@ Table of Contents

Preface

1 INTRODUCTION
1.1 Pre-PC Development
1.2 8008/8080/8085
1.3 8086/8088
1.4 80186/80188
1.5 80286
1.6 Post-PC development
1.7 Exercises
1.8 Notes from the author

1.9 DEC
2 BUSSES, INTERRUPTS AND PC SYSTEMS
2.1 Busses

2.2 Interrupts

2.3 Interfacing

2.4 PC Systems

2.8 Practical PC system
2.5 Exercises

2.6 Notes from the author

3 INTERFACING STANDARDS
3.1 Introduction
3.2 PChbus
3.3 ISAbus

3.4 Other legacy busses

3.5 Comparison of different types
3.6 Exercises

3.7 Summary of interface bus types
3.8 The fall of the MCA bus

3.9 Notes from the author

4 PCI BUS
4.1 Introduction
4.2 PCI operation
4.3 Bus arbitration
4.4 Other PCI pins
4.5 Configuration address space
4.6 1/O addressing

XX

13
19
20
21
36
40
45

49
49
61
69
76
77
79
82

85
85
85
87
91
92
93
95
97
98

103
103
106
109
110
110
112

Table of contents Xi

4.7 Exercises 116
4.8 Example manufacturer and plug-and-play IDs 118
4.9 Notes from the author 119
5 MOTHERBOARD DESIGN 121
5.1 Introduction 121
5.2 TX motherboard 132
5.3 Exercises 136
5.4 Notes from the author 137
6 IDE AND MASS STORAGE 139
6.1 Introduction 139
6.2 Tracks and sectors 139
6.3 Floppy disks 140
6.4 Fixed disks 141
6.5 Drive specifications 142
6.6 Hard disk and CD-ROM interfaces 142
6.7 IDE interface 143
6.8 IDE communication 144
6.9 Optical storage 150
6.10 Magnetic tape 153
6.11 Exercises 155
6.12 Notes from the author 156
7 SCSI| 157
7.1 Introduction 157
7.2 SCSI types 157
7.3 SCSl interface 159
7.4 SCSI operation 162
7.5 SCSI pointers 164
7.6 Message system description 165
7.7 SCSI commands 167
7.8 Status 169
7.9 Exercises 171
7.10 Notes from the author 172
8 PCMCIA 173
8.1 Introduction 173
8.2 PCMCIA signals 173
8.3 PCMCIA registers 175
8.4 Exercises 179
8.5 Notes from the author 179
9 USB AND FIREWIRE 181

9.1 Introduction 181

Xii

10

11

12

13

9.2 USB

9.3 Firewire

9.4 Exercises

9.5 Notes from the author

GAMES PORT, KEYBOARD AND MOUSE

10.1 Introduction

10.2 Games port

10.3 Keyboard

10.4 Mouse and keyboard interface
10.5 Mouse

10.6 Exercises

10.7 Notes from the author

AGP

11.1 Introduction

11.2 PCland AGP

11.3 Bus transactions

11.4 Pin description

11.5 AGP master configuration
11.6 Bus commands

11.7 Addressing modes and bus operations
11.8 Register description

11.9 Exercises

11.10 Notes from the author

FIBRE CHANNEL

12.1 Introduction

12.2 Comparison

12.3 Fibre channel standards

12.4 Cables, hubs, adapters and connectors
12.5 Storage Devices and storage area networks
12.6 Networks

12.7 Exercises

12.8 Notes from the author

RS-232

13.1 Introduction

13.2 Electrical characteristics

13.3 Communications between two nodes
13.4 Programming RS-232

13.5 RS-232 programs

13.6 Exercises

13.7 Notes from the author

Computer busses

182
186
190
190

191
191
191
195
198
199
200
201

203
203
204
205
205
208
209
210
210
215
215

217
217
217
218
219
221
221
222
222

223
223
223
228
233
237
241
246

Table of contents Xiii

14 RS-422, RS-423 AND RS-485 247
14.1 Introduction 247
14.2 RS-485 (I1SO 8482) 247
14.3 Line drivers 249
14.4 RS-232/485 converter 250
14.5 EXxercises 251
14.6 Note from the author 251
15 MODEMS 253
15.1 Introduction 253
15.2 RS-232 communications 254
15.3 Modem standards 255
15.4 Modem commands 256
15.5 Modem set-ups 258
15.6 Modem indicator 260
15.7 Profile viewing 260
15.8 Test modes 261
15.9 Digital modulation 264
15.10 Typical modems 265
15.11 Fax transmission 267
15.12 Exercises 268
15.13 Notes from the author 269
16 PARALLEL PORT 271
16.1 Introduction 271
16.2 PC connections 271
16.3 Data handshaking 272
16.4 1/O addressing 275
16.5 Interrupt-driven parallel port 279
16.6 Exercises 284
16.7 Notes from the author 287
17 ENHANCED PARALLEL PORT 289
17.1 Introduction 289
17.2 Compatibility mode 289
17.3 Nibble mode 290
17.4 Byte mode 293
175 EPP 294
17.6 ECP 296
17.7 Exercises 300
17.8 Note from the author 300
18 MODBUS 301
18.1 Modbus protocol 301

18.2 Function codes 307

Xiv

19

20

21

22

23

18.3
18.4
18.5

Modbus diagnostics
Exercises
Notes from the author

FIELDBUS

19.1
19.2
19.3
194
195

Introduction

Fieldbus types
FOUNDATION Fieldbus
Exercises

Notes from the author

WORLDFIP

20.1
20.2
20.3
204
20.5

Introduction

Physical layer

Data link layer
Exercises

Notes from the author

CAN BUS

211
21.2
21.3
21.4
215
21.6
21.7
21.8
21.9

Introduction

CAN physical

CAN bus basics
Message transfer
Fault confinement

Bit timing

CAN open

Exercises

Notes from the author

IEEE-488, VME AND VXI

22.1
22.2
22.3
22.4
225
22.6

Introduction
IEEE-488 bus

VME bus

VXI bus

Exercises

Notes from the author

TCP/IP

23.1
23.2
23.3
234
235
23.6
23.7

Introduction

TCP/IP gateways and hosts
Function of the IP protocol
Internet datagram

ICMP

TCP/IP internets

Domain name system

Computer busses

309
311
312

313
313
313
316
323
323

325
325
325
326
330
331

333
333
335
336
337
340
341
342
342
343

345
345
345
348
349
352
353

355
355
356
356
357
359
362
366

Table of contents

24

25

26

23.8 Internet naming structure
23.9 Domain name server
23.10 Bootp protocol

23.11 Example network

23.12 ARP

23.13 IP multicasting

23.14 Exercises

23.15 Notes from the author
23.16 Additional material

TCP AND UDP

24.1 Introduction

24.2 Transmission control protocol
24.3 UDP

24.4 TCP specification

24.5 TCB parameters

24.6 Connection states

24.7 Opening and closing a connection
24.8 TCP user commands

24.9 WinSock

24.10 Visual Basic socket implementation
24.11 Exercises

24.12 TCP/IP services reference

24.13 Notes from the author

NETWORKS

25.1 Introduction

25.2 Network topologies

25.3 OSI model

25.4 Routers, bridges and repeaters
25.5 Network cable types

25.6 Exercises

25.7 Notes from the author

ETHERNET
26.1 Introduction
26.2 |IEEE standards

26.3 Ethernet — media access control (MAC) layer

26.4 |EEE 802.2 and Ethernet SNAP
26.5 OSIl and the IEEE 802.3 standard
26.6 Ethernet transceivers

26.7 Ethernet types

26.8 Twisted-pair hubs

26.9 100Mbps Ethernet

26.10 Comparison of fast Ethernet other technologies

26.11 Switches and switching hubs

XV

367
368
369
371
373
373
375
377
378

385
385
385
389
390
392
392
395
397
399
408
414
416
416

419
419
421
424
426
429
431
432

435
435
436
437
439
441
442
443
445
445
450
451

XVi

27

28

Computer busses

26.12 Network interface card design 453
26.13 Gigabit Ethernet 457
26.14 Exercises 462
26.15 Ethernet crossover connections 464
26.16 Notes from the author 465
RS-232 PROGRAMMING USING VISUAL BASIC 467
27.1 Introduction 467
27.2 Properties 467
27.3 Events 473
27.4 Example program 474
27.5 Error messages 475
27.6 RS-232 polling 476
27.7 Exercises 477
INTERRUPT-DRIVEN RS-232 479
28.1 Interrupt-driven RS-232 479
28.2 DOS-based RS-232 program 479
28.3 Exercises 486
PC PROCESSORS 489
A.1 Introduction 489
A.2 8086/88 490
A.3 80386/80486 495
A.4 Pentium/Pentium Pro 501
A5 Exercises 505
VESA VL-LOCAL BUS 509
MODEM CODES 511
C.1 AT commands 511
C.2 Result codes 513
C.3 S-registers 514
REDUNDANCY CHECKING 519
D.1 Cyclic redundancy check (CRC) 519
D.2 Longitudinal/vertical redundancy checks (LRC/VRC) 523
ASCII CHARACTER CODE 525
E.1 Standard ASCII 525

E.2 Extended ASCII code 527

Table of contents XVii

F QUICK REFERENCE 529
F.1 Notes from the author 531
G ISDN 533
G.1 Introduction 533
G.2 ISDN channels 534
G.3 ISDN physical layer interfacing 535
G.4 ISDN data link layer 538
G.5 ISDN network layer 541
G.6 Speech sampling 543
G.7 Exercises 544
H MICROSOFT WINDOWS 547
H.1 Introduction 547
H.2 Windows registry 548
H.3 Device drivers 550
H.4 Configuration manager 551
H.5 Virtual machine manager (VMM) 552
H.6 Multiple file systems 555
H.7 Core system components 557
H.8 Multitasking and threading 559
H.9 Plug-and-play process 561
H.10 Windows NT architecture 561
H.11 Windows 95 and Windows 98 564
H.12 Fundamentals of Operating Systems 565
H.13 Exercises 567
HDLC 569
1.1 Introduction 569
1.2 HDLC protocol 570
1.3 Transparency 574
1.4 Flow control 574
1.5 Derivatives of HDLC 576
J EXAMPLE WINSOCK CODE FOR VISUAL BASIC
J.1 My client (myClient.frm) 579
J.2 My server (myServer.frm) 583
J.3 Choice form (ChoiceSC.frm) 586
J.4 Error panel (ErrorPanel.frm) 587
J.5 Help form (help.frm) 589

Index 501

xviii Computer busses

Preface

What is it that really determines the performance of a computer? Is it the processor? No,
not really. It is the amount of memory that it has? No, not really. Is it the speed of the
disk drives? No, not really. This is because computers can have a fast processor, and lots
of memory, and a fast disk drive, but they do not count for much if the busses that con-
nect them to each other do not operate efficiently. The performance of a computer thus
directly relates to the busses that connect it. The computer bus is thus the foundation of
the modern computer. Without them, a computer would just be a bundle of components.

Busses provide the mechanism for the orderly flow of data over the required chan-
nel. They range vastly in their specification. From busses that transmit hundreds of mil-
lions of bytes every second (such as with the PCI bus) to busses which transmit only a
few thousand bytes per second (such as with the RS-232 bus). They vary in their speci-
fication as no one bus can provide the required specification for all applications. For
example, graphics adaptors and electronic memory require high data throughputs, and
must thus be closely coupled to the processor (known as a local bus connection),
whereas modems and printers require relatively slow transfer rates, and must be coupled
to a bus which does not try and hog the processor for long periods.

The perfect bus system would use a single connector for every device that connects
to it, would be able to sense and configure whichever devices connected to it, would be
able to use any type of cable, and devices which connect to it would simply require a tap
from one connection onto the next (a daisy-chain connection). It would support high
data transfer devices, alongside low data transfer devices, but the low data transfer de-
vices would not hog the bus in favour of the high data transfer devices. It would support
real-time data (such as speech and audio) and non-real-time data (such as computer
data) in an integrated way, so that the non-real-time data would not swamp the real-time
data. This bus, of course, does not exist, or if it does exist, it will be too expensive, and
would be incompatible with all the existing busses. Thus, we have many different types
of busses, each with their own application. It is impossible to immediately change com-
puter systems every time a new application comes along. We do not immediately knock
down our house every time we want to upgrade it. This would be expensive, and we
probably would be able to sell it after we had done it. We thus try to use our existing
framework and integrate with it.

Internal busses connect the processor to its memory and its interface busses (such as
the PCI and the ISA busses). The external busses allow the connection the external de-
vices to the computer, in an orderly manner.

The book splits into five main areas, these are:

1. PC Interfaces.
* |ntroduction
® PC Interfacing.

* Interfacing Standards
2. Local busses.

* PCI/ISA.

XiX

XX Computer busses

e PCI/AGP.
* Motherboard Design
e USB.
® Games Port, Keyboard and Mouse.
® Fibre Channel.
® RS-232/RS-422/Modems.
® Parallel Port.
3. Instrumentation busses.
* Modbus.
* Fieldbus.
e WorldFIP.
* CAN bus.
e |EEE-488.
e VME/VXI.
4. Network busses.
e Ethernet.
e |SDN/HDLC.
* Protocols (TCP/IP).
5. Bus programming/protocols
e TCP/IP.
e RS-232.
e Parallel port.

Slides and backup information can be found on my WWW site at:
http://www.dcs.napier.ac.uk/~bill/books.html
Questions and any feedback that you have on the book should be sent to:
w.buchanan@napier.ac.uk or billedcs.napier.ac.uk

I have included some notes at the end of most of the chapters which are much lighter in
content than the main text. These are my own options, and, of course, should not be
taken as fact. In fact they are there for debate, and in some cases your may disagree
with some of my comments. For example, | think that the TCP and IP protocols have
done more for the freedom of speech, and world peace than all of the diplomats around
the world, put together. They have no respect for borders, they do not favour any lan-
guage, and they do not mind what the data is, and on what computer it came from. They
are truly making the world into a village.

Before | start on this book, I must reveal a little secret. My favourite bus, apart from
the Number 45 bus which takes me to work every day, is the RS-232 bus. It’s not be-
cause it is the most technological advanced bus, or that it is easy to interface. Its be-
cause | grew an excellent consultancy company by writing program for it. So, I’ve got a
soft spot for RS-232. Long may it reign.

@ Introduction

1.1 Pre-PC Development

One of the first occurrences of computer technology occurred in the USA in the 1880s. It
was due to the American Constitution demanding that a survey is undertaken every 10 years.
As the population in the USA increased, it took an increasing amount of time to produce the
statistics. By the 1880s, it looked likely that the 1880 survey would not be complete until
1890. To overcome this, Herman Hollerith (who worked for the Government) devised a ma-
chine which accepted punch cards with information on them. These cards allowed a current
to pass through a hole when there was a hole present.

Hollerith’s electromechanical machine was extremely successful and used in the 1890
and 1900 Censuses. He even founded the company that would later become International
Business Machines (IBM): CTR (Computer Tabulating Recording). Unfortunately, Hol-
lerith’s business fell into financial difficulties and was saved by a young salesman at CTR,
named Tom Watson, who recognized the potential of selling punch card-based calculating
machines to American business. He eventually took over the company Watson, and, in the
1920s, he renamed it International Business Machines Corporation (IBM). After this, elec-
tromechanical machines were speeded up and improved. Electromechnical computers would
soon lead to electronic computers, using valves.

The first electronic computers were developed, independently, in 1943; these were the
‘Harvard Mk I' and Colossus. Colossus was developed in the UK and was used to crack the
German coding system (Lorenz cipher), whereas ‘Harvard Mk I’ was developed at Harvard
University and was a general-purpose electromechanical programmable computer. These led
to the first generation of computers which used dectronic valves and used punched cards for
their main, non-volatile storage.

The world's first large electronic computer (1946), containing 19000 values was built at
the University of Pennsylvania by John Eckert during World War 1l. It was called ENIAC
(Electronic Numerical Integrator and Computer) and it ceased operation in 1957. By today’s
standards, it was a lumbering dinosaur and by the time it was dismantled it weighed over 30
tons and spread itself over 1500 square feet. Amazingly, it also consumed over 25kW of
electrical power (equivaent to the power of over 400, 60W light bulbs), but could perform
over 100000 calculations per second (which is reasonable, even by today’s standards). Un-
fortunately, it was unreliable, and would only work for a few hours, on average, before a
valve needed to be replaced. Faultfinding, though, was easier in those days, as a valve, which
was working, would not glow, and would be cold to touch.

Valves were fine and were used in many applications, such asin TV sets and radios, but
they were unreliable and consumed great amounts of electrical power, mainly to the heating
element on the cathode. By the 1940s, several scientists at the Bell Laboratories were inves-
tigating materials called semiconductors, such as silicon and germanium. These substances
only conducted electricity moderately well, but when they where doped with impurities their

2 Introduction

resistance changed. From this work, they made a crystal called a diode, which worked like a
valve, but had many advantages, including the fact that it did not require a vacuum and was
much smaller. It also worked well at room temperatures, required little electrical current and
had no warm-up time. This was the start of microelectronics.

One of the great revolutions of all time occurred on December 1948 when William
Shockley, Walter Brattain, and John Bardeen at the Bell Labs produced a transistor that
could act as atriode. It was made from a germanium crystal with a thin p-type section sand-
wiched between two n-type materials. Rather than release its details to the world, Bell
Laboratories kept its invention secret for over seven months so that they could fully under-
stand its operation. They soon applied for a patent for the transistor and, on 30 June 1948,
they finally reveaed the transistor to the world. Unfortunately, as with many other great in-
ventions, it received little public attention and even less press coverage (the New York Times
gave it 4%inches on page 46). It must be said that few men have made such a profound
change on the world, and Shockley, Brattain, and Bardeen were deservedly awarded the No-
bel Prize in 1956. To commercialize on his success, Shockley, in 1955, founded Shockley
Semiconductor. Then in 1957, eight engineers decided they could not work within Shockley
Semiconductor and formed Fairchild Semiconductors, which would become one of the most
inventive companies in Silicon Valley. Unfortunately, most of the time Fairchild Semicon-
ductors did not fully exploit its developments, and was more of an incubator for many of the
innovators in the electronics industry. Around the same time, Kenneth Olsen founded the
Digital Equipment Corporation (DEC), who would go on to become one of the key compa-
nies in the computer industry, along with IBM.

Previoudly, in 1952, GW Dummer, a radar expert from Britain’s Royal Radar Establish-
ment had presented a paper proposing that a solid block of materials could be used to con-
nect electronic components, without connecting wires. This would lay the foundation of the
integrated circuit.

Transistors were initially made from germanium, which is not a robust material and can-
not withstand high temperatures. The first company to propose the use of silicon transistors
was a geological research company named Texas Instruments (which had diversified into
transistors). Then, in May 1954, Texas Instruments started commercia production of silicon
transistors. Soon many companies were producing silicon transistors and, by 1955, the elec-
tronic valve market had peaked, while the market for transistors was rocketing. The larger
electronic valve manufacturers, such as Western Electric, CBS, Raytheon and Westinghouse
failed to adapt to the changing market and quickly lost their market share to the new transis-
tor manufacturing companies, such as Texas |nstruments, Motorola, Hughes and RCA.

In July 1958, at Texas Instruments, Jack St. Clair Kilby proposed the creation of a mono-
lithic device (an integrated circuit) on a single piece of silicon. Then, in September, he pro-
duced the first integrated circuit, containing five components on a piece of germanium that
was half an inch long and was thinner than a toothpi ck.

The following year, Fairchild Semiconductor filed for a patent for the planar process of
manufacturing transistors. This process made commercia production of transistors possible
and led to Fairchild’s introduction, in two years, of the first commercia integrated circuit.
Within a few years, transistors were small enough to make hearing aids that fitted into the
ear, and soon within pacemakers. Companies, such as Sony, started to make transistors oper-
ate over higher frequencies and within larger temperature ranges. Eventually they became so
small that many of them could be placed on a single piece of silicon. These were referred to
as microchips and they started the microelectronics industry. The first two companies who
developed the integrated circuit, were Texas Instruments and Fairchild Semiconductor. At
Fairchild Semiconductor, Robert Noyce constructed an integrated circuit with components

Computer busses 3

connected by aluminium lines on a silicon-oxide surface layer on a plane of silicon. He then
went on to lead one of the most innovate companiesin the world, the Intel Corporation.

After ENIAC, progress was fast in the computer industry and, by 1948, small electronic
computers were being produced in quantity within five years (2000 were in use), in 1961 it
was 10000, 1970 100000. IBM, at the time, had a considerable share of the computer mar-
ket. So much so that a complaint was filed against them alleging monopolistic practicesin its
computer business, in violation of the Sherman Act. By January 1954, the US District Court
made a final judgment on the complaint against IBM. For this, a ‘consent decree’ was then
signed by IBM, which placed limitations on how IBM conducts business with respect to
‘electronic data processing machines'.

In 1954, the IBM 650 was built and was considered the workhorse of the industry at the
time (which sold about 1000 machines, and used valves). In November 1956, IBM showed
how innovative they were by developing the first hard disk, the RAMAC 305. It was tower-
ing by today’s standards, with 50 two-foot diameter platters, giving a total capacity of 5SMB.
Around the same time, the Massachusetts Ingtitute of Technology produced the first transis-
torised computer: the TX-O (Transistorized Experimental computer). Seeing the potential of
the transistor, IBM quickly switched from valves to transistors and, in 1959, they produced
the first commercial transistorised computer. This was the IBM 7090/7094 series, and it
dominated the computer market for years.

Programs written on these mainframe computers were typically either machine code (us-
ing the actual binary language that the computer understood) or using one of the new com-
piled languages, such as COBOL and FORTRAN. FORTRAN was well suited to engineer-
ing and science as it is based around mathematical formulas. COBOL was more suited to
business applications. FORTRAN was developed in 1957 (typically known as FORTRAN
57) and considerably enhanced the development of computer programs, as the program could
be writing in a near-English form, rather than using a binary language. With FORTRAN, the
compiler converts the FORTRAN statements into a form that the computer can understand.
At the time, FORTRAN programs were stored on punch cards, and loaded into a punch-card
reader to be read into the computer. Each punch card had holes punched into them to repre-
sent ASCI| characters. Any changes to a program would require a new set of punch cards.

In 1959, IBM built the first commercial transistorised computer named the IBM
7090/7094 series, which dominated the computer market for many years. In 1960, in New
York, IBM went on to develop the first automatic mass-production facility for transistors. In
1963, the Digital Equipment Company (DEC) sold their first minicomputer, to Atomic En-
ergy of Canada. DEC would become the main competitor to IBM, but eventually fail as they
dismissed the growth in the personal computer market.

The second generation of computers started in 1961 when the great innovator, Fairchild
Semiconductor, released the first commercial integrated circuit. In the next two years, sig-
nificant advances were made in the interfaces to computer systems. The first was by Teletype
who produced the Model 33 keyboard and punched-tape terminal. It was a classic design and
was on many of the available systems. The other advance was by Douglas Engelbart who
received a patent for the mouse-pointing device for computers.

The production of transistors increased, and each year brought a significant decrease in
their size. Gordon Moore, in 1964, plotted the growth in the number of transistors that could
be fitted onto a single microchip, and found that the number of transistors that can be fitted
onto an integrated circuit approximately doubles every 18 months. This is now known as
Moore's law, and has been surprisingly accurate ever since. In 1964, Texas |nstruments also
received a patent for the integrated circuit.

At the time, there were only three main ways of writing computer programs. machine

4 Introduction

code, FORTRAN or COBOL. These languages were often difficult for inexperienced users
to use. So, in 1964, John Kemeny and Thomas Kurtz at Dartmouth College developed the
BASIC (Beginners All-purpose Symboalic Instruction Code) programming language. It was a
great success, athough has never been used much in ‘serious applications, until Microsoft
developed Visual BASIC, which used BASIC as a foundation language, but enhanced it with
an excellent development system. Many of the first personal computers used BASIC as a
standard programming language.

The third generation of computers started in 1965 with the use of integrated circuits
rather than discrete transistors. IBM again was innovative and created the System/360 main-
frame. In the course of history, it was atrue classic computer. Then, in 1970, IBM introduced
the System/370, which included semiconductor memories. All of the computers were very
expensive (approx. $1000000), and were the great computing workhorses of the time.
Unfortunately, they were extremely expensive to purchase and maintain. Most companies
had to lease their computer systems, as they could not afford to purchase them. As IBM
happily clung to their mainframe market, several new companies were working away to
erode their share. DEC would be the first, with their minicomputer, but it would be the PC
companies of the future who would finally overtake them. The beginning of their loss of
market share can be traced to the development of the microprocessor, and to one company:
Intel. In 1967, though, IBM again showed their leadership in the computer industry by
developing the first floppy disk. The growing electronics industry started to entice new
companies to specialize in key areas, such as International Research who applied for a patent
for amethod of constructing double-sided magnetic tape utilizing a Mumetal fail inter layer.

The beginning of the slide for IBM occurred in 1968, when Robert Noyce and Gordon
Moore left Fairchild Semiconductors and met up with Andy Grove to found Intel Corpora
tion. To raise the required finance they went to a venture capitalist named Arthur Rock. He
quickly found the required start-up finance, as Robert Noyce was well known for being the
person who first put more than one transistor of a piece of silicon.

At the same time, IBM scientist John Cocke and others completed a prototype scientific
computer called the ACS, which used some RISC (Reduced Instruction Set Computer) con-
cepts. Unfortunately, the project was cancelled because it was not compatible with the IBM’s
System/360 computers.

Several people were proposing the idea of a computer-on-a-chip, and International Re-
search Corp. were the first to develop the required architecture, modelled on an enhanced
DEC PDP-8/S concept. Wayne Pickette, at the time, proposed to Fairchild Semiconductor
that they should develop a computer-on-a-chip, but was turned down. So, he went to work
with IBM and went on to design the controller for Project Winchester, which had an en-
closed flying-head disk drive.

In the same year, Douglas C. Engelbart, of the Stanford Research Ingtitute, demonstrated
the concept of computer systems using a keyboard, a keypad, a mouse, and windows at the
Joint Computer Conference in San Francisco's Civic Center. He also demonstrated the use of
a word processor, a hypertext system, and remote collaboration. His keyboard, mouse and
windows concept has since become the standard user interface to computer systems.

In 1969, Hewlett-Packard branched into the world of digital electronics with the world's
first desktop scientific calculator: the HP 9100A. At the time, the electronics industry was
producing cheap pocket calculators, which led to the development of affordable computers,
when the Japanese company Busicom commissioned Intel to produce a set of between eight
and 12 ICs for a calculator. Then instead of designing a complete set of ICs, Ted Hoff, at
Intel, designed an integrated circuit chip that could receive instructions, and perform simple
integrated functions on data. The design became the 4004 microprocessor. Intel produced a

Computer busses 5

set of ICs, which could be programmed to perform different tasks. These were the first ever
microprocessors and soon Intel (short for Integrated Electronics) produced a general-purpose
4-bit microprocessor, named the 4004.

In April 1970, Wayne Pickette proposed to Intel that they use the computer-on-a-chip for
the Busicom project. Then, in December, Gilbert Hyatt filed a patent application entitled
‘Single Chip Integrated Circuit Computer Architecture’, the first basic patent on the micro-
processor.

The 4004, as shown in Figure 1.1, caused a revolution in the electronics industry as pre-
vious electronic systems had a fixed functionality. With this processor, the functionality
could be programmed by software. Amazingly, by today’s standards, it could only handle
four bits of data at a time (a nibble), contained 2000 transistors, had 46 instructions and al-
lowed 4KB of program code and 1KB of data. From this humble start, the PC has since
evolved using Intel microprocessors. Intel had previously been an innovative company, and
had produced the first memory device (static RAM, which uses six transistors for each bit
stored in memory), the first DRAM (dynamic memory, which uses only one transistor for
each bit stored in memory) and the first EPROM (which allows data to be downloaded to a
device, which isthen permanently stored).

In the same year, Intel announced the 1KB RAM chip, which was a significant increase
over previously produced memory chip. Around the same time, one of Intel’s major partners,
and also, as history has shown, competitors, Advanced Micro Devices (AMD) Incorporated
was founded. It was started when Jerry Sanders and
seven others left — yes, you've guessed it, Fairchild
Semiconductor. The incubator for the electronics
industry was producing many spin-off companies.

At the same time, the Xerox Corporation gathered a
team at the Palo Alto Research Center (PARC) and gave
them the objective of creating ‘the architecture of
information.” It would lead to many of the great
developments of computing, including persona
distributed computing, graphical user interfaces, the first
commercial mouse, bit-mapped displays, Ethernet,
client/server architecture, object-oriented programming,
laser printing and many of the basic protocols of the
Internet. Few research centers have ever been as
creative, and forward thinking as PARC was over those
years.

In 1971, Gary Boone, of Texas Instruments, filed a
patent application relating to a single-chip computer
and the microprocessor was released in November.

Also in the same year, Intel copied the 4004 micro- Figure 1.1 Intel 4004 die
processor to Busicom. When released the basic specifi-
cation of the 4004 was:

Databus: 4-hit

Clock speed: 108kHz

Price: $200

Speed: 60000 operations per second

Transistors: 2300

6 Introduction

Silicon: 10-micron technology, 3 4 mm?
Addressable memory: 640 bytes

Intel then developed an EPROM, which integrated into the 4004 to enhance development
cycles of microprocessor products.

Another significant event occurred when Bill Gates and Paul Allen, calling themselves
the *Lakeside Programming Group’ signed an agreement with Computer Center Corporation
to report bugs in PDP-10 software, in exchange for computer time.

Other significant effects at the time were:

Ken Thompson, at AT& T's Bell Laboratories, wrote the first version of the Unix operat-
ing system.

Gary Starkweather, at Xerox, used a laser beam aong with the standard photocopying
processor to produce alaser printer.

The National Radio Institute introduced the first computer kit, for $503.

Texas Instruments develops the first microcomputer-on-a-chip, containing over 15000
transistors.

IBM introduced the memory disk, or floppy disk, which was an 8-inch floppy plastic disk
coated with iron oxide.

Wang Laboratories introduced the Wang 1200 word processor system.

Niklaus Wirth invented the Pascal programming language. BASIC and FORTRAN had
long been known for producing unstructured programs, with lots of GOTOs and RE-
TURNS. Pascal was intended to teach good, modular programming practices, but was
quickly accepted for its clean, pseudocode-like language. Today it still survives, but has
struggled against C/C++ (mainly because of the popularity of Unix) and Java (because of
its integration with the Internet), but lives with Borland Delphi, an excellent Microsoft
Windows development system.

1.2 8008/8080/8085

In 1974, Intel was a truly innovative company, and was the first to develop an 8-bit micro-
processor. These devices could handle eight bits (abyte) of data at atime and were:

8008 (0.2MHz, 0.06 MIPS, 3500 transistors, 10-micron technology, 16 KB memory).
8080 (2MHz, 0.64MIPS, 6000 transistors, 6-micron technology, 64 KB memory).
8085 (5MHz, 0.37 MIPS, 6500 transistors, 3-micron technology, 64 KB memory).

