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Preface

Since the first edition of this book in 1992 we have witnessed a flood of books-
texts, monographs, and edited volumes describing different aspects of block trans-
forms, multirate filter banks, arid wavelets. Some of these have been mathe-
matically precise, designed for the rigorous theoretician, while others sought to
interpret work in this arena for engineers and students.

The field is now mature, yet active. The theory is much better understood
in the signal processing community, and applications of the multiresolution con-
cept to situations in digital multimedia, communications, and others abound. In
the first edition and in the early days of multirate filter banks a prime empha-
sis was on signal compaction and coding. Today, multiresolution decomposition
and time-frequency concepts have opened up new vistas for further development
and application. These ideas concerning orthogonal signal analysis and synthesis
have led to applications in digital audio broadcasting, digital data hiding and wa-
termarking, wireless and wireline communications, audio and video coding, and
many others.

In this edition, we continue to treat block transforms, subband filter banks,
and wravelets from a common unifying standpoint. We demonstrate the com-
monality among these signal analysis and synthesis techniques by showing how
the block transform evolves gracefully into the more general multirate subband
filter bank, arid then by establishing the multiresolution decomposition features
common to both the dyadic subband tree structure and the orthonormal wave-
let transform. In order to achieve this unification, we have focused mainly on
orthonormal decompositions and presented a unified and integrate*! treatment of
multiresolution signal decomposition techniques using the property of orthonor-
rnality as the unifying theme.(A few exceptions, such as the oversampled Laplacian
pyramid and biorthogonal filter banks are also presented because they provide an
historical perspective and serve as foils to the critically sampled, orthonormal
subband structures we emphasize.)

xin
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Our second focus in the first edition was the application of decomposition
techniques to signal compression and coding. Accordingly, we describe objcctiw
performance criteria that measure this attribute and then compare the different
techniques on this basis. We acknowledge that subjective evaluations of decompo-
sition are important in applications such as image and video processing and coding,
machine vision, and pattern recognition. Such aspects are treated adequately in
the literature cited and are deemed beyond the scope of this book. A new fo-
cus in this edition is the time-frequency properties of signals and decomposition
techniques. Accordingly, this text provides tables listing the coefficients of pop-
ular block transforms, subband and wavelet filters, and also their time-frequency
features and compaction performance for both theoretical signal models and stan-
dard test images. In this respect, we have tried to make the book a reference text
as well as a didactic monograph.

Our approach is to build from the fundamentals, taking simple representative-
cases first and then extending these to the next level of generalization. For exam-
ple, we start with block transforms, extend these to lapped orthogonal transforms,
arid then show both to be special cases of subband filter structures. We have
avoided the theorem-proof approach, preferring to give explanation and deriva-
tions emphasizing clarity of concept rather than strict rigor.

Chapter 2 on orthogonal transforms introduces block transforms from a least-
squares expansion in orthogonal functions. Signal models and decorrelation and
compaction performance measures are then used to evaluate and compare several
proposed block and lapped transforms. The biorthogonal signal decomposition is
mentioned.

Chapter 3 presents the theory of perfect reconstruction, orthonormal two-band
and M-band filter banks with emphasis on the finite impulse response variety. A
key contribution here is the time-domain representation of an arbitrary multirate
filter bank, from which a variety of special cases emerge—paraunitary, biorthog-
onal, lattice, LOT, and modulated filter banks. The two-channel, dyadic tree
structure then provides a multiresolution link with both the historical Laplacian
pyramid and the orthonormal wavelets of Chapter 6. A new feature is the rep-
resentation of the transmultiplexer as the synthesis/analysis dual of the analy-
sis/synthesis multirate filter bank configuration.

Chapter 4 deals with specific filter banks and evaluates their objective per-
formance. This chapter relates the theory of signal decomposition techniques
presented in the text with the applications. It provides a unified performance
evaluation of block transforms, subband decomposition, and wavelet filters from
a signal processing and coding point of view. The topic of optimal filter banks
presented in this chapter deals with solutions based on practical considerations
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in image coding. The chapter closes with the modeling and optimum design of
quantized filter banks.

Chapter 5 on time-frequency (T-F) focuses on joint time-frequency properties
of signals and the localization features of decomposition tools. There is a discussion
of techniques for synthesizing signals and block transforms with desirable T-F
properties and describes applications to compaction and interference excision in
spread spectrum communications.

Chapter 6 presents the basic theory of the orthonormal and biorthogonal wave-
let transforms and demonstrates their connection to the orthonormal dyadic sub-
band tree of Chapter 3. Again, our interest is in the linkage to the multiresolution
subbaiid tree structure, rather than with specific applications of wavelet trans-
forms.

Chapter 7 is a review of recent applications of these techniques to image coding,
and to communications applications such as discrete rnultitone (DMT) modula-
tion, and orthogonal spread spectrum user codes. This chapter links the riches
of linear orthogonal transform theory to the popular and emerging transform ap-
plications. It is expected that this linkage might spark ideas for new applications
that, benefit from these signal processing tools in the future.

This book is intended for graduate students and R&D practitioners who have
a working knowledge of linear system theory and Fourier analysis, some linear
algebra, random signals arid processes, and an introductory course in digital signal
processing. A set of problems is included for instructional purposes.

For classroom presentation, an instructor may present the material in the text
in three packets:

(1) Chapters 2 and 5 on block transforms and time-frequency methods
(2) Chapters 3 arid 4 on theory and design of rnultirate filter banks
(3) Chapters 6 and 7 on wavelets and transform applications

As expected, a book of this kind would be impossible without the cooperation
of colleagues in the field. The paper preprints, reports, and private communica-
tions they provided helped to improve significantly the quality and timeliness of
the book. We acknowledge the generous help of N. Sezgin and A. Bircari for some
figures. Dr. T. Russell Hsing of Bellcore was instrumental in introducing us to
Academic Press. It has been a pleasure to work with Dr. Zvi Ruder during this
project. Dr. Eric Viscito was very kind to review Chapter 3. The comments and
suggestions of our former and current graduate students helped to improve the
quality of this book. In particular, we enjoyed the stimulating discussions and in-
teractions with H. Caglar, A. Benyassine, M. Tazebay, X. Lin, N. Uzun. K. Park.
K. Kwak, and J,C. Horng. We thank them all. Lastly, we appreciate and thank
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our families for their understanding, support, and extraordinary patience during
the preparation of this book.

AM N. Akansu
Richard A. Haddad
April 2000



Chapter 1

Introduction

1.1 Introduction

In the first edition of this book, published in 1992, we stated our goals as three-
fold:
(1) To present orthonormal signal decomposition techniques—transforms, sub-
bands, and wavelets—from a unified framework and point of view.
(2) To develop the interrelationships among decomposition methods in both time
and frequency domains and to define common features.
(3) To evaluate and critique proposed decomposition strategies from a compres-
sion coding standpoint using measures appropriate to image processing.
The emphasis then was signal coding in an analysis/synthesis structure or codec.
As the field matured and new insights were gained, we expanded our vistas to
communications systems and other applications where objectives other than com-
pression are vital — as for example, interference excision in CDMA spread spec-
trum systems. We can also represent certain communications systems such as
TDMA, FDMA, and CDMA as synthesis/analysis structures, i.e., the conceptual
dual of the compression codec. This duality enables one to view all these systems
from one unified framework.

The Fourier transform and its extensions have historically been the prime vehi-
cle for signal analysis and representation. Since the early 1970s, block transforms
with real basis functions, particularly the discrete cosine transform (DCT), have
been studied extensively for transform coding applications. The availability of
simple fast transform algorithms and good signal coding performance made the
DCT the standard signal decomposition technique, particularly for image and
video. The international standard image-video coding algorithms, i.e., CCITT
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H.261, JPEG, and MPEG, all employ DCT-based transform coding.
Since the recent research activities in signal decomposition are basically driven

by visual signal processing and coding applications, the properties of the human
visual system (HVS) are examined and incorporated in the signal decomposition
step. It has been reported that the HVS inherently performs multiresolution sig-
nal processing. This finding triggered significant interest in multiresolution signal
decomposition and its mathematical foundations in mult irate signal processing
theory. The multiresolution signal analysis concept also fits a wide spectrum
of visual signal processing and visual communications applications. Lower, i.e..
coarser, resolution versions of an image frame or video sequence are often suffi-
cient in many instances. Progressive improvement of the signal quality in visual
applications, from coarse to finer resolution, has many uses in compute1!' vision,
visual communications, and related fields.

The recognition that multiresolution signal decomposition is a by-product of
rnultirate subband filter banks generated significant interest in the design of better-
performing filter banks for visual signal processing applications.

The wavelet transform with a capability for variable time-frequency resolution
has been promoted as an elegant multiresolution signal processing tool. It was
shown that this decomposition technique is strongly linked to subband decompo-
sition. This linkage stimulated additional interest in subband filter banks, since
they serve as the only vehicle for fast orthonormal wavelet transform algorithms
and wavelet transform basis design.

1.2 Why Signal Decomposition?

The uneven distribution of signal energy in the frequency domain has made signal
decomposition an important practical problem. Rate-distortion theory shows that
the uneven spectral nature of real-world signals can provide the basis for source
compression techniques. The basic concept here is to divide the signal spectrum
into its subspectra or subbands, and then to treat those subspectra individually
for the purpose at hand. From a signal coding standpoint, it can be appreciated
that subspectra with more energy content deserve higher priority or weight for
further processing. For example, a slowly varying signal will have predominantly
low-frequency components. Therefore, the low-pass subbands contain most of its
total energy. If one discards the high-pass analysis subbands and reconstructs the
signal, it is expected that very little or negligible reconstruction error occurs after
this analysis-synthesis operation.
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The decomposition of the signal spectrum into subbands provides the mathe-
matical basis for two important and desirable features in signal analysis and pro-
cessing. First, the monitoring of signal energy components within the subbands
or subspectra is possible. The subband signals can then be ranked and processed
independently. A common use of this feature is in the spectral shaping of quanti-
zation noise in signal coding applications. By bit allocation we can allow different
levels of quantization error in different subbands. Second, the subband decomposi-
tion of the signal spectrum leads naturally to multiresolution signal decomposition
via multirate signal processing in accordance with the Nyquist sampling theorem.

Apart from coding/compression considerations, signal decomposition into sub-
bands permits us to investigate the subbands for contraband signals, such as band-
limited or single tone interference. We have also learned to think more globally to
the point of signal decomposition in a composite time-frequency domain, rather
than in frequency subbands as such. This expansive way of thinking leads natu-
rally to the concept of wavelet packets (subband trees), and to the block transform
packets introduced in this text.

1.3 Decompositions: Transforms, Subbands,
and Wavelets

The signal decomposition (and reconstruction) techniques developed in this book
have three salient characteristics:
(1) Orthonorrnality. As we shall see, the block transforms will be square unitary
matrices, i.e.. the rows of the transformation matrix will be orthogonal to each
other; the subband filter banks will be paraunitary, a special kind of orthonormal-
ity, and the wavelets will be orthonormal.
(2) Perfect reconstruction (PR). This means that, in the absence of encoding,
quantization, and transmission errors, the reconstructed signal can be reassem-
bled perfectly at the receiver.
(3) Critical sampling. This implies that the signal is subsampled at a minimum
possible rate consistent with the applicable Nyquist theorem. From a practical
standpoint, this means that if the original signal has a data rate of fs samples or
pixels per second, the sum of the transmission rates out of all the subbands is also
/.-

The aforementioned are the prime ingredients of the decomposition techniques.
However, we also briefly present a few other decomposition methods for contrast
or historical perspective. The oversampled Laplacian pyramid, biorthogonal filter
banks, and non-PR filter banks are examples of these, which we introduce for
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(b)

Figure 1.1: (a) Analysis-synthesis structure; (b) synthesis/analysis system.

As shown iri Fig. 1.1 (a), the input signal x is decomposed in the analysis
section, encoded, and transmitted. At the receiver or synthesis section, it is re-
constructed as x. In a perfect reconstruction system x = x within an allowable
delay. In a critically sampled system, the sum of the data rates of the decomposed
signal components equals that of the input signal.

In Fig. l.l(b), the dual operation is shown. Typically, the synthesis section
could be a TDMA or FDMA multiplexer wherein several signals are separated
in time (TDMA), frequency (FDMA), or in time-frequency (CDMA), and com-
bined into one signal for transmission. The received signal is then separated into
components in the analysis section.

1.3.1 Block Transforms and Filter Banks

In block transform notation, the analysis or decomposition operation suggested
in Fig. 1.1 is done with a blockwise treatment of the signal. The input signal
is first segmented into nonoverlapping blocks of samples. These signal blocks or
vectors are transformed into spectral coefficient vectors by the orthogonal matrix.
The spectral unevenness of the signal is manifested by unequal coefficient energies
by this technique and only transform coefficients with significant energies need
be considered for further processing. Block transforms, particularly the discrete
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cosine transforms, have been used in image-video coding. Chapter 2 introduces
and discusses block transforms in detail and provides objective performance evalu-
ations of known block transforms. The Karhunen-Loeve transform, or KLT, is the
unique input-signal dependent optimal block transform. We derive its properties
and use it as a standard against which all other fixed transforms can be compared.

In block transforms, the duration or length of the basis functions is equal to the
size of the data block. This implies that the transform and inverse transform ma-
trices are square. This structure has the least possible freedom in tuning its basis
functions. It can meet only an orthonormality requirement and, for the optimal
KLT, generate uncorrelated spectral coefficients. Limited joint time-frequency
localization of basis functions is possible using the concept of block transform
packets (Chapter 5).

More freedom for tuning the basis functions is possible if we extend the du-
ration of these functions. Now this rectangular transform or decomposition has
overlapping basis functions. This overlapping eliminates the "blockiness" problem
inherent in block transforms. Doubling the length of the basis sequences gives the
lapped orthogonal transform, or LOT, as discussed in Section 2.5.

In general, if we allow arbitrary durations for the basis sequence filters, the
finite impulse response (FIR) filter bank or subband concept is reached. Therefore,
block transforms arid LOTs can be regarded as special filter banks. The rnultirate
signal processing theory and its use in perfect reconstruction analysis-synthesis
filter banks are discussed in depth in Chapter 3. This provides the common frame
through which block transforms, LOTs, and filter banks can be viewed.

Figure 1.2 shows a hierarchical conceptual framework for viewing these ideas.
At the lowest level, the block transform is a bank of M filters whose impulse
responses are of length L = M. At the next level, the LOT is a bank of M filters,
each with impulse responses (or basis sequences) of length L = 2M. At, the top of
the structure is the M-band multirate filter bank with impulse responses of any
length L > M. On top of that is the M-band rnultirate filter bank with impulse
responses of arbitrary length L > M. This subband structure is illustrated in
Fig. 1.3(a), where the signal is decomposed into M equal bands by the filter bank.

The filter bank often used here has frequency responses covering the Af-bands
from 0 to /s/2. When these frequency responses are translated versions of a low-
frequency prototype, the bank is called a modulated filter bank.

The Nyquist theorem in a multiband system can now be invoked to subsample
each band. The system is critically subsampled (or maximally decimated) when
the decimation factor D or subsampling parameter equals the number of subbands
M. When D < M, the system is oversampled.
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Figure 1.2: An overview of M-band signal decomposition.

Figure 1.3: Multirate filter bank with equal bandwidths: (a) M-band; (b) four-
band, realized by a two-level binary (regular) tree.
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Another way of realizing the decomposition into M equal subbands is shown by
the hierarchical two-band subband tree shown in Fig. 1.3(b). Each level of the tree
splits the preceding subband into two equal parts, permitting a decomposition into
M — 2fc equal subbands. In this case the M-band structure is said to be realized
by a dilation of the impulse responses of the basic two-band structure at each level
of the tree, since splitting each subband in two dilates the impulse response by
this factor.

1.3.2 Multiresolution Structures

Yet another possible decomposition is shown in Fig. 1.4, which represents a ''dyadic
tree" decomposition. The signal is first split into low- and high-frequency com-
ponents in the first level. This first low-frequency subband, containing most of
the energy, is subsarnpled and again decomposed into low- and high-frequency
subbands. This process can be continued into K levels. The coarsest signal is
the one labeled LLL in the figure. Moving from right to left in this diagram, we
see a progression from coarser to finer signal representation as the high-frequency
"detail" is added at each level. The signal can thus be approximately represented
by different resolutions at each level of the tree.

Figure 1.4: Multiresolution dyadic tree: L and H represent low-pass and high-pass
filters, respectively.

An oversampled version of this tree, called the Laplacian pyramid, was first in-
troduced for image coding by Burt and Adelson (1983). These topics are explained
in detail and the reference is given in Chapter 3.

Wavelet transforms recently have been proposed as a new multiresolution de-
composition tool for continuous-time signals. The kernel of the wavelet transform
is obtained by dilation and translation of a prototype bandpass function. The
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discrete wavelet transform (DWT) employs discretized dilation and translation
parameters. Simply stated, the wavelet transform permits a decomposition of a
signal into the sum of a lower resolution (or coarser) signal plus a detail, much
like the dyadic subband tree in the discrete-time case. Each coarse approximation
in turn can be decomposed further into yet a coarser signal and a detail signal at
that resolution. Eventually, the signal can be represented by a low-pass or coarse
signal at a certain scale (corresponding to the level of the tree), plus a sum of
detail signals at different resolutions. In fact, the subband dyadic tree structure
conceptualizes the wavelet multiresolution decomposition of a signal. We show in
Chapter 6 that the base or prototype function of the orthonormal wavelet trans-
form is simply related to the two-band unitary perfect reconstruction quadrature
mirror filters (PR-QMF), and that the fast wavelet transform algorithm can also
be strongly linked to the dyadic tree filter bank. Hence, from our perspective, we
view wavelets and dyadic subband trees as multiresolution decomposition tech-
niques of the continuous-time and discrete-time signals, respectively, as suggested
in Fig. 1.2.

1.3.3 The Synthesis/Analysis Structure

figure 1.5 shows the dual synthesis/analysis system. As mentioned earlier and ex-
plained in Chapter 3, this structure could represent any one of several multiplexing
systems depending on the choice of the synthesis and analysis filters. Interesting
enough, the conditions for alias cancellation in Fig. 1.3 and for zero cross-talk in
Fig. 1.5 are the same. Additionally, the conditions for "perfect reconstruction,"
x(n] = x(n — no) in Fig. l.l(a) and Xi(ri) = Xi(n — no) in Fig. l.l(b), are the same!

Figure 1.5: Transmultiplexer as a synthesis/analysis structure



1.4. PERFORMANCE EVAL UATION AND APPLICATIONS 9

1.3.4 The Rinomial-Hermite Sequences: A Unifying
Example

This book tries to provide a common framework for the interpretation arid evalu-
ation of all orthonormal signal decomposition tools: block transforms, subbands,
and wavelets. The Binomlal-Hermite sequences provide a family of functions with
applications that touch all these categories. This elegant family will be used as a
vehicle to illustrate and link together all these topics. At the simplest level they
provide a set of functions for orthogonal signal expansions. Suitably modified,
they generate block transform, called the modified Hermite transform (MHT).
Then we linearly combine members of the Binomial family to obtain the unique,
maximally fiat squared magnitude, two-band paraunitary QMF. These in turn
are recognized as the orthonormal wavelet filters devised by Daubechies. These
functions also play a major role as kernels in discrete time-frequency analysis.

1.4 Performance Evaluation and Applications

One of the objectives of this book is a comparative evaluation of several of the
more popular decomposition techniques. In Chapter 2, families of transforms
are described and their compaction properties are evaluated both from a block
transform and LOT realization. Chapter 4 presents the comparative evaluation
of known filter families and wavelet filters. It provides criteria by which all these
strategies can be compared.

Chapter 5 compares the time-frequency localization properties of block trans-
forms and wavelet filters.

In addition to comparative evaluations, in Chapter 4 we also introduce an
optimal design approach for filters wherein the design parameters are made part of
the performance criteria that can be optimized. These optimal solutions set upper
performance bounds for FIR subband decomposition in a manner conceptually
similar to the performance bound that the optimal transform, the KLT, sets for
all block transforms.

Chapter 7 describes a medley of applications of these techniques to the solu-
tions of problems in communications and multimedia.
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Chapter 2

Orthogonal Transforms

The purpose of transform coding is to decompose a batch of correlated signal sam-
ples into a set of uncorrelated spectral coefficients, with energy concentrated in as
few coefficients as possible. This compaction of energy permits a prioritization of
the spectral coefficients, with the more energetic ones receiving a greater allocation
of encoding bits. For the same distortion level, the total number of bits needed to
transmit encoded spectral coefficients is less than the number needed to transfer
the signal samples directly. This reduction in bit rate is termed compression.

In this chapter we introduce the subject of orthogonal transforms—from the
standpoint of function expansions in orthogonal series. For the most part, the
signals and basis functions have finite support—that is, are of finite duration—
as required for block transforms. For completeness of presentation, however, we
also include signals of semi-infinite extent. We group the block transforms consid-
ered here in three broad categories—sinusoidal, polynomial, and rectangular and
describe leading members in each category.

The decorrelation and energy compaction properties of these transforms con-
stitute the central issues in the applicability of these transforms for signal coding
purposes. Of equal importance is the computational complexity associated with
the respective transformations. In the sequel, we formulate criteria that permit
comparative evaluation of the performance of different transforms in signal coding
applications. These measures are also used on standard test images.

At low bit rates, transform-coded images often exhibit a "blockiness" at the
borders. The lapped orthogonal transform (LOT) was introduced to counteract
this effect. The spectral coefficients are calculated using data windows that over-
lap batch boundaries. The LOTs are described and evaluated using the criteria
developed for transform coding. The block transform and LOT are interpreted as
special cases of the multirate filter bank introduced in Chapter 3.

11
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The signals arid theory developed here for the most part represent functions
of one variable — i.e., one dimensional (ID) signals. The extension to the mul-
tidimensional ease is usually straightforward for separable transforms. In feet,
in some instances, the Kronecker product expansion of a two dimensional (2D)
transformation permits a factorization and grouping of terms that simply is not
possible in ID.

2.1 Signal Expansions in Orthogonal Functions

The orthogonal expansion of a continuous variable function is a subject extensively
addressed in the classical literature (Sansone, 1959). Our focus is the expansion
of sampled signals, i.e., sequences {/(&)}. Milne (1949) briefly treats this subject.
During the decade of the 1970s, the study of the subject gained in intensity as
several authors Campanella arid Robinson (1977); Ahmed and Rao (1975) devel-
oped expansions for discrete-variable functions to meet the needs of transform
coding. Orthogonal expansions provide the theoretical underpinnings for these
applications.

2.1.1 Signal Expansions

Our task here is the representation of a sequence (or discrete-time or discrete-
variable signal) {/(&)} as a weighted sum of component sequences. These possess
special properties that highlight certain features of the signal. The most familiar
is

where the component sequence 6(n — k] is the Kronecker delta sequence:

Here the weights are just the sample values themselves—not very interesting.
Instead we seek to represent {/(&)} as a superposition of component sequences
which can extract identifying features of the signal in a compact way. But in any
event, the component sequences should be members of an orthogonal family of
functions.

In what follows, we borrow some geometric concepts from the theory of linear
vector spaces. To fix ideas, consider a sequence {/(&)} defined on the interval
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0 < k < N — 1. We can think of {/(&)} as an N dimensional vector / and
represent it by the superposition1

The form of Eq. (2.3) is a finite-dimensional version of Eq. (2.1). The norm of
/ is denned as

The sequence {/(&)} is now represented as a point in the N dimensional Eu-
clidean space spanned by the basis vectors {e0 ,e l 5 . . . , e^v-i}- These basis vectors
are linearly independent, since the linear combination

can vanish only if CQ = c\ = • • • — C]v-i =0. Another way of expressing this is
that no one basis vector can be represented as a linear combination of the others.

We say that the two sequences {g(k}} and {/(&)} with the same support.
i.e., the interval outside of which the sequence is zero, are orthogonal if the inner
product vanishes, or

Clearly the finite dimensional Kronecker delta sequences are orthogonal, since

For notational convenience, we will use /„ and f ( n ) interchangeably.



14 CHAPTER 2. ORTHOGONAL TRANSFORMS

Moreover, the norm of each basis vector is unity,

Again, we note that the weights in the expansion of Eq. (2.3) are just the
sample values that, by themselves, convey little insight into the properties of
the signal. Suppose that a set of basis vectors can be found such that the data
vector / can be represented closely by just a few members of the set. In that
case, each basis vector identifies a particular feature of the data vector, and the
weights associated with the basis vectors characterize the features of the signal.
The simplest example of this is the Fourier trigonometric expansion wherein the
coefficient value at each harmonic frequency is a measure of the signal strength
at that frequency. We now turn to a consideration of a broad class of orthogonal
expansions with the expectation that each class can characterize certain features
of the signal.

Suppose we can find { x n ( k ) , 0 < n,k < N — 1}, a family of N linearly
independent sequences on the interval [0, Ar — 1]. This family is orthogonal if

where cn is the norm of {xn(&)}. (The asterisk denotes the complex conjugate.)
The orthonormal family is obtained by the normalization,

which in turn shows that

Any nontrivial set of functions satisfying Eq. (2.11) constitutes an orthonormal
basis for the linear vector space. Hence {/(&)} can be uniquely represented as

where
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The proof of Eq. (2.13) is established by multiplying both sides of Eq. (2,12)
by (f)s(k) and summing over the k index. Interchanging the order of summation
and invoking orthonormality shows that

The set of coefficients {$s, 0 < s < N — 1} constitute the spectral coefficients
of {/(&)} relative to the given orthonormal family of basis functions. Classically,
these are called generalized Fourier coefficients even when {(j)n(k)} are not sinu-
soidal.

The energy in a signal sequence is denned to be the square of the norm. The
Parseval theorem, which asserts that

N-l N-l

(2.14)

can be proved by multiplying both sides of Eq. (2.12) by their conjugates and
summing over k. This theorem asserts that the signal energy is preserved under
an orthonormal transformation and can be measured by the square of the norm
of either the signal samples or the spectral coefficients.

As we shall see, one of the prime objectives of transform coding is the redis-
tribution of energy into a few spectral coefficients.

On a finite interval, the norm is finite if all samples are bounded on that
interval. On the other hand, convergence of the norm for signals defined on [0, oo)
or (—00,00) requires much more stringent conditions, an obvious necessary one
being f(k)\ — > 0, as k — > ±00. Sequences with finite energy are said to be L2.

The Z-transform provides an alternative signal description, which is partic-
ularly useful in a filtering context. To this end, let $n(^) be the Z-transform
(one-sided or two-sided, as required by the region of support) of {(f)n(k)}. Now
the orthogonality relationship of Eq. (2.11) can be restated as the contour integral

n(*)*;(4)— ^ <*™-a, (2.15)

where the contour is taken on the unit circle of the .Z-plane. From the Cauchy
residue theorem, the sum of the residues in all the poles of the integrand within
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the unit circle must vanish for n ^ s. But on the unit circle, z = e3UJ. With this
substitution Eq. (2.15) becomes

The latter form permits us to generate families of orthogonal sequences by speci-
fying the behavior of <i>n(eja;). (See Problem 2.4.)

Figure 2.1: Orthonormal spectral analyzer as a multirate filter bank.

The form of Eq. (2.13) suggests that the spectral coefficients {On} for the
sequence {/(&)} can be measured by the spectral analyzer shown as Fig. 2.1. The
signal f(k) is fed into a bank of FIR filters whose impulse responses are time
reversed and translated basis sequences {4>*(N — 1 — k) = hr(k)}. The output of
the rth filter is the convolution

Sampling this output at n = N — I gives the coefficient Or — yr(N — 1). The
collection of sampled outputs at this time gives the spectral coefficient vector
0T — [#o, • • - , ̂ -i] f°r the first block of data f7 = [/o,..., /N-I]-

The circle with the downward-pointing arrow in this diagram indicates that the
output sequence of each filter is subsampled, i.e., every JVth sample is retained. If
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the input {/(&)} is a continuing stream of data, the subsampled outputs at times
N — 1. 2N — 1, ... represent successive spectral coefficient vectors corresponding to
successive blocks of data. In Chapter 3, we will interpret Fig. 2.1 as a multirate
filter bank that functions as the front end of a subband coder.

2.1.2 Least- Squares Interpretation

The set of coefficients {On} in Eq. (2.13) also provides the least-squares ap-
proximation to {/(&)}. Suppose we want to approximate {/(&)} by a super-
position of the first L of the N basis sequences, using weighting coefficients
{7,;, '/' — 0, 1, . . . , L — 1}. Then the best least-squares choice for these coefficients
is

The proof is as follows. Let the approximation be

and the error is then

The {'jr} are to be chosen to minimize the sum squared error

Expanding the latter and invoking orthonormality2 gives

Next, setting the partial of JL with respect to 7S to zero gives

with solution

2For convenience, we pretend that /(/c),7i, and 4>r(k) are real.
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When L = N, we note that JN — 0. Thus, the sum squared error in using
f(k] as an approximation to f(k) is minimized by selecting the weights to be the
orthonorrnal spectral coefficients.

This choice of coefBcients has the property of finality. This means that if we
wish to reduce the error by the addition of more terms in Eq. (2.18), we need not
recalculate the previously determined values of {7r}- Also, we can show

The resulting minimized error sequence is

* — \,s i — i_j

Thus, the error sequence {t(k}} lies in the space spanned by the remaining
basis functions

whereas the estimate {/(&)} lies hi Vi, the space spanned by {(j)s(k)J 0 < s <
L — 1). The term V% is the orthogonal complement of Vi with the property that
every vector in 1/2 is orthogonal to every vector in Vi. Furthermore, the space
V of all basis vectors is just the direct sum3 of Vi and V%. It is easy to see that
{f-(k}} is orthogonal to {/(&)}, i.e.,

In fact, it can be shown that the orthogonality of error and approximant is neces-
sary and sufficient to minimize the sum squared error. (Prob. 2.1)

A simple sketch depicting this relationship is shown in Fig. 2.2 for the case
JV — 3,L = 2. This sketch demonstrates that {/(&)}, the least squares approxi-
mation to {/(&)} is the orthogonal projection of {/(A:)} onto the two-dimensional
subspace spanned by basis sequences {0i(fc)|, (02 (A')}- For complex valued se-
quences {/*(&)} is used in Eq. (2.24).

Before closing this section, we note that all of these results and theorems are
valid for infinite dimensional spaces as well as finite dimensional ones, as long
as the norms of the sequences are bounded, i.e., are L2. We also note for later
reference two additional theorems to be used subsequently. First, the Cauchy-
Schwarz inequality asserts that

3In our representation V = R ,the set of all real N tuples. The direct sum is V — Vi © V% if
and only if Vi f~l V2 = <£, and V = Vi U V2.



2.1. SIGNAL EXPANSIONS IN ORTHOGONAL FUNCTIONS 19

The second relates inner products in the temporal (spatial) domain and the
spectral domain. With {ov}? {A-} the spectral coefficients corresponding to { x ( k } } .

, respectively, we have the extended Parseval theorem,

Proof of these is left as an exercise for the reader. (Prob. 2.2 and 2.3)

Figure 2.2(a): Orthogonality principle demonstration.

2.1.3 Block Transforms

The orthonormal expansions of the preceding section provide the foundations for
signal classification and identification, particularly for speech and images.

A vector-matrix reformulation provides a succinct format for block transform
manipulation and interpretation. The signal and spectral vectors are defined as
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Figure 2.2(b): Biorthogonal bases.

Let the real orthonormal sequences 4>r(k) be the rows of a transformation
matrix, </>(r, A"),

It is evident that

and

thus.

a property that identifies $ as an orthogonal matrix. Now let $r be a column
vector representing the basis sequence {^>r(/c)}; i.e.,
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We can write / as a weighted sum of these basis vectors,

Noting that the orthonormality condition is

we see that the coefficient Os is just the inner product

with the property

For complex valued signals and bases, the transformation becomes

This last equation, asserting that the inverse of $ is its conjugate transpose, defines
a unitary matrix.

The Parseval relation is given by the inner product

which again demonstrates that a unitary (or orthonormal) transformation is energy
preserving.

The transform coding application is shown in Fig. 2.3. The orthonormal spec-
trum of a batch of N signal samples is evaluated. These coefficients are then
quantized, encoded, and transmitted. The receiver performs inverse operations to
reconstruct the signal.

The purpose of the transformation is to convert the data vector / into a spectral
coefficient vector 0 that can be optimally quantized. Typically, the components of
/ are correlated, and each component has the same variance. For example, {/(n)}
is a sequence of zero mean, correlated random variables, each with the constant
variance er2. The orthogonal transformation tries to decorrelate the signal samples
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Figure 2.3: Transform coder decoder.

(i.e., to whiten the sequence {$/•})• Moreover, the variances of the individual
components of 6_ will generally differ, which simply states that the sequence {Or}
is nonstationary. We can exploit this fact by allocating quantization bits to each
coefficient in accordance with the power (or variance) in that spectral component.
Thus, some coefficients are quantized more finely than others.

Therefore, we recognize another purpose of the transformation—to repack the
signal energy implied by Eq. (2.37) into a relatively small number of spectral
coefficients {Or}. Hence the power or worth of an orthonormal transformation
from a signal coding standpoint depends on its signal decorrelation arid energy
repacking properties.

In the absence of channel noise, the mean square reconstruction error of the
transform coder equals the mean square quantization error. From Fig. 2.3. we
define

It can be shown that (Prob. 2.5)

Hence we can optimally code the data stream / by using an orthogonal trans-
formation followed by a quantizer whose characteristics depend on the probability
density function (pdf) of #. This can be optimized using the Lloyd-Max proce-
dure described in Section 2.2.2. Moreover, the number of encoding bits assigned
to each spectral coefficient is optimally allocated on the basis of the logarithm of
its variance.
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The codec (coder-decoder) can be optimized by a fixed transformation and
quantizer based on an a priori model of the signal. At the cost of greater com-
plexity, both transform and quantizer can be adapted, on line, to the statistics of
the observed data.

Zonal sampling is a term used to indicate an approximation wherein only a
subset of the N spectral coefficients is used to represent the signal vector. But
this is nothing but the least squares approximation addressed in the previous
subsection. The truncation error was found to be as in Eq. (2.23),

from which we conclude that

The best zonal sampler is therefore one that packs the maximum energy into
the first L coefficients. The Karhunen-Loeve transform (KLT), a signal-dependent
transform, has this property.

The discrete cosine transform is an example of a signal independent transform.
Based on an a priori signal model (e.g., a low- frequency process), the optimum
fixed quantizer allocates bits based on the precomputed variances in the spec-
tral coefficients. Zonal sampling simply discards those coefficients that the signal
model predicts will have small variances.

Biorthogonal Block Transforms and Dual Bases

We have defined orthonormal block transforms as a matrix whose row vec-
tors {</> }, satisfy <p <t> = 5r-s. In Chapter 3 and in the wavelet Chapter 6, we
will discuss biorthogonal filter banks and wavelets. These are extensions of the
biorthogonal block transforms which are represented as follows. We start with
two non-orthogonal bases, called dual bases {0 , ..., 0.,} and {̂  , ..., ̂ v} with the
property (Pei and Yeh, 1997) that the orthogonality is carried across the bases.

and when krs = 1, the system becomes biorthonormal. The key property is that
any vector / can be projected onto {</>.}, and that projection is the coefficient for



24 CHAPTER 2. ORTHOGONAL TRANSFORMS

the expansion in the dual basis {'0,}, i.e.,

and

In Fig. 2.3, the analysis matrix would be $ = [0.], and the reconstruction or
synthesis matrix would be \£ = [-0 .].

~ J

The example shown in Fig. 2.2(b) illustrates this property very nicely. In
that figure the planar vectors 01 and 02 are not orthogonal, nor are V> and ^/?2<

However, ^0 arid 02 are orthogonal, and so are 0A and ^2. We have ̂  — [1,0],
•il)T = [— 1? l]? 0^ — [1, 1], and 0;T = [0, 1]. Any vector / = [a, 6] can be expressed
as a combination of { 0 , 0 } or as a linear combination of (-0 , ib „}. It is easy to
verify that

where a\ — /T<^>1, and a<2 = f14>2- Moreover, the roles of 4> and ip can be inter™
changed. The reader can verify that / can be resolved into

2.1.4 The Two-Dimensional Transformation

The 2D version of transform coding is easily extrapolated from the foregoing. As
shown in Fig. 2.4, the image array is divided into subblocks, each of which is
separately encoded. These blocks are usually square, with 4 x 4, 8 x 8, and 16 x 16
being representative sizes.

Let the N x N subblock image array be denoted by

The forward transform is

and the inverse is
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Figure 2.4: Two-dimensional transform coding.

where «(•), and /3(-) are the forward and inverse transform kernels.
In this text, as well as in all practical cases, the kernels are separable and

symmetric so that the 2D kernel is simply the product of two ID orthogonal basis
functions

In Section 2.6, this separability is interpreted as a Kronecker product factorization.
Just as with the ID formulation, the basis functions constitute the rows of the

unitary matrix. The forward and inverse transformations have the form

Examination of Eq. (2.45) reveals that the image transformation can be done in
two stages: First, we take the unitary transform <J> to each row of the image array
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to obtain an intermediate array S — F&1. Then we apply the transformation <3>*
to each column of S to obtain the final transformed image, 0 = <1>*S.

The 2D Parseval relation is a simple extension of Eq. (2.14),

The 2D version of the basis vector is the basis array. This is a direct extrap-
olation of the ID result given by Eq. (2.33). From Eq. (2.45), we can expand the
image array into a superposition of basis arrays via

where the basis image B^- is the outer product

Equation (2.47) expresses the image F as a linear combination of the N2 basis
images. Examples of commonly used basis images are shown in Fig. 2.5. Again
by extrapolation of the ID result of Eq. (2.34), we can show that the transform
coefficient 0™ is the inner product of BIJ with the input image block

2.1.5 Singular Value Decomposition

The 2D version of a least squares fit to an image leads to an efficient image
dependent decomposition known as the singular value decomposition (SVD).
Consider an N x N image (or block) F. In Eq. (2.47), we expressed F as the
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Figure 2.5: Basis images of 8 x 8 2D block transforms: (a) DOT; (b) DST: (c.
WHT; and (d) MET.
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Figure 2.5: (continued)
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weighted sum of the N2 basis arrays BJJ = ($^J), wherein the {J?^} are columns
of a preselected unitary matrix. We now seek an outer product expansion similar to
Eq, (2.47) but where the outer products are matched specifically to the particular
image so that the double sum over AT2 basis images reduces to a single sum over
r arrays, r < N, The expansion that achieves this has the form

and is called the SVD. It is constructed as follows.
We define N x r matrices $ and ^ such that the r columns of $ arid \P are

the r non-zero eigenvectors of (FTF} and (FFT], respectively. Furthermore since
(FFT) and (FTF] have the same eigenvalues, then

where r is the rank of F. These non-zero eigenvalues {A/-} are the singular values
of F.

It can be shown (Golub and Reinsch, 1970) that F can now be written as

which, upon expansion, gives Eq. (2.50)
The form of Eq. (2.50) suggests that the SVD has excellent compaction prop-

erties for r <C N. Instead of an N2 image samples, we need encode only 2/VY
samples^ samples each for ^fc and $fe, and there are r of these). The difficulty
with SVD is that the transformation matrices ^ and $ are tuned to the par-
ticular image being examined. They must be recalculated for each image block.
In the Karhunen-Loeve transformation, Section 2.2.1, the unitary transformation
depends on the image covariance matrix that represents the ensemble of image
blocks. It gives the minimum mean-squared error averaged over that class. The
SVD gives the Zeast-squares error for that particular image. For fixed transforms,
the unitary matrix is preassigned. For this reason the SVD has also been called a
deterministic least-squares expansion.

For any expansion in the form
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the optimum choice of weights and outer product arrays that minimizes

is that given explicitly by Eq. (2.50), when the eigenvalues are ordered according,'
to decreasing value.

2.2 Transform Efficiency and Coding Performance

Signal coding tries to achieve data compression, i.e., a reduction in the number of
bits needed to store or transmit the signal at a given level of distortion. Transform
coding attains this objective by decorrelating the signal and repacking the energy
among the spectral coefficients. Hence unitary transformations can be compared
on the basis of criteria that measure these properties. The optimal transform
among all unitary transforms then constitutes the ideal against which all other
transforms may be compared.

But we also need to range beyond transform coding and develop measures for
comparing different coding methods. A criterion suitable for this purpose is the
distortion of the signal coder achievable at a given data bit rate. This performance
measure allows us to compare different coding schemes—e.g.. transform coding,
and subband coding—against each other. For convenience, we take as the base of
this measure the distortion induced in the most primitive coding method, that of
pulse code modulation (PCM), and compare the coding gain of other methods to
this base.

2.2.1 Decorrelation, Energy Compaction, and the KLT

Transform efficiency is measured by the decorrelation and energj^ compaction
provided by the given transformation. To develop these measures, we need to
model the data source in a statistical way, in particular, by the variances and
covariances of the signal source. For this purpose we need to represent only the
wide-sense properties of the signal—i.e., means and autocorrelation function
which we assume are wide-sense stationary (WSS). This simplification is not only
for mathematical simplicity, but also for the very real and practical realization
that the stationary assumption is reasonable over a short segment of a ID signal
or over a small block in a 2D array. It is noted, however, that in the design of the
optimum quantizer with the attendant optimum allocation of bits the wide-sense
properties are not enough. We also need to know or model the probability density
function of the individual data samples.
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The wide-sense properties of the signal vector {/(n),0 < n < Ar — 1) are
denoted by

(For ease of notation, we assume that the data samples are real.) Wide-sense
stationarity implies that the mean \i is a constant, independent of n, and that
the autocorrelation simplifies to R(n + k,n) = R(k), a function of only the time
difference between the signal samples. Thus,

and

The autocovariance is then

The correlation and covariance matrices are

For the WSS case, we see that
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It is common practice to simplify the notation (without loss of generality) by
assuming that the constant mean either is zero or has been removed from the data.
Thus, for zero mean, R = (7, and using

This symmetric matrix with equal entries along the main diagonal and along
lines parallel to the main diagonal is called a Toeplitz matrix. It is also known as
an autocorrelation matrix in the speech processing community (Jayant and Noll,
1984). In particular jR(0) = E{\f(n) 2} = cr2 represents the variance or "power"
in the signal samples.

The simplest example of an autocorrelation is that of a stationary, zero-mean,
white sequence. In this instance, p(k) = 0, k j^ 0, and R is diagonal

Another typical signal representation is that of the first-order autoregressive
AR(1) sequence, modeled by

where

The autocorrelation is simply

and the covariance reduces to



2.2. TRANSFORM EFFICIENCY AND CODING PERFORMANCE 33

For ease of notation, we assume real signals, and zero means. The transforma-
tion 0 = $/ leads to

where the subscripts on the covariance matrices denote the variables in question.
The energy preserving properties of a unitary transformation have already been
developed in Eq. (2.37). From a statistical standpoint, we now have

Therefore, the energy preservation property emerges as

Note that the transformation results in a nonstationary sequence of spectral
coefficients. The of are not constant by design. In fact, we would like to whiten
the {Or} sequence by making the off-diagonal terms in RQ zero, while making
it nonstationary by compacting the energy into as few coefficients as possible.
Viewed in this light, the purpose of the transformation is to generate a diagonal
covariance matrix RQ whose elements are unevenly distributed.

The foregoing considerations lead to two measures of transform efficiency
(Clarke, 1985). The decorrelation efficiency rjc compares the sum of the off-
diagonal terms in RQ, and Rf. We define

Then the decorrelation efficiency is



34 CHAPTER 2. ORTHOGONAL TRANSFORMS

For completely decorrelated spectral coefficients, rjc = I.
The second parameter TJE measures the energy compaction property of the

transform. Defining J'L as the expected value of the summed squared error J/, of
Eq. (2.20)

This J'L has also been called the basis restriction, error by Jain (1989). Then
the compaction efficiency is

Thus rjpj is the fraction of the total energy in the first L components of 0, where
{0f} are indexed according to decreasing value.

The unitary transformation that makes r\c = 0 and minimizes J'L is the Karhu-
nen-Loeve transform (Karhunen, 1947; Hotellirig, 1933). Our derivation for real
signals and transforms follows.

Consider a unitary transformation $ such that

The approximation /, and approximation error eL are

By orthonormality, it easily follows that
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From Eq. (2.34),

Therefore,

so that the error measure becomes

To obtain the optimum transform, we want to find the $r that minimizes J'L
for a given L, subject to the orthonormality constraint, ^^_s — 6r-s- Using
Lagrangian multipliers, we minimize

Each term, in the sum is of the form

Taking the gradient4 of this with respect to x (Prob. 2.6),

or

Doing this for each term in Eq. (2.74) gives

which implies

where

4The gradient is a vector defined as
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(The reason for the transpose is that we had defined $r as the rth column of
$.) Hence 3>r is an eigenvector of the signal covariance matrix Rf, and A r , the
associated eigenvalue, is a root of the characteristic polynomial, det(\I — R/).
Since Rf is a real, symmetric matrix, all {A;} are real, distinct, arid nonnegative.
The value of the minimized J'L is then

The covariance matrix for the spectral coefficient vector is diagonal, as can be
seen from

Thus 4> is the unitary matrix that does the following:
(1) generates a diagonal RQ and thus completely decorrelates the spectral coeffi-
cients resulting in r?c — 1,
(2) repacks the total signal energy among the first L coefficients, maximizing TJE*

It should be noted, however, that while many matrices can decorrelate the
input signal, the KLT both decorrelates the input perfectly and optimizes the
repacking of signal energy. Furthermore, it is unique. The difficulty with this
transformation is that it is input signal specific—i.e., the matrix $T consists of the
eigenvectors of the input covariance matrix Rf. It does provide a theoretical limit
against which signal-independent transforms (DFT, DOT, etc.) can be compared.
In fact, it is well known that for an AR(1) signal source Eq. (2.61) with p large,
on the order of 0.9, the DCT performance is very close to that of the KLT. A
frequently quoted result for the AR(1) signal and N even (Ray and Driver. 1970)
is

where {&k} are the positive roots of

This result simply underscores the difficulty in computing the KLT even when
applied to the simplest, nontrivial signal model. In the next section, we describe
other fixed transforms and compare them with the KLT. (See also Prob. 2.19)
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For p = 0.91 in the AR(1) model and N - 8, Clarke (1985) has calculated the
packing and decorrelation efficiencies of the KLT and the DCT:

f\E

WE

L

KLT
DCT

1
79.5
79.3

2
91.1
90.9

3
94.8
94.8

4
96.7
96.7

5
97.9
97.9

6
98.7
98.7

7
99.4
99.4

8
100
100

These numbers speak for themselves. Also for this example, t]c = 0.985 for the
DCT compared with 1.0 for the KLT.

2.2.2 Comparative Performance Measures

The efficiency measures r\c, TIE in Section 2.2.1 provide the bases for comparing
unitary transforms against each other. We need, however, a performance measure
that ranges not only over the class of transforms, but also over different coding
techniques. The measure introduced here serves that purpose.

In all coding techniques, whether they be pulse code modulation (PCM), differ-
ential pulse code modulation (DPCM), transform coding (TC), or subband coding
(SBC), the basic performance measure is the reconstruction error (or distortion)
at a specified information bit rate for storage or transmission.

We take as the basis for all comparisons, the simplest coding scheme, namely
the PCM, and compare all others to it. With respect to Fig. 2.3, we see that PCM
can be regarded as a special case of TC wherein the transformation matrix <3> is
the identity matrix I, in which case we have simply 0_ — f . The reconstruction
error is / as defined by Eq. (2.38), and the mean square reconstruction error is

of The TC performance measure compares of for TC to that for PCM. This
measure is called the gain of transform coding over PCM and defined (Jayant and
Noll, 1984) as

In the next chapter on subband coding, we will similarly define
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In Eq, (2.39) we asserted that for a unitary transform, the mean square le
construction error equals the mean square quantization error. The pioof is eas\
Since

then
~T

where # is the quantization error vector.
The average mean square (m.s.) error (or distortion) is

where <j'2a is the variance of the quantization error in the Kih spectral coefficient.

as depicted in Fig. 2.6.
Suppose that Rk bits are allocated to quantizer Q^. Then we can choose the

quantizer to minimize <r| for this value of R^ and the given probability density
function for 0^. This minimum mean square error quantizer is called the Lloyd-
Max quantizer, (Lloyd, 1957; Max, 1960). It minimizes separately each cr|fc, and
hence the sum Y^kaqk- The structure of Fig. 2.6 suggests that the quantizer can
be thought of an estimator, particularly so since a mean square error is being
minimized. For the optimal quantizer it can be shown that the quantization error
is unbiased, and that the error is orthogonal to the quantizer output (just as in
the case for optimal linear estimator), (Prob. 2.9)

Figure 2.6: The coefficient quantization error.
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The resulting mean square error or distortion, depends on the spectral coeffi-
cient variance er|., the pdf, the quantizer (in this case. Lloyd-Max), and the number
of bits Rk allocated to the kth coefficient. From rate-distortion theory (Berger.
1971), the error variance can be expressed as

where f ( R k ) is the quantizer distortion function for a unity variance input. Typ-
ical I v.

where 7^ depends on the pdf for Ok and on the specific quantizer. Jayant and Noll
(1984) report values of 7 = 1.0, 2.7, 4.5, and 5.7 for uniform, Gaussian, Laplacian,
and Gamma pdfs, respectively. The average mean square reconstruction error is
then

Next, there is the question of bit allocation to each coefficient, constrained by
NR, the total number of bits available to encode the coefficient vector 0

and R is the average number of bits per coefficient. To minimize Eq. (2.89) subject
to the constraint of Eq. (2.90), we again resort to Lagrangian multipliers. First
we assume 7^ to be the same for each coefficient, and then solve

to obtain (Prob. 2.7)

This result is due to Huang and Schultheiss (1963) and Segall (1976). The number
of bits is proportional to the logarithm of the coefficient variance, or to the power
in that band, an intuitively expected result.
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It can also be shown that the bit allocation of Eq. (2.92) results in equal
quantization error for each coefficient, and thus the distortion is spread out evenly
among all the coefficients, (Prob. 2.8)

The latter also equals the average distortion, since

The preceding result is the pdf and Rk optimized distortion for any unitary
transform. For the PCM case, $ = /, and of reduces to

There is a tacit assumption here that the 7 in the PCM case of Eq, (2.95)
is the same as that for TC in Eq. (2.93). This may not be the case when, for
example, the transformation changes the pdf of the input signal. We will neglect
this effect.

Recall from Eq. (2.63) that, for a unitary transform,

The ratio of distortions in Eqs. (2.95) and (2.93) gives

The maximized GTC is the ratio of the arithmetic mean of the coefficient variances
to the geometric mean.

Among all unitary matrices, the KLT minimizes the geometric mean of the
coefficient variances. To appreciate this, recall that from Eq. (2.77) the KLT
produced a diagonal RQ, so that
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The limiting value of GKLT for IV -^ oo gives an upper bound on transform
coding performance. The denominator in Eq. (2.99) can be expressed as

Jayant and Noll (1984) show that

where Sf is the power spectral density of the signal

Hence,

and the numerator in Eq. (2.99) is recognized as

Hence,

is the reciprocal of the spectral flatness 'measure introduced by Makhoul and
Wolf (1972). It is a measure of the predictability of a signal. For white noise,
°°GTC — 1 and there is no coding gain. This measure increases with the degree
of correlation and hence predictability. Accordingly, coding gain increases as the
redundancy in the signal is removed by the unitary transformation.

2.3 Fixed Transforms

The KLT described in Section 2.2 is the optimal unitary transform for signal cod-
ing purposes. But the DOT is a strong competitor to the KLT for highly correlated
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signal sources. The important practical features of the DCT are that it is signal
independent (that is, a fixed transform), and there exist fast computational al-
gorithms for the calculation of the spectral coefficient vector. In this section we
define, list, and describe the salient features of the most popular fixed transforms,
These are grouped into three categories: sinusoidal, polynomial, and rectangular
transforms.

2.3.1 Sinusoidal Transforms

The discrete Fourier transform (DFT) and its linear derivatives the discrete cosine
transform (DCT) and the discrete sine transform (DST) are the main members of
the class described here.

2.3.1.1 The Discrete Fourier Transform
The DFT is the most important orthogonal transformation in signal analysis with
vast implication in every field of signal processing. The fast Fourier transform
(FFT) is a fast algorithm for the evaluation of the DFT.

The set of orthogonal (but not normalized) complex sinusoids is the family

with the property

Most authors define the forward and inverse DFTs as

The corresponding matrices are

This definition is consistent with the interpretation that the DFT is the Z-trans-
from of {x(n}} evaluated at N equally-spaced points on the unit circle. The set
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of coefficients {X(k)} constitutes the frequency spectrum of the samples. From
Eqs. (2.107) and (2.108) we see that both X ( k ) and x(n) are periodic in their
arguments with period N. Hence Eq. (2.108) is recognized as the discrete Fourier
series expansion of the periodic sequence {:r(n)}, and {X(k}} are just the discrete
Fourier series coefficients scaled by N. Conventional frequency domain interpre-
tation permits an identification of X(0)/N as the "DC" value of the signal. The
fundamental (x'i(n) = e?27rn/Ar} is a unit vector in the complex plane that rotates
with the time index n. The first harmonic {x%(ri)} rotates at twice the rate of
fundamental and so on for the higher harmonics. The properties of this transform
are summarized in Table 2.1. For more details, the reader can consult the wealth
of literature on this subject, e.g., Papoulis (1991), Opperiheim and Schafer (1975),
Haddad and Parsons (1991).

The unitary DFT is simply a normalized DFT wherein the scale factor N
appearing in Eqs. (2.106)-(2.109) is reapportioned according to

This makes

arid the unitary transformation matrix is

From a coding standpoint, a key property of this transformation is that the
basis vectors of the unitary DFT (the columns of $*) are the eigenvectors of a
circulant matrix. That is, with the &th column of 4>* denoted by

we will show that <££ are the eigenvectors in

where Ti, is any circulant matrix
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Each column (or row) is a circular shift of the previous column (or row). The
eigenvalue A& is the DFT of the first column of H,

Property Operation

(1) Orthogonality ^ WmkW~nk = N8m-n
k=o

(2) Periodicity x(n -f rN) — x(n)

X(k + IN) = X(k)

(3) Symmetry Nx(—n) «-»• X(k)

(4) Circular Convolution x(n) * y(n] <-* X(fc)F(fc)

(5) Shifting x(n - n0) <-> Wn°kX(k)

(6) Time Reversal x(N - n) <-+ X(N - k)

(7) Conjugation x*(ri) <-> X*(N — k)

(8) Correlation p(n) = x(n) * z*(-n) *-* B(fc) = |^(fe)|2

(9) Parseval E'kWI2 = ̂  E^^WI2

n=0 ^V i=0

(10) Real Signals/ X*(N - k) = X(k)
Conjugate Symmetry

Table 2.1: Properties of the discrete Fourier transform.
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We can write Eq. (2.113) as

45

where

which results in

or

The proof is straightforward. Consider a linear, time-invariant system with
finite impulse response {/i(n), 0 < n < N — 1}, excited by the periodic input Wkn.
The output is also periodic and given by

Let the output vector be

Then Eq. (2.117) can be stacked,

W

Since y(ri) = y(n + IN) is periodic, it can also be calculated by the circular
convolution of Wkn and a periodically repeated

Hence,
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Stacking the output in Eq. (2.118) and recognizing the periodicity of terms such
as /?,(-!) = h(N - 1) = h(N - 1) gives us

Equating the two stacked versions of y_ gives us our starting point, Eq. (2.113).
In summary, the DFT transformation diagonalizes any circulant matrix, and

therefore completely decorrelates any signal whose covariance matrix has the cir-
culant properties of Ji.

2.3.1.2 The Discrete Cosine Transferm
This transform is virtually the industry standard in image and speech transform
coding because it closely approximates the KLT especially for highly correlated
signals, arid because there exist fast algorithms for its evaluation. The orthogonal
set is (Prob. 2.10)

and

Jain (1976) argues that the basis vectors of the DCT approach the eigenvectors
of the AR(1) process (Eq. 2.58) as the correlation coefficient p —» 1. The DCT is
therefore near optimal (close to the KLT) for many correlated signals encoimtered
in practice, as we have shown in the example given in Section 2.2.1. Some other
characteristics of the DCT are as follows:

(1) The DCT has excellent compaction properties for highly correlated signals,
(2) The basis vectors of the DCT are eigenvectors of a symmetric tridiagonal

matrix
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whereas the covariance matrix of the AR(1) process has the form

As p —* 1, we see that 02R 1 = Q, confirming the decorrelation property. This
is understood if we recognize that a diagoiializing unitary transformation implies

and consequently

Hence the matrix that diagonalizes Q also diagonalizes Q 1.
Sketches of the DCT and other transform bases are displayed in Fig, 2.7.

We must add one caveat, however. For a low or negative correlation the DCT
performance is poor. However, for low /?, transform coding itself does not work
very well. Finally, there exist fast transforms using real operations for calculation
of the DCT.

2.3.1.3 The Discrete Sine Transform
This transform is appropriate for coding signals with low or negative correlation
coefficient. The orthogonal sine family is

Normalization gives the unitary basis sequences as

where

with norm
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Figure 2.7: Transform bases in time and frequency domains for N ~ 8: (a) KLT
(p = 0.95); (b) DOT; (c) DLT; (d) DST; (e) WHT; and (f) MHT.
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Figure 2.7 (continued)
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Figure 2.7 (continued)
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Figure 2.7 (continued)
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(e)
Figure 2.7 (continued)
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Figure 2.7 (continued)
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It turns out the basis vectors of the DST are eigenvectors of the symmetric tri-
diagonal Toeplitz matrix

The covariance matrix for the AR(1) process, Eq. (2.124), resembles this matrix
for low correlated values of p, typically, \p\ < 0.5. Of course, for p = 0. there is no
benefit from transform coding since the signal is already white.

Some additional insight into the properties of the DOT, the DST, and relation-
ship to the tridiagonal matrices Q and T in Eqs. (2.121)-(2.124) can be gleaned
from the following observations (Ur, 1999):

(1) The matrices Q and T are part of a family of matrices with general structure

Jain (1979) showed that the set of eigenvectors generated from this parametric
family of matrices define a family of sinusoidal transforms. Thus k\ — 1, k% = 1,
k% = 0 defines the matrix Q and k\ — k% = k% — 0 specifies T.

(2) Clearly the DOT basis functions in Eq. (2.119) the eigenvectors of Q, must
be independent of a. (But the eigenvalues of Q depend on a.) To see this, we can
define a matrix Q = Q — (1 — la}!. Dividing by a, we obtain

(l/a)Q is independent of a, but has the same eigenvectors as Q. (Problem 2.21)
(3) Except for the first and last rows, the rows of Q are — 1, 2, — 1. a second dif-

ference operator which implies sinusoidal solutions for the eigenvectors depending
on initial conditions which are supplied by the first and last rows of the tridiagonal
matrix S. Modifying these leads to 8 DCT forms.

(4) These comments also apply to the DST.
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2.3.2 Discrete Polynomial Transforms

The class of discrete polynomial transforms are descendants, albeit not always
in an obvious way, of their analog progenitors. (This was particularly true for
the sinusoidal transforms.) The polynomial transforms are uniquely determined
by the interval of definition or support, weighting function, and normalization.
Three transforms are described here. The Binomial-Hermite family and the Leg-
endre polynomials have finite support and are realizable in finite impulse response
(FIR) form. The Laguerre family, denned on the semi-infinite interval [0, oo). can
be realized as an infinite impulse response (IIR) structure.

2.3.2.1 The Binomial-Hermite Transform
This family of discrete weighted orthogonal functions was developed in the seminal
paper by Haddad (1971), and subsequently orthonormalized (Haddad and Akansu,
1988).

The Binomial-Hermite family are discrete counterparts to the continuous-time
orthogonal Hermite family familiar in probability theory. Before delving into the
discrete realm, we briefly review the analog family to demonstrate the parental
linkage to their discrete progeny.

The analog family (Sansone, 1959; Szego, 1959) is obtained by successive dif-
ferentiation of the Gaussian eTl /2.

The polynomials Hn(t) in Eq. (2.125) are the Hermite polynomials. These can be
generated by a two-term recursive formula

The polynomials also satisfy a linear, second-order differential equation

The Hermite family {xn(t}}, and the Hermite polynomials {Hn(t)}, are or-
thogonal on the interval (—00, oo) with respect to weighting functions et /2 arid
e~t II ^ respectively:
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Prom a signal analysis standpoint, the key property of the Gaussian function is
the isomorphism with the Fourier transform. We know that

Furthermore, from Fourier transform theory, if f(t] <-» F(UJ] are a transform
pair, then

These lead immediately to the transform pair

In the discrete realm, we know that the Binomial sequence

resembles a truncated Gaussian. Indeed, for large N (Papoulis, 1934),

We also know that the first difference is a discrete approximation to the deriva-
tive operator. Fortuitously, the members of the discrete Binomial-Hermite family
are generated by successive differences of the Binomial sequence

where

Taking successive differences gives

where k^\ the forward factorial function, is a polynomial in k of degree v
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The polynomials appearing in Eq. (2.134) are the discrete Herrnite polynomi-
als. They are symmetric with respect to index and argument,

which implies the symmetry

The other members of the Binomial-Hermite family are generated by the two-
term recurrence relation (Prob. 2.11)

( N \with initial values xr(—l) = 0 for 0 < r < N, and initial sequence xo(k) = ;V k )
In the Z-transform domain, the recursion becomes

where

Note that there are no multiplications in the recurrence relation, Eq. (2.138). The
digital filter structure shown in Fig. 2.8 generates the entire Binomial-Hermite
family.

