
The UNIX File
System Continued

This is the second chapter that discusses the UNIX file system
and its associated commands; it complements the material dis-
cussed in Chapter 5. Chapter 8 presents more commands for
manipulating files, including commands for copying files,
moving files, and looking at the contents of a file. The chapter
also explains the shell input/output redirection operators and file
substitution metacharacters.

8

209

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 209

In This Chapter

8.1 FILE READING
8.1.1 The vi Editor Read-Only Version: The view Command
8.1.2 Reading Files: The pg Command
8.1.3 Specifying Page or Line Number

8.2 SHELL REDIRECTION
8.2.1 Output Redirection
8.2.2 Input Redirection
8.2.3 The cat Command Revisited

8.3 ENHANCED FILE PRINTING
8.3.1 Practicing Linux Alternative Command Options

8.4 FILE MANIPULATION COMMANDS
8.4.1 Copying Files: The cp Command
8.4.2 Moving Files: The mv Command
8.4.3 Linking Files: The ln Command
8.4.4 Counting Words: The wc Command

8.5 FILENAME SUBSTITUTION
8.5.1 The ? Metacharacter
8.5.2 The * Metacharacter
8.5.3 The [] Metacharacters
8.5.4 Metacharacters and Hidden Files

8.6 MORE FILE MANIPULATION COMMANDS
8.6.1 Finding Files: The find Command
8.6.2 Displaying the Beginning of a File: The head Command
8.6.3 Displaying the End of a File: The tail Command
8.6.4 Selecting Portions of a File: The cut Command
8.6.5 Joining Files: The paste Command
8.6.6 Another Pager: The more Command
8.6.7 Linux Pager: The less Command

8.7 UNIX INTERNALS: THE FILE SYSTEM
8.7.1 UNIX Disk Structure
8.7.2 Putting It Together

COMMAND SUMMARY
REVIEW EXERCISES

Terminal Session

210 Chapter 8

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 210

8.1 FILE READING

Chapter 5 explained how you can use the vi editor or the cat command to read files. To
refresh your memory, you can use vi with the read-only option to read files, or you can
use cat to view a small file. Using the cat command to view a large file, [Ctrl-s] to stop
screen output, and [Ctrl-q] to resume screen output is very inconvenient. Try the fol-
lowing examples to get the feel of it. Doing so will make you appreciate the other file
reading commands that let you view files one screen at a time.

Assume that your working directory is david and you have a file (say, 20 pages long)
called large_file in it.

❏ To read large_file using the vi editor, type vi -R large_file and press [Return].
This opens large_file for read only. Contents of large_file are displayed on
the screen, and you can use vi commands to view the other pages.

❏ To read large_file using the cat command, type cat large_file and press
[Return]. The contents of large_file are displayed and scroll before your eyes.
You can use [Ctrl-s] and [Ctrl-q] to stop and resume scrolling.

8.1.1 The vi Editor Read-Only Version: The view Command

Some UNIX systems provide the vi editor version called view that you can use to read
files. It is a good tool for reading large files because you can use all of the vi editor com-
mands to facilitate the reading of different parts of your file. Viewing a file using the
view command prevents you from saving your editing or changes to the file. You can
use it only to read a file. Refer to Chapter 6 for usage examples.

8.1.2 Reading Files: The pg command

You can use the pg command to view files one screen at a time. A prompt sign (:) is
produced at the bottom of the screen, and you press [Return] to continue viewing the
rest of the file. The pg command shows EOF (end of the file) on the last line of the
screen when it reaches the end of your file. You press [Return] at this point to get to
the $ prompt.

Using the pg command options gives you more control over the format and the
way you want to view your file. Table 8.1 summarizes these options.

Unlike other commands’ options, some pg options start with the plus sign (+).

The pg command is not available on all systems. You can check its availability by typing
pg, or man pg (to look at the manual pages about the pg commands). In each case,
some sort of message is displayed announcing that pg is not available.

The UNIX File System Continued 211

See page x for an explanation of the icons used to highlight information in this chapter.

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 211

Assuming you have a file called large_file in your working directory, use the pg
command to read it by doing the following:

❏ Type pg large_file and press [Return]. This is a simple way of looking at
large_file one screen at a time.

❏ Type pg -p Next +45 large_file and press [Return] to view large_file starting
from line 45 and show the prompt Next instead of the normal prompt : (colon).

Two options are used: -p to change the default prompt from : to Next, and +45 to
start viewing from line 45.

❏ Type pg -s +/hello large_file and press [Return] to show prompt and other mes-
sages in reverse video, and start viewing from the first line that contains the word
hello.

Two options are used: -s to show the prompt and other messages in reverse video,
and +/hello to search for first occurrence of the word hello.

When the pg command displays the prompt sign : (or any other prompt if you have
used the -p option), you can give commands to move forward or backward a specified
number of pages or lines to view different parts of the text. Table 8.2 summarizes some
of these commands.

212 Chapter 8

Table 8.1
The pg Command Options

Option Operation

-n Does not require [Return] to complete the single-letter commands.

-s Displays messages and prompts in reverse video.

-num Sets the number of lines per screen to the integer num. The default value is
23 lines.

-pstr Changes the prompt : (colon) to the string specified as str.

+line–num Starts displaying the file from the line specified in line–num.

+/pattern Starts viewing at the line containing the first occurrence of the specified
pattern.

Table 8.2
The pg Command Key Operators

Key Operation

+n Advances n screens, where n is an integer number.

-n Backs up n screens, where n is an integer number.

+nl Advances n lines, where n is an integer number.

-nl Backs up n lines, where n is an integer number.

n Goes to the nth screen, where n is an integer number.

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 212

8.1.3 Specifying Page or Line Number

You can specify a page number or line number from the beginning of the file or relative
to the current page number. Use unsigned integers to indicate that the reference is to the
beginning of the file. For example, type 10 to go to page 10, or 60l (that’s six, zero, low-
ercase letter l) to go to line 60 in the file.

Use signed integers to indicate that the reference is relative to the current page. For
example, type +10 to move forward 10 pages, or type -30l (minus sign three, zero, low-
ercase letter l) to move backward 30 lines. If you type only + or - without any numbers,
the command is interpreted as +1 or -1, respectively.

These operators are applicable only while you are viewing your file and pg is dis-
playing the prompt sign.

If you use pg with the -n option, then you do not need to press [Return] for single-letter
operators.

8.2 SHELL REDIRECTION

Among the most useful facilities that the shell provides are the shell redirection oper-
ators. Many UNIX commands take input from the standard input device and send the
output to the standard output device. This is usually the default setting. Using the
shell redirection operators, you can alter where a command gets its input and where
it sends its output. The command’s standard (default) input/output device is your
terminal.

The shell redirection operators allow you to do the following things:

• Save the output of a process in a file.

• Use a file as input to a process.

1. A process is any executable program. This could be an appropriate shell command,
an application program, or a program you have written.

2. The redirection operators are instructions to the shell and are not part of the com-
mand syntax. Accordingly, they can appear anywhere on the command line.

3. Redirection is temporary and effective only with the command using it.

8.2.1 Output Redirection

Output redirection allows you to store the output of a process in a file. Then you can edit
it, print it, or use it as input to another process. The shell recognizes the greater than sign
(>) and double greater than sign (>>) as output redirection operators.

The format is as follows:

command > filename

or

command >> filename

The UNIX File System Continued 213

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 213

For example, to get the list of the filenames in your working directory, you use the
ls command. Type ls and press [Return]. The shell default output device is your terminal
screen (the standard output device). Consequently, you see the list of files on the screen.
Suppose you want to save the ls command output (the list of filenames in the directory)
in a file. One way to do that is to redirect the output of the ls command from the screen to
a file as follows:

$ ls > mydir.list [Return] . . . Redirect ls output to mydir.list.

This time the ls command output is not sent to the terminal screen, but is saved
in a file called mydir.list. If you open the mydir.list file, you see the list of
files.

1. If the specified filename already exists, then it is written over, and the contents of
the existing file are lost.

2. If the specified filename does not exist, then the shell creates a new file.

The double greater than sign (>>) redirection operator works the same as the
greater than sign (>) operator, except for the fact that it appends the output to the speci-
fied file. If you type ls >> mydir.list, the shell adds the filenames in the working direc-
tory to the end of the file called mydir.list.

1. If the specified file does not exist, then the shell creates a new file to save the output
in it.

2. If the specified filename does exist, then the shell adds the output to the end of the
file, and the previous contents of the file remain intact.

The following command sequences show more examples of the output redirection
operators.

To obtain a hard copy of the filenames in your home directory, do the following:

$ cd [Return] Change to your HOME directory.
$ ls -C [Return] List filenames in the david

directory in column format. You
have two files:

myfirst yourlast
$ ls -C > mydir.list [Return] . . Save the output in mydir.list.
$_ Done. The prompt is back.
$ cat mydir.list [Return] Check what you have in

mydir.list.
myfirst yourlast
$ lp mydir.list [Return] Print the list.
request id is lp1-8056 (1 file)
$_ Ready for the next command.

To append the list of the users on the system to mydir.list, do the following:

$ who >> mydir.list [Return] Append the list of the users on
the system to mydir.list.
Now mydir.list contains
the list of filenames and
the list of users currently
logged in.

214 Chapter 8

AFZAMC08_0131194496.qxd 3/19/07 12:30 PM Page 214

$ date > mydir.list [Return] . . Save the output of the command
date in mydir.list. This time the
previous contents of the
mydir.list are lost, and all you
have in it are the results of the last
command.

$_ Ready for the next command.

To save the current year’s calendar in this_year, print it, and then remove it from the
file, do the following:

$ cal > this_year [Return] . . . Save output of cal in this_year.
$ lp this_year [Return] Print it.
request id lp1-6889 (1 file)
$ rm this_year [Return] Remove it.
$_ Ready for the next command.

8.2.2 Input Redirection

The input redirection operator allows you to issue commands or run programs that get
their input from a specified file. The shell recognizes the less than sign (<) and the
double less than sign (<<) as the input redirection operators. The format is as follows:

command < filename

or

command << word

For example, to send mail to another user, you use the mailx command (mailx is
discussed in Chapter 10) and type mailx daniel < memo. This command tells the
computer to send mail to the user called daniel (his user id). The input to mailx is not
coming from the standard input device, your terminal, but from the file called memo.
Thus, the input redirection operator (<) is used to indicate where the input comes
from.

