would be similar to providing a unique first
name to every person at birth; you could do it, but you would end up using awkward, cryptic names.

Even if you could provide unique variable names for every program, there are other benefits to using local variables that
are passed to modules. Passing values to a module helps facilitate encapsulation. A programmer can write a program
(or module) and use procedures developed by others without knowing the details of those procedures; the programmer
can use the modules as black boxes. You don’t need to know—maybe you don’t even care—how a procedure uses the
data you send, as long as the results are what you want.

When procedures use local variables, the procedures become miniprograms that are relatively autonomous. Modules
that contain their own sets of instructions and their own variables are not dependent on the program that calls them.
The details within a module are hidden and contained, or encapsulated, which helps to make the module reusable.

Many real-world examples of encapsulation exist. When you build a house, you don’t invent plumbing and heating systems.
You incorporate systems that have already been designed. You don’t need to know all the fine details of how the systems
work; they are self-contained units you attach to your house. This certainly reduces the time and effort it takes to build a
house. Assuming the plumbing and electrical systems you choose are already in use in other houses, choosing existing
systems also improves your house’s reliability. Reliability is a feature of programs or modules that have been tested and
proven to work correctly. Not only is a prefabricated furnace reliable, but it is unnecessary to know how your furnace
works, and if you replace one model with another, you don’t care if the internal operations of the new model are different.
Whether heat is created from electricity, natural gas, or solar power, only the result—a warm house—is important to you.

Similarly, software that is reusable saves time and money and is more reliable. If the finalStatistics() mod-
ule has been tested previously, you can be confident that it will work correctly when you use it within a different pro-
gram. If another programmer creates a new and improved finalStatistics() module, you don’t care how it
works, as long as it correctly calculates and prints using the data you send to it.

The concept of passing variables to modules allows programmers to create variable names locally in a module without
changing the value of similarly named variables in other modules. The ability to pass values to modules makes program-
ming much more flexible, because independently created modules can exchange information efficiently. However, there
are limitations to the ways procedural programs use modules. Any procedural program that uses a module must not
reuse its name for any other module within the same program. With procedural programs, you also must know exactly
what type of data to pass to a module, and if you have use for a similar module that works on a different type of data or a
different number of data items, you must create a new module with a different name. These limitations are eliminated in
programs that are object-oriented. In Chapter 13, you will learn the principles of object-oriented programming.

520 Chapter 12 • Advanced Modularization Techniques

REDUCING COUPLING AND INCREASING COHESION

When you begin to design computer programs, it is difficult to decide how much to put into a module or subroutine. For
example, a process that requires 40 instructions can be contained in a single module, two 20-instruction modules, 20 two-
instruction modules, or any other combination. In most programming languages, any of these combinations is allowed. That
is, you can write a program that will execute and produce correct results no matter how you divide the individual steps into
modules. However, placing either too many or too few instructions in a single module makes a program harder to follow and
reduces flexibility. When deciding how to organize your program steps into modules, you should adhere to two general rules:

� Reduce coupling.

� Increase cohesion.

REDUCING COUPLING

Coupling is a measure of the strength of the connection between two program modules; it is used to express the
extent to which information is exchanged by subroutines. Coupling is either tight or loose, depending on how much one
module depends on information from another. Tight coupling, which occurs when modules excessively depend on
each other, makes programs more prone to errors; there are many data paths to keep track of, many chances for bad
data to pass from one module to another, and many chances for one module to alter information needed by another
module. Loose coupling occurs when modules do not depend on others. In general, you want to reduce coupling as
much as possible because connections between modules make them more difficult to write, maintain, and reuse.

Imagine four cooks wandering in and out of the kitchen while preparing a stew. If each is allowed to add seasonings at will
without the knowledge of the other cooks, you could end up with a culinary disaster. Similarly, if four payroll program mod-
ules are allowed to alter your gross pay figure “at will” without the “knowledge” of the other modules, you could end up with
a financial disaster. A program in which several modules have access to your gross pay figure has modules that are tightly
coupled. A superior program would control access to the payroll figure by limiting its passage to modules that need it.

You can evaluate whether coupling between modules is loose or tight by looking at the intimacy between modules and
the number of parameters that are passed between them.

� Tight coupling—The least intimate situation is one in which modules have access to the same
globally defined variables; these modules have tight coupling. When one module changes the
value stored in a variable, other modules are affected.

� Loose coupling—The most intimate way to share data is to pass a copy of needed variables
from one module to another. That way, the sharing of data is always purposeful—variables must
be explicitly passed to and from modules that use them. The loosest (best) subroutines and
methods pass single arguments rather than many variables or entire records, if possible.

Usually, you can determine that coupling is occurring at one of several levels. Data coupling is the loosest type of cou-
pling; therefore, it is the most desirable. Data coupling is also known as simple data coupling or normal coupling. Data
coupling occurs when modules share a data item by passing arguments. For example, a module that determines a stu-
dent’s eligibility for the dean’s list might receive a copy of the student’s grade point average to use in making the
determination.

521Reducing Coupling and Increasing Cohesion

Data-structured coupling is similar to data coupling, but an entire record is passed from one module to another. For
example, consider a module that determines whether a customer applying for a loan is creditworthy. You might write a
module that receives the entire customer record and uses many of its fields to determine whether the customer should
be granted the loan. If you need many of the customer fields—such as salary, length of time on the job, savings
account balance, and so on—then it makes sense to pass a customer’s record to a module. Figure 12-15 shows an
example of such a module.

In the checkCredit() module in Figure 12-15, an entire record (custRec), rather than any single data field, is
passed to the module. The coupling could have been made looser by writing three separate modules: one to check
salary, one to check time on the job, and one to check savings balance. However, because so many fields in the cus-
tomer’s record are needed, in this case it is very appropriate to pass the entire record to the module.

Control coupling occurs when a main program (or other module) passes an argument to a module, controlling the
module’s actions or telling it what to do. For example, Figure 12-16 shows a module that receives a user’s choice and
calls one of several other modules.

selectMethod(num userChoice)
 if userChoice = 1 then
 perform addRecordToFile()

 else
 if userChoice = 2 then
 perform deleteRecordFromFile()
 else
 if userChoice = 3 then
 perform printRecords()
 else
 perform invalidChoice()
 endif
 endif
 endif
return

FIGURE 12-16: THE selectMethod() MODULE

FIGURE 12-15: MODULE THAT DETERMINES CUSTOMER CREDITWORTHINESS

char checkCredit(Record custRec)
 declare variables
 creditIsOk = YES_CODE
 if custSalary < MIN_SALARY then
 creditIsOk = NO_CODE
 endif
 if custTimeOnJob < MIN_TIME then
 creditIsOk = NO_CODE
 endif
 if custSavingsBal < MIN_SAVINGS then
 creditIsOk = NO_CODE
 endif
return creditIsOk

local char creditIsOk
local const char YES_CODE = “Y”
local const char NO_CODE = “N”
local const num MIN_SALARY = 20000.00
local const num MIN_TIME = 2
local const num MIN_SAVINGS = 3000.00

522 Chapter 12 • Advanced Modularization Techniques

Although control coupling is appropriate at times, the implication in the selectMethod() module is that any mod-
ule that calls it is aware of how selectMethod() works—after all, an appropriate choice had to be made and
passed to selectMethod(). The program that uses selectMethod() probably prompts the user for a choice
and passes that choice to selectMethod(). Therefore, the calling program must know how to phrase the prompt
correctly to elicit an appropriate userChoice. This coupling is relatively tight. This is a problem, because if you
make a change to the selectMethod() module—for example, by adding a new option or changing the order of
the existing options—then all the programs and other modules that use selectMethod() will have to know about
the change. If they don’t, their prompts will offer incorrect choices, and they won’t be sending the appropriate
userChoice value to the module. Once you have to start keeping track of all the modules and programs that might
call a module, the opportunity for errors in a system increases dramatically.

External coupling and common coupling occur, respectively, when two or more modules access the same global
variable or record. When data can be modified by more than one module, programs become harder to write, read, and
modify. That’s because if you make a change in a single module, many other modules can be affected. For example, if
one module increases a field that holds the year from two digits to four, then all other modules that use the year will
have to be altered before they can operate correctly. For another example, if one module can increase your gross pay
figure by 10 percent based on years of service, and another module can increase your pay by 20 percent based on
annual sales, it makes a difference which module operates first. It’s possible that a third module won’t work when the
salary increases over a specified limit. If you avoid external or common coupling and pass variables instead, you can
control how and when the modules receive the data.

Pathological coupling occurs when two or more modules change one another’s data. An especially confusing case
occurs when moduleOne() changes data in moduleTwo(), moduleTwo() changes data in
moduleThree(), and moduleThree() changes data in moduleOne(). This makes programs extremely
difficult to follow, and you should avoid pathological coupling at all costs.

INCREASING COHESION

Analyzing coupling lets you see how modules connect externally with other modules and programs. You also want to
analyze a module’s cohesion, which refers to how the internal statements of a module or subroutine serve to accom-
plish the module’s purposes. In highly cohesive modules, all the operations are related, or “go together.” Such modules
are usually more reliable than those that have low cohesion; they are considered stronger, and they make programs
easier to write, read, and maintain.

Functional cohesion occurs when all operations in a module contribute to the performance of only one task.
Functional cohesion is the highest level of cohesion; you should strive for it in all methods you write. For example, a
module that calculates gross pay appears in Figure 12-17. The module receives two parameters, hours and rate,
and computes gross pay, including time-and-a-half for overtime. The functional cohesion of this module is high
because each of its instructions contributes to one task—computing gross pay. If you can write a sentence describing
what a module does, using only two words—for example, “Compute gross,” “Cube value,” or “Print record”—the mod-
ule is probably functionally cohesive.

523Reducing Coupling and Increasing Cohesion

You might work in a programming environment that has a rule such as “No module will be longer than can be printed
on one page” or “No module will have more than 30 lines of code.” The rule maker is trying to achieve more cohesion,
but this is an arbitrary way of going about it. It’s possible for a two-line module to have low cohesion and—although
less likely—for a 40-line module to have high cohesion. Because good, functionally cohesive modules perform only one
task, they tend to be short. However, the issue is not size. If it takes 20 statements to perform one task within a module,
then the module is still cohesive.

Two types of cohesion are considered inferior to functional cohesion, but still acceptable. Sequential cohesion takes
place when a module performs operations that must be carried out in a specific order on the same data. Sequential
cohesion is a slightly weaker type of cohesion than functional cohesion—even though the module might perform a vari-
ety of tasks, the tasks are linked because they use the same data, often transforming the data in a series of steps.
Communicational cohesion occurs in modules that perform tasks that share data. The tasks are not related; only the
data items are. If the tasks must be performed in order, the module is sequentially cohesive. If the tasks are not per-
formed in any sequential order but only share the same data, the module is communicationally cohesive; this is consid-
ered a weaker form of cohesion than functional or sequential cohesion.

Modules with several other types of cohesion are considered generally inferior to modules that are functionally, sequen-
tially, or communicationally cohesive, but there still are occasions when they can be used appropriately. Temporal
cohesion takes place when the tasks in a module are related by time. That is, the tasks are placed together because of
when they must take place—for example, at the beginning of a program. The prime examples of temporally cohesive
modules you have seen are housekeeping() and finishUp() modules. Procedural cohesion takes place
when, as with sequential cohesion, the tasks of a module are performed in sequence. However, unlike operations in
sequentially cohesive methods, the tasks in procedurally cohesive methods do not share data. Main program modules
are often procedurally cohesive; they consist of a series of steps that must be performed in sequence, but perform very
different tasks, such as housekeeping(), mainLoop(), and finishUp(). A mainline logic module can
also be called a dispatcher module, because it dispatches messages to a sequence of more cohesive modules.
Unless you are examining your main module, if you sense that a module you have written has only procedural cohesion
(that is, it consists of a series of steps that use unrelated data), you probably want to turn it into a dispatcher module.
You accomplish this by changing the module so that, instead of performing many different types of tasks, it calls other
modules in which the diverse tasks take place. Each of the new modules can be functionally, sequentially, or communi-
cationally cohesive. Logical cohesion takes place when a member module performs one or more tasks depending on

num computeGrossPay(num hours, num rate)
declare variables local num gross
if hours <= WORK_WEEK then local const num WORK_WEEK = 40
 gross = hours * rate

else
 gross = (WORK_WEEK * rate) + (hours - WORK_WEEK) * (rate * 1.5)

endif
return gross

FIGURE 12-17: THE computeGrossPay() MODULE

524 Chapter 12 • Advanced Modularization Techniques

a decision, whether the decision is in the form of a case structure or a series of if statements. The actions per-
formed might go together logically (that is, perform the same type of action), but they don’t work on the same data. Like
a module that has procedural cohesion, a module that has only logical cohesion should probably be turned into a
dispatcher.

One type of cohesion is generally considered to be inferior. Coincidental cohesion, as the name implies, is based on
coincidence—that is, the operations in a module just happen to have been placed together. Obviously, this is the weak-
est form of cohesion and is not desirable. However, if you modify programs written by others, you might see examples
of coincidental cohesion. Perhaps the program designer did not plan well, or perhaps an originally well-designed pro-
gram was modified to reduce the number of modules, and now a number of unrelated statements are grouped in a
single module.

Coincidental cohesion is almost an oxymoron—cohesion that is simply coincidental is
really not cohesion at all.

Most programmers do not think about the names of these cohesion types on a day-to-day basis. In other words, they
do not tend to say, “My, this program is temporally cohesive.” Rather, they develop a “feel” for what types of tasks right-
fully belong together, and for which subsets of tasks should be diverted to their own modules.

Additionally, there is a time and a place for shortcuts. If you need a result from spreadsheet data in a hurry, you can
type two values and take a sum rather than creating a formula with proper cell references. If a memo must go out in
five minutes, you don’t have to change fonts or add clip art with your word processor. Similarly, if you need a quick pro-
gramming result, you might very well use cryptic variable names, tight coupling, and coincidental cohesion. When you
create a professional application, however, you should keep professional guidelines in mind.

TIP�

Key Terms 525

CHAPTER SUMMARY

� A procedural program consists of a series of steps or procedures that take place one after the other.

Breaking programs into reasonable units called modules, subroutines, functions, or methods provides

abstraction, allows multiple programmers to work on a problem, allows you to reuse your work, and

allows you to identify structures more easily. By using local rather than global variables, you can take

advantage of encapsulation, creating modules without knowing the data names used by other

programmers.

� When multiple modules need access to the same variable value, you can pass a variable to the module.

The passed variable is called a parameter and usually is named within the module header.

� You can pass multiple values to a module. When you do so, you must observe the order and data types

of the arguments.

� Just as you can pass a value into a module, you can pass back a value from a called module to a calling

module.

� Many programming languages provide built-in methods, which are preprogrammed modules you can

use to perform common tasks.

� When designing modules to use within larger programs, some programmers find it helpful to use an IPO

chart, which identifies and categorizes each item needed within the module as pertaining to input, pro-

cessing, or output.

� The concept of passing variables to modules allows programmers to create variable names locally in a

module without changing the value of similarly named variables in other modules. Passing values to a

module helps facilitate encapsulation; you need to understand only the interface to the procedure. In

addition, passing variables helps to make modules reusable and improves their reliability.

� When writing modules, you should strive to achieve loose coupling and high cohesion.

KEY TERMS

A procedural program consists of a series of steps or procedures that take place one after another.

Modularization is the process of breaking down programs into reasonable units called modules, subroutines, func-
tions, or methods.

Abstraction is the process of ignoring minor details, making it easier to see the “big picture.”

A global variable is one that is available to every module in a program.

A local variable is one whose name and value are known only to its own module.

A local variable is in scope—that is, existing and usable—from the moment it is declared until it ceases to exist.

A variable that is out of scope has ceased to exist.

Chapter 12 • Advanced Modularization Techniques526

Encapsulation means that program components are bundled together.

Information hiding, or data hiding, means that the data or variables you use are completely contained within—and
accessible only to—the module in which they are declared.

Passing a value means that you are sending a copy of data in one module of a program to another module for use.

A module header is the introductory title statement of a module.

An argument is the expression in the comma-separated list in a function call.

A parameter is an object or reference that is declared in a function prototype (declaration) or definition (header).

A parameter list is the series of parameters, or passed values, that appears in a module header.

A module might return a value to a module that calls it, passing back a copy of the value.

A method’s type or method’s return type is the data type of the value it returns.

A method that returns no value is a void method. The word “void” means “empty” or “nothing.”

Unreachable or dead code is any set of program statements that will never execute—for example, those statements
within a module that follow the return statement.

Built-in methods, or built-in functions, are prewritten modules that perform frequently needed tasks.

A method’s signature includes its name and parameter list. In some languages, a signature, along with the return type
(and other punctuation), is also called a prototype.

A black box is a device you can use without understanding its internal processes.

A number’s absolute value is the positive value of the number.

An IPO chart is a tool that identifies and categorizes each item needed within a module as pertaining to input, pro-
cessing, or output.

Reliability is a feature of modules or programs that have been tested and proven to work correctly.

Coupling is a measure of the strength of the connection between two program modules.

Tight coupling occurs when modules excessively depend on each other; it makes programs more prone to errors.

Loose coupling occurs when modules do not depend on others.

Data coupling is the loosest type of coupling; therefore, it is the most desirable. Data coupling is also known as
simple data coupling or normal coupling. Data coupling occurs when modules share a data item by passing
parameters.

Data-structured coupling is similar to data coupling, but an entire record is passed from one module to another.

Control coupling occurs when a main program (or other module) passes an argument to a module, controlling the
module’s actions or telling it what to do.

External coupling and common coupling occur, respectively, when two or more modules access the same global
variable or record.

Pathological coupling occurs when two or more modules change one another’s data.

Review Questions 527

Cohesion is a measure of how the internal statements of a module or subroutine serve to accomplish the module’s
purposes.

Functional cohesion occurs when all operations in a module contribute to the performance of only one task.
Functional cohesion is the highest level of cohesion; you should strive for it in all methods you write.

Sequential cohesion takes place when a module performs operations that must be carried out in a specific order on
the same data.

Communicational cohesion occurs in modules that perform tasks that share data. The tasks are not related, just the
data items.

Temporal cohesion takes place when the tasks in a module are related by time.

Procedural cohesion takes place when, as with sequential cohesion, the tasks of a module are performed in
sequence. However, unlike operations in sequential cohesion, the tasks in procedural cohesion do not share data.

A dispatcher module dispatches messages to a sequence of more cohesive modules.

Logical cohesion takes place when a member module performs one or more tasks depending on a decision. The
actions performed might go together logically (that is, perform the same type of action), but they don’t work on the
same data.

Coincidental cohesion is based on coincidence—that is, the operations in a module just happen to have been placed
together.

REVIEW QUESTIONS

1. Which of the following is not a synonym for “module”?

a. procedure
b. function
c. method
d. program

2. Which of the following is not a benefit of modularization?

a. Modularization provides abstraction.
b. Modularization allows multiple programmers to work on a problem.
c. Modularization ensures the elimination of logical errors.
d. Modularization allows programmers to reuse their work more easily.

3. A variable that is available to every module in a program is a(n) variable.

a. global
b. international
c. local
d. neighborhood

Chapter 12 • Advanced Modularization Techniques528

4. A local variable is usable when it is .

a. in view
b. in scope
c. in range
d. limitless

5. When variables located in a module are hidden from other modules, the program is using
.

a. encapsulation
b. secret coding
c. condensation
d. functional composition

6. When you pass a value to a module, within the module, the passed variable as the
original.

a. has the same memory address
b. has the same name
c. has the same value
d. all of the above

7. The introductory title statement of a module is its .

a. banner
b. label
c. header
d. caption

8. A variable passed to a module is a(n) .

a. argument
b. quarrel
c. claim
d. return type

9. The series of parameters received by a module is the module’s .

a. return type
b. directory
c. sequence
d. parameter list

10. Assume you have written a module with the following header: myModule(char name, num
age). Which of the following module calls is correct?

a. myModule("Joan", 32)
b. myModule(19, "Sean")
c. Both of these are correct.
d. Neither a nor b is correct.

Review Questions 529

11. Assume you have written a module with the following header: anotherModule(char name,
num age, num salary). Which of the following module calls is correct?

a. anotherModule("Jerry", 32)
b. anotherModule("Elaine", 39, 20000)
c. both of the above
d. neither a nor b

12. A module that sends a value back to a module that calls it the value.

a. exports
b. imports
c. returns
d. delivers

13. The return type of a method is also called the .

a. exact value
b. method’s type
c. secondary type
d. parameter list

14. Built-in functions are .

a. methods without a return type
b. methods without parameter lists
c. prewritten, automatically available methods
d. customized methods used by a particular type of business or industry

15. To use a method written by another programmer, you must know all of the following except
.

a. the name of the method
b. the types of arguments passed to the method
c. the number of statements within the method
d. the return type of the method

16. To programmers, a black box is a module that .

a. you use without knowing the arguments or return type
b. is built into a programming language
c. you use without knowing how it works internally
d. records instructions as they are executed

17. A tool that identifies input, processing, and output steps for a program or module is a(n)
.

a. IPO chart
b. hierarchy chart
c. flowchart
d. debugger

Chapter 12 • Advanced Modularization Techniques530

18. Programmers should strive to .

a. increase coupling
b. increase cohesion
c. both of the above
d. neither a nor b

19. When several modules have access to the same variables and the ability to alter them, the modules
are coupled.

a. loosely
b. tightly
c. pathologically
d. morbidly

20. The most desirable level of cohesion is cohesion.

a. coincidental
b. temporal
c. procedural
d. functional

FIND THE BUGS

The following pseudocode contains one or more bugs that you must find and correct.

1. The main program calls a method that prompts the user for an initial and returns it to the main
module.

start
declare variables
char usersInitial
askUserForInitial()

print "Your initial is ", usersInitial
stop

char askUserForInitial()
declare variables

char letter
print "Please type your initial"
read letter

return usersInitial

Find the Bugs 531

2. The main program passes a user’s entry to a function that displays a multiplication table using the
entry multiplied by every value from 2 through 10.

start
declare variables

num usersChoice
print "Enter a number"
read choice
multiplicationTable(usersChoice)

stop

multiplicationTable(num value)
declare variables

const num LOW = 2
const num HIGH = 10
num x;

while num <= HIGH
answer = choice * x
print value, " times ", x, " is ", answer
num = num + 1

endwhile
return

3. The main program prompts a user for a Social Security number, name, and income, and then com-
putes tax. The tax calculation and the printing of the taxpayer’s report are in separate modules. Tax
rates are based on the following table:

Income Percent tax rate

0–14,999 0

15,000–21,999 15

22,000–29,999 18

30,000–44,999 22

45,000–59,999 28

60,000 and up 30

start
declare variables

num socSecNum
char name
num income
num taxDue

print "Enter socSecNum"

Chapter 12 • Advanced Modularization Techniques532

read socSecNum
while socSecNum not = 0

print "Enter name"
read name
print "Enter annual income"
read name
taxCalculations()
print taxReport(socSecNum, taxDue)
print "Enter socSecNum"
read socSecNum

endwhile
stop

num taxCalculations(num income)
num tax
const num NUMBRKTS = 6
num brackets[2] = 0, 15000, 22000, 30000,

45000, 60000
num rates[NUMBRKTS - 1] = 0.0, 0.15, 0.18, 0.22, 0.28, 0.30
num count = NUMBRKTS
while count >= 0
if income = brackets[count]

count = count - 1
endif

endwhile
tax = income * rates[count]

return tax

taxReport(num socSecNum, num name, num taxDue)
print socSecNum, name, taxDue

return

EXERCISES

1. Create an IPO chart for each of the following modules:

a. The module that produces your paycheck
b. The module that calculates your semester tuition bill
c. The module that calculates your monthly car payment

2. Plan the logic for a program that contains two modules. The first module prompts the user for a
grade on an exam. Pass the grade to a second module that prints “Pass” if the grade is 60 percent
or higher and “Fail” if it is not.

Exercises 533

3. Complete the following tasks:

a. Plan the logic for a program that contains two modules. The first module asks for your employee ID number.
Pass the ID number to a second module that prints a message indicating whether the ID number is valid or
invalid. A valid employee ID number falls between 100 and 799, inclusive.

b. Plan the logic for a program that contains two modules. The first module asks for your employee ID number.
Pass the ID number to a second module that returns a code to the first module indicating whether the ID
number is valid or invalid. A valid employee ID number falls between 100 and 799, inclusive. The first mod-
ule prints an appropriate message.

4. Complete the following tasks:

a. Plan the logic for an insurance company’s premium-determining program that contains three modules. The
first module prompts the user for the type of policy needed—health or auto. Pass the user’s response to
the second module, where the premium is set—$250 for a health policy or $175 for an auto policy. Pass
the premium amount to the last module for printing.

b. Modify Exercise 4a so that the second module calls one of two additional modules—one that determines
the health premium or one that determines the auto premium. The health insurance module asks users
whether they smoke; the premium is $250 for smokers and $190 for nonsmokers. The auto insurance mod-
ule asks users to enter the number of traffic tickets they have received in the last three years. The premium
is $175 for those with three or more tickets, $140 for those with one or two tickets, and $95 for those with
no tickets. Each of these two modules returns the premium amount to the second module, which sends the
premium amount to the printing module.

5. Plan the logic for a program that reads inventory records from a file that contains the following
fields: item number, item name, quantity in stock, and price each. In turn, pass each item number,
quantity, and price to a module named printDiscountInfo().

This is a prewritten module that calculates a new price for each item, taking one of 10 discount
percentages, depending on the quantity of the item remaining in stock. The module’s signature is
printDiscountInfo(num itemNo, num quantityInStock, num priceEach). You
do not need to write this module—just call it to display each item’s discount amount.

6. Plan the logic for a program that prompts a user for a customer number, stock number of item
being ordered, and quantity ordered.

If the customer number is not between 1000 and 7999, inclusive, continue to prompt until a valid
customer number is entered. If the stock number of the item is not between 201 and 850, inclusive,
continue to prompt for the stock number. Pass the stock number to a method that a colleague at
your organization has written; the module’s signature is num getPrice(num stockNumber).
The getPrice() module accepts a stock number and returns the price of the item. Multiply the
price by the quantity ordered, giving the total due. Pass the customer number and the calculated
price to an already written method whose signature is printBill(num custNum, num
price). This method determines the customer’s name and address by using the customer ID
number, and calculates the final bill, including tax, using the price. Organize your program using as
many modules as you feel are appropriate. You do not need to write the getPrice() and
printBill() modules—assume they have already been written.

Chapter 12 • Advanced Modularization Techniques534

7. Plan the logic for a program that prompts a user for numeric values and continues to read them
until the user enters 999.

Display the numeric average of the values; then, display each number and a statement of how far
away it is from the average. For example, if the user enters 5, 6, and 7, the output is:

Assume that you can use a built-in absolute value function whose signature is num abs(num
value). The function accepts a numeric value and returns its absolute value.

8. The Information Services Department at the Springfield Library has created modules with the
following signatures:

The average is 6
5 is 1 away from the average
6 is 0 away from the average
7 is 1 away from the average

a. Design an interactive program that does the following, using the prewritten modules wherever they are
appropriate.

� Prompt the user for and read a library card number, which must be between 1000 and 9999.

� Prompt the user for and read a search option—1 to search for a book by ISBN, 2 to search for a book

by title, and 3 to quit. Allow no other values to be entered.

� While the user does not enter 3, prompt for an ISBN or title, based on the user’s previous selection. If

the user enters an ISBN, get and display the book’s title and ask for confirmation—a “Y” or “N” as to

whether the title is correct.

Signature Description

num getNumber(num high, num low) Prompts the user for a number. Continues to prompt until

the number falls between designated high and low

limits. Returns a valid number.

char getCharacter() Prompts the user for a character string and returns the

entered string.

num lookUpISBN(char title) Accepts the title of a book and returns the ISBN. Returns

a 0 if the book cannot be found.

char lookUpTitle(num isbn) Accepts the ISBN of a book and returns a title. Returns a

space character if the book cannot be found.

char isBookAvailable(num isbn) Accepts an ISBN, searches the library database, and

returns a “Y” or “N” indicating whether the book is

currently available.

Up for Discussion 535

� If the user has entered a valid ISBN, or a title that matches a valid ISBN, check whether the book is avail-

able, and display an appropriate message for the user.

� The user can continue to search for books until he or she enters 3 as the search option.

b. Develop the logic for each of the modules in Exercise 8a.

DETECTIVE WORK

1. In some programming languages, beginning programmers traditionally write their first module to
perform what specific task?

2. What is beta testing?

UP FOR DISCUSSION

1. Modularized furniture comes with sections that can be assembled in a variety of configurations.
What other everyday items are modularized?

2. As a professional programmer, you might never write an entire program. Instead, you might be
asked to write specific modules that are destined to become part of a larger system. Is this appeal-
ing to you?

13
After studying Chapter 13, you should be able to:

� Understand the basic principles of object-oriented programming

� Define classes and create class diagrams

� Understand public and private access

� Instantiate and use objects

� Understand inheritance

� Understand polymorphism

� Understand protected access

� Understand the role of the this reference

� Use constructors and destructors

� Describe GUI classes as an example of built-in classes

� Understand the advantages of object-oriented programming

OBJECT-ORIENTED
PROGRAMMING

537

538 Chapter 13 • Object-Oriented Programming

AN OVERVIEW OF OBJECT-ORIENTED PROGRAMMING

Object-oriented programming (OOP) is a style of programming that focuses on an application’s data and the methods
you need to manipulate that data. Object-oriented programming uses all of the concepts you are familiar with from
modular procedural programming, such as variables, modules, and passing values to modules. Modules in object-
oriented programs continue to use sequence, selection, and looping structures and make use of arrays. However,
object-oriented programming adds several new concepts to programming and involves a different way of thinking. A
considerable amount of new vocabulary is involved as well. First, you will read about object-oriented programming con-
cepts in general; then you will learn the specific terminology.

Objects both in the real world and in object-oriented programming are made up of attributes and methods. Attributes
are the characteristics that define an object as part of a class. For example, some of your automobile’s attributes are its
make, model, year, and purchase price. Other attributes include whether the automobile is currently running, its gear, its
speed, and whether it is dirty. All automobiles possess the same attributes, but not, of course, the same values for those
attributes. Similarly, your dog has the attributes of its breed, name, age, and whether his or her shots are current.

In grammar, a noun is similar to an object in object-oriented programs, and the values of
an object’s attributes are like adjectives—they describe the characteristics of the objects.
Programmers also call the values of an object’s attributes the properties of the object. The
state of an object is the collective value of all its attributes at any point in time. Later in
this chapter, you will learn about the methods in a class, which are equivalent to verbs.

In object-oriented terminology, a class is a term that describes a group or collection of objects with common properties.
An instance of a class is an existing object of a class. Therefore, your red Chevrolet Automobile with the
dent can be considered an instance of the class that is made up of all automobiles, and your Golden Retriever
Dog named Ginger is an instance of the class that is made up of all dogs. Thinking of items as instances of a class
allows you to apply your general knowledge of the class to individual members of the class. A particular instance of an
object takes its attributes from the general category. If your friend purchases an Automobile, you know it has a
model name, and if your friend gets a Dog, you know the dog has a breed. You might not know the current state of
your friend’s Automobile, such as its current speed, or the status of her Dog’s shots, but you do know what attrib-
utes exist for the Automobile and Dog classes, and this allows you to imagine these objects reasonably well
before you see them. When you visit your friend and see the Automobile or Dog for the first time, you probably will
recognize it as the new acquisition. As another example, when you use a new application on your computer, you expect
each component to have specific, consistent attributes, such as a button being clickable or a window being closeable,
because each component gains these attributes as a member of the general class of GUI (graphical user interface)
components.

When you approach a new programming assignment using object-oriented programming techniques:

� You analyze the objects you are working with and the tasks that need to be performed with, and
on, those objects. Then you design classes that encapsulate the attributes and functionality of
those objects.

TIP�

539An Overview of Object-Oriented Programming

� You pass messages to objects, requesting the objects to take action. The same message works
differently (and appropriately) when applied to different objects. This means that, if well-
designed, you can use a single module or procedure name to work appropriately with different
types of data it receives.

� Objects can share or inherit traits of objects that have already been created, reducing the time it
takes to create new objects.

� Encapsulation and information hiding are emphasized.

OBJECTS AND CLASSES

The real world is full of objects. Consider a door. A door needs to be opened and closed. You open a door with an easy-
to-use interface known as a doorknob. Object-oriented programmers would say you are “passing a message” to the
door when you “tell” it to open by turning its knob. The same message (turning a knob) has a different result when
applied to your radio than when applied to a door. The procedure you use to open something—call it the “open”
procedure—works differently on a door to a room than it does on a desk drawer, a bank account, a computer file, or
your eyes, but, even though these procedures operate differently using the different objects, you can call all of these
procedures “open.” In object-oriented programming, procedures are called methods.

With object-oriented programming, you focus on the objects that will be manipulated by the program—for example, a
customer invoice, a loan application, or a menu from which the user will select an option. You define the characteristics
of those objects and the methods each of the objects will use; you also define the information that must be passed to
those methods.

METHODS

You can create multiple methods with the same name, which will act differently and appropriately when used with dif-
ferent types of objects. This concept is polymorphism, which literally means “many forms”—a method can have many
configurations that each work appropriately based on the context in which they are used. In most object-oriented pro-
gramming languages, method names are followed by a set of parentheses; this helps you distinguish method names
from variable names. You have been using this style throughout this book. For example, a method named display()
might be usable to display the characteristics of an Automobile, Dog, or CustomerInvoice. Because you
can use the same method name, display(), to describe the different actions needed to display these diverse
objects, you can write statements in object-oriented programming languages that are more like English; you can use
the same method name to describe the same type of action, no matter what type of object is being acted upon. Using
the method name display() is easier than remembering displayAutomobile(), displayDog(), and
so on. In English, you understand the difference between “running a race,” “running a business,” and “running a com-
puter program.” Object-oriented languages understand verbs in context, just as people do. In object-oriented programs,
when you create multiple methods with the same name but different argument lists, you overload the method.

540 Chapter 13 • Object-Oriented Programming

Purists find a subtle difference between overloading and polymorphism. Some reserve the
term “polymorphism” (or pure polymorphism) for situations in which one function body
is used with a variety of arguments. For example, a single function that can be used with
any type of object is polymorphic. The term “overloading” is applied to situations in
which you define multiple functions with a single name (for example, three functions, all
named display(), that display a number, an employee, and a student, respectively.
Certainly, the two terms are related; both refer to the ability to use a single name to
communicate multiple meanings. For now, think of overloading as a primitive type of
polymorphism.

As another example of the advantages to using one name for a variety of objects, consider a screen you might design
for a user to enter data into an application you are writing. Suppose the screen contains a variety of objects—some
forms, buttons, scroll bars, dialog boxes, and so on. Suppose also that you decide to make all the objects blue. Instead
of having to memorize the names that these objects use to change color—perhaps changeFormColor(),
changeButtonColor(), and so on—your job would be easier if the creators of all those objects had developed
a setColor() method that works appropriately and in the same way with each type of object.

INHERITANCE

Another important concept in object-oriented programming is inheritance, which is the process of acquiring the traits
of one’s predecessors. In the real world, a new door with a stained glass window inherits most of its traits from a stan-
dard door. It has the same purpose, it opens and closes in the same way, and it has the same knob and hinges. The
door with the stained glass window simply has one additional trait—its window. Even if you have never seen a door
with a stained glass window, when you encounter one you know what it is and how to use it because you understand
the characteristics of all doors. Similarly, you understand the traits of a Convertible because it inherits almost all
of its features from an Automobile and you understand most of the characteristics of a Poodle if you know it is a
Dog. With object-oriented programming, once you create an object, you can develop new objects that possess all the
traits of the original object plus any new traits you desire. If you develop a customerBill object, there is no need
to develop an overdueCustomerBill object from scratch. You can create the new type of object to contain all
the characteristics of the already developed object, and simply add necessary new characteristics. This not only
reduces the work involved in creating new objects, it makes them easier to understand because they possess most of
the characteristics of already developed objects.

ENCAPSULATION

Real-world objects often employ encapsulation and information hiding. Encapsulation is the process of combining all
of an object’s attributes and methods into a single package. Information hiding is the concept that other classes
should not alter an object’s attributes—only the methods of an object’s own class should have that privilege. Outside
classes should only be allowed to make a request that an attribute be altered; then it is up to the class methods to
determine whether the request is appropriate. When using a door, you usually are unconcerned with the latch or hinge
construction features, and you don’t have access to the interior workings of the knob or know what color of paint might
have been used on the inside of the door panel. You care only about the functionality and the interface, the user-
friendly boundary between the user and the internal mechanisms of the device. Similarly, the detailed workings of
objects you create within object-oriented programs can be hidden from outside programs and modules if you want

TIP�

541Defining Classes and Creating Class Diagrams

them to be. When the details are hidden, programmers can focus on the functionality and the interface, as people do
with real-life objects.

Information hiding is also called data hiding.

In summary, to understand object-oriented programming, you must consider five concepts that are integral components
of all object-oriented programming languages:

� Classes

� Objects

� Inheritance

� Polymorphism

� Encapsulation

DEFINING CLASSES AND CREATING CLASS DIAGRAMS

A class is a category of things; an object is a specific instance of a class. A class definition is a set of program
statements that tell you the characteristics of the class’s objects and the methods that can be applied to its objects.

For example, Dish is a class. When you know an object is a Dish, you know it can be held in your hand and you can
eat from it. The specific object myBlueDinnerPlateWithTheChipOnTheEdge is an instance of the Dish
class; so is auntJanesAntiquePunchBowl and myCatsFoodBowl. You can use the phrase is-a to test
whether an object is an instance of a class. Because you can say, “My plate is a Dish,” you can discern the object-
class relationship. On the other hand, you cannot say, “A Dish is my plate,” because many dishes are not my plate.
Each button on the toolbar of a word-processing program is an instance of a Button class. In a program used to
manage a hotel, thePentHouse, theBridalSuite, room201, and room202 all are instances of
HotelRoom. Although each room is a different object, as members of the same class they share characteristics—
each has a maximum number of occupants, a square footage, and a price.

In object-oriented languages such as C++ and Java, by convention, most class names are
written with the initial letter of each new word in uppercase, as in Dish or HotelRoom.
Specific objects’ names usually are written in lowercase or using camel casing.

Object-oriented programmers also use the term “is-a” to describe class-to-class inheri-
tance relationships.

A class can contain three parts:

� Every class has a name.

� Most classes contain data, although this is not required.

� Most classes contain methods, although this is not required.

TIP�

TIP�

TIP�

542 Chapter 13 • Object-Oriented Programming

For example, you can create a class named Employee. Each Employee object will represent one employee who
works for an organization. Data members, or attributes of the Employee class, include fields such as idNum,
lastName, hourlyWage, and weeklyPay.

The methods of a class include all actions you want to perform with the class. Appropriate methods for an Employee
class might include setFieldValues(), calculateWeeklyPay(), and printFieldValues(). The
job of setFieldValues() is to provide values for an Employee’s data fields, the purpose of
calculateWeeklyPay() is to multiply the Employee’s hourlyWage by 40 to calculate a weekly salary,
and the purpose of printFieldValues() is to print the values in the Employee’s data fields. With object-
oriented languages, you think of the class name, data, and methods as a single encapsulated unit.

Programmers often use a class diagram to illustrate class features. A class diagram consists of a rectangle divided
into three sections, as shown in Figure 13-1. The top section contains the name of the class, the middle section
contains the names and data types of the attributes, and the bottom section contains the methods. This generic class
diagram shows two attributes and three methods, but for a given class there might be any number of either, including
none. Figure 13-2 shows the class diagram for the Employee class.

Later in this chapter, you will learn to add access specifiers to your class diagrams.

Some class designers prefer to define any field that never will be used in a computation as
a non-numeric data type. For example, in the Employee class diagram in Figure 13-2,
you might prefer to define Employee idNum as a field that can contain characters.

FIGURE 13-2: Employee CLASS DIAGRAM

Employee

idNum: num
lastName: char
hourlyWage: num
weeklyPay: num

setFieldValues(num, char, num)
calculateWeeklyPay()
printFieldValues()

FIGURE 13-1: GENERIC CLASS DIAGRAM

Class name

Attribute 1: data type
Attribute 2: data type

Method 1
Method 2
Method 3

TIP�

TIP�

543Defining Classes and Creating Class Diagrams

Figures 13-1 and 13-2 both show that a class diagram is intended to be only an overview of class attributes and meth-
ods. A class diagram shows what data items and methods the class will use, not the details of the methods nor when
they will be used. It is a design tool that helps you see the big picture in terms of class requirements. Later, when you
plan the code that actually creates the class, you include method implementation details; at that point, you might draw
a flowchart or write pseudocode for each method, as you have been doing throughout this book.

In Figure 13-2 in the setFieldValues() method, the class diagram indicates that three items will be sent into the
method—a numeric data item, a character data item, and another numeric data item. When you view the class diagram, you
don’t know how these will be used, but when you write the class definition, their use is defined. For example, Figure 13-3
shows some pseudocode you can use to show the details for the methods contained within the Employee class.

In Figure 13-3, the Employee class attributes or fields are identified with a data type and a field name. In addition to
listing the data fields required, Figure 13-3 shows the complete methods for the Employee class. The purpose of
two of the methods is to communicate with the outside world—the setFieldValues() method takes values that
come in from the outside and assigns them to the Employee’s attributes, and the printFieldValues()
method displays the Employee’s attributes on an output device. The purpose of the calculateWeeklyPay()
module is to multiply hourlyWage by 40. Each method can contain elements with which you are familiar from
non-object-oriented programs. For example, the setFieldValues() method declares a constant and makes a
decision on how to set the Employee’s pay rate based on the value of the constant.

class Employee
 num idNum
 char lastName
 num hourlyWage
 num weeklyPay

 setFieldValues(num id, char last, num rate)
 const num MAX_RATE = 25.00
 idNum = id
 lastName = last
 if rate <= MAX_RATE then
 hourlyWage = rate
 else
 hourlyWage = MAX_RATE
 endif
 return

 calculateWeeklyPay()
 const num WORK_WEEK = 40
 weeklyPay = hourlyWage * WORK_WEEK
 return

 printFieldValues()
 print idNum, lastName, hourlyWage, weeklyPay
 return
endClass

FIGURE 13-3: Employee CLASS PSEUDOCODE WITHOUT ACCESS SPECIFIERS

544 Chapter 13 • Object-Oriented Programming

UNDERSTANDING PUBLIC AND PRIVATE ACCESS

When you buy a product with a warranty, one of the conditions of the warranty is usually that the manufacturer must
perform all repair work. For example, if your computer has a warranty and something goes wrong with its operation, you
cannot open the CPU yourself, remove and replace parts, and then expect to get your money back for a device that
does not work properly. Instead, when something goes wrong with your computer, you must take the device to the man-
ufacturer. The manufacturer guarantees that your machine will work properly only if the manufacturer can control how
the internal mechanisms of the machine are modified.

Similarly, in object-oriented design, usually you do not want any outside programs or methods to alter your class’s data
fields unless you have control over the process. For example, you might design a class that performs a complicated
statistical analysis on some data and stores the result. You would not want others to be able to alter your carefully
crafted product. As another example, you might design a class from which others can create an innovative and useful
GUI screen object. In this case, you would not want others altering the dimensions of your artistic design. In the
Employee class in Figure 13-3, you do not want hourlyWage to be initialized to more than $25.00.

To prevent outsiders from changing your data fields in ways you do not endorse, you force other programs and methods
to use a method that is part of the class, such as setFieldValues(), to alter data. (You have already learned
that the principle of keeping data private and inaccessible to outside classes is called information or data hiding.)
Object-oriented programmers usually specify that their data fields will have private access—that is, the data cannot
be accessed by any method that is not part of the class. The methods themselves, like setFieldValues(), allow
public access, which means that other programs and methods may use the methods. An access specifier (or access
modifier) is an adjective that defines the type of access outside classes will have to the attribute or method (public
or private). Figure 13-4 shows a complete Employee class to which shaded access specifiers have been added
to describe each attribute and method.

Classes can contain public data and private methods, but it is common for most data to be
private and most methods to be public.

In some object-oriented programming languages, such as C++, you can label a set of data
fields or methods as public or private using the access specifier name just once. In other
languages, such as Java, you use the specifier public or private with each field or
method. For clarity, this book will label each field and method as public or private.

Many object-oriented languages provide more specific access specifiers than just public
and private. Later in this chapter, you learn about the protected access specifier.

Notice that the last line in the Employee class in both Figures 13-3 and 13-4 is an
endClass statement. Similar to the way this book has used endif and endwhile to
mark the end of if and while blocks of code, this book will use endClass to indicate
the end of a class definition.

TIP�

TIP�

TIP�

TIP�

545Understanding Public and Private Access

When creating a class diagram, many programmers like to specify whether each data item and method in a class is
public or private. Figure 13-5 shows the conventions that are typically used. A minus sign (–) precedes items that are
private; a plus sign (+) precedes those that are public.

When you learn more about inheritance later in this chapter, you will learn about the
protected access specifier. You use an octothorpe, also called a pound sign or number
sign (#), to indicate protected access.