The Hermite polynomials arid the Binomial-Hermite sequences are orthogonal

(N\ f N Y 1
on [0, N] with respect to weighting sequences , I and I , respectively

V k I \ k )
(Prob. 2.12):

This last equation is the discrete counterpart to the analog Hermite orthogonality
of Eq. (2.128).
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Figure 2.8; (a) Binomial filter bank structure; (b) magnitude responses of duration
8 Binomial sequences (first half of the basis).

The associated Hermite and Binomial transformation matrices are

where we are using the notation Hrk = Hr(k), and Xr^ = Xr(k). The matrix H
is real and symmetric; the rows and columns of X are orthogonal (Prob. 2.13)

These Binomial-Hermite niters are linear-phase quadrature mirror filters. From
Eq. (2.139) we can derive
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which implies

Also,

implies

These equations demonstrate the symmetry and anti-symmetry of the Binomial
matrix X, Equation (2.143), for example, asserts that the filters represented by
the bottom half of the Binomial matrix are mirror images of the filters in the top
half. These last two equations can also be used to prove the orthogonality of rows
and columns asserted by Eq. (2.141). Finally, from Eq. (2.142), we can infer that
the complementary filters Xr(z] and X^_r(z) have magnitude responses that are
mirror images about uj = ?r/2,

Hence, the complementary rows and columns of X possess the mirror filter prop-
erty (Section 3.3).

From Eq. (2.139), it is clear that Xr(e^} = Ar(uj]ejdr^\ has magnitude and
(linear) phase responses given by

The first half of the set, r = 0 ,1 , . . . , (N — l)/2, have significant energy in the
half band (0,7r/2), while the second half, (r — (N + l ) /2 , . . . , ]V, span the upper
half-band. These properties will be exploited in Chapter 4 in developing Binomial
quadrature mirror filters, and in Chapter 5 as basis sequences for wavelets. The
8 x 8 Binomial matrix X follows:

X -

' I
1
1
1
1
1
1
1

7
5
3
1

_]_
__3
__5
_ j

21
9
1
o

-3
1
9

21

35
5

_5

-3
3
5

—5
-35

35
-5
-5

3
3
o

-5
35

21
—9

1
3

-3
-1

9
-21

7
-5

3

^
^
3

—5
7

1 "
__1

1
-1

1
i

1
— 1
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The corresponding magnitude frequency responses shown in Fig. 2.8(b) have al-
most Gaussian-shaped low-pass and band-pass characteristics.

These weighted orthogonality properties suggest that by proper normalization
the Hermite transform can provide a unitary matrix suitable for signal coding.
This modified Hermite transform (MHT) is defined as

or

with the unitary property 3>$ — /.
Plots of the MHT basis functions and their Fourier transforms for size 8 are

shown in Fig. 2.7(f), along with the DOT, DST, DLT, WHT, and KLT(0.95). Note
that the MHT basis has no DC term. Signals with a Gaussian-like envelope could
be represented very accurately by a few terms in the MHT expansion, whereas the
DCT requires more terms. On the other hand, a constant signal is represented by
one term in the DCT expansion, but requires all even indexed terms in the MHT
decomposition.

We can compute the MHT spectrum in a three-step process.
( N y-1/2

(1) Multiply the signal f(k) by a prewindow function, w\(k} = I , I
V k /

to form g(k).
(2) Apply the time reversed signal g(—k) to the Binomial network of Fig. 2.8.

The output at the rth tap at n — 0 is the intermediate coefficient Of
r.

No multiplication is needed in this stage.
(3) Multiply B'r by the post-window function w?,(r} to obtain
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This MHT algorithm can be implemented using 2N real multiplications, as
compared with the fast DOT, which requires (JVTog2 N — N + 2) multiplications.

In Section 2.4.6, we compare the coding performance (compaction) of various
transforms. The MHT is clearly inferior to the DCT for positively correlated
signals, but superior to it for small or negative values of p.

2.3.2.2 The Discrete Laguerre Polynomials
This set of functions are useful in representing signals on the semi-infinite interval
[0,oo). Because of this support interval, this family can be generated by an IIR
filter structure. Although this represents a departure from the FIR and block
transforms discussed thus far, nevertheless we introduce it at this point as rep-
resentative of a class of the infinite-dimensional polynomial-type transform. We
also hold out the possibility of using a finite number of these as approximation
vehicles.

The set. defined on 0 < k < oo, is

In this last equation, A is a constant, 0 < A < 1, Ar is a normalizing factor

and pr(k] is a polynomial of degree r (Prob. 2.14),

( r \
where ( I is the binomial coefficient, k^"1' is the forward factorial function

\m )
Eq. (2.135), and a = (I - A2)/A2.

Using Z-transforms, we can establish the orthonormality (Haddad and Par-
sons, 1991):
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For our purposes, we outline the steps in the proof. First we calculate Pr(z]
by induction and obtain

Then

By contour integration, we can evaluate

For m — r — s > 1, the integrand is of the form

arid has an (m + l)th order pole inside the unit circle at z = A. and an (m — l)th
order zero at z = A""1. Then, for m > 1,

For ?n < — 1, the integrand is

with an (m + l)th order pole at z = A 1 outside the unit circle, and only zeros
inside at z — A. This integrand is analytic on and inside the unit circle , so that
the contour integral vanishes. Finally, for r = s, we can obtain the normalization
factor

The polynomials Lr(k) in Eq. (2.149) are the discrete Laguerre polynomials

These are orthonormal with respect to the exponential weighting factor Oh —
X2k
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Figure 2.9: Generation of Laguerre polynomials (a,b) and family (c.d).

From the ^-transform Eq. (2.152), we can easily obtain the recurrence relation

Similarly, we find that the recurrence relation for the ($r(/c)} is

Digital networks for the generation of these families are shown in Fig. 2.9. (See
also Prob. 2.15)
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2.3.2.3 The Discrete Legendre Polynomials
The discrete Hermite polynomials weighted by the Binomial sequence are suitable
for representing signals with Gaussian-like features on a finite interval. Such se-
quences fall off rapidly near the end points of the interval [0, N — 1]. The Laguerre
functions provide a signal decomposition on the semi-infinite interval [0, oo). The
discrete Legendre polynomials are uniformly weighted on a finite interval. Morri-
son (1969) has used these to construct finite-memory polynomial filters. Here, we
outline the steps in the derivation of this family.

Let Lr(k] be a polynomial of degree r on [0, N — 1],

We choose ars to satisfy orthogonality

Morrison shows that the result is

and the associated norms are

The orthonormalized discrete Legendre transform(DLT) is therefore

The rows of the DLT matrix for N = 8 are shown in Fig. 2.7(c). The even and
odd indexed rows are, respectively, symmetric and skew symmetric about N/2.
These plots show that the DLT waveforms are similar to the DCT, and in Section
2.4.6, we see that the DLT performance is slightly inferior to that of the DCT
for signals tested—both theoretical and experimental. The main drawback to the
DLT is that a fast algorithm has not yet been developed.
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2.3,3 Rectangular Transforms

We use the term rectangular transform to denote orthonormal basis sequences
obtained by sampling analog (i.e, continuous-time) functions that are switched
pulses in time. In the Walsh family, the pulse amplitudes are ±1 for every member
of the set. For the Haar functions, the values of the switched amplitudes can vary
from row to row.

The Walsh-based transform is by far the more important of the two because
of its simplicity, fast transform, and compaction properties. Accordingly, we allot
the majority of this subsection to this very appealing transform.

2.3.3.1 The Discrete Walsh-Hadamard Transform
Certain continuous-time orthogonal functions, when sampled, produce orthogonal
discrete-time sequences. Sampling the sinusoidal family (e-^0*, UJQ = 2'7r/T}
orthogonal on [0,T], at a spacing of T/N generates the finite set {e

j27rfen/Ar},
discrete orthogonal on [0, AT — 1], The Walsh function (Walsh, 1923) and sequences
also preserve orthogonality under sampling (as do the Haar functions described in
the next subsection).

The continuous-time Walsh functions are a complete orthonormal set on the
unit interval [0,1). Their salient feature is that they are binary valued, ±1, and
thus consist of sequences of positive and negative pulses of varying widths.

The first two Walsh functions are

The other members of the denumerably infinite set are generated by a multi-
plicative iteration

where [|] is the integer part of r/2. These are orthonormal,

The first eight Walsh functions are shown in Fig. 2.10 in sequence order, which
is the number of zero crossings or sign changes in [0,1). In this sense they resemble
the frequency of the sinusoidal functions, but differ since the spacing between zeros
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Figure 2.10: Walsh functions, N = 8.
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Is not necessarily constant. Also, the index of a Walsh function can differ from its
sequence.

The discrete time Walsh functions are a finite set of sequences obtained by
sampling the first N analog functions at a spacing of AT = 2~N, N = 2P, and
then relabeling the ordinate so that there is unit spacing between samples. The
Walsh functions are continuous from the right, Eqs. (2.161) and (2.162). The
sampled value at a discontinuity to is the value at £Q~, just to the right of t$.
Therefore, the Walsh sequences are a complete set of N orthogonal sequences on
[0, N — 1] consisting of +1 and — 1 values, defined by initial sequences

and by the iterations

In order to prove the orthogonality of the Walsh sequences

we must introduce a binary coded notation for the integer variables. Let

Similarly,

By iterating the defining equations (2.164) and (2.165) we obtain a binary factor-
ization of the Walsh sequences in the form
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In this representation, the product term in Eq. (2.166) is

Next we note that the decimal indexed sum can be written as a repeated binary
sum, i.e.,

The inner product J(r, s) now takes the form

Interchanging the product and sum operations,

Suppose r = s. Then iv — jv for all v so that (iv + j ^ ) — 0, or 2. This in turn
implies that (—1)^+> = 1? thereby rendering

Next, if r ^ s, then their binary representations differ in at least one bit. That
is, iv 7^ jv for at least one v in [0, p — 1]. Hence (iv + j ^ ) — 1, which means that
there is at least one term in the product [1 -f (—1)V+J'"] = 0. Hence J(r. .5) — 0,
for r 7^ s, and we have established orthogonality.

The matrix obtained by ordering the rows by their sequency is the discrete
Walsh transform. These are shown in Fig. 2.7(e). There are other representations
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as well; the most- notable is the Hadamard form. These matrices of order N = 2P

are denned recursively,

where the ® indicates the Kronecker product, and the \/2 term is a normalizing
factor. The Hadamard matrix of size N = 2P is the same as the discrete Walsh
matrix with shuffled rows. There is an algorithm for the shuffling of the row
indices. The rows of the Hadamard matrix ("natural" order) correspond to the
bit-reversed gray code representation of its sequence. For example, sequences 4
and 5 are gray coded as 110 and 111, respectively; bit reversal gives Oil and
111, which are the binary representations of rows 3 and 7 in the natural-ordered
Hadamard matrix. Row 3 has sequence 4 and row 7 has sequence 3 5. This
normalized Hadamard form is called the discrete Walsh-Hadamard transform, or
WHT. (See Prob. 2.16)

The WHT has good compaction properties (see Section 2.4.6). There is a fast
transform similar in structure to the FFT based on the ability to express HN as
a product of p sparse matrices, p = Iog2 AT,

There are just two entries in each row of 6* and these are ±1. Hence each pass
of the S matrix is achieved in TV/2 additions and N/1 subtractions. For p stages,
the total number of additions and subtractions is Np — N Iog2 N.
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2.3.3.2 The Haar Transform
The Haar functions are an orthogonal family of switched rectangular waveforms
where the amplitudes can differ from one function to another. They are defined
on the interval [0,1) by

The index r = 0,1, • • • , AT — 1, and N — 2P. Also, m and k represent the integer
decomposition of the index r

These are rectangular functions that can be zero in subintervals of [0,1).
Just as with the Walsh functions, sampling these functions at a spacing AT =

I/TV gives a discrete family that retains its orthogonality. Hence with t — n/N,
n ~ 0,1, • • • , N — 1 we obtain the discrete Haar transform

The Haar matrix is unitary (and real) and its rows are sequence ordered. Al-
though a fast transform exists, this transform has not found practical applications
in coding because of its poor energy compaction. For additional details see Shore
(1973) or Ahmed arid Rao (1975).

We shall see in Chapter 5 that the Haar functions serve as the simplest wavelet
family in multiresolution signal decomposition. Even in that context, the time-
frequency resolution is poor, so these functions are primarily of academic interest.
(Prob. 2.17)

2.3.4 Block Transform Packets

The block transforms with time and frequency responses shown in Fig. 2.7 may be
regarded as basically frequency selective. In Chapter 5, we revisit the block trans-
forms from a time-frequency standpoint and show how block transform packets
can be designed to have desirable time-frequency localization properties.
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2.4 Parametric Modeling of Signal Sources

It is desirable to define the behavior of any signal source by a set of parameters
or features. The challenge of signal source modeling spans diverse fields from eco-
nomics to weather forecasting; it is an essential tool for simulation and prediction
purposes. One widely used application of source modeling is in speech coding.
This is called linear predictive coding (LPC) and provides the best coding per-
formance known for speech. Since most natural signal sources are not globally
stationary, the modeling operation is repeated for each segment of source output
over which the stationarity assumption holds. Although the modeling of speech is
useful and works well, the same is not yet true for images. Therefore, model-based
image processing arid coding is still an active research area and some new mod-
eling approaches, rather than the classical waveform modeling, are being studied
extensively. There are several outstanding books and tutorial papers on this sub-
ject in the literature. A brief summary will be presented here for the later use in
this book.

Modeling a discrete-time signal as the output of a linear, time-invariant (KIT)
system driven by a white Gaussian noise source provides a useful representa-
tion over short intervals. These systems in general have a rational J£-transform
function; therefore the term pole-zero modeling is also widely used for this. This
pole-zero modeling is also directly related to the approximation of the unit-sample
response of a, discrete-time system by linear combination of complex exponentials.

A wide-sense stationary, zero-mean white noise process has an autocorrelation
function

Its power spectral density (PSD) is a constant,

where a^ is the variance of the noise signal.
The rational transfer function of a linear, time-invariant system is
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The numerator polynomial A(z) has L roots (zeros of the system) and the denom-
inator polynomial B(z) has P roots (poles of the system). The defining difference
equation of this system with input 77(71) and output x(n) is

If this system is stable and if r;(n) is stationary white, the output signal {x(n}} is
a wide-sense stationary process with the autocorrelation function

and the corresponding power spectral density function

and on the unit circle

Several well-known approaches in the literature deal with pole-zero modeling
of sources. The details of these techniques are beyond the scope of this book.
The interested readers are advised to go to the references, for example, Gardner
(1988). Our interest is to present those aspects of modeling that are subsequently
needed in the comparative evaluation of signal decomposition schemes.

2.4.1 Autoregressive Signal Source Models

Two special cases of pole-zero modeling that have found extensive application in
the literature are the moving average (MA), and the autoregressive (AR) processes.
In the first instance (MA), the denominator B(z) of H(z) in Eq. (2.176) is a
constant, and the process is said to be "all-zero,"

The filter in this case is FIR, and the autocorrelation is of finite duration.

where the asterisk (*) implies a convolution operation. The MA process model
is used extensively in adaptive equalizers and inverse system modeling (Haykin,
1986; Haddad and Parsons, 1991).
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The representation used in coding performance evaluation is the All process
or "all-pole" model, wherein the numerator A(z) is constant. The all-pole model
with white noise input is also referred to as a Markov source. [The system of
Eq. (2.176) with both poles and zeros is called an autoregressive, moving average
(ARM A).] Thus, the autoregressive signal is generated by passing white noise
{?)(n)} through an all-pole discrete-time system

The corresponding AR(P) signal evolves as

Here P is called the order of the prediction and {pk} are called the prediction
coefficients. The recursive relation of the autocorrelation function of an AR(P)
source can be easily derived as (Prob. 2.18)

with signal power

The problem in AR(P) source modeling is the estimation of the model param-
eters {pj} from the observed data. It turns out that the all-pole model leads to
a set of P linear equations in the P unknowns, which can be solved efficiently by
the Levinson algorithm or the Cholesky decomposition (Kay, 1988).

The AR(P) modeling of sources has been very efficiently used especially for
speech. Natural voiced speech is well approximated by the all-pole model for a
period of the glottal pulse. The stationarity assumption of the source holds during
this time interval. Therefore, the predictor coefficients are calculated for approx-
imately every 10 ms. The AR(P) sources are good models for a wide variety of
stationary sources. The AR(P) is a standard model for speech sources imple-
mented in many vocoders for low bit rate coding and transmission applications.
Today, it is possible to transmit intelligible speech below 1 Kbits/sec by LPC.

2.4.2 AR(1) Source Model

The AR(1) signal source is defined by the first-order difference equation
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where p is the prediction or correlation coefficient and {rj(n}} is the white noise
sequence of Eq. (2.173). The corresponding first-order system function is

with the unit sample response

The autocorrelation function of the AR(1) signal is

with

and the corresponding power spectral density function of the AR(1) source

The AR(1) source model is a crude, first approximation to real-world sources
such as speech and images. Therefore it is a commonly used artificial source model
for analytical performance studies of many signal processing techniques.

2.4.3 Correlation Models for Images

The two-dimensional extension of the ID random sequence is the random field,
a 2D grid of random variables. Many properties of the 2D random sequences are
extrapolations of the ID progenitor (Haddad and Parsons, 1991).

Each pixel x(m, n) is a random variable with some probability density function.
This collection {x(m, n)} and the statistical relations among them constitute the
random field. We are concerned primarily with wide-sense properties—means and
correlations—that over a small enough region may be considered stationary. In
this case, the mean and correlation are

The 2D power spectral density is the 2D Fourier transform of Rxx(m,n),
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A white noise source has zero mean, uncorrelated pixels, and a fta,t PSD

Experimental studies on real-world images have shown that the autocorrelation
functions of natural scenes are better represented by nonseparable autocorrelation
models. The discussion here starts with the definition of a 2D separable autocor-
relation function followed by two nonseparable correlation models.

2.4.3.1 2D Separable Correlation Model
The simplest source model is generated by passing white noise through a 2D AR(1)
process of the form

where {rj(rn, n}} is the zero-mean, white noise source with unit variance, and ph, pv

denote the first-order horizontal and vertical prediction or correlation coefficients,
respectively. Its autocorrelation function is separable and can be expressed as the
product of two ID autocorrelations

where

Likewise, the 2D PSD can be expressed as the product of two ID PSDs, one in
the horizontal direction and one along the vertical.

2.4.3.2 Generalized-Isotropic Correlation Model
This is a nonseparable 2D autocorrelation model that fits real image data bet-
ter than the separable correlation model (Natarajari and Ahmed, 1978). The
generalized-isotropic correlation model is defined as

where

and



76 CHAPTER 2. ORTHOGONAL TRANSFORMS

2.4.3.3 Generalized Correlation Model
This correlation model is a combination of separable and generalized-isotropic
correlation models of images arid is defined as

The parameter values n = 1.137, r2 = 1.09, h = \/2, a = 0.025, /3 = 0.019 were
found optimal for many test images (Clarke, 1985). This model fits the statistical
behavior of real images.

2.4.4 Coefficient Variances in Orthogonal Transforms

We have emphasized that the prime objective in transform coding is the repacking
of the signal energy into as few spectral coefficients as possible. Performance
assessment of a particular transform depends not only on the particular transform
used but also on the statistical properties of the source signal itself.

In this section we obtain a representation of the coefficient variances in a form
that effectively separates the orthogonal transform from the correlation model for
that signal source. We can then compare packing efficiency for various transforms
in terms of the parameterized source models of the previous sections.

The ID Case
We showed in Section 2.1.1 that the rnultirate filter bank in Fig. 2.1 is a realization
of the orthonormal transformation 0 = <£»£, and that yi(N — 1) = 9{.

It is now an easy matter to calculate cr? — E{0^}. From Fig. 2.1, the correlation
function for the output of the ith filter bank is

where pi(n) — 4>i(n) * 0*(—n) is the time autocorrelation function for the 2th basis
sequence <&(n), and R(n) represents the statistical autocorrelation function for
the input signal x(ri), which we assume to be zero mean, stationary:
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Evaluating Eq. (2.198) at n = 0 gives of. the variance of the iih spectral
coefficient

Both pi(k) and R(k) are even functions of &, so that Eq. (2.200) becomes

Stacking these variances to form a vector of variances gives us

or

where Rr = [^(0), /£(! ) , - • • , R(N — 1)], and W is the indicated matrix of basis
function autocorrelations.

The W matrix for the discrete cosine transform, N — 8, is found to be

WDCT =

" 1
1
1
1
1
1
1
1

1.750
1.367
0.987
0.419

-0.250
-0.919
-1.487
-1.867

1.500
0.599

-0.353
-1.252
-1.500
-0.869
-1.487

1.522

1.250
-0.125
-1.133
-1.051

0.250
1.258
0.353

-1.081

1.000
-0.653
-1.000

0.270
1.000

-0.270
0.633
0.653

0.750
-0.890
-0.280

0.769
-0.250
-0.589
-1.000
-0.316

0.500
-0.816

0.353
0.162

-0.500
0.544
0.780
0.108

0.250 "
-0.480

0.426
-0.345

0.250
-0.154

0.073
-0.019

(2.203)

The W matrix provides the link between the signal's autocorrelation function
and the distribution of signal energy among the transform coefficients. This W
matrix is unique and fixed for any orthonormal transformation of a given size.

This expression can explain the unique properties of a given transformation. It
has been observed that the DCT behaves differently for negatively and positively



78 CHAPTER 2. ORTHOGONAL TRANSFORMS

correlated signals. The WDCT matrix clearly predicts this behavior (Akansu and
Haddad, 1990).

This variance or energy calculation can be done in the frequency domain. With
$i(ej'w) = F{<l>i(ri)}, Fig. 2.1 or Eq. (2.198) shows that the PSD is

arid the variance is then

2D Case

a. Separable Correlation:

The 2D image [x(m, n)} is transformed via Eq. (2.45)

where

In the present case, we will calculate each coefficient element directly from

The variance of each coefficient is then

For the 2D AR(1) source of Eq. (2.191), this last equation separates into

Thus the variances for a 2D transform reduce to the product of two variances,
one in each dimension. That is, cr^(i) and a%(j] in Eq. (2.210) can be calculated
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using Eq. (2.202) for the ID case. Next, we define a vector of horizontal and
vertical variances

Similarly,

Then the matrix of variances V = [cr2(z, ?")] can be expressed a

Equation (2.212) provides the transform coefficient variances for the separable
correlation case. It depends on the two correlation coefficients of the signal source
and the orthogonal transformation employed.

b. Nonseparable Correlation
For the nonseparable 2D correlation function Rxx(m,n), Eq. (2.209) becomes

The matrix of variances becomes

and W is given in Eq. (2.201).
Equation (2.214) is a matrix representation of the variances of transform coef-

ficients and represents a closed form time-domain expression that effectively sep-
arates the transformation from the source statistics. Thus, for a given correlation
model, one can study the effects of different transformations, and conversely. The
W matrix can be precalculated along with the given transformation base matrix

Adaptive transform coding techniques require the on-line computation of the
coefficient variances. Equation (2.214) provides the theoretical basis for several
adaptive coding scenarios.

where
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2.4.5 Goodness of 2D Correlation Models for Images

Here, we use the results developed in the previous section to evaluate and com-
pare the merits of the different 2D source correlation models. The 2D GTC anfl
optimum bit allocations based on these image correlation models are calculated
and then compared with statistically measured results on actual image sources.
a. 2D Correlation Models

The three source correlation models of Section 2.4.3 and three transforma-
tions—the DCT, WHT, and MHT--are tested with two standard real images.
Equation (2.214) provides the coefficient variances substituted into the transform
gain equation,
Eq. (2.97), modified for the 2D case. We assume globally stationary source models
for the two test images. The model match would be even more pronounced had
we decomposed the images into smaller blocks wherein the stationarity is more
realistic.

The two monochrome images tested are the standard pictures LENA and
BRAIN. Each picture has 256x256 resolution with 8 bits per pixel. For each
picture, we calculated the first-order correlation coefficients, ph and pv, using the
autocovariance method over the entire frame with the assumption of spatial sta-
tionarity.

This pair of parameters for each image determines the 2D autocorrelation
function. The chosen transform determines the W matrix. The W matrix and the
correlation parameters are then combined to yield coefficient variances. Finally,
these are employed to calculate 2D GTC for the given image, and 8x8 transform.
This figure of merit for the three transforms considered here is converted to deci-
bels and displayed in Table 2.2. Also shown in this table is the statistical measured
performance, which is described in the next section.
b. Statistical Test Performance

In order to check the analytical source correlation models, we used a nonpara-
metric calculation of the variance of each coefficient. The 256x256 frame was
divided into 1024 (32x32), 8x8 blocks. Each block is transformed. Then the
variance of the ( i , j ) coefficient is calculated by averaging over all 1024 blocks.

where m is the block index, and



2.4. PARAMETRIC MODELING OF SIGNAL SOURCES 81

In the present instance, M — L = 32.
These coefficient variances are used to calculate the statistical(measured) test

results tabulated in Table 2.2.
Table 2.2 clearly indicates that the DCT performs best for the two test im-

ages. It also indicates that the generalized correlation model provides the best
representation with results that are very close to the measured ones. The sepa-
rable correlation model, on the other hand predicts a performance that is totally
inconsistent with the measured results.

It is also observed that the GTC measure decreases as the image correlation
decreases. As expected, the superiority of the DCT over the other transforms for
highly correlated sources diminishes for low-correlation sources.
c. Optimum Bit Allocation

The 2D version of optimum bit allocation in Eq. (2.92),

was used to encode the two test images, using the correlation models as the basis
for the calculation of <j2(i, j). We also experimentally determined the coefficient
variances via Eq. (2.216).

These tests confirmed that the generalized-correlation model was the best in
generating a bit allocation matrix close to that obtained by statistical means.
These bit allocation results for B=l bit/pixel are shown in Tables 2.3 and 2.4.
(Clearly scalar quantization requires integer bit allocation.) These tests suggest
that the model-based prediction of bit allocation is accurate, especially at low bit
rates, and could provide the basis for an a priori mask for transform operation and
coding. This provides a basis for totally discarding some of the coefficients a priori.
These coefficients therefore need not be calculated. These tests exercised all of
the theory presented here: ranging over transforms, source models, bit allocations.
and figure of merit.

2.4.6 Performance Comparison of Block Transforms

As mentioned earlier. GTC is a commonly used performance criterion for orthonor-
mal transforms. Its connection to rate-distortion theory makes it meaningful also
from a source coding point of view. The only assumption made in this criterion
is that of the same pdf type for all the coefficient bands as well as for the input
signal. The error introduced from this assumption is acceptable for comparison
purposes. Therefore, energy compaction powers of several different transforms for
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r 'Test ~
linage

LENA

BRAIN
.1

Ph

0.945

0.811

Pv

0.972

0.778

Transform

DOT
MET
WHT
DOT
MET
WHT

Separable
correlation

model
89.26
25.43
59.01
5.63
4.26
4.32

Generalized
isotropic

model
19.93
11.97
15.66
3.62
3.16
3.02

Generalized
correlation

model
22.45
13.07
17.59
3.83
3.37
3.15

Measured

2 L 9 8 ]
1 3 . 8 1 J
14.05
3.78 1
3.17 f

3.66 f

Table 2.2: The 2D GTC of several transforms with TV = 8 for different source
correlation models compared with statistical measurements.

AR(1) signal sources and standard still images are presented in this section. The
results here also include different transform sizes.

Table 2.5 displays the compaction performance of discrete cosine transform
(DCT), discrete sine transform (DST), modified Hermite transform (MHT), Walsh-
Hadamard transform (WHT), Slant transform (ST), Haar transform (HT), and
Karhunen-Loeve transform (KLT) for several different AR(1) sources and with the
transform size TV = 8. The KLT matrix was generated for the AR(1) source with
p — 0.95 and held fixed for all tests. Table 2.6 assumes TV — 16.

These tables demonstrate that the DCT performs very close to the KLT for
AR(1) sources. It was theoretically shown that DCT is the best fixed transform
for AR(1) sources (Jain, 1976).

It is also interesting that the performance of the discrete Legendre transform
is only marginally inferior to that of the DCT, and second best to the KLT. The
energy compaction of all transforms decrease for less correlated signal sources.
Figure 2.1.1 displays the variation of energy compaction of these transforms as
a function of transform size for an AR(1) source with p — 0.95. It is seen that
the energy compaction increases as the transform size increases. It can be easily
shown that for AR(1) sources, when TV —> oo (Prob. 2.20)

the global upper bound of energy compaction is obtained. Figure 2.11 shows that
even for TV = 16, the DCT performs close to G9

TC. One clearly prefers the smaller
transform size because of practical considerations.

Tables 2.7 and Tables 2.8 provide the energy compaction performance of sep-
arable 2D DCT, DLT, DST, MHT, and WHT for the standard monochrome
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(a)
Bitj (bits/coefficient)

y
i
2
3
4
5
6
7
8

(b)

1
6.1
3.6
2.4
1.5
0.9
0.3
-0.2
-0.5

2
4.5
3.4
2.4
1.6
1.0
0.4
0.1
-0.4

3
3.4
2.7
2.2
1.8
1.0
0.4
-0.1
-0.3

4
2.6
2.1
1.9
1.4
1.0
0.5
0.0
-0.3

5
2.0
1.8
1.3
1.3
0.9
0.5
-0.0
-0.3

6
1.5
1.2
1.1
0.9
0.6
0.2
0.0
-0.4

7
1.1
0.9
0.8
0.5
0.4
0.0
-0.3
-0.4

8
0.6
0.6
0.4
0.2
0.1
-0.2
-0.4
-0.4

Bij (bits/coefficient)

yi
2
3
4
5
6
7
8

1
6.08
3.76
2.56
1.83
1.35
1.02
0.79
0.66

2
4.45
2.8
1.9

1.27
0.86
0.57
0.38
0.27

3
3.41
2.22
1.53
0.99
0.63
0.38
0.21
0.11

4
2.68
1.74
1.21
0.77
0.46
0.24
0.09
0.01

5
2.2
1.39
0.96
0.60
0.34
0.14
0.01
-0.05

6
1.83
1.13
0.77
0.47
0.24
0.07
-0.03
-0.1

7
1.59
0.94
0.64
0.38
0.17
0.02
-0.07
-0.14

8
1.44
0.83
0.56
0.32
0.13
-0.0
-0.1

-0.15

Table 2.3: Bit allocation of 8x8 DOT coefficients, using Eq. (2.92) for LENA
image at 1 bit per pixel (bpp) (a) with statistical measurement; (b) generalized
correlation model.
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(a)
J5ji7 (bits/coefficient)

ij
1
2
3
4
5
6
7
3

1
4.6
2.9
2.6
2.3
1.2
1.4
1.3
0.9

2
2.5
2.0
1.5
1.1
0.9
0.7
0.5
0.5

3
2.1
1.4
1.2
1.1
0.8
0.7
0.4
0.5

4
1.6
1.2
1.0
0.9
0.6
0.6
0.5
0.3

5
1.2
1.2
1.0
0.8
0.8
0.6
0.5
0.5

6
1.1
1.0
0.8
0.5
0.5
0.5
0.3
0.5

7
0.9
0.5
0.7
0.5
0.5
0.4
0.4
0.5

8
1.1
1.1
0.8
0.6
0.7
0.7
0.8
0.5

(b)
B{j (bits/coefficient)

yi
2
3
4
5
6
7
8

1
4.23
3.47
2.80
2.16
1.72
1.37
1.16
1.02

2
3.40
2.79
2.24
1.71
1.33
1.04
0.84
0.73

3
2.65
2.17
1.74
1.33
1.01
0.77
0.61
0.51

4
1.96
1.58
1.26
0.95
0.70
0.52
0.39
0.32

5
1.48
1.15
0.90
0.66
0.47
0.33
0.23
0.17

6
1.12
0.84
0.63
0.44
0.29
0.18
0.10
0.05

7
0.88
0.63
0.44
0.28
0.16
0.07
0.01
-0.02

8
0.74
0.50
0.33
0.19
0.09
0.01
-0.03
-0.07

Table 2.4: Bit allocation of 8x8 DOT coefficients, using Eq. (2.92) for BRAIN
image at 1 bpp (a) with statistical measurements (b) generalized correlation model.

test images; LENA, BUILDING, CAMERAMAN, and BRAIN, with N = 8 and
N — 16, respectively.

All the performance results presented in this section prove the DGT superior
to the other known fixed transforms. The DLT performs very closely to the DOT
but the difficulty of implementation renders it impractical.

We may observe that the performance of nonsymmetrical fixed transforms is
not the same for positive and negative values of p. This indicates that the low
arid high frequency basis functions of these transforms are not mirror images.
The filter bank interpretation of block transforms demonstrates this very clearly.
The asymmetrical performance of DOT is easily explained (Akarisu and Haddad.
1990).

Discrete block transforms have been proposed as signal decomposition tech-
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AR(1)

P
0.95
0.85
0.75
0.65
0.50

-0.95
-0.85
-0.75
-0.65
-0.50

8 x 8 Transforms
DOT
7.631
3.039
2.036
1.597
1.273
3.230
2.067
1.673
1.440
1.226

DLT
7.372
2.935
1.971
1.553
1.248
2.393
1.629
1.410
1.284
1.158

DST
4.877
2.642
1.938
1.574
1.277
4.877
2.642
1.938
1.574
1.277

MET
4.412
2.444
1.849
1.534
1.265
4.412
2.444
1.849
1.534
1.265

WHT
6.232
2.601
1.847
1.471
1.217
6.232
2.601
1.847
1.471
1.217

ST
7.314
2.915
1.960
1.546
1.246
3.203
1.859
1.506
1.327
1.172

HT
6.226
2.589
1.799
1.456
1.206
3.204
1.903
1.518
1.323
1.161

KLT
7.666
3.070
2.061
1.616
1.286
7.666
3.070
2.061
1.616
1.286

Table 2.5: Energy compaction performance, GTC-, of transforms for AR(1) sources
with N = 8.

AR(1)
P
0.95
0.85
0.75
0.65
0.50

-0.95
-0.85
-0.75
-0.65
-0.50

16 x 16 Transforms
DOT
8.822
3.294
2.148
1.657
1.301
3.999
2.475
1.881
1.551
1.271

DLT
8.097
3.058
2.013
1.570
1.253
2.065
1.573
1.400
1.283
1.159

DST
6.000
2.984
2.082
1.644
1.303
6.000
2.984
2.082
1.644
1.303

MET
4.718
2.579
1.923
1.575
1.283
4.718
2.579
1.923
1.575
1.283

WET
6.598
2.656
1.836
1.481
1.221
6.598
2.656
1.836
1.481
1.221

ST
8.034
3.019
1.993
1.559
1.250
3.536
1.931
1.537
1.343
1.178

ET
6.580
2.627
1.809
1.459
1.207
3.205
1.905
1.520
1.324
1.161

KLT
8.867
3.326
2.170
1.673
1.309
8.867
3.326
2.170
1.673
1.309

Table 2.6: Energy compaction performance, GTC-, of transforms for AR(1) sources
with N — 16.
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Image
LENA

CAMERAMAN
BUILDING

BRAIN

8 x 8 Transforms
DOT
21.988
19.099
20.083
3.789

DLT
19.497
17.343
18.564
3.686

DST
14.880
13.818
1̂4316™
3.389

MET
13.817
12.584
12.650
3.172

WHT
14.056
13.907
14.116
3.663

Table 2.7: Energy compaction performance, GTC, of 2D transforms for test images
with N'- 8,

Image
LENA

CAMERAMAN
BUILDING

BRAIN

16 x 16 Transforms
DCT

25.655
22.315
23.755
4.188

DST
19.106
17.579
18.097
3.856

MHT
16.435
14.412
14.150
3.393

WHT
14.744
14.654
15.158
3.923

Table 2.8: Energy compaction performance, GTC, of 2D transforms for test images
with N = 16.

niques for almost two decades. They have found a wide spectrum of applications.
Their good performance, especially for highly correlated sources, made them al-
most the only candidate for still image coding applications. DCT has become
the standard transformation for image decomposition. The JPEG, MPEG, and
the other standards include DCT in their adaptive image transform coding al-
gorithms. Section 2.6.4 will briefly discuss the currently available hardware for
real-time image-video coding.

The discontinuities of block transform operations become a problem especially
at the low bit rate still image coding applications. There have been several at-
tempts in the literature to circumvent this "blockiness" problem. One of these,
the lapped orthogonal transform (LOT), is explained next in Section 2.5.

2.5 Lapped Orthogonal Transforms

2.5.1 Introduction

The block transform, particularly the DCT, is now an established technique for
image and speech coding. However, the performance of block transforms is known
to degrade significantly at low bit rates. The "blocking" effect results from the
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Figure 2.11: Energy compaction performance, GTC-, of DCT, DST, MHT, and
WHT as a function of transform size N for AR(1) source with p = 0.95.

independent coding of each subimage and manifests itself as discontinuities at the
subimage boundaries. Several researchers proposed techniques to overcome this
problem (Reeve, and Lim, 1984).

Cassereau, Staelin, and Jager (1989) proposed an overlapping block trans-
form called the lapped orthogonal transform (LOT), which uses pixels in adjacent
blocks to smooth out the discontinuities at the subimage borders. Malvar and
Staelin (1989) proposed a new LOT structure that utilizes the basis functions of
the discrete cosine transform. More recently, the LOT was extended for other
block transforms (Akansu and Wadas, 1992). The LOT has been used as a signal
decomposition vehicle for image coding applications (Haskell, Tzou, and Hsing,
1989).

In this section, we review the properties of the lapped orthogonal transform and
derive an optimal LOT. Malvar's fast LOT algorithm is extended to other block
transforms. The energy compaction performance of several LOTs are compared for
ID AR(1) signal source models as well as for several test images. The effectiveness
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of the LOT in reducing the blocking artifacts is discussed and the ID LOT basis
functions fbr several transforms will be displayed in Fig. 2.14. We will show that
the LOT is a special case of the more general subband decomposition. In a sense,
the LOT is a precursor to the mult irate filter bank.

2.5.2 Properties of the LOT

In conventional transform coding each segmented block of N data samples is mul-
tiplied by 'AH N x N orthonorrnal matrix $ to yield the block of N spectral
coefficients. If the vector data sequence is labeled XG,X_I. ...,^..., where each x^
represents a block of N contiguous signal samples, the transform operation pro-
duces $,; = &x_i- We have shown in Fig. 2.1 that such a transform coder is equivalent
to a multirate filter bank where each FIR filter has N taps corresponding to the
size of the coefficient vector.

But, as mentioned earlier, this can lead to "blockiness" at the border region
between data segments. To ameliorate this effect the lapped orthogonal transform
calculates the coefficient vector $?; by using all N sample values in a^ arid crosses
over to accept some samples from x^i and xi+1. We can represent this operation
by the multirate filter bank shown in Fig. 2.12. In this case, each FIR filter has
L taps. Typically, L — IN] the coefficient 6^ uses N data samples in x_^ N/2
samples from the previous block a^_i, and N/2 samples from the next block xi+i.
We can represent this operation by the noncausal filter bank of Fig. 2.12 where the
support of each filter is the interval [— y, N — I -f y]. The time-reversed impulse
responses are the basis functions of the LOT.

The matrix representation of the LOT is

The N x L matrix P0 is positioned so that it overlaps neighboring blocks5,
typically by N/2 samples on each side. The matrices P1. P2 account for the fact
that the first and last data blocks have only one neighboring block. The Ar rows of

'JIri this section, we indicate a transpose by P , for convenience.
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FQ correspond to the time-reversed impulse responses of the N filters in Fig. 2.12.
Hence, there is a one-to-one correspondence between the filter bank and the LOT
matrix F0.

We want the MN x MN matrix in Eq. (2.220) to be orthogonal. This can be
met if the rows of F0 are orthogonal,

and if the overlapping basis functions of neighboring blocks are also orthogonal,
or

where W is an L x L shift matrix,

A feasible LOT matrix F0 satisfies Eqs. (2.221) and (2.222). The orthogonal
block transforms $ considered earlier are a subset of feasible LOTs. In addition to
the required orthogonality conditions, a good LOT matrix PQ should exhibit good
energy compaction. Its basis functions should have properties similar to those of
the good block transforms, such as the KLT, DCT, DST, DLT, and MET,6 arid
possess a variance preserving feature, i.e., the average of the coefficient variances
equals the signal variance:

Our familiarity with the properties of these orthonormal transforms suggest
that a good LOT matrix FQ should be constructed so that half of the basis func-
tions have even symmetry and the other half odd symmetry. We can interpret this
requirement as a linear-phase property of the impulse response of the multirate
filter bank in Fig. 2.12. The lower-indexed basis sequences correspond to the low
frequency bands where most of the signal energy is concentrated. These sequences
should gracefully decay at both ends so as to smooth out the blockiness at the
borders. In fact, the orthogonality of the overlapping basis sequences tends to
force this condition.

6The basis functions of the Walsh-Hadamard transform are stepwise discontinuous. The as-
sociated P matrix of Eq. (2.227) is ill-conditioned for the LOT.
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Figure 2.12: (a) The LOT as a multirate filter bank: (b) Noncausal filter impulse
response.

2.5.3 An Optimized LOT

The LOT computes

where x is the L dimensional data vector, P0 the N x L LOT matrix, and 0 the
N dimensional coefficient vector. The stated objective in transform coding is the
maximization of the energy compaction measure GTC-, Eq. (2.97), repeated here
as
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where of = E{0^} is the variance in the ith transform coefficient and also the ?'th
diagonal entry in the coefficient covariance matrix

From Eq. (2.225), the globally optimal P0 is the matrix that minimizes the denom-
inator of GTC 5 that is, the geometric mean of the variances {of}. Cassereau (1989)
used an iterative optimization technique to maximize GTC- The reported difficulty
with their approach is the numerical sensitivity of iterations. Furthermore, a fast
algorithm may not exist.

Malvar approached this problem from a different perspective. The first re-
quirement is a fast transform. In order to ensure this, he grafted a perturbation
on a standard orthonormal transform (the DOT). Rather than tackle the global
optimum implied by Eq. (2.226), he formulated a suboptimal or locally optimum
solution. He started with a feasible LOT matrix P preselected from the class
of orthonormal transforms with fast transform capability and good compaction
property. The matrix P is chosen as

where De and D0 are the —• x N matrices consisting of the even and odd basis
functions (rows) of the chosen N x N orthonormal matrix and J is the N x N
counter identity matrix

This selection of P satisfies the feasibility requirements of Eqs. (2.221) and (2.222).
In this first stage, we have

with associated covariance

So much is fixed a priori, with the expectation that a good transform, e.g., DCT.
would result in compaction for the intermediate coefficient vector y.
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Figure 2.13: The LOT optimization configuration.

In the next stage, as depicted in Fig. 2.13, we introduce an orthogonal matrix
Z, such that

and

The composite matrix is now

which is also feasible, since

The next step is the selection of the orthogonal matrix Z, which diagonalizes
ROQ. The columns of Z are then the eigenvectors {£.} of Ryy, and

Since Ryy is symmetric and Toeplitz, half of these eigenvectors are symmetric and
half are antisymmetric, i.e.

The next step is the factorization of Z into simple products so that coupled
with a fast P such as the DCT, we can obtain a fast LOT. This approach is clearly
locally rather than globally optimal since it depends on the a priori selection of
the initial matrix P.

The matrices P\ and PI associated with the data at the beginning and end
of the input sequence need to be handled separately. The N/2 points at these
boundaries can be reflected over. This is equivalent to splitting De into
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where He is the N/2 x N/2 matrix containing half of the samples of the even
orthonormal transform sequences and J* is N/2 x N/2. This He is then used in
the following (N -f ^) x N end segment matrices

Malvar used the DCT as the prototype matrix for the initial matrix P. Any
orthonormal matrix with fast algorithms such as DST or MHT could also be used.
The next step is the approximate factorization of the Z matrix.

2.5.4 The Fast LOT

A fast LOT algorithm depends on the factorization of each of the matrices P and
Z. The first is achieved by a standard fast transform, such as a fast DCT. The
second matrix Z must be factored into a product of butterflies. For a DCT-based
P and an AR(1) source model for Rxx with correlation coefficient p close to 1,
Malvar shows that Z can be expressed as

where Z% and / are each 4- x ^, and Z^ is a cascade of plane rotations

where each plane rotation is

The term /j_i is the identity matrix of order i — 1, and Y(0i) is a 2 x 2 rotation
matrix
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Figure 2.14: LOT (16 x 8) bases from the left: DOT, DST, DLT, and MET,
respectively. Their derivation assumes AR(1) source with p = 0.95.



2.5. LAPPED ORTHOGONAL TRANSFORMS 95

DOT
DLT
DST
MHT

LOT, Markov Model, p = 0.95
Zi

Oi #2 03

I
0.005 TT
0.104 7T

0.152 TT

0.079 TT
0.149 TT
0.121 7T

0.105 7T

0.123 TT
0.063 TT

^2

thetai
0.130 7T

0.117 7T

0.0177 7f
0.0000

02

0.160 7T

0.169 TT
0.0529 TT
0.0265 TT

__J?3_ i
0.130 7T

0.1 56 TT
0 .0375 TT
0.0457 TT

Table 2.9: Angles that best approximate the optimal LOT. TV = 8.

For the other orthonormal transforms considered here, namely DST, DLT, and
MHT, and an AR(1) source model

and Z2 as in Eq. (2.240).
Finally, the resulting PQ for the general case can be written as

(2.245)
This approximate factorization of Z into log^N — 1) butterflies is found to be
satisfactory for small N < 32. The rotation angles that best approximate LOTs
of size 16 x 8 for the DCT, DST, DLT, and MHT are listed in Table 2.9.

2,5.5 Energy Compaction Performance of the LOTs

Several test scenarios were developed to assess the comparative performance of
LOTs against each other, and versus conventional block transforms for two signal
covariance models: Markov, AR(1) with p — 0.95, and the generalized correlation
model, Eq. (2.197) with p - 0.9753 and r = 1.137. The DCT, DST, DLT, and
MHT transform bases were used for 8 x 8 block transforms and 16 x 8 LOTs.

The testing scenario for the LOT was developed as follows:
(1) An initial 16 x 8 matrix P was selected corresponding to the block transform
being tested, e.g., MHT.
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AR(l)Input
P

0.95
0.85
0.75
0.65
0.50

8 x 8 Transform s
DOT
7.6310
3.0385
2.0357
1.5967
1.2734

DST
4.8773
2.6423
1.9379
1.5742
1.2771

DLT
7.3716

_2.9354
1.9714
1.5526
1.2481

MET
4.4120
2.4439
1.8491
1.5338
1.2649

Table 2.10(a): Energy compaction GTC m ID transforms for AR(1) signal source
models.

Markov Model, p = 0.95
AR(1) Input

P
0.95
0.85
0.75
0.65
0.50

LOT (16 x 8)
DCT

8.3885
3.2927
2.1714
1.6781
1.3132

DST
8.3820
3.2911
2.1708
1.6778
1.3131

DLT
8.1964
3.2408
2.1459
1.6633
1.3060

MET
8.2926
3.2673
2.1591
1.6710
1.3097

Table 2.10(b): Energy compaction GTC in ID transforms for AR(1) signal source
models.

Generalized Correlation Model
AR(1) Input

P
0.95
0.85
0.75
0.65
0.50

LOT (16 x 8)
DCT

8.3841
3.2871
2.1673
1.6753
1.3117

DST
8.3771
3.2853
2.1665
1.6749
1.3115

DLT
8.1856
3.2279
2.1364
1.6565
1.3023

MET
8.2849
3.2580
2.1523
1.6663
1.3071

Table 2.10(c): Energy compaction GTC in ID transforms for AR(1) signal source
models.
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(2) Independently of (1), a source covariance Rxx was selected, either All(l),
p = 0.95. or the generalized correlation model.
(3) The Z matrix is calculated for P in (1) and Rxx in (2).
(4) The LOT of steps (1), (2), and (3) was tested against a succession of test
inputs, both matched and mismatched with the nominal Rxx- This was done to
ascertain the sensitivity and robustness of the LOT and for comparative evaluation
of LOTs and block transforms.

Table 2.10 compares compaction performance for AR(1) sources when filtered
by 8 x 8 transforms, 16x8 LOTs optimized for Markov model, p — 0.95, and 16 x 8
LOTs optimized for the generalized-correlation model. In the 8x8 transforms we
notice the expected superiority of DCT over other block transforms for large p
input signals. Table 2.10 reveals that the 16 x 8 LOTs are superior to the 8 x 8
block transforms, as would be expected. But we also see that all LOTs exhibit
essentially the same compaction. This property is further verified by inspection of
the generalized-correlation model. Hence, from a compaction standpoint all LOTs
of the same size are the same independent of the base block transform used.

Table 2.11 repeats these tests, but this time for standard test images. These
results are almost a replay of Table 2.10 and only corroborate the tentative con-
clusion reached for the artificial data of Table 2.10.

The visual tests showed that the LOT reduced the blockiness observed with
block transforms. But it was also noticed that the LOT becomes vulnerable to
ringing at very low bit rates.

Our broad conclusion is that the 16 x 8 LOT outperformed the 8 x 8 block
transforms in all instances and that the compaction performance of an LOT of
a given size is relatively independent of the base block matrix used. Hence the
selection of an LOT should be based on the simplicity and speed of the algorithm
itself. Finally, we conclude that the LOT is insensitive to the source model as-
sumed and to the initial basis function set. The LOT is a better alternative to
conventional block transforms for signal coding applications. The price paid is the
increase in computational complexity.

2.6 2D Transform Implementation

2.6.1 Matrix Kronecker Product and Its Properties

Kroriecker products provide a factorization method for matrices that is the key
to fast transform algorithms. We define the matrix Kronecker product and give a
few of its properties in this section.
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Block Transforms

Images
Lena
Brain
Building
Cameraman

8 x 8
DOT
21.98
3.78

20.08
19.10

DST
14.88
3.38

14.11
13.81

DLT
19.50
3.68

18.56
17.34

MET
13.82
3.17

12.65
12.58

Table 2.11 (a): 2D energy compaction GTC for the test images.

Markov Model, p = 0.95

Images
Lena
Brain
Building
Cameraman

LOT (16 x 8)
DCT
25.18
3.89

22.85
21.91

DST
24.98
3.87

22.81
21.82

DLT
23.85
3.85

21.92
21.09

MET
24.17
3.84

22.34
21.35

Table 2.11(b): 2D energy compaction GTC for the test images.

Generalized Correlation Model

Images
Lena
Brain
Building
Cameraman

LOT (16 x 8)
DCT
25.09
3.88

22.70
21.78

DST
24.85
3.86

22.65
21.67

DLT
23.66
3.83

21.65
20.83

MET
23.98
3.83

22.11
21.13

Table 2.11(c): 2D energy compaction GTC f°r the test images.
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Markov Model, p — 0.95

Images
Lena
Brain
Building
Cameraman

LOT (16 x 8)
DCT

"̂ 145
3.88

22.47
21.48

DST
24.02
3.83

22.13
21.19

DLT
23.78
3.85

21.86
21.04

MHT
23.62
3.83

22.18
21.12

Table 2.12: Energy compaction GTC of LOTs that employ the estimated Z-
matrices.

The Kronecker product of an (Ni x A^) matrix A and (Mi x M2) matrix B is
an (N\M\ x ]V2M2) matrix C defined as

where

The Kronecker products A ® B and B <8> A are not necessarily equal. Several
important properties of matrix Kronecker products are given as (Jain, 1989)

2.6.2 Separability of 2D Transforms

A general 2D orthonormal transformation of an N x N image array F is defined
by Eq. (2.42) and repeated here as
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This 21) transform operation requires O(7V4) multiplications and additions for
a real signal F and real transform kernel $(i, j; k, I).

Let us now map the image array F and the coefficient array 0 into vectors /
and 0 of size N2 each by row ordering as

Let us also create an N2 x N2 matrix T from the 2D transform kernel 3>(z, j: k, /).
Now, we can rewrite the 2D transform of size N in Eq. (2.249) as a ID transform
of size N2

The relations in Eqs. (2.249) and (2.251) are identical and both require the
same number of multiplications and summations.

The ID transformation in Eq. (2.251) is called separable if the basis matrix T
can be expressed as a Kronecker product

In this case the ID transform of Eq. (2.251) is expressed as the separable 2D
transform

where F and 0 are square matrices obtained by row ordering of vectors / and <9.
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Eq. (2.253) becomes

Equation (2.255) is the definition of a 2D separable unitary transform that was
previously encountered as Eq. (2.45).

The ID transform given in Eq. (2.251) requires O(JV4) multiplications and
additions for real / and T. The separable 2D unitary transform in Eq. (2.256)
implies O(JV3) multiplications and additions. This reduction of computational
complexity is significant in practice.

2.6.3 Fast 2D Transforms

The separability of the 2D unitary transform kernel provides the foundation for
a reduction of computations. This feature allows us to perform row and column
transform operations in sequence, and the separable 2D transform is now given as

where S is an N x N intermediary matrix.
Now, the separability of the unitary matrix $ is examined for further compu-

tational savings.
In Eq. (2.257) let the vector s? be the jth column of S with transform

where 9_j is the j'th column of 0. This product requires O(JV2) multiplications
and summations. If the matrix $ can be factored as a Kronecker product, then

where matrices &l> and $^2^ are of size (\/~N x x/TV). The vector Sj can now be
row ordered into the matrix S^' of size (x/JV x \//V) and the ID transform of
Eq. (2.258) is now expressed as a separable 2D transform of size (V~N x V^V) as
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The matrix product in this last equation requires O(2NvN) multiplications and
summations compared to O(N2), which was the case in Eq. (2.258). All row-
column transform operations of the separable 2D transform in Eq. (2.257) can
be factored into smaller-sized separable transforms similar to the case considered
here.

Changing a ID transform into a 2D or higher dimensional transform is one of
the most efficient methods of reducing the computational complexity. This is also
called multidimensional index mapping and in fact, this is the main idea behind
the popular Cooley-Tukey and Winograd algorithms for DFT (Burrus and Parks,
1985).

The index mapping breaks larger size ID transforms into smaller size 2D or
higher dimensional transforms. It is clear that this mapping requires additional
structural features from the transform basis or matrix $. The DFT, DCT, DST,
WHT, and few other transforms have this property that provides efficient trans-
form algorithms.

The readers with more interest in fast transform algorithms are referred to
Burrus and Parks (1985), Blahut (1984), Rao and Yip (1990)-and IEEE Signal
Processing Magazine (January 1992 issue) for detailed treatments of the subject.

2.6.4 Transform Applications

The good coding performance of the DCT makes that block transform the prime
signal decomposition tool of the first-generation still image and video codecs. The
Joint Photographic Experts Group (JPEG) is a joint committee of the Interna-
tional Telegraph and Telephone Consultive Committee (CCITT) and the Interna-
tional Standards Organization (ISO) which was charged with defining an image
compression standard for still frames with continuous tones (gray scale or color).
This standard is intended for general purpose use within application-oriented stan-
dards created by ISO, CCITT, and other organizations. These applications in-
clude facsimile, video-tex, photo-telegraphy and compound office documents, and
a number of others. On the other hand, CCITT has standardized a coding algo-
rithm for video telephony and video conferencing at the bit-rate range of 64 to
1,920 kb/s, H.261. Similar to this, ISO's Moving Picture Experts Group (MPEG)
has studied a possible coding standard for video storage applications below 1.5
Mb/s . This capacity allows a broad range of digital storage applications based
on CD-ROM, digital audio tape (DAT), and Winchester technologies. Image and
video codecs are now a reality for certain bit rates and will be feasible within 2 to
3 years for a wide range of channel capacities or storage mediums. The advances
of computing power and digital storage technologies along with new digital signal
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processing techniques will provide engineering solutions to image and video coding
at various rates.

All of the present image and video coding standards, e.g., MPEG II, employ 2D
DCT as their signal decomposition technique. In principle, all of them perform 8 x
8 forward 2D DCT on 8x8 image or motion compensated frame difference (MCFD)
blocks and obtain the corresponding 8x8 transform or spectral coefficients. These
are quantized at the desired rate or distortion level. The quantization procedures
incorporate the response of the human visual system to each spectral coefficient.
The quantizer outputs are entropy encoded (Huffman or arithmetic encoding)
and sent to the receiver. The decoder inverses the operations of the encoder to
reconstruct the image or video frames at the receiver. The coding problem is
discussed later in Chapter 7.

October 1991 and March 1992 issues of IEEE Spectrum give a very nice
overview of visual communications products and coding techniques. Interested
readers are referred to these journals for further information.

Although coding is one of the most popular transform applications, there are
many emerging transform applications in multimedia and communications. Some
of these applications are presented in Chapter 7. More detailed treatment of
transform applications can be found in Akansu and Smith (1996) and Akansu and
Medley (1999) for further studies.

2.7 Summary

The concept of the unitary block transform was developed from classical discrete-
time signal expansions in orthogonal functions. These expansions provided spec-
tral coefficients with energies distributed nonuniformly among the coefficients.
This compaction provided the basis for signal compression.

The input-signal dependent KLT was shown to be the optimal block transform
from a compaction standpoint. The reason for the popularity of the DCT as a
compressive block transform was established by showing it to be very close to the
KLT for highly correlated AR(1) sources.

Several block transforms—the DCT, MHT, WHT, etc.—were derived and their
compaction performance evaluated both theoretically and for standard test im-
ages. The performance tables reinforce the superiority of the DCT over all other
fixed transforms.

The LOT, or lapped orthogonal transform, was proposed as a structure that
would reduce the blockiness observed for block transforms (including the DCT) at
low bit rates. Analysis and tests demonstrated the perceptible improvement of the
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DCT-based LOT over the DCT block transform. But it was also found that an
LOT derived from other unitary transformations performed as well as the DCT-
based LOT. The choice of LOT therefore could be based on other considerations,
such as fast algorithms, parallel processing, and the like.

Both the block transform and the LOT were shown to be realizable as an
M-band filter bank, which is the topic of the next chapter.
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Chapter 3

Theory of Subband
Decomposition

The second method of mutiresolution signal decomposition developed in this text
is that of subband decomposition. In this chapter we define the concept, dis-
cuss realizations, and demonstrate that the transform coding of Chapter 2 can
be viewed as a special case of a multirate filter bank configuration. We had al-
luded to this in the previous chapter by representing a unitary transform and the
lapped orthogonal transform by a bank of orthonormal filters whose outputs are
subsampled. The subband filter bank is a generalization of that concept.

Again, data compression is the driving motivation for subband signal coding.
The basic objective is to divide the signal frequency band into a set of uncorrelated
frequency bands by filtering and then to encode each of these subbands using a
bit allocation rationale matched to the signal energy in that subband. The actual
coding of the subband signal can be done using waveform encoding techniques
such as PCM, DPCM, or vector quantization.

The subband coder achieves energy compaction by filtering serial data whereas
transform coding utilizes block transformation. If the subbands have little spillover
from adjacent bands (as would be the case if the subband filters have sharp cutoffs),
the quantization noise in a given band is confined largely to that band. This
permits separate, band-by-band allocation of bits, and control of this noise in
each subband.

In Fig. 1.2, we described various structural realizations of the subband config-
uration. Starting with the two-channel filter bank, we first derive the conditions
the filters must satisfy for zero aliasing and then the more stringent requirements
for perfect reconstruction with emphasis on the orthonormal (or paraunitary) so-

113
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ration. Expanding this two-band structure recursively in a hierarchical subband
tree generates a variety of multiband PR, realizations with equal or unequal band
splits, as desired.

Following this, we pursue a direct attack on the single level M-band filter bank
and derive PR conditions using an alias-component (AC) matrix approach and
the polyphase matrix route. Prom the latter, we construct a general time-domain
representation of the analysis-synthesis system. This representation permits the
most general PR conditions to be formulated, from which various special cases can
be drawn, e.g., paraunitary constraints, modulated filter banks, and orthonormal
LOTs.

This formulation is extended to two dimensions for the decidedly nontrivial
case of nonseparable filters with a nonrectangular subsampling lattice. As an
illustration of the freedom of the design in 2D filter banks, we describe how a
filter bank with wedge-shaped (fan filter) sidebands can be synthesized in terms
of appropriate 2D filters and decimation lattice.

In this second edition, we have expanded our scope to include a section on
transmultiplexers. These systems, which find wide application in telecommunica-
tions, can be represented as synthesis/analysis multirate filter banks. These are
shown to be the conceptual dual of the analysis/synthesis subband codecs whose
major focus is data compression.

3.1 Multirate Signal Processing

In a multirate system, the signal samples are processed and manipulated at differ-
ent clock rates at various points in the configuration. Typically, the band-limited
analog signal is sampled at the Nyquist rate to generate what we call the full band
signal {x(n)}, with a spectral content from zero to half the sampling frequency.
These signal samples can then be manipulated either at higher or lower clock
rates by a process called interpolation or decimation. The signal must be properly
conditioned by filters prior to or after sampling rate alteration. These operations
provide the framework for the subband signal decomposition of this chapter.

