A METRIC UNITS

TABLE A-1 The international system of units (SI)

I. Basic units Quantity	Unit	SI symbol
Length	meter	m
Mass	kilogram	kg
Time	second	s
Electric current	ampere	А
Thermodynamic temperature	kelvin	Κ
Amount of substance	mole	mol
Luminous intensity	candela	cd

II. Prefixes

Factor by which						
Prefix	unit is multiplied	Symbol				
tera	10^{12}	Т				
giga	10^{9}	G				
mega	10^{6}	М				
kilo	10^{3}	k				
hecto	10^{2}	h				
deka	10	da				
deci	10^{-1}	d				
centi	10^{-2}	с				
milli	10^{-3}	m				
micro	10^{-6}	μ				
nano	10^{-9}	n				
pico	10^{-12}	р				
femto	10^{-15}	f				
atto	10^{-18}	а				
III. Derived uni	ts					
Quantity	Units	Expression				
Area	square meter	m^2				
Volume	cubic meter	m^3				
Frequency	hertz (Hz)	s^{-1}				
Density	kilogram per cubic meter	kg/m ³				
Velocity	meter per second	m/s				
Angular velocity	radian per second	rad/s				
Acceleration	meter per second squared	m/s ²				
Angular accelerati		rad/s ²				
Force	newton (N)	kg•ms ²				
Pressure	newton per square meter	e N/m ²				
Work, energy, quantity of heat	joule (J)	N•m				
Power	watt (W)	J/s				
Electric charge	coulomb (C)	A·s				
Voltage, potential difference, electromotive fo	volt (V)	W/A				
Luminance	candela per square meter	e cd/m ²				

TABLE A-2 Metric-English conversion							
When you want to convert:	Multiply by:	To find:					
Length							
inches	2.54	centimeters					
centimeters	0.39	inches					
feet	0.30	meters					
meters	3.28	feet					
yards	0.91	meters					
meters	1.09	yards					
miles	1.61	kilometers					
kilometers	0.62	miles					
Area							
square inches	6.45	square centimeters					
square centimeters	0.15	square inches					
square feet	0.09	square meters					
square meters	10.76	square feet					
square miles	2.59	square kilometers					
square kilometers	0.39	square miles					
Volume							
cubic inches	16.38	cubic centimeters					
cubic centimeters	0.06	cubic inches					
cubic feet	0.028	cubic meters					
cubic meters	35.3	cubic feet					
cubic miles	4.17	cubic kilometers					
cubic kilometers	0.24	cubic miles					
liters	1.06	quarts					
liters	0.26	gallons					
gallons	3.78	liters					
Masses and Weights							
ounces	28.33	grams					
grams	0.035	ounces					
pounds	0.45	kilograms					
kilograms	2.205	pounds					
Temperature	1 7						
When you want to co							
grees Celsius (°C), su	ubtract 32 degree	es and divide by 1.8					
(also see Table A–3).	. 1						
		elsius (°C) to degrees					
Fahrenheit (°F), mu also Table A–3).	itiply by 1.8 and a	add 32 degrees (see					
When you want to co	onvert degrees Co	elsius (°C) to degrees					
Kelvin (K), delete th							
When you want to co							
Celsius (°C), add the degree symbol and subtract 273.							

tempera	temperature in the center column. Then read the desired equivalent value from the appropriate column.)										
°C		°F	°C		°F	°C		°F	°C		°F
-40.0	-40	-40	-17.2	+1	33.8	5.0	41	105.8	27.2	81	177.8
-39.4	-39	-38.2	-16.7	2	35.6	5.6	42	107.6	27.8	82	179.6
-38.9	-38	-36.4	-16.1	3	37.4	6.1	43	109.4	28.3	83	181.4
-38.3	-37	-34.6	-15.4	4	39.2	6.7	44	111.2	28.9	84	183.2
-37.8	-36	-32.8	-15.0	5	41.0	7.2	45	113.0	29.4	85	185.0
-37.2	-35	-31.0	-14.4	6	42.8	7.8	46	114.8	30.0	86	186.8
-36.7	-34	-29.2	-13.9	7	44.6	8.3	47	116.6	30.6	87	188.6
-36.1	-33	-27.4	-13.3	8	46.4	8.9	48	118.4	31.1	88	190.4
-35.6	-32	-25.6	-12.8	9	48.2	9.4	49	120.2	31.7	89	192.2
-35.0	-31	-23.8	-12.2	10	50.0	10.0	50	122.0	32.2	90	194.0
-34.4	-30	-22.0	-11.7	11	51.8	10.6	51	123.8	32.8	91	195.8
-33.9	-29	-20.2	-11.1	12	53.6	11.1	52	125.6	33.3	92	197.6
-33.3	-28	-18.4	-10.6	13	55.4	11.7	53	127.4	33.9	93	199.4
-32.8	-27	-16.6	-10.0	14	57.2	12.2	54	129.2	34.4	94	201.2
-32.2	-26	-14.8	-9.4	15	59.0	12.8	55	131.0	35.0	95	203.0
-31.7	-25	-13.0	-8.9	16	60.8	13.3	56	132.8	35.6	96	204.8
-31.1	-24	-11.2	-8.3	17	62.6	13.9	57	134.6	36.1	97	206.6
-30.6	-23	-9.4	-7.8	18	64.4	14.4	58	136.4	36.7	98	208.4
-30.0	-22	-7.6	-7.2	19	66.2	15.0	59	138.2	37.2	99	210.2
-29.4	-21	-5.8	-6.7	20	68.0	15.6	60	140.0	37.8	100	212.0
-28.9	-20	-4.0	-6.1	21	69.8	16.1	61	141.8	38.3	101	213.8
-28.3	-19	-2.2	-5.6	22	71.6	16.7	62	143.6	38.9	102	215.6
-27.8	-18	-0.4	-5.0	23	73.4	17.2	63	145.4	39.4	103	217.4
-27.2	-17	+1.4	-4.4	24	75.2	17.8	64	147.2	40.0	104	219.2
-26.7	-16	3.2	-3.9	25	77.0	18.3	65	149.0	40.6	105	221.0
-26.1	-15	5.0	-3.3	26	78.8	18.9	66	150.8	41.1	106	222.8
-25.6	-14	6.8	-2.8	27	80.6	19.4	67	152.6	41.7	107	224.6
-25.0	-13	8.6	-2.2	28	82.4	20.0	68	154.4	42.2	108	226.4
-24.4	-12	10.4	-1.7	29	84.2	20.6	69	156.2	42.8	109	228.2
-23.9	-11	12.2	-1.1	30	86.0	21.1	70	158.0	43.3	110	230.0
-23.3	-10	14.0	-0.6	31	87.8	21.7	71	159.8	43.9	111	231.8
-22.8	-9	15.8	0.0	32	89.6	22.2	72	161.6	44.4	112	233.6
-22.2	$^{-8}$	17.6	+0.6	33	91.4	22.8	73	163.4	45.0	113	235.4
-21.7	-7	19.4	1.1	34	93.2	23.3	74	165.2	45.6	114	237.2
-21.1	-6	21.2	1.7	35	95.0	23.9	75	167.0	46.1	115	239.0
-20.6	-5	23.0	2.2	36	96.8	24.4	76	168.8	46.7	116	240.8
-20.0	-4	24.8	2.8	37	98.6	25.0	77	170.6	47.2	117	242.6
-19.4	-3	26.6	3.3	38	100.4	25.6	78	172.4	47.8	118	244.4
-18.9	-2	28.4	3.9	39	102.2	26.1	79	174.2	48.3	119	246.2
-18.3	-1	30.2	4.4	40	104.0	26.7	80	176.0	48.9	120	248.0
-17.8	0	32.0									

TABLE A-3 Temperature conversion table. (To find either the Celsius or the Fahrenheit equivalent, locate the known temperature in the center column. Then read the desired equivalent value from the appropriate column.)