FIGURE 13-5: Employee CLASS DIAGRAM WITH public AND private ACCESS SPECIFIERS

Employee

-idNum: num
-lastName: char
-hourlyWage: num
-weeklyPay: num

+setFieldValues(num, char, num)
+calculateWeeklyPay()
+printFieldValues()

class Employee
 private num idNum
 private char lastName
 private num hourlyWage
 private num weeklyPay

 public setFieldValues(num id, char last, num rate)
 const num MAX_RATE = 25.00
 idNum = id
 lastName = last
 if rate <= MAX_RATE then
 hourlyWage = rate
 else
 hourlyWage = MAX_RATE
 endif
 return

 public calculateWeeklyPay()
 const num WORK_WEEK = 40
 weeklyPay = hourlyWage * WORK_WEEK
 return

 public printFieldValues()
 print idNum, lastName, hourlyWage, weeklyPay
 return
endClass

FIGURE 13-4: Employee CLASS USING private AND public ACCESS SPECIFIERS

TIP�

546 Chapter 13 • Object-Oriented Programming

INSTANTIATING AND USING OBJECTS

When you write an object-oriented program, you create objects that are members of a class. You instantiate (or create)
a class object (or instance) with a statement that includes the type of object and an identifying name. For example, the
following statement creates an Employee object named myAssistant:

Employee myAssistant

In some object-oriented programming languages, you need to add more to the declaration
statement to actually create an Employee object. For example, in Java, you would write:

Employee myAssistant = new Employee();

This syntax, using the class name followed by parentheses, will be explained later in this
chapter when you learn about constructor methods.

When you declare myAssistant as an Employee object, the myAssistant object contains all of the data
fields or attributes defined in the class, and has access to all the class’s methods. You can use any of an Employee’s
methods—setFieldValues(), calculateWeeklyPay(), and printFieldValues()—with the
myAssistant object. The usual syntax is to provide an object name, a dot (period), and a method name. For exam-
ple, you can write a program that contains statements such as the ones shown in the pseudocode in Figure 13-6.

Besides referring to Employee as a class, many programmers would refer to it as a user-
defined type; a more accurate term is programmer-defined type. Programming lan-
guages in which you can create your own data types are extensible, meaning extendable.
A class is also an abstract data type (ADT)—a type whose internal form is hidden
behind a set of methods you use to access the data.

The following statements contain method calls:

myAssistant.setFieldValues(123, “Tyler”, 12.50)
myAssistant.calculateWeeklyPay()
myAssistant.printFieldValues()

These calls are similar to module or method calls you have seen throughout this book, but in this case the methods
themselves are part of the Employee class, which is why an Employee object can use them. You can think of the

start
 declare variables
 Employee myAssistant
 myAssistant.setFieldValues(123, “Tyler”, 12.50)
 myAssistant.calculateWeeklyPay()
 myAssistant.printFieldValues()
stop

FIGURE 13-6: PROGRAM THAT USES AN Employee OBJECT

TIP�

TIP�

547Understanding Inheritance

Employee object myAssistant as “owning” or “driving” those methods; when those methods refer to data
fields, they refer to the myAssistant object’s data fields and not the data fields of any other Employee.

When you write the program in Figure 13-6, you do not need to know what statements are written within the methods
of the Employee class, although you could make an educated guess based on the methods’ names. Before you
could execute the application in Figure 13-6, you would have to write appropriate statements within the Employee
class’s methods, but if another programmer has already written the methods, then you can use the application in
Figure 13-6 without knowing the details contained in the methods. The ability to use methods without knowing the
details of their contents is a feature of encapsulation.

Programmers like to say the method details are contained in a black box—a device you
can use without knowing how its contents operate. You first learned the term “black box”
in Chapter 10.

A program or method that uses a class object is a client of the class. Many programmers write only client programs,
never creating classes themselves, but using only classes that others have created. In the client program in Figure 13-6,
the focus is on the object—the Employee named myAssistant—and the methods you can use with that
object. This is the essence of object-oriented programming.

Of course, the program in Figure 13-6 is very short. In a more useful real-life program,
you might read employee data from a data file before assigning it to the object’s fields,
and you might create hundreds of objects in turn.

In older object-oriented programming languages, simple numbers and characters are said
to be primitive data types; this distinguishes them from objects that are class types. In
the newest programming languages, such as C#, every item you name, even one that is a
num or char type, really is an object that is an instance of a class that contains both data
and methods.

When you instantiate objects, the data fields of each are stored at separate memory loca-
tions. However, all members of the same class share one copy of the class methods.

UNDERSTANDING INHERITANCE

The concept of class is useful because of its reusability; you can create new classes that are descendents of existing
classes. The descendent classes (or child classes) can inherit all of the attributes of the original class (or parent
class), or the descendent class can override those attributes that are inappropriate. For example, if you have created a
class named BankLoan, it probably contains fields such as the account number, the name, address, and phone num-
ber of the loan recipient, the amount of the loan, and the interest rate. The class probably also contains methods that
set, display, and manipulate these values. When you need a more specific class for a CarLoan that contains data
about the car, or HomeImprovementLoan that contains data about the home improvement, you do not want to
have to start from scratch. It makes sense to inherit existing features from the BankLoan class, adding only the new
features that the more specific loans require.

TIP�

TIP�

TIP�

TIP�

548 Chapter 13 • Object-Oriented Programming

You can call a parent class a base class or superclass. You can refer to a child class as a
derived class or subclass.

As another example, to accommodate part-time workers in your personnel programs, you might want to create a child
class from the Employee class. Part-time workers need an ID, name, and hourly wage, just as regular employees
do, but the regular Employee pay calculation assumes a 40-hour workweek. You might want to create a
PartTimeEmployee class that inherits all the data fields contained in Employee, but adds a new one—
hoursWorked. In addition, you want to create a modified setFieldValues() method that includes
assigning a value to hoursWorked, and a new calculateWeeklyPay() method that operates correctly for
PartTimeEmployee objects. This new method multiplies hourlyWage by hoursWorked instead of by 40.
The printFieldValues() module that already exists within the Employee class works appropriately for
both the Employee and the PartTimeEmployee classes, so there is no need to include a new version of this
module within the PartTimeEmployee class; PartTimeEmployee objects can simply use their parent’s
existing method.

You can think of a child class as being more specific than a parent class. For example,
PartTimeEmployee is a specific type of Employee.

A child class contains all the data fields and methods of its parent, plus any new ones you
define. A parent class does not gain any child class members.

When you create a child class, you can show its relationship to the parent with a class diagram like the one for
PartTimeEmployee in Figure 13-7. The complete PartTimeEmployee class appears in Figure 13-8.

FIGURE 13-7: PartTimeEmployee CLASS DIAGRAM

Employee

idNum
lastName
hourlyWage
weeklyPay

setFieldValues(num, char, num)
calculateWeeklyPay()
printFieldValues()

PartTimeEmployee descends from Employee

hoursWorked

setFieldValues(num, char, num, num)
calculateWeeklyPay()

TIP�

TIP�

TIP�

549Understanding Inheritance

The class in Figure 13-8 uses the phrase “descends from” to indicate inheritance. Each
programming language uses its own syntax. For example, using Java, you would write
“extends”, in Visual Basic .NET you would write “inherits”, and in C++ and C# you
would use a colon between the class name and its parent.

The PartTimeEmployee class shown in Figure 13-8 contains five data fields—all the fields that Employee
contains plus one new one, hoursWorked. The PartTimeEmployee class also contains three methods. Two of
the methods, setFieldValues() and calculateWeeklyPay(), have been rewritten for the
PartTimeEmployee child class, because they will operate differently when used with PartTimeEmployee
than when used with Employee. The other method, printFieldValues(), is not rewritten because the
parent class version is a usable version for the child class.

In Figure 13-8, the PartTimeEmployee class setFieldValues() method takes four arguments. Three are
passed to the parent class setFieldValues() method, where they can be assigned to the class fields. Because
the parent class method already provides statements that set the values of three of the class fields, the
PartTimeEmployee class can take advantage of the fact that part of the work has been done. Being able to reuse
code is an advantage of inheritance. In Figure 13-8, calling the parent class method is indicated by the phrase
“Employee class version:”. The actual syntax you use when writing code varies among programming languages.

The fourth argument to the PartTimeEmployee class setFieldValues() method, hours, is assigned to
hoursWorked in the child class method because the parent class does not contain that field.

The calculateWeeklyPay() method in the PartTimeEmployee class uses the variable hoursWorked
instead of the constant 40 to calculate weekly pay. The methods in the child class that have the same name and
argument list as those in the parent class are said to override, or take precedence over, the parent class methods.

A child class method overrides a parent’s method when it has the same name and argu-
ment list. It overloads a parent’s method just as any method is overloaded—when it has
the same name as another, but a different argument list.

class PartTimeEmployee descends from Employee
 private num hoursWorked
 public void setFieldValues(num id, char last, num rate, num hours)
 Employee class version: setFieldValues(id, last, rate)
 hoursWorked = hours
 return
 public void calculateWeeklyPay()
 weeklyPay = hourlyWage * hoursWorked
 return
endClass

FIGURE 13-8: THE PartTimeEmployee CLASS

TIP�

TIP�

550 Chapter 13 • Object-Oriented Programming

Before the PartTimeEmployee child class can use the hourlyWage and weeklyPay
fields, object-oriented programming languages require one additional modification to the
Employee parent class. You will learn about this modification, making the parent class
fields protected, later in this chapter.

The PartTimeEmployee class also contains the printFieldValues() method, which it inherits unchanged
from its parent. You do not see a copy of the printFieldValues() method in the PartTimeEmployee class
in Figure 13-8, because the phrase descends from Employee in the first line of the class means that all
Employee class members automatically are included in the child class unless they have been overridden. When you
write an application such as the one shown in Figure 13-9, declaring Employee as well as PartTimeEmployee
objects, different setFieldValues() and calculateWeeklyPay() methods containing different state-
ments are called for each object, but the same printFieldValues() method is called in each case.

In the program in Figure 13-9, two objects are declared. The myAssistant object is a “plain” Employee; the
myDriver object is a more specific PartTimeEmployee. The statement myDriver.setFieldValues()
calls a different method than myAssistant.setFieldValues(); the two methods have the same name, but
belong to different classes. The compiler knows which method to call based on the type of object, but the programmer
can use one easy-to-remember method name in both cases. The method name setFieldValues() can be used
with either type of object, and it works appropriately with either type.

In Figure 13-9, the two calls to calculateWeeklyPay() cause two different method executions; the compiler
knows which version to use because the objects associated with the calls belong to different classes.

The final two statements before the stop statement in Figure 13-9 call the printFieldValues() method with
each of the two objects. In these statements, the same method is called each time. Naturally, the myAssistant
object uses the printFieldValues() method contained in the Employee class. The myDriver object also
uses the printFieldValues() method from the Employee class because of the following reasoning:

� myDriver is a PartTimeEmployee.

� The PartTimeEmployee class does not contain its own version of the
printFieldValues() method.

start
 declare variables
 Employee myAssistant
 PartTimeEmployee myDriver
 myAssistant.setFieldValues(123, “Tyler”, 12.50)
 myDriver.setFieldValues(234, “Mitchell”, 15.00, 20)
 myAssistant.calculateWeeklyPay()
 myDriver.calculateWeeklyPay()
 myAssistant.printFieldValues()
 myDriver.printFieldValues()
stop

FIGURE 13-9: APPLICATION THAT USES Employee AND PartTimeEmployee OBJECTS

TIP�

551Understanding Polymorphism

� The PartTimeEmployee class is a child class of Employee.

� The Employee class contains a printFieldValues() method that the myDriver
object can use.

A child class will use its parent class methods unless the child class has its own version that either overrides or
overloads the parent’s version.

A good way to determine whether a class is a parent or a child is to use the “is-a” test. A
child “is an” example of its parent. For example, it is always true that a
PartTimeEmployee “is an” Employee. However, it is not necessarily true that an
Employee “is a” PartTimeEmployee.

When you create a class that is meant only to be a parent class and not to have objects of
its own, you create an abstract class. For example, suppose you create an Employee
class and two child classes, PartTimeEmployee and FullTimeEmployee. If your
intention is that every object belongs to one of the two child classes and that there are no
“plain” Employee objects, then Employee is an abstract class.

In some programming languages, such as C# and Java, every class you create is a child of
one ultimate base class, often called the Object class. The Object class usually
provides you with some basic functionality that all the classes you create inherit—for
example, the ability to show its memory location and name.

Some, but not all, programming languages allow multiple inheritance, in which classes
you create can have many parents, inheriting all the attributes and methods of each.

UNDERSTANDING POLYMORPHISM

Object-oriented programs use a feature called polymorphism to allow the same request—that is, the same method
call—to be carried out differently, depending on the context; this is seldom allowed in non-object-oriented languages.
With the Employee and PartTimeEmployee classes, you need a different calculateWeeklyPay()
method, depending on the type of object you use. Without polymorphism, you must write a different module with a unique
name for each method because two methods with the same name cannot coexist in a program. Just as your blender can
produce juice whether you insert a fruit or a vegetable, with polymorphism a calculateWeeklyPay() method
produces a correct result whether it operates on an Employee or a PartTimeEmployee. Similarly, you may want
a computeGradePointAverage() method to operate differently for a pass-fail course than it does for a graded
one, or you might want a word-processing program to produce different results when you press Delete with one word
highlighted in a document than when you press Delete with a file name highlighted.

When you write a polymorphic method in an object-oriented programming language, you must write each version of the
method, and that can entail a lot of work. The benefits of polymorphism do not seem obvious while you are writing the
methods, but the benefits are realized when you can use the methods in all sorts of applications. When you can use a
single, simple, easy-to-understand method name such as printFieldValues() with all sorts of objects, such

TIP�TIP�

TIP�

TIP�

TIP�

552 Chapter 13 • Object-Oriented Programming

as Employees, PartTimeEmployees, InventoryItems, and BankTransactions, then your objects
behave more like their real-world counterparts and your programs are easier to understand.

UNDERSTANDING PROTECTED ACCESS

Making data private is an important object-oriented programming concept. By making data fields private, and allowing
access to them only through a class’s methods, you protect the ways in which data can be altered.

When a data field within a class is private, no outside class can use it—including a child class. It can be inconvenient
when a child class’s methods cannot directly access its own inherited data. However, the principle of data hiding would
be lost if you had to make a class’s data public (and therefore available for use by anyone) just so a child class could
access its inherited fields. Therefore, object-oriented programming languages allow a medium-security access specifier
that is more restrictive than public but less restrictive than private. The protected access modifier is used
when you want no outside classes to be able to use a data field directly, except classes that are children of the original
class. Figure 13-10 shows a rewritten Employee class that uses the protected access modifier on its data
fields (see highlighting). When this modified class is used as a base class for another class such as
PartTimeEmployee, the child class’s methods will be able to access each of the protected fields originally
defined in the parent class.

class Employee
 protected num idNum
 protected char lastName
 protected num hourlyWage
 protected num weeklyPay

 public setFieldValues(num id, char last, num rate)
 const num MAX_RATE = 25.00
 idNum = id
 lastName = last
 if rate <= MAX_RATE then
 hourlyWage = rate
 else
 hourlyWage = MAX_RATE
 endif
 return

 public calculateWeeklyPay()
 const num WORK_WEEK = 40
 weeklyPay = hourlyWage * WORK_WEEK
 return

 public printFieldValues()
 print idNum, lastName, hourlyWage, weeklyPay
 return
endClass

FIGURE 13-10: Employee CLASS USING protected AND public ACCESS SPECIFIERS

553Understanding the Role of the this Reference

Although a child class’s methods can access nonprivate data fields originally defined in
the parent class, a parent class’s methods have no special privileges regarding any of its
child’s data fields. That is, unless the child class’s data fields are public, a parent, just like
any other unrelated class, cannot access them.

Figure 13-11 contains the class diagram for the version of the Employee class shown in Figure 13-10. Notice the
octothorpe (#) is used to indicate protected class members.

Instead of creating the parent class fields to be protected, you might choose to keep them
private and provide protected or public methods that each return a field value. For
example, the Employee class could contain a method such as the following:

public num getID()
return idNum

The child class would then use the public method to access idNum, just as any other
method would. Using this technique, the parent class data would remain private,
satisfying those who feel that all data within classes should be private.

UNDERSTANDING THE ROLE OF THE this REFERENCE

After you create a class such as the Employee class in Figure 13-10, any number of Employee objects might
eventually be instantiated from it. Each Employee will have its own idNum, lastName, and other values, and
enough computer memory must be set aside to hold all the attributes needed for each individual Employee. Each
Employee object also will have access to each method within the class, but because each Employee uses the
same set of methods, it would be a waste of memory resources to store a separate copy of each method for each
Employee. Luckily, in OOP languages, just one copy of each method in a class is stored, and all instantiated objects
can use that copy.

When you use an instance method with an object, you use the object name, a dot, and the method name—for exam-
ple, clerk.setFieldValues(). When you execute the clerk.setFieldValues() method, you are
running the general, shared Employee class setFieldValues() method; the clerk object has access to
the method because it is a member of the Employee class. However, within the setFieldValues() method,
when you access the idNum field, you access the clerk’s private, individual copy of the field. Because many

FIGURE 13-11: Employee CLASS DIAGRAM WITH protected AND public ACCESS SPECIFIERS

Employee

#idNum: num
#lastName: char
#hourlyWage: num
#weeklyPay: num

+setFieldValues(num, char, num)
+calculateWeeklyPay()
+printFieldValues()

TIP�

TIP�

554 Chapter 13 • Object-Oriented Programming

Employee objects might exist, but just one copy of the method exists no matter how many Employees there are,
when you call clerk.setFieldValues(), the compiler must determine whose copy of the idNum value
should be set by the single setFieldValues() method.

The compiler accesses the correct object’s field because when you make the function calls, you implicitly (automatically)
pass the memory address of clerk to the setFieldValues() method. Depending on the language you use to write
your programs, an object’s memory address is called a reference or is said to be held in a reference variable or pointer
variable. Therefore, the memory address of an object that is passed to any instance method of the same class is called the
this reference or the this pointer. The word this is a reserved word in most OOP languages, and the syntax you
employ to use it is a little different in each language. However, you can write pseudocode like that shown in Figure 13-12 to
explicitly use the this reference. The two setFieldValues() methods shown in Figure 13-12 perform identically.
The first method simply uses the this reference without you being aware of it; the second method uses the this
reference explicitly. In Figure 13-12, you can interpret this.idNum to mean the ID number of “this current instance of
the class”—that is, the specific instance of the Employee class that was used to call the setFieldValues()
method. Similarly, this.lastName and this.hourlyWage refer to the data fields for the current object.

Frequently, you neither want nor need to refer to the this reference within the methods you write, but the this
reference is always there, working behind the scenes, so that the data field for the correct object can be accessed.

In most object-oriented programming languages, you can create class methods that do not
receive a this reference and do not require an object to execute. Such methods are
called static methods.

public setFieldValues(num id, char last, num rate)
 const num MAX_RATE = 25.00
 idNum = id
 lastName = last
 if rate <= MAX_RATE then
 hourlyWage = rate
 else
 hourlyWage = MAX_RATE
 endif
return

public setFieldValues(num id, char last, num rate)
 const num MAX_RATE = 25.00
 this.idNum = id
 this.lastName = last
 if rate <= MAX_RATE then
 this.hourlyWage = rate
 else
 this.hourlyWage = MAX_RATE
 endif
return

FIGURE 13-12: TWO VERSIONS OF THE setFieldValues() METHOD, WITH AND WITHOUT AN EXPLICIT
this REFERENCE

TIP�

555Using Constructors and Destructors

USING CONSTRUCTORS AND DESTRUCTORS

When you create a class such as Employee, and instantiate an object with a statement such as Employee
chauffeur, you are actually calling a method named Employee() that is provided by default by the compiler of
the object-oriented language in which you are working. A constructor method, or more simply, a constructor, is a
method that establishes an object. A constructor has the same name as its class.

When the automatically supplied, prewritten constructor method for the Employee class is called (the constructor is
the method named Employee()), it establishes one Employee object with the identifier provided—for example,
chauffeur. Depending on the programming language, a constructor might automatically provide initial values for
the object’s data fields. If you do not want an object’s fields to hold these default values, or if you want to perform addi-
tional tasks when you create an instance of a class, then you can write your own constructor. Any constructor you write
must have the same name as the class it constructs, and constructor methods cannot have a return type. Normally, you
declare constructors to be public so that other classes can instantiate objects that belong to the class.

For example, if you want every Employee object to have a starting salary of $300.00 per week, then you could write
the constructor method for the Employee class that appears in Figure 13-13. Any Employee object instantiated
will have a salary field value equal to 300.00, and the other Employee data fields will contain the default values.

You can create a method with a name like setDataFields() to assign values to indi-
vidual Employee objects after construction, but a constructor method assigns the values
at the time of creation.

Alternatively, you might choose to create Employee objects with initial idNum values that differ for each
Employee. To accomplish this when the object is instantiated, you can pass an employee number to the constructor;
that is, you can write constructor methods that receive arguments. A default constructor is one that requires no
arguments; a nondefault constructor requires arguments.

The automatically supplied constructor for a class is a default constructor. For any class
you write, you can create your own default constructors, your own nondefault construc-
tors, or both.

Figure 13-14 shows an Employee class containing a constructor that receives an argument. With this constructor
(shaded in the figure), an argument is passed using a statement, such as Employee chauffeur(881). When
the constructor executes, the numeric value within the method call is passed to Employee() as the argument id,
which is assigned to idNum within the constructor.

public Employee()
 salary = 300.00
return

FIGURE 13-13: AN Employee CLASS CONSTRUCTOR

TIP�

TIP�

556 Chapter 13 • Object-Oriented Programming

When you create an Employee class with a constructor such as the one shown in Figure 13-14, then you must
create every Employee object using a numeric argument (which can be a constant such as 881 or a variable). In
other words, with this new version of the class, the declaration statement Employee chauffeur no longer works.
Once you write a constructor for a class, you no longer receive the automatically written default constructor. If a class’s
only constructor requires an argument, then you must provide an argument for every object of that class that you
create. However, you can create multiple constructors for a class as long as every constructor has a different argument
list. So, if it suited your purposes, the Employee class could contain one default constructor, one that accepted a
single numeric argument, and one that accepted three arguments.

Object-oriented programming languages also provide an automatically called method that executes when an object is
destroyed. The method is a destructor. Like constructors, you can write your own destructors, although only one
version can exist for a class. Usually you write your own destructor if you need to complete cleanup tasks when an
object is destroyed, such as closing open files. Although you can purposely destroy an object, most often an object is
destroyed when the method in which it is declared ends.

A destructor has the same name as its class constructor (and therefore the same name as
the class). In Java, C++, and C#, a destructor name is preceded by a tilde (~).

ONE EXAMPLE OF USING PREDEFINED CLASSES: CREATING GUI
OBJECTS

When you purchase or download an object-oriented programming language compiler, it comes packaged with myriad
predefined, built-in classes. The classes are stored in libraries—collections of classes that serve related purposes.
Some of the most useful are the classes you can use to create GUI objects such as frames, buttons, labels, and text
boxes. You place these GUI components within interactive programs so that users can manipulate them using input
devices, most frequently a keyboard and a mouse. For example, using a language that supports GUI applications, if you
want to place a clickable button on the screen, you instantiate an object that belongs to the already created class
named Button. The Button class is already created and contains private data fields such as text and height
and public methods such as setText() and setHeight() that allow you to place instructions on your
Button object and to change its vertical size, respectively.

class Employee
 private num idNum
 // other data fields can be defined here
 public Employee(num id)
 idNum = id
 return
 // other methods can be defined here
endClass

FIGURE 13-14: Employee CLASS WITH CONSTRUCTOR THAT ACCEPTS A VALUE

TIP�

557Understanding the Advantages of Object-Oriented Programming

In some languages, such as Java, libraries are also called packages.

Languages that contain prewritten GUI object classes frequently refer to the class attrib-
utes as properties.

If no predefined GUI object classes existed, you could create your own. However, there would be several disadvantages
to doing this:

� It would be a lot of work. Creating graphical objects requires a lot of code, and at least a
modicum of artistic talent.

� It would be repetitious work. Almost all GUI programs require standard components such as
buttons and labels. If each programmer created the classes that represent these components
from scratch, a lot of work would be unnecessarily repeated.

� The components would look different in various applications. If each programmer created his or
her own component classes, then objects like buttons would vary in appearance and operation in
different applications. Users like standardization in their components—title bars on windows that
are a uniform height, buttons that appear to be pressed when clicked, frames and windows that
contain maximize and minimize buttons in predictable locations, and so on. By using standard
component classes, programmers are assured that the GUI components in their programs have
the same look and feel as those in other programs.

In programming languages that provide existing GUI classes, you often are provided with a visual development
environment in which you can create programs by dragging components such as buttons and labels onto a screen
and arranging them visually. Then you write programming statements to control the actions that take place when a user
manipulates the controls by clicking them using a mouse, for example. Many programmers never create any classes of
their own from which they will instantiate objects, but only write classes that are applications that use built-in GUI
component classes. Some languages, particularly Visual Basic, lend themselves very well to this type of programming.

UNDERSTANDING THE ADVANTAGES OF OBJECT-ORIENTED
PROGRAMMING

Using the features of object-oriented programming languages provides you with many benefits as you develop your
programs. Whether you use classes you have created or use those created by others, when you instantiate objects in
programs, you save development time because each object automatically includes appropriate, reliable methods and
attributes. When using inheritance, you can develop new classes more quickly by extending classes that already exist
and work; you need to concentrate only on new features that the new class adds. When using existing objects, you
need to concentrate only on the interface to those objects, not on the internal instructions that make them work. By
using polymorphism, you can use reasonable, easy-to-remember names for methods and concentrate on their purpose
rather than on memorizing different method names.

TIP�

TIP�

Chapter 13 • Object-Oriented Programming558

CHAPTER SUMMARY

� Object-oriented programming is a style of programming that focuses on an application’s data and the

methods you need to manipulate that data. Objects both in the real world and in object-oriented pro-

gramming are made up of attributes and methods. In object-oriented terminology, a class is a term that

describes a group or collection of objects with common properties. An instance of a class is an existing

object of a class. In object-oriented programming, procedures are called methods. Inheritance and poly-

morphism are important object-oriented programming concepts.

� A class definition is a set of program statements that tell you the characteristics of the class’s objects and

the methods that can be applied to its objects. A class contains three parts: a name, optional data, and

optional methods. A class diagram consists of a rectangle divided into three sections containing the

name, attributes, and methods.

� Data hiding is the principle of keeping data private and inaccessible to outside classes. Object-oriented pro-

grammers usually specify that their data fields will have private access—that is, the data cannot be

accessed by any method that is not part of the class. The methods themselves support public access, which

means that other programs and methods may use the methods that control access to the private data.

� When you write an object-oriented program, you create objects that are members of a class. You instan-

tiate (or create) a class object (or instance) with a statement that includes the type of object and an

identifying name. A program that uses a class object is a client of the class.

� The concept of class is useful because of its reusability; you can create new classes that are descen-

dents of existing classes. The descendent classes (or child classes) can inherit all of the attributes of the

original class (or parent class), or the descendent class can override those attributes that are inappropri-

ate. Object-oriented programs use a feature called polymorphism to allow the same request—that is, the

same method call—to be carried out differently, depending on the context.

� Object-oriented programming languages allow a medium-security access specifier that is more restrictive

than public but less restrictive than private. The protected access modifier is used when

you want no outside classes to be able to use a data field directly, except classes that are children of the

original class.

� The compiler accesses the correct object’s field because when you make the function calls, you implicitly

(automatically) pass the memory address of the object to its class method. The memory address of an

object that is passed to any object’s instance method is called the this reference or the this pointer.

� When you create a class and instantiate an object with a statement, you are actually calling a constructor

that is provided by default by the compiler of the object-oriented language in which you are working. A

constructor is a method that establishes an object. Object-oriented programming languages also provide

an automatically called destructor that executes when an object is destroyed. You can write your own

constructors and destructors.

Key Terms 559

� When you purchase or download an object-oriented programming language compiler, it comes pack-

aged with myriad predefined, built-in classes. The classes are stored in libraries—collections of classes

that serve related purposes. Some of the most useful are the classes you can use to create graphical

user interface (GUI) objects such as frames, buttons, labels, and text boxes.

� Using the features of object-oriented programming languages provides you with many benefits as you

develop your programs. Whether you use classes you have created or use those created by others,

when you instantiate objects in programs you save development time.

KEY TERMS

Object-oriented programming is a style of programming that focuses on an application’s data and the methods you
need to manipulate that data.

Attributes are the characteristics that define an object as part of a class.

The properties of an object are the values of its attributes.

The state of an object is the collective value of all its attributes at any point in time.

A class is a term that describes a group or collection of objects with common properties.

An instance of a class is an existing object of a class.

In object-oriented programming, procedures are called methods.

Polymorphism is the object-oriented feature that allows you to create multiple methods with the same name, which
will act differently and appropriately when used with different types of objects.

In object-oriented programs, when you create multiple methods with the same name but different argument lists, you
overload the method.

Pure polymorphism occurs when one function body can be used with a variety of arguments.

Inheritance is the process of acquiring the traits of one’s predecessors.

Encapsulation is the process of combining all of an object’s attributes and methods into a single package.

Information hiding is the concept that other classes should not alter an object’s attributes—outside classes should
only be allowed to make a request that an attribute be altered; then it is up to the class methods to determine whether
the request is appropriate.

The interface is the user-friendly boundary between the user and the internal mechanisms of the device.

Information hiding is also called data hiding.

A class definition is a set of program statements that tell you the characteristics of the class’s objects and the
methods that can be applied to its objects.

Is-a is a phrase you can use to test whether an object is an instance of a class.

A field is a data item within, or attribute of, an object.

Chapter 13 • Object-Oriented Programming560

A class diagram is a tool used to describe a class; it consists of a rectangle divided into three sections.

Object-oriented programmers usually specify that their data fields will have private access, which means that the data
cannot be accessed by any method that is not part of the class.

Object-oriented programmers usually specify that their methods will have public access, which means that other pro-
grams and methods may use the methods that control access to the private data.

An access specifier or access modifier is the adjective that defines the type of access that outside classes will have
to an attribute or method.

To create a class object is to instantiate it.

A class is a user-defined type.

A class is a programmer-defined type.

A programming language is extensible when you can create new data types.

An abstract data type (ADT) is a type whose internal form is hidden behind a set of methods you use to access the data.

A client of a class is a program or method that uses a class object.

A primitive data type is a simple data type, as opposed to a class type.

A descendent class, also called a child class, derived class, or subclass, inherits the attributes of another class.

An original class, also called a parent class, base class, or superclass, is one that has descendents. In other
words, it is a class from which other classes are derived.

A child class method with the same name and argument list as a parent class method overrides, or takes precedence
over, the parent class version.

An abstract class is one that is created only to be a parent class and not to have objects of its own.

Some programming languages support multiple inheritance, in which a class can inherit from more than one parent.

The protected access modifier is used when you want no outside classes to be able to use a data field directly, except
classes that are children of the original class.

A reference is a memory address.

A reference variable holds a memory address.

A pointer variable holds a memory address.

The this reference or the this pointer holds an object’s memory address within a method of the object’s class.

A static method is a class method that does not receive a this reference and does not require an object to execute.

A constructor is a method that establishes an object.

A default constructor is one that requires no arguments.

A nondefault constructor is one that requires arguments.

A destructor is a method that destroys an object.

Libraries, or packages, are collections of classes that serve related purposes.

Review Questions 561

Properties are the attributes of prewritten GUI classes.

A visual development environment is one in which you can create programs by dragging components such as
buttons and labels onto a screen and arranging them visually.

REVIEW QUESTIONS

1. Which of the following is not a feature of object-oriented programming?

a. You pass messages to objects.
b. Programming objects mimic real-world objects.
c. Encapsulation is avoided.
d. Classes can inherit features of other classes.

2. With object-oriented programming, the same message .

a. works the same way with every object
b. works differently and appropriately when applied to different objects
c. can never be used more than once
d. all of the above

3. In object-oriented programming, the process of acquiring the traits of one’s predecessors is known
as .

a. inheritance
b. polymorphism
c. data redundancy
d. legacy programming

4. Class is to object as Dog is to .

a. animal
b. mammal
c. poodle
d. my dog Murphy

5. To programmers, another word for object is .

a. class
b. instance
c. structure
d. item

6. The object-class relationship can be tested using the phrase .

a. can-do
b. open-close
c. is-a
d. can-be

Chapter 13 • Object-Oriented Programming562

7. Which of the following is least likely to be a feature contained within most classes?
a. a name
b. private data
c. public data
d. public methods

8. Another term used for class data fields is .
a. attributes
b. components
c. points
d. paths

9. A class diagram consists of a rectangle divided into .
a. two sections: data and methods
b. three sections: name, data, and methods
c. four sections: name, data, methods, and purpose
d. five sections: name, numeric data, text data, methods, and purpose

10. The principle of keeping data private and inaccessible to outside classes is called .
a. information overloading
b. attribute secrecy
c. polymorphism
d. data hiding

11. Object-oriented programmers usually specify that their data fields will have access.
a. public
b. private
c. protected
d. personal

12. Creating an object is called the object.
a. morphing
b. declaring
c. instantiating
d. formatting

13. A method is often like a black box, meaning it contains some .
a. elements you can use, but cannot see
b. elements you can see, but cannot use
c. elements you can neither see nor use
d. none of the above; it contains nothing

14. One name for a class from which others inherit is a class.
a. benefactor
b. child
c. descendent
d. parent

Review Questions 563

15. Suppose you have a class named Horse containing such fields as name and age. When you
create a child class named RaceHorse, .

a. every RaceHorse object has an age field
b. some RaceHorse objects have an age field
c. no RaceHorse objects have an age field
d. Horse objects no longer have an age field

16. Suppose you have a class named Horse containing such fields as name and age. When you
create a child class named RaceHorse and add a new field named winnings, .

a. every RaceHorse object has a winnings field
b. some RaceHorse objects have a winnings field
c. every Horse object has a winnings field
d. every Horse object and every RaceHorse object has a winnings field

17. The feature of object-oriented programming languages that allows the same method call to be
carried out differently, depending on the context, is .

a. inheritance
b. ambiguity
c. polymorphism
d. overriding

18. The access specifier that is more liberal than private, but not as liberal as public, is .

a. semiprivate
b. sheltered
c. protected
d. constrained

19. Collections of classes that serve related purposes are called .

a. archives
b. anthologies
c. compendiums
d. libraries

20. Which of the following is not a benefit provided by object-oriented programming?

a. You save development time because each object automatically includes appropriate, reliable methods and
attributes.

b. When using inheritance, you can develop new classes more quickly by extending classes that already exist
and work; you need to concentrate only on new features that the new class adds.

c. When using existing objects, you need to concentrate only on the interface to those objects, not on the inter-
nal instructions that make them work.

d. By using method overloading and polymorphism, you can use more precise and unique names for each
operation you want to perform using different objects.

Chapter 13 • Object-Oriented Programming564

FIND THE BUGS

Each of the following pseudocode segments contains one or more bugs that you must find and correct.

1. The Date class contains a month, day, and year, and methods to set and display the values. The
month cannot be set to more than 12, and the day of the month cannot be set to more than 31. The
demonstration program instantiates four Dates and purposely assigns invalid values to some of
the arguments; the class methods will correct the invalid values.

class Date
private num month
private num day
private num year
public setMonth(num)
public setDay()
public setYear(num)
public showDate()

return

setDate(num m, num d)
const num HIGH_MONTH = 12
const num HIGH_DAY = 31
if m < HIGH_MONTH then

month = HIGH_MONTH
else

m = month
endif
if d > HIGH_DAY then

day = HIGH_DAY
else

day = day
endif
y = year

return

showDate()
print "Date: ", month, “/”, day, “/”, year

return

Find the Bugs 565

start
Date birthday, anniversary, graduation, party
birthday.setDate(6, 24, 1982)
anniversary.setDate(10, 15, 2007)
graduation.setDate(14, 19, 2008)
party.setDate(7, 35, 2006)
print "Birthday "
birthday.showDate()
print "Anniversary "
anniversary.showDate()
print "Graduation "
graduation.showDate()
print "Party "
party.showDate()

stop

2. The GroceryItem class sets fields for an item for sale in a grocery store. The dataEntry()
function ensures that the stock number is within legal range (1000 through 9999) and that the
quantity and price are non-negative. The demonstration program declares a grocery object, sets its
fields, and displays the object’s data.

class GroceryItem
private num stockNum
private num priceEach
private num quantity
private num totalValue
public dataEntry()
public displayGroceryItem()
setStockNum()

const num LOW = 1000
const num HIGH = 9999
print "Enter stock number - use 4 digits "
input stock
while num < LOW OR stockNum < HIGH

print "Use 4 digits please "
input stock

endwhile
print "Enter price each "
input price
while priceEach = 0

print "Price must be non-negative "
input PriceEach

endwhile
print "Enter quantity in stock "
input quantity

Chapter 13 • Object-Oriented Programming566

if quantity < 0
print "Quantity must be non-negative "
input quantity

endwhile
totalValue = quantity * price

return

displayGroceryItem()
print "ID #", stockNum, " Price:$", priceEach
print "Quantity in stock ", quan
print "Value $", total

return
endClass

start
GroceryItem oneItem
dataEntry()
displayGroceryItem

stop

EXERCISES

1. Identify three objects that might belong to each of the following classes:

a. Automobile
b. NovelAuthor
c. CollegeCourse

2. For each of the following objects, identify three different classes that might contain it:

a. Wolfgang Amadeus Mozart
b. My pet cat named Socks
c. Apartment 14 at 101 Main Street

3. Design a class named CustomerRecord that holds a customer number, name, and address.
Include methods to set the values for each data field and print the values for each data field. Create
the class diagram and write the pseudocode that defines the class.

4. Design a class named House that holds the street address, price, number of bedrooms, and
number of baths in a House. Include methods to set the values for each data field, and include a
method that displays all the values for a House. Create the class diagram and write the
pseudocode that defines the class.

Exercises 567

5. Design a class named Loan that holds an account number, name of account holder, amount
borrowed, term, and interest rate. Include methods to set values for each data field and a method
that prints all the loan information. Create the class diagram and write the pseudocode that defines
the class.

6. Complete the following tasks:

a. Design a class named Book that holds a stock number, author, title, price, and number of pages for a book.
Include a method that sets all the data fields and another that prints the values for each data field. Create
the class diagram and write the pseudocode that defines the class.

b. Design a class named TextBook that is a child class of Book. Include a new data field for the grade
level of the book. Override the Book class methods that set and print the data so that you accommodate
the new grade-level field. Create the class diagram and write the pseudocode that defines the class.

7. Complete the following tasks:

a. Design a class named Player that holds a player number and name for a sports team participant. Include
a method that sets the values for each data field and another that prints the values for each data field.
Create the class diagram and write the pseudocode that defines the class.

b. Design two classes named BaseballPlayer and BasketballPlayer that are child classes of
Player. Include a new data field in each class for the player’s position. Include an additional field in the
BaseballPlayer class for batting average. Include a new field in the BasketballPlayer class
for free-throw percentage. Override the Player class methods that set and print the data so that you
accommodate the new fields. Create the class diagram and write the pseudocode that defines the class.

8. Complete the following tasks:

a. Design a class named PlayingCard. Its attributes include suit (“Clubs”, “Diamonds”, “Hearts”, or
“Spades”), value (a number 1 through 13), and valueName. If a PlayingCard’s value is between
2 and 10 inclusive, the valueName is blank; however, if the value is 1, the valueName is “Ace”, and if
it is 11, 12, or 13, the valueName is “Jack”, “Queen”, or “King”, respectively. Create two overloaded
constructors for the class. One takes no arguments and uses a built-in method that returns a randomly
generated number. This method’s signature is num rand(num high), where high represents the
highest value the method might return—the method returns a random number between 0 and this high
value inclusive. Use the random-number-generating method to select both the suit and the value for any
PlayingCard that uses the default constructor. The second constructor method assigns values to the
PlayingCard attributes based on passed arguments. This constructor verifies that the passed argu-
ments are within range (that is, only one of the four allowed suits and only one of the 13 allowed values); if
the values are out of range, force the PlayingCard to be the Ace of Spades. This nondefault constructor
also sets the valueName for cards valued at 11 through 13. Also create a showCard() method for
the class that displays a PlayingCard’s value.

b. Design the logic for a program that instantiates two PlayingCard objects. Allow one object’s values to
be randomly generated, but use user input values for the second object.

c. Add any additional class methods you need so that you can create a game in which the user tries to guess
the value of a randomly generated PlayingCard. Give the user 1 point for guessing the suit correctly,
2 points for guessing the value correctly, and 10 points for guessing both values of the PlayingCard
correctly.

Chapter 13 • Object-Oriented Programming568

DETECTIVE WORK

1. Many programmers think object-oriented programming is a superior approach to procedural pro-
gramming. Others think it adds a level of complexity that is not needed in many scenarios. Find and
summarize arguments on both sides.

2. When and why was the Java programming language created?

UP FOR DISCUSSION

1. Do you think all class data should be private? Is protected class data justified when the class will
serve as a base class, or does it violate the principles of data hiding? Should any class data ever
be public?

2. Many object-oriented programmers are opposed to using multiple inheritance. Find out why and
decide whether you agree with this stance.

14
After studying Chapter 14, you should be able to:

� Understand the principles of event-driven programming

� Describe user-initiated actions and GUI components

� Design graphical user interfaces

� Modify the attributes of GUI components

� List the steps to building an event-driven application

� Understand the disadvantages of traditional error-handling techniques

� Understand the advantages of the object-oriented technique of throwing exceptions

EVENT-DRIVEN PROGRAMMING
WITH GRAPHICAL USER
INTERFACES

569

570 Chapter 14 • Event-Driven Programming with Graphical User Interfaces

UNDERSTANDING EVENT-DRIVEN PROGRAMMING

From the 1950s, when people began to use computers to help them perform many jobs, right through the 1960s and
1970s, almost all interaction between human beings and computers was based on the command line. The command
line is the location on your computer screen at which you type entries to communicate with the computer’s operating
system. An operating system is the software that you use to run a computer and manage its resources. Interacting
with a computer operating system was difficult because the user had to know the exact syntax (that is, the correct
sequence of words and symbols that form the operating system’s command set) to use when typing commands, and
had to spell and type those commands accurately.

The command line also is called the command prompt. People who use the DOS operat-
ing system also call the command line the DOS prompt.

If you use the Windows operating system on a PC, you can locate the command prompt
by clicking Start, pointing to All Programs or Programs, pointing to Accessories, and then
clicking Command Prompt.

Fortunately for today’s computer users, operating system software is available that allows them to use a mouse or other
pointing device to select pictures, or icons, on the screen. This type of environment is a graphical user interface, or
GUI. Computer users can expect to see a standard interface in the GUI programs they use. Rather than memorizing dif-
ficult commands that must be typed at a command line, GUI users can select options from menus and click buttons to
make their preferences known to a program. Users can select objects that look like their real-world counterparts and
get the expected results. For example, users may select an icon that looks like a pencil when they want to write a
memo, or they may drag an icon shaped like a folder to another icon that resembles a recycling bin when they want to
delete the folder. Performing an operation on an icon (for example, clicking or dragging it) causes an event—an occur-
rence that generates a message sent to an object.

GUI programs are called event-based or event-driven because actions occur in response to user-initiated events such
as clicking a mouse button. When you program with event-driven languages, the emphasis is on the objects that the user
can manipulate, such as buttons and menus, and on the events that the user can initiate with those objects, such as
clicking or double-clicking. The programmer writes instructions within modules that correspond to each type of event.

For the programmer, event-driven programs require unique considerations. The program logic you have developed so
far for most of this book is procedural; each step occurs in the order the programmer determines. In a procedural pro-
gram, if you issue a prompt and a statement to read the user’s response, you have no control over how much time the
user takes to enter a response, but you do control the sequence of events—the processing goes no further until the
input is completed. In contrast, with event-driven programs, the user might initiate any number of events in any order.
For example, if you use an event-driven word-processing program, you have dozens of choices at your disposal at any
moment. You can type words, select text with the mouse, click a button to change text to bold or to italics, choose a
menu item, and so on. With each word-processing document you create, you choose options in any order that seems
appropriate at the time. The word-processing program must be ready to respond to any event you initiate.

TIP�

TIP�

571User-Initiated Actions and GUI Components

Within an event-driven program, a component from which an event is generated is the source of the event. A button
that a user can click is an example of a source; a text field that one can use to enter text is another source. An object
that is “interested in” an event you want it to respond to is a listener. It “listens for” events so it knows when to
respond. Not all objects can receive all events—you probably have used programs in which clicking on many areas of
the screen has no effect at all. If you want an object, such as a button, to be a listener for an event, such as a mouse
click, you must write the appropriate program statements.

Although event-based programming is relatively new, the instructions that programmers write to correspond to events
are still simply sequences, selections, and loops. Event-driven programs still declare variables, use arrays, and contain
all the attributes of their procedural-program ancestors. An event-based program may contain components with labels
like “Sort Records,” “Merge Files,” or “Total Transactions.” The programming logic you use when writing code for each
of these processes is the same logic you have learned throughout this book. Writing event-driven programs simply
involves thinking of possible events as the modules that constitute the program.