3.1.1 Decimation and Interpolation

The decimation and interpolation operators are represented as shown in Figs. 3.1
and 3.3, respectively, along with the sample sequences. Decimation is the process
of reducing the sampling rate of a signal by an integer factor M. This process
is achieved by passing the full-band signal {x(n}} through a (typically low-pass)
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Figure 3.1: The decimation operation: (a) composite filter and down-sampler, (b)
typical sequences.
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antialiasing filter h(n), and then subsarnpling the filtered signal, as illustrated in
Fig. 3.1 (a).

The subsampler, or down-sampler as it is also called in Fig. 3.1 (a), is repre-
sented by a circle enclosing a downward arrow and the decimation factor M . The
subsarnpling process consists of retaining every Mth sample of ;r(n), and relabeling
the index axis as shown in Fig. 3.1(b).

Figure 3.1(b) shows an intermediate signal x (n), from which the subsampled
signal y(n) is obtained:

The intermediate signal x (n) operating at the same clock rate as x(n) can be
expressed as the product of x(n) and a sampling function, the periodic impulse
train ?'(n),

But i(n) can be expanded in a discrete Fourier series (Haddad and Parsons, 1991):

-, M-l

Hence

Therefore the transform is simply

Using W = e-i
2«/M, this becomes

On the unit circle z = eja;, the frequency response is just



3.1. MULTIRATE SIGNAL PROCESSING 117

This latter form shows that the discrete-time Fourier transform is simply the sum
of M replicas of the original signal frequency response spaced 2?r/M apart, [This
may be compared with the sampling of an analog signal wherein the spectrum
of the sampled signal x(n] = xa(nTs) is the periodic repetition of the analog
spectrum at a spacing of 2ir/Ts.}

Next we relabel the time axis via Eq. (3.2), which compresses the time scale
by M. It easily follows that

or

and

Using Eq. (3.5), the transform of the M subsampler is

or

Thus the time compression implicit in Eq. (3.2) is accompanied by a stretching
in the frequency-domain so that the interval from 0 to 7r/M now covers the band
from 0 to TT. It should be evident that the process of discarding samples can lead
to a loss in information. In the frequency-domain this is the aliasing effect as
indicated by Eq. (3.6). To avoid aliasing, the bandwidth of the full band signal
should be reduced to ±7r/M prior to down-sampling by a factor of M. This
is the function of the antialiasing filter h(n). Figure 3.2 shows spectra of the
signals involved in subsampling. These correspond to the signals of Fig. 3.1(b).
[In integer-band sampling as used in filter banks the signal bandwidth is reduced
to ±[ff, (k+^} prior to down-sampling. See Section 3.2.1.]

Interpolation is the process of increasing the sampling rate of a signal by
the integer factor M. As shown in Fig. 3.3(a), this process is achieved by the
combination of up-sampler and low-pass filter g(ri). The up-sampler is shown
symbolically in Fig. 3.3(a) by an upward-pointing arrow within a circle. It is
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Figure 3.2: Frequency spectra of signals in down-sampling drawn for M = 4,

defined bv

This operator inserts (M — 1) zeros between sample values and reindexes the time
scale as shown in Fig. 3.3(b). Effectively, the clock rate increases by a factor of
M.

Up-sampling has two effects. First, stretching the time axis induces a com-
pression in frequency; second, forcing the "interpolated" signal to pass through
zero between samples of x(n) generates high-frequency signals or images. These
effects are readily demonstrated in the transform domain by

or

Figure 3.4 illustrates this frequency compression and image generation for
M = 4. Observe that the frequency axis from 0 to 2?r is scale changed to 0



3.1. MULTIRATE SIGNAL PROCESSING 119

Figure 3.3: (a) Up-sampling operation, (b) input and output waveforms for M — 4.

Figure 3.4: Frequency axis compression due to up-sampling for M = 4.
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to 27T/M and periodically repeated.1 The purpose of the low-pass filter g(n) is to
eliminate these images by smoothing the up-sampled signal.

It is easy to show (Prob. 3.5) that the time-domain representations of the
declinator and interpolator of Figs. 3.1 (a) and 3.3(b) are, respectively.

The up- and down-sampling operations have made these systems time-varying.
Shift invariance requires that u(n) —> y ( n ) , which implies that u(n — BO) —>• y(n —
no). We see from Eq. (3.13) that this latter condition is satisfied in the decimator
only for no a multiple of M. Similar statements can be argued for the interpolator.

Now consider what happens if we position the down-sampler and up-sampler
back-to-back, as in Fig. 3.5. We can recognize the interpolator output v(n) as the
intermediate signal x (n) in Fig. 3.1. Hence V(z) in this case reduces to X (z) in
Eqs. (3.5) and (3.6); i.e., V(z) - ̂  E^1 X(zWk).

Sketches of the spectra of these signals are shown in Fig. 3.6. The input
signal spectrum in Fig. 3.6(a) has a bandwidth greater than ir/M for M — 4,
so aliasing is expected. Three of the four terms in Eq. (3.10) are displayed as
(b), (c), and (d) in that diagram; when all four are added together we obtain the
decimated spectrum of (e), which shows the aliasing due to overlap of the frequency
bands. Up-sampling compresses the frequency axis, as in Fig. 3.6(f), and induces
the images. Therefore the spectrum of the signal following down-sampling and
up-sampling exhibits both aliasing (the original bandwidth is too large for the
decimation parameter used) and the images that are always the consequence of
up-sampling. (See Problems 3.1, 3.2)

For the polyphase signal decomposition in the next section, we need to ma-
nipulate transfer functions across up- and down-samplers. The basic results are
illustrated in Fig. 3.7. We can establish these equivalences by straightforward use?
of the defining equations. For example, the output of the down-sampler (filter) in
Fig. 3.7(a) is

rt .T 1

1 Classically, interpolation is the process of fitting a smooth continuous curve between sample
values. The raultirate DSP community, however, uses the term to force zeros between samples
followed by a smoothing filter. Some authors use the term "expander" to indicate specifically the
| M operator. The "interpolator" is the composite of up-sampler followed by a filter. Similarly
the | M operation is sometimes called a "compressor." A filter followed by j M can then be
termed as a "decimator."
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Figure 3.5: Typical signals in a down-sampler up-sampler for M = 4.

For the structure just to the right, we see that

Passing through the down-sampler gives the output transform:
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Figure 3.6: The spectra of signals shown in Fig. 3.5.
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Figure 3.7: Equivalent structures.

This is the same as Y(z) obtained previously. In a similar way, we can show
the equivalence of the representations in Fig. 3.7(b). (See Problem 3.8; see also
Prob. 3.5 for time-domain)

3.1,2 Polyphase Decomposition

To prevent or reduce the aliasing inherent in the subsampling operator, an an-
tialiasing filter—typically low-pass— is usually placed in front of the down-sampler
as in Fig. 3.8(a). We will show that this combination can be represented by the
polyphase decomposition shown in Fig. 3.8(b), and given explicitly by

where

The impulse response of the fcth polyphase filter is simply a subsampling of h(n +

The proof is straightforward. We simply expand H(z) and group terms

H(z) = ho + hiz~l + h2z~2 + ...

From the latter expansion, we recognize that H(z) can be written as
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Figure 3.8: (a) Filter followed by down-sampler; (b) polyphase decomposition; (c)
alternative polyphase network representation.

with Gk(z] given by Eq. (3.15). More simply put, gu(n) is just a down-sampling
of h(n) shifted by k.

Similarly, we can show that the polyphase decomposition of the up-sampier
and filter combination is as illustrated in Fig. 3.9. First H(z] in Fig. 3.9(a) is
replaced by the polyphase bank from point (1) to point (2) in Fig. 3.9(c), Shifting
the up-sampler to the right using the equivalence suggested by Fig. 3.7(b) then
yields the composite structure of Fig. 3.9(b).

Equation (3.15) represents the polyphase components G^(z] in terms of the
decimated samples {h(k + IM}}. To cast this in the transform-domain, we note
that gr(n) is an M-fold decimation of h(n -f- r). Therefore with
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Figure 3.9: Polyphase decomposition of interpolator.

and using Eq. (3.9) for the transform of a decimated signal, we get

1 M-l

zr/M

~w
and, on the unit circle

The five Eqs. (3.14)-(3.18) completely define the polyphase analysis and synthesis
equations. (See Problems 3.3, 3.4)
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Two simple applications of polyphase decomposition provide a first look at the
role of this powerful representation for filter synthesis. In the first case, we consider
the realization of an ideal low-pass filter that functions as an ideal antialiasing
filter, as shown in Fig 3.10 by a polyphase filter bank.

If H(&>") is bandlimited to ±^, then H(e^M) occupies the full band [-TT, TT}.
Moreover, the other terms {#(eJ'(a)~27rfc)/M), k > 0} do not overlap onto [—TT, TT .
Hence, there is no aliasing, and only the k = 0 term in Eq. (3.18) contributes to
dJf>3u\. so that

or

For the case that H(e^UJ) is the ideal low-pass filter of Fig. 3.10, the polyphase
components in Eq. (3.18) reduce to

Thus, the polyphase representation is just a bank of all-pass filters with leading
linear-phase, as in Fig. 3.11. We have effectively replaced the requirement of the
step discontinuity in the ideal H(e^UJ) by a bank of all-pass networks. The linear-
phase characteristic of the all-pass now becomes the approximation problem.

Figure 3.10: Ideal antialiasing filter.

In passing we note that the presence of the bank of decimators is no problem.
In fact, they permit us to operate the all-pass filters at the reduced clock rate.

The second application is the uniform filter bank of Fig. 3.12. The frequency
response of each filter is just a shifted version of the low-pass prototype HQ(€^)
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Figure 3.11: Polyphase realization of decimated ideal low-pass filter.

Figure 3.12: Uniform filter bank.

Applying the polyphase decomposition to HQ(Z) gives

Then
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We note that G\ is independent of m.
Stacking the equations in Eq. (3.20)

The matrix in Eq. (3.21) is just the DFT matrix; therefore the uniform filter bank
of Fig. 3.12 can be realized by the polyphase decomposition of HQ(Z) followed by
the DFT as in Fig. 3.13.

Figure 3.13: Polyphase-DFT realization of a uniform filter bank.

3.2 Bandpass and Modulated Signals

In this section we look at bandpass signals and examine how modulation and
demodulation can be achieved by decimation and interpolation. The first case
considered is that of integer-band sampling. This is followed by quadrature mod-
ulation of bandpass signals.
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3.2.1 Integer-Band Sampling

Suppose we have a signal with spectrum X(eJu] as shown in Fig. 3.14(b). Let
the frequency band from 0 to TT be split into M equal bands (M = 4 in the
illustration). As shown in Fig. 3.14(a), the signal is filtered by the ideal band-pass
filter jE/2 to isolate Band 2, and then down-sampled by M = 4. This down-
sampling effectively heterodynes Band 2 down to DC as shown in Fig. 3.14(e) and
stretches it to occupy the entire frequency axis [0, TT]. The down-sampler performs
the dual tasks of modulation (heterodyning) and sampling rate reduction.

The process of reconstructing the information in Band 2 is simply the inverse
of the analysis section. The low-frequency signal Y^ie^} is up-sampled by M — 4
to give K2'(e^) = Y2(e

jMuJ) as shown in Fig. 3.14(d). Note that a replica of Band
2 occupies the original band [?r/2, 37T/4]. The second band-pass filter removes the
images and retains only Band 2 in its original frequency location. The signal at
point 5 is therefore equal to that at point 2.

A parallel bank of band-pass filters can be used to separate the (M — 4)
bands. The down-sampler heterodynes these into the low-frequency region. These
signals can then be quantized, transmitted, and reconstructed at the receiver by
up-sampling and band-pass filtering.

There is one small caveat, however. It can be shown that the odd-indexed
bands are inverted by the heterodyning operation. To obtain the noninverted
version, we can simply multiply Vj(n) by (—l)n for j = 1,3. However, there is no
need for this, since the odd-indexed interpolators can handle the inverted bands.

3.2.2 Quadrature Modulation

An alternative to the integer-band sampling is the more conventional approach to
heterodyning, namely sinusoidal modulation. Suppose the real signal in question
x(n) is a band-pass signal with the spectrum illustrated in Fig. 3.15. This is
deliberately drawn to suggest an asymmetric pattern about the center frequency
LJQ. We can shift the frequency spectrum down to DC and then subsample without
aliasing by employing the configuration shown in Fig. 3.16.

The spectra of the signals at various points in the modulator-demodulator are
shown in Fig. 3.17. For real x(ri) we have
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Figure 3.14: Integer-band sampling configuration.
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Figure 3.15: The spectrum of a band-pass signal.

Figure 3.16: Quadrature modulation and demodulation, and frequency reduction.

At points (1) and (2) the quadrature modulation generates the spectra

The low-pass filter in the analysis stage removes the images at ±2u;o, leaving us
with the sum and difference spectra at points (3) and (4), respectively, with band-
widths ±A/2. Down-sampling stretches these spectra by a factor of M. If the
original bandwidth is (A/2) = (TT/M), we obtain the spectra shown at points (5)
and (6). The up-sampler compresses the frequency axis as at points (7) and (8).
Then the synthesis low-pass filter removes all lobes except the lobe around DC.

Quadrature sinusoidal modulation again shifts these spectra to ±O>Q. Finally,
addition of the two signal components gives the reconstructed signal at point (13).
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Figure 3.17: Frequency spectra of signals in the quadrature modulator-
demodulator.
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Figure 3.18: (a) Frequency response of half-band filter; (b) impulse response of
half-band filter.
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This second method of modulation and down-sampling is an alternative to the
band-pass filter associated with the integer-band approach. Since we can choose
the center frequency u;o, this method tends to be more robust and less constrained.

3.3 Mth Band, Mirror, and Power Complementary
Filters

Certain classes of filters will appear frequently in the subband filter structures of
the rest of this chapter. In this section, we define and explore the special properties
of these filters.

3.3.1 Mth Band Filters

A half-band filter (Mintzer, 1982) is an FIR filter with the following frequency
response features:

That is, H(e^) is a real even function ofaj with odd symmetry about JTr/2, JfH(l)],
as indicated in Fig. 3.18. The first condition implies h(ri) — h(—n), i.e., a real,
even sequence. Furthermore, since H(eju;) <-» h(n) = h(—ri), then

The second condition now implies

with the solution

or more succinctly h(1n) — ^8(n). Hence, the even-indexed samples of h(n],
except n = 0, are zero.(Prob. 3.7)

The zeros in the impulse response reduce the number of multiplications re-
quired by almost one-half, while the symmetry about 7r/2 implies an equal ripple
in passband and stopband.



3.3. MTH BAND, MIRROR, & POWER COMPLEMENTARY FILTERS 135

The polyphase expansion of this half-band filter with M = 2 reduces to

The Mth band filter is an extension of the half-band. In the time-domain, it
is defined as a zero-phase FIR filter with every Mth sample equal to zero, except
n = 0,

We can expand such an H(z] in polyphase form and obtain

Evaluating G0(z
M] from Eq. (3.17) gives

or

which represents a generalization of Eq. (3.22). (Prob. 3.15)

3.3.2 Mirror Image Filters

Let ho(n) be some FIR low-pass filter with real coefficients. The mirror filter is
defined as

or, equivalently, in the transform-domain,

Using the substitution u —> f — u;, and noting that the magnitude is an even
function of a;, leads to
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This last form demonstrates the mirror image property of HQ and HI about uj —
7T/2, and is illustrated in Fig. 3.19(a); hence, the appellation quadrature, mirror
filters, or QMF. The pole-zero patterns are also reflected about the imaginary
axis of the Z-plane, as required by Eq. (3.29), as shown in Fig. 3.19(b). These
QMFs were used in the elimination of aliasing in two-channel subband coders in
the seminal paper by Esteban arid Galand (1977).

Figure 3.19: (a) Frequency responses of quadrature mirror filters; (b) pole-zero
patterns.
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3.3.3 Power Complementary Filters

The filter pair {Ho(z), H\(z}} are said to be power complementary if

The M-band extension is evidently

As shown in Vaidyanathan (Jan. 1990), the M polyphase components {Gk(z), 0 <
k < M — 1} of some filter H(z) are power complementary if and only if Q(z] =
H(z}H(z~~~1} is an Mth band filter.(Prob. 3.9) These power complementary filters
will play a role in IIR subband filter banks in Section 3.5.

3.4 Two-Channel Filter Banks

The two-channel filter bank provides the starting point for the study of subband
coding systems. The purpose of a subband filter system is to separate the signal
into frequency bands and then to allocate encoding bits to each subband based on
the energy in that subband.

In this section we derive the requirements and properties of a perfect recon-
struction, two-channel subband system. This two-band case is extended into an
M-band structure by a binary, hierarchical, subband tree expansion. We then
show how another tree structure, the dyadic tree, relates to the multiresolution
pyramid decomposition of a signal. The results of this two-band case thus provide
us with a springboard for the more general M-band filter bank of Section 3.5.

The two-channel filter bank is shown in Fig. 3.20. The input spectrum X(e^),
0 < a; < TT is divided into two equal subbands. The analysis filters HQ(Z) and H\(z)
function as antialiasing filters, splitting the spectrum into two equal bands. Then,
according to the Nyquist theorem OQ(H) and 0\(n) are each down sampled by 2 to
provide the subband signals VQ(H) arid v\(n) as the outputs of the analysis stage.
In a subband coder, these signals are quantized, encoded, and transmitted to the
receiver. We assume ideal operation here, with no coding and transmission errors,
so that we can focus on the analysis and synthesis filters. Therefore, we pretend
that VQ(U) and v\(n] are received at the synthesis stage. Each is up-sampled by
2 to give the zero-interlaced signals fo(n) and /i(n). These signals in turn are
processed by the interpolation filters GQ(Z) and G\(z), and then summed at the
output to yield the reconstructed signal x(n).
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The focus of the book is on perfect reconstruction (PR) signal decomposition.
Therefore, we will consider only FIR PR filter banks here. (Subsequently, in
Section 3.6.2, IIR 2-band structures using all-pass niters are shown to provide
causal approximations to perfect reconstruction.)

3.4.1 Two-Channel PR-QMF Bank

The conditions for perfect reconstruction in the prototype two-channel FIR QMF
bank were obtained first by Smith and Barnwell (1986) and thoroughly treated
by Vaidyanathan (July 1987). We will derive these conditions in both frequency-
and time-domains. The time-domain PR conditions will prove to be very useful
especially in the Mth band filter bank design.

Figure 3.20: Two-channel subband filter bank.

Tracing the signals through the top branch in Fig. 3.20 gives

as the outputs of the decimation and interpolation filters, while the down-sampler
and the up-sampler impose, respectively,

Combining all these gives
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Similarly,

The Z-transform of the reconstructed signal, is then

Perfect reconstruction requires the following:

To eliminate aliasing and force S(z) — 0, we require

This can be achieved by the selection

leaving us with

Several choices can be made here to force T(z) = cz n°. The FIR paraunitary
solution derived in Section 3.5.4 is as follows: let HQ(Z), H\(z) be JV-tap FIR.
where N is even, and let

This choice forces

so that
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Therefore, the perfect reconstruction requirement reduces to finding an H(z) =
HQ(Z) such that

Therefore Q(z) consists only of even powers of z. To force Q(z) — constant,
it suffices to make all even-indexed coefficients in R(z) equal to zero except 70.
However, the 7n coefficients in R(z] are simply the samples of the autocorrelation
p(ri) given by

This selection implies that all four filters are causal whenever HQ(Z] is causal.
The PR requirement, Eq. (3.40), can be readily recast in an alternate, time-

domain form. First, one notes that R(z) is a spectral density function and hence
is representable by a finite series of the form (for an FIR H(z)}

where 0 indicates a correlation operation. This follows from the Z-transform
relationships

where p(n) is the convolution of h(n) with h(—n), or equivalently, the time
autocorrelation, Eq. (3.43). Hence, we need to set p(n) = 0 for n even, arid
n ^ 0. Therefore,

If the normalization
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is imposed, one obtains the PR requirement in the time-domain as

This last requirement is recognized as the same as that for a half-band filter in
Eq, (3.23). Hence, R(z) = H(z}H(z~~1} should satisfy the half-band requirement
of Eq. (3.22),

Finally, Eq. (3.38) permits us to convert Eq. (3.48) into

which asserts that HQ(Z) and H\(z] are also power complementary. In Section
3.5, we will see that this PR solution is called the paraunitary solution.

In summary, the two-band paraunitary PR FIR structure with N even and
HQ(Z] — H(z) satisfies:

These results will be rederived from more general principles in Section 3.5. At
this point, they suffice to enable us to construct multiband PR filter banks using
hierarchical subband tree structures. However, it can be shown that these filters
for the 2-band case cannot be linear-phase. (Prob. 3.11; see also Prob. 3.12)

3.4.2 Regular Binary Subband Tree Structure

Multirate techniques provide the basic tool for multiresolution spectral analysis
and the PR QMF bank is the most efficient signal decomposition block for this
purpose. As shown in the previous section, these filter banks divide the input
spectrum into two equal subbands, yielding the low (L) and high (H) bands. This
two-band PR QMF split can again be applied to these (L) and (H) half bands to
generate the quarter bands: (LL), (LH), (HL), and (HH).
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Figure 3.21: Four-band, analysis-synthesis tree structure.

Two levels of this decomposition are shown in Fig. 3.21, where the original sig-
nal at a data rate fs is decomposed into the four subband signals VQ(TI), .... V3(n),
each operating at a rate of /s/4. Therefore, the net data rate at the output of
the analysis section equals that of the input signal. This conservation of data
rates is called critical sampling. Now Smith and Barnwell have shown that such
an analysis-synthesis tree is perfect reconstruction if the progenitor two-band
analysis-synthesis structure is PR, with {HQ,HI,GQ,GI} satisfying Eq. (3.50).
(Prob. 3.10) Consequently, this structure can be iterated many times with the as-
surance that perfect reconstruction is attained in the absence of all error sources.
But, as we shall see, some structures are more sensitive to encoding errors than
others.

We can represent the two-level, hierarchical, analysis section by the equivalent
four-band analysis bank of Fig. 3.22. Consider the cascade structure of Fig. 3.23
showing three filters separated by down-samplers of rates MI and M<I. Using
the equivalent structures of Fig. 3.7, we can successively interchange filter and
subsampler with the substitution z —> zMl. Filter G%(z) can be commuttxl with
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Figure 3.22: (a) Four-band equivalent to two-level regular binary tree: (b) fre-
quency bands corresponding to the four-bands with ideal filters; (c) (see page 144)
frequency bands of two-band 8-tap Binomial-QMF (Section 4.1) and a four-band
hierarchical subband structure using the same niters; (d) (see page 145) frequency
responses of a typical four-band paraunitary filter bank with a duration of 8-tap
each (the filter coefficients are given in Table 4.15).

subsampler M2 as in Fig. 3.23(b). Repetition of this step for subsampler MI gives
the equivalent structure shown as Fig. 3.23(c). Therefore, the two-band and the
two-level, two-band based hierarchical decompositions are equivalent if

The four-band frequency split of the spectrum is shown in Fig. 3.22(b) for ideal
band-pass filters. Figure 3.22(c) displays the imperfect frequency behavior of a
finite duration, eight-tap Binomial-QMF filter employed in the two-level regular
subband tree. Note that Band 3, the (HH) band, is actually centered in [it/2. 3?r/4],
rather than [37T/4, TT] as might be expected. Although the two-level hierarchical
analysis tree is equivalent to the four-band, one-level filter bank, the former is
far more constrained than a freely chosen four-band filter bank. For example, as
we shall see, a nontrivial two-band paraunitary bank cannot have a linear-phase,
whereas an unconstrained four-band filter bank can have both paraunitary PR,
and linear-phase. For comparison purposes Figure 3.22(d) displays the frequency
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Figure 3.22 (continued)
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Figure 3.22 (continued)

responses of filters for length 8 each. The coefficients of these filters are given in
Table 4.15. It is observed from these figures that the hierarchical tree structure
degrades the filter characteristics, in both time- and frequency-domains. This
is somewhat expected since these filters were originally designed for a two-band
decomposition.

When this procedure is repeated L times, 2L equal-width bands are obtained.
This hierarchical subband tree approach provides the maximum possible frequency
resolution of 7r/2L within L levels. This spectral analysis structure is called an
L-level regular binary or full subband tree. For L — 3 the regular binary tree
structure and the corresponding frequency band split are shown in Fig. 3.24, This
figure assumes that ideal filters are employed. The imperfectness of the frequency
responses increases when the level of hierarchical subband tree increases for finite
duration filters.

In practice, finite length filter PR QMFs replace the ideal filters. Therefore
inter-band aliasing or leakage exists. This is also the reason for interbarid cor-
relations. In the presence of encoding errors in a multilevel tree structure, this
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Figure 3.23: Equivalent structures for filters separated by down-samplers.

frequency leakage can cause some degradation in the frequency bands of the finer
frequency resolutions. This is a disadvantage of the regular binary subband tree
over a direct Af-band (equal) frequency split, since the M-band approach monitors
the frequency behavior of those four bands during filter bank design.

On the other hand, the multilevel hierarchical analysis-synthesis subband trees
are much simpler to implement and provide a coarse-to-fine (multiresolutiori) sig-
nal decomposition as a by-product.

3.4.3 Irregular Binary Subband Tree Structure

Almost all real signal sources concentrate significant portions of their energies in
subregions of their spectrums. This indicates that some intervals of the overall
signal spectrum are more significant or important than the others. Therefore
all the subbands of the regular binary tree may not be needed. Since we also
aim to minimize the computational complexities of the spectral analysis-synthesis
operations, some of the fine frequency resolution subbands can be combined to
yield larger bandwidth frequency bands. This implies the irregular termination of
the tree branches. Hence it is expected that the frequency bands of the irregular
tree will have unequal bandwidths. Figure 3.25 displays an arbitrary irregular
binary subband tree with the maximum tree level L — 3 and its corresponding
frequency band split. The band split shown assumes that ideal filters are employed.

The number of bands in this irregular spectral decomposition structure is less
than that in the regular tree case, M < 2L. The regular tree provides the best pos-
sible frequency resolution for a fixed L. The regular tree has equal width frequency
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Figure 3.24: A regular tree structure for L = 3 and its frequency band split,
assuming ideal two-band PR-QMFs are employed.

Figure 3.25: An irregular tree structure and its frequency band split, assuming
ideal two-band PR-QMFs are employed.



CHAPTER 3. THEORY OF SUBBAND DECOMPOSITION

Figure 3.26: An irregular tree structure and its frequency band split, assuming
ideal equal-bandwidth filter banks employed at each stage.

bands while the irregular tree provides unequal bands. Both of these structures
split the spectrum as a power of 2 since they employ a two-band frequency split
algorithm repeatedly. Figure 3.26 shows a non-binary irregular subband tree struc-
ture that might be used if the input signal energy is concentrated in the band-pass
region [TT/S, 27T/3].

3,4.4 Dyadic or Octave Band Subband Tree Structure

The dyadic or octave band tree is a special irregular tree structure. It splits only the
lower half of the spectrum into two equal bands at any level of the tree. Therefore
the detail or higher half-band component of the signal at any level of the tree
is decomposed no further. The dyadic tree configuration and its corresponding
frequency resolution for L = 3 are given in Fig. 3.27.

An examination of this analysis-synthesis structure shows that a half-resolution
frequency step is used at each level. Therefore it is also called the octave-band or
constant-Q (see Section 6.1.2) subband tree structure. First, low (L) and high (H)
signal bands are obtained here. While the band (L) provides a coarser version of
the original signal, band (H) contains the detail information. If the low spectral
component or band (L) is interpolated by 2, the detail information or the inter-
polation error is compensated by the interpolated version of band (H). Hence the
original is perfectly recovered in this one-step dyadic tree structure. The approach
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Figure 3.27: A dyadic (octave band) tree structure and its frequency band split,
assuming ideal two-band PR-QMFs are employed.

is repeated L times onto only the lower-spectral half component of the higher-level
node in the tree. Figure 3.28 shows the composite analysis-synthesis structure for
a three-level dyadic tree. It also shows the data rate at each point in the analysis
tree. Note that the total data rate for the subband signals at the output of the
analysis section equals fs, the data rate of the source signal. Therefore this dyadic
tree is also critically sampled.

This multiresolution (coarse-to-fine) signal decomposition idea was first pro-
posed in 2D by Burt and Adelson (1983) for vision and image coding problems.
This popular technique is called the Laplacian pyramid. In Chapter 5, we will
show that the orthonormal wavelet transform also utilizes this dyadic subband
tree. In that case, the coefficients in the multiresolution wavelet decomposition
of a continuous-time signal, with proper initialization, are calculated using the
discrete-time dyadic subband tree presented here. We will now briefly review the
Laplacian pyramid signal decomposition technique and discuss its similarities with
a dyadic tree-based PR filter bank structure.

3.4.5 Laplacian Pyramid for Signal Decomposition

A pyramid is a hierarchical data structure containing successively condensed infor-
mation in a signal that is typically an image. Each layer of the pyramid represents
a successively lower resolution (or blurred) representation of the image. The dif-
ference between the blurred representations at two adjacent levels is the detail at
that level.
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Figure 3.28: Dyadic analysis and synthesis tree.

Pyramid reconstitution of a signal may be done in a "progressive" manner.
Starting with the coarsest approximation at the lowest level the signal is reassem-
bled by adding on successively finer details at each resolution level until the original
image is reconstituted. This reassembly can be performed either progressively in
time or concurrently. This pyramid decomposition is of considerable interest in
machine vision and image coding applications.

In its essence the Laplacian pyramid (Burt and Adelson, 1983) performs a
dyadic tree-like spectral or subband analysis. The idea will be explained with a
ID example and the link to a dyadic PR subband tree established here.

In Fig. 3.29 the signal x(n) is low-pass filtered and decimated by 2. Let us
denote this signal as x\(n). Then x\(ri} is up-sampled by 2 and interpolated to
form interpolated signal xo(n). The corresponding interpolation error, or high-
resolution detail,

has a Laplacian-shaped pdf for most image sources. To obtain x(n) perfectly one
should sum the detail and the interpolated low-pass signal

Since xo(n) is obtained from xi(n), then cfo(n) and XI(H) are sufficient to represent
x(ri) perfectly. The data rate of x\ (n) is half of the data rate ofx(ri). This provides
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Figure 3.29: Analysis and synthesis structures for Laplacian pyramid.
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a multiresolution or coarse-to-fine signal representation in time. The decimation
and interpolation steps on the higher level low-pass signal are repeated until the
desired level L of the dyadic-like tree structure is reached. Figure 3.29 displays
the Laplaciari pyramid and its frequency resolution for L = 3. It shows that x(n)
can be recovered perfectly from the coarsest low-pass signal x%(n) and the detail
signals, d^n}^ di(ri), and do(n). The data rate corresponding to each of these
signals is noted on this figure. The net rate is the sum of these or

which is almost double the data rate in a critically decimated PR dyadic tree.
This weakness of the Laplacian pyramid scheme can be fixed easily if the proper

antialiasing and interpolation filters are employed. These filters, PR-QMFs, also
provide the conditions for the decimation and interpolation of the high-frequency
signal bands. This enhanced pyramid signal representation scheme is actually
identical to the dyadic subbarid tree, resulting in critical sampling.

3.4.6 Modified Laplacian Pyramid for Critical Sampling

The oversampling nature of the Laplacian pyramid is clearly undesirable, par-
ticularly for signal coding applications. We should also note that the Laplaciari
pyramid does not put any constraints on the low-pass antialiasing and interpola-
tion filters, although it decimates the signal by 2. This is also a questionable point
in this approach.

In this section we modify the Laplacian pyramid structure to achieve critical
sampling. In other words, we derive the filter conditions to decimate the Laplacian
error signal by 2 and to reconstruct the input signal perfectly. Then we point out
the similarities between the modified Laplacian pyramid and two-band PR.-QMF
banks.

Figure 3.30 shows one level of the modified Laplacian pyramid. It is seen
from the figure that the error signal DQ(Z) is filtered by H\(z) and down- and
up-sampled by 2 then interpolated by G\(z}. The resulting branch output signal
X\(z] is added to the low-pass predicted version of the input signal, XQ(Z], to
obtain the reconstructed signal X(z).

We can write the low-pass predicted version of the input signal from Fig. 3.30
similar to the two-band PR-QMF case given earlier,
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Figure 3.30: Modified Laplacian pyramid structure allowing perfect reconstruction
with critical number of samples.

and the Laplacian or prediction error signal

is obtained. As stated earlier DQ(Z) has the full resolution of the input signal X ( z ) .
Therefore this structure oversamples the input signal. Now, let us decimate and
interpolate this error signal. Prom Fig. 3.30,

If we put Eqs. (3.54) and (3.55) in this equation, and then add XQ and X\, we
get the reconstructed signal
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where

arid

If we choose the synthesis or interpolation filters as

the aliasing terms cancel and

as in Eq. (3.37) except for the inconsequential z 1 factor. One way of achiev-
ing PR is to let HQ(Z), H\(z] be the paraunitary pair of Eq. (3.38), H\(z) =
z-(N-i)H^_z-i^ and then golye the resu}ting Eq (3.40), or Eq. (3.47) in the
time-domain. This solution implies that all filters, analysis and synthesis, have
the same length N. Furthermore, for h(n] real, the magnitude responses are
mirror images,

implying equal bandwidth low-pass and high-pass filters. In the 2-band orthonor-
mal PR-QMF case discussed in Section 3.5.4, we show that the paraunitary solu-
tion implies the time-domain orthonormality conditions

These equations state that sequence (/io(^)} is orthogonal to its own even trans-
lates (except n=0), and orthogonal to {hi(n}} and its even translates.
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Vetterli and Herley (1992), proposed the PR biorthogonal two-band filter bank
as an alternative to the paraunitary solution. Their solution achieves zero aliasing
by Eq. (3.60). The PR conditions for T(z) is obtained by satisfying the following
biorthogonal conditions (Prob. 3.28):

where

These biorthogonal niters also provide basis sequences in the design of biorthogonal
wavelet transforms discussed in Section 6.4. The low- and high-pass filters of a two-
band PR filter bank are not mirrors of each other in this approach. Biorthogonality
provides the theoretical basis for the design of PR filter banks with linear-phase,
unequal bandwidth low-high filter pairs.

The advantage of having linear-phase filters in the PR filter bank, however,
may very well be illusory if we do not monitor their frequency behavior. As
mentioned earlier, the filters in a multirate structure should try to realize the
antialiasing requirements so as to minimize the spillover from one band to another.
This suggests that the filters HQ(Z] and H\(z] should be equal bandwidth low-pass
and high-pass respectively, as in the orthonormal solution.

This derivation shows that the modified Laplacian pyramid with critical sam-
pling emerges as a biorthogonal two-band filter bank or, more desirably, as an
orthonormal two-band PR-QMF bank based on the filters used. The concept of
the modified Laplacian pyramid emphasizes the importance of the decimation and
interpolation filters employed in a multirate signal processing structure.

3.4.7 Generalized Subband Tree Structure

The spectral analysis schemes considered in the previous sections assume a two-
band frequency split as the main decomposition operation. If the signal energy is
concentrated mostly around u = 7r/2, the binary spectral split becomes inefficient.
As a practical solution for this scenario, the original spectrum should be split into
three equal bands. Therefore a spectral division by 3 should be possible. The
three-band PR, filter bank is a special case of the M-band PR filter bank presented
in Section 3.5. The general tree structure is a very practical and powerful spectral
analysis technique. An arbitrary general tree structure and its frequency resolution
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are displayed in Fig. 3.26 for L = 3 with the assumption of ideal decimation and
interpolation filters.

The irregular subband tree concept is very useful for time-frequency signal
analysis-synthesis purposes. The irregular tree structure should be custom tai-
lored for the given input source. This suggests that an adaptive tree structuring
algorithm driven by the input signal can be employed. A simple tree structuring
algorithm based on the energy compaction criterion for the given input is proposed
in Akarisu and Liu (1991).

We calculated the compaction gain of the Binomial QMF filter bank (Section
3.6.1) for both the regular and the dyadic tree configurations. The test results
for a one-dimensional AR(1) source with p — 0.95 are displayed in Table 3.1 for
four-, six-, and eight-tap filter structures. The term Gj?c is the upper bound for
GTC as defined in Eq. (2.97) using ideal filters. The table shows that the dyadic
tree achieves a performance very close to that of the regular tree, but with fewer
bands and hence reduced complexity.

Table 3.2 lists the energy compaction performance of several decomposition
techniques for the standard test images: LENA, BUILDING, CAMERAMAN,
and BRAIN. The images are of 256 x 256 pixels monochrome with 8 bits/pixel
resolution. These test results are broadly consistent with the results obtained for
AR(1) signal sources.

For example, the six-tap Binomial QMF outperformed the DOT in every case
for both regular and dyadic tree configurations. Once again, the dyadic tree with
fewer bands is comparable in performance to the regular or full tree. However, as
we alluded to earlier, more levels in a tree tends to lead to poor band isolation.
This aliasing could degrade performance perceptibly under low bit rate encoding.

3.5 M-Band Filter Banks

The results of the previous two-band filter bank are extended in two directions in
this section. First, we pass from two-band to M-band, and second we obtain more
general perfect reconstruction (PR) conditions than those obtained previously.

Our approach is to represent the filter bank by three equivalent structures, each
of which is useful in characterizing particular features of the subband system. The
conditions for alias cancellation and perfect reconstruction can then be described
in both time and frequency domains using the polyphase decomposition and the
alias component (AC) matrix formats. In this section, we draw heavily on the
papers by Vaidyanathan (ASSP Mag., 1987), Vetterli and LeGall (1989), and
Malvar (Elect. Letts., 1990) and attempt to establish the commonality of these
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(a) 4-tap Binomial-QMF.
level

1
2
3
4

Regular Tree
# of bands

2
4
8
16

GTC
3.6389
6.4321
8.0147
8.6503

Gfr
3.9462
7.2290
9.1604
9.9407

Half Band lire gular Tree
# of bands

2
3
4
5

GTC
3.63S9
6.3681
7.8216
8.3419

GTC
3.9462
7.1532
8.9617
9,6232

(b) 6-tap Binomial-QMF.
level

1
2
3
4

Regular Tree
# of bands

2
4
8
16

GTC
3.7608
6.7664
8.5291
9.2505

GTC
3.9462
7.2290
9.1604
9.9407

Half Band Irre gular Tree
# of bands

2
3
4
5

GTC
3.7608
6.6956
8.2841
8.8592

GTC
3.9462
7,1532
8.9617
9.6232

(c) 8-tap Binomial-QMF.
level

1
2
3
4

Regular Tree
# of bands

2
4
8
16

Grc
3.8132
6.9075
8.7431
9.4979

{*fQ
3.9462
7.2290
9.1604
9.9407

Half Band Irre gular Tree
# of bands

2
3
4
5

GTC
3.8132
6.8355
8.4828
9.0826

GTC
3.9462
7.1532
8.9617
9.6232

Table 3.1: Energy compaction performance of PR-QMF filter banks along with
the full tree and upper performance bounds for AR(1) source of p — 0.95.

TEST IMAGE
8 x 8 2D DCT
64 Band Regular 4-tap B-QMF
64 Band Regular 6-tap B-QMF
64 Band Regular 8-tap B-QMF
4 x 4 2D DCT
16 Band Regular 4-tap B-QMF
16 Band Regular 6-tap B-QMF
16 Band Regular 8-tap B-QMF
*10 Band Irregular 4-tap B-QMF
"10 Band Irregular 6-tap B-QMF
*10 Band Irregular 8-tap B-QMF

LENA
21.99
19,38
22.12
24.03
16.00
16.TO
18.99
20.37
16.50
18.65
19.66

BUILDING
20.08
18.82
21.09
22.71
14.11
15.37
16.94
18.17
14.95
16.55
17.17

CAMERAMAN
19.10
18.43
20.34
21.45
14.23
15.45
16.91
17.98
13.30
14.88
15.50

BRAIN
3.79
3.73
3.82
3.93
3.29
3.25
3.32
3.42
3 .34
3 .66
3 .75

Bands used are ////// - Ulllh ~ llllhl - llllhh - lllh - llhl - Uhh ~lh-kl- hh.

Table 3.2: Compaction gain, GTC, °f several different regular and dyadic tree
structures along with the DCT for the test images.
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approaches, which in turn reveals the connection between block transforms, lapped
transforms, and subbands.

3,5.1 The M-Band Filter Bank Structure

The M-band QMF structure is shown in Fig. 3.31. The bank of filters {Hk(z), k —
0,1,..., M — 1} constitute the analysis filters typically at the transmitter in a signal
transmission system. Each filter output is subsampled, quantized (i.e., coded),
and transmitted to the receiver, where the bank of up-samplers/synthesis filters
reconstruct the signal.

In the most general case, the decimation factor L satisfies L < M and the
filters could be any mix of FIR and IIR varieties. For most practical cases, we
would choose maximal decimation or "critical subsampling," L = M. This ensures
that the total data rate in samples per second is unaltered from x(ri) to the set of
subsampled signals, {^jt(n), k = 0,1,...., M — 1}. Furthermore, we will consider
FIR filters of length N at the analysis side, and length N for the synthesis filters.
Also, for deriving PR requirements, we do not consider coding errors. Under these
conditions, the maximally decimated M-band FIR QMF filter bank structure has
the form shown explicitly in Fig. 3.32. [The term QMF is a carryover from the
two-band case and has been used, somewhat loosely, in the DSP community for
the M-band case as well.l

Figure 3.31: M-band filter bank.
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Figure 3.32: Maximally decimated M-band FIR QMF structures.

Prom this block diagram, we can derive the transmission features of this sub-
band system. If we were to remove the up- and down-samplers from Fig. 3.32, we
would have

and perfect reconstruction; i.e., y(n) — x(n — no) can be realized with relative
ease, but with an attendant M-fold increase in the data rate. The requirement is
obviously

and

i.e., the composite transmission reduces to a simple delay.
Now with the samplers reintroduced, we have, at the analysis side.

at the synthesis side.
The sampling bank is represented using Eqs. (3.12) and (3.9) in Section 3.1.1,
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where W — e~~j27r/M. Combining these gives

We can write this last equation more compactly as

where HAC(Z] is the a/ms component, or ^4C matrix.
The subband filter bank of Fig. 3.32 is linear, but time-varying, as can be

inferred from the presence of the samplers. This last equation can be expanded as

Three kinds of errors or undesirable distortion terms can be deduced from this
last equation.

(1) Aliasing error or distortion (ALD) terms. More properly, the subsam-
pling is the cause of aliasing components while the up-samplers produce images.
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The combination of these is still called aliasing. These aliasing terms in Eq. (3.73)
can be eliminated if we impose

In this case, the input-output relation reduces to just the first term in Eq. (3.73),
which represents the transfer function of a linear, time-invariant system:

(2) Amplitude and Phase Distortion. Having constrained {Hk,Gk} to
force the aliasing term to zero, we are left with classical magnitude (amplitude)
arid phase distortion, with

Perfect reconstruction requires T(z) = z n°, a pure delay, or

Deviation of \T(e^}\ from unity constitutes amplitude distortion, and deviation
of (f)(uj) from linearity is phase distortion. Classically, we could select an IIR all-
pass filter to eliminate magnitude distortion, whereas a linear-phase FIR, easily
removes phase distortion.

When all three distortion terms are zero, we have perfect reconstruction:

The conditions for zero aliasing, and the more stringent PR, can be developed
using the AC matrix formulation, and as we shall see, the polyphase decomposition
that we consider next.

3.5.2 The Polyphase Decomposition

In this subsection, we formulate the PR conditions from a polyphase representation
of the filter bank. Recall that from Eqs. (3.14) and (3.15), each analysis filter
Hr(z] can be represented by
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Figure 3.33: Polyphase decomposition of Hr(z).

These are shown in Fig. 3.33.
When this is repeated for each analysis filter, we can stack the results to obtain

where 'Hp(z) is the polyphase matrix, and Z_M is a vector of delays

and

Similarly, we can represent the synthesis filters by
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This structure is shown in Fig. 3.34.

Figure 3.34: Synthesis filter decomposition.

In terms of the polyphase components, the output is

The reason for rearranging the dummy indexing in these last two equations is to
obtain a synthesis polyphase representation with delay arrows pointing down, as
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in Fig. 3.34(b). This last equation can now be written as

where

The synthesis polyphase matrix in this last equation has a row-column indexing
different from Hp(z) in Eq. (3.81).

For consistency in notation, we introduce the "counter-identity" or interchange
matrix J,

with the property that pre(post)multiplication of a matrix A by J interchanges
the rows (columns) of vl, i.e.,

Also note that

and

We have already employed this notation, though somewhat implicitly, in the
vector of delays:
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With this convention, and with Qp(z) defined in the same way as l~ip(z] of
Eq. (3.81), i.e., by

we recognize that the synthesis polyphase matrix in Eq. (3.86) is

This permits us to write the polyphase synthesis equation as

Note that we have defined the analysis and synthesis polyphase matrices in exactly
the same way so as to result in

Figure 3.35: Polyphase representation of QMF filter bank.

Finally, we see that Eqs. (3.81) and (3.94) suggest the polyphase block diagram
of Fig. 3.35. As explained in Section 3.1.2, we can shift the down-samplers to the
left of the analysis polyphase matrix and replace ZM by z in the argument of
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Figure 3.36: Equivalent polyphase QMF bank.

7ip(.). Similarly, we shift the up-samplers to the right of the synthesis polyphase
matrix and obtain the structure of Fig. 3.36. These two polyphase structures are
equivalent to the filter bank with which we started in Fig. 3.32.

We can obtain still another representation, this time with the delay arrows
pointing up, by the following manipulations. From Eq. (3.81), noting that J2 = I,
we can write

Similarly,

These last two equations define the alternate polyphase QMF representations of
Figs. 3.37 and 3.38, where we are using

It is now easy to show that (Prob. 3.14)
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Figure 3.37: Alternative polyphase structure.

Figure 3.38: Alternative polyphase representation.

Either of the polyphase representations allow us to formulate the PR require-
ments in terms of the polyphase matrices. Prom Fig. 3.36. we have

which defines the composite structure of Fig. 3.39.
The condition for PR in Eq. (3.78) was T(z] = z~~n°. It is shown by Vaidya-

nathan (April 1987) that PR is satisfied if

where Im denotes the mxm identity matrix. This condition is very broadly stated.
Detailed discussion of various special cases induced by imposing symmetries on
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Figure 3.39: Composite M-band polyphase structure.

the analysis-synthesis filters can be found in Viscito and Allebach (1989). For our
purposes we will only consider a sufficient condition for PR, namely,

(This corresponds to the case where &o — 0.) For if this condition is satisfied,
using the manipulations of Fig. 3.40, we can demonstrate that (Prob. 3.13)

The bank of delays is moved to the right of the up-samplers, and then out-
side of the declinator-interpolator structure. It is easily verified that the signal
transmission from point (1) to point (2) in Fig. 3.40(c) is just a delay of M — I
units. Thus the total transmission from x(n) to y(n) is just [(M — 1) -f Mfj,\ delays,
resulting in T(z] = z~n°.

Thus we have two representations for the M-band filter bank, the AC matrix
approach, and the polyphase decomposition. We next develop detailed PR filter
bank requirements using each of these as starting points. The AC matrix provides
a frequency-domain formulation, while the polyphase is useful for both frequency-
and time-domain interpretations. We close this subsection by noting the relation-
ship between the AC and polyphase matrices. From Eq. (3.72), we know that the
AC matrix is

1=0

Substituting the polyphase expansion from Eq. (3.79) into this last equation gives
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Figure 3.40: Polyphase implementation of PR condition of Eq. (3.100).

This last equation can be expressed as the product of three matrices,
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where W is the DFT matrix, and A(z] is the diagonal matrix

We can now develop filter bank properties in terms of either HAC(Z] °r %p(z)
or both.

3.5.3 PR Requirements for FIR Filter Banks

A simplistic approach to satisfying the PR condition in Eq. (3.100) is to choose
Q'p(z) = z~^7ipl(z). Generally this implies that the synthesis filters would be IIR
and possibly unstable, even when the analysis filters are FIR. Therefore, we want
to impose conditions on the FIR H.p(z) that result in synthesis filters which are
also FIR. Three conditions are considered (Vetterli and LeGall, 1989).

(1) Choose the FIR HP(z} such that its determinant is a pure delay (i.e.,
dei{Hp(z]} is a monomial),

where p is an integer > 0. Then we can satisfy Eq. (3.100) with an FIR synthesis
bank. The sufficiency is established as follows. We want

Multiply by Hp
 l ( z ) and obtain

The elements in the adjoint matrix are just cofactors of "Hp(z), which are products
and sums of FIR polynomials and thus FIR. Hence, each element of Op(z) is equal
to the transposed FIR cofactor of Hp(z)(within a delay). This approach generally
leads to FIR synthesis filters that are considerably longer than the analysis filters.

(2) The second class consists of PR filters with equal length analysis and syn-
thesis filters. Conditions for this using a time-domain formulation are developed
in Section 3.5.5.

(3) Choose 'Hp(z) to be paraunitary or "lossless." This results in identical
analysis and synthesis filters (within a time-reversal), which is the most commonly
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stated condition. A lossless or paraunitary matrix is defined by the property

The delay no is selected to make Gp(z) the polyphase matrix of a causal filter
bank. The converse of this theorem is also valid.

We will return to review cases (1) and (2) from a time-domain standpoint.
Much of the literature on PR structures deals with paraunitary solutions to which
we now turn.

3.5.4 The Paraunitary FIR Filter Bank

We have shown that PR is assured if the analysis polyphase matrix is lossless
(which also forces losslessness on the synthesis matrix). The main result is that the
impulse responses of the paraunitary filter bank must satisfy a set of orthonormal
constraints, which are generalizations of the M — 2 case dealt with in Section 3.4.
(See also Prob. 3.17)

First, we note that the choice of Gp(z) in Eq. (3.109) implies that each synthesis
filter is just a time-reversed version of the analysis filter,

And, if this condition is met, we can simply choose

This results in

To prove this, recall that the polyphase decomposition of the filter bank is

But, from Eq. (3.109), we had

or
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Now let's replace z by ZM, and multiply by JZ_M t|Q obtain

= z~Th(z-1), (3.112)

where r = [Mn0 + (M-l)]. Thus G^(z) = z~rHk(z), k - 0,1,..., M-1 as asserted
in Eq. (3.110).

We can also write the paraunitary PR conditions in terms of elements of the
AC matrix. In fact, we can show that lossless T~ip(z) implies a lossless AC matrix
arid conversely, that is,

where

and the subscripted asterisk implies conjugation of coefficients in the matrix. The
proof is straightforward. Prom Eq. (3.104)

But

for a DFT matrix. Hence
f~Tt . 1 .

The AC matrix approach will allow us to obtain the properties of filters in
lossless structures. Prom Eq. (3.72), we had

where HAC(Z) is the AC matrix. For zero aliasing, we had in Eq. (3.74)



3.5. M-BAND FILTER BANKS 173

Let us substitute successively zW, zW2,..., zWM~l for z in this last equation.
Each substitution of zW in the previous equation induces a circular shift in the
rows of HAC- For example,

can be rearranged as

This permits us to express the set of M equations as one matrix equation of the
form

where G\c(z] is the transpose of the AC matrix for the synthesis filters.
Equation (3.114) constitutes the requirements on the analysis and synthesis

AC matrices for alias-free signal reconstructions in the broadest possible terms.
If we impose the additional constraint of perfect reconstruction, the requirement
becomes

The PR requirements can be met by choosing the AC matrix to be lossless. The
imposition of this requirement will allow us to derive time- and frequency-domain
properties for the paraunitary filter bank. Thus, we want



174 CHAPTER 3. THEORY OF SUBBAND DECOMPOSITION

We will show that the necessary and sufficient conditions on filter banks sat-
isfying the paraunitary condition are as follows. Let

Then

We will first interpret these results, and then provide a derivation.
For r = 5, we see that prr(Mn) = S(n}. Hence &rr(z] — Hr(z~1}Hr(z) is the

transfer function of an Mth band filter, Eq. (3.25), and Hr(z) must be a spectral
factor of <&rr(z). In the time-domain, the condition is

which implies that the impulse response hr(n}:

The latter asserts that {hr(k}} is orthogonal to its translates shifted by M. For
r =£ s, we have prs(Mn) — 0, or

This implies {hr(k}} is orthogonal to {hs(k}} and to all M translates of {hs(k)}

This condition corresponds to the off-diagonal terms in Eq. (3.116). It is a time-
domain equivalent of aliasing cancellation.

The paraunitary requirement therefore imposes a set of orthonormality re-
quirements on the impulse responses in the analysis filter bank and by Eq. (3.112)
on the synthesis filters as well. Another version of this will be developed in Section
3.5.5 in conjunction with the polyphase matrix approach.
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Another consequence of a paraunitary AC matrix is that the filter bank is
power complementary, which means that

To appreciate this, note that if HAC(Z] ig lossless, then H^c(z} is also lossless.
Then H^C(Z)HAC(Z) — MI, and the first diagonal element is just

Now for the proof of Eq. (3.118): First we define

The following are Fourier transform pairs:

The condition to be satisfied, Eq, (3.116), is

In the time-domain, this becomes

But
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Equation (3.124) becomes

The product of this sampling function with prs(n) leaves us with prs(Mri] on the
left-hand side of Eq. (3.126) which completes the proof.

On occasion, necessary conditions for a paraunitary filter bank are confused
with sufficient conditions. Our solution, Eq. (3.118), implies a paraunitary filter
bank. The Mth band filter requirement, Eq. (3.119), and the power comple-
mentary property of Eq. (3.122) are consequences of the paraunitary filter bank.
Together they do not imply Eq. (3.116). The additional requirement of Eq. (3.121)
must also be observed.

One can start with a prototype low-pass HQ(Z), satisfying the Mth band re-
quirement HO(Z)HQ(Z~I) — &QQ(Z) and develop a bank of filters from

This selection satisfies power complementarity and Mth band requirement, but is
not necessarily paraunitary.

Another difficulty with this Mth band design is evident in this last equation.
First, Hr(z) can have complex coefficients resulting in complex subband signals.
Secondly, as Vaidyanathan (April 1987) points out, the aliasing cancellation re-
quired by Eq. (3.116) for r ^ s is difficult to realize when HQ(Z) is a sharp low-
pass filter. It turns out that alias cancellation and sharp cutoff filters are largely
incompatible in this design. For this reason we turn to alternate product-type
realizations of lossless filter banks.
The Two-Band Case

To fix ideas, we particularize these results for the case M = 2 and demonstrate
the consistency with the two-band paraunitary filter bank derived in Section 3.3.
For alias cancellation from Eq. (3.114), we want (real coefficients are assumed

The sum in this last equation is recognized as the sampling function of Eq. (3.4)
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throughout)

And, for perfect reconstruction, we set T(z) — z"'nQ .
The paraunitary analysis filters must obey

Let p;/(n), <&v(z) be an autocorrelation function and spectral density function for
hv(n)

Consequently pv(n) is an even function. The paraunitary condition becomes

or

But for n odd, [1 -f (—l) n] — 0, which leaves us with

Hence the first paraunitary requirement is stated succinctly as

or
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This last equation asserts that the impulse response of each filter {/^(n)} is
orthogonal to its even translates and has unit norm—a general property for the
two-band paraunitary filter bank. Also, we can see that the correlation function
pv(n] with even samples (except n = 0) equal to zero is precisely a half-band filter
defined in Eq. (3.25) with M = 2.

In a similar fashion, Eq. (3.130) can be expressed in the time-domain using
the cross-correlation pio(n) and its transform $10(z)

The second requirement becomes

Following a similar line of reasoning, we can conclude

and in particular

This demonstrates that the paraunitary impulse responses {ho(k}} and {hi(k}}
are orthogonal to each other (and orthogonal to their even-indexed translates).
Having selected HQ(Z] as an TV-tap FIR filter (N even), we can then choose

to satisfy the paraunitary requirement. Then the synthesis filters from Eq. (3.110)
are

These relationships are summarized in the block diagram of Fig. 3.41 and the
time-domain sketches shown in Fig. 3.42. Note that HI(Z) is quadrature to G$(z)
and HQ(Z) quadrature to GI(Z}. In the time-domain, we have
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Figure 3.41: Two-band paraunitary filter bank.

Figure 3.42: Filter responses for two-band, 6-tap Binomial PR-QMF.
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The Binomial QMF bank presented in Section 4.1 is an example of a PR-QMF
family. Impulse responses of this family for N = 6 are illustrated in Fig. 3.42.

Note that HQ(Z) and GQ(Z) are low-pass filters, whose magnitude responses
are equal,

Similarly H\(z] and G\(z] are high-pass filters with equal magnitude responses.

But the low-pass and high-pass filters are also quadrature mirror filters, so that

But, of course, this is just the power complementary property of a paraunitary
filter bank,

Finally we note that p^(2n) = 0 for n ^ 0 is precisely the same as the half-
band filter introduced in Eq. (3.23). Hence HQ(Z) is a spectral factor of $0(2) =
HQ(Z}HQ(Z~I], where $0(2) is a half-band filter.

3.5.5 Time-Domain Representations

In this section we develop the properties of the PR filter bank in the time-domain
and connect these with the extended lapped orthogonal transform. The works
of Vetterli (1987), Malvar (Elec. Letts., 1990), and Nayebi, Barnwell, and Smith
(1992) can then be viewed from a common, unified standpoint. In order to demon-
strate the commonality of these seemingly disparate approaches, we need to intro-
duce yet another equivalent structure for the maximally decimated QMF bank, as
shown in Fig. 3.43.

The matrices P and Q are constant and of size (NM x M] and (N'M x M).
respectively. The input data stream {x(n}} is fed into a buffer. After (NM — 1)
clock pulses the input buffer is filled. It consists of N blocks of M data points
each.

From the top to bottom at the input in Fig. 3.43, we define this input vector
of NM points as i/j(n) and partition it into N vectors (or blocks) of M points
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Figure 3.43: Multiblock transform representation.

each, as follows:

where,

This input vector is multiplied by PT to give the coefficient vector 0(n),
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where each Pj* is an (M x M) block. This can be written as

The subsampling by M transfers 9_ to v. During the interval until the next
subsampling, M new input samples are entered into the stack buffer and the
process repeated. We represent this by sampling 0(n) at times Mn to get v(n)

Prom Fig. 3.36, we see that

Therefore, it follows that

This is like a block FIR filter, where the filter coefficients are the (M x M)
matrices Pl[ and the signals are (M x 1) vectors £(&). After (N — 1) samples at
the slow clock rate, there is an entirely new data vector in the input buffer. We
can stack the successive outputs (starting at n = 0 for convenience):
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The preceding NM x (2N — 1)M transmission matrix is denoted as II1.
To relate this representation to the filter bank structure, we see from Fig. 3.43

and Eq. (3.143) that

or

where the delay vector ZLMN as defined in Eq. (3.82) is

and

This equivalence states that the block structure from x(n) to 0(n) in Fig. 3.43
can be replaced by the analysis filter bank h(z) as shown in Fig. 3.32, where now
the length of each filter is NM. From the filter bank we then can obtain the
polyphase representation of Fig. 3.35 or 3.37. From our previous derivation, we
can now connect the extended block transform, the polyphase decomposition, and
the filter bank by

Now using the polyphase representation of Fig. 3.36, we get

Every element in the matrix /Hp(z) is a polynomial in z~~l of degree N — 1. There-
fore we can expand Hp(z) as polynomials in z~l with matrix coefficients. Substi-
tuting this expansion into Eq. (3.153) and converting to the time-domain,
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Note that each 7~ip)k is a constant, M x M matrix.
Comparing this last expansion with that in Eq. (3.148) we see that the matrix

coefficients in the polyphase expansion are simply related to the block transforms:

In summary then, we have three equivalent representations for the analysis side of
the subband coder: the filter bank, the polyphase decomposition, and the extended
block transform, as related by Eqs. (3.152) and (3.155).

Next, we can develop a similar set of equivalences at the synthesis side. From
Fig. 3.43 we partition ft(n), the N M sample output vector into N blocks of M
samples each, ar(ri) = [OVM(^)j OVM+I(W), . . . , arM+M-i(n)]7, r — 0 ,1 . . . . , TV —
1. This allows us to write

where each Qk is an M x M block. The up-sampler imposes

Since /(n) — Q between up-sampled data points, we need only to evaluate a(n) at
times Mn to obtain

Now let us examine the output sequence {y(n}} in batches of M samples. Define

Noting that a(ri) = 0 except for integer multiples of M, we can express y(Mri) in
terms of the a's by
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Therefore.
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And stacking these for n = 0,1, • • • , N' — 1, gives the synthesis block transmission
form

.161

The preceding N' M x (2N — l)M synthesis transmission matrix1 is denoted by
ET-

To obtain the filter bank equivalent, we note that

1Some authors employ these transmission matrices HT and J^ as fundamental analytic de-
scriptors. We make no further use of them.
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The connection with the polyphase representation is now evident. From Eq. (3.94),

Finally, from Fig. 3.36, we note that rj(n] = y(Mn], and also that

or

Comparing this last equation with Eq. (3.160) shows that the synthesis blocks
are the matrix coefficients in the Q'(z] expansion

This completes the equivalences at the synthesis side. We have a complete set
of time-domain and transform domain representations. We can now turn to the
prime objective, i.e., the PR conditions.