These were much more powerful than the previous 4-bit devices and were used in many
early microcomputers and in applications such as electronic instruments and printers. The
8008 had a 14-bit address bus and could thus address up to 16 KB of memory, and the 8080
and 8085 had 16-hit address busses, giving them limit of 64KB. Table 1.1 outlines the basic
specification for the main 8-bit microprocessors. At the time, Intel’s main product area was
memory, and microprocessors seemed like a good way of increasing sales for other product
lines, especially memory.

Computer busses

Table 1.1 Popular 8-bit microprocessors

Processor Release date Computer used in Example computers
(manufacturer)
8008 April 1972 (Intel) Mark-8
8080 April 1974 (Intel) Sol-20
MITS Altair 8800
IMSAI 8080
8085 March 1976 (Intel)
Z80 July 1976 (Zilog) Radio Shack TRS-80 . TRS-80 microcomputer, 4KB RAM, 4KB
Z80A Exidy Sorcerer ROM, keyboard, black-and-white video
Sinclair ZX81 display, and tape cassette, $600, Aug.
Osborne 1 1977.
Xerox 820 . ZX81 (1KB), $200, March 1981. ZX81
DEC Rainbow 100 (2KB), $200. March 1981.
Sord M5/ M23P . Osborne 1, 5-inch display, 64KB RAM,
Sharp X1 keyboard, keypad, modem, and two 5.25-
Sony SMC-70 inch 100K B disk drives, $17, April 1981.
6502/ June 1976 (MOS Franklin Ace 1000 . Atari 400/800, 8K B, $550/1000, Oct 1979.
6502A Technologies) Atari 400/800 PET 2001,4KB RAM, 14KB ROM, key-
Commodore PET board, display, and tape drive, $600.
Apple /111 . Applell, 4KB RAM, 16 KB ROM, key-
board, 8-slot motherboard, game paddles,
graphics/text interface to colour display
(first ever), and built-in BASIC, $1300,
April 1977.
. Applell Plus, 48KB, June 1979.
. Applelll, 5.25-inch floppy drive, $4500—
$8000, May 1980.
BBC Microcomputer System. 48 KB RAM,
73-key keyboard, and 16-colour graphics,
Sept 1981.
6800/ 6809 1974 (Motorola) MITS Altair 680 . TRS-80 Colour Computer, 4KB RAM,
$400.
780-1 NEC . ZX80, 1KB RAM and 4KB ROM, $200,

Feb. 1980.

Excited by the new 8-bit microprocessors, two kids from a private high school, Bill Gates
and Paul Allen, rushed out to buy the new 8008 device (Figure 1.2). This they believed
would be the beginning of the end of the large, and expensive, mainframes (such as the IBM
range) and minicomputers (such as the DEC PDP range). They bought the processors for the
high price of $360 (possibly, a joke at the expense of the IBM System/360 mainframe), but
even they could not make it support BASIC programming. Instead, they formed the Traf-O-
Data company and used the 8008 to analyse tickertape read-outs of cars passing in a street.
The company would close down in the following year (1973) after it had made $20000, but
from this enterprising start, one of the leading computer companies in the world would grow:
Microsoft (although it would initially be called Micro-soft).

8 Introduction

Intel knew that providing a processor alone

would have very little impact on the market. It
required a development system, which would
allow industrial developers an easy method of
developing hardware and software around the new
processor. Thus, Intel introduced the Intellec 4
development system.

The main competitors to the 8080 were: the
Motorola 6800, the Zilog Z80 and the MOS
Technology 6502. The Z80 had the advantage that
it could run any programs written for the 8080,
and, because it was also pin compatible, it could
be easily swapped with the 8080 processor,
without a change of socket. It also had many other
advantages over the 8080, such as direct memory
access, serial 1/0 technology, and full use of the
‘reserved’ op-codes (Intel had used only 246 out
of the 256 available op-codes). The Z80 was aso
much cheaper than the 8080 and had a 2.5MHz
clock speed. After the release of the Z80, Intel
produced a quick response: the 8085. This device
fully used al the op-codes, but it was too late to

stop the tide towards Zilog. Many personal
computers started to appear that were based on
the Z80 processor, including the Radio Shack
TRS-80, Osborne 1 and the Sinclair/Timex
ZX81. The ZX81 caused a great revolution because of

its cheapness, but unfortunately, most home users had i ! j“i

to wait for many months to receive their kit, or for ’.!

their prebuilt computer. However, as the computer Lk | —
= \"u

was so original and cost effective, users were willing
to wait for their prized system. Another great chal- -
lenger was the 6502, which was released in June 1975 w
and cost $25. This compared well with the 8080, =
which cost $150. It was used in many of the great J
persona computer systems, such as the Apple Il (Fig-
ure 1.3) and Atari 400. Figure 1.3 Apple Il computer
For the first
i time, home users
could actually build their own computer, and were avail-
able from Altair and Mistral. With the success of the
Z80, many companies were demanding to produce a
second-source supply for the Z80 processors. The
Motorola processor was also more powerful than the
8080. It was simpler in its design and only required a
single 5V supply, whereas the 8080 required three dif-
ferent power supplies.
At the end of the 1970s, IBM’s virtual monopoly on

Figure 1.2 Intel 8008 die

Figure 1.4 ZX80

Computer busses 9

computer systems started to erode from the high-powered end as DEC developed their range
of minicomputers and from the low-powered-end by companies devel oping computers based
around the newly available 8-bit microprocessors, such as the 6502 and the Z80. IBM’s main
contenders, other than DEC, were Apple and Commodore who introduced a new type of
computer — the personal computer (PC). The leading systems, at the time, were the Apple |
and the Commodore PET. These captured the interest of the home user and for the first time
individuals had access to cheap computing power. These flagship computers spawned many
others, such as the Sinclair ZX80/2X81 (Figure 1.4), the BBC microcomputer, the Sinclair
Spectrum, the Commodore Vic-20 and the classic Apple Il (all of which where based on the
6502 or Z80). Most of these computers were aimed at the lower end of the market and were
mainly used for playing games and not for business applications. IBM finally decided, with
the advice of Bill Gates, to use the 8088 for its version of the PC, and not, as they had first
thought, to use the 8080 device. Microsoft also persuaded IBM to introduce the IBM PC with
aminimum of 64KB RAM, instead of the 16 KB that IBM planned.

Also, in 1972, at XEROX PARC, Alan Kay proposed that XEROX should build a port-
able personal computer, called the Dynabook, which would be the size of an ordinary note-
book; unfortunately, the PARC management did not support it. In future years, companies
such as Toshiba and Compaq would fully exploit the idea. PARC eventually choose to de-
velop the Alto personal computer.

At the time, most people thought that personal computers would be used mainly as games
computers. One of the major innovators in this was Atari, who were founded by Nolan
Bushnell. They produced the first ever commercial game based on tennis, named Pong. By
today’s standards, Pong used simple graphics. It had just two paddle lines, which could be
moved left and right, and a square ball, which moved back and forward between the paddies.
Atari and other companies would release many other classic games, such as Space Invaders,
Asteroids and Frogger.

At the time, Texas Instruments was well advanced in microprocessor development and
introduced the TM S1000 one-chip microcomputer. It had 1KB ROM, 32 bytes of RAM with
a simple 4-hit processor. In the following year (1973), Intel filed a patent application for a
memory system for a multichip digital computer.

In 1973, the model for future computer systems occurred at Xerox’s PARC, when the
Alto workstation was demonstrated with a bit mapped screen (showing the Cookie Monster,
from Sesame Street). The following year, at Xerox, Bob Metcalfe demonstrated the Ethernet
networking technology, which was destined to become the standard local area networking
technique. It was far from perfect, as computers contended with each other for access to the
network, but it was cheap and simple, and it worked relatively well.

Also in 1973, before the widespread acceptance of PC-DOS, the future for persona com-
puter operating systems looked to be CP/M (Control Program/Monitor), which was written
by Gary Kildal of Digital Research. One of his first applications of CP/M was on the Intel
8008, and then on the Intel 8080. At the time, computers based on the 8008 started to appear,
such as the Scelbi-8H, which cost $565 and had 1KB of memory.

IBM was also innovating at the time, creating a cheap floppy disk drive. They also pro-
duced the IBM 3340 hard disk unit (a Winchester disk) which had a recording head which
sat on a cushion of air, 18 millionths of an inch above the platter. The disk was made with
four platters, each was 8-inches in diameter, giving atotal capacity of 7O0MB.

A year later (1974), at IBM, John Cocke produced a high-reliability, low-maintenance
computer called the ServiceFree. It was one of the first computers in the world to use RISC
technology and it operated at the unbelievable speed of 80MIPS. Most computers at the time
were measured in a small fraction of a MIP, and, at the time, were over 50 times faster than

10 Introduction

IBM’s fastest mainframe. The project was eventually cancelled as a competing project
named ‘ Future Systems' was consuming much of IBM’ s resources.

In the next year (1974), severa personal computers began to appear, including the MITS-
built (Micro Instrumentation and Telemetry Systems) computer based on Intel’s new 8080
device, at the cheap price of $500. It was released as the Altair 8800 microcomputer. One of
the first prototypes for the Altair computer was lost, en-route, to New York, as it was to be
reviewed and photographed for Popular Electronics. Eventually they did receive a new ver-
sion and at aselling price of $439, it received great reviews.

At PARC, the Bravo was developed for the Xerox Alto computer and demonstrated the
firss WYSIWYG (What You See Is What You Get) program for a personal computer. The
Alto computer was then released onto the market. The following year Xerox demonstrated
the Gypsy word-processing system, which was fully WY SIWYG. At Motorola, Chuck Ped-
dle and Charlie Melear developed the 6800 microprocessor, which was never really success-
ful in the personal computer market, but was used in many industrial and automotive applica-
tions.

While many of the processors at the time ran at 1MHz or, at the most, 5MHz, RCA re-
leased the RISC-based 1802 processor, which ran at 6.4 MHz. It was used on a variety of
systems, from video games to NASA space probes.

Up to 1974, most programming languages had been produced either as a teaching lan-
guage, such as Pascal or BASIC, or had been developed in the early days of computers, such
as FORTRAN and COBOL. No software language had been developed that would properly
interface with the operating system, and used both high-level commands, and supported low-
level commands (such as AND, OR and NOT bitwise operations). To overcome these prob-
lems, Brian Kernighan and Dennis Ritchie developed the C programming language. Its main
advantage was that it was supported in the Unix operating system. C has since led a charmed
existence by software developers for many proven (and unproven) reasons, and quickly took
off in a way that Pascal had failed to do. Its main advantages were stated as. being both a
high- and a low-level language, it produced small and efficient code, and that it was portable
on different systems. The main advantage was probably that it was a standard software lan-
guage that was supported on most operating systems, and the ANSI C standard helped its
adoption. For this, a program written on one computer system would compile on another
system, as long as both compilers conformed to a given standard (typically ANSI C). Pascal
always struggled because many compiler developments used non-standard additions to the
basic language, and thus Pascal programs were difficult to port from one system to another.
FORTRAN never really had this problem, asit only had a few standards, mainly FORTRAN
57 and FORTRAN 77. BASIC aso had few problems because of the lack of additional
facilities. Most BASIC programs did not port well from one system to another, as they
tended to use different methods to access the hardware. Typically, BASIC accessed the
hardware directly, whereas C has tended to use the operating system to access the hardware.
The non-direct method had many advantages over direct access. Non-direct accesses allow
for multi-access to hardware, hardware independence, time-sharing, smoother running
programs and better error control. C moved from the Unix operating system down to the
PCs, as they become more advanced. It normally requires a relatively large amount of
storage space (for all of its standardised libraries), whereas BASIC requires very little
storbyd 9@acéVicro-soft (as it was known before the hyphen was dropped) realized the poten-
tia of BASIC for the newly developed 8-bit computers and use it to produce the first pro-
gramming language for the PC. Their first product was BASIC for the Altair, and licensed it
to MITS, their first customer. The MITS, Altair 8800 was a truly innovative system and sold
for $375 and has 1KB memory (Figure 1.5). Soon Microsoft BASIC 2.0, for the Altair 8800,

Computer busses

was avallable in 4K and 8K
editions. The Altair was an instant
success, and MITS begin work on
a Motorola 6800-based system.
Even its bus become a standard:
the S-100 bus.

At Xerox, work began on the
Alto I, which would be easier to
produce, more reliable, and more
easily maintained, whereas I1BM
segmented their mainframe market
and moved down-market, with
their first briefcase-sized portable

Figure 1.5 Altair 8800

11

computer: the IBM 5100. It cost $9000, used BASIC, had 16 KB RAM, tape storage, and a
built-in 5-inch screen. Also at IBM, after the rejection of the ServiceFree computer, John
Cocke began working on the 801 project, which would develop scaleable chip designs that

could be used in small computers, as well as large ones.

In 1976, the personal computer industry started to evolve around a few companies. For

software devel opment two companies stood out:

Micr osoft. The development of BASIC on the Altair allowed Microsoft to concentrate on
the development of software (while many other companies concentrated on the cutthroat
hardware market). Its core team of Paul Allen (ex-MITS) and Bill Gates (ex-Harvard) left
their job/study to devote their efforts, full-time, to Microsoft. They even employed their
first employee: Marc McDonald. The Microsoft trademark was al so registered.

Digital Research. Microsoft's biggest competitor for PC software was Digital Research
who had copyrighted CP/M, which it hoped would become the industry-standard micro-
computer operating system. Soon CP/M was licensed to GNAT Computers and IMSAL.
But for a bad business decision at Digital Research, CP/M would have become the stan-
dard operating system for the PC, and the world may never have heard about MS-DOS.

For personal computer systems, five computers were leading the way:

Apple. Steve Wozniak and Steve Jobs completed work on the Apple I computer, and on
April Fool’'s Day, 1976, the Apple Computer Company was formed. It was initialy avail-
able in kit form and cost $666.66 (hopefully nothing to do with it being a beast to con-
struct). With the success of the Apple | computer, Steve Wozniak began working on the
Apple 11, and he soon left Hewlett-Packard to devote more time to this development.
Steve Wozniak and Steve Jobs proposed that Hewlett-Packard and Atari create a personal
computer. Both proposals were turned down.

Commodore. Things were looking very good at Commodore, as Chuck Peddle designed
the Commodore PET. To ensure a good supply of the 6502, Commodore International
bought MOS Technology.

Xerox. The innovation continued at great pace at Xerox with the Display Word Process-
ing Task Force recommending that Xerox produce an office information system, like the
Alto (the Janus project). On the negative side, Xerox management had always been
slightly suspicious about the change of business area, and rejected two proposals to mar-
ket the Alto computer as part of an advanced word processing system.

12 Introduction

Cray Resear ch. Cray Research developed one of the first supercomputers with the Cray-
1. It used vector-processing computers and was a direct attack on IBM’s traditional com-
puter market. This caused major rumbles in IBM which was seeing its market attacked
from three sides: the personal computers (which started to show potential in lower-end
applications), the minicomputer (which were cheaper and easier to use than the main-
frames) and from the supercomputers (at the upper end). Processing power became the
key factor for supercomputers, whereas connectivity was the main feature for mainframe
computers. As DEC has done, Cray concentrated on the scientific and technical areas of
high-performance computers.

Wang L aboratories. Wang emerged in the computing industry with its innovative word-
processing system which used computer technology, instead of traditional electronic
typewriters. It initially cost $30000.

MITS. After the success of the Altair 8800, MITS released the Altair 680, which was
based on the M otorola 6800 microprocessor.

And for microprocessors there were five major competitors:

Zilog. Zilog released the 2.5MHz Z80; an 8-bit microprocessor whose instruction set was
asuperset of the Intel 8080.

AMD. Intd redlized that they must create alliances with key companies, in order to in-
crease the acceptance of the 8080 processor. Thus, they signed a patent cross-license
agreement with AMD, which gave AMD the right to copy Intel’s processor microcode
and instruction codes.

MOS Technology. MOS Technology released the 1MHz 6502 microprocessor to a great
reception, and started a wave of classic computers, such as the Apple II. The 6502A
processor would increase the clock speed.

National Semiconductor. Released the SC/MP microprocessor, which used advanced
multiprocessing.

Texas Instruments. After years of innovation at Intel in producing the first 4-bit (4004)
and the first 8-bit processor (8008), it was Tl who developed the first 16-bit microproces-
sor: the TMS9900. Its first implementation was within the Tl 990 minicomputer. The
processor was extremely advanced for the time, but, unfortunately, Tl failed to provide
proper support for the processor. Its main failing was that there was no usable develop-
ment system (something that Intel and Motorola always made sure was available for their
systems).

The following year belonged to Apple, Commodore
and Radio Shack, who released the excellent Apple 1,
the Commodore PET and the TRS-80, respectively, to
an eager market. In 1977, the Apple Computer Com-
pany was incorporated, and the employees moved to
Cdlifornia. The Apple Il computer sold initially for
$1300 and used the 6502 CPU, had 4KB RAM, 16KB
ROM, a QWERTY keyboard, eight slot motherboard,
game paddles, graphics/text interface to colour display
and came with the Applesoft system (built-in BASIC
provided by Microsoft). Soon, Steve Wozniak was
working on software for afloppy disk controller.

Figure 1.6 TRS Model |

Computer busses 13

In has been shown that a killer software application, or game, is required for the wide-
spread adoption of a new computer system. This killer application occurred for the Apple Il
when Dan Bricklin developed the VisiCalc spreadsheet program. Unfortunately, for him, and
fortunately for others, such as Lotus and Microsoft, he never patented his technology. If he
had done this, he would have become a multibillionaire. Dan got the idea of the electronic
spreadsheet while he sat in a class at Harvard Business School. He designed the interface,
while his partner, Bob Frankston, wrote the code. The VisiCalc software ran on the Apple |1
computer, and had a significant effect on the sales of the computer. It has since been the fa-
ther of all other spreadsheet programs, such as Lotus 123 and Microsoft Excel (Lotus even-
tually bought the rights to VisiCalc for $800000 in 1985), and was released in 1979.

The Commodore PET 2001 was also based around the 6502 CPU, and had a simpler
specification (4KB RAM, 14KB ROM, keyboard, display, and tape drive), but it only cost
$600. In competition, and at the same price, Radio Shack developed the TRS-80 microcom-
puter. It was based around the Z80 processor and had 4KB RAM, 4KB ROM, keyboard,
black-and-white video display, and tape cassette, and sold well beyond expectations.

Microsoft expanded their market by developing Microsoft FORTRAN for CP/M-based
computers, and granted Apple Computer alicense to Microsoft’s BASIC.

1.3 8086/8088

The third generation of microprocessors began, in June 1976, with the launch of the 16-bit
processors, when Texas Instruments introduced the TMS9900. It initially used the TI 990
minicomputer. The processor never took-off as it lacked peripheral devices, and it was on
May 1978 that Intel released the 8086 microprocessor. This processor was mainly an exten-
sion to the original 8080 processor and thus retained a degree of software compatibility. Intel
first introduced the 4.77 MHz 8086 microprocessor, which had 16-bit registers, a 16-bit data
bus, and 29000 transistors, using three-micron technology. It had a 20-bit address bus and
could thus access IMB of memory. It had good performance at 0.33 MIPS and initially sold
for $360 (maybe a joke at the expense on the IBM System/360). Later speeds included
8MHz (0.66 MIPS) and 10MHz (0.75 MIPS).

IBM’s designers, after discussions with Bill Gates, realized the power of the 8086 and
used it in the original IBM PC and IBM XT (eXtended Technology). It had a 16-bit data bus
and a 20-bit address bus, and thus has a maximum addressable capacity of 1 MB, and could
handle either 8 or 16 bits of data at a time (although in a messy way). Its main competitors
were the Motorola 68000 and the Zilog Z8000.

It was important for Intel to keep compatibility with 8080. The difficulty was that the
8080 used a 16-hit address (64KB or 65,536 locations), whereas the 8086 would use a 20-bit
address bus, allowing up to 1MB of memory to be addressed. Thus, the 8086 was designed
with a segmented memory, where the memory was segmented in 64KB chunks. The 20-bit
address was then made up of a segment address, and an offset address.

In February 1979, Intel released the 8086 processor as follows:

The Intel 8086, a new microcomputer, extends the midrange 8080 family into the 16-bit
arena. The chip has attributes of both 8- and 16-bit processors. By executing the full set of
8080A/8085 8-hit instructions plus a powerful new set of 16-bit instructions, it enables a
system designer familiar with existing 8080 devices to boost performance by a factor of as
much as 10 while using essentially the same 8080 software package and development tools.

14 Introduction

The goals of the 8086 architectural design were to extend existing 8080 features symmetri-
cally, across the board, and to add processing capabilities not to be found in the 8080. The
added features include 16-bit arithmetic, signed 8- and 16-bit arithmetic (including multiply
and divide), efficient interruptible byte-string operations, and improved bit manipulation.
Sgnificantly, they also include mechanisms for such minicomputer-type operations as reen-
trant code, position-independent code, and dynamically relocatable programs. In addition,
the processor may directly address up to 1 megabyte of memory and has been designed to
support multiple-processor configurations.

The 8086 and 8088 were binary compatible with each other, but not pin compatible. Binary
compatibility means that either microprocessor could execute the same program. Pin incom-
patibility means that you cannot plug the 8086 into the 8088, and vice-versa, and expect the
chips to work. The new ‘x86’ devices implemented a CISC (Complex Instruction Set Com-
puter design methodology). At the time, many companies were promoting RISC as the fast-
ing processor technology. Intel would eventually win the CISC battle with the release of the
Pentium processor, many yearsin the future.

At the time, Intel Corporation struggled to supply enough chips to feed the hungry as-
sembly lines of the expanding PC industry. Therefore, to ensure sufficient supply to the per-
sonal computer industry, they subcontracted the fabrication rights of these chips to AMD,
Harris, Hitachi, IBM, Siemens, and possibly others. Amongst Intel and their cohorts, the
8086 line of processors ran at speeds ranging from 4MHz to 16 MHz.

The Z80 processor, which had beaten the 8080 processor in many ways, led the way for
its new 16-bit processor: the Z8000. Zilog had intended that it was to be compatible with the
previous processor. Unfortunately, the designer decided to redesign the processor, so that it
had an improved architecture, but was not compatible with the Z80. From that time on, Zilog
lost their market share, and this gives an excellent example of compatibility winning over
superior technology. The 8086 design was difficult to work with and was constrained by
compatibility, but it allowed easy migration for system designers.

IBM realized the potential of the PC and microprocessor. Unlike many of their previous
computer systems, they developed their version of the PC using standard components, such
as Intel’s 16-bit 8086 microprocessor. They released it as a business computer, which could
run word processors, spread sheets and databases and was named the IBM PC (Figure 1.7). It
has since become the parent of all the PCs ever produced. To increase the production of this
software for the PC they made information on the hardware freely available. This resulted in
many software packages being developed and helped clone manufacturers to copy the origi-
nal design. So the term ‘IBM compatible’ was born and it quickly became an industry stan-
dard by sheer market dominance.

On previous computers, IBM had written most of their programs for their systems. For
the PC they had a strict time limit, so they first went to Digital Research who was responsi-
ble for developing CP/M, which was proposed as a hew standardised operating system for
microprocessors. Unfortunately, for Digital Research, they were unable to reach a fina deal
because they could not sign a strict confidentiality agreement. They then went to a small
computer company called Microsoft. For this Bill Gates bought a program called Q-DOS
(often called the Quick and Dirty Operating System) from Seattle Computer Products. Q-
DOS was similar to CP/M, but totally incompatible. Microsoft paid less than $100000 for
the rights to the software. It was released on the PC as PC-DOS, and Microsoft released their
own version called MS-DOS, which has since become the best selling software in history,
and IBM increased the market for Intel processors, athousand times over.

Computer busses 15

To give users some choice in their operating sys-
tem, the IBM PC was initially distributed with three
operating systems: PC-DOS (provided by Microsoft),
Digital Research’'s CP/M-86 and UCSD Pasca P-
System. Microsoft understood that to make their op-
_" erating system the standard, that they must provide

IBM with a good deal. Thus, Microsoft offered IBM
the royalty-free rights to use Microsoft’s operating
system forever, for $80000. This made PC-DOS
much cheaper than the other two (such as $450 for P-
System, $175 for CP/M and $60 for PC-DOS). Mi-
crosoft was smart in that they alowed IBM to use
PC-DOS for free, but they held the control of the

Figure 1.7 IBM PC licensing of the software. This was one of the great-

est pieces of business ever conducted. Eventualy

CP/M and P-System died off, while PC-DOS become the standard operating system for the
PC.

The developed program was hardly earth shattering, but has since gone on to make bil-
lions of dollars. It was named the Disk Operating System (DOS) because of its original pur-
pose of controlling the disk drives. Compared with some of the work that was going on at
Apple and at Xerox, it was a very basic system. It had no graphical user interface and
accepted commands from the keyboard and displayed them to the monitor. These commands
were interpreted by the system to perform file management tasks, program execution and
system configuration. Its function was to run programs, copy and remove files, create direc-
tories, move within a directory structure and to list files. To most people this was their first
introduction to computing, but for many, DOS made using the computer too difficult, and it
would not be until proper graphical user interfaces, such as Windows 95, that PCs would
truly be accepted and used by the majority.

It did not take long for the computer industry to start ‘cloning’ the IBM PC. Many com-
panies tried; but most of them failed because their BIOS were not compatible with IBM PC
BIOS. Columbia, Kayro and others went by the wayside because they were not totally PC
compatible. Compaq eventualy broke though the compatibility barrier with the introduction
of the Compaq portable computer. Compag's success created the turning point that enabled
today’s modern computer industry. They produced sales of $111 million in the first year of
their operation, making it the fastest growing company in history.

In Japan, NEC bought a license on the 8086/8088. They improved the design and pro-
duced two Intel ‘clones’, called the V20 (8088-compatible) and V30 (8086-compatible). The
V-series ran approximately 20% faster than the Intel chips when running at the same clock
speed. Therefore, the V-series chips provided a cheap upgrade to owners of the IBM-PC and
other clones computers. Although these chips were pin compatible with the 8086 and 8088,
they also had some extensions to the architecture. They featured all of the ‘new’ instructions
on the 80186/80188, and also were capable of running in Z80 mode (directly running pro-
grams written for the Z80 microprocessor). Much to Intel’s embarrassment, NEC refused to
pay royalties to NEC on the sale of their processors. Intel found that it was difficult to copy-
right the actual silicon design, and have since copyrighted the microcode, which runs on the
processor. The microcode for the 8086/8088 consisted of 90 different mini-programs. How-
ever, in a courtroom, NEC showed that they had not copied these mini-programs and had
designed their own.

At this time, Intel was loosing a great deal of their memory product to Japanese compa-

16 Introduction

nies. Their focus, from now on, would be the PC-processor market. If they could always
keep one step ahead of the cloners they would have a virtual monopoly. Eventualy they
would become so powerful as a market leader that they would overcome the basic rule that
you aways need a second source of processors for new processors to be accepted in the mar-
ket. IBM had developed a system that would end up reducing their market share, and create a
quasi-monopoly at the end of the 1990s and the beginning of the millennium for Intel (with
processors and support devices) and Microsoft (for operating systems, and eventually appli-
cation software). IBM would eventualy fail in its introduction of new industry standards,
such as MXA bus technology, whereas Intel would gain acceptance of new standards, such
as the PCI bus, and Microsoft would develop new standard in operating systems, such as
Windows NT.

At the same time as Intel was developing the 8086 they were developing the 8800 proc-
essor, which would not be compatible with the 8080, and would be a great technological
break-though (as it would not have to be compatible with the older 8080 device). When the
8800 was finally released in 1981 as the iIAPX432 (Intel Advanced Processor Architecture),
it reached the market just as the IBM PC took off, and died a quick death, as everyone
wanted the lower-powered 8086 device. TheiAPX lives on asthe ‘x86’ architecture.

Apple was growing fast in 1978 and released a BASIC version of VisiCalc spreadsheet.
They also produced their first Apple Il disk drive and Disk I, which was a 5.25-inch floppy
disk drive linked to the computer by a cable ($495). At the end of 1978, Apple Computer
began work on an enhanced Apple Il with custom chips, code-named Annie, a supercom-
puter with a hit-sliced architecture, code-named Lisa, and also on Sara (the Apple I1). Atari
released the Atari 400 and 800 personal computers, which used the 6502 processor. Micro-
soft was quick to spot the potential of the 8086 processor and developed Microsoft COBOL
and Microsoft BASIC for it.

Computer systems also started to find their way into social pursuits when Atari devel oped
the Asteroids computer game and Taito developed the Space Invaders arcade game. They
were classics of their time, but hardly powerful by today’ s bit-mapped, 3D graphics.

Epson, who had had a successful market in typewriters, started to produce low-price,
high-performance dot matrix printers (the MX-80), and at the same time, Commodore re-
leased the CBM 2020 dot-matrix printer (aswell asadua 5.25-inch floppy disk drive unit).

In 1979, Xerox finally lost its foothold on the computer industry when the Alto was ad-
vertised on TV, but then the president decides to drop its development. Microsoft, on the
other hand, was going from strength to strength. Microsoft 8080 BASIC eventually broke the
one million-dollar barrier, the first microprocessor product to do this. Soon, Microsoft had
developed BASIC, and FORTRAN for the 8086. They had also released Assembler language
system for 8080/Z80 microprocessors.

Apple Computer released DOS 3.2, and the Apple Il Plus computer, which had a 48KB
memory, and cost $1195. They aso highlighted their growing strength by introduces their
first printer, the Apple Silentype ($600). At PARC, Xerox was the leader in developing a
graphical user interface with their Alto computer. As alearning process, a group of engineers
and executives from Apple were given a demonstration of the Alton, and its associated soft-
ware, in exchange for Xerox spending $1 million buying 100000 Apple Computer shares.
The investment would pay off many times over for Apple as it helped in their development
of the Apple Mac computer.

1979 produced mixed fortunes for two of Intel’s competitors: Zilog and Motorola. It was
a bad year for Zilog when it distributed its new 16-bit processor, the Z8000. It main draw-
back was its incompatibility with its 8-bit predecessor, the classic Z80. For Motorola, it was
one of success as they released the excellent 68000, 16-bit microprocessor. It used 68000

Computer busses

transistors (thus, its derived name).

Radio Shack continued development of their TRS-80 computer (Figure 1.8), with the

TRS-80 Model |1, and Texas Instruments introduced
the TI1-99/4 personal computer ($1500). Atari also
started to distribute Atari 400 (8KB memory, $550)
and Atari 800 ($1000) personal computers.

In the UK, Clive Sinclair created Sinclair Re-
search, and was distended to develop classic com-
puters, such as the ZX81 and the Sinclair Spectrum.
He had already been a magjor innovator in the 1960s
and the 1970s, with watches, audio amplifiers and
pocket calculators. In the main these were extremely
successful however, he was aso destined to develop
an electric car (Sinclair C5), which had the opposite
effect on sales as he had had with his computer sys-
tems.

A key to the acceptance, and the sales of a com-
puter was its software. This was in terms of its oper-
ating systems and its applications. Initialy it was
games that were used with the PCs, but three impor-

Figure 1.8 TRS-80 Color

tant application packages were released, these were:

Spreadsheet. The VisiCalc software was released for the Apple |l at a cost of $100. Ap-
ple Computer eventually tried to buy the company, which developed VisiCalc, for $1
million in Apple stock, but Apple's president refuses to approve the deal. Its eventual
rights would have been worth much more than this small figure.