In object-oriented languages, the procedural modules that depend on user-initiated events
are often called scripts. The term “script” is also used to describe a relatively short com-
puter program that performs one specific task. Scripts are commonly used to process user
information from Web pages.

USER-INITIATED ACTIONS AND GUI COMPONENTS

To understand GUI programming, you need to have a clear picture of the possible events a user can initiate. These
include the events listed in Table 14-1.

You also need to be able to picture common GUI components. Some are listed in Table 14-2. Figure 14-1 shows a
screen that contains several common GUI components.

TABLE 14-1: COMMON USER-INITIATED EVENTS

Event Description

Key press Pressing a key on the keyboard

Mouse point Placing the mouse pointer over an area on the screen

Mouse click or left mouse click Pressing the left mouse button

Right mouse click Pressing the right mouse button

Mouse double-click Pressing the left mouse button two times in rapid sequence

Mouse drag Holding the left mouse button down while moving the mouse

over the desk surface

TIP�

572 Chapter 14 • Event-Driven Programming with Graphical User Interfaces

When you program in a language that supports event-driven logic, typically you do not create the GUI components you
need from scratch. Instead, you call prewritten routines or methods that draw the GUI components on the screen for you.
The components themselves are existing objects complete with names, attributes, and methods. In some programming

labels

text field

check box group

button

list box

FIGURE 14-1: ILLUSTRATION OF COMMON GUI COMPONENTS

TABLE 14-2: COMMON GUI COMPONENTS

GUI components Description

Label A rectangular area that displays text

Text field A rectangular area into which the user can type a line of text

Button A rectangular object you can click; usually it appears to press inward like a

push button

Check box A label positioned beside a square; you can click the square to display or remove a

check mark—allows the user to turn an option on or off

Option buttons A group of check-box-type objects in which the options are mutually exclusive; when

the user selects any one option, the others are turned off—when the objects are

square, they are often called a check box group, whereas when they are round, they

are often called a set of radio buttons

List box A menu of options that appears when the user clicks a list arrow; when the user

selects an option from the list, the selected item replaces the original item in the

display—all other items are unselected (with some list boxes, the user can make

multiple selections)

Toolbar A strip of icons that activate menu items

573Designing Graphical User Interfaces

languages, you write statements that call the methods that create the GUI objects; in others, you can drag GUI objects
onto your screen from a toolbar. Either way, you do not worry about the details of constructing the components. Instead,
you concentrate on the actions that you want to take place when a user initiates an event from one of the components.
Thus, GUI components are excellent examples of the best principles of object-oriented programming—they represent
objects with attributes and methods that operate like black boxes, making them easy for you to use.

GUI components are often referred to as widgets. Some sources claim that the term is
short for window gadgets or Web gadgets. The term “widgets” also is used in business
textbooks to refer to a product whose specific identity or function is irrelevant; it was first
used in this context in a 1924 play, “Beggar on Horseback.” In computing, “widget” also
is used to refer to a small, specialized desktop application such as a calendar or calculator.

When you use existing GUI components, you are instantiating objects that belong to a prewritten class. For example,
you might use a Button class object when you want the user to be able to click a button to make a selection.
Depending on the programming language you use, the Button class might contain attributes or properties such as
color and text and methods such as setText(), in which you define the words that appear on the Button’s
surface, and click(), in which you define the actions that will take place when a user clicks the Button object. To
create a Button object, you might write a statement similar to Button myProgramButton, in which
Button represents the type and myProgramButton represents the object you create.

DESIGNING GRAPHICAL USER INTERFACES

You should consider several general design principles when creating a program that will use a GUI:

� The interface should be natural and predictable.

� The screen design should be attractive and user-friendly.

� It’s helpful if the user can customize your applications.

� The program should be forgiving.

� The GUI is only a means to an end.

THE INTERFACE SHOULD BE NATURAL AND PREDICTABLE

The GUI program interface should represent objects with icons that are like their real-world counterparts. In other
words, it makes sense to use an icon that looks like a recycling bin when you want to allow a user to drag files or other
components to the bin to delete them. Using a recycling bin icon is “natural” in that people use one in real life when
they want to discard real-life items; dragging files to the bin is also “natural” because that’s what people do with real-
life items they discard. Using a recycling bin for discarded items is also predictable, because a number of other pro-
grams with which users are already familiar employ the recycling bin icon. Some icons may be natural, but if they are
not predictable as well, then they are not as effective. An icon that depicts a recycling truck is just as “natural” as far as
corresponding to the real world, but because other programs do not use a truck icon for this purpose, it is not as
predictable.

TIP�

574 Chapter 14 • Event-Driven Programming with Graphical User Interfaces

Graphical user interfaces should also be predictable in their layout. For example, with most GUI programs, you use a
menu bar at the top of the screen, and the first menu item is almost always File. If you design a program interface in
which the menu bar runs vertically down the right side of the screen, or in which File is the last menu option instead of
the first, you will confuse the people who use your program. Either they will make mistakes when using it, or they may
give up using it entirely. It doesn’t matter if you can prove that your layout plan is more efficient than the standard
one—if you do not use a predictable layout, your program will meet rejection from users in the marketplace.

Many studies have proven that the Dvorak keyboard layout is more efficient for typists
than the Qwerty keyboard layout that most of us use. The Qwerty keyboard layout gets its
name from the first six letter keys in the top row. With the Dvorak layout, which gets its
name from its inventor, the most frequently used keys are in the home row, allowing typ-
ists to complete many more keystrokes per minute. However, the Dvorak keyboard has
not caught on with the computer-buying public because it is not predictable to users
trained on the Qwerty keyboard.

Stovetops often have an unnatural interface, making unfamiliar stoves more difficult for
you to use. Many stovetops have four burners arranged in two rows, but the knobs that
control the burners frequently are placed in a single horizontal row. Because there is not a
natural correlation between the placement of a burner and its control, you are more likely
to select the wrong knob when adjusting the burner’s flame or heating element.

THE SCREEN DESIGN SHOULD BE ATTRACTIVE AND USER-FRIENDLY

If your interface is attractive, people are more likely to use it. If it is easy to read, users are less likely to make mistakes
and more likely to want to use it. And if the interface is easy to read, it will more likely be considered attractive. When it
comes to GUI design, fancy fonts and weird color combinations are signs of amateur designers. In addition, you should
make sure that unavailable screen options are either sufficiently disabled or removed, so the user does not waste time
clicking components that aren’t functional.

Disabling a component is frequently indicated by dimming or graying the component—
that is, muting or softening its appearance. Disabling a component provides another
example of predictability—users with computer experience do not expect to be able to
use a dimmed component.

Screen designs should not be distracting. When there are too many components on a screen, users can’t find what
they’re looking for. When a text field or button is no longer needed, it should be removed from the interface. You also
want to avoid distracting users with overly creative design elements. When users click a button to open a file, they
might be amused the first time a file name dances across the screen, or the speakers play a tune. But after one or two
experiences with your creative additions, users find that intruding design elements simply hamper the actual work of
the program.

GUI programmers sometimes refer to screen space as real estate. Just as a plot of real
estate becomes unattractive when it supports no open space, your screen becomes unat-
tractive when you fill the limited space with too many components.

TIP�

TIP�

TIP�

TIP�

575Modifying the Attributes of GUI Components

IT’S HELPFUL IF THE USER CAN CUSTOMIZE YOUR APPLICATIONS

Every user works in his or her own way. If you are designing an application that will use numerous menus and toolbars,
it’s helpful if users can position the components in an order that’s convenient for them. Users appreciate being able to
change features such as color schemes. Allowing a user to change the background color in your application may seem
frivolous to you, but to users who are color-blind or visually impaired, it might make the difference in whether they use
your application at all.

The screen design issues that make programs easier to use for people with physical limi-
tations are known as accessibility issues.

THE PROGRAM SHOULD BE FORGIVING

Perhaps you have had the inconvenience of accessing a voice mail system in which you selected several sequential
options, only to find yourself at a dead end with no recourse but to hang up and redial the number. Good program
design avoids such problems. You should always provide an escape route to accommodate users who have made bad
choices or changed their minds. By providing a Back button or functional Escape key, you provide more functionality to
your users.

THE GUI IS ONLY A MEANS TO AN END

The most important principle of GUI design is to always remember that any GUI is only an interface. Using a mouse to
click items and drag them around is not the point of any business program (except one that trains people how to use a
mouse). Instead, the point of a graphical interface is to help people be more productive. To that end, the design should
help the user see what options are available, allow the use of components in the ordinary way, and not force the user to
concentrate on how to interact with your application. The real work of any GUI program is done after the user clicks a
button or makes a list box selection.

MODIFYING THE ATTRIBUTES OF GUI COMPONENTS

When you design a program with premade or preprogrammed graphical components, you will want to change their
appearance to customize them for the current application. Each programming language provides its own means of
changing the appearance of components, but all involve changing the values stored in the components’ attribute fields.
Some common changes include setting the following items:

� Setting the size of the component

� Setting the color of the component

� Setting the screen location of the component

� Setting the font for any text in the component

� Setting the component to be visible or invisible

� Setting the component to be dimmed or undimmed, sometimes called enabled or disabled

TIP�

576 Chapter 14 • Event-Driven Programming with Graphical User Interfaces

You must learn the exact names of the methods and what type of arguments you are allowed to use in each program-
ming language you learn, but all languages that support creating event-driven applications allow you to set components’
attributes. With some languages, you set attributes by coding assignment statements, such as myButton.text =
“Push here”. With other languages, you might change an attribute by calling a method and sending an argument,
using a statement such as myButton.setText(“Push here”). With other languages, you can access a
properties list for every GUI object you create, and simply type the needed text into a table of attributes.

THE STEPS TO DEVELOPING AN EVENT-DRIVEN APPLICATION

In Chapter 1, you first learned the steps to developing a computer program. They are:

1. Understand the problem.

2. Plan the logic.

3. Code the program.

4. Translate the program into machine language.

5. Test the program.

6. Put the program into production.

Developing an event-driven application is more complicated than developing a standard procedural program. You can
include three new steps between understanding the problem and developing the logic. The complete list of develop-
ment steps for an event-driven application is as follows:

1. Understand the problem.

2. Create storyboards.

3. Define the objects.

4. Define the connections between the screens the user will see.

5. Plan the logic.

6. Code the program.

7. Translate the program into machine language.

8. Test the program.

9. Put the program into production.

The three new steps involve elements of object-oriented, GUI design—creating storyboards, defining objects, and
defining the connections between user screens. As with procedural programming, you cannot write an event-driven
program unless you first understand the problem.

577The Steps to Developing an Event-Driven Application

UNDERSTANDING THE PROBLEM

Suppose you want to create a simple, interactive program that determines premiums for prospective insurance cus-
tomers. The users should be able to use a graphical interface to select a policy type—health or auto. Next, the users
answer pertinent questions, such as how old they are, whether they smoke, and what their driving records are like.
Although most insurance premium amounts would be based on more characteristics than these, assume that policy
rates are determined using the factors shown in Table 14-3. The final output of the program is a second screen that
shows the semiannual premium amount for the chosen policy.

CREATING STORYBOARDS

A storyboard represents a picture or sketch of a screen the user will see when running a program. Filmmakers have
long used storyboards to illustrate key moments in the plots they are developing; similarly, GUI storyboards represent
“snapshot” views of the screens the user will encounter during the run of a program. If the user could view up to four
screens during the insurance premium program, then you would draw four storyboard cells, or frames.

Figure 14-2 shows two storyboard sketches for the insurance program. They represent the introductory screen at which
the user selects a premium type and answers questions, and the final screen that displays the semiannual premium.

FIGURE 14-2: STORYBOARD FOR INSURANCE PREMIUM PROGRAM

Welcome to the Premium Calculator

Health Auto

Age

 50 or under

 Over 50

Do you smoke?

No

Yes

How many traffic
tickets?

0 or 1

2 or more

Your Premium:

$500

Exit
Calculate Now

Screen 1 Screen 2

TABLE 14-3: INSURANCE PREMIUMS BASED ON CUSTOMER CHARACTERISTICS

Health policy premiums Auto policy premiums

Base rate: $500 Base rate: $750

Add $100 if over age 50 Add $400 if more than 2 tickets

Add $250 if smoker Subtract $200 if over age 50

578 Chapter 14 • Event-Driven Programming with Graphical User Interfaces

DEFINING THE OBJECTS IN AN OBJECT DICTIONARY

An event-driven program may contain dozens, or even hundreds, of objects. To keep track of them, programmers often
use an object dictionary. An object dictionary is a list of the objects used in a program, including which screens they
are used on and whether any code or script is associated with them.

Figure 14-3 shows an object dictionary for the insurance premium program. The type and name of each object to be
placed on a screen is listed in the left column. The second column shows the screen number on which the object
appears. The next column names any variables that are affected by an action on the object. The right column indicates
whether any code or script is associated with the object. For example, the label named welcomeLabel appears on
the first screen. It has no associated actions—it does not call any methods or change any variables; it is just a label.
The calculateButton, however, does cause execution of a method named calcRoutine(). This method
calculates the semiannual premium amount and stores it in the premiumAmount variable. Depending on the pro-
gramming language you use, you might need to name calcRoutine() something similar to
calculateButton.click() to identify it as the module that executes when the user clicks the
calculateButton.

Some organizations also include the disk location where an object is stored as part of the
object dictionary.

DEFINING THE CONNECTIONS BETWEEN THE USER SCREENS

The insurance premium program is a small one, but with larger programs you may need to draw the connections
between the screens to show how they interact. Figure 14-4 shows an interactivity diagram for the screens used in the
insurance premium program. An interactivity diagram shows the relationship between screens in an interactive GUI
program. Figure 14-4 shows that the first screen calls the second screen, and the program ends.

FIGURE 14-3: OBJECT DICTIONARY FOR INSURANCE PREMIUM PROGRAM

Object type Object name Screen number Variables affected Script?

Label welcomeLabel 1 none none

Choice healthOrAuto 1 policyType none

Choice age 1 ageOfInsured none

Choice smoker 1 insuredIsSmoker none

Choice tickets 1 numTickets none

Button calculateButton 1 premiumAmount calcRoutine()

Label yourPremium 2 none none

Text field premAmtField 2 none none

Button exitButton 2 none exitRoutine()

TIP�

579The Steps to Developing an Event-Driven Application

Figure 14-5 shows how a diagram might look for a more complicated program in which the user has several options
available at screens 1, 2, and 3. Notice how each screen may lead to different screens, depending on the options the
user selects at any one screen.

PLANNING THE LOGIC

In an event-driven program, you design the screens, define the objects, and define how the screens will connect. Then,
you can plan the logic for each of the modules (or methods or scripts) that the program will use. For example, given the
program requirements shown in Table 14-3, you can write the pseudocode for the calcRoutine() method of the
insurance premium program, as shown in Figure 14-6. The calcRoutine() method does not execute until the
user clicks the calculateButton. At that point, the user’s choices are used to calculate the premium amount.

In Figure 14-6, assume that the user’s data variables, such as policyType and ageOfInsured, have been cor-
rectly defined and passed to the method. Their definitions are not included here to keep the example simple.

The pseudocode in Figure 14-6 should look very familiar to you—it declares constants and uses decision-making logic
you have used since the early chapters of this book. Everything you have learned about variables and constants, your
comfort with the basic structures of sequence, selection, and looping, and all you know about methods and arrays will
continue to serve you well, whether you are programming in a procedural or event-driven environment.

With some object-oriented programming languages, you must register, or sign up, com-
ponents that will react to events initiated by other components. The details of how this is
accomplished vary among languages.

FIGURE 14-5: DIAGRAM OF INTERACTION FOR A HYPOTHETICAL COMPLICATED PROGRAM

Screen 6 Screen 2

Screen 7 Screen 4

Screen 1 Screen 3 Screen 9

Screen 8

Screen 5

Screen 1 Screen 2

FIGURE 14-4: DIAGRAM OF INTERACTION FOR INSURANCE PREMIUM PROGRAM

TIP�

580 Chapter 14 • Event-Driven Programming with Graphical User Interfaces

UNDERSTANDING THE DISADVANTAGES OF TRADITIONAL
ERROR-HANDLING TECHNIQUES

A great deal of the effort that goes into writing programs involves checking data items to make sure they are valid and
reasonable. A great advantage of using GUI data-entry objects is that you often can control much of what a user enters
by limiting the user’s options. When you provide a user with a finite set of buttons to click, or a limited number of menu
items from which to choose, the user does not have the opportunity to make unexpected, illegal, or bizarre choices. For
example, if you provide a user with only two buttons, so that the only insurance policy types the user can select are
Health or Auto, then you can eliminate checking for a valid policy type within your interactive program.

In Chapter 10, you learned the phrase programmers use to describe worthless or invalid
input: “GIGO.”

Not all user entries are limited to a finite number of possibilities, however; there are many occasions on which you must
allow the user to enter data that you cannot validate—for example, names and addresses. Professional data-entry
operators who create the files used in business computer applications (for example, typing data from phone or mail
orders) spend their entire working day entering facts and figures that your applications use; operators can and do make

FIGURE 14-6: PSEUDOCODE FOR calcRoutine()

calcRoutine()
 const char HEALTH = “H”
 const char YES = “Y”
 const num BASE_PREMIUM_HEALTH = 500
 const num AGE_CUTOFF = 50
 const num AGE_HEALTH_EXTRA = 100
 const num SMOKER_EXTRA = 250
 const num BASE_PREMIUM_AUTO = 750
 const num TICKET_CUTOFF = 2
 const num TICKET_EXTRA = 400
 const num AGE_AUTO_DISCOUNT = -200
 if policyType = HEALTH then
 premiumAmount = BASE_PREMIUM_HEALTH
 if ageOfInsured > AGE_CUTOFF then
 premiumAmount = premiumAmount + AGE_HEALTH_EXTRA
 endif
 if insuredIsSmoker = YES then
 premiumAmount = premiumAmount + SMOKER_EXTRA
 endif
 else
 premiumAmount = BASE_PREMIUM_AUTO
 if numTickets > TICKET_CUTOFF then
 premiumAmount = premiumAmount + TICKET_EXTRA
 endif
 if ageOfInsured > AGE_CUTOFF then
 premiumAmount = premiumAmount + AGE_AUTO_DISCOUNT
 endif
 endif
return

TIP�

581Understanding the Disadvantages of Traditional Error-Handling Techniques

typing errors. When programs depend on data entered by average users who are not trained typists, the chance of error
is even more likely. In Chapter 10, you learned some useful techniques to check for valid and reasonable input data.

Programmers had to deal with error conditions long before object-oriented methods were conceived. Probably the most often
used error-handling method was to terminate the program, or at least the module in which the offending statement occurred.
For example, Figure 14-7 shows a segment of pseudocode that causes the insurance premium calcRoutine() module
to end if policyType is invalid; in the shaded if statement, the module ends abruptly when policyType is not “A”
or “H”. Not only is this method of handling an error unforgiving, it isn’t even structured. Recall that a structured module should
have one entry and one exit point. The module in Figure 14-7 contains two exit points at the two return statements.

In the example in Figure 14-7, if policyType is an invalid value, the module in which the code appears is termi-
nated. If the program that contains this module is part of a business program or a game, the user may be annoyed that
the program has stopped working and that an early exit has been made. However, an early exit in a program that moni-
tors a hospital patient’s vital signs or navigates an airplane might cause results that are far more serious.

FIGURE 14-7: UNFORGIVING, UNSTRUCTURED METHOD OF ERROR HANDLING

calcRoutine()
 const char HEALTH = “H”
 const char AUTO = “A”
 const char YES = “Y”
 const num BASE_PREMIUM_HEALTH = 500
 const num AGE_CUTOFF = 50
 const num AGE_HEALTH_EXTRA = 100
 const num SMOKER_EXTRA = 250
 const num BASE_PREMIUM_AUTO = 750
 const num TICKET_CUTOFF = 2
 const num TICKET_EXTRA = 400
 const num AGE_AUTO_DISCOUNT = -200
 if policyType not = HEALTH AND policyType not = AUTO then
 return
 else
 if policyType = HEALTH then
 premiumAmount = BASE_PREMIUM_HEALTH
 if ageOfInsured > AGE_CUTOFF then
 premiumAmount = premiumAmount + AGE_HEALTH_EXTRA
 endif
 if insuredIsSmoker = YES then
 premiumAmount = premiumAmount + SMOKER_EXTRA
 endif
 else
 premiumAmount = BASE_PREMIUM_AUTO
 if numTickets > TICKET_CUTOFF then
 premiumAmount = premiumAmount + TICKET_EXTRA
 endif
 if ageOfInsured > AGE_CUTOFF then
 premiumAmount = premiumAmount + AGE_AUTO_DISCOUNT
 endif
 endif
 endif
return

582 Chapter 14 • Event-Driven Programming with Graphical User Interfaces

Rather than ending a method prematurely just because it encounters a piece of invalid data, a more elegant solution
involves creating an error flag variable and looping until the data item becomes valid, as shown in the highlighted por-
tion of Figure 14-8. The flag variable errorFlag is set to 1 at the beginning of the module, so that the while loop
statements (beginning with the first highlighted line in the figure) will execute at least once. You enter the loop, and if
policyType is valid, you set errorFlag to 0 (the second highlighted line) so the loop will not repeat. If
policyType is “A” or “H”, the appropriate auto or health calculations and assignments are made. Otherwise, you
prompt the user to reenter the policy type and set errorFlag to 1 (the last highlighted statement in the figure). This
forces the loop to repeat. The new user entry is checked and the loop repeats until an “A” or “H” is entered.

calcRoutine()
 const char HEALTH = “H”
 const char AUTO = “A”
 const char YES = “Y”
 const num BASE_PREMIUM_HEALTH = 500
 const num AGE_CUTOFF = 50
 const num AGE_HEALTH_EXTRA = 100
 const num SMOKER_EXTRA = 250
 const num BASE_PREMIUM_AUTO = 750
 const num TICKET_CUTOFF = 2
 const num TICKET_EXTRA = 400
 const num AGE_AUTO_DISCOUNT = -200
 num errorFlag = 1
 while errorFlag = 1
 errorFlag = 0
 if policyType = HEALTH then
 premiumAmount = BASE_PREMIUM_HEALTH
 if ageOfInsured > AGE_CUTOFF then
 premiumAmount = premiumAmount + AGE_HEALTH_EXTRA
 endif
 if insuredIsSmoker = YES then
 premiumAmount = premiumAmount + SMOKER_EXTRA
 endif
 else
 if policyType = AUTO then
 premiumAmount = BASE_PREMIUM_AUTO
 if numTickets > TICKET_CUTOFF then
 premiumAmount = premiumAmount + TICKET_EXTRA
 endif
 if ageOfInsured > AGE_CUTOFF then
 premiumAmount = premiumAmount + AGE_AUTO_DISCOUNT
 endif
 else
 print “Invalid policy type. Please reenter”
 read policyType
 errorFlag = 1
 endif
 endif
 endwhile
return

FIGURE 14-8: USING A LOOP TO HANDLE INTERACTIVE ERRORS

583Understanding the Advantages of Object-Oriented Exception Handling

There are at least two shortcomings to the error-handling logic shown in Figure 14-8. First, the module is not as
reusable as it could be, and second, it is not as flexible as it might be.

One of the principles of modular and object-oriented programming is reusability. The module in Figure 14-8 is only
reusable under limited conditions. The calcRoutine() module allows the user to reenter policy data any number
of times, but other programs in the insurance system may need to limit the number of chances the user gets to enter
correct data, or may allow no second chance at all. A more flexible calcRoutine() would simply calculate the
premium amount without deciding what to do about data errors. The calcRoutine() method will be most flexible
if it can detect an error and then notify the calling program or module that an error has occurred. Each program or
module that uses the calcRoutine() module then can determine how it should best handle the mistake.

The other drawback to forcing the user to reenter data is that the technique works only with interactive programs. A
more flexible program accepts any kind of input, including data stored on a disk. Program errors can occur as a result
of many factors—for example, a disk drive might not be ready, a file might not exist on the disk, or stored data items
might be invalid. You cannot continue to reprompt a disk file for valid data the way you can reprompt in an interactive
program; if stored data is invalid, it remains invalid. Object-oriented exception-handling techniques overcome the limita-
tions of simply repeating a request.

UNDERSTANDING THE ADVANTAGES OF OBJECT-ORIENTED
EXCEPTION HANDLING

Object-oriented, event-driven programs employ a more specific group of methods for handling errors called exception-
handling methods. The methods check for and manage errors. The generic name used for errors in object-oriented
languages is exceptions because, presumably, errors are not usual occurrences; they are the “exceptions” to the rule.

In object-oriented terminology, an exception is an object that represents an error. You try a module that might throw an
exception. The module might throw, or pass, an exception out, and the original calling module can then catch, or
receive, the exception and handle the problem. The exception object that is thrown can be any data type—a numeric or
character data item or a programmer-created object such as a record complete with its own data fields and methods.
For example, Figure 14-9 shows a calcRoutine() module that throws an errorFlag only if policyType
is neither “H” nor “A”. If policyType is “H” or “A”, the premium is calculated and the module ends naturally, but if
neither of the valid codes is stored in policyType, the highlighted throw statement executes. The module in
Figure 14-9 might be used within the program segment shown in Figure 14-10.

In Figure 14-9, errorFlag could also be declared a constant, because it never changes.TIP�

584 Chapter 14 • Event-Driven Programming with Graphical User Interfaces

In the program segment in Figure 14-10, the call to calcRoutine() is placed in a try block, a segment of code
in which an attempt is made to execute the module. If calcRoutine() encounters an error and throws an exception,

try
 perform calcRoutine()
endTry
catch(num thrownCode)
 policyType = “H”
 try
 perform calcRoutine()
 endTry
endCatch
// Program continues

FIGURE 14-10: PROGRAM SEGMENT USING calcRoutine()

FIGURE 14-9: THROWING AN EXCEPTION

calcRoutine()
 const char HEALTH = “H”
 const char AUTO = “A”
 const char YES = “Y”
 const num BASE_PREMIUM_HEALTH = 500
 const num AGE_CUTOFF = 50
 const num AGE_HEALTH_EXTRA = 100
 const num SMOKER_EXTRA = 250
 const num BASE_PREMIUM_AUTO = 750
 const num TICKET_CUTOFF = 2
 const num TICKET_EXTRA = 400
 const num AGE_AUTO_DISCOUNT = -200
 num errorFlag = 1
 if policyType = HEALTH then
 premiumAmount = BASE_PREMIUM_HEALTH
 if ageOfInsured > AGE_CUTOFF then
 premiumAmount = premiumAmount + AGE_HEALTH_EXTRA
 endif
 if insuredIsSmoker = YES then
 premiumAmount = premiumAmount + SMOKER_EXTRA
 endif
 else
 if policyType = AUTO then
 premiumAmount = BASE_PREMIUM_AUTO
 if numTickets > TICKET_CUTOFF then
 premiumAmount = premiumAmount + TICKET_EXTRA
 endif
 if ageOfInsured > AGE_CUTOFF then
 premiumAmount = premiumAmount + AGE_AUTO_DISCOUNT
 endif
 else
 throw errorFlag
 endif
 endif
return

585Understanding the Advantages of Object-Oriented Exception Handling

the highlighted catch block in Figure 14-10 will catch it. A catch block contains code that executes when an
exception is thrown from within a try block. The catch block contains a variable in parentheses that is the same
data type as the object thrown from the calcRoutine() module; in this case the thrown object is numeric. In the
program segment in Figure 14-10, the catch block has been written to force the premium type to a health policy, and
calcRoutine() is attempted again. This time, execution of the calcRoutine() module will be successful
because policyType is guaranteed to be valid.

During any execution of the calcRoutine() module, if policyType is valid, no exception is thrown, the module
continues to calculate the policy premium, and when the module returns, the calling program skips the catch block and
continues with any code following it. In other words, the catch block in the calling module executes only when an excep-
tion is thrown, and only when the thrown exception is the data type that the catch block has been programmed to accept.

Because the calcRoutine() module throws an exception, a different program can use it and handle the exception
more appropriately for that application. For example, in an application in which an invalid policy type should not be
forced to a health policy but should be reentered by the user, the exception can be handled as shown in Figure 14-11.
In this figure, a variable named thrownCode is set to 1. This ensures that the while loop that follows will execute
at least once. Then, calcRoutine() executes, as shown in Figure 14-9.

When the calcRoutine() module is used with the program segment in Figure 14-11, there are two possible outcomes:

� An error occurs and an exception is thrown. When the calcRoutine() module throws the
errorFlag that has a value of 1, the calcRoutine() module ends immediately, and the
program segment in Figure 14-11 bypasses all statements following the method call perform
calcRoutine() and proceeds directly to the catch block. This means that the statement
thrownCode = 0 is skipped, and the value of the thrownCode variable remains 1. In
the catch statement, the program catches the value thrown from the calcRoutine()
module (and stores it in the thrownCode variable that is declared in the catch statement).
The two statements print “Reenter the policy type” and read
policyType execute. Then, when the catch block ends (indicated by the endCatch
statement in the pseudocode), thrownCode is still 1, because the statement setting it to 0
was bypassed. The while loop executes again, and calcRoutine() is attempted again.

FIGURE 14-11: ALTERNATE PROGRAM SEGMENT USING calcRoutine()

num thrownCode = 1
while thrownCode = 1
 try
 perform calcRoutine()
 thrownCode = 0
 endTry
 catch(num thrownCode)
 print “Reenter the policy type”
 read policyType
 endCatch
endwhile
// Program continues

586 Chapter 14 • Event-Driven Programming with Graphical User Interfaces

� No error occurs and no exception is thrown. When calcRoutine() is successful (that is, if
policyType is valid), nothing is thrown from the calcRoutine() module, so in the pro-
gram segment in Figure 14-11, the logic proceeds to the statement following perform
calcRoutine(), the statement that sets thrownCode to 0. The catch block does not
execute, and the 0 code stops the loop from executing again. In other words, when nothing is
thrown from the calcRoutine() module, the code becomes 0, the catch block is
bypassed, and the program proceeds to the endwhile statement; thrownCode is no
longer 1, and the loop ends.

Programmers sometimes refer to the situation where nothing goes wrong as the sunny
day case.

You declare thrownCode as a numeric variable in the catch block in much the same
way as you declare a passed variable in a method header—by providing the variable with
a type and a name. When calcRoutine() throws its errorFlag variable, its value
becomes known as thrownCode within the catch block. You could provide the thrown
variable with any legal identifier within the catch block. You also could use
thrownCode like any other variable, perhaps displaying it or making a decision based on
its value.

The program segment in Figure 14-11 is difficult to follow if you are new to exception-handling techniques. You can
see the flexibility of using thrown exceptions when you consider the program segments in Figures 14-12 and 14-13.
Like the program segment in Figure 14-11, the one in Figure 14-12 also uses calcRoutine(), but this module
does not allow the user to reenter the policyType value. If calcRoutine() throws a value, the catch block
executes, printing a message that includes the error code. This logic would be even more useful if several error code
values were possible. The user could analyze the message and take appropriate action.

FIGURE 14-13: PROGRAM SEGMENT THAT SETS premiumAmount TO 0 WHEN EXCEPTION IS THROWN

try
 perform calcRoutine()
endTry
catch(num thrownCode)
 premiumAmount = 0
endCatch
// Program continues

FIGURE 14-12: PROGRAM SEGMENT THAT DISPLAYS THROWN ERROR CODE

try
 perform calcRoutine()
endTry
catch(num thrownCode)
 print “Error #”, thrownCode,” has occurred”
endCatch
// Program continues

TIP�

TIP�

587Understanding the Advantages of Object-Oriented Exception Handling

The program segment in Figure 14-13 also uses the same calcRoutine() method. This program segment simply
assumes that the premium amount is 0 for invalid policy types. When the catch block in Figure 14-13 executes, the
program doesn’t use the value that is thrown. The fact that a value is thrown is all that is required to cause the catch
block to execute; although an identifier must be provided for the thrown value, the value that is caught does not have to
be used in any way.

The general principle of exception handling in object-oriented programming is that a module that uses data should be
able to detect errors, but not be required to handle them. The handling should be left to the application that uses the
object, so that each application can use each module appropriately.

In most object-oriented programming languages, a module can throw any number of
exceptions, with one restriction—there must be a catch block available for each type of
exception. In other words, a module might throw a numeric variable under one error con-
dition, a character variable under another, and a complex class object under a third. When
an exception is thrown, only the matching catch block executes. Many languages pro-
vide a generic type you can use in a catch block so that it can catch anything that
is thrown.

TIP�

Chapter 14 • Event-Driven Programming with Graphical User Interfaces588

CHAPTER SUMMARY

� Interacting with a computer operating system from the command line is difficult; it is easier to use an

event-driven graphical user interface (GUI), in which users manipulate objects such as buttons and

menus. Within an event-driven program, a component from which an event is generated is the source of

the event. A listener is an object that is “interested in” an event to which you want it to respond.

� The possible events a user can initiate include a key press, mouse point, click, right-click, double-click,

and drag. Common GUI components include labels, text fields, buttons, check boxes, option buttons, list

boxes, and toolbars. GUI components are excellent examples of the best principles of object-oriented

programming—they represent objects with attributes and methods that operate like black boxes.

� When you create a program that uses a GUI, the interface should be natural, predictable, attractive, easy

to read, and nondistracting. It’s helpful if the user can customize your applications. The program should

be forgiving, and you should not forget that the GUI is only a means to an end.

� You can modify the attributes of GUI components. For example, you can set the size, color, screen loca-

tion, font, visibility, and enabled status of the component.

� Developing an event-driven application is more complicated than developing a standard procedural pro-

gram. You must understand the problem, create storyboards, define the objects, define the connections

between the screens the user will see, plan the logic, code the program, translate the program into

machine language, test the program, and put the program into production.

� Traditional error-handling methods have limitations.

� Object-oriented error handling involves throwing exceptions. An exception is an object that you throw

from the module where a problem occurs to another module that will catch it and handle the problem.

The general principle of exception handling in object-oriented programming is that a module that uses

data should be able to detect errors, but not be required to handle them. The handling should be left to

the application that uses the object, so that each application can use each module appropriately.

589Key Terms

KEY TERMS

The command line is the location on your computer screen at which you type entries to communicate with the
computer’s operating system.

An operating system is the software that you use to run a computer and manage its resources.

The command line also is called the command prompt.

The DOS prompt is the command line in the DOS operating system.

Icons are small pictures on the screen that the user can select with a mouse.

A graphical user interface, or GUI, allows users to interact with an operating system by clicking icons to select options.

An event is an occurrence that generates a message sent to an object.

GUI programs are called event-based or event-driven because actions occur in response to user-initiated events
such as clicking a mouse button.

A component from which an event is generated is the source of the event.

A listener is an object that is “interested in” an event to which you want it to respond.

A disabled component is identified by dimming or graying it—that is, by making its appearance muted or softer.

The screen design issues that make programs easier to use for people with physical limitations are known as
accessibility issues.

A storyboard represents a picture or sketch of a screen the user will see when running a program.

An object dictionary is a list of the objects used in a program, including which screens they are used on and whether
any code, or script, is associated with them.

An interactivity diagram shows the relationship between screens in an interactive GUI program.

In some object-oriented programming languages, you register, or sign up, components that will react to events initi-
ated by other components.

Object-oriented, event-driven programs employ a group of error-handling methods called exception-handling
methods.

The generic name used for errors in object-oriented languages is exceptions because, presumably, errors are not
usual occurrences; they are the “exceptions” to the rule.

You try a module that might throw an exception.

You throw, or pass, an exception from the module where a problem occurs to another module.

A module that receives an exception and handles a problem catches the exception.

A try block is a segment of code in which an attempt is made to execute a module that might throw an exception.

A catch block is a group of statements that execute when a value is caught.

The sunny day case is the case in which no errors occur.

Chapter 14 • Event-Driven Programming with Graphical User Interfaces590

REVIEW QUESTIONS

1. As opposed to using a command line, an advantage to using an operating system that employs a
graphical user interface is .

a. you can interact directly with the operating system
b. you do not have to deal with confusing icons
c. you do not have to memorize complicated commands
d. all of the above

2. When users can initiate actions by clicking a mouse on an icon, the program is said to be
-driven.

a. event
b. prompt
c. command
d. incident

3. A component from which an event is generated is the of the event.

a. base
b. icon
c. listener
d. source

4. An object that responds to an event is a .

a. source
b. listener
c. transponder
d. snooper

5. All of the following are user-initiated events except a .

a. key press
b. key drag
c. right mouse click
d. mouse drag

6. All of the following are typical GUI components except a .

a. label
b. text field
c. list box
d. button box

7. GUI components operate like .

a. black boxes
b. procedural functions
c. looping structures
d. command lines

Review Questions 591

8. Which is not a principle of good GUI design?

a. The interface should be predictable.
b. The fancier the screen design, the better.
c. The program should be forgiving.
d. The user should be able to customize your applications.

9. Which of the following aspects of a GUI layout is most predictable and natural for the user?

a. A menu bar appears running down the right side of the screen.
b. Help is the first option on a menu.
c. Saving a file is represented by a dollar sign icon.
d. Pressing Esc allows the user to cancel a selection.

10. In most GUI programming environments, which of the following component attributes cannot be
changed?

a. color
b. screen location
c. size
d. You can change all of these attributes.

11. Depending on the programming language you use, you might to change a screen
component’s attributes.

a. use an assignment statement
b. call a module
c. enter a value into a list of properties
d. all of the above

12. When you create an event-driven application, which of the following must be done before defining
the objects you will use?

a. Plan the logic.
b. Create storyboards.
c. Test the program.
d. Code the program.

13. A is a sketch of a screen the user will see when running a program.

a. flowchart
b. hierarchy chart
c. storyboard
d. UML diagram

14. A list of objects used in a program is an object .

a. thesaurus
b. glossary
c. index
d. dictionary

Chapter 14 • Event-Driven Programming with Graphical User Interfaces592

15. A(n) diagram shows the connections between the various screens a user might see
during a program’s execution.

a. interactivity
b. help
c. cooperation
d. communication

16. In object-oriented programs, errors are known as .

a. faults
b. gaffes
c. exceptions
d. omissions

17. When an object-oriented program detects an error, it it.

a. absorbs
b. throws
c. displays
d. records

18. In object-oriented programs, if a module calls another that generates an exception, then the first
module it.

a. catches
b. destroys
c. records
d. throws

19. An exception can be a .

a. number
b. character
c. user-defined type
d. any of the above

20. The general principle of exception handling in object-oriented programming is that a module that
uses data should .

a. be able to detect errors, but not be required to handle them
b. be able to handle errors, but not detect them
c. be able to handle and detect errors
d. not be able to detect or handle errors

Find the Bugs 593

FIND THE BUGS

Each of the following pseudocode segments contains one or more bugs that you must find and correct.

1. In the following code, the main program tries the dataEntryRoutine() module, which prompts
the user for an item the user is ordering. If the item is valid, the price is returned from the function.
Otherwise, an exception is thrown and the main program displays an error message and sets the
price to 0. Finally, the main program calculates the tax (5 percent of the price) and displays the
customer’s total.

num dataEntryRoutine()
const num SZ = 5;
const num itemsForSale[SZ] = {111, 22, 333, 444, 555}
const num itemsPrice[2] = {2.34, 5.67, 12.75, 15.00, 21.00}
num x
num orderedItem
num price
char found
print “Enter item to order”
read orderedItem
found = “N”
while found < “N” AND x < SZ
if orderedItem = itemsForSale[SZ] then

price = itemsPrice[SZ]
found = “N”

endif
x = x * 1

endwhile
if found = “N” then

throw orderedItem
endif

return price

start
num price
num total
try
price = dataEntryRoutine()

endTry
catch(num orderedItem)

print “You tried to order item number “, item,
“which is not a valid item number”

price = 0
endCatch
total = price + price * TAX
print “Your total is $”, sum

stop

Chapter 14 • Event-Driven Programming with Graphical User Interfaces594

2. The following main program represents a different application that can use the same
dataEntryRoutine() module as in the previous exercise. Instead of forcing the user’s price to
0 when an exception is thrown, this application requires the user to reenter the order until a valid
item is ordered.

start
num price
num total
num item
num okFlag
while okFlag = 0
try

price = dataEntryRoutine()
okFlag = 1

catch(num orderedItem)
print “You tried to order item number “, orderedItem,
“which is not a valid item number”

print “Please reenter the item number”
endTry
endCatch

total = pr + pr * TAX
print “Your total is $”, total

stop

Exercises 595

EXERCISES

1. Take a critical look at three GUI applications with which you are familiar—for example, a spread-
sheet, a word-processing program, and a game. Describe how well each conforms to the GUI
design guidelines listed in this chapter.

2. Select one element of poor GUI design in a program with which you are familiar. Describe how you
would improve the design.

3. Select a GUI program that you have never used before. Describe how well it conforms to the GUI
design guidelines listed in this chapter.

4. Design the storyboards, interactivity diagram, object dictionary, and any necessary methods for an
interactive program for customers of Sunflower Floral Designs. Allow customers the option of
choosing a floral arrangement ($25 base price), cut flowers ($15 base price), or a corsage ($10
base price). Let the customer choose roses, daisies, chrysanthemums, or irises as the dominant
flower. If the customer chooses roses, add $5 to the base price. After the customer clicks an “Order
Now” button, display the price of the order.

5. Design the storyboards, interactivity diagram, object dictionary, and any necessary methods for an
interactive program for customers of Toby’s Travels. Allow customers to choose from at least five
trip destinations and four means of transportation, each with a unique price. After the customer
clicks the “Plan Trip Now” button, display the price of the trip.

6. Complete the following tasks:

a. Design a method that calculates the cost of a painting job for College Student Painters. Variables include
whether the job is location “I” for interior, which carries a base price of $100, or “E” for exterior, which car-
ries a base price of $200. College Student Painters charges an additional $5 per square foot over the base
price. The method should throw an exception if the location code is invalid.

b. Write a module that calls the module designed in Exercise 6a. If the module throws an exception, force the
price of the job to 0.

c. Write a module that calls the module designed in Exercise 6a. If the module throws an exception, require the
user to reenter the location code.

d. Write a module that calls the module designed in Exercise 6a. If the module throws an exception, force the
location code to “E” and the base price to $200.

7. Design the storyboards, interactivity diagram, object dictionary, and any necessary methods for an
interactive program for customers of The Mane Event Hair Salon. Allow customers the option of
choosing a haircut ($15), coloring ($25), or perm ($45). After the customer clicks a “Select” button,
display the price of the service.

Chapter 14 • Event-Driven Programming with Graphical User Interfaces596

8. Complete the following tasks:

a. Design a method that calculates the cost of a semester’s tuition for a college student at Mid-State
University. Variables include whether the student is an in-state resident (“I” for in-state or “O” for out-of-
state) and the number of credit hours for which the student is enrolling. The method should throw an excep-
tion if the residency code is invalid. Tuition is $75 per credit hour for in-state students and $125 per credit
hour for out-of-state students. If a student enrolls in six hours or fewer, there is an additional $100 sur-
charge. Any student enrolled in 19 hours or more pays only the rate for 18 credit hours.

b. Write a module that calls the module designed in Exercise 8a. If the module throws an exception, force the
tuition to 0.

9. Complete the following tasks:

a. Design a method that validates a date. The date is constructed from three numeric variables representing
month, day, and year. The method should throw an exception if the date is invalid—for example, if the month
does not fall between 1 and 12 inclusive, or if the day does not fall within the legal days for a given month—
for example, 4/31. Assume that any year is acceptable, and assume that 2/29 is always a valid date.

b. Write a module that prompts the user to enter a date, and then calls the module designed in Exercise 9a. If
the module throws an exception, force the month, day, and year to 0.

c. Write a different module that reads an employee record from a data file. The employee record contains
fields for name; month, day, and year of birth; and month, day, and year of hire. Call the module designed in
Exercise 9a. If the module throws an exception, force the birth date variables to 99 and force the hire date
variables to today’s date.

d. Write another module that prompts the user to enter a date, and then calls the module designed in
Exercise 9a. If the module throws an exception, display an error message and continue to prompt the user
until no exception is thrown.

Detective Work 597

DETECTIVE WORK

1. Find out what you can about the Visual Basic programming language. What are its origins?
Describe the interface with which programmers work in this language. For what types of applica-
tions is Visual Basic most often used?

2. Is there a gender gap in programming? Is it different for traditional Web programming and GUI
Web-based programming?

UP FOR DISCUSSION

1. This chapter discusses “unnatural” design and mentions typewriter keyboards and stovetops as
examples. What other day-to-day objects are unnatural to use?

2. When people use interactive programs on the Web, when is it appropriate to track which buttons or
other icons they select or to record the data they enter? When is it not appropriate? Does it matter
how long the data is stored? Does it matter if a profit is made from using the data?

15
After studying Chapter 15, you should be able to:

� Understand the need for system modeling

� Describe the UML

� Work with use case diagrams

� Use class and object diagrams

� Use sequence and communication diagrams

� Use state machine diagrams

� Use activity diagrams

� Use component and deployment diagrams

� Diagram exception handling

� Decide which UML diagrams to use

SYSTEM MODELING WITH THE UML

599

TIP�

600 Chapter 15 • System Modeling with the UML

UNDERSTANDING THE NEED FOR SYSTEM MODELING

Computer programs often stand alone to solve a user’s specific problem. For example, a program might exist only to
print paychecks for the current week. Most computer programs, however, are part of a larger system. Your company’s
payroll system might consist of dozens of programs, including programs that produce employee paychecks, apply
raises to employee records, alter employee deduction options, and print W2 forms at the end of the tax year. Each pro-
gram you write as part of a system might be related to several others. Some programs depend on input from other pro-
grams in the system or produce output to be fed into other programs. Similarly, an organization’s accounting, inventory,
and customer ordering systems all consist of many interrelated programs. Producing a set of programs that operate
together correctly requires careful planning. System design is the detailed specification of how all the parts of a sys-
tem will be implemented and coordinated.