From Fig. 3.36 and Eqs. (3.154) and (3.164),

Here, Pr is recognized as the convolution of the polyphase coefficient matrices (or
the correlation of the block transforms P^ and Q^}
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Figure 3.44: Time-domain equivalent representation.

Figure 3.44 shows the time-domain representation of the subband system. The
terms {Hpjk} and {Q'p^} are matrix weighting sequences for the analysis and syn-
thesis banks, respectively. The convolution of these gives the overall matrix weight-
ing sequence Pr, which relates the block input and output sequences. Thus, from
Eq. (3.166),

or

We saw in Fig. 3.40 and Eq. (3.101) that there is an inherent delay of (M — 1)
fast-clock samples induced by the down-samplers and up-samplers, and addition-
ally, a delay of M/i due to the filter bank. We have also accounted for the (M - 1)
delay in the formulation of the input and output blocks, y(Mn) and x(Mn), as
can be seen in Eqs. (3.143) and (3.159). Thus if P(z) = PO ~ /, we would have
y(Mn) = x(Mn), or

From Eq. (3.167) the sufficient condition for PR is

There are several possibilities as to which Pr should be chosen as /. The condition
developed here is for the case that (Nf - 1) + (N - 1) = (Nf + N - 2) is even. We
can then choose the center term in the expansion to be the non-zero element; i.e.,

N' + N - 2

Then
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and

or

The implementation of this selection is best illustrated by a simple example. Sup-
pose N = 3, Nf = 5, then

Setting the center term PS(Z) — /MxM and the others to zero in effect asserts that
the correlation of Qk and P^ is a delayed impulse Id(n — 3). This requirement is
similar to the requirement for deconvolution of two weighting functions.

For the example chosen we can arrange the matrices as follows for r — 0.

As r increases, the sequence {P^} advances to the right. Our requirement is
that this correlation be zero for r = 0,1,2; equal to / for r = 3; and then equal to
zero for r ~ 4, 5, 6. This leads to the set of equations

If (Nf -f- N — 2) is not even, we can choose either of the two center terms to be
the identity matrix. For equal length analysis and synthesis filters, JV' — N, we
can satisfy Eq. (3.169) with /i = N — 1, the middle term.

For the latter case, we can say the PR condition is realized if the synthesis
matrix {Qjv_i_A;} is orthogonal to block translates of the analysis matrix sequence
{Pj}. Examples of a design based on this approach are given in Nayebi, Barnwell,
and Smith (1990).

The foregoing conditions are very broad and, as such, are somewhat difficult to
interpret or realize. We can, however, develop some special cases of the preceding
and, in the process, obtain several results reported in the literature. The first
simplification is one already mentioned, equal-length analysis and synthesis filters.
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Next, we can impose orthogonality conditions on the analysis blocks themselves
of the form

where B is a symmetric positive definite matrix. This condition has been termed
orthogonality of the tails by Vetterli and LeGall (1989). When this is imposed, the
transmission matrix of Eq. (3.149) has the property that HHT is block diagonal

Basically, this means that the impulse responses of the analysis filters are inde-
pendent. Now we can select the synthesis blocks to be

This choice, along with Eq. (3.170), satisfies the PR requirement, since

In the transform-domain, this choice implies that

Also, the synthesis polyphase matrix is

Finally, let B = I. This makes the analysis bank paraunitary, since we nowr

have
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The lapped orthogonal transforms and extensions of it are a special case of the
foregoing. For this case, Malvar (Elect. Letts., 1990) takes Nf = Ar, chooses Q
equal to P and imposes the orthogonality condition of Eq. (3.170). Hence, these
lapped transforms are paraunitary filter banks. Finally, the LOT is itself a special
case with N — 2. For this case, the paraunitary constraints are

In addition, other constraints were imposed (Malvar, ASSP 1990): M is even, and
the filters have linear phase so there are N/2 symmetric and N/2 antisymmetric
filters, as discussed in Chapter 2.

3.5.6 Modulated Filter Banks

These were originally proposed as a bank of frequency-translated filters fashioned
from a low-pass prototype. Vetterli and LeGall (1989) and Malvar (ASSP 1990)
point out that these can be made PR by the suitable choice of modulating function.

The bank of analysis filters is chosen to be

where o^, 4>k are respectively the modulating frequency and the phase shift in the
kih band, and h(n) is the prototype, low-pass filter. The frequency UK is chosen
to evenly span the frequency band, and then </>& is picked to eliminate aliasing:

The synthesis filters {gk(n)} have the same form as {hk(n)}, except that the phase
is -4>k.

The Princen-Bradley filters (Section 4.7) can be obtained from this prototype
for the special case that N = 2M (in this respect similar to LOT in filter size).
The requirements for PR are that the low-pass prototype satisfy
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Proof: For the unwindowed filter bank, (h(n) — 1), the PR filter bank of length
2M must satisfy Eq. (3.175). In the present context, the PT matrix is

But the modulating matrix has the property

Let us now insert the symmetric prototype h(ri) and define

where D2 is a diagonal matrix and JD2J is the same as D2 but with an interchange
of elements [see Eq. (3.89)]. Hence

The modulated matrices become

It is easy to show that

and

By symmetry, the latter can also be represented as

And we note that windowing has not destroyed the orthogonality of overlapping
blocks. Equation (3.183) is a time-domain counterpart to the half-band filter
nrr\r>t>rti7
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The modulated lapped transform (MLT)(Malvar, ASSP 1990) has essentially
the same structure as the foregoing with the same requirements, Eq. (3.178).
Additionally, a particular window function,

is chosen for the prototype.
A key advantage to this modulated bank is that fast transform methods can

be used to implement the cosine terms in a computationally efficient mariner.
More recently, Malvar has developed an extended version of the foregoing called
the Extended MLT. This generalization—the filter lengths are N — 2KM is
essentially the same modulated filter bank structure as in Eq. (3.176).

For the extended modulated lapped transform, Malvar sets N — 2KM. arid
as before employs the paraunitary P, and sets Q — P. Thus instead of just one
block overlap as in Eqs. (3.176)-(3.183), we now have a K block overlap.

In Eq. (3.181), each Pr block was represented as the product of a diagonal win-
dow matrix D and the modulation matrix. In the extended case, this is repeated
for each of the 2K blocks Pr, such that

Applying the paraunitary constraint of Eq. (3.170) (with B = /), leads to

This can be viewed as a matrix generalization of the two-band paraunitary filter
bank in Eq. (3.134). Here, the matrix impulse response {Hi} is orthogonal to
its even translates and has a unit norm. The scalar form of this orthogonality
condition is the set of nonlinear equations, which can be solved for the window
function h(ri).
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It is reported that the MLT is superior to the DCT in several respects: the
MLT is free of blocking effects, requires somewhat fewer memory locations, fewer
coefficients, and is comparable in computational complexity, and independent of
the sign of the correlation coefficient for an AR(1) source (Malvar, June 1990).
Lattice realization of PR modulated filter bank is provided in the next section.

3.6 Cascaded Lattice Structures

In the previous section, we developed PR requirements based on a finite series ex-
pansion of the polyphase matrix as in Eq. (3.154). This led to constraints on the
analysis and synthesis polyphase matrices, special cases of which resulted in pa-
raunitary filter banks, modulated filter banks, and lapped orthogonal transforms.
This may be regarded as a basically time- (or spatial) domain approach.

In this section we construct the polyphase matrix as a product of constituent
modular sections, each of which has the desired properties—whatever they may
be. For M = 2, this regular structure is recognized as a lattice structure, and for
arbitrary M, as a generalized lattice.

We consider first the two-band paraunitary lattice, and then a two-band linear-
phase lattice which is PR but not paraunitary. Then we extend these results to
the case of arbitrary M and discover that we can obtain lattice structures that
are both paraunitary and linear-phase.

Previously we expressed

to obtain PR requirements. In particular, we could obtain constraints to force
'Hp(z) to be lossless.

In the present instance, we can write

where the M x M matrices A^ have full rank, and Dk(z) are diagonal matrices
of delays. According to Belevitch (1968), if Hp(z) is lossless, the product form
always exists; conversely, if each Ak is unitary, then Hp(z) is paraunitary, which is
to say that the product of lossless modules is itself lossless. This property allows
us to synthesize individual paraunitary blocks, connect them in cascade, and have
full confidence that the resulting structure is PR.
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3.6.1 The Two-Band Lossless Lattice

To fix ideas, we consider the two-band case; let

where A'k is a constant 2 x 2 orthogonal matrix, and

This structure is evidently lossless. A particular orthogonal matrix is the rotation
matrix

since cos(^fc) — (1 + a|) 1//2. Collecting the (cos(f)k) product terms in a single
normalization factor c gives

This structure is shown in Fig. 3.45, where each Ak is realized by the lattice
structure. The output taps at the end of the lattice yield the analysis filters.

This realization is paraunitary for any o^; the PR condition continues to hold
even when {ak} are quantized from their design values. In this sense, the lattice
is PR robust. The paraunitary property is easily shown from

and
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Figure 3.45: Two-band lattice structure (normalization suppressed): (a) poly-
phase representation of analysis stage; (b) realization as a cascaded structure; (c)
individual lattice module.

Of course, our two-band paraunitary lattice niters have the same properties
as the two-band paraunitary filters discussed in Section 3.5.4. In particular, they
are power complementary and share the filter relations of Eq. (3.141).

As in Eq. (3.109) we can choose the PR synthesis polyphase matrix

We can distribute the delay z (N ^ among each of the (N — 1) blocks D(z 1 ) to
get the synthesis lattice
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This structure is depicted in Fig. 3.46.

Figure 3.46: Paraunitary synthesis filter (unnormalized): (a) cascade structure;
(b) individual structure.

So long as the same values of ct^s are used at the synthesis and analysis sides,
this lattice realizes perfect reconstruction. Researchers (Vaidyanathan and Hoang,
Jan. 1988; Delsarte, Macq, and Slock, 1992) have exploited this property by de-
veloping optimization procedures for selecting o^, stage-by-stage, using the lattice
as the basic element.

The desired behavior of the low-pass and high-pass filters is indicated in
Fig. 3.47, where UJP, and u;s are, respectively, the passband and stopband cut-
off frequencies.

The function to be minimized is the low-frequency filter energy that spills over
into the stopband:
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Figure 3.47: Frequency responses.

Because of the power complementarity of the paraunitary pair, that is,

minimum J also ensures that H\(e^} is a "good" high-pass filter with minimum
energy in its stopband [0,0;^].

The optimization algorithm and the lattice property have a hierarchical prop-
erty, in the sense that a higher-order PR bank can be obtained from a lower-order
one by adding more lattice sections (Vaidyanathan and Hoang, Jan. 1988). The
design is based on iterations as we progress to the right in the analysis lattice. As
k increases, a^ gets smaller, and the lattice frequency responses approach accept-
able design specs. This HQ(Z) design based on lattice parameters results in filters
with the maximum possible number of stopband zeros on the unit circle and a
monotone decreasing peak error in the stopband.

3.6.2 The M-Band Paraunitary Lattice

A somewhat obvious M-band extension of Eq. (3.188) expresses /Hp(z) as

where each Rk is an M x M orthogonal matrix, and D^(z] is a diagonal matrix
whose elements are delays. This Hp(z) is lossless by construction, since JR^1 = #£,
and D^(z~1} — D^l(z). Typically Rk is selected as a product of planar rotation
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matrices. For example, for M = 3,

Each modular section has three design parameters, the three rotation angles o^,
(3k, 7fe. Low-pass, band-pass, and high-pass filters HQ(Z]J H\(z), and H-2(z] can
then be designed so as to minimize the sum of the spillover energies of each filter
into its respective stopband (Vaidyanathan, April 1987),

CJQ

where CJQ? ^i? ^2 are the stopbands for JBTo, HI, #2, respectively. This lattice
formulation guarantees perfect reconstruction, for any filter order (Ar — 1).

Still another, less restrictive, product structure has been proposed. The poly-
phase matrix is lossless if and only if it can be written as the product

where Vk is an M x M matrix

v_k is an M x 1 column vector of unit norm, and B is unitary. The sufficiency is
proved by demonstrating that each Vk(z) is lossless, i.e., that

By direct expansion, using A — VVT and noting that
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we find that
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Additionally, the unitary matrix B itself can be written as the product of (M — 1)
orthogonal matrices of the form

where w_n is a unit norm vector. The design approach—a direct extension of the 2
band case—involves optimization of the normalized vectors v_n and of the unitary
matrix B so as to minimize the sum of the stop-band energies associated with each
filter Hk(e^}. The reader is referred to (Vaidyanathan) (July 1989) for a detailed
description of this process, and sample filter designs. (See also Probs. 3.18, 3,19)

3.6.3 The Two-Band Linear-Phase Lattice

Here we demonstrate that linear-phase perfect reconstruction filters can be syn-
thesized, but without the paraunitary and power complementary properties. Our
approach is to build these filters using a cascade of modular linear-phase lattices.

We had previously noted that the PR requirement Op(z)Hp(z) = z~~n°I can be
met by selecting Qp(z) = z~n°7ipl(z). For the two-band case,

where

Therefore, from Eq. (3.93),

If we force A (z) = cz n°, the PR condition can be satisfied with FIR synthesis
filters; from Eq. (3.94), these are
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Thus Eq. (3.195) and det{H,p(z)} = cz~n° constitute the PR requirements in this
case. Note that GQ(Z], G\(z) are mirror image filters of HI(Z), HQ(Z), respectively,
and that Eq. (3.195) satisfies the alias cancellation requirement of Eq. (3.36). If
we make HQ(Z), and H\(z) linear-phase, then the synthesis filters are also linear--
phase. But also observe that paraunitary and power complementary conditions
are not met.

We now pause to review some properties of linear- phase filters. Let HQ(Z),
HI(Z] be symmetric and antisymmetric, respectively, and of length N,

Next, we want to show that the polyphase matrix for such linear-phase filters
has a particular structure. Since we wish to build our filters by an iteration
process, we take N to be even. For this case,

Such filters can be written in the form

where A(z], B(z] are polynomials in z l of degree (y — 1). More succinctly, we
have

is constrained to satisfy (for 7V even)
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To appreciate this, expand HQ(Z) into polyphase form:
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But with ho(n) even symmetric, Eq. (3.196), we have /io(2n) = ho(N — 1 — 2n).
Substituting into HOO(^) gives

Similarly, we can obtain the second constraint of Eq. (3.198) for the polyphase
components of an antisymmetric filter.

The theorem to be proved is that, if Hp(z] is a polyphase matrix for a linear-
phase filter pair, Eq. (3.196), then 'Hp(z) given by

also represents a linear-phase, symmetric and antisymmetric pair, HQ(Z), H\(z) of
length N + 2. (For an alternative version, see Prob. 3.20) Direct expansion yields

But HQQ(Z},HQI(Z] must satisfy Eq. (3.198). Hence
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From the foregoing, we see that

Similarly, we can show

and conclude that Hp(z) represents a polyphase matrix for linear phase filters of
length (N + 2).

This theorem sets the stage for a cascaded formulation of the form

This polyphase cascade is initialized with the 2 x 2 Hadamard matrix

and the lowest order filters are simply HQ(Z) — 1 + z l and H\(z) — 1 — z~l. The
resulting lattice structure is the same as that for the paraunitary analysis lattice
shown in Fig. 3.45 except that, in the present instance, because of Eq. (3.191) we
use only positive a^ in the lattice and the Hadarnard matrix at the right-hand end
in place of AW-I.

Now, it is a simple matter to obtain PR by choosing
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The resulting synthesis lattice is now fairly obvious. From Qp(z] — z~^N~l^Hp
l (z)

and

We can show that the synthesis niters are also a linear-phase, modulated version
of the analysis set:

The lattice structure permits a stage-by-stage design of the linear-phase lattice.
We can use optimization procedures similar to those in the paraunitary lattice.

Linear-phase niters of odd length can also be realized. In this case HQ(Z} and
HI(Z) are each symmetric filters of lengths (27V — 1) and (27V 4-1), respectively.
The polyphase matrix is such that det{'Hp(z}} = cz~N, and HQQ(Z), HH(Z) are of
degree N, while HQ\(Z), HIQ(Z) are of degree (N — 1) and (N -+-1), respectively.
Additionally, each polyphase component is itself a symmetric polynomial of the
form z~kp(z~l) = p(z), as in Eq. (3.197). See Vetterli and LeGall (1989) for a
detailed derivation.

We close this section by noting that all product forms of the type considered
here yield linear-phase filters. But it is also noted that not all linear-phase filters
can be factored into product form, except for N < 8.

3.6.4 M-Band PR Linear Phase Filter Bank

The linear-phase requirement for the case M — 2 was set down in Section 3.6.3.
An alternate phrasing of these conditions is (Prob. 3.20)

where K is the highest degree in 7ip(z). The extension to the M-band case has
the form

Here M is even, the first 4^ filters are symmetric, and the bottom 4f are antisym-
metric. We will simply outline the M-band extensions.
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The polyphase matrices satisfying the linear-phase conditions are generated by
a generalization of Eq. (3.199). If 7~tp(z) is a polyphase matrix of a linear-phase
filter bank, Eq. (3.202), then 'Hp(z) generated by

is also a linear-phase polyphase matrix. In this case, D(z) is a diagonal matrix of
delay elements and R is unitary. The main theorem proved by Vetterli and LeGall
(1989) is that rHp(z} is the polyphase matrix of a linear-phase filter bank if and
only if

where / is an integer such that D(z) is causal. From Eq. (3.89), this implies that

A matrix R with this property is said to be per symmetric.
The point is, we may start with any unitary matrix R and D(z) satisfying

Eq. (3.205). A particular case is when R is symmetric Toeplitz, and D(z] any one
of the four forms (for M = 4)

It can be shown that a symmetric Toeplitz matrix that satisfies the persymmetric
form, Eq. (3.205), has the form

Each matrix is of size 4f x ^ • Since R is unitary, RRT = I implies

The first of these constitutes an orthonormality of the first 4f rows of .R, while
the second asserts the orthogonality of M\ and (MoJ). These bear a strong
resemblance to the extended LOT orthonormalities of Section 3.5.5, Eqs. (3.175).
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Another way of stating Eq. (3.207) is
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where rf is the ith row of jR.
The choice of R determines the filter bank structure. An example is R as the

product of two persymmetric matrices

where

Finally, we emphasize that for M > 2, we can have both a paraunitary and a
linear-phase filter bank. That is, in addition to Eq. (3.202) we can simultaneously
satisfy

As a consideration separate from linear-phase, it is sometimes desirable that
a filter bank consist of mirror image filters, i.e., HM-I-I(Z) = Hi(z], for i =
0,1,..., 4p — I- This implies that the polyphase components are related by the
relation HM-i-i,k(z} — (~l) fc j^i,fc(^)- That is, the even (odd) indexed polyphase
components of HM-i-i(z}, and Hi(z) are equal (negative of each other). Poly-
phase matrices with this property can be generated recursively by product forms.
In particular, postmultiplication by a delay matrix D(z), and/or by a rotation
matrix R, with RIJ = 0, i+j^even, results in a mirror- image filter bank.

As a case in point, suppose M = 4, and we start with T~tp(z) as a row-shuffled
4 x 4 Hadamard matrix

The corresponding analysis filters are
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This filter bank is paraunitary, since 7ip(z"1)7i,p(z) — R^Ro — I- It is linear-
phase, since ho(n) and /ii(n) are symmetric, and hi(n], h^(n] are antisymmet-
ric. And, the filter bank has mirror-image filters, H%(z) = HQ(-Z) and H^(z) =
Hi(-z).'

(1) To build up a paraunitary structure, it is sufficient to write Ti,p as a product
of paraunitary matrices as in Eq. (3.193), 'H.p(z) = Di(z}fHp(z} — DI(Z)RQ, or
equally valid, Hp(z] — RoDi(z), since the product of paraunitary matrices is
paraunitary.

(2) To construct a linear-phase structure, we want lHp(z] = 1Hp(z)D(z)RJ

where D(z], and R are constrained by Eq. (3.204).
(3) To continue the mirror-image property, we may postmultiply RQ by a

diagonal delay matrix D(z), and/or the special rotation matrix with Rij — 0
when i+j is odd. For example, we can satisfy all three properties with

where c — cos a, s — sin a.
This example demonstrates that one can recursively construct M-band parau-

nitary, linear-phase, mirror-image filter banks from elementary building blocks.
The cascaded structure depends on initialization, choice of D(z), and of rotation
matrices, the angles of which can be recursively optimized.

3.6.5 Lattice Realizations of Modulated Filter Bank

The cosine modulated PR filter bank of Section 3.5.6 is revisited here, where in
the present instance, each filter is of length 2/Af, / an integer > 1. A polyphase
expansion of each filter and imposition of PR constraints lead to a realization
based on the two channel lossless lattice of Section 3.6.1. The latter structure
leads to efficient design procedures (Koilpillai and Vaidyanathan, 1992).

The rth band analysis filter has the form
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In Eq. (3.208) h(n) is the linear-phase low-pass prototype of length 21M, and cnn

is the cosine modulation term,

The modulation term has a half period of 2pM and a periodicity evidenced by

The associated synthesis filter gr(n) = hr(N — 1 — n) has the same form as
Eq. (3.208), except that the phase is — Or.

The derivation of the lattice structure shown in Fig. 3.49 is based on evaluat-
ing the polyphase matrix Hp(z) in terms of the polyphase components of Hr(z],
followed by imposition of PR constraints. The details are as follows:

(1) Expand the prototype /i(n), and band-pass /ir(n), each of length 2iM, in
a polyphase expansion using base 2M (instead of the usual M), to obtain

realizable by 2M parallel branches. From Equation (3.15),

Equation (3.212) now becomes

(2) Next, by comparison with Eqs. (3.212) and (3.214), the polyphase expan-
sion of Hr(z) is
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Using the periodicity, Eq. (3.211), the last expression becomes

Finally,

(3) The vector of analysis filters h(z] is now of the form,

The next step is to impose PR conditions on the polyphase matrix defined by
h(z) = Hp(z

M)z_M. To obtain this form, we partition C, G, and Z_2M m^°

where Co, Ci, go, g\ are each M x M matrices. Expanding Eq. (3.217) in terms
of the partitional matrices leads to the desired form,
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Figure 3.48: Structure of cosine-modulated filter bank. Each pair Gk and Gfc+M
is implemented as a two-channel lattice.

Equation (3.220) suggests that the polyphase components can be grouped into
pairs, Gk and z~~MGk+M, as shown in Fig. 3.48. Moving the down-samplers to
the left in Fig. 3.48 then gives us the structure of Fig. 3.49.

Up to this point, the realization has been purely structural. By using the prop-
erties of GO, Ci, go, gi in Eq. (3.220) and imposing H^\z~l}Hp(z) — /, it is shown
(Koilpillai and Vaidyanathan, 1992) (see also Prob. 3.31) that the necessary and
sufficient condition for paraunitary perfect reconstruction is that the polyphase
component filters Gk(z) and Gfc+M^) be pairwise power complementary, i.e..
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Figure 3.49: Alternate representation of cosine modulated filter bank.

For the case I — 1, all polyphase components are constant, Gk(z) = h(k). This last
equation then becomes h2(k) + h2(k + M] = ^jg, which corresponds to Eq. (3.178).
Therefore the filters in Fig. 3.49 {(?&(—£2), Gk+M(~z2)} can be realized by a two
channel lossless lattice. We design Gk(z) and Gk+M(z) to be power complementary
or lossless as in Section 3.6.1, Fig. 3.45 (with down-samplers shifted to the left),
and then replace each delay z~1 by — z2 in the realization. The actual design of
each component lattice is described in Koilpillai and Vaidyanathan (1992). The
process involves optimization of the lattice parameters.

In Nguyen and Koilpillai (1996), these results were extended to the case where
the filter length is arbitrary. It was shown that Eq. (3.222) remains necessary and
sufficient for paraunitary perfect reconstruction.
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3.7 IIR Subband Filter Banks

Thus far, we have restricted our studies to FIR filter banks. The reason for
this hesitancy is that it is extremely difficult to realize perfect reconstruction IIB
analysis and synthesis banks. To appreciate the scope of this problem, consider
the PR condition of Eq. (3.100):

which requires

Stability requires the poles of Qp(z] to lie within the unit circle of the Z-plane.
Prom Eq. (3.223), we see that the poles of Qp(z) are the uncancelled poles of the
elements of the adjoint of 'Hp(z) and the zeros of det('Hp(z)). Suppose 'Hp(z)
consists of stable, rational IIR filters (i.e., poles within the unit circle). Then
adjHp(z) is also stable, since its common poles are poles of elements of Hp(z}.
Hence stability depends on the zeros of det('Hp(z))^ which must be minimum-
phase—i.e., lie within the unit circle—a condition very difficult to ensure.

Next suppose Hp(z] is IIR lossless, so that Hp (z~~l}Hp(z} — I. If Hp(z) is
stable with poles inside the unit circle, then "Hp(z~ ) must have poles outside the
unit circle, which cannot be stabilized by multiplication by z~~n°. Therefore, we
cannot choose Qp(z] = 'H^(z~1) as we did in the FIR case. Thus, we cannot
obtain a stable causal IIR lossless analysis-synthesis PR structure.

We will consider two alternatives to this impasse:
(1) It is possible, however, to obtain PR IIR structures if we operate the synthe-
sis filters in a noncausal way. In this case, the poles of Qp(z) outside the unit circle
are the stable poles of an anticausal filter, and the filtering is performed in a non-
causal fashion, which is quite acceptable for image processing. Two approaches
for achieving this are described subsequently. In the first case, the signals are
reversed in time and applied to causal IIR filters (Kronander, ASSP, Sept. 1988).
In the second instance, the filters are run in both causal and anticausal modes
(Smith, and Eddins, ASSP, Aug. 1990).
(2) We can still use the concept of losslessness if we back off from the PR re-
quirement and settle for no aliasing and no amplitude distortion, but tolerate
some phase distortion. This is achieved by power complementary filters synthe-
sized from all-pass structures. To see this (Vaidyanathan, Jan. 1990), consider a
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lossless IIR polyphase analysis matrix expressed as

where d(z) is the least common multiple of the denominators of the elements of
'Hp(z), and F(z) is a matrix of adjusted numerator terms; i.e., just polynomials
in 2"1. We assume that d(z) is stable. Now let

Therefore,

With this selection, P(z] is all-pass and diagonal, resulting in

Hence \T(e^}\ — 1, but the phase response is not linear. The phase distortion
implicit in Eq. (3.227) can be reduced by all-pass phase correction networks.

A procedure for achieving this involves a modification of the product form of
the M-band paraunitary lattice of Eq. (3.193). The substitution

converts /Hp(z) from a lossless FIR to a lossless IIR polyphase matrix. We can
now select Qp(z) as in Eq. (3.225) to obtain the all-pass, stable T(z).

To delve further into this subject, we pause to review the properties of all-pass
filters.
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3.7,1 All-Pass Filters and Mirror Image Polynomials

An all-pass filter is an IIR structure defined by

This can also be expressed as

From this last expression, we see that if poles of A(z] are at (z\, z<2, • • • , %>), then
the zeros are at reciprocal locations, (z^ , z^ , • • • , z"1), as depicted in Fig. 3.50,
Hence A(z] is a product of terms of the form (1 — az)/(l — az~l), each of which
is all-pass. Therefore,

and note that the zeros of A(z) are all non-minimum phase. Furthermore

These all-pass filters provide building blocks for lattice-type low-pass and high-
pass power complementary filters. These are defined as the sum and difference of
all-pass structures,

where AQ(Z), and A\(z] are all-pass networks with real coefficients.
Two properties can be established immediately:

(1) NQ(Z] is a mirror-image polynomial (even symmetric FIR), and NI(Z) is an
antimirror image polynomial (odd symmetric FIR).
(2) HQ(Z) and H\(z) are power complementary (Prob. 3.6):

(3-233)
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Figure 3.50: Pole-zero pattern of a typical all-pass filter.

A mirror image polynomial (or FIR impulse response with even symmetry) is
characterized by Eq. (3.196) as

The proof of this property is left as an exercise for the reader (Prob. 3.21). Thus if
z\ is a zero of F(z], then zf1 is also a zero. Hence zeros occur in reciprocal pairs.
Similarly, F(z) is an antimirror image polynomial (with odd symmetric impulse
response), then

To prove property (1), let AQ(Z}, A\(z) be all-pass of orders p0 and pi, respectively.
Then
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arid

Prom this, it follows that

Similarly, we can combine the terms in H\(z) to obtain the numerator

which is clearly an antimirror image polynomial.
The power complementary property, Eq. (3.218), is established from the fol-

lowing steps: Let

Then

But

By direct expansion and cancellation of terms, we find

and therefore, W(z) = 1, confirming the power complementary property.
These filters have additional properties:

(4) There exists a simple lattice realization as shown in Fig. 3.51, and we can write

Observe that the lattice butterfly is simply a 2 x 2 Hadamard matrix.
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Figure 3.51: Lattice realization of power complementary filters; AQ(Z), A\(z) are
all-pass networks.

3.7.2 The Two-Band IIR QMF Structure

Returning to the two-band filter structure of Fig. 3.20, we can eliminate aliasing
from Eq. (3.36) by selecting GQ(Z) = HI(-Z) and GI(Z) - -H0(-z). This results
in

T(z) = H0(z)H1(-z) - HO(-Z)H!(Z).

Now let HI(Z) — HQ(—Z], which ensures that H\(z] will be high-pass if H$(z] is
low-pass. Thus

T(z) = H%(z) - H2(-z) = H2(z) - H$(z).

Finally, the selection of HQ(Z] and H\(z) by Eq. (3.232) results in

Thus, T(z) is the product of two all-pass transfer functions and, therefore, is itself
all-pass. Some insight into the nature of the all-pass is achieved by the polyphase
representations of the analysis filters,

The all-pass networks are therefore
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These results suggest the two-band lattice of Fig. 3.52, where O,Q(Z) and a \ ( z ) are
both all-pass filters.

We can summarize these results with

In addition to the foregoing constraints, we also want the high-pass filter to
have zero DC gain (and correspondingly, the low-pass filter gain to be zero at
u? = ?r). It can be shown that if the filter length N is even (i.e., filter order JV — 1
is odd), then NQ(Z] has a zero at z — — 1 and NI(Z) has a zero at z = \. Pole-zero
patterns for typical HQ(z}, H\(z] are shown in Fig. 3.53.

Figure 3.52: Two-band power complementary all-pass IIR structure.



218 CHAPTER 3. THEORY OF SUBBAND DECOMPOSITION

Figure 3.53: Typical IIR power complementary two-band filters.

A design procedure as described in Vaidyanathan (Jan. 1990) is as follows.
Let the all-pass polyphase components O,Q(Z), ai(z) have alternating real poles

Then,

By construction, NQ(Z) is a mirror image polynomial of odd order N — 1, and
the poles of HQ(Z) are all purely imaginary. The set {p^} can then be chosen to
put the zeros of A^o(^) on the unit circle as indicated in Fig. 3.53. Procedures for
designing M-band power complementary filters are given in Vaidyanathan (Jan,
1990), and S. R. Filial, Robertson, and Phillips (1991). (See also Prob. 3.31)

3.7.3 Perfect Reconstruction IIR Subband Systems

We know that physically realizable (i.e., causal) IIR filters cannot have a linear-
phase. However, noncausal IIR filters can exhibit even symmetric impulse re-
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sponses and thus have linear-phase, in this case, zerophase.
This suggests that noncausal IIR filters can be used to eliminate phase dis-

tortion as well as amplitude distortion in subbands. One procedure for achieving
a linear-phase response uses the tandem connection of identical causal IIR niters
separated by two time-reversal operators, as shown in Fig. 3.54.

Figure 3.54: Linear-phase IIR filter configuration; R is a time-reversal.

The finite duration input signal x(n) is applied to the causal IIR filter H(z).
The output v(n) is lengthened by the impulse response of the filter and hence in
principle is of infinite duration. In time, this output becomes sufficiently small
and can be truncated with negligible error. This truncated signal is then reversed
in time and applied to H(z] to generate the signal w(n); this output is again
truncated after it has become very small, and then reversed in time to yield the
final output y(n).

Noting that the time-reversal operator induces

we can trace the signal transmission through Fig. 3.52 to obtain

Hence,

where

The composite transfer function is \H(e^)\2 and has zero phase. The time rever-
sals in effect cause the filters to behave like a cascade of stable causal and stable
anticausal filters.



220 CHAPTER 3. THEORY OF SUBBAND DECOMPOSITION

This analysis does not account for the inherent delays in recording and revers-
ing the signals. We can account for these by multiplying $(z) by Z~(NI+N'^, where
N[ and N% represent the delays in the first and second time-reversal operators.

Kronander (ASSP, Sept. 88) employed this idea in his perfect reconstruction
two-band structure shown in Fig. 3.55. Two time-reversals are used in each leg
but these can be distributed as shown, and all analysis and synthesis filters are
causal IIR.

Using the transformations induced by time-reversal and up- and down-samp-
ling, we can calculate the output as

The aliasing term S(z) can be eliminated, and a low-pass/high-pass split ob-
tained by choosing

This forces S(z] = 0, and T(z) is simply

On the unit circle (for real ho(n}), the PR condition reduces to

Hence, we need satisfy only the power complementarity requirement of causal IIR
filters to obtain perfect reconstruction! We may regard this last equation as the
culmination of the concept of combining causal IIR filters and time-reversal oper-
ators to obtain linear-phase filters, as suggested in Fig. 3.54.

The design of {Ho(z), H\(z}} IIR pair can follow standard procedures, as out-
lined in the previous section. We can implement HQ(Z) and H\(z) by the all-pass
lattice structures as given by Eqs. (3.241) and (3.242) and design the constituent
all-pass filters using standard tables (Gazsi, 1985).
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Figure 3.55: Two-band perfect reconstruction IIR configuration; R denotes a time-
reversal operator.

Figure 3.56: Two-channel IIR subband configuration. PE means periodic exten-
sion and WND is the symbol for window.

The second approach to PR IIR filter banks was advanced by Smith and Eddins
(ASSP, Aug. 1990) for filtering finite duration signals such as sequences of pixels
in an image. A continuing stream of sequences such as speech is, for practical
purposes, infinite in extent. Hence each subband channel is maximally decimated
at its respective Nyquist rate, and the total number of input samples equals the
number of output samples of the analysis section. For images, however, the con-
volution of the spatially limited image with each subband analysis filter generates
outputs whose lengths exceed the input extent. Hence the total of all the samples
(i.e., pixels) in the subband output exceeds the total number of pixels in the image;
the achievable compression is decreased accordingly, because of this overhead.

The requirements to be met by Smith and Eddins are twofold:
(1) The analysis section should not increase the number of pixels to be encoded.



222 CHAPTEB, 3. THEORY OF SUBBAND DECOMPOSITION

(2) IIR filters with PR property are to be used.
The proposed configuration for achieving these objectives is shown in Fig. 3.56

as a two-band codec and in Fig. 3.57 in the equivalent polyphase lattice form.
The analysis section consists of low-pass and high-pass causal IIR filters, and

the synthesis section of corresponding anticausal IIR filters. The key to the pro-
posed solution is the conversion of the finite-duration input signal to a periodic
one:

and the use of circular convolution. In the analysis section the causal IIR, filter is
implemented by a difference equation running forward in time over the periodic sig-
nal; in the synthesis part, the anticausal IIR filter operates via a backward-running
difference equation. Circular convolution is used to establish initial conditions for
the respective difference equations.

These periodic repetitions are indicated by tildes on each signal. The length
N input x(ri] is periodically extended to form x(n) in accordance with Eq. (3.250).
As indicated in Fig. 3.57 this signal is subsampled to give £o(n) and £i(n)) each of
period N/2 (N is assumed to be even). Each subsampled periodic sequence is then
filtered by the causal IIR polyphase lattice to produce the N/2 point periodic se-
quences 'Do(n) and vi(n). These are then windowed by an N/2 point window prior
to encoding. Thus, the output of the analysis section consists of two N/2 sample
sequences while the input x(n) had N samples. Maximal decimation is thereby
preserved. Inverse operations are performed at the synthesis side using noncausal
operators. Next, we show that this structure is indeed perfect reconstruction and
describe the details of the operations.

For the two-band structure, the perfect reconstruction conditions were given
by Eq. (3.74), which is recast here as

The unconstrained solution is
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Figure 3.57: Two-channel polyphase lattice configuration with causal analysis and
anticausal synthesis sections.

Let us construct the analysis filters from all-pass sections and constrain H\(z] =
HQ(—Z). Thus, we have the polyphase decomposition

and PQ(Z}, PI(Z) are both all-pass. For this choice, A reduces to simply

The PR conditions are met by
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But, for an all-pass, PQ(Z)PQ(Z~I) — 1. Hence

Therefore, the PR conditions for the synthesis all-pass filters are simply

which are recognized as anticausal, if the analysis filters are causal.
To illustrate the operation, suppose PQ(Z] is first-order:

Since the N/2 point periodic sequence £(n) is given, we can solve the difference
equation recursively for n — 0,1, 2,...., y — 1. Use is made of the periodic nature
of £(n) so that terms like £(—1) are replaced by |(y - 1); but we need an initial
condition «§(—!). This is obtained via the following steps. The impulse response
Po(n) is circularly convolved with the periodic input.

The difference equation is then (the subscript is omitted for simplicity)

Similarly, we find
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But Em=o0(m) can be written as EfcL^ESo^ + MT/2). The sum term be-
comes

Finally,

This last equation is used to compute s(—1), the initial condition needed for the
difference equation, Eq. (3.259).

The synthesis side operates with the anticausal all-pass

or

The difference equation is

which is iterated backward in time to obtain the sequence

with starting value f?(l) obtained from the circular convolution of g$(n) and f ( n ) .
This can be shown to be

with
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The classical advantages of IIR over FIR are again demonstrated in subband
coding. Comparable magnitude performance is obtained for a first-order PQ(Z)
(or fifth-order HQ(Z}} and a 32-tap QMF structure The computational complexity
is also favorable to the IIR structure, typically by factors of 7 to 14 (Smith and
Eddins, 1990).

3.8 Transmultiplexers

The subband filter bank or codec of Fig. 3.32 is an analysis/synthesis structure.
The front end or "analysis" side performs signal decomposition in such a way as to
allow compression for efficient transmission or storage. The receiver or "synthesis"
section reconstructs the signal from the decomposed components.

The transmultiplexer, depicted in Fig. 3.58, on the other hand, can be viewed
as the dual of the subband codec. The front end constitutes the synthesis sec-
tion wherein several component signals are combined to form a composite signal
which can be transmitted over a common channel. This composite signal could be
any one of the time-domain multiplexed (TDM), frequency-domain multiplexed
(FDM), or code division multiplexed (CDM) varieties. At the receiver the analy-
sis filter bank separates the composite signal into its individual components. The
multiplexer can therefore be regarded as a synthesis/analysis filterbank structure
that functions as the conceptual dual of the analysis/synthesis subband structure.

Figure 3.58: Af-band multiplexer as a critically sampled synthesis/analysis mul-
tirate filterbank.

In this section we explore this duality between codec and transmux and show
that perfect reconstruction and alias cancellation in the codec correspond to PR
and cross-talk cancellation in the transmux.
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3.8.1 TDMA, FDMA, and CDMA Forms of the
Transmultiplexor

The block diagram of the M-band digital transmultiplexer is shown in Figure 3,58.
Each signal Xh(n] of the input set

is up-sampled by M, and then filtered by Gk(z), operating at the fast clock rate.
This signal |/&(n) is then added to the other components to form the composite
signal y ( n ) , which is transmitted over one common channel wherein a unit delay is
introduced2. This is a multiuser scenario wherein the components of this composite
signal could be TDM, FDM, or CDM depending on the filter used. The simplest
case is that of the TDM system. Here each synthesis filter (Gk(z) = z~ , k. —
0,1,.,., M— 1) is a simple delay so that the composite signal y(n) is the interleaved
signal

Figure 3.59: Three-band TDMA Transmultiplexer.

At the receiver (or "demux"), the composite TDM signal is separated into its
constituent components. This is achieved by feeding the composite signal into
a bank of appropriately chosen delays, and then down-sampling, as indicated in
Fig. 3.59 for a three-band TDMA transmux. For the general case with Gk(z) =
z~~k, 0 < k < M — 1, the separation can be realized by choosing the corresponding
analysis filter to be

Insertion of a delay z l (or more generally z (IM+1~> for / any integer) simplifies the analysis
to follow and obviates the need for a shuffle matrix in the system transfer function matrix.
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for r any integer. The simplest noncausal and causal cases correspond to r — 0
and r = 1, respectively. This reconstruction results in just a simple delay.

as can be verified by a study of the selectivity provided by the upsampler-delay-
down-sampler structure shown as Fig. 3.60. This is a linear time-invariant system
whose transfer function is zero unless the delay r is a multiple of M, i.e.,

Figure 3.60: Up-sampler-delay-down-sampler structure.

In essence, the TDM A transmux provides a kind of time-domain orthogonality
across the channels. Note that the impulse responses of the synthesis filters

are orthonormal in time. Each input sample is provided with its own time slot,
which does not overlap with the time slot allocated to any other signal. That is.

This represents the rawest kind of orthogonality in time. From a time-frequency
standpoint, the impulse response is the time-localized Kronecker delta sequence
while the frequency response,

has a flat, all-pass frequency characteristic with linear-phase. The filters all overlap
in frequency but are absolutely non-overlapping in the time domain; this is a pure
TDM—-+ TDM system.

The second scenario is the TDM —>FDM system. In this case, the up-sampler
compresses the frequency scale for each signal (see Fig. 3.61). This is followed by
an ideal, "brick-wall," band-pass filter of width 7T/M, which eliminates the images
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and produces the FDM signal occupying a frequency band ir/M. These FDM
signals are then added in time or butted together in frequency with no overlap
and transmitted over a common channel. The composite FDM signal is then
separated into its component parts by band-pass, brick-wall filters in the analysis
bank, and then down-sampled by M so as to occupy the full frequency band at
the slow clock rate,

An example for an ideal 2-band FDM transmux is depicted in Figs. 3.61 and
3.62. The FDM transmux is the frequency-domain dual of the TDM transmux.
In the FDM system, the band-pass synthesis filterbank allocates frequency bands
or "slots" to the component signals. The FDM signals are distributed and overlap
time, but occupy non-overlapping slots in frequency. On the interval [0, TT], the
synthesis filters defined by

{ 1 b2L < < (fc+1)7r.
' M —w — M ' k — 0 1 M — 1 (3 969)0, else. ' u , i , . . ,M I, (6.M)

are clearly orthogonal by virtue of non-overlap in frequency

Gk(e?u)Gi(e?»)du =

Figure 3.61: Ideal two-band TDM-FDM transmux. HQ and HI are ideal low-pass
and band-pass niters.

These filters are localized in frequency but distributed over time, The time-
frequency duality between TDM and FDM transmultiplexers is summarized in
Table 3.3. It should be evident at this point that the orthonormality of a trans-
multiplexer need not be confined to purely TDM or FDM varieties. The orthonor-
mality and localization can be distributed over both time- and frequency-domains,
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Figure 3.62: Signal transforms in ideal 2-band FDM system transmux of Fig. 3.61.
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as in QMF filter banks. When this view is followed, we are led to a consideration
of a broader set of orthonormality conditions which lead to perfect reconstruction.
The filter impulse responses for this class are the code-division multiple access
(CDMA) codes for a set of signals. These filter responses are also the same as
what are known as orthogonal spread spectrum codes.

TDM
FDM

CDM

Impulse response
9k(n)

5(n - k)
1 sm(nw/2M) (fia , 1 \ rnr i

M TMT/2M CCMI/C 1 l) M *

Frequency response
Gk(e^)

e-jku aii-pasg

Eq. (3.269), band-pass

Localization

Time
Frequency

Distributed over time and frequency

Table 3.3: Time-frequency characteristics of TDM and FDM transmultiplexers.

3.8.2 Analysis of the Transmultiplexer

In this section we show that the conditions on the synthesis/analysis filters for
perfect reconstruction and for cross-talk cancellation are identical to those for PR
and alias cancellation in the QMF interbank. Using the polyphase equivalences
for the synthesis and analysis filter, we can convert the structure in Fig. 3.58 to
the equivalent shown in Fig. 3.63 where the notation is consistent with that used
in connection with Figs. 3.35 and 3.36. Examination of the network within the
dotted lines shows that there is no cross-band transmission, and that within each
band, the transmission is a unit delay, i.e.,

This is also evident from the theorem implicit in Fig. 3.60. Using vector
notation and transforms, we have

Therefore, at the slow clock rate, the transmission from rj(z) to £(z) is just a
diagonal delay matrix. The system within the dotted line in Fig. 3.63 can therefore
be replaced by matrix z~ll as shown in Fig. 3.64. This diagram also demonstrates
that the multiplexer from slow clock rate input x(n) to slow clock rate output
x(n) is linear, time-invariant (LTI) for any polyphase matrices Qp(z)^Hp(z)1 and
hence is LTI for any synthesis/analysis filters. This should be compared with
the analysis/synthesis codec which is LTI at the slow-clock rate (from £(n) to
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Figure 3.64: Reduced polyphase equivalent of transmultiplexer.

r?(n) in Fig. 3.36), but is LTI at the fast clock rate (from x(n) to x(n)) only if
aliasing terms are cancelled. The complete analysis of the transmultiplexer using
polyphase matrices is quite straightforward. Prom Fig. 3.64, we see that

For PR with a unit (slow clock) delay, we want

Hence, the necessary and sufficient condition for a PR transmultiplexer is
simply

/" \ / — J_/ \ / \ /

Prom Eqs. (3.100) and (3.101), the corresponding condition for PR in the QMF
filter bank is
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which is achieved iff

and

Since O'p(z) and Hp(z) are each square, then Eq. (3.275) implies Eq. (3.277), and
conversely. An immediate consequence of this is that any procedure for design-
ing PR codecs can be used to specify PR transmultiplexers. In particular, the
orthonormal (or paraunitary) filter bank conditions in Section 3.5.4 carry over
intact for the transmux.

The cross-talk cancellation condition obtains when there is no interference
from one channel to another. This is secured iff Hp(z)Q'(z) is a diagonal matrix.
This condition is satisfied if the progenitor codec is alias free. The argument in
support of this contention is as follows:

In the codec of Fig. 3.36, let P(z) = Q'p(z)Hp(z) be diagonal

Combining these, we obtain

To eliminate aliasing, Eq. (3.280) must reduce to X ( z ) = T(z}X(z)J the input-
output relationship of a LTI system. This is achieved if

for then the term in square brackets in Eq. (3.280) becomes

Then Fig. 3.36 can be put into the form of Fig. 3.65(a), which in turn can be ma-
nipulated into Fig. 3.65(b) using the noble identities of Fig. 3.7. From Fig. 3.65(b)
and (c), we can write
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Figure 3.65: (a) Codec with diagonal P(z). (b) Equivalent representation, (c) rth
channel of codec.
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Thus, Eq. (3.280) reduces to

We conclude that the condition for alias cancellation in the codec is satisfied if
P(z] is a diagonal matrix with equal elements, i.e.,

Equation (3.284) in turn implies that ^Hp(z)Q'(z] — D(z}I, which is a sufficient
condition for cross-talk cancellation.

In summary, if the progenitor codec satisfies PR, then the transmux is also
PR, and if the codec is designed to be alias free, then the paired transmux will
enjoy cross-talk cancellation.

We can now apply the PR properties to the class of orthonormal transmulti-
plexers.

3.8.3 Orthogonal Transmultiplexor

The conventional orthogonal TMUX is an FDMA or a TDMA multiuser com-
munication system wherein frequency or time slots are allocated to users. In a
code-division multiple access (CDMA) system all users are equally entitled to all
of the available time and frequency slots, with the ultimate goal of optimizing the
overall throughput by maximizing the number of users in the same cell. The filter
responses or user codes in a CDMA transmux are therefore spread both in time
and frequency.

The equivalence between codecs and transmultiplexers developed in the pre-
ceding section enables us to design orthogonal CDMA codes using the design
techniques developed for orthonormal, i.e., paraunitary, codecs.

The conditions for the paraunitary filter structure, defined by Eqs. (3.119) and
(3.120), are succinctly restated here as
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These same conditions must be satisfied for orthogonal CDMA codes. But as
we've seen for the QMF filter banks, the filter impulse responses are not unique.
There are many free parameters that can be used to optimize system performance.
The CDMA user codes in an orthogonal transmultiplexer should therefore be
spread out in time and frequency with minimum inter- and intracode correlations.
Optimal design criteria incorporating these features were described in Akansu,
Tazebay, and Haddad (1997). This feature is discussed in detail in Chapter 7.

3.9 Two-Dimensional Subband Decomposition

Except in the separable case the two-dimensional (2D) multirate filter bank is
not a simple extension of the ID case. The main complication arises from the
subsampling lattice used in the decimator. In ID, the decimator or down-sampler
retains every Mth sample in the sequence, discards the rest, and then reindexes
the time scale. In 2D, the down-sampler retains samples located on a subsampling
lattice, which is represented by the subsampling matrix D, with integer elements.
We will see that the decimation factor M = \detD , so that one of M samples is
retained. This implies an M-band filter bank for a maximally decimated system.

In this section, we develop 2D multirate filter bank theory as a generalization
of the ID theory presented earlier in this chapter. The prime reference for this
section is Viscito and Allebach (1991) and supported also by Karlsson and Vetterli
(1990).

3.9.1 2D Transforms and Notation

A 2D signal x(ni,n<2} is defined on a rectangular grid of points A, where {ni.n^}
is the set of all integers. Physically {^1,712} can refer to pixel locations in an
image. The Z and Fourier transforms (Dudgeon and Mersereau. 1984) are

and
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The notation can be simplified and the relationship to the ID counterpart
made more evident by employing the following vector shorthand. The integer pair
{711.712} is represented as an integer vector n,

The transform variables are indicated by

For any integer vector n and integer matrix

we define

Note that z_— is a 2 x 1 vector.
With this notation, the transforms can be written as

Other notational definitions will be introduced as needed. (Prob. 3.22)

3.9.2 Periodic Sequences and the DFT

Let x(n) be a 2D periodic sequence with periodicity matrix D such that
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for any integer vector r. Let IM denote the region in the (ni, 712) plane containing
exactly one period of this pattern. This unit cell contains M = \detD\ samples.
Explicitly, Eq. (3.295) is

where {dij} are integers. For the special case of rectangular periodicity, D is
diagonal and M = ^11^22- In this case, the 2D DFT is just

and inversely

The unit cell IM is the rectangular region (0 < n\ < d\\ — 1, 0 < n2 < ^22 — 1}
containing M — dud^ points.

Now consider an arbitrary non-singular integer matrix D. This periodicity
matrix defines a unit cell that is related to the subsampling lattice to be introduced
shortly. Each point in this cell constitutes a vector. These vectors are called the
coset vectors associated with D. There are exactly M — \detD of these, denoted
by {h.Qihi • • '^M-il? with k0 — 0. For example,

defines the periodic regions and the parallelogram-shaped unit cell ABCD in
Fig. 3.66. The coset vectors within this unit cell are

Note that other cells and coset vectors can be defined for the same D. For the
diamond-shaped cell ADEF in Fig. 3.66 the associated coset vectors are
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Figure 3.66: Periodic regions for , diamond and parallelogram-shaped unit cells.

Now for an arbitrary £), we can expand x(n) = x(n + Dr) in a discrete Fourier
series,

and inversely,

where M = |<ietD|, and {&/}, {n^} are coset vectors associated with DT, and D,
respectively, and the sum is taken over the respective unit cells in the spatial-
and frequency-domains. These relations are valid since the complex exponentials
ej2Ttk D n are periociic in ^ an(j ^ with periodicity matrices DT and £), respec-
tively, and are orthogonal over the unit cell IM specified by D. (Prob. 3.23)

As a special case of the foregoing, consider the periodic sampling function



where AD represents the sublattice generated by D. (In Fig. 3.66, A is the set of
all grid points, A/? is the set of subsampled points indicated by the crosses.)

This sampling function can be expressed in Kronecker delta form,

and {r} is the set of all integer vectors. The corresponding DFT is then

M-l

so that

Observe that Eqs. (3.299) and (3.300) are generalizations of the ID version
given in Eq. (3.4). This result will be used in deriving formulas for decimated and
interpolated 2D signals.

3.9.3 Two-Dimensional Decimation and Interpolation

Let A be the set of integer vectors {n} and A£> the set of integer vectors {m}
generated by ra — Dn. In Fig. 3.66, A is the set of grid points at all integer
values, and AD the lattice subset indicated by crosses. The coset is the set of
points within a unit cell indicated previously. Note that a given sublattice can be
described by more than one D matrix. For example,

postmultiplication by an integer matrix with determinant equal to ±1. (Prob. 3.24)
The down-sampler and up-sampler shown schematically in Fig. 3.67 are defined

by
v(n) = x(Dn] (3.301)

define the same sublattice. The matrices are related by D% — D\
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The down-sampler accepts samples lying on the sublattice A£>, discards the others.
and reindexes the spatial axes.

The up-sampler takes points v(n) on a rectangular lattice and maps them onto
the sublattice A/> Equation (3.303) combines the operations of down-sampling
followed by up-sampling. This operation is equivalent to modulating the input
x(n) by the periodic sampling function i(n) of Eq. (3.299), and it will prove to be
the key to unveiling the connection among the transforms of these three signals,

For the up-sampler of Eq. (3.302), the output transform is

In the Fourier domain, this becomes

Figure 3.67: Representation of two-dimensional down-sampling and up-sampling.

Using the simpler notation of Eq. (3.288) the exponent is suppressed, arid the last
equation is written as

which is a generalization of the ID version of Eq. (3.13). In the ID case, the
baseband region for X(eju;), (—7r,7r) , is mapped into (-jfijf) for Y(e^}. In
addition there are (M —1) contiguous images on [—TT, TT], See, for example, Fig. 3.4,
which is redrawn here as Fig. 3.68, for M = 4. In 2D, Eq. (3.305) implies that the
rectangular frequency region {—TT < uj\ < v r , — T T < LJ% < TT} is mapped into the
baseband parallelogramshaped region

The (M—1) images of this cell are mapped into regions surrounding this baseband
by shifting the baseband by
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Figure 3,68: One-dimensional frequency axis compression due to interpolation
shown for M — 4.

where kj is the coset vector, and D T is an abbreviation for (D l)T. An example
of the sublattice structure, the coset vectors, and the resulting frequency bands
are illustrated in Fig. 3.69 for

The subsampling lattice is constructed by first drawing vectors d\, d^ and lines
parallel to these at the spacing indicated by m — Dn. The sublattice points lie
at the intersection of these lines. In Fig. 3.69, the unit cell is the parallelogram
formed by di and d2. The coset vectors are the four points contained within this
cell, excluding two of the boundaries. These are

The shaded diamond-shaped baseband in Fig. 3.69(b) is obtained from Eq. (3.309)

The three other image bands are obtained by translating the baseband by
27rD~~Tki. Figure 3.69(b) is therefore a 2D generalization of the ID case. The
bands are compressed in extent and skewed in orientation. This capability of
forming the shape and location of these subbands is the foundation for the fan
filters discussed subsequently. (Prob. 3.32)
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Figure 3.69: (a) Subsampling lattice for D
bands.

; (b) corresponding sub-
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The combined operations of down-sampling and up-sampling can be repre-
sented as a modulation of x(n) by i(n). Hence

Consequently,

The argument in this last equation involves the product of two complex vectors
of the form zw., which is defined as follows

And the frequency characterization for the down- and up-sampling combination

Next, since Y(z) = V(z_L>), then

This leaves us with the down-sampler characterization

The up-sampling, down-sampling, and composite operation are therefore given
by Eqs. (3.306), (3.314), and (3.312), respectively.

or

But
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3.9.4 The 2D Filter Bank

The 2D M-band filter bank is shown in Fig. 3.70. The structure is maximally
decimated if the number of channels equals detD\, which is the case at hand. In
this subsection, we will develop the AC matrix, the polyphase representation, and
the conditions for perfect reconstruction as generalizations of the ID version of
Section 3.5.

Figure 3.70: M-band maximally decimated 2D filter bank.

From Fig. 3.70 and Eq. (3.311), we can obtain

Combining these last equations gives

The separate terms in Eq. (3.315) are extensions of those in Eq. (3.72). For

notational simplicity, we will use e~j27fjD -i = W~i. Then
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The conditions for zero-aliasing and perfect reconstruction are extensions of
the ID case:

The necessary and sufficient condition for PR is given formally by

This condition, as it stands, is of little practical use since it involves inversion of
the AC matrix. The resulting synthesis filters will likely be a high-order IIR and
possibly unstable. The polyphase approach is more amenable to design.

In ID, the coset vectors are the points {k} on the interval [0, M — 1] defined
by the decimation factor M. To get the polyphase component we shifted x(n) by r
and subsampled the translated x(n + r) by M to get xr(n) = x(r + Mn) <-+ X r ( z } .
Repeating this for each r G [0, M — 1] gave us

To obtain the 2D polyphase expansion, we perform the following steps:
(1) Select {^05^15 • • • • > &M-I}> ^ne coset vectors associated with D
(2) Shift x(n) by ktj and down-sample by D to get

(3) Combine the polyphase components to obtain (Prob. 3.16)
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This polyphase decomposition can now be applied to each analysis filter:

Following the steps in the ID case, we can obtain

where

The bank of analysis niters h(z) in Fig. 3.70 can be replaced by 'Hp(zD}Z_lvI. Fol-
lowing the ID argument, the decimators can be moved to the left of the polyphase
matrix and the argument in 7ip(.) is changed from zp to z_. This gives the front
end of the equivalent polyphase structure shown in Fig. 3.71 (a).

For the 2D case we need to define the synthesis polyphase expansion using
positive exponents. The reason for this departure from the ID case will soon
become evident. Using

we can show (see Prob. 3.16) that
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Figure 3.71: (a) The polyphase form of the filter bank; (b) reduced structure when
P(z) - /.

where

Next we define the synthesis polyphase matrix by

such that
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where

The bank of synthesis filters g(z) in Fig. 3.70 is replaced by Qp(z_D)Z^M. Mov-
ing the up-sampler to the right changes the argument from z_D to z_. The final
equivalent synthesis polyphase structure is shown in Fig. 3.71 (a). Note that in
this case the transpose oiQp(z] emerges as the synthesis polyphase matrix followed
by positive exponent shift vectors. Now we have

In this representation, the polyphase components of H^(z) and Gk(z) are on the
kth row of Hn(z), and the kth column of QT(z}.

Continuing in this fashion, we can show that the relationship between HA.C
and Tip, as might be expected from Eq. (3.104), is (see Prob. 3.25)

where

.

The W matrix is a DFT-type matrix associated with the lattice. The element
Wrs corresponds to an evaluation of ej- - at a? = 2jrD~Tk. Such a matrix has
the property

We can now determine the conditions for perfect reconstruction in terms of
the polyphase matrices. From Fig. 3.71, we see that a sufficient condition for PR,
is simply

Figure 3.71(b) shows this condition. Observe that this has been structured such
that the product of the delays along any path is the same and is equal to z- — 1.
Also, for 2D image processing causality is not a constraint so that positive indexed
shifts are acceptable. However, we can obtain necessary and sufficient conditions
as follows. From Eqs. (3.315), (3.327), and (3.329),
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Now if we can make

then Eq. (3.333) reduces to X(z) = T(z)X(z) and aliasing is eliminated. Now
post multiply both sides of Eq. (3.334) by W* and note that WrW* = ML Also,
since the first row and column of W* have unity entries, then

We have the intermediate result

Multiplying by A 1(z), noting that [11 • • • 1]A 1(z) = Z_M. and transposing leads

or

This last equation is of the form Ax — Xx. Hence, aliasing is eliminated if and
only if T(z_) is an eigenvalue of PT(zD) and Z_M is the associated eigenvector. For
PR, T(z) = z~L, for some integer vector r. For convenience, we can choose r — 0.
leaving us with

Clearly, a sufficient condition is P(z) ~ I.
We can, of course, continue to exploit the resemblance to the ID case. For a

paraunitary solution, we can impose (see also Prob. 3.26)

and obtain P(z_) = z -o/ by choosing

Several other avenues can be explored. Karlsson and Vetterli (1990) construct a
paraunitary cascaded structure as a 2D version of the M-band paraunitary lattice
mentioned in Section 3.5.9 (Prob. 3.27). They also go on to describe PR de-
signs based on a state-space description for both paraunitary and nonparaunitary
constraints and conditions for PR linear-phase structures.

This completes our generalization of the ID PR filter bank. The reader can
consult the references cited for a detailed treatment of this subject. Application
of these concepts will be demonstrated in the next subsection dealing with fan
filters.
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3.9.5 Two-Band Filter Bank with Hexagonal or Quincunx Sam-
pling

Figure 3.72 shows a two-band filter bank, which serves as an example for the ap-
plication of the theory just developed. This example, patterned after the papers
by Ansari and Lau (1987) and Ansari (1987), is chosen to demonstrate the con-
nection between the shape of the desired band split and the decimation lattice
and to illustrate how the subbands propagate through the configuration.

Figure 3.72: Two-band filter bank.