Wordprocessor. MicroPro released the WordStar word processor (written by Rob Ba-
rnaby). It is available for Intel 8080A and Zilog Z80-based CP/M-80 systems. Apple
Computer also released AppleWriter 1.0. The following year (1980) would see the re-
lease of the popular WordPerfect (from Satellite Software International).

Database. The Vulcan database program, which become known at dBase I1.

Two new companies were created in 1979, which would become important industry leaders
in peripherals. These were Seagate Technologies (founded by Alan Shugart founded in
Scotts VaIIey, Callfornla) and Hayes Microcomputer Products who produced the 110/300-

Figure 1.9 TRS-80 Model lll

baud Micromodem I for the Apple Il ($380).

The following year (1979) saw Radio Shack
(with their TRS-80 range), Commodore (with the
PET range), Apple Computer (with their Apple
[1/111) and Microsoft at the forefront of the personal
computer market. Two new companies joined the
growing personal computer market, at different
ends of technology. At the bottom end, which
covered the games and hobby market, Sinclair Re-
search appeared, and at the top end of the market,
the workstation end, which was aimed at serious
applications, came Apollo. Clive Sinclair in the
UK had started Sinclair Research. He had already

18 Introduction

had a significant effect on the electronics industry. In the 1960s, he had developed hi-fi, am-
plifier and radio kits for hobbyists, and then in the 1970s he had further developed into calcu-
lators, multimeters and, even, pocket TVs. His main market in the 1980s would be personal
computers, and it was on price that his company would gain the most on his competitors.

The major developments of the year were:

Radio Shack. In 1980, Radio Shack followed up their success of the TRS-80, with the
TRS-80 Modéd 111 (Figure 1.9). It was based around the Zilog Z80 processor and was
priced between $700 and $2500. They aso released the TRS-80 Color Computer (Figure
1.8), which was based on the Motorola 6809E processor and had 4KB RAM. It was
priced well below the Model 111 and cost $400. Radio Shack at the time were innovating
in other areas, and produced the TRS-80 Pocket Computer, which had a 24-character dis-
play, and sold for $230.

Apple Computer. Apple Computer accelerated their development work and released the
Apple Il computer. It was based on the 2MHz 6502A microprocessor, and included a
5.25-inch floppy drive. It initially cost between $4500 and $8000. Work also began on
the Diana project, which would eventually become the Apple lle. The company was also
floated on the stock market, where 4.6 million shares were sold at $22 a share. This made
many Apple employeesinstant millionaires.

Sinclair Resear ch. Sinclair Research burst on the com-
puter market place with the ZX80 computer. It was
based on the 3.25MHz NEC Technologies 780-1 proc-
essor and came with 1KB RAM and 4KB ROM. It was
priced at a cut-down rate of $200, but it was far from
perfect. Its main drawback was its membrane type key-
board.

Intel. Along with development of the 8086 processor,

Intel released a number of support devices, including — e
the 8087math coprocessor. . ' .“‘},m-:-nvnr& 1
Microsoft. Microsoft released a Unix operating sys- !

tem, Microsoft XENIX OS, for the Intel 8086, Zilog

Z8000, Motorola M68000, and Digital Equipment Figure 1.10 Apollo DN300
PDP-11.

Hewlett-Packard. HP had developed a good market in powerful calculators, and pro-
duced a mixture of a computer and a calculator, with the HP-85. It cost $3250, had a 32-
character wide CRT display, a built-in printer, a cassette tape recorder, and a keyboard.
Commodore. Commodore Business Machines enhanced their product range with the
CBM 8032 computer, which had 32KB RAM and an 80-column monochrome display.
They aso developed a dual 5.25-inch floppy disk drive unit (the CBM 8050). In Japan,
Commodore released the VIC-1001, which would later become the VIC-20. It had 5KB
RAM, and a 22-column colour video output capability.

Apollo. Apollo burst onto the computer market with high-end workstations based on the
Motorola 68000 processor. They were aimed at the serious user, and their main applica-
tion area was in computer-aided design. One of the first to be introduced was the DN300
(Figure 1.10), which was based around the excellent Motorola 68000 processor. It had a
built-in mono monitor, an external 60MB hard disk drive, an 8-inch floppy drive, built-in
ATR (Apollo Token Ring) network card, and 1.5MB RAM. It even had its own multi-
user, networked operating system called Aegis. Unfortunately, for al its power and us-

Computer busses 19

ability, Aegis never really took off, and when the market demanded standardized operat-
ing systems, Apollo switched to Domain/IX (which was a Unix clone). It is likely that
Apollo would have captured an even larger market if they had had changed to Unix at an
earlier time, as Sun (the other large workstation manufacturer) had done. The Token Ring
network was excellent in its performance, but suffered from several problems, such as the
difficulty in tracing faults, and the difficulty in adding and deleting nodes from the ring.
Over time, Ethernet eventualy became the standard networking technology, as it was
relatively cheap and easy to maintain and install. Apollo attacked directly at the
IBM/DEC mainframe/minicomputer market, and soon developed a large market share of
the workstation market. The advantage that workstations had over mainframes is that
each workstation had its own local resources, including a graphical display, and typicaly,
windows/graphi cs-based packages. Mainframes and minicomputers tended to be based on
acentral server with a number of text terminals. Apollo were successful in developing the
workstation market and their only real competitor was Sun. Hewlett-Packard eventually
took Apollo over. However, Apollo computers, as with the classic computers, such as the
Apple Il and the Apple Macintosh, were well loved by their owners and some would say
that they were many years ahead of their time. There are many occurrences of Apollo
computers working continuously for five years, with only short breaks for Xmas holi-
days, and so on. After a skilled network manager set them up, they tended to cause few
problems. No crashes, no hardware problems, no network problems, no software incom-
patibilities. Nothing. Aegis, as Unix does, supported a networked file system, where a
global file system could be built up with local disk resources. Thus, a network of 10
workstations, each with 50MB hard disks allowed for aglobal file system of 500MB.
Seagate Technology. Seagate become a market leader for hard disk drives when they
developed a 5.25-inch Winchester disk, with four platters and a capacity of 5MB.
Philips/Sony. These companies developed the CD—-Audio standard for optical disk stor-
age of digital audio. At the same time, Sony Electronics introduced a 3.5-inch floppy disk
and drive, double-sided, double-density, which had a capacity of 875KB (but less, when
formatted).

Texas Instruments. Tl were busy adding peripherals to their TI 99/4 computer, includ-
ing athermal printer (30cpson a5’ 7 character matrix), a command module ($45), a mo-
dem, RS-232 interface ($225), a 5.25-inch mini-floppy disk drive which could store up to
90KB on each disk. The floppy disk controller cost $300, and the disk drive cost $500.
Digital Research. DR released CP/M-86 for Intel 8086- and 8088-based systems. Digital
Research could have easily become the Microsoft of the future, but for a misunderstand-
ing with IBM.

One of the few companies who developed a system around the Zilog Z8000 processor was
Onyx. The Onyx C8002 microcomputer was a powerful computer which contained 256 KB
RAM, a tape backup, a hard disk, serial ports for eight users, and the UNIX operating sys
tem. Its cost was $20000.

1.4 80186/80188

Intel continued the evolution of the 8086 and 8088 by, in 1982, introducing the 80186 and
80188. These processors featured new instructions, new fault tolerance protection, and were

20 Introduction

Intel’ sfirst of many failed attempts at the x86 chip integration game.

The new instructions and fault tolerance additions were logical evolutions of the 8086
and 8088. Intel added instructions that made programming much more convenient for low-
level (assembly language) programmers. Intel also added some fault tolerance protection.
The original 8086 and 8088 would hang when they encountered an invalid computer instruc-
tion, whereas the 80186 and 80188 added the ability to trap this condition and attempt a re-
covery method.

Intel integrated this processor with many of the peripheral chips aready employed in the
IBM PC. The 80186/80188 integrated interrupt controllers, interval timers, DMA controllers,
clock generators, and other core support logic. In many ways, the device was produced a
decade ahead of its time. Unfortunately, this device did not catch on with many hardware
manufacturers; this spelled the end of Intel’s first attempt at CPU integration. However, this
device has enjoyed a tremendous success in the world of embedded processors. If you look
on your high performance disk driver or disk controller, you might still see an 80186 being
used.

Eventually, many embedded processor vendors began manufacturing these devices as a
second source to Intel, or in clones of their own. Between the various vendors, the
80186/80188 was available in speeds ranging from 6 MHz to 40MHz.

1.5 80286

In 1982, Intel introduced the 80286. For the first time, Intel did not simultaneously introduce
an 8-bit bus version of this processor (such as the 80288). The 80286 introduced some sig-
nificant microprocessor extensions. Intel continued to extend the instruction set; more sig-
nificantly, Intel added four more address lines and a new operating mode called ‘ protected
mode’. The 8086, 8088, 80186 and 80188 all contained 20 address lines, giving these proc-
essors one megabyte of addressibility (2°° = 1MB). The 80286, with its 24 address lines,
gives 16 megabytes of addressibility (22* = 16 MB).

For the most part, the new instructions of the 80286 were introduced to support the new
protected mode. Real mode was still limited to the one megabyte program addressing of the
8086, et a. Essentialy, a program could not take advantage of the 16-megabyte address
space without using protected mode. Unfortunately, protected mode could not run real-mode
(DOS) programs. These limitations thwarted attempts to adopt the 80286 programming ex-
tensions for mainstream consumer use.

During the reign of the 80286, the first ‘chipsets were introduced. These were nothing
more than a set of devices that replaced dozens of other peripheral devices, while maintain-
ing identical functionality. Chips and Technologies became one of the first popular chipset
companies.

IBM was spurred by the huge success of the IBM PC and decided to use the 80286 in
their next generation computer, the IBM PC-AT. However, the PC-AT was not introduced
until 1985, which was three years after introduction of the 80286. IBM, it seems, were actu-
ally frightened by the thought of the 32-bit processors as they allowed PCs to challenge their
thriving minicomputer market. A new threat to the PC emerged from Apple, who used the
Motorola 68000 processor, with an excellent operating system, to produce the Apple Mac
computer. It had a full graphical user interface, which was based around windows and icon,
and had a mouse pointer to allow users to easily move around the computer system.

Computer busses 21

Like the IBM PC, the PC-AT was hugely successful for home and business use. Intel
continued to second-source the device to ensure an adequate supply of chips to the computer
industry. Intel, AMD, IBM and Harris were now producing 80286 chips as OEM products,
whereas Siemens, Fujitsu, and Kruger either cloned it, or were also second sources. Between
these various manufacturers, the 80286 was offered in speeds ranging from 6MHz to
25MHz.

Intel had had considerable trouble providing enough 8086/80186 processors, and had
created technology-sharing agreements with companies such as AMD. This aso allowed
companies to have a second source for processors, as many organizations (especialy mili-
tary-based organizations) did not trust a single-source supply for a product. In 1984, it was
estimated that Intel could only supply between one-fifth and one-third of the current demand
for the 80186 device. For the coming 80386 design, Intel decided to break the industry prac-
tice of second sourcing and go on their own.

1.6 Post-PC development

IBM dominated the computer industry in the 1950s and 1960s, and it was only in the 1970s
that their quasimonopoly started to erode but, at the time, most of their competitors feared
their power. If a competitor released a new product, they would often sit back and wait for
IBM to trump them, with a better product that had the magical IBM badge. Few companies
had the sales turnover to match IBM in research and development. This was shown to great
effect with the development of the System/360 range, which had one of the largest ever re-
search and development budgets ($5 billion). After initial development setbacks, the Sys-
tem/360 range was a great success and paid off the initial investment, many times over. IBM
sold over 50000 System/360 computersin a period of six years, and then replaced it with the
System/370 series, which was one of the first computers with memory made from integrated
circuits.

In 1981, IBM started the long slide from front-runner to also-ran, and within ten years,
their own child (the IBM PC) would match the power of their own mainframes. For example,
when the Pentium was released, in 1989, it had a processing power of 250MIPS, while the
IBM System/370 mainframe had, at the time, a processing power of 400MIPS. IBM even, in
the development of the IBM AT computer, tried to slug the power of the PC so that it would
not impinge on their lucrative mainframe market. As will be seen, IBM, after the overwhelm-
ing success of the IBM PC, made two major mistakes:

The PCjr. The PCjr quickly sank without trace, as it was not compatible with the IBM
PC. The time and money spent on the PCjr was completely wasted and gave other manu-
facturers an opportunity to clone, and improve on the original IBM PC.

Missing the portable market. IBM missed the IBM PC portable market, and when they
did realize its potential, their attempt was inferior to the market leader (Compag Com-
puters). Later, though, they would produce an excellent portable, called the ThinkPad,
but, by that time, they had lost alarge market share to companies such as Toshiba, Com-
paq and Dell.

After making these mistakes, other factors continued to affect their loss of market share.
These included:

22 Introduction

Initially missing the market for systems based on 32-bit microprocessors (80386). |IBM
missed the 32-bit processor when they developed their AT and PS/2 ranges of com-
puters, as, initialy, they used the 16-bit 80286. This had been intentional, as IBM did
not want to make their new computer too powerful, as they would start to compete with
their lucrative mainframe market.

Trying to move the market towards MCA. After IBM realized that they had lost the bat-
tle against the cloners, they developed their own architecture: MicroChannel Architec-
ture (MCA), which would force manufacturers to license the technology from them. Un-
fortunately, for IBM, Compaq took over the standard as they introduced a computer,
which used standard IBM PC architecture, but improved on it as they used the new Intel
80386 in their DeskPro range. IBM would, in time, come back into the fold and follow
therest in their architecture. From then on, IBM became a follower rather than aleader.

After loosing a large market share, IBM soon realized, after the failure of MCA, that they
had also lost the market leadership for hardware development. They then decided to try to
turn the market for operating system software, with OS/2. It was becoming obvious that the
operating system held the key to the hardware architectures, and application software. In a
perfect world, an operating system can hide the hardware from the application software, so
the hardware becomes less important. Thus, if the software runs fast enough, the hardware
can be of any type and of any architecture, allowing application programmers to write their
software for the operating system and not for the specific hardware. Whichever company
developed the standards for the operating system would hold the key to hardware architec-
ture, and also the range of other packages, such as office tools, networking applications, and
so on. 0OS/2 would eventually fail, and it would be left to one company to lead in this area:
Microsoft. Not even the mighty Intel could hold the standards, as Microsoft holds the key
link between the software and the hardware. Their operating system would eventualy de-
couple the software from the hardware. With the Microsoft Windows NT operating system,
they produced an operating system that could run on different architectures.

Unfortunately, for IBM, OS/2 was a compromised operating system, which was devel-
oped for al their computers, whether they be mainframes or low-level PCs. Unlike the de-
velopment of the PC, many of the organizational units within IBM, including the powerful
main-frame divisions, had a say about what went into OS/2 and what was left out. For the
IBM PC, the PC team at Boca Raton was given almost independence from the rest of the
organization, but the development of OS/2 was riddled with compromises, reviews and
specification changes. At the time, mainframes differed from PCs in many different ways.
One of the most noticeable ways was the way that they were booted, and the regularity of
system crashes. Most users of PCs demanded fast boot times (less than a minute, if possible),
but had no great problems when it crashes at a few times a day. These crashes were typically
due to incorrectly functioning and configured hardware, and incorrectly installed software. In
the mainframe market, an operating system performs a great deal of system checks and tries
to properly configure the hardware. This causes long boot-up times, and is not a problem
with a mainframe, which will typically run for many weeks, months, or years without requir-
ing a re-boot. However, for the PC, a boot time of anything more than a few minutesis a big
problem. In the end, OS/2 had too long a boot time, and was too slow (possibly due to its
complexity) to compete in the marketplace. In total, IBM spent over $2 hillion on OS/2 with
very littlein return. It is perhaps ironical that new versions of the Microsoft operating system
perform a great deal of system checks and try to configure the system each time it is booted.
Now, though, this can now be done in arelatively short time, as the hardware is a great deal

Computer busses 23

faster than it was when graphical user interfaces first reached the market.

Another casualty of the rise of the IBM PC was DEC. As IBM had done with the Sys-
tem/360 range, DEC invested billions of dollarsin their VAX range, which became an unbe-
lievable success. As Compag Computers would do in the 1980s, DEC achieved unbelievable
growth, going from its foundation in 1957 to a sales turnover of $8 billion in 1986 (the peak
year for DEC, before the PC destroyed the market for minicomputers).

The introduction of the PC would see the end of computer manufacturing for Osborne,
Altair, Texas Instruments and Xerox. Going in the opposite direction were the new compa-
nies such as Compag Computers, Sun Microsystems, Apollo (for a while), Cray and Micro-
soft. Compag Computers, in 1981, generated $110 million in their first year, a further two
years on it was $503.9 million, and two years after that it was $1 hillion. The following year
it was $2 hillion. From zero to $2 billion, in six years (aworld record, at the time). Microsoft
was another high-growth company going from $16 million in 1981 to $1.8 billion in 1991. In
most years, Microsoft doubled its size. Consistently Microsoft was also highly profitable
with at least 30% of sales resulting in profit, and at least 10% invested in research and de-
velopment. The next 20 years would also see the creation of many computer-related multibil-
lionaires, such as Bill Gates who, within in twenty years, would be worth almost $100 hil-
lion.

Before the introduction of the IBM PC, the biggest threats to IBM came, at the top end
from DEC and at the bottom end from Apple. Both companies could do little wrong. DEC
released their classic PDP-11, and then followed it up with the VAX range. Apple quickly
developed their range of computers, and moved from a mainly game-playing computer, to
one which could be used for game playing and also for business applications. For Apple, the
key to the move into the business environment was the introduction of VisiCalc. From the
1980s, software would become the dominant driving force, and the best hardware in the
world could not make up for alack of application software.

1981 would become a pivotal year for the development of computers. Before this year,
different computer standards thrived, and incompatibility reigned. After it, there would only
be one main standard, which would be a truly open standard, which would be driven not by
IBM, but by Intel and Microsoft.

At the time, the computer industry split itself into two main areas:

Serious/commercial computers. Mainly IBM and DEC with their range of mainframe
computers and minicomputers. Within 10 years, both IBM and DEC would change to be
different companies. IBM would end up loosing their quasi-monopoly on computers sys-
tems, and DEC would end up being taken over by Compag, who would evolve from the
new market created by IBM.

Hobby/home/game-playing computers. These computers had grown from the basic 8-
bit processors, such as the 6502 and the Z80. The main product leaders were Commo-
dore, Sinclair, Apple, Osborne, Altair, Acorn, Radio Shack and Xerox.

Few of these computers, at the time, were compatible with each other, and it was a great ad-
vantage to a manufacturer that their computers were incompatible with others, as software
written for one would not work on another. For example, the Apple Il and the Commodore
PET were based on the same processor, but had incompatible hardware, especially with the
graphics system.

It was in 1981 that IBM released, ahead of schedule, the IBM 5150 PC Persona Com-
puter. It featured the 4.77MHz Intel 8088 processor, 64KB RAM, 40KB ROM, one 5.25-

24 Introduction

inch floppy drive (160KB capacity), and PC-DOS 1.0 (Microsoft’'s MS-DOS). It cost $3000,
and could be installed with Microsoft BASIC, VisiCalc, UCSD Pascal, CP/M-86, and Easy-
writer 1.0. Another version used a CGA graphics card, which gave 640" 200 resolution with
16 colours.

At the time, many of the other computer companies were following up the success of
their previous products, and few had any great worries of the business-oriented IBM PC. The
main devel opments were:

Commodore. After its release in Japan, Commodore eventually released the VIC-20 to
an eager world market. It has a full-size 61-key keyboard, 5KB RAM (expandable to
32KB), 6502A CPU, a 22" 23 line text display, and colour graphics. It initially sold for
$299, and at its peak, it was being produced at 9000 units per day.

Sinclair. Sinclair followed up the success of the ZX80 with the ZX81, which was re-
leased for $150 (in the USA it was released as the TS1000), and was based on the Z80A
processor. Within 10 months, over 250000 were sold.

Apple. Apple was very much a market leader, and would eventually be the only real
competitor to the IBM PC. In 1981, they reintroduced the Apple 111, which was their first
with a hard disk. In 1981, Apple Computer got into a little bit of trouble over the Apple
name, as The Beatles used it for their record company (Apple Corps Limited). Eventu-
ally, Apple Computer signed an agreement allowing them to use the Apple name for their
business, but they were not allowed to market audio/video products with recording or
playback capabilities.

Osbor ne. The Osborne Computer Corporation was going from strength to strength, and if
not for the release of the IBM PC would have been a major computer manufactures. In
1981, they released the Oshorne 1 PC, which was based on the Z80A processor and in-
cluded a 5-inch display, 64KB RAM, keyboard, a keypad, modem, and two 5.25-inch
100KB disk drives. It sold for $1795, but included CP/M, BASIC, WordStar, and Super-
Calc. Sales were much great than expected, in fact they sold as many in a single month as
they expected for their total sales (up to 10000 per month).

Xerox. Xerox continued to innovate and released the Star 8010, which contained many of
the features that were used with the Alto, such as a bitmapped screen, WY SIWY G word
processor, mouse, laser printer, Smalltalk language, Ethernet, and software for combining
text and graphics in the same document. It sold for the unbelievably high price of
$16000. This price, especialy up against the IBM PC, was too great for the market, and
it quickly failed. At the same time, Xerox was planning the Xerox 820 (code named The
Worm), which would be based on the 8-bit Z80 processor, whereas the new IBM PC was
based on the 16-bit 8088. It, like the Star 8010, was doomed to fail. These were classic
cases of releasing the products at the wrong time, for the wrong price.

Acorn. In the UK, Acorn Computer released an excellent computer named the BBC Mi-
crocomputer System. It was quickly adopted for a UK TV program, which the BBC was
running to introduce microcomputers. Against the ZX81, it had an excellent specification,
such as being based on the 6502A processor, addressing up to 48KB RAM, and a 16-
color graphics display. Its great advantage, though, was that it had a real keyboard (and
not a horrible membrane keyboard, like the ZX81). The BBC TV program was a great
success in the UK, and so was the BBC Microcompulter.

Two other companies that became industry leaders, developed products in 1981. These were
Novell Data Systems and Aston-Tate. Novell created a simple networking operating system

Computer busses 25

that allowed two computers to share a single hard disk drive. Soon Novell would develop
their Novell NetWare operating system, which allowed computers to share resources over a
network. Ashton-Tate released the dBase Il package which was the standard database pack-
age for many years.

For Intel, the adoption of the 8088 in the IBM PC was a godsend, and they had great dif-
ficulties keeping up with the supply of the processor. Unlike the 8080, though, they did not
actively seek AMD for a second source for the processor. Intel had learnt that some second -
source rights caused problems when the second source company actually moved ahead of
them in their technology. Typically, second- source companies are able to charge a lower
rate, as they do not have to recoup the initial research and development investment. Intel
would eventually seek other companies, and AMD sought out Zilog for second source rights
for their up-and-coming Z8000 device. It seemed to AMD that Zilog would have greatest
potential for their new device, as they had shown with their Z80 device.

Intel was starting to realise that the processor market was a winner as it had a great deal
of intellectual effort added to it. It differed from the memory market where designs could be
easily copied by competitors. With microprocessors, they could set new standards and pro-
tect their designs with copyrights. If they established a lead in the processor market, and kept
one step ahead of the copiers, they could make a great deal of profit in releasing new prod-
ucts and producing support devices for their processors, especialy for the 8086/8088. For
this, Intel released the 8087 math coprocessor, which greatly speeded up mathematical calcu-
lations, especialy floating point ones. The use of floating point long division would eventu-
ally come back to haunt Intel, when a college tutor discovered a bug in their Pentium proces-
sor.

Intel were an innovative company, and had produced the first 4-bit and the first 8-bit
processor, but with the 16-bit market they were beaten by Texas Instruments (T1). Unfortu-
nately, for TI, the TMS 9900 was a rehash of an earlier product, and was generally under-
powered. Intel, though, had the great strength in their 8088 processor of releasing a whole
series of support devices which made it easier for designers to integrate the new processor.
Anyway, no one could have guessed the impact that the IBM PC would have on the market.
Intel was aso beaten by National Semiconductor for the first 32-bit processor (the 32000).

The year 1982 would see IBM throw open the market for computers, with the IBM PC,
and also through two great mistakes. Apart from IBM, five other companies would dominate
the year; Commodore, Sinclair, Compag, Apple and Sun. Three of them, Commodore, Apple
and Sinclair, were from the old school, and the other two, Compag and Sun Microsystems,
were from the new school, and would learn to adapt to the new ‘serious’ market in comput-
ing that the IBM PC had created. In the same year, the US Justice Department threw out an
antitrust lawsuit filed against IBM 13 years earlier. Within 15 years, it would be Microsoft
who was facing similar action.

At IBM, the PC was taking off in ways that could never have been imagined. The IBM
PC was awork of genius in which everything had been planned with perfection. It would sell
over 200000 computers within 12 months of its introduction, but the following year would
see two major mistakes by IBM. The first was the introduction of the PCjr, which was inten-
tionally incompatible with the IBM PC (because IBM did not want it to effect the IBM PC
market) and the IBM AT. The PCjr failed because of its incompatibility, whereas the AT
failed as it used a 16-bit processor (the 80286), while other computers were released using
the new Intel 32-bit processor (the 80386). IBM could have easily have overcome these
drawbacks, but, as these developments involved a much wider team than the IBM PC, they
were held back by the interests of other parties. For example, the mainframe division was
keen for the AT to use 16-bit processors, rather than the more powerful 32-bit processors, as

26 Introduction

this could further erode their market. These two decisions would open the door to the new
kid on the block — Compag.

Three former Texas Instruments managers founded Compag Computer Corporation in
1982: Rod Canion, Jim Harris, and Bill Murto. Their first product was Compaq Portable PC.
It was released in the following year (1983), and cost $3000. The Compaq Portable was to-
tally compatible with the IBM PC and used the Intel 8088 (4.77MHz), had 128KB RAM, a
9-inch monochrome monitor and had a 320KB 5.25-inch disk drive (Sony Electronicsin the
same year demonstrated the 3.5-inch microfloppy disk system). A large part of the start-up
finance was used to create a version of the ROM BIOS which was IBM compatible, but did
not violate IBM’s copyright — a stroke of genius that many failed to follow. Compag would
soon become the fastest growing company ever. Only in the computer industry could a com-
pany grow from zero to hundreds of millions of dollars within 12 months. Compaq created a
new market, which was based on IBM PC compatibility. They then waited for the great IBM
to come along and sink their product, but when IBM did produce a portable, it was too late,
too heavy, and failed to match the Compag in its specification. Compaq were not in fact the
first company to clone the IBM PC as they finally released it in 1983 — that was achieved by
Columbia Data Products, with their MPC.

Two companies who would battle against the PC for market share were Sun and Apple.
Sun Microsystems would quickly become a major computer company, and derived its name
from an acronym from the Stanford University Network. Their first product was the Sun 1
workstation computer. They, like Apple, fought the IBM in terms of architecture and operat-
ing system. Sun, aimost single-handedly, made the Unix operating system popular. Their
computers succeed in the market, not because they were compatible with any other com-
puter, but because they were technically superior to anything that the IBM PC could offer.
The software that ran on the system fully used the processing power of the processor, and the
Unix operating system provided an excellent robust and reliable operating system. Compati-
bility can often lead to a great deal of problems, especialy if the compatibility involves the
8088 processor.

At Apple, champagne corks were popping, as they became the first PC company to gen-
erate $1 billion in annual sales. The Apple Il Plus and Apple Il had sold over 750000 units.
After toying with the Lisa computer and new versions of the Apple Il, Apple would have one
more trump card up their seeve: the Apple Macintosh. Microsoft was keen to work with
Apple, in case the relationship with IBM did not work out, and signed an agreement to de-
velop applications for the forthcoming Macintosh (of which Microsoft were given an initial
prototype to work on). IBM had become dightly annoyed with the success of Microsoft,
from the success of their own creation. For Microsoft, it was a no-lose situation. They were,
in the main, sharing code across the two architectures, which would quickly become industry
standards. One would become an open standard (the IBM PC), and the other would be a
closed standard (the Apple Mac).

The year 1982 saw a fantastic growth at Intel, and the only way that they could keep up
with demand was to license their products to other silicon design companies. For this, they
signed a 10-year technology exchange agreement with Advanced Micro Devices (AMD) that
focused on the x86 microprocessor architecture. This agreement would be later regretted as
AMD started to overtake them in the 80486 market. Intel, in the same year, released an up-
date to the 8086 processor, called the 80286. The processor was destined for the IBM AT
computer and it ran initially at 6MHz, which improved on the 4.77 MHz of the 8088 proces-
sor. It had a 16-hit data bus, like the 8086, but had an extended 24-bit address bus that gave it
an addressing range of 16 MB, rather than the 1MB addressing range of the 8086/8088, or
1GB of virtual memory. It outperformed the 8086 with a throughput of 0.9 MIPS, but this

Computer busses 27

increased to 1.5 MIPS with a10MHz clock and 2.66 MIPS with a 12MHz clock.

Commodore was never slow at developing their products. After the success of the Vic-
20, in 1981, they released the Commaodore 64 in the following year. It sold for $600 and had
an excellent specification based around the new 6510 processor, and was released with
64KB RAM, 20KB ROM, sound chip (the first PC to have integrated sound), eight sprites,
16-colour graphics, and a 40-column screen. It was the first personal computer with an inte-
grated sound synthesizer chip. They then released a whole range of peripherals, such as the
VIC Modem ($110). Commodore also moved into the business market, with the BX256 and
B128 computers for $3000 and $1700, respectively. The BX256 was a 16-bit multiprocessor
computer. It included 256 KB RAM, Intel 8088 for CP/M-86, 6509 CPU, 80-column B/W
monitor, built-in dual disk drives, and three-voice sound. The B128 computer featured
128KB RAM, 40KB ROM, 6509 CPU, 5.25-inch floppy drive, three-voice sound chip, car-
tridge slot, and an 80-column green screen.

At Sinclair, the ZX81 had been an unbelievable success and, knowing that alone they
could not succeed in the USA market, they signed an agreement with the Timex Corporation
to license Sinclair computers in the USA. By the end of 1982, Sinclair Research had sold
over 500000 ZX81sin over 30 countries. Atari also become a major computer company with
the Atari 800. Its main feature was an advanced graphics display. Radio Shack also released
the powerful TRS-80 Model 16. It used a 16-bit Motorola MC68000 microprocessor, a Z80
microprocessor, had 8-inch floppy drives, and an optional 8MB hard drive. At the same time
as Compaq were releasing their portable, Radio Shack produced the TRS-80 Pocket Com-
puter; unfortunately, it was relatively dow as it used a 1.3MHz 8-hit microprocessor, with a
26-character display.

DEC aso finally decided to enter the personal computer market with the dual-processor
Rainbow 100. It had an excellent specification with both a Z80 and an 8088 microprocessor,
and could run CP/M, CP/M-86 or MS-DOS. Unfortunately, at $3000, it was too expensive
for the market, which was already hot for the IBM PC.