Miles per hour	Knots	Meters per second	Kilometers per hour	Miles per hour	Knots	Meters per second	Kilometers per hour
1	0.9	0.4	1.6	51	44.3	22.8	82.1
2	1.7	0.9	3.2	52	45.2	23.2	83.7
3	2.6	1.3	4.8	53	46.0	23.7	85.3
4	3.5	1.8	6.4	54	46.9	24.1	86.9
5	4.3	2.2	8.0	55	47.8	24.6	88.5
6	5.2	2.7	9.7	56	48.6	25.0	90.1
7	6.1	3.1	11.3	57	49.5	25.5	91.7
8	6.9	3.6	12.9	58	50.4	25.9	93.3
9	7.8	4.0	14.5	59	51.2	26.4	95.0
0	8.7	4.5	16.1	60	52.1	26.8	96.6
1	9.6	4.9	17.7	61	53.0	27.3	98.2
2	10.4	5.4	19.3	62	53.8	27.7	99.8
3	11.3	5.8	20.9	63	54.7	28.2	101.4
4	12.2	6.3	22.5	64	55.6	28.6	103.0
5	13.0	6.7	24.1	65	56.4	29.1	104.6
.6	13.9	7.2	25.7	66	57.3	29.5	106.2
7	14.8	7.6	27.4	67	58.2	30.0	107.8
8	15.6	8.0	29.0	68	59.1	30.4	109.4
.9	16.5	8.5	30.6	69	59.9	30.8	111.0
0	17.4	8.9	32.2	70	60.8	31.3	112.7
1	18.2	9.4	33.8	71	61.7	31.7	114.3
2	19.1	9.8	35.4	72	62.5	32.2	115.9
3	20.0	10.3	37.0	73	63.4	32.6	117.5
4	20.8	10.5	38.6	74	64.3	33.1	119.1
5	20.0	11.2	40.2	75	65.1	33.5	110.1 120.7
6	21.7	11.2	41.8	76	66.0	34.0	120.7 122.3
.0 17	22.0	12.1	43.5	70 77	66.9	34.4	122.3 123.9
8	23.4 24.3	12.1	45.1	78	67.7	34.9	125.5 125.5
19	24.3 25.2	12.5	46.7	78 79	68.6	35.3	125.5 127.1
.9 60	26.1	13.0	48.3	80	69.5	35.8	127.1 128.7
51					69.5 70.3		
2	26.9 27.8	13.9	49.9	81		36.2	130.4
	27.8 28.7	14.3	51.5	82	71.2	36.7	132.0
3	28.7	14.8	53.1	83	72.1	37.1	133.6
4	29.5	15.2	54.7	84 97	72.9	37.6	135.2
5	30.4	15.6	56.3	85	73.8	38.0	136.8
6	31.3	16.1	57.9	86	74.7	38.4	138.4
7	32.1	16.5	59.5	87	75.5	38.9	140.0
8	33.0	17.0	61.2	88	76.4	39.3	141.6
9	33.9	17.4	62.8	89	77.3	39.8	143.2
0	34.7	17.9	64.4	90	78.2	40.2	144.8
1	35.6	18.3	66.0	91	79.0	40.7	146.5
2	36.5	18.8	67.6	92	79.9	41.1	148.1
3	37.3	19.2	69.2	93	80.8	41.6	149.7
4	38.2	19.7	70.8	94	81.6	42.0	151.3
5	39.1	20.1	72.4	95	82.5	42.5	152.9
.6	39.9	20.6	74.0	96	83.4	42.9	154.5
7	40.8	21.0	75.6	97	84.2	43.4	156.1
8	41.7	21.5	77.2	98	85.1	43.8	157.7
1 9	42.6	21.9	78.9	99	86.0	44.3	159.3
60	43.4	22.4	80.5	100	86.8	44.7	160.9

TABLE A-4 Wind-conversion table (Wind-speed units: 1 mile perhour = 0.868391 knot = 1.609344 km/h = 0.44704 m/s)

Introduction to the Atmosphere

In the Lab: Reading Weather Maps

Weather maps showing the development and movement of weather systems are among the most important tools used by the weather forecaster. Of the several types of maps used, some portray conditions near the surface of Earth and others depict conditions at various heights in the atmosphere. Some cover the entire Northern Hemisphere and others cover only local areas as required for special purposes. The maps used for daily forecasting by the National Weather Service (NWS) are similar in many respects to the printed Daily Weather Map. At NWS offices, maps showing conditions at Earth's surface are drawn four times daily. Maps of upper-level temperature, pressure, and humidity are prepared twice each day.

Principal Surface Weather Map

To prepare the surface map and present the information quickly and pictorially, two actions are necessary: (1) weather observers at many places must go to their posts at regular times each day to observe the weather and send the information to the offices where the maps are drawn; (2) the information must be quickly transcribed to the maps. In order for the necessary speed and economy of space and transmission time to be realized, codes have been devised for sending the information and for plotting it on the maps.

Codes and Map Plotting

A great deal of information is contained in a brief coded weather message. If each item were named and described in plain language, a very lengthy message would be required, one confusing to read and difficult to transfer to a map. A code permits the message to be condensed to a few five-figure numeral groups, each figure of which has a meaning, depending on its position in the message. People trained in the use of the code can read the message as easily as plain language (see Figure B–1).

The location of the reporting station is printed on the map as a small circle (the station circle). A definite arrangement of the data around the station circle, called the station model, is used. When the report is plotted in these fixed positions around the station circle on the weather map, many code figures are transcribed exactly as sent. Entries in the station model that are not made in code figures or actual values found in the message are usually in the form of symbols that graphically represent the element concerned. In some cases, certain of the data may or may not be reported by the observer, depending on local weather conditions. Precipitation and clouds are examples. In such cases, the absence of an entry on the map is interpreted as nonoccurrence or nonobservance of the phenomena. The letter M is entered where data are normally observed but not received.

Both the code and the station model are based on international agreements. These standardized numerals and symbols enable a meteorologist of one country to use the weather reports and weather maps of another country even though that person does not understand the language. Weather codes are, in effect, an international language that permits complete interchange and use of worldwide weather reports so essential in present-day activities.

The boundary between two different air masses is called a front. Important changes in weather, temperature, wind direction, and clouds often occur with the passage of a front. Half circles or triangular symbols or both are placed on the lines representing fronts to indicate the kind of front. The side on which the symbols are placed indicates the direction of frontal movement. The boundary of relatively cold air of polar origin advancing into an area occupied by warmer air, often of tropical origin, is called a *cold front*. The boundary of relatively warm air advancing into an area occupied by colder air is called a warm front. The line along which a cold front has overtaken a warm front at the ground is called an occluded front. A boundary between two air masses, which shows at the time of observation little tendency to advance into either the warm or cold areas, is called a *stationary front*. Air-mass boundaries are known as surface fronts when they intersect the ground and as upper-air fronts when they do not. Surface fronts are drawn in solid black; fronts aloft are drawn in outline only. Front symbols are given in Table B-1.

A front that is disappearing or weak and decreasing in intensity is labeled *frontolysis*. A front that is forming is la-

TABLE B-1	TABLE B-1 Weather map symbols			
Symbol	Explanation			
	► Cold front (surface)			
	Warm front (surface)			
	► Occluded front (surface)			
	 Stationary front (surface) 			
$\Delta \Delta \Delta$	► Cold front (aloft)			
000	Warm front (aloft)			
	Squall line			
—	\rightarrow Path of low-pressure center			
\boxtimes	Location of low pressure at 6-hour intervals			
	_ 32° F isotherm			
	- 0° F isotherm			

beled *frontogenesis*. A *squall line* is a line of thunderstorms or squalls usually accompanied by heavy showers and shifting winds (Table B–1).

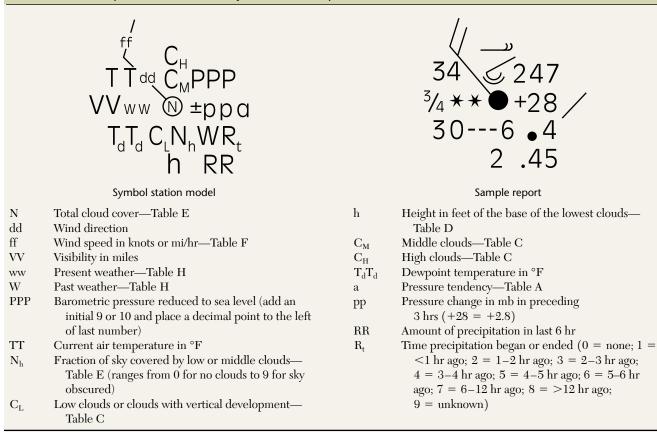
The paths followed by individual disturbances are called *storm tracks* and are shown by arrows (Table B–1). A symbol (a box containing an X) indicates past positions of a low-pressure center at six-hour intervals. HIGH (H) and LOW (L) indicate the centers of high and low barometric pressure. Solid lines are isobars and connect points of equal sea-level barometric pressure. The spacing and orientation of these lines on weather maps are indications of speed and direction of windflow. In general, wind direction is parallel to these lines with low pressure to the left of an observer looking downwind. Speed is directly proportional to the closeness of the lines (called *pressure gradient*). Isobars are labeled in millibars.

Isotherms are lines connecting points of equal temperature. Two isotherms are drawn on the large surface weather map when applicable. The freezing, or 32° F, isotherm is drawn as a dashed line, and the 0° F, isotherm is drawn as a dash-dot line (Table B–1). Areas where precipitation is occurring at the time of observation are shaded.