Suppose that the desired band split is that shown in Fig. 3.73 where the low-
frequency region BO is the shaded interior of the diamond-shaped region, and the
high-frequency subband B\ is the complement of BO as indicated, such that

To obtain this split, let HQ(Z], and H\(z} be ideal low-pass and high-pass niters
such that

Figure 3.74 shows the spectral bands at the various nodes in the subband structure.
For illustrative purposes, the input signal spectrum is represented by eight bands,
four belonging to BQ, and four to B\. The ideal filter H'Q(ui) passes bands 1, 2, 3,
and 4 to give the spectrum at node (2). Similarly, H^UJ) passes bands 5 through 8,
yielding the high-pass spectrum at point (6). Next, we select a subsampling lattice
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Figure 3.73: Ideal two-band split: (a) low frequency; (b) high frequency.

compatible with the subband split. In this respect, we want D1 ui to partition B
into the diamond-shaped region. The decimation matrix and coset vectors that
achieve this are

resulting in the partition

The down-sampled and up-sampled spectra at nodes (3) and (4) are obtained
by particularizing Eqs. (3.313) and (3.311). For the case at hand.
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Figure 3.74: Subbands in ideal two-band filter bank, corresponding to signals in
Fig. 3.72.
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The down-sampled signal at node (3) is

1=0

This spectrum is shown in Fig. 3.74(3). Note that the subbarids 1 through 4
occupy the full band, and because of the ideal filters, there is no aliasing at this
point. Also note the rotation arid stretching induced by D. The up-sampling
compresses the spectrum V0(ui) and creates the images outside the diamond as
shown in Fig. 3.74(4). This is also evident from

The images are due to the term XQ(UJ\ — 7r,uj2 — TT)- The ideal synthesis filter
GQ(Z) = HQ(Z) removes these images, leaving us with the subbands shown at
Fig. 3.74(5). In a similar way, we can trace the signals through the lower branch
of the two-band structure. These spectra are also illustrated in Fig. 3.74, (6)
through (9). Finally adding the signals at points (5) and (9) gives x(n) = x(n),
or perfect reconstruction. A detailed discussion of admissible passbands and their
relationship to the subsampling lattice is provided by Viscito and Allebach (1991).

In this example the aliasing did not have to be cancelled out in the synthesis
section. The ideal filters eliminated aliasing at inception. The design of realizable
filters for perfect reconstruction is based on the theory previously developed—the
polyphase approach of Viscito and Allebach, and Vetterli, among others. Various
other techniques are possible. We will next describe a variation of an approach
suggested by Ansari (1987) in the design of a diamondshaped subband filter.

(1) Start with a ID filter F ( z ) that approximates an ideal low-pass filter on
u < 7T/2, as in Fig. 3.75(a).
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Figure 3.75: (a) ID low-pass filter; (b) 2D rectangular low-pass filter; (c) diamond-
shaped subband filter obtained by transformation of (b).

(2) Let D(zi,Z2) = F(zi)F(z2). This symmetric, separable filter approxi-
mates a subband filter with the pass band shown in Fig. 3.75(b).

(3) We can obtain a diamond-shaped subband filter by rotating and expanding
the rectangle in Fig. 3.75(b). This is achieved by independent variable transfor-
mation, using the substitutions

Specific design procedures for perfect reconstruction can be found in the references
cited.

Before closing this subsection, we want to describe a polyphase design given
in Viscito and Allebach (1991) for a two-band decomposition, Fig. 3.76, using the
subsampling lattice D of Eq. (3.340) in the preceding example. In this instance,

The analysis filters are given by Eq. (3.323)
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Figure 3.76: Two-band polyphase structure.

It is now convenient to impose symmetry constraints on the analysis filters.
First, we can choose HQ(Z), and HI(Z) to have quadrature mirror symmetry, which
implies

or

This implies that the J^o frequency components inside the diamond-shaped pass-
band BQ are mapped into J3], the other subband. Next, we can require /?i(n) to
be the spatial mirror of /iofe); i-6.,

Combining this frequency and spatial symmetry with a shift z - leads to the
constraint

Thus the symmetry constraints on HI(Z) imply that the polyphase components
are related by

Expanding HQ(Z), noting that (—z. I)D = z_ D, (—z 7) -i ~ —z^, and choosing
P — ~~k_i leads to
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The analysis polyphase matrix becomes

Perfect reconstruction is assured by choosing Q.p(z)Hp(z) = I:

where

Next, we set A = 1, or

or explicitly

257

With this choice, the synthesis niters will be FIR whenever the analysis niters are
FIR. The final form of the synthesis filters can now be determined. Noting that

we can combine these last two equations with Eq. (3.308) to eventually arrive at

In summary, the analysis and synthesis filters are expressed in terms of HQ(Z_)
by Eqs. (3.345) and (3.350). The perfect reconstruction requirement is then speci-
fied in terms of the polyphase components of HQ(Z) by Eq. (3.349), the satisfaction
of which constitutes the two-band filter design problem.

and
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3.9.6 Fan Filter Banks

Filter banks with wedge-shaped subbands have potential applications in several
signal processing areas (Bamberger and Smith, 1992). The structure of a two-
band, tree-structured configuration is examined here. Our focus is on the gener-
ation of the subbands and the transmission of these subbands through the filter
bank. Therefore, we will assume ideal filters throughout.

The spectrum is to be partitioned into the subband wedges as shown in
Fig. 3.77(d). We will consider two cases: the two-band, analysis-synthesis struc-
ture shown in Fig. 3.77(a), arid the four-band analysis subband tree of Fig. 3.79.

In the first instance, our objective is to isolate the two bands consisting of
wedges (1, 4, 5, 8), and (2, 3, 6, 7). We need to select antialiasing analysis filters
that are compatible with the subsampling lattice chosen. Let HQ(Z) and H\(z) be
the ideal hourglass-shaped filters indicated in Fig. 3.77, and let the subsampling

Figure 3.77: (a) Two-band directional subband structure; (b) and (c) hourglass-
shaped filters; (d) fan-shaped subbands.
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lattice be the familiar

The spectrum at point (2) is shown in Fig. 3.78(2). We can make this spectrum
compatible with D if we shift it by TT in the u)\ direction. Thus modulation
by (--l)ni provides the shifted spectrum at point (3), now located within the
diamond region as indicated in Fig. 3.78(3). This is the key trick; the rest is
mere commentary! Down-sampling and up-sarnpling then produce the subbands
in Fig. 3.78(4) and (5). We then modulate again by ( —l)n i to shift the spectrum
to the wedge-shaped subbands (with images) in Fig. 3.78(6). The ideal hourglass
filter GQ(Z) removes the images and reconstructs the subbands (1, 4, 5, 8) in their
original positions. The signals in the lower branch can be similarly traced out.
In this case, the shift is in the &>% direction requiring modulation by (—l)n '2. The
spectra at various nodes in the lower branch are shown in Figs. 3.78(8) (13). For
the ideal case considered, the reconstituted signal is exactly x(n).

Extension of this idea to the four-band tree structure is quite straightforward
and shown in Fig. 3.79. The signals in the first level are the same as those in
Fig. 3.77. The spectra at points (5)-(10) in the two top branches are displayed
explicitly in Fig. 3.80. The spectra at points (14) -(19) in the lower two branches
can be worked out in a similar way. The result is the four-band split with no
aliasing shown in Fig. 3.79.

Our description of fan or directional filter banks relied on ideal hourglass filters
to eliminate all aliasing. This is satisfactory since our intent is to demonstrate
how a filter structure with desired subband partitions can be configured with
compatible filters and sampling lattices. We can, of course, back off from ideal
arid develop FIR and IIR filters for perfect reconstruction. In this regard, the
papers by Bamberger and Smith (1992) and Ansari (1987) are noteworthy.

3.10 Summary

In this chapter, we developed the theory of subband filter banks from first princi-
ples. Starting with the fundamental operations of decimation and interpolation,
we analyzed the two-band filter bank and derived and interpreted the unitary PR
conditions, which is called the PR-QMF.

Using the tree structure expansion of the two-band PR-QMF, we were able to
define a hierarchy of M-band filter banks with a variety of subband splits. The
connection between the classical oversarnpled Laplacian pyramid decomposition
and the critically sampled dyadic subband tree was explored and studied. In
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Figure 3.78: Subbands corresponding to nodes in Fig. 3.77.
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Figure 3.79: Four-subband directional filter bank.

Chapter 6, we will show this dyadic tree to be a precursor of the orthonormal
wavelet transform.

Using the AC matrix and the polyphase decomposition, we were able to for-
mulate general conditions for PR in the M-band filter structure. This led to a
general time-domain formulation of the analysis-synthesis subband system that
unifies critically sampled block transforms, LOTs, and critically sampled subband
filter banks. The paraunitary filter bank provided an elegant solution in terms of
the polyphase matrix.

The focus on the two-dimensional subband filter bank was the subsampling or
decimation lattice. We showed how the ID results could be generalized to 2D, but
in a nontrivial way.
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Figure 3.80: Subbands corresponding to nodes (5)-(10) in Fig. 3.79.
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Chapter 4

Filter Bank Families: Design
and Performance

This chapter deals with the description, listing of coefficients, and comparative
performance evaluation of various filter families. We then connect and compare
these evaluations with those of the block transforms and LOTs of Chapter 2.

Next, we describe a method for the optimal design of filters using extended
performance measures that include not only the standard unitary PR, but also
constraints embodying a mix of criteria such as linear-phase, compaction arid
source signal statistics, aliasing energy and cross-correlation of subband signals,
and certain time and frequency constraints. Tables of optimized filter coefficients
are provided along with performance comparisons with filters designed conven-
tionally.

The chapter includes an analysis of the distribution of aliasing energy among
the subbands, in terms of an energy matrix. Then we define a single parameter
that measures this distribution. Finally, tables are provided that compare this
matrix and parameter for a sample block transform, PR-QMF, and the most
regular wavelet filter.

The chapter concludes with a section dealing with rigorous modeling of quan-
tization effects and optimum design of quantized M-band filter banks.

4.1 Binomial QMF-Wavelet Filters

The Binomial sequences were introduced in Section 2.3.2 as a family of orthogonal
sequences that can be generated with remarkable simplicity—no multiplications
are necessary. We saw that the modified Hermite transform is a computationally
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efficient unitary transform based on the Binomial-Hermite sequences. While this
transform is inferior to the DCT for most coding applications, such is decidedly
not the case for subband coders. We will show that the Binomial QMFs are the
maximally flat magnitude square PR paraimitary filters with good compression
capability. In Chapter 5, these are shown to be wavelet filters as well.

The PR, conditions for the two-band PR paraimitary filter bank are given
by Eq. (3.47). It is now a straightforward matter to impose these conditions
on the Binomial family. The 8-tap Binomial frequency responses1 are shown in
Fig. 2.8(b). The first four frequency responses have energies distributed primarily
over [0,7T/2], and the lower four over [7r/2,7r] for N -f 1 — 8. This suggests that
we take as the low-pass half bandwidth filter a superposition of the lower half
Binomial sequences. Therefore, we let

where xr(ri) <-> Xr(z) is defined by Eqs. (2.134) and (2.139). Then

where F(z) is a polynomial in z l of order (N — l)/2. For convenience, we take
#0 = 1, and later impose the required normalization. The correlation sequence,
Eq. (3.43), becomes

TFor the Binomial filters, the length is designated as TV + 1, where TV is the order of the filter.
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But from the properties of the Binomial sequences, Eqs. (2.143)--(2.146), we can
show that

and

Equation (4.5) implies that the second summation in Eq. (4.3) has terms only
where the indices differ by an even integer. Therefore, the autocorrelation for the
Binomial half-bandwidth low-pass filter is

Finally, the PR requirement is p(2n) = 8(n), or

Figure 4.1: Low-pass and high-pass QMF filters from Binomial network.

This condition gives a set of ^-^ nonlinear algebraic equations, in the ^y^ un-
knowns PI, 02, • . - , ON-I (Akansu, Haddad, and Caglar, 1990). The implementa-

2

tion of these half-bandwidth niters is trivially simple and efficient using either
the purely FIR structure or the pole-zero cancellation configuration. The latter
is shown in Fig. 4.1 for N = 5, wherein both low-pass and high-pass niters are
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Figure 4.2: Low-pass and high-pass QMFs using direct form Binomial structure.

simultaneously realized. Figure 4.2 shows the QMF bank using the direct form.
Coefficient $o can be taken equal to unity, leaving only 0\ and $2 as tap weights.
These are the only multiplications needed when using the Binomial network as the
PR-QMF rather than the six h(n) weights in a transversal structure. The values
of (9r, for N — 3, 5, 7 (corresponding to 4-, 6-, 8-tap filters respectively) are given
in Table 4.1 (where 00 = !)•

As seen, there is more than one filter solution for a given N, For example, with
N — 3, one obtains Q\ = \/3 and also 0\ — —\/3. The positive Q\ corresponds to
a minimum-phase solution, while the negative Q\ provides a nonminimum-phase
filter. The magnitude responses of both filters are identical. Although in our
derivation, no linear-phase constraint on h(n) was imposed, it is noteworthy that
the phase responses are almost linear, the nonminirnum-phase filters even more
so. The magnitude and phase responses of these minimum-phase Binomial QMFs
are given in Fig. 4.3 for the cases N = 3,5, 7. Table 4.2 provides the normalized
4-,6-,8-tap Binomial QMF filter coefficients for a transversal realization for both
minimum- and nonminimum-phase cases. We may recognize that these filters are
the unique, maximally flat magnitude square PR-QMF solutions. In fact, it will
be shown in Section 4.2 that the PR requirements are satisfied if we choose the 6r
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N=3

Or

*0

01

set 1
1

vs
set 2

1
-/3

N=5

Or

*o
Oi
&2

set 1
1

^/2>/10 + 5
\/io

set 2
1

~V/Wl6 + 5
\/10

N=7
0r

*0

*!

*2

03

set 1
1

4.9892
8.9461
5.9160

set 2
1

-4.9892
8.9461
-5.9160

set 3
1

1.0290
-2.9705
-5.9160

set 4
1

-1.0290
-2.9705
5.9160

Table 4.1: 9r coefficients of Binomial QMF,

coefficients to satisfy maximally flat requirements at uj — 0 and LJ ~ TT. Explicitly,
with R(UJ) = \H(e^)\2^ we can set 9r to satisfy

Herrmann (1971) provides the unique maximally flat function on the interval
[0,1]. This function can be easily mapped onto Z-plane to obtain the maximally
flat magnitude square function R(z}. Now, one can obtain the corresponding H(z)
from R(z) via factorization. This approach extends Herrmann's solution to the
PR-QMF case.
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n

0
1

2

3

0

1
2

3
4

5

0

1

2

3

4

5

6

7

h(n)

Mini Phase

4 tap

0.48296291314453
0.83651630373780

0.22414386804201

-0.12940952255126

6 tap

0.33267055439701

0.80689151040469

0.45987749838630

-0.13501102329922

-0.08544127212359
0.03522629355424

8 tap

0.23037781098452

0.71484656725691

0.63088077185926

-0.02798376387108

-0.18703481339693

0.03084138344957

0.03288301895913

-0.01059739842942

Non- Minimum Phase

4 tap

-0.1294095225512

0.2241438680420
0.8365163037378

0.4829629131445

6 tap

0.0352262935542

-0.0854412721235
-0.1350110232992

0.4598774983863
0.8068915104046

0.3326705543970

8 tap

-0.0105973984294

0.0328830189591

0.0308413834495

-0.1870348133969

-0.0279837638710

0.6308807718592

0.7148465672569

0.2303778109845

8 tap
-0.0757657137833

-0.0296355292117

0.4976186593836

0.8037387521124

0.2978578127957

-0.0992195317257

-0.0126039690937

0.0322230981272

8 tap
0.0322230981272

-0.0126039690937

-0.0992195317257

0.2978578127957

0.8037387521124

0.4976186593836

-0.0296355292117

-0.0757657137833

Table 4.2: Binomial QMF coefficients.

4.1.1 Binomial QMF and Orthonormal Wavelets

As shown in Chapter 5, the theory of orthonormal wavelet transforms is strongly
linked with orthonormal PR-QMF filter banks. It develops that the convergence
and differentiability of the continuous wavelet function, a property known as
regularity, is related implicitly to the number of zeros of the discrete wavelet
filter at a; — 7T. From Eq. (4.2), this feature is seen to be inherent in the Binomial
QMF. In fact, the Binomial QMFs developed here are identical to the wavelet
filters proposed by Daubechies (1988).
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Figure 4.3: Amplitude and phase responses of minimum-phase Binomial QMFs
for N = 3, 5, 7.

As shown in Chapter 5, wavelet regularity is related to the number of zeros at
— TT of a low-pass "inter-scaling" sequence of length TV + 1, which is

If k = Y ' I the maximum number of zeros of H (z) is located at
case F (z] is of degree ^^ and

Imposing PR requirement on H (z} forces the function F' (z) to be equal to
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the Binomial F(z), or

where {9r} are the binomial weights that satisfy Eq. (4.8). But it can be shown
that the corresponding "spectral density" function is given explicitly by

This in fact is the polynomial used by Daubechies (1988), whose spectral factor-
ization yields the orthonormal wavelet niters.

Furthermore, the magnitude square function (the transform of p(n)) is

This magnitude square function of the Binomial QMF solution is the unique
maximally flat function obtained by Herrmann (1971).

4.2 Maximally Flat Filters

The class of maximally flat low-pass filters in a PR filter bank is defined by the
number of vanishing derivatives of the magnitude square function at u — 0 and
uj — TT. In this section, we develop explicit formulas for the design of such filters
and relate these to Binomial QMFs.

Let h(n) be a length 2^ low-pass filter with the system function

Its magnitude square function is
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or

where k is an integer to be chosen arbitrarily within the limits 1 < k < IN — I. The
parameter k demies the degree, i^, of flatness of the magnitude square function at
a; — 0 and /i, at a; — ±TT. Note that all odd-ordered derivatives are zero at o> = 0,
and at uj = TT for any {p(n}}. This effectively reduces the number of boundary
conditions to 2AT, which just matches the number of samples {p(n}}.

If one defines the transform

COSUJ = 1 — 2.T

H(e^)\2 can be transformed into a simple polynomial of degree 27V — 1 as

with an approximation interval 0 < x < 1 and the following boundary conditions:
(1) P2N-i,k(x) has zeros of order k at x = 1,
(2) P2N-i,k(%) has zeros of order IN — k at x = 0.

This is a special case of Hermite interpolation problem and can be solved by
using the Newton interpolation formula (Miller, 1972). The set of {av} that satisfy
these constraints is given explicitly by (Herrmann, 1971)

We want to choose sequence p(n) to satisfy the conditions

where
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Now we can inversely map {x^av} into {uj,p(n}} and obtain (Rajagopaland
and Dutta Roy, 1987)

where \x~\ means the integer part of x.
Equations (4.20)-(4.22) constitute the formulas for designing magnitude square

function with prescribed flatness at u; — 0 and uj = TT. On the other hand, the
PR-QMF must satisfy

By inspection we see that a maximally flat PR-QMF requires its magnitude square
function have maximum number of zeros at u; — 0 and L/J — ±TT equally, implying
symmetry around u = n/2. This is expressed as

Therefore, for this case, P2N-i,k(x} becomes

which maps into the magnitude square function of the Binomial QMF of Eq. (4.13)
(except that N in Eq. (4.13) is replaced by 2^ in the present context.)

Maximally flat filters will also provide the transition to the PR-QMF filters
based on Bernstein polynomials, as described in the next section.
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4.3 Bernstein QMF-Wavelet Filters

The Bernstein polynomials (Lorentz, 1953; Davis, 1963; Cheney, 1981) provide
a ripple-free approximation to a set of points on the interval [0,1]. These pa-
rameterized polynomials and the mapping induced by them generate a magnitude
square function that satisfies the PR-QMF conditions. We will show that sev-
eral well-known orthonormal wavelet filters including the Binomial or Daubechies
and Coifiet families emerge as special cases of this technique (Caglar and Akansu,
1992).

Let {f(jf)\ be (N -f 1) uniformly spaced samples of a function f ( x ) defined
on the interval [0,1]. The Nth order Bernstein polynomial approximation to f ( x )
is

Some features of this interpolation are (Davis, 1963):
(1) If f ( x ) is differentiable, the approximation is also valid for its differentials.
That implies

where the prime means the derivative. This feature also holds for higher deriva-
tives. Therefore the Bernstein polynomials provide simultaneous approximations
of a function and its derivatives.
(2) A monotonic and convex function is approximated by a monotonic and convex
approximant. Hence it is ripple-free.

Consider now a low-pass function /(x), 0 < x < 1, which satisfies the PR-QMF
conditions on [0,1]

Suppose f ( x ) has sample values

The Bernstein approximation is then



282 CHAPTER 4. FILTER BANK FAMILIES: DESIGN

This last equation corresponds to a maximally flat symmetrical function around
1/2 within 0 < x < 1. It is precisely the magnitude square function of the Binomial
QMF wavelet transform filter in .T, Eq. (4.24). Using the inverse mappings.

we obtain the Binomial QMF magnitude square function in the z domain of
Eq. (4.13) (with N replaced by 2N) whose solution was described in Section 4.1.

We can extend this technique to obtain a broad family of smooth PR-QMFs
defined by a set of approximation parameters. Again assume Eq. (4.26), and let
the set of nonincreasing samples be

where ai — a'2N-i-i and 0 < 0.1 < 0.5 with 1 < i < N — 1. Then the
Bernstein polynomial approximation is expressed as

After applying the inverse mappings, we obtain R(z) the corresponding magnitude
square function in z domain,
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Example: Consider the design of a 6-tap smooth PR-QMF with the constraints
defined as

where 0 < a < 0.5. This set of constraints actually corresponds to a filter
function h(n), with two vanishing moments for a > 0 and three vanishing moments
for a = 0. The corresponding magnitude square function is

At this point, any factorization technique can be used to obtain the corresponding
PR-QMF H(z). Figure 4.4 displays /(z), B ( f \ x ) and R(z) functions of Bernstein
polynomial approximation for the 6-tap case with a = 0.25.

We can relate the moments of a filter impulse response h(n) to the derivatives
of H(ei"). With H(e?u) and H(e^+^) the low-pass and high-pass filter pairs,
respectively, H(e^) = ^h(n)e-i™, and H(e^u+^) = ^(-l)n/i(n)e-J'nw, we
obtain

For a given jy, we can choose to have the derivatives of the low-pass frequency
function vanish either at uj = 0, or at u — TT, but not both. The maximally flat
magnitude square (low-pass) Binomial-QMF has all derivatives vanish at LJ = TT.
Other PR-QMFs distribute these vanishing derivatives differently.

Any on 7^ 0 of the proposed approach decreases the number of vanishing mo-
ments of the high-pass filter by 1. The magnitude functions of several known
smooth or regular 6-tap QMFs and their a values are given in Fig. 4.5.
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Figure 4.4: The functions f ( i ) , B(f\x), and R(z) of Bernstein polynomial approx-
imation for a — 0.25.
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Figure 4.5: Magnitude functions of three different 6-tap PR-QMFs: maxflat (a
0). Coiflet (Daubechies) (a = 0.2708672), and a = 0.480.

The following special cases are worthy of note:
(1) a = 0 gives the Binomial QMF-wavelet filter with three vanishing high-pass
moments.
(2) a = 0.2708672 corresponds to the 6-tap Coiflet filter, which is presented in
Section 5.5.3.
(3) a - 0.0348642 yields the 6-tap PR-QMF of the most regular wavelet solu-
tion (Daubechies, private communication). The coefficients of 6-tap most regular
orthonormal wavelet filters follow:

n
h(n)
n

h(n)

0
0.374328416

3
-0.146269859

1
1.090933960

4
-0.161269645

2
0.786941229

5
0.055335898

Coefficients of most regular orthonormal wavelet filter.
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The Bernstein polynomial approach provides a flexible parameterized method
for designing FIR PR-QMF filter banks and can be easily extended to design
orthonormal wavelet bases with compact support.

4.4 Johnston QMF Family

Johnston QMFs were the earliest popular filters used in the literature. These
symmetrical filters constitute a non-PR-QMF bank. Their non-PR characteristics,
particularly for longer duration filters, do not present practical significance for
subband image coding. Design of these filters is based on two criteria:

• Ripple in the system or ripple energy

Out of band or stopband energy

where f$B '1S the stopband edge frequency. The optimization procedure for this
QMF family tries to minimize the objective function

where a is the weight of the stopband in the objective function. It is seen that this
design approach tries to approximate the PR conditions with the first .variable,
Er, of the objective function while minimizing the aliasing or stopband energy in
Es. As stated earlier, linear-phase two-band PR-QMF solution is not possible.

Johnston designed several sets of QMFs based on filter lengths, transition
bands, and stopband weighting parameters. Johnston QMF coefficients, 8-, 12-,
16-, 24-. 32-tap, with their design parameters, are given in Tables 4.3 and 4.4.

4.5 Smith-Barnwell PR-CQF Family

Smith and Barnwell (1984) and Mintzer (1985) were the first to show that perfect
reconstruction in a two-band filter bank is possible if the linear-phase requirement
is relaxed. The Smith-Barnwell filters were called conjugate quadrature filters
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8 TAP

0.48998080
0.06942827
-0.07065183
0.00938715

12 TAP(A)

0.48438940
0.08846992
-0.08469594
-0.002710326
0.01885659
-0.003809699

16 TAP(A)

0.4810284
0.09779817
-0.09039223
-0.009666376
0.0276414
-0.002589756
-0.005054526
0.001050167

24 TAP(B)

0.4731289
0.1160355
-0.09829783
-0.02561533
0.04423976
0.003891522
-0.01901993
0.001446461
0.006485879
-0.001373861
-0.001392911
0.0003833096

12 TAP(B)

0.4807962
0.09808522
-0.0913825
-0.00758164
0.02745539
-0.006443977

16 TAP(B)

0.4773469
0.1067987
-0.09530234
-0.01611869
0.03596853
-0.001920936
-0.009972252
0.002898163

24 TAP(C)

0.4686479
0.1246452
-0.09987885
-0.03464143
0.05088162
0.01004621
-0.02755195
-0.0006504669
0.01354012
-0.002273145
-0.005182978
0.002329266

16 TAP(C)

0.4721122
0.1178666
-0.0992955
-0.0262756
0.04647684
0.00199115
-0.02048751
0.006525666

24 TAP(D)

0.4654288
0.1301121
-0.09984422
-0.04089222
0.05402985
0.01547393
-0.03295839
-0.004013781
0.0197638
-0.001571418
-0.010614
0.004698426

Table 4.4: Johnston QMF coefficients (coefficients are listed from center to end)
[J.D. Johnston, ©1980, IEEE].
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Transition Code Letter
A
B
C
D
E

Normalized Transition Band
0.14
0.1

0.0625
0.043
0.023

Table 4.3: Normalized transition bands and their code letters for Johnston QMFs
[J.D. Johnston, ©1980, IEEE].

32 TAP(C)

0.46640530
0.12855790
-0.099802430
-0.039348780
0.052947450
0.014568440
-0.031238620
-0.0041874830
0.017981450
-0.0001303859
-0.0094583180
0.0014142460
0.0042341950
-0.0012683030
-0.0014037930
0.00069105790

32 TAP(D)

0.46367410
0.13297250
-0.099338590
-0.044524230
0.054812130
0.019472180
-0.034964400
-0.0079617310
0.022704150
0.0020694700
-0.014228990
0.00084268330
0.0081819410
-0.0019696720
-0.0039715520
0.0022551390

32 TAP(E)

0.45964550
0.13876420
-0.097683790
-0.051382570
0.055707210
0.026624310
-0.038306130
-0.014569000
0.028122590
0.0073798860
-0.021038230
-0.0026120410
0.015680820
-0.00096245920
-0.011275650
0.0051232280

Table 4.4 (continued): Johnston QMF coefficients (coefficients are listed from
center to end) [J.D. Johnston, ©1980, IEEE].

(CQFs). In this section we briefly discuss the highlights of their design procedure
and provide 8-, 16-, and 32-tap PR-CQF coefficients in Table 4.5.

The CQF solution is essentially the same as the two-band paraunitary solution
of Eqs. (3.140) - (3.141). The design was reduced to finding HQ(Z] such that

Let
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We have seen that RQ(Z) + RQ(—Z) -- 2 implies that RQ(Z) is a half-band filter
satisfying

The steps in the filter design are as follows:
(1) Start with the design of a zero-phase, half-band filter RQ(Z) that necessarily
satisfies Eq. (4.39), but Ro(e&) can go negative. Let jRo(eJ'w) = —e. An equiripple
half-band filter is shown in Fig. 4.6.
(2) We can make RQ(B^} positive semidefinite by

We can now choose a and b to make RQ look like RQ in Fig. 4.6. The parameter b
raises the level in the frequency response and a renormalizes to make the pass-band
gain equal to unity, or p (0) — 1. It is easily verified that

will do the trick. Note that /90(2n) — S(n).
(3) Evaluate the spectral factors HQ(Z) in

The PR-QMF and the PR-CQF are the same except for a possible difference
at the phase responses. Both satisfy the magnitude square condition as expected.
Table 4.5 displays 8-, 16-, and 32-tap PR-CQF coefficients with 40 dB stopband
attenuation.

4.6 LeGall-Tabatabai PR Filter Bank

These filters are the typical examples of the PR, unequal bandwidth and length.
two-band filter banks. These filters have linear-phase responses and consequently
are not paraunitary. They are computationally very efficient and can be imple-
mented without multipliers. However, the frequency behavior is poor for decima-
tion by 2. The low-pass filter length is 5 while the high-pass filter has length 3.

But the half-band filter needed in Eq. (4.37) must also satisfy
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8 TAP

0.0348975582178515
-0.01098301946252854
-0.06286453934951963
0.223907720892568
0.556856993531445
0.357976304997285
-0.02390027056113145
-0.07594096379188282

16 TAP

0.02193598203004352
0.001578616497663704
-0.06025449102875281
-0.0118906596205391
0.137537915636625
0.05745450056390939
-0.321670296165893
-0.528720271545339
-0.295779674500919
0.0002043110845170894
0.02906699789446796
-0.03533486088708146
-0.006821045322743358
0.02606678468264118
0.001033363491944126
-0.01435930957477529

32 TAP

0.00849437247823317
-0.00009961781687347404
-0.008795047132402801
0.000708779549084502
0.01220420156035413
-0.001762639314795336
-0.01558455903573820
0.004082855675060479
0.01765222024089335
-0.003835219782884901
-0.01674761388473688
0.01823906210869841
0.005781735813341397
-0.04692674090907675
0.05725005445073179
0.354522945953839
0.504811839124518
0.264955363281817
-0.08329095161140063
-0.139108747584926
0.03314036080659188
0.09035938422033127
-0.01468791729134721
-0.06103335886707139
0.006606122638753900
0.04051555088035685
-0.002631418173168537
-0.02592580476149722
0.0009319532350192227
0.01535638959916169
-0.0001196832693326184
-0.01057032258472372

Table 4.5: The 8-, 16-, and 32-tap PR-CQF coefficients with 40 dB stopband
attenuation [M.J.T. Smith and T.P. Barnwell, ©1986, IEEE).
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Figure 4.6: (a) Ro(e?u) equiripple half-bandwidth filter; (b) ^(ejw) product filter
with double zeros on unit circle.
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The coefficients of these filters are given in Table 4.6.

n

0
1
2
3
4

hL(n]
-I
2
6
2
-1

hfi(n)
1

-2
1

Table 4.6: Low- and high-pass LeGall-Tabatabai filter coefficients (LeGall and
Tabatabai, 1988).

4.7 Princen-Bradley QMF

The Princen-Bradley QMF can be viewed as an M-band PR-modulated filter bank
of the type described in Section 3.5.6. It is equivalent to a bank of M filters

where h(n) is a low-pass window function of length 2M. A key advantage of
such modulated systems is the implementation using fast DCT algorithms in the
analysis and synthesis sections. A typical window design for 16- and 32-barid filter
banks is given in Princen and Bradley (1986). It is reported that this design has
properties falling somewhere between subband coding and transform coding.

4.8 Optimal PR-QMF Design for Subband
Image Coding

Subband filter banks with impulse responses of arbitrary length are significantly
more flexible than block transforms with their fixed length basis sequences. Among
the latter, the signal dependent KLT is the optimal block transform, providing
complete inter-coefficient decorrelation and the best energy compaction. This
feature is shown by the relation
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where 0{(k] and Bj(k] are the ith and jth coefficients of the fcth transform block
for the given source.

The KLT (and all block transforms for that matter), however, does not ad-
dress the issue of interband energy leakage or aliasing in the frequency domain.
Furthermore, there is no freedom to adjust the joint time-frequency localization
in block transforms.

Filter bank theory provides the means to assess and improve these features
of block transforms. The ideal filter banks with infinite duration basis functions
provide the best frequency and decorrelation properties. The interband correlation
in the ideal filter bank for zero-mean WSS inputs is

where k arid I are the sample locations in subbarids i and j, respectively. It is seen
from this relation that all coefficients or samples of different subbands except the
ones coinciding in location are uncorrelated. This ideal solution provides an alias-
free frequency split in a filter bank structure with perfect interband decorrelation,
uncorrelated random processes rather than uncorrelated random variables. But
the time functions are of infinite duration.

The common performance measures for a filter bank — compaction arid per-
fect reconstruction — are, in fact, only partial descriptors. The reconstruction is
"perfect" only in the absence of encoding quantization, transmission errors, and
infinitely precise coefficient values and arithmetic. It is clear, then, that we need
to expand and reformulate appropriate performance measures that can help to
account for non-ideal behavior in "perfect" reconstruction filter banks. In this
section we define an objective function that weights several performance mea-
sures, implying the time- and frequency-domain behaviors, and then we compare
filter banks designed to optimize this criterion. Viscito and Allebach (1989) also
proposed a statistical filter design approach. They treated the filters in an M-
channel filter bank as the linear minimum mean-square error (MMSE) estimator
of a hypothetical input signal in the presence of noise.

4.8.1 Parameters of Optimization

The design of optimal PR-QMFs should consider several parameters of practical
significance. These parameters — namely the energy compaction, aliasing energy,
unit step response, zero-mean high-pass filter, uncorrelated subband signals, con-
strained nonlinear-phase response, and input source statistics — are combined to
define the objective function of the optimization problem. The optimal PR-QMF
design approach presented in this section is a continuation and enhancement of
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earlier work in the field, particularly for image coding applications. The following
performance measures are included in the design of optimal two-band PR-QMFs
(Caglar, Liu, arid Akansu, 1991).
(1) Qrthonormal PR Requirement This set of requirements is included in the
design to satisfy the unitary perfect reconstruction condition. The high-pass filter
is assumed to be the mirror of the low-pass filter {h(n)} of length 2N which is
expressed in the vector form h. The orthonormality condition can be written in
vector nrod net forrn as

From Section 3.5.4 the perfect reconstruction condition of the orthonormal two-
band PR-QMF is

Equations (4.43) and (4.44) can now be jointly expressed in the matrix form

where Ci are the proper filter coefficient shuffling matrices as

(2) Energy Compaction Let a^. and Rxx be the variance and covariance matrix
of the zero-mean input. For the two-band case, let a\, d^ be variances of the
low-pass and high-pass outputs, respectively. For a paraunitary transformation,
the Parseval theorem states the energy constraint

where

and the compaction measure derived in Section 2.2 is
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It is clear that the maximization of a\ in Eq. (4.48) is sufficient for the con-
strained maximization of GTC-
(3) Aliasing Energy All orthonormal signal decomposition techniques satisfy the
conditions for alias cancellation. In practice, since all the decomposition bands or
coefficients are not used in the synthesis, or because of different levels of quan-
tization noise in the subbands, noncancelled aliasing energy components exist in
the reconstructed signal. It is known that the aliasing energy causes annoying
patterns in encoded images at low bit rates.

The aliasing energy component at the low-pass filter output in the two-band
PR-QMF bank for the given input spectral density function Sxx(e^} is

The time-domain counterpart of this relation is expressed as

where p(n) is the autocorrelation sequence of the filter coefficients h(n) and defined
as

and Rxx(k) is the autocorrelation function of the input. The optimal solution
should minimize this aliasing energy component.
(4) Step Response The representation of edges in images is a crucial problem.
The edge structures are localized in time; therefore they should be represented by
time-localized basis functions. Otherwise, the ringing artifacts occur in encoded
images. An edge can be crudely considered as a step. Therefore, the step responses
of the low-pass filter in the filter bank should be considered during the design
procedure.

The uncertainty principle states that a signal cannot be localized perfectly in
both time and frequency. The human visual system is able to resolve the time-
frequency plane. Therefore, a joint time-frequency localization or behavior should
be considered in a filter bank design. The trade-off between the time and frequency
resolutions is reflected basically in the aliasing and step response performance of
the designed filter.

The unit step response of the filter h(n) can be written as
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where u(n) is the unit step sequence. The difference energy between the unit step
response a(n) of the filter and the unit step sequence u(n) is expressed as

The value of Es should be minimized for the optimal filter solution. The optimiza-
tion variable Es here does not consider the symmetry of the unit step response
around the step point. The ringing problem in image coding may be caused by
an overshoot or an undershoot. This point is addressed later in the constrained
nonlinear -phase condition of the desired filter.
(5) Zero Mean High-Pass Filter Most of the energy of practical signal sources
is concentrated around the DC frequency. Therefore, practical signal decompo-
sition techniques should be able to represent the DC component within only one
basis function. Following this argument, we should constrain the high-pass QMF
impulse response h\(n} — (—l)n/i(n) to have zero mean ,

This requirement implies that there should be at least one zero of the low-pass
filter H(e^u) at uj — IT. As we will see in Chapter 5, this condition is necessary to
satisfy the regularity requirement in the design of wavelets.
(6) Uncorrelated Subband Signals Any good signal decomposition technique
of coding applications should provide uncorrelated transform coefficients or sub-
band signals. A performance demerit is the cross-correlation of the two subband
signals for the given input

14-M;
(7) Constrained Nonlinearity in Phase Response Linear-phase and PR are
mutually exclusive in the orthonormal two-band QMF design. But severe phase
nonlinearities are known to create undesired degradations in image and video
applications. Therefore, a measure that indicates the level of norilinearity in
the filter-phase response is included as a parameter in the optimal filter design.
Nonlinear-phase is related to the asymmetry of the impulse response. A measure
is

(8) Given Input Statistics The input spectral density function is needed for
the optimal filter design variables discussed earlier. We assume an autoregressive.
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AR(1) source model with correlation coefficient p = 0.95, which is a crude ap-
proximation to the real-world still frame images. The correlation function of this
source is

4.8.2 Optimal PR-QMF Design: Energy Compaction

This section deals with the optimization problem which consists of the PR and
energy compaction for an AR(1) source.

The objective function J to be maximized is

Hence,

Therefore.

If the terms in the left side of the equation are combined as

where

eq. (4.59) looks like a classical eigenvalue problem, but here the matrix R has
unknown parameters {A^} in it. The vector h that satisfies Eq. (4.59) is the
optimal low-pass PR-QMF.

4.8.3 Optimal PR-QMF Design: Extended Set of Variables

The objective function of Eq. (4.57), which implies only the frequency-domain
behavior of the filter, can be augmented to include the other performance measures
described. The optimization problem is now set as
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with the unitary PR, and zero-mean high-pass filter constraints

This is a very general optimization problem. It simultaneously considers the
time and frequency features of the filter. There are a set of parameters in the
objective function that should be fine tuned for the application at hand. Therefore,
this optimal filter design technique should be supported with experimental studies.
The significance of the optimization variables in the objective function should be
quantified for the human visual system. The following section presents examples
of problem definition and performance of optimal filters.

4.8.4 Samples of Optimal PR-QMFs and Performance

The set of parameters in the optimization problem defined earlier admit many
possible filter solutions. Therefore this section presents the interrelations among
the performance parameters. Figure 4.7(a) shows the relationship between GTC
and aliasing energy a\ for an 8-tap two-band PR-QMF with AR(1) source, p —
0.95. As seen from the figure, this relation is linear-like and the energy compaction
increases as the aliasing energy decreases. This trend is easily justified. The
optimal PR-QMF solutions obtained are also consistent with this figure.

Figure 4.7(b) displays energy compaction versus interband correlations, RLE (0),
again for the same source model. Although in block transforms these two variables
merge in the unique optimal solution, KLT, this is not true for the filter banks.
In other words, there is more than one possible solution. One should pick the
solution that maximizes the objective function.

Figure 4.7(c) shows the relationship between energy compaction and phase
nonlinearities.

Figure 4.7(d) plots energy compaction versus unit-step response error measure.
This plot indicates that whenever the step response approaches the unit step the
energy compaction decreases. This relation, time-domain vs frequency-domain,
calls into question the practical merit of the energy compaction measure. Although
the energy compaction may be optimal, the subjective coding performance of the
corresponding filter may not be necessarily optimal.

Table 4.7 provides the coefficients of 4-, 6~, 8-, 12-, and 16-tap optimal PR-
QMFs based on energy compaction with a zero-mean high-pass constraint. Simi-
larly, Table 4.8. gives the optimal PR-QMF coefficients based on minimized alias-
ing energy with zero-mean high-pass. Table 4.9 has the optimal PR-QMFs similar
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Figure 4.7: The relations of (a) GTC versus 0\, (b) GTc versus RLH(®}, (c) GTC
versus Ep, (d) GTC versus Ea of 8-tap two-band PR-QMFs for AR(1), p — 0.95
source.
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to Table 4.7 but additionally providing uncorrelated subbands, or RLH(§] = 0-
Table 4.10 also adds this constraint to the conditions of Table 4.8. Table 4,11 gives
the optimal filters based on augmented objective function of Eq. (4.60). The filter
solutions displayed in this section were obtained by using the IMSL FORTRAN
Library(NCONF). The package solves a general nonlinear constrained minimiza-
tion problem using the successive quadratic programming algorithm and a finite
difference gradient.

n j h(n)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

GTC
a\

RLH(O)
mean
Ep
Es

0.201087342
0.600007520
0.665259025
0.198773686
-0.233790239
-0.153612998
0.118834741
0.101350938
-0.074934374
-0.061434875
0.053218300
0.029837627
-0.037981695
-0.002649357
0.015413680
-0.005165762

3.9220
0.0056
0.0040
0.0000
1.0622
3.3613

h(n)
0.244206457
0.664513457
0.629717438
0.089423027
-0.251577216
-0.072467574
0.134086583
0.031916868
-0.076499461
0.003706982
0.027172980
-0.009985979

3.9038
0.0075
-0.1601
0.0000
1.0320
2.5730

h(n)
0.317976535
0.748898833
0.534939876
-0.058836349
-0.205817322
0.042523091
0.060007692
-0.025478793

3.8548
0.0115
-0.0140
0.0000
0.8566
1.7493

h(n)
0.385659639
0.796281177
0.428145720
-0,140851286
-0.106698578
0.051676890

3.7961
0.0153
-0.0160
0.0000
1.2506
1.3059

h(n)

0.482962940
0.836516297
0.224143841
-0.129409515

3.6426
0.0239
-0.0422
0.0000
0.7500
0.8365

Table 4.7: A set of optimal PR-QMF filter coefficients and their performance. The opti-
mality is based on energy compaction with zero mean high-pass filter.
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^ n -

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

GTC
°\

RLH(O)
mean
Ep
Ea

h(n)

0.239674169
0.641863878
0.628941341
0.136154317
-0.241530316
-0.123175317
0.128959373
0.088433853
-0.083586814
-0.058991180
0.061697343
0.033431236
-0.050042508
-0.002023897
0.022994193
-0.008586110

3.9189
0.0054
0.0001
0.0000
1.0521
3.2836

h(n)
0.276769143
0.689345705
0.592445147
0.054082233
-0.247471430
-0.059746881
0.138373438
0.031525301
-0.088498729
0.006149179
0.035489212
-0.014248756

3.9002
0.0073
-0.1849
0.0000
0.9933
2.5202

h(n)
0.339291195
0.753812779
0.510688095
-0.062731472
-0.210405609
0.046422128
0.067533100
-0.030396654

3.8513
0.0113
-0.0170
0.0000
0.8450
1.7232

h(n)

0.398655794
0.792728512
0.420459801
-0.141949922
-0.112008814
0.056328191

3.7935
0.0152
-0.0138
0.0000
1.2520
1.2930

h(n] \

0.482962940
0.836516297
0.224143841
-0.129409515

3.6426
0.02397
-0.0422
0.0000
0.7500
0.8365

Table 4.8: A set of optimal PR-QMF filter coefficients and their performance. The opti-
mality is based on minimized aliasing energy with a zero-mean high-pass filter.

n

0
1
o

3
4
5
6
7
8
9
10
11
12
13
14
15

GTC
*\

RLH(O)
mean
Cjp

E,

h(n]

0.224159871
0.629151335
0.642510825
0.158071546
-0.240893371
-0.133127916
0.128098122
0.090074845
-0.081998711
-0.055306473
0.058081519
0.026452620
-0.040400680
-0.001956582
0.017549205
-0.006252594

3.9207
0.0055
0.0000
0.0000
1.0531
3.3117

h(n)

-0.106117265
-0.041624773
0.444275957
0.761031030
0.427762258
-0.066013158
-0.107784207
0.085537312
0.051558425
-0.038422405
-0.002588387
0.006598776

3.8935
0.0083
0.0000
0.0000
0.8694
4,4123

h(n)

0.240118698
0.688564034
0.638286732
0.017567002
-0.235301591
0.023295098
0.064002943

- 0.022319352

3.8408
0.0126
0.0000
0.0000
0.9011
1.8685

h(n)

0.312656005
0.754045521
0.543768338
-0.108851490
-0.149317562
0.061912751

3.7661
0.0167
0.0000
0.0000
1.3048
1.3968

h(n)

0.00000000 0
0.70710678 1
0.70710678 1
0.00000000 0

3.2025
0.0487
0.0000
0.0000
0.0000
1.4289

Table 4.9: A set of optimal PR-QMF filter coefficients and their performance based on
energy compaction with zero mean high-pass and imcorrelated subband signals.
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n \ h(n)

0
1
2
3
4
0

6
7
8
9
10
11
12
18
14
15

GTC
^~^A

RLH(O)
mean
Ep
Es

0.240173769
0.642454295
0.628348271
0.135389521
-0.241606760
-0.122763195
0.129125126
0.088184458
-0.083719165
-0.058849491
0.061801498
0.033339516
-0.050088120
-0.002023074
0.023072163
-0.008625249

3.9188
0.0054
0.0000
0.0000
1.0518
3.2826

h(ri)
-0.121396419
-0.035246082
0.467924401
0.751312762
0.412397276
-0.062892458
-0.109012591
0.093200632
0.059816603
-0.048300585
-0.002622488
0.009032511

3.8897
0.0083
0.0000
0.0000
0.8667
4.4280

h(n) \ h(n]
0.249509936
0.688584306
0.632097530
0.015778256
-0.240993887
0.026838168
0.066493202

- 0.024093948

3.8399
0.0126
0.0000
0.0000
0.8941
1.8564

0.348319026
0.758774508
0.510327483
-0.121232755
-0.151539728
0.069565029

3.7611
0.0165
0.0000
0.0000
1.3052
1.3539

h(n)

0.00000000 0
0.70710678 1
0.7071067 81
0.00000000 0

3.2025
0.0487
0.0000
0.0000
0.0000
1.4289

Table 4.10: A set of optimal PR-QMF filter coefficients and their performance based on
minimized aliasing energy with zero mean high-pass and uncorrelated subband signals.

Multiplier-free PR-QMFs

Multiplier-free filter algorithms are of great practical interest because of their
computational efficiency. The optimal PR-QMF design introduced in this section
can be modified for suboptimal multiplier free filters that have only the allowed
coefficient values

where kn is an integer. Therefore, any filter coefficient h(n) can be expressed as a
binary shift and/or an addition. The 4-, 6-, 8-, and 10-tap examples of multiplier-
free suboptimal paraunitary low-pass PR-QMF are found as in Table A (Akansu,
1992).

These multiplier-free suboptimal solutions are based on the criteria of or-
thonormality and energy compaction for an AR(0.95) source. The frequency be-
haviors of these filters are comparable with those of the Binomial QMF-wavelet fil-
ters of the same duration. The extensions of optimal PR-QMFs and the multiplier-
free suboptimal PR-QMFs are the topics of current research.
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a = 0.5, ft = 0.01, 7 = 0.01
n | h(n)

0
1
2
8
4
5
6
7
8
9
10
11
12
13
14
15

GTC
°\

RLH(O)
mean
Ep
Es j

0.349996497
0.731063819
0.505852096
-0.010803415
-0.229358399
-0.029975411
0.134362313
0.026991307
-0.089102151
-0.017502278
0.062860841
0.006564367
-0.045242724
0.009260600
0.017738308
-0.008492207

3.8950
0.0065
-0.0084
0.0000
0.9859
3.1015

h(n)
0.360838504
0.744306049
0.490757098
-0.036047928
-0.222383198
-0.005408341
0.128127832
0.000007678
-0.079675397
0.018522733
0.029441941
-0.014273411

3.8809
0.0080
-0.2052
0.0000
0.9439
2.395

h(n)
0.377995233
0.768367237
0.462086554
-0.86013220
-0.194919256
0.055225994
0.061944250

- 0.030473229

3.8432
0.0115
-0.0196
0.0000
0.8432
1.6745

h(n)
0.442766931
0.805049213
0.352529377
-0.146445561
-0.088189527
0.048503129

3.7829
0.0158

-0.01970
0.0000
1.2022
1.2436

h(n)
0.466675669
0.840588657
0.240431112

-0.133481 875

3.6407
0.0240
-0.0437
0.0000
0.7303
0.8503

Table 4.11: Optimal PR-QMF filter solutions and their performance based on Eq. (4.60)
arid only the weight of the phase response variable is changed.

n
0
1
2
3
4
5
6
7
8
9

h(n)
10 tap

-1
_3

9
33
32
4
-9
1
3
-1

8 tap
-8
8
64
64
8
-8
1
1

6 tap
4
16
16
0
-4
1

4 tap
2
6
3
-1

Table A: 4-, 6-, 8-, and 10-tap examples of multiplier-free suboptimal paraunitarv
low-pass PR-QMF.
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4.9 Performance of PR-QMF Families

In this section we compare the objective performance of several well-known PR-
QMF families. Our broader aim is to lay the foundation for comparison of any
orthonormal signal decomposition technique, block transforms, and filter banks.

Additionally, we extend the energy compaction measure in this section to dif-
ferent subband tree structures and quantify the objective performance of irregular
tree structures, which are simpler to implement than regular subband trees.
(1) Compaction and Bit Allocation In Section 2.2.2 we derived formulas for
compaction gain and bit allocation for an JV-band orthonormal transform coder.
Under the same assumptions as were used there (the same pdf at all points in
the coder, and pdf-optimized quantizers), we can extend those formulas to an or-
thonormal subband tree with N^ bands at the first level, each of which feeds N-2
bands at the second level.

Orthonormality ensures that the sum of the variances at the N± x N'2 band
outputs equals the input variance

An orthonormal transform ensures that the average of the quantization errors
in subbands is equal to the reconstruction error

From Section 2.2.2 the band distortions can be expressed as

where B^^is the average bit rate for band &1&2, and ej^ is the quantizer cor-
rection factor for that band. The same pdf type for all the bands implies

Hence, the average distortion is
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The optimization problem is now to find the bit allocations of (Ni x N'2) bands
such that the average distortion crj? is minimized, subject to the constraint

Using the Lagrange multiplier method the optimum bit allocation is easily shown
as

Here, BA^ are not restricted to be nonnegative. In practice, they are truncated
to zero if they become negative. A negative bit allocation result implies that if
that band were completely discarded, its reconstruction error contribution would
still be less than the corresponding distortion for the given rate. The resulting
quantization error variance using this optimum bit allocation is

Assuming the same pdf type also for the input signal, the distortion for PCM
at the same rate is

and the optimized compaction gain is therefore

Similar expressions can be derived for regular trees with L levels and Ni bands
at each level and for irregular subband tree structures.
(2) Energy Compaction of Ideal Filter Banks The upper bounds of GTC f°r

orthonormal block filter banks or transforms are set by the performance of KLT for
the given TV-band decomposition. On the other hand, the upper bounds of GTC
with zero aliasing are defined by the performance of the ideal filter banks. The
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Ideal filter banks are optimal since they provide perfect interband deoorrelatioii
for any signal source as well as alias-free frequency characteristics for imiltirale
signal processing. But, this perfect frequency localization implies infinite duration
time functions. The poor time localization is not desired in some applications such
as image coding. For known input power spectral density function Sri (r ^) , the
band variances of the Af-band ideal filter bank are simply

The performance upper bound GTC 'ls now calculated using these variances in
the GTC formula. A similar approach provides the performance upper bounds for
irregular, unequal-bandwidth tree structures with the assumption of ideal filters,
(3) Performance Results GTC results for several different cases are presented
in this section. First, the decomposition schemes assume an AR(1) input signal,
p = 0.95, with power spectral density function

Table 3.1 displays the compaction results of Binomial-QMF banks, which are
identical to the orthonormal wavelet filters studied in Chapter 5, for 4-tap, 6-tap,
and 8-tap cases. These results are for octave band or dyadic tree structures as
well as for corresponding regular trees, along with the ideal filter bank cases. The
levels of trees are limited to L = 4 here. It is observed from these tables tha,t even
the 5-octave band irregular tree with 4-tap filter has a better performance than
the 16-band block filter bank. It is clear that the irregular tree structures reduce
the computational burden of the subband filter banks and make them practical
competitors to block filter banks or transforms.

These results suggest that an efficient algorithm to define an irregular sub-
band tree structure, based on the input spectrum, is of practical importance. A
simple algorithm based on the input statistics and energy compaction criterion is
examined in Akansu and Liu (1991).

Table 4.12 displays the compaction performance of several different 6-tap or-
thonormal wavelet filters, namely Biriomial-QMF, most regular wavelet filter, arid
Coiflet filters (Daubechies, Tech. Memo), which will be introduced in Chapter
5, for 2-, 4-, and 8-band signal decompositions along with the KLT and an ideal
filter bank. These results indicate that the most regular filter does not perform
the best even for highly correlated signal source. Although the mathematical in-
terpretation of regularity in wavelets is meaningful, as we will see in Chapter 5,
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6- Tap Maxregular Filter
6-Tap Coiflet
6-Tap Binomial QMF(Maxflat)
KLT
Ideal Filter Bank

2-Bands
3.745
3.653
3.760
3.202
3.946

4-Bands
6.725
6.462
6.766
5.730
7.230

8-Bands
8.464
8.061
8.529
7.660
9.160

Table 4.12: Energy compaction performance of several 6-tap wavelet niters along
with the KLT and ideal filter bank for an AR(1) source, p — 0.95.

Figure 4.8: Graph of GTC versus N for a six-tap Binomial-QMF, KLT. and ideal
filter bank assuming an AR(1) source with p = 0.95.

its practical significance in signal processing is limited to imposing the obvious
zero-mean high-pass filter condition.

Figure 4.8 compares the GTC results of the KLT, ideal filter bank, and 6-tap
Binomial-QMF for different resolution regular subband trees or block sizes. It is
seen from this figure that, when the number of bands or transform size increases,
the slope of the KLT and Binomial-QMF compaction curves get closer, since the
aliasing energy or interband leakage becomes very significant. This phenomenon
will be examined in Section 4.10.
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Table 3.2 displays energy compaction performance of several decomposition
tools and subband tree structures for the standard test images: LP]NA, BUILD-
ING, CAMERAMAN, and BRAIN. These are monochrome, 256 x 256 si/c, S
bits/pixel images. The test results displayed in Table 3.2 are broadly consistent
with the results obtained for AR(1) sources. Again these results show that the
irregular subband tree achieves a compaction performance very close to that" of the
regular tree, but with fewer bands and reduced computational burden. It must
be remembered, however, that the data rate is the same for all tree structures in
critically sampled systems.

4.10 Aliasing Energy in Multiresolution Decomposi-
tion

In this section, we present an analysis of signal energy distribution in PR multi-
rate systems and evaluate the effects of aliasing. We also define a performance
measure called the nonaliasing energy ratio (NER) for evaluation of decomposi-
tion techniques. The merit of the new measure is examined with respect to the
block transforms and two-band PR-QMF based filter banks. We show that there
is inverse relationship between GTC and the new measure NER with respect to
the number of bands or transform size.

4.10.1 Aliasing Effects of Decimation/Interpolation

Here we are evaluating the aliasing and nonaliasing energy components at the
output of the ith branch of an M-band filter structure as shown in Fig. 4.9. From
the decimator input to the output of the upsampler, we have

The filters impose

Figure 4.9: A decimation and interpolation branch.
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It is seen that S^ (e^} consists of the nonaliasing component of the branch output
spectral density while Sf(e^u) consists of (M — 1) aliasing energy density terms
caused by down- and up-sampling. We view these terms as somewhat misplaced
energy components in frequency.

Finally, the branch output energy or variance for a zero mean input is

Hence, we can separate the branch output energy into its nonaliasing and aliasing
components.

Figure 4.10 displays the spectra at different points in the decimation/interpo-
lation branch for a two-band, 4-tap Binomial QMF with AR(1) source, p — 0.5.

Combining these gives

which can be rewritten as

where

and

where
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Figure 4.10: The signal spectra of different points in the decimation and interpo-
lation branch of Fig. 4.9 for AR(1) input with p = 0.5.
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4 - 2 0 2

Figure 4.10 (continued)
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Figure 4.11: (a) Hierarchical decimation/interpolation branch arid (b) its equiva-
lent.

The advantage of this analysis in a lossless M-band filter bank structure is its
ability to decompose the signal energy into a kind of time-frequency plane. We
can express the decomposed signal energy of branches or subbands in the form of
an energy matrix defined as (Akansu and Caglar, 1992)

Each row of the matrix E represents one of the bands or channels in the
filter bank and the columns correspond to the distributions of subband energies in
frequency. The energy matrices of the 8-band DCT, 8-band (3-level) hierarchical
filter banks with a 6-tap Biriomial-QMF (BQMF), and the most regular wavelet



4.10. ALIASING ENERGY IN MULTIRESOLUTION DECOMPOSITION 318

filter (MRWF) (Daubechies) for an AR(1) source with p = 0.95 follow:

EDCT —

EBQMF -

EMRWF —

~ 6.6824
0.1511
0.0345
0.0158
0.0176
0.0065
0.0053
0.0053

" 7.1720
0.0567
0.0258
0.0042
0.0196
0.0019
0.0045
0.0020

" 7.1611
0.0589
0.0262
0.0043
0.0196
0.0020
0.0047
0.0020

0.1211
0.1881
0.0136
0.0032
0.0032
0.0012
0.0004
0.0002

0.0567
0.1987
0.0025
0.0014
0.0019
0.0061
0.0001
0.0001

0.0589
0.1956
0.0028
0.0018
0.0020
0.0064
0.0001
0.0001

0.0280
0.1511
0.0569
0.0050
0.0016
0.0065
0.0001
0.0000

0.0014
0.0567
0.0640
0.0025
0.0001
0.0019
0.0014
0.0001

0.0018
0.0589
0.0628
0.0028
0.0001
0.0020
0.0017
0.0001

0.0157
0.0265
0.0136
0.0279
0.0032
0.0022
0.0004
0.0000

0.0005
0.0258
0.0025
0.0295
0.0013
0.0046
0.0001
0.0001

0.0006
0.0262
0.0028
0.0291
0.0014
0.0047
0.0001
0.0001

0.0132
0.0113
0.0345
0.0051
0.0176
0.0026
0.0053
0.0000

0.0001
0.0005
0.0258
0.0025
0.0223
0.0013
0.0045
0.0001

0.0001
0.0006
0.0262
0.0028
0.0221
0.0014
0.0047
0.0001

0.0157
0.0091
0.0078
0.0032
0.0032
0.0132
0.0033
0.0002

0.0005
0.0014
0.0042
0.0014
0.0013
0.0167
0.0020
0.0001

0.0006
0.0017
0.0043
0.0018
0.0014
0.0164
0.0020
0.0001

0.0280
0.0113
0.0046
0.0158
0.0016
0.0026
0.0118
0.0053

0.0014
0.0005
0.0061
0.0042
0.0001
0.0013
0.0162
0.0020

0.0018
0.0006
0.0064
0.0043
0.0001
0.0014
0.0160
0.0020

0.1211 1
0.0265
0.0078
0.0061
0.0032
0.0022
0.0033
0.0155

0.0567 "
0.0258
0.0042
0.0196
0.0019
0.0045
0.0020
0.0220

0.0589 "
0.0262
0.0043
0.0196
0.0020
0.0047
0.0020
0.0218

We can easily extend this analysis to any branch in a tree structure, as shown
in Fig. 4.11 (a). We can obtain an equivalent structure by shifting the antialiasing
niters to the left of the decimator and the interpolating filter to the right of the
up-sampler as shown in Fig. 4.11(b). The extension is now obvious.

4.10.2 Nonaliasing Energy Ratio

The energy compaction measure GTC does not consider the distribution of the
band energies in frequency. Therefore the aliasing portion of the band energy is
treated no differently than the nonaliasing component. This fact becomes im-
portant particularly when all the analysis subband signals are not used for the
reconstruction or whenever the aliasing cancellation in the reconstructed signal is
not perfectly performed because of the available bits for coding.