1983 was a mixed year for IBM. They continued their success with the released of the
IBM PC XT. It sold for $5000 and had a 10MB hard drive, three extra expansion slots, and a
serial interface. In its basic form it had 128KB RAM, and a 360KB floppy drive. With the
success of PC-DOS 1.0, IBM followed it up with PC-DOS 2.1. On the downside, IBM re-
leased the IBM PCjr, which cost $700.

The greatest winners in 1983 were the newly created Compag Computers, and Microsoft.
In their first year, Compag sold 47000 computers, with a turnover of $111 million (and
raised $67 million on their first public stock offering). They would eventually reach the $1
billion within five years of their creation.

The other winner was Microsoft who knew that they had to completely rewrite the MS-
DOS operating system, so that it coped better with current and future systems. For this they
introduced MS-DOS 2.0, which supported 10 MB hard drives, a tree-structured file system,
and 360 KB floppy disks. They had quickly released the potential of the IBM PC, and re-
leased XENIX 3.0 (a PC version of Unix), Multi-Tool Word for DOS (which would eventu-
ally become Microsoft Word 1.0), as well as producing the Microsoft mouse (which sold for
$200, with interface card and mouse). Microsoft also announced, in 1983, that it would be
developing Microsoft Windows (initially known as Interface Manager), which would even-
tually be released in 1985. At the same time as Microsoft announced Windows, IBM was
developing a program called TopView, and Digital Research was developing GEM (Graph-
ics Environment Manager). These programs would use DOS as the basic operating system,
but would allow the user to run multiple programs. The great problem with TopView was
that it was text based and not a graphical user interface (GUI, or ‘gooey’). Even allowing for

28 Introduction

this, most predicted, because of IBM’s strength, that TopView would become the standard
user interface. If IBM had won the battle for the user interface, they would have probably
taken over the standard for both the user interface and the operating system, and then eventu-
aly the standard for the architecture. IBM, though, did agree to work with Microsoft on
0S/2. Microsoft would eventually invest hundreds of millions of dollars on OS/2, with little
in return. Businesses must learn from their mistakes, and Microsoft has always done this.
The expertise gained in developing OS/2 was used in the development of Microsoft Win-
dows.

In the same year as Microsoft released their new version of MS-DOS, AT& T was releas-
ing the version of Unix that would become a standard: Unix System V. It was the first at-
tempt at bringing together the different versions of Unix, including XENIX, SunOS and Unix
4.3 BSD. The two main families of Unix have become Unix System V and BSD (Berkeley
Software Distribution) Version 4.4. System V would eventually be sold to SCO (Santa Cruz
Operation). Currently available Unix systems include AIX (on IBM workstations and main-
frames), HP-UX (on HP workstations), Linux (on PC-based systems), OSF/1 (on DEC work-
stations) and Solaris (on Sun workstations).

Other attempts at standardising Unix occurred with X/Open, OSF, and COSE, but have
mainly failed. The great strength of Unix is its communications and networking protocols
(such as TCP/IP, SMTP, SNMP, and so on), which provide the foundation for the Internet.
Many organizations have tried to create a new operating system, such as VMS (from DEC)
and Aegis (Apollo), but only Unix has become a serious competitor to Microsoft in operating
systems. In the PC market, they would totally dominate the market, although Linux (a Unix
clone) created a small market share for the technical experts. Unix-based systems used the
standardised networking software that was built-into Unix, but the PC still lacked any proper
form of networking. So, in 1983, Novell create one of the standards of the PC networking
market: the Novell NetWare network operating system. The only other operating system
which could have competed again Microsoft’'s DOS and Windows, was the up-and-coming
Mac OS from Apple, which was at least 10 years ahead of its competitors. However, Apple
refused to license their system to other vendors, or to other computer manufacturers.

Another significant event in software development occurred at AT&T, when Bjarn
Stroustrup designed the new object-oriented language C++. Its great strength, and also one of
its weaknesses, was that it was based on the popular C programming language. Its usage is
now widespread and most current applications have been written using C++, whether they be
for microcomputers, minicomputers and mainframe computers. The main drawback of C++
was that programmers could still use the C programming language, which, because of its
looseness and simplicity, allowed the programmer to produce programs that would compile,
but could crash because of arun-time error which was due to badly designed software. Typi-
cal errors were running off the end of an array, bad parameter passing into modules, or using
memory that was not reserved for other purposes. Object-oriented programming languages
are much tighter in their syntax, and the things that are allowed to be done. Thus, the com-
piler will typically catch more errors, whether they are run-time or syntax errors, before the
program is run. Java has since overcome the problems of C++, asit is totally object-oriented,
and much tighter in the rules of software coding.

The great strength for the adoption of the PC was IBM’ s intention to allow software com-
panies to quickly develop application software. They thus released information on the
hardware of the computer so that software companies could write compatible applications.
Like VisiCalc for the Apple I, in 1983, the two killer applications to help boost the accep-
tance, and sales, of the IBM PC were:

Computer busses 29

Lotus 1-2-3. This was a spreadsheet designed and developed by Jonathan Sachs and
Mitch Kapor at Lotus Development. It initially required an extremely large amount of
memory, 256KB. Over $1 million was spent on itsinitial promotion but, it paid back its
origina investment a thousand times over. Its sales hit Microsoft's Multiplan spread-
sheet, which had sold over 1 million copies. Microsoft learnt from this, and in the coming
years would release Excel, which would become the standard spreadsheet.

WordPerfect. This was a word processing package developed by Satellite Software In-
ternational (who would eventually change their name to the WordPerfect Corporation.). It
initialy cost $500, and was an instant success. Many believed that WordPerfect 5.1 was
the classic touch-type program, as it used keystrokes instead of long-winded menu op-
tions. Many typists have since had real troubles moving from WordPerfect to WIMPs-
based packages such as Microsoft Word (so much so that many current word processors
support all of the WordPerfect keystrokes).

The year 1983 was to be bleak for non-IBM PC compatible computers and saw prices falling
month upon month. It also spelt the end of the line, in different ways, for three great innova-
tors in the persona computer industry: Zilog, Osborne and Texas Instruments. It was the
beginning of the end for Zilog when they released their 32-bit microprocessor: the Z8000. It
was an advanced device that had a 256-byte on-chip cache, instruction pipelining, memory
management, and 10-25MHz clock speed. Unfortunately, for Zilog, it was incompatible
with the great Z80 processor. It thus failed in the market against the strength of the Intel
8086, and the up-and-coming 80386 processor. Of the many computer manufacturers who
rushed to the market and used the 8086/8088, only one, Commaodore, introduced a Z8000-
based system (Commodore Z8000). Apart from the failings at IBM and DEC, the release of
the Z8000 processor must rank amongst the poorest decisions in computing history. No one
could predict the effect that a Z80-compatiable 32-bit processor would have had on the mar-
ket. Certainly a 32-bit processor, which was functionally compatible with the 8086/8088 (as
the Z80 had been with the 8080) would have blown the market wide open, and would have
possibly stopped the dide to quasimonopoly of the Intel processors. Another failure in the
processor market was the extremely powerful 6MHz, 32-bit NS32032 microprocessor from
National Semiconductor.

Commodore Business Machines were becoming dominant in the home computers mar-
ket, and highlighted their dominance with the release of the Commodore 64, for $400, which
quickly fell to $200 and dropped the prices of the VIC-20 to below $100 (breaking it for the
first time). In 1983, the sales of the VIC-20 reached 1000000.

Commodore was aso keen to develop the business market, and released the Commodore
Executive 64. It cost $1000 and had 64KB RAM, a detachable keyboard, a 5-inch colour
monitor, and a 170KB floppy drive. In 1983, Commodore became the first personal com-
puter to sell over $1 billion worth of computers.

Many companies in the home computer market had made large profits, but one failure in
a product range could spell disaster for a company. The high profits for all would not last
long as Commodore, Atari and Sinclair started slashing prices. Sinclair, through Timex, in-
troduced the Timex/Sinclair 2000 in the USA (which was called the Sinclair Spectrum in
other countries). It cost $149 for a 16 KB model, while the ZX81 price was reduced to $49.
The squeeze was on, as prices tumbled.

Atari released their 600XL for $199, and ceased production of the Atari 5200. The
600X L was based on the 1.79MHz 6502C processor, had 16 KB RAM, 24KB ROM, and an
optional CP/M module. As the push was on from other manufacturers to reduce prices, they

30 Introduction

aso did the same and reduced the Atari 800 to $400. Atari also released the 1200XL home
computer, which had 64KB RAM, and 256 colour capability, and cost $900. Production
eventually ended for the 1200XL, mainly because of compatibility problems.

At the time, Japanese companies had been making grest advances in the electronics in-
dustry, and many, such as NEC and Fujitsu were starting to overtake USA silicon companies,
such as Texas Instruments, Intel and National Semiconductor, in their product of integrated
circuits (although Intel had the x86 series of processors as their trump card). They were also
winning in producing peripherals and accessories for computer systems, such as:

Fujitsu producing the first 256 Kbit memory chips.

Sony developed a new standard for 3.5-inch floppy disks, with the Microfloppy Industry
Committee, and thus created the first double-sided, double-density, holding floppy disk
system that could store up to 1MB. Sony was aso working with Philips in creating the
CD-ROM, which was an extension of audio CD technology.

However, in computer manufacturing, Japanese companies struggled as the USA companies,
such as IBM and Apple, were setting the standards. The IBM PC was relatively easy to
clone, but the Apple computer required a license to manufacture, which, at the time, was
amost impossible to gain. Compared with many USA-based companies, the Japanese com-
panies were efficient and produced reliable electronics, but as long as they were one step
behind the US-based computer companies, they could not gain a serious share of the home
computer market. To overcome this, 14 Japanese companies and Microsoft joined an alliance
to create the MSX standard It used the Zilog Z80, TI TMS9918A video processor, General
Instruments AY-8910 sound processor, NEC cassette interface chip, Atari joystick interface,
64 KB RAM, and 32 KB ROM-based extended Microsoft BASIC. This was one of the first
attempts to standardize computer architecture, but was doomed to failure with the release of
the IBM PC, and that it was based on 8-hit technology. Severa MSX computers did reach
the market, but quickly failed. It was a great idea, and one that should have worked. The key
to its failure was that there was a better, more defined standard: the IBM PC.

In a classic case of releasing the right product at the wrong time, Osborne Computer re-
leased their own portable computer. Unlike the IBM PC, or Compaq’'s portable, it was based
on the Z80A processor. The computer quickly failed in the market and Osborne eventually
filed for bankruptcy. Around the same time, Radio Shack aso produced a non-IBM compati-
ble portable: the TRS-80 Model 100. They were also following the tried and tested technique
of improving their product line by releasing the TRS-80 Model 4. It would fail as it cost
$2000, and was non-IBM PC compatible (as it was based on the 4MHz Zilog Z80A micro-
processor). Against the IBM PC, and the lower-end computers, such as the VIC-64 and the
Sinclair Spectrum, it was vastly overpriced.

Another casualty of the success of the IBM PC was Texas Instruments who eventually
withdrew from the personal computer market. The T1 99/1 had sold well over the years (over
1 million), but was now struggling against the new, cheaper computers.

Apple took a big gamble with the LISA® (local integrated software architecture) com-
puter, as it cost $50 million, and its software cost $100 million (showing that the costs of
developing hardware were reducing, while software development costs were increasing). It
was released in 1984 and was expensive ($10000), it was underpowered, but it was the first
personal computer to have a graphical user interface (GUI). Rather than going with the 8086,

1 LISA was actually named after Steve Job’s young daughter.

Computer busses 31

as most of the market was doing, they based it on the excellent 5MHz 68000 microprocessor.
It had 1IMB RAM, 2MB ROM, a 12-inch black/white monitor, 720" 364 graphics, dual 5.25-
inch 860K B floppy drives, and a 5MB hard disk drive. LISA would sell over 100000 units.
Apple was keen to develop the LISA computer, but it would be the new Mac, which would
become the focus for their operation.

Apple was investing a great deal of effort in the Mac, and gave the Mac developers the
best environment possible. This caused considerable friction with the Apple |1 division, as all
the finances for the Mac facilities were generated from sales of the Apple I1. Apple inten-
tionally kept the two divisions apart, which only helped to increase the friction. In the year,
the Apple Il highlighted its success by selling its 1 millionth unit. They continued its devel-
opment with the Apple Ile, which had 64KB RAM, Applesoft BASIC, upper/lower case
keyboard, seven expansion dots, 40' 24 and 80 24 text, 1MHz 6502 processor, up to
560" 192 graphics, and a 140K B 5.25-inch floppy drive.

The software market, especialy related to the IBM PC was growing fast. Satellite Soft-
ware International released WordPerfect 3.0 for $500, and Borland I nternational, founded by
Philippe Kahn, created the first version of their excellent Turbo Pascal compiler. Borland,
single-handily, saved Pascal from an early exit. Borland were for years the main company
involved in producing software development tools for the PC, with Borland C++, Borland
Delphi and Borland JBuilder. Unfortunately, they would eventualy struggle against the
might of Microsoft (who were able to invest a great deal of money into their development
tools, especially in Visual Basic and Visual C++). Microsoft has the privileged position of
being able to invest money in other areas of development, but redirecting them from profits
made from other areas. For example, they used profits from the DOS system to invest in
Windows, and profits from Windows to invest into office applications (Word, Excel and
PowerPoint), and profits from office applications to invest into software development tools
(Visual Basic, Visua C++ and Visual Java). Obvioudly, it is to Microsoft’s advantage that
they keep the tools up-to-date, as this is the same development system that they use to gener-
ate their own applications.

1984 ohvioudly had futuristic connotations to it. However, it was less of a futuristic year
for IBM and more of a nightmare, when IBM released the IBM PCjr. It used the 8088 CPU,
includes 64KB RAM, a ‘Freeboard’ keyboard (IBM would eventualy release a new key-
board, which was a free upgrade to those who wanted it), and one 5.25-inch disk drive, and
no monitor, for $1300. A year later, in 1985, the PCjr was dropped. As the market became
more competitive, IBM started to show their teeth as the number of cloners increased. The
unfortunate companies who were the first to be taken to court were Corona Data Systems and
Eagle Computer. IBM sued them over a copyright violation of the IBM PC’'s BIOS, and eas-
ily won the case. It was clear that, to avoid litigation, that companies required rewriting the
BIOS. Thiswould not give atechnical advantage, but would keep IBM’ s lawyers away.

The next step for IBM was important in the development of the PC. For this they learned
from their mistakes with the PCjr, and made their new computer, the PC AT, compatible
with the IBM PC. It used the new Intel 6MHz 80286 processor, and had a 5.25-inch 1.2MB
floppy drive, with 256 KB or 512KB RAM, optional 20MB hard drive, monochrome or col-
our monitor. Theinitial cost was $4000.

As the demand for IBM PCs increased, there was also an increase for demand for graph-
ics adaptors. For this IBM released the Enhanced Color Display (EGA) monitor with
640" 350 resolution, 16 colours, at a cost of $850. They also released TopView which failed
in the market because it was text-based, and not a GUI. If they had done, they may have cap-
tured the market which Microsoft Windows gained.

32 Introduction

The battle for the processor market started to heat up when Intel released the 80188,
which was an integrated version of the 8086. They also allowed IBM the legal rights to use
microlithography masks to make x86 processor chips. Intel, having survived the new 32-bit
processors, from Zilog and National Semiconductor, faced their biggest threat from NEC and
Motorola. NEC was the first to clone the 8088, with the 8MHz V20 microprocessor and a
clone of the 8086 processor, with the 8MHz V30 microprocessor. Another threat came from
Motorola who added the 68010 and 68020 32-bit processors to their range. Many non-PC-
based developers adopted the Motorola processor in favour of the 8086, as it was typically
easier to develop hardware for it, and much easier to write software (as the 8086 had a horri-
ble segmented memory architecture). For most, it was the only way for a computer manufac-
turer to differentiate themselves from the clone market. Some, such as Radio Shack, fol-
lowed the IBM PC market with the Tandy 1000/1200 HD, but there was little to differentiate
their clone from any other clone.

New entries for the year included Silicon Graphics, who would go on to produce excel-
lent workstations, which had state-of-the-art graphics power. In 1984, they produced the first
3D graphics workstation. They were aso involved, in the 1990s, in the development of the
graphics for Jurassic Park.

It was to be the year of Compaq Computer and Apple Computers. Compagq introduced the
Compag Deskpro. Apple Computer created the ultimate entry for their Macintosh compulter,
by running their 1984 advert once, during the NFL SuperBowl. The advert had cost $1.5
million, but soon became one of the most talked about adverts, ever. The Macintosh was as
brilliant a computer as anyone could have conceived. It was designed by creative people, and
not just by technocrats. It was a fully integrated unit, which could be easily ported from place
to place. The Mac used the 8MHz 32-bit Motorola 68000 processor, along with a 9-inch
B/W screen, 512" 342 graphics, 400KB 3.5-inch floppy disk drive, mouse, and 128KB
RAM. It cost $2500. Microsoft knew that they could not just rely on the IBM PC market, so
they worked closely with Apple and released Microsoft BASIC (MacBASIC) and Microsoft
Multiplan for the Macintosh. After just 74 days of its introduction, over 50000 Macs had
been sold, and after 100 days they had sold 70000 units. After six months, it was 100000
units, and within the year, 250000 units. This, to Apple, was a great disappointment as they
estimated that they would sell over 2 million units by the end of 1985. The main problem is
that it lacked resources, especially memory. Apple Computer overcame this by releasing the
Macintosh 512K for $3200.

The Macintosh had everything going for it. It was a totally integrated system, where the
IBM PC felt like a basic system, which required lots of extra bits and pieces to make it work
properly. A great confusion at the time was the number of application packages which were
entering the market. Apple eased this problem with the release of AppleéWorks, which inte-
grated aword processor, database management program, and a spreadshest.

Apple also continued developing the Lisa computer with Lisa 2, and also with the Apple
[1, with the Apple llc computer (the Apple 111 computer had not sold well, and production of
it soon stopped). The Apple Ilc computer cost $1300 and was based on the 6502A processor,
had 128KB RAM and a 3.5-inch floppy disk drive. On the first day of its release, Apple re-
ceived 52000 orders. By the end of the year, over 2 million Apple Il computers had been
sold. The Lisa 2 computer came with 512KB RAM, and a 10MB hard disk. Apple was aso
innovating in the printer market, with the colour Apple Scribe printer and the LaserWriter.
At the same time, Hewlett-Packard introduced the LaserJet laser printer, for $3600, with
300dpi resolution.

As Apple had done, Commodore would release, in the following year, a computer based

Computer busses 33

on the 68000 processor (the Amiga, from newly purchased Amiga Corporation). In 1984,
they introduced the Commodore Plus/4 which used the 7501 microprocessor, had 64KB
RAM, 320" 200 pixel graphics with 128 colours, and also released the Commodore 16 with
16KB of RAM, at aselling price of $100.

At Microsoft, development was continuing on both Apple and IBM PC systems. No one
at the time could predict that the IBM PC market would eventualy dwarf the Apple market.
The Macintosh looked to be the system of the future, thus Microsoft stopped working on
Excel, their new PC-based spreadsheet package, and switched their resources to developing
software for the Macintosh. This included Excel for the Macintosh. From now on Microsoft
would concentrate of GUI applications, for Microsoft Windows and for the Macintosh. They
released MS-DOS 3.0/3.1 which supported larger hard disks, networks and high capacity
floppy disks. After IBM lost out on the DOS operating system, Microsoft held out an olive
branch to them by demonstrating Microsoft Windows. IBM refused to become involved,
mainly because it competed with its newly developed interface, TopView. Microsoft and
Lotus Development also nearly agreed to merge their companies, but Jim Manzi at Lotus
Development convinced Mitch Kapor to back out of it. Microsoft’s Windows was superior to
TopView as it used a graphical user interface. The only other real competitor to Microsoft
was Digital Research, who had missed out on the IBM PC market. In 1984, they released the
Graphics Environment Manager (GEM) icon/desktop user interface for the IBM PC com-
puter.

In the Unix market, in 1984, the Massachusetts Institute of Technology (MIT) began de-
veloping the X Window System. Their main objective was to create a good windows system
for Unix machines. Many versions evolved from this and, by 1985, it was decided that X
would be available to anyone who wanted it for a nominal cost. X, itself, is a portable user
interface and can be used to run programs remotely over a network. It has since become a de
facto standard because of its manufacturer independence, its portability, its versatility and its
ability to operate transparently across most network technologies and operating systems. The
main features of X-Windows are that:

It is network transparent. The output from a program can either be sent to the local graph-
ics screen or to a remote node on the network. Application programs can output simulta-
neously to displays on the network. The communication mechanism used is machine-
independent and operating system independent.

Many different styles of user interface can be supported. The management of the user
interface, such as the placing, sizing and stacking of windows is not embedded in the sys-
tem, but is controlled by an application program which can easily be changed.

As X is not embedded into an operating system, it can be easily transported to a wide
range of computer systems.

Calls are made from application programs to the X-windows libraries which control
WIMPs. The application program thus does not have to create any of these functions.

1985 was the year that Microsoft released their first version of Windows, at a price of $100.
It was hardly startling, and would take another two versions before it completely dominated
the market. It could not multitask, and still used DOS. Another mgjor failing was that it did
not use the full capabilities of the new 32-bit processor (80386) or the enhanced 16-bit proc-
essor (80286), and could thus only access up to 1MB of memory.

Just as IBM were releasing their AT computer with the 80286, Intel released their new
32-bit 16 MHz 80386DX microprocessor, and the 80287 math coprocessor. The 80386 used

34 Introduction

32-hit registers and a 32-bit data bus, and incorporated 275000 transistors (1.5 microns). The
initial price was $299. It could access up to 4GB of physical memory, or up to 64 TB of vir-
tual memory. A worrying development for Intel came from the new start up company, Chips
& Technologies, which developed a set of five chips that were equivalent to 63 smaller chips
that were found on the IBM PC AT motherboard. This development meant that many of the
support devices produced by Intel could be replaced by many less devices, thus cutting pro-
duction costs. At Motorola, the success of the 68000 brought the 68008 processor.

After Apple had released their 68000-based Macintosh in the previous year, Commodore
released their new flagship computer: the Amiga 1000. Unlike the IBM PC, it was fully mul-
titasking and used a WIMPs (windows, icons, menus and pointers) system. In its basic form
it cost $1300 and had 256 KB RAM, and 880KB 3.5-inch disk drive. They also released the
Commodore 128 computer, which was an upgrade of the Commodore 64. Along with the
Amiga, Commodore were trying to get into the PC market with the PC10 and PC20 com-
puters, and tried to stop production of the Commaodore 64 (but public demand restarted pro-
duction several times).

At Apple Computer the success of the Macintosh continued. The battle was now on for
the PC market, and they had the IBM PC in their sights. During the SuperBowl, Apple ran a
TV advert for Macintosh Office, which showed blindfolded business executives walking off
a cliff, like lemmings. Things were becoming turbulent in Apple, after years of growth had
produced a grown-up company with formal business methods. This type of environment did
not suit Steve Jobs (the co-founder of Apple Computer), and he left, along with five senior
managers, to form NeX T Incorporated. In fact, John Sculley, the former Pepsi-Cola president
who, in 1984, had been brought in to train Steve to become the CEO, forced Steve Jobs out.
From then on, John Sculley was the man in charge of Apple.

The future for Apple looked difficult, but the key to future growth would be the Macin-
tosh, and not Lisa or the Apple Il. The software for the Macintosh was being produced as
quickly as the market was buying it. Microsoft released Microsoft Word 1.0 and the Micro-
soft Excel spreadsheet ($95). Apple were not really impressed with the first version of Excel,
and reckoned that Lotus Development’s equivalent was better (named Jazz). Another key
package for the Macintosh was Aldus PageMaker from Aldus, which created a new industry,
which for the first time, integrated text and graphics with a design package: desktop publish-
ing. For years, PageMaker was the de facto standard package for graphics design and desk-
top publishing. Microsoft obviously had a foot in both the IBM PC and the Macintosh mar-
ket, as they released Microsoft Word 2.0 for DOS, and QuickBASIC 1.0.

The year produced many good deals for Microsoft, including:

Microsoft signed a deal with IBM for a joint-development agreement to work together
on future operating systems and environments.

Microsoft signed a deal with Apple to cover Apple' s copyrights on the visua display of
the Macintosh.

Microsoft purchased all rights to DOS from Seattle Computer Products for $925000.
The deal of the century!

Atari struggled on, in face of the competition from Apple, Compag, Commodore and the
IBM PC. With the might of Microsoft added to the equation, they had little chance in the
profitable business market. They continued their previous success in the home market with
the 65XE, the 130XE, and the 520ST, for $120, $400, and $600, respectively. Radio Shack
also continued to swim against the tide with the release of the Tandy 6000 multi-user system

Computer busses 35

(with up to nine users). It was extremely powerful and used the both a Z80A and a 68000
processor. It had 512 KB RAM, 80" 24 text, graphics, 1.2MB 8-inch disk, an optional 15MB
hard drive, TRS-DOS, or XENIX 3.0. Another struggler with an excellent product was
Acorn who released The Advanced RISC Machine (ARM), which used a powerful 32-bit
processor.

At IBM, there was despondency as they stopped production of their PCjr and released
their first version of TopView for $150. One of the successes of the previous year, Compaq
Computer, was jubilant as they reported second year revenues of $329 million. They quickly
followed up the success of the Compaq portable with the Compag Deskpro 286 and Portable
286, which was similar in specification to the IBM AT. IBM aso moved into networking
with IBM Token Ring; unfortunately, even though Token Ring was an excellent networking
technology, the future would be Ethernet.

Each year in the computer industry had seen a new significant company being born. The
previous years had seen the birth of Compag Computers, Sun Microsystems and Apollo. In
the 1985, it was Nintendo, and Chip and Technologies. Nintendo would become one of the
leading computer companies in the lucrative computer games market. They again highlighted
the strength of the USA in generating new and innovative computer companies. Software
companies were also being created, such the Corel Corporation (by Michael Cowpland), and
Quarterdeck Office Systems. On of the successes of the previous years was Sun Microsys-
tems who had started work on their SPARC processor.

On the PC, new software versions were coming thick and fast. Lotus 1-2-3 has moved to
2.0, WordPerfect moved to Version 4.1, Novell NetWare was now at Version 2.0 and dBase
was at Version 3. 1985 also saw the first CD-ROM drives for computer use.

After afew frantic years, things started to settle down in 1986. The IBM PC and the Ap-
ple Macintosh would now dominate the market, especially at the business end. One of the
biggest winners was Compag Computers who had seen their turnover for their third year rise
to $503.9 million and, by the middle of the year, they would sell their 50000th computer.
Compag Computer introduced the Compag Portable Il. Against its excellent quality and
specification, IBM would eventually withdraw from the portable computer for a while, as it
was obvioudly inferior to the Compaq portable. It would take many years before IBM would
regain some of the portable market (with the ThinkPad).

Compaq blasted the PC market wide open with the first 16 MHz Intel 80386-based PC:
the Compaqg Deskpro 386. The best that IBM could manage was the IBM AT which had an
8MHz Intel 80286. The Deskpro 386 was thus running at twice the clock speed, and had the
potential, with 32-bit software, to run twice as fast again. The 80386 also had significant
improvements in the number of clock cycles that it took for an operation to be performed.
Thus, the Deskpro 386 sprinted, while all the other PCs dawdled, and its full potentia was
yet to be realised.

IBM knew that the PC was a compromised system, and released the IBM RT Personal
Computer. This was based on a 32-bit RISC-based processor, with 1LMB RAM, a 1.2MB
floppy, and 40 MB hard drive, and cost $11700. Even with the RISC processor, it only had a
performance of 2 MIPS, and thus its price/performance ratio was too great for it to be
adopted in the market.

Apple was starting to suffer against the growing power of the IBM PC developers. They
still had a closed system, where it was up to them to develop the software and hardware for
the Macintosh, whereas the IBM had hundreds, if not thousands, working on it, and improv-
ing it. The Apple Mac was now looking underpowered and lacking other facilities, especially
in networking on IBM PC-based networks. Apple overcame part of this with the release of

36 Introduction

the Macintosh Plus, which was based around the 8MHz 68000 processor, had 1MB RAM,
SCSl-based hard disk connector (the first ever computer to have integrated SCSI interfaces)
and an 800KB 3.5-inch floppy drive. It cost $2600 (while a 512KB version cost $2000).
Unfortunately, it was still not possible to connect an Apple Mac onto an IBM PC-based net-
work, unless a telephone connection was used. This held it back from wider adoption in the
commercial market. Apple, though, was starting to make great inroads into the publishing
industry with the release of the innovative LaserWriter Plus printer.

Microsoft had over the past few years initiated many new products for both the IBM PC,
and the Apple Macintosh. In 1985, they consolidated their market with new versions of the
successful software, such as MS-DOS 3.2 and Microsoft Word 3.0. In MS-DOS 3.2, support
was added for 3.5-inch 720 KB floppy disk drives (these disks were much more reliable than
the older, ‘floppy’, 5-inch floppy disk, as they had a hard case to protect them). The initial
investment of time, and energy, for those involved in Microsoft was rewarded when, for the
first time, Microsoft sold its shares to the public. When floated, each share was worth $21,
which raised $61 million for Microsoft, and made Bill Gates the world's youngest billion-
are.

The UK also showed that they could innovate in market niches with the release of the
Inmos T800 Transputer, which was a powerful RISC processor that could be used in parallel
processing applications.

Several computer manufacturers, such as Silicon Graphics, started to move towards the
new range of RISC processors produced by MIP Technologies, such as the 8MHz, 32-hit,
R2000 processor. This used 110000 transistors and gave a speed of 5MIPS. At Motorola,
they were working on the 68030 processor, which would have over 300000 transistors. They
also began work on the 88000 processor.

At IBM, work had begun on a computer range which would become a classic: the IBM
RS/6000 series. The newcomer of the year was Gateway 2000, which shipped its first PC. In
addition, after using the Small Computer System Interface (SCSI) on Apple’'s Macintosh
(SCSI-1), it was standardised with the ANSI X3.131-1986 standard.