Auxiliary Maps

500-Millibar Map

Contour lines, isotherms, and wind arrows are shown on the insert map for the 500-millibar contour level. Solid lines are drawn to show height above sea level and are labeled in feet. Dashed lines are drawn at 5° intervals of temperature and are labeled in degrees Celsius. True wind direction is shown by "arrows" that are plotted as flying with the wind. The wind speed is shown by flags and feathers. Each flag represents 50 knots, each full feather represents 10 knots, and each half feather represents 5 knots.


Temperature Map (Highest and Lowest)

Temperature data are entered from selected weather stations in the United States. The figure entered above the station dot shows the maximum temperature for the 12-hour period ending 7:00 P.M. EST of the previous day. The figure entered below the station dot shows the minimum temperature during the 12 hours ending at 7:00 A.M. EST. The letter M denotes missing data.

Precipitation Map

Precipitation data are entered from selected weather stations in the United States. When precipitation has occurred at any of these stations in the 24-hour period ending at 7:00 A.M. EST, the total amount, in inches and hundredths, is entered above the station dot. When the figures for total precipitation have been compiled from incomplete data and entered on the map, the amount is underlined. T indicates a trace of precipitation (less than 0.01 inch) and the letter M denotes missing data. The geographical areas where precipitation has fallen during the 24 hours ending at 7:00 A.M. EST are shaded. Dashed lines show depth of snow on ground in inches as of 7:00 A.M. EST.

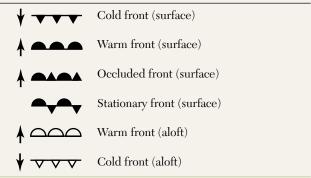
FIGURE B-1 Explanation of station symbols and map entries

TABL	E A Air pressure tendency		
\land	Rising, then falling; same as or higher than 3 hrs ago		
, 	Rising, then steady; or rising, then rising more slowly]	
1	Rising steadily, or unsteadily	}	Barometric pressure now
\checkmark	Falling or steady, then rising; or rising, then rising more rapidly		higher than 3 hours ago
	Steady; same as 3 hrs ago		
\mathbf{n}	Falling, then rising; same as or lower than 3 hrs ago		
Ň	Falling, then steady; or falling, then falling more slowly		
\backslash	Falling steadily, or unsteadily	ł	Barometric pressure now lower than 3 hours ago
$\overline{\mathbf{A}}$	Steady or rising, then falling; or falling, then falling more rapidly	J	

TABLE B Cloud abbreviations					
St	stratus				
Fra	fractus				
Sc	stratocumulus				
Ns	nimbostratus				
As	altostratus				
Ac	altocumulus				
Ci	cirrus				
Cs	cirrostratus				
Cc	cirrocumulus				
Cu	cumulus				
Cb	cumulonimbus				

TABLE C Cloud Types

Low clouds and clouds of vertical development						
\bigcirc	Cu of fair weather, little vertical development and seemingly flattened	$\boldsymbol{\times}$	Ac formed by the spreading out of Cu or Cb Double-layered Ac, or a thick layer of Ac, not in-			
\bigcirc	Cu of considerable development, generally tower- ing, with or without other Cu or Sc, bases all at same level	Б М	creasing; or Ac with As and/or Ns Ac in the form of Cu-shaped tufts or Ac with tur- rets			
Æ	Cb with tops lacking clear-cut outlines, but dis- tinctly not cirriform or anvil shaped; with or with- out Cu, Sc, or St		Ac of a chaotic sky, usually at different levels; patches of dense Ci usually present also			
\uparrow	Sc formed by spreading out of Cu; Cu often present also	<u> </u>	High Clouds Filaments of Ci, or "mares' tails," scattered and not increasing			
\square	Sc not formed by spreading out of Cu St or StFra, but no StFra of bad weather StFra and/or CuFra of bad weather (scud)	رر	Dense Ci in patches or twisted sheaves, usually not increasing, sometimes like remains of Cb; or tow- ers or tufts			
\square	Cu and Sc (not formed by spreading out of Cu) with bases at different levels	\neg	Dense Ci, often anvil shaped, derived from or associated with Cb			
\square	Cb having a clearly fibrous (cirriform) top, often anvil shaped, with or without Cu, Sc, St, or scud	>	Ci, often hook shaped, gradually spreading over the sky and usually thickening as a whole			
	Middle Clouds Thin As (most of cloud layer semitransparent) Thick As, greater part sufficiently dense to hide Sun (or Moon), or Ns	2 	Ci and Cs, often in converging bands, or Cs alone; generally overspreading and growing denser; the continuous layer not reaching 45° altitudeCi and Cs, often in converging bands, or Cs alone; generally overspreading and growing denser; the			
	Thin Ac, mostly semitransparent; cloud elements not changing much and at a single levelThin Ac in patches; cloud elements continually changing and/or occurring at more than one levelThin Ac in bands or in a layer gradually spreading	25 -5 2	continuous layer exceeding 45° altitude Veil of Cs covering the entire sky Cs not increasing and not covering entire sky Cc alone or Cc with some Ci or Cs, but the Cc			
\mathcal{O}	over sky and usually thickening as a whole	\mathcal{O}	being the main cirriform cloud			


TABLE D Height of base of lowest cloud				
Code	Feet	Meters		
0	0–149	0–49		
1	150-299	50-99		
2	300-599	100-199		
3	600–999	200-299		
4	1000-1999	300-599		
5	2000-3499	600–999		
6	3500-4999	1000-1499		
7	5000-6499	1500 - 1999		
8	6500-7999	2000-2499		
9	8000 or	2500 or		
	above or no clouds	above or no clouds		


BLE E Cloud	l cover
\bigcirc	No clouds
	One-tenth or less
	Two-tenths or three-tenths
\bigcirc	Four-tenths
	Five-tenths
\bigcirc	Six-tenths
	Seven-tenths or eight-tenths
O	Nine-tenths or overcast with openings
	Completely overcast (ten-tenths)
\otimes	Sky obscured

TABLE F W	/ind speed		
	Knots	Miles per hour	Kilometers per hour
\bigcirc	1-2	1–2	1–3
<u> </u>	3–7	3–8	4–13
<u> </u>	8-12	9–14	14–19
<u> </u>	13–17	15 - 20	20-32
\ <u></u>	18-22	21 - 25	33-40
<u>\</u>	23–27	26-31	41–50
<u>\\</u>	28-32	32-37	51-60
	33–37	38-43	61–69
	38-42	44-49	70–79
	43-47	50 - 54	80-87
/////	48-52	55-60	88–96
	53–57	61–66	97–106
	58-62	67 - 71	107 - 114
	63–67	72–77	115–124
	68-72	78-83	125–134
	73–77	84-89	135–143
	103–107	119–123	192–198

TABLE G Fronts

Fronts are shown on surface weather maps by the symbols below. (Arrows—not shown on maps—indicate direction of motion of front.)

	BLE H Weather	conditio	2015						
∞	Haze	S	Widespread dust in suspension in the air, NOT raised by wind, at time of ob- servation	\$	Dust or sand raised by wind at time of observation	8	Well developed dust whirl(s) within past hour	(S)	Dust storm or sand- storm within sight of or at station dur- ing past hour
)•(Precipitation within sight, reaching the ground but distant from sta- tion	(•)	Precipitation within sight, reaching the ground, near to but NOT at station	\square	Thunderstorm, but no precipitation at the station	\forall	Squall(s) within sight during past hour or at time of observa- tion)(Funnel cloud(s) within sight of sta- tion at time of ob- servation
∲]	Showers of rain during past hour, but NOT at time of observation	☆]	Showers of snow, or of rain and snow, during past hour, but NOT at time of observation	∲]	Showers of hail, or of hail and rain, during past hour, but NOT at time of observation	≡]	Fog during past hour, but NOT at time of observation	$\left[\right]$	Thunderstorm (with or without precipi- tation) during past hour, but NOT at time of observation
ک ا ا	Severe dust storm or sandstorm has begun or in- creased during past hour	⇒	Slight or moderate drifting snow, gen- erally low (less than 6 ft)	⇒	Heavy drifting snow, generally low	弁	Slight or moderate blowing snow, gen- erally high (more than 6 ft)	⇒	Heavy blowing snow, generally high
=	Fog or ice fog, sky NOT discernible, no appreciable change during past hour	Ē	Fog or ice fog, sky discernible, has begun or become thicker during past hour		Fog or ice fog, sky NOT discernible, has begun or be- come thicker dur- ing past hour	¥	Fog depositing rime, sky discernible	¥	Fog depositing rime, sky NOT dis- cernible
·,·	Continuous drizzle (NOT freezing), heavy at time of observation	\sim	Slight freezing drizzle	\sim	Moderate or heavy freezing drizzle	;	Drizzle and rain, slight	, ,	Drizzle and rain, moderate or heavy
÷	Continuous rain (NOT freezing), heavy at time of observation	\sim	Slight freezing rain	•••	Moderate or heavy freezing rain	● ★	Rain or drizzle and snow, slight	* ● *	Rain or drizzle and snow, moderate or heavy
* ** *	Continuous fall of snowflakes, heavy at time of observation	\leftrightarrow	Ice prisms (with or without fog)	<u> </u>	Snow grains (with or without fog)	 ×	Isolated starlike snow crystals (with or without fog)	\triangle	Ice pellets or snow pellets
∛	Slight snow shower(s)	₹	Moderate or heavy snow shower(s)	₽	Slight shower(s) of snow pellets, or ice pellets with or with- out rain, or rain and snow mixed	₽	Moderate or heavy shower(s) of snow pellets, or ice pel- lets, or ice pellets with or without rain or rain and snow mixed	♥	Slight shower(s) of hail, with or withou rain or rain and snow mixed, not as- sociated with thun- der
•/*	Slight or moderate thunderstorm without hail, but with rain, and/or snow at time of observation	Â	Slight or moderate thunderstorm, with hail at time of ob- servation	•/*	Heavy thunderstorm, without hail, but with rain and/or snow at time of ob- servation	₹	Thunderstorm combined with dust storm or sandstorm at time of observa- tion		Heavy thunderstorm with hail at time of observation

C RELATIVE HUMIDITY AND DEW-POINT TABLES

k	Dry bulb (°C)				(Dry-	bulb	tempo	eratur						empe ture =			on of	the v	vet b	ulb)			
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
	-20	28																					
-	-18	40																					
-	-16	48	0																				
	-14	55	11																				
	-12	61	23																				
-	-10	66	33	0																			
	-8	71	41	13																			
-	-6	73	48	20	0																		
	-4	77	54	32	11																		
-	-2	79	58	37	20	1																	
	0	81	63	45	28	11																	
	2	83	67	51	36	20	6																
	4	85	70	56	42	27	14	10	0		Rei												
2	6	86	72 74	59 62	46	35	22	10	0		્યસ	lip.											
3	8 10	87 88	$74 \\ 76$	62 65	$51 \\ 54$	39 43	28 33	17 24	6 13	4		Chu											
ì	10 12	00 88	78 78	65 67	$\frac{54}{57}$	43 48	зэ 38	$\frac{24}{28}$	13 19	4 10	ົ		nidi,										
-	12	89	79	69	60	40 50	41	$\frac{20}{33}$	15 25	16	8	1	·9-	La,									
	16	90	80	71	62	50	45	37	29	21	14	7	1	alues 0									
	18	91	81	72	64	56	48	40	33	26	19	12	6	0									
	20	91	82	74	66	58	51	44	36	30	23	17	11	5									
	22	92	83	75	68	60	53	46	40	33	27	21	15	10	4	0							
	24	92	84	76	69	62	55	49	42	36	30	25	20	14	9	4	0						
	26	92	85	77	70	64	57	51	45	39	34	28	23	18	13	9	5						
	28	93	86	78	71	65	59	53	45	42	36	31	26	21	17	12	8	4					
	30	93	86	79	72	66	61	55	49	44	39	34	29	25	20	16	12	8	4				
	32	93	86	80	73	68	62	56	51	46	41	36	32	27	22	19	14	11	8	4			
	34	93	86	81	74	69	63	58	52	48	43	38	34	30	26	22	18	14	11	8	5		
	36	94	87	81	75	69	64	59	54	50	44	40	36	32	28	24	21	17	13	10	7	4	
	38 40	94 94	87 89	82 82	76 76	$\frac{70}{71}$	$\begin{array}{c} 66 \\ 67 \end{array}$	$\begin{array}{c} 60 \\ 61 \end{array}$	$55 \\ 57$	$51 \\ 52$	$\frac{46}{48}$	42 44	$\frac{38}{40}$	34 36	30 33	26 29	23 25	20 22	$\frac{16}{19}$	$\frac{13}{16}$	10 13	7 10	$\frac{5}{7}$

 $^{\circ}$ To determine the relative humidity, find the air (dry-bulb) temperature on the vertical axis (far left) and the depression of the wet bulb on the horizontal axis (top). Where the two meet, the relative humidity is found. For example, when the dry-bulb temperature is 20°C and a wet-bulb temperature is 14°C, then the depression of the wet-bulb is 6°C (20°C-14°C). From Table C-1, the relative humidity is 51 percent and from Table C-2, the dew point is 10°C.

	_ · · · ·	(a a) .
TABLE C-2	Dew-point temperature	(°C)*

Dry bulb (°C)				Dry-	bulb t	empe	eratur	e min	ius we	et-bull	o tem	perati	ıre =	- depr	essior	n of tl	he we	et bulk)			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	23
-20	-33																					
	-28																					
	-24																					
	-21	-36																				
	-18																					
	-14																					
	-12		-29																			
	-10																					
-4			-17	-29																		
-2	-5	-8	-13	-20																		
0	-3	-6	-9	-15	-24																	
2	-1	-3	-6	-11	-17																	
4	1	-1	-4	-7	-11	-19																
6	4	1	-1	-4	-7	-13	-21															
0 2 4 6 8 10 12 14 16 18	6	3	1	-2	-5	-9	-14															
10	8	6	4	1	-2	-5	-9	-14	-18													
12	10	8	6	4	1	-2	-5	-9	-16													
14	12	11	9	6	4	1	-2	-5	-10	-17												
16	14	13	11	9	7	4	1	-1	-6	-10	-17											
18	16	15	13	11	9	7	4	2	-2	-5	-10	-19										
20	19	17	15	14	12	10	7	4	2		-5	-10	-19									
22	21	19	17	16	14	12	10	8	5	3	-1	-5	-10	-19								
24	23	21	20	18	16	14	12	10	8	6	2			-10								
26	25	23	22	20	18	17	15	13	11	9	6	3	0	-4	-9							
28	27	25	24	22	21	19	17	16	14	11	9	7	4	1	-3	-9						
30	29	27	26	24	23	21	19	18	16	14	12	10	8	5	1		-8	-15				
32	31	29	28	27	25	24	22	21	19	17	15	13	11	8	5	2	-2		-14			
34	33	31	30	29	27	26	24	23	21	20	18	16	14	12	9	6	3	-1		-12		
36	35	33	32	31	29	28	27	25	24	22	20	19	17	15	13	10	7	4	0		-10	
38	37	35	34	33	32	30	29	28	26	25	23	21	19	17	15	13	11	8	5	1	-3	-
40	39	37	36	35	34	32	31	30	28	27	25	24	22	20	18	16	14	12	9	6	2	_

J LAWS RELATING TO GASES

Kinetic Energy

All moving objects, by virtue of their motion, are capable of doing work. We call this energy of motion, or *kinetic energy*. The kinetic energy of a moving object is equal to one-half its mass (M) multiplied by its velocity (v) squared. Stated mathematically:

Kinetic energy =
$$\frac{1}{2}$$
 Mv²

Therefore, by doubling the velocity of a moving object, the object's kinetic energy will increase four times.

First Law of Thermodynamics

The first law of thermodynamics is simply the thermal version of the law of conservation of energy, which states that energy cannot be created or destroyed, only transformed from one form to another. Meteorologists use the first law of thermodynamics along with the principles of kinetic energy extensively in analyzing atmospheric phenomena. According to the kinetic theory, the temperature of a gas is proportional to the kinetic energy of the moving molecules. When a gas is heated, its kinetic energy increases because of an increase in molecular motion. Further, when a gas is compressed, the kinetic energy will also be increased and the temperature of the gas will rise. These relationships are expressed in the first law of thermodynamics, as follows: The temperature of a gas may be changed by the addition or subtraction of heat, or by changing the pressure (compression or expansion), or by a combination of both. It is easy to understand how the atmosphere is heated or cooled by the gain or loss of heat. However, when we consider rising and sinking air, the relationships between temperature and pressure become more important. Here an increase in temperature is brought about by performing work on the gas and not by the addition of heat. This phenomenon is called the *adiabatic form* of the first law of thermodynamics.

Boyle's Law

About 1600, the Englishman Robert Boyle showed that if the temperature is kept constant when the pressure exerted on a gas is increased, the volume decreases. This principle, called *Boyle's law*, states: At a constant temperature, the volume of a given mass of gas varies inversely with the pressure. Stated mathematically:

$$P_1V_1 = P_2V_2$$

The symbols P_1 and V_1 refer to the original pressure and volume, respectively, and P_2 and V_2 indicate the new pressure and volume, respectively, after a change occurs. Boyle's

law shows that if a given volume of gas is compressed so that the volume is reduced by one-half, the pressure exerted by the gas is doubled. This increase in pressure can be explained by the kinetic theory, which predicts that when the volume of the gas is reduced by one-half, the molecules collide with the walls of the container twice as often. Because density is defined as the mass per unit volume, an increase in pressure results in increased density.

Charles's Law

The relationships between temperature and volume (hence, density) of a gas were recognized about 1787 by the French scientist Jacques Charles, and were stated formally by J. Gay-Lussac in 1802. *Charles's law* states: At a constant pressure, the volume of a given mass is directly proportional to the absolute temperature. In other words, when a quantity of gas is kept at a constant pressure, an increase in temperature results in an increase in volume and vice versa. Stated mathematically:

$$\frac{V_1}{V_2} = \frac{T_1}{T_2}$$

where V_1 and T_1 represent the original volume and temperature, respectively, and V_2 and T_2 represent the final volume and temperature, respectively. This law explains the fact that a gas expands when it is heated. According to the kinetic theory, when heated, particles move more rapidly and therefore collide more often.

The Ideal Gas Law or Equation of State

In describing the atmosphere, three variable quantities must be considered: pressure, temperature, and density (mass per unit volume). The relationships among these variables can be found by combining in a single statement the laws of Boyle and Charles as follows:

$$PV = RT \text{ or } P = \rho RT$$

where *P* is pressure, *V* volume, *R* the constant of proportionality, *T* absolute temperature, and ρ density. This law, called the *ideal gas law*, states:

- 1. When the volume is kept constant, the pressure of a gas is directly proportional to its absolute temperature.
- **2.** When the temperature is kept constant, the pressure of a gas is proportional to its density and inversely proportional to its volume.
- **3.** When the pressure is kept constant, the absolute temperature of a gas is proportional to its volume and inversely proportional to its density.

E NEWTON'S LAWS OF MOTION

Because air is composed of atoms and molecules, its motion is governed by the same natural laws that apply to all matter. Simply put, when a force is applied to air, it will be displaced from its original position. Depending on the direction from which the force is applied, the air may move horizontally to produce winds, or in some situations vertically to generate convective flow. To better understand the forces that produce global winds, it is helpful to become familiar with Newton's first two laws of motion.

Newton's first law of motion states that an object at rest will remain at rest, and an object in motion will continue moving at a uniform speed and in a straight line unless a force is exerted upon it. In simple terms this law states that objects at rest tend to stay at rest, and objects in motion tend to continue moving at the same rate in the same direction. The tendency of things to resist change in motion (including a change in direction) is known as inertia.

You have experienced Newton's first law if you have ever pushed a stalled auto along flat terrain. To start the automobile moving (accelerating) requires a force sufficient to overcome its inertia (resistance to change). However, once this vehicle is moving, a force equal to that of the frictional force between the tires and the pavement is enough to keep it moving.

Moving objects often deviate from straight paths or come to rest, whereas objects at rest begin to move. The changes in motion we observe in daily life are the result of one or more applied forces. Newton's second law of motion describes the relationship between the forces that are exerted on objects and the observed accelerations that result. Newton's second law states that the acceleration of an object is directly proportional to the net force acting on that body and inversely proportional to the mass of the body. The first part of Newton's second law means that the acceleration of an object changes as the intensity of the applied force changes.

We define acceleration as the rate of change in velocity. Because velocity describes both the speed and direction of a moving body, the velocity of something can be changed by changing its speed or its direction or both. Further, the term acceleration refers both to decreases and increases in velocity.

For example, we know that when we push down on the gas pedal of an automobile, we experience a positive acceleration (increase in velocity). On the other hand, using the brakes retards acceleration (decreases velocity).

In the atmosphere, three forces are responsible for changing the state of motion of winds. These are the pressure-gradient force, the Coriolis force, and friction. From the preceding discussion, it should be clear that the relative strengths of these forces will determine to a large degree the role of each in establishing the flow of air. Further, these forces can be directed in such a way as to increase the speed of airflow, decrease the speed of airflow, or, in many instances, just change the direction of airflow.

F CLIMATE DATA

The following climate data are for 51 representative stations (Table F–1) from around the world. Temperatures are given in degrees Celsius and precipitation in millimeters. Names and locations are given in Table F–2 along with the elevation (in meters) of each station and its Köppen classification. This format was selected so that you can use the data in exercises to reinforce your understanding of climatic controls and classification. For example, after classifying a station using Table 15–1 p. 000, write out a likely location based on such items as mean annual temperature, annual temperature range, total precipitation,

and seasonal precipitation distribution. Your location need not be a specific city; it could be a description of the station's setting, such as "middle-latitude continental" or "subtropical with a strong monsoon influence." It would also be a good idea to list the reasons for your selection. You may then check your answer by examining the list of stations in Table F-2.

If you simply wish to examine the data for a specific place or data for a specific climatic type, consult the list at the end of this appendix.

TAB	SLE F-1 S	elected cl	imate data	a for the v	vorld								
	J	F	Μ	А	М	J	J	А	S	0	Ν	D	YR.
1.	1.7	4.4	7.9	13.2	18.4	23.8	25.8	24.8	21.4	14.7	6.7	2.8	13.8
	10	10	13	13	20	15	30	32	23	18	10	13	207
2.	-10.4	-8.3	-4.6	3.4	9.4	12.8	16.6	14.9	10.8	5.5	-2.3	-6.4	3.5
	18	25	25	30	51	89	64	71	33	20	18	15	459
3.	10.2	10.8	13.7	17.9	22.2	25.7	26.7	26.5	24.2	19.0	13.3	10.0	18.4
	66	84	99	74	91	127	196	168	147	71	53	71	1247
4.	-23.9	-17.5	-12.5	-2.7	8.4	14.8	15.6	12.8	6.4	-3.1	-15.8	-21.9	-3.3
	23	13	18	8	15	33	48	53	33	20	18	15	297
5.	-17.8	-15.3	-9.2	-4.4	4.7	10.9	16.4	14.4	10.3	3.3	-3.6	-12.8	-0.3
	58	58	61	48	53	61	81	71	58	61	64	64	738
6.	-8.2	-7.1	-2.4	5.4	11.2	14.7	18.9	17.4	12.7	7.4	-0.4	-4.6	5.4
	21	23	29	35	52	74	39	40	35	29	26	21	424
7.	12.8	13.9	15.0	15.0	17.8	20.0	21.1	22.8	22.2	18.3	17.2	15.0	17.6
	69	74	46	28	3	3	0	0	5	10	28	61	327
8.	18.9	20.0	21.1	22.8	25.0	26.7	27.2	27.8	27.2	25.0	21.1	20.0	23.6
	51	48	58	99	163	188	172	178	241	208	71	43	1520
9.	-4.4	-2.2	4.4	10.6	16.7	21.7	23.9	22.7	18.3	11.7	3.8	-2.2	10.4
	46	51	69	84	99	97	97	81	97	61	61	51	894
10.	-5.6	-4.4	0.0	6.1	11.7	16.7	20.0	18.9	15.5	10.0	3.3	-2.2	7.5
	112	96	109	94	86	81	74	61	89	81	107	99	1089
11.	-2.1	0.9	4.7	9.9	14.7	19.4	24.7	23.6	18.3	11.5	3.4	-0.2	10.7
	34	30	40	45	36	25	15	22	13	29	33	31	353
12.	12.8	13.9	15.0	16.1	17.2	18.8	19.4	22.2	21.1	18.8	16.1	13.9	15.9
	53	56	41	20	5	0	0	2	5	13	23	51	269
13.	-0.1	1.8	6.2	13.0	18.7	24.2	26.4	25.4	21.1	14.9	6.7	1.6	13.3
	50	52	78	94	95	109	84	77	70	73	65	50	897
14.	2.7	3.2	7.1	13.2	18.8	23.4	25.7	24.7	20.9	15.0	8.7	3.4	13.9
	77	63	82	80	105	82	105	124	97	78	72	71	1036
15.	12.8	15.0	18.9	21.1	26.1	31.1	32.7	33.9	31.1	22.2	17.7	13.9	23.0
	10	9	6	2	0	0	6	13	10	10	3	8	77

	TAB	TABLE F-1 Continued												
259 240 310 165 254 185 168 117 221 183 213 292 2619 17. 250 25.8 25.9 26.4 26.6 26.0 27.5 27.9 27.7 27.3 29.2 24.33 18. 13.3 13.3 13.3 13.9 13.3 13.9 13.3 13.9 13.3 13.9 13.3 13.9 13.3 13.9 13.3 13.9 13.3 13.9 13.3 13.9 13.3 13.9 13.3 13.9 13.3 13.9 13.3 13.9 13.3 13.9 13.3 13.9 13.3 13.9 <		J	F	М	A	М	J	J	A	S	0	Ν	D	YR.
17. 25.9 25.8 25.9 26.4 26.6 26.9 27.5 27.9 27.7 27.3 26.7 26.7 365 326 333 13.3 </td <td>16.</td> <td></td> <td>25.6</td> <td>24.4</td> <td>25.0</td> <td></td> <td>23.3</td> <td></td> <td>24.4</td> <td>24.4</td> <td>25.0</td> <td></td> <td>25.6</td> <td>24.7</td>	16.		25.6	24.4	25.0		23.3		24.4	24.4	25.0		25.6	24.7
365 326 333 404 152 162 68 43 96 96 193 133			249	310	165	254	188	168	117	221	183			
	17.	25.9	25.8	25.8	25.9	26.4	26.6	26.9	27.5	27.9	27.7	27.3	26.7	26.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		365	326	383	404	185	132	68	43	96	99	189	143	2433
19. 25.9 26.1 25.2 23.3 21.3 20.3 23.3 23.4 24.4 23.2 0. 13.8 13.5 14.3 116 7.3 43 43 43 53 74 97 127 1086 21. 16 18 13 25 15 17 12 7.8 55 33 7.8 179 139 109 140 83 126 141 167 228 236 207 203 1985 22. -0.5 0.2 3.9 9.0 14.3 17.7 19.4 18.8 15.0 9.6 4.4 39 556 23. 6.1 5.8 7.8 9.2 11.6 14.4 156 16.0 14.7 120 9.0 7.0 10.8 111 76 109 5.6 62 80 87 10.4 13.8 150 112.5 12.5 12.5	18.	13.3	13.3	13.3	13.3	13.9	13.3	13.3	13.3	13.9	13.3	13.3	13.9	13.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		99	112	142	175	137	43	20	30	69	112	97	79	1115
20. 13.8 13.5 11.4 18.0 3.7 12 1.4 12.9 5.5 5.5 1.4 12.9 1.5 1.6 1.7 21 1.5 1.3 3.1 5.5 1.5 1.5 1.7 12.0 1.5 1.41 167 2.8 2.0 2.03 1955 21 0.75 0.2 3.9 9.0 1.43 17.7 1.9 1.85 1.50 9.6 4.7 1.2 9.5 41 3.7 3.0 3.9 4.4 60 67 65 4.5 4.4 3.9 1.05 1.08 1.3 3.6 1.56 1.7.2 2.01 2.2.2 2.2	19.	25.9	26.1	25.2	23.9	22.3	21.3	20.8	21.1	21.5	22.3	23.1	24.4	23.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		137	137	143	116	73	43	43	43	53	74	97	127	1086
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20.	13.8	13.5	11.4	8.0	3.7	1.2	1.4	2.9	5.5	9.2	11.4	12.9	7.9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						25			17	12				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21.					10.2	12.6	15.0	14.7		8.3	5.5		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		179			140		126	141	167	228				1958
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22.	-0.5				14.3	17.7	19.4	18.8	15.0	9.6	4.7		9.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			37		39	44	60	67	65	45	45	44		556
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23.		5.8		9.2	11.6	14.4	15.6	16.0	14.7	12.0	9.0	7.0	10.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					69	68	56		80					1126
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24.					17.2	20.1	22.2			18.2			16.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		111				44	16	3		33				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25.						16.8							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				33	35	52	67	74	74	58	51			575
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26.					17.5	21.6	24.4	24.2	21.5	17.2		9.5	15.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27.													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						197	249		278	208				2488
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28.													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29.								26.1		23.9			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30.													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31.													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32.													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33.													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34.													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	~~													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35.													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.0													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36.													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>م</u>													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37.													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38.													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20													
40. -21.9 -18.6 -12.5 -5.0 9.7 15.6 18.3 16.1 10.3 0.8 -10.6 -18.4 -1.4	39.													
	40													
	40.													
	41				13 12 7	30	51 94 7	51	51		25 12 8			318
41. -4.7 -1.9 4.8 13.7 20.1 24.7 26.1 24.9 19.9 12.8 3.8 -2.7 11.8	41.													
4 5 8 17 35 78 243 141 58 16 10 3 623		4	Э	δ	17	35	18	243	141	58	10	10	ა	623

TAB	BLE F-1 C	Continued											
	J	F	М	А	М	J	J	А	S	0	Ν	D	YR.
42.	24.3	25.2	27.2	29.8	29.5	27.8	27.6	27.1	27.6	28.3	27.7	25.0	27.3
	8	5	6	17	260	524	492	574	398	208	34	3	2530
43.	25.8	26.3	27.8	28.8	28.2	27.4	27.1	27.1	26.7	26.5	26.1	25.7	27.0
	6	13	12	65	196	285	242	277	292	259	122	37	1808
44.	3.7	4.3	7.6	13.1	17.6	21.1	25.1	26.4	22.8	16.7	11.3	6.1	14.7
	48	73	101	135	131	182	146	147	217	220	101	60	1563
45.	-15.8	-13.6	-4.0	8.5	17.7	21.5	23.9	21.9	16.7	6.1	-6.2	-13.0	5.3
	8	15	15	33	25	33	16	35	15	47	22	11	276
46.	-46.8	-43.1	-30.2	-13.5	2.7	12.9	15.7	11.4	2.7	-14.3	-35.7	-44.5	-15.2
	7	5	5	4	5	25	33	30	13	11	10	7	155
47.	19.2	19.6	18.4	16.4	13.8	11.8	10.8	11.3	12.6	16.3	15.9	17.7	15.2
	84	104	71	109	122	140	140	109	97	106	81	79	1242
48.	28.2	27.9	28.3	28.2	26.8	25.4	25.1	25.8	27.7	29.1	29.2	28.7	27.6
	341	338	274	121	9	1	2	5	17	66	156	233	1562
49.	21.9	21.9	21.2	18.3	15.7	13.1	12.3	13.4	15.3	17.6	19.4	21.0	17.6
	104	125	129	101	115	141	94	83	72	80	77	86	1205
50.	-7.2	-7.2	-4.4	-0.6	4.4	8.3	10.0	8.3	5.0	1.1	-3.3	-6.1	0.7
	84	66	86	62	89	81	79	94	150	145	117	79	1132
51.	-4.4	-8.9	-15.5	-22.8	-23.9	-24.4	-26.1	-26.1	-24.4	-18.8	-10.0	-3.9	-17.4
	13	18	10	10	10	8	5	8	10	5	5	8	110

TABLE F-2 Locations and climate classifications for Table F–1											
Station No.	City	Location	Elevation (m)	Köppen classification							
		North America									
1	Albuquerque, N.M.	lat. 35°05′N long. 106°40′W	1593	BWk							
2	Calgary, Canada	lat. 51°03′N long. 114°05′W	1062	Dfb							
3	Charleston, S.C.	lat. 32°47′N long. 79°56′W	18	Cfa							
4	Fairbanks, Alaska	lat. 64°50'N long. 147°48'W	134	Dfc							
5	Goose Bay, Canada	lat. 53°19'N long. 60°33'W	45	Dfb							
6	Lethbridge, Canada	lat. 49°40'N long. 112°39'W	920	Dfb							
7	Los Angeles, Calif.	lat. 34°00'N long. 118°15'W	29	BSk							
8	Miami, Fla.	lat. 25°45'N long. 80°11'W	2	Am							
9	Peoria, Ill.	lat. 40°45'N long. 89°35'W	180	Dfa							
10	Portland, Me.	lat. 43°40'N long. 70°16'W	14	Dfb							
11	Salt Lake City, Utah	lat. 40°46'N long. 111°52'W	1288	BSk							
12	San Diego, Calif.	lat. 32°43'N long. 117°10'W	26	BSk							

TABLE F-	2 Continued			
Station No.	City	Location	Elevation (m)	Köppen classification
13	St. Louis, Mo.	lat. 38°39′N	172	Cfa
14	Washington, D.C.	long. 90°15′W lat. 38°50′N long. 77°00′W	20	Cfa
15	Yuma, Ariz.	lat. 32°40'N long. 114°40'W	62	BWh
		South America		
16	Iquitos, Peru	lat. 3°39′S	115	Af
	-	long. 73°18′W		
17	Manaus, Brazil	lat. 3°01′S long. 60°00′W	60	Am
18	Quito, Ecuador	lat. 0°17′S long. 78°32′W	2766	Cfb
19	Rio de Janeiro, Brazil	lat. 22°50'S long. 43°20'W	26	Aw
20	Santa Cruz, Argentina	lat. 50°01′S long. 60°30′W	111	BSk
		Europe		
21	Bergen, Norway	lat. 60°24′N	44	Cfb
00	Darlin Commons	long. 5°20′E lat. 52°28′N	50	Cfb
22	Berlin, Germany	long. 13°26'E	50	CID
23	Brest, France	lat. 48°24′N long. 4°30′W	103	Cfb
24	Lisbon, Portugal	lat. 38°43′N	93	Csa
25	Moscow, Russia	long. 9°05′W lat. 55°45′N	156	Dfb
26	Rome, Italy	long. 37°37′E lat. 41°52′N	3	Csa
	·	long. 12°37′E		
27	Santis, Switzerland	lat. 47°15′N long. 9°21′E	2496	ET
28	Stockholm, Sweden	lat. 59°21′N long. 18°00′E	52	Dfb
		Africa		
20			25	nal
29	Benghazi, Libya	lat. 32°06′N long. 20°06′E	25	BSh
30	Coquilhatville, Zaire	lat. 0°01′N long. 18°17′E	21	Af
31	Dakar, Senegal	lat. 14°40'N long. 17°28'W	23	BSh
32	Faya, Chad	lat. 18°00'N long. 21°18'E	251	BWh
33	Nairobi, Kenya	lat. 1°16′S	1791	Csb
34	Harare, Zimbabwe	long. 36°47′E lat. 17°50′S long. 30°52′E	1449	Cwb

Station No.CityLocationElevation (m)Köppen classification35Cherrapunji, India long, 91°44'E1313Cwb36Djakarta, Indonesia long, 91°44'E1313Cwb37Lhasa, Tibet long, 91°07'E14. 6°11'S8Am38Madras, India long, 91°07'E16AwAw39Novaya Zemlya, Russia long, 50°11'E15ETET40Omsk, Russia long, 73°19'E15ETDfb41Beijing, China long, 96°10'E16AwNovaya Zemlya, Russia long, 73°19'E1042Rangoon, Myanmar long, 96°10'E10AwNovaya Zemlya, Russia long, 73°19'E1043Ho Chi Minh City, Viet Nam long, 106°40'E10AwNovaya Zemlya, Russia long, 116°23'E2044Tokyo, Japan lat. 35°41'N6CfaCfa100g, 96°10'E10AwNovaya Zemlya, Russia lat. 35°41'N912Dfa46Verkhoyansk, Russia long, 139°46'E137Dfd47Auckland, New Zealand long, 137°43'S137Dfd48Darwin, Australia lat. 12°26'S27Aw49Sydney, Australia long, 131°00'E29ET50Ivigtut, Greenland long, 48° 109W29ET51McMurdo Station, AutarcticaIat. 6°200'E2EF	TABLE F-	2 Continued			
Asia35Cherrapunji, Indialat $25^{\circ}15'N$ 1313Cwb36Djakarta, Indonesialat $6^{\circ}11'S$ 8Am37Lhasa, Tibetlat $29'4VN$ 3685Cwb38Madras, Indialat $13'00'N$ 16Aw39Novaya Zemlya, Russialat. $72'23'N$ 15ET40Omsk, Russialat. $72'23'N$ 15ET41Beijing, Chinalat. $39'57'N$ 52Dwa42Rangoon, Myanmarlat. $10'49'N$ 10AwViet Namlong. $116'23'E$ Amlong. $130'26'1E'$ 43Ho Chi Minh City, lat. $10'49'N$ 10AwViet Namlong. $130'26'1E'$ 137Dfd44Tokyo, Japanlat. $35'41'N$ 6Cfalong. $130'26'E'$ 137DfdJong. $130'23'E'$ 46Verkhoyansk, Russialat. $67'33'N$ 137Dfd47Auckland, New Zealandlat. $37'43'S$ 49Csblong. $13'2'3'E'$ 27AwJong. $13'1'00'E'$ 4949Sydney, Australialat. $3'7'3'S'$ 42Cfb50Ivigtut, Greenlandlat. $61''12'N$ 29ET51McMurdo Station,lat. $77''53'S$ 2EF		~			
35Cherrapunji, India long, 91°44′E1313 long, 91°44′ECwb36Djakarta, Indonesia lat, 6°11′S1at, 6°11′S long, 106°45′E8Am37Lhasa, Tibet lat. 29°40′N36855Cwb38Madras, India lat, 13°00′N16 long, 80°11′EAw long, 80°11′E39Novaya Zemlya, Russia lat. 54°45′E15 long, 54°46′E40Omsk, Russia lat. 54°45′N85 long, 73°19′E41Beijing, China lat. 39°57′N52 long, 116°23′E42Rangoon, Myanmar lat. 16°46′N23 long, 116°23′E43Ho Chi Minh City, lat. 10°49′N10 long, 30°10′E44Tokyo, Japan lat. 39°57′IN52 long, 130°46′E45Urumchi, China lat. 39°47′E912 long, 130°46′E46Verkhoyansk, Russia lat. 37°43′S long, 133°23′E49 long, 133°23′E46Verkhoyansk, Russia lat. 67°33′N long, 131°00′E137 long, 131°00′E49Sydney, Australia lat. 37°43′S long, 131°00′E49 long, 131°00′E49Sydney, Australia lat. 12°26′S27 long, 131°00′E49Sydney, Australia lat. 12°26′S27 long, 131°00′E50Ivigtut, Greenland lat. 61°12′N long, 48° 109W29 leT long, 48° 109W51McMurdo Station, lat. 77°53′S2EF	No.	City	Location	(m)	classification
long. 91°44′E36Djakarta, Indonesialat. 6°11′S837Lhasa, Tibetlat. 6°11′S837Lhasa, Tibetlat. 29°40′N368538Madras, Indialat. 13°00′N1639Novaya Zemlya, Russialat. 72°23′N1540Omsk, Russialat. 72°23′N1541Beijing, Chinalat. 39°57′N5242Rangoon, Myanmarlat. 16°46′N2343Ho Chi Minh City,lat. 10°49′N1044Tokyo, Japanlat. 35°41′N645Urumchi, Chinalat. 35°41′N646Verkhoyansk, Russialat. 6°°33′N13747Auckland, New Zealandlat. 37°43′S4948Darwin, Australialat. 12°26′S2749Sydney, Australialat. 12°26′S2749Sydney, Australialat. 61°12′N2950Ivigtut, Greenlandlat. 61°12′N2951McMurdo Station,lat. 77°53′S251McMurdo Station,lat. 77°53′S2			Asia		
36 Djakarta, Indonesialat. $6^{\circ}11'S$ 8Am $100r, 106^{\circ}45'E$ lat. $29^{\circ}40'N$ 3685 Cwb 37 Lhasa, Tibetlat. $29^{\circ}40'N$ 3685 Cwb 38 Madras, Indialat. $13^{\circ}00'N$ 16Aw $100g, 80^{\circ}11'E$ lat. $72^{\circ}23'N$ 15ET 39 Novaya Zemlya, Russialat. $54^{\circ}46'E$ Dfb 40 Omsk, Russialat. $54^{\circ}46'N$ 85Dfb 41 Beijing, Chinalat. $39^{\circ}57'N$ 52Dwa $100g, 116^{\circ}23'E$ India and $39^{\circ}57'N$ 52Dwa 42 Rangoon, Myanmarlat. $16^{\circ}46'N$ 23Am $100g, 130^{\circ}24'E$ India and $39^{\circ}57'N$ 10Aw $Viet Nam$ long, 106°40'EIndia and $39^{\circ}46'E$ India and $39^{\circ}46'E$ 44 Tokyo, Japanlat. $35^{\circ}41'N$ 6Cfa $100g, 139^{\circ}46'E$ India and New ZealandIndia, $67^{\circ}33'N$ 137 46 Verkhoyansk, Russialat. $67^{\circ}33'N$ 137Dfd $100g, 133^{\circ}23'E$ India, $12^{\circ}26'S$ 27Aw 49 Sydney, Australialat. $33^{\circ}52'S$ 42Cfb 49 Sydney, Australialat. $61^{\circ}12'N$ 29ET $100g, 151^{\circ}179E$ India $3^{\circ}52'S$ 42Cfb 51 McMurdo Station,lat. $77^{\circ}53'S$ 2EF	35	Cherrapunji, India		1313	Cwb
37Lhasa, Tibetlat. 29°40'N long, 91°07'E3685Cwb38Madras, Indialat. 13°00'N long, 80°11'E16Aw long, 80°11'E39Novaya Zemlya, Russialat. 72°23'N long, 54°46'E15ET long, 54°46'E40Omsk, Russialat. 54°48'N long, 73°19'E85Dfb41Beijing, Chinalat. 39°57'N long, 73°19'E52Dwa long, 116°23'E42Rangoon, Myanmar long, 96°10'Elat. 6°46'N long, 73°19'E23Am long, 96°10'E43Ho Chi Minh City, Viet Namlat. 10°49'N long, 106°40'E10Aw viet Nam44Tokyo, Japanlat. 35°41'N long, 106°40'E6Cfa long, 139°46'E45Urumchi, China long, 87°43'Elat. 67°33'N long, 133°23'E137Dfd46Verkhoyansk, Russialat. 67°33'N long, 13°2'S'E137Dfd47Auckland, New Zealand long, 131°00'Elat. 32°52'S long, 151°179E29Cfb49Sydney, Australialat. 61°12'N long, 48° 109W29ET long, 48° 109W50Ivigtut, Greenlandlat. 61°12'N long, 48° 109W29ET long, 48° 109W	36	Djakarta, Indonesia	lat. 6°11′S	8	Am
38Madras, Indialat. 13°00'N long, 80°11'E16Aw long, 80°11'E39Novaya Zemlya, Russialat. 72°23'N long, 54°46'E15ET40Omsk, Russialat. 54°48'N long, 73°19'E52Dth41Beijing, Chinalat. 39°57'N long, 16°23'E52Dwa42Rangoon, Myanmar long, 116°23'Elat. 16°46'N long, 96°10'E23Am43Ho Chi Minh City, long, 106°40'Elat. 10°49'N10Aw44Tokyo, Japan long, 130°46'E912Dfa long, 87°43'EDfa long, 87°43'E46Verkhoyansk, Russialat. 67°33'N long, 133°23'E137Dfd Australia and New Zealand 47Auckland, New Zealand long, 112°26'S27Aw long, 131°00'E49Sydney, Australia lat. 32°52'S42Cfb long, 151° 179ECfb50Ivigtut, Greenlandlat. 61°12'N long, 48° 109W29ET long, 48° 109W51McMurdo Station,lat. 77°53'S2EF	37	Lhasa, Tibet	lat. 29°40′N	3685	Cwb
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38	Madras, India	lat. 13°00′N	16	Aw
40Omsk, Russialat. 54°48'N long, 73°19'E85Dfb41Beijing, Chinalat. 39°57'N long, 116°23'E52Dwa long, 116°23'E42Rangoon, Myanmarlat. 16°46'N long, 96°10'E23Am long, 96°10'E43Ho Chi Minh City, Viet Namlat. 10°49'N10Aw Viet Nam long, 106°40'E44Tokyo, Japan long, 139°46'E6Cfa long, 139°46'E45Urumchi, China long, 139°46'Elat. 43°47'N912Dfa long, 87°43'E46Verkhoyansk, Russia long, 133°23'Elat. 67°33'N long, 133°23'E137Dfd Australia and New Zealand 47Auckland, New Zealand long, 131°00'E27Aw long, 131°00'E49Sydney, Australia long, 151°179E29ET long, 48° 109W50Ivigtut, Greenland lat, 61°12'N long, 48° 109W29ET ET long, 48° 109W	39	Novaya Zemlya, Russia	lat. 72°23′N	15	ET
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	Omsk, Russia	lat. 54°48′N	85	Dfb
42Rangoon, Myanmarlat. 16°46'N long. 96°10'E23Am long. 96°10'E43Ho Chi Minh City, Viet Namlat. 10°49'N10Aw Viet Nam44Tokyo, Japanlat. 35°41'N long. 139°46'E6Cfa long. 139°46'E45Urumchi, Chinalat. 43°47'N912Dfa long. 87°43'E46Verkhoyansk, Russialat. 67°33'N long. 133°23'E137Dfd Australia and New Zealand 47Auckland, New Zealandlat. 37°43'S long. 174°53'E49Csb long. 174°53'E48Darwin, Australialat. 12°26'S long. 131°00'E27Aw long. 151° 179E Greenland 50Ivigtut, Greenlandlat. 61°12'N long. 48° 109W29ET long. 48° 109W51McMurdo Station,lat. 77°53'S2EF	41	Beijing, China	lat. 39°57′N	52	Dwa
43Ho Chi Minh City, Viet Namlat. 10°49'N10Aw44Tokyo, Japanlat. 35°41'N6Cfa long. 139°46'E45Urumchi, Chinalat. 43°47'N912Dfa long. 87°43'E46Verkhoyansk, Russialat. 67°33'N137Dfd Australia and New Zealand 47Auckland, New Zealandlat. 37°43'S long. 133°23'E49Csb long. 133°23'E48Darwin, Australialat. 12°26'S27Aw long. 131°00'E49Sydney, Australialat. 61°12'N long. 48° 109W29ET cfb50Ivigtut, Greenlandlat. 61°12'N long. 48° 109W29ET cfb51McMurdo Station,lat. 77°53'S2EF	42	Rangoon, Myanmar	lat. 16°46′N	23	Am
44Tokyo, Japanlat. $35^{\circ}41'N$ 6Cfa long. $139^{\circ}46'E$ 45Urumchi, Chinalat. $43^{\circ}47'N$ 912Dfa long. $87^{\circ}43'E$ 46Verkhoyansk, Russialat. $67^{\circ}33'N$ 137Dfd47Auckland, New Zealandlat. $37^{\circ}43'S$ 49Csb long. $174^{\circ}53'E$ 48Darwin, Australialat. $12^{\circ}26'S$ 27Aw long. $131^{\circ}00'E$ 49Sydney, Australialat. $33^{\circ}52'S$ 42Cfb50Ivigtut, Greenlandlat. $61^{\circ}12'N$ long. 48° 109W29ET long. 48° 109W51McMurdo Station,lat. $77^{\circ}53'S$ 2EF	43		lat. 10°49′N	10	Aw
45Urumchi, Chinalat. $43^{\circ}47'N$ 912Dfa46Verkhoyansk, Russialat. $67^{\circ}33'N$ 137Dfd46Verkhoyansk, Russialat. $67^{\circ}33'N$ 137DfdAustralia and New Zealand47Auckland, New Zealandlat. $37^{\circ}43'S$ 49Csb48Darwin, Australialat. $12^{\circ}26'S$ 27Aw49Sydney, Australialat. $33^{\circ}52'S$ 42Cfb1019.151°179ECfblong. $151^{\circ}179E$ Cfb50Ivigtut, Greenlandlat. $61^{\circ}12'N$ long. $48^{\circ}109W$ 29ETET51McMurdo Station,lat. $77^{\circ}53'S$ 2EF	44	Tokyo, Japan	lat. 35°41′N	6	Cfa
long. 133°23'EAustralia and New Zealand47Auckland, New Zealandlat. 37°43'S long. 174°53'E49Csb long. 174°53'E48Darwin, Australialat. 12°26'S long. 131°00'E27Aw long. 131°00'E49Sydney, Australialat. 33°52'S long. 151° 179E42Cfb long. 151° 179EGreenlandIxigut, Greenlandlat. 61°12'N long. 48° 109W29ET long. 48° 109W51McMurdo Station,lat. 77°53'S2EF	45	Urumchi, China	lat. 43°47′N	912	Dfa
47Auckland, New Zealand long. 174°53'E49Csb48Darwin, Australia lat. 12°26'S27Aw49Sydney, Australia lat. 33°52'S long. 151° 179E42CfbGreenland50Ivigtut, Greenlandlat. 61°12'N long. 48° 109W29ETAntarctica51McMurdo Station,lat. 77°53'S2EF	46	Verkhoyansk, Russia		137	Dfd
48Darwin, Australialong. 174°53'E lat. 12°26'S long. 131°00'E lat. 33°52'S long. 151° 179E27Aw Aw long. 131°00'E lat. 33°52'S long. 151° 179EGreenland50Ivigtut, Greenlandlat. 61°12'N long. 48° 109W29ET ET51McMurdo Station,lat. 77°53'S2EF		Austra	alia and New Zeala	nd	
48Darwin, Australialat. 12°26'S long. 131°00'E27Aw Aw49Sydney, Australialat. 33°52'S long. 151° 179E42CfbGreenland50Ivigtut, Greenlandlat. 61°12'N long. 48° 109W29ETAntarctica51McMurdo Station,lat. 77°53'S2EF	47	Auckland, New Zealand		49	Csb
49Sydney, Australialat. 33°52'S long. 151° 179E42CfbGreenland50Ivigtut, Greenlandlat. 61°12'N long. 48° 109W29ETAntarctica51McMurdo Station,lat. 77°53'S2EF	48	Darwin, Australia	lat. 12°26′S	27	Aw
Greenland 50 Ivigtut, Greenland lat. 61°12′N long. 48° 109W 29 ET Antarctica 51 McMurdo Station, lat. 77°53′S 2 EF	49	Sydney, Australia	lat. 33°52′S	42	Cfb
50Ivigtut, Greenlandlat. 61°12'N long. 48° 109W29ETAntarctica51McMurdo Station,lat. 77°53'S2EF					
long. 48° 109W Antarctica 51 McMurdo Station, lat. 77°53'S 2 EF			Greenanu		
51 McMurdo Station, lat. 77°53'S 2 EF	50	Ivigtut, Greenland		29	ET
			Antarctica		
	51	McMurdo Station, Antarctica	lat. 77°53′S long. 167°00′E	2	EF