From Eqs. (4.78) and (4.79), we define the nonaliasing energy ratio (NER) of
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an M-band orthonormal decomposition technique as

where the numerator term is the sum of the nonaliasing terms of the band energies.
The ideal filter bank yields NER=1 for any M as the upper bound of this measure
for any arbitrary input signal.

4.11 GTC an(i NER Performance

We consider 4-, 6-, 8-tap Binomial-QMFs in a hierarchical filter bank structure
as well as the 8-tap Smith-Barnwell and 6-tap most regular orthonormal wavelet
filters, and the 4-, 6-, 8-tap optimal PR-QMFs along with the ideal filter banks for
performance comparison. Additionally, 2 x 2, 4 x 4, and 8 x 8 discrete cosine, dis-
crete sine, Walsh-Hadamard, and modified Hermite transforms are considered for
comparison purposes. The GTC and NER performance of these different decom-
position tools are calculated by computer simulations for an AR(1) source model.
Table 4.15 displays GTC and NER performance of the techniques considered with
M = 2,4,8.

It is well known that the aliasing energies become annoying, particularly at low
bit rate image coding applications. The analysis provided in this section explains
objectively some of the reasons behind this observation. Although the ratio of the
aliasing energies over the whole signal energy may appear negligible, the misplaced
aliasing energy components of bands may be locally significant in frequency and
cause subjective performance degradation.

While larger M indicates better coding performance by the GTC measure, it is
known that larger size transforms do not provide better subjective image coding
performance. The causes of this undesired behavior have been mentioned in the
literature as intercoefficient or interband energy leakages, bad time localization,
etc.. The NER measure indicates that the larger M values yield degraded perfor-
mance for the finite duration transform bases and the source models considered.
This trend is consistent with those experimental performance results reported in
the literature. This measure is therefore complementary to GTC: which does not
consider aliasing.
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DOT
DST
MHT
WHT
Binomial-QMF (4 tap)
Binomial-QMF (6 tap)
Binomial-QMF (8 tap)
Smith-Barnwell ( 8tap)
Most regular (6 tap)
Optimal QMF (8 tap)*
Optimal QMF (8 tap)**
Optimal QMF (6 tap)*
Optimal QMF (6 tap)**
Optimal QMF (4 tap)*
Optimal QMF (4 tap)**
Ideal filter bank

M=2
GTC (NEK)

3.2026 (0.9756)
3.2026 (0.9756)
3.2026 (0.9756)
3.2026 (0.9756)
3.6426 (0.9880)
3.7588 (0.9911)
3.8109 (0.9927)
3.8391 (0.9937)
3.7447 (0.9908)
3.8566 (0.9943)
3.8530 (0.9944)
3.7962 (0.9923)
3.7936 (0.9924)
3.6527 (0.9883)
3.6525 (0.9883)
3.946 (1.000)

M=4
GTC (NER)

5.7151 (0.9372)
3.9106 (0.8532)
3.7577 (0.8311)
5.2173 (0.9356)
6.4322 (0.9663)
6.7665 (0.9744)
6.9076 (0.9784)
6.9786 (0.9813)
6.7255 (0.9734)
7.0111 (0.9831)
6.9899 (0.9834)
6.8624 (0.9776)
6.8471 (0.9777)
6.4659 (0.9671)
6.4662 (0.9672)
7.230 (1.000)

M=8
GTC (NER)

7.6316 (0.8767)
4.8774 (0.7298)
4.4121 (0.5953)
6.2319 (0.8687)
8.0149 (0.9260)
8.5293 (0.9427)
8.7431 (0.9513)
8.8489 (0.9577)
8.4652 (0.9406)
8.8863 (0.9615)
8.8454 (0.9623)
8.6721 (0.9497)
8.6438 (0.9503)
8.0693 (0.9278)
8.0700 (0.9280)
9.160 (1.000)

*This optimal QMF is based on energy compaction.
**This optimal QMF is based on minimized aliasing energy.

Table 4.15: Performance of several orthonormal signal decomposition techniques
for AR(1), p — 0.95 source.

4.12 Quantization Effects in Filter Banks

A prime purpose of subband filter banks is the attainment of data rate compres-
sion through the use of pdf-optimized quantizers and optimum bit allocation for
each subband signal. Yet scant consideration had been given to the effect of coding
errors due to quantization. Early studies by Westerink et al. (1992) and Vanden-
dorpe (1991) were followed by a series of papers by Haddad and his colleagues,
Kovacevic (1993), Gosse and Duhamel (1997), and others. This section provides a
direct focus on modeling, analysis, and optimum design of quantized filter banks.
It is abstracted from Haddad and Park (1995).

We review the gain-plus-additive noise model for the pdf-optimized quantizer
advanced by Jayant and Noll (1984). Then we embed this model in the time-
domain filter bank representation of Section 3.5.5 to provide an M-band quanti-
zation model amenable to analysis. This is followed by a description of an optimum
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two-band filter design which incorporates quantization error effects in the design
methodology.

4.12.1 Equivalent Noise Model

The quantizer studied in Section 2.2.2 is shown in Pig. 4.12(a). We assume that
the random variable input x has a known probability density function (pdf) with
zero mean. If this quantizer is pdf-optirnized, the quantization error .? is zero
mean and orthogonal to the quantizer output x (Prob.2.9), i.e.,

But the quantization error x is correlated with the input so that the variance of
the quantization is (Prob. 4.24)

where a2 refers to the variance of the respective zero mean signals. Note that for
the optimum quantizer, the output signal variance is less than that of the input.
Hence the simple input-independent additive noise model is only an approximation
to the noise in the pdf-optirnized quantizer.

Figure 4.12: (a) pdf-optimized quantizer; (b) equivalent noise model.

Figure 4.12(b) shows a gain-plus-additive noise representation which is to
model the quantizer. In this model, we can impose the conditions in Eq. (4.82)
and force the input x and additive noise r to be uncorrelated. The model param-
eters are gain a and variance of. With x — ax + r, the uncorrelated requirement
becomes
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Equating cr| in these last two equations gives one condition. Next, we equate
E{xx} for model and quantizer. From the model,

and for the quantizer,

These last two equations provide the second constraint. Solving all these gives

For the model, r and x are uncorrelated and the gain a. and variance a^, are
input-signal dependent.

Figure 4.13: /3(R), a(R) versus R for AR(1) Gaussian input at p=0.95.

From rate distortion theory (Berger 1971), the quantization error variance <r|
for the pdf-optimized quantizer is
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The parameter (3(R) in Eq. (4.89) depends only on the pdf of the unit variance
signal being quantized and on J?,, the number of bits assigned to the quantizer.
It does not depend on the autocorrelation of the input signal. Earlier approaches
treated (3(R) as a constant for a particular pdf. We show the plot of (3 versus R
for a Gaussian input in Fig. 4.13. Jayant and Noll reported {3=2,7 for a Gaussian
input, the asymptotic value indicated by the dashed line in Fig. 4.13. From Eqs.
(4.88) and (4.89) the nonlinear gain a can be evaluated as

Figure 4.13 also shows a vs R using Eq. (4.90). As R gets large, j3 approaches
its asymptotic value, and a approaches unity. Thus, the gain-plus additive noise
model parameters a and d^ are determined once R and the signal pdf are specified.
Note that a different plot and different asymptotic value result for differing signal
pdfs.

4.12.2 Quantization Model for M-Band Codec

The maximally decimated M-band filter bank with the bank of pdf-optimized
quantizers and a bank of scalar compensators (dotted lines) are shown in Fig.
4.14(a). Each quantizer is represented by its equivalent noise model, and the
analysis and synthesis banks by the equivalent polyphase structures. This gives
the equivalent representation of Fig. 4.14(b), which, in turn, is depicted by the
vector-matrix equivalent structure of Fig. 4.14(c). Thus, by moving the samplers
to the left and right of the filter banks, and focusing on the slow-clock-rate signals,
the system to be analyzed is time-invariant, but nonlinear because of the presence
of the signal dependent gain matrix A.

By construction the vectors t>[n] and r[n] are uricorrelated, and A, S are diag-
onal gain and compensation matrices, respectively, where

This representation well now permits us to calculate explicitly the total mean
square quantization error in the reconstructed output in terms of analysis and syn-
thesis filter coefficients, the input signal autocorrelation, the scalar compensators.
and implicitly in terms of the bit allocation for each band.
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Figure 4.14: (a) M-band filter bank structure with compensators, (b) polyphase
equivalent structure, (c) vector-matrix equivalent structure.
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We define the total quantization error as the difference

where the subscript "o" implies the system without quantizers and compensators.
From Fig. 4.14(c) we see that

where B - S - /, and V(z) = Hp(z)£(z) and C(z) = G'p(z)B, T>(z) = Q'p(z)S. We
note that v(n) and r(n) are uncorrelated by construction.

For a time-invariant system with M x 1 input vector x and output vector y,
we define M x M power spectral density (PSD) and correlation matrices as

Using these definitions and the fact that v(n) and r(n) are uncorrelated, we can
calculate the PSD Snqnq(z] and covariance Rnqnq[fn\ for the quantization error
r)q(n).

It is straightforward to show (Prob. 4.24) that

where C(z] «-» Ck and T>(z) +-* D^ are Z transform pairs.
At fc=0, this becomes

From Fig. 4.14(b), we can demonstrate that Rrm(o] is the covariance of the Mth
block output vector
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Consequently,

321

Note that this is cyclostationary; the covariance matrix of the next block of M
outputs will also equal /^[O]. Each block of M output samples will thus have
same sum of variances. We take the MS value of the output as the average of the
diagonal elements of Eq. (4.101),

Similarly, if we define yq(ri) as the quantization error in the reconstructed output

then the total mean square quantization error (MSE) at the system output is

Next, by substituting Eq. (4.99) into Eq. (4.104), we obtain

The first term, <rj, of Eq. (4.105) is the component of the MSE due to the nonlinear
gain matrix A and compensation matrix S. The second term a^ accounts for the
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additive fictitious random noise r(n). These terms <rj, <r^ are called the signal
distortion and random noise components of the MSE, respectively. Under PR
constraints, <jj measures the deviation from perfect reconstruction due to the
quantizer and compensator. This decomposition of the total MSE enables us to
analyze each component error separately. This is the main theoretical consequence
of the gain-plus-additive noise quantizer model where the signals v(n) and random
noise r(n) are uncorrelated.

The MSE in Eq. (4.105) can be written in an explicit closed form time-domain
expression in te;rms of the analysis and synthesis filter coefficients. This is achieved
by expanding the polyphase coefficient matrices in terms of the synthesis filter
coefficients via

and substituting into Eq. (4.105). The results are rather messy and are not pre-
sented here. The interested reader can refer to the reference for details. The last
step In our formulation requires a further breakdown of Rvv[m] in Eq. (4.105).
Prom Fig. 4.14(a) RViVj[m] can be represented as

By defining the correlation function pji(m) — hi(m) * hj(-rri). we have

This concludes the formulation of the output MSE in terms of the analy-
sis/synthesis filter coefficients /ij(n), gi(ri), the input autocorrelation function
RXX[™}-> the nonlinear gain c^, and compensator Si.

Some simplifying assumptions on R^k) can be argued. First, we note that the
decimated signals ('t^(n)} occupy frequency bands that can be made to overlap
slightly. Hence, {vi(n}} and {VJ(H + m)} tend to be weakly correlated. The
random errors {n(n)} due to each quantizer are, by design, uncorrelated with
the respective {vi(n}}. Therefore, as a simplifying assumption we can say that
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E[ri(n}rj(njr-m)} ~ 0. This makes Rrr[n} a diagonal matrix. Next, it is often true
that the quantization error for a given signal swing (as measured by crjj sweeps
over several quantization levels. When this is true, E[ri(n}ri(n + m)] = of ,<S(m).
Then, the random component of reduces to a simpler form

but a^ remains messy.
From the foregoing, several observations regarding compensators can be noted:
(i) By setting Si=l, we have no compensation and a\ in Eq. (4.105), and of in

Eq. (4.109) constitute the MSE in the uncompensated structure. As we shall see in
the next section, 5^=1 is the optimized selection when paraunitary PR constraints
are imposed on the non-quantized system.

(ii) By choosing Si = 1/c^, the "null compensation," we can eliminate com-
pletely the signal distortion term o~§, leaving only the noise term

(iii) However, this solution is not optimal at the stated operating conditions.
The quantizer gain c^ < 1 and Eq. (4.110) show that we can expect a larger
random component than that of the uncompensated structure. In fact, for the
uncompensated structure, this random component is dominant. Increasing this
component by the null condition is decidedly not optimal.

(iv) However, when the input statistics change from nominal values, the null
compensation is found to be superior to the "optimal" one, which is, in fact,
optimal only at the nominal values of p. In this account, we minimize the total
MSE by minimizing jointly the sum of o\ and o\ subject to defined PR constraints.

4.12.3 Optimal Design of Bit-Constrained, pdf-Optimized Filter
Banks

The design problem is the determination of the optimal FIR filter coefficients,
compensators, and integer bit allocation that minimize the MSE subject to con-
straints of filter length, average bit rate, and PR in the absence of quantizers, for
an input signal with a given autocorrelation function.
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For the paraimitary case, the orthogonality properties eliminate the cross-
correlation between analysis channels, which is implicit in the crj component of
Eq. (4.105). The MSB in this case reduces to

It is now easy to show that the optimized compensator for this paraunitary condi-
tion is s\ — 1. Then the uncompensated system is optimal for the pdf-optimized
paraunitarjr FB. (On the other hand, si = 1 is not optimal for the biorthogona)
structure because of the cross-correlation between analysis channels.)

Sample designs and simulations for a six-coefficient paraunitary two-band
structure for an AR(1) input with p — 0.95 are shown in Table 4.13. MSE refers
to the theoretical calculations and MSEsjm, the simulation results. Table 4.13
demonstrates that the optimal filter coefficients are quite insensitive to changes in
the average bit rate R and in input correlation p. Figure 4.15(a) shows explicitly
the distortion and random components of the total MSE. The simulation results
closely match the theoretical ones. The random noise cr^ is clearly the dominant
component of the MSE. Figure 4.15(b) compares the optimally compensated with
the null compensated (si — l/cti) paraunitary systems designed for p — 0.95. The
null compensated is more robust for changing input statistics and performs better
than the fixed optimally compensated one when p changes from its design value
of p = 0.95.

Similar designs and simulations were executed for the biorthogonal two-band
case with equal length (6 taps) analysis and synthesis filters. For the same operat-
ing conditions, the biorthogonal structure is superior to the paraunitary in terms
of the output MSE. However, the biorthogonal filter coefficients are very sensitive
to R> the average number of bits, and to the value of p. The paraunitary design
is far more robust and emerges as the preferred design when p is uncertain.

4.13 Summary

This chapter is dedicated to the description, evaluation, and design of practical
QMFs. We described and compared the performance of several known paraunitary
two-band PR-QMF families. These were shown to be special cases of a filter design
philosophy based on Bernstein polynomials.

We described a new approach to the optimal design of filters using extended
performance criteria. This route provides new directions for filter bank designs
with particular applications in visual signal processing.
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R
1

1.5
2

2.5
3

,9=0.95

#0

1
2
3
4
5

Ri
1
1
1
1
1

MSB
0.3533
0.1182
0.0387
0.0151
0.0086

MSEs,;m

0.3522
0.1183
0.0391
0.0154
0.0087

(a)

R
1
1.5
2
2.5
3

MO)
0.359783
0.385663
0.385662
0.385659
0.385659

Ml)
0.806318
0.796281
0.796281
0.796281
0.796281

M2)
0.434517
0.428142
0.428143
0.428146
0.428146

M3)
-0.122522
-0.140852
-0.140852
-0.140851
-0.140851

M4)
-0.117625
-0.106698
-0.106698
-0.106696
-0.106699

M5)
5.2485e-2
5.1677e-2
5.1677e-2
5.1677e-2
5.1677e-2

(b)

Table 4.13: Optimum designs for the paraunitary FB at p = 0.95. (a) optimum
bits and MSE; (b) optimum filter coefficients

rigure 4.lo(aj: -theoretical and simulation results ol trie total output Mblii with
distortion and random components for the paraunitary FB at p=0.95 (b) MSE
of optimally compensated, s^—1, and null compensated, Si — l/a^ structures (de-
signed for p—0.95) versus p for paraunitary FB with AR(1) signal input, 0^=1,
RQ=$, R]—\.
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Figure 4.15(b): Theoretical and simulation results of the total output MSE with
distortion and random components for the paraunitary FB at p=0.95 (b) MSE
of optimally compensated, 5^=1, and null compensated, si — 1/cti structures (de-
signed for p—0.95) versus p for paraunitary FB with AR(1) signal input, cr^.—l.
O O P 1itO—O, It]—1.

Aliasing energy in a subband tree structure was defined and analyzed along
with a new performance measure, the nonaliasing energy ratio (NER). These mea-
sures demonstrate that filter banks outperform block transforms for the examples
and signal sources under consideration. On the other hand, the time and frequency
characteristics of functions or filters are examined and comparisons made between
block transforms, hierarchical subband trees, and direct M-band paraunitary filter
banks.

We presented a methodology for rigorous modeling and optimal compensation
for quantization effects in M-band codecs, and showed how an MSE metric can
be minimized subject to paraunitary constraints.

We will present the theory of wavelet transforms in Chapter 6. There we will
see that the two-band paraunitary PR-QMF is the basic ingredient in the design
of the orthonormal wavelet kernel, and that the dyadic subband tree can provide
the fast algorithm for wavelet transform with proper initialization. The Binornial-
QMF developed in this chapter is the unique maximally flat magnitude square
two-band unitary filter. In Chapter 6, it will be identified as a wavelet filter and
thus provides a specific example linking subbands and orthonormal wavelets.
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Chapter 5

Time-Frequency
Representations

5.1 Introduction

Time- and frequency-domain characterizations of a signal are not only of classical
interest in filter design (Papoulis, 1977) but often dictate the nature of the process-
ing in contemporary signal processing (speech, image, video, etc.). Often signal
operations can be performed more efficiently in one domain than the other. By
this we imply operations such as compression, excision, modulation, and feature
extraction.

Of special interest are nonstationary signals, that is, signals whose salient
features change with time. For such signals, we will demonstrate that classical
Fourier analysis is inadequate in highlighting local features of a signal.

What is needed is a kernel capable of concentrating its strength over segments
in time and segments in frequency so as to allow localized feature extraction.
The short-time Fourier (or Gabor) transform and the wavelet transform have this
capability for continuous-time signals.

In this chapter, we focus on the description and evaluation of techniques for
achieving time-frequency localization on discrete-time signals. We hope to provide
the reader with an exposure to current literature on the subject and to serve as a
prelude to the wavelet and applications chapters which follow.

First we review the classical analog uncertainty principle and the short-time
Fourier transform. Then we develop the discrete-time counterparts to these and
show how the binomial sequences emulate the continuous-time Gaussian func-
tions. Following this introduction, we define, calculate, and compare localization
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features of filter banks and standard block transforms and explore the role of
tree-structured filter banks in achieving desired time-frequency resolution. Then
we conclude with a section on achieving arbitrary "tiling" of the time-frequency
plane using block transforms and demonstrate the utility of this approach with
applications to signal compaction and to interference excision in spread spectrum
communications systems.

A word on the notation used in this chapter is in order. The terms Z, R. and
R+ denote the set of integers, real numbers, and positive real numbers, respec-
tively; L'2(R) denotes the Hilbert space of measurable, square-integrable functions,
i.e., the space of what are termed finite energy signals /(£), or sequences f ( n ) sat-
isfying

All one-dimensional functions dealt with in this chapter are assumed to have
finite energy. Also, the inner product of two functions is denoted by

5.2 Analog Background —
Time Frequency Resolution

A basic objective in signal analysis is to devise an operator capable of extracting
local features of a signal in both time- and frequency-domains. This requires a
kernel whose extent or spread is simultaneously narrow in both domains. That is,
the transformation kernel <j)(t) arid its Fourier transform $(O) should have narrow
spreads about selected points £&, &<k in the time-frequency plane. However, the
uncertainty principle described below bounds the simultaneous realization of these
desiderata. Narrowness in one domain necessarily implies a wide spread in the
other.

Standard Fourier analysis decomposes a signal into frequency components and
determines the relative strength of each component. It does not tell us when the
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signal exhibited the particular frequency characteristic, since the Fourier kernel
e:?fit is spread out evenly in time. It is not time-limited.

If the frequency content of the signal were to vary substantially from interval
to interval as in a musical scale, the standard Fourier transform

would sweep evenly over the entire time axis and wash out any local anomalies of
the signal (e.g., short duration bursts of high-frequency energy). It is clearly not
suitable for nonstationary signals.

Confronted with this challenge, Gabor (1946) resorted to the windowed, short-
time Fourier transform (STFT), which moves a fixed-duration window over the
time function and extracts the frequency content of the signal within that interval.
This would be suitable, for example, for speech signals which generally are locally
stationary but globally nonstationary.

The STFT positions a window g(t) at some point r on the time axis and
calculates the Fourier transform of the signal contained within the spread of that
window, to wit.

When the window g(t) is Gaussian, the STFT is called the Gabor transform
(Gabor, 1946). The STFT basis functions are generated by modulation and trans-
lation of the window function g(t) by parameters il and r, respectively. Typical
Gabor basis functions and their associated transforms are shown in Fig. 5.1.

The window function is also called a prototype function, or sometimes, a mother
function. As T increases this mother function simply translates in time keeping
the time-spread of the function constant. Similarly, as seen in Fig. 5.1, as the
modulation parameter H^ increases, the transform of the mother function also,
simply, translates in frequency, keeping a constant bandwidth.

The difficulty with the STFT is that the fixed-duration window g(t) is accom-
panied by a fixed frequency resolution and thus allows only a fixed time-frequency
resolution. This is a consequence of the classical uncertainty principle (Papoulis,
1977). This theorem asserts that for any function 0(£) with Fourier transform
$(O), (and with Vt(f)(t) —> 0, as t —> =F oo) it can be shown that

where O~T and a$i are, respectively, the RMS spreads of 4>(t) and &(Q) around the
center values. That is,
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g(t)

Figure 5.1: Typical basis functions for STFTs and their Fourier transforms.

where E is the energy in the signal,
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g(t) cos 00<

Figure 5.1: (continued)
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Figure 5.1: (continued)
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and i arid 0 refer to the center of mass of these kernels,

The equal sign holds in Eq. (5.3) if and only if (j>(t) (and consequently its Fourier
transform $(0)) is Gaussian, of the form exp(—at2). The product <JT&$I is called
the resolution cell and is a characteristic of the kernel, <p(t). Let g(t) <-> G(Q) be a
Fourier transform pair and, for convenience, assume that f = 0 and fi — 0. Then
the translated, modulated kernel pair are given by

This two-parameter family is centered at (r, /3] in the time-frequency plane,
i.e.,

Now, it is readily shown that the spread of this shifted, modulated kernel is
constant in both domains, i.e.,

where CTQ, O~T are the RMS spreads of the unmodulated, untranslated kernels,
g(t)~G(to).

Each element a$i and a? of the resolution cell CT^^T is constant for any fre-
quency 0 and time shift r as indicated by the rectangles of fixed area and shape
in the "tiling" pattern of Fig. 5.2. Any trade-off between time and frequency must
be accepted for the entire (17, r) plane.

The wavelet transform, on the other hand, is founded on basis functions formed
by dilation and translation of a prototype function ijj(t). These basis functions are
short-duration, high-frequency and long-duration, low-frequency functions. They
are much better suited for representing short bursts of high-frequency signals or
long-duration, slowly varying signals than the STFT.

This concept is suggested by the scaling property of Fourier transforms. If
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Figure 5.2: Time-frequency plane showing tiling pattern of resolution cells for
STFT at times n, r2, r3.

constitute a Fourier transform pair, then

where a > 0 is a continuous variable. Thus a contraction in one domain is ac-
companied by an expansion in the other, but in a nonuniform way over the time-
frequency plane. A typical wavelet and its dilations are shown in Fig. 5.3. along
with the corresponding Fourier transforms.

The frequency responses are shown in Fig. 5.4 on a logarithmic frequency scale.
These are known in the electrical engineering community as constant Q resonant
circuits, which means that the ratio of RMS bandwidth to center frequency is
constant. Alternatively, the RMS bandwidth is constant on the logarithmic scale.
This may be contrasted with the STFT where the RMS bandwidth is constant on
a linear scale.

The wavelet family is thus defined by scale and shift parameters a, b as
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Figure 5.3: Typical wavelet family in time and frequency domains.
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Q0/a

Figure 5.3: (continued)
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Figure 5.4: Wavelet band-pass filters on a logarithmic frequency scale.

and the wavelet transform is the inner product

where a £ R+, be R.
For large a, the basis function becomes a stretched version of the prototype

wavelet, that is, a low-frequency function, while for small a, this basis function
is a contracted version of the wavelet function, which is a short time duration,
high-frequency function. Depending on the scaling parameter a, the wavelet func-
tion ip(t) dilates or contracts in time, causing the corresponding contraction or
dilation in the frequency domain. Thus, the wavelet transform provides a flexible
time-frequency resolution. Figure 5.5 displays the time-frequency plane showing
resolution cells for the wavelet transform.

5.3 The Short-Time Fourier Transform

In this section we continue with the (continuous) windowed Fourier transform and
show how sampling the two-dimensional surface of F(O, r] on a rectangular grid
yields the discrete STFT of a continuous time function, /(£). Finally, when the
time function f ( t ) is sampled and then transformed, the resulting discrete-time
STFT is seen to be the familiar DFT.
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Figure 5.5: Time-frequency plane showing resolution cells for wavelet transform.

5.3.1 The Continuous STFT

We defined the short-time Fourier transform, or STFT, in Eq. (5.2) as a mapping of
a function of one continuous variable f(i] into a function -F(O, r) of two continuous
variables. Consequently, the STFT is a highly redundant mapping of L2(R) --?
L2(R2). This transform, F(O,r), is a surface in the ($1, r) time-frequency plane,
If we hold O constant and vary r, we are examining the strength of the signal in
a band of frequencies centered at O as a function of time. This corresponds to
taking a slice of the -F(fLr) surface parallel to the r axis. Holding r fixed and
varying 0 gives the windowed (or short-time) Fourier transform, at that instant.

The contour of peak magnitude of F(£l, T) tracks the frequencies of highest
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energy as a function of time. This corresponds to tracking the resolution cell with
maximum energy in the time frequency plane. The Doppler shift in signals from
sources in motion can be tracked in this manner.

The STFT can be regarded as an inner product, or equivalently as a convo-
lution. To summarize the formulations, for f ( t ) G L2(R} the inner product form
is

Equivalently, the STFT can be represented as the convolution of g(t) = g*(—t]
with the modulated signal e"jni/(t),

This view is represented by Fig. 5.6. In this case, O is fixed, and the filter
output tracks a particular frequency in time.

Figure 5.6: The STFT as a convolution.

It can be shown that (Prob.s 5.2, 5.3) the reconstruction formula and Parseval's
relation are, respectively,

5.3.2 The Discrete STFT

We can develop an appreciation of the time-frequency localization properties of
the short-time Fourier transform by discretizing (0, r) or, in effect, sampling the
continuous STFT, Eq. (5.2), on a uniform grid to obtain the discrete STFT. Thus,
with
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we obtain

This is also the inner product between /(£) and the windowed sinusoid f-J™'-42"'
over the spread of g(t — JITQ). If f ( t ) has sinusoids at or near the frequency /nOo
within the window, the inner product is large. If it has sinusoids different from
mOo, the inner product or F(m,n) centered at the resolution cell mOo, HTQ will
be small. For each window location nro, we can calculate F(m,n} at different
frequencies mfio- Then we shift the window location to (n + I)TQ arid repeat the
scanning with frequency. This process generates a two-parameter family F(m, n)
that can be plotted on a time-frequency grid as shown in Fig. 5.7. We can then
imagine interpolating all these grid points (or in effect letting rnOn —* Q and
nro —» T) to obtain the two-dimensional surface F(O, r) in the (0, r) plane.

Figure 5.7: Sampling grid for F(m,n), the discrete STFT.

The discrete STFT can be conceptually measured in Fig. 5.6 if O is discretizeci
to m,Qo and the output sampled at t = nib. The resulting output is F(m,n) for
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m fixed and variable n. That is, we sample F(Q,r) at grid points indicated in
Fig. 5.7.

The coefficients F(m,n) constitute the discrete STFT of the given signal f ( t ) .
But how coarsely can we sample F(O, r) and still retain enough features of the
signal to enable a reconstruction? The answer is rather simple. If OQ TO < 2?r, arid
g(t) € L'2(R) (Daubechies, 1990), we can (Prob. 5.4) reconstruct f ( t ) via

The set of functions gm>n(t) = g(t — UTQ) ej'mii°* is therefore complete, but not
linearly independent. The latter implies that there is redundancy in the transform
F(ra,n). As we try to reduce the redundancy in the transform in F(m,n) by
enlarging the sampling grid to force QQTQ —^ 2?r, the set of functions gm,n(t)
approaches an orthonormal basis. But, it is found that such an orthonormal basis
is badly localized in either time or frequency. Consequently, an over sampled STFT
is preferred. As we shall see in Chapter 6 the wavelet transform suffers from no
such handicap).

5.3.3 The Discrete-Time STFT, or DFT

We can carry the discretization even further and suppose that the time function
in question itself is sampled, /(n). The discrete version of the STFT is then

where g(m) is a sampled window function of finite extent (or compact support M).
This version permits the filter bank interpretation shown in Fig. 5.8. The

output of each filter is subsampled by decimation parameter M to produce a
windowed discrete-time Fourier transform. If the window is rectangular on [0, M —
1], the modulated filter bank produces the DFT of the input sequence. The output
of this bank can then be plotted on the time-frequency grid of Fig. 5.9. The entries
in any column represent the DFT for the corresponding batch of data. The entries
along any row show how that particular harmonic varies from batch to batch. The
reconstruction formula is a special case of Eq. (5.21).
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Figure 5.8: The discrete-time STFT as a modulated filter bank.

Figure 5.9: The DFT displayed in the time-frequency plane.
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5.4 Discrete-Time Uncertainty and Binomial
Sequences

In this section, we discuss the discrete-time version of the classical analog uncer-
tainty principle. Then we demonstrate that the binomial sequences are the discrete
counterparts to the Gaussian functions which define the optimal resolution cell in
the continuous-time case.

5.4.1 Discrete-Time Uncertainty

The discrete-time version of the uncertainty principle is as follows: Let /(n) «-»
F(e-^UJ} be a discrete-time Fourier transform pair,

By the Parseval theorem, the energy is

We define the mean (analogous to the center of mass of a distribution) by

The spread of a function in time and in frequency is

For any real signal u> = 0, and without loss of generality, we can also shift the
time origin to make n = 0. For this case, it can be shown that (Haddad, Akansu.
and Benyassine, 1993) the time-frequency product ancrw or resolution cell is given
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In the analog version, .F(±oo) = 0 and the lower limit is simply 1/2. In the
discrete- time case F(— 1) need not be zero. Note that in our notation, F(e^) at
(jj — 0 arid o> = TT are denoted by F ( l ) and F(— 1), respectively.

Remark. The frequency measure in Eq. (5.27) is riot suitable for band-pass
signals with peak frequency responses centered at ±o>. To obtain a measure of the
spread about o>, we need to define erf, on the interval [0, TT] , rather than [— 7r,7rj.
In this case we use

and <r^ remains unchanged. It easily follows that

and

Equation (5.31) demonstrates the reduction in the time-frequency product
when using the [0, TT] interval for band-pass signals. An alternative derivation
(Haddad, et al., 1993) shows that this product can be expressed as
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For band-pass signals with zero DC gain, F(l) — 0. Equation (5.32) reduces
to

Additionally, if we have F(—1) = 0, then // — 0 and

In the sequel, we concentrate on low-pass filters such that F(eJ^) rnax occurs
at u — 0, and Eqs. (5.27) and (5.28) are used. In this case, there are two classes
of filters or signals:

The bound on the time-frequency product in the first case is the same as that
for the continuous-time case (in which jF(±oo) — 0). In the analog case, we know
that the equality in the lower bound is achieved when J1F(Q) is proportional to
dF/dQ, or F(£l} = K exp(— 6fi2/2), a Gaussian. In the discrete-time formula-
tion (Haddad, et.al., 1993), we have the same form of integral resulting in the
differential equation

whose solution is a Gaussian exp(—Kuj2/2). This Gaussian function satisfies the
differential equation but cannot satisfy the class I boundary condition F(eJ7r) ~ 0.
In this case, we conclude that the lower bound cannot be attained and the strict
inequality holds, <Jnau > 1/2.

We show that the binomial function is a finite impulse response (FIR) approx-
imation to the Gaussian that matches the zero boundary condition at u) — TT.

For the class II set of functions, the Gaussian can satisfy both the differential
equation and the boundary condition, resulting in the equality (Jncr^ = | 1 — p., .
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5.4.2 Gaussian and Binomial Distributions

For the class II signals, the Gaussian is

where erf is the error function.
The constant K is chosen to normalize the energy E to unity over [—TT, TT}. In

(Haddad, et al.) (1993), we show that

<TU = 0(1 - I*)1/2 (5.36)

and, hence,

For the narrow-band case, a < Tr/4, /i < 10~3, and F(—l) ~ 0, resulting in
0-̂  ^ <j2

5 (jo,^ = 1/2. The corresponding time function is found to be approxi-
mately Gaussian:

Examples of these narrow-band Gaussian functions are shown in Fig. 5,10.
Again note that the time-frequency product is very close to 1/2 in these cases.

For the wide-band case, with <r > 3?r/8, we must use the more exact expansions
in Eqs. (5.36) and (5.37). For example, for a = 7r/2, we calculate \JL — 0.22625,
aw — 1.382, <3n®u} = 0.3869 and an — 0.28 time samples. In this case, there is
no simple approximation; f(n) must be computed numerically from the inversion
formula, Eq. (5.23). These are shown in Fig. 5.11, in which the very short duration
of f ( n ) is duly noted.

The binomial sequences introduced in Section 2.3.2 are a family generated by
successive differences of the binomial kernel, as summarized in Table 5.1.
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Figure 5.10: (a) Time and (b) frequency plots for narrow-band Gaussian functions:
(1) <7W — 7T/4, an = 0.637 samples and (2) au = Tr/8, crn = 1.274 samples.

Fiffure 5.11: fa) Time and fb) freniienev nlots for thft widfvhanrl rja.nssia.n rasp-

The kernel is the binomial sequence , which resembles a sampled trun-

cated Gaussian in time, and the frequency response looks like the Gaussian e~^'''^2a2.
To demonstrate this, let us compare f(u) = [cos(u;/2)]Ar, with g(u) = e-u

2/*<r2'\
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Table 5.1: The binomial family: Hr(k) are discrete Hermite polynomials.

Taking logarithms,

Matching quadratic terms, N = 2/cr2 in these expressions results in a normal-
ized error that is

The localization features of the binomial kernel are as follows: X ( l ) — 0, so
that anau > 1/2. Prom Haddad et al. (1993),

It can also be shown that



5.4. DISCRETE-TIME UNCERTAINTY AND BINOMIAL SEQUENCES 353

Sample binomial time-frequency responses are displayed in Fig. 5.12. Note
that these approximate the Gaussian very well and the time-frequency products
are, respectively, 0.50274 and 0.5002, for N = 4.12.

Figure 5.12: Time-frequency plots of binomial sequences: (a) N — 4 (a^ = 0.665,
(Tn = 0.756, and a^an = 0.50274) and (b) N = 12 (crw = 0.4, an = 1.25, and
onOu -0.5002).

Figure 5.13 shows binomial and Gaussian responses on the same axes for
JV = 12 and a — \/2/N = l/\/6. Both time and frequency plots are almost
indistinguishable. We conclude that the binomial filter provides a simple yet ex-
cellent FIR approximation to the optimum Gaussian wave form in the time- and
frequency-domains.

5.4.3 Band-Pass Filters

The binomial family can also provide good approximations to Gaussian band-pass
niters. The rth member Xr(z) has a magnitude square response of the form
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Figure 5.13: Binomial and Gaussian (a) time and (b) frequency plots for N = 12
and a — l/\/6. respectively.

For N large, this response is approximately even symmetric around o> =
2 sin"1(r/7V)1//2, and approximately Gaussian as shown in Fig. 2.8(b). A ma-
jor advantage of these binomial filters is that they can be synthesized using only
add, subtract, and delay operators as indicated in Fig. 2.8(a).

A second class of band-pass filters can be obtained by modulating the low-pass

binomial. Let h(n) = #o(n), and let

Now if & - U>Q » a = 2/V7V, the leakage of the tail of H(e&u+uu) into the
frequency band near uj — o?o is negligible, and over [0, TT],

In this case, it is easy to show that the spread in time- and frequency-domains
is the same as for the low-pass binomial prototype window.
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5.5 Time-Frequency Localization

In Chapters 2 and 3, we observed that the M x M block transform is a special case
of an M-band orthonormal filter bank wherein the filter length equals the number
of channels. In this section we compare the localization properties of established
block transforms and certain orthonormal filter families.

5.5.1 Localization in Traditional Block Transforms

The time and frequency responses of several standard block transforms were dis-
played in Fig. 2.7. These plots demonstrate that these transforms look like a bank
of band-pass filters, with time and frequency spreads that are crudely comparable
for the same size transform. The frequency responses are not very sharp and the
impulse (or basis sequences) responses are widely distributed over the entire in-
terval. The time-frequency spreads for two of these, the DCT and the WHT, are
given in Table 5.2. The trade-offs in an and au as a function of filter length (or
transform size) are obvious in this table. To sharpen the frequency resolution, the
transform size or filter length is increased. The frequency spread a-^ is decreased
significantly, but at an appreciable increase in an. The time-frequency products
or resolution cell areas also increase with filter length.

To obtain narrower frequency bands <ra, as needed for compression, we can
use orthonormal M-band filter banks where the length of each filter N > M
can be freely chosen. As a case in point, Table 5.3 displays the time frequency
localization for an 8 x 16 DCT LOT (here N — 2M) that can be contrasted with
that for 8 x 8 DCT in Table 5.2. The LOT frequency resolution is much sharper
and the resolution cell products are smaller.

5.5.2 Localization in Uniform M-Band Filter Banks

Uniform Af-band filter banks can be realized either by multilevel binary hierar-
chical tree as indicated in Fig. 3.21 arid 3.24, or by the one-level M-band unitary
filter bank shown in Fig. 3.32. These structures allow filters of arbitrary length
and hence can provide sharp frequency responses.

For our present purposes, we want to evaluate the time-frequency localization
properties of some known filter banks. Table 5.4 lists these characteristics for three
different eight-tap two-band filter banks: the binomial QMF (Akansu, Haddad and
Caglar, 1990), the Smith and Barnwell conjugate quadrature filter (CQF) (Smith
and Barnwell, 1986), and the multiplierless PR QMF (Akansu, 1992). Tables
5.5 and 5.6 continue this comparison for hierarchical structure four-band (22-
tap product filters) and eight-band (50-tap product filters) configurations. In all



356 CHAPTER 5. TIME-FREQUENCY REPRESENTATIONS
1

2x2 DCT
and WHT
4x4 DCT

4x4 WHT

8x8 DCT

8x8 WHT

u>
0
7T

0
1.27
1.85

7T

0
1.29
1.85

7T

0
0.74
1.02
1.36
1.71
2.08
2.45

7T

0
0.82
1.15
1.43
1.72
1.99
2.33

7T

n
0.50
0.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
3.50
3.50
3.50
3.50
3.50
3.50
3.50
3.50
3.50
3.50
3.50
3.50
3.50
3.50
3.50
3.50

°l
1.2899
1.2899
0.6787
0.3809
0.2424
0.4896
0.6787
0.2424
0.2424
0.6787
0.3447
0.3021
0.2413
0.1957
0.1488
0.1206
0.0797
0.1388
0.3447
0.3485
0.2977
0.1488
0.1488
0.2977
0.3485
0.3447

rt
0.2500
0.2500
1.2500
1.9570
1.2500
0.5428
1.2500
1.2500
1.2500
1.2500
5.2500
8.4054
5.9572
5.4736
5.2500
5.0263
4.5428
2.0955
5.2500
5.2500
5.2500
5.2500
5.2500
5.2500
5.2500
5.2500

*2x^r
0.3225
0.3225
1.2234
0.7454
0.3030
0.2657
0.8484
0.3030
0.3030
0.8484
1.8097
2.5393
1.4375
1.0712
0.7812
0.6062
0.3621
0.2908
1.8097
1.8296
1.5629
0.7812
0.7812
1.5629
1.8296
1.8097

Table 5.2: Time-frequency localizations of DCT and WHT bases for two- and
eight-band cases.

8x16
DCT-LOT

(jj
0

0.59
0.98
1.37
1.76
2.16
2.55

7T

n
7.50
7.50
7.50
7.50
7.50
7.50
7.50
7.50

*t,
0.0917
0.0549
0.0345
0.0523
0.0367
0.0608
0.0389
0.0119

<
4.654
7.615
8.387
8.645
8.35
7.549
7.778
5.360

^TX^T
0.4269
0.418
0.2898
0.4523
0.3070
0.4596
0.3026
0.6419

Table 5.3: Time-frequency localizations of 8x16 DCT LOT.



.5.5. TIME-FREQUENCY LOCALIZATION 3-57

B-QMF (8-tap)

Multiplierless
(8-tap)

Smith-Barnwell
(8-tap)

U)

0
7T

0
7T

0
7T

n
1.46
5.54
2.50
4.50
4.17
2.83

*2
0.9468
0.9468
0.9743
0.9743
0.9174
0.9174

°l
0.6025
0.6025
0.3750
0.3750
0.5099
0.5099

°l X °n
0.5704
0.5704
0.3654
0.3654
0.4678
0.4678

Table 5.4: Time-frequency localizations of three different eight-tap, two-band PR-
QMF banks.

B-QMF Hierarchical
4 Band Tree

(22-tap product
filters)

Multiplierless
(22-tap product

filters)

Smith-Barnwell
(22-tap product

filters)

U)

0
1.23
1.91

7T

0
1.24
1.90

7T

0
1.22
1.92

7T

n
4.05
12.88
16.28
8.80
7.50
11.50
13.49
9.50
12.45
9.88
8.45
11.22

^0.2526
0.1222
0.1222
0.2526
0.2747
0.1346
0.1346
0.2747
0.2339
0.1077
0.1077
0.2339

<%
2.7261
3.8269
2.7757
2.2622
1.5817
2.1683
2.1675
1.5818
2.1458
2.9463
3.0185
2.0772

°t X °n
0.6886
0.4676
0.3392
0.5714
0.4345
0.2918
0.2918
0.4245
0.5019
0.3173
0.3251
0.4859

Table 5.5: Time-frequency localizations of hierarchical subband trees for two-level
(four bands) cases.

these cases, the multiplierless structure has the best time-frequency product 0^0^,
followed by the Smith and Barnwell CQF and the binomial QMF. As expected,
longer duration niters have a narrower a^ and a wider an. Again, as expected,
the eight-band, eight-tap block transforms (Table 5.2) have a much narrower an

than any of the eight-band tree-structured filter banks, but very poor frequency
localization.

Figure 5.14 displays the impulse responses of the product niters of the two-band
binomial QMF-based hierarchical tree for the two-, four-, and eight-band cases.
Figure 5.15 shows the corresponding frequency responses. These demonstrate the
drawbacks of blindly repeating a two-band PR-QMF module in a hierarchical
subband tree. The time spread increases considerably while the time-frequency
product degrades. This suggests two possibilities: Either design the Af-band,
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Figure 5.14: Impulse responses of the product niters of the two-band binomial
QMF-based hierarchical tree for the (a) two-band, (b) four-band, and (c) eight-
band case.
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B-QMF Hierarchical
8-Band Tree

(50-tap product
filters)

Multiplierless
(50-tap product

filters)

Smith-Barnwell
(50-tap product

filters)

UJ

0
0.63
1.01
1.45
1.68
2.13
2.52

7T

0
0.64
1.02
1.45
1.68
2.11
2.50

71

0
0.6137
0.9951
1.4488
1.6927
2.1465
2.5279

7T

n
9.12

26.96
34.11
19.65
22.56
37.99
31.54
14.36
17.53
25.46
29.46
21.54
23.47
31.53
27.54
19.47
28.86
24.03
21.22
26.55
25.32
19.57
22.51
27.93

°l
0.0644
0.0490
0.0961
0.0496
0.0496
0.0961
0.0490
0.0644
0.0724
0.0688
0.1193
0.0558
0.0558
0.1193
0.0688
0.0724
0.0591
0.0321
0.0688
0.0436
0.0436
0.0688
0.0321
0.0591

°l
11.726
15.953
11.326
9.7846
10.510
12.013
14.950
10.777
6,3415
8.8171
9.1282
7.2005
7.2099
9.1234
8.8269
6.3371
8.6494
11.837
12.623
9.5939
9.6769
12.599
11.912
8.5379

al x al
0.7552
0.7817
1.0884
0.4853
0.5213
1.1544
0.7326
0.6940
0.4591
0.6066
1.0890
0.4018
0.4023
1.0884
0.6073
0.4588
0.5112
0.3800
0.8685
0.4183
0.4219
0.8668
0.3824
0.5046

Table 5.6: Time-frequency localizations of hierarchical subband trees for three-
level (eight bands) cases.

single-level structure directly or, in using the hierarchical tree structure, monitor
the PR-QMF module from level to level.

The "best" filter bank from a localization standpoint depends on the applica-
tion at hand. For example, time (or spatial) localization is known to be more im-
portant in visual signal processing and coding applications for human perception,
while frequency localization is the predominant concern for certain compression
considerations. In any case, the joint time-frequency characteristics of the basis
functions must be carefully monitored for subjective performance improvement.
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Figure 5.15: Frequency responses of (a) 2 x 2. 4 x 4 and 8x8 DOT, and (b) 2-band.
4-band, and 8-band binomial QMF-based hierarchical structure.

5.5.3 Localization in Dyadic and Irregular Trees

Filter banks based on dyadic tree structures as indicated in Fig. 3.27 [and repeated
here as Fig. 5.16(a)] realize octave band frequency splits or concentrations. These
lead to the time-frequency tiling patterns of Fig. 5.16(b), which is similar to that
for the wavelet transform. The LLL frequency band is concentrated over 1/8 of
the frequency range but requires three levels of the tree, resulting in a product
filter with length equal to 50. The single-level //"-band filter occupying one-half
the frequency range is realized with one 8-tap filter.

An irregular tree structure results in irregular frequency band split which can
be related to a corresponding tiling pattern as shown in Fig. 5.17. Note the trade-
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(a) (b)

Figure 5.16: (a) Dyadic tree, (b) Time-frequency tiling pattern.

offs in time and frequency resolutions suggested by the patterns in Figs. 5.16 and
5.17.

These examples are based on a binary split at each node or level. Figure 5.18
illustrates a mixed tertiary and binary split and the resulting tiling pattern.

As we will see in Chapter 6, the orthonormal wavelet filters are constructed
from the binary dyadic tree using the two-band paraunitary filters HQ(Z) and
HI(Z) of Eq. (3.50) with the added constraint that H(—l) — 0. The Daubechies
wavelet filters (Daubechies, 1988) are identical to the maximally fiat binomial
QMF filters of Chapter 4.

Other wavelet families (e.g., the most regular, Coiflets) are devised by imposing
other requirements on HQ(Z) as presented in Chapter 6.

Table 5.7 compares the time-frequency resolutions of scaling and wavelet func-
tions for three wavelet families generated by six-tap paraunitary filters—the Dau-
bechies, most regular, and Coiflet—along with the localization properties of the
progenitor discrete-time filters. Table 5.7 demonstrates that the time-frequency
localizations are important measures in the evaluation of a wavelet family as an
analog filter bank. In particular, the role of regularity in wavelet transforms should
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(a) (b)

Figure 5.17: (a) Irregular tree, (b) Corresponding tiling pattern.

be evaluated for signal processing applications. We will return to these aspects of
wavelets in Chapter 6.

5.6 Block Transform Packets

A block transform packet (BTP) is an orthonormal block transform that is syn-
thesized from conventional block transforms so as to realize an arbitrary tiling of
the time-frequency plane. The BTP has time localizability and can be adapted
to deal with nonstationary signals. The BTP also preserves the computational
efficiency of the progenitor block transform.

In this section, we show how to generate a BTP from a specified tiling pattern,
and hence we show how to specify a desirable or optimum tiling pattern for a given
signal. This leads to interesting applications in signal compaction and interference
excision.
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Figure 5.18: (a) Mixed tertiary/binary tree, (b) Tiling pattern.

Scaling
Function

Wavelet
Function

Lowpass
PR-QMF
High-Pass
PR-QMF

OT
2

°fl
9 9

°T°to
0\

4
2 2aT<i>
rt
°t
"I
°l

Daubechies
0.314
5.22

0.699
0.178
8.97
1.596
0.453
0.987
0.453
0.987

Mostregular
0.143
5.77

0.825
0.188
11.70
2.199
0.470
0.996
0.470
0.996

Coiflet
0.086
11.86
1.02

0.108
39.36
4.25
0.305
1.059
0.305
1.059

Table 5.7: Time-frequency localizations of six-tap wavelet niters and correspond-
ing scaling and wavelet functions.
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5.6.1 Prom Tiling Pattern to Block Transform Packets

The plots of several orthonormal 8 x 8 block transforms are shown in Fig. 2.7.
These depict the basis sequences of each transform in both time- and frequency-
domains. These plots demonstrate that the basis sequences are spread over all
eight time slots whereas the frequency plots are concentrated over eight separate
frequency bands. The variation in these from transform to transform is simply
a matter of degree rather than of kind. The resulting time-frequency tiling then
would have the general pattern shown in Fig. 5.19(a). There are eight time slots
and eight frequency slots, and the energy concentration is in the frequency bands.
The basis functions of these transforms are clearly frequency-selective and c«n be
regarded as FIR approximations to a "brick wall" (i.e., ideal rectangular band-pas^
filter) frequency pattern which of course would necessitate infinite sine function
time responses.

Figure 5.19: (a) Tiling pattern for frequency-selective transform, (b) Tiling pattern
for time-selective transform

The other extreme is that of the shifted Kronecker delta sequences as basis
functions as mentioned in Section 2.1. The time- and frequency-domain plots are
shown in Fig. 5.20. This realizable block transform (i.e., the identity matrix) has
perfect resolution in time but no resolution in frequency. Its tiling pattern is shown
in Fig. 5.19(b) and can be regarded as a realizable brick-wall-in-time pattern, the
dual of the rionrealizable brick-wall-in-frequency.
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Figure 5.20: (a) Basis functions in time; (b) magnitude of Fourier transform of
basis functions.

The challenge here is to construct a specified but arbitrary tiling pattern while
retaining the computational efficiencies inherent in certain block transforms, using
the DFT, DOT. MET, and WH. Our objective then is to develop desired time-
localized patterns starting from the frequency-selective pattern of Fig. 5.19(a), and
conversely, to create frequency-localized tiling from the time-localized Kronecker
delta pattern of Fig. 5.19(b).

The first case is the time-localizable block transform, or TLBT (Kwak and
Haddad, 1994), (Horng and Haddad, 1996). This is a unitary block transform
which can concentrate the energy of its basis functions in desired time intervals—
hence, time-localizable.

We start with a frequency-selective block transform, viz., the DOT, DFT, WH.
whose basis functions behave as band-pass sequences, from low-pass to high-pass.
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Figure 5.21: Structure of the block transform packet.

as in Fig. 2.7. Consider a subset of M& basis functions with contiguous frequency
bands. We then construct a new set of M& time-localized basis functions as a
linear combination of the original M& (frequency-selective) basis functions in such
a way that each of the new M& basis functions is concentrated over a desired time
interval but distributed over M& frequency bands. Hence we can swap frequency
resolution for time resolution in any desired pattern. The construction of the
TLBT system is shown in Fig. 5.21.

Let 0i(n), i,n = 0,1, ...,7V — 1, and ipi(n), « ,n = 0,1, ...,7V — 1, be the original
set of orthonormal basis sequences, and the TLBT basis functions, respectively.
These are partitioned into subsets by the TV x TV diagonal block matrix,

where each coefficient matrix A^ is an M^xM^ unitary matrix, and Y^k-o ^k — N-
Consider the kth partition indicated by
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and let a* be the iih row of A&, such that '0/c,i(n) ig ^le hirier product ^fc,i(n) =

a*$fe(n). We want to find the coefficient vector a^ such that the TLBT basis
sequence 'ipk,i(n) maximally concentrates its energy in the interval Ii : [i(jf~), (i +

l)(']g~) — 1]. We choose to minimize the energy of ^(n) outside the desired It,:
i.e., to minimize

subject to orthonormality constraint on the rows of Af~, Q*QJ — 6i-.j. Hence, we
minimize the objective function

It can be shown (Prob. 5.5) that the optimal coefficient vector, a?. is the
eigenvector of a matrix E\ which depends only on J>fc,

where v^ indicates the conjugate transpose.
We now have a procedure for retiling the time-frequency plane so as to meet-

any set of requirements.

Figure 5.22: (a) Original tiling pattern for frequency concentrated 8x8 transform,
(b) Tiling pattern for Mfc = 1,1, 2,4. (c) Tiling pattern for Mk = 4,1,1, 2.

It is noted that the selection of the M^ values determines the time-frequency
tiling patterns. The larger the value of Mfc, the more time resolution can be
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obtained at the cost of sacrificing the resolution in frequency. For example, if
we use an 8 x 8 block transform to construct the time-frequency tiling pattern
in Fig. 5.22(b), the entire set of basis functions should be partitioned into four
subsets with sizes ,M& = 1, 1,2,4. For the time-frequency tiling in Fig. 5.22(c), the
values of Mjt are 4,1,1,2.

Figure 5. 23 (a) shows a portion of a time- frequency tiling based on the 64 x 64
DCT transform. According to Fig. 5.23(a) the entire set of DCT basis functions is
partitioned into several subsets: {<po(n), ..., ^>s(n)} for the subspace So with MQ =
4, {(j>4(n)} for Si with MI = 1, {$s(n)} for S2 with M2 = 1, {$e(n), ...$i3(n)} for
5,4 with A/4 = 8, • • • . For So, the subset of the TLBT basis functions is $o(n) =
|0o(n)? ..., '03 (ra)}. In Fig. 5. 23 (a), the number on each cell represents the order
of the TLBT basis functions. Cells ZQ and Z^ are the regions where tyo(n) and
^(ri) will concentrate their energies. The energy distributions in both the time-
and frequency-domains for 0o(?0 and 02 (^) are illustrated in Figs. 5.23(b) and
5.23(c), respectively. These figures demonstrate that il'o(n) and "02 (^) concentrate
their energies both around (1-5)(||) in the frequency-domain, but in the different
time intervals [0 — 15] and [32 — 47], respectively. From these figures, we see that
the TLBT basis functions concentrate most of their energies in the desired time
interval and frequency band, specified in Fig. 5.23(a).

The dual case is that of constructing a frequency-localized transform FLBT
from the time-localized Kroriecker delta sequences. Here, we select M of these to
be transformed into 0^,05 •••>'0fe.A/--i via the unitary M x M matrix B. where

We define Jj as the energy concentration in the frequency domain in the iih
frequency band,

where ^^-(u;) is the Fourier transform of the basis function ^/^-(n), and the given
frequency band is IUi — {2m(N/M) < LJ < [27r(i + l)(AT/M)-l]}. J{ is maximized
if we choose B to be the DFT matrix, i.e..

In other words, the DFT is the optimum sequence to transform the information
from time-domain to the frequency-domain. Horng and Haddad (1998) describe a
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Frequency

Figure 5.23: (a) Portion of desired tiling pattern; (b) energy distribution of 0o(n)
in both time- and frequency-domain associated with cell 1 in (a); (c) energy dis-
tribution of V'i(ri) in both time- and frequency-domain for cell 3 in (a).
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Figure 5.24: (a) Time localized Kronecker delta tiling pattern; (b) Intermediate
pattern; (c) Desired tiling pattern.

procedure for constructing a FLBT that matches a desired tiling pattern starting
from the delta sequences. The process involves a succession of diagonal block DFT
matrices separated by permutation matrices. The final transform can be expressed
as the product of a sequence of matrices with DFT blocks along the diagonal and
permutation matrices. In this procedure, no tree formulations are needed, and we
are able to build a tiling pattern that cannot be realized by pruning a regular or,
for that matter, an irregular tree in the manner suggested earlier, as in Figs. 5.16
and 5.17.

The procedure is illustrated by the following example. Figure 5.24(c) is the
desired pattern for an 8 x 8 transform. Note that this pattern is not realizable by
pruning a binary tree, nor any uniformly structured tree as reported in the papers
by Herley et. al. (1993).

(1) We note that Fig. 5.24(c) is divided into two broad frequency bands,
[0,7T/2] and [vr/2, TT]; therefore, we split the tiling pattern of Fig. 5.24(a) into
two bands using a 2 x 2 DFT transform matrix. This results in the pattern of
Fig. 5.24(b). The output coefficient vector y = [yQ,yi,..yj] corresponding to the
input data vector / is given by

where AI — diag[<f>2, $2, $2» $2] and <!>& is a k x k DFT matrix.
The 2 x 2 DFT matrix takes two successive time samples and transforms them

into two frequency-domain coefficients. Thus $2 operating on the first two time-
domain samples, /o and /]_, generates transform coefficients yo and y\, which rep-
resent the frequency concentration over [0, Tr/2] and [?r/2, TT], respectively. These
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are represented by cells yo? yi m Fig- 5.24(b),
(2) We apply a permutation matrix P to regroup the coefficients yi into same

frequency bands. In this case, PT — [<$Q , #2 > $F? $F? ^T? ^3 •> &§ •> ̂ i\i where
5k = [0..,.,(). 1,0, ...,0] is the Kronecker delta.

(3) Next we observe that the lower frequency band in Fig. 5.24(c) consists of
two groups: Group A has 3 narrow bands of width (?r/6) each and time duration
6 (from 0 to 5), and group B has one broad band of width (?r/2) and duration 2
(from 6 to 7). This is achieved by transformation matrix = diag\^^i] applied to
the lower half of Fig. 5.24(b). The top half of Fig. 5.24(c) is obtained by splitting
the high-frequency band of Fig. 5.24(b) from 7T/2 to TT into two bands of width
7T/4 and time duration 4. This is achieved by transformation matrix = diag\<&<2<&<2}
applied to the top half of Fig. 5.24(b). Thus,

where A% — diag[3>s, 3>i, $2, $2]-
The final block transform is then

where A = A$ P A2 as given in Eq. (5.55) and C = ej27r/3.

The basis sequences corresponding to cells ZI,ZQ are the corresponding rows
of the A matrix. Concentration of these sequences in both time- and frequency-
domains is shown in Figs. 5.25 and 5.26. zi(n) is concentrated over first 6 time
slots as shown in the plot of zi(n)\2. The associated frequency response \Zi(e^) 2

is shown in Fig. 5.25(b), which is concentrated in the frequency band (7T/6,27r/6).
ZQ(H) is concentrated over last four time slots in Fig. 5.26(a) and |Ze(e:?'u;)|2 =
sin(o;/2) — sin(2o;/2) 2 concentrates over (37r/4,7r) as in Fig. 5.26(b).
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Figure 5.25: Energy distribution for cell Z\\ (a) time-domain; (b) frequency-
domain.

Figure 5.26: Energy distribution for cell Z6: (a) time-domain; (b) frequency-
domain.



5.6'. BLOCK TRANSFORM PACKETS 373

5.6.2 Signal Decomposition in Time-Frequency Plane

We have seen how to synthesize block transform packets with specified time-
frequency localization while maintaining the computational efficiency of the pro-
genitor transform. The next and perhaps more challenging problem is the de-
termination of the tiling pattern that "best" portrays the time-frequency energy
properties of a signal. To achieve this goal, we will first review the differing ways
of representing continuous time signals, and then work these into useful tiling pat-
terns for discrete-time signals. Our description of classical time-frequency distri-
butions is necessarily brief, and the reader is encouraged to read some of the cited
literature for a, more rigorous and detailed treatment (Cohen, 1989, Hlawatsch and
Bartels, 1992).

The short-time Fourier transform (STFT) and the wavelet transform are ex-
amples of two-dimensional representations of the time-frequency and time-scale
characteristics of a signal. Accordingly, these are often called spectrograms, and
scalograms, respectively. The classical time-frequency distribution tries to describe
how the energy in a signal is distributed in the time-frequency plane. These dis-
tributions P(t, 0), then, are functions structured to represent the energy variation
over the time-frequency plane.

The most famous of these is the Wigner (or Wigner-Ville) (Wigner, 1932;
Ville. 1948) distribution for continuous-time signals. This distribution, W(£,Q)
represents the energy density at time t and frequency H, and W(t, Q)A£AQ is the
fractional energy in the time-frequency cell AtAQ, at the point (t, O). It is defined

and the total energy

Using x(t] <-> X(Q) as a Fourier transform pair, this distibution can also be
expressed as

This classical function has the following properties:
(1) It satisfies the marginals, i.e.,
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where \x(t)\2 and |Jf(O)|2 are instantaneous energy per unit, time and per unit
frequency, respectively.
(2) W(t,ti) - W*(t,ty, i.e., it is real.
(3) Support properties: If x(t) is strictly time-limited to [£1,^2], then W(t,i I) is
also time-limited to [^1,^2]- By duality, a similar statement holds in the frequency
domain.
(4) Inversion formula states that W(t,£l) determines x(t) within a multiplicative
constant,

While the foregoing distribution has a very nice Fourier-like properties, it never-
theless suffers from the following disadvantages:
(1) It is computationally burdensome for the discrete-time case to be considered
subsequently.
(2) W(t.£l) can take on negative values, which is inappropriate for an "energy"
function.
(3) The Wigner distribution is not zero at intervals where the time function x(t)
(or frequency function X(£l) is zero.
(4) It has spurious terms or artifacts. For example, the Wigner distribution for the
sum of two sine waves at frequencies QI, 02 has sharp peaks at these frequencies,
but also a spurious term at (Oi + $72/2). The Choi-Williams (1989) distribution
ameliorates such artifacts by modifying the kernel of the Wigner distribution.