1.7 Exercises

The following questions are multiple choice. Please select from a—d.
171 Who solved the US Governments Census problems:

(& Bill Gates (b) Herman Hollerith
(¢) William Shockley (d) LeeDe Forest

17.2 Which computer helped aid the British Government to crack codes in World War
I

(& ENIAC (b) Harvard Mk |
(c) IBM System/360 (d) Colossus

1.7.3 What is ENIAC an acronym for:

(& Electronic Numerical Integrator and Computer

Computer busses 37

174

175

176

177

178

179

1.7.10

1711

1.7.12

(b) Electronic Number Interface Analysis Computer
(c) Electronic Number Interface and Computer

(d) Electronic Numerical Interchange Computer
Who invented the transistor:

(& Bill Gates (b) Herman Hollerith
(¢ William Shockley (d) LeeDeForest

Which company did William Shockley form:

(@ Shockley Semiconductor (b) Shockley Devices
(c) Shockley Electronics (d) Shockley Electrics

Which company proposed that silicon could be used for transistors:

(& IBM (b) TexasInstruments
(c) Motorola (d) Fairchild Semiconductors

Which company first proposed the integrated circuit:

(@ IBM (b) TexasInstruments
(c) Motorola (d) Fairchild Semiconductors

Who first produced an integrated circuit:

(@ John Cocke (b) Robert Noyce
(c) Gordon Moore (d) William Shockley

Who proposed that the number of transistors that can be fitted onto an integrated
circuit doubles each year:

(@ John Cocke (b) Robert Noyce
(c) Gordon Moore (d) William Shockley

Which computer was the first to use integrated circuits:

(@ Applel (b) I1BM System/360
(o IBMPC (d) DECPDP-11

Which one of the following formed Intel:

(@ Bill Gatesand Paul Allen

(b) Robert Noyce, Gordon Moore and Andy Grove
(©) Jerry Sanders

(d) Steve Wozniak and Steve Jobs

Which one of the following formed Microsoft:

38

1.7.13

1714

1.7.15

1.7.16

1.7.17

1.7.18

1.7.19

1.7.20

1721

(@ Bill Gatesand Paul Allen

(b) Robert Noyce, Gordon Moore and Andy Grove
(c) Jerry Sanders

(d) Steve Wozniak and Steve Jobs

Which one of the following formed Apple Computers:
(@ Bill Gatesand Paul Allen

(b) Robert Noyce, Gordon Moore and Andy Grove
(¢) Jerry Sanders

(d) Steve Wozniak and Steve Jobs

Which company did Kenneth Olsen help form:

(@ Compaqg () DEC
(¢ Microsoft (d IBM

Which company developed the first microprocessor:

(@ Texaslnstruments (b) Motorola
(c) Zilog (d Inte

Which company developed the first 8-bit microprocessor:

(@ NEC (780-1) (b Motorola (6800)
(c) Zilog (Z80) (d) Intel (8008)

Which company developed the first 16-bit microprocessor:

(@ Texaslnstruments (9900) (b) Motorola (68000)

Introduction

() Zilog (Z8000) (d) Intel (8086)

Which company was the first to demonstrate the usage of windows, mouse and
keyboard:

(@ IBM (b Xerox

(©) Microsoft (d) DEC

Which company was the first to demonstrate the WY SIWY G concept:

@ IBM (b) Xerox
(c) Microsoft (d) DEC

What was the name of the Xerox research center:

(@ PARC (b) XRES
(0 PERC (d RESP

Which company did Bill Gates and Paul Alleninitially create:

Computer busses 39

1.7.22

1.7.23

1.7.24

1.7.25

1.7.26

1.7.27

1.7.28

1.7.29

(@ Micro-Traffic (b Traf-O-Data
(c) Traffic Software (d) Gates & Allen

Who devel oped the C programming language:

(@ Bill Gatesand Paul Allen

(b) Brian Kernighan and Dennis Ritchie

(©) Niklaus Wirth

(d) Steve Wozniak and Steve Jobs

Who developed the Pascal programming language:
(@ Bill Gatesand Paul Allen

(b) Brian Kernighan and Dennis Ritchie

(c) Niklaus Wirth

(d) Steve Wozniak and Steve Jobs

Which was the first ever commercial microprocessor:

(@ 4000 (b) 4004
(c) 8080 (d) 1000

The 8008 device could address up to 1 KB. Thus how much address lines did it
have:

(@ 6 (b) 10
(© 20 (d) 1000

Which processor did Zilog produce:

(@ Z80 (b) 6502
(0 8080 (d) 6800

Which processor did MOS Technology produce:

(@ Z80 (b) 6502
(0 8080 (d) 6800

Which processor did Motorola produce:

(@ 280 (b) 6502
(0 8080 (d) 6800

Which processor did the Apple |l use:

(@ Zilogz80 (b MOS Technology 6502
() Intel 8080 (d) NEC 780-1

40 Introduction

1.7.30 Which processor did the Commodore PET use:

(@ Zilogz80 (b MOS Technology 6502
() Intel 8080 (d) NEC 780-1

1.7.31 Which processor did the TRS-80 use:

(@ Zilogz80 (b MOS Technology 6502
() Intel 8080 (d) NEC 780-1

1.7.32 Which processor did the ZX80 use:

(@ Zilogz80 (b MOS Technology 6502
() Intel 8080 (d) NEC 780-1

1.7.33 Which company distributed CP/M:

(& Microsoft (b) Digital Research
(c) Xerox (d) Applesoft

1.7.34 Which software language was standard on most early PCs:

@ C (b) BASIC
(c) Pasca (d) Assembly Language

1.7.35 How did the Motorola 68000 gain its name:

(& Noreason (b) It was sold for $680.00
(c) It sounded like the 8008 (d) It had 68000 transistors

1736 Which company produced the VAX range of computers:

(@ IBM (b) DEC
() Compaq (d) Apple

1.8 Notes from the author

The history of the PC is an unbelievable story, full of successes and failures. Many people
who used some of the computer systems before the IBM PC was devel oped, wipe a tear from
their eyes, for various reasons, when they remember their first introduction to computers,
typically with the Sinclair Spectrum or the Apple I1. In those days, all your programs could
be saved to a single floppy disk, 128KB of memory was more than enough to run any pro-
gram, and the nearest you got to a GUI was at the adhesives shelf at your local DIY store. It
must be said that computers were more interesting in those days. Open one up, and it was
filled with processor chips, memory chips, sound chips, and so on. You could almost see the
thing working (a bit like it was in the days of valves). These days, computers lack any soul;

Computer busses 41

one computer is much like the next. There's the processor, there's the memory, that's a
bridge chip, and, oh, there' s the busses, that’siit.

As we move to computers on a chip, they will, in terms of hardware, become even more
boring to look at. But, maybe I’'m just biased. Oh, and before the IBM PC, it was people who
made things happen in the computer industry, such as William Shockley, Steve Jobs, Kenneth
Olson, Sr Clive Snclair, Bill Gates, and so on. These days it is large teams of software and
hardwar e engineers who move the industry. Well, enough of this negative stuff. The PC is an
extremely exciting development, which has changed the form of modern life. Without its
flexibility, its compatibility, and, especially, its introduction into the home, we would not
have seen the fast growth of the Internet.

Here are my Top 15 successes in the computer industry:

1. IBM PC (for most), which was a triumph of design and creativity. One of the few com-
puter systems to ever to be released on time, within budget, and within specification. Bill
Gates must take some credit in getting IBM to adopt the 8088 processor, rather than
8080. After its success, every man and his dog had a say in what went into it. The rise of
the bland IBM PC was a great success of an open system over closed systems. Compa-
nies who have quasimonopolies are keen on keeping their systems closed, while compa-
nies against other competitors prefer open systems. The market, and thus, the user, pre-
fers open systems.

2. TCP/IP, which is the standard protocol used by computers communicating over the
Internet. It has been designed to be computer independent to any type of computer, can
talk to any other type. It has withstood the growth of the Internet with great success. Its
only problem is that we are now running out of IP addresses to grant to all the com-
puters that connect to the Internet. It is thus a victim of its own success.

3. Electronic mail, which has taken the paperless office one step nearer. Many mourned
the death of the letter writing. Before email, TV and the telephone had suppressed the
art of letter writing, but with email it is back again, stronger than ever. It is not without
its faults, though. Many people have sent emailsin anger, or ignorance, and then regret-
ted them later. It isjust too quick, and does not allow for a cooling off period. My motto
is: ‘If you are annoyed about something sleep on it, and send the email in the morning’.
Also, because email is not a face-to-face communication, or a voice-to-voice communi-
cation, it is easy to take something out of context. So another motto is: ‘ Carefully read
everything that you have written, and make sure there is nothing’. Only on the Internet
could email address format be accepted, worldwide, in such a short time.

4. Microsoft, who made sure that they could not lose in the growth of the PC, by teaming
up with the main computer manufacturers, such as IBM (for DOS and OS2), Apple (for
Macintosh application software) and for their own operating system: Windows. Luckily
for them it was their own operating system which became the industry standard. With
the might of having the industry-standard operating system, they captured a large mar-
ket for industry-standard application programs, such as Word and Excel.

5. Intel, who was presented with an enormous market with the development of the IBM PC,
but have since invested money in enhancing their processors, but still keeping compati-
bility with their earlier ones. This has caused a great deal of hassle for software devel-
opers, but is a dream for users. With processors, the larger the market you have, the
mOore money you can invest in new ones, which leads to a larger market, and so on. Un-
fortunately, the problem with this is that other processor companies can simply copy
their designs, and change them a little so that they are still compatible. This is some-
thing that Intel have fought against, and, in most cases have succeed in regaining their

42

10.

11.

12.

13.

14.

Introduction

market share, either with improved technology or through legal action. The Pentium
processor was a great success, as it was technologically superior to many other proces-
sors in the market, even the enhanced RISC devices. It has since become faster and
faster.

6502 and Z80 processors, the classic 16-bit processors which became a standard part in
most of the PCs available before the IBM PC. The 6502 competed against the Motorola
6800, while the Z80 competed directly with the Intel 8080.

Apple 11, which brought computing into the classroom, the laboratory and even the
home.

Ethernet, which has become the standard networking technology. It is not the best net-
working technology, but has survived because of its upgradeabliity, its ease-of-use, and
its cheapness. Ethernet does not cope well with high capacity network traffic. Thisis be-
cause it is based on contention, where nodes must contend with each other to get access
to a network segment. If two nodes try to get access at the same time, a collision results,
and no data is transmitted. Thus, the more traffic there is on the network, the more colli-
sions there are. This reduces the overall network capacity. However, Ethernet had two
more trump cards up its sleeve. When faced with network capacity problems, it in-
creased its bit rate from the standard 10Mbps (10BASE) to 100Mbps (100BASE). So
there was 10 times the capacity, which reduced contention problems. For networks
backbones it also suffered because it could not transmit data fast enough. So, it played
its next card: 1000BASE. This increased the data rate to 1 Gbps (1000 Mbps). Against
this type of player, no other networking technology had a chance.

WWW, which is often confused with the Internet, and is becoming the largest, database
ever created (okay, 99% of it is rubbish, but even if 1% is good then its all worthwhile).
The WM is one of the uses of the Internet (others include file transfer, remote login,
electronic mail, and so on).

Apple Macintosh, which was one of few PC systems which competed with the IBM PC.
It succeeded mainly because of its excellent operating system (MAC OS), which was ap-
proximately 10 years ahead of its time. Possibly if Apple had spent as much time in de-
veloping application software rather than for their operating system it would have con-
siderably helped the adoption of the Mac. Apple refusing to license it to other manufac-
turers also held its adoption back. For along time it thus stayed a closed system.
Compaq DeskPro 386. Against all the odds, Compaq stole the IBM PC standard from
the creators, who had tried to lead the rest of the industry up a dark alley, with MCA.
Sun SPARC, which succeed against of the growth of the IBM PC, because of its excel-
lent technology, its reliable Unix operating system, and its graphical user interface (X-
Windows). Sun did not make the mistakes that Apple made, and allowed other compa-
nies to license their technology. They also supported open systems in terms of both the
hardware and software.

Commaodore, who bravely fought on against the IBM PC. They released mainly great
computers, such as the Vic range and the Amiga. Commodore was responsible for forc-
ing the price of computers down.

Sinclair, who, more than any other company, made computing acceptable to the masses.
Okay, most of them had terrible membrane keyboards, and memory adaptor that wob-
bled, and it took three fingers to get the required command (Shift-2nd Function-Alt etc).
and it required a cassette recorder to download programs, and it would typically crash
after you had entered one thousand lines of code. But, all of this aside, in the Sinclair
Soectrum they found the right computer, for the right time, at the right price. Sometimes
success can breed complacency, and so it turned out with the Snclair QL and the Sin-

Computer busses 43

clair C-5 (the electric slipper).

15. Compaq, for startling growth, that is unlikely to be ever repeated. From zero to one hil-
lion dollars in five years. They achieved this growth, not by luck, but by shear superior
technology, and with the idea of sharing their developments.

Other contenders include Hewlett-Packard (for their range of printers), CISCO (for their
networking products), Java (for ignoring the make of the computer, and its network, and,
well, everything), the Power PC (for trying to head off the PC, at the pass), Dell notebooks
(because I’ ve got one), the Intel 80386, the Intel Pentium, Microsoft Visual Basic (for bring-
ing programming to the masses), Microsoft Windows 95, Microsoft Windows NT, and so on.
Okay, Windows 95, Windows NT, the 80386 and the Pentium would normally be in the Top
10, but, as Microsoft and Intel are already there, I've left them out. Here's to the Wintel
Corporation. We are in their hands. One false move and they will bring their world around
themselves. Up to now, Wintel have made all the correct decisions.

When it comes to failures, there are no failures really, and it is easy to be wise after the
event. Who really knows what would have happened if the industry had taken another route.
So instead of the Top 15 failures, I've listed the following as the Top 15 under-achievers
(please forgive me for adding a few of my own, such as DOS and the Intel 8088):

1. DOS, which became the best selling, standard operating systems for IBM PC systems.
Unfortunately, it held the computer industry back for at least 10 years. It was text-based,
command-oriented, had no graphical user interface, could only access up to 640KaB, it
could only use 16 hits at a time, and so on, Many with a short memory will say that
the PC is easy to use, and intuitive, but they are maybe forgetting how it used to be. With
Windows 95 (and to a lesser extent with Windows 3.x), Microsoft made computers much
easier to use. From then on, users could actually switch their computer on without have
to register for a high degree in Computer Engineering. DOS would have been fine, as it
was compatible with all its previous parents, but the problem was MAC OS, which really
showed everyone how a user interface should operate. Against this competition, it was
no contest. So, what was it? Application software. The PC had application software
coming out of its ears.

2. Intel 8088, which became the standard processor, and thus the standard machine code
for PC applications. So why is it in the failures list? Well, like DOS its because it was
so difficult to use, and was a compromised system. While Amiga and Apple program-
mers were writing proper programs which used the processor to its maximum extent, PC
programs were still using their processor in ‘sleepy-mode’ (8088-compatiable mode),
and could only access a maximum of 1MB of memory (because of the 20-bit address bus
limit for 8088 code). The big problem with the 8088 was that it kept compatibility with
its father: the 8080. For this Intel decided to use a segmented memory access, which is
fine for small programs, but a nightmare for large programs (basically anything over
64KB).

3. Alpha processor, which was DEC's attack on the processor market. It had blistering
performance, which blew every other processor out of the water (and still does). It has
never been properly exploited, as there is a lack of development tools for it. The Intel
Pentium proved that it was a great all-comer and did many things well, and was willing
to improve the bits that it was not so good at.

4. Z8000 processor, which was a classic case of being technically superior, but was not
compatible with its father, the mighty Z80, and its kissing cousin, the 8080. Few compa-

10.

11.

12.

13.

14.

15.

Introduction

nies have given away such an advantage with a single product. Where are Zilog now?
Head buried in the sand, probably.

DEC, who was one of the most innovative companies in the computer industry. They
developed a completely new market niche with their minicomputers, but they refused to
see, until it was too late, that the microcomputer would have an impact on the computer
market. DEC went from a company that made a profit of $1.31 billion in 1988, to a
company which, in one quarter of 1992, lost $2 hillion. Their founder, Ken Olsen, even-
tually left the company in 1992, and his successor brought sweeping changes. Eventu-
ally, though, in 1998 it was one of the new PC companies, Compaqg, who would buy
DEC. For Compag, DEC seemed a good match, as DEC had never really created much
of a market for PCs, and had concentrated on high-end products, such as Alpha-based
workstations and network servers.

Fairchild Semiconductor. Few companies have ever generated so many ideas and incu-
bated so many innovative companies, and got so little in return.

Xerox. Many of the ideas in modern computing, such as GUIs and networking, were
initiated at Xerox's research facility. Unfortunately, Xerox lacked force to develop them
into products, maybe because they reduced Xerox's main market, which was, and still is,
very much based on paper.

PCjr, which was another case of incompatibility. IBM lost a whole year in releasing the
PCjr, and lost a lot of credibility with their suppliers (many of whom were left with un-
sold systems) and their competitors (who were given a whole year to catch up with
IBM).

0S/2, IBM’s attempt to regain the operating system market from Microsoft. It was a
compromised operating system, and their development team lacked the freedom of the
original IBM PC development. Too many people and too many committees were in-
volved in its development. It thus lacked the freedom, and independence that the Boca
Raton development team had. IBM’s mainframe divisions were, at the time, a powerful
forcein IBM, and could easily stall, or veto a product if it had an effect on their profit-
able market.

CP/M, which many believed would become the standard operating system for micro-
computers. Digital Research had an excellent opportunity to make it the standard oper-
ating system for the PC, but Microsoft overcame them by making their DOS system
much cheaper.

MCA, which was the architecture that IBM tried to move the market with. It failed be-
cause Compag, and several others, went against it, and kept developing the existing ar-
chitecture.

RISC processors, which were seen as the answer to increased computing power. As
Intel has shown, one of the best ways to increase computing speed is to simply ramp up
the clock speed, and make the busses faster.

Sinclair Research, who after the success of the ZX81 and the Spectrum, threw it all
away by releasing a whole range of under-achievers, such asthe QL, and the C5.

MSX, which was meant to be the technology that would standardize computer software
on PCs. Unfortunately, it hadn’t heard of the new 16-bit processors, and most of all, the
IBM PC.

Lotus Development, who totally misjudged the market, by not initially developing their
Lotus 1-2-3 spreadsheet for Microsoft Windows. They instead developed it for OS2, and
eventually lost the market leadership to Microsoft Excel. Lotus also missed an excellent
opportunity to purchase a large part of Microsoft when they were still a small company.
The profits on that purchase would have been gigantic.

Computer busses 45

So waglis the IBM PC a success? Of course it was/is. But, for IBM it has been a double-
edged sword. It opened up a new and exciting market, and made the company operate in
ways that would have never been possible before. Before the IBM PC, their systems sold by
themselves, because they were made by IBM. It also considerably reduced their market
share. Many questions remained unanswered: ‘Would it have been accepted in the same way
if it had been a closed system, which had to be licensed from IBM?’ *Would it have been ac-
cepted if it had used IBM components rather than other standard components, especially the
Intel processors?’, ‘Would they have succeeded in the operating system market if they had
written DOS by themselves?’, and so on. Who knows? But, from now on we will refer to
those computer s based on the x86 architecture as PCs.

Oh, and as an academic | would like to give a special mention to the C programming
language, which has given me great heartaches over the years. Oh, yeah, it's used exten-
sively in industry and is extremely useful. It is the programming language that | would auto-
matically use for consultancy work. C is well supported by the major language package de-
velopers, and there is a great deal of code available for it. But for teaching programming, it
is a complete non-starter. Without going into too much detail, the problems with C are not
to do with the basic syntax of the language. It's to do with a thing called pointers. They are
the most horrible things imaginable when it comes to teaching programming languages, and
they basically ‘point’ to a location in memory. Thisis fine, but in most cases you don’t really
have to bother about where in memory things are stored. But, C forces you to use them,
rather than hiding them away. So, in a C programming class, things go very well until about
the 8th week, when pointers are introduced, and then that’s it. Oh, and don’t get me started
on C++.

1.9 DEC

The main rival to IBM before the advent of the PC was DEC (Digital Equipment Corpora-
tion). They were formed in 1957, and grew to become the second largest computer company
in the world. Their unbelievable growth, and fall, is a lesson for any industry. Brothers Ken-
neth Olson and Stanley Olson, and Harlan Anderson started DEC on a start-up capital of
$70000 (which was 70% owned by American Research and Development Corporation). This
should compare this with the start-up capital of Compag, which was $10 million). DEC had
an initial clear strategy, which was to make cheap computers, which appealed to the special-
ist scientific and technical market. At the time, IBM had a quasimonopoly, and DEC did not
have a chance to compete with them on a like-for-like product range. DEC eventualy thrived
because they attacked a small market niche with technically superior products. At the time,
they could not possibly compete with IBM in the larger commercial market, where IBM had
made a considerable investment. So, DEC turned to the scientific and technical market,
which required relatively small and configurable products. DEC could not compete with the
mighty IBM, who had a solid foundation of great marketing and sales teams. DEC was basi-
caly a company of engineers, and they were proud of it. Their main product was the mini-
computer, which was much cheaper than mainframes, but had a great deal of power, and
could be easily configured and managed by a small group.

The big winner for DEC was the PDP (Programmed Data Processor) series, which be-
come the foundation of many scientific and engineering groups. No research group or indus-

46 Introduction

trial company was complete without a PDP computer. By today’s standards, there was more
power in a pocket calculator, as there was in the PDP-8. It was also relatively large, weighing
250 pounds, and came in a rack-mounted unit which was over 6 feet tall. However, the PDP
range was much cheaper than IBM mainframes. For example, the PDP-1 sold for $120000,
while the comparable IBM computer cost millions. The PDP range also introduced compuit-
ing to many young minds. Two exceptional minds, Bill Gates and Paul Allen, cut their teeth
on a DEC PDP-8, where they wrote programs to support the BASIC programming language.

The next great winner for DEC was the VAX (Virtual Address eXtension) computer
which cost hillions to develop, but was a great technical and commercia success. It covered
the complete range of computer hardware from basic terminal interface up to large main-
frame computers. For the first time, DEC produced every part of the computer system: the
operating system, the hardware and the software. One of the great successes of the VAX
range was the VMS operating system (produced by David Culter). It allowed computer pro-
grammers to create programs which had more memory than the computer actualy had (a
virtual memory), and allowed several programs to run at the same time (multitasking). After
the success of VMS, David Culter eventually went on develop a RISC operating system, but
DEC management cancelled the project. After this he left DEC in disgust and went to Micro-
soft to lead the development of the Windows NT operating system. Microsoft and Intel have
strong recruitment policies, and often hire the best brains in the computer industry.

In these days of networked computers, it is difficult to believe, but, at the time, the VAX
range was aradical concept. Before VAX computers, DEC, with their PDP range, was never
touched $7.6 billion. Unfortunately, DEC's bubble burst for two reasons. The first was the
really athreat to IBM’s core market in mainframes. However, the VAX range was. The fu-
ture looked destined to be DEC's, and not IBM’s. In 1986, their sales reached $2 hillion, and
soon recession of the 1990s. It was a situation that many companies had difficulty coping
with, but it could not be avoided. The only reason was one that could have been avoided if
DEC had realized the changing market, and the power of the new 16-bit microprocessors. It
was basicaly the IBM PC which eventualy beat IBM’s mainframes and DEC’s minicom-
puters on performance, at a fraction of the price, from whichever company you wanted. DEC
actualy, in 1979, had the opportunity to enter into the PC market when they allowed Heath-
Kit to sell the PDP-11 minicomputer in kit form. At the time, DEC believed there was more
profit to be made with corporate clients, thus didn’t really believe there was a great market
for PCs. Ken Olsen believed that PCs were a passing fad that would never really evolve into
proper computers. Many computers at the time were bought, played with, and then put in the
cupboard, never to be used again. The great advantages with personal computers were that
they were designed for individuals, whereas minicomputers where designed for businesses.

DEC struggled though the 1990s and could never regain their dominance. As with IBM’s
mainframe business, they relied on their existing customer base buying their new products. A
well-known brand name, with its associated image is extremely important for corporate com-
panies when they buy computers. Most companies believe that brand names such as DEC (as
they were), IBM, Compag and Dell are associated with reliable and well-built products.
Companies buying the brand name kept DEC's brand alive in many cases. As many compa:
nies used DEC equipment, DEC in the 1990s was still a well-respected brand name. They
showed that they could innovate and lead the market with one of the most respected RISC
processors ever made: the Alpha. This had a blistering performance and is till used in many
workstations. It would take severa years before Intel could even match the power of the
Alphadevice. Unfortunately, DEC failed to support the processor with the required software.
DEC, as IBM had, had always seen itself as a computer hardware company, and not a soft-
ware one.

Computer busses 47

So from the 1980s to the 1990s, DEC had gone from being a fast-moving, innovative and
enterprising company, to one which was entrenched in its existing product lines. As PCs
grew in strength, DEC kept developing their minicomputers (as IBM was doing with their
mainframes). DEC's other main problem was that, like IBM, they did everything, from writ-
ing software, design and making the processors, developing hard disk drives, and so on. This
made them vulnerable from specialist companies who could beat DEC in each of the areas. A
focused, specialist company will typically innovate faster than a large, generalized company.
They aso failed to become involved in alliances. This was because DEC felt that they could
turn the market in whichever way they wanted, thus they did not need aliances. At present,
only Microsoft and Intel can claim to not requiring alliance pacts. All other companies typi-
cally need to become involved in aliances to get their non-Intel and non-Microsoft products
accepted in the market.

DEC went from a company that made a profit of $1.31 billion in 1988, to a company that,
in one quarter of 1992, lost $2 hillion. Olsen eventually left the company in 1992, and his
successor brought sweeping changes. Eventually, though, in 1998 it was one of the new PC
companies, Compag, who would buy DEC. For Compag, DEC seemed a good match, as
DEC had never redly created much of a market for PCs, and had concentrated on high-end
products, such as Alpha-based workstations and network servers.

Unlike IBM, DEC did not pull the walls down around themselves. They had found an
excellent market share and were coping well. If not for the advent of the PC, DEC would
probably be the market leader by now. Their VAX range would have probably evolved to
include a closed-system personal computer in which DEC could have held control of (as
IBM would have done). However, the open-system approach of the PC spelt disaster for both
IBM and DEC.

@ Busses, Interrupts and PC Systems

2.1 Busses

The part that makes computers operate and allows devices to be easily plugged in is the com-
puter bus, which allows the orderly flow of data between one device and another. The PC,
and other computer systems, has an amazing number of different types of interfaces and bus
systems, these include the PC bus, ISA bus, PCI bus, CAN bus, AGP bus, games port, paral-
lel port, serial port, and so on.

The main elements of a basic computer system are a central processing unit (or micro-
processor), memory, and 1/O interfacing circuitry. These connect by means of three main
buses: the address bus, the control bus and the data bus. A bus is a collection of common
electrical connections grouped by a single name. Figure 2.1 shows a basic system. External
devices such as a keyboard, display, disk drives can connect directly onto the data, address
and control buses or through the I/O interface circuitry.

Data Bus
1/0 CPU or Memory
@ Interfacing @ Micro- @ (RAM or
Circuitry processor ROM)
External Control
Devices Lines

I] I

| |

Address Bus

Figure 2.1 Block diagram of a simple computer system

Electronic memory consists of RAM (random access memory) and ROM (read only
memory). ROM stores permanent binary information, whereas RAM is a non-permanent
memory and loses its contents on a loss of power. Applications of this type of memory in-
clude running programs and storing temporary information. RAM is normally made up of
either DRAM (Dynamic RAM) or SRAM (Static RAM). DRAM uses a single capacitor and
a transistor to store a single bit of data, whereas SRAM uses six transistors, arranged as a
flip-flop device, to store a single hit of data. DRAM has the advantage that more memory
can be crammed onto a microchip (as only one transistor is required for each bit stored).
DRAM, though, has two major disadvantages: it is relatively slow (because of the charging

50 Busses, interrupts and PC systems

and discharging of the storage capacitors) and it requires that the complete contents of its
memory be refreshed with power many times a second (because the tiny capacitors loose
their charge over a short time). This power refresh is thus wasteful of electrical power and
leads to heat dissipation.

The microprocessor is the main controller of the computer. It only understands binary
information and operates on a series of binary commands known as machine code. It fetches
binary instructions from memory, decodes these instructions into a series of simple actions
and carries out the actionsin a sequence of steps. A system clock synchronises these steps.

To access alocation in memory the microprocessor puts the address of the location on the
address bus. The contents at this address are then placed on the data bus and the microproc-
essor reads the data from the data bus. To store data in memory the microprocessor places
the data on the data bus. The address of the location in memory is then put on the address bus
and data is read from the data bus into the memory address |location.

The classification of a microprocessor relates to the maximum number of bits it can proc-
ess at atime, that is their word length. The evolution has gone from 4-bit, 8-bit, 16-bit, 32-bit
and to 64-hit architectures.

2.1.1 Busspecification

The basic specification of a computer can be determined by analysing the performance of the
busses within the system. Each bus performs a specific function and is suited to the devices
that connect to it. The basic specifications for busses include:

* Datarate (in bytes per second or bits per second). This defines the maximum amount of
data that can be transferred, at a time. For example, the ISA bus has a maximum data
rate of 16 MB/s, Gigabit Ethernet has a maximum data rate of 125MB/s, and the local
bus which connects a PC processor to local memory can have a data rate of over
800MB/s (64 bits at 100MHz).

* Maximum number of devices which connect to the bus. The number of devices which
connect to a bus can have a great effect on its performance as they all provide an electri-
cal loading on the bus and the more that connect to the bus, the greater the overhead of
bus arbitration will be. Standard SCSI only alows a maximum of seven devices to be
connected to the bus, whereas Ethernet can allow thousands of devices to connect to the
bus.

e Busrdiability. This defines how well the bus copes with any errors which occur on the
bus. Some busses, especially in industrial environments, can be susceptible to externaly
generated noise. A good bus should be able to detect if it has received data which has
been corrupted by noise (or was sent incorrectly).

e Datarobustness. This is the ability of the bus to react to faults within the bus or from
the malfunctioning of connected devices. Busses such as the CAN bus can isolate incor-
rectly operating devices.

* Electrical/physical robustness. This is the ability of the bus to cope with electrical
faults, especially due to short-circuits and power surges. Problems can also be caused by
open circuit electrical connections, although these tend not to cause long term damage to
the bus. The physical robustness of a bus is aso important, especially in industrial or
safety critical situations.

® Electrical characteristics. Thisinvolves the basic electrical parameters of the bus, such
as the range of voltage levels used, electrical current ranges, short-circuit protection sys-

Computer busses 51

tem, capacitance and impedance of cables, cross-talk (the amount of interference be-
tween local signal transmissions), and so on.

e Ease-of-connection. This includes the availability of cables and connectors, and how
easy it is to add and remove devices from the bus. Some busses allow devices to be
added or removed while the bus is in operation (hot pluggable). A good example of a
hot-pluggable bus, which is easy to connect to, is the USB.

e Communications overhead. Thisis ameasure of the amount of datathat is added to the
original data, so that it can be sent in areliable way. Local, fast busses normally have a
minimum of overhead, whereas remote, networked busses have a relatively large over-
head on the transmitted data.

e Bus controller topology. This relates to the method that is used to control the flow of
data around the bus. Some busses, such as SCSI, require a dedicated bus controller
which isinvolved in al of the data transfers, whereas the PCI bus can operate with one
or more bus controller devices taking control of the bus. Other busses, such as Ethernet,
have a distributed topology where any device can take control of the bus.

* Software interfacing. This defines how easy it is to interface to the bus with software,
especially when using standard interface protocols, such as TCP/IP or MODBUS.

* Cable and connectors. This defines the range of cables and connectors that can be used
with the bus. There is awide range of cables available, such as ribbon cables (which are
light and are useful inside computer systems), twisted-pair cables (which are easy to con-
nect to and are useful in minimising cross-talk between transmitted signals) and fibre op-
tic cables (which provide a high capacity communications link and minimise cross talk
between transmitted signals). For example, Ethernet can use BNC connectors with coax-
ial cables, RJ-45 connectors with twisted-pair cables and SNA connectors with fibre op-
tic cables.

e Standardisation of the bus. Most busses must comply with a given international stan-
dard, which allows hardware and software to interconnect in a standard form. There are
normally standards for the electrical/mechanical interface, the logical operation of the
bus, and its interface to software. For example, the IEEE has defined most of the
Ethernet standard (especially IEEE 802.3), and the EIA have defined the RS-232 stan-
dard. International standard agencies, such as the IEEE, SO, ANSI and EIA, provide a
more secure standard than a vendor-led standard.