Usually, system design refers to computer system design, but even a noncomputerized,
manual system can benefit from good design techniques.

Many textbooks cover the theories and techniques of system design. If you continue to study in a Computer Information
Systems program at a college or university, you probably will be required to take a semester-long course in system
design. Explaining all the techniques of system design is beyond the scope of this book. However, some basic principles
parallel those you have used throughout this book in designing individual programs:

� Large systems are easier to understand when you break them down into subsystems.

� Good modeling techniques are increasingly important as the size and complexity of systems
increase.

� Good models promote communication among technical and nontechnical workers while ensuring
good business solutions.

In other words, developing a model for a single program or an entire business system requires organization and plan-
ning. In this chapter, you learn the basics of one popular design tool, the UML, which is based on these principles. The
UML, or Unified Modeling Language, allows you to envision systems with an object-oriented perspective, breaking a
system into subsystems, focusing on the big picture, and hiding the implementation details. In addition, the UML pro-
vides a means for programmers and businesspeople to communicate about system design. It also provides a way to
plan to divide responsibilities for large systems. Understanding the UML’s principles helps you design a variety of sys-
tem types and talk about systems with the people who will use them.

In addition to modeling a system before creating it, system analysts sometimes model an
existing system to get a better picture of its operation. Creating a model for an existing
system is called reverse engineering.

TIP�

601What Is UML?

WHAT IS UML?

The UML is a standard way to specify, construct, and document systems that use object-oriented methods. (The UML is
a modeling language, not a programming language. The systems you develop using the UML probably will be imple-
mented later in object-oriented programming languages such as Java, C++, C#, or Visual Basic.) As with flowcharts,
pseudocode, hierarchy charts, and class diagrams, the UML has its own notation that consists of a set of specialized
shapes and conventions. You can use the UML’s shapes to construct different kinds of software diagrams and model
different kinds of systems. Just as you can use a flowchart or hierarchy chart to diagram real-life activities, organiza-
tional relationships, or computer programs, you also can use the UML for many purposes, including modeling business
activities, organizational processes, or software systems.

The UML was created at Rational Software by Grady Booch, Ivar Jacobson, and Jim
Rumbaugh. The Object Management Group (OMG) adopted the UML as a standard for
software modeling in 1997. The OMG includes more than 800 software vendors, devel-
opers, and users who seek a common architectural framework for object-oriented pro-
gramming. The UML is in its second version, known as UML 2.0. You can view or
download the entire UML specification and usage guidelines from the OMG at
www.uml.org.

You can purchase compilers for most programming languages from a variety of manufac-
turers. Similarly, you can purchase a variety of tools to help you create UML diagrams,
but the UML itself is vendor-independent.

When you draw a flowchart or write pseudocode, your purpose is to illustrate the individual steps in a process. When
you draw a hierarchy chart, you use more of a “big picture” approach. As with a hierarchy chart, you use the UML to
create top-view diagrams of business processes that let you hide details and focus on functionality. This approach lets
you start with a generic view of an application and introduce details and complexity later. UML diagrams are useful as
you begin designing business systems, when customers who are not technically oriented must accurately communicate
with the technical staff members who will create the actual systems. The UML was intentionally designed to be non-
technical so that developers, customers, and implementers (programmers) could all “speak the same language.” If
business and technical people can agree on what a system should do, the chances improve that the final product will
be useful.

The UML is very large; its documentation is more than 800 pages. The UML provides 13 diagram types that you can
use to model systems. Each of the diagram types lets you see a business process from a different angle, and appeals
to a different type of user. Just as an architect, interior designer, electrician, and plumber use different diagram types to
describe the same building, different computer users appreciate different perspectives. For example, a business user
most values a system’s use case diagrams because they illustrate who is doing what. On the other hand, programmers
find class and object diagrams more useful because they help explain details of how to build classes and objects into
applications.

TIP�

TIP�

602 Chapter 15 • System Modeling with the UML

TIP�

TIP�

TIP�

The UML superstructure defines six structure diagrams, three behavior diagrams, and four interaction diagrams. The 13 UML
diagram types are:

� Structure diagrams

� Class diagrams

� Object diagrams

� Component diagrams

� Composite structure diagrams

� Package diagrams

� Deployment diagrams

� Behavior diagrams

� Use case diagrams

� Activity diagrams

� State machine diagrams

� Interaction diagrams

� Sequence diagrams

� Communication diagrams

� Timing diagrams

� Interaction overview diagrams

You can categorize UML diagrams as those that illustrate the dynamic, or changing,
aspects of a system and those that illustrate the static, or steady, aspects of a system.
Dynamic diagrams include use case, sequence, communication, state machine, and activ-
ity diagrams. Static diagrams include class, object, component, and deployment diagrams.

In UML 1.5, communication diagrams were called collaboration diagrams, and state
machine diagrams were called statechart diagrams.

Each of the UML diagram types supports multiple variations, and explaining them all would require an entire textbook.
This chapter presents an overview and simple examples of several diagram types, which provides a good foundation for
further study of the UML.

The UML Web site, at www.uml.org, provides links to several UML tutorials.

603Using Use Case Diagrams

USING USE CASE DIAGRAMS

The use case diagram shows how a business works from the perspective of those who approach it from the outside, or
those who actually use the business. This category includes many types of users—for example, employees, customers,
and suppliers. Although users can also be governments, private organizations, machines, or other systems, it is easiest
to think of them as people, so users are called actors and are represented by stick figures in use case diagrams. The
actual use cases are represented by ovals.

Use cases do not necessarily represent all the functions of a system; they are the system functions or services that are
visible to the system’s actors. In other words, they represent the cases by which an actor uses and presumably benefits
from the system. Determining all the cases for which users interact with systems helps you divide a system logically
into functional parts.

Establishing use cases usually follows from analyzing the main events in a system. For example, from a librarian’s point
of view, two main events are acquireNewBook() and checkOutBook(). Figure 15-1 shows a use case dia-
gram for these two events.

Many system developers would use the standard English form to describe activities in their
UML diagrams—for example, check out book instead of checkOutBook(),
which looks like a programming method call. Because you are used to seeing method
names in camel casing and with trailing parentheses throughout this book, this discussion
of the UML continues with the same format.

In many systems, there are variations in use cases. The three possible types of variations are:

� Extend

� Include

� Generalization

FIGURE 15-1: USE CASE DIAGRAM FOR LIBRARIAN

acquireNewBook()

checkOutBook()

librarian

TIP�

604 Chapter 15 • System Modeling with the UML

An extend variation is a use case variation that shows functions beyond those found in a base case. In other words, an
extend variation is usually an optional activity. For example, checking out a book for a new library patron who doesn’t have
a library card is slightly more complicated than checking out a book for an existing patron. Each variation in the sequence
of actions required in a use case is a scenario. Each use case has at least one main scenario, but might have several
more that are extensions or variations of the main one. Figure 15-2 shows how you would diagram the relationship
between the use case checkOutBook() and the more specific scenario checkOutBookForNewPatron().
Extended use cases are shown in an oval with a dashed arrow pointing to the more general base case.

For clarity, you can add “<<extend>>” near the line that shows a relationship extension. Such a feature, which adds to
the UML vocabulary of shapes to make them more meaningful for the reader, is called a stereotype. Figure 15-3
includes a stereotype.

In addition to extend relationships, use case diagrams also can show include relationships. You use an include variation
when a case can be part of multiple use cases. This concept is very much like that of a subroutine or submodule. You
show an include use case in an oval with a dashed arrow pointing to the subroutine use case. For example,
issueLibraryCard() might be a function of checkOutBook(), which is used when the patron checking
out a book is new, but it might also be a function of registerNewPatron(), which occurs when a patron regis-
ters at the library but does not want to check out books yet. See Figure 15-4.

FIGURE 15-3: USE CASE DIAGRAM FOR LIBRARIAN, USING STEREOTYPE

acquireNewBook()

checkOutBook() checkOutBookForNewPatron()

<<extend>>

librarian

FIGURE 15-2: USE CASE DIAGRAM FOR LIBRARIAN, WITH SCENARIO EXTENSION

acquireNewBook()

checkOutBook()

librarian

checkOutBookForNewPatron()

605Using Use Case Diagrams

You use a generalization variation when a use case is less specific than others, and you want to be able to substitute
the more specific case for a general one. For example, a library has certain procedures for acquiring new materials,
whether they are videos, tapes, CDs, hardcover books, or paperbacks. However, the procedures might become more
specific during a particular acquisition—perhaps the librarian must procure plastic cases for circulating videos or
assign locked storage locations for CDs. Figure 15-5 shows the generalization acquireNewItem() with two more
specific situations: acquiring videos and acquiring CDs. The more specific scenarios are attached to the general sce-
nario with open-headed dashed arrows.

FIGURE 15-5: USE CASE DIAGRAM FOR LIBRARIAN, WITH GENERALIZATIONS

acquireNewItem()

checkOutBook()

librarian

checkOutBookForNewPatron()

<<extend>>

registerNewPatron() issueLibraryCard()
<<include>>

<<include>>

acquireCD()

acquireVideo()

FIGURE 15-4: USE CASE DIAGRAM FOR LIBRARIAN, USING INCLUDE RELATIONSHIP

acquireNewBook()

checkOutBook()

librarian

checkOutBookForNewPatron()

<<extend>>

registerNewPatron() issueLibraryCard()
<<include>>

<<include>>

606 Chapter 15 • System Modeling with the UML

Many use case diagrams show multiple actors. For example, Figure 15-6 shows that a library clerk cannot perform as
many functions as a librarian; the clerk can check out books and register new patrons but cannot acquire new materials.

While designing an actual library system, you could add many more use cases and actors to the use case diagram. The
purpose of such a diagram is to encourage discussion between the system developer and the library staff. Library staff
members do not need to know any of the technical details of the system that the analysts will eventually create, and
they certainly do not need to understand computers or programming. However, by viewing the use cases, the library
staff can visualize activities they perform while doing their jobs and correct the system developer if inaccuracies exist.
The final software products developed for such a system are far more likely to satisfy users than those developed with-
out this design step.

FIGURE 15-6: USE CASE DIAGRAM FOR LIBRARIAN, WITH MULTIPLE ACTORS

acquireNewItem()

checkOutBook()

librarian

checkOutBookForNewPatron()

<<extend>>

registerNewPatron() issueLibraryCard()

<<include>>

<<include>>

acquireCD()

acquireVideo()

library clerk

607Using Use Case Diagrams

A use case diagram is only a tool to aid communication. No single “correct” use case diagram exists; you might cor-
rectly represent a system in several ways. For example, you might choose to emphasize the actors in the library system,
as shown in Figure 15-7, or to emphasize system requirements, as shown in Figure 15-8. Diagrams that are too
crowded are neither visually pleasing nor very useful. Therefore, the use case diagram in Figure 15-7 shows all the
specific actors and their relationships, but purposely omits more specific system functions, whereas Figure 15-8 shows
many actions that are often hidden from users but purposely omits more specific actors. For example, the activities car-
ried out to manageNetworkOutage(), if done properly, should be invisible to library patrons checking out books.

FIGURE 15-7: USE CASE DIAGRAM EMPHASIZING ACTORS

child patronadult patronlibrary clerk

library staff

checkOutVideo()

checkOutBook()

checkOutReferenceMaterials()

patron

cooperating library

librarian

608 Chapter 15 • System Modeling with the UML

In Figure 15-8, the relationship lines between the actors and use cases have been removed because the emphasis is
on the system requirements, and too many lines would make the diagram confusing. When system developers omit
parts of diagrams for clarity, they refer to the missing parts as elided. For the sake of clarity, eliding extraneous infor-
mation is perfectly acceptable. The main purpose of UML diagrams is to facilitate clear communication.

USING CLASS AND OBJECT DIAGRAMS

You use a class diagram to illustrate the names, attributes, and methods of a class or set of classes. Class diagrams
are more useful to a system’s programmers than to its users because they closely resemble code the programmers will
write. A class diagram illustrating a single class contains a rectangle divided into three sections: the top section con-
tains the name of the class, the middle section contains the names of the attributes, and the bottom section contains
the names of the methods. Figure 15-9 shows the class diagram for a Book class. Each Book object contains an
idNum, title, and author. Each Book object also contains methods to create a Book when it is acquired and
to retrieve or get title and author information when the Book object’s idNum is supplied.

You first used class diagrams in Chapter 13.

FIGURE 15-8: USE CASE DIAGRAM EMPHASIZING SYSTEM REQUIREMENTS

library staff

patron

cooperating library

manageNetworkOutage()

reshelveReturnedMaterials()

acquireNewMaterials()

checkOutMaterials()

removeOldMaterialsFromSystem()

Library System

TIP�

609Using Class and Object Diagrams

In the preceding section, you learned how to use generalizations with use case diagrams to show general and more
specific use cases. With use case diagrams, you drew an open-headed arrow from the more specific case to the more
general one. Similarly, you can use generalizations with class diagrams to show more general (or parent) classes and
more specific (or child) classes that inherit attributes from parents. For example, Figure 15-10 shows Book and
Video classes that are more specific than the general LibraryItem class. All LibraryItem objects contain
an idNum and title, but each Book item also contains an author, and each Video item also contains a
runningTime. In addition, Video items contain a rewind() method not found in the more general
LibraryItem class. Child classes contain all the attributes of their parents and usually contain additional attributes
not found in the parent.

You first learned about inheritance and parent and child classes in Chapter 13. There, you
learned that the create() and getInfo() methods in the Book and Video classes
override the version in the LibraryItem class.

Class diagrams can include symbols that show the relationships between objects. You can show two types of
relationships:

� An association relationship

� A whole-part relationship

FIGURE 15-10: LibraryItem CLASS DIAGRAM SHOWING GENERALIZATION

idNum
title

create()
getInfo(idNum)

LibraryItem

author

create()
getInfo(idNum)

Book

runningTime

create()
getInfo(idNum)
rewind()

Video

FIGURE 15-9: Book CLASS DIAGRAM

idNum
title
author

create()
getInfo(idNum)

Book

TIP�

610 Chapter 15 • System Modeling with the UML

An association relationship describes the connection or link between objects. You represent an association relation-
ship between classes with a straight line. Frequently, you include information about the arithmetical relationship or ratio
(called cardinality or multiplicity) of the objects. For example, Figure 15-11 shows the association relationship
between a Library and the LibraryItems it lends. Exactly one Library object exists, and it can be associ-
ated with any number of LibraryItems from 0 to infinity, which is represented by an asterisk. Figure 15-12 adds
the Patron class to the diagram and shows how you indicate that any number of Patrons can be associated with
the Library, but that each Patron can borrow only up to five LibraryItems at a time, or currently might not
be borrowing any. In addition, each LibraryItem can be associated with at most one Patron, but at any given
time might not be on loan.

FIGURE 15-12: CLASS DIAGRAM WITH SEVERAL ASSOCIATION RELATIONSHIPS

1 0..*

0..5

0..1

0..*

1

communityName
directorName
streetAddress
phoneNumber

create()
getInfo()

Library

idNum
title

create()
getInfo(idNum)

LibraryItem

idNum
name
address

create()
getInfo(idNum)
borrowItem()

Patron

FIGURE 15-11: CLASS DIAGRAM WITH ASSOCIATION RELATIONSHIP

communityName
directorName
streetAddress
phoneNumber

create()
getInfo()

Library

1 0..*
idNum
title

create()
getInfo(idNum)

LibraryItem

611Using Class and Object Diagrams

A whole-part relationship describes an association in which one or more classes make up the parts of a larger whole
class. For example, 50 states “make up” the United States, and 10 departments might “make up” a company. This type
of relationship is also called an aggregation and is represented by an open diamond at the “whole part” end of the line
that indicates the relationship. You also can call a whole-part relationship a has-a relationship because the phrase
describes the association between the whole and one of its parts; for example, “The library has a Circulation
Department.” Figure 15-13 shows a whole-part relationship for a Library.

Object diagrams are similar to class diagrams, but they model specific instances of classes. You use an object dia-
gram to show a snapshot of an object at one point in time, so you can more easily understand its relationship to other
objects. Imagine looking at the travelers in a major airport. If you try to watch them all at once, you see a flurry of activ-
ity, but it is hard to understand all the tasks (buying a ticket, checking luggage, and so on) a traveler must accomplish
to take a trip. However, if you concentrate on one traveler and follow his or her actions through the airport from arrival
to takeoff, you get a clearer picture of the required activities. An object diagram serves the same purpose; you concen-
trate on a specific instance of a class to better understand how a class works.

Figure 15-14 contains an object diagram showing the relationship between one Library, LibraryItem, and
Patron. Notice the similarities between Figures 15-12 and 15-14. If you need to describe the relationship between
three classes, you can use either model—a class diagram or an object diagram—interchangeably. You simply use the
model that seems clearer to you and your intended audience.

FIGURE 15-13: CLASS DIAGRAM WITH WHOLE-PART RELATIONSHIP

communityName
directorName
streetAddress
phoneNumber

create()
getInfo()

Library

CirculationDepartment

deptName
director

ReferenceDepartment

deptName
director

612 Chapter 15 • System Modeling with the UML

USING SEQUENCE AND COMMUNICATION DIAGRAMS

You use a sequence diagram to show the timing of events in a single use case. A sequence diagram makes it easier
to see the order in which activities occur. The horizontal axis (x-axis) of a sequence diagram represents objects, and the
vertical axis (y-axis) represents time. You create a sequence diagram by placing objects that are part of an activity
across the top of the diagram along the x-axis, starting at the left with the object or actor that begins the action.
Beneath each object on the x-axis, you place a vertical dashed line that represents the period of time the object exists.
Then, you use horizontal arrows to show how the objects communicate with each other over time.

For example, Figure 15-15 shows a sequence diagram for a scenario that a librarian can use to create a book check-
out record. The librarian begins a create() method with Patron idNum and Book idNum information. The
BookCheckOutRecord object requests additional Patron information (such as name and address) from
the Patron object with the correct Patron idNum, and additional Book information (such as title and
author) from the Book object with the correct Book idNum. When BookCheckOutRecord contains all the
data it needs, a completed record is returned to the librarian.

FIGURE 15-14: OBJECT DIAGRAM FOR Library

communityName = “Oakwood”
directorName = “Hanna Scott”
streetAddress = “100 Main St.”
phoneNumber = “622-1000”

Library

idNum: 23776
title: “The Color Purple”

LibraryItem

idNum: 19876
name: “Carl Baker”
address: “185 Willow Rd.”

Patron

613Using Sequence and Communication Diagrams

In Figures 15-15 and 15-16, patronInfo and bookInfo represent group items that
contain all of a Patron’s and Book’s data. For example, patronInfo might contain
idNum, lastName, firstName, address, and phoneNumber, all of which have
been defined as attributes of that class.

A communication diagram emphasizes the organization of objects that participate in a system. It is similar to a
sequence diagram, except that it contains sequence numbers to represent the precise order in which activities occur.
Communication diagrams focus on object roles instead of the times that messages are sent. Figure 15-16 shows the
same sequence of events as Figure 15-15, but the steps to creating a BookCheckOutRecord are clearly num-
bered (see the shaded sections of the figure). Decimal numbered steps (1.1, 1.2, and so on) represent substeps of the
main steps. Checking out a library book is a fairly straightforward event, so a sequence diagram sufficiently illustrates
the process. Communication diagrams become more useful with more complicated systems.

FIGURE 15-15: SEQUENCE DIAGRAM FOR CHECKING OUT A Book FOR A Patron

librarian

create(Patron idNum,
Book idNum)

(checkOutRecord)

getInfo(idNum)

(patronInfo)

getInfo(idNum)

(bookInfo)

BookPatronBookCheckOutRecord

TIP�

614 Chapter 15 • System Modeling with the UML

USING STATE MACHINE DIAGRAMS

A state machine diagram shows the different statuses of a class or object at different points in time. You use a state
machine diagram to illustrate aspects of a system that show interesting changes in behavior as time passes.
Conventionally, you use rounded rectangles to represent each state and labeled arrows to show the sequence in which
events affect the states. A solid dot indicates the start and stop states for the class or object. Figure 15-17 contains a
state machine diagram you can use to describe the states of a Book.

FIGURE 15-16: COMMUNICATION DIAGRAM FOR CHECKING OUT A Book FOR A Patron

librarian

Patron

BookCheckOutRecord

1. create(Patron idNum, Book idNum)

1.1 getInfo(idNum)

1.2 (patronInfo)

1.3 getInfo(idNum)

1.4 (bookInfo)
Book

615Using Activity Diagrams

So that your diagrams are clear, you should use the correct symbol in each UML diagram
you create, just as you should use the correct symbol in each program flowchart.
However, if you create a flowchart and use a rectangle for an input or output statement
where a parallelogram is conventional, others will still understand your meaning.
Similarly, with UML diagrams, the exact shape you use is not nearly as important as the
sequence of events and relationships between objects.

USING ACTIVITY DIAGRAMS

The UML diagram that most closely resembles a conventional flowchart is an activity diagram. In an activity diagram,
you show the flow of actions of a system, including branches that occur when decisions affect the outcome.
Conventionally, activity diagrams use flowchart start and stop symbols (called lozenges) to describe actions and solid
dots to represent start and stop states. Like flowcharts, activity diagrams use diamonds to describe decisions. Unlike
the diamonds in flowcharts, the diamonds in UML activity diagrams usually are empty; the possible outcomes are docu-
mented along the branches emerging from the decision symbol. As an example, Figure 15-18 shows a simple activity
diagram with a single branch.

FIGURE 15-17: STATE MACHINE DIAGRAM FOR Book CLASS

publish()

libraryBoardApprove()

receive()

catalogEntry()

retire()

Retired

Circulating

Received

Ordered

Potential
adoption

TIP�

616 Chapter 15 • System Modeling with the UML

In the first version of the UML (UML 1.0), each lozenge was an activity. In the second
version (UML 2.0), each lozenge is an action and a group of actions is an activity.

Many real-life systems contain actions that are meant to occur simultaneously. For example, when you apply for a home
mortgage with a bank, a bank officer might perform a credit or background check while an appraiser determines the
value of the house you are buying. When both actions are complete, the loan process continues. UML activity diagrams
use forks and joins to show simultaneous activities. A fork is similar to a decision, but whereas the flow of control fol-
lows only one path after a decision, a fork defines a branch in which all paths are followed simultaneously. A join, as its
name implies, reunites the flow of control after a fork. You indicate forks and joins with thick straight lines. Figure 15-19
shows how you might model the way an interlibrary loan system processes book requests. When a request is received,
simultaneous searches begin at three local libraries that are part of the library system.

FIGURE 15-18: ACTIVITY DIAGRAM SHOWING BRANCH

retrieveBook()contactInterLibraryLoan()

patronRequest()

checkOutBook()

[Library does not own Book] [Library owns Book]

TIP�

617Using Activity Diagrams

A fork does not have to indicate strictly simultaneous activity. The actions in the branches
for a fork might only be concurrent or interleaved.

An activity diagram can contain a time signal. A time signal indicates that a specific amount of time has passed before
an action is started. The time signal looks like two stacked triangles (resembling the shape of an hourglass). Figure 15-20
shows a time signal indicating that if a patron requests a book, and the book is checked out to another patron, then
only if the book’s due date has passed should a request to return the book be issued. In activity diagrams for other sys-
tems, you might see explanations at time signals, such as “10 hours have passed” or “at least January 1st”. If an action
is time-dependent, whether by a fraction of a second or by years, using a time signal is appropriate.

The time signal is a new feature in UML 2.0.

FIGURE 15-19: ACTIVITY DIAGRAM SHOWING FORK AND JOIN

queryOakwood() queryLakeHeights() queryLittletown()

memberLibraryRequestsBook()

sendBookToRequestingLibrary()

TIP�

TIP�

618 Chapter 15 • System Modeling with the UML

The connector is a recently introduced symbol to the UML. It is a small circle used to
connect diagrams that are continued on a new page. It is identical to the flowchart con-
nector symbol you learned about in Chapter 1.

USING COMPONENT AND DEPLOYMENT DIAGRAMS

Component and deployment diagrams model the physical aspects of systems. You use a component diagram when
you want to emphasize the files, database tables, documents, and other components that a system’s software uses. You
use a deployment diagram when you want to focus on a system’s hardware. You can use a variety of icons in each
type of diagram, but each icon must convey meaning to the reader. Figures 15-21 and 15-22 show component and
deployment diagrams that illustrate aspects of a library system. Figure 15-21 contains icons that symbolize paper and
Internet requests for library items, the library database, and two tables that constitute the database. Figure 15-22
shows some commonly used icons that represent hardware components.

FIGURE 15-20: A TIME SIGNAL STARTING AN ACTION

patronRequest()

sendRequestForReturn()

Other actions when
book is available

Book checked out to another patron

Due date
has passed

TIP�

619Using Component and Deployment Diagrams

In Figure 15-21, notice the filled diamond connecting the two tables to the database. Just
as it does in a class diagram, the diamond aggregation symbol shows the whole-part rela-
tionship of the tables to the database. You use an open diamond when a part might belong
to several wholes (for example, Door and Wall objects belong to many House objects),
but you use a filled diamond when a part can belong to only one whole at a time (the
Patron table can belong only to the Library database). You can use most UML sym-
bols in multiple types of diagrams.

FIGURE 15-21: COMPONENT DIAGRAM

Patron table Book table

Paper request Internet request

Library database

TIP�

620 Chapter 15 • System Modeling with the UML

DIAGRAMMING EXCEPTION HANDLING

Exception handling is a set of the object-oriented techniques used to handle program errors. In Chapter 14, you learned
that when a segment of code might cause an error, you can place that code in a try block. If the error occurs, an
object called an exception is thrown, or sent, to a catch block where appropriate action can be taken. For example,
depending on the application, a catch block might display a message, assign a default value to a field, or prompt the
user for direction.

In the UML, a try block is called a protected node and a catch block is a handler body node. In a UML diagram,
a protected node is enclosed in a rounded rectangle and any exceptions that might be thrown are listed next to
lightning-bolt-shaped arrows that extend to the appropriate handler body node.

FIGURE 15-22: DEPLOYMENT DIAGRAM

Console Console Console

Printer

Server A Server B

Internet

621Deciding Which UML Diagrams to Use

Figure 15-23 shows an example of an activity that uses exception handling. When a library patron tries to check out a
book, the patron’s card is scanned and the book is scanned. These actions might cause three errors—the patron owes
fines, and so cannot check out new books; the patron’s card has expired, requiring a new card application; or the book
might be on hold for another patron. If no exceptions occur, the activity proceeds to the checkOutBook() process.

DECIDING WHICH UML DIAGRAMS TO USE

Each of the UML diagram types provides a different view of a system. Just as a portrait artist, psychologist, and neuro-
surgeon each prefer a different conceptual view of your head, the users, managers, designers, and technicians of com-
puter and business systems each prefer specific system views. Very few systems require diagrams of all 13 types; you
can illustrate the objects and activities of many systems by using a single diagram, or perhaps one that is a hybrid of
two or more basic types. No view is superior to the others; you can achieve the most complete picture of any system by
using several views. The most important reason you use any UML diagram is to communicate clearly and efficiently
with the people for whom you are designing a system.

FIGURE 15-23: EXCEPTIONS IN THE BOOK CHECK-OUT ACTIVITY

scanLibraryCard()

HighFineException

scanBook()

confiscateCardProcess()

ApplyForNewCardProcess()

BookOnHoldProcess()

checkOutBook()

ExpiredCardException

BookOnHoldException

Chapter 15 • System Modeling with the UML622

CHAPTER SUMMARY

� System design is the detailed specification of how all the parts of a system will be implemented and

coordinated. Good designs make systems easier to understand. The UML (Unified Modeling Language)

provides a means for programmers and businesspeople to communicate about system design.

� The UML is a standard way to specify, construct, and document systems that use object-oriented methods.

The UML has its own notation, with which you can construct software diagrams that model different kinds of

systems. The UML provides 13 diagram types that you use at the beginning of the design process.

� A use case diagram shows how a business works from the perspective of those who approach it from

the outside, or those who actually use the business. The diagram often includes actors, represented by

stick figures, and use cases, represented by ovals. Use cases can include variations such as extend rela-

tionships, include relationships, and generalizations.

� You use a class diagram to illustrate the names, attributes, and methods of a class or set of classes. A

class diagram of a single class contains a rectangle divided into three sections: the name of the class,

the names of the attributes, and the names of the methods. Class diagrams can show generalizations

and the relationships between objects. Object diagrams are similar to class diagrams, but they model

specific instances of classes at one point in time.

� You use a sequence diagram to show the timing of events in a single use case. The horizontal axis

(x-axis) of a sequence diagram represents objects, and the vertical axis (y-axis) represents time. A com-

munication diagram emphasizes the organization of objects that participate in a system. It is similar to a

sequence diagram, except that it contains sequence numbers to represent the precise order in which

activities occur.

� A state machine diagram shows the different statuses of a class or object at different points in time.

� In an activity diagram, you show the flow of actions of a system, including branches that occur when

decisions affect the outcome. UML activity diagrams use forks and joins to show simultaneous activities.

� You use a component diagram when you want to emphasize the files, database tables, documents, and

other components that a system’s software uses. You use a deployment diagram when you want to focus

on a system’s hardware.

� Each of the UML diagram types provides a different view of a system. Very few systems require dia-

grams of all 13 types; the most important reason to use any UML diagram is to communicate clearly

and efficiently with the people for whom you are designing a system.

Key Terms 623

KEY TERMS

System design is the detailed specification of how all the parts of a system will be implemented and coordinated.

Reverse engineering is the process of creating a model of an existing system.

The UML is a standard way to specify, construct, and document systems that use object-oriented methods. UML is an
acronym for Unified Modeling Language.

The use case diagram is a UML diagram that shows how a business works from the perspective of those who
approach it from the outside, or those who actually use the business.

An extend variation is a use case variation that shows functions beyond those found in a base case.

Each variation in the sequence of actions required in a use case is a scenario.

A feature that adds to the UML vocabulary of shapes to make them more meaningful for the reader is called a stereotype.

An include variation is a use case variation that you use when a case can be part of multiple use cases in a UML diagram.

You use a generalization variation in a UML diagram when a use case is less specific than others, and you want to
be able to substitute the more specific case for a general one.

When system developers omit parts of UML diagrams for clarity, they refer to the missing parts as elided.

An association relationship describes the connection or link between objects in a UML diagram.

Cardinality and multiplicity refer to the arithmetic relationships between objects.

A whole-part relationship describes an association in which one or more classes make up the parts of a larger whole
class. This type of relationship is also called an aggregation. You also can call a whole-part relationship a has-a
relationship because the phrase describes the association between the whole and one of its parts.

Object diagrams are UML diagrams that are similar to class diagrams, but they model specific instances of classes.

A sequence diagram is a UML diagram that shows the timing of events in a single use case.

A communication diagram is a UML diagram that emphasizes the organization of objects that participate in a system.

A state machine diagram is a UML diagram that shows the different statuses of a class or object at different points in time.

An activity diagram is a UML diagram that shows the flow of actions of a system, including branches that occur when
decisions affect the outcome.

A time signal is a UML diagram symbol that indicates that a specific amount of time has passed before an action
is started.

A component diagram is a UML diagram that emphasizes the files, database tables, documents, and other compo-
nents that a system’s software uses.

A deployment diagram is a UML diagram that focuses on a system’s hardware.

A protected node is the UML diagram name for an exception-throwing try block.

A handler body node is the UML diagram name for an exception-handling catch block.

Chapter 15 • System Modeling with the UML624

REVIEW QUESTIONS

1. The detailed specification of how all the parts of a system will be implemented and coordinated is
called .

a. programming
b. paraphrasing
c. system design
d. structuring

2. The primary purpose of good modeling techniques is to .

a. promote communication
b. increase functional cohesion
c. reduce the need for structure
d. reduce dependency between modules

3. The Unified Modeling Language provides standard ways to do all of the following to business
systems except to them.

a. construct
b. document
c. describe
d. destroy

4. The UML is commonly used to model all of the following except .

a. computer programs
b. business activities
c. organizational processes
d. software systems

5. The UML was intentionally designed to be .

a. low-level, detail-oriented
b. used with Visual Basic
c. nontechnical
d. inexpensive

6. The UML diagrams that show how a business works from the perspective of those who actually
use the business, such as employees or customers, are diagrams.

a. communication
b. use case
c. state machine
d. class

Review Questions 625

7. Which of the following is an example of a relationship that would be portrayed as an extend
relationship in a use case diagram for a hospital?

a. the relationship between the head nurse and the floor nurses
b. admitting a patient who has never been admitted before
c. serving a meal
d. scheduling the monitoring of patients’ vital signs

8. The people shown in use case diagrams are called .

a. workers
b. clowns
c. actors
d. relatives

9. One aspect of use case diagrams that makes them difficult to learn about is that .

a. they require programming experience to understand
b. they use a technical vocabulary
c. there is no single right answer for any case
d. all of the above

10. The arithmetic association relationship between a college student and college courses would be
expressed as .

a. 1 0
b. 1 1
c. 1 0..*
d. 0..* 0..*

11. In the UML, object diagrams are most similar to diagrams.

a. use case
b. activity
c. class
d. sequence

12. In any given situation, you should choose the type of UML diagram that is .

a. shorter than others
b. clearer than others
c. more detailed than others
d. closest to the programming language you will use to implement the system

13. A whole-part relationship can be described as a(n) relationship.

a. parent-child
b. is-a
c. has-a
d. creates-a

Chapter 15 • System Modeling with the UML626

14. The timing of events is best portrayed in a(n) diagram.

a. sequence
b. use case
c. communication
d. association

15. A communication diagram is closest to a(n) diagram.

a. activity
b. use case
c. deployment
d. sequence

16. A(n) diagram shows the different statuses of a class or object at different points
in time.

a. activity
b. state machine
c. sequence
d. deployment

17. The UML diagram that most closely resembles a conventional flowchart is a(n)
diagram.

a. activity
b. state machine
c. sequence
d. deployment

18. You use a diagram when you want to emphasize the files, database tables,
documents, and other components that a system’s software uses.

a. state machine
b. component
c. deployment
d. use case

19. The UML diagram that focuses on a system’s hardware is a(n) diagram.

a. deployment
b. sequence
c. activity
d. use case

20. When using the UML to describe a single system, most designers would use .

a. a single type of diagram
b. at least three types of diagrams
c. most of the available types of diagrams
d. all 13 types of diagrams

Exercises 627

FIND THE BUGS

Because of the nature of this chapter, there are no debugging exercises.

EXERCISES

1. Complete the following tasks:

a. Develop a use case diagram for a convenience food store. Include an actor representing the store manager
and use cases for orderItem(), stockItem(), and sellItem().

b. Add more use cases to the diagram you created in Exercise 1a. Include two generalizations for
stockItem(): stockPerishable() and stockNonPerishable(). Also include an extension
to sellItem() called checkCredit() for when a customer purchases items using a credit card.

c. Add a customer actor to the use case diagram you created in Exercise 1b. Show that the customer partici-
pates in sellItem(), but not in orderItem() or stockItem().

2. Develop a use case diagram for a department store credit card system. Include at least two actors
and four use cases.

3. Develop a use case diagram for a college registration system. Include at least three actors and five
use cases.

4. Develop a class diagram for a Video class that describes objects a video store customer can rent.
Include at least four attributes and three methods.

5. Develop a class diagram for a Shape class. Include generalizations for child classes Rectangle,
Circle, and Triangle.

6. Develop a class diagram for a BankLoan class. Include generalizations for child classes
Mortgage, CarLoan, and EducationLoan.

7. Develop a class diagram for a college registration system. Include at least three classes that coop-
erate to achieve student registration.

8. Develop a sequence diagram that shows how a clerk at a mail-order company places a customer
Order. The Order accesses Inventory to check availability. Then, the Order accesses
Invoice to produce a customer invoice that returns to the clerk.

9. Develop a state machine diagram that shows the states of a CollegeStudent from
PotentialApplicant to Graduate.

10. Develop a state machine diagram that shows the states of a Book from Concept to
Publication.

11. Develop an activity diagram that illustrates how to build a house.

12. Develop an activity diagram that illustrates how to prepare dinner.

Chapter 15 • System Modeling with the UML628

13. Develop the UML diagram of your choice that illustrates some aspect of your life.

14. Complete the following tasks:

a. Develop the UML diagram of your choice that best illustrates some aspect of a place you have worked.
b. Develop a different UML diagram type that illustrates the same functions as the diagram you created in

Exercise 14a.

DETECTIVE WORK

1. What are the education requirements for a career in system design? What are the job prospects
and average salaries?

2. Find any discussion you can on the advantages and disadvantages of the UML as a system design
tool. Summarize your findings.

UP FOR DISCUSSION

1. Which do you think you would enjoy doing more on the job—designing large systems that contain
many programs, or writing the programs themselves? Why?

2. In Chapter 11, you considered ethical dilemmas in writing a program that selects candidates for
organ transplants. Are the ethical responsibilities of a system designer different from those of a
programmer? If so, how?

16
After studying Chapter 16, you should be able to:

� Understand relational database fundamentals

� Create databases and table descriptions

� Identify primary keys

� Understand database structure notation

� Understand the principles of adding, deleting, updating, and sorting records within a table

� Write queries

� Understand relationships between tables and functional dependence between columns

� Recognize poor table design

� Understand anomalies, normal forms, and the normalization process

� Understand the performance and security issues connected to database administration

USING RELATIONAL DATABASES

629

630 Chapter 16 • Using Relational Databases

UNDERSTANDING RELATIONAL DATABASE FUNDAMENTALS

When you store data items for use within computer systems, they are often stored in what is known as a data
hierarchy, where the smallest usable unit of data is the character, often a letter or number. Characters are grouped
together to form fields, such as firstName, lastName, and socialSecurityNumber. Related fields are
often grouped together to form records—groups of fields that go together because they represent attributes of some
entity, such as an employee, a customer, an inventory item, or a bank account. Files are composed of related records;
for example, a file might contain a record for each employee in a company or each account at a bank.

You first learned about the data hierarchy in Chapter 1 of this book. The terms character,
field, record, and file were defined there, and you have been using these terms throughout
this book.

Most organizations store many files that contain the data they need to operate their businesses; for example,
businesses often need to maintain files containing data about employees, customers, inventory items, and orders. Many
organizations use database software to organize the information in these files. A database holds a group of files that an
organization needs to support its applications. In a database, the files often are called tables because you can arrange
their contents in rows and columns. Real-life examples of database-like tables abound. For example, consider the
listings in a telephone book. Each listing in a city directory might contain four columns, as shown in Figure 16-1—last
name, first name, street address, and phone number. Although your local phone directory might not store its data in the
rigid columnar format shown in the figure, it could. You can see that each column represents a field and that each row
represents one record. You can picture a table within a database in the same way.

One record or row is also sometimes called an entity; however, many definitions of
“entity” exist in database texts. One column (field) can also be called an attribute.

Figure 16-1 includes five records, each representing a unique person. It is relatively easy to scan this short list of
names to find a person’s phone number; of course, telephone books contain many more records. Some telephone book
users, such as telemarketers or even the phone company, might prefer to look up a number in a book in which the
records are organized in telephone-number order. Others, such as door-to-door salespeople, might prefer a telephone
book in which the records are organized in street-address order. Most people, however, prefer a telephone book in

FIGURE 16-1: A TELEPHONE BOOK TABLE

Last name First name Address Phone

Abbott William 123 Oak Lane 490-8920

Ackerman Kimberly 467 Elm Drive 787-2781

Adams Stanley 8120 Pine Street 787-0129

Adams Violet 347 Oak Lane 490-8912

Adams William 12 Second Street 490-3667

TIP�

TIP�

631Understanding Relational Database Fundamentals

which the records are organized as shown, in alphabetical order by last name. It is most convenient for different users
when computerized databases can sort records in various orders based on the contents of different columns.

Unless you are reading a telephone book for a very small town, a last name alone often is not sufficient to identify a
person. In the example in Figure 16-1, three people have the last name of Adams. For these records, you need to
examine the first name before you can determine the correct phone number. In a large city, many people might have
the same first and last names; in that case, you might also need to examine the street address to identify a person. As
with the telephone book, in most computerized database tables, it is important to have a way to uniquely identify each
record, even if it means using multiple columns. A value that uniquely identifies a record is called a primary key, or a
key for short. Key fields often are defined as a single table column, but as with the telephone book, keys can be
constructed from multiple columns; a key constructed from multiple columns is a compound key.

You learn more about key fields and compound keys later in this chapter. Compound keys
also are known as composite keys.

Telephone books are republished periodically because changes have occurred—new people have moved into the city
and become telephone customers, and others have left, canceled service, or changed phone numbers. With
computerized database tables, you also need to add, delete, and modify records, although usually far more frequently
than phone books are published.

Telephone books often contain thousands of records. Computerized database tables also frequently contain thousands
of records, or rows, and each row might contain entries in dozens of columns. Handling and organizing all the data
contained in an organization’s tables requires sophisticated software. Database management software is a set of
programs that allows users to:

� Create table descriptions.

� Identify keys.

� Add, delete, and update records within a table.

� Arrange records within a table so they are sorted by different fields.

� Write questions that select specific records from a table for viewing.

� Write questions that combine information from multiple tables. This is possible because the
database management software establishes and maintains relationships between the columns
in the tables. A group of database tables from which you can make these connections is a
relational database.

� Create reports that allow users to easily interpret your data, and create forms that allow users to
view and enter data using an easy-to-manage interactive screen.

� Keep data secure by employing sophisticated security measures.

If you have used different word-processing or spreadsheet programs, you know that each version works a little
differently, although each carries out the same types of tasks. Like other computer programs, each database
management software package operates differently; however, with each, you need to perform the same types of tasks.

TIP�

632 Chapter 16 • Using Relational Databases

CREATING DATABASES AND TABLE DESCRIPTIONS

Creating a useful database requires a lot of planning and analysis. You must decide what data will be stored, how that
data will be divided between tables, and how the tables will interrelate. Before you create any tables, you must create
the database itself. With most database software packages, creating the database that will hold the tables requires
nothing more than providing a name for the database and indicating the physical location, perhaps a hard disk drive,
where the database will be stored. When you save a table, it is conventional to provide it with a name that begins with
the prefix “tbl”—for example, tblCustomers. Your databases often become filled with a variety of objects—tables,
forms that users can use for data entry, reports that organize the data for viewing, queries that select subsets of data
for viewing, and so on. Using naming conventions, such as beginning each table name with a prefix that identifies it as
a table, helps you to keep track of the various objects in your system.

Many database management programs suggest that you use a generic name such as Table1
when you save a table description. Usually, a more descriptive name is more useful to you
as you continue to create objects.

Before you can enter any data into a database table, you must design the table. At minimum, this involves two tasks:

� You must decide what columns your table needs, and provide names for them.

� You must provide a data type for each column.

For example, assume you are designing a customer database table. Figure 16-2 shows some column names and data
types you might use.

A table description closely resembles the record descriptions you have used with data
files throughout this book.

It is important to think carefully about the original design of a database. After the data-
base has been created and data has been entered, it could be difficult and time-consuming
to make changes.

FIGURE 16-2: CUSTOMER TABLE DESCRIPTION

Column Data type

customerID text

lastName text

firstName text

streetAddress text

balanceOwed numeric

TIP�

TIP�

TIP�

633Creating Databases and Table Descriptions

The table description in Figure 16-2 uses just two data types—text and numeric. Text columns can hold any type of
characters—letters or digits. Numeric columns can hold numbers only. Depending on the database management
software you use, you might have many more sophisticated data types at your disposal. For example, some database
software divides the numeric data type into several subcategories such as integer (whole number only) values and
double-precision numbers (numbers that contain decimals). Other options might include special categories for currency
numbers (representing dollars and cents), dates, and Boolean columns (representing true or false). At the least, all
database software recognizes the distinction between text and numeric data.

You have been aware of the distinction that computers make between character and
numeric data throughout this book. Because of the way computers handle data, every type
of software observes this distinction. Throughout this book, the term “char” has been used
to describe text fields. The term “text” is used in this chapter only because it is the term
that popular database packages use.

Unassigned variables within computer programs might be empty (containing a null
value), or might contain unknown or garbage values. Similarly, columns in database
tables might also contain null or unknown values. When a field in a database contains a
null value, it does not mean that the field holds a 0 or a space; it means that no data has
been entered for the field at all. Although “null” and “empty” are used synonymously by
many database developers, the terms have slightly different meanings to Visual Basic
programmers.

The table description in Figure 16-2 uses one-word column names and camel casing, in the same way that variable
names have been defined throughout this book. Many database software packages do not require that data column
names be single words without embedded spaces, but many database table designers prefer single-word names
because they resemble variable names in programs. In addition, when you write programs that access a database
table, the single-word field names can be used “as is,” without special syntax to indicate the names that represent a
single field. As a further advantage, when you use a single word to label each database column, it is easier to
understand whether just one column is being referenced, or several.