Still other time-frequency energy distributions have been proposed, two exam-
ples of which are the positive density function,

(5) Time and frequency shifts: If x(t] «-» Wxx(t, O), then
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and the complex-valued Kirkwood (1933) density

Each of these satisfies the marginals and has some advantages over the Wigner
form, primarily ease of computation.

The discrete time-frequency version of these distributions has been examined
in the literature (Peyrin and Prost, 1986), arid various forms have been advanced.
The simplest Wigner form is

where L is the DFT length. When derived from continuous time signals, sampling
and aliasing considerations come into play. Details can be found in the literature.
In particular, see Peyrin and Prost (1986).

A discrete version of the Kirkwood distribution is the real part of

where x(n) <-» X ( k ) are a DFT pair and [$(fc,n)] = [e?2*kn/N] is the DFT matrix.
This last P(n, k) satisfies the marginals

and

For the tiling study, and for ease of computation, we define the quasi-distribu-
tion

with the properties
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For our computational purposes, we choose the X ( k ) to be the DCT, rather
than the DFT, as our tiling measure. Therefore, for our purposes, we define the
time-frequency energy metric as the normalized product of instantaneous energy
in each domain,

where C normalizes Y^n^k^(n^) = ^- ^n ^le nex* section, the P(n,k] of
Eq. (5.69) is called a "microcell," and the distribution of these microcells de-
fines the energy distribution in the time-frequency plane. The tiling pattern as
discussed in the next section consists of the rank-ordered partitioning of the plane
into clusters of microcells, each of which constitutes a resolution cell as described
in Section 5.6.1.

5.6.3 From Signal to Optimum Tiling Pattern

We have seen how to construct block transform packets with specified time-
frequency localization while maintaining the computational efficiency of the pro-
genitor transform.

The next question is what kind of tiling pattern should we use to fit the sig-
nal characteristics? A resolution cell is a rectangle of constant area and a given
location in the time-frequency plane. The tiling pattern is the partitioning of the
time-frequency plane into contiguous resolution cells. This is a feasible partition-
ing. Associated with each resolution cell is a basis function or "atom." Each
coefficient in the expansion of the signal in question using the new transform basis
function represents the signal strength associated with that resolution cell. We
want to find the tiling pattern corresponding to the maximum energy concentra-
tion for that particular signal. From an energy compaction point of view, the tiling
pattern should be chosen such that the energies concentrate in as few coefficients
as possible.

In order to answer this question, we need to define an appropriate time-
frequency energy distribution which can be rapidly computed from the given sig-
nal .

Microcell Approach

The Kronecker delta sequence resolves the time-domain information, and the
frequency-selective block transforms provide the frequency information. Combin-
ing these two characterizations together gives the energy sampling grid in the
time-frequency plane. Let Xi = |/(z)|2, the amplitude square of the function /(?"),



5.6. BLOCK TRANSFORM PACKETS 877

0 < i < Ar — 1, at time ij and yj — \F(j) 2 the magnitude square of the coeffi-
cient of the frequency-selective block transform (e.g., DCT) at frequency slot /;.
Take outer product of these two groups of samples to obtain the quasi distribu-
tion. Eq. (5.69), Pij = XiUj, i,j = 0 , 1 , . . . , J V — 1. Each P ( i , j ] represents the
energy strength in the corresponding area in the time-frequency plane. The area
corresponding to each P(i,j) is called a microcell. P = P(z, j) is the microcell
energy pattern or distribution for a given signal. Totally we have N2 microcells
and each resolution cell is composed of N microcells. Take N = 8 as an example:
We have 64 microcells and each resolution cell consists of 8 microcells arranged
in a rectangular pattern 1 x 8. 2 x 4, 4 x 2, and 8 x 1 . Therefore, our task here
is to group the microcells such that the tiling pattern has the maximum energy
concentration.

Search for the Most Energetic Resolution Cell

The most energetic resolution cell in P is the rectangular region which is corn-
posed of N microcells and has the maximum energy strength. Our objective is
to search P — {P(i,j)}, the pattern of TV2 energy microcells in the T-F plane,
to find the feasible pattern of N resolution cells Zj, 0 < i < N — 1, such that
the signal energy is optimally concentrated in as few cells as possible. We can
perform an exhaustive search of P using rectangular windows of size N to find
the most energetic resolution cell, and then the second most energetic resolution
cell, and so on. With some assumptions, we can improve the search efficiency as
fellow's. Assume that the most energetic microcell P*(z, j ) is included in the most
energetic resolution cell Z*. We search the neighborhood of P*(«, j) to find the
rectangular cluster of N microcells with the most energy. That cluster defines
the most energetic resolution cell Z*. Therefore, starting from the most energetic
microcell. we group the microcells to find the most energetic resolution cell. The
procedure is as follows:

(1) Rank order P(i, j), and P^, i = 1 , . . . . JV2 are the rank-ordered microcells.
(2) Form the smallest rectangle A\ specified by PI and P2. We test if these

can be included in one resolution cell by simply calculating the area of A\. \\A-\\ ,
\Ai \ < N. If not, test PI and P3.

(3) Form the smallest rectangle A% specified by A\ and next available P,, and
repeat the test.

(4) Repeat forming rectangles and tests until | Aiast = N. Aiast is the most
energetic resolution cell Z*.
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Repeat this search for the next most energetic resolution cell. Eventually, a
complete T-F tiling pattern can be obtained. This procedure is tedious and not
practical for large transforms. In the following, we describe a more efficient way,
a sequentially adaptive approach.

Adaptive Approach

The objective of the proposed method is to expand our signal in terms of
BTP basis functions in a sequential fashion, i.e., find one resolution cell from a
succession of N T-F tiling patterns rather than N cells from one T-F pattern. The
concept of matching pursuit (Mallat and Zhang, 1993), as embodied in Fig. 5.27,
suggests the following adaptive scheme:

(1) Start at stage q = 1. We construct PI from /(n) and use the microcell and
search algorithm to find the most energetic resolution cell Z\ with its associated
basis function ipi(n) and block transform packet T\. The projection of /(») onto
ipi (n) gives the coefficient fa arid our first approximation

(2) Take the residual /i(n) as the input to the next stage where

(3) Repeat (1) and (2) for q > 1 where the residual signal fi(n) at ith stage is

and ifri(n) is the most energetic basis function corresponding to tiling pattern PI
and BTP T,L.

In general, the basis functions ifii(n) need not be orthonormal to each other.
However, at each stage the BTP is a unitary transform and therefore, | /(n)|j >
||/i(n)| and j /J_I(TI)|| > ||/i(n)||. Thus the norm of the residual fi(n) monotoni-
cally decreases and converges to zero. Similar to the matching pursuit algorithm,
this procedure maintains the energy conservation property.

Because this representation is adaptive, it will be generally concentrated in a
very small subspace. As a result, we can use a finite summation to approximate
the signal with a residual error as small as one wishes. The approximated signal
can be expressed as
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Figure 5.27: Block diagram of adaptive BTP-based decomposition algorithm.
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The error energy for that frame using L coefficients is

For a long-length signal, this scheme can be adapted from frame to frame.

5.6.4 Signal Compaction

In this section, two examples are given to show the energy concentration properties
of the adaptive BTP. The BTP is constructed from DCT bases with block size
32. In each example the signal length is 1024 samples. The data sequence is
partitioned into 32 frames consisting of 32 samples per frame. For each frame, we
compute the residual fi(n) and the corresponding error energy f^, 1 < i < 4. The
average of these O^'s over 32 frames is then plotted for each example to show the
compression efficiency. For comparison purpose, the standard DCT codec is also
used.

Figure 5.28(a) shows the energy concentration property in terms of the number
of coefficients for BTP and DCT codecs. The testing signal is a narrow band
Gaussian signal Si with bandwidth^ 0.2 rad and central frequency 5?r/6. Because
of the frequency-localized nature of this signal, BTP has only slight compaction
improvement over the DCT. The signal used in Fig. 5.28(b) is the narrow-band
Gaussian signal Si plus time-localized white Gaussian noise $2 with 10% duty
cycle and power ratio (81/82) = —8dB. Basically, it is a combination of frequency-
localized and time-localized signals and therefore, it cannot be resolved only in
the time- or in the frequency-domain. As expected, BTP shows the compaction
superiority over DCT in Fig. 5.28(b). It demonstrates that BTP is a more efficient
and robust compaction engine over DCT.

It is noted that the BTP codec, like any adaptive tree codec, needs some side
information for decompression. They are the starting point and size of the post
matrix Ak in Eq. (5.45), and the location of the most energetic coefficient which
defines the location and shape of the most energetic resolution tile. If one uses
the adaptive approach, side information is necessary at each stage. Therefore, the
compression efficiency will be reduced significantly. One possible solution is to
use one tiling pattern for each frame of data. Another possible solution is to use
the same BTP basis functions for adjacent frames of data. Both will reduce the
side-information effect and improve the compression efficiency.
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Figure 5.28: Compaction efficiency comparisons for (a) narrow-band Gaussian
signal 5i, (b) Si plus time localized Gaussian signal 52 with power ratio Si/Sz =
-8dB.
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5.6.5 Interference Excision

Spread spectrum communication systems provide a degree of interference rejection
capability. However, if the level of interference becomes too great, the system will
not function properly. In some cases, the interference immunity can be improved
significantly using signal processing techniques which complement the spread spec-
trum modulation (Milsteiri, 1988).

The most commonly used type of spread spectrum is the direct sequence spread
spectrum (DSSS), as shown in Fig. 5.29, in which modulation is achieved by
superimposing a pseudo-noise (PN) sequence upon the data bits. During the
transmission, the channel adds the noise term n and an interference j_. Therefore,
the received signal / can be written as

where the desired signal s = dc is the product of data bit stream d and the spread-
ing sequence c. In general, n is assumed to be additive white Gaussian noise with
parameter 7V"o and j could be the narrow-band or time-localized Gaussian inter-
ference. In the absence of jammers, both the additive white Gaussian noise n
and PN modulated sequence s are uniformly spread out in both time and fre-
quency domains. Because of the presence of the jamming signal, the spectrum of
the received signal will not be flat in the time-frequency plane. The conventional
fixed transform based excisers map the received signal into frequency bins and
reject the terms with power greater than some threshold. This system works well
if the jammers are stationary and frequency localized. In most cases jamming
signals are time-varying and not frequency concentrated. Furthermore, the dis-
crete wavelet transform bases are not adapted to represent functions whose Fourier
transforms have a narrow high frequency support (Medley et al., 1994). There-
fore, conventional transform-domain based techniques perform poorly in excising
nonstationary interference such as spikes (Tazebay and Akansu, 1995).

Adaptive BTPs provide arbitrary T-F resolutions and are suitable for dealing
with such problems. The energetic resolution cells indicate the location of the
jamming signal in the T-F plane; this jamming signal can be extracted from the
received signal by using adaptive BTP based techniques. Figure 5.27 shows the
adaptive scheme for multistage interference excision.

(1) In the first stage, q = 1, we construct BTP T\ for a frame of the received
signal / by using the microcell and search algorithm and find the basis function
4'i(n) an(i coefficient (3\ associated with the most energetic cell.

(2) If the interference is present (the time-frequency spectrum is not flat as
determined by comparison of the most energetic cell with a threshold based on
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Figure 5.29: Block diagram of a DSSS communication system.

average of energy in all other cells), take the residual /i(n) as the input to the
next stage as in Eq. (5.71).

(3) Repeat (1) and (2) for q > 1 where the residual signal f i ( n ) at zth stage
as in Eq. (5.72) and ipi(n] is the most energetic basis function corresponding to
BTP TI.

(4) Stop this process at any stage where the spectrum of the residual signal
at that stage is flat.

The performance of the proposed ABTP exciser is compared with DFT and
DCT excisers. A 32-chip PN code is used to spread the input bit stream. The
resulting DSSS signal is transmitted over an AWGN channel. Two types of inter-
ference are considered: a narrow-band jammer with uniformly distributed random
phase (Q € [0,2?r]), and a pulsed (time-localized) wide-band Gaussian jammer.
Figure 5.30(a) displays the bit error rate (BER) performance of the ABTP exciser
along with DFT and DCT based excisers for the narrow-band jammer case where
the signal to interference power ratio (SIR) is —15 dB. The jamming signal j can
be expressed as

where UJQ = 7r/2 and 0 € [0, 2?r]. Three largest bins are removed for DFT arid
DCT based excisers. Because of the frequency concentrated nature of the jam-
ming signal, all systems perform comparably. Figure 5.30(b) shows the results
for a time-localized wideband Gaussian jammer. The jammer is an on/off type
that is randomly switched with a 10% duty cycle. In this scenario, as expected,
none of the fixed-transform-based excisers is effective for interference suppression.
However, the ABTP exciser has significant improvement over the fixed transform
based exciser. The ABTP exciser also has consistent performance at several other
SIR values.
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It should be noted that neither the duty cycle nor the switching time of the
interference is known a priori in this scheme. The ABTP exciser performs slightly
better than the DCT exciser for the single tone interference, but is far superior
to the DCT and DFT for any combination of time-localized wide-band Gaussian
jammers or time-localized single-tone interference.

The excision problem is revisited in Section 7.2.2 from the standpoint of adap-
tive pruning of a subband tree structure. A smart time-frequency exciser (STFE)
that is domain-switchable is presented. Its superior performance over existing
techniques is presented arid interpreted from the time-frequency perspective.

5.6.6 Summary

Traditional Fourier analysis views the signal over its entire extent in time or in
frequency. It is clearly inadequate for dealing with signals with nonstationary
characteristics. The STFT, the wavelet transform, and the block transform packet
are analysis techniques which can extract signal features in the time-frequency
plane.

In this chapter, we compared the localization properties of standard block
transforms and filter banks from this vantage point.

The time-frequency approach described in this chapter sets the stage for inno-
vative and adaptive methods to deal with "problem" signals, some of which are
described here, and others outlined in Chapter 7.

(Figure on facing page) Bit error rate (BER) performance for adaptive BTP ex-
ciser: (a) BER for narrow-band interference, SIR — —15 dB, (b) BER for time-
localized wide-band Gaussian jammer, 10% duty cycle, and SIR = —15 dB.
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Figure 5.30
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Chapter 6

Wavelet Transform

The wavelet transforms, particularly those for orthonormal and biorthogonal wave-
lets with finite support, have emerged as a new mathematical tool for multires-
oiution decomposition of continuous-time signals with potential applications in
computer vision, signal coding, and others. Interestingly enough, these wavelet
bases are closely linked with the unitary two-band perfect reconstruction quadra-
ture mirror filter (PR-QMF) banks and biorthogonal filter banks developed in
Chapter 3.

In this chapter, we present the continuous wavelet transform as a signal analy-
sis tool with the capability of variable time-frequency localization and compare it
with the fixed localization of the short-time Fourier transform. Our prime interest,
however, is in the multiresolution aspect of the compactly supported wavelet and
its connection with subband techniques. The two-band PR filter banks will play a
major role in this linkage. The multiresolution aspect becomes clear upon devel-
oping the one-to-one correspondence between the coefficients in the fast wavelet
transform and the dyadic or octave-band subband tree.

The Haar wavelets, which are discontinuous in time, and the Shannon wavelets,
discontinuous in frequency, are introduced to provide simple and easily understood
examples of multiresolution wavelet concepts.

Upon establishing the link between wavelets and subbands, we then focus on
the properties of wavelet filters and compare these with other multiresolution
decomposition techniques developed in this book. In particular the Daubechies
filters (1988) are shown to be identical to the Binomial QMFs of Chapter 4; other
wavelet filters are seen to be special cases of the parameterized PR-QMF designs
of Chapter 4. Finally, we comment on the concept of wavelet "regularity" from a
subband coding perspective.

391
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We strive to explain concepts and some of the practical consequences of wave-
lets rather than to focus on mathematical rigor. The interested reader is provided
with list of references for more detailed studies.

We conclude this chapter with some discussions and suggest avenues for future
studies in this active research topic.

6.1 The Wavelet Transform

The wavelet transform (WT) is another mapping from L2(R) —> L2(R2)J but
one with superior time-frequency localization as compared with the STFT. In this
section, we define the continuous wavelet transform and develop an admissibility
condition on the wavelet needed to ensure the invertibility of the transform. The
discrete wavelet transform (DWT) is then generated by sampling the wavelet
parameters (a, b) on a grid or lattice. The question of reconstruction of the signal
from its transform values naturally depends on the coarseness of the sampling grid.
A fine grid mesh would permit easy reconstruction, but with evident redundancy,
i.e., over sampling. A too-coarse grid could result in loss of information. The
concept of frames is introduced to address these issues.

6.1.1 The Continuous Wavelet Transform

The continuous wavelet transform (CWT) is defined by Eq. (6.1) in terms of
dilations and translations of a prototype or mother function ijj(t}. In time and
Fourier transform domains, the wavelet is

The CWT maps a function f ( t ) onto time-scale space by1

The transform is invertible if and only if the resolution of identity holds (Klaim-
der and Sudarshan, 1968) and is given by the superposition

1 For the remainder of this chapter, all time functions (including wavelets) are assumed to be
real.
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where

provided a real ip(t) satisfies the admissibility condition. The wavelet is called
admissible if C0 < oo (Grossmann, Morlet, and Paul, 1985-86) (see Appendix
A).

This in turn implies that the DC gain ^(0) = 0,

Thus, ip(t) behaves as the impulse response of a band-pass filter that decays at
least as fast as t\l~€. In practice, i/j(t] should decay much faster to provide good
time- localization.

Another way of stating admissibility is to require that for any two functions,

In particular, the Parseval relation becomes

The latter states that within a scale factor, the wavelet transform is an isometry
from L2(R) into L2(R2).

To prove this, note that Wf(a, 6) is the convolution of f ( r ] with the time-
reversed wavelet ipab(~-^} evaluated at t — b.

Hence.

As derived in Appendix A, this leads directly to

This is another interpretation of the admissibility condition introduced earlier.
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It is worth noting that the orthonormal wavelet transform also preserves energy
between the different scales such that2

An often-quoted example of a wavelet is the second derivative of a Gaussian.

This pair is sketched in Fig. 6.1. This function has excellent localization in time
and frequency and clearly satisfies the admissibility condition.

The admissibility condition ensures that the continuous wavelet transform is
complete if Wf(a,b) is known for all a, b. Figure 5.3 displays a typical wavelet
and its dilations. It shows the band-pass nature of ij)(t) and the time-frequency
resolution of the wavelet transform.

We have seen in Chapter 5 that the STFT yields the decomposition of a signal
into a set of equal bandwidth functions sweeping the frequency spectrum. On the
other hand the wavelet transform provides the decomposition of a signal by a set
of constant Q (or equal bandwidth on a logarithmic scale) band-pass functions.
The constant bandwidth condition on a logarithmic scale is implicit in Eq. (6.1).
The roles played by the transform parameters are also different for STFT and
wavelet transforms. The time parameter r in the STFT refers to the actual time
instant in the signal, while the parameter b in the continuous wavelet transform
refers to the time instant a"1 b. In other words, the parameter in the wavelet
representation indicates time by using a yardstick that is local in scale. The time
scale thus adapts to the frequency scale under examination. The coarse or fine
frequency scale is accompanied by a time-scale that is accordingly long or short.
This is the primary reason for the efficiency of the wavelet transform inherent in
a multiresolution environment over the STFT. This fact also suggests that the
wavelet transform can represent a multirate system.

There is a time-frequency resolution trade-off in the wavelet transform. To
quantify how the continuous wavelet transform spans the time-frequency plane,
the measures of time and frequency resolutions must be defined. Let at and <JQ
be the RMS extent of the mother wavelet function ip(t] in time and frequency
domains defined as

cr =

"This is the normalization of the wavelet at different scales. The wavelet transform of a
function will have different energies in different scales.
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Figure 6.1: Gaussian based (second derivative) wavelet function and its Fourier
transform.

where the wavelet function i])(t] is centered at (£o, £\») in the time-frequency plane.
Hence, VX^r) is centered at (to,^o/a)- At this point the RMS extent crabt and
(Jaba

 are
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These results explain the role of the scaling parameter a in the wavelet transform.
Figure 6.2(b) and (c) depict time-frequency resolutions of the Daubechies wave-
let (6-tap) and scaling functions, which will be introduced in Section 6.3.2, for
different values of the dilation parameter a.

6.1,2 The Discrete Wavelet Transform

The continuous wavelet transform suffers from two drawbacks: redundancy and
impracticality. The first is obvious from the nature of the wavelet transform and
the second from the fact that both transform parameters are continuous. We can
try to solve both problems by sampling the parameters (a, b) to obtain a set of
wavelet functions in discretized parameters. The questions that arise are:

• Is the set of discrete wavelets complete in L2(R)7

• If complete, is the set redundant?

• If complete, how coarse can the sampling grid be such that the set is minimal,
i.e., noriredundant?

We will address these questions and show that the tightest set is the orthonor-
mal wavelet set, which can be synthesized through a multiresolution framework,
which is the focus of our efforts in this text. The reader interested in a deeper
treatment on the choice of sampling grids may consult Duffin and Schaeffer (1952)
and Young (1980).

Let the sampling lattice be

where m, n € Z. If this set is complete in L?(R] for some choice of i/)(t), a, b, then
the {V>mn} are called affine wavelets. Then we can express any f ( t ) 6 L2(R) as
the superposition

and
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Figure 6.2: (a) Display of time-frequency cells of a wavelet function and its Fourier
transform, (b) Daubechies (6-tap) wavelet function and its dilations, for a — 2
and 1/2, along with their frequency responses.
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Figure 6.2: (c) Daubechies (6-tap) scaling function and its dilations, for a — 2 and
1/2, along with their frequency responses.
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where the wavelet coefficient dm,n is the inner product

Such complete sets are called frames. They are not yet a basis. Frames do not
satisfy the Parseval theorem, and also the expansion using frames is not unique.
In fact, it can be shown that (Daubechies, 1990)

The family tymn(t} constitutes a frame if ip(t) satisfies admissibility, and 0 < A <
B < oo. Then the frame bounds are constrained by the inequalities

These inequalities hold for any choices of OQ an<i &0- These bounds diverge for
nonadmissible wavelet functions (Daubechies, 1990).

Next, the frame is tight if A = B — 1. But, {ipmn(t)} is still not necessarily
linearly independent. There still can be redundancy in this frame. A frame is
exact if removal of a function leaves the frame incomplete. Finally, a tight, exact
frame with A = B = 1 constitutes an orthonorrnal basis for L2(R). This implies
that the Parseval energy relation holds. The orthonorrnal wavelet expansion can
be thought of as the wavelet counterpart to the critically sampled subbaiid filter
bank of Chapter 3.

The orthonorrnal wavelets {^mn(t)} satisfy

and are orthonormal in both indices. This means that for the same scale m they
are orthonormal in time, and they are also orthonormal across the scales. We will
elaborate further on this point in the multiresolution expansion developed in the
following section for the octave or dyadic grid, where ao — 2, 69 — 1.

where
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Similarly, the scaling functions (to be defined in Section 6.2) satisfy an or-
thonormality condition, but only within the same scale, i.e.,

It will be seen that the scaling function is a low-pass filter that complements the
wavelet function in representing a signal at the same scale. A signal / €E L2(R)
can be approximated at scale m by its projection onto scale space. Section 6.2.1
develops this view.

We can imagine the wavelet coefficients as being generated by the wavelet filter
bank of Fig. 6.3. The convolution of f ( t ) with ^m(—t} is

Sampling ym(t) at n2m gives

Figure 6.3: Discrete wavelet transform filter bank.

This filter bank could be contrasted with the STFT bank of Fig. 5.6. Note
that the wavelet down-sampler varies with position or scale in the bank; in the
STFT the down-sampler is the same for every branch.

where
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Figure 6.4: Sampling grid (dyadic) for discrete wavelet transform.

This effect is further illustrated in the DWT dyadic sampling grid shown in
Fig. 6.4. Each node corresponds to a wavelet basis function i/Jmn(t) with scale 2"m

and shift n2~m. This wavelet grid can be contrasted with the uniform STFT grid
of Fig. 5.7.

In the following sections, we will show how compactly supported wavelet bases
can be constructed from a multiresolution signal analysis, and we will link these
to the dyadic tree PR-QMF structure of Chapter 3.

6.2 Multiresolution Signal Decomposition

Here we describe the approach taken by Mallat and Meyer for constructing or-
thonormal wavelets of compact support. Our intent is to show the link between
these wavelet families and the pyramid-dyadic tree expansions of a signal. Finally
we will show that FIR PR-QMF with a special property called regularity provides
a procedure for generating compactly supported orthonormal wavelet bases.
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6.2.1 Multiresolution Analysis Spaces

Multiresolution signal analysis provides the vehicle for these links. In this repre-
sentation, we express a function / E L2 as a limit of successive approximations,
each of which is a smoothed version of /(£). These successive approximations
correspond to different resolutions — much like a pyramid. This smoothing is
accomplished by convolution with a low-pass kernel called the scaling function

A mult iresolut ion analysis consists of a sequence of closed subspaces [Vm m €
Z] of L2(R.) which have the following properties:
• Containment:

Completeness:

Scaling property:

• The Basis/Frame property: There exists a scaling function 4>(t) e VQ such that
Vm 6 Z, the set

is an orthoriormal basis for Vm, i.e.,

Let Wm be the orthogonal complement of Vm in V^-i, i.e..

Furthermore, let the direct sum of the possibly infinite spaces Wm span L2(R):
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We will associate the scaling function (j>(t) with the space VQ, and the wave-
let function with WQ. Next, we introduce projection operators Pm, Qm from
L2(R} onto Vm and Wm, respectively. The completeness property ensures that
limm-+-00 Pmf = /, for any / E L2(jR). The containment property implies that
as m decreases Pmf leads to successively better approximations of /.

Any function / can be approximated by Pm-i/) its projection onto Vm~i.
From Eq. (6.22) this can be expressed as a sum of projections onto Vm and Wm:

Pmf is the low-pass part of / in Vm and Qmf is the high-frequency detail or
difference, i.e., the increment in information in going from Vm to Vm-\.

Equation (6.24) can be expressed as Qmf = Pm-if — Pmf, where Qmf € Wm.
Hence, we can say that the orthogonal or complementary space Wm is given by
the difference Vm-\ 0 Vm. Now 4>(t - n) € VQ and c/>(2t ~ ri) € V-\. Since VQ =
span{4>(t — n)} and V_i = span{<p(2t — n)}, it is reasonable to expect the existence
of a function ?/>(£) € WQ, such that WQ = span{ijj(t — ri)}. This function ijj(t) is the
wavelet function associated with the multiscale analysis. Clearly, by the scaling
property, Wm — span{ifj(2~mt — n)}. The term Wm is also generated by the
translates and dilations {ifjmn(t)} of a single wavelet or kernel function 0(t). The
containment and completeness properties, together with Wm _L Vm arid V^,_i =
Vm ® Wm, imply that the spaces Wm are all mutually orthogonal and that their
direct sum is L'2(R}. Since for each m, the set {ipmnty} '•> n € Z} constitutes an
orthonormal basis for Wm, it follows that the whole collection {^mn(t) ; rn, n G Z}
is an orthonormal wavelet basis for L2(R). The set {ipmn(t) = 2~m/2i/)(2~mt —n)}
is the wavelet basis associated with the multiscale analysis, with property

the function Pm-if at a given resolution can be represented as a sum of added
details at different scales.

Suppose we start with a scaling function c/>(t), such that its translates {(j)(t—n)}
span VQ. Then V-\ is spanned by 0(2t — n), dilates of the function in VQ. The
basis functions in V-i are then

Since
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Thus V-i is generated by integer translates of two functions, and <j)(t] can be
expressed as a linear combination of even and odd translates of (j>(2t), or

This last equation is an inherent consequence of the containment property. The
coefficient set {ho(n}} are the interscale basis coefficients. We shall see that this
is the low-pass unit sample response of the two-band paraunitary filter bank of
Chapter 3.

Similarly, the band-pass wavelet function can be expressed as a linear combi-
nation of translates of <j>(2t}:

This is the fundamental wavelet equation. The coefficients {hi(n}} will be iden-
tified with the high-pass branch in the two-band PR filter bank structure.

6.2.2 The Haar Wavelet

To fix ideas, we pause to consider the case of Haar functions. These functions are
sufficiently simple yet of great instructional value in illustrating multiresolution
concepts. Let Vm be the space of piecewise constant functions,

Vm = (f(t) € L2(R)- f is constant on [2mn, 2m(n + 1)] Vn 6 Z}. (6.28)

Sample functions in these spaces are shown in Fig. 6.5.

Figure 6.5: Piecewise constant functions in Vi, T^, and V-\.

First we observe that ..Vi C V0 C V-\.. and that f ( t ] e V0 <—»• f ( 2 t ) € V_i so
that the containment property is satisfied; for example, functions in VQ that are
constant over integers (n,n + 1) are also constant over the half integers of V-\.
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The completeness and scaling property are also obvious. The integer translates of
the scaling function

with transform

constitute an orthonormal basis for VQ. This is obvious since for n 7^ ra, 0(t — n)
and (f>(t — m) do not overlap, and

The waveforms in Fig. 6.6 show that 4>(t} is a linear combination of the even and
odd translates of (f>(2t):

This ip(t) is then the mother wavelet function from which all the babies spring.
The dilations and translates of tp(t] are the Haar functions |-0mn(t)}, which are
known basis functions for L?(R). The Haar wavelets are shown in Fig. 6.7. Those
wavelets tpmn(t} = 2~~2rip(2~~mt — n) are seen to be orthonormal at the same scale

Next, since V-\ = VQ © WQ and Qof — (P-\f - PQ/) <G WQ represents the detail
in going from scale 0 to scale -1, then WQ must be spanned by ip(t — n), where

The Fourier transform is that of a band-pass analog filter, shown in Fig. 6.6(e):
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Figure 6.6: (a) and (b) Haar scaling basis functions; (c) Haar wavelet; (d) Fourier
transform of Haar scaling function; and (e) Haar wavelet function.

It is easily verified that"

and

The approximations PQ/, P-\f and the detail Qof for a sample function f ( t )
are displayed in Fig. 6.8. Note how the detail Qof adds to the coarse approxima-
tion PQ/ to provide the next finer approximation P_i/.

At scale m, the scaling function coefficient is

3For ease of notation, the explicit time dependency in <pm,n and Vm,n is not shown, but
implied.



6.2. MULTIRESOLUTION SIGNAL DECOMPOSITION 407

Figure 6.7: Typical Haar wavelets at scales 0,1.

and the approximation of / at scale m is

n).

Since Kn+i C Vm, the next coarser approximation is Pm+i/, and

The orthogonal complement of Pm+if is then

Consequently, ^mn(t) = 2~m/2?/;(2-mt - n) and for fixed m, {VVnnW} spans Wm;
for m,n G Z, {^mn(^)} spans L2(R).
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Figure 6.8: Approximations of (a) PQ/ and (b) P-i/; (c) detail Qof, where PQ/

Qof = P-if-
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The Fourier transforms of these Haar scaling and wavelet functions

are sketched in Fig. 6.6(d) and (e).
These Haar functions are very well localized in iime, but the frequency local-

ization is seen to be poor owing to the discontinuities in the time-domain approx-
imation.

For the Haar basis, we see that the interscale coefficients and their system
functions are

These are paraunitary niters, albeit very simple ones. Examples of smoother
time-frequency wavelet representations are developed subsequently. Since this
last result is not obvious, we will indicate the details in the derivation.

Let Pmf be decomposed into even and odd indices; then

The coefficient at scale m 4- 1, can be expressed as a smoothing of two finer scale
coefficients via
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Equations (6.38) and (6.34) allow us to write

Subtracting Eq. (6.39) from Eq. (6.37) and rearranging gives

where

Thus, the projection of / onto Wm+i is representable as a linear combination
of translates and dilates of the mother function ip(t).

Another important observation is the relationships between the wavelet and
scaling coefficients at scale ra + 1 and the scaling coefficient at the finer scale m.
We have seen that

and

Prom Eqs. (6.38) and (6.40) we conclude that cm+ijn and dm+i,n can be obtained
by convolving cm>n with -\/2ho(n) and T/2hi(n), respectively, followed by a 2-
fold down-sampling as shown in Fig. 6.9. Hence the interscale coefficients can
be represented by a decimated two-band filter bank. The output of the upper
decimator represents the coefficients in the approximation of the signal at scale
m + 1, while the lower decimator output represents the detail coefficients at that
scale.

In the next section, we show that any orthonormal wavelet of compact support
can be representable in the form of the two-band unitary filter bank developed
here. More interesting wavelets with smoother time-frequency representation are
also developed in the sequel.
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Figure 6.9: Interscale coefficients as a two-band filter bank.

6.2.3 Two-Band Unitary PR-QMF and Wavelet Bases

Here we resume the discussion of the interscale basis coefficients in Eq. (6.26). But
first, we must account for the time normalization implicit in translation. Hence,
with <j>(t) 4—» $($!) as a Fourier Transform pair, we then have

and

Taking the Fourier transform of both sides of Eq. (6.26) gives

Now with uj = OTo as a normalized frequency and H.Q(e^} as the transform of the
sequence {ho(n)}J

we obtain4

The variables O and u in this equation run from — oo to oo. In addition, H^(eP^}
is periodic with period 27r. Similarly, for the next two adjacent resolutions,

4We will use fi as the frequency variable in a continuous-time signal, and u for discrete-time
signals, even though Jl — u for TO = 1.
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Therefore, $(O) of Eq. (6.43) becomes

Note that Ho(e^) has a period of 8?r. If we repeat this procedure infinitely many
times, and using limn_*oo O/2n = 0, we get $(fi) as the iterated product

We can show that the completeness property of a rmiltiresolution approxima-
tion implies that any scaling function satisfies a nonzero mean constraint (Prob.
6.1)

If (j)(t) is real, it is determined uniquely, up to a sign, by the requirement that
4>0n(t) be orthonormal. Therefore,

and

which is equivalent to

Hence the Fourier transform of the continuous-time scaling function is obtained
by the infinite resolution product of the discrete-time Fourier transform of the
interscale coefficients {ho(n}}. If the duration of the interscale coefficients {ho(n)}
is finite, the scaling function cf)(i) is said to be compactly supported. Furthermore,
if ho(n) has a duration 0 < n < N — 1, then <f>(t] is also supported within 0 < t <
(N — l)Tb- (Prob. 6.2) For convenience, we take Xb = 1 in the sequel (Daubechies,
1988).

In the Haar example, we had N — 2, and the duration of ho(n) was 0 < n < 1;
accordingly, the support for <p(t) is 0 < t < 1.

Next we want to find the constraints Ho(e^U}) must satisfy so that (p(t] is a
scaling function, and for any given scale ra, the set {4>mn(k)} is orthonormal. In
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particular, if {<p(t — n)} spans VQ, then we show in Appendix B that the corre-
sponding <J»(Q) must satisfy the unitary condition in frequency

Next, after substituting

into the preceding orthonormality condition arid after some manipulations (Prob.
6.4), we obtain

This can be rewritten as an even and odd indexed sum,

This last equation yields the magnitude square condition of the interscale coeffi-
cient sequence {ho(n)},

This is recognized as the low-pass filter requirement in a maximally decimated
unitary PR-QMF of Eq. (3.129). We proceed in a similar manner to obtain filter
requirements for the orthonormal wavelet bases.

First, it is observed that if the scaling function (j)(i) is compactly supported on
[0, N — 1], the corresponding wavelet ijj(t) generated by Eq. (6.27) is compactly
supported on [1 — y, y], Again, for the Haar wavelet, we had N = 2. In that case
the duration of h\(ri) is 0 < n < 1, as is the support for ^(t}.

Letting h\(n) ^—^ H\(e^} and transforming Eq. (6.27) gives the transform of
the wavelet as r^

If we replace the second term on the right-hand side of this equation with the
infinite product derived earlier in Eq. (6.44),

The orthonormal wavelet bases are complementary to the scaling bases. These
satisfy the intra- and interscale orthonormalities
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where m and k are the scale and n and / the translation parameters. Notice that
the orthoriormality conditions of wavelets hold for different scales, in addition to
the same scale, which is the case for scaling functions. Since {tp(t — n)} forms
an orthonormal basis for WQ, their Fourier transforms must satisfy the unitary

As before, using

in this last equation leads to the expected result

or

which corresponds to the high-pass requirement in the two-channel unitary PR-
QMF, Eq. (3.129).

Finally, these scaling and wavelet functions also satisfy the orthonormality
condition between themselves,

Note that the orthonormality of wavelet and scaling functions is satisfied at dif-
ferent scales, as well as at the same scale. This time-domain condition implies its
counterpart in the frequency-domain as

Now, if we use Eqs. (6.44), (6.50), and (6.54) we can obtain the frequency-
domain condition for alias cancellation [see Eq. (3.130)]:

or

The three conditions required of the transforms of the interscale coefficients,
{ho(n}} and {/ii(n)| in Eqs. (6.49), (6.53), and (6.55) in the design of compactly
supported orthonormal wavelet and scaling functions are then equivalent to the
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requirement that the alias component (AC) matrix HAC(^U) of Chapter 3 for the
two-band filter bank case,

be paraunitary for all a;.
In particular, the cross-filter orthonormality, Eq. (6.55), is satisfied by the

choice

or in the time-domain,

In addition, since

and we have already argued that

then Hi(eju;) must be a high-pass filter with

Thus the wavelet must be a band-pass function, satisfying the admissibility con-
dition

j

Therefore, HQ(Z) and H\(z) must each have at least one zero at z ~ — I and z = 1,
respectively. It is also clear from Eq. (6.57) that if ho(n) is FIR, then so is hi(n).
Hence the wavelet function is of compact support if the scaling function is.

In summary, compactly supported orthonormal wavelet bases imply a parau-
nitary, 2-band FIR PR-QMF bank; conversely, a paraunitary FIR PR-QMF filter
pair with the constraint that HQ(Z) have at least one zero at z = — 1 imply a
compactly supported orthonormal wavelet basis (summarized in Table 6.1). This
is needed to ensure that ^(0) — 0. Orthonormal wavelet bases can be constructed
by multiresolution analysis, as described next.
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Table 6.1: Summary of relationships between paraunitary 2-band FIR PR-QMF's
and compactly supported orthonormal wavelets.

6.2.4 Multiresolution Pyramid Decomposition

The multiresolution analysis presented in the previous section is now used to de-
compose the signal into successive layers at coarser resolutions plus detail signals,
also at coarser resolution. The structure of this multiscale decomposition is the
same as the pyramid decomposition of a signal, described in Chapter 3.

Suppose we have a function / 6 VQ. Then, since {(f>(t ~n)} spans VQ, / can be
represented as a superposition of translated scaling functions:

Next, since VQ — V\ ® W\, we can express / as the sum of two functions, one lying
entirely in V\ and the other in the orthogonal complement W\:
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Here, the scaling coefficients CI>H and the wavelet coefficients d\^n are given by

In the example using Haar functions, we saw that for a given starting sequence
{co,n}> the coefficients in the next resolution {ci>n} and {d\^n} can be represented,
respectively, as the convolution of co,n with HQ = /IQ(—n) and of co,n with h\(n) —
/ii(—ri), followed by down-sampling by 2. Our contention is that this is generally
true. To appreciate this, multiply both sides of Eq. (6.62) by (j>in(t) and integrate

But fw(t) is a linear combination of {V;ifc(^)}5 each component of which is orthog-
onal to (f>in(t). Therefore, the second inner product in Eq. (6.64) is zero, leaving
us with

This last integral is zero by orthogonality.)
Therefore,

Therefore,
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Figure 6.11: First stage of multiresolution signal decomposition.

In a similar way, we can arrive at

Figure 6.10 shows twofold decimation and interpolation operators. So our last
two equations define convolution followed by subsampling as shown in Fig. 6.11.
This is recognized as the first stage of a subband tree where {ho(n), h\(n}} consti-
tute a paraunitary FIR pair of filters. The discrete signal d\^n is just the discrete
wavelet transform coefficient at resolution 1/2. It represents the detail or differ-
ence information between the original signal co,n and its smoothed down-sampled
approximation ci>n. These signals c\^n and di>n are said to have a resolution of
1/2, if co,n has unity resolution. Every down-sampling by 2 reduces the resolution
by that factor.

The next stage of decomposition is now easily obtained. We take f£ € V\ —
V<2 © W-2 and represent it by a component in ¥2 and another in W%:
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Following the procedure outlined, we can obtain the coefficients of the smooth-
ed signal (approximation) and of the detail signal (approximation error) at reso-
lution 1/4:

These relations are shown in the two-stage multiresolution pyramid displayed in
Fig. 6.12. The decomposition into coarser, smoothed approximation and detail
can be continued as far as we please.

Figure 6.12: Multiresolution pyramid decomposition.

To close the circle we can now reassemble the signal from its pyramid decom-
position. This reconstruction of C0)n, from its decomposition CI)TI, and d\^n can be
achieved by up-sampling and convolution with the filters /IQ(W), and h\(n) as in
Fig. 6.13. This is as expected, since the front end of the one-stage pyramid is
simply the analysis section of a two-band, PR-QMF bank. The reconstruction
therefore must correspond to the synthesis bank. To prove this, we need to rep-
resent /io(?0 and h\(n) in terms of the scaling and wavelet functions. Note that

—• J\

analysis filters /i^(n) = hi(—ri) as shown are anticausal when synthesis filters are
causal.

Recall that {/io(n)|, {/ii(n)}, are the interscale coefficients
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Figure 6.13: Reconstruction of a one-stage multiresolution decomposition.

Then

and

Hence,

Similarly

The coefficient co,n can be written as the sum of inner products

where the interpolated low-pass signal is
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Equation (6.69) reveals that this inner integral is 2/io(n — 2/e). Hence,

421

Fhese last two synthesis equations are depicted in Fig. 6.13.

Similarly, we can easily show

Figure 6.14: Multiresolution (pyramid) decomposition and reconstitution struc-
ture for a two-level dyadic subband tree; hi(n) = hi(-ri).

We can extrapolate these results for the multiscale decomposition and recori-
stitution for the dyadic subband tree as shown in Fig. 6.14. The gain of \/2
associated with each filter is not shown explicitly. We have therefore shown that
orthonornial wavelets of compact support imply FIR PR-QMF filter banks. But
the converse does not follow unless we impose a regularity requirement, as dis-
cussed in the next section. Thus, if one can find a paraunitary filter JEfo(e?w) with
regularity, then the mother wavelet can be generated by the infinite product in
Eq. (6.50).

This regularity condition imposes a smoothness on HQ. Successive iteration of
this operation, as required by the infinite product form, should lead to a nicely
behaved function. This behavior is assured if HQ(Z) has one or more zeros at
z = — 1, a condition naturally satisfied by Binomial filters.

6.2.5 Finite Resolution Wavelet Decomposition

We have seen that a function / e VQ can be represented as
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and decomposed into the sum of a lower-resolution signal (approximation) plus
detail (approximation error)

The purely wavelet expansion of Eq. (6.16) requires an infinite number of
resolutions for the complete representation of the signal. On the other hand,
Eq. (6.72) shows that f ( t ) can be represented as a low-pass approximation at
scale L plus the sum of L detail (wavelet) components at different resolutions.
This latter form clearly is the more practical representation and points out the
complementary role of the scaling basis in such representations.

6.2.6 The Shannon Wavelets

The Haar functions are the simplest example of orthonormal wavelet families.
The orthonormality of the scaling functions in the time-domain is obvious — the
translates do not overlap. These functions which are discontinuous in time are
associated with a very simple 2-tap discrete filter pair. But the discontinuity in
time makes the frequency resolution poor. The Shannon wavelets are at the other
extreme — discontinuous in frequency and hence spread out in time. These are
interesting examples of multiresolution analysis and provide an alternative basis
connecting multiresolution concepts and filter banks in the frequency domain.
However, it should be said that these are not of compact support.

The coarse approximation /„(£) in turn can be decomposed into

so that

Continuing up to f^(t}^ we have

or
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Let VQ be the space of bandlimited functions with support (—7r,7r). Then from
the Shannon sampling theorem, the functions

constitute an orthonormal basis for VQ. Then any function f(t] € VQ can be
expressed as

k ^ ' k
The orthonormality can be easily demonstrated in the frequency domain. With

Next, let V_i be the space of functions band limited to [— 2?r, 27r], and WQ
the space of band-pass signals with support (— 2?r, — TT) UC71"? 27r). The succession of
multiresolution subspaces is shown in Fig. 6.15. By construction, we have V_i —
VQ ® WQ, where WQ is the orthogonal complement of VQ in V-\. It is immediately
evident that < 4>^iiiJ(f)*_l k >= Sk~i- Furthermore, any band-pass signal in WQ can
be represented in terms of the translated Shannon wavelet, ij)(t — fc), where

the inner product < </>o,fc, </>o,/ > is J118^

This Shannon wavelet is drawn in Fig. 6.16. The orthogonality of the wavelets at
the same scale is easily shown by calculating the inner product < ijj(t — fc), ip(t —
I) > in the frequency-domain. The wavelet orthogonality across the scales is
manifested by the nonoverlap of the frequency-domains of W&, and Wi as seen in
Fig. 6.15. This figure also shows that Vi can be expressed as the infinite direct
sum
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Figure 6.15: Succession of multiresolution subspaces.

Figure 6.16: Shannon wavelet, ip(t) = ̂ f- cos %j-t.
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This is the space of L2 functions band-limited to — 7r/2l~l , Tr/2*"1 , excluding LJ = 0
(The latter exception results since a DC signal is not square integrable) .

Since (f>(t) and ijj(t) are of infinite support, we expect the interscale coefficients
to have the same property. Usually, we use a pair of appropriate PR-QMF filters
to generate $(O), W(0) via the infinite product representation of Eqs.(6.44) and
(6.50). In the present context, we reverse this process for illustrative purposes
and compute ho(n) and h\(n) from (j>(t) and ip(t), respectively. From Eq. (6.43)
the product of <i>(0/2) band-limited to ±2?r and H0(e

juJ/2} must yield $(fi) band-
limited to ±TT:

Therefore, the transform of the discrete filter Ho(eja;/2) with period 4ir must itself
be band-limited to ±TT. Hence, Ho(eJCJ) must be the ideal half-band filter

and correspondingly,

From Eq. (6.57) with N — 2 the high-frequency half-bandwidth filter is then

The frequency and time responses of these discrete filters are displayed in Fig. 6.17.
These Shannon wavelets are clearly not well localized in time — decaying only as
fast as 1/t. In the following sections, we investigate wavelets that lie somewhere
between the two extremes of the Haar and Shannon wavelets. These will be
smooth functions of both time and frequency, as determined by a property called
regularity.

6.2.7 Initialization and the Fast Wavelet Transform

The major conclusion from multiresolutiori pyramid decomposition is that a con-
tinuous time function, /(£), can be decomposed into a low-pass approximation at
the 1/2 resolution plus a sum of L detail wavelet (band-pass) components at suc-
cessively finer resolutions. This decomposition can be continued indefinitely. The
coefficients in this pyramid expansion are simply the outputs of the paraunitary
subband tree. Hence the terminology fast wavelet transform.
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Figure 6.17: Ideal half-band filters for Shannon wavelets.
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The fly in the ointment here is the initialization of the subband tree by {co,n}-
If this starting point Eq. (6.61) is only an approximation, then the expansion
that follows is itself only an approximation. As a case in point, suppose f ( t ) is a
band-limited signal. Then

</>o,n = Sin(ir(t — n))/7r(t — n)

is an orthonormal basis and

In this case, ho(n) and h\(n) must be ideal "brick wall" low-pass and high-pass
filters. If /(n) = co,n is inputted to the dyadic tree with filters that only approx-
imate the ideal filters, then the resulting coefficients, or subband signals {dm,n}
and {c^n}, are themselves only approximations to the exact values.

6.3 Wavelet Regularity and Wavelet Families

The wavelet families, Haar and Shannon, discussed thus far have undesirable prop-
erties in either frequency- or time-domains. We therefore need to find a set of in-
terscale coefficients that lead to smooth functions of compact support in time and
yet reasonably localized in frequency. In particular we want to specify properties
for H0(eJUJ] so that the infinite product $(Q) = Oi£i H0(e

i^2k) converges to a.
smooth function, rather than breaking up into fractals.

6.3.1 Regularity or Smoothness

The concept of regularity (Daubechies, 1988) provides a measure of smoothness
for wavelet and scaling functions. The regularity of the scaling function is defined
as the maximum value of r such that

This in turn implies that (f>(t) is m-times continuously differentiable, where r > m.
The decay of <&(O) determines the regularity, i.e., smoothness, of (j>(t) and 'ip(t}.

We know that HQ(Z] must have at least one zero at z = — 1. Suppose it has L
zeros at that location and that it is FIR of degree N — 1; then
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where P(z] is a polynomial in z l of degree N — 1 — L with real coefficients. To see
the effect of these L zeros at z = — 1 on the decay of 4>(O), substitute Eq. (6.83)
into the infinite product form, Eq. (6.44),

But

The first product term, in Eq. (6.84) is therefore

The (sinc^)L term contributes to the decay of 4>(O) provided the second term can
be bounded. This form has been used to estimate the regularity of </>(£). One such
estimate is as follows. Let P(e^) satisfy

for some / > 1; then ho(n) defines a scaling function <p(t] that is rn-times contin-
uously differentiable. Tighter estimates of regularity have been reported in the
literature (Daubechies and Lagarias, 1991).

We have seen in Eq. (6.85) the implication of the L zeros of HQ(Z] at z = — 1
on the decay of $(0). These zeros also imply a flatness on the frequency response
of Ho(eJUJ) at uj = TT, and consequent vanishing moments of the high-pass filter
hi(n). With
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The (cosu>/2)L~r term makes these derivatives zero at u> — TT for r = 0,1, 2., . . , L —
1, leaving us wifh (Prob. 6.6)

This produces a smooth low-pass filter.
From Eq. (6.57), the high-pass filter H\(z) has L zeros at z = 1. Hence we

can write

The (sino;/2)L term ensures the vanishing of the derivatives of H\(e^} at u; — 0
and the associated moments, that is,

implying

Several proposed wavelet solutions are based on Eq. (6.82). To investigate
further the choice of L in this equation, we note that since P(z) is a polynomial
in z~l with real coefficients, Q(z) = P(z)P(z~1} is a symmetric polynomial:

Therefore,

But cos(no;) can be expressed as a polynomial in cos a;, which in turn can be
represented in terms of sin2u;/2. Therefore, \P(e^}^ is some polynomial /(.), in
(sin2 w/2) of degree N - I - L:

where
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Substituting into the power complementary equation

gives

This equation has a solution of the form

where R(x) is an odd polynomial such that

Different choices for R(x) and L lead to different wavelet solutions. We will
comment on two solutions attributed to Daubechies.

6.3.2 The Daubechies Wavelets

If we choose R(x] = 0 in Eq. (6.92), L reaches its maximum value, which is L ~
N/2 for an TV-tap filter. This corresponds to the unique maximally flat magnitude
square response in which the number of vanishing derivatives of |Ho(eJu;)|2 at u = 0
and (jj — TT are equal. This interscale coefficient sequence {ho(n)} is identical to
the unit sample response of the Binomial-QMF derived in Chapter 4.

The regularity of the Daubechies wavelet function i/>(t) increases linearly with
its support width, i.e., on the length of FIR filter. However, Daubechies and
Lagarias have proven that the maximally flat solution does not lead to the highest
regularity wavelet. They devised counterexamples with higher regularity for the
same support width, but with a reduced number of zeros at z — — 1.

In Chapter 3, we found that paraunitary linear-phase FIR filter bank did not
exist for the two-band case (except for the trivial case of a 2-tap filter) . It is not
surprising then to discover that it is equally impossible to obtain an orthonormal
compactly supported wavelet i/j(t) that is either symmetric or antisymmetric, ex-
cept for the trivial Haar case. In order to obtain ho(n) as close to linear-phase as
possible we have to choose the zeros of its magnitude square function \Ho(e^)\2

alternatively from inside and outside the unit circle as frequency increases, This
leads to nonminimum-phase FIR filter solutions. For TV sufficiently large, the unit
sample responses of ho(ri) and h\(ri) have more acceptable symmetry or antisym-
metry. In the Daubechies wavelet bases there are 2fj/v/4J~1 different filter solutions.
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However, for N — 4 and 6, there is effectively only one pair of 4>(t) and ip(t). For
N > 8 we could choose the solution that is closest to linear-phase.

If one selects the nonminimum-phase solution for the analysis niters in order
to enhance the phase response, perfect reconstruction requires that the associated
minimum-phase solution be used in the synthesis stage. The latter has poorer
phase response. Prom a coding standpoint, the more liriear-like phase should be
used on the analysis side so as to reduce the effects of quantization (Forchheimer
and Kronander, 1989).

The Daubechies solution involved solving for P(e^U}) from |P(eJa;)J2 by spec-
tral factorization. The same filters were found from an entirely different starting
point using the elegant properties of the Binomial sequences. The latter approach
also suggested the efficient realizations of these filters using the Binomial QMF
structures of Fig. 4.1. Table 4.2 gives the coefficient values of these niters for tap
lengths of 4. 6, and 8.

6.3.3 The Coiflet Bases

For a given support, the Daubechies wavelet ip(t) has the maximum number of
vanishing moments. The scaling function </>(£) does not satisfy any moment con-
dition, except / 4>(t)dt — 1. For numerical analysis applications, it may be useful
to trade off some of the zero moments of the wavelet in order to obtain some zero
moments for the scaling function <f>(t) such as

It is seen that the wavelet and scaling functions have an equal number of vanishing
moments in this case. Imposing such vanishing moments on the scaling function
(j>(t) also increases its symmetry.

In the frequency domain, these conditions directly impose flatness on the trans-
forms of the scaling and wavelet functions,

0 for
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In terms of H$(ei"}, these conditions become

(6.97)
in order to satisfy both equations simultaneously. Remaining /(eju;) must then
be chosen such that the PR conditions are satisfied. The interscale coefficients or
filters of these Coiflet bases are given in Table 6.2 for the lengths JV = 6.12,18,24.
It is noteworthy that samples of Coiflet filters were derived earlier as special cases
of the Bernstein polynomial approach to filter bank design of Section 4.3.

6.4 Biorthogonal Wavelets and Filter Banks

In Chapter 3, we described a design procedure for a two-band PR FIR lattice
structure with linear phase. This was possible because the paraunitary constraint

In order to satisfy those conditions Ho(e^u) must have the form

From Eq. (6.94), Ho(e^) has a zero of order L at u; — TT. Consequently, Ho(e^)
must also satisfy

where P(eJ^} is as found earlier.

where ./?(#) is an odd polynomial. Equations (6.95) and (6.96) lead to L inde-
pendent linear constraints on the coefficients of V(e^u] which are very difficult to
solve for L > 6.

Daubechies (Tech. Memo) has indicated an indirect approach. For L = 2K.
she shows that Ho(e^) can be expressed as
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n
o
1
2
3
4
5
6
7
S
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

h(n)
0.0006; 0961046
-0.001152224852
•0.005194524026
0.011362459244
0.018867235378
-0.057464234429
-0.039652648517
0.293667390895
0.553126452562
0.307157326198
-0.047112738865
-0.068038127051
0.027813640153
0.017735837438
-0.010756318517
-0.004001012886
0.002652665946
0.000895594529
-0.000416500571
-0.000183829769
0.000044080354
0.000022082857
-0.000002304942
-0.000001262175

¥«)
-0.002682418671
0.005563126709
0.016583560479
•0.046507764479
-0.043220763560
0.286503335274
0.561285256870
0.302983571773
-0.050770140755
•0.058196250762
0.024434094321
0.011229240962
-0.006369601011
-0.001820458916
0.000790205101
0.000329665174
-0.000050192775
-0.000024465734

Uitt f

0.011587596739
-0.029320137980
-0.047639590310
0.273021046535
0.574682393857
0.294867191696
-0.054085607092
-0.042026480461
0.016744410163
0.003967883613
•0.001289203356
•0.000509505539

.¥*)
-0.051429728471
0.238929728471
0.602859456942
0.272140543058
-0.051429972847
•0.011070271529

ij

Table 6.2: Coiflet PR-QMF filter coefficients for taps N
(Daubechies, 1990).

6, 12, 18, 24

was removed. Vetterli and Her ley (1992) demonstrate that linear phase analy-
sis and synthesis filters can be obtained in the two-band case using the rubric
of biorthogonality. We will outline their approach and then show its implica-
tions for a multiresolution wavelet decomposition. It is also interesting that the
biorthogonal filter banks are identical to the modified Laplaeian pyramid, which
was introduced earlier in Section 3.4.6.
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Figure 6.18: Biorthogonal filter bank structure.

The standard two-band filter bank is shown in Fig. 6.18. Our analysis in
Chapter 3 showed that

For perfect reconstruction, we require

where alias cancellation is ensured by selecting GQ(Z) — —Hi(—z), and GI(Z] =
HQ(—Z), resulting in

T(z) - [G0(z)HQ(z) + G0(-z)H0(-z)] - cz~n°.

The biorthogonal solution is as follows. The PR conditions are satisfied by
imposing orthogonality across the analysis and synthesis sections (Vetterli and
Herley, 1992),

where

and
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(The noncausal paraunitary solution was go(n) — /IQ(^), and g\(n) — hi(n}). The
added flexibility in the biorthogonal case permits use of linear-phase and unequal
length niters.

In the parlance of wavelets, we can define two hierarchies of approximations
(Cohen, Daubechies, and Feauveau)

The subspace Wj is complementary to Vj in Vj-i, but it is not the orthogonal
complement. Instead Wj is the orthogonal complement of Vj. Similarly, Wj J_ Vj.
Thus,

The associated scaling and wavelet functions are then

and

We should expect, and indeed find, that the following orthogonality among the
scaling and wavelet functions

and

These relations confirm that {^mn(t)^m'n
r} are an orthogonal set across the

scales such that
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This permits us to express any function / € L2(R) in the form

Biorthogonality provides additional degrees of freedom so that both perfect re-
construction and linear-phase filters can be realized simultaneously. For example,
the requirement on the low-pass branch of Fig. 6.18 can be stated in time- and
transform-domains as

Constraints of this type can be satisfied with linear-phase filters. Note that both
low-pass filters ho(n) and go(n) have at least one zero at LU — IT. Following the
design procedures given for compactly supported orthoriormal scaling and wavelet
functions in Section 6.2.3, one can easily obtain biorthogonal (dual) scaling and
wavelet functions from biorthogonal filters in the Fourier domain as

Detailed design procedures for linear-phase biorthogonal wavelets and filter banks
are described in the references.

There is a caveat to be noted in this structure, however. The biorthogonal
nature of the filter bank allows different filter lengths in the analysis section and
consequently an unequal split of the signal spectrum into low-band and high-band
segments. Since each of these bands is followed by a down-sampler of rate 2,
there is an inherent mismatch between the antialiasing filters and the decimation
factor. In turn, the synthesis or interpolation stage has the same drawback. In
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n hierarchical filter bank structure it might become an issue to be monitored
carefully. Indeed, Cohen and Daubechies (1993) reported that the extension of
wavelet packets to the biorthogonal case might generate an unstable decomposition
duo to the frequency-domain spreads of basis functions. Quantizing and encoding
these decimated subband signals can cause more degradation than would be the
i ase for an almost linear-phase response paraunitary solution. Therefore, one
needs to be aware of the potential problem in applications. It is possible to use
different filters at different levels of a subband tree as a solution for this concern
(Tazebav and Akansu, 1994). Cohen and Sere (1996) independently suggested the
same solution for handling possible instabilities of nonstationary wavelet packets.

It should also be noted that the biorthogonal filter bank is a critically sampled
solution in the modified Laplacian pyramid of Section 3.4.6.

6.5 Discussions and Conclusion

In this chapter, we established the link between the two-band paraunitary PR-
QMF filter bank and the wavelet transform. The former provides an FIR transfer
function Ho(6J'w) whose infinite iterated product can be made to converge to a
wavelet or mother function. Additionally, with proper initialization, the dyadic
tree subband structure provides a vehicle for the fast computation of the coeffi-
cients in a wavelet expansion — hence a fast wavelet transform.

We also saw that discrete orthonormal wavelet filters are simply the filters of
a paraunitary two-band QMF bank with a zero-mean condition on the high-pass
filter. This constraint is a desirable feature in any signal decomposition technique
since a "DC" component can be represented using only one basis function. In
wavelet terminology this implies a degree of regularity. However, it should be noted
that wavelet filters with maximum regularity, while mathematically appealing,
do not have any established special properties for signal processing applications.
Furthermore, it should be emphasized that the wavelet transform is defined on a
continuous variable and can therefore serve as a transform tool for analog signals.
As indicated previously, wavelet expansions for such signals can be done with the
discrete time dyadic subband tree structure, but only if properly initialized.
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Chapter 7

Applications

7.1 Introduction

Transform-domain processing of signals has been successfully used for several
decades in many engineering fields spanning the application areas from commu-
nications to oil exploration. The most popular block transform has been the
discrete Fourier transform (DFT), which found a variety of applications due to its
performance and low cost of implementation, i.e., fast Fourier transform (FFT).
More recently, the discrete cosine transform (DCT) has become the industry stan-
dard for still frame image and video compression applications, e.g., JPEG, H.261,
H.263, and MPEG compression algorithms. The subband transform with its mul-
tiresolution feature has also been forwarded as an alternative to the DCT for low
bit rate image and video coding. In addition to these conventional applications
of transform-domain signal processing, there has been a rapidly growing activity
in newr application areas like spread spectrum communication, discrete multitone
(DMT) modulation, low probability of intercept (LPI) communication, radar sig-
nal processing, biomedical signal processing, and many others. Our intent in this
chapter is to demonstrate how the fundamental concepts of linear transforms can
lead to meaningful applications in representable areas as subband coding, interfer-
ence excision in spread spectrum communications, discrete multitone modulation,
and orthogonal code division multiple access (CDMA) user codes. We stress the
concepts, not the details, which are adequately discussed in the literature (Akansu
and Smith, 1996; Akansu and Medley, 1999).

It is now well understood by engineers that the block, subband, and wavelet
transforms are subsets of the general linear transform family. Each one of these
members has certain types of time- and frequency-domain properties which might
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be suitable for certain applications. The classical "uncertainty principle" asserts
that no function can be optimally localized in both the time- and frequency-
domains. This is the fundamental point which led to the different types of linear
transforms. For example, block transforms utilize the minimum time duration
functions in the set. This implies that the frequency selectivity of the basis func-
tions is limited. Therefore, longer duration time functions in the set are necessary
in order to obtain frequency-domain functions with good selectivity, e.g., the in-
finite duration sine function provides a brick-wall frequency function. This need
was the primary impetus for the graceful move from block to subband transforms.
On the other hand, better frequency selectivity demands a better match to the
Nyquist criterion. Hence, sampling rate conversion is needed arid it provides the
theoretical foundation for multiresolution or multirate signal processing.

The wavelet transform has been forwarded for continuous time signal pro-
cessing. There have been a flurry of wavelet papers in the literature that deal
with sampled or discrete-time signals. Following the basics of wavelet transforms
discussed in Chapter 6, it is clear that most of these studies represent an approxi-
mation of wavelet analysis. In contrast, subband or filter bank theory is complete
for discrete-time signal processing. Therefore, the applications presented next are
discrete-time in nature; block or subband transforms are utilized.

The intended application of the subband transform determines the configura-
tion to be used, as in the following:

(a) Analysis/synthesis subband transform configuration
(b) Synthesis/analysis subband transform configuration (transmultiplexer)
(c) Analysis or synthesis only subband transform configurations
We present these transform configurations and their applications in the follow-

ing sections. The philosophy and justifications behind these application areas are
discussed in detail. Since the block transform is a subset of subband transform or
filter bank, we use the subband transform as the describing example in the sequel.

7.2 Analysis/Synthesis Configuration

Figure 7.1 displays an equal-bandwidth, single-level, maximally decimated M-
band FIR QMF. analysis/synthesis subband transform or filter bank configura-
tion. The analysis/synthesis filter bank was extensively treated in Chapter 3.
It was shown in the earlier chapters that the forward/inverse block transform
structure is a special case of analysis/synthesis filter bank configuration wrhere
the time duration of the analysis and synthesis filters is equal to the number of
functions in the transform basis. Therefore, the block transform is the minimum
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Figure 7.1: An equal-bandwidth, single-level, maximally decimated M-baud sub-
band transform analysis/synthesis configuration.

possible time-duration subset of a general M-band, equal-bandwidth, single-level
analysis/synthesis subband transform configuration.

The following points are raised from Fig. 7.1, which might be of practical
significance in some application areas.

7.2.1 Selection of Analysis and Synthesis Filters

The theory and design methodologies of subband transforms were discussed in
detail in Chapters 3 and 4. respectively. The theoretical significance of the analysis
and synthesis functions, in order to compensate the effects of down- and up-
samplers, was presented. It was emphasized in Chapter 4 that there are available
degrees of freedom in the design of analysis and synthesis functions which can
be utilized for optimization purposes. The optimization methodologies discussed
earlier basically aim to shape the time- and frequency-domain features of the
functions in the set.

It was also shown that the analysis, Hk(z), and synthesis, Gk(z), filters need
not have identical magnitude functions in frequency. Solutions of this nature are
called biorthogonal subband transforms in the literature.

It was shown in Chapter 3 that there cannot be any linear-phase, two-band
orthonormal QMF solution. On the other hand, it is possible to design linear-
phase M-band filter banks for M > 2. Therefore, hierarchical M-band filter
banks utilizing two-band PR-QMFs will have nonlinear-phase response product
filters. One should carefully monitor the norilinearities of the phase responses if
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the application at hand is phase-sensitive. Another approach might be the use of a
two-band biorthogonal filter bank as the generating cell of a hierarchical Af-band
filter bank. The critical issue in this linear-phase solution case is the unequal
bandwidth of the low and high-pass filters. Since both of these filters are used
with rate 2 down-and upsamplers, they must be equally binded by the Nyquist
criterion. Therefore, in the case of a biorthogonal two-band filter bank, one should
design the linear phase low- and high-pass filters with almost equal band widths.
It was reported by some researchers in the literature that the biorthogonal two-
band filter bank based hierarchical subband transform performs better than the
two-band PR-QMF based case for image and video coding (Bradley, Brislawn, and
Hopper, 1993).

It will be seen later that the selection is driven by application-specific consid-
erations. For example, the brick-wall-shaped ideal filter functions will be desirable
if the application requires a frequency domain selective or localized signal process-
ing. In contrast, the spread spectrum PR-QMF codes for code division multiple
access (CDMA) communication, which will be introduced in Section 7.3.2, are
jointly spread in both time- and frequency-domains. Therefore, the very high
level of aliasing among the functions is desired for that class of applications. On
the other hand, the time-domain autocorrelation and crosscorrelation of the basis
functions are minimized.

The design of PR-QMF banks has degrees of freedom. Therefore, the engineer-
ing art is to find the best possible analysis and synthesis functions from among
infinitely many available solutions based on the measures of interest for a given
application.

7.2.2 Spectral Effects of Down- and Up-samplers

It was shown in Chapter 3 that a decimation operator consists of a filtering op-
eration followed by a down-sampler of proper rate. Similarly, an interpolation
operator is an up-sampler followed by the interpolation filter. The rate of the up-
sampler and the bandwidth of the interpolation filter should be in match according
to the Nyquist criterion.

The aliasing and imaging effects of down- and up-sarnpler operators, respec-
tively, are almost inevitable in real-world applications where finite duration anal-
ysis and synthesis functions are used. Therefore, the negative spectral effects of
down- and up-samplers should be carefully monitored if the application is sensi-
tive to it. As an example, it was found that these operators degrade the system
performance drastically in a transform-domain interference excision scheme used
in a direct sequence spread spectrum (DSSS) communication system as discussed
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in Section 7.2,2. The rate converters, down- and up-samplers, are omitted and
oversampled PR-QMF banks were used successfully in that application (Taze-
bay and Akansu, 1995). In contrast, the down- and up-samplers are critical for
image and video processing applications presented in Section 7.2.1 where iimiti-
rate/nmltiresolution property is a desirable feature.

7.2.3 Tree Structuring Algorithms for Hierarchical
Subband Transforms

Since one of the early applications of subband transforms has been image and
video coding, hierarchical filter banks with an inherent multiresolution property
have been widely used in the literature. A subband tree consists of repetitive use
of two- and three-band generic PR-QMF banks. Such a tree is appealing because
of its design and implementation efficiencies although it is a more constrained
solution compared with a single stage filter bank.

The fundamental issue in a hierarchical subband transform is how to define
the most proper subband tree for given input signal and processing tasks (Akansu
and Liu, 1991). Some authors have referred to these subband transform trees as
wavelet packets (Coifman and Wickerhauser, 1992). More recently, it was shown
that improved product functions in a tree structure can be designed by optimizing
the constituent two- and three-band filter banks at different nodes of a subband
tree in order to optimize the product functions of hierarchical decomposition.
This approach is called "progressive optimality of subband trees" and the reader
is referred to Tazebay and Akansu (1994) and Cohen and Sere (1996) for further
discussions.

A subband tree structuring algorithm (TSA) based on energy compaction was
proposed first in Akansu and Liu (1991) and successfully used for transform do-
main interference excision in a direct sequence spread spectrum communications
system. TSA, by utilizing the energy compaction measure discussed in Chapter
2, can effectively track the spectral variations of the input signal. This in turn
suggests the most proper subband tree structure needed to achieve the desired
spectral decomposition. The use of TSA for interference excision in DSSS Commu-
nications is discussed later in Section 7.2.2. Similarly, TSA has also been utilized
for the selection of basis functions (orthogonal carriers) in a synthesis/analysis fil-
ter bank configuration (orthogonal transmultiplexer) for a given communications
channel. A discrete multitone (DMT) modulation scheme is discussed in Section
7.3.1. Interested readers are referred to the references for the details of subband
tree structuring algorithms.
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Two distinct application areas of analysis/synthesis subbarid transform con-
figuration are presented in the following sections:

(1) Subband coding
(2) Interference excision in direct sequence spread spectrum (DSSS) commu-

nications

7.2.4 Subband Coding

Introduction

Multirate properties of filterbanks make them attractive signal processing tools
for image and video processing and for coding applications where multiresolution
representation is natural. Therefore, subband transforms have found popular ap-
plications in subband image and video coding.

The first principle of source coding is to minimize redundancy of the infor-
mation source. The redundancy of the source is directly related to the shape of
its spectral density function. Figure 7.2 displays the spectral density function
of a LENA image where the energy is concentrated in the low-frequency compo-
nents. Rate-distortion theory shows that a desirable source encoder decomposes
the source into its uneven spectral energy bands, and codes them independently.
Hence, the unevenness of the spectrum is the deciding factor for the efficiency of
the subband coder along with the subband transform basis utilized to decompose
the signal into its spectral bands. Note that any spectrum of flat shape needs no
subband decomposition and will be encoded in signal domain.

Recall that block transforms (i.e., DCT) are merely a special class of subband
transforms. Their poor frequency selectivity in low bit rate image and video coding
generates blockiness artifacts that are perceptually unpleasant. Historically, this
was another practical concern that generated significant research around subband
image coding as an alternative technique to DCT coding. The longer duration
of basis functions of the subband transform can reduce the blockiness artifacts at
low bit rates. On the other hand, very long duration subband filters cause ringing
effects that are undesirable as well. Therefore, midrange filter durations are used
in subband image coding. In contrast, subband audio coding applications require
a good spectral selectivity and utilize longer filters for that purpose. In the next
section a one-dimensional subband codec will be used as an example to discuss
details of the application.
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Figure 7.2: Spectral density function of LENA image.

One-Dimensional Subband Codec

Figure 7.3 displays the block diagram of a one-dimensional subband encoder/de-
coder or codec. The input signal x(n) goes through a spectral decomposition via
an analysis filter bank. The subbands of the analysis filter bank should be prop-
erly designed to match the shape of the input spectrum. This is a very important
point that significantly affects performance of the system. Compression bits are
then allocated to the subband signals based on their spectral energies. These al-
located bits are used by quantizers. An entropy encoder follows the quantizers to
remove any remaining redundancy. The compressed bit stream {6j} is transmit-
ted through a communication channel or stored in a storage medium. We assume
an ideal channel or storage medium in this example. Similarly, entropy decod-
ing, inverse quantization, and synthesis filtering operations are performed at the
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receiver in order to obtain the decompressed signal x(ri). In reality, a communi-
cations channel introduces some bit errors during transmissions that degrade the
quality of the synthesized signal at the decoder (receiver).

Figure 7.3: The block diagram of a subband codec.

The blocks in the subband codec system (Fig. 7.3) are briefly described as
follows:

Analysis Filterbank Hierarchical filter banks are used in most coding ap-
plications. The subband tree structure which defines the spectral decomposition
of the input signal should match input spectrum. Additionally, several tirne-
and frequency-domain tools were introduced in Chapter 4 for optimal filter bank
design. The implementation issues along with the points made here will yield
practical solutions.

Quantization Lossy compression techniques require an efficient entropy re-
duction scheme. A quantizer is basically a bit compressor. It reduces the bit rate
and introduces irreversable quantization noise. Hence, it is called lossy compres-
sion.
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Entropy Encoder The quantizer generates an output with some redundancy.
Any entropy encoder, such as the Huffmann coder, exploits this redundancy. Note
that the entropy encoder encodes the source in a lossless fashion that is perfectly
reversible. The output bit stream of the entropy encoder is compressed and ready
for transmission or storage.

Channel or Storage Medium The capacity of a communications channel or
storage medium at a given bit error rate is the defining factor. The encoder aims
to achieve the necessary compression rate in order to fit the original source data
into the available channel or storage capacity. Note that wireline (e.g., telephone
lines) and wireless (e.g., cell phones) channels have different physical media and
engineering properties that are handled accordingly.

Similarly, entropy decoders, inverse quantizers, and synthesis filter banks per-
form inverse operations at the receiver or decoder.

Subbarid Image Codec

The multiresolution or scaleability feature for visual signals is a desirable one
that generated significant research and development on subband image coding.
Scaleability allows the transmitted bit stream to be decoded in different spatial
resolutions for different transmission channel properties or application require-
ments. Digital image/video libraries, on-demaiid image/video retrieval over the
Internet, and real-time video conferencing are three examples that naturally ben-
efit from a scaleable bit stream.

Figure 7.4: (a) Original input LENA image; (b) L and H subbands (Horizontal);
(c) LL, LH, HL and HH decomposed subband images.

Separable 2D subband decomposition basically employs ID filter bank opera-
tions back-to-back, in both horizontal and vertical dimensions. Figure 7.4 displays
images of a single-stage (four band) subband image encoder that first decomposes
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an input image into four image subband signals; XLL(TI),
%HH(ri)' The available bit budget for quantization (entropy reduction) purposes
is distributed among these subband images based on their energies. The quantized
subband images go through an entropy encoder like a Huffmann coder, and four
bit streams, namely {&LL}, {&£,//}> {&//L}? {bnn} are obtained. Note that all these
bit streams are required at the decoder in order to reconstruct the compressed ver-
sion of" the original image. On the other hand, only the {&LL} bit stream is needed
if one desires to reconstruct only a quarter-size version of the compressed image
at the receiver. Hence, the compressed bit stream is scaleable.

A practical subband image encoder repeatedly uses a four-band (single stage)
analysis filter bank cell for further spatial resolutions and improved compression
efficiency. In most cases, the low-pass band goes through additional decomposi-
tions since significant image energy resides in that region of spectrum.

The purpose of this section is to connect subband theory with subband coding
applications. We provided only broad discussions of fundamental issues in this
application area, without the rigor which is beyond the scope of this book.

The literature is full of excellent books, book chapters, and technical papers
on subband image and video coding. The reader is referred to Nosratinia et al.
(1999); Girod, Hartung, and Horn (1996); Clarke (1995); and Woods (1991) for
further studies,

7.2.5 Interference Excision in Direct Sequence Spread Spectrum
Communications

Direct Sequence Spread Spectrum Communications

Spread spectrum modulation techniques generate a transmission signal with
a bandwidth that is much wider than the original information bandwidth. In a
direct sequence spread spectrum (DSSS) communications system, the spreading
of the information bits is performed by their modulation with a pseudo-noise
(PN) sequence before transmission. At the receiver, the received spread spectrum
signal is "despreaded" by correlating it with a local replica of the PN code. The
correlation operation spreads the narrow band interference over the bandwidth
of the PN signal, while the desired information component of the received signal
shrinks to its original bandwidth (Ziemer and Peterson, 1985).

The DSSS transmitter, shown in Fig. 7.5, spreads the spectrum of incoming
data bit stream db, where d^ € —1,1 for all b. by multiplying them individually
with the length L spreading binary PN code c; ci € — 1,1 for i = 1, 2, .... L. During
the transmission, the channel adds white Gaussian noise (AWGN) term ??& and
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Figure 7.5: Block diagram of a direct sequence spread spectrum communications
system.

other undesired interferences jb (e.g., jamming signal). Therefore, the received
signal can be expressed as

The transmitted signal power \fP can be assumed to be unity. The data bit
stream d^ has a time duration of T^ seconds per bit. The PN spreading code has a
chipping rate of Tc seconds per chip where T^ ^> Tc. Hence, the length of the PN
code is expressed as L — ̂  chips per code. The received DSSS signal has a flat
and wide spectrum in case of no interference signal jb and no interference exciser.
The receiver correlates the receiver signal with a properly synchronized version
of the spreading PN code c where CCT = X^=i cf = L. Therefore, the decision
variable at the detector is expressed as

T

Equation (7.2) shows that the spreading operation emphasizes the desired com-
ponent of received signal while spreading the interference. The receiver makes a
binary decision as to whether +1 or —1 was sent depending on the value of the
decision variable, £ <> 0. The DSSS receiver fails to operate whenever the in-
terference signal power is greater than the jamming margin of the system. The
interference immunity of a DSSS receiver can be further improved by excising the
interference component jb of the received signal rb.

Interference Excision Techniques in DSSS Communications

It has been shown in the literature that the performance of a conventional
DSSS receiver can be substantially improved by eliminating the interference com-
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ponent of the received signal in Eq. (7.1) prior to the correlation as displayed
in Fig. 7.5. Previous work in this area primarily involved classes of interference
excision schemes which are summarized in this section (Saulnier et al., 1996),

The first class is the parametric modeling and estimation of the interference
by means of a linear prediction filter (Ketchum and Proakis, 1982). Since the
PN code and white Gaussian noise of the channel have relatively flat spectra, they
cannot be properly predicted from their past values. However, the narrow-band or
band-pass interference can be accurately predicted. The stationary and narrow-
band assumptions of interference are crucial to the performance of this parametric
excision technique. Otherwise, the system performance degrades drastically.

The second class is the transform-domain excisers. The discrete Fourier (DFT)
has been the most popular transform-domain signal processing method used for
narrow-band interference excision (Davidovici and Kanterakis, 1989). The DFT.
however, suffers from its fixed frequency resolution and poor side-lobe attenuation.
More recently, fixed subband transforms with an improved frequencj^ localization
and side-lobe attenuation were forwarded for transform-domain interference exci-
sion (Jones arid Jones, 1992). The latest contribution in this arena is the time-
frequency adaptive block transform excisers described in Chapter 5.

The shortcomings of fixed block and subband transform based excisers are
threefold:
(i) They can only handle narrow-band interference
(ii) They have fixed time-frequency resolution
(iii) They have a high level of interband spectral leakage
Narrow-band interference falling into one of the transform bins or subbarids can be
efficiently suppressed. However, the spectral variations of the interference between
transform bins or subbands cause a dynamic contamination in the desired signal.
In order to suppress this kind of interference, more transform bins have to be
removed, resulting in an additional loss of the desired signal spectrum which causes
a performance degradation of the DSSS communications system.

The last two of the three points raised above can be overcome by using the
tree structuring algorithm (TSA) discussed in the previous section. For a given
input spectrum, TSA recommends the best subband tree, regular or irregular tree
(equal or unequal bandwidth subbands), consisting of two-band and/or three-band
(equal bandwidth) prototype filter bank cells. The TSA considers both two-band
and three-band PR-QMF banks in order to handle the transition band frequency
regions around w = Tr/3, ?r/2, or 2?r/3 which might be of practical significance.

The TSA algorithm analyzes the spectra at each node of the tree with the as-
sumption of ideal filters, and either justifies further decomposition or prunes the
tree. A subband node is further decomposed if the energy compaction measure
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at that node exceeds a predefined threshold. Therefore, the best subband tree for
the given input spectrum is generated in order to localize the interference. The
bins that contain the interference are nullified before the synthesis stage. Hence,
the excised version of the received signal is reconstructed and fed to the correlator.
Figure 7.6 depicts the flexible spectral resolution achieved in a seven-band unequal
bandwidth subband tree. The decision thresholds set in TSA yield the mini mum
number of functions in the set with the best possible desired frequency selectiv-
ity. In real-world applications, the ideal filters are replaced with finite duration
functions.

Figure 7.6: Bit error rate curves for frequency localized narrow band Gaussian
jammer case (center frequency = Tr/2 rad, SIR — -20 dB).

A smart time-frequency exciser (STFE) was devised to answer all of the three
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points just raised. The STFE first examines the time-domain features of the re-
ceived signal in order to decide on the domain of excision. If the interference is
time localized, a simple time-domain exciser naturally outperforms any transform-
domain excision technique. For the case of frequency localized interference, STFE
utilizes the TSA discussed earlier. TSA changes the recommended subband tree
structure whenever the input spectrum varies. Therefore, the spectral decom-
position (subband transform) tracks the variations of the input spectrum. The
implementation details and superior performance of STFE over the conventional
excision techniques are found in Tazebay and Akansu (1995). The bit error rate
(BER) performance of STFE along with the other excision techniques are dis-
played in Fig. 7.7 . The robustness of STFE performance is clearly observed from
Fig. 7.8. The references Tazebay (1996) and Medley (1995) are excellent for the
theoretical and implementation issues of the excision techniques discussed in this
section.

Figure 7.7: Adaptive filter bank structure for single tone jammer case (tone fre-
quency = 1.92 rad, SIR = -20 dB, and SNR = -5 dB).
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Figure 7.8: Bit error rate curves of STFE for different frequency tone jammers
(SIR = -20 dB, uJi = 0.5236 rad, u;2 = 1.765 rad, and u;3 - 1.92 rad.

7.3 Synthesis/Analysis Configuration

The transmultiplexer has been a very useful spectral processing tool for allocating
available channel resources among its multiple users in a communications scenario.
Figure 7.9 displays a synthesis/analysis filter bank configuration which serves as
an M-barid transmultiplexer. The duality between filter banks and multiplexers
was discussed in Section 3.8. The most popular version of transmultiplexers is of
frequency division multiplexing (FDM) type. In this case, the available channel
spectrum is divided into nonoverlapping subspectra and each subspectrum is as-
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Figure 7.9: M-band transmultiplexer structure (critically sampled synthe-
sis/analysis filter bank configuration).

signed to a specific user. The synthesis filters Gi(z] must have good frequency
selectivity in order to achieve FDM. Similarly, the analysis filters at the receiver,
Hi(z), must also have good frequency responses. Therefore, the synthesis/analysis
filter bank configuration functions as a time division multiplexing TDM-to-FDM
(synthesis) and then FDM-to-TDM (analysis) converters. Figure 7.10 displays
signal spectra at the different points of an M-band transmultiplexer (Fig. 7.9).
There are two important points drawn from Fig. 7.10:

(a) Spectral effects of up- and down-samplers that were treated in Chapter 3;
(b) Significance of synthesis and analysis filters, {Gi(z}} and {Hi(z}}, respec-

tively, on the type of multiplexing. For example, bandlimited ideal filters are used
in Fig. 7.9 in order to achieve TDM-to-FDM conversion for channel utilization.
As discussed later in Section 7.3.2, spectrally spread {Gi(z}} and {Hi(z}} filters
(code) provide a transmultiplexer configuration for spread spectrum code division
multiple access (CDMA) communications. In this case, filter functions are not
frequency selective. They are spread spectrum user codes.

In a real world the filter functions {Gi(z}} and {Hi(z}} are not ideal brick-wall
shaped. Then spectral leakage from one subchannel to another, or cross-talk, is of
major concern. Therefore, cross-talk cancellation has become a critical measure
in the design of multiplexers. It is a mature subject and there are many excellent
references in the literature on transmultiplexers (IEEE Trans. Communications,
May 1978 and July 1982 special issues; Koilpillai, Nguyen, and Vaidyanathan.
1991).

The analysis of synthesis/analysis filter bank configuration is given in Sec-
tion 3.8. It is shown that the design problem of an orthogonal transmultiplexer is
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Figure 7.10: Spectra at different points of an M-band transmultiplexer.

a special case of PR-QMF design with certain delay properties. Interested readers
are referred to Section 3.8 for detailed treatment of this topic.

There are several popular single and multiuser communications applications
that utilize orthogonal transmultiplexers. Some of these applications are presented
in the following sections.

7.3.1 Discrete Multitone Modulation for Digital
Communications

Discrete multitone (DMT) or orthogonal frequency division multiplexing
(OFDM) is a class of frequency division digital modulation. This concept of mul-
ticarrier modulation dates back to the mid-1960s (Chang, 1966; Saltzberg, 1967;
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Figure 7.11: Basic structure of a DMT modulation based digital communications
system.

Weinstein arid Ebert, 1971; Peled arid Ruiz, 1980). However, it received more
attention recently for digital audio broadcasting (DAB) and asymmetric digital
subscriber line (ADSL) communication applications. The synthesis/analysis filter
bank configuration discussed in the previous section is used for DMT modulation.
Since it is of FDM type, the synthesis and analysis filter functions, {Gi(z}} arid
{Hi(z}} in Fig. 7.9, should be frequency selective and cross-talk-free. Figure 7.11
displays the basic structure of a DMT modulation based digital communications
system.

It is seen that Fig. 7.11 is similar to the synthesis/analysis filter bank configu-
ration of Fig. 7.9 with the exceptions of channel c(n) and additive white Gaussian
noise (AWGN) introduced by the channel between the synthesis and analysis sec-
tions. Therefore, the orthogonality properties of the complete system is destroyed
due to the non-ideal channel properties in a real-world application. The irnper-
fectness of the channel is compensated by an equalizer in order to improve the
communications performance.

The subsymbols {xi} in Fig. 7.11 that are applied to the orthogonal modulat-
ing functions {gi(n}} are usually complex for quadrature amplitude modulation
(QAM) schemes and real for the pulse amplitude modulation (PAM) case. These
subsymbols are formed by grouping blocks of incoming bits in the constellation
step. The parsing of the incoming bits to the subsymbols is controlled by the spec-
tral properties of the channel c(n) (channel power levels). Since the transmitted
signal y(ri) is the composite of M independent subchannels or carriers, each of the
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orthogonal subchannels will carry more bits of information. This discussion leads
to the concept of optimal bit allocation among the subchannels (orthogonal car-
riers) from the incoming bit stream. This is fundamental in a DMT based system
used for ADSL communications. The basics of such a system are introduced in
the following section.

Orthogonal Transforms in ADSL and HDSL Communications

DMT or OFDM based digital communication systems have been proposed as
a standard for high-speed digital subscriber line (HDSL) and asymmetric digital
subscriber line (ADSL) data transmission applications over twisted-pair cable of
plain old telephone service (POTS) that will not affect existing telephone service.
The distance of the communications link (1.5 to 5 miles) and its data transmission
speed are Inversely related. The DFT- based DMT communication system has be-
come a reference model recommended by American National Standards Institute
(ANSI)'s T1E1.4 Working Group for ADSL data transmission. This standard sets
the guidelines for an expanded use of existing copper communication lines. The
ADSL communications standard is designed to operate on two-wire twisted metal-
lic cable pairs with mixed gauges. The same technology can also be utilized for
high-speed communications over coaxial cable TV channels. The recommended
standard handles downstream bit rates of 1.536 to 6.144 Mbits/sec. In contrast,
it can provide an upstream channel capacity of 16 to 640 kbits/sec. Therefore, it
is called asymmetric communications system (ADSL). The examples of potential
ADSL services and applications include movies and music on demand, high-speed
Internet access, interactive TV, distant class rooms, video conferencing, telecom-
muting, teleniedicine, and many others. Interested readers are referred to Draft
American National Standard for Telecommunications. T1E1.4 (95-007R2) for the
details of the ADSL standard.

The fundamentals of a DMT based ADSL system (Fig. 7.11) with transform
techniques are summarized in the following.

a. Subchannels and Optimal Bits/Subsymbol (Coefficient) It is as-
sumed that the communications channel virtually consists of subchannels. There-
fore, each subchannel will be assumed as an independent transmission medium
implying its own noise properties. Since a composite signal generated by contribu-
tions of subchannels is transmitted through a physical channel, the orthogonalities
of these subchannels are of critical importance.

For that reason, an orthogonal function set is used to represent subchannels. It
is seen from Fig. 7.11 that an inverse transform (synthesis operation) is performed
on defined transform coefficients Xi (subsymbols or subband signals) to generate
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the composite signal y(n). This signal is put through the channel c(n).
It is noted that the channel spectrum varies as a function of frequency. There-

fore, each subchannel has its own spectral properties (channel noise, attenuation,
etc.). It implies an optimal bit allocation procedure among subchannels that re-
sults in a uniform bit error rate over all channels. An excellent treatment of this
topic is found in Kalet (1996) and Bingham (1990).

The current technology described in Draft American National Standard for
Telecommunications. T1E1.4 (95-007R2) uses DFT of size 512 (256 subbands).
There have been other studies reported in the literature that use equal or un-
equal bandwidth orthogonal carriers with frequency responses better than DFT
(Tzannes et al., 1993; Benyassine and Akansu, 1995).

b. Effects of Nonideal Channel on Orthogonalities of Carriers Because
of the imperfectness of the channel's frequency response and additive channel noise
(AWGN), the orthogonality properties of the carriers are lost. This is going to
cause a severe intersymbol interference (ISI) problem that degrades the system
performance significantly. For the ideal case, the channel impulse response will
be equal to the Kronecker delta function, c(n) — 6(n), where the channel output
will be equal to its input y(n) in Fig. 7.11. Therefore, orthogonality properties
of subchannel carriers are maintained in the absence of channel noise N(n). The
subsymbols will be obtained at the receiver after a forward transform operation
on the received signal r(n).

The cyclic prefix method is successfully used in case of DFT-based DMT sys-
tems to overcome this problem (Peled and Ruiz, 1980). If one uses a better
frequency-selective subband basis instead of DFT, the orthogonal carriers will
have longer time durations. Hence, ISI distortion becomes more dominant with
the benefit of reduced interchannel interference (ICI). The optimal basis selection
and equalization problems for DMT communications have been investigated by
some researchers (Lin and Akansu, 1996; de Courville et al., 1996).

Digital Audio Broadcasting (DAB)
One of the earlier applications of DMT (OFDM) modulation is in digital audio
broadcasting (DAB). The DAB channel for mobile receivers has a hostile transmis-
sion environment with multipaths, interference, and impulsive noise. The impulse
response of such a communications channel is over several microseconds. There-
fore, high-speed data transmission over DAB channel is not a trivial problem.

A DMT-based DAB system basically splits the available transmission band into
many subchannels. More subchannels imply longer duration orthogonal carriers
with narrower bandwidths. This helps to reduce the severe ISI problem inherent
in a typical DAB channel with long impulse response. A receiver would only like
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to receive a single radio channel (program), while the available orthogonal rarrit rs
(subchannels) are distributed among multiple radio transmitters. The subchannel
allocators in a multiple radio transmission scenario are visualized in Fig. 7.12.

Figure 7.12: Allocation of orthogonal carriers among multiple radio stations.

In this example, each of four radio stations is utilizing four uniformly located
subchannels within the available total channel spectrum. Therefore, this applica-
tion utilizes a DMT structure given in Fig. 7.11 for multiple incoming bit streams.
For the scenario of Fig. 7.12, there are four simultaneously transmitting radio
stations where each uses three uniformly spaced orthogonal carriers.

The receiver has the ability to pick one of four radio transmissions at a time.
It picks a set of subchannels in order to decode the desired radio transmission,
e.g., /ii,/i2,/i3 for radio stations i — 1,2,3 in Fig. 7.12. Similar to the DMT-
based ADSL technology, the current DAB systems also utilize DFT basis as its
orthogonal carriers. Duhamel arid de Courville (1999) present a nice discussion on
DMT-based DAB technology and its trade-offs from a communications systems
engineering point of view. It is reported that although DMT-based modulation
overcomes the multipath problem in DAB to mobile receivers, it does not by any
means handle the fading problem. Therefore, a channel coding scheme is of a
critical importance in a real DAB system (Alard and Lasalle, 1987; Akansu et al..
1998).

7.3.2 Spread Spectrum PR-QMF Codes for CDMA
Communications

In the previous section we said that an orthogonal transmultiplexer (synthe-
sis/analysis filter bank configuration) has been successfully utilized for FDM-based
multiuser communications. Each user is assigned to a branch of the orthogonal
transmultiplexer displayed in Fig. 7.9 with the corresponding subspectrum of the
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total channel spectrum (see Fig. 7.10). Therefore, a user can only use an allocated
subchannel exclusively at any time. This naturally limits the maximum available
transmission rate to any user.

The synthesis/analysis filter bank structure (Fig. 7.9) provides a useful theo-
retical basis for an orthogonal transrnultiplexer. It serves as a common communi-
cations configuration for all possible popular multiuser techniques such as FDMA,
TDMA, and CDMA. The core component of these various multiuser communi-
cations types is the synthesis and analysis filter functions, {(ji(n}} and {hi(n}}.
respectively, used in a synthesis/analysis filter bank. Basically, the time-frequency
properties of these basis functions or user codes define the type of multiuser com-
munications system, e.g., TDMA, FDMA, or CDMA.

Recent advances in wireless and mobile radio communications suggest CDMA
as a potential alternative to the existing TDMA-based systems. All users of a
CDMA communications system are equally entitled to use any time and frequency
slots. This implies that all the user codes are spread both in the time and fre-
quency domains. Therefore, CDMA is advantageous when compared with the
conventional multiplexing techniques such as TDMA and FDMA, which localize
in either the time- or frequency-domain, respectively. The desired user codes of an
orthogonal transrnultiplexer for spread spectrum CDMA communications should
jointly satisfy the following time-frequency conditions:

(a) The orthogonal user codes cannot be unit sample functions in the time-
domain. This condition prevents CDMA from becoming a TDMA communications
scheme

(b) The orthogonal user codes should be all-pass like spread spectrum functions
with minimized inter- and intracode correlations. This condition ensures that the
communications scheme cannot become an FDMA type.

The current spread spectrum CDMA technology uses Walsh functions (Chap-
ter 2) as the user codes for the communication path from the base station to
the mobile user terminal. For the path from user terminal to the base station,
it utilizes long duration (1024 samples or more) Gold codes (Gold, 1967). In the
first case, the multiuser receives the incoming signal synchronously. Therefore, the
orthogonality of the user codes is sufficient for this case (e.g., Walsh codes). The
inter- arid intracode correlations of user codes are critical factors in the perfor-
mance of the second case (mobile user terminal to base station), which is called an
asynchronous communications system. We extend the subband transform theory
and optimal basis design methodologies covered in the previous chapters in the
following section for spread spectrum CDMA communication applications.
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Optimal Design Criteria

The optimal designs of PR-QMFs based on different measures were treated in
Section 4.8. Similarly, an optimal design methodology for spread spectrum PR-
QMF user codes is presented in this section for the two-band (two-user) case. In
addition to the PR-QMF constraints

the following correlation and time-frequency properties of the user codes are in-
cluded as metrics in the objective function to be optimized (Akansu, Tazebay, and
Haddad, 1997; Akansu and Tazebay, 1996):

(a) Minimization of the inter- and intracode correlations

where h\(n) — ( — l)nho(n).
(b) Spreading the PR-QMF user codes in both frequency and time domains

as evenly as possible. This measure is critical for PR-QMF user codes in spread
spectrum CDMA communications. This feature contrasts with the fundamental
property of the conventional PR-QMFs which approximate the ideal brick-wall
frequency responses in order to overcome the aliasing problem (meeting Nyquist
requirements in multirate processing). The frequency selectivity of conventional
PR-QMFs (FDMA) is diminished with this consideration and they become or-
thogonal spread spectrum user codes of the desired CDMA type.

As described in Chapter 5, the time spread of a discrete-time function (/io(n)}
is defined as

The energy, E, and the time center,n, of the function {ho(n}} are
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w

Similarly, its frequency spread is defined as

where HQ(e^w) = Enho(n)e~jwn and

Therefore, we can now set the objective function for the optimization as

subject to the PR constraint ]Tn ho(n)ho(n + 2fc) — <$(&)> and where -Roo(^) and
Roi(k) were defined in Eqs. (7.3) and (7.4), respectively.

Figure 7.13 displays the spectra of a possible 32-length spread spectrum PR-
QMF code for the two-user case for a = (3 — 0 and 7 = T] = I in Eq. (7.10) along
with a 31-length Gold code. This figure demonstrates the significant difference
of the spread spectrum PR-QMF codes from the conventional PR-QMF filters.
The inter- and intracode correlations of these sample codes are also displayed in
Figures 7.14 and 7.15, respectively.

These figures show that the correlation and frequency properties of the spread
spectrum PR-QMF code outperforms the comparable duration Gold code case.
The parameters a,/?,7,77 of Eq. (7.10) can be changed in order to emphasize the
corresponding metrics of the objective function.

The bit error rate (BER) performance of a two-user CDMA system for the
asynchronous communications scenarios is displayed in Fig. 7.16.

BPSK modulation arid antipodal signaling for CDMA are used in these simula-
tions. The channel noise is assumed to be additive white Gaussian (AWGN). The
signal to multiuser interference power ratio (SIR) of 0 dB is simulated in Fig. 7.16
(asynchronous case). These performance simulations show that spread spectrum
PR-QMF user codes outperform Gold codes under the same test conditions. They
imply the theoretical potentials of using PR-QMFs for CDMA communications.
Note that the coefficients of these codes are multiple valued while Gold codes have
only binary valued coefficients. Therefore, the latter ensures a constant power
transmitter in contrast to the first, which naturally requires power variations.

More studies are needed in order to assess the merits of spread spectrum PR-
QMF codes in a real-world communications application.
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Figure 7.13: Frequency spectra of 32-length M-ary spread spectrum PR-QMF and
31-length Gold codes.

Figure 7.14: Autocorrelation functions of spread spectrum 32-length PR-QMF
arid 31-length Gold codes.
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Figure 7.15: Crosscorrelation functions of spread spectrum 32-length PR-QMF
and 31-length Gold codes.

Figure 7.16: BER performance of two-user asynchronous CDMA system for dif-
ferent user code types with SIR ~ 0 dB.
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Appendix A

Resolution of the Identity and
Inversion

Theorem:
Let

Then

(i)

where

and
(li)

Proof of (i) (Eq. A.2)
From Fourier transform theory, we know that
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But, from Eq. (5.16), #0&(O) - ^(atye^1.
Therefore.

Similarly, we can obtain an expression Wg(a,b) of the same form as (A.6) for a
function g(t), or

Substituting (A.6) and (A.7) into (A.2),

Interchanging the order of integration,

The integral over b can be shown to be (Papoulis, 1977)

Substituting (A.9) into (A.8), and integrating over Q gives

Again, an interchange in order of integration and a change of variable x — afi
gives
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Proof of (ii), the inversion formula (A.4):
Let I ( t ) represent the right-hand side of (A.4). Substituting (A.I) into (A.4)

The proof is complete if K(t, T] = C^6(t — T).
Using the Fourier transforms of ipab(') m (A.12) gives

Following the tactic used previously, we integrate first with respect to b and
obtain the impulse 27r£(O — 0') as in (A.9). This leaves us with

This separates into
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Appendix B

Orthonormality in Frequency

A set of functions </>(., —n) form an orthonormal family if and only if their Fourier
transforms satisfy

K

Proof: Since {<p(t — n);n e Z} is an orthonormal family, then they should
satisfy

Then we can expand the f ( i ) in orthogonal family as

This relation in Fourier domain becomes

By defining 2?r periodic function

this relation becomes

Therefore, from the Parseval relation
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FVom Eq. (B.2) we have

Therefore, <^>(t) must satisfy



Appendix C

Problems

Chapter 2

(2,1) Reference Eq. (2.24). Show that eT/ — 0 is a necessary and sufficient
condition for minimizing the least square error J, where

(2.2) Show that the Cauchy-Schwarz inequality, Eq. (2.25), becomes an equal-
ity if y(k] = ax(k).

(2.3) Derive the extended Parseval theorem, Eq. (2.26), starting with

(2.4) Use Eq. (2.16) to show that (infinite support) sequences (/>r(n) are or-
thonormal, where
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(2.5) Derive Eq. (2.39),

(2.6) Show that

(2.7) Derive Eq. (2.92). Show that it can also be expressed as

and erf is the variance of coefficient 0^.

(2.8) Derive Eqs. (2.93) and (2.94).

(2.9) Let x = Q(x) represent the output of a quantizer Q with input x, and let
x = (x — x) be the resulting quantization error. Show that the mean square error
J — E{\x\2} is minimized when Q is chosen such that E{x} — 0, and E{xx} — 0,
i.e., when the mean of x is zero, and the quantized output is orthogonal to the

where
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error.

(2.10) Show that the DCT basis functions in Eq. (2.119) are orthonormal.

(2.11) Show that the Binomial sequence xr(k) of Eq. (2.134) satisfies the
two-term recurrence relation of Eq. (2.138).

(2.12) Prove that the discrete Hermite polynomials of Eq. (2.140) are orthog-
onal with respect to the weight function indicated.

(2.13) Show that Eqs. (2.143) arid (2.145) imply X2 = 2NI as stated in
Eq. (2.141).

(2.14) Derive Eq. (2.150) from Eq. (2.152).

(2.15) (a) Show that $r(z) m Eq. (2.153) can be written as

where Gr(z) is the all-pass function

(b) By contour integration show that the all-pass sequences {gr(n}} are orthogonal
on [0,oo) with respect to a weight function, i.e.,

(c) With

show that

is minimized by selecting
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[This last demonstration is not trivial.]

(2.16) Consider the 4 x 4 Hadamard matrix

[a) Show that premultiplication of H^ by

puts the rows in Walsh sequency order.
(b) Let hr(n) represent the rth row, or basis sequence of H = SH&. Sketch
hr(n), Hr(e^}\ for 0 < r < 3 and comment on symmetry, mirror-image property;
compare with sketches for the 8 x 8 Walsh transform in Fig. 2.7.

(2.17) Sketch the basis functions for the 4 x 4 Haar transform. Evaluate and
sketch the magnitude of the respective Fourier transforms.

(2.18) Derive Eq. (2.183) from Eqs. (2.182) and (2.173).

(2.19) Calculate the 6 x 6 KLT block transform basis for an AR(l') source
with p = 0.95. Compare this with the 6 x 6 DCT.

(2.20) Derive Eq. (2.219).
(2.21) Refer to Eqs. (2.119) and (2.121). Derive the matrix S in Section 2.3.1

arid use this to show that the eigenvectors of Q are independent of a.
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Chapter 3

(3.1) Given
x(n) = Xnu(n).

(a) Let y(ri) be a down-sampling of x(n) as defined by Eq. (3.2) and Fig. 3.1, for
M = 3. Evaluate X ( z ) , Y(z) and show the pole-zero plots. Evaluate and sketch
JC(e:;u;)|, and jy(ej'u;)| after normalizing the DC gain to unity.
(b) Let y(n) be an up-sampling of x(n) as defined by Eq. (3.11) and Fig 3.3 with
M = 3. Repeat (a).
(c) Let x(n) be down-sampled by M and then up-sampled by M to create a signal
y(n). Repeat (a) for M = 3.
(d) Compare pole-zero patterns and frequency responses for (a), (b), and (c),

(3.2) Repeat problem (3.1) for

(3.3) Let h(n] — Xnu(n). Evaluate the polyphase components Gk(z] defined
by Eqs. (3.14) and (3.15) for M = 3. Show pole-zero plots. Evaluate and sketch
Gfc(e>)|, Gk(e^)l for 0 < k < 2.

(3.4) Repeat problem (3.3) for

(3.5) (a) Let x(n) be filtered by h(n) and then downsampled by M = 2 to
give y(n). Show that

(b) Let x(ri) be up-sampled by M = 2 and then filtered by g(ri). Show that the
output is
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(c) Let the output of (a) be the input to (b). Show that

(d) For parts (a), (b), and (c), evaluate the corresponding Z-transforms. Are these
systems time-invariant? Why?
(e) From Y(z) in part (d), show that y(ri) can be expressed as

From this, show that

n——oo
n/O

(3.6) Let

where AQ(Z), A\(z] are all-pass networks. Show that

(3.7) Let h(n) be a half-band filter. Prove that
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(3.8) Show the equivalence of the structures given in Fig. 3.7(b).

(3.9) Show that the M-band power complementary property of Eq. (3.32) is
satisfied if H(z) is a spectral factor of an Mth band filter and conversely.

(3.10) Prove that the four-band binary tree of Fig. 3.21 is paraunitary if
(HQ,HI), (GQ,GI) constitute a two-band paraunitary PR structure.

(3.11) Show that there is no linear-phase paraunitary solution for the two-
band filter bank.

(3.12) Let

where XQ(TI), x\(ri) are the four-tap Binomial sequences of Eq. (2.139). For con-
venience let ao = I . (This denormalizes the filter.) Evaluate a,\ such that HQ(Z]
is the low-pass paraunitary filter of Eq. (3.50). There are two solutions here, a
maximum-phase arid a minimum phase. For each solution, calculate and sketch
the time and frequency responses of HQ(Z), H \ ( z ) , GQ(Z), and G\(z), and compare.

(3.13) Demonstrate that the total delay from input to output in Fig. 3.40(a)
is given by Eq. (3.101).

(3.14) Derive Eq. (3.98).

(3.15) (a) Show that an Mth band filter can be constructed by

(b) Evaluate the M polyphase components of this H(z), and demonstrate power
complementarity for the case
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(3.16) (a) Show that

Use this result to derive the ID polyphase expansion

where

(b) Consider a subsampling lattice D and associated coset vectors {k^l = 0, 1,
M - 1}. Show that

Use this result to fill in the missing steps in the derivation of Eq. (3.281).
(c) Repeat (a) with k replaced by — k.
(d) Repeat (b) with ki replaced by —/bj, and compare with Eq. (3.285).

(3.17) Consider a discrete-time system with r inputs {xi(n),i — 1,2, ...,r}
and p outputs {yj(ri),j = 1,2, ,p}. Let Y_(z) — H(z)X_(z), where X_(z), Y_(z]
are input and output vector transforms, and H(z) is the p x r transfer function
matrix. This system is lossless (Vaidyanathan, Aug. 1989) if Ex — Ey, where

Show that the system is lossless if

where H^ is the conjugate transpose of H. Then give arguments (analytic continu-
ation) demonstrating that losslessness is also satisfied by the paraunitary condition
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(3.18) A causal M x M FIR matrix transfer function H(z) of degree L is
lossless if it can be expressed as

where

with

In the text, we proved the sufficiency. Prove the necessity, i.e., the "only if part.

(3.19) (a) If H(z) is synthesized as in Prob. (3.18), show that any section
Vk(z) can be realized with a single scalar delay, and show that det{Vk(z]} — z~l.
(b) Use (a) to show that det{H(z}} = z~(N~l\ for any causal, lossless, FIR
matrix.

(3.20) Show that the two-band linear-phase requirement is

where 'Hp(z) is the polyphase matrix.

(3.21) Demonstrate the validity of Eq. (3.219).

(3.22) Starting with z^ and zP- defined by Eq. (3.252), and

show that (Viscito and Allebach, 1991)

(3.23) (a) Show that the complex exponentials in Eq. (3.256),
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are periodic in k, and n with periodicity matrices DT, and D, respectively.
(b) Show that (0(fc,n)} are orthogonal over the unit cell IM specified by D, i.e..

(3.24) Compare the sublattices associated with D\ —

. Show the sublattice associated with Da — and compare with

(3.25) Demonstrate the validity of Eqs. (3.289) and (3.291).

(3.26) Show that a 2D, FIR, M-band filter bank is paraunitary if

(3.27) Show that

is paraunitary where HO is an M x M unitary matrix, and u^ v_{ are M x 1 column
vectors with unit norm.
Hint: This is an extension of the ID result, Eq. (3.194).

3.28 (a) Show that

implies that the sequence a(k) is orthogonal to the even translates of b(k). i.e.,

(b) Define
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In Eq. (3.59), let S(z) = \Si(z) - \G\(Z)HQ(-Z)S>Z(Z), substitute the alias can-
cellation requirements of Eq. (3.60),

G0(z) = -z~lHi(-z), and GI(Z) - Z~IHQ(-Z), la into 52 of Eq. (3.58) and
show that

(c) Substitute Eq. (3.60) into T(z) of (3.61) and derive

K

(d) Finally, provide symmetry arguments for the last orthogonality

(3.29) Reference the IIR lattice filter of Section 3.7.2. Let

(a) Evaluate HQ(Z) and show that the poles are imaginary located at z — 0, ±j\/a,
±jv/6.
(b) Determine conditions on a, 6 such that -/V(z) is a mirror image polynomial.
Indicate the resulting pole-zero pattern for HQ(Z}.
(c) Evaluate a, b so that the zeros of H$(z) in part (b) are at z — —1, eJl180^30),
ej(180±60)_

(d) Sketch the resulting magnitude and phase of HQ^^}.

(3.30) Show the subsampling lattice, the coset vectors and image subbands

generated by (a) D

(3.31) Derivation of Eq. (3.222), Chap. 3.
(a) Show that the partitioned cosine modulation matrix satisfies
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(See Koilpillai and Vaidyanathan, 1992.)
(b) If H(z] is linear-phase with length 2mM, the polyphase components satisfy

(c) Calculate Hp(z)Hp(z) from Eq. (3.220). Substitute (1) and (2) into this ex-
pression. From this, derive Eq. (3.222).

(3.32) Show that the system in Figure C.I from x(n) to y(ri) is LTI.

(3.33) In Figure C.I show that Y(z) = E0(z)X(z), when EQ(z) is the Qth
component in the polyphase expansion of G(z).

(3.34) In Figure C.2, show that the transmission from x(n) to

Figure C.2

Figure C.I
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Chapter 4

(4.1) Find {9r} values in the design of the Binomial QMF for N = 3. Check
your results with Table 4.1. Which one of the possible solutions is minimum-
phase? Why? Plot their phase and magnitude responses and comment on them.

(4.2) Show that the Binomial QMF has the maximally flat magnitude square
function for N — 5. Is this function unique? [See Eq. (4.9).]

(4.3) The input signal to a 2-band, PR-QMF based filter bank is given as

x(n) = smumT

with T=0.01 sec. Employ the 4-tap Binomial PR-QMF in your filter bank. Show
that the reconstructed signal x(n) is identical to the input signal except a delay.
How much this delay differ for the minimum- and nonminimum-phase filters of
4-tap Binomial-QMF?

(4.4) How many zeros at uj = TT does the Binomial QMF of N — 7 have?
What does it mean in wavelet transform context? (See Chapter 5.)

(4.5) Find V(z) in Eq. (4.12) for N = 5.

(4.6) Calculate GTC of 4-tap Binomial QMF based 2-band subband decom-
position for AR(1) source models with the values of autocorrelation coefficient
p = 0.95 and p = 0.1. Comment on your results.

(4.7) Assume a = 0.0348642 in Eqs. (4.32) and (4.33). Obtain the correspond-
ing 6-tap PR-QMF coefficients. (Check your filter coefficients with the 6-tap most
regular wavelet filter.) Compare it with a = 0 case (Binomial QMF). Repeat
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Problem (4.6) for these two filters and interpret your results.

(4.8) Interpret the significance of wavelet regularity in the PR-QMF context.
What is the minimum degree of regularity desired in practice? Why?

(4.9) Plot /(«), B ( f ; x ) , and R(z] for 6-tap case with a ~ 0 (similar to
Fig. 4.4).

(4.10) Plot the phase and magnitude responses of 8-tap Binomial QMF and
Johnston QMF. Comment on the properties of these filters.

(4.11) What is the difference between half-band and half-bandwidth (2-band
PR-QMF) filters? Explain.

(4.12) Plot the phase and magnitude functions of LeGall-Tabatabai filters
(low- and high-pass). Are these a biorthogonal filter bank? Comment on the
properties of these filters.

(4.13) Calculate the aliasing energy component o\, Eq. (4.50), of the low-pass
filter output in Prob. (4.6) for AR(1), p — 0.95, source.

(4.14) Find the value of E8, Eq. (4.52), for 8-tap Binomial PR-QMF and
Johnston QMF. Comment on this criterion.

(4.15) Does the Smith-Barnwell PR-CQF satisfy the requirements for wavelet
filters? Why?

(4.16) Calculate Ep, Eq. (4.55), for 4, 6, and 8-tap Binomial QMF. Does Ep

decrease when N increases?

(4.17) Design a 4-tap optimal 2-band PR-QMF based on energy compaction
criterion and zero-mean high-pass filter assumption. Assume an AR(1) source
with p = 0.95. Check your result with Table 4.7.

(4.18) Plot the phase and magnitude response of the 8-tap multiplier-free PR-
QMF given in Section 4.8.4. Calculate its GTC, for two-band subband tree, and
Es, Eq. (4.52), performance for an AR(1), p = 0.95 source. Compare them with



493

the performance of 8-tap Binomial QMF.

(4.19) Calculate the band variances a\ and cr^ of the ideal 2-band PR-QMF
bank for an AR(1), p = 0.95, source, Eq. (4.70). Calculate GTC fc>r this case,

(4.20) Interpret the relations of different performance measures displayed in
Fig. 4.7. Show the relation of time vs frequency domain localizations.

(4.21) Find the energy matrix of 8x8 DCT, Eq. (4.80), for an AR(1), p = 0.95,
source.

(4.22) Consider a three level, regular, hierarchical subband tree structure.
Find the time and frequency localizations of subband niters (product filters for
levels 2 and 3) in 2-, 4-, and 8-band cases (1, 2, 3 level cases respectively). Employ
4-, 6-, and 8-tap Binomial QMFs as the basic decomposition modules for three
separate cases. Compare these with the 2 x 2 , 4 x 4 , and 8x8 DCT decomposition.
Interpret these results.

(4.23) Derive Eq. (4.83) from Eq. (4.82) and Fig. 4.12.

(4.24) Consider a linear time-invariant system with zero mean input x[n],
output y[n], each an M-vector, and impulse response matrix W[n]. Define

Show that
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Chapter 5
(5.1) (a) Derive the uncertainty principle, Eqs. (5.3) and (5.4). Hint: start

with Schwarz' inequality,

and integrate by parts to show that / = — £/2, where £ = f \f(t]\2dt is the energy
in the signal.
(b) Show that the equality holds if f(t] is Gaussian, i.e., a solution of

(5.2) Derive the Parseval energy theorem,

where F(O,r) is the windowed Fourier transform, Eq. (5.2).
(5.3) Show that the signal f(t) can be reconstructed from the windowed FT

via

(5.4) Consider the discrete windowed Fourier transform of Eqs. (5.9) and
(5.11)
(a) Is a Parseval relationship of the form

valid? Explain, using arguments about linear independence.
(b) Show that when F(m,n) of Eq. (5.9) is substituted into Eq. (5.11) the result
is /(£), for the conditions stated.

(5.5) Show that the coefficient vector OL_I that minimizes the objective function
J of Eq. (5.47) is the eigenvector of the matrix £f in Eq. (5.48).

(5.6) Derive Eq. (5.58) from Eq. (5.56) and the relationships for a Fourier
transform pair x(t) <-> X(£l).

(5.7) Prove properties expressed by Eq. (5.59).
(5.8) Derive Eqs. (5.60) and Eq. (5.61).
(5.9) Show that the P(£, 0) in Eqs. (5.62) and (5.63) satisfies the marginals.
(5.10) Calculate a2^ and of, frequency and time domain localizations, respec-

tively, of 2 x 2 DCT and Binomial QMF functions (low- and high-pass) (8-tap).
Comment on these properties.
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Chapter 6

(6.1) Show that the completeness property of a multiresolution approximation
implies that any scaling has a non-zero DC gain, i.e.,

(6.2) Show that if /IQ(^) is FIR with support on [0, N — 1], then the associated
scaling function <p(i) is compactly supported on [0, (N — l)Tb].

(6.3) Start with the 4-tap Binomial QMF-wavelet filter ho(n] of Section 4.1
and the corresponding frequency response Ho(e^). Sketch Hc^e-^/2^), for k —
0,1,2,3,4, and the partial product 1^1=0-^0(ejfuj/2fc). Use a numerical integration
routine DSP software to calculate and sketch the resulting approximate scaling
function.

(6.4) Provide all the intervening steps in going from Eq. (5.62) to Eq. (5.64).
(6.5) Let /io(n), h\(n] be analysis filter, and po(n)? 9i(n] the synthesis filter

in a two-band subband filter bank as in Fig. 3.27.
(a) Trace the signals to the output, and show that

Show that the condition for perfect reconstruction (causality not imposed) is

and show that the choice hi(n) — (~l}nho(—n + 1) leads to the orthononiality
reauirement

Show that this last condition can be expressed in the transform domain as
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(c) Evaluate c/>(n, j ) for the condition

Show that these lead to the biorthogonality requirement

(6.6) Show that Eq. (5.104) is a solution of Eq. (5.103).
(6.7) Carry out Eq. (5.112) for the simple case of N — 4, and obtain explicit

equations on /(a;) to ensure PR.
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ID Case, 76
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critical sampling, 142

Daubechies Wavelets, 430
DCT, 36, 46, 102
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DFT, 36
diamond-shaped filter, 242, 255
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energy compaction, 30
energy repacking, 22
extended block transform, 183

Fan filters, 259
Fast 2D Transforms, 101
Fast Fourier Transform(FFT), 42
Fast LOT, 93
Filter-Bank Families, 271
fixed transforms, 41
Fourier Transform, 1

generalized correlation model, 76
Goodness of Correlation Models, 80
GTC, 40, 314

Haar Transform, 70
Haar Wavelet, 413
half-band filter, 134
heterodyning, 129
Hexagonal Sampling Lattice, 251

IIR Subband Filter Banks, 211
Integer-band Sampling, 129
inter-scale coefficients, 413
interpolation, 114

2D, 240
irregular binary tree, 146

Johnston QMF, 286
JPEG, 2, 102

Karhunen-Loeve Transform(KLT), 5
KLT, 30, 34

Laplacian Pyramid, 7, 149
Lapped Orthogonal Transform(LOT),

5
lattice structure, 193
Least-squares approximation, 17
LeGall-Tabatabai Filter-Bank, 289

Linear Predictive Coding(LPC), 71
Lloyd-Max Quantizer, 38
LOT, 87

M-Band Paraunitary Lattice, 198
M-Band PR Linear Phase Filter-Bank,

203
Matrix Kronecker Product, 97
Maximally Flat Filters, 278
Maximally Flat Magnitude Square, 272
M-band, 186
M-band filter banks

2D, 245
Mirror filter, 135
Mirror Image Polynomials, 213
Modified Hermite Transform(MHT),

60
Modified Laplacian Pyramid, 152, 437
Modulated Filter Banks, 190
Modulated Lapped Transform, 192
Most Regular Wavelet Filter, 285, 306,

313
MPEG, 2, 102
Multiplier-free PR-QMF, 302
Multiresolution Pyramid, 416

NER, 314
Non-Aliasing Energy Ratio(NER), 313

Optimal PR-QMF, 292
Optimized LOT, 90
Optimum Bit Allocation, 81
Orthonormal Basis, 14
Orthonormal Wavelet Bases, 399

packing, 37
Paraunitary Filter Bank, 171
Parseval Theorem, 15, 19
Parseval theorem

2D, 26
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PCM, 37
Perfect Reconstruction(PR), 161
Performance Comparison of Block Trans-

forms, 82
Performance of LOTs, 95
Performance of PR-QMFs, 304
Phase distortion. 161
polynomial, 42
Polyphase Components, 163
Polyphase Decomposition, 123, 161,

183
2D, 246

Polyphase decomposition, 168
Polyphase Matrix, 168
Polyphase matrix, 162
Power Complementary Filter, 175, 176
Power Complementary Filters, 137,

211
power spectral density(PSD), 74
PR IIR Systems, 219
PR Requirements, 170
Princen-Bradley QMF, 292

Quadrature Mirror Filters(QMF), 136
Quadrature Modulation, 129

random field, 74
Rate-distortion Theory, 39
rectangular, 42
rectangular transform, 65
Regular Binary Tree, 141

scaling function. 400
scaling property, 402
Separability of 2D transform, 99
Shannon Wavelet, 422
signal decorrelation, 22
Singular Value Decomposition (SVD),

26
sinusoidal, 42

Smith-Barnwell PR-CQFs, 290
spectral flatness measure, 41
Subband Coding (SBC), 37
Subband Tree Structures, 141
subsampling lattice, 242
synthesis polyphase matrix, 165

tight frame, 399
Time-Domain Representation of M~

band Filter-Bank, 180
Time-Frequency Representations, 331
Toeplitz matrix, 32
Transform coding, 2
Transform Coding(TC), 37
Transform efficiency, 30
Two-Band IIR QMF, 216
Two-Band Linear Phase Lattice, 200
Two-Band Lossless lattice, 194
Two-Channel PR-QMF Bank, 137
Two-Dimensional Subband Decompo-

sition, 236

unitary matrix, 21

wavelet families, 427
wavelet parameters, 392
wavelet regularity, 427
Wavelet Transform, 391, 392
wedge-shaped subbands, 258

zonal sampling, 23
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