* Power supply modes. Some busses alow power saving modes, where devices can
power themselves down and be powered up by an event on the bus. This is particularly
useful with devices that have a limited power supply, such as being battery supplied.

2.1.2 Buscomponents

Devices connect to each other within a computer using a bus. The bus can either be an inter-
nal bus (such as the IDE bus which connects to hard disks and CD-ROM drives within a PC)
or an external bus (such as the USB which can connect to a number of external devices, typi-
caly to scanners, joypads and printers). Busses typically have a number of basic compo-
nents. a data bus, an optional address bus, control lines and handshaking lines, as illustrated
in Figure 2.2. Other lines, such as clock rates and power supply lines are not normally dis-
played when discussing the logical operation of the bus. If there is no address bus, or no con-
trol and handshaking lines, then the data bus can be used to provide addressing, control and
handshaking. This is typical in serid communications, and helps to reduce the number of
connections in the bus, although will generally slow down the communications.

52 Busses, interrupts and PC systems

Data bus

Address bus /

Device 1 Device 2

Handshaking lines

Control lines \

Computer bus
Figure 2.2 Model of a computer bus

Data bus

The data bus is responsible for passing data from one device and another. This data is either
passed in a serial manner (one bit at atime) or in parallel (severa bits at atime). In aparallel
data bus, the bits are normally passed in a multiple of eight hits at a time. Typical parallel
data busses are 8 bits, 16 hits, 32 bits, 64 bits or 128 bits wide.

The bus size defines the maximum size of the bus, but the bus can be used to transmit any
number of bits which is less than the maximum size. For example, a 32-bit bus can be used
to transmit eight bits, 16 bits or 32 bits at atime. Most modern computer systems use a 64-bit
address bus, athough the software which runs on the computer only uses a maximum of 32
bits at atime (known as 32-bit software).

Parallel busses are normally faster than serial busses (as they can transmit more hitsin a
single operation), but require many more lines (thus requiring more wires in the cable). A
parald data bus normally requires extra data handshaking lines to synchronise the flow of
data between devices. Seria data transmission normally uses a start and end bit sequence to
define the start and end of transmission. Figure 2.3 illustrates the differences between serial
and parallel data busses. Parallel busses are typically used for local busses, or where there are
no problems with cables with a relatively large number of wires. Typically, paralel busses
are SCSI and IDE which are used to connect to hard disk drives, and typical serial busses are
RS-232, and the USB.

Serial communications can operate at very high transmission rates; the main limiting fac-
tor is the transmission channel and the transmitter/receiver electronics. Gigabit Ethernet, for
example, uses a transmission rate of 1Gbps (125MB/s) over high-quality twisted-pair copper
cables, or over fibre optic cables (although this is a theoretical rate as more than one hit is
sent at a time). For a 32-bit parallel bus, this would require a clocking rate of only
31.25MHz (which requires much lower quality connectors and cables than the equivalent
serial interface).

Computer busses 53

Data (sent one bit
at a time)

Serial Data
Bus

Device Device
1 ‘ —» 2

f f

End
bit sequence

Start
bit sequence

.|
Parallel Data
Bus .
Device 3 Device
1 ' 2
I
Handshaking line

for synchronising
data (defines when
data is valid on bus)

Figure 2.3 Serial/parallel data busses

Datatransfer rates

The amount of data that a system can transfer at atime is normally defined either in bits per
second (bps) or bytes per second (B/s). The more bytes (or bits) that can be transferred the
faster the transfer will be. Typically serial busses are defined in bps, whereas parallel busses
use Bls.

The transfer of the data occurs are regular intervals, which is defined by the period of the
transfer clock. This period is either defined as atime interval (in seconds), or as a frequency
(in Hz). For example, if a clock operates at a rate of 1000000 cycles per second, its fre-
quency is 1MHz, and itstime interval will be one millionth of asecond (1 10°°s).

In generd, if f isthe clock frequency (in Hz), then the clock period (in seconds) will be

T="scC Conversion from clock frequency
f to clock time interval

For example, if the clock frequency is 8MHz, then the clock period will be:

T= 1 =0.000000125 sec Example of a calculation of clock
8" 10° time interval from clock frequency
=0.125ns

The datatransfer rate (in bits/second) is defined as:

54 Busses, interrupts and PC systems

Number of hits transmitted per operation (bits)
Transfer time per operation (s)

Data transfer rate (bps) =

If operated with a fixed clock frequency for each operation then the data transfer rate (in
bits/second) will be

Data transfer rate (bps) = Number of bits transmitted per operation (bits)~ Clocking rate (Hz)

For example, the ISA bus uses an 8MHz (8" 10° Hz) clocking frequency and has a 16-bit data
bus. Thus the maximum data transfer rate (in bps) will be:

Datatransfer rate=16" 8" 10° =128" 10° b/s = 128Mbps

Often it is required that the data rate is given in B/s, rather and bps. To convert from bps to
B/s, eight divides the bps value. Thusto convert 128Mbps to B/s

Datatransfer rate=128Mbps

:%8 Mbps=16MB/s

Example conversion from bpsto B/s

For serial communication, if the time to transmit a single bit is 104.167 ns then the maximum
datarate will be

Example conversion to bps for a serial
Data transfer rate = 1 = 9600 bps transmission with a given transfer time
104.167° 10°° interval

2.1.3 Addressbus

The address bus is responsible for identifying the location into which the data is to be passed
into. Each location in memory typically contains a single byte (8 bits), but could also be ar-
ranged as words (16 bits), or long words (32 bits). Byte-oriented memory is the most flexible
as it also enables access to any multiple of eight bits. The size of the address bus thus indi-
cates the maximum addressable number of bytes. Table 2.3 shows the size of addressable
memory for a given address bus size. The number of addressable bytesis given by:

Addressable locations for a

Addressablelocations = 2" bytes given address bus size

where n is the number of bitsin the address bus. For example:

A 1-bit address bus can address up to two locations (that is 0 and 1).

A 2-bit address bus can address 2% or 4 locations (that is 00, 01, 10 and 11).
A 20-bit address bus can address up to 2%° addresses (LMB).

A 32-hit address bus can address up to 2% addresses (4GB).

The units used for computers for defining memory are B (Bytes), kB (kiloBytes), MB
(megaBytes) and GB (gigabytes). These are defined as:

Computer busses 55

KB (kiloByte). Thisis defined as 2'° bytes, which is 1024 B.

M B (megaByte). This is defined as 2° bytes, which is 1024 kB, or 1048576 bytes.

GB (gigaByte). This is defined as 2% bytes, which is 1024MB, or 1048576kB, or
1073741824B.

Table 2.1 gives atable with addressable space for given address bus sizes.

Table 2.1 Addressable memory (in bytes) related to address bus size

Address bus size Addressable memory (bytes) Addressbussize Addressable memory (bytes)

1 2 15 32K
4 16 64K
3 8 17 128K
4 16 18 256K
5 32 19 512K
6 64 20 1M+t
7 128 21 2M
8 256 22 4AM
9 512 23 8M
10 1K* 24 16 M
11 2K 25 32M
12 4K 26 64M
13 8K 32 4Gt
14 16K 64 16GG
* 1K represents 1024 T 1M represents 1 048 576 (1024 K)

1 1G represents 1 073 741 824 (1024 M)

Data handshaking

Handshaking lines are also required to alow the orderly flow of data. This is illustrated in
Figure 2.4. Normally there are several different types of busses which connect to the system,
these different busses are interfaced to with a bridge, which provides for the conversion be-
tween one type of bus and another. Sometimes devices connect directly onto the processor’s
bus; thisis called alocal bus, and is used to provide a fast interface with direct access with-
out any conversions.

The most basic type of handshaking has two lines:

* Sending identification line — thisidentifies that a device is ready to send data.

* Recealving identification line — this identifies that device is a device is ready to receive
data, or not.

56 Busses, interrupts and PC systems

Data/addressing Computer bus type 1
line \
Computer bus type 2
Processor >
Computer bus type 3
P
Handshaking
line — ¥ Direct-connect
_> bus

Figure 2.4 Computer bus connections

Figure 2.5 shows a simple form of handshaking of data, from Device 1 to Device 2. The
sending status is identified by READY ? and the receiving status by STATUS. Normally an
event is identified by a signal line moving from one state to another, this is described as
edge-triggered (rather than level-triggered where the actual level of the signal identifies its
state). In the example in Figure 2.5, initially Device 1 puts data on the data bus, and identi-
fiesthat it is ready to send data by changing the READY ? line from aLOW to aHIGH level.
Device 2 then identifies that it is reading the data by changing its STATUS line from a LOW
to a HIGH. Next it identifies that it has read the data by changing the STATUS line from a
HIGH to a LOW. Device 1 can then put new data on the data bus and start the cycle again by
changing the READY ?line from aLOW to aHIGH.

This type of communication only allows communication in one direction (from Device 1
to Device 2) and is know as simplex communications. The main types of communication are;

® Simplex communication. Only one device can communicate with the other, and thus
only requires handshaking lines for one direction.

e Half-duplex communication. This allows communications from one device to the
other, in any direction, and thus requires handshaking lines for either direction.

* Full-duplex communications. This allows communication from one device to ancther,
in either direction, at the same time. A good example of this is in a telephone system,
where a caller can send and receive at the same time. This requires separate transmit and
receive data lines, and separate handshaking lines for either direction.

Computer busses 57

READY?

Device STATUS Device
1 < 2
iﬁ

DATA

Device 1 wantsto
send data to Device 2

\ -------- HIGH
READY?
LOW

-------- HIGH
STATUS

- / —— LOW
Device 2 is/ Device2is Device2 has
not busy busy read the data

Figure 2.5 Simple handshaking of data

Control lines

Controal lines define the operation of the data transaction, such as:

e Dataflow direction — this identifies that data is either being read from a device or writ-
ten to adevice.

* Memory addressing type — this is typically either by identifying that the address access
is direct memory accessing or indirect memory access. This identifies that the address on
the busis either areal memory location or is an address tag.

* Device arhitration — this identifies which device has control of the bus, and is typically
used when there are many devices connected to a common bus, and any of the devices
are alowed to communicate with any other of the devices on the bus.

2.1.4 Cables

The cable type used to transmit the data over the bus depends on severa parameters, includ-
ing:

The signal bandwidth.

The reliability of the cable.

The maximum length between nodes.
The possibility of electrical hazards.
Power lossin the cables.

58 Busses, interrupts and PC systems

Tolerance to harsh conditions.

Expense and general availability of the cable.
Ease of connection and maintenance.

Ease of running cables, and so on.

The main types of cables used are standard copper cable, unshielded twisted-pair copper
(UTP), shielded twisted-pair cable (STP), coaxial and fibre optic. Twisted-pair and coaxial
cables transmit electric signals, whereas fibre optic cables transmit light pulses. Twisted-pair
cables are not shielded and thus interfere with nearby cables. Public telephone lines generally
use twisted-pair cables. In LANSs they are generally used up to bit rates of 10 Mbps and with
maximum lengths of 100m.

Coaxia cable has a grounded metal sheath around the signal conductor. This limits the
amount of interference between cables and thus allows higher data rates. Typically, they are
used at bit rates of 100 Mbps for maximum lengths of 1km.

The highest specification of the three cables is fibre optic. This type of cable allows ex-
tremely high bit rates over long distances. Fibre optic cables do not interfere with nearby
cables and give greater security, give more protection from electrical damage by external
equipment and greater resistance to harsh environments; they are also safer in hazardous en-
vironments.

Cable characteristics

The main characteristics of cables are attenuation, cross-talk and characteristic impedance.
Attenuation defines the reduction in the signal strength at a given frequency for a defined
distance. It is normally defined in dB/100 m, which is the attenuation (in dB) for 100 m. An
attenuation of 3dB/100m gives a signal voltage reduction of 0.5 for every 100m. Table 2.2
lists some attenuation rates and equivalent voltage ratios; they are illustrated in Figure 2.6.
Attenuation is given by

Calculation of attenuation from

Attenuation = 20log,, g‘//i“ g dB input and output voltages
out @

For example if the input voltage to a cable is 10V and the voltage at the other end is only
7V, then the attenuation is calculated as

Attenuation = 20l0g,o 20 = 3.1dB
elo

Coaxia cables have an inner core separated from an outer shield by a dielectric. They have
an accurate characteristic impedance (which reduces reflections), and because they are
shielded they have very low cross-talk levels. They tend also to have very low attenuation,
(such as 1.2dB at 4 MHz), with a relatively flat response. UTPs (unshielded twisted-pair
cables) have either solid cores (for long cable runs) or are stranded patch cables (for shorts
run, such as connecting to workstations, patch panels, and so on). Solid cables should not be
flexed, bent or twisted repeatedly, whereas stranded cable can be flexed without damaging
the cable. Coaxial cables use BNC connectors while UTP cables use either the RJ-11 (small

Computer busses 59

connector which is used to connect the handset to the telephone) or the RJ-45 (larger connec-
tor which is typicaly used in networked applications to connect a network adapter to a net-
work hub).

The characteristic impedance of a cable and its connectors are important, as all parts of
the transmission system need to be matched to the same impedance. This impedance is nor-
mally classified as the characteristic impedance of the cable. Any differencesin the matching
result in areduction of signal power and produce signal reflections (or ghosting).

Cross-talk is important as it defines the amount of signal that crosses from one signal
path to another. This causes some of the transmitted signal to be received back where it was
transmitted. Capacitance (pF/100 m) defines the amount of distortion in the signal caused by
each signal pair. The lower the capacitance value, the lower the distortion.

Table 2.2 Attenuation rates as a ratio

dB Ratio dB Ratio dB Ratio
0 1.000 10 0.316 60 0.001
1 0.891 15 0.178 65 0.0006
2 0.794 20 0.100 70 0.0003
3 0.708 25 0.056 75 0.0002
4 0.631 30 0.032 80 0.0001
5 0.562 35 0.018 85 0.00006
6 0.501 40 0.010 20 0.00003
7 0.447 45 0.0056 95 0.00002
8 0.398 50 0.0032 100 0.00001
9 0.355 55 0.0018
Attenuation (dB)
o g & 8 g 3 3
1 -
0.1 -

o

s o001

Ei

k=)

(]

0.001
0.0001 oo

Figure 2.6 Signal ratio related to attenuation

60 Busses, interrupts and PC systems

Typical cables used are;

Coaxia cable — cables with an inner core and a conducting shield having characteristic
impedance of either 75Wfor TV signal or 50Wfor other types.

Cat-3 UTP cable — level 3 cables have non-twisted-pair cores with a characteristic im-
pedance of 100W (£15W) and a capacitance of 59 pF/m. Conductor resistance is around
9.2W100 m.

Cat-5 UTP cable — level 5 cables have twisted-pair cores with a characteristic impedance
of 100W (x15W) and a capacitance of 45.9 pF/m. Conductor resistance is around
9W'100 m.

The Electrical Industries Association (EIA) has defined five main types of cables. Levels 1
and 2 are used for voice and low-speed communications (up to 4 Mbps). Level 3 is designed
for LAN data transmission up to 16 Mbps and level 4 is designed for speeds up to 20 Mbps.
Level 5 cables, have the highest specification of the UTP cables and allow data speeds of up
to 100 Mbps. The main EIA specification on these types of cables is EIA/TIA568 and the
ISO standard is |SO/IEC11801.

Table 2.3 gives typica attenuation rates (dB/100 m) for Cat-3, Cat-4 and Cat-5 cables.
Notice that the attenuation rates for Cat-4 and Cat-5 are approximately the same. These two
types of cable have lower attenuation rates than equivalent Cat-3 cables. Notice that the at-
tenuation of the cable increases as the frequency increases. This is due to severa factors,
such as the skin effect, where the electrical current in the conductors becomes concentrated
around the outside of the conductor, and the fact that the insulation (or dielectric) between
the conductors actually starts to conduct as the frequency increases.

The Cat-3 cable produces considerable attenuation over a distance of 100 m. The table
shows that the signal ratio of the output to the input at 1 MHz, will be 0.76 (2.39 dB), then, at
4MHz it is 0.55 (5.24 dB), until at 16 MHz it is 0.26. This differing attenuation at different
frequencies produces not just a reduction in the signal strength but also distorts the signal
(because each frequency is affected differently by the cable. Cat-4 and Cat-5 cables also pro-
duce distortion but their effects will be lessened because attenuation characteristics have flat-
ter shapes.

Table 2.4 gives typical near-end cross-talk rates (dB/100 m) for Cat-3, Cat-4 and Cat-5
cables. The higher the figure, the smaller the cross-talk. Notice that Cat-3 cables have the
most cross-talk and Cat-5 have the least, for any given frequency. Notice also that the cross
talk increases as the frequency of the signal increases. Thus, high-frequency signals have
more cross-talk than lower-frequency signals.

Table 2.3 Attenuation rates (dB/100 m) for Cat-3, Cat-4 and Cat-5 cable

Frequency (MH2) Attenuation rate (dB/100m)
Cat-3 Cat-4 Cat-5

1 2.39 1.96 2.63

5.24 3.93 4.26

10 8.85 6.56 6.56

16 11.8 8.2 8.2

Computer busses 61

Table 2.4 Near-end cross-talk (dB/100 m) for Cat-3, Cat-4 and Cat-5 cable

Frequency (MH2) Near end cross-talk (dB/100m)
Cat-3 Cat-4 Cat-5
1 13.45 18.36 21.65
10.49 15.41 18.04
10 852 13.45 15.41
16 7.54 12.46 14.17

2.2 Interrupts

An interrupt allows a program or an external device to interrupt the execution of a program.
The generation of an interrupt can occur by hardware (hardware interrupt) or software (soft-
ware interrupt). When an interrupt occurs an interrupt service routine (ISR) is caled. For a
hardware interrupt the ISR then communi cates with the device and processes any data. When
it has finished the program execution returns to the original program. A software interrupt
causes the program to interrupt its execution and goes to an interrupt service routine. Typical
software interrupts include reading a key from the keyboard, outputting text to the screen and
reading the current date and time. The operating system must respond to interrupts from
external devices, asillustrated in Figure 2.7.

Operating
system

Program requests I

Interrupt Software interrupts
controller
Interrupt //@W vvvvv 7—5%\‘
Service L
Routine Hardware interrupts
(ISR) 4

Figure 2.7 Interrupt service routine

62 Busses, interrupts and PC systems

2.2.1 Softwareinterrupts
BlOSand the operating system

The Basic Input/Output System (BIOS) communicates directly with the hardware of the
computer. It consists of a set of programs which interface with devices such as keyboards,
displays, printers, serial ports and disk drives. These programs allow the user to write appli-
cation programs that contain calls to these functions, without having to worry about control-
ling them or which type of equipment is being used. Without BIOS, the computer system
would ssimply consist of a bundle of wires and electronic devices.

There are two main parts to BIOS. The first is the part permanently stored in a ROM (the
ROM BIQS). It is this part that starts the computer (or bootstap) and contains programs
which communicate with resident devices. The second stage is loaded when the operating
system s started. This part is non-permanent.

An operating system allows the user to access the hardware in an easy-to-use manner. It
accepts commands from the keyboard and displays them to the monitor. The Disk Operating
System, or DOS, gained its name from its original purpose of providing a controller for the
computer to access its disk drives. The language of DOS consists of a set of commands
which are entered directly by the user and are interpreted to perform file management tasks,
program execution and system configuration. It makes calls to BIOS to execute these. The
main functions of DOS are to run programs, copy and remove files, create directories, move
within a directory structure and to list files. Microsoft Windows calls BIOS programs di-
rectly.

Interrupt vectors

Interrupt vectors are addresses which inform the interrupt handler as to where to find the
ISR. All interrupts are assigned a number from 0 to 255. The interrupt vectors associated
with each interrupt number are stored in the lower 1024 bytes of PC memory. For example,
interrupt O is stored from 0000: 0000 to 0000: 0003, interrupt 1 from 0000: 0004 to
0000: 0007, and so on. The first two bytes store the offset and the next two store the seg-
ment address. Each interrupt number is assigned a predetermined task, as outlined in Table
2.5. Aninterrupt can be generated either by external hardware, software, or by the processor.
Interrupts O, 1, 3, 4, 6 and 7 are generated by the processor. Interrupts from 8 to 15 and inter-
rupt 2 are generated by external hardware. These get the attention of the processor by activat-
ing ainterrupt request (IRQ) line. The I RQO line connects to the system timer, the keyboard
to | RQL, and so on. Most other interrupts are generated by software.

Processor interrupts

The processor-generated interrupts normally occur either when a program causes a certain
type of error or if it is being used in a debug mode. In the debug mode the program can be
made to break from its execution when a break-point occurs. This allows the user to test the
status of the computer. It can also be forced to step through a program one operation at a
time (single-step mode).

Computer busses 63

Table 2.5 Interrupt handling (codes followed by ‘h’ are in hexadecimal)

Interrupt Name Generated by

00 (00h) Divide error processor

01 (00h) Single step processor

02 (02h) Non-maskable interrupt external eguipment
03 (03h) Breakpoint processor

04 (04h) Overflow processor

05 (05h) Print screen Shift-Print screen key stroke
06 (06h) Reserved processor

07 (07h) Reserved processor

08 (08h) System timer hardware viaIRQO
09 (09h) Keyboard hardware viaIRQ1
10 (OAh) Reserved hardware via IRQ2
11 (0Bh) Serial communications (COM2) hardware via IRQ3
12 (0Ch) Serial communications (COM1) hardware via IRQ4
13 (ODh) Reserved hardware viaIRQ5
14 (OEh) Floppy disk controller hardware via IRQ6
15 (OFh) Parallel printer hardware via IRQ7
16 (10h) BIOS — Video access software

17 (11h) BIOS — Equipment check software

18 (12h) BIOS — Memory size software

19 (13h) BIOS — Disk operations software

20 (14h) BIOS — Serial communications software

22 (16h) BIOS — Keyboard software

23 (17h) BIOS — Printer software

25 (19h) BIOS — Reboot software

26 (1Ah) BIOS — Time of day software

28 (1Ch) BIOS — Ticker timer software

33 (21h) DOS - DOS services software

39 (27h) DOS — Terminate and stay resident software

2.2.2 Hardware interrupts

Computer systems either use polling or interrupt-driven software to service externa equip-
ment. With polling the computer continually monitors a status line and waits for it to become
active, whereas an interrupt-driven device sends an interrupt request to the computer, which
is then serviced by an interrupt service routine (ISR). Interrupt-driven devices are normally
better in that the computer is thus free to do other things, whereas polling slows the system
down as it must continually monitor the external device. Polling can also cause problems in
that a device may be ready to send data and the computer is not watching the status line at
that point. Figure 2.8 illustrates polling and interrupt-driven devices.

The generation of an interrupt can occur by hardware or software, asillustrated in Figure
2.9. If adevice wishes to interrupt the processor, it informs the programmable interrupt con-
troller (PIC). The PIC then decides whether it should interrupt the processor. If there is a
processor interrupt then the processor reads the PIC to determine which device caused the
interrupt. Then, depending on the device that caused the interrupt, a call to an ISR is made.
The ISR then communicates with the device and processes any data. When it has finished the
program execution returns to the original program.

A software interrupt causes the program to interrupt its execution and goes to an interrupt
service routine. Typical software interrupts include reading a key from the keyboard, output-

64 Busses, interrupts and PC systems

ting text to the screen and reading the current date and time.

Hardware interrupts allow external devices to gain the attention of the processor.
Depending on the type of interrupt the processor leaves the current program and goes to a
special program called an interrupt service routine (ISR). This program communicates with
the device and processes any data. After it has completed its task then program execution
returns to the program that was running before the interrupt occurred. Examples of interrupts
include the processing of keys from a keyboard and data from a sound card.

As previously mentioned, a device informs the processor that it wants to interrupt it by
setting an interrupt line on the PC. Then, depending on the device that caused the interrupt, a
call to an ISR is made. Each PIC allows access to eight interrupt request lines. Most PCs use
two PICswhich gives access to 16 interrupt lines.

A

Processor ¢———

[—]

<
External External
device device

Interrupt-driven:

Polling: external devices
processor polls interrupt the processor
devices to see if they when they wish to communicate

wish to communicate

Figure 2.8 Polling or interrupt-driven communications

Serial port (IRQ3/4)

Processor

Interrupt

Software
interrupt Interrupt

INT g | controller

£

Interrupt
service
routines

Keyboard (IRQ1) Mouse (IRQ12)

Figure 2.9 Interrupt handling

Computer busses 65

Interrupt vectors

Each device that requires to be ‘interrupt-driven’ is assigned an IRQ (interrupt request) line.
Each IRQ is active high. Thefirst eight (I RQO— RQ7) map into interrupts 8 to 15 (08h—0Fh)
and the next eight (I R@B-I RQL5) into interrupts 112 to 119 (70h—77h). Table 2.6 outlines
the usage of each of these interrupts. When | RQO is made active, the ISR corresponds to
interrupt vector 8. | RQD normally connects to the system timer, the keyboard to | RQ1, and
so on. The standard set-up of these interrupts is illustrated in Figure 2.10. The system timer
interrupts the processor 18.2 times per second and is used to update the system time. When
the keyboard has data, it interrupts the processor with the | RQL line.

System timer

!

IRQO

Keyboard

|

IRQL

Serial port

Processor Programmable IRQ3 (COMm2:)
['NT |«— interrupt
controller (PIC) | .o

Serial port
(COML1)

{

IRQ4

Parallel port
LPT2:

l IRQ5 ()
Interrupt N
service Floppy disk

routine controller

IRQ6

Parallel port
IRQ7 (LPTL)

Figure 2.10 Standard usage of IRQ lines

|

Table 2.6 Interrupt handling

Interrupt Name Generated by
08 (08h) System timer IRQO
09 (09h) Keyboard IRQ1
10 (0Ah) Reserved IRQ2
11 (0OBh) Serial communications (COM2:) IRQ3
12 (OCh) Serial communications (COM1:) IRQ4
13 (ODh) Parallel port (LPT2:) IRQ5
14 (OEh) Floppy disk controller IRQ6
15 (OFh) Parallel printer (LPT1:) IRQ7

112 (70h) Real-time clock IRQ8

113 (71h) Redirection of IRQ2 IRQ9

114 (72h) Reserved IRQ10

115 (73h) Reserved IRQ11

116 (74h) Reserved IRQ12

117 (75h) Math co-processor IRQ13

118 (76h) Hard disk controller IRQ14

119 (77h) Reserved IRQ15

66 Busses, interrupts and PC systems

Data received from seria ports interrupts the processor with | R@3 and | RQ4 and the paral-
lel ports use | RQ6 and | RQ7. If one of the parallel, or serial, ports does not exist then the
IRQ line normally assigned to it can be used by another device. It is typical for interrupt-
driven 1/O cards, such as a sound card, to have a programmable IRQ line which is mapped to
an IRQ line that is not being used.

Note that several devices can use the same interrupt line. A typical example is COML:
and COMB: sharing | RQ4 and COVR: and COVH: sharing | RQ3. If they do share then the
ISR must be able to poll the shared devices to determine which of them caused the interrupt.
If two different types of device (such as a sound card and a serial port) use the same IRQ line
then there may be a contention problem as the ISR may not be able to communicate with
different types of interfaces.

Figure 2.11 shows a sample window displaying interrupt usage. In this case it can be seen
that the system timer uses | RQO, the keyboard uses | RQL, the PIC uses | RQ2, and so on.
Notice that a sound blaster is using | RQ5. Thisinterrupt is normally reserved for the secon-
dary printer port. If there is no printer connected then | RQ5 can be used by another device.
Some devices can have their I/O address and interrupt line changed. An example is given in
Figure 2.12. In this case, the IRQ line is set to IRQ7 and the base address is 378h.

Typical uses of interrupts are:

IRQO: System timer The system timer uses | RQO to interrupt the proc-
essor 18.2 times per second and is used to keep the
time-of-day clock updated.

IRQ1: Keyboard data ready The keyboard uses | RQL to signal to the processor
that data is ready to be received from the key-
board. This datais normally a scan code.

IRQ2: Redirection of IRQ9 The BIOS redirects the interrupt for | R back
here.

Computer Properties
‘iew Resources | Reseive Resources |

} " Direct memary access [DMA)]
! Memary

Syztemn timer

Standard 1001/102-Key or Microsoft Matural Keyboard
Programmable interupt controller

Communications Port [COM2)

Communications Port [COM1)

Creative Labs Sound Blaster

Standard Floppy Disk Contraller

Systern CWOS freal time clock. =l

ok I Cancel |

Figure 2.11 Standard usage of IRQ lines

Computer busses

Printer Port (LPT1) Propetiies

General' Driver Resources |

3 Printer Port (LPT1)
i

¥ Use automatic settings

67

setting based or IEasic configuration 0000 E

Resource hype

| Setting |

Input/Dutput Range; 0378 - 037F
a7

Interrupt Regquest

Change Setting,.. |

Conflicting device list:

Mo conflicts.

|

|

o]

Cancel |

Figure 2.12 Standard set-up of IRQ lines

IRQ3: Secondary seria port (COM2:)

IRQ4: Primary seria port (COM1:)

IRQ5: Secondary parallel port (LPT2:)

IRQ6: Floppy disk controller

IRQ7: Primary parallel port (LPT1:)

IRQ9

The secondary serial port (COMR:) uses | RQB to
interrupt the processor. Typically, COVB: to
COMB: dso use it, athough COVB: may use
| RQ4.

The primary seria port (COML:) uses | RQ4 to
interrupt the processor. Typicaly, COVB: aso
usesit.

On older PCsthe | RQb line was used by the fixed
disk. On newer systems the secondary parallel port
uses it. Typicaly, it is used by a sound card on
PCs which have no secondary parallel port con-
nected.

The floppy disk controller activates the | RQ6 line
on completion of adisk operation.

Printers (or other parallel devices) activate the
| RQ7 line when they become active. As with
| RQb it may be used by another device, if there
are no other devices connected to thisline.

Redirected to | RQ2 service routine.

68 Busses, interrupts and PC systems

Programmableinterrupt controller (PI1C)

The PC uses the 8259 PIC to control hardware-generated interrupts. It is known as a pro-
grammable interrupt controller and has eight input interrupt request lines and an output line
to secondary PIC are then assigned IRQ lines of | R@8 to | RQL5. This set-up is shown in
Figure 2.13. When an interrupt occurs on any of these lines it is sensed by the processor on
interrupt the processor. Originally, PCs only had one PIC and eight IRQ lines (I RQD-1 RQY).
Modern PCs can use up to 15 IRQ lines which are set up by connecting a secondary PIC in-
terrupt request output line to the | RQ2 line of the primary PIC. The interrupt lines on the
| RQ2 line. The processor then interrogates the primary and secondary PIC for the interrupt
line which caused the interrupt.

The primary and secondary PICs are programmed via port addresses 20h and 21h, as
given in Table 2.7. The operation of the PIC is programmed using registers. The IRQ input
lines are either configured as level-sensitive or edge-triggered interrupt. With edge-triggered
interrupts, a change from a low to a high on the IRQ line causes the interrupt. A level-
sensitive interrupt occurs when the IRQ line is high. Most devices generate edge-triggered
interrupts.

I RQ
I RQL
I RQ2
I R®B
I R4
I RB
I RQ6
| RQ7

¢ PIC1

Interrupt
request

AAAAAAAA

' €— |IRG®B
[€——— IR®
l«——— 1RQIO
l«—— 1RrRQ1
l«— 1RQ2
l«——— 1RU3
«— IRrRQ4
l«—— I1RQ5

— PIC 2

Figure 2.13 PC PIC connections

In the IMR an interrupt line is enabled by setting the assigned bit to a 0 (zero). This allows
the interrupt line to interrupt the processor. Figure 2.14 shows the bit definitions of the IMR.
For example, if bit 0 is set to a zero then the system timer on | RQO is enabled.

Table 2.7 Interrupt port addresses

Port address Name Description

20h Interrupt control register Controls interrupts and signifies the end of an
(ICR) interrupt

21h Interrupt mask register Used to enable and disable interrupt lines

(IMR)

Computer busses 69

IRQ7 IRQ5 IRQ3 IRQ1
0 —enable 0 —enable 0 —enable 0 —enable
1 — disable 1 — disable 1— disable 1— disable

Y Y Y Y

IMR (21h)

+ ; i .

IRQ6 IRQ4 IRQ2 IRQO
0 —enable 0 —enable 0 —enable 0 —enable
1 — disable 1— disable 1— disable 1— disable

Figure 2.14 Interrupt mask register bit definitions

In the example code given next the lines | RQD, | RQL and | RQ6 are allowed to interrupt the
processor, whereas, | RQ2, | R, | R4 and | RQ7 are disabled:

_out p(0x21)=0xBC; /* 1011 1100 enabl e disk
(bit 6), keyboard (1) and tiner (0) interrupts */

When an interrupt occurs all other interrupts are disabled and no other device can interrupt
the processor. Interrupts are enabled again by setting the EOI bit on the interrupt control port,
as shown in Figure 2.15.

The following code enables interrupts:

_out p(0x20,0x20); /* EA conmand */

ICR (20h) 0 0 0
1

Interrupt request
level to be acted on
0—000

EOI signal 1—001

1 —end of interrupt 2 —010
and so on.

Figure 2.15 Interrupt control register bit definitions

2.3 Interfacing

There are two main methods of communicating with external equipment, either they are
mapped into the physical memory and given a real address on the address bus (memory
mapped 1/0) or they are mapped into a specia area of input/output memory (isolated 1/O).

70 Busses, interrupts and PC systems

Figure 2.16 shows the two methods. Devices mapped into memory are accessed by reading
or writing to the physical address. Isolated 1/0O provides ports which are gateways between
the interface device and the processor. They are isolated from the system using a buffering
system and are accessed by four machine code instructions. The | N instruction inputs a byte,
or aword, and the QUT instruction outputs a byte, or aword. A high-level compiler interprets
the equivalent high-level functions and produces machine code which uses these instructions.

Interface device
accessed directly
in memory

Interface
device

Pascal
program

/
\

Device

buffering
<>
Interface device
accessed via ports 1/0 ports Interface
with IN and OUT device
assembly language Interface
instructions hardware

Figure 2.16 Memory mapping or isolated interfacing

2.3.1 Interfacing with memory

The 80x86 processor interfaces with memory through a bus controller, as shown in Figure
2.17. This device interprets the microprocessor signals and generates the required memory
signals. Two main output lines differentiate between a read or a write operation (R/w) and
between direct and isolated memory access (M/10). The R/W lineislow when datais being
written to memory and high when data is being read. When m/10 is high, direct memory
access is selected and when low, the isolated memory is selected.

2.3.2 Memory mapped I/O

Interface devices can map directly onto the system address and data bus. In a PC-compatible
system the address bus is 20 bits wide, from address 00000h to FFFFFh (1 MB). If the PC
is being used in an enhanced mode (such as with Microsoft Windows) it can access the area
of memory above 1 MB. If it uses 16-hit software (such as Microsoft Windows 3.1) then it
can address up to 16 MB of physical memory, from 000000h to FFFFFFh. If it uses 32-hit
software (such as Microsoft Windows 95/98/NT/2000) then the software can address up to
4GB of physica memory, from 00000000h to FFFFFFFFh. Figure 2.18 gives a typical
memory allocation.

Computer busses 71

Bus controller

Read/ Write
> RIW
>
> Mo L_Memory/isolated
A
Mi Address bus Memory
icroprocessor mapped
1/0
Data bus Interface
devices
Y Y
Isolated
1/0
.
-

Figure 2.17 Access memory mapped and isolated 1/0

FFFFFFFFh (4 GB)

Extended
memory

00FFFFFFh (16 MB)

Extended
memory

000FFFFFh (1MB)

Video graphics
Text display

0009FFFFh (640 KB)

Application programs
(640 KB)

00000600h

Interrupt vectors
BIOS

00000000h

Figure 2.18 Typical PC memory map
2.3.3 Isolated I/O

Devices are not normally connected directly onto the address and data bus of the computer
because they may use part of the memory that a program uses or they could cause a hardware
fault. On modern PCs only the graphics adaptor is mapped directly into memory, the rest
communicate through a specially reserved area of memory, known asisolated I/O memory.
Isolated 1/0O uses 16-bit addressing from 0000h to FFFFh, thus up to 64 KB of memory
can be mapped. Figure 2.19 shows an example for a computer in the range from 0000h to
0064h and Figure 2.20 shows from 0378h to 03FFh. It can be seen from Figure 2.19 that
the keyboard maps into addresses 0060h and 0064h, the speaker maps to address 0061h

72 Busses, interrupts and PC systems

and the system timer between 0040h and 0043h. Table 2.8 shows the typical uses of the
isolated memory area.

HE

Computer Properties

Yiew Fesources I Feserva Rasources l

 Interrupt request (1RO

 Diract mamory access (Dhdd)

 tdamory

Hardware using the setting

= 044 - 005F
£z 0060 - 0060

Direct memary access controller

In use by unknown device.

Frogrammakle interrupt controller

In use by unknown device.

System timer

In use by unknown device.

Standard 101/102-Key or Microsoft Natural Kevboard
System speaker

In use by unknown device.

0064-0064 Standard 101/102-Key or Microsoft Natural Kevboard i
L YT R YTt [[[[-
oK I Cancel

Figure 2.19 Example 1/O memory map from 0000h to 0064h

Computer Properties

HE

Yiew Resources I Fiesersa Rasourcas l

 Interrupt request (IRQ)
& Input/output (1707

 Direct memory access (DhA)
 Memaory

Setting

Hardware using the setting

| 378~ 037

&, 0358 - 0389
9 1384 - 0368
[=13B80- 0366

= 03F2-03F5
= 03F6 - 03FE
@ 3F7 - 03F7

Frinter Part (LFT1)

Creative Labs Sound Blaster

Inuse by unknown device.

Cirrus Logic 5429730434

Cirrus Logic 5429730434

Inuse by unknown device.

Standard Floppy Disk Controller
Standard IDE/ESDI Hard Disk Controller
Inuse by unknown device.
Comrunications Port (COMT)

EE

Cancel

Figure 2.20 Example 1/0 memory map from 0378h to 03FFh

Computer busses

Table 2.8 Typical isolated I/O memory map

Address Device

000h- 01Fh DMA controller

020h-021h Programmable interrupt controller
040h- 05Fh Counter/Timer

060h- 07Fh Digital I/0

080h- 09Fh DMA controller

0AOh- 0BFh NMI reset

0COh- 0DFh DMA controller

OEOh- OFFh Math coprocessor

170h-178h Hard disk (Secondary IDE drive or CD-ROM drive)
1FOh- 1F8h Hard disk (Primary IDE drive)
200h- 20Fh Game 1/0 adapter

210h-217h Expansion unit

278h-27Fh Second parallél port (LPT2:)
2F8h- 2FFh Second serial port (COM2:)
300h- 31Fh Prototype card

378h- 37Fh Primary parallel port (LPT1:)
380h-38Ch SDLC interface

3A0h- 3AFh Primary binary synchronous port
3BOh- 3BFh Graphics adapter

3Q0h- 3DFh Graphics adapter

3F0Oh- 3F7h Floppy disk controller

3F8h- 3FFh Primary serial port (COM1:)

Inputting a byte from an /O port

The assembly language command to input abyteis

I N AL, DX

73

where DX is the data register which contains the address of the input port. The 8-bit value
loaded from this address is put into the register A

For Turbo/Borland C the equivalent function isi nport b() . Its genera syntax is as fol-

lows:

val ue=i nport b(PORTADDRESS) ;

where PORTADDRESS is the address of the input port and val ue is loaded with the 8-

bit value from this address. This function is prototyped in the header filedos. h.

For Turbo Pascal the equivalent is accessed viathe port[] array. Its general syntax is as

follows:

val ue: =port [PORTADDRESS] ;

where PORTADDRESS is the address of the input port and val ue the 8-hit value at this
address. To gain access to this function the statement uses dos requires to be placed

near the top of the program.

74 Busses, interrupts and PC systems

Microsoft C++ usesthe equivalent i np() function (which is prototypedinconi o. h).

Inputting aword from a port
The assembly language command to input aword is

I N AX, DX

where DX is the data register which contains the address of the input port. The 16-bit
value loaded from this addressis put into the register AX.

For Turbo/Borland C the equivalent functionisi nport () . Its general syntax is as follows:
val ue=i nport (PORTADDRESS) ;

where PORTADDRESS is the address of the input port and val ue isloaded with the 16-
bit value at this address. This function is prototyped in the header filedos. h.

For Turbo Pascal the equivalent is accessed viathe port w] array. Its general syntax is as
follows:

val ue: =port w PORTADDRESS] ;

where PORTADDRESS is the address of the input port and val ue isthe 16-bit value at
this address. To gain access to this function the statement uses dos requires to be
placed near the top of the program.

Microsoft C++ usesthe equivalent i npw() function (which is prototypedin coni o. h).

Outputting a byteto an I/O port

The assembly language command to output abyteis
OUT DX, AL

where DX is the data register which contains the address of the output port. The 8-bit
value sent to this address is stored in register AL.

For Turbo/Borland C the equivalent function is out port b() . Its genera syntax is as fol-
lows:

out port b(PORTADDRESS, val ue) ;

where PORTADDRESS is the address of the output port and val ue is the 8-bit value to
be sent to this address. This function is prototyped in the header file dos. h.

For Turbo Pascal the equivalent is accessed viathe port[] array. Its general syntax is as
follows:

Computer busses 75

por t [PORTADDRESS] : =val ue;

where PORTADDRESS is the address of the output port and val ue is the 8-bit value to
be sent to that address. To gain access to this function the statement uses dos requires
to be placed near the top of the program.

Microsoft C++ usesthe equivalent _out p() function (which is prototypedin coni o. h).

Outputting aword

The assembly language command to input abyteiis:

QUT DX, AX

where DX is the data register which contains the address of the output port. The 16-bit
value sent to this addressis stored in register AX.

For Turbo/Borland C the equivalent function is out port () . Its genera syntax is as fol-
lows:

out port (PORTADDRESS, val ue) ;

where PORTADDRESS is the address of the output port and val ue isthe 16-bit value to
be sent to that address. This function is prototyped in the header file dos. h.

For Turbo Pascal the equivalent is accessed viathe port[] array. Its general syntax is as
follows:

port W PORTADDRESS] : =val ue;

where PORTADDRESS is the address of the output port and val ue isthe 16-bit value to
be sent to that address. To gain access to this function the statement uses dos requires
to be placed near the top of the program.

Microsoft C++ uses the equivalent _out p() function (which is prototyped in coni o. h).

In-line assembly language

Most modern C++ development systems use an inline assembler which alows assembly lan-
guage code to be embedded with C++ code. This code can use any C variable or function
name that is in scope. The __asmkeyword invokes the inline assembler and can appear wher-
ever aC statement islegal. The following codeisasimple __asmblock enclosed in braces.

__asm

{
/* Initialize serial port */

nmov dx, 0x01; /* COMR: */

nmov al , 0xD2; /* serial port parameters */
nmov ah, 0x0; /* initialize serial port */
int 14h;

i ne_status=ah;
modem st at us=al ;

76 Busses, interrupts and PC systems

Note these statements can also be inserted after the __asmkeyword, such as:

__asmnov dx, 0x01; /* COMR: */
__asmnov al, 0xD2; /* serial port parameters */
__asmnov ah, 0x0; /* initialize serial port */

__asmint 14h;
__asmline_status=ah;
__asmnodem st at us=al ;

2.4 PC Systems

In selecting a PC many different components must be considered, especialy in the way that
they connect. Figure 2.21 outlines some of the component parts and the decisions that have
to be made on each component.

Processor:
Type

Clock speed

|

Cache size (Level-1)

Socket (SEC/Socket)

3 Internal Busses:
ISA
PCI
IDE
AGP
E

+ xternal Busses:

+ Graphics:

Type (Chipset)

Processing (3D/Accelerator)
Memory (Local memory)
Interface (PCI/AGP)

+ Memory:
Type (DIMM/SDRAM/SIMM)
}E Cache (Level-2)
Speed

Parallel Port + Storage:

Serial Port Type (Optical/Hard disk/Floppy disk)
scsl DE Interface (SCSI/IDE)

USB Capacity (KB/MB/GB)

Figure 2.21 PC components
The Top 5 things that affect the general performance of a PC (in ranked order) are:

1. Processor. The type of the processor, its speed, its socket (which helps in upgrading in
the future), its interface to Level-2 cache, and so on. Additionally, MMX™, (whichisan
Intel trademark, but many read it as MultiMedia eXtension) can speed-up multi-media
applications.

2. Local Memory. Most operating systems can run multiple programs, each of which re-
quire their own memory space. When the system runs out of electronic memory (local
memory), it uses the hard disk for an extra storage (to create a virtual memory). Hard
disk accesses are much dower than eectronic memory, thus the system is severely
slowed down if there is alack of local electronic memory. Most modern operating sys-

Computer busses 77

tems require agreat deal of local electronic memory to operate.

3. Graphics adaptor. The graphics adaptor can be a major limiting factor on the perform-
ance of a system. New interfaces, such as AGP, considerably speed-up graphics per-
formance. Another limiting factor is the amount of local memory on the graphics adap-
tor. The more memory, the higher the resolution that can be used, and the more colours
that can be displayed. AGP is overcoming this limiting factor, asit allows the main elec-
tronic memory to be used to store graphics images.

4. Cache capacity. Cache memory has caused a great increase in the performance of a
system. If a cache controller makes a correct guess, the processor merely has to examine
the contents of the cache to get the required information. A level-1 cache is the fastest
and is typically connected directly to the processor (normally inside the processor pack-
age), and the level-2 cache is on the motherboard.

5. Hard disk capacity/interface. The hard disk typically has an affect on the running of a
program, as the program and its component parts must be loaded from the disk. The in-
terface is thus extremely important as it defines the maximum data rate. SCS| has fast
modes which give up to 40MB/s, while IDE gives a maximum rate of 33MB/s. The ca-
pacity of the disk also can lead to problems as the system can use unused disk capacity
of avirtual memory capacity.

Obvioudly, applications that are more specific will be affected by other factors, such as:

Internet access. Affected mainly by the network connection (especially if a modem is
used).

CD-ROM access. Affected by the interface to the CD-ROM.

Modelling softwar e. Affected by mathematical processing.

3D game playing. Affected mainly by the graphics adaptor and graphics processing
(and possibly the network connection, if playing over a network).

2.8 Practical PC system

At one time PCs were crammed full of microchips, wires and connectors. These days they
tend to be based on just a few microchips, and contain very few interconnecting wires. The
main reason for this is that much of the functionality of the PC has been integrated into sev-
eral key devices. In the future, PCs may only require one or two devices to make them oper-
ate.

The architecture of the PC has changed over the past few years. It is now mainly based on
the PCI bus. Figure 2.22 shows the architecture of a modern PC. The system controller is the
real heart of the PC, as it transfers data to and from the processor to the rest of the system.
Bridges are used to connect one type of bus to ancther. There are two main bridges: the sys-
tem controller (the north bridge), and the bus bridge (the south bridge).

78 Busses, interrupts and PC systems

' SRAM cache I

memory

__ t SRAM tag address
i DRAM
System DRAM
Controller DRAM memory
Data bus
3)
;:: > PCI bus connections
(typicaly up to 5 devices)
5 ' Motherboard clock
us i eed
bridge : *

Processor clock ; :
speed : 1 Differing clock
: | speeds

Figure 2.22 Local bus architecture

An example PC motherboard isillustrated in Figure 2.23. The main components are;

Processor. The processor is typically a Pentium processor, which has a SEC (single-
edge connector) or fits into a socket. The processor can run at a faster rate than the rest
of the motherboard (called clock multiplication). Typically, the motherboard runs at
50MHz, and the clock rate is multiplied by a given factor, such as 500MHz (for a” 10
clock multiplier).

System controller. Controls the interface between the processor, memory and the PCI
bus.

PCI/ISA/IDE Xcelerated Controller. Controls the interface between the PCI bus and
the ISA, USB and IDE busses.

I/O controaller. Controls the interface between the ISA and the other busses, such as the
paralé bus, seria bus, floppy disk drive, keyboard, mouse, and infrared transmission.
DIMM sockets. This connects to the main memory of the computer. Typicaly it uses
either EDO DRAM and SDRAM (Synchronous DRAM). SDRAM transfers data faster
than EDO DRAM as its uses the clock rate of the processor, rather than the clock rate of
the motherboard.

Flash memory. Used to store the program which starts the computer up (the boot proc-
ess).

PCI connectors. Used to connect to PCl-based interface adaptors, such as a network
card, sound card, and so on.

ISA connectors. Used to connect to 1SA-based interface adaptors, such as a sound
cards.

IDE connectors. Used to connect to hard disks or CD-ROM drives. Up to two drives

Computer busses

79

can connect to each connector (IDEO or IDEL) as a master or a slave. Thus, the PC can

support up to four disk drives on the IDE bus.

TV out socket. Used to provide an output which will interface to a TV, using either

PAL (for the UK) or NSTC (for the US).

Level-2 cache (SRAM). Used to store information from DRAM memory.
Video memory. Used to store video information.

Graphics controller. Used to control the graphics output.

Audio codec. Used to process audio data.

Audio Audio
codec (OP4-M L)

Level 2 cache

SRAM § Pentium
| | | | processor
Video :

capture
PCI processor 82430TX
connectors System
Controller

. TV-out
ISA device 82430TX
connectors DIMM
e sockets PCI/ISA/IDE
. i e Xcelerator (PIIX4)
Flash | . . - [PC87307UL
memory R I/0 Controller
device | i
! Video Graphics IDE
memory controller connectors

Figure 2.23 AN430TX board

2.5 Exercises

The following questions are multiple choice. Please select from a—d.

241 Which type of memory does not lose its contents when the power is withdrawn:
(& ROM (b) RAM
(c) DRAM (d SRAM
24.2 Which type of memory uses a single capacitor and a transistor to store a single bit

of data:

80

243

244

245

24.6

247

24.8

24.9

24.10

2411

Busses, interrupts and PC systems

(@ EPROM (b) ERAM
(0 DRAM (d SRAM

Which type of memory requires its memory of be refreshed at regular intervals:

(@ EPROM (b) ERAM
(0 DRAM (d SRAM

If aprocessor can operate on four bytes at atime, which isits classification:

(8 8-bit (b) 16-bit
(@ 32-bit (b) 64-bit

Which of the following defines the amount of memory that can be accessed:

(@ Addressbus (b) Contral lines
(c) Handshakinglines (d) Databus

Which of the following defines the number of bits that can be transmitted at a
time:

(@ Addressbus (b) Contral lines
(c) Handshakinglines (d) Databus

Which is the maximum data throughput for a 32-bit paralel data bus with a
clocked data rate of 10MHz:

(@ 4MBIs (b) 40MBI/s
(c) 32MBIs (d 320MBI/s

Which is the maximum data throughput for a serial bus which has a bit transmis-
sion time of 69.44ns:

(@ 6944bps (b) 9600bps
(c) 1440bps (d) 14400bps

How much memory can be accessed with a 20-bit address bus:

(@ 20B (b) 20KB
(© 1MB (d) 20MB

How much memory can be accessed with a 32-hit address bus:

(8 32B (b) 32KB
(c 1GB (d 32MB

Which interrupt does the primary serial port of a PC (COM1:) normally use:
(@ IRQO (b) IRQ3

Computer busses 81

24.12

24.13

24.14

24.15

24.16

24.17

24.18

24.19

24.20

2421

(o) IRQ4 (d IRQ7

Which interrupt does the secondary serial port of a PC (COM2:) normally use:
@ IRQO (b) IRQ3

(c IRQ4 (d) IRQ7

Which interrupt does the system timer on the PC use:

@ IRQO (b) IRQ3

(c IRQ4 (d) IRQ7

Which interrupt was used to increase the amount of interrupts from 8 to 16:
(8 IRQO (b) IRQ1

(© IRQ2 (d IRQ15

Which interrupt is used by the keyboard:

(@ IRQO (b) IRQ1L
(9 IRQ2 (d IRQ15

What does | SR stand for:

(@ Interval Status Register (b Interrupt Status Register
(c) Interrupt Service Routine (d) Interrupt Standard Routine

How isisolated memory differentiated from memory added 1/O:

(@) Different address bus (b Different data bus
(c) Control line differentiates between them (Memory/I solated)
(d) Thereisno differentiation asthey are physically the same

How many addresses can be accessed in the address range 0000h to FFFFh:

(8 32768 (32kB) (b) 65536 (64kB)
() 262144 (256kB) (d 1048576 (LMB)

How much physical memory can a DOS-compatible program access:

(8 32768 (32kB) (b) 65536 (64kB)
() 262144 (256kB) (d) 1048576 (LMB)

Which address is the interrupt control port register:

(8 0002h () 0020h
(c) 0200h (d 2000h

Which is normally the base address for the primary parallel port:

(@ 0378h () 0278h
() 03Fsh (d) 02Fsh

82 Busses, interrupts and PC systems

24.22 Contrast the operation of polling and interrupt-driven software when interfacing to
external equipment.

2423 Access aPC and determine the following:

Interrupt Device connected
IRQ1
IRQ3
IRQ5
IRQ7
IRQ9
IRQ11
IRQ13
IRQ15
1/0 address Device connected
0060h, 0064h
0070h

0090h

00FOh

0278h

02F8h

0378h

03F8h

DMA channel Device connected
DMAO
DMA1
DMA?2
DMA3

2.6 Notes from the author

This chapter has introduced some of the key concepts used in defining computer systems. So,
what is it that differentiates one PC system from another? It is difficult to say, but basically
its all about how well bolted together systems are, how compatible the parts are with the
loaded software, how they organise the peripherals, and so on. The big problem though is
compatibility, and compatibility is all about peripherals looking the same, that is, having the
same |RQ, the same |/O address, and so on.

The PC is an amazing device, and has allowed computers to move from technical special-
ists to, well, anyone. However, they are also one of the most annoying of pieces of technol-
ogy of all time, in terms of their software, their operating system, and their hardware. If we
bought a car and it failed at least a few times every day, we would take it back and demand
another one. When that failed, we would demand our money back. Or, sorry | could go on
forever here, imagine a toaster that failed half way through making a piece of toast, and we
had to turn the power off, and restart it. We just wouldn’t allow it.

So why does the PC lead such a privileged life. Well it’'s because it’s so useful and multi-
talented, although it doesn’t really excel at much. Contrast a simple games computer against
the PC and you find many lessons in how to make a computer easy-to-use, and to configure.

Computer busses 83

One of the main reasons for many of its problems is the compatibility with previous systems
both in terms of hardware compatibility and software compatibility (and dodgy software, of
course). The big change on the PC was the introduction of proper 32-bit software, Windows
95/NT.

In the future systems will be configured by the operating system, and not by the user.
How many people understand what an IRQ is, what I/O addresses are, and so on. Maybe if
the PC faced some proper competition it would become easy to use and become totally reli-
able. Then when they were switched on they would configure themselves automatically, and
you could connect any device you wanted and it would understand how to configure (we're
nearly there, but it's still not perfect). Then we would have a tool which could be used to
improve creativity and you didn’t need a degree in computer engineering to use one (in your
dreams!). But, anyway, it's keeping a lot of technical people in a job, so, don't tell anyone
our little secret. The Apple Macintosh was a classic example of a well-designed computer
that was designed as a single unit. When initially released it started up with messages like
I’mglad to be out of that bag and Hello, | am Macintosh. Never trust a computer you cannot lift.

So, apart from the IBM PC, what are the all-time best computers? A list by Byte in Sep-
tember 1995 stated the following:

1. MITS Altair8800 11. IBM AT

2. Applell 12. Commodore Amiga 1000
3. Commodore PET 13. Compaq Deskpro 386

4. Radio Shack TRS-80 14. Apple Macintosh 1

5. Osborne 1 Portable 15. Next Nextstation

6. Xerox Star 16. NEC UltraLite

7. IBMPC 17. Sun SparcSation 1

8. Compagq Portable 18. IBM RY6000

9. Radio Shack TRS-80 Model 100 19. Apple Power Macintosh
10. Apple Macintosh 20. I1BM ThinkPad 701C

And the Top 10 computer people as:

1. DanBricklin (VisiCalc) 11. Philippe Kahn (Turbo Pascal)
2. Bill Gates (Microsoft) 12. Mitch Kapor (Lotus 123)

3. Steve Jobs (Apple) 13. Donald Knuth (TEX)

4. Robert Noyce (Intel) 14. Thomas Kurtz

5. Dennis Ritchie (C Programming) 15. Drew Major (NetWare)

6. Marc Andreessen (Netscape Communications) 16. Robert Metcalfe (Ethernet)

7. Bill Atkinson (Apple Mac GUI) 17. Bjarne Strousstrup (C++)

8. TimBerners-Lee (CERN) 18. John Warnock (Adobe)

9. Doug Engelbart (Mouse/Windows/etc) 19. Niklaus Wirth (Pascal)

10. Grace Murray Hopper (COBOL) 20 Seve Wozniak (Apple)

One of the classic comments of all time was by Ken Olson at DEC, who stated, that there is no reason
anyone would want a computer in their home. This seems farcical now, but at the time, in the 1970s,
there were no CD-ROMSs, no microwave ovens, no automated cash dispensers, and no Internet. Few
people predicted them, so, predicting the PC was also difficult. But the two best comments were:

Computers in the future may weigh no more than 1.5 tons. Popular Mechanics.
| think thereis a world market for maybe five computers, Thomas Watson, chairman of 1BM, 1943.

3 I Interfacing Standards

3.1 Introduction

The type of interface card used greatly affects the performance of a PC system. Early models
of PCs relied on expansion options to improve their specification. These expansion options
were cards that plugged into an expansion bus. Eight slots were usually available and these
added memory, video, fixed and floppy disk controllers, printer output, modem ports, serial
communications and so on.

There are eight main types of interface busses available for the PC. The number of data
bits they handle at atime determines their classification. They are:

PC (8-bit) ISA (16-bit)

EISA (32-bit) MCA (32-bit)

VL-Local Bus (32-bit) PCI bus (32/64-bit)

SCSI (16/32-hit) PCMCIA (16-bit)
3.2 PCbus

The PC bus uses the architecture of the Intel 8088 processor which has an external 8-bit data
bus and 20-hit address bus. A PC bus connector has a 62-pin printed circuit card edge con-
nector and a long narrow or half-length plug-in card. As it uses a 20-bit address bus, it can
address a maximum of 1 MB of memory. The transfer rate is fixed at 4.772 727 MHz; thus, a
maximum of 4772727 bytes can be transferred every second. Dividing a crystal oscillator
frequency of 14.31818 MHz by three derives this clock speed. Figure 3.1 shows a PC card.
Figure 3.2 defines the signal connections. The direction of the signal is taken as input if a
signal comes from the ISA bus controller. An output comes from the dlave device and in-
put/output identifies that the signal can originate from either the ISA controller or the slave
device.
The following gives the 8-bit PC bus connections:

SAO- SA19 Address bus (input/output). The lower 20 bits of the system address bus.

DO- D7 Data bus (input/output). The eight data bits that allow a transfer between the
busmaster and the slave.

AEN Address enable (output). The address enable allows for an expansion bus board
to disable its local /O address decode logic. It is active high. When active, ad-
dress enable indicates that either DMA or refresh arein control of the busses.

86

ALE

I/0 CH CHK

SD7
SD6
SD5
SD4

SD3

RDY

Computer busses

xvzi1
0o
8220
=
=

o}
XYZ11

MS1432

|

-

il

Figure 3.1 PC card

Clock (output). The bus CLK is set to 4.772727 MHz (for PC bus and 8.33
MHz for ISA bus) and provides synchronisation of the data transmission (it is
derived from the OSC clock).

Address latch (output). The bus address latch indicates to the expansion bus that
the address bus and bus cycle control signals are valid. It thus indicates the be-
ginning of a bus cycle on the expansion bus.

1/0 read (input/output). 1/O read command signal indicates that an 1/0 read
cycleisin progress.

1/0 write (input/output). 1/0 write command signal indicates that an I/O write
bus cycleisin progress.

System memory read (output). System memory read signal indicates a memory
read bus cycle for the 20-bit address bus range (Oh to FFFFFh).

System memory write (output). System memory write signal indicates a mem-
ory read bus cycle from the 20-bit address bus range (0h to FFFFFh).

Bus ready (input). The bus ready signal allows a slave to lengthen the amount
of time required for abus cycle.

I/l0 CH RDY

SD2
SD1
SDO
AEN
SA19
SA18
SA17
SA16
SA15
SAl4
SA13
SA12
SAll
SA10
SA9
SA8
SA7
SA6
SA5
SA4
SA3
SA2
SAl
SA0

Bl

B2

B5

A6

B6

Al

A19
A20
A21
A22
A23
A24
A25
A26
A27
A28
A29
A30
A3l

Al7

A7
A8
A9
1
All
Al12
A13
Al4
A15
A16

B8
B9
B10
Bl
Bl
1
Bl
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31

GND

RESET DRV

+5V
IRQ2

-5V
DRQ2

IoW
IOR

DACK3
TIC
ALE
+5V
osc
GND

12v
ows
+12V
GND
SMEMW

SMEMR
DRQ3
DACKL
DRQL
REF
CLK
RQ7
RQ6
RQ5
RQ4
RQ3

Figure 3.2 PC card connections

Interfacing standards 87

ows Zero wait states (input). The zero wait states (or no wait state) allows aslave to
shorten the amount of time required for a bus cycle.

DRQL- DR DMA request (input). The DMA request indicates that a slave device is request-
ing a DMA transfer.

DACK1- DACK3 DMA acknowledge (output). The DMA acknowledge indicates to the request-
ing slave that the DMA is handling its request.

T/ C Terminal count (input). The terminal count indicates that the DMA transfer has
been successful and all the bytes have been transferred.

REF Refresh (output). The refresh signal is used to inform a memory board that it
should perform arefresh cycle.

| RQR- | RQ7 Interrupt request. The interrupt request signals indicate that the slave deviceis
requesting service by the processor.