The customerID column in Figure 16-2 is defined as a text field or text column. If customerID numbers are
composed entirely of digits, this column could also be defined as numeric. However, many database designers feel that
columns should be defined as numeric only if they need to be—that is, only if they might be used in arithmetic
calculations. The description in Figure 16-2 follows this convention by declaring customerID to be a text column.

Many database management software packages allow you to add a narrative description of each data column to a
table. This allows you to make comments that become part of the table. These comments do not affect the way the
table operates; they simply serve as documentation for those who are reading a table description. For example, you
might want to make a note that customerID should consist of five digits, or that balanceOwed should not exceed
a given limit. Some software allows you to specify that values for a certain column are required—the user cannot create a
record without providing data for these columns. In addition, you might be able to indicate value limits for a column—high and
low numbers between which the column contents must fall.

TIP�

TIP�

634 Chapter 16 • Using Relational Databases

IDENTIFYING PRIMARY KEYS

In most tables you create for a database, you want to identify a column, or possibly a combination of columns, as the
table’s key column or field, also called the primary key. The primary key in a table is the column that makes each record
different from all others. For example, in the customer table in Figure 16-2, the logical choice for a primary key is the
customerID column—each customer record that is entered into the customer table has a unique value in this
column. Many customers might have the same first name or last name (or both), and multiple customers also might
have the same street address or balance due. However, each customer possesses a unique ID number.

Other typical examples of primary keys include:

� A student ID number in a table that contains college student information

� A part number in a table that contains inventory items

� A Social Security number in a table that contains employee information

In each of these examples, the primary key uniquely identifies the row. For example, each student has a unique ID
number assigned by the college. Other columns in a student table would not be adequate keys—many students have
the same last name, first name, hometown, or major.

It is no coincidence that each of the preceding examples of a key is a number, such as a
student ID number or item number. Usually, assigning a number to each row in a table is
the simplest and most efficient method of obtaining a useful key. However, it is possible
that a table’s key could be a text field.

The primary key is important for several reasons:

� You can configure your database software to prevent multiple records from containing the same
value in this column, thus avoiding data-entry errors.

� You can sort your records in this order before displaying or printing them.

� You use this column when setting up relationships between this table and others that will
become part of the same database.

� In addition, you need to understand the concept of the primary key when you normalize
a database—a concept you will learn more about later in this chapter.

In some database software packages, such as Microsoft Access, you indicate a primary
key simply by selecting a column name and clicking a button that is labeled with
a key icon.

In some tables, when no identifying number has been assigned to the rows, more than one column is required to
construct a primary key. A multicolumn key is a compound key. For example, consider Figure 16-3, which might be
used by a residence hall administrator to store data about students living on a university campus. Each room in a
building has a number and two students, each assigned to either bed A or bed B.

TIP�

TIP�

635Creating Databases and Table Descriptions

In Figure 16-3, no single column can serve as a primary key. Many students live in the same residence hall, and the
same room numbers exist in the different residence halls. In addition, some students have the same last name, first
name, or major. It is even possible that two students with the same first name, last name, or major are assigned to the
same room. In this case, the best primary key is a multicolumn key that combines residence hall, room number, and
bed number (hall, room, and bed). “Adams 101 A” identifies a single room and student, as does “Churchill 102 B”.

A primary key should be immutable, meaning that a value does not change during
normal operation. In other words, in Figure 16-3, “Adams 102 A” will always pertain to a
fixed location, even though the resident or her major might change. Of course, the school
might choose to change the name of a residence hall—for example, to honor a
benefactor—but that action would fall outside the range of “normal operation.” (In
object-oriented programming, a class is immutable if it contains no methods that allow
changes to its attributes after construction.)

Sometimes, there are several columns that could serve as the key. For example, if an
employee record contains both a company-assigned employee ID and a Social Security
number, then both columns are candidate keys. After you choose a primary key from
among candidate keys, the remaining candidate keys become alternate keys.

Even if there were only one student named Smith, for example, or only one Psychology
major in the table in Figure 16-3, those fields still would not be good primary key candi-
dates because of the potential for future Smiths and Psychology majors within the data-
base. Analyzing existing data is not a foolproof way to select a good key; you must also
consider likely future data.

FIGURE 16-3: TABLE CONTAINING RESIDENCE HALL STUDENT RECORDS

hall room bed lastName firstName major

Adams 101 A Fredricks Madison Chemistry

Adams 101 B Garza Lupe Psychology

Adams 102 A Liu Jennifer CIS

Adams 102 B Smith Crystal CIS

Browning 101 A Patel Sarita CIS

Browning 101 B Smith Margaret Biology

Browning 102 A Jefferson Martha Psychology

Browning 102 B Bartlett Donna Spanish

Churchill 101 A Wong Cheryl CIS

Churchill 101 B Smith Madison Chemistry

Churchill 102 A Patel Jennifer Psychology

Churchill 102 B Jones Elizabeth CIS

TIP�

TIP�

TIP�

636 Chapter 16 • Using Relational Databases

As an alternative to selecting three columns to create the compound key for the table in
Figure 16-3, many database designers prefer to simply add a new column containing a
bed location ID number that would uniquely identify each row. Many database designers
feel that a primary key should be short to minimize the amount of storage required for it
in all the tables that refer to it.

Usually, after you have identified the necessary fields and their data types, and identified the primary key, you are ready
to save your table description and begin to enter data.

UNDERSTANDING DATABASE STRUCTURE NOTATION

A shorthand way to describe a table is to use the table name followed by parentheses containing all the field names,
with the primary key underlined. Thus, when a table is named tblStudents and contains columns named
idNumber, lastName, firstName, and gradePointAverage, and idNumber is the key, you can
reference the table using the following notation:

tblStudents(idNumber, lastName, firstName, gradePointAverage)

Although this shorthand notation does not provide you with information about data types or range limits on values, it
does provide you with a quick overview of the structure of a table.

Some database designers insert an asterisk after the key instead of underlining it.

The key does not have to be the first attribute listed in a table reference, but frequently it is.

ADDING, DELETING, AND UPDATING RECORDS WITHIN TABLES

Entering data into an already created table is not difficult, but it requires a good deal of time and accurate typing.
Depending on the application, the contents of the tables might be entered over the course of many months or years by
any number of data-entry personnel. Entering data of the wrong type is not allowed by most database software. In
addition, you might have set up your table to prevent duplicate data in specific fields, or to prevent data entry outside of
specified bounds in other fields. With some database software, you type data into rows representing each record, and
columns representing each field in each record, much as you would enter data into a spreadsheet. With other software,
you can create on-screen forms to make data entry more user-friendly. Some software does not allow you to enter a
partial record; that is, you might not be allowed to leave any fields blank.

Computer professionals use the acronym GIGO, which stands for “garbage in, garbage
out.” It means that if you enter invalid input data into an application, the output results
will be worthless. You first learned this expression in Chapter 10.

Deleting records from and modifying records within a database table are also relatively easy tasks. In most
organizations, most of the important data is in a constant state of change. Maintaining the data records so they are up
to date is a vital part of any database management system.

TIP�

TIP�

TIP�

TIP�

637Creating Databases and Table Descriptions

In many database systems, some “deleted” records are not physically removed. Instead,
they are just marked as deleted so they will not be used to process active records. For
example, a company might want to retain data about former employees, but not process
them with current personnel reports. On the other hand, an employee record that was
entered by mistake would be permanently removed from the database.

SORTING THE RECORDS IN A TABLE

Database management software generally allows you to sort a table based on any column, letting you view your data in
the way that is most useful to you. For example, you might want to view inventory items in alphabetical order, or from
the most to the least expensive. You also can sort by multiple columns—for example, you might sort employees by first
name within last name (so that Aaron Black is listed before Andrea Black), or by department within first name within last
name (so that Aaron Black in Department 1 is listed before another Aaron Black in Department 6).

When performing sorts on multiple fields, the software sorts first by a primary sort—
for example, last name. After all those with the same primary sort key are grouped, the
software sorts by the secondary key—for example, first name.

After rows are sorted, they usually can be grouped. For example, you might want to sort customers by their zip code, or
employees by the department in which they work; in addition, you might want counts or subtotals at the end of each
group. Database software provides the means to create displays in the formats that suit your present information needs.

When a database program includes counts or totals at the end of each sorted group, it is
creating a control break report. You learned about control break reports in Chapter 7.

CREATING QUERIES

Data tables often contain hundreds or thousands of rows; making sense out of that much information is a daunting
task. Frequently, you want to cull subsets of data from a table you have created. For example, you might want to view
only those customers with an address in a specific state, only those inventory items whose quantity in stock has fallen
below the normal reorder point, or only those employees who participate in an insurance plan. Besides limiting records,
you might also want to limit the columns that you view. For example, student records might contain dozens of fields, but
a school administrator might only be interested in looking at names and grade point averages. The questions that cause
the database software to extract the appropriate records from a table and specify the fields to be viewed are called
queries; a query is simply a question asked using the syntax that the database software can understand.

Depending on the software you use, you might create a query by filling in blanks (a process called query by example) or
by writing statements similar to those in many programming languages. The most common language that database admin-
istrators use to access data in their tables is Structured Query Language, or SQL. The basic form of the SQL command
that retrieves selected records from a table is SELECT-FROM-WHERE. The SELECT-FROM-WHERE SQL statement:

� Selects the columns you want to view

� From a specific table

� Where one or more conditions are met

TIP�

TIP�

TIP�

638 Chapter 16 • Using Relational Databases

“SQL” frequently is pronounced “sequel”; however, several SQL product Web sites insist
that the official pronunciation is “S-Q-L.” Similarly, some people pronounce GUI as
“gooey” and others insist that it should be “G-U-I.” In general, a preferred pronunciation
evolves in an organization. The TLA, or three-letter abbreviation, is the most popular type
of abbreviation in technical terminology.

For example, suppose a customer table named tblCustomer contains data about your business customers and
that the structure of the table is tblCustomer(custId, lastName, state). Then, a statement such as:

SELECT custId, lastName FROM tblCustomer WHERE state = “WI”

would display a new table containing two columns—custId and lastName—and only as many rows as needed
to hold those customers whose state column contains “WI”. Besides using = to mean “equal to,” you can use the
comparison conditions > (greater than), < (less than), >= (greater than or equal to), and <= (less than or equal to). As
you have already learned from working with programming variables throughout this book, text field values are always
contained within quotes, whereas numeric values are not.

Conventionally, SQL keywords such as SELECT appear in all uppercase; this book
follows that convention.

In database management systems, a particular way of looking at a database is sometimes
called a view. Typically, a view arranges records in some order and makes only certain
fields visible. The different views provided by database software are virtual; that is, they
do not affect the physical organization of the database.

To select all fields for each record in a table, you can use the asterisk as a wildcard; a wildcard is a symbol that means
“any” or “all.” For example, SELECT * from tblCustomer WHERE state = “WI” would select all columns
for every customer whose state is “WI”, not just specifically named columns. To select all customers from a table, you
can omit the WHERE clause in a SELECT-FROM-WHERE statement. In other words, SELECT * FROM
tblCustomer selects all columns for all customers.

You learned about making selections in computer programs much earlier in this book, and you have probably noticed
that SELECT-FROM-WHERE statements serve the same purpose as programming decisions. As with decision
statements in programs, when using SQL, you can create compound conditions using AND or OR operators. In addi-
tion, you can precede any condition with a NOT operator to achieve a negative result. In summary, Figure 16-4 shows
a database table named tblInventory with the following structure: tblInventory(itemNumber,
description, quantityInStock, price). The table contains five records. Figure 16-5 lists several
typical SQL SELECT statements you might use with tblInventory, and explains each.

TIP�

TIP�

TIP�

639Understanding Table Relationships

UNDERSTANDING TABLE RELATIONSHIPS

Most database applications require many tables, and these applications also require that the tables be related. The
connection between two tables is a relationship, and the database containing the relationships is called a relational
database. Connecting two tables based on the values in a common column is called a join operation, or more simply, a
join; the column on which they are connected is the join column. A virtual, or imaginary, table that is displayed as the
result of the query takes some of its data from each joined table. For example, in Figure 16-6, the customerNumber
column is the join column that could produce a virtual image when a user makes a query. When a user asks to see the

FIGURE 16-5: SAMPLE SQL STATEMENTS AND EXPLANATIONS

SQL statement Explanation

SELECT itemNumber, price FROM Shows only the item number and price for

tblInventory all five records.

SELECT * FROM tblInventory WHERE Shows all fields from only those records

price > 5.00 where price is over $5.00—items 144

and 312.

SELECT itemNumber FROM tblInventory Shows item number 144—the only record

WHERE quantityInStock > 200 AND that has a quantity greater than 200 as

price > 10.00 well as a price greater than $10.00.

SELECT description, price FROM Shows the description and price fields

tblInventory WHERE description = for the package of 12 party plates and

“Pkg 20 napkins” OR itemNumber < 200 the package of 20 napkins. Each selected

record must satisfy only one of the two

criteria.

SELECT itemNumber FROM tblInventory Shows the item number for the only

WHERE NOT price < 14.00 record where the price is not less

than $14.00—item 144.

FIGURE 16-4: THE tblInventory TABLE

itemNumber description quantityInStock price

144 Pkgƒ12ƒpartyƒplates 250 $14.99

231 Heliumƒballoons 180 ƒ$2.50

267 Paperƒstreamers ƒ68 ƒ$1.89

312 Disposableƒtablecloth ƒ20 ƒ$6.99

383 Pkgƒ20ƒnapkins 315 ƒ$2.39

640 Chapter 16 • Using Relational Databases

name of a customer associated with a specific order number, or a list of all the names of customers who have ordered a
specific item, then a joined table is produced. The three types of relationships that can exist between tables are:

� One-to-many

� Many-to-many

� One-to-one

UNDERSTANDING ONE-TO-MANY RELATIONSHIPS

A one-to-many relationship is one in which one row in a table can be related to many rows in another table. It is the
most common type of relationship between tables. Consider the following tables:

tblCustomers(customerNumber, customerName)
tblOrders(orderNumber, customerNumber, orderQuantity, orderItem, orderDate)

The tblCustomers table contains one row for each customer, and customerNumber is the primary key. The
tblOrders table contains one row for each order, and each order is assigned an orderNumber, which is the
primary key in this table.

In most businesses, a single customer can place many orders. For example, in the sample data in Figure 16-6,
customer 215 has placed three orders. One row in the tblCustomers table can correspond to, and can be related
to, many rows in the tblOrders table. This means there is a one-to-many relationship between the two tables
tblCustomers and tblOrders. The “one” table (tblCustomers) is the base table in this relationship, and
the “many” table (tblOrders) is the related table.

When two tables are related in a one-to-many relationship, the relationship occurs based on the values in one or more
columns in the tables. In this example, the column, or attribute, that links the two tables together is the
customerNumber attribute. In the tblCustomers table,customerNumber is the primary key, but in the
tblOrders table,customerNumber is not a key—it is a non-key attribute. When a column that is not a key in a

tblCustomers

customerNumber

214

215

216

217

218

customerName

Kowalski

Jackson

Lopez

Thompson

Vitale

tblOrders

orderNumber

10467

10468

10469

10470

10471

10472

10473

customerNumber

215

218

215

216

214

215

217

orderQuantity

2

1

4

12

4

1

10

orderDate

10/15/2007

10/15/2007

10/16/2007

10/16/2007

10/16/2007

10/16/2007

10/17/2007

orderItem

HP203

JK109

HP203

ML318

JK109

HP203

JK109

FIGURE 16-6: SAMPLE CUSTOMERS AND ORDERS

641Understanding Table Relationships

table contains an attribute that is a key in a related table, the column is called a foreign key. When a base table is linked to a
related table in a one-to-many relationship, it is always the primary key of the base table that is related to the foreign key in the
related table. In this example,customerNumber in the tblOrders table is a foreign key.

A key in a base table and the foreign key in the related table do not need to have the same
name; they only need to contain the same type of data. Some database management soft-
ware programs automatically create a relationship for you if the columns in two tables you
select have the same name and data type. However, if this is not the case (for example, if
the column is named customerNumber in one table and custID in another), you can
explicitly instruct the software to create the relationship.

UNDERSTANDING MANY-TO-MANY RELATIONSHIPS

Another example of a one-to-many relationship is depicted with the following tables:

tblItems(itemNumber, itemName, itemPurchaseDate, itemPurchasePrice,
itemCategoryId)

tblCategories(categoryId, categoryName, categoryInsuredAmount)

Assume you are creating these tables to keep track of all the items in your household for insurance purposes. You want
to store data about items such as your sofa, stereo, refrigerator, and so on. The tblItems table contains the name,
purchase date, and purchase price of each item. In addition, this table contains the ID number of the item category
(Appliance, Jewelry, Antique, and so on) to which the item belongs. You need the category of each item because your
insurance policy has specific coverage limits for different types of property. For example, with many insurance policies,
antiques might have a different coverage limit than appliances, or jewelry might have a different limit than furniture.
Sample data for these tables is shown in Figure 16-7.

The primary key of the tblItems table is itemNumber, a unique identifying number that you have assigned to
each item that you own. (You might even prepare labels with these numbers and stick a label on each item in an
inconspicuous place.) The tblCategories table contains the category names and the maximum insured amounts
for the specific categories. For example, one row in this table may have a categoryName of “Jewelry” and a
categoryInsuredAmount of $15,000. The primary key for the tblCategories table is categoryId,
which is simply a uniquely assigned value for each property category.

The two tables in Figure 16-7 have a one-to-many relationship. Which is the “one” table and which is the “many” table?
Or, asked in another way, which is the base table and which is the related table? You have probably determined that the
tblCategories table is the base table (the “one” table) because one category can describe many items that you
own. Therefore, the tblItems table is the related table (the “many” table); that is, there are many items that fall into
each category. The two tables are linked with the categoryId attribute, which is the primary key in the base table
(tblCategories) and a foreign key in the related table (tblItems).

TIP�

642 Chapter 16 • Using Relational Databases

In the tables in Figure 16-7, one row in the tblCategories table relates to multiple items you own. The opposite
is not true—that is, one item in the tblItems table cannot relate to multiple categories in the tblCategories
table. The row in the tblItems table that describes the “rectangular pine coffee table” relates to one specific
category in the tblCategories table—the Furniture category. However, what if you own a rectangular pine coffee
table that has a built-in DVD player, or a diamond ring that is an antique, or a stereo that could also be worn as a hat on
a rainy day? Even though this last example is humorous, it does bring up an important consideration.

The structure of the tables shown in Figure 16-7 and the relationship between those tables are designed to support a
particular application—keeping track of possessions for insurance purposes. If you acquired a sofa with a built-in CD
player and speakers, what would you do? For guidance, you probably would call your insurance agent. If the agent said,
“Well, for insurance purposes that item is considered a piece of furniture,” then the existing table structures and
relationships are adequate.

However, if the insurance agent said, “Well, actually a sofa with a CD player is considered a special type of hybrid item,
and that category of property has a specific maximum insured amount,” then you could simply create a new row in the
tblCategories table to describe this special hybrid category—perhaps Electronic Furniture. This new category
would acquire a category number, and then you could associate the CD-sofa to the new category using the foreign key
in the tblItems table.

tblItems

itemNumber

1

2

3

4

5

6

7

itemName

Sofa

Stereo

Refrigerator

Diamond ring

TV

Rectangular pine coffee table

Round pine end table

itemPurchaseDate

1/13/2001

2/10/2003

5/12/2003

2/12/2004

7/11/2004

4/21/2005

4/21/2005

$6,500

$1,200

$750

$42,000

$285

$300

$200

itemCategoryId

5

6

1

2

6

5

5

tblCategories

categoryId

1

2

3

4

5

6

7

categoryName

Appliance

Jewelry

Antique

Clothing

Furniture

Electronics

Miscellaneous

$30,000

$15,000

$10,000

$25,000

$5,000

$2,500

$5,000

FIGURE 16-7: SAMPLE ITEMS AND CATEGORIES: A ONE-TO-MANY RELATIONSHIP

categoryInsuredAmount

itemPurchasePrice

643Understanding Table Relationships

However, what if your insurance agent said, “You know, that’s a good question. We’ve never had that come up before—
a sofa with a CD player. What we would probably do if you filed a claim because the sofa was damaged is to take a look
at it to try to determine whether the sofa is mostly a piece of furniture or mostly a piece of electronics.” This answer
presents a problem to your database. You may want to categorize your new sofa as both a furniture item and an
electronic item. The existing table structures, with their one-to-many relationship, would not support this because the
current design limits any specific item to one and only one category. When you insert a row into the tblItems table
to describe the new CD-sofa, you can assign the Furniture code to the foreign key itemCategory, or you can
assign the Electronics code, but not both.

If you want to assign the new CD-sofa to both categories (Furniture and Electronics), you have to change the design of
the table structures and relationships, because there is no longer a one-to-many relationship between the two tables.
Now, there is a many-to-many relationship—one in which multiple rows in each table can correspond to multiple
rows in the other. That is, in this example, one row in the tblCategories table (for example, Furniture) can relate
to many rows in the tblItems table (for example, sofa and coffee table), and one row in the tblItems table (for
example, the sofa with the built-in CD player) can relate to multiple rows in the tblCategories table.

The tblItems table contains a foreign key named itemCategoryId. If you want to change the application so
that one specific row in the tblItems table can link to many rows (and, therefore, many categoryIds) in the
tblCategories table, you cannot continue to maintain the foreign key itemCategoryId in the tblItems
table, because one item may be assigned to many categories. You could change the structure of the tblItems table
so that you can assign multiple itemCategoryIds to one specific row in that table, but as you will learn later in
this chapter, that approach leads to many problems using the data. Therefore, it is not an option.

The simplest way to support a many-to-many relationship between the tblItems and tblCategories tables is
to remove the itemCategoryId attribute (what was once the foreign key) from the tblItems table, producing:

tblItems(itemNumber, itemName, itemPurchaseDate, itemPurchasePrice)

The tblCategories table structure remains the same:

tblCategories(categoryId, categoryName, categoryInsuredAmount)

With just the preceding two tables, there is no way to know that any specific row(s) in the tblItems table link(s) to any
specific row(s) in the tblCategories table, so you create a new table called tblItemsCategories that con-
tains the primary keys from the two tables that you want to link in a many-to-many relationship. This table is depicted as:

tblItemsCategories(itemNumber, categoryId)

Notice that this new table contains a compound primary key—both itemNumber and categoryId are under-
lined. The itemNumber value of 1 might be associated with many categoryIds. Therefore, itemNumber
alone cannot be the primary key because the same value may occur in many rows. Similarly, a categoryId might
relate to many different itemNumbers; this would disallow using just the categoryId as the primary key.

644 Chapter 16 • Using Relational Databases

However, a combination of the two attributes itemNumber and categoryId results in a unique primary key
value for each row of the tblItemsCategories table.

The purpose of all this is to create a many-to-many relationship between the tblItems and tblCategories
tables. The tblItemsCategories table contains two attributes; together, these attributes are the primary key.
In addition, each of these attributes separately is a foreign key to one of the two original tables. The itemNumber
attribute in the tblItemsCategories table is a foreign key that links to the primary key of the tblItems
table. The categoryId attribute in the tblItemsCategories table links to the primary key of the
tblCategories table. Now, there is a one-to-many relationship between the tblItems table (the “one,” or
base table) and the tblItemsCategories table (the “many,” or related table) and a one-to-many relationship
between the tblCategories table (the “one,” or base table) and the tblItemsCategories table (the
“many,” or related table). This, in effect, implies a many-to-many relationship between the two base tables
(tblItems and tblCategories).

Figure 16-8 shows the new tables holding a few items. The sofa (itemNumber 1) in the tblItems table is
associated with the Furniture category (categoryId 5) in the tblCategories table because the first row of
the tblItemsCategories table contains a 1 and a 5. Similarly, the stereo (itemNumber 2) in the
tblItems table is associated with the Electronics category (categoryId 6) in the tblCategories table
because in the tblItemsCategories table there is a row containing the values 2, 6.

tblItems

itemNumber

1

2

3

4

5

itemName

Sofa

Stereo

Sofa with CD player

Table with DVD player

Granpa’s pocket watch

itemPurchaseDate

1/13/2001

2/10/2003

5/24/2005

6/24/2005

12/24/1927

$6,500

$1,200

$8,500

$12,000

$100

tblItemsCategories

itemNumber

1

2

3

3

4

4

5

5

categoryId

5

6

5

6

5

6

2

3

tblCategories

categoryId

1

2

3

4

5

6

7

categoryName

Appliance

Jewelry

Antique

Clothing

Furniture

Electronics

Miscellaneous

$30,000

$15,000

$10,000

$25,000

$5,000

$2,500

$5,000

FIGURE 16-8: SAMPLE ITEMS, CATEGORIES, AND ITEM CATEGORIES: A MANY-TO-MANY RELATIONSHIP

itemPurchasePrice

categoryInsuredAmount

645Recognizing Poor Table Design

The fancy sofa with the built-in CD player (itemNumber 3 in the tblItems table) occurs in two rows in the
tblItemsCategories table, once with a categoryId of 5 (Furniture) and once with a categoryId of 6
(Electronics). Similarly, the table with the DVD player and Grandpa’s pocket watch both belong to multiple categories. It
is the tblItemsCategories table, then, that allows the establishment of a many-to-many relationship between
the two base tables, tblItems and tblCategories.

UNDERSTANDING ONE-TO-ONE RELATIONSHIPS

In a one-to-one relationship, a row in one table corresponds to exactly one row in another table. This type of
relationship is easy to understand, but is the least frequently encountered. When one row in a table corresponds to a
row in another table, the columns could be combined into a single table. A common reason you create a one-to-one
relationship is security. For example, Figure 16-9 shows two tables, tblEmployees and tblSalaries. Each
employee in the tblEmployees table has exactly one salary in the tblSalaries table. The salaries could
have been added to the tblEmployees table as an additional column; the salaries are separate only because you
want some clerical workers to be allowed to view only names, addresses, and other nonsensitive data, so you give them
permission to access only the tblEmployees table. Others who work in payroll or administration can create
queries that allow them to view joined tables that include the salary information.

Another reason to create tables with one-to-one relationships is to avoid lots of empty
columns, or nulls, if a certain subset of columns is applicable only to specific types of
rows in the main table.

You learn more about security issues later in this chapter.

RECOGNIZING POOR TABLE DESIGN

As you create database tables that will hold the data an organization needs, you will encounter many occasions when
the table design, or structure, is inadequate to support the needs of the application. In other words, even if a table con-
tains all the attributes required by a specific application, the structural design of the table may make the application
cumbersome to use (you will see examples of this later) and prone to data errors.

tblEmployees

empId

101

102

103

empLast

Parker

Walters

Shannon

empFirst

Laura

David

Ewa

empDept

3

4

3

empHireDate

4/07/1998

1/19/1999

2/28/2003

tblSalaries

empId

101

102

103

empSalary

$42,500

$28,800

$36,000

FIGURE 16-9: EMPLOYEES AND SALARIES TABLES: A ONE-TO-ONE RELATIONSHIP

TIP�

TIP�

646 Chapter 16 • Using Relational Databases

For example, assume that you have been hired by an Internet-based college to design a database to keep track of its
students. After meeting with the college administrators, you determine that you need to know the following information:

� Students’ names

� Students’ addresses

� Students’ cities

� Students’ states

� Students’ zip codes

� ID numbers for classes in which students are enrolled

� Titles for classes in which students are enrolled

Of course, in a real-life example you could probably think of many other data require-
ments for the college, in addition to those listed here. The number of attributes is small
here for simplicity.

Figure 16-10 contains the Students table. Assume that because the Internet-based college is new, only three
students have already enrolled. Besides the columns you identified as being necessary, notice the addition of the
studentId attribute. Given the earlier discussions, you probably recognize that this is the best choice to use as a
primary key, because many students can have the same names and even the same addresses. Although the table in
Figure 16-10 contains a column for each of the data requirements decided upon with the college administration, the
table is poorly designed and will create many problems for the users of the database.

What if a college administrator wanted to view a list of courses offered by the Internet-based college? Can you answer
that question by reviewing the table? Well, you can see six courses listed for the three students, so you can assume that
at least six courses are offered. But, is it possible that there is also a Psychology course, or a class whose code is
CIS102? You can’t determine this from the table because no students have enrolled in those classes. Wouldn’t it be nice
to know all the classes that are offered by your institution, regardless of whether any students have enrolled in them?

Consider another potential problem: What if student Mason withdraws from the school, and, therefore, his row is
deleted from the table? You would lose some valuable information that really has nothing to do specifically with student

studentId

1

2

3

name

Rodriguez

Jones

Mason

address

123 Oak

234 Elm

456 Pine

city

Schaumburg

Wild Rose

Dubuque

state

IL

WI

IA

zip

60193

54984

52004

class

CIS101

PHI150

BIO200

CHM100

MTH200

HIS202

classTitle

Computer Literacy

Ethics

Genetics

Chemistry

Calculus

World History

FIGURE 16-10: Students TABLE BEFORE NORMALIZATION PROCESS

TIP�

647Understanding Anomalies, Normal Forms, and the Normalization Process

Mason, but that is very important for running the college. For instance, if Mason’s row is deleted from the table, you no
longer know, from the remaining data in the table, whether the college offers any History classes, because Mason was
the only student enrolled in the HIS202 class.

Why is it so important to discuss the deficiencies of the existing table structure? You have probably heard the saying, “Pay
me now or pay me later.” This is especially true as it relates to table design. If you do not take the time to ensure well-
designed table structures when you are initially designing your database, then you (or the users of your database) will
surely spend lots of time later fixing data errors, typing the same information multiple times, and being frustrated by the
inability to cull important subsets of information from the database. If you were really hired to create this database and this
table structure was your solution to the college’s needs, then it is unlikely you would be hired for future database projects.

UNDERSTANDING ANOMALIES, NORMAL FORMS, AND THE
NORMALIZATION PROCESS

Database management programs can maintain all the relationships you need. As you add records to, delete records
from, and modify records within your database tables, the software keeps track of all the relationships you have
established, so that you can view any needed joins any time you want. The software, however, can only maintain useful
relationships if you have planned ahead to create a set of tables that supports all the applications you will need. The
process of designing and creating a set of database tables that satisfies the users’ needs and avoids many potential
problems is normalization.

The normalization process helps you reduce data redundancies and anomalies. Data redundancy is the unnecessary
repetition of data. An anomaly is an irregularity in a database’s design that causes problems and inconveniences.
Three common types of anomalies are:

� Update anomalies

� Delete anomalies

� Insert anomalies

If you look ahead to the college database table in Figure 16-11, you will see an example of an update anomaly, or a
problem that occurs when the data in a table needs to be altered. Because the table contains redundant data, if student
Rodriguez moves to a new residence, you have to change the values stored as address, city, state, and zip in more than
one location. Of course, this table example is small; imagine if additional data were stored about Rodriguez, such as
birth date, e-mail address, major field of study, and previous schools attended.

The database table in Figure 16-10 contains a delete anomaly, or a problem that occurs when a row is deleted. If stu-
dent Jones withdraws from the college, and his entries are deleted from the table, important data regarding the classes
CHM100 and MTH200 are lost.

With an insert anomaly, problems occur when new rows are added to a table. In the table in Figure 16-10, if a new
student named Ramone has enrolled in the college, but has not yet registered for any specific classes, then you can’t
insert a complete row for student Ramone; the only way to do so would be to “invent” at least one phony class for him.

648 Chapter 16 • Using Relational Databases

It would certainly be valuable to the college to be able to maintain data on all enrolled students, regardless of whether
those students have registered for specific classes—for example, the college might want to send catalogs and
registration information to these students.

In some databases, you might be able to enter an incomplete row for a student.

When you normalize a database table, you walk through a series of steps that allows you to remove redundancies and
anomalies. The normalization process involves altering a table so that it satisfies one or more of three normal forms, or
sets of rules for constructing a well-designed database. The three normal forms are:

� First normal form, also known as 1NF, in which you eliminate repeating groups

� Second normal form, also known as 2NF, in which you eliminate partial key dependencies

� Third normal form, also known as 3NF, in which you eliminate transitive dependencies

Each normal form is structurally better than the one preceding it. In any well-designed database, you almost always
want to convert all tables to 3NF.

In a 1970 paper titled “A Relational Model of Data for Large Shared Data Banks,” Dr. E.F.
Codd listed seven normal forms. For business applications, 3NF is usually sufficient, and so
only 1NF through 3NF are discussed in this chapter.

FIRST NORMAL FORM

A table that contains repeating groups is unnormalized. A repeating group is a subset of rows in a database table
that all depend on the same key. A table in 1NF contains no repeating groups of data.

The table in Figure 16-10 violates this 1NF rule. The class and classTitle attributes repeat multiple times for
some of the students. For example, student Rodriguez is taking three classes; her class attribute contains a repeat-
ing group. To remedy this situation, and to transform the table to 1NF, you simply repeat the rows for each repeating
group of data. Figure 16-11 contains the revised table.

The repeating groups have been eliminated from the table in Figure 16-11. However, as you look at the table, you will
notice a problem—the primary key, studentId, is no longer unique for each row in the table. For example, the table

studentId

1

1

1

2

2

3

name

Rodriguez

Rodriguez

Rodriguez

Jones

Jones

Mason

address

123 Oak

123 Oak

123 Oak

234 Elm

234 Elm

456 Pine

city

Schaumburg

Schaumburg

Schaumburg

Wild Rose

Wild Rose

Dubuque

state

IL

IL

IL

WI

WI

IA

zip

60193

60193

60193

54984

54984

52004

class

CIS101

PHI150

BIO200

CHM100

MTH200

HIS202

classTitle

Computer Literacy

Ethics

Genetics

Chemistry

Calculus

World History

FIGURE 16-11: Students TABLE IN 1NF

TIP�

TIP�

649Understanding Anomalies, Normal Forms, and the Normalization Process

in Figure 16-11 now contains three rows in which studentId equals 1. You can fix this problem, and create a pri-
mary key, by simply adding the class attribute to the primary key, creating a compound key. (Other problems still
exist, as you will see later in this chapter.) The table’s key then becomes a combination of studentId and class.
By knowing the studentId and class, you can identify one, and only one, row in the table—for example, a
combination of studentId 1 and class BIO200 identifies a single row. Using the notation discussed earlier in this
chapter, the table in Figure 16-11 can be described as:

tblStudents(studentId, name, address, city, state, zip, class, classTitle)

Both the studentId and class attributes are underlined, showing that they are both part of the key.

When you combine two columns to create a compound key, you are concatenating the
columns.

The table in Figure 16-11 is now in 1NF because there are no repeating groups and the primary key attributes are
defined. Satisfying the “no repeating groups” condition is also called making the columns atomic attributes; that is,
making them as small as possible, containing an undividable piece of data. In 1NF, all values for an intersection of a
row and column must be atomic. Recall the table in Figure 16-10 in which the class attribute for studentId 1
(Rodriguez) contained three entries: CIS101, PHI150, and BIO200. This violated the 1NF atomicity rule because these
three classes represented a set of values rather than one specific value. The table in Figure 16-11 does not repeat this
problem because, for each row in the table, the class attribute contains one and only one value. The same is true for
the other attributes that were part of the repeating group.

Database developers also refer to operations or transactions as atomic transactions when
they appear to execute completely or not at all.

Now, think back to the earlier discussion about why we want to normalize tables in the first place. Look at Figure 16-11.
Are there still redundancies? Are there still anomalies? Yes to both questions. Recall that you want to have your tables in
3NF before actually defining them to the database. Currently, the table in Figure 16-11 is only in 1NF.

In Figure 16-11, notice that Student 1, Rodriguez, is taking three classes. If you were the college employee who was
responsible for typing the data into this table, would you want to type this student’s name, address, city, state, and zip
code for each of the three classes Rodriguez is taking? It is very probable that you may, for one of her classes, type her
name as “Rodrigues” instead of “Rodriguez.” Or, you might misspell the city of “Schaumburg” as “Schamburg” for one
of Rodriguez’s classes. A college administrator looking at the table might not know whether Rodriguez’s correct city of
residence is Schaumburg or Schamburg. If you queried the database to select or count the number of classes being
taken by students residing in “Schaumburg,” one of Rodriguez’s classes would be missed.

Misspelling the student name “Rodriguez” is an example of a data integrity error. You
learn more about this type of error later in this chapter.

TIP�

TIP�

TIP�

650 Chapter 16 • Using Relational Databases

Consider the student Jones, who is taking two classes. If Jones changes his residence, how many times will you need
to retype his new address, state, city, and zip code? What if Jones is taking six classes?

SECOND NORMAL FORM

To improve the design of the table and bring the table in Figure 16-11 to 2NF, you need to eliminate all partial key
dependencies; that is, no column should depend on only part of the key. Restated, this means that for a table to be
in 2NF, it must be in 1NF and all non-key attributes must be dependent on the entire primary key.

In the table in Figure 16-11, the key is a combination of studentId and class. Consider the name attribute.
Does the name “Rodriguez” depend on the entire primary key? In other words, do you need to know that the
studentId is 1 and that the class is CIS101 to determine that the name is “Rodriguez”? No, it is sufficient to
know that the studentId is 1 to know that the name is “Rodriguez.” Therefore, the name attribute is only partially
dependent on the primary key, and so the table violates 2NF. The same is true for the other attributes of address,
city, state, and zip. If you know, for example, that studentId is 3, then you also know that the student’s
city is “Dubuque”; you do not need to know any class codes.

Similarly, examine the classTitle attribute in the first row in the table in Figure 16-11. This attribute has a value
of “Computer Literacy”. In this case, you do not need to know both the studentId and the class to predict the
classTitle “Computer Literacy”. Rather, just the class attribute, which is only part of the compound key, is
required. Looked at in another way, class “PHI150” will always have the associated classTitle “Ethics”, regard-
less of the particular students who are taking that class. So, classTitle represents a partial key dependency.

You bring a table into 2NF by eliminating the partial key dependencies. To accomplish this, you create multiple tables so
that each non-key attribute of each table is dependent on the entire primary key for the specific table within which the
attribute occurs. If the resulting tables are still in 1NF and there are no partial key dependencies, then those tables will
also be in 2NF.

Figure 16-12 contains three tables: tblStudents, tblClasses, and tblStudentClasses. To create the
tblStudents table, you simply take those attributes from the original table that depend on the studentId
attribute, and group them into a new table; name, address, city, state, and zip code all can be determined by the
studentId alone. The primary key to the tblStudents table is studentId. Similarly, you can create the
tblClasses table by simply grouping the attributes from the 1NF table that depend on the class attribute. In this
application, only one attribute from the original table, the classTitle attribute, depends on the class attribute.
The first two Figure 16-12 tables can be notated as:

tblStudents(studentId, name, address, city, state, zip)
tblClasses(class, classTitle)

651Understanding Anomalies, Normal Forms, and the Normalization Process

The tblStudents and tblClasses tables contain all the attributes from the original table. Remember the
prior redundancies and anomalies. Several improvements have occurred:

� You have eliminated the update anomalies. The name “Rodriguez” occurs just once in the
tblStudents table. The same is true for Rodriguez’s address, city, state, and zip code. The
original table contained three rows for student Rodriguez. By eliminating the redundancies, you
have fewer anomalies. If Rodriguez changes her residence, you only need to update one row in
the tblStudents table.

� You have eliminated the insert anomalies. With the new configuration, you can insert a complete
row into the tblStudents table even if the student has not yet enrolled in any classes.
Similarly, you can add a complete row for a new class offering to the tblClasses table even
though no students are currently taking the class.

� You have eliminated the delete anomalies. Recall from the original table that student Mason was
the only student taking HIS202. This caused a delete anomaly because the HIS202 class would
disappear if student Mason was removed. Now, if you delete Mason from the tblStudents
table in Figure 16-12, the HIS202 class remains in the tblClasses list.

If you create the first two tables shown in Figure 16-12, you have eliminated many of the problems associated with the
original version. However, if you have those two tables alone, you have lost some important information that you
originally had while at 1NF—specifically, which students are taking which classes or which classes are being taken by
which students. When breaking up a table into multiple tables, you need to consider the type of relationship among the
resulting tables—you are designing a relational database, after all.

tblStudents

studentId

1

2

3

name

Rodriguez

Jones

Mason

tblClasses

class

CIS101

PHI150

BIO200

CHM100

MTH200

HIS202

classTitle

Computer Literacy

Ethics

Genetics

Chemistry

Calculus

World History

address

123 Oak

234 Elm

456 Pine

city

Schaumburg

Wild Rose

Dubuque

state

IL

WI

IA

zip

60193

54984

52004

tblStudentClasses

studentId

1

1

1

2

2

3

class

CIS101

PHI150

BIO200

CHM100

MTH200

HIS202

FIGURE 16-12: Students TABLE IN 2NF

652 Chapter 16 • Using Relational Databases

You know that the Internet-based college application requires that you keep track of which students are taking which
classes. This implies a relationship between the tblStudents and tblClasses tables. Your job is to determine
what type of relationship exists between the two tables. Recall from earlier in the chapter that the two most common
types of relationships are one-to-many and many-to-many. This specific application requires that one specific student
can enroll in many different classes, and that one specific class can be taken by many different students. Therefore,
there is a many-to-many relationship between the tables tblStudents and tblClasses.

As you learned in the earlier example of categorizing insured items, you create a many-to-many relationship between
two tables by creating a third table that contains the primary keys from the two tables that you want to relate. In this
case, you create the tblStudentClasses table in Figure 16-12 as:

tblStudentClasses(studentId, class)

If you examine the rows in the tblStudentClasses table, you can see that the student with studentId 1,
Rodriguez, is enrolled in three classes; studentId 2, Jones, is taking two classes; and studentId 3, Mason, is
enrolled in only one class. Finally, the table requirements for the Internet-based college have been fulfilled.

Or have they? Earlier, you saw the many redundancies and anomalies that were eliminated by structuring the tables into
2NF, and it is certainly true that the 2NF table structures result in a much “better” database than the 1NF structures.
But look again at the tblStudents table in Figure 16-12. What if, as the college expands, you need to add 50 new
students to this table, and all of the new students reside in Schaumburg, IL? If you were the data-entry person, would
you want to type the city of “Schaumburg”, the state of “IL”, and the zip code of “60193” 50 times? This data is
redundant, and you can improve the design of the tables to eliminate this redundancy.

THIRD NORMAL FORM

3NF requires that a table be in 2NF and that it have no transitive dependencies. A transitive dependency occurs when
the value of a non-key attribute determines, or predicts, the value of another non-key attribute. Clearly, the
studentId attribute of the tblStudents table in Figure 16-12 is a determinant—if you know a particular
studentId value, you can also know that student’s name, address, city, state, and zip. But this is not
considered a transitive dependency because the studentId attribute is the primary key for the tblStudents
table, and, after all, the primary key’s job is to determine the values of the other attributes in the row.

There is a problem, however, if a non-key attribute determines another non-key attribute. In the Figure 16-12
tblStudents table, there are five non-key attributes: name, address, city, state, and zip.

The name is a non-key attribute. If you know the value of name is “Rodriguez”, do you also know the one specific address
where Rodriguez resides? In other words, is this a transitive dependency? No, it isn’t. Even though only one student is named
“Rodriguez” now, there may be many more in the future. So, though it may be tempting to consider that the name attribute is
a determinant of address, it isn’t. Looked at another way, if your boss said, “Look at the tblStudents table and tell
me Jones’ address,” you wouldn’t be able to do so if you had 10 students named “Jones”.

The address attribute is a non-key attribute. Does it predict anything? If you know the value of address is “20 N. Main
Street”, can you, for instance, determine the name of the student who is associated with that address? No, because in the

653Understanding Anomalies, Normal Forms, and the Normalization Process

future, you might have many students who live at “20 N. Main Street,” but they might live in different cities, or you might have
two students who live at the same address in the same city. Therefore,address does not cause a transitive dependency.

Similarly, the city and state attributes are not keys, but they also are not determinants because knowing their
values alone is not sufficient to predict another non-key attribute value. You might argue that if you know a city’s name,
you know the state, but many states contain cities named, for example, Union or Springfield.

But what about the non-key attribute zip? If you know, for example, that the zip code is 60193, can you determine
the value of any other non-key attributes? Yes, a zip code of 60193 indicates that the city is Schaumburg and the
state is IL. This is the “culprit” that is causing the redundancies with regard to the city and state attributes.
The attribute zip is a determinant because it determines city and state; therefore, the tblStudents table
contains a transitive dependency and is not in 3NF.

To convert the tblStudents table to 3NF, simply remove the attributes that depend on, or are functionally depen-
dent on, the zip attribute. For example, if attribute zip determines attribute city, then attribute city is considered
to be functionally dependent on attribute zip. So, as Figure 16-13 shows, the new tblStudents table is defined as:

tblStudents(studentId, name, address, zip)

A functionally dependent relationship is sometimes written using an arrow that extends
from the depended-upon attribute to the dependent attribute—for example, zip → city.

Figure 16-13 also shows the tblZips table, which is defined as:

tblZips(zip, city, state)

tblStudents

studentId

1

2

3

name

Rodriguez

Jones

Mason

tblClasses

class

CIS101

PHI150

BIO200

CHM100

MTH200

HIS202

classTitle

Computer Literacy

Ethics

Genetics

Chemistry

Calculus

World History

address

123 Oak

234 Elm

456 Pine

zip

60193

54984

52004

tblStudentClasses

studentId

1

1

1

2

2

3

class

CIS101

PHI150

BIO200

CHM100

MTH200

HIS202

tblZips

zip

60193

54984

52004

city

Schaumburg

Wild Rose

Dubuque

state

IL

WI

IA

FIGURE 16-13: THE COMPLETE Students DATABASE

TIP�

654 Chapter 16 • Using Relational Databases

The new tblZips table is related to the tblStudents table by the zip attribute. Using the two tables together,
you can determine, for example, that studentId 3, Mason, in the tblStudents table resides in the city of
Dubuque and the state of IA, attributes stored in the tblZips table. When you encounter a table with a functional
dependence, you almost always can reduce data redundancy by creating two tables, as in Figure 16-13. With the new
configuration, a data-entry operator must still type a zip code for each student, but the drudgery of typing and the
possibility of introducing data-entry errors in city and state names for each student is eliminated.

Is the students-to-zip-codes relationship a one-to-many relationship, a many-to-many relationship, or a one-to-one
relationship? You know that one row in the tblZips table can relate to many rows in the tblStudents table—
that is, many students can reside in zip code 60193. However, the opposite is not true—one row in the
tblStudents table (a particular student) cannot relate to many rows in the tblZips table, because a particular
student can only reside in one zip code. Therefore, there is a one-to-many relationship between the base table,
tblZips, and the related table tblStudents. The link to the relationship is the zip attribute, which is a primary
key in the tblZips table and a foreign key in the tblStudents table.

This was a lot of work, but it was worth it. The tables are in 3NF, and the redundancies and anomalies that would have
contributed to an unwieldy, error-prone, inefficient database design have been eliminated.

Recall that the definition of 3NF is 2NF plus no transitive dependencies. What if you were considering changing the
structure of the tblStudents table by adding an attribute to hold the students’ Social Security numbers (ssn)? If
you know a specific ssn value, you also know a particular student name, address, and so on; in other words, a
specific value for ssn determines one and only one row in the tblStudents table. No two students have the same
Social Security number (ruling out identity theft, of course). However, studentId is the primary key; ssn is a non-
key determinant, which, by definition, seems to violate the requirements of 3NF. However, if you add ssn to the
tblStudents table, the table is still in 3NF because a determinant is allowed in 3NF if the determinant is also a
candidate key. Recall that a candidate key is an attribute that could qualify as the primary key but has not been used as
the primary key. In the example concerning the zip attribute of the tblStudents table (Figure 16-11), zip was a
determinant of the city and state attributes. Therefore, the tblStudents table was not in 3NF because many
rows in the tblStudents table can have the same value for zip, meaning zip is not a candidate key. The situa-
tion with the ssn column is different because ssn could be used as a primary key for the tblStudents table.

In general, you try to create a database in the highest normal form. However, when data
items are stored in multiple tables, it takes longer to access related information than when it
is all stored in a single table. So, sometimes, for performance, you might denormalize a
table, or reduce it to a lower normal form, by placing some repeated information back into
the table. Deciding on the best form in which to store a body of data is a sophisticated art.

In summary:

� A table is in first normal form when there are no repeating groups.

� A table is in second normal form if it is in first normal form and no non-key column depends on
just part of the primary key.

� A table is in third normal form if it is in second normal form and the only determinants are
candidate keys.

TIP�

655Database Performance and Security Issues

Not every table starts out denormalized. For example, a table might already be in third normal
form when you first encounter it. On the other hand, a table might not be normalized, but after
you put it in 1NF, you may find that it also satisfies the requirements for 2NF and 3NF.

DATABASE PERFORMANCE AND SECURITY ISSUES

Frequently, a company’s database is its most valuable resource. If buildings, equipment, or inventory items are
damaged or destroyed, they can be rebuilt or re-created. However, the information contained in a database is often
irreplaceable. A company that has spent years building valuable customer profiles cannot re-create them at the drop of
a hat; a company that loses billing or shipment information might not simply lose the current orders—it might also lose
the affected customers forever as they defect to competitors who can serve them better. Keeping an organization’s data
secure is often the most economically valuable responsibility in the company.

You can study entire books to learn all the details involved in data security. The major issues include:

� Providing data integrity

� Recovering lost data

� Avoiding concurrent update problems

� Providing authentication and permissions

� Providing encryption

PROVIDING DATA INTEGRITY

Database software provides the means to ensure that data integrity is enforced; a database has data integrity when it
follows a set of rules that makes the data accurate and consistent. For example, you might indicate that a quantity in an
inventory record can never be negative, or that a price can never be higher than a predetermined value. In addition, you
can enforce integrity between tables; for example, you might prohibit entering an insurance plan code for an employee
if the insurance plan code is not one of the types offered by the organization.

RECOVERING LOST DATA

An organization’s data can be destroyed in many ways—legitimate users can make mistakes, hackers or other
malicious users can enter invalid data, and hardware problems can wipe out records or entire databases. Recovery is
the process of returning the database to a correct form that existed before an error occurred.

Periodically making a backup copy of a database and keeping a record of every transaction together provide one of the
simplest approaches to recovery. When an error occurs, you can replace the database with an error-free version that
was saved at the last backup. Usually, there have also been changes to the database, called transactions, since the last
backup; if so, you must then reapply those transactions.

Many organizations keep a copy of their data off-site (sometimes hundreds or thousands
of miles away) so that if a disaster such as a fire or flood destroys data, the remotely
stored copy can serve as a backup.

TIP�

TIP�

656 Chapter 16 • Using Relational Databases

AVOIDING CONCURRENT UPDATE PROBLEMS

Large databases are accessible by many users at a time. The database is stored on a central computer, and users work
at terminals in diverse locations. For example, several order takers might be able to update customer and inventory
tables concurrently. A concurrent update problem occurs when two database users need to make changes to the
same record at the same time. Suppose two order processors take a phone order for item number 101 in an inventory
file. Each gets a copy of the quantity in stock—for example, 25—loaded into the memory of her terminal. Each accepts
her customer’s order and subtracts 1 from inventory. Now, in each local terminal, the quantity is 24. One order gets
written to the central database, then the other, and the final inventory is 24, not 23 as it should be.

Several approaches can be used to avoid this problem. With one approach, a lock can be placed on one record the
moment it is accessed. A lock is a mechanism that prevents changes to a database for a period of time. While one
order taker makes a change, the other cannot access the record. Potentially, a customer on the phone with the second
order taker could be inconvenienced while the first order taker maintains the lock, but the data in the inventory table
would remain accurate.

A persistent lock is a long-term database lock required when users want to maintain a
consistent view of their data while making modifications over a long transaction.

Another approach to preventing the concurrent update problem is to not allow the users to update the original database
at all, but to have them store transactions, which then can be applied to the database all at once, or in a batch, at a
later time—perhaps once or twice a day or after business hours. The problem with this approach is that as soon as the
first transaction occurs and until the batch processing takes place, the original database is out of date. For example, if
several order takers place orders for the same item, the item might actually be out of stock. However, none of the order
takers will realize the item is unavailable because the database will not reflect the orders until it is updated with the
current batch of transactions.

PROVIDING AUTHENTICATION AND PERMISSIONS

Most database software can authenticate that those who are attempting to access an organization’s data are legitimate
users. Authentication techniques include storing and verifying passwords or even using physical characteristics, such
as fingerprints or voice recognition, before users can view data. When a user is authenticated, the user typically
receives authorization to all or part of the database. The permissions assigned to a user indicate which parts of the
database the user can view, and which parts he or she can change or delete. For example, an order taker might not be
allowed to view or update personnel data, whereas a clerk in the personnel office might not be allowed to alter
inventory data.

PROVIDING ENCRYPTION

Database software can be used to encrypt data. Encryption is the process of coding data into a format that human
beings cannot read. If unauthorized users gain access to database files, the data will be in a coded format that is
useless to them. Only authorized users see the data in a readable format.

TIP�

Chapter Summary 657

CHAPTER SUMMARY

� A database holds a group of files that an organization needs to support its applications. In a database,

the files often are called tables because you can arrange their contents in rows and columns. A value that

uniquely identifies a record is called a primary key, a key field, or a key for short. Database management

software is a set of programs that allows users to create table descriptions; identify keys; add records to,

delete records from, and update records within a table; arrange records so they are sorted by different

fields; write questions that select specific records from a table for viewing; write questions that combine

information from multiple tables; create reports and forms; and keep data secure by employing

sophisticated security measures.

� Creating a useful database requires a lot of planning and analysis. You must decide what data will be

stored, how that data will be divided between tables, and how the tables will interrelate.

� In most tables you create for a database, you want to identify a column, or possibly a combination of

columns, as the table’s key column or field, also called the primary key. The primary key is important

because you can configure your software to prevent multiple records from containing the same value in

this column, thus avoiding data-entry errors. In addition, you can sort your records in primary key order

before displaying or printing them, and you need to use this column when setting up relationships

between the table and others that will become part of the same database.

� A shorthand way to describe a table is to use the table name followed by parentheses containing all the

field names, with the primary key underlined.

� Entering data into an already created table requires a good deal of time and accurate typing. Depending

on the application, the contents of the tables might be entered over the course of many months or years

by any number of data-entry personnel. Deleting records from and modifying records within a database

table are relatively easy tasks. In most organizations, most of the important data is in a constant state

of change.

� Database management software generally allows you to sort a table based on any column, letting you

view your data in the way that is most useful to you. After rows are sorted, they usually can be grouped.

Chapter 16 • Using Relational Databases658

� Frequently, you want to cull subsets of data from a table you have created. The questions that cause the

database software to extract the appropriate records from a table and specify the fields to be viewed are

called queries. Depending on the software you use, you might create a query by filling in blanks, a

process called query by example, or by writing statements similar to those in many programming lan-

guages. The most common language that database administrators use to access data in their tables is

Structured Query Language, or SQL.

� Most database applications require many tables, and these applications also require that the tables be
related. The three types of relationships are one-to-many, many-to-many, and one-to-one.

� As you create database tables that will hold the data an organization needs, you will encounter many

situations in which the table design, or structure, is inadequate to support the needs of the application.

� Normalization is the process of designing and creating a set of database tables that satisfies the users’

needs and avoids many potential problems. The normalization process helps you reduce data

redundancies, update anomalies, delete anomalies, and insert anomalies. The normalization process

involves altering a table so that it satisfies one or more of three normal forms, or rules, for constructing a

well-designed database. The three normal forms are first normal form, also known as 1NF, in which you

eliminate repeating groups; second normal form, also known as 2NF, in which you eliminate partial key

dependencies; and third normal form, also known as 3NF, in which you eliminate transitive

dependencies.

� Frequently, a company’s database is its most valuable resource. Major security issues include providing

data integrity, recovering lost data, avoiding concurrent update problems, providing authentication and

permissions, and providing encryption.

KEY TERMS

A database holds a group of files, or tables, that an organization needs to support its applications.

A database table contains data in rows and columns.

An entity is one record or row in a database table.

An attribute is one field or column in a database table.

A primary key, or key for short, is a field or column that uniquely identifies a record.

A compound key, also known as a composite key, is a key constructed from multiple columns.

Key Terms 659

Database management software is a set of programs that allows users to create table descriptions; identify key fields;
add records to, delete records from, and update records within a table; arrange records so they are sorted by different
fields; write questions that select specific records from a table for viewing; write questions that combine information
from multiple tables; create reports and forms; and keep data secure by employing sophisticated security measures.

A relational database contains a group of tables from which you can make connections to produce virtual tables.

Immutable means not changing during normal operation.

Candidate keys are columns or attributes that could serve as a primary key in a table.

After you choose a primary key from among candidate keys, the remaining candidate keys become alternate keys.

A query is a question asked using syntax that the database software can understand. Its purpose is often to display
a subset of data.

Query by example is the process of creating a query by filling in blanks.

Structured Query Language, or SQL, is a commonly used language for accessing data in database tables.

The SELECT-FROM-WHERE SQL statement is the command that selects the fields you want to view from a specific
table where one or more conditions are met.

A view is a particular way of looking at a database.

A relationship is a connection between two tables.

A join operation, or a join, connects two tables based on the values in a common column.

A join column is the column on which two tables are connected.

A one-to-many relationship is one in which one row in a table can be related to many rows in another table. It is the
most common type of relationship among tables.

The base table in a one-to-many relationship is the “one” table.

The related table in a one-to-many relationship is the “many” table.

A non-key attribute is any column in a table that is not a key.

A foreign key is a column that is not a key in a table, but contains an attribute that is a key in a related table.

A many-to-many relationship is one in which multiple rows in each of two tables can correspond to multiple rows in
the other.

In a one-to-one relationship, a row in one table corresponds to exactly one row in another table.

In a database, empty columns are nulls.

Normalization is the process of designing and creating a set of database tables that satisfies the users’ needs and
avoids redundancies and anomalies.

Chapter 16 • Using Relational Databases660

Data redundancy is the unnecessary repetition of data.

An anomaly is an irregularity in a database’s design that causes problems and inconveniences.

An update anomaly is a problem that occurs when the data in a table needs to be altered; the result is repeated data.

A delete anomaly is a problem that occurs when a row in a table is deleted; the result is loss of related data.

An insert anomaly is a problem that occurs when new rows are added to a table; the result is incomplete rows.

Normal forms are rules for constructing a well-designed database.

First normal form, also known as 1NF, is the normalization form in which you eliminate repeating groups.

Second normal form, also known as 2NF, is the normalization form in which you eliminate partial key dependencies.

Third normal form, also known as 3NF, is the normalization form in which you eliminate transitive dependencies.

An unnormalized table contains repeating groups.

A repeating group is a subset of rows in a database table that all depend on the same key.

To concatenate columns is to combine columns to produce a compound key.

Atomic attributes or columns are as small as possible so as to contain an undividable piece of data.

Atomic transactions appear to execute completely or not at all.

A partial key dependency occurs when a column in a table depends on only part of the table’s key.

A transitive dependency occurs when the value of a non-key attribute determines, or predicts, the value of another
non-key attribute.

An attribute is functionally dependent on another if it can be determined by the other attribute.

You might denormalize a table, or place it in a lower normal form, by placing some repeated information back into it.

A database has data integrity when it follows a set of rules that makes the data accurate and consistent.

Recovery is the process of returning the database to a correct form that existed before an error occurred.

A concurrent update problem occurs when two database users need to make changes to the same record at the
same time.

A lock is a mechanism that prevents changes to a database for a period of time.

A persistent lock is a long-term database lock required when users want to maintain a consistent view of their data
while making modifications over a long transaction.

Review Questions 661

A batch is a group of transactions applied all at once.

Authentication techniques include storing and verifying passwords or even using physical characteristics, such as
fingerprints or voice recognition, before users can view data.

The permissions assigned to a user indicate which parts of the database the user can view, and which parts he or she can
change or delete.

Encryption is the process of coding data into a format that human beings cannot read.

REVIEW QUESTIONS

1. A field or column that uniquely identifies a row in a database table is a(n) .

a. variable
b. identifier
c. principal
d. key

2. Which of the following is not a feature of most database management software?

a. sorting records in a table
b. creating reports
c. preventing poorly designed tables
d. relating tables

3. Before you can enter any data into a database table, you must do all of the following except
.

a. determine the attributes the table will hold
b. provide names for each attribute
c. provide data types for each attribute
d. determine maximum and minimum values for each attribute

4. Which of the following is the best key for a table containing a landlord’s rental properties?

a. numberOfBedrooms
b. amountOfMonthlyRent
c. streetAddress
d. tenantLastName

Chapter 16 • Using Relational Databases662

5. A table’s notation is: tblClients(socialSecNum, lastName, firstName,
clientNumber, balanceDue). You know that .

a. the primary key is socialSecNum
b. the primary key is clientNumber
c. there are four candidate keys
d. there is at least one numeric attribute

6. You can extract subsets of data from database tables using a(n) .

a. query
b. sort
c. investigation
d. subroutine

7. A database table has the structure tblPhoneOrders(orderNum, custName,
custPhoneNum, itemOrdered, quantity). Which SQL statement could be used to extract
all attributes for orders for item AB3333?

a. SELECT * FROM tblPhoneOrders WHERE itemOrdered = “AB3333”
b. SELECT tblPhoneOrders WHERE itemOrdered = “AB3333”
c. SELECT itemOrdered FROM tblPhoneOrders WHERE = “AB3333”
d. Two of these are correct.

8. Connecting two database tables based on the value of a column (producing a virtual view of a new
table) is a operation.

a. merge
b. concatenate
c. join
d. met

9. Heartland Medical Clinic maintains a database to keep track of patients. One table can be
described as: tblPatients(patientId, name, address, primaryPhysicianCode).
Another table contains physician codes along with other physician data; it is described as
tblPhysicians(physicianCode, name, officeNumber, phoneNumber,
daysOfWeekInOffice). In this example, the relationship is .

a. one-to-one
b. one-to-many
c. many-to-many
d. impossible to determine

Review Questions 663

10. Edgerton Insurance Agency sells life, home, health, and auto insurance policies. The agency main-
tains a database containing a table that holds customer data—each customer’s name, address,
and types of policies purchased. For example, customer Michael Robertson holds life and auto
policies. Another table contains information on each type of policy the agency sells—coverage
limits, term, and so on. In this example, the relationship is .

a. one-to-one
b. one-to-many
c. many-to-many
d. impossible to determine

11. Kratz Computer Repair maintains a database that contains a table that holds job information about
each repair job the company agrees to perform. The jobs table is described as: tblJobs(jobId,
dateStarted, customerId, technicianId, feeCharged). Each job has a unique ID
number that serves as a key to this table. The customerId and technicianId columns in the
table each link to other tables where customer information, such as name, address, and phone
number, and technician information, such as name, office extension, and hourly rate, are stored.
When the tblJobs and tblCustomers tables are joined, which is the base table?

a. tblJobs
b. tblCustomers
c. tblTechnicians
d. a combination of two tables

12. When a column that is not a key in a table contains an attribute that is a key in a related table, the
column is called a .

a. foreign key
b. merge column
c. internal key
d. primary column

13. The most common reason to construct a one-to-one relationship between two tables is
.

a. to save money
b. to save time
c. for security purposes
d. so that neither table is considered “inferior”

Chapter 16 • Using Relational Databases664

14. The process of designing and creating a set of database tables that satisfies the users’ needs and
avoids many potential problems is .

a. purification
b. normalization
c. standardization
d. structuring

15. The unnecessary repetition of data is called data .

a. amplification
b. echoing
c. redundancy
d. mining

16. Problems with database design are caused by irregularities known as .

a. glitches
b. anomalies
c. bugs
d. abnormalities

17. When you place a table into first normal form, you have eliminated .

a. transitive dependencies
b. partial key dependencies
c. repeating groups
d. all of the above

18. When you place a table into third normal form, you have eliminated .

a. transitive dependencies
b. partial key dependencies
c. repeating groups
d. all of the above

Find the Bugs 665

19. If a table contains no repeating groups, but a column depends on part of the table’s key, the table
is in normal form.

a. first
b. second
c. third
d. fourth

20. Which of the following is not a database security issue?

a. providing data integrity
b. recovering lost data
c. providing normalization
d. providing encryption

FIND THE BUGS

1. Create tables as needed so the following employee table is in 3NF.

2. Suppose you have started a collection of old records. You want to store them in a database so you
can select records by title, artist, or condition of the recording. Create tables as needed so the
following record collection table is in 3NF.

empID lastName firstName dept floor supervisor payRate

123 Henderson Robert HR 1 Rollings 11.00

124 Barker Anne MKTG 2 Jenkins 23.50

145 Lee Benjamin MFG 3 Liu 15.00

157 Davis Robert MFG 3 Liu 14.75

178 Nance Cody MKTG 2 Jenkins 24.00

184 Rice Paula HR 1 Rollings 12.45

189 Lee Anne MFG 3 Liu 15.55

243 Saunders Marcie MKTG 2 Jenkins 25.75

256 Freize Michael MFG 3 Liu 15.00

Chapter 16 • Using Relational Databases666

EXERCISES

1. The Lucky Dog Grooming Parlor maintains data about each of its clients in a table named
tblClients. Attributes include each dog’s name, breed, and owner’s name, all of which are text
attributes. The only numeric attributes are an ID number assigned to each dog and the balance due
on services. The table structure is tblClients(dogID, name, breed, owner,
balanceDue). Write the SQL statement that would select each of the following:

a. names and owners of all Great Danes
b. owners of all dogs with balance due over $100
c. all attributes of dogs named “Fluffy”
d. all attributes of poodles whose balance is no greater than $50

2. Consider the following table with the structure tblRecipes(recipeName,
timeToPrepare, ingredients). If necessary, redesign the table so it satisfies each of the
following:

a. 1NF
b. 2NF
c. 3NF

idNum title artists condition

11 Ebony and Ivory Paul McCartney Good

Stevie Wonder

12 Yesterday Paul McCartney Excellent

John Lennon

13 Just a Gigolo Louis Prima Fair

14 I’ve Got You Under My Skin Peggy Lee Fair

15 I’ve Got You Under My Skin Louis Prima Excellent

Keely Smith

Exercises 667

3. Consider the following table with the structure tblFriends(lastName, firstName,
address, birthday, phoneNumbers, emailAddresses). If necessary, redesign the table
so it satisfies each of the following:

a. 1NF
b. 2NF
c. 3NF

lastName firstName address birthday phoneNumbers emailAddresses

Gordon Alicia 34 Second St. 3/16 222-4343 agordon@mail.com

349-0012

Washington Edward 12 Main St. 12/12 222-7121 ewash@mail.com

coolguy@earth.com

Davis Olivia 55 Birch Ave. 10/3 222-9012 olivia@abc.com

333-8788

834-0112

recipeName timeToPrepare ingredients

Baked lasagna 1 hour 1 pound lasagna noodles
1⁄2 pound ground beef

16 ounces tomato sauce
1⁄2 pound ricotta cheese
1⁄2 pound parmesan cheese

1 onion

Fruit salad 10 minutes 1 apple

1 banana

1 bunch grapes

1 pint blueberries

Marinara sauce 30 minutes 16 ounces tomato sauce
1⁄4 pound parmesan cheese

1 onion

Chapter 16 • Using Relational Databases668

4. You have created the following table to keep track of your DVD collection. The structure is
tblDVDs(movie, year, stars). If necessary, redesign the table so it satisfies each of the
following:

a. 1NF
b. 2NF
c. 3NF

5. The Midtown Ladies Auxiliary is sponsoring a scholarship for local high-school students. They have
constructed a table with the structure tblScholarshipApplicants(appId, lastName,
hsAttended, hsAddress, gpa, honors, clubsActivities). The hsAttended and
hsAddress attributes represent high school attended and its street address, respectively. The
gpa attribute is a grade point average. The honors attribute holds awards received, and the
clubsActivities attribute holds the names of clubs and activities in which the student partici-
pated. If necessary, redesign the table so it satisfies each of the following:

a. 1NF
b. 2NF
c. 3NF

movie year stars

Jerry McGuire 1996 Tom Cruise

Renee Zellweger

Chicago 2002 Renee Zellweger

Catherine Zeta-Jones

Richard Gere

Risky Business 1983 Tom Cruise

Rebecca DeMornay

Exercises 669

6. Assume you want to create a database to store information about your music collection. You want
to be able to query the database for each of the following attributes:

� A particular title (for example, Tapestry or Beethoven’s Fifth Symphony)

� Artist (for example, Carole King or the Chicago Symphony Orchestra)

� Format of the recording (for example, CD or tape)

� Style of music (for example, rock or classical)

� Year recorded

� Year acquired as part of your collection

� Recording company

� Address of the recording company

Design the tables you would need so they are all in third normal form. Create at least five sample
data records for each table you create.

appId lastName hsAttended hsAddress gpa honors clubsActivities

1 Wong Central 1500 Main 3.8 Citizenship award Future teachers

Class officer Model airplane

Soccer MVP Newspaper

2 Jefferson Central 1500 Main 4.0 Valedictorian Pep

Citizenship award Yearbook

Homecoming court

Football MVP

3 Mitchell Highland 200 Airport 3.6 Class officer Pep

Homecoming court Future teachers

4 O’Malley St. Joseph 300 Fourth 4.0 Valedictorian Pep

Chess

5 Abel Central 1500 Main 3.7 Citizenship award Yearbook

Class officer

Chapter 16 • Using Relational Databases670

7. Design a group of database tables for the St. Charles Riding Academy. The Academy teaches
students to ride by starting them on horses that have been ranked as to their manageability, using
a numeric score from 1 to 4. The data you need to store includes the following attributes:

� Student’s last name

� Student’s first name

� Student’s address

� Student’s age

� Student’s emergency contact information—name and phone number

� Student’s riding level—1, 2, 3, or 4

� Each horse’s name

� Horse’s age

� Horse’s color

� Horse’s manageability level—1, 2, 3, or 4

� Horse’s veterinarian’s name

� Horse’s veterinarian’s phone number

Design the tables you would need so they are all in third normal form. Create at least five sample
data records for each table you create.

DETECTIVE WORK

1. What is data mining? Is it a good or bad thing?

2. How many free databases can you locate on the Web? What types of data do they offer?

3. What organization uses the world’s most heavily used database system?

Up for Discussion 671

UP FOR DISCUSSION

1. In this chapter, a phone book was mentioned as an example of a database you use frequently.
Name some other examples.

2. Suppose you have authority to browse your company’s database. The company keeps information
on each employee’s past jobs, health insurance claims, and any criminal record. Also suppose that
there is an employee at the company whom you want to ask out on a date. Should you use the
database to obtain information about the person? If so, are there any limits on the data you should
use? If not, should you be allowed to pay a private detective to discover similar data?

3. The FBI’s National Crime Information Center (NCIC) is a computerized database of criminal justice
information (for example, data on criminal histories, fugitives, stolen property, and missing
persons). It is available to federal, state, and local law enforcement and other criminal justice
agencies 24 hours a day, 365 days a year. It is almost inevitable that such large systems will
contain some inaccuracies. Various studies have indicated that perhaps less than half the records
in this database are complete, accurate, and unambiguous. Do you approve of this system or object
to it? Would you change your mind if there were no inaccuracies? Is there a level of inaccuracy you
would find acceptable to realize the benefits such a system provides?

4. What type of data might be useful to a community in the wake of a natural disaster? Who should
pay for the expense of gathering, storing, and maintaining this data?

APPENDIX A
SOLVING DIFFICULT STRUCTURING PROBLEMS

In Chapter 2, you learned that you can solve any logical problem using only the three standard structures—sequence,
selection, and looping. Often it is a simple matter to modify an unstructured program to make it adhere to structured
rules. Sometimes, however, it is a challenge to structure a more complicated program. Still, no matter how complicated,
large, or poorly structured a problem is, the same tasks can always be accomplished in a structured manner.

Consider the flowchart segment in Figure A-1. Is it structured?

No, it’s not. To straighten out the flowchart segment, making it structured, you can use the “spaghetti” method. Using this
method, you untangle each path of the flowchart as if you were attempting to untangle strands of spaghetti in a bowl. The
objective is to create a new flowchart segment that performs exactly the same tasks as the first, but using only the three
structures—sequence, selection, and loop.

To begin to untangle the unstructured flowchart segment, you start at the beginning with the decision labeled A, shown
in Figure A-2. This step must represent the beginning of either a selection or a loop, because a sequence would not con-
tain a decision.

A?

E

No Yes

B? C

D

G

F?
No

Yes

Yes

No

FIGURE A-1: UNSTRUCTURED FLOWCHART SEGMENT

A-1

A Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 1

If you follow the logic on the No, or left, side of the question in the original flowchart, you can pull up on the left branch of
the decision. You encounter process E, followed by G, followed by the end, as shown in Figure A-3. Compare the “No”
actions after Decision A in the first flowchart (Figure A-1) with the actions after Decision A in Figure A-3; they are identical.

Now continue on the right, or Yes, side of Decision A in Figure A-1. When you follow the flowline, you encounter a deci-
sion symbol, labeled B. Pull on B’s left side, and a process, D, comes up next. See Figure A-4.

A?

E

No Yes

B?

D

G

No

FIGURE A-4: STRUCTURING, STEP 3

A?

E

No Yes

G

FIGURE A-3: STRUCTURING, STEP 2

A?
No Yes

FIGURE A-2: STRUCTURING, STEP 1

Appendix AA-2

A Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 2

After Step D in the original diagram, a decision labeled F comes up. Pull on its left, or No, side and you get a process, G,
and then the end. When you pull on F’s right, or Yes, side in the original flowchart, you simply reach the end, as shown in
Figure A-5. Notice in Figure A-5 that the G process now appears in two locations. When you improve unstructured flow-
charts so that they become structured, you often must repeat steps. This eliminates crossed lines and difficult-to-follow
spaghetti logic.

The biggest problem in structuring the original flowchart segment from Figure A-1 follows the right, or Yes, side of the B
decision. When the answer to B is Yes, you encounter process C, as shown in both Figures A-1 and A-6. The structure
that begins with Decision C looks like a loop because it doubles back, up to Decision A. However, the rules of a structured
loop say that it must have the appearance shown in Figure A-7: a question, followed by a structure, returning right back
to the question. In Figure A-1, if the path coming out of C returned right to B, there would be no problem; it would be a
simple, structured loop. However, as it is, Question A must be repeated. The spaghetti technique says if things are tan-
gled up, start repeating them. So repeat an A decision after C, as Figure A-6 shows.

A?

E

No Yes

B?

D

G

No

F?

G

No Yes

FIGURE A-5: STRUCTURING, STEP 4

Solving Difficult Structuring Problems A-3

A Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 3

In the original flowchart segment in Figure A-1, when A is Yes, Question B always follows. So, in Figure A-8, after A is Yes,
B is Yes, Step C executes, and A is asked again; when A is Yes, B repeats. In the original, when B is Yes, C executes, so
in Figure A-8, on the right side of B, C repeats. After C, A occurs. On the right side of A, B occurs. On the right side of B,
C occurs. After C, A should occur again, and so on. Soon you should realize that, in order to follow the steps in the same
order as in the original flowchart segment, you will repeat these same steps forever. See Figure A-8.

FIGURE A-7: A STRUCTURED LOOP

A?

E

No Yes

G

F?

G

No Yes

B?

D

No Yes

C

A?

FIGURE A-6: STRUCTURING, STEP 5

Appendix AA-4

A Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 4

If you continue with Figure A-8, you will never be able to end; every C is always followed by another A, B, and C.
Sometimes, in order to make a program segment structured, you have to add an extra flag variable to get out of an infi-
nite mess. A flag is a variable that you set to indicate a true or false state. Typically, a variable is called a flag when its only
purpose is to tell you whether some event has occurred. You can create a flag variable named shouldRepeat and
set the value of shouldRepeat to “Yes” or “No,” depending on whether it is appropriate to repeat Decision A. When
A is No, the shouldRepeat flag should be set to “No” because, in this situation, you never want to repeat Question A
again. See Figure A-9.

A?

E

No Yes

G

F?

G

No Yes

B?

D

No Yes

C

Yes

C

Yes

C

and so on...

A?

B?

A?

B?

Yes

Yes

FIGURE A-8: STRUCTURING, STEP 6, WHICH NEVER ENDS

Solving Difficult Structuring Problems A-5

A Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 5

Similarly, after A is Yes, but when B is No, you never want to repeat Question A again, either. Figure A-10 shows that you
set shouldRepeat to “No” when the answer to B is No. Then you continue with D and the F decision that executes G
when F is No.

However, in the original flowchart segment in Figure A-1, when the B decision result is Yes, you do want to repeat A. So
when B is Yes, perform the process for C and set the shouldRepeat flag equal to “Yes”, as shown in Figure A-11.

A?

E

No Yes

G

F?

G

No Yes

B?

shouldRepeat = “No”

No YesshouldRepeat = “No”

D

FIGURE A-10: ADDING A FLAG TO A SECOND PATH IN THE FLOWCHART

A?

shouldRepeat = “No”

No Yes

E

G

FIGURE A-9: ADDING A FLAG TO THE FLOWCHART

Appendix AA-6

A Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 6

Now all paths of the flowchart can join together at the bottom with one final question: Is shouldRepeat equal to “Yes”?
If it isn’t, exit; but if it is, extend the flowline to go back to repeat Question A. See Figure A-12. Take a moment to verify that
the steps that would execute following Figure A-12 are the same steps that would execute following Figure A-1.

�When A is No, E and G always execute.

�When A is Yes and B is No, D and decision F always execute.

�When A is Yes and B is Yes, C always executes and A repeats.

Figure A-12 contains three nested selection structures. In Figure A-12, notice how the
F decision begins a complete selection structure whose Yes and No paths join together
when the structure ends. This F selection structure is within one path of the B decision
structure; the B decision begins a complete selection structure, the Yes and No paths of
which join together at the bottom. Likewise, the B selection structure resides entirely
within one path of the A selection structure.

A?

E

No Yes

G

F?

G

No Yes

B?

shouldRepeat = “No”

No YesshouldRepeat = “No”

D

C

shouldRepeat = “Yes”

FIGURE A-11: ADDING A FLAG TO A THIRD PATH IN THE FLOWCHART

Solving Difficult Structuring Problems A-7

TIP�

A Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 7

The flowchart segment in Figure A-12 performs identically to the original spaghetti version in Figure A-1. However, is this
new flowchart segment structured? There are so many steps in the diagram, it is hard to tell. You may be able to see the
structure more clearly if you create a module named aThroughG(). If you create the module shown in Figure A-13,
then the original flowchart segment can be drawn as in Figure A-14.

A?

E

No Yes

G

F?

G

No Yes

B?
No YesshouldRepeat = “No”

D

C

No

Yes
shouldRepeat

= “Yes”?

FIGURE A-12: TYING UP THE LOOSE ENDS

shouldRepeat = “No”

shouldRepeat = “Yes”

Appendix AA-8

A Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 8

FIGURE A-14: LOGIC IN FIGURE A-12, SUBSTITUTING A MODULE FOR STEPS A THROUGH G

No

Yes

aThroughG()

shouldRepeat
= “Yes”?

FIGURE A-13: THE aThroughG() MODULE

A?

E

No Yes

G

F?

G

No Yes

B?
No YesshouldRepeat = “No”

D

CshouldRepeat = “No”

shouldRepeat = “Yes”

return

aThroughG()

Solving Difficult Structuring Problems A-9

A Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 9

Now you can see that the completed flowchart segment in Figure A-14 is a do until loop. If you prefer to use a
while loop, you can redraw Figure A-14 to perform a sequence followed by a while loop, as shown in Figure A-15.

It has taken some effort, but any logical problem can be made to conform to structured rules. It may take extra steps,
including repeating specific steps and using some flag variables, but every logical problem can be solved using the three
structures: sequence, selection, and loop.

FIGURE A-15: LOGIC IN FIGURE A-14, SUBSTITUTING A SEQUENCE AND WHILE LOOP FOR THE DO UNTIL LOOP

No

Yes

aThroughG()

aThroughG()shouldRepeat
= “Yes”?

Appendix AA-10

A Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 10

APPENDIX B
UNDERSTANDING NUMBERING SYSTEMS AND COMPUTER CODES

The numbering system with which you are most familiar is the decimal system—the system based on ten digits, 0 through 9.
When you use the decimal system, there are no other symbols available; if you want to express a value larger than 9, you must
resort to using multiple digits from the same pool of ten, placing them in columns.

When you use the decimal system, you analyze a multicolumn number by mentally assigning place values to each column.
The value of the rightmost column is 1, the value of the next column to the left is 10, the next column is 100, and so on, mul-
tiplying the column value by 10 as you move to the left. There is no limit to the number of columns you can use; you simply
keep adding columns to the left as you need to express higher values. For example, Figure B-1 shows how the value 305 is
represented in the decimal system. You simply sum the value of the digit in each column after it has been multiplied by the
value of its column.

The binary numbering system works in the same way as the decimal numbering system, except that it uses only two
digits, 0 and 1. When you use the binary system, if you want to express a value greater than 1, you must resort to using
multiple columns, because no single symbol is available that represents any value other than 0 or 1. However, instead of
each new column to the left being 10 times greater than the previous column, when you use the binary system, each new
column is only two times the value of the previous column. For example, Figure B-2 shows how the number 9 is repre-
sented in the binary system, and Figure B-3 shows how the value 305 is represented. Notice that in both figures that
show binary numbers, as well as in the decimal system, it is perfectly acceptable—and often necessary—to write a
number containing 0 as some of the digits. As with the decimal system, when you use the binary system, there is no limit
to the number of columns you can use—you use as many as it takes to express a value.

9

FIGURE B-2: REPRESENTING 9 IN THE BINARY SYSTEM

Column value: 8 4 2 1

Number: 1 0 0 1

Conversion to decimal: 1*8 = 8

+0*4 = 0

+0*2 = 0

+1*1 = 1

Total:

FIGURE B-1: REPRESENTING 305 IN THE DECIMAL SYSTEM

Column value: 100 10 1

Number: 3 0 5

Evaluation: 3*100 +0*10 +5*1

B-1

B Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 1

Mathematicians call decimal numbers base 10 numbers and binary numbers base 2 numbers.

Every computer stores every piece of data it ever uses as a set of 0s and 1s. Each 0 or 1 is known as a bit, which is short
for binary digit. Every computer uses 0s and 1s because all values in a computer are stored as electronic signals that are
either on or off. This two-state system is most easily represented using just two digits.

Every computer uses a set of binary digits to represent every character it can store. If computers used only one binary
digit to represent characters, then only two different characters could be represented, because the single bit could be
only 0 or 1. If they used only two digits, then only four characters could be represented—one that used each of the four
codes 00, 01, 10, and 11, which in decimal values are 0, 1, 2, and 3, respectively. Many computers use sets of eight
binary digits to represent each character they store, because using eight binary digits provides 256 different combina-
tions. One combination can represent an “A”, another a “B”, still others “a” and “b”, and so on. Two hundred fifty-six com-
binations are enough so that each capital letter, small letter, digit, and punctuation mark used in English has its own code;
even a space has a code. For example, in some computers 01000001 represents the character “A”. The binary number
01000001 has a decimal value of 65, but this numeric value is not important to ordinary computer users; it is simply a
code that stands for “A”. The code that uses 01000001 to mean “A” is the American Standard Code for Information
Interchange, or ASCII.

A set of eight bits is called a byte. Half a byte, or four bits, is a nibble.

The ASCII code is not the only computer code; it is typical, and is the one used in most personal computers. The Extended
Binary Coded Decimal Interchange Code, or EBCDIC, is an eight-bit code that is used in IBM mainframe computers. In
these computers, the principle is the same—every character is stored as a series of binary digits. The only difference is that
the actual values used are different. For example, in EBCDIC, an “A” is 11000001, or 193. Another code used by languages
such as Java and C# is Unicode; with this code, 16 bits are used to represent each character. The character “A” in Unicode

FIGURE B-3: REPRESENTING 305 IN THE BINARY SYSTEM

Column value:

Number:

Conversion to decimal: 256 =

128 =

64 =

32 =

16 =

8 =

4 =

2 =

1 =

Total:

256 128 64

1 0 0

1*

+ 0*

+ 0*

+ 1*

+ 1*

+ 0*

+ 0*

+ 0*

+ 1*

32

1

16

1

8

0

4

0

2

0

1

1

256

0

0

32

16

0

0

0

1

305

Appendix BB-2

TIP�

TIP�

B Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 2

has the same decimal value as the ASCII “A”, 65, but it is stored as 0000000001000001. Using 16 bits provides many more
possible combinations than using only eight—65,536 to be exact. With Unicode, not only are there enough available codes
for all English letters and digits, but also for characters from many international alphabets.

Ordinary computer users seldom think about the numeric codes behind the letters, numbers, and punctuation marks they
enter from their keyboards or see displayed on a monitor. However, they see the consequence of the values behind letters
when they see data sorted in alphabetical order.When you sort a list of names, “Andrea” comes before “Brian,” and “Caroline”
comes after “Brian” because the numeric code for “A” is lower than the code for “B”, and the numeric code for “C” is higher
than the code for “B” no matter whether you are using ASCII, EBCDIC, or Unicode.

Table B-1 shows the decimal and binary values behind the most commonly used characters in the ASCII character set—
the letters, numbers, and punctuation marks you can enter from your keyboard using a single key press.

Most of the values not included in Table B-1 have a purpose. For example, the decimal
value 7 represents a bell—a dinging sound your computer can make, often used to notify
you of an error or some other unusual condition.

Each binary number in Table B-1 is shown containing two sets of four digits; this conven-
tion makes the long eight-digit numbers easier to read.

Understanding Numbering Systems and Computer Codes B-3

TIP�

TIP�

TABLE B-1: DECIMAL AND BINARY VALUES FOR COMMON ASCII CHARACTERS

Decimal number Binary number ASCII character

32 0010 0000 Space

33 0010 0001 ! Exclamation point

34 0010 0010 “ Quotation mark, or double quote

35 0010 0011 # Number sign, also called an octothorpe or a pound sign

36 0010 0100 $ Dollar sign

37 0010 0101 % Percent

38 0010 0110 & Ampersand

39 0010 0111 ’ Apostrophe, single quote

40 0010 1000 (Left parenthesis

41 0010 1001) Right parenthesis

42 0010 1010 * Asterisk

43 0010 1011 + Plus sign

44 0010 1100 , Comma

45 0010 1101 - Hyphen or minus sign

46 0010 1110 . Period or decimal point

47 0010 1111 / Slash or front slash

B Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 3

Appendix BB-4

TABLE B-1: DECIMAL AND BINARY VALUES FOR COMMON ASCII CHARACTERS (CONTINUED)

Decimal number Binary number ASCII character

48 0011 0000 0

49 0011 0001 1

50 0011 0010 2

51 0011 0011 3

52 0011 0100 4

53 0011 0101 5

54 0011 0110 6

55 0011 0111 7

56 0011 1000 8

57 0011 1001 9

58 0011 1010 : Colon

59 0011 1011 ; Semicolon

60 0011 1100 < Less-than sign

61 0011 1101 = Equal sign

62 0011 1110 > Greater-than sign

63 0011 1111 ? Question mark

64 0100 0000 @ At sign

65 0100 0001 A

66 0100 0010 B

67 0100 0011 C

68 0100 0100 D

69 0100 0101 E

70 0100 0110 F

71 0100 0111 G

72 0100 1000 H

73 0100 1001 I

74 0100 1010 J

75 0100 1011 K

76 0100 1100 L

77 0100 1101 M

78 0100 1110 N

79 0100 1111 O

B Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 4

Understanding Numbering Systems and Computer Codes B-5

TABLE B-1: DECIMAL AND BINARY VALUES FOR COMMON ASCII CHARACTERS (CONTINUED)

Decimal number Binary number ASCII character

80 0101 0000 P

81 0101 0001 Q

82 0101 0010 R

83 0101 0011 S

84 0101 0100 T

85 0101 0101 U

86 0101 0110 V

87 0101 0111 W

88 0101 1000 X

89 0101 1001 Y

90 0101 1010 Z

91 0101 1011 [Opening or left bracket

92 0101 1100 \ Backslash

93 0101 1101] Closing or right bracket

94 0101 1110 ^ Caret

95 0101 1111 _ Underline or underscore

96 0110 0000 ` Grave accent

97 0110 0001 a

98 0110 0010 b

99 0110 0011 c

100 0110 0100 d

101 0110 0101 e

102 0110 0110 f

103 0110 0111 g

104 0110 1000 h

105 0110 1001 i

106 0110 1010 j

107 0110 1011 k

108 0110 1100 l

109 0110 1101 m

110 0110 1110 n

111 0110 1111 o

B Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 5

Appendix BB-6

TABLE B-1: DECIMAL AND BINARY VALUES FOR COMMON ASCII CHARACTERS (CONTINUED)

Decimal number Binary number ASCII character

112 0111 0000 p

113 0111 0001 q

114 0111 0010 r

115 0111 0011 s

116 0111 0100 t

117 0111 0101 u

118 0111 0110 v

119 0111 0111 w

120 0111 1000 x

121 0111 1001 y

122 0111 1010 z

123 0111 1011 { Opening or left brace

124 0111 1100 | Vertical line or pipe

125 0111 1101 } Closing or right brace

126 0111 1110 ~ Tilde

B Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 6

APPENDIX C
USING A LARGE DECISION TABLE

In Chapter 5, you learned to use a simple decision table, but real-life problems often require many decisions. A compli-
cated decision process is represented in the following situation. Suppose your employer sends you a memo outlining a
year-end bonus plan with complicated rules. Appendix C walks you through the process of solving this problem by using
a large decision table.

Drawing the flowchart or writing the pseudocode for this task may seem daunting. You can use a decision table to help
you manage all the decisions, and you can begin to create one by listing all the possible decisions you need to make to
determine an employee’s bonus. They are:

� empDept = 2?

� empDepend > 5?

� empIdNum > 800?

Next, determine how many possible Boolean value combinations exist for the conditions. In this case, there are eight pos-
sible combinations, shown in Figure C-1. An employee can be in Department 2, have over five dependents, and have an
ID number greater than 800. Another employee can be in Department 2, have over five dependents, but have an ID num-
ber that is 800 or less. Because each condition has two outcomes and there are three conditions, there are 2 * 2 * 2 , or
eight possibilities. Four conditions would produce 16 possible outcome combinations, five would produce 32, and so on.

To: Programming staff
From: The boss
I need a report listing every employee and the
bonus I plan to give him or her. Everybody gets
at least $100. All the employees in Department 2
get $200, unless they have more than 5 dependents.
Anybody with more than 5 dependents gets $1000
unless they’re in Department 2. Nobody with an ID
number greater than 800 gets more than $100 even
if they’re in Department 2 or have more than 5
dependents.
P.S. I need this by 5 o’clock.

C-1

C Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 1

In Figure C-1, notice how the pattern of Ts and Fs varies in each row. The bottom row con-
tains one T and F, repeating four times, the second row contains two of each, repeating
twice, and the top row contains four of each without repeating. If a fourth decision was
required, you would place an identical grid of Ts and Fs to the right of this one, then add a
new top row containing eight Ts (covering all eight columns you see currently) followed by
eight Fs (covering the new copy of the grid to the right).

Next, list the possible outcome values for the bonus amounts. If you declare a numeric variable named bonus by placing
the statement numƒbonus in your list of variables at the beginning of the program, then the possible outcomes can be
expressed as:

� bonus = 100

� bonus = 200

� bonus = 1000

Finally, choose one required outcome for each possible combination of conditions. For example, the first possible out-
come is a $100 bonus. As Figure C-2 shows, you place Xs in the bonusƒ=ƒ100 row each time empIdNumƒ>ƒ800
is true, no matter what other conditions exist, because the memo from the boss said, “Nobody with an ID number greater
than 800 gets more than $100, even if they’re in Department 2 or have more than 5 dependents.”

Next, place an X in the bonusƒ=ƒ1000 row under all remaining columns (that is, those without a selected outcome) in
which empDependƒ>ƒ5 is true unless the empDeptƒ=ƒ2 condition is true, because the memo stated, “Anybody
with more than 5 dependents gets $1000 unless they’re in Department 2.” The first four columns of the decision table do
not qualify, because the empDept value is 2; only the sixth column in Figure C-3 meets the criteria for the $1000 bonus.

Condition Outcome

empDept = 2 T T T T F F F F

empDepend > 5 T T F F T T F F

empIdNum > 800 T F T F T F T F

bonus = 100 X X X X

bonus = 200

bonus = 1000

FIGURE C-2: DECISION TABLE FOR BONUSES, PART 1

Condition Outcome

empDept = 2 T T T T F F F F

empDepend > 5 T T F F T T F F

empIdNum > 800 T F T F T F T F

FIGURE C-1: POSSIBLE OUTCOMES OF BONUS CONDITIONS

Appendix CC-2

TIP�

C Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 2

Place Xs in the bonusƒ=ƒ200 row for any remaining columns in which empDeptƒ=ƒ2 is true and empDependƒ>ƒ5
is false, because “All the employees in Department 2 get $200, unless they have more than 5 dependents.” Column 4 in
Figure C-4 satisfies these criteria.

Finally, fill any unmarked columns with an X in the bonusƒ=ƒ100 row because, according to the memo, “Everybody
gets at least $100.” The only columns remaining are the second column and the last column on the right. See Figure C-5.

The decision table is complete. When you count the Xs, you’ll find there are eight possible outcomes. Take a moment and
confirm that each bonus is the appropriate value based on the specifications in the original memo from the boss. Now
you can start to plan the logic. If you choose to use a flowchart, you start by drawing the path to the first outcome, which
occurs when empDeptƒ=ƒ2, empDependƒ>ƒ5, and empIdNumƒ>ƒ800 are all true, and which corresponds to
the first column in the decision table. See Figure C-6.

Condition Outcome

empDept = 2 T T T T F F F F

empDepend > 5 T T F F T T F F

empIdNum > 800 T F T F T F T F

bonus = 100 X X X X X X

bonus = 200 X

bonus = 1000 X

FIGURE C-5: DECISION TABLE FOR BONUSES, PART 4

Condition Outcome

empDept = 2 T T T T F F F F

empDepend > 5 T T F F T T F F

empIdNum > 800 T F T F T F T F

bonus = 100 X X X X

bonus = 200 X

bonus = 1000 X

FIGURE C-4: DECISION TABLE FOR BONUSES, PART 3

Condition Outcome

empDept = 2 T T T T F F F F

empDepend > 5 T T F F T T F F

empIdNum > 800 T F T F T F T F

bonus = 100 X X X X

bonus = 200

bonus = 1000 X

FIGURE C-3: DECISION TABLE FOR BONUSES, PART 2

Using a Large Decision Table C-3

C Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 3

To continue creating the diagram started in Figure C-6, add the “false” outcome to the empIdNumƒ>ƒ800 decision;
this corresponds to the second column in the decision table. When an employee’s department is 2, dependents greater
than 5, and ID number not greater than 800, the employee’s bonus should be $100. See Figure C-7.

if empDept = 2 then
 if empDepend > 5 then
 if empIdNum > 800 then
 bonus = 100
 else
 bonus = 100

FIGURE C-7: FLOWCHART AND PSEUDOCODE FOR BONUS DECISION, PART 2

NoYes

NoYes

NoYes

empDept
= 2?

empDepend
> 5?

empIdNum
> 800?

bonus = 100 bonus = 100

if empDept = 2 then
 if empDepend > 5 then
 if empIdNum > 800 then
 bonus = 100

FIGURE C-6: FLOWCHART AND PSEUDOCODE FOR BONUS DECISION, PART 1

NoYes

NoYes

NoYes

empDept
= 2?

empDepend
> 5?

empIdNum
> 800?

bonus = 100

Appendix CC-4

C Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 4

Continue the diagram in Figure C-7 by adding the “false” outcome when the empDependƒ>ƒ5 decision is No and the
empIdNumƒ>ƒ800 decision is Yes, which is represented by the third column in the decision table. In this case, the
bonus is again $100. See Figure C-8.

Continue adding decisions until you have drawn all eight possible outcomes, as shown in Figure C-9.

if empDept = 2 then
 if empDepend > 5 then
 if empIdNum > 800 then
 bonus = 100
 else
 bonus = 100
 endif
 else
 if empIdNum > 800 then
 bonus = 100

NoYes

NoYes

NoYes NoYes

FIGURE C-8: FLOWCHART AND PSEUDOCODE FOR BONUS DECISION, PART 3

empDept
= 2?

empDepend
> 5?

empIdNum
> 800?

bonus = 100 bonus = 100

empIdNum
> 800?

bonus = 100

Using a Large Decision Table C-5

C Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 5

if empDept = 2 then
 if empDepend > 5 then
 if empIdNum > 800 then
 bonus = 100
 else
 bonus = 100
 endif
 else
 if empIdNum > 800 then
 bonus = 100
 else
 bonus = 200
 endif
else
 if empDepend > 5 then
 if empIdNum > 800 then
 bonus = 100
 else
 bonus = 1000
 endif
 else
 if empIdNum > 800 then
 bonus = 100
 else
 bonus = 100
 endif
endif

FIGURE C-9: FLOWCHART AND PSEUDOCODE FOR BONUS DECISION, PART 4

NoYes

NoYes

NoYes NoYes

NoYes

NoYes NoYes

empDept
= 2?

empDepend
> 5?

empIdNum
> 800?

bonus = 100 bonus = 100

empIdNum
> 800?

bonus = 100 bonus = 200

empDepend
> 5?

empIdNum
> 800?

bonus = 100 bonus = 1000

empIdNum
> 800?

bonus = 100 bonus = 100

Appendix CC-6

C Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 6

The logic shown in Figure C-9 correctly assigns a bonus to any employee, no matter what combination of characteristics
the employee’s record holds. However, you can eliminate many of the decisions shown in Figure C-9; you can eliminate
any decision that doesn’t make a difference. For example, if you look at the far left side of Figure C-9, you see that when
empDept is 2 and empDepend is greater than 5, the outcome of empIdNumƒ>ƒ800 does not matter; the
bonus value is 100 either way. You might as well eliminate the selection. Similarly, on the far right, the empIdNum
question makes no difference. Finally, many programmers prefer the True, or Yes, side of a flowchart decision always to
appear on the right side. The result is Figure C-10.

if empDept = 2 then
 if empDepend > 5 then
 bonus = 100
 else
 if empIdNum > 800 then
 bonus = 100
 else
 bonus = 200
 endif
 endif
else
 if empDepend > 5 then
 if empIdNum > 800 then
 bonus = 100
 else
 bonus = 1000
 endif
 else
 bonus = 100
 endif
endif

FIGURE C-10: COMPLETE FLOWCHART AND PSEUDOCODE FOR BONUS DECISION

YesNo

YesNo

YesNo

YesNo

YesNo

empDept
= 2?

empDepend
> 5?

bonus = 100
empIdNum

> 800?

bonus = 1000 bonus = 100

empDepend
> 5?

empIdNum
> 800?

bonus = 200 bonus = 100

bonus = 100

Using a Large Decision Table C-7

C Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 7

C Appendix Cxxxx 35539.ps 10-13-05 8:38 AM Page 8

absolute value—The positive value of a number.
abstract class—A class that is created only to be a parent class

and not to have objects of its own.
abstract data type—A type whose internal form is hidden behind

a set of methods you use to access the data.
abstraction—The process of paying attention to important proper-

ties while ignoring nonessential details.
access specifier or access modifier—The adjective that defines

the type of access that outside classes will have to an attribute
or method.

accessibility—A quality of screen design that makes programs
easier to use for people with physical limitations.

accumulator—A variable that you use to gather or accumulate
values.

activity diagram—A UML diagram that shows the flow of actions
of a system, including branches that occur when decisions
affect the outcome.

addition record—A record in a transaction file that represents a
new master record.

address—A location of computer memory where data or instruc-
tions are stored.

aggregation—An association in which one or more classes make
up the parts of a larger whole class.

algorithm—The sequence of steps necessary to solve any problem.
alternate keys—In a database, the keys that remain after you

choose a primary key from among candidate keys.
AND decision—A decision in which two conditions must both be

true for an action to take place.
annotation symbol or annotation box—A flowchart symbol that

represents an attached box containing notes.
anomaly—An irregularity in a database’s design that causes prob-

lems and inconvenience.
argument—The passed variable named within a module header;

also called a parameter. An argument is also the expression in
the comma-separated list in a function call.

arithmetic expression—A statement, or part of a statement, that
performs arithmetic and has a value.

array—A series or list of variables in computer memory, all of
which have the same name but are differentiated with special
numbers called subscripts.

ascending order—The arrangement of records from lowest to
highest, based on a value within a field.

assignment operator—The equal sign; it always requires the
name of a memory location on its left side.

assignment statement—A programming statement that stores
the result of any calculation performed on its right side to the
named location on its left side.

association relationship—The connection or link between
objects in a UML diagram.

atomic attributes—Attributes or columns that are as small as
possible so as to contain an undividable piece of data.

atomic transactions—Transactions that appear to execute com-
pletely or not at all.

attribute—A characteristic that defines an object as part of a
class; one field or column in a database table.

authentication techniques—Storing and verifying passwords or
even using physical characteristics, such as fingerprints or voice
recognition, before users can view data.

base class—A parent class from which other classes are derived.
See also original class and superclass.

base table—The “one” table in a one-to-many relationship.
batch—A group of transactions applied all at once.
batch processing—A process in which all data items are gath-

ered prior to running a program.
binary selection or binary decision—A selection or decision

structure that has an action associated with each of two possi-
ble outcomes. It is also called an if-then-else structure.

black box—A device you can use without understanding its inter-
nal processes; its module statements are “invisible” to the rest
of the program.

block—A group of statements that execute as a single unit.
Boolean expression—An expression that represents only one of

two states, usually expressed as true or false.
bubble sort—A sort in which you arrange records in either

ascending or descending order by comparing items in a list in
pairs; when an item is out of order, it swaps values with the item
below it.

built-in methods or built-in functions—Prewritten modules that
perform frequently needed tasks.

byte—A unit of computer storage that can contain any of 256
combinations of 0s and 1s that often represent a character.

calling module or calling program—A module or program that
calls a module.

camel casing—The format for naming variables in which multiple-
word variable names are run together, and each new word
within the variable name begins with an uppercase letter.

candidate keys—Columns or attributes that could serve as a pri-
mary key in a table.

cardinality and multiplicity—The arithmetic relationships
between objects.

cascading if statement—A decision “inside of” another decision.
case structure—A structure that provides a convenient alternative

to using a series of decisions when you must make choices
based on the value stored in a single variable.

catch—To receive an exception and handle a problem.
catch block—The group of statements that execute when a

value is caught.
central processing unit (CPU)—The piece of hardware that

processes data.
change record—A record in a transaction file that indicates an

alteration that should be made to a master file record.

GLOSSARY

G-1

character—A letter, number, or special symbol such as “A”, “7”,
and “$”. See also data hierarchy.

character constant—In most programming languages, a charac-
ter constant holds a single character. In this book, “character
constant” is used synonymously with “string constant” to mean
one or more characters enclosed within quotation marks. If a
working program contains the statement lastName =
“Lincoln”, then “Lincoln” is a character or string constant.

character variable—In most programming languages, a variable
that holds a single character value. If a working program
contains the statement lastName = “Lincoln”, then
lastName is a character or string variable. In this book,
“character variable” is used synonymously with “string variable”
and “text variable”.

child class—A class that inherits the attributes of another class.
See also derived class, descendent class, and subclass.

child file—The updated version of a master file; the saved version
is the parent file.

class—A term that describes a group or collection of objects with
common properties.

class definition—A set of program statements that tell you the
characteristics of the class’s objects and the methods that can
be applied to its objects.

class diagram—A tool used to describe a class; it contains a rec-
tangle divided into three sections.

client—A person who requests a program and who will actually
use the output of a program. Also called a user.

client of a class—A program or method that uses a class object.
coding—To write statements in a programming language.
cohesion—A measure of how the internal statements of a module

or subroutine serve to accomplish the module’s purposes.
coincidental cohesion—A type of cohesion based on coinci-

dence—that is, the operations in a module just happen to have
been placed together.

command line or command prompt—The location on your com-
puter screen at which you type entries to communicate with the
computer’s operating system.

common coupling—A type of coupling that occurs when two or
more modules access the same record.

communication diagram—A UML diagram that emphasizes the
organization of objects that participate in a system.

communicational cohesion—A type of cohesion that occurs in
modules that perform tasks that share data. The tasks are not
related, just the data items.

compiler—Software that translates a high-level language into
machine language and tells you if you have used a program-
ming language incorrectly. Similar to an interpreter. However, a
compiler translates all the statements in a program prior to exe-
cuting any statements.

component diagram—A UML diagram that emphasizes the files,
database tables, documents, and other components that a sys-
tem’s software uses.

compound key—A key constructed from multiple columns. Also
known as a composite key.

concatenate columns—To combine columns to produce a com-
pound key.

concurrent update problem—A problem that occurs when two
database users need to make changes to the same record at
the same time.

connector—A flowchart symbol used when limited page size
forces you to continue the flowchart on the following page.

console application—A program that requires the user to enter
choices using the keyboard.

constructor—A method that establishes an object.
control break—A temporary detour in the logic of a program.
control break field—A variable that holds the value that signals a

break in a program.
control break program—A program in which a change in the

value of a variable initiates special actions or causes special or
unusual processing to occur.

control break report—A report that lists items in groups.
Frequently, each group is followed by a subtotal.

control coupling—A type of coupling that occurs when a main
program (or other module) passes an argument to a module,
controlling the module’s actions or telling it what to do.

conversion—The entire set of actions an organization must take to
switch over to using a new program or set of programs.

counter—Any numeric variable you use to count the number of
times an event has occurred.

coupling—A measure of the strength of the connection between
two program modules.

data—All the text, numbers, and other information that are
processed by a computer.

data coupling—The loosest type of coupling; therefore, it is the
most desirable. Data coupling occurs when modules share a
data item by passing parameters. Data coupling is also known
as simple data coupling or normal coupling.

data dictionary—A list of every variable name used in a program,
along with its type, size, and description.

data file—A file that contains only data for another computer pro-
gram to read, not headings or other formatting.

data hiding—To completely contain and access the data or vari-
ables you use within the module in which they are declared.

data hierarchy—The representation of the relationship of data-
bases, files, records, fields, and characters.

data integrity—The quality of a database table that follows a set
of rules to make the data accurate and consistent.

data redundancy—The unnecessary repetition of data.
data type—Describes the kind of values the variable can hold and

the types of operations that can be performed with it.
database—A logical container that holds a group of files, often

called tables, that together serve the information needs of an
organization.

database management software—A set of programs that
allows users to create table descriptions; identify key fields; add
records to, delete records from, and update records within a
table; arrange records so they are sorted by different fields;
write questions that select specific records from a table for
viewing; write questions that combine information from multiple
tables; create reports and forms; and keep data secure by
employing sophisticated security measures.

GlossaryG-2

data-structured coupling—A type of coupling similar to data
coupling, in which an entire record is passed from one module
to another.

dead code—Any set of program statements that will never exe-
cute—for example, those statements within a module that fol-
low the return statement. Also called unreachable code.

dead path—A logical path that can never be traveled. Also called
an unreachable path.

decision—Testing a value.
decision structure—A programming structure in which you ask a

question, and depending on the answer, you take one of two
courses of action. Then, no matter which path you follow, you
continue with the next task. Also called a selection structure.

decision symbol—A diamond shape that represents a decision in
a flowchart.

decision table—A problem-analysis tool that consists of four
parts: conditions, possible combinations of Boolean values for
the conditions, possible actions based on the conditions, and
the specific actions that correspond to each Boolean value of
each condition.

declaration—A statement that names a variable and tells the
computer which type of data to expect.

declaring a variable—To provide a name for the memory location
where the computer will store the variable value and notifying the
computer what type of data to expect. In contrast, when defining
a variable, an initial value for the variable is also supplied.

decrementing—To decrease a variable, often by one.
default constructor—A constructor that requires no arguments.
default value—A value assigned after all test conditions are found

to be false.
defensive programming—Trying to prepare for all possible errors

in programs before they occur.
defining a variable—To provide a variable with a value, as well as

a name and a type, when you create it. In contrast, when you
are simply declaring a variable, the variable is not initialized.

definite loop—A loop for which you definitely know the repetition
factor.

delete anomaly—A problem that occurs in a database when a
row in a table is deleted and related data is lost.

deletion record—A record in a transaction file that flags a record
that should be removed from a master file.

delimiter—A character that separates data items, such as a
comma or space.

denormalize—To place a table in a lower normal form by placing
some repeated information back into it.

deployment diagram—A UML diagram that focuses on a sys-
tem’s hardware.

derived class—A class that inherits the attributes of another
class. See also child class, descendent class, and subclass.

descendent class—A class that inherits the attributes of another
class. See also child class, derived class, and subclass.

descending order—The arrangement of records highest to low-
est, based on a value within a field.

desk-checking—The process of walking through a program’s
logic on paper.

destructor—A method that destroys an object.
detail line—On a report, a line that contains data details. Most

reports contain many detail lines.
dimming—Identifying a disabled component by making its appear-

ance muted or softer.
dispatcher module—A module that dispatches messages to a

sequence of more cohesive modules.
do until or do while loop—A structure in which you ensure

that a procedure executes at least once; then, depending on the
answer to the controlling question, the loop may or may not
execute additional times.

documentation—All of the supporting material that goes with a
program.

DOS prompt—The command line in the DOS operating system.
dual-alternative if—A structure that defines one action to be

taken when the tested condition is true and another action to be
taken when it is false. Also called a dual-alternative selection or
an if-then-else structure.

dual-alternative selection—A selection structure that has an
action associated with each of two possible outcomes. Also
called a dual-alternative if or an if-then-else structure.

dummy value—A preselected value that stops the execution of a
program. See also sentinel value.

early exit—Leaving a loop before all scheduled repetitions—for
example, as soon as a match is found.

element—Each separate variable in an array.
elide—To omit part of a UML diagram for clarity.
else clause—Part of a decision that holds the action or actions

that execute only when the Boolean expression in the decision
is false.

encapsulation—To completely contain and access the data or
variables you use within the module in which they are declared.
Encapsulation means that program components are bundled
together.

encryption—The process of coding data into a format that human
beings cannot read.

end user—A person who uses computer programs. Also called
a user.

end-of-job routine—The steps you take at the end of the pro-
gram to finish the application.

entity—One record or row in a database table.
eof—An end-of-data file marker, short for “end of file.”
event—An occurrence that generates a message sent to an object.
event-based or event-driven—A quality of GUI programs in

which actions occur in response to user-initiated events such as
clicking a mouse button.

exception—The generic name used for an error in object-oriented
languages; presumably, errors are not usual occurrences, but
are “exceptions” to the rule.

exception-handling methods—A group of error-handling meth-
ods that object-oriented, event-driven programs employ.

Glossary G-3

executing—To have a computer use a written and compiled pro-
gram. See also running.

extend variation—A use case variation that shows functions
beyond those found in a base case.

extensible—Able, in the context of a programming language, to
have new data types created in it.

external coupling—A type of coupling that occurs when two or
more modules access the same global variable.

external program documentation—The supporting paperwork
that programmers develop along with a program.

external storage—Persistent, relatively permanent storage out-
side the main memory of a computer, on a device such as a
floppy disk, hard disk, or magnetic tape.

field—A single data item such as lastName, streetAddress,
or annualSalary. See also data hierarchy.

file—A group of records that go together for some logical reason.
See also data hierarchy.

file description—A document that describes the data contained in
a file.

first normal form (1NF)—The normalization form in which you
eliminate repeating groups.

flag—A variable that you set to indicate whether some event has
occurred.

floating-point—A value that is a fractional numeric variable and
contains a decimal point.

flowchart—A pictorial representation of the logical steps it takes
to solve a problem.

flowline—A line or arrow that connects the steps in a flowchart.
footer—A message that prints at the end of a page or other sec-

tion of a report.
footer line—The end-of-job message line. Also called a footer.
forcing—Assigning a specific value to a variable, particularly when

the assignment causes a sudden change in value. You can also
force a field to a value to override incorrect data.

foreign key—A column that is not a key in a table, but contains an
attribute that is a key in a related table.

for statement—A statement that is frequently used to code defi-
nite loops. Most often, it contains a loop control variable that it
initializes, evaluates, and increments.

function—A small program unit. Functions are also called mod-
ules, subroutines, procedures, or methods. A function is also a
module that automatically provides a mathematical value such
as a square root, absolute value, or random number.

functional cohesion—A quality of a module that determines the
degree to which all the module statements contribute to the
same task. Functional cohesion is the highest level of cohesion;
you should strive for it in all methods you write.

functional decomposition—The act of reducing a large program
into more manageable modules.

functionally dependent—The quality of an attribute that allows it
to be determined by another attribute.

garbage—The unknown value of an undefined variable.

generalization variation—A use case variation that you use in a
UML diagram when a use case is less specific than others, and
you want to be able to substitute the more specific case for a
general one.

global variable—A variable given a type and name once, and then
used in all modules of the program.

graphical user interface (GUI)—A program interface that uses
screens to display program output and allows users to interact
with an operating system by clicking icons to select options.

graying—Identifying a disabled component by making its appear-
ance muted or softer.

group name—A name for a collection of associated variables.
handler body node—The UML diagram name for an exception-

handling catch block.
hard copy—A printed copy.
hard-coded value—A value that is explicitly assigned or used in a

program.
hardware—The equipment of a computer system.
has-a relationship—An association in which one or more classes

make up the parts of a larger whole class.
heading line—On a report, a line that contains the title and any

column headings; usually appears only once per page.
hierarchy chart—A diagram that illustrates modules’ relationships.
high-level programming language—A programming language

that is English-like, as opposed to a low-level programming language.
high value—A value that is greater than any possible value in

a field.
housekeeping—A module that includes steps you must perform

at the beginning of a program to get ready for the rest of the
program.

Hungarian notation—A variable-naming convention in which a
variable’s data type or other information is stored as part of
the name.

icon—A small picture on a computer screen that a user can select
with a mouse.

identifier—A variable name.
if clause—Part of a decision that holds the action that results

when a Boolean expression in a decision is true.
if-then—Another name for a single-alternative selection structure.
if-then-else—Another name for a dual-alternative selection struc-

ture or dual-alternative if structure.
immutable—Not changing during normal operation.
implementation hiding—Hiding the details of the way a program

or module works.
in scope—To be existing and usable. A local variable is in scope

from the moment it is declared until it ceases to exist.
include variation—A use case variation that you use when a case

can be part of multiple use cases in a UML diagram.
incrementing—To add to a variable (often, to add 1).
indefinite loop or indeterminate loop—A loop for which you

cannot predetermine the number of executions.

GlossaryG-4

index—To store a list of key fields paired with the storage address
for the corresponding data record. An index is also a subscript.

infinite loop—A loop that never stops executing; a repeating flow
of logic without an ending.

information hiding—To completely contain and access the data
or variables you use within the module in which they are
declared. In object-oriented programming, information hiding is
the concept that other classes should not alter an object’s
attributes—outside classes should only be allowed to make a
request that an attribute be altered; then it is up to the class
methods to determine whether the request is appropriate.

inheritance—The process of acquiring the traits of one’s
predecessors.

initialization loop—A loop structure that provides initial values for
every element in any array.

initializing—To provide a variable with a value when you create it,
which is part of defining a variable.

inner loop—A loop that is contained within another loop. See also
outer loop.

input device—A hardware device such as a keyboard or mouse;
through these devices, data items enter the computer system.

input symbol—Represented as a parallelogram in flowcharts.
insert anomaly—A problem that occurs in a database when new,

incomplete rows are added to a table.
insertion sort—A sort that involves looking at each pair of ele-

ments in an array. For an ascending sort, when you find an ele-
ment that is smaller than the one before it, you search the array
backward from that point to see where an element smaller than
the out-of-order element is located. At that point, you open a
new position for the out-of-order element by moving each sub-
sequent element down one position. Then, you insert the out-of-
order element into the newly opened position.

instance—An existing object of a class.
instantiate—To create a class object.
integer—A value that is a whole-number, numeric variable.
interactive applications—Applications in which the program

interacts with a user who types data at a keyboard.
interactive processing—A process in which programs depend on

user input while the programs are running.
interactivity diagram—A drawing that shows the relationship

between screens in an interactive GUI program.
interface—The user-friendly boundary between the user and the

internal mechanisms of the device.
internal program documentation—The documentation within a

program.
internal storage—Temporary storage within the computer; also

called memory, main memory, primary memory, or random
access memory.

interpreter—Software that translates a high-level language into
machine language and tells you if you have used a program-
ming language incorrectly. Similar to a compiler. However, an
interpreter translates one statement at a time, executing each
statement as soon as it is translated.

IPO chart—A tool that identifies and categorizes each item needed
within a module as pertaining to input, processing, or output.

is-a relationship—A relationship in which one item is an object
that is an instance of a class. In object-oriented programming,
the “is a” phrase can test whether an object is an instance of
a class.

iteration—Repetition; another name for a loop structure. See also
loop structure.

join column—The column on which two tables are connected.
join operation or a join—A connection between two tables based

on the values in a common column.
key—A field or column that uniquely identifies a record.
key field—The field whose contents make the record unique

among all records in a file.
library—A collection of classes that serve related purposes.
line counter—A variable that keeps track of the number of printed

lines on a page.
linked list—A list that contains one extra field in every record of

stored data. This extra field holds the physical address of the
next logical record.

listener—An object that is “interested in” an event to which you
want it to respond.

local variable—A variable declared within the module that uses it.
lock—A mechanism that prevents changes to a database for a

period of time.
logic—Instructions given to the computer in a specific sequence,

without leaving any instructions out or adding extraneous
instructions.

logical AND operator—A symbol that you use to combine deci-
sions so that two (or more) conditions must be true for an action
to occur.

logical cohesion—A type of cohesion that takes place when a
member module performs one or more tasks depending on a
decision. The actions performed might go together logically (that
is, perform the same type of action), but they don’t work on the
same data.

logical error—An error that occurs when incorrect instructions
are performed, or when instructions are performed in the
wrong order.

logical operator—As the term is most often used, an operator
that compares single bits. However, some programmers use the
term synonymously with “relational comparison operator.”

logical order—The order in which you use a list, even though it is
not necessarily physically stored in that order.

logical OR operator—A symbol that you use to combine decisions
when any one can be true for an action to occur.

loop—A structure that repeats actions while some condition continues.
loop body—The set of statements that execute within a loop.
loop control variable—A variable that determines whether a loop

will continue.
loop structure—A structure in which you continue to repeat

actions based on the answer to a question.

Glossary G-5

loose coupling—A characteristic of a program that occurs when
modules do not depend on others.

low-level detail—A small, nonabstract step.
low-level programming language—A programming language

not far removed from machine language, as opposed to a high-
level programming language.

lozenge—A four-sided shape where the top and bottom sides are
parallel straight lines and the left and right sides are convex
curves; terminal symbols, or start/stop symbols, in flowcharts
are lozenges.

machine language—A computer’s on-off circuitry language; the
low-level language made up of 1s and 0s that the computer
understands.

main loop—The part of a program that contains the steps that are
repeated for every record.

main menu—The menu that determines whether execution of the
program will continue.

main program—The program that runs from start to stop and
calls other modules.

mainline logic—The overall logic of the main program from
beginning to end.

major-level break—A break caused by a change in the value of a
higher-level field.

many-to-many relationship—A relationship in which multiple
rows in each of two tables can correspond to multiple rows in
the other.

master file—A file that holds relatively permanent data.
matching record—A transaction file record that contains data

about the same entity in a master file record.
mean—The arithmetic average of a list.
median—The value in the middle position of a list when the values

are sorted.
menu program—A common type of interactive program in which

the user sees a number of options on the screen and can select
any one of them.

merging files—Combining two or more files while maintaining the
sequential order.

method—A small program unit. Methods are also called modules,
subroutines, functions, or procedures.

method type or method return type—The data type of the value
that a method returns.

minor-level break—A break caused by a change in the value of a
lower-level field.

mnemonic—A memory device; variable identifiers act as mnemonics
for hard-to-remember memory addresses.

modularization—The process of breaking down programs into
reasonable units called modules, subroutines, functions, or
methods.

module—A small program unit. Programmers also refer to mod-
ules as subroutines, procedures, functions, or methods.

module header—The introductory title statement of a module.
multidimensional array or two-dimensional array—An array

that represents a table or grid containing rows and columns.

multilevel menu—A list in which the selection of a menu option
leads to another menu from which the user can make further,
more refined selections.

multiple inheritance—A type of inheritance in which a class can
inherit from more than one parent.

multiple-level control break—A break in which the normal flow
of control breaks away for special processing in response to
more than just one change in condition.

named constant—A constant that holds a value that never
changes during the execution of a program.

nested decision or nested if—A decision “inside of” another
decision.

nesting—To place a structure within another structure.
nesting loop—A loop within a loop.
nondefault constructor—A constructor that requires arguments.
non-key attribute—Any column in a table that is not a key.
normal coupling—See also data coupling.
normal forms—Rules for constructing a well-designed database.
normalization—The process of designing and creating a set of

database tables that satisfies the users’ needs and avoids
redundancies and anomalies.

null—An empty column in a database table.
null case—The branch of a decision in which no action is taken.
numeric constant—A specific numeric value.
numeric variable—A variable that holds numeric values.
object diagram—A UML diagram that is similar to a class dia-

gram, but that models specific instances of classes.
object dictionary—A list of the objects used in a program, includ-

ing which screens they are used on and whether any code, or
script, is associated with them.

object-oriented programming—A programming technique that
focuses on objects, or “things,” and describes their features, or
attributes, and their behaviors. It also focuses on an applica-
tion’s data and the methods you need to manipulate it.

off-by-one errors—Errors that usually occur when you assume an
array’s first subscript is 1 but it actually is 0.

offline processing—A process in which you collect data well
ahead of the actual computer processing of paychecks or bills,
for example.

one-to-many relationship—A relationship in which one row in a
table can be related to many rows in another table. It is the
most common type of relationship among tables.

one-to-one relationship—A relationship in which a row in one
table corresponds to exactly one row in another table.

online processing—A process in which the user’s data or
requests are gathered during the execution of the program,
while the computer is operating.

opening a file—To tell the computer where the input is coming
from, the name of the file (and possibly the folder), and prepar-
ing the file for reading.

operating system—The software that you use to run a computer
and manage its resources.

OR decision—A decision that contains two (or more) decisions; if
at least one condition is met, the resulting action takes place.

GlossaryG-6

original class—A class that has descendents. See also base class
and superclass.

out of bounds—A subscript that is not within the range of accept-
able subscripts.

out of scope—A variable that has ceased to exist, or less fre-
quently, does not yet exist.

outer loop—A loop that contains another loop. See also inner loop.
output device—A computer device such as a printer or monitor

that lets people view, interpret, and work with information pro-
duced by a computer.

output symbol—Represented as a parallelogram in flowcharts.
overloading a method—In object-oriented programs, the act of

creating multiple methods with the same name but different
argument lists.

overriding a method—In object-oriented programs, a child class
method taking precedence over a parent class method because
both have the same signature.

package—A collection of classes that serve related purposes.
parallel arrays—Two or more arrays in which each element in one

array is associated with the element in the same relative posi-
tion in the other array or arrays.

parameter list—The series of parameters, or passed values, that
appears in a module header.

parent file—The saved version of a master file; the updated ver-
sion is the child file.

partial key dependency—A dependency that occurs when a col-
umn in a table depends on only part of the table’s key.

pass a value—To send a copy of data in one module of a program
to another module for use.

pathological coupling—A type of coupling that occurs when two
or more modules change one another’s data.

permission—A property assigned to a user that indicates which
parts of the database the user can view, and which parts he or
she can change or delete.

persistent lock—A long-term database lock required when users
want to maintain a consistent view of their data while making
modifications over a long transaction.

physical order—The order in which a list is actually stored.
pointer variable—A variable that holds a memory address.
polymorphism—A feature that allows the same operation to be

carried out differently depending on the context.
posttest loop—Do while and do until loops in which a

condition is tested after the loop body has executed.
precedence—The quality of an operation that means it is evalu-

ated before others.
prefix—A set of characters used at the beginning of related vari-

able names.
pretest loop—A while loop in which a condition is tested before

entering the loop even once.
primary key—A field or column that uniquely identifies a record.
priming input or priming read—The statement that reads the

first input data record prior to starting a structured loop.
primitive data type—A simple data type as opposed to a class type.

print chart or print layout or printer spacing chart—A tool for
planning program output.

private access—In object-oriented programming, data that cannot
be accessed by any method that is not part of the class.

procedural cohesion—A type of cohesion that takes place when,
as with sequential cohesion, the tasks of a module are per-
formed in sequence. However, unlike operations in sequential
cohesion, the tasks in procedural cohesion do not share data.

procedural program—A program in which one procedure follows
another from the beginning until the end.

procedural programming—A programming technique that
focuses on the procedures that programmers create.

procedure—A small program unit. Procedures are also called modules,
subroutines, functions, or methods.

processing—To organize data items, check them for accuracy, or
perform mathematical operations on them.

processing symbol—Represented as a rectangle in flowcharts.
program comment—A nonexecuting statement that programmers

place within their code to explain program statements in
English.

program documentation—The set of instructions that programmers
use when they begin to plan the logic of a program.

programmer-defined type—A class.
programming language—A language such as Visual Basic, C#,

C++, Java, or COBOL, used to write programs.
prompt—A message that appears on a monitor, asking the user for

a response.
property—An attribute of prewritten GUI classes. Also, a value of

an object’s attributes.
protected access—In object-oriented programming, a modifier

used when you want no outside classes to be able to use a data
field directly, except classes that are children of the original
class.

protected node—The UML diagram name for an exception-
throwing try block.

prototype—A signature, in some programming languages.
pseudocode—An English-like representation of the logical steps it

takes to solve a problem.
public access—In object-oriented programming, the ability of

other programs and methods to use the methods that control
access to private data.

pure polymorphism—A form of polymorphism that occurs when
one function body can be used with a variety of arguments.

query—A question that pulls related data items together from a
database in a format that enhances efficient management deci-
sion making. Its purpose is often to display a subset of data.

query by example—The process of creating a query by filling in
blanks.

random-access storage device—A device such as a disk from
which records can be accessed in any order.

range—A series of values that encompasses every value between
a high and low limit.

range check—A test that compares a variable to a series of val-
ues between limits.

Glossary G-7

range of values—A set of contiguous values.
real-time applications—Interactive computer programs that run

while a transaction is taking place, not at some later time.
record—A group of fields that go together for some logical reason.

See also data hierarchy.
recovery—The process of returning a database to a correct form

that existed before an error occurred.
reference—A memory address.
reference variable—A variable that holds a memory address.
register—To sign up components that will react to events initiated

by other components.
related table—The “many” table in a one-to-many relationship.
relational comparison operator—The symbol that expresses

Boolean comparisons. Examples include =, >, <, >=, <=,
and <>.

relational database—A database that contains a group of tables
from which you can make connections to produce virtual tables.

relationship—A connection between two tables.
reliability—The feature of modular programs that assures you that

a module has been tested and proven to function correctly.
repeating group—A subset of rows in a database table that all

depend on the same key.
repetition—Another name for a loop structure. See also loop

structure.
return a value—To pass a copy of a value back to the module that

calls the value.
reusability—The feature of modular programs that allows individ-

ual modules to be used in a variety of applications.
reverse engineering—The process of creating a model of an

existing system.
rolling up the totals—The process of adding a total to a higher-

level total.
running—To have a computer use a written and compiled

program. See also executing.
saving—To store a program on some nonvolatile medium.
scenario—Each variation in the sequence of actions required in a

use case.
second normal form (2NF)—The normalization form in which you

eliminate partial key dependencies.
SELECT-FROM-WHERE—An SQL statement that selects the fields

you want to view from a specific table where one or more condi-
tions are met.

selection sort—In an ascending selection sort, you search for the
smallest list value, and then swap it with the value in the first
position. You then repeat the process with each subsequent list
position.

selection structure—A programming structure in which you ask a
question, and depending on the answer, you take one of two
courses of action. Then, no matter which path you follow, you
continue with the next task. Also called a decision structure.

self-documenting program—A program that describes itself to
the reader through the use of comments and clear variable
names.

semantic error—An error that occurs when a correct word is used
in an incorrect context.

sentinel value—A limit, or ending value.
sequence diagram—A UML diagram that shows the timing of events in

a single use case.
sequence structure—A programming structure in which you per-

form an action or task, and then you perform the next action in
order. A sequence can contain any number of tasks, but there is
no chance to branch off and skip any of the tasks.

sequential cohesion—A state in which a module performs opera-
tions that must be carried out in a specific order on the same
data.

sequential file—A file in which records are stored one after
another in some order.

sequential order—Records arranged one after another on the
basis of the value in some field.

short-circuiting—The compiler technique of not evaluating an
expression when the outcome makes no difference.

signature—The part of a method that includes its return type,
name, and parameter list. In some languages, a signature is
also called a prototype.

simple data coupling— See also data coupling.
single-alternative if or single-alternative selection—A selec-

tion structure where action is required for only one outcome of
the question. You call this form of the selection structure an if-
then, because no “else” action is necessary. See also unary
selection.

single-dimensional array or one-dimensional array—An array
that represents a single list of values.

single-level control break—A break in the logic of a program
based on the value of a single variable.

single-level menu—A list from which a user makes a selection
that results in the program’s ultimate purpose, as opposed to
displaying additional menus.

sinking sort—Another name for a bubble sort.
size (of an array)—The number of elements it can hold.
soft copy—A screen copy.
software—Programs written by programmers that tell the com-

puter what to do.
sort—To take records that are not in order and rearrange them to

be in order based on the contents of one or more fields.
source—A component from which an event is generated.
source code—The readable statements of a program, written in a

programming language.
spaghetti code—Snarled, unstructured program logic.
stacking—To attach structures end-to-end.
standard input device—The default device from which input

comes, most often the keyboard.
standard output device—The default device to which output is

sent, usually the monitor.
state machine diagram—A UML diagram that shows the differ-

ent statuses of a class or object at different points in time.
state of an object—The collective value of all an object’s attrib-

utes at any point in time.

GlossaryG-8

static method—A class method that does not receive a this
reference and does not require an object to execute.

stereotype—A feature that adds to the UML vocabulary of shapes
to make them more meaningful for the reader.

storyboard—A picture or sketch of a screen the user will see
when running a program.

string constant—One or more characters enclosed within quota-
tion marks. If a working program contains the statement
lastName = “Lincoln”, then “Lincoln” is a character or
string constant. In this book, “string constant” is used synony-
mously with “character constant.”

string variable—A variable that holds character values. If a work-
ing program contains the statement lastName =
“Lincoln”, then lastName is a character or string vari-
able. In this book, “string variable” is used synonymously with
“character variable” and “text variable.”

structure—A basic unit of programming logic; each structure is a
sequence, selection, or loop.

Structured Query Language (SQL)—A commonly used language
for accessing data in database tables.

stub—An empty procedure, intended to be coded later.
subclass—A class that inherits the attributes of another class. See

also child class, derived class, and descendent class.
submenu—A second-level, or later-level, menu.
submodule—A module that is called by another module.
subroutine—A small program unit. Subroutines are also called

modules, procedures, functions, or methods.
subscript—A number that indicates the position of a particular

item within an array.
summary line—On a report, a line that contains end-of-report

information. See also total line.
summary report—A report that does not include any information

about individual records, but instead includes group totals and
other statistics.

sunny day case—A case in which no errors occur.
superclass—A parent class from which other classes are derived.

See also base class and original class.
swap—To set the first variable in a set of two values equal to the

value of the second, and the second variable equal to the value
of the first.

syntax—The rules of a language.
syntax error—An error in language or grammar.
system design—The detailed specification of how all the parts of

a system will be implemented and coordinated.
table—In a database, a collection of data in rows and columns.
temporal cohesion—A type of cohesion that takes place when

the tasks in a module are related by time.
temporal order—An order in which records are stored based on

their creation time.
terminal symbol—Represents the end of the flowchart; its shape

is a lozenge. Also called a start/stop symbol.
text variable—A variable that holds character values. If a working

program contains the statement lastName = “Lincoln”,
then lastName is a text variable. See also string variable.

third normal form (3NF)—The normalization form in which you
eliminate transitive dependencies.

this reference or this pointer—A reference that holds an
object’s memory address within a method of the object’s class.

three-dimensional array—An array in which you access values
using three subscripts.

throw—To pass an exception from the module where a problem
occurs to another module.

tight coupling—A characteristic of a program that occurs when
modules excessively depend on each other; it makes programs
more prone to errors.

time signal—A UML diagram symbol that indicates that a specific
amount of time has passed before an action is started.

total line—On a report, a line that contains end-of-report informa-
tion. See also summary line.

transaction file—A file that holds temporary data generated by
the entities represented in the master file.

transitive dependency—A dependency that occurs when the
value of a non-key attribute determines, or predicts, the value of
another non-key attribute.

trivial Boolean expression—A Boolean expression that always
evaluates to the same result.

try—To employ a module that might throw an exception.
try block—A segment of code in which an attempt is made to

execute a module that might throw an exception.
UML—A standard way to specify, construct, and document systems

that use object-oriented methods. UML is an acronym for
Unified Modeling Language.

unary selection—A selection structure where action is required
for only one outcome of the question. You call this form of the
selection structure an if-then, because no “else” action is
necessary. See also single-alternative if or single-alternative
selection.

unnormalized table—A database table that contains repeating
groups.

unreachable code—Any set of program statements that will never
execute—for example, those statements within a module that
follow the return statement. Also called dead code.

update anomaly—A problem that occurs in a database when a
table is altered, resulting in repeated data.

updating a master file—To make changes to the values in a
master file’s fields based on transaction records.

use case diagram—A UML diagram that shows how a business
works from the perspective of those who approach it from the
outside, or those who actually use the business.

user—A person who uses computer programs. Also called an
end user.

user-defined type—A class.
user documentation—All the manuals or other instructional

materials that nontechnical people use, as well as the operating
instructions that computer operators and data-entry personnel
need.

user-friendly—The quality of a program that makes it easy for the
user to make desired choices.

Glossary G-9

validating input—Checking the user’s responses to ensure they
fall within acceptable bounds.

variable—A memory location whose contents can vary or differ
over time.

view—A particular way of looking at a database.
visual development environment—An environment in which you

can create programs by dragging components such as buttons
and labels onto a screen and arranging them visually.

void—A data type indicating no value. The word “void” means
“empty” or “nothing”; it is often used as the return type for a
method that returns no value.

volatile—The characteristic of internal memory, which loses its
contents every time the computer loses power.

while do loop—A loop in which a process continues while some
condition continues to be true. Also called a while loop.

while statement—A statement that can be used to code
any loop.

whole-part relationship—An association in which one or more
classes make up the parts of a larger whole class. This type of
relationship is also called an aggregation. You also can call a
whole-part relationship a has-a relationship because the phrase
describes the association between the whole and one of its
parts.

work field or work variable—A variable you use to temporarily
hold a value or calculation result.

zero-based array—An array in which the first element is
accessed using a subscript of 0.

GlossaryG-10

INDEX
& (ampersand), 176

* (asterisk), 638

, (comma), 509

. (decimal point), 25

$ (dollar sign), 17, 99

" (double quotes), 25

= (equal sign), 23, 165, 167

! (exclamation point), 167

/ (forward slash), 95

> (greater-than symbol), 165–168

< (less-than symbol), 165–168

– (minus sign), 545

+ (plus sign), 545

(pound sign), 141

_ (underscore), 17

A

abs() method, 516–518

absolute value, 516

abstract data types (ADTs), 546

abstract classes, 551

abstraction

described, 82, 496

modularization and, 82–83

access specifiers (modifiers)

described, 544–546

private access, 544–545

protected access, 545, 552–553

public access, 544–545

accumulators, 247–250

acquireNewBook() event, 603–604

actions, user-initiated, 571–573

activity diagrams, 615–618

addition() module, 410–416,
428–431

addition records, 470

addresses, memory

contents of, performing
mathematical operations on,
23–24

described, 386

indexed files and, 386–387

modularization and, 88

this references and, 554

ADTs (abstract data types), 546

ageOfInsured variable, 579

aggregation, 611

algebra, 23, 165, 178

algorithms

described, 7

developing, 7

alternate keys, 635

American Standard Code for
Information Interchange (ASCII)

arrays and, 363

described, B-2–B-3

documentation and, 99

validating input and, 435

ampersand (&), 176

AND decisions

avoiding common errors in,
176–177

case structure and, 194

combining decisions in, 175–176

described, 168–169

operator precedence and,
190–192

writing, 173–175

annotation

box, 91

symbols, 91

anomalies, 647

aNumber variable, 313

apartment request program,
315–320, 329–333

arithmetic

expressions, 14, 146

modularization and, 87

temporary variables and, 146

array(s)

advanced manipulation of,
361–404

bounds, remaining within,
337–339

bubble sorts and, 364–381

compile-time, 327

declaring, 324–329

described, 312

early exits and, 339–341

elements of, 312

I-1

eliminating unnecessary passes
and, 379–381

hard coding amounts into, 327

indexed files and, 386–387

initialization, 324–329

linked lists and, 387–389

loading, from files, 330–331

manipulating, to replace nested
decisions, 314–324

multidimensional (two-
dimensional), 389–392

overextending, overextending,
375–376

overview, 311–360

parallel, 333–337

reducing unnecessary comparisons
and, 377–378, 377–378

searching, 331–333, 339–344

single-dimensional (one-
dimensional), 389

size, 312, 371–473

swapping values and, 363–364

three-dimensional, 391

understanding, 312–313

zero-based, 313

ascending order, 362

ASCII (American Standard Code for
Information Interchange)

arrays and, 363

described, B-2–B-3

documentation and, 99

validating input and, 435

askQuestion() module, 498, 499,
501–509

assembly languages, 55

assignment

legal/illegal, 26

operators, 23

statements, 23, 30

association relationship, 609–610

asterisk (*), 638

aThroughG() module, A-8–A-9

atomic attributes, 649

attributes

atomic, 649

described, 538

modifying, 575–576

authentication, 656

average variable, 91

B

BankLoan class, 547

base table, 640

BASIC, 17, 91

arrays and, 324, 325

terminology and, 82

batch(es)

described, 656

processing, 406

bedrooms variable, 315–316, 320,
322–324

behavior diagrams (UML), 602

binary. See also binary operators

decisions, 19, 162

numbering system, B-1–B-6

binary operator(s)

evaluating Boolean expressions to
make, 162–168

relational, 164–165

using the wrong, 233

bits, B-2

black boxes

coding modules and, 411–416

described, 411

methods and, 516

object-oriented programming
and, 547

Booch, Grady, 601

Book class, 608–612, 614–615

book sales report, 283–289

bookAuthor field, 278

bookCategory field, 278, 280

BookCheckOutRecord class, 612–613

bookCity variable, 283, 286, 287

bookListLoop() module, 278

bookPrice field, 278, 283

bookPublisher field, 278

bookState variable, 283, 286

bookstore program, 278–283

bookTitle field, 278, 283

Boole, George, 164

Boolean expressions

AND decisions and, 178

comparison operators and, 164

decision tables and, 195, 197

described, 164

evaluating, 162–164

IndexI-2

operator precedence and, 191

ranges and, 187

while loops and, 224

bothAtEoF variable, 451–452, 458,
459, 466, 473, 478

bubble sorts

described, 364–381

eliminating unnecessary passes
and, 379–381

reducing unnecessary comparisons
and, 377–378

refining, 371–373, 377–381

buildingNumber variable, 391

Button class, 556–557, 573

Button component, 572–573, 578

bytes

described, 99

documentation and, 99

C

C (high-level language)

arrays and, 324

decisions and, 167

terminology and, 82

C++ (high-level language), 2, 4,
55, 237

arrays and, 324

comments and, 95

data fields and, 142

decisions and, 165, 167, 176

desk-checking and, 147

modularization and, 82, 86,
91–92, 95

object-oriented programming and,
541, 544, 549

passing values and, 509

programs, including files in, 141

returning values and, 513, 515

sequential data files and, 453

terminology and, 82

UML and, 601

variables and, 17, 125

C# (high-level language), 2, 15,
55, 237

arrays and, 324

comments and, 95

decisions and, 165, 167, 176

modularization and, 86, 91, 92, 95

object-oriented programming and,
547, 549, 551

passing values and, 509

returning values and, 513, 515

sequential data files and, 453

variables and, 17, 125

caclulateButton() method, 578

calcRoutine() method, 578, 579,
581, 583–587

calculateAverage() module,
87–88, 90

calculatedAnswer variable, 16–18,
22–24, 52, 54

calculateGross() module, 86

calculateGrossPay() module, 86

calculateGrossPayForOneEmployee()
module, 86

calculateTax() module, 94

calculateWeeklyPay() method, 542,
543, 546–551

calling programs, 86

camel casing, 18, 633

candidate keys, 635

cardinality, 610

case sensitivity, 17, 93

case structures

cohesion and, 524

described, 65–67, 193–194

managing menus with, 421–424

catch blocks

described, 585–587

UML and, 620

categoryChange() module, 282–283

categoryTotal variable, 280–281

change records, 471

changeFormColor() method, 540

character(s). See also symbols

ASCII, 99, 363, B-2–B-3

constant, 24

described, 11

documentation and, 100

foreign alphabet, 11, 17

Unicode, 99, 363, B-3

variables and, 17, 24–26

chart(s). See also flowcharts

hierarchy, 93–95, 121

IPO, 517

print, 96–98, 101, 118–122

Check box component, 572

checkCounter variable, 245–247

Index I-3

checkCredit() module, 521

checkOutBook() event, 603–604, 621

child (descendent) classes

described, 547

"is-a" test and, 551

overriding methods and, 549

protected access and, 553

child files, 461–462

cityBreak() module, 285–288

cityCounter variable, 284, 288–289

clarity, importance of, 55

class(es). See also classes (listed
by name)

abstract, 551

clients of, 547

defining, 541–543

described, 538

parts of, 541–542

predefined, 556–557

class diagrams

creating, 541–543

described, 542

UML and, 608–612

classes (listed by name). See also
classes

BankLoan class, 547

Book class, 608–612, 614–615

BookCheckOutRecord class,
612–613

Button class, 556–557, 573

Dish class, 541

Employee class, 542–556

FullTimeEmployee class, 551

Library class, 610–612

LibraryItems class, 609, 610–611

Object class, 551

PartTimeEmployee class, 548–552

Patron class, 610–613

Video class, 609

cleanUp() module, 329, 407–408,
410–411

click() module, 86, 573

clients

of classes, 547

documentation and, 122

use of the term, 148

closeDown() module, 278, 282,
288–289

COBOL, 2, 55

arrays and, 324

decisions and, 165, 167

desk-checking and, 147

fields and, 124

high values and, 456

modularization and, 82, 91

sequential data files and, 456

terminology and, 82

variables and, 125

coding. See also programming;
source code

numbering systems and, B-1–B-6

programs, 7

techniques, evolution of, 26–28

cohesion

coincidental, 524

communicational, 522

described, 522

functional, 522

increasing, 522–523

logical, 523–524

procedural, 522

sequential, 522

temporal, 522

comma (,), 509

command line, 570

comments, 95

communication diagrams

described, 613

using, 612–614

comparison (binary) operators

arrays and, 367

evaluating Boolean expressions to
make, 162–168

relational, 164–165

using the wrong, 233

compilers

arrays and, 327

described, 3

syntax errors and, 8–9

component(s). See also components
(listed by name)

attributes, modifying, 575–576

described, 571–573

diagrams, 618–620

dimming/graying, 574

list of common, 572

registering, 580

storing, in separate files, 141–144

understanding, 2–6

IndexI-4

components (listed by name). See
also components

Button component, 572–573, 578

Check box component, 572

Label component, 572, 578

List box component, 572

Option button component, 572

Text field component, 572, 578

Toolbar component, 572

compound keys, 631

compute() module, 86

computeGradePointAverage()
method, 551

concurrent update problems, 656

conditionA, 46

conditionF, 46–47

conditionI, 47

connectors, 21–22

consistency, of data, 436

console applications, 406

constant(s)

arrays and, 326–329, 371–373

control breaks and, 296

decisions and, 164

described, 146–147

loops and, 243

named, 146, 371–373

sorting lists of variable size and,
374–376

constructors

default, 555

described, 555–556

nondefault, 555

control break(s)

described, 264

fields, 267

footers and, 275–277

headings and, 273–274, 275

logic, 264–265

major-level, 287

minor-level, 287

multiple-level, 283–289

overview, 263–309

page breaks and, 290–295

programs, 264–265

reports, 264–272

single-level, performing, 265–272

starting new pages and, 265–272

totals and, 278–283

conversion, 10

correctAnswer variable, 499

correctCount variable, 502–508,
518–519

count0 variable, 316, 320

count1 variable, 316, 320

count2 variable, 316, 320

count3 variable, 316, 320

countCategories() module, 316,
317–324

counters

described, 225–229

payroll reports and, 243

coupling

common, 522

control, 521

data, 520

data-structured, 521

described, 520

external, 522

loose, 520

normal, 520

pathological, 522

reducing, 520–522

simple data, 520

tight, 520

CPUs (central processing units), 2

create() method, 609, 612

createLabels() module, 225–229,
230, 233–241

createReport() module, 171–174,
179–185

currentAddress variable, 388

currentTotal variable, 164

custFirst field, 290

custItemNo variable, 335, 337

custLast field, 290

custNextCustAddress field, 387–389

custTotalSales field, 462–463

cutOff variable, 508, 509

D

data. See also data types; sequential
data files

consistency of, 436

described, 2

dictionaries, 93

files, 462

hierarchy, 11–12

Index I-5

integrity, 655

presence of, validating, 436

recovery, 655

redundancy, 647

data files, sequential

described, 450

mainline logic and, 451–454

merging, 450–460

updating records in, 470–480

data types

described, 24–26

extensible, 546

relational databases and, 633

validating, 434–435

variables and, 91

database(s). See also relational
databases; records; tables

described, 11–12, 630

documentation and, 100

management software, 631

performance issues, 655–656

structure notation, 636

date-checking, 90

day variable, 315

dead (unreachable) paths, 188–189

decimal point (.), 25

decimal system, B-1–B-6

decision(s). See also selection
structures

arrays and, 314–324

avoiding common errors in,
176–177

binary, 19

case structure and, 193–194

combining, 175–176, 185–186,
190–192

described, 19

efficiency and, 183–185

errors and, 180–182, 188–190

nested (nested if), 168–169,
173–175, 314–324

overview, 161–219

replacing, 314–324

symbols, 19

tables, 194–201, C-1–C-7

unstructured loops and, 69

declarations

array, 324–329

described, 25

variable, 25, 90–93, 122–127

decrementing, 231–232

default values, 187

defensive programming, 432. See
also validating input

delete anomalies, 647

deleting records, 470

delimiters, 129

deployment diagrams, 618–620

descendent (child) classes

described, 547

"is-a" test and, 551

overriding methods and, 549

protected access and, 553

descending order, 362

desk-checking, 7, 147

destructors, 555–556

detail line, 97

determineDiscount() module,
343–344

diagrams

activity, 615–618

behavior, 602

class, 541–543, 608–612

communication diagrams,
612–614

component, 618–620

deployment, described, 618–620

interaction, 602

interactivity, 578–579

object, 608–612

sequence, 612–613

state machine, 614–615

structure, 602

use case, 603–608

dictionaries

data, 93

object, 578

disaster recovery, 655

Dish class, 541

dispatcher modules, 523

display() method, 539

displayDifficultyMenu() module, 429

displayMenu() module, 409, 410,
417, 426–428

displayProperties() module, 249

documentation. See also reports

external program, 95

input, 98–103

internal program, 95

IndexI-6

mainline logic and, 118–122

output, 95–98

program, 95–98

understanding, 95–98

user, 103–104

dollar sign ($), 17, 99

double quotes ("), 25

do-until loops

described, 67–70

using, 238–241

do-while loops

characteristics shared by all,
recognizing, 241–242

described, 67–70

drag() module, 86

dual-alternative ifs, 43

dual-alternative (binary)
decisions, 162

dummy values, 20

Dvorak keyboard layout, 574

E

early exits, 339–341

eastBalance field, 451, 452

eastName field, 451, 452, 454, 456

easyAddProblems() module, 431

EBCDIC (Extended Binary Coded
Decimal Interchange Code), 99,
B-2–B-3

arrays and, 363

validating input and, 435

efficiency

arrays and, 339–341

decisions and, 173–175, 183–185

importance of, 55

ELEMENTS constant, 371–376

elided parts, 608

else clause, 163

emailAddress field, 436

empDept variable, 267, 268,
269–270

empFirst variable, 267, 275

empIsLargerThanTrans() module,
473, 476–478

empLast variable, 19, 267, 275

Employee class, 542–556

employeeFirstName variable, 144

employeeLast variable, 19

employeeLastName variable, 19

encapsulation

advantages of, understanding,
518–519

described, 496–502, 540–541

encryption, 656

end users

described, 95

documentation and, 95–98,
103–104, 119

use of the term, 148

endClass statement, 544

endif statement, 45–46, 48

decisions and, 192

tuition decision program and, 66

end-of-job routine, 120, 137

end-structure statements, 45–46

endwhile statement, 45–46, 48, 586

eof (end of file) character

arrays and, 316, 336

checking for, 129–134

comparisons and, 168

control breaks and, 267, 277

decisions and, 171

described, 21

file matching and, 463

loops and, 236

mainLoop() module and, 137

matching files and, 466

menus and, 406

priming read and, 52, 54

sequential data files and, 451–452,
456, 458–460, 473, 478

EQ operator, 165

equal sign (=), 23, 165, 167

equal to operator, 367

errorFlag variable, 582

error(s). See also exception handling;
logical errors; syntax errors

arrays and, 317

decisions and, 176–177,
180–182, 188–190

documentation and, 103

event-driven programming and,
580–583

-handling techniques, 580–583

loops and, 232–234

Index I-7

menu programs and, 416–420

range checks and, 188–190

sequential data files and, 474

validating input and, 432–434

event(s). See also event-driven
programming; events (listed
by name)

described, 570

source of, 571

event-driven programming.
See also events

application development steps,
576–580

described, 570–571

errors and, 580–583

exception handling and, 583–587

logic, planning, 579–580

overview, 569–597

events (listed by name). See
also events

acquireNewBook() event, 603–604

checkOutBook() event,
603–604, 621

issueLibaryCard() event, 604

manageNetworkOutage() event, 607

registerNewPatron() event, 604

exception(s). See also errors;
exception handling

catching, 583

described, 583

throwing, 583–584

exception handling. See also errors;
exceptions

advantages of, 583–587

diagramming, 620–621

methods, 583–587

UML and, 620–621

exclamation point (!), 167

Extended Binary Coded Decimal
Interchange Code (EBCDIC), 99,
B-2–B-3

arrays and, 363

validating input and, 435

external storage

described, 5

persistent, 5

F

field(s). See also fields (listed
by name)

described, 11

documentation and, 100, 101–103

forcing, 433

names, 100

object-oriented programming
and, 542

selecting, 639

updating, 462–468

work, 137

fields (listed by name). See also fields

bookAuthor field, 278

bookCategory field, 278, 280

bookPrice field, 278, 283

bookPublisher field, 278

bookTitle field, 278, 283

custFirst field, 290

custLast field, 290

custNextCustAddress field,
387–389

custTotalSales field, 462–463

eastBalance field, 451, 452

eastName field, 451, 452,
454, 456

emailAddress field,, 436

firstName field, 630

height field, 556

hourlyWage field, 542, 544

houseWorked field, 548, 549

idNum field, 542

inLastProduction field, 230,
232–234, 237–238

lastName field, 542, 630

oldDept field, 267, 268, 270–271

realAddress field, 249

realPrice field, 249

transCustNumber field, 465–466

weeklyPay field, 542

westbalance field, 452

westName field, 452, 454, 456

figureRent() module, 328–329

file(s)

child, 461–462

defined, 11–12

descriptions, 98, 101–102,
118–119, 142

documentation and, 100

indexed, 386–387

loading arrays from, 330–331

opening, 128

parent, 461–462

storing program components in
separate, 141–144

files statement, 407

IndexI-8

finalStatistics() module, 504–515,
517–519

finish() module, 243–247, 267, 277,
281, 315–318, 322–324,
498–501

finishUp() module, 130, 137–138,
225, 229, 249, 371–373,
451–459, 478, 523

firstName field, 630

firstNumber variable, 87–88, 91, 93

flag(s)

arrays and, 333–334, 338–339

described, 332

variables, 144

floating-point variables, 25

flowchart(s)

connectors and, 21–22

decision symbols and, 19

described, 12

sentinel values and, 21

spaghetti code and, 40–41

symbols, 12–16

flowlines, 14

footer lines (footers)

control breaks and, 275–277

described, 137, 275

for statements

definite loops and, 236–237

described, 236

using, 235–237

foreign key, 641

fork, 616–617

forward slash (/), 95

foundIt flag, 338–339

FullTimeEmployee class, 551

functional

cohesion, 90

dependency, 653

functions (built-in modules). See also
functions (listed by name);
methods; modules

black boxes and, 413–415

described, 82–85, 413, 515

functions (listed by name). See also
functions; methods; modules

random(x) function, 413

sqrt() function, 516

G

garbage, 125

generalization, 609

Get inputAddress statement, 13

Get inputNumber statement, 4, 10,
16, 40, 53–54

get() module, 86

getFirstValue() module, 90

getInfo() method, 609

getInput() module, 87–88, 90

getPrice() module, 335–340

getReady() module, 196–197, 291,
292, 293

getSecondValue() module, 90

getStat() module, 143

giveQuiz() module, 512–515

global variables. See also variables

described, 91, 497

modularization and, 91

overview, 496–502

grandTotal variable, 284

greater than operator, 367

greater-than symbol (>), 165–168

group(s)

names, 124–125

repeating, 648

GT operator, 165

GUI (graphical user interface). See
also components

applications, 406

described, 97, 106, 570, 573–575

documentation and, 97–98

event-driven programming and,
569–597

natural/predictable, 573–574

objects, creating, 556–557

user-friendly, 574

H

handler body node, 620

hard copy, 98

hardware, 2

has-a relationship, 611

header(s)

method, 509

module, 507, 512

headings

arrays and, 315

control breaks and, 273–274, 275

described, 97

printing, 128

headings() module, 133

height field, 556

Index I-9

hierarchy charts

creating, 93–95

described, 93

reports and, 121

high values, 456

high-level programming languages.
See also specific languages

described, 8

modularization and, 83

hourlyWage field, 542, 544

housekeeping() module, 120–134,
137, 145, 170–172, 179,
226–227, 232–233, 238–241,
243–250, 267–268, 273–274,
277, 315–320, 324–327,
364–365, 370–376, 451–454,
459–460, 463–464, 471–472,
498–502, 523

houseWorked field, 548, 549

Hungarian notation, 123

I

IBM (International Business
Machines), 4

icon(s)

described, 570

design principles and, 573–574

identifier(s)

described, 17, 143–144

names, 509

idNum field, 542

if clause, 163

if statements

case structure and, 193–194

cohesion and, 524

decisions and, 191–192

indentation and, 48

nested, 192

if-then structures, 162

if-then-else structures, 43, 162–163

implementation hiding, 143

in scope, 497

include statement, 141

indexed files, 386–387

indexing, 386

infinite loops, 19–21, 30, 233

information hiding (data hiding),
500, 540

inheritance, 540, 547–551

initializeData() module, 144

inLastProduction field, 230,
232–234, 237–238

input

described, 2

documentation, 98–103records,
reading, 128–129

sentinel values and, 20–21

symbols, 13

insert anomalies, 647

insertion sort. See also sorting

described, 381–383

selection sort and, comparison
of, 385

instances, 538

instantiation

constructors and, 555

described, 546–547

integer variables, 25

integrity, of data, 655

interaction

applications, 128

diagrams (UML), 602

processing, 406–407

interactivity diagrams, 578–579

interest variable, 18

interfaces. See also GUI (graphical
user interface)

described, 540

encapsulation and, 540–541

internal storage, 5

International Organization for
Standardization (ISO), 90

interpreters, 3

inv prefix, 123, 135

invCost variable, 123, 126, 127, 135

inventoryItem variable, 25

invItemName variable, 123, 124,
126, 127, 135

invPrice variable, 123, 126, 127, 135

invProfit variable, 134

invQuantity variable, 123, 126, 127

invRecord variable, 129–134, 136

IPO charts, 517

IRS (Internal Revenue Service), 40

"is-a" test, 551

IndexI-10

isChar() method, 435

isLower() method, 435

isNumeric() method, 434–435

ISO (International Organization for
Standardization), 90

issueLibaryCard() event, 604

isUpper() method, 435

isWhitespace() method, 435

iteration, 44

J

Jacobson, Ivar, 601

Java, 2, 15, 237

arrays and, 324, 325

comments and, 95

decisions and, 165, 167, 176

desk-checking and, 147

modularization and, 86, 91, 92

object-oriented programming and,
541, 551, 557

passing values and, 509

returning values and, 513, 515

sequential data files and, 453

structures and, 55

terminology and, 82

variables and, 17, 125

join(s)

column, 639

described, 639

UML and, 616–617

K

key(s)

alternate, 635

candidate, 635

compound, 631

described, 631

field, 386

foreign, 641

press events, 571

primary, 631, 634–636

keyboards

layout, 574

menus and, 408

L

Label component, 572, 578

labelCounter variable, 231–237,
239–241

labelsToPrint variable, 230–231,
233, 239–241

lastName field, 542, 630

lastNameOfTheEmployeeInQuestion
variable, 19

less-than symbol (<), 165–168

libraries, 556, 609, 610–611

Library class, 610–612

LibraryItems class, 609, 610–611

line

breaks, avoiding, 145

-counter variables, 290

LINES_PER_PAGE constant, 295

linked lists, 387–389

Linux, 4

List box component, 572

listeners, 571

lists, linked, 387–389

local variables. See also variables

described, 91, 497

modularization and, 91

overview, 496–502

variable declarations and,
498–499

locks, 656

logic. See also logical errors;
mainline logic

connectors and, 21–22

described, 3

overview, 1–38

planning, 7

record-reading, comparing
faulty/correct, 130–132

logical AND operator, 176–178

logical errors. See also errors; logic

decisions and, 176–177

described, 3

testing programs and, 9–10

logical OR operator, 185–186

logical order, 386

loop(s). See also structures

accumulating totals with, 247–250

advantages of, 222

Index I-11

body, 224

characteristics shared by all,
recognizing, 241–242

control variables, 222–224

counters and, 225–229

definite, 236

described, 44, 222

distinguishing types of, 70

errors and, 232–234

indeterminate (indefinite), 236

infinite, 19–21, 30, 233

inserting, 48

main, 120, 134–140, 222–224

nesting, 46–48, 242–247

outer/inner, 242–247

overview, 221–262

priming read and, 51–53

problems, solving difficult, A-1–A-10

stacking structures and, 45

unstructured, 69–70

looping() module, 407–408, 410,
416–420, 426–429

low-level programming languages, 8

lozenge, 14–15

LT operator, 165

M

machine language

described, 3

translating programs into, 8–9

Macintosh, 4

magic numbers, 147

main loop. See also loops

described, 120, 222–224

writing, 134–140

main memory, 5

main menu, 425

main program, 87–88

mainframe computers, 4

mainline logic. See also logic

arrays and, 334

control breaks and, 267

decisions and, 170–171, 179

described, 85, 120

modularization and, 85–86

understanding, 118–122

mainLoop() module, 130, 134–140,
267–269, 277, 286–287, 391

maintenance, 56

manageNetworkOutage() event, 607

manuals. See documentation

many-to-many relationships, 640,
641–645

master file(s). See also master file
records

described, 461

processing, 461–462

updating, 461–462

master file records. See also
master file

allowing multiple transactions for,
468–469

matching files to update fields in,
462–468

matchFiles() module, 466, 467, 473

matching records, 461

mean, 362

median values, 362

memory. See also arrays; memory
addresses

indexed files and, 386

described, 5

locations, 5–6

main, 5

modularization and, 88, 92

primary, 5

stack, 88

variables and, 17, 23

memory addresses. See also
memory

contents of, performing
mathematical operations on,
23–24

described, 386

indexed files and, 386–387

modularization and, 88

this references and, 554

menu(s)

case structures and, 421–424

described, 406–407

making improvements to, 416–420

managing, 421–424

multilevel, 425–432

single-level, 407–411

using, 405–558

mergeFiles() module, 451–458, 465

IndexI-12

merging files

described, 461

mainline logic and, 451–454

overview, 450–461

method(s). See also functions;
methods (listed by name); modules

built-in, 515

described, 82–85, 539–540

headers, 509

overloading, 539

overriding, 549

return type, 513

static, 554

methods (listed by name). See also
methods

abs() method, 516–518

caclulateButton() method, 578

calcRoutine() method, 578, 579,
581, 583–587

calculateWeeklyPay() method, 542,
543, 546–551

changeFormColor() method, 540

computeGradePointAverage()
method, 551

create() method, 609, 612

display() method, 539

getInfo() method, 609

isChar() method, 435

isLower() method, 435

isNumeric() method, 434–435

isUpper() method, 435

isWhitespace() method, 435

printFieldValues() method,
542–543, 546–547, 549–552

rewind() method, 609

setColor() method, 540

setFieldValues() method, 542, 543,
546–550, 553–554

setHeight() method, 556

setText() method, 556, 573

Microsoft VB.NET, 176

Microsoft Visual Basic, 2, 66,
125, 601

arrays and, 325

decisions and, 167

desk-checking and, 147

modularization and, 82, 91

priming read and, 55

terminology and, 82

Microsoft Visual Basic .NET, 549

minus sign (–), 545

mnemonics, 17

modularization. See also modules

advanced techniques, 495–535

described, 496

module(s). See also modularization

abstraction and, 82–83

advantages of, 83, 84–85

built-in (prewritten), 515–518

calling, 86, 89–90

coding, as black boxes, 411–416

declaring variables and, 90–93

described, 82–85, 507, 512

names, 85–86, 143–144

passing single values to, 502–509

returning values from, 512–515

reusability and, 83

statements, designing clear,
144–147

sub-, 86, 89–90

terminology used for, 82

monthCounter counter, 243,
245–247

mouse

click events, 571

drag events, 571

point events, 571

multidimensional (two-dimensional)
arrays, 389–392. See also arrays

multilevel menus, 425–432

multiplication() module, 431

multiplicity, 610

myAssistant object, 546–547, 550

mySalary variable, 23

N

NASA (National Aeronautics and
Space Administration), 40

nesting

decisions, 168–169, 173–175,
314–324

structures, 46–48, 242–247

newPage() module, 269–271,
273–277

non-key attribute, 640

Index I-13

normal form(s)

described, 648

first, 648–650

second, 650–652

third, 652–655

normalization, 647

NOT comparisons, 168

NOT operator, 638

null case, 43, 71

numbering systems, B-1–B-6

numberOfBedrooms variable, 390

numberOfEls variable, 374, 375,
377–378, 384

numeric

constants, 24

variables, 24–26

numRight variable, 507–508, 509

O

object(s). See also object diagrams;
object-oriented programming

classes and, relationship of, 539

dictionaries, 578

instantiating, 546–547

relationships between, 609–610

using, 546–547

Object class, 551

object diagrams

described, 611

UML and, 608–612

object-oriented programming. See
also objects

advantages of, understanding, 557

creating class diagrams, 541–543

defining classes, 541–543

described, 27, 120, 538–541

exception handling and, 584–587

inheritance and, 547–551

modularization and, 95

overview, 537–568

terminology and, 82

offline processing, 406

of-page connector symbol, 22

oldDept field, 267, 268, 270–271

OMG (Object Management
Group), 601

one-to-many relationships,
640–641, 654

one-to-one relationships, 640, 645

online processing, 406

on-page connector symbol, 22

operating systems, 570

operator(s). See also operators (listed
by name)

binary, 162–168, 233

precedence, 190–192

operators (listed by name). See also
operators

EQ operator, 165

equal to operator, 367

greater than operator, 367

GT operator, 165

logical AND operator, 176–178

logical OR operator, 185–186

LT operator, 165

NOT operator, 638

OR operator, 638

Option button component, 572

OR decisions

combining decisions in, 185–186

described, 178–179

efficiency and, 183–185

errors and, 180–182

operator precedence and,
190–192

original (parent) classes

described, 547

"is-a" test and, 551

overriding methods and, 549

protected access and, 553

OR operator, 638

out of bounds, 337

out of scope, 497

output

devices, 2

documentation, 95–98

symbol, 14

overtimeModule() module, 85

P

packages, 557

page(s)

breaks, 290–295

starting new, 265–272

IndexI-14

pairsToCompare variable,
377–378, 381

parallel arrays, 333–337. See also
arrays

parameter(s)

lists, 509

passing values and, 509–510

parent (original) classes

described, 547

"is-a" test and, 551

overriding methods and, 549

protected access and, 553

parent files, 461–462

partial key dependencies, 650

PartTimeEmployee class, 548–552

Pascal

decisions and, 167

variables and, 125

Patron class, 610–613

pctCorrect variable, 513

permissions, 656

physical order, 386

plus sign (+), 545

policyType variable, 579, 581, 582

polymorphism

described, 539, 551–552

pure, 540

position variable, 384

posttest loops, 68. See also do-until
loops; do-while loops

pound sign (#), 141

pre-processor directives, 141

prefixes

described, 123

for field names, 100

for variables, 123, 135

premiumAmount variable, 578

prep() module, 226, 327, 328,
330–331

pretest loops, 68. See also
while loops

prevCity variable, 284, 286

previousCategory variable, 280–282

previousTotal variable, 164

prevState variable, 284, 286

primary keys

described, 631

identifying, 634–636

immutable character of,
described, 635

importance of, 634

primary memory, 5

priming read, 49–55

primitive data types, 547

Print calculatedAnswer statement,
4–5, 10, 16, 40, 54

print charts

described, 96

fields and, 101

mainline logic and, 118–122

print() module, 86

print statements

arrays and, 328

control breaks and, 294

decisions and, 180

Print calculatedAnswer statement,
4–5, 10, 16, 40, 54

variables and, 126–127

printCustomerData() module, 94

printCustOrder() module, 511–512

printer spacing chart, 96–98

printFieldValues() method, 542–543,
546–547, 549–552

printResult() module, 87–88,
90private access, 544–545

problems, understanding, 577

probValFirst element, 413

probValSecond element, 413

procedural programs, 27,
120–121, 496

procedures, 82–85. See also
modules; procedural programming

processing

described, 2

symbol, 14

processRequest() module, 197, 200

produceReport() module, 245–247,
291–293

production, putting programs into, 10

professionalism, importance of, 55

profit variable, 134–137

program(s). See also programming

designing, 117–159

ending, with sentinel values,
19–21

modularizing, 85–88

saving, 5

Index I-15

self-documenting, 143

translating, into machine language,
8–9

writing complete, 117–159

programmer-defined types, 546

programming. See also programs

habits, maintaining good, 147

languages, 2–3

process, understanding, 6–10

steps, 6–10

techniques, evolution of, 26–28

prompts, 87, 129

promptUser variable, 498, 499, 501

protected

access, 545, **552–553

node, 620

pseudocode

described, 12

statements, 12–16

public access, 544–545

Q

queries. See also SQL (Structured
Query Language)

creating, 637–639

described, 11, 637

query by example, 637

quickQuiz() module, 510–511

Qwerty keyboard layout, 574

R

RAM (random access memory), 5.
See also memory

random(x) function, 413

random-access storage device, 386

random-number generators,
413–415

range(s)

checks, 186–190

decisions and, 177

described, 177

matches, searching arrays for,
341–344

using selections within, 186–192

validating, 435

rate variable, 18

Rational Software, 601

read response statement, 409

readCust() module, 463, 465

readTrans() module, 463, 465, 471

ready() module, 334, 335, 339

realAddress field, 249

realiability, 519

realPrice field, 249

real-time applications, 406

reasonableness, 436

record(s)

adding, 636–637

deleting, 636–637

described, 11–12

documentation and, 100, 101

reading, 128–129

sorting, 265, 637

updating, 470–480, 636–637

recovery, of lost data, 655

reference(s)

described, 554

passing by, 506

this, 553–554

variables (pointer variables), 554

registerNewPatron() event, 604

related table, 640

relational database(s). See also
databases; records; tables

described, 631

fundamentals, 630–631

overview, 629–671

performance issues, 655–656

security issues, 655–656

structure notation, 636

relationship(s)

described, 639

many-to-many, 640, 641–645

one-to-many, 640–641, 654

one-to-one, 640, 645

table, 639–645

whole-part, 609, 611

reliability

described, 83

modularization and, 83

REM (REMark), 95

rep variable, 224

IndexI-16

repeating groups, 648

repetition, 44

reports. See also documentation

control breaks and, 264–272

decisions and, 170–185, 195–201

inventory, 96–103, 118–127,
132–134

loops and, 247–250

mainline logic and, 118–122

real estate, 247–250

summary, 247–250, 283–289

return

statements, 581

type, 513

reusability

described, 83

modularization and, 83

reverse engineering, 600

rewind() method, 609

RPG, 55, 82, 125

Rumbaugh, Jim, 601

running (executing) programs, 4

S

saveAddress variable, 388

saving programs, 5

scenarios, 604

scope

described, 497

in/out of, 497

score array, 364–381

screen(s)

defining the connection between,
578–579

designs, 574

scripts, 571

secondNumber variable, 87–88, 91

security

authentication and, 656

data integrity and, 655

encryption and, 656

permissions and, 656

relational databases and, 655–656

SELECT keyword, 638

SELECT-FROM-WHERE statement,
637–637

selection sort

described, 384–385

insertion sort and, comparison
of, 385

selection structures. See also
decisions

described, 42–43

priming read and, 51

within selections, 47

stacking structures and, 45

selectMethod() module, 521–522

self-documenting programs, 143

semantic errors. See logical errors

sentinel symbols, 87

sentinel values

described, 19–21, 224

looping with, 229–231

sequence diagrams

described, 612

using, 612–613

sequence structures. See also
structures

described, 42

stacking structures and, 45

sequential data files

described, 450

mainline logic and, 451–454

merging, 450–460

updating records in, 470–480

sequential order, 362

setColor() method, 540

setFieldValues() method, 542, 543,
546–550, 553–554

setHeight() method, 556

setText() method, 556, 573

shouldRepeat variable, A-5–A-7

single-alternative decisions, 162

single-alternative ifs, 43

single-dimensional (one-dimensional)
arrays, 389

SIZE constant, 326

smallest variable, 384

Social Security numbers, 99,
123, 222

arrays and, 362, 386–387

indexed files and, 386–387

relational databases and, 630

sequential data files and, 450

soft copy, 98

Index I-17

software, 2

sorting

arrays and, 362, 364–381

bubble sort, 364–381

described, 362

insertion, 381–383**, 385

lists of variable size, 374–476

records, 265

selection, 384–385

sortScores() module, 364–365,
370–373, 378, 379–381

source code. See also coding

code, 143

spaces in, 126

“spaghetti bowl” method, 61

spaghetti code, 40–41

spreadsheets, 415

sqFootPrice variable, 145–146

SQL (Structured Query Language).
See also queries

described, 637, 638

keywords, 638

sqrt() function, 516

squareRootAnswer variable, 516

standard

input devices, 128

output devices, 128

start symbol, 87

startNewPage() module, 292, 293

startUp() module, 226, 282,
407–409, 415, 417, 421,
426–427

state machine diagrams, 614–615

stateBreak() module, 285–288

stateCounter variable, 284

statements. See also statements
(listed by name)

blocks of, 46

clarifying long, with temporary
variables, 145–146

indenting, 46

statements (listed by name). See
also statements

endClass statement, 544

endif statement, 45–46, 48,
66, 192

endwhile statement, 45–46,
48, 586

files statement, 407

Get inputAddress statement, 13

Get inputNumber statement, 4, 10,
16, 40, 53–54

include statement, 141

Print calculatedAnswer statement,
4–5, 10, 16, 40, 54

read response statement, 409

SELECT-FROM-WHERE statement,
637–637

stop statement, 550

static methods, 554

stereotypes, 604

stop symbol, 87

stop statement, 550

storyboards

creating, 577

described, 577

string constant, 24

string variables, 24–26

structure(s)

described, 42

diagrams (UML), 602

identifying, 84–85

modularization and, 84–85

nesting, 46–49

priming read and, 49–55

problems, solving difficult,
A-1–A-10

reasons for, 55–58

recognizing, 58–70

stacking, 45–46

understanding, 39–80

untangling examples and, 61–65

stubs, 411

submenus, 425

submodules

described, 86

flowchart for, 89–90

subroutines. See also modules

abstraction and, 82–83

described, 82–85

terminology and, 82

subscripts, 312

subtraction() module, 410–411,
416, 431

summary reports

described, 247, 283–289

totals and, 247–250

swapping values, 363–364

switchOccured variable, 379, 380

IndexI-18

switchValues() module,
366–367, 379

symbols. See also characters

& (ampersand), 176

* (asterisk), 638

, (comma), 509

. (decimal point), 25

$ (dollar sign), 17, 99

" (double quotes), 25

= (equal sign), 23, 165, 167

! (exclamation point), 167

/ (forward slash), 95

> (greater-than symbol), 165–168

< (less-than symbol), 165–168

– (minus sign), 545

+ (plus sign), 545

(pound sign), 141

_ (underscore), 17

syntax

coding programs and, 7

described, 3, 7

errors, 3, 8–9

system design, 600

system modeling. See UML (Unified
Modeling Language)

system requirements, use case
diagram emphasizing, 608

T

table(s). See also databases; records

decision, 194–201, C-1–C-7

defined, 11, 630

descriptions, 632–639

design, poor, 645–647

editing records in, 636–637

relationships, 639–645

saving, 632

taxRate variable, 25, 146

temp variable, 363–364

tenFloor variable, 329

terminal (start/stop) symbol, 14

testing programs, 9–10

Text field component, 572, 578

text variables, 24–25

theyAreEqual() module, 473, 475

this references, 553–554

three-dimensional arrays, 391

thrownCode variable, 585

time signals, 617

Toolbar component, 572

total(s)

accumulating, 247–250

control breaks and, 264–265,
278–283

lines (summary lines), 97

loops and, 247–250

rolling up, 282

totalPrice variable, 145–146

transaction files

described, 461

processing, 461–462

transCustNumber field, 465–466

transIsLargerThanEmp() module,
473, 477

transitive dependency, 652

trivial expressions, 165

true/false evaluation. See Boolean
expressions

try blocks

described, 584

UML and, 620

U

UML (Unified Modeling Language).
See also diagrams

class diagrams and, 608–612

described, 601–602

diagram types, 602

need for, 600

object diagrams and, 608–612

overview, 599–628

superstructure, 602

tutorials, 602

versions of, 601

Web site, 602

underscore (_), 17

Unicode, 99, 363, B-3

UNIX, 4

unnormalized tables, 648

unreachable (dead) paths, 188–189

unstructured loops, 69–70

update anomalies, 647

updateMaster() module, 473, 476,
477–478

use case diagram(s) (UML)

described, 603

emphasizing actors, 607

extend variation, 604

include variation, 604

Index I-19

generalization variation, 605

showing multiple actors, 606

using, 603–608

userAnswer variable, 499, 501–502

user-defined types, 546

user-friendly programs, 421

users (end users)

described, 95

documentation and, 95–98,
103–104, 119

use of the term, 148

V

validating input

consistency of data and, 436

data ranges and, 435

data types and, 434–435

described, 432–434

overview, 405–558

reasonableness and, 436

value(s)

“passing,” described, 505,
509–512

“passing by,” described, 507

returning, 512–515

swapping, 363–364

variable(s). See also global variables;
local variables; variables

(listed by name)

assigning values to, 22–24

case structure and, 193–194

decisions and, 164

declaring, 25, 90–93, 122–127

described, 17

forcing, to specific values, 339

groups of, 124–125

incrementing, 226

initializing, 125, 232–233, 235

loop control, 232–233

names, 17–19, 25, 143–144

neglecting to alter, 232–233

scope, 497

sentinel values and, 229–231

size, sorting lists of, 374–376

temporary, clarifying long
statements with, 145–146

using, 17–19

variables (listed by name). See also
variables

ageOfInsured variable, 579

aNumber variable, 313

average variable, 91

bedrooms variable, 315–316, 320,
322–324

bookCity variable, 283, 286, 287

bookState variable, 283, 286

bothAtEoF variable, 451–452, 458,
459, 466, 473, 478

buildingNumber variable, 391

calculatedAnswer variable, 16–18,
22–24, 52, 54

categoryTotal variable, 280–281

checkCounter variable, 245–247

cityCounter variable, 284,
288–289

correctAnswer variable, 499

correctCount variable, 502–508,
518–519

count0 variable, 316, 320

count1 variable, 316, 320

count2 variable, 316, 320

count3 variable, 316, 320

currentAddress variable, 388

currentTotal variable, 164

custItemNo variable, 335, 337

cutOff variable, 508, 509

day variable, 315

empDept variable, 267, 268,
269–270

empFirst variable, 267, 275

empLast variable, 19, 267, 275

employeeFirstName variable, 144

employeeLast variable, 19

employeeLastName variable, 19

errorFlag variable, 582

firstNumber variable, 87–88, 91, 93

grandTotal variable, 284

interest variable, 18

invCost variable, 123, 126,
127, 135

inventoryItem variable, 25

invItemName variable, 123, 124,
126, 127, 135

invPrice variable, 123, 126,
127, 135

invProfit variable, 134

invQuantity variable, 123, 126, 127

invRecord variable, 129–134, 136

IndexI-20

labelCounter variable, 231–237,
239–241

labelsToPrint variable, 230–231,
233, 239–241

lastNameOfTheEmployeeInQuestion
variable, 19

mySalary variable, 23

numberOfBedrooms variable, 390

numberOfEls variable, 374, 375,
377–378, 384

numRight variable, 507–508, 509

pairsToCompare variable,
377–378, 381

pctCorrect variable, 513

policyType variable, 579, 581, 582

position variable, 384

premiumAmount variable, 578

prevCity variable, 284, 286

previousCategory variable,
280–282

previousTotal variable, 164

prevState variable, 284, 286

profit variable, 134–137

promptUser variable, 498,
499, 501

rate variable, 18

rep variable, 224

saveAddress variable, 388

secondNumber variable, 87–88, 91

shouldRepeat variable, A-5–A-7

smallest variable, 384

sqFootPrice variable, 145–146

squareRootAnswer variable, 516

stateCounter variable, 284

switchOccured variable, 379, 380

taxRate variable, 25, 146

temp variable, 363–364

tenFloor variable, 329

thrownCode variable, 585

totalPrice variable, 145–146

userAnswer variable, 499,
501–502

VB.NET (Microsoft), 176

Video class, 609

visual development
environment, 557

Visual Basic (Microsoft), 2, 66,
125, 601

arrays and, 325

decisions and, 167

desk-checking and, 147

modularization and, 82, 91

priming read and, 55

terminology and, 82

Visual Basic .NET (Microsoft), 549

void

described, 515

returning values and, 515

volatile memory, 5

W

warning messages, 223–224

weeklyPay field, 542

westbalance field, 452

westName field, 452, 454, 456

while (while...do) loops, 48, 582

characteristics shared by all,
recognizing, 241–242

described, 44–45, 67, 69, 72

priming read and, 54

using, 238–241

variables and, 222–224, 232–233

while statements

described, 236

indefinite loops and, 236

writing, 236

whole-part relationship, 609, 611

wildcard characters, 638

work variables, 137

Index I-21

This book is intended to be sold with a CD-ROM. If this book does not contain a CD-ROM you
are not getting the full value of your purchase. This book is not returnable if the CD-ROM has
been opened or is missing.

	C5952_FM.pdf
	C5868_Chapter 01.pdf
	C5868_Chapter 02.pdf
	C5868_Chapter 03.pdf
	C5868_Chapter 04.pdf
	C5868_Chapter 05.pdf
	C5868_Chapter 06.pdf
	C5868_Chapter 07.pdf
	C5868_Chapter 08.pdf
	C5953_09.pdf
	C5953_10.pdf
	C5953_11.pdf
	C5953_12.pdf
	C5953_13.pdf
	C5953_14.pdf
	C5953_15.pdf
	C5953_16.pdf
	C5869_AppA.pdf
	C5869_AppB.pdf
	C5869_AppC.pdf
	C5954_Gloss.pdf
	C5954_Index.pdf