Try using the cat command with the input redirection operator.

❏ Type cat < mydir.list and press [Return] to display the contents of mydir.list,
UNIX responds:

myfirst yourlast

Using the cat command with the input redirection operator gives you the same
result as the cat command with the filename as an argument (cat mydir.list).
There are other commands that work in the same manner. If you specify a filename
on the command line, the command takes its input from the specified filename. If
you do not specify any argument, the command takes its input from the default
input device (your keyboard), and if you use the input redirection operator to
specify where the input comes from, then the command takes its input from the file
you specify.

The redirection operator (<<) is used mostly in script files (shell programs) to
provide standard input to other commands.

The UNIX File System Continued 215

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 215

8.2.3 The cat Command Revisited

Now that you know about the shell redirection capabilities, we can explore the cat com-
mand in more detail. The cat command was introduced in Chapter 5, where it was used
to show the contents of a small files on the screen. However, the cat command can be
used for many things other than displaying files.

To refresh your memory, let’s look at the following command lines:

$ cat myfirst [Return] Display myfirst.
$ cat -n myfirst [Return] . . . Display myfirst with line numbers.

216 Chapter 8

$ cat -n myfirst
1 The vi history
2 The vi editor is an interactive text editor that is supported
3 by most of the UNIX operating systems.

$_

The cat -n command is used throughout this book to display content of the files. It is
convenient to have the line numbers when one or more lines are referenced in the text.

Creating Files

By using the cat command with the output redirection operator (>), you can create a file.
For example, if you wanted to create a file called myfirst, you would type cat >
myfirst. This command means that the output of the cat command is to be redirected
from the standard output device (your terminal) to a file called myfirst. The input
comes from the standard input device—your keyboard. In other words, you type the text,
and cat saves it in the myfirst file. You signal the end of the file by pressing [Ctrl-d].

This feature of the cat command is useful for creating small files quickly. Of
course, you can also use it to create long files, but you must be a very accurate typist be-
cause after you press [Return] you cannot edit the text you have typed. The following
command sequences show how to create a file using the cat command.

Try using the cat command with the output redirection operator to create a file.

$ cat > myfirst [Return] . . . Create a file called myfirst.
_ Cursor ready for your input. Let’s say

you type the following:
I wish there was a better way
to learn UNIX. Something like
having a daily UNIX pill.

[Ctrl-d] End your typing.
$_ Ready for the next command.
$ cat myfirst [Return] Check to see if myfirst has been

created; display it on the screen.
I wish there was a better way
to learn UNIX. Something like
having a daily UNIX pill.

$_ Ready for the next command.

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 216

1. If myfirst does not exist in your working directory, then cat creates it.

2. If myfirst already exists in your working directory, then cat overwrites it. The
contents of the old myfirst are lost.

3. If you do not want to overwrite a file, use the (>>) operator.

Try appending text to the end of myfirst in your current directory.

$ cat >> myfirst [Return] . . . Append to a file called myfirst.
_ Type your text.
However, for now, we have to suffer and read all these
boring UNIX books.

[Ctrl-d] Signal the end of the input text.
$_. Back to the prompt.
$ cat myfirst [Return] Display the contents of myfirst.
I wish there was a better way to learn
UNIX. Something like having a daily UNIX pill.
However, for now, we have to suffer and read all these
boring UNIX books.

1. If myfirst does not exist in your working directory, then cat creates the file.

2. If myfirst exists, then cat appends the input text to the end of the existing file. In
this example, your one line of input was appended to myfirst. Thus three lines of
text are displayed.

Copying Files

You can use the cat command with the output redirection operator to copy files from
one place to another. The following command sequences show how this capability of the
cat command works.

Try copying myfirst in the david directory to another file called myfirst.copy.

$ cd [Return] Make sure you are in your
HOME directory.

$ cat myfirst > myfirst.copy [Return] . Copy myfirst to
myfirst.copy.

$_ . Ready for the next
command.

The input to the cat command is myfirst file, and the output from the cat command
(the contents of the myfirst) is saved in myfirst.copy.

Now copy myfirst in the david directory to the source directory, and call it
myfirst.copy:

$ cat myfirst > source/myfirst.copy [Return] Copy myfirst to
myfirst.copy and place it
in the source directory.

$ ls source/myfirst.copy [Return] Check to see if it has been
copied.

myfirst.copy
$_ . Yes, myfirst.copy is in the

source directory.

The UNIX File System Continued 217

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 217

Because you are in your HOME directory, the pathname to the file myfirst.copy in the
source directory must be specified in both cat and ls commands.

Next, use the cat command to copy two files into a third file.

$ cat myfirst myfirst.copy > xyz [Return] . . Copy myfirst and
myfirst.copy
into xyz.

$_ . Ready for the next
command.

1. The previous contents of the xyz file, if any, are lost.

2. There is a space between each file name in the command line.

Appending Files

You can use the cat command with the output redirection append operator (>>) to add a
number of files together into a new file.

Append two files to the end of the third file.

$ cat myfirst myfirst.copy >> xyz [Return]. . Append myfirst
and myfirst.
copy to the end
of the file called
xyz.

$_ . Prompt is
displayed.

1. Using the (>>) redirection operator saves the previous contents of xyz, if any, and
the two files are added to the end of xyz.

2. You may have more than two filenames in the command line, but they must be sepa-
rated by a space.

3. The files are appended to the specified output file in the same sequence in which the
input files are specified.

8.3 ENHANCED FILE PRINTING

The lp command sends your file to the printer as it is; it does not change the appearance
or format of your file. You can, however, improve the appearance of the output by for-
matting it—for example, adding page numbers, page headings, and double-spaced lines
to a document before sending it to the printer or viewing it on the screen.

You use the pr command to format a file before printing or viewing it. The pr
command with no options formats the specified file into pages 66 lines long. It puts a
five-line heading at the top of the page that consists of two blank lines, one line of
information about the specified file, and two more blank lines. The information line
includes the current date and time, the name of the specified file, and the page number.
The pr command also produces five blank lines at the end of each page.

Try using the pr command to format myfirst:

❏ Type pr myfirst and press [Return] to format a file called myfirst. (See Figure 8.1.)

218 Chapter 8

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 218

The pr command output is displayed on your terminal, the standard output device.
But most of the time you will want to format files for a hard copy printout. One way to do
that is to use the output redirection operator. There are other ways to send formatted files to
the printer, such as using the pipe operator () (which is explained in Chapter 9).
Let’s save the formatted version of myfirst in another file and then print it.

$ pr myfirst > pout [Return] . . . Save the formatted copy of
myfirst in a file called pout.

$ lp pout [Return]. Print pout.
requested id is lp1-8045 (1file)
$ rm pout [Return]. Delete pout if you do not need it.
$_ Ready for the next command.

pr Options

It is not enough to place five lines at the top and five lines at the bottom of each page and
call it formatting. The pr options allow you to format a file’s appearance with a little
more sophistication. Table 8.3 summarizes the pr command options.

1. The -m or -columns is used to produce multicolumn output.

2. The -a option can only be used with the -columns option and not -m.

The following command sequences show the output of the pr command using
different options.

The examples assume you have two files in your working directory. Let’s use the cat
command to create them.

$ cat > names [Return] Create a file called names.
David [Return]
Daniel [Return]
Gabriel [Return]
Emma [Return]
[Ctrl-d]
$ cat > scores [Return] Create a file called scores.
90 [Return]

The UNIX File System Continued 219

[2 blank lines]
Nov 28 16:30 2001 myfirst Page 1

[2 blank lines]
The vi history
The vi editor is an interactive text editor which is supported
by most of the UNIX operating systems. However, . . .

rest of the page . . .

[5 blank lines at bottom of page]

Figure 8.1
File Printed with Page Formatting: Five-Line Heading and Five-Line Blank Footing

--

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 219

220 Chapter 8

Table 8.3
The pr Command Options

Option Operation

UNIX Linux Alternative

+page --pages=page Starts displaying from the specified page. The
default is page 1.

-columns --columns=columns Displays output in the specified number of
columns. The default is one column.

-a --across Displays output in columns across (rather than
down) the page, one line per column.

-d --double-space Displays output double spaced.

-h string --header=string Replaces the filename in the header with the
specified string.

-l number --length=number Sets the page length to the specified number of
lines. The default is 66 lines.

-m --merge Displays all the specified files in multiple
columns.

-p Pauses at the end of each page and sounds the bell.

-s character --separator=character Separates columns with a single specified
character. If character is not specified, then [Tab]
is used.

-t --omit-header Suppresses the five-line header and five-line
trailer.

-w number --width=number Sets line width to the specified number of
characters. The default is 72.

--help Displays help page and exits.

--version Displays version information and exits.

100 [Return]
70 [Return]
85 [Return]
[Ctrl-d]
$_ Ready for the next command.

Notice that most of the options for the pr command under UNIX can be used also
for Linux. However, Linux provides some alternative options that do the same job and
some additional options that can be used only under Linux.

For example, look at the following commands:

$ pr -a myfirst [Return] Works for UNIX and Linux.
$ pr --across myfirst [Return] . . Works only for Linux.
$ pr --help [Return] Works only for Linux.

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 220

To show the names in column format, and change the heading to STUDENT LIST, type
pr -2 -h “STUDENT LIST” names and press [Return].

The UNIX File System Continued 221

The -h option changes the heading, but if the specified string has embedded white
space, then you must put the string in quotation marks.

However, your screen will scroll up and you will not see the entire file. One way to
observe the output on the screen is to redirect the pr output to a file, and then use the vi
editor or the view command (the read only version of vi) to see the formatted output.

❏ Type pr myfirst > outfile and press [Return]. You have saved the output of the pr
command in outfile.

❏ Type view outfile and press [Return] to see the output generated by the pr command.

If the view command is not available on your system, type vi -R (for read only) instead.

Display names in two columns across the page and suppress the header:

❏ Type pr -2 -a -t names and press [Return].

The difference between options -2 and -2 -a is the order in which the columns are
arranged.

Show the files names and scores side by side:

❏ Type pr -m -t names scores and press [Return]

[2 blank lines]

Nov 28 2005 14:30 STUDENT LIST [Page 1]

[2 blank lines]

David Gabriel
Daniel Emma

[5 blank lines at bottom of page]

David Daniel
Gabriel Emma

David 90
Daniel 100
Gabriel 70
Emma 85

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 221

The -m option shows the specified files side by side in the same order in which the file-
names are specified in the command line.

Display names in 2 columns, separated by @ character, and omit header:

❏ Type pr -2 -s@ -a names and press [Return].

Notice the -s@ option caused the names to be separated by @.

8.3.1 Practicing Linux Alternative Command Options

Use the Linux alternative options for the pr command, as suggested in the following
command lines. Notice some of the options, such as pages, are meaningful when
applied to large files.

$ pr --pages=2 large_file [Return] Display
large_file
starting from
page 2.

$ pr --columns=2 myfirst [Return] Display myfirst
in two columns.

$ pr --double-space myfirst [Return] Display
myfirst in
double space.

$ pr --omit-header --columns=2 --across names [Return] Display names
across two
columns with
no header.

$ pr --omit-header --columns=2 --separator=@ names [Return]. . Display names
in two columns
separated by
@ sign.

$ pr --help [Return] . Display the help
page.

Read the help page and familiarize yourself with other options available for the pr
command.

8.4 FILE MANIPULATION COMMANDS

Some of the file manipulation commands were discussed in Chapter 5. From that dis-
cussion, you know how to create directories (using the mkdir command), create files
(using the vi and cat commands), and delete files and directories (using the rm and
rmdir commands). Now we will look at a few more commands to increase your knowledge

222 Chapter 8

David@Daniel
Gabriel@Emma

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 222

of file manipulation in UNIX. These commands are used to copy (cp), link (ln), and
move (mv) files. The general format of these commands is as follows:

command source target

where command is any of the three commands, source is the name of the original file,
and target is the name of the destination file.

8.4.1 Copying Files: The cp Command

The cp (copy) command is used to create a copy (duplicate) of a file. You can copy files
from one directory to another, make a backup copy of a file, or just copy files for the fun
of it!

Suppose you have a file called REPORT in your current directory and want to create a
copy of it. To do so, you type cp REPORT REPORT.COPY and press [Return].

REPORT is the source file and REPORT.COPY is the target file. If you do not pro-
vide the correct pathname/filename for the source or target file, cp complains by
showing a message similar to the following:

File cannot be copied onto itself
0 file(s) copied

Figure 8.2 shows your directory structure before and after application of the cp
command.

If the target file already exists, then its contents are destroyed.

The following command sequences show how the cp command works.

The UNIX File System Continued 223

$ ls [Return] List the current directory files.
memos REPORT
$ cp REPORT REPORT.COPY [Return] Copy REPORT to REPORT.COPY.
$ ls [Return] See the list of files.

REPORT.COPY is in the list, as you
expected.

memos REPORT REPORT.COPY
$ cp REPORT REPORT [Return] . . . Source and target filenames are the

same.
File cannot be copied onto itself
0 file(s) copied
$_ Ready for the next command.

Figure 8.2
An Example Application of the cp Command

david

REPORT

memos

david

REPORT

REPORT.COPY

memos

cp REPORT REPORT.COPY

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 223

Copy a file from your current directory to another directory. Figure 8.3 shows your
directory structure before and after the cp command.

$ cp REPORT memos [Return] Create a copy of REPORT in
memos.

$ ls memos [Return] List files in memos directory, and
REPORT is there, as you expected.

REPORT

When the target file is a directory name, then the source file is copied in the specified
directory with the same filename as the source filename.

You can also copy multiple files to another directory. Suppose you have files called names
and scores under your current directory (david) and you want to copy them to the memos
directory. Figure 8.4 shows your directory structure before and after the cp command.

$ cp names scores memos [Return] . Copy names, scores in
current directory to the memos
directory.

$_ Ready for the next command.

1. The files called names and scores are in your current directory.

2. The filenames on the command line are separated by at least one space.

3. The last filename must be a directory name. In this case, memos is a directory
name.

224 Chapter 8

Figure 8.3
Another Example Application of the cp Command

Figure 8.4
Using the cp Command to Copy Multiple Files to Another Directory

david

REPORT

memos

david

REPORT

REPORT

memos

cp REPORT memos

david

usr

/

names

scores

memos

cp names score memos

names

scores

david

usr

/

names

scores

memos

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 224

cp Options

Table 8.4 summarizes the cp command options.

-b Option The -b (backup) option creates a backup copy of the file if the file you want
to copy already exits in the target directory. This protects you from overwriting an
existing file.

Use the cp command with the -b (backup) option. Assuming you already have a file
called REPORT under the memos directory, a backup copy of REPORT will be created.
This means the REPORT file under memos is not overwritten. Figure 8.5 shows your
directory structure before and after the cp -b command.

$ cp -b REPORT memos [Return] . . Move REPORT to memos and create
a backup of REPORT if it already
exits in memos.

$ ls memos [Return]. List files under memos.
REPORT REPORT~

$_ Ready for the next command.

Notice that REPORT is backed up and the backup filename is REPORT~.

The UNIX File System Continued 225

Table 8.4
This cp Command Options

Option Operation

UNIX Linux Alternative

-b --backup Makes a backup of the specified file if file already exists.

-i --interactive Asks for confirmation if the target file already exists.

-r --recursive Copies directories to a new directory.

--verbose Explain what is being done.

--help Displays the help page and exits.

Figure 8.5
Using the cp Command with the -b Option

cp -b REPORT memos

REPORT

david

usr

/

REPORT

memos

REPORT~

REPORT

david

usr

/

REPORT

memos

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 225

-i Option The -i option protects you from overwriting an existing file. It asks for confir-
mation if the target file already exists. If your reply is yes, it copies the source file, over-
writing the existing file. If your answer is no, then it quits, and your existing file remains
intact.

-r Option It takes a long time and is a tedious job to copy files one by one if you have a
long list of files to copy. You can use cp with the -r option to copy directories and all their
contents into a new directory.

Try using the cp command with the -i option.

$ cp -i REPORT memos [Return] Make a copy of REPORT
under memos.

Target file already exists overwrite? Shows confirmation prompt;
press [y] [Return] for yes or
[n] [Return] for no.

$. Ready for the next command.

Suppose you have a directory called memos in your current directory and you want to copy
all the files and subdirectories under memos to the david.bak directory. Figure 8.6
shows your directory structure before and after the cp -r command. Notice there is a sub
directory called important under memos that contains a file called resume. Copy files
and subdirectories in david to another directory called david.bak using the -r option.

$ cp -r ./memos ./david.bak [Return] . . Copy memos directory
and all the files in it to
david.bak.

$. Ready for the next
command.

1. If david.bak exists in your current directory, then files and directories in memos
are copied into david.bak.

2. If david.bak does not exist in your current directory, then it is created and all the
files and directories including memos itself are copied into david.bak. Now the
pathname for files in memos under david.bak is ./david.bak/memos.

226 Chapter 8

Figure 8.6
Using the cp Command with the -r Option

cp -r ./memos ./david.bak

david

usr

/

REPORT

REPORT~

memos

important

resume

david

usr

/

REPORT

REPORT~

memos david.back

important

resume REPORT

REPORT~

memos

important

resume

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 226

Practicing Linux Alternative cp Options

Use the Linux alternative options for the cp command, as suggested in the following
command lines:

$ cp --interactive REPORT memos [Return] Same as cp -i REPORT memos.
$ cp --recursive ./memos ./david.bak [Return] . Same as cp -r /memos/

david.bak.
$ cp --help [Return] Display the help page.

Read the help display and familiarize yourself with other options available for the cp
command in Linux.

Copy files using the -verbose or -v option.

$ cp -v names scores memos [Return] Copy names and scores in the current
directory to the memos directory.

names -> memos/names
scores -> memos/scores
$_ . Ready for the next command.

Notice the feedback from the -v option that shows what file is copied and where it is
copied.

8.4.2 Moving Files: The mv Command

You use the mv command to move a file from one place to another or to change the
name of a file or a directory. For example, if you have a file called REPORT in your
current directory and you want to change its name to REPORT.OLD, you type mv
REPORT REPORT.OLD and press [Return].

Figure 8.7 shows your directory structure before and after application of the mv
command to rename REPORT.

Move REPORT to the memos directory.

$ mv REPORT memos [Return] Move REPORT to memos.
$_. Ready for the next

command.

Figure 8.8 shows your directory structure after application of the mv command to
move REPORT.

The UNIX File System Continued 227

Figure 8.7
Using mv to Rename a File

david

REPORT

memos

david

REPORT.OLD

memos

mv REPORT REPORT.OLD

AFZAMC08_0131194496.qxd 3/19/07 12:30 PM Page 227

Both the cp and mv command accept more than two arguments, but the last argu-
ment must be a directory. For example, the command

cp xfile yfile zfile backup

copies xfile, yfile, and zfile to the directory called backup, provided that the
backup directory exists.

mv Options

Table 8.5 shows some of the mv command options. The following command lines show
the usage of the mv command options.

228 Chapter 8

Figure 8.8
Using mv to Move a File

david

REPORT REPORT

memos

david

memos

mv REPORT memos

Table 8.5
The mv Command Options

Option Operation

UNIX Linux Alternative

-b --backup Makes backup of the specified file if file already exists.

-i --interactive Asks for confirmation if the target file already exists.

-f --force Removes target file if file already exists and does not ask for
confirmation.

-v --verbose Explains what is being done.

--help Displays the help page and exits.

--version Displays version information and exits.

Use the mv command with the -b (backup) option. Assuming you already have a file
called REPORT under the memos directory, a backup of REPORT will be created. This
means the REPORT file under memos is not overwritten.

$ mv -b REPORT memos [Return] . . Move REPORT to memos and create
a backup of REPORT if it already
exits in memos.

$ ls memos [Return]. Check files under memos.
REPORT REPORT~

$_ Ready for the next command.

Notice that REPORT is backed up and the file name is REPORT~.

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 228

Use the mv command with the -i (confirmation) option. Assuming you already have a
file called REPORT under the memos directory, a confirmation prompt is displayed and
you press [y]es [Return] or [n]o [Return] to signal your intention.

$ mv -i REPORT memos [Return] . . Move REPORT to memos and ask
for confirmation.

overwrite 'memos/REPORT'? Shows confirmation prompt.
y [Return] This overwrites the REPORT file.
$_ Ready for the next command.

Use the mv command with the -v (verbose) option.

$ mv -v REPORT memos [Return] . . Move REPORT to memos.
REPORT -> memos/REPORT

$_ Ready for the next command.

Practicing Linux Alternative mv Options

Use the Linux alternative options for the mv command, as suggested in the following
command lines:

$ mv --backup REPORT memos [Return] Same as mv -b REPORT memos.
$ mv --interactive REPORT memos [Return] . . . Same as mv -i REPORT memos.
$ mv --verbose REPORT memos [Return] Same as mv -v REPORT memos.
$ mv --version [Return] Displays version information.
$ cp --help [Return] Displays the help page.

Read the help page and familiarize yourself with other options available for the mv
command.

8.4.3 Linking Files: The ln Command

You can use the ln command to create new links (names) between an existing file and a
new filename. This means you can create additional names for an existing file and refer
to the same file with different names. For example, suppose you have a file called RE-
PORT in your current directory, and you type ln REPORT RP and press [Return]. This
creates a file named RP in your current directory and links that name to REPORT. Now,
REPORT and RP are two names for a single file. Figure 8.9 shows your directory struc-
ture before and after the ln command application.

At first glance, this looks like the cp command, but it is not! The cp command
physically copies the file into another place, and you have two separate files. Whatever

The UNIX File System Continued 229

Figure 8.9
Using the ln Command to Link Filenames

david

REPORT

memos

david

REPORT

RP

memos

In REPORT RP

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 229

changes you make in one are not reflected in the other. The ln command, however, just
creates another filename for the same file; no new file is created. If you change anything
in any of the linked files, the changes are there in the file regardless of the name you use
to refer to it.

To experiment with the ln command, try the following command sequence:

$ cat > xxx [Return] . . Create a file called xxx. Now type the
following line in the file:
Line 1:aaaaaa

$ [Ctrl-d] Signal end of the input.
$ ln xxx yyy [Return] . Link yyy to xxx.
$ cat yyy [Return] . . . Display the contents of the xxx file, but use the

new filename yyy; the output is, as you
expected, the contents of xxx:

Line 1:aaaaaa

$ cat >> yyy [Return] . Append a line to the end of yyy, and type the
following line:
Line 2:bbbbbb

[Ctrl-d]. Signal the end of your input.
$ cat yyy [Return] . . . Display the contents of yyy. You have two lines

in yyy, as you expected:
Line 1:aaaaaa
Line 2:bbbbbb

$ cat xxx [Return] . . . Display the contents of xxx. You have two lines
in it because xxx and yyy are actually the same
file:

Line 1:aaaaaa
Line 2:bbbbbb
$_ Ready for the next command.

If you specify an existing directory name as the new filename, you can access the
file in the specified directory without typing its pathname. For example, suppose you
have a file called REPORT and a subdirectory called memos in your working directory,
and you type ln REPORT memos and press [Return]. Now you can access REPORT
from the memos directory without specifying its pathname, in this case ../REPORT.

If you want to specify a different name for the file in a different directory, type ln
REPORT memos/RP and press [Return]. Now RP in the memos directory is linked to
REPORT, and from memos you can use the filename RP to refer to REPORT.

Figure 8.10 shows your directory structure before and after application of the ln
command.

230 Chapter 8

Figure 8.10
Using the ln Command to Link Filenames to a Directory

david

REPORT

memos

david

REPORT

RP

memos

In REPORT memos/RP

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 230

When you create a file, you also establish a link between the directory and the file. Thus,
the link count for every file is at least one, and subsequent use of ln adds to the number
of links.

Linux Alternative Options for the ln Command

Use the Linux alternative options for the ln command, as suggested in the following
command lines:

$ ln --version [Return] . Display version information.
$ ln --help [Return] . . . Display the help page.

Read the help page and familiarize yourself with other options available for the ln
command.

Some Final Words

The three commands cp, mv, and ln all affect the filenames and work in a similar
manner, but they are different commands and are used for different purposes:

• cp creates a new file.

• mv changes the filename or moves files from one place to another.

• ln creates additional names (links) for an existing file.

Chapter 5 explained that the ls -l command lists the filenames in the current direc-
tory in a long format and that the second column in the long-format output shows the
number of the links.

To list the files in david in long format, type ls -l and press [Return].

The UNIX File System Continued 231

$ ls -l
total 2
drwx rw- --- 1 david student 32 Nov 28 12:30 memo
-rwx rw- --- 1 david student 155 Nov 18 11:30 REPORT

To link REPORT to RP and list the files using the ls command with the -l option to see the
number of links, type ln REPORT RP and press [Return]. Then type ls -l and press
[Return].

$ ln REPORT RP
$ ls -l
total 3
drwx rw- --- 1 david student 32 Nov 28 12:30 memo
-rwx rw- --- 2 david student 155 Nov 18 11:30 REPORT
-rwx rw- --- 2 david student 155 Nov 18 11:30 RP

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 231

8.4.4 Counting Words: The wc Command

You can use the wc command to find out the number of lines, words, or characters in a
file or a list of specified files.

The following command sequences show the output of the wc command, as-
suming you have the myfirst file in your current directory.

First display the contents of myfirst. Then show the number of lines, words, and char-
acters in it:

$ cat myfirst [Return] . . . Display the contents of myfirst.
I wish there was a better way to learn
UNIX. Something like having a daily UNIX pill.
However, for now, we have to suffer and read all these
boring UNIX books.

$ wc myfirst [Return] . . . Count the number of lines, words, and
characters in myfirst.

4 30 155 myfirst
$_. Ready for the next command.

The first column shows the number of lines, the second column shows the number
of words, and the third column shows the number of characters.

A word is considered a sequence of characters with no white space (space or tab char-
acter). Therefore, what? is one word, and what ? counts as two words.

If no filename is specified, then wc gets its input from the standard input device
(keyboard). You signal the end of the input by pressing [Ctrl-d], and wc shows the re-
sults on the screen.

Use the wc command to get the count of input from the keyboard:

$ wc [Return]. Invoke the wc command with no filename.
_ The sign is the prompt indicating that the

shell is waiting for the rest of the
command. Type the following text:

The wc command is useful to find out how large your file is.

[Ctrl-d] End your input; wc displays the output.
2 13 48

$_. Ready for the next command.

You can specify more than one filename as the argument. In this case, the output
shows one line of information for each file, and the last line shows the total counts.

Suppose you have two files in your current directory. The following command se-
quences show the output of the wc command specifying the two filenames as arguments.

Count the number of lines, words, and characters in the specified files:

$ wc myfirst yourfirst [Return] . Show the counts of myfirst and
yourfirst.

24 10 400 myfirst
3 100 400 yourfirst
27 110 800 total

$_ Ready for the next command.

232 Chapter 8

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 232

wc Options

You can use the wc command with options to get the number of lines, words, or
characters only, or in any combination. Table 8.6 summarizes the wc command
options.

1. When no option is specified, the default is all options (-lwc).

2. You can use any combination of the options.

The following command sequences show the use of the wc options.

Count the number of lines in myfirst:

$ wc -l myfirst [Return] . Report only the number of lines:
4 myfirst
$_ Ready for the next command.
$ wc -lc myfirst [Return]. Report the number of lines and characters.
155 4 myfirst
$_ The prompt is back.

Save the output of the wc command in a file and print it.

$ wc myfirst > myfirst.count [Return] . . Use the output redirection operator to save the
wc report in myfirst.count.

$ lp -m myfirst.count [Return] Print myfirst.count and report when the
job is done.

$_ . Ready for the next command.

Linux Alternative Options for the wc Command

Use the Linux alternative options for the wc command, as suggested in the following
command lines.:

$ wc --lines myfirst [Return] Report only the number of lines.
$ wc --chars --lines myfirst [Return] . . Report the number of lines and characters

in myfirst.
$ cp --help [Return] Displays the help page.

The UNIX File System Continued 233

Option Operation

UNIX Linux Alternative

-l --lines Reports the number of lines.

-w --words Reports the number of words.

-c --chars Reports the number of characters.

--help Displays the help page and exits.

--version Displays version information and exits.

Table 8.6
This wc Command Options

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 233

Read the help page and familiarize yourself with other options available for the wc
command in Linux.

8.5 FILENAME SUBSTITUTION

Most file manipulation commands require filenames as arguments. When you want to
manipulate a number of files, for example, to transfer all files with a filename starting
with letter a to another directory, typing all the filenames one by one is tiring and
boring. The shell supports file substitution, which allows you to select those filenames
that match a specified pattern. These patterns are created by specifying filenames that
contain certain characters that have a special meaning to the shell. These special charac-
ters are called metacharacters (or wild cards). Table 8.7 summarizes the wild cards that
can stand for one or more characters in a file name.

234 Chapter 8

Character Operation

? Matches any single character.

* Matches any string, including the empty string.

[list] Matches any one of the characters specified in the list.

[!list] Matches any one of the characters not specified in the list.

Table 8.7
The Shell File Substitution Metacharacters

File substitution metacharacters (wild cards) can be used in any part—at the beginning,
middle, or end—of the filename to create a search pattern.

For the terminal sessions in this section you need to create new files and directo-
ries. It is a good idea to create a directory for each chapter to be used for the terminal
sessions and exercises of that chapter. Under the Chapter8 directory, create a subdirec-
tory called 8.5. If you have not created a Chapter8 directory in your HOME directory,
here is one way to do this:

$ cd [Return]. Change to the HOME directory.
$ mkdir Chapter8 [Return] . Create Chapter8 directory.
$ cd Chapter8 [Return] . . . Change current directory to Chapter8.
$ mkdir 8.5 [Return] Create a directory called 8.5.

Now create the following files using cat command or vi editor. There is no need to
type anything in the files, or just type in few words if you want. We need these files only
for their names. Create the following six filenames:

report report1 report2 areport breport report32

8.5.1 The ? Metacharacter

The question mark (?) is a special character that the shell interprets as a single character
substitution and expands the filename accordingly.

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 234

Try the following command sequences to see how the ? metacharacter works:

$ ls -C [Return]. Check the filenames in your working
directory. You have the following files:

report report1 report2 areport breport

report32

$ ls -C report? [Return] . Use a single question mark in the filename.
report1 report2

$_ Ready for the next command.

The shell expands the filename report? to the filename report followed by ex-
actly one character, any character. Thus, the filenames report1 and report2 are the
only two files that match the pattern.

$ ls report?? [Return] . . Use two question marks as special characters.
report32

$_ Ready for the next command.

The shell expands the filename report?? to the filename report followed by
exactly two characters, any characters. Thus, the filename report32 is the only file
that matches the pattern.

$ ls -C ?report [Return] . . . Put ? at the beginning of the filename.
areport breport

$_ Ready for the next command.

The shell expands the filename ?report to the filename report preceded by
exactly one character, any character. Thus the filenames areport and breport are the
only two files that match the pattern.

8.5.2 The * Metacharacter

The asterisk (*) is a special character that the shell interprets as any number of characters (in-
cluding zero characters) of substitution in a filename, and expands the filename accordingly.

Try the following command sequences to see how the * metacharacter works:

$ ls -C [Return] Check the filenames in your working
directory. You have the following files:

report report1 report2 areport breport
report32

$ ls -C report* [Return]. . List all filenames that begin with the
word report:

report report1 report2 report32

The shell expands the filename report* to the filenames report followed by
any number of characters, any characters. Thus the file names areport and breport are
the only two filenames that do not match the pattern. The * wild card includes zero char-
acters following the specified pattern. Thus, the file name report followed by no char-
acter matches the pattern and is displayed.

$ ls -C *report [Return] List all the filenames that end with the word report:
report areport breport

$_ Ready for the next command.

The UNIX File System Continued 235

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 235

The shell expands the filename *report to the filename report preceded by any
number of characters, any characters. Thus the filenames report, areport, and breport are
the only files that match the pattern. Remember, the * wild card includes zero characters
following the specified pattern. Therefore, the filename report preceded by no character
matches the pattern and is displayed.

$ ls -C r*2 [Return] List all files that start with r and end with 2:
report2 report32

$_ Ready for the next command.

The shell expands the file name r*2 to the filename r followed any number of
characters, but the last character of the filename must be the character 2, referring to any
file that starts with r and ends with 2.

8.5.3 The [] Metacharacters

The open and close brackets are special characters that surround a string of characters.
The shell interprets this string of characters as filenames that contain the specified char-
acters, and expands the filenames accordingly.

Using the ! before the specified string of characters (but within the brackets)
causes the shell to display the filenames that do not contain the characters in the string
at the specified position.

Experiment with the bracket metacharacters by doing the following:

❏ To list all the filenames that start with a or b, type ls -C [ab]* and press [Return],
UNIX responds:

areport breport

$_ Ready for the next command.

The shell expands the filename [ab]* to the filename a or b followed by any
number of characters, any characters. Thus, areport and breport are the only two
filenames that match the specified pattern.

❏ To list all the filenames that do not start with a or b, type ls -C [!ab]* and press
[Return], UNIX responds:

report report1 report2 report32

You can use the [] metacharacters to specify a range of characters or digits. For ex-
ample, [5-9] means the digits 5, 6, 7, 8, or 9; and [a-z] means all the lowercase letters
of the alphabet.

The following command sequence shows the use of brackets with a specified alphabet
or digits range:

❏ Type ls *[1-32] and press [Return] to list all the filenames that end with the digits
1 to 32, UNIX responds:

report1 report2 report32
$ 1s -C [A-Z] [Return] Show all the single-capital-letter file names,

assuming you have some single-letter file names.
A B D W
$_. The prompt appears.

236 Chapter 8

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 236

8.5.4 Metacharacters and Hidden Files

To use the metacharacters for displaying hidden files—filenames starting with . (dot)—
you must explicitly have the . (dot) as part of the specified pattern.

To list all the invisible (hidden) files, type ls -C .* and press [Return], UNIX responds:

.exrc .profile

The shell expands the filename .* to the filename . (dot) followed by any
number of characters, any characters. Thus, only the hidden files are displayed.

The pattern is .* and there is no space between the dot and the asterisk.

Wild cards are not limited in use to only the ls command. You can use wild cards with
other commands that need filename arguments.

To experiment with some more examples of filename substitution, try the following:

$ rm *.* [Return] Delete all the files with filenames that contain at least
one dot.

$ rm report? [Return] Delete all filenames that begin with report and end with
only one character, any character.

$ cp * backup [Return] Copy all files from the current directory to the backup
directory.

$ mv file[1-4] memos [Return] . . Move file1, file2, file3, and file4, indicated by
the range [1–4], to the memos directory.

$ rm report* [Return] Delete all the filenames that start with the string report.
$_ Ready for the next command.

In the last example, there is no space between the string report and the asterisk wild card.
The rm report* command deletes all the files with filenames that begin with report.

$ rm report * [Return]. Delete all files.
$_. Ready for the next command.

In the preceding example, there is a space between the string report and the as-
terisk wild card. This space can have disastrous consequences. The command rm
report * is interpreted as “delete a file called report, and then delete all the other
files.’’ In other words, all files in the current directory are deleted.

8.6 MORE FILE MANIPULATION COMMANDS

The following commands facilitate the search for a specific file in a crowded hierarchy
of directories and display a specified portion of a file for a quick look.

8.6.1 Finding Files: The find Command

You can use the find command to locate files that match a given set of criteria in a hier-
archy of directories. The criterion may be a filename or a specified property of a file (such
as its modification date, size, or type). You can also direct the command to remove, print,
or otherwise act on the file. The find command is a very useful and important command
that is not used to its full potential. Maybe its unusual command format is discouraging.

The UNIX File System Continued 237

AFZAMC08_0131194496.qxd 3/19/07 12:30 PM Page 237

The format of the find command is different from that of the other UNIX com-
mands. Let’s look at its syntax:

find pathname search options action option

pathname indicates the directory name from which find begins its search, and it then con-
tinues down to the subdirectories and their subdirectories and so on. This process of
branching search is called a recursive search. The search options part identifies which file
you are interested in, and the action option part tells what to do with the file once it is found.

Let’s look at a simple example:

$ find . -print [Return]

This command displays the names of all the files in the specified directory and all its
subdirectories.

1. The specified directory is indicated by a dot, meaning the current directory.

2. The options after the pathname always start with a hyphen (-). The action option
part indicates what to do with the files. In this case, -print means to display them.

Don’t forget the -print action key. Without it, find does not display any pathnames.

find Options

Table 8.8 shows a partial list of the find options and explanations of the options.

-name Option You use the search option to find a file by its name. You type -name fol-
lowed by the desired filename. The filename can be a simple filename or you can use the
shell wild card substitution: [], ?, and *. If you use these special characters, place the file-
name in single quotation marks. Let’s look at some examples. The ±n notation in Table 8.8
is a decimal number that can be specified as +n (meaning more than n) or -n (meaning
less than n) or n (meaning exactly n).

Find some files by name.

$ find . -name first.c -print [Return] . . Find files named
first.c.

$ find . -name "*.c" -print [Return] . . . Find all files whose
names end in .c.

$ find . -name "*.?" -print [Return] . . . Find all files whose
names end with a single
character preceded by a
period.

238 Chapter 8

Operator Description

-name filename Finds files with the given filename.

-size ±n Finds files of the size n.

-type file type Finds files of the specified type.

-atime ±n Finds files that were accessed n days ago.

-mtime ±n Finds files that were modified n days ago.

-newer filename Finds files that were modified more recently than filename.

Table 8.8
The find Command Search Options

AFZAMC08_0131194496.qxd 3/19/07 12:30 PM Page 238

1. In all of the preceding commands, the directory name is the current directory. The
. (dot) represents the current directory.

2. The -name option identifies the filename. The wild card may be used to generate
the filename.

3. The action part -print is used to display the name of the file found.

-size ±n Option You use this search option to find a file by its size in blocks. You type
-size followed by the number of blocks indicating the size of the file to be checked. The
plus or minus sign before the number of blocks indicates greater than or less than, respec-
tively. Let’s look at some examples.

Find some files by size:

$ find . -name "*.c" -size 20 -print [Return] . . Find files that are exactly 20 blocks
large.

This command finds all files that have filenames that end with .c and that are exactly
20 blocks large.

$ find . -name "*.c" -size +20 -print [Return]. . Find files that are larger than
20 blocks.

$ find . -name "*.c" -size -20 -print [Return]. . Find files that are smaller than
20 blocks.

-type Option You use this search option to find a file by its type. You type -type fol-
lowed by a letter specifying the file type. The file types are as follows:

• b: a block special file (such as your disk)

• c: a character special file (such as your terminal)

• d: a directory file (such as your directories)

• f: an ordinary file (such as your files)

Find files using the file type option:

$ find $HOME -type f -print [Return] . . Use the -type option.

This command finds all the ordinary files in your HOME directory and displays
their pathnames. Recall, $HOME holds the absolute pathname to your HOME
directory.

-atime Option You use this search option to find a file by its last access date. You
type -atime followed by the number of days since the file was last accessed. The plus
or minus sign before the number of days indicates greater than or less than, respec-
tively. Let’s look at some examples.

Find files by their last access times:

$ find . -atime 10 -print [Return] Find and display files
last accessed exactly
10 days ago.

The UNIX File System Continued 239

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 239

The previous command displays the names of the files that have not been read for
exactly 10 days.

$ find . -atime -10 -print [Return] . . . Find and display files
last accessed less than
10 days ago.

$ find . -atime +10 -print [Return] . . . Find and display files
last accessed more than
10 days ago.

-mtime Option You use this search option to find a file by its last modification date.
You type -mtime followed by the number of days since the file was last modified. The
plus or minus sign before the number of days indicates greater than or less than, respec-
tively. Let’s look at some examples.

Find files by their last modification times:

$ find . -mtime 10 -print [Return] . . Find and display files last
modified exactly 10 days
ago.

The previous command displays the names of the files that are exactly 10 days old.

$ find . -mtime -10 -print [Return] . . Find and display files last
modified less than 10 days
ago.

$ find . -mtime +10 -print [Return] . . Find and display files last
modfied more than 10 days
ago.

-newer Option You use this search option to find a file modified more recently than a
file with a specified filename.

Let’s look at an example:

$ find . -newer first.c -print [Return]....Find and display
files modified more
recently than
first.c was.

Action Options

The action options tell find what to do with files once they are found. Table 8.9 summa-
rizes the three action options.

240 Chapter 8

Operator Description

-print Prints the pathname for every file found.

-exec command\; Lets you give commands to be applied to the files.

-ok command\; Asks for confirmation before applying the command.

Table 8.9
The find Command Action Options

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 240

-print Option The -print action option displays the pathnames of the files found that
match the specified criterion.
Find pathnames to files called first.c, starting from the HOME directory.

$ find $HOME -name first.c -print [Return] . Find first.c and
display the
pathnames.

/usr/david/first.c
/usr/david/source/first.c
/usr/david/source/c/first.c
$_. Receive prompt.

The output shows there are three instances of the file first.c in David’s hierarchy of
directories.

-exec Option The -exec action option lets you give a command to be applied to the
found files. You type -exec followed by the specified command, a space, backslash, and
then a semicolon. You can use a set of braces ({}) to represent the name of the files found.
An example will help to clarify the sequence.

Find and delete all instances of the first.c file that are 90 days old:

$ find . -name first.c -mtime +90 -exec rm {}\; [Return]
$_. Receive prompt.

The search starts from your current directory (represented by .) and is continued
through the hierarchy of the directories. The find command and the -exec rm com-
mand locate and the remove instances of first.c that are 90 days old.

Two search options are in effect: the -name and the -mtime options. That means
find is seeking files that simultaneously satisfy these two search categories.

The command is comprised of many parts, and its syntax is peculiar:

1. The -exec option followed by the command (in this case rm)

2. A set of braces ({}) followed by a space

3. A backslash (\) followed by a semicolon

All instances of first.c are deleted. No warning or feedback message is dis-
played. When you see the $ prompt, the job is done.

-ok Option The -ok action option is just like the -exec option, except that it asks for
your confirmation before applying the command to the file.

Find and delete all instances of the first.c file, but ask for confirmation before
deleting any file:

$ find . -name first.c +90 -ok rm {}\; [Return]
$_. Receive prompt.

If a file, for example first.c, satisfies the criterion, then the following prompt is
displayed:

<rm/source/first.c> ?

If you reply with [Y] or [y], the command is executed (in this case, file.c is deleted);
otherwise, your file remains intact.

The UNIX File System Continued 241

AFZAMC08_0131194496.qxd 3/19/07 12:30 PM Page 241

You can also use the logical operators or, and, and not to combine the search options.
The search starts from your current directory, and it is continued through the hierarchy
of the directories.

It is highly recommended to use the man command to display the manual pages for the
find command and its many options.

$ man find [Return] Display man pages for find.

Under Linux, you can use the --help option to display the help page:

$ find --help [Return] Displays the help page for find.

8.6.2 Displaying the Beginning of a File: The head Command

You can use the head command to display the beginning of a specified file. The head
command gives you a quick way to check the first few lines of a file. For example, to
display the first part of the file called MEMO in your current directory, you type the
following:

$ head MEMO [Return]

By default, head shows the first 10 lines of the specified file. You can override the
default value by specifying the number of lines. For example, to display the first five
lines of the file MEMO, you type the following:

$ head -5 MEMO [Return]

The specified number of line must be a positive integer number.

You can specify more than one filename on the command line. For example, to
show the first five lines of the files called MyFile, YourFile, and OurFile, you type
the following:

$ head MyFile YourFile OurFile [Return]

When more than one file is specified, the start of each file will look like:

==> filename <==

The following command sequences demonstrate the use of the head command.

$ head –5 *File [Return] Display the first five lines
of all files in the current
directory ending with File.

$ head * [Return] Display the first 10 lines
of all files in the current
directory.

$ head –15 MEMO [Return] Display the first 15 lines
of the MEMO file.

head Options

Table 8.10 lists some of the head command options. For more detail, use the man com-
mand to read the man pages.

242 Chapter 8

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 242

8.6.3 Displaying the End of a File: The tail Command

You can use the tail command to display the last part (the tail end) of a specified file. The
tail command gives you a quick way to check the contents of a file. For example, to dis-
play the last part of the file called MEMO in your current directory, you type the following:

$ tail MEMO [Return]

By default, tail shows the last 10 lines of the specified file. You can override the default
value by using one of the available options.

tail Options

Table 8.11 lists some of the tail command options,which are similar to the options for
the head command. When more than one filename is specified on the command line,
each file starts with a header line similar to the following line:

==> filename <==

For more detail, use the man command and read the manual pages.

1. If a plus sign precedes the option, tail counts from the beginning of the file.

2. If a hyphen precedes the option, tail counts from the end of the file.

3. If a number precedes the option, tail uses that number instead of the default
10 lines count.

The UNIX File System Continued 243

Option Operation

UNIX Linux Alternative

-l --lines Counts by lines. This is the default option.

-c --chars=num Counts by characters.

--help Displays the help page and exits.

--version Displays the version information and exits.

Table 8.10
The head Command Options

Option Operation

UNIX Linux Alternative

-l --lines Counts by lines. This is the default option.

-c --chars=num Counts by characters.

--help Displays the help page and exits.

--version Displays the version information and exits.

Table 8.11
The tail Command Options

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 243

The following command sequences demonstrate the use of the tail command:

$ tail MEMO [Return]. Display the last 10 lines (no option).
$ tail 11 MEMO [Return] Display the last 11 lines (11).
$ tail -4 MEMO [Return] Display the last 4 lines (-4).
$ tail -10c MEMO [Return] . . . Display the last 10 characters (-10c).
$ tail +50 MEMO [Return] . . . Skip 50 lines from the beginning of

the file MEMO and display the rest of
the file.

You can specify only one filename as an argument with the tail command.

Practicing Linux Alternative tail Options

Use the Linux alternative options for the tail command, as suggested in the following
command lines:

$ tail --chars=10 MEMO [Return] . Same as tail -10c MEMO.
$ tail --lines=5 MEMO [Return]. . Same as tail -10l MEMO.
$ tail --version [Return] Display version information.
$ tail --help [Return] Display the help page.

8.6.4 Selecting Portions of a File: The cut Command

You can use the cut command to “cut out’’ specific columns or fields from files. Many
files are collections of records, with each record consisting of several fields. You might
be interested in some of the fields or columns contained in a file. Figure 8.11 shows an
example of such a file called phones. Each record in this file consists of five fields, and
each field is separated by a space or a tab.

244 Chapter 8

Figure 8.11
A File Called phones

$ cat phones
David Back (909) 999999 dave@xyz.edu
Daniel Knee (808) 888888 dan@xyz.edu
Gabe Smart (707) 777777 gabe@xyz.edu
$

cut Options

Let’s suppose you have a file called phones that contains names, phone numbers, and
E-mail addresses, similar to the file shown in Figure 8.11. Table 8.12 summarizes the
cut command options. The following command sequences show the usage of cut and
some of its options.

For the terminal sessions in this section, you need to create the phones file. Under
the Chapter8 directory, create a subdirectory called 8.6. This is only a suggestion and
you can create this file under any directory you wish. Now, use the vi or cat command
to create the phones file similar to the file shown in Figure 8.11.

AFZAMC08_0131194496.qxd 3/19/07 12:30 PM Page 244

-f Option Following the -f option, a list of the fields is specified. Fields are assumed to
be separated in the file by a delimiter character (the default is the tab character.) For
example, -f 1 indicates field one and -f 1,7 indicates fields one and seven.

Use the cut command with the -f option to display the first field from the phones file.

$ cut -f 1 phones [Return] . . . Show the first field in the phones file.
David Back
Daniel Knee
Gabe Smart
$_ And the prompt appears.

Remember, the default field delimiter is the tab character.

Use the cut command with the -f option to display the first and third fields from the
phones file.

$ cut -f 1,3 phones [Return] . . Show the first and third fields in the
phones file.

David Back dave@xyz.edu
Daniel Knee dan@xyz.edu
Gabe Smart gabe@xyz.edu
$_ Prompt.

-c Option Following the -c option, the character positions are specified. For example,
-c 1-10 indicates the first 10 characters of each line.

Display the first four characters of each line from the phones file.

$ cut -c 1-4 phones [Return] . . Show columns 1 to 4.
Davi
Dani
Gabe
$

Use the cut command with no filename:

$ date | cut -c 12-13 [Return]. . . . No filename is specified.
18
$_ Prompt.

The UNIX File System Continued 245

Option Operation

UNIX Linux Alternative

-f --fields Specifies the field position.

-c --characters Specifies the character position.

-d --delimiter Specifies the field separator (delimiter) character.

--help Displays the help page and exits.

--version Displays the version information and exits.

Table 8.12
The cut Command Options

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 245

1. The | is a pipe operator that is used to pass the date output as input to the cut com-
mand. The pipe operator is explained in Chapter 9.

2. The output of the date command (date string) is passed to the cut command. The
cut command displays the characters in positions 12 and 13 of the date string,
which happen to be the hour field.

-d Option The character following -d is the field delimiter. The default character is
tab. The space character or other characters with special meaning must be enclosed in
double quotation marks. The delimiter is the character that separates the fields in your
file.

Show one field using a space character as the field separator (delimiter):

$ cut -d " " -f 1 phones [Return] . . Show the first field in the
phones file.

David
Daniel
Gabe
$_ And the prompt appears.

If the field separator is a space character, make sure it is enclosed in quotation
marks.

Practicing Linux Alternative cut Options

Use the Linux alternative options for the cut command, as suggested in the following
command lines:

$ cut --characters 1-4 phones [Return] Same as cut -c 1-4 phones.
$ cut --delimiter " " --fields 1 phones [Return]. . Same as cut -d " " -f 1

phones .
$ cut --version [Return]. Display version information.
$ cut --help [Return] Display the help page.

Read the help page and familiarize yourself with other options available for the cut
command.

8.6.5 Joining Files: The paste Command

You can use the paste command to join files together line by line, or you can create
new files by pasting together fields from two or more files. Figure 8.12 shows the
output of the paste command if you have the two files called first and last in your
current directory.

paste Options

Table 8.13 lists the paste command options. For the terminal sessions in this section,
you need to create two files called first and last. Use the vi editor or the cat com-
mand to create these files, similar to the files in Figure 8.12. Remember, you only type
in the names in the files, not the command line and the prompt sign.

246 Chapter 8

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 246

-d Option The -d (delimiter) option specifies a specific delimiter character. The default
is the tab character.

Use the paste command, indicating the : (colon) as the field separator.

$ paste -d : first last [Return] . . Use : as the field separator.
David:Back
Daniel:Knee
Gabriel:Smart
$_. The prompt is back.

Use the paste command, indicating the space character as the field separator.

$ paste -d " " first last [Return] . Use the space character as the
field separator.

David Back
Daniel Knee
Gabriel Smart
$_. Prompt.

If the delimiter character is the space character, make sure to enclose it in quota-
tion marks.

The UNIX File System Continued 247

Figure 8.12
The paste Command

$ cat first
David
Daniel
Gabriel
$ cat last
Back
Knee
Smart
$ paste first last
David Back
Daniel Knee
Gabriel Smart
$_

Option Operation

UNIX Linux Alternative

-d --delimiters Specifies the field separator (delimiter) character.

--help Displays the help page and exits.

--version Displays the version information and exits.

Table 8.13
The paste Command Options

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 247

Practicing Linux Alternative paste Options

Use the Linux alternative options for the paste command, as suggested in the following
command lines:

$ paste --delimiters : first last [Return] Same as paste -d : first last.
$ paste --version [Return] Display version information.
$ paste --help [Return]. Display the help page.

8.6.6 Another Pager: The more Command

The more command is another pager provided for your convenience. Like pg, you can
use more to browse or page through a text file. It pauses after each page (screen), and
then it displays the word More and the percentage of the characters displayed so far at
the bottom of the screen.

More-(11%)

For screen continuity, more provides two lines of overlap between screens.

more Options

[Spacebar] Pressing the [Spacebar] moves the cursor ahead one screen.

[Return] Key Pressing the [Return] key scrolls ahead one line.

Q or q Key Pressing the [q] or [Q] key exits the more command.
Table 8.14 lists other options you can use when you issue the more command.
For the following terminal sessions, you need a large file to be able to practice all

the options available for the more command. An easy way to create a large file is to use
the man and redirection commands, instead of using vi to create a large file by typing
pages and pages of text. Following is the command line to create a large file:

$ man who > who [Return]. . Save who description in a file called who

248 Chapter 8

Table 8.14
The more Command Options

Option Operation

UNIX Linux Alternative

-lines -num lines Displays the indicated number of lines per screen.

+line-number Starts up at line-number.

+/pattern Starts two lines above the line containing the pattern.

-c -p Clears the screen before displaying each page instead
of scrolling. This is sometimes faster.

-d Displays the prompt [Hit space to continue,
Del to abort].

-- help Displays the help page and exits.

AFZAMC08_0131194496.qxd 3/20/07 11:10 AM Page 248

In this case, the description of the who command is redirected to a file called who.
The choice of the who command and the name of the file are both arbitrary, and you can
choose any command from man and redirect it to a file of any name you choose. But by
using the example command line, you now have a file called who that is few pages long.

The following examples show the use of the more command line options:

$ more -10 who [Return] Display the who file with 10 lines
per screen.

The previous command sets the number of lines per screen to 10 rather than the default
that is number of lines in the terminal screen less two lines, usually 22 lines.

$ more +100 who [Return] Start at line 100.

The previous command displays the who file one screenful at a time, starting at line
number 100.

$ more +/User who [Return]. . . Start with the word User.

The previous command displays the who file one screenful at a time, starting two lines
above the line containing the word User.

$ more –cd who [Return] Display who in clear mode and
. display prompt.

As with other commands, more than one option can be used on a command line. In the
previous example, the -c (clear screen) and -d (display prompt) options are used to dis-
play the who file.

While using the more command, the following keys can be used to further control
the paging process.

Assuming you have issued the following command line:

$ more +100 –cd2 who [Return]

your screen would be similar to the following screen:

The UNIX File System Continued 249

field is the name of the program executed by init
as found in /sbin/inittab. The state, line, and

--More--(42%)[Hit space to continue, Del to abort]

The prompt line is the result of using the -d option, and the screen size is two lines, as
was set by the -2 option.

❏ Press the = key to see the current line.

At this point, the number of current line (101) is displayed, and your screen will be
similar to the following:

field is the name of the program executed by init
as found in /sbin/inittab. The state, line, and

101

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 249

❏ Press h to obtain a list of the available options.

At this point, the help screen is displayed and your screen will be similar to the fol-
lowing screen. To save space, a partial list of the commands is shown.

250 Chapter 8

Star (*) indicates argument becomes new default.
— —
<space> Display next k lines of text [current screen size]
z Display next k lines of text [current screen size]*
<return> Display next k lines of text [1]*
d or ctrl-D Scroll k lines [current scroll size, initially 11]*
q or Q or <interrupt> Exit from more
~
~
— —
--More--(84%)[Hit space to continue, Del to abort]

At this point, you can press the [Spacebar] to display the next screen of text, or
press the [Return] key to display the next line of text. You use the [q] or [Q] key to exit
from more.

8.6.7 Linux Pager: The less Command

The less command is yet another pager that is provided under Linux. This command is
a program similar to more, but it allows backward movement in the file as well as for-
ward movement. Also, less starts up faster with large input files than text editors like vi
do. The less commands are based on both more and vi. The less command is much more
sophisticated pager than more. Please use the man command or the -? and --help
options to view the many available options for the less command.

$ less -? [Return] Display usage and list of options.
$ less --help [Return] . . . Display usage and list of options.
$ man less [Return] Display manual pages.

8.7 UNIX INTERNALS: THE FILE SYSTEM

How does the UNIX file system keep track of your files? How does it know the loca-
tion of your files on the disk? From your point of view, you create directories to orga-
nize your disk space, and directories and files have filenames to identify them. This
hierarchical structure of directories and files is a logical view of the file system.
Internally, however, UNIX organizes the disk and keeps track of files in a different
manner.

The UNIX file system associates every filename with a number called its i-node
number and identifies each file by its i-node number. UNIX keeps all these i-node
numbers in a list, appropriately called an i-node list. The list is saved on the UNIX
disk.

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 250

8.7.1 UNIX Disk Structure

Under UNIX, a disk is a standard block device, and a UNIX disk is divided into four
blocks (regions):

• Boot block

• Super block

• i-node list block

• Files and directories block

The Boot Block The boot block holds the boot program, a special program that is acti-
vated at the system boot time.

The Super Block The super block contains information about the disk itself. This infor-
mation includes the following:

• Total number of disk blocks

• Number of free blocks

• Block size in bytes

• Number of used blocks

The i-list Block The i-list block keeps the list of i-nodes. Each entry in this list is an i-node,
a 64-byte storage area. The i-node of a regular file or a directory file contains the location of
its disk block(s). The i-node of a special file contains the information that identifies the
peripheral device. An i-node also contains other information, including the following:

• File access permission (read, write, and execute)

• Owner and group IDs

• File link count

• Time of the last file modification

• Time of the last file access

• Location of blocks for each regular file and directory file

• Device identification number for special files

The i-nodes are numbered sequentially.

i-nodes and Directories

i-node 2 contains the location of the block(s) that contains the root directory (/). A
UNIX directory contains the list of filenames and their associated i-node numbers.
When you create a directory, it automatically creates two entries, one for the .. (dot dot)
or parent directory and one for the . (dot) or child directory.

Filenames are stored in directories and not in the i-nodes.

8.7.2 Putting It Together

When you log in, UNIX reads the root directory (i-node 2) to find your HOME
directory and saves your HOME directory i-node number. When you change your

The UNIX File System Continued 251

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 251

directory using cd, UNIX replaces this i-node number with the new directory’s
i-node number.

When you access a file using utilities or commands (such as vi or cat) or when a
program opens a file, UNIX reads and searches the directory for the specified filename.
There is an i-node associated with each filename that points to a specific i-node in the
i-node list. UNIX uses your working directory i-node number to begin its search, or if you
give a full pathname, it starts from the root directory, which always has the i-node 2.

Suppose your current directory is david, and you have a subdirectory called
memos, and a file called report in memos, and you want to access report. UNIX starts
searching from your current directory, david (with a known i-node number), and finds
the filename memos and its i-node number. Next, it reads the memos i-node record from
the i-node list. The memos i-node indicates the block that contains the memos directory.

Looking into the block that contains the filenames under memos, UNIX finds the
report filename and its i-node number. UNIX repeats the preceding process, and reads
the i-node record from the i-node list. Information in this record includes the location of
the blocks on the disk that make the report file. (See Figure 8.13.)

252 Chapter 8

Figure 8.13
The Directory Structure and i-node List

david

root i-node

david i-node

memos i-node

report i-node

root directory
block

david directory
block

memos directory
block

report file
block

memos

report

i-node #7

i-node #8

i-node #9

directory structure i-node list disk space

1

2

7

8

9

....

....

....

....

How do you determine what a file’s i-node number is? You use the ls command
with the -i option. For example, suppose your working directory is david and you have
a subdirectory memos and a file called report in it.

List the filenames and their associated i-node numbers in your current directory.

$ ls -i
4311 memos
7446 report
$_

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 252

Make a copy of report, calling it report.old, and then show the i-node numbers.

The UNIX File System Continued 253

$ cp report report.old
$ ls -i
4311 memos
7446 report
7431 report.old
$_

$ mv report.old memos
$ ls -i
4311 memos
7446 report
$ ls -i memos
7431 report.old
$_

$ mv memos/report.old memos/report.sav
$ ls -i
4311 memos
7446 report
$ ls -i memos
7431 report.sav
$_

$ ln report memos/rpt
$ ls -i
4311 memos
7446 report
$ ls -i memos
7431 report.sav
7446 rpt
$_

The new i-node number for report.old indicates that a new file has been created and
a new i-node number is associated with it.

Move the report.old file to the memos directory, and then show the i-node numbers.

report.old is moved to the memos directory; its i-node number remains the same, but
now it is associated with the memos directory.

Change the name of report.old in memos to report.sav.

The i-node number for report.sav remains the same as before; only the name
associated with the i-node number is changed.

To link report to a new filename rpt (create another filename for report) and check the
i-node changes after the two files are linked, do the following:

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 253

The i-node number for rpt, the new filename, is the same as report. Both the
report i-node and the rpt i-node point to the same blocks that make up the report file.

COMMAND SUMMARY

The following commands and options have been discussed in this chapter.

254 Chapter 8

cut
This command is used to “cut out” specific columns or fields from a file.

Option Operation

UNIX Linux Alternative

-f --fields Specifies the field position.

-c --characters Specifies the character position.

-d --delimiter Specifies the field separator (delimiter) character.

--help Displays the help page and exits.

--version Displays the version information and exits.

cp
This command copies file(s) within the current directory or from one directory to another.

Option Operation

UNIX Linux Alternative

-b --backup Makes a backup of the specified file if file
already exists.

-i --interactive Asks for confirmation if the target file already exists.

-r --recursive Copies directories to a new directory.

--verbose Explain what is being done.

--help Displays the help page and exits.

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 254

The UNIX File System Continued 255

ln
Creates links between an existing file and another filename or directory. It lets you have
more than one name for a file.

head
This command displays the first part of a specified file. This is a quick way to check the
contents of a file. The number of lines to be displayed is an option, and more than one file
can be specifed on the command line.

Option Operation

UNIX Linux Alternative

-l --lines Counts by lines. This is the default option.

-c --chars=num Counts by characters.

--help Displays the help page and exits.

--version Displays the version information and exits.

find
This command locates files that match a given criterion in a hierarchy of directories. With
the action options, you can instruct UNIX about what to do with the files once they are
found.

Search Option Description

-name filename Finds files with the given filename.

size +n Finds files with the size n.

-type file type Finds files with the specified access mode.

-atime +n Finds files that were accessed n days ago.

-mtime +n Finds files that were modified n days ago.

-newer filename Finds files that were modified more recently than filename.

Action Option Description

-print Prints the pathname for each file found.

-exec command\; Lets you give commands to be applied to the files.

-ok command\; Asks for confirmation before applying the command.

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 255

256 Chapter 8

more
This command displays files one screen at a time. This is useful for reading large files.

Option Operation

UNIX Linux Alternative

-lines -num lines Displays the indicated number of lines per screen.

+line-number Starts up at line-number.

+/pattern Starts two lines above the line containing the pattern.

-c -p Clears the screen before displaying each page instead
of scrolling. This is sometimes faster.

-d Displays the prompt [Hit space to continue,
Del to abort].

--help Displays the help page and exits.

mv
This command renames files or moves files from one location to another.

Option Operation

UNIX Linux Alternative

-b --backup Makes a backup of the specified file if file
already exists.

-i --interactive Asks for confirmation if the target file already exists.

-f --force Removes target file if file already exists and does
not ask for confirmation.

-v --verbose Explains what is being done.

--help Displays the help page and exits.

--version Displays the version information and exits.

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 256

The UNIX File System Continued 257

paste
This command is used to join files together line by line, or to create new files by pasting
together fields from two or more files.

Option Operation

UNIX Linux Alternative

-d --delimiters Specifies the field separator (delimiter) character.

--help Displays the help page and exits.

--version Displays the version information and exits.

pg
This comand displays files one screen at a time. You can enter the options or
other commands when pg shows the prompt sign.

Option Operation

-n Does not require [Return] to complete the single-letter commands.

-s Displays messages and prompts in reverse video.

-num Sets the number of lines per screen to the integer num. The default
value is 23 lines.

-pstr Changes the prompt : (colon) to the string specified as str.

+line-num Starts displaying the file from the line specified in line–num.

+lpattern Starts viewing at the line containing the first occurrence of the specified
pattern.

The pg Command Key Operators
These keys are used when pg displays the prompt sign.

Key Operation

+n Advances n screens, where n is an integer number.

-n Backs up n screens, where n is an integer number.

+nl Advances n lines, where n is an integer number.

-nl Backs up n lines, where n is an integer number.

n Goes to screen n, where n is an integer number.

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 257

258 Chapter 8

wc
This command counts number of characters, words, or lines in the specified file.

Option Operation

UNIX Linux Alternative

-l --lines Reports the number of lines.

-w --words Reports the number of words.

-c --chars Reports the number of characters.

--help Displays the help page and exits.

--version Displays version information and exits.

pr
This command provides formatted files before printing or viewing it on the screen.

Option Operation

UNIX Linux Alternative

+page --pages=page Starts displaying from the specified page. The
default is page 1.

-columns --columns=columns Displays output in the specified number of
columns. The default is one column.

-a --across Displays output in columns across (rather than
down) the page, one line per column.

-d --double-space Displays output double-spaced.

-hstring --header=string Replaces the filename in the header with the
specified string.

-lnumber --length=number Sets the page length to the specified number of
lines. The default is 66 lines.

-m --merge Displays all the specified files in multiple
columns.

-p Pauses at the end of each page and sounds the bell.

-character --separator=character Separates columns with a single specified
character. If character is not specified, then
[Tab] is used.

-t --omit-header Suppresses the five-line header and five-line
trailer.

-w number --width=number Sets line width to the specified number of
characters. The default is 72.

--help Displays help page and exits.

--version Displays version information and exits.

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 258

REVIEW EXERCISES

1. What are the symbols used for the redirection operators?

2. Explain input and output redirection.

3. What are the commands used to read a file?

4. What is the difference between moving (mv) a file and copying (cp) a file?

5. What is the command to rename a file?

6. Is it possible to have more than one name for a file?

7. What are the four regions (blocks) of a UNIX disk? Explain each part.

8. What is an i-node number, and how is it used to locate a file?

9. What is the i-node list, and what is the major information stored in each node?

10. Which one of the following commands changes or creates an i-node number?

a. mv file1 file2

b. cp file1 file2

c. ln file1 file2

11. What is the command to locate a file and remove it once it is found?

12. What is the command to look at the last 10 lines of a file?

13. What is the command to select specified fields from a file?

14. What is the command to put files together line by line?

15. What is the command to read a file one screen at a time?

16. What is the command line to list all the filenames that start with start?

17. What is the command line to list all the filenames that end with end?

18. What is the command line to delete all the files that have mid in their filename?

19. What is the command line to copy all the files that have filenames that start with the
letter A or a from your current directory a directory to called Keep?

The UNIX File System Continued 259

tail
This command displays the last part (tail end) of a specified file. This is a quick way to check
the contents of a file. The options give the flexibility to specify a desired part of the file.

Option Operation

UNIX Linux Alternative

-l --lines Counts by lines. This is the default option.

-c --chars=num Counts by characters.

--help Displays the help page and exits.

--version Displays the version information and exits.

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 259

1. wc xxx yyy

2. cp xxx yyy

3. ln xxx yyy

4. mv xxx yyy

5. rm *

6. ls *[1-6]

7. cp file?? source

8. pr -2 myfile

9. ls -i

10. pg myfile

11. cat myfile

12. cat myfile > yyy

13. cat ?file >> yyy

14. find . -name “file*”
-print

15. find . -name xyz -size
20 -print

16. cut -f2 xyz > xxx

17. more zzz

a. Copy xxx to yyy.

b. Rename xxx to yyy.

c. Copy all filenames that begin with file and have
exactly two characters (any characters) after it.

d. Delete all files in the current directory.

e. Create another filename for xxx ; call it yyy.

f. Display the contents of myfile.

g. Copy myfile to yyy.

h. Add all files that have exactly one character
before the word file into one file called yyy.

i. Format myfile in two columns.

j. List all files having filenames ending with digits
1 to 6.

k. List the current directory filenames and their
i-node numbers.

l. Create a file called yyy that contains the count of
characters in file xxx.

m. View myfile one screen at a time.

n. Save the second field from the xyz file in a file
called xxx.

o. Read zzz one screenful at a time.

p. Find all files that are called xyz and are exactly
20 blocks large.

q. Find all files whose name starts with file.

260 Chapter 8

20. What is the command line to copy all the files that have filenames that start with the
letters A or a and end with the letters Z or z from your current directory to a direc-
tory called Keep?

Match the commands shown in the left column with the explanations shown in the right.

Terminal Session
In this terminal session, you practice the commands discussed in this chapter by
creating directories and then manipulating files in the directories.

1. Create a directory called memos in your HOME directory.

2. Using the vi editor, create a file called myfile in your HOME directory.

3. Using the cat command, append myfile a few times to create a large file (say, 10
pages). Call this file large.

4. Using the pg command and its options, view large on the screen.

5. Using the pr command and its options, format large and print it.

6. Use cp command to copy all files in your HOME directory to the memos directory.

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 260

7. Use the ln command to create another name for large.

8. Using the mv command, change the name of large to large.old.

9. Using the mv command, move large.old to memos.

10. Use the ls command and the -i and -l options to observe the changes in the i-node
numbers and the number of links when you do the following commands:

a. Change to the memos directory.

b. Create another name for myfirst; call it MF.

c. Copy myfirst to myfirst.old.

d. List all files whose filenames start with my.

e. List all files that have the extension old.

f. Modify myfile. Look at the MF file; myfile modifications are also in the MF file.

g. Change to your HOME directory.

h. Delete all files in the memos directory that have the word file as part of their file
names.

i. Delete the memos directory with all of the files remaining in it.

j. List your HOME directory.

k. Remove all the files you created in this session.

11. Show the last five lines of a file.

12. Display the first five lines of a file.

13. Save the last 30 characters of a file in another file.

14. Save the list of all the files that are seven days old, starting from your HOME directory.

15. Find a file called passwd.

16. Find a file called profile.

17. Find all files that are exactly seven days old, starting from your HOME directory.

18. Find all files that are less than seven days old, starting from your HOME directory.

19. Find all the files that are more than 10 days old and copy them to another directory.

20. Create two files similar to those in Figures 8.11 and 8.12.

a. Use the cut command to cut out specific fields and columns.

b. Use the paste command to put the two files together.

21. Use the more command to read a large file.

22. Create two files called numbers and characters and type in lines of numbers
and characters similar to the following:

numbers characters
111111111111 AAAAAAAAAA
222222222222 BBBBBBBBBBB
333333333333 CCCCCCCCCCC

. .

. .

. .
101010101010 KKKKKKKKKKK
11 11 11 11 11 LLLLLLLLLLLLL

The UNIX File System Continued 261

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 261

Make many lines of numbers so you can practice the head and tail commands and
options.

a. Show the first two lines of the numbers file.

b. Show the first two lines of numbers and characters files.

c. Show the last 10 lines of the numbers file.

d. Show the last two lines of the numbers and characters files.

23. Use the numbers and characters files to execute the following command lines:

a. Use the paste command to put together numbers and characters.

b. Use the paste command to show numbers and characters together and use
the @ character as the field separator.

c. Use the paste command to show numbers and characters together using the @
character as the field separator. Save it in a file called numbersANDcharacters.

d. Use the cut command to show first five character of each line in numbers.

e. Show how many lines are in the numbersANDcharacters file.

f. Show how many lines, words, and characters are in the numbers, characters,
and numbersANDcharacters files.

262 Chapter 8

AFZAMC08_0131194496.qxd 3/15/07 6:30 PM Page 262