RESET DRV Reset drive (output). The reset drive resets and plug-in boards connected to the
ISA bus.

osC Crystal oscillator (output). The crystal oscillator signal is 14.31818 MHz signal
provided for use by expansion boards. This clock speed is three timesthe CLK
speed.

| O CH CHK 1/0 check (input). The 1/O check signal indicates that a memory slave has de-

tected a parity error.

+5V, 12V and GND Power (output).

3.3 ISA bus

IBM developed the ISA (Industry Standard Architecture) for their 80286-based AT (Ad-
vanced Technology) computer. It had the advantage of being able to deal with 16 bits of data
at atime. An extra edge connector gives compatibility with the PC bus. This gives an extra 8
data bits and 4 address lines. Thus, the ISA bus has a 16-bit data and a 24-bit address bus.
This givesa maximum of 16MB of addressable memory and like the PC bus it uses a fixed
clock rate of 8 MHz. The maximum data rate is thus 2 bytes (16 bits) per clock cycle, giving
a maximum throughput of 16 MB/sec. In machines that run faster than 8MHz the ISA bus
runs slower than the rest of the computer.

A great advantage of PC bus cards is that they can be plugged into an ISA bus connector.
ISA cards are very popular as they give good performance for most interface applications.
The components used are extremely cheap and it is a well-proven reliable technology. Typi-
ca applications include serial and parallel communications, networking cards and sound
cards. Figure 3.3 illustrates an ISA card and Figure 3.4 gives the pin connections for the bus.
It can be seen that there are four main sets of connections, the A, B, C and D sections (Figure
3.4). The standard PC bus connection contains the A and B sections. The A section includes
the address lines AO-A19 and 8 data lines, DO-D7. The B section contains interrupt lines,
IRQO-IRQ7, power supplies and various other control signals. The extra ISA lines are added
with the C and D section; these include the address lines, A17-A23, data lines D8-D15 and
interrupt lines IRQ10-1RQ14.

88

IO CH CHK

Computer busses

e—0
- —1
Xyz11 g ~ g XYZ11 E_
- s E o § E
m = = =
m] — - |
- H |

ISA extension PC bus connector

Figure 3.3 ISA card

JUB5885°883
g8

5883885883

HHHHHHH

Figure 3.4 ISA bus connections

The Industry Standard Architecture (ISA) bus uses a 16-hit data bus (D0-D15) a 24-hit
address bus (AO—-A24) and the CLK signal is set to 8.33 MHz. The SMEMR and SVEMwIines
are used to transfer data for the lowest 1 MB (Oh to FFFFFh) of memory (where the S prefix
can be interpreted as small memory model) and the signals MEMR and MEMA are used to
transfer data between 1 MB (FFFFFh) and 16 MB (FFFFFFh). For example if reading from
the address is 001000h then the SMEMR the line is made active low, while if the address

1F0000h then the MEMR line is made active. For a 16-bit transfer the M6 and | 016 lines are
made active.
The extra 16-bit | SA bus connections are:

Al7- A23

SBHE

D8- D15

Address bus (input/output). The upper 7 bits of the address of the
system address bus.

System byte high enable (output). The system byte high enable
indicates that data is expected on the upper 8 bits of the data bus
(D8-D15).

Data bus (input/output). The upper 8 bits of the data bus provides
for the second half of the 16-bit data bus.

Interfacing standards 89

i
2

Memory read (input/output). The memory read command indicates
amemory read when the memory addressis in the range 100000h —
FFFFFFh (16 MB of memory).

MEMW Memory write (input/output). The memory write command indi-
cates a memory write when the memory address is in the range
100000h — FFFFFFh (16 MB of memory).

ML6 16-bit memory slave. Indicates that the addressed slave is a 16-bit
memory save.

| 016 16-bit 1/0 slave (input/output). Indicates that the addressed daveis
a 16-bit 1/0 dave.

DRQO, DRQ5- DRQ7 DMA request lines (input). Extra DMA request lines that indicate
that aslave device isrequesting aDMA transfer.

DACKO, DACK5- DACK7 DMA acknowledge lines (output). Extra DMA acknowledge lines
that indicate to the requesting slave that the DMA is handling itsre-
quest.

MASTER Bus ready (input). This allows another processor to take control of
the system address, data and control lines.

| RQ@-1RQL2, 1 RQL4, | RQL5 Interrupt requests (input). Additional interrupt request signals that
indicate that the slave device is requesting service by the processor.
Note that the | RQL3 lineis normally used by the hard disk and in-
cluded in the IDE bus.

3.3.1 Handshaking lines

Figure 3.5 shows a typical connection to the ISA bus. The ALE (or sometimes known as
BALE) controls the address latch and, when active low, it latches the address lines A2-A19
to the ISA bus. The addressis latched when ALE goes from a high to alow.

The Pentium’s data bus is 64 bits wide, whereas the ISA expansion bus is 16-bits wide. It
is the bus controller’s function to steer data between the processor and the slave device for
either 8-bit or 16-bit communications. For this purpose the bus controller monitors Beo—
BE3, W/R, M16 and 1016 to determine the movement of data.

When the processor outputs a valid address it sets address lines (AD2-AD31), the byte
enables (BEo—BE3) and sets ADS active. The bus controller then picks up this address and
uses it to generate the system address lines, SAO-SA19 (which are just a copy of the lines
A2-A19. The bus controller then uses the byte enable lines to generate the address bits SAO
and SAL.

The EADS signal returns an active low signal to the processor if the external bus control-
ler has sent avalid address on address pins A2-A21.

It can be seen from Figure 3.6 that the BEO line accesses the addresses ending with Oh,
4h, 8h and Ch, the BEL1 line accesses addresses ending with 1h, 5h, 9h and Dh, the BE2 line
accesses addresses ending with 02, 5h, Ah and Eh, and so on.

Thus if the BEO line is asserted and the SBHE line is high then a single byte is accessed
through the DO-D7. If aword is to be accessed then SBHE is low and DO-D15 contains the
data.

20 Computer busses

- > -
D0-D31
DO0-D15
Data
latch
Memory
Processor
A A
Address
< > >
-~ =1 latch -
A2-A31 A2-A19
ISA
y BEO-BE3 ’ bus
\
' ALE N
A0 N
Al N
_ Bus [T JE— o
EADS controller | SBHE -
M16
1016

Figure 3.5 [ISA bus connections

BEz —m| 000Ah

BEL —» 0009h

BEQ ——» 0008h

BE3 —»| 0007h c D E F
BE2 — 0006h

8 9 A B
BEL —»| 0005h —
BEQ —®| 0004h 4 5 6 7
BE3 ——»| 0003h
BE2 —m| 0002h 0 ! 2 s
BEL —»| 0001lh BEO BE1 BE2 BE3
BEO —m| 0000h DO-D7 D16-D23

D8-D15 D24-D31
Figure 3.6 Address decoding

Table 3.1 shows three examples of handshaking lines. The first is an example of a byte trans-
fer with an 8-bit slave at an even address. The second example gives a byte transfer for an 8-
bit slave at an odd address. Finally, the table shows a 2-byte transfer with a 16-bit slave at an
even address.

Table 3.1 Example handshaking lines

BEO BEl1 BE2 BE3 1016 M16 SBHE SAO SAL Data

0 1 1 1 1 1 1 0 0 SD0-SD7
1 0 1 1 1 1 0 1 0 SD8-SD15
0 0 1 1 0 1 0 0 0 SD0-SD15

If 32-bit datais to be accessed then BEO-BE3 will each be 0000 which makes 4 bytes active.
The bus controller will then cycle through SAO, SA1 = 00 to SAQ, SA1 = 11. Each time the
8-bit datais placed into a copy buffer which is then passed to the processor as 32 bits.

Interfacing standards 91

332 82344IC

Much of the electronics in a PC has been integrated onto single ICs. The 82344 IC is one that
interfaces directly to the ISA bus. Figure 3.7 shows its pin connections.

o
a7
24 —HNMOON~ w >
5, ESwZRREZEY G213t 20 & oy
w uwowsT O HNMLO WO~ —NMm<Ln
B O e B oo PR b L LR R ERbl
O/ B v i GO0GBAGE. &+ 1 QVEXEXLELEEEEELFHEHHHNDD DANDDANDDNDDND DADADDAND

2
353
iEg
wmmmm mam RHON® =
IBIZBRHRBIABH HBL 2839535285 985082 89383903 n8ee rareasr 3838
>
[[aN 8 w =
23 of g, 2.5.g 2 883
— b
032 58 0 ounaner D8 £E ESE0Ry onntRBD L1304
OINMTONORO NN T X ITLIRO—coNE-S T =2 o
NMINONOD AT T A NNNNAN<——NOF 000QO000DX N Q- On:Imﬁ S Jmo o) OO M2 S0 D
LLLLLLLL LLLLLLL LLLLLLLLL XX >G5 XXX 7) 81--- ZZT v o .00.0"

Figure 3.7 82344 IC connections

3.4 Other legacy busses

Two other busses which were used in the past are:

MCA. IBM developed the Microchannel Interface Architecture (MCA) bus for their
PS/2 computers. This bus is completely incompatible with ISA bus. It can operate as a
16-bit or 32-bit data bus. The main technical difference between the MCA and PC/ISA
(and EISA) is that the MCA is an asynchronous bus whereas PC/ISA/EISA use a syn-
chronous bus. An synchronous bus works at a fixed clock rate whereas an asynchronous
bus data transfer is not dependent on a fixed clock. Asynchronous buses take their tim-
ings from the devices involved in the data transfer (that is, the processor or system
clock). The original MCA specification resulted in a maximum transfer rate of 160
MB/sec. Very few manufacturers have adopted MCA technology and it is mainly found
in IBM PS/2 computers.

EISA. Severa manufacturers developed the EISA (Extended Industry Standard Archi-
tecture) busin direct competition to the MCA bus. It provides compatibility with PC/ISA
but not MCA. The EISA connector looks like an ISA connector. It is possible to plug an
ISA card into an EISA connector, but a specia key alows the EISA card to be inserted

92 Computer busses

deeper into the EISA bus connector. It then makes connections with a 32-bit data and
address bus. An EISA card has twice the number of connections over an ISA card and
there are extra slots that allow it to be inserted deeper into the connector. The ISA card
only connects with the upper connectors because it has only a single key dot. EISA uses
a synchronous transfer at a clock speed of 8MHz. It has a full 32-bit data and address
bus and can address up to 4GB of memory. In theory the maximum transfer rate is 4
bytes for every clock cycle. As the clock runs at 8MHz, the maximum data rate is
32MB/s.

3.5 Comparison of different types

Data throughput depends on the number of bytes being communicated for each transfer and
the speed of the transfer. With the PC, ISA and EISA buses this transfer rate is fixed at 8
MHz, whereas the PCI and VL local buses use the system clock. For many applications the
ISA bus offers the best technology as it has been around for along time, it gives a good data
throughput and it is relatively cheap and reliable. It has a 16-bit data bus and can thus trans-
fer data at a maximum rate of 16 MB/s. The EISA bus can transfer four bytes for each clock
cycle, thus if four bytes are transferred for each clock cycle, it will be twice as fast as ISA.
The maximum data rates for the different interface cards are:

PC 8MB/s

ISA 16 MB/s

EISA 32MB/s

VL-Loca bus 132 MB/s (33MHz system clock using 32-bit transfers)
PCI 264MB/s (33MHz system clock using 64-bit transfers)
MCA 20 MB/s (160MB/s burst)

The type of interface technology used depends on the data throughput. Table 3.2 shows some
typical transfer data rates. The heaviest usage on the system are microprocessor to memory
and graphics adaptor transfers. These data rates depend on the application and the operating
system used. Graphica user interface (GUI) programs have much greater data throughput
than programs running in text mode. Notice that a high specification sound card with re-
cording standard quality (16-bit samples at 44.1kHz sampling rate) only requires a transfer
rate of 172kB/s. The transfer rate for audio is:

Transfer rate (hi - fi) = Number of samplesper second” Number of bytesper sasmple (B/s)
=(44100" 2)" 2 Bls
=176400B/s
_ 166400
1024

=172.26 kB/s

A standard Ethernet local area network card transfers at data rates of up 10Mbps (about
1MB/s), although new fast Ethernet cards can transfer at data rates of up to 100 Mbps (about
10MBY/s). These transfers thus require local bus type interfaces.

Interfacing standards 93

Table 3.2 Example transfer rates

Device Transfer rate Application

Hard disk 4 MB/s Typical transfer

Sound card 88 KB/s 16-bit, 44.1kHz sampling

LAN 1 MB/s 10 Mbps Ethernet

RAM 66 MB/s Microprocessor to RAM

Serial Communications 1KB/s 9600 bps

Super VGA 15 MB/s 1024 768 pixels with 256 colours

For a graphics adaptor with a screen resolution of 1024° 640, 64k colours (16-bit colour)
which is updated 20 times per second (20Hz), the maximum transfer rate will be;

Transfer rate (max) = No.of pixelsper screen” No.of bitsper pixel” No. of screen updates (b/s)
= (1024 640)" 16" 20 b/s
=209715200h/s

_ 209715200 26214400B/s

_ 26214400

=—————=246.2 MB/s

1024° 1024
The PCI Loca bus has become a standard on most new PC systems and has replaced the VL-
local bus for graphics adaptors. It has the advantage over the VL-loca bus in that it can
transfer at much higher rates. Unfortunately, most available software packages cannot use
the full power of the PCI bus because they do not use the full 64-bit data bus. PCI and VL-
local bus are discussed in the next chapter.

3.6 Exercises

36.1 How many bits are transferred in a single clock operation with the PC bus:
@ 1 (b) 8
(0 16 (d) 32

3.6.2 What isthe standard clock frequency which is used in ISA transfers:

@& 4.77MHz (b) 8MHz
(0 10MHz (d) 16MHz

3.6.3 What is the maximum transfer rate for the ISA bus:

(@ 8MBIs (b 16 MB/s
(c) 32MBIs (d) 64MB/s

3.6.4 What is the maximum transfer rate for the EISA bus:

(& 8MBIs (b 16 MB/s

94

3.65

3.6.6

3.6.7

3.6.8

3.6.9

3.6.10

Computer busses

(c) 32MBIs (d) 64MB/s
What is the main disadvantage of PC, ISA and EISA busses:

(@ They areincompatible with each other.
(b) They use afixed clock frequency.
(c) They are not supported in PC systems.
(d) They are expensive to implement.

What is the maximum transfer rate (in B/s) for a 10Mbps Ethernet adaptor:
(& 1MBI/s (b) 1.221 MB/s
(c) 10MBIs (d) 100MB/s

Prove, apart from the MCA bus, the transfer rates given in Section 3.5.

If an audio card is using 16-bit sampling at arate of 44.1kHz. Prove that the trans-
fer rate for stereo sound will be 176.4 KB/sec. Show, also that thisis equivalent to
1.411 Mbps (note that this is approximately the standard rate for CD-ROMs). Can
this rate be transferred using the ISA bus? Using this transfer rate, determine the
maximum transfer speed of a” 32 CD-ROM drive.

Determine amount of data for a single screen that required to be transferred for the
following screen resolutions:

(a) 800" 600, 65536 colours (960000 B/s).
(b) 800" 600, 16 777 216 colours (1440000 B/s).
(c) 1024" 768, 65536 colours (1572864 B/s).

Determine the maximum number of screen updates that is required for a 32-bit
PCI bus for each of the above.

Identify the main ISA signal lines and how they are used to transfer data. Answer
clearly the following:

(@) The main differences between a PC card and an I SA card.

(b) How the byte enable lines are used.

(c) How isaread or write transfer identified?

(d) How is a memory read/write or isolated memory read/write transfer identi-
fied?

(e) Theinterrupt lineswhich are available on a PC card and an I SA card.

Typically what devices could be supported by a PC card (that is, what devices use
the interrupts that a PC card can support). How does this related to the original
specification of the PC?

Interfacing standards

3.7 Summary of interface bus types

95

Devices connect to the microprocessor using a computer bus. The specification of this bus
defines the transfer speed between the microprocessor and the connected device. Peripherals
can connect to the computer using either an internal or an externa interface. Table 3.3 and
Table 3.4 give some examples of typical PC interfaces.

Table 3.3 Internal PC busses

Bus

Description

Typical devices
connected

I1SA

PCI

AGP

IDE

PCMCIA

The ISA (International Standards Architecture) bus uses an inter-
face card which has two edge connectors (as one of the connec-
tors was used on the original PC bus). Typical ISA connections
are network interface adaptors, video camera interfaces and
sound cards. It can transfer up to 16 bits at a time, and uses a
fixed transfer rate of 8MHz (8000000 transfers every second).
Max: 16 MB/s.

The PCI (Periphera Component Interconnection) bus is used
connect internal devices in the PC. Typically, modern PCs have
at least four PCI adaptors, which are used to connect to network
interface cards, graphics adaptors and sound cards. It can transfer
up to 32 bits at atime. Max: 132MB/s (more typically, 66 MB/s).

The AGP (Accelerated Graphics Port) bus is used solely to con-
nect to video cards. It uses a special connector, but builds on the
standard PCI bus. It is optimised so that it uses the main memory
of the computer, and does not depend on memory on the graphics
card. Max: 500MB/s.

The Integrated Drive Electronics (IDE) bus is used solely to con-
nect to either hard disk drives, or CD-ROM drives. There are two
IDE connections: IDEO and IDE1. Up to two devices can connect
to each IDE connector, thus up to four disk drives can connect to
the IDE bus.

Max: 16.6 MB/s (IDE, Mode 4).

The Personal Computer Memory Card International Association
(PCMCIA) interface alows small thin cards to be plugged into
laptop, notebook or palmtop computers. It was originaly de-
signed for memory cards (Version 1.0) but has since been
adopted for many other types of adapters (Version 2.0), such as
fax/modems, sound-cards, local area network cards, CD-ROM
controllers, digital 1/0 cards, and so on. Most PCMCIA cards
comply with either PCMCIA Type Il or Type Ill. Type | cards
are 3.3mm thick, Type Il take cards up to 5mm thick, Type Ill
allows cards up to 10.5mm thick. A new standard, Type IV,
tekes cards which are greater than 10.5mm. Type Il interfaces
can accept Type | cards, Type Il accept Types | and Il and Type
1V interfaces accept Types |, Il and I11. It uses a 16-hit data trans-
fer.

Network adaptor
Video camera adaptor
Sound card

Network adaptor
Video camera adaptor
Sound card

Graphics adaptor

Hard disk drive
CD-ROM drive

Network adaptor
M odem adaptor
Sound card
CD-ROM drive
Memory upgrade
Hard disk drive

96 Computer busses
Table 3.4 External PC busses
Bus Description Typical devices
connected
SCSl The SCSI (Small Computer System Interface) busis used to connect to Hard disk drive
awide range of device, and istypically used in workstations and Apple CD-ROM drive
computers. It alows devices to connect using cables which connect Scanner
from one to the next (a daisy chain). In its standard form, it allows for ~ Back-up device
up to seven devices to be connected (SCSI-1), but new standards
(SCSI-11/111) alow up to 15 devices to connect. It can also be used as
an internal bus system or as an external one. In Apple Macs and work-
stations, SCSI is used to connect hard disk drives.
Max: 5MB/s (SCSI-1), 20MB/s (SCSI-I1), 40MB/s (SCSI-I11).
RS-232 RS-232isastandard interface on most computer systems. It uses seriadl Modem
communications, to send data one bit at atime. The speed of thetranss Mouse
fer is set by the bit rate. Typical bit rates are 9600 bps (bits per second), File Transfer (with
14400bps, 28800bps and 56000bps. It is typicaly used to transfer Null Modem cable)
files from one computer to another, and to connect to a modem. In the
past, it was also used to connect to a serial mouse, but mice typicaly
connect using the PS/2 mouse connector. Typically PCs have one or
two serial port, which are given the names: COM1: and COM2:.
Max: 7KB/s (56 000 bps)
Parallel The parallel port transfers 8 bits of data at atime. In its standard form, Printer
port it only supports a maximum rate of 150kbps, with only one connected CD-ROM drive
device. It aso dows down the processor, as it must involve itself with Scanner
the transfer of the data. In its standard form, it uses a 25-pin D-type File Transfer (with
connector to connect to the PC. As technology has improved a new Parallel Port cable)
standard named ECP (Extended Capabilities Port Protocol)/EPP (En-
hanced Parallel Port) was been developed to increase the data rate, and
also to connect multiple devicesto it (asthe SCSI bus). These allow the
transfer of data to be automatically controlled by the system, and not
by the processor. Typicaly, now with ECP/EPP, severa devices can
connect to the port, such as a printer, external CD-ROM drive, scanner,
and so on. Its main advantage is that it is standard on most PCs, but
suffers from many disadvantages. Typically PCs have a single parallel
port, which is given the name LPT1.. In many cases, it is being re-
placed by USB.
Max: 150kbps (Standard), 1.5Mbps (ECP/EPP)
usB USB (Universal Serial Bus) allows for the connection of medium Digital speakers
bandwidth peripherals such as keyboards, mice, tablets, modems, tele- Scanner
phones, CD-ROM drives, printers and other low to moderate speed Printer
external peripheras in a tiered-star topology. It is typicaly used to Video camera
connect to printers, scanners, external CD-ROM drives, digital speak- Modem
ers, and so on. It is likely to replace the printer port and the serial port Joystick
for connecting external devices. Monitor
Max: 12 Mbps.
PS/2 Initially, on PCs, the serial port was used to connect a mouse to, which Keyboard
Port/ reduced the number of connections to the serial port. Typicdly, these Mouse
Key- days, a mouse connects to the PS/2 mouse port, which has a small 5-
board pin DIN-like connector. This is the same connector that is used to con-

nect to the keyboard.

Interfacing standards 97

3.8 The fall of the MCA bus

The leading computer companies of 1987 were Intel, IBM, Compag, and Microsoft, but a
special mention must go to Apple, Commodore and Sun Microsystems, who fought bravely
against the growing IBM PC market. With the release of the IBM AT and now the PS/2,
IBM had presented Intel with a large market for their 80286 design, but it was Compag who
increased it even more with the release of the DeskPro 386. The new Intel processors were
now so successful that Intel had little to do, but try to keep up with demand, and try to stop
cloners from copying their designs. They could now consolidate on their success with other
support devices, such as the 80387-math coprocessor. By the end of the year, their only real
mass-market competitor was Motorola, who released their excellent Motorola 68030 micro-
processor, which would become the foundation of many Apple Mac computers. Within a few
years, Motorola would become extremely reliant on the Apple Mac, while Intel held onto the
PC market.

At IBM, things were hectic. They were phasing out their IBM PC range, and introduced
their new computer range, the PS/2. IBM realised that the open architecture of the IBM PC
held little long term advantages for them, as clone manufacturers could always sell com-
puters at much less cost than themselves. IBM had large development teams, sales staff, dis-
tribution centres, training centres, back up support, and so on. They thus need to make
enough profit on each computer to support all these functions. The PS/2 was their attempt at
trying to close the open system, and make one that required to be licensed through them-
selves. It was also an attempt at trying to reduce some of the problems that were caused with
the limited technology of the IBM PC. One of the main problems was the PC bus, which
allowed users to easily add peripheras to the computer, by plugging them into the system
with a standard card which had a standard edge connector. Initialy this used an 8-bit data
bus, and operated at 8MHz, which gave a data throughput of 8MB/s (as one byte is 8 hits).
This was upgraded on the AT computer with the AT bus, which used a 16-bit data bus, giv-
ing a data throughput of 16 MB/s. The great advantage of the AT bus, was that it was still
compatible with the PC bus, where PC bus cards could still be slotted into AT bus connectors
(soon to be renamed the ISA, or Industry Standard Bus).

The AT bus was fine for slow devices, such as printer, modems, and so on. However, for
colour graphics it was far to slow. For example, a colour monitor with a resolution of
640" 480, with 256 colours (8 bits per colour), and a screen refresh of 25Hz, requires a data
throughput of 7680000 B/s (640 480" 1" 25 B/s).

IBM’s concept was to use a bus, which, intentionally, had a different connector to the PC
and the AT bus, which did not use a fixed clock rate, and could thus operate at the speed of
the processor, which was now moving above 20MHz. The MCA (Micro Channel Architec-
ture) bus also used a 32-bit data bus, which alowed data throughputs of 100MB/s.

The PS/2 was an excellent concept, and was boosted by an extensive advertising cam-
paign that boosted performance improvement over previous systems. It was the right move,
and the system looked well, with 3.5-inch disk drives, and a rugged gray plastic case. Com-
puters had never look so professional. For many businesses, they were heaven sent. How-
ever, the fly-in-the-ointment for IBM was Compag, who had previously released their Desk-
Pro 386. The big problem with the PS/2 range was that the lower-end PCs were based on the
8086 and the 80286, and against the 80386-based Compaq they seem slow. The initia range
was:

Model 30, which used the, at the time, relatively sow, 8MHz 8086. IBM also intro-

98 Computer busses

duced the Model 25, also with an 8MHz Intel 8086, which had no hard drive, and a re-
duced keyboard for $1350.

Model 50 and 60, which used a 10MHz 80286 with MCA.

Model 80, which used a20MHz 80386 with MCA.

In 1988, the battle lines had been drawn the year before. IBM was trying to pull the market
towards their architecture. The strength, of this was highlighted by John Akers, the then IBM
Chairman:

We're trying to change the habits of an awful |ot of people. That won’t happen overnight, but
it will bloody well happen.

IBM thought they would win the battle, and the older IBM PC architecture would die off.
Several companies went with IBM, including Tandy (Tandy 5000MC), Dell and Olivetti. But
the first signs of problems for IBM came when 61 companies devel oped the 32-bit version of
the ISA bus, the EISA (Extended Industry Standard Architecture). This dlowed 32 hits to be
transferred at a time. Unfortunately, it was still based on an 8 MHz clocking rate, which gave
it a data throughput of 32MBJ/s. It was supported by the leading computer companies, such
as Compaq Computer, AST, Epson, Hewlett-Packard, NEC Technologies, Olivetti, Tandy,
Wyse, Zenith, and Microsoft. Along with this, Compag Computer and eight other companies
started developing the ISA standard to improve the AT-bus. Rod Canion, the Compag Com-
puter and CEO, showed his company’ s resistance to the MCA bus:

If people are going to buy Micro Channel, they're going to buy it from IBM.

The market would eventually reject the MCA bus, mainly because of the weight of the new
x86, 80386 computers on the market. It would take a company such as Intel to develop a
totally new bus system: the PCI bus.

3.9 Notes from the author

Oh boy, is it confusing! There are so many different busses used in systems, especially in
PCs. There are three main reasons for the number of busses: legacy, compatibility and effi-
ciency. With legacy, busses exist because they have existed in the past, and are required to
be supported for the time being. With compatibility, busses allow the segmentation of a sys-
tem and provide, most of the time, a standard interface that allows an orderly flow of data
and allows manufactures to interconnect their equipment. If allowed, many manufacturers
would force users to use their own versions of busses, but the trend these days is to use inter-
nationally defined busses. Efficient busses have been designed to take into account the type
of data that is being transmitted. So, in the end, we win.

Sometimes, though, the bus technology does always win, and manufacturers who try to
develop systems on their own can often fail miserably. This has been shown with the MCA
bus, which was an excellent step in bus technology, and made up for the mistakes made in
the original PC design. But, IBM tried to force the market, and failed. In these days, it is
international standards that are important. Products to be accepted in the market or in the
industry require an international standards body to standardise them, such as the |EEE, the
SO, ANS and so on. Without them, very few companies will accept the product. A classic

Interfacing standards 99

case of an open standard winning against a closed system was Betamax video which was a
closed standard produced by Sony, up against VHS which was an open standard. VHS was
the inferior technology, but won because there were more companies willing to adopt it.

The days of having a single computer bus for internal and external connections are a
long way off (if ever), as there will always be some peripherals that need to transmit data in
a certain way that differs from other peripheral. Also standard technology always tends to
win over newer, faster technology. Few companies can now define new standards on their
own.

Before we start to look at the technology behind computer busses, here is my All-Time
Best Busses (in order of their current and future usefulness).

TOP BUSSES OF ALL-TIME AWARD

1 PCI bus. An excellent internal bus that provides the backbone to most modern PCs. It
has been a complete success, and provides for many modern enhancements, such as
plug-and-play technology, steerable interrupts, and so on. In its acceptance speech
for Best Bus of All-Time it would thank the VL-local bus for starting the trend toward
local bus technology. The VL-local bus held-the-fort for a short time, and gave a
short-term fix for high-speed graphics transfers, but Intel busily developed a proper
bus which could support other high-speed devices. With local bus technology, low-
speed devices were pushed away from the processor, and can only communicate with
it over a bridge. A worthy champion that is the bedrock of modern computing. It even
has a few trump cards yet to play (including increasing its transfer rate, integration
with the AGP port, and increasing its data bus size).

2. SCSI bus. The most general-purpose of the external busses and in many respects as
great as the PCI bus, but it looses out to the PCI busin that it is not used in as many
computers. It provides an easy method of connecting external devicesin a daisy-chain
connection. New standards for the SCS bus support fast transfer rates (over
40MBY/s), and allow up to 15 internal or external devices to be connected.

3. USB. An external bus which shows great potential in the way that it integrates many
of the low and medium bit rate devices onto a single bus system. New standards for
USB are trying to also integrate high bit rate devices. It supports hot plug-and-play,
which allows users to connect and disconnect peripherals from the bus, while the
computer is still on.

4, AGP port. The PCI, SCS and USB busses are a long-way out in front to the other
busses, and the forth place in the table goes to AGP port which overcomes the last
great problem area of the PC: the graphics adaptor. AGP provides for fast transfer
rates using the PCI bus as a foundation, and allows the PC to use local memory for
graphics transfers.

5. PCMCIA. A long way behind in fifth place comes the PCMCIA bus, which is an ex-
ternal bus that provides for easy upgrades on notebook technology. It highlights how
small and compact interface devices can be. Typical additions are modem and net-
work adaptors. Its future will depend on how the USB bus is used in the future.

And let’s not forget the busses which have helped us to get to this point. We may call them
legacy busses, but they have allowed us to get to where we are now, and still provide a useful
function. Thus, the awards for the Most Hel pful Busses of the Past (in order of their previous
usefulness) are given next.

100

1

Computer busses

MOST HELPFUL BUSSES OF ALL-TIME

ISA bus. The ISA bus competed head-to-head with the MCA, and although it was
much slower, it triumphed, as it was compatible with the older PC bus. For many
years its performance was acceptable (16MB/s), but the advent of the graphical user
interface was the beginning of the end for it. It has sadly seen the number of PCI slots
increasing while it has seen its own connections reduce from over five, to less than
two.

RS-232 port. A classic bus, which is compatible (almost) with all the other RS-232
ports on every computer in the world. It provides a standard way to talk to devices,
such asinstruments, other computers, and modems.

IDE bus. A rather quiet and unassuming internal bus, which does its job of interfac-
ing to disk drives well, without, these days, much troubles. It has reasonable perform-
ance (over 14MB/s) and does not really have any intentions of ever becoming any-
thing other than a disk interfacing bus. It, like Ethernet, has overcome early retire-
ment by increasing its transfer rate, but still keeping compatibility with previous sys-
tems. