Chapter 11 - Nuclear Structure

11-1: ${ }_{3}^{6}$ Li: $Z=3$ protons, $A-Z=6-3=3$ neutrons.
${ }_{10}^{22} \mathrm{Ne}: Z=10$ protons, $A-Z=22-10=12$ neutrons.
${ }_{40}^{94} \mathrm{Zr}: Z=40$ protons, $A-Z=94-40=54$ neutrons.
${ }_{72}^{180} \mathrm{Hf}: Z=72$ protons, $A-Z=180-72=108$ neutrons.

11-3: The radius of a gold nucleus is, from Equation (11.1),

$$
R=R_{0} A^{1 / 3}=\left(1.2 \times 10^{-15} \mathrm{~m}\right)(197)^{1 / 3}=6.98 \times 10^{-15} \mathrm{~m} .
$$

The momentum of an electron with this wavelength is $p=h / \lambda$, and the kinetic energy is

$$
\begin{aligned}
\mathrm{KE}=E-m c^{2} & =\sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}}-m c^{2}=\sqrt{\left(\frac{h c}{\lambda}\right)^{2}+\left(m c^{2}\right)^{2}}-m c^{2} \\
& =\sqrt{\left(\frac{1.240 \times 10^{-6} \mathrm{eV} \cdot \mathrm{~m}}{6.98 \times 10^{-15} \mathrm{~m}}\right)^{2}+(0.511 \mathrm{MeV})^{2}-(0.511 \mathrm{MeV})} \\
& =177 \mathrm{MeV} .
\end{aligned}
$$

11-5: From Equation (11.1), the radius of such a nucleus would be

$$
R=R_{0} A^{1 / 3}=\left(1.2 \times 10^{-15} \mathrm{~m}\right)(294)^{1 / 3}=8.0 \times 10^{-15} \mathrm{~m}=8.0 \mathrm{fm} .
$$

11-7: For the electron, the magnetic potential energy is

$$
U=\mu_{B} B=\left(5.788 \times 10^{-5} \mathrm{eV} / \mathrm{T}\right)(0.10 \mathrm{~T})=5.8 \times 10^{-6} \mathrm{eV}
$$

For the proton, the magnetic potential energy is

$$
U=\mu_{p} B=(2.793)\left(3.152 \times 10^{-8} \mathrm{eV} / \mathrm{T}\right)(0.10 \mathrm{~T})=8.8 \times 10^{-9} \mathrm{eV}
$$

11-9: (a) The ratio

$$
\frac{\mu_{p} B}{k T}=\frac{(2.793)\left(3.152 \times 10^{-8} \mathrm{eV} / \mathrm{T}\right)(1.0 \mathrm{~T})}{\left(8.617 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(293 \mathrm{~K})}=3.49 \times 10^{-6}
$$

is so small that the difference in populations of the two levels will be small. That is, each state can be assumed to have approximately $N / 2$ protons, with the number of spin-up protons being $(N / 2) e^{\mu_{p} B / k T}$ and the number of spin-down protons $(N / 2) e^{-\mu_{p} B / k T}$. The difference is

$$
\begin{aligned}
\Delta N & =N_{-}-N_{+}=\frac{N}{2}\left(e^{\mu_{p} B / k T}-e^{-\mu_{p} B / k T}\right) \\
& =N \sinh \left(\frac{\mu_{p} B}{k T}\right)=\left(10^{6}\right) \sinh \left(3.49 \times 10^{-6}\right)=3.5 .
\end{aligned}
$$

In the above, the approximation $\sinh (x) \approx x$ is certainly valid. A more rigorous algebraic treatment, maintaining the same ratio of N_{-}to N_{+}but requiring the sum to be exactly N is possible, leading to $\Delta N=N \tanh \left(\mu_{p} B / k T\right)$, but gives the same result.
(b) Repeating the above with $T=20 \mathrm{~K}$ gives $\Delta N=N \sinh \left(5.1 \times 10^{-5}\right)=51$.
(c) Because the populations are so close, induced emission will nearly equal induced absorption, so there will be very little net absorption of the radiation.
(d) This is a two-level system, and could not be used as the basis for a laser.

11-11: The strong nuclear interaction, unlike the Coulombic or gravitational interactions, is short-range; the limited range limits the size of nuclei. (An explanation of why nuclear forces are short-range is given in Section 11.7 of the text.)

11-13: The nucleus ${ }_{3}^{8} \mathrm{Li}$ has three protons and five neutrons, and hence is an odd-odd nucleus, and is unstable, so ${ }_{3}^{7} \mathrm{Li}$ is the more stable of the two. The nucleus ${ }_{6}^{15} \mathrm{C}$ has three more neutrons (9) than protons (6); for a nucleus this small (in atomic number), that many excess neutrons do not serve to hold the nucleus together, and ${ }_{6}^{13} \mathrm{C}$ is more stable.

11-15: Using the values for the atomic masses and the constituent masses from the Appendix, the binding energy per nucelon of ${ }_{10}^{20} \mathrm{Ne}$ is

$$
\begin{aligned}
& \frac{1}{20}\left[10\left(m_{\mathrm{H}}\right)+10\left(m_{n}\right)-m\left({ }_{10}^{20} \mathrm{Ne}\right)\right] \\
& =\frac{1}{20}[10(1.007825 \mathrm{u})+10(1.008665 \mathrm{u})-19.992439 \mathrm{u}](931.49 \mathrm{MeV} / \mathrm{u}) \\
& =8.03 \mathrm{MeV}
\end{aligned}
$$

For ${ }_{23}^{56} \mathrm{Fe}$, the binding energy per nucleon is

$$
\frac{1}{56}[26(1.007825 \mathrm{u})+30(1.008665 \mathrm{u})-55.934939 \mathrm{u}](931.49 \mathrm{MeV} / \mathrm{u})=8.79 \mathrm{MeV}
$$

11-17: To remove a neutron from the ${ }_{2}^{4} \mathrm{He}$ nucleus, the energy needed is

$$
\begin{aligned}
& m\left({ }_{3}^{3} \mathrm{He}\right)+m_{n}-m\left({ }_{2}^{4} \mathrm{He}\right) \\
& =[3.016029 \mathrm{u}+1.008665 \mathrm{u}-4.002603 \mathrm{u}](931.49 \mathrm{MeV} / \mathrm{u})=20.58 \mathrm{MeV}
\end{aligned}
$$

Then, to remove a proton, the energy needed is

$$
\begin{aligned}
& m\left({ }_{1}^{2} \mathrm{H}\right)+m_{\mathrm{H}}-m\left({ }_{2}^{3} \mathrm{He}\right) \\
& =[2.014102 \mathrm{u}+1.007825 \mathrm{u}-3.016029 \mathrm{u}](931.49 \mathrm{MeV} / \mathrm{u})=5.49 \mathrm{MeV}
\end{aligned}
$$

To separate the remaining proton and neutron, the energy needed is

$$
\begin{aligned}
& m_{n}+m_{\mathrm{H}}-m\left({ }_{1}^{2} \mathrm{H}\right) \\
& =[1.008665 \mathrm{u}+1.007825 \mathrm{u}-2.014102 \mathrm{u}](931.49 \mathrm{MeV} / \mathrm{u})=2.24 \mathrm{MeV}
\end{aligned}
$$

The sum of these energies, to three significant figures, is 28.3 MeV .
The binding energy of ${ }_{2}^{4} \mathrm{He}$ is

$$
\begin{aligned}
& 2 m_{\mathrm{H}}+2 m_{n}-m\left({ }_{2}^{4} \mathrm{He}\right) \\
& =[2(1.007825 \mathrm{u})+2(1.008665 \mathrm{u})-4.002603 \mathrm{u}](931.49 \mathrm{MeV} / \mathrm{u})=28.3 \mathrm{MeV}
\end{aligned}
$$

the same as found above. Algebraically, the answers must be the same.
11-19: The electric potential energy of two protons separated by a distance $1.7 \mathrm{fm}=1.7 \times 10^{-15} \mathrm{~m}$ is

$$
\begin{aligned}
\frac{e^{2}}{4 \pi \epsilon_{0} r} & =\frac{\left(8.988 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(1.602 \times 10^{-19} \mathrm{C}\right)^{2}}{\left(1.7 \times 10^{-15} \mathrm{~m}\right)} \\
& =1.357 \times 10^{-13} \mathrm{~J}=0.85 \mathrm{MeV}
\end{aligned}
$$

to the given two significant figures.
The difference in binding energies is
$\left[2 m_{\mathrm{H}}+m_{n}-m\left({ }_{2}^{3} \mathrm{He}\right)\right]-\left[m_{\mathrm{H}}+2 m_{n}-m\left({ }_{1}^{3} \mathrm{H}\right)\right]=m_{\mathrm{H}}-m_{n}-m\left({ }_{2}^{3} \mathrm{He}\right)+m\left({ }_{1}^{3} \mathrm{H}\right)$.
Using the atomic masses from the Appendix,

$$
\begin{aligned}
\Delta E & =[1.007825 \mathrm{u}-1.008665 \mathrm{u}-3.016029 \mathrm{u}+3.016050 \mathrm{u}](931.49 \mathrm{MeV} / \mathrm{u}) \\
& =-0.763 \mathrm{MeV}
\end{aligned}
$$

or -0.76 MeV to two significant figures, with the minus sign indicating that the tritium nucleus ${ }_{1}^{3} \mathrm{H}$ is more tightly bound than the ${ }_{2}^{3} \mathrm{He}$ nucleus. The magnitudes of the binding energy and the electric potential energy of the protons in ${ }_{2}^{3} \mathrm{He}$ are roughly the same, indicating that the most important contribution to the difference in binding energies is the mutual repulsion of the protons, an effect that is not present in ${ }_{1}^{3} \mathrm{H}$. The closeness of magnitudes of the energies found is an indication that the nuclear forces must be very nearly independent of charge.

11-21: Using $A=40$ and $Z=20$ in Equation (11.18) (which makes the asymmetry term vanish) and the $+\operatorname{sign}$ (even-even) for the pairing term, the predicted binding energy is

$$
\begin{aligned}
E_{b} & =(14.1 \mathrm{MeV})(40)-(13.0 \mathrm{MeV})(40)^{2 / 3}-(0.595 \mathrm{MeV}) \frac{(20)(19)}{(40)^{1 / 3}}+\frac{(33.5 \mathrm{MeV})}{(40)^{3 / 4}} \\
& =347.95 \mathrm{MeV}
\end{aligned}
$$

The actual binding energy is

$$
\begin{aligned}
& 20 m_{\mathrm{H}}+20 m_{n}-m\left({ }_{20}^{40} \mathrm{Ca}\right) \\
& =[20(1.007825 \mathrm{u})+20(1.008665 \mathrm{u})-39.962591 \mathrm{u}](931.49 \mathrm{MeV} / \mathrm{u}) \\
& =342.05 \mathrm{MeV}
\end{aligned}
$$

and the discrepancy is

$$
\frac{347.95 \mathrm{MeV}-342.05 \mathrm{MeV}}{342.05 \mathrm{MeV}}=0.017=17 \%
$$

11-23: (a) For mirror isobars of the form ${ }_{Z}^{2 Z+1} \mathrm{X}$ and ${ }_{Z+1}^{2 Z+1} \mathrm{Y}$, the difference in binding energy is (apart from a factor of c^{2})

$$
\begin{aligned}
E_{Z+1}-E_{Z} & =\left[(Z+1) m_{\mathrm{H}}+Z m_{n}-M_{Z+1}\right]-\left[Z m_{\mathrm{H}}+(Z+1) m_{n}-M_{Z}\right] \\
& =-\Delta M-\Delta m
\end{aligned}
$$

where ΔM is the difference between the atomic masses of ${ }_{Z}^{2 Z+1} \mathrm{X}$ and ${ }_{Z+1}^{2 Z+1} \mathrm{Y}$, and $\Delta m=m_{n}-m_{\mathrm{H}}$.

The difference between the coulomb energies is

$$
\Delta E_{c}=\frac{3}{5} \frac{e^{2}}{4 \pi \epsilon_{0} R}[(Z+1) Z-Z(Z-1)]=\frac{3}{5} \frac{e^{2}}{4 \pi \epsilon_{0} R} 2 Z=\frac{3 Z e^{2}}{10 \pi \epsilon_{0} R}
$$

If this difference is equal to the negative of the difference in binding energies,

$$
(\Delta M+\Delta m) c^{2}=\frac{3}{10} \frac{Z e^{2}}{\pi \epsilon_{0} R}
$$

Solving for R,

$$
R=\frac{3}{10} \frac{Z e^{2}}{\pi \epsilon_{0}} \frac{1}{(\Delta M+\Delta m) c^{2}}
$$

(b) For the mirror isobars ${ }_{7}^{15} \mathrm{~N}$ and ${ }_{8}^{15} \mathrm{O}, Z=7$ and

$$
\begin{aligned}
& (\Delta M+\Delta m) c^{2} \\
& =[15.003065 \mathrm{u}-15.000109 \mathrm{u}+1.008665 \mathrm{u}-1.007825 \mathrm{u}](931.49 \mathrm{MeV} / \mathrm{u}) \\
& =3.536 \mathrm{MeV}=5.665 \times 10^{-13} \mathrm{~J}
\end{aligned}
$$

Using this in the expression for R found in part (a),

$$
R=\frac{3}{10} \frac{(7)\left(1.602 \times 10^{-19} \mathrm{C}\right)^{2}}{\pi\left(8.854 \times 10^{-12} \mathrm{C}^{2} /\left(\mathrm{N} \cdot \mathrm{~m}^{2}\right)\right)} \frac{1}{5.665 \times 10^{-13} \mathrm{~J}}=3.42 \mathrm{fm}
$$

11-25: (a) Removing a neutron from an isotope of krypton leaves an isotope of krypton with mass number one less than that of the original isotope. For the given isotopes, the energy equivalents are

$$
\begin{aligned}
& m_{n}+m\left({ }_{36}^{80} \mathrm{Kr}\right)-m\left({ }_{36}^{81} \mathrm{Kr}\right) \\
& =[1.008665 \mathrm{u}+79.916375 \mathrm{u}-80.916578 \mathrm{u}](931.49 \mathrm{MeV} / \mathrm{u})=7.88 \mathrm{MeV} \\
& m_{n}+m\left({ }_{36}^{81} \mathrm{Kr}\right)-m\left({ }_{36}^{82} \mathrm{Kr}\right) \\
& =[1.008665 \mathrm{u}+80.916578 \mathrm{u}-81.913483 \mathrm{u}](931.49 \mathrm{MeV} / \mathrm{u})=10.95 \mathrm{MeV} \\
& m_{n}+m\left({ }_{36}^{82} \mathrm{Kr}\right)-m\left({ }_{36}^{83} \mathrm{Kr}\right) \\
& =[1.008665 \mathrm{u}+81.913483 \mathrm{u}-82.914134 \mathrm{u}](931.49 \mathrm{MeV} / \mathrm{u})=7.46 \mathrm{MeV}
\end{aligned}
$$

(b) ${ }_{36}^{82} \mathrm{Kr}$ has 36 protons and 46 neutrons, and so the neutrons are paired; the tendency of neutrons to pair together means removing a neutron from a ${ }_{36}^{82} \mathrm{Kr}$ nucleus requires more energy.

11-27: In Equation (11.18), with $A=127$ for each isobar, the coulomb energy term and the assymetry term will be different for the two nuclei. For ${ }_{53}^{127} \mathrm{I}$, $Z(Z-1)=(53)(52)=2756$ and $(A-2 Z)^{2}=441$. For ${ }_{52}^{127} \mathrm{Te}, Z(Z-1)=(52)(51)=$

2652 and $(A-2 Z)^{2}=529$. The difference in binding energies predicted by the liquid drop model is

$$
\begin{aligned}
\Delta E=E\left({ }_{53}^{127} \mathrm{I}\right)-\left({ }_{52}^{127} \mathrm{Te}\right) & =-\frac{a_{3}}{A^{1 / 3}}(2756-2652)-\frac{a_{4}}{A}(361-529) \\
& =-\frac{(0.595 \mathrm{MeV})(104)}{(127)^{1 / 3}}-\frac{(19.0 \mathrm{MeV})(-88)}{(127)} \\
& =0.855 \mathrm{MeV}
\end{aligned}
$$

and so ${ }_{53}^{127} \mathrm{I}$ is more stable, and ${ }_{52}^{127} \mathrm{Te}$ decays into ${ }_{53}^{127} \mathrm{I}$ by negative beta decay (electron emission).

11-29: A nucleon confined to a region of size $\Delta x=2 \mathrm{fm}$ will have an uncertainty in momentum at least as large as $\frac{\hbar}{2 \Delta x}=2.63 \times 10^{-20} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$. The minimum kinetic energy a nucleon with this momentum would have is

$$
\frac{(\Delta p)^{2}}{2 m}=\frac{\left(2.63 \times 10^{-20} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\right)^{2}}{2\left(1.6736 \times 10^{-27} \mathrm{~kg}\right)}=2.1 \times 10^{-13} \mathrm{~J}=1.3 \mathrm{MeV}
$$

which is consistent with a potential well 35 MeV deep. Note that the nonrelativistic expression for kinetic energy is sufficient, and that the result is not changed if the mass of a neutron is used instead of the mass of a hydrogen atom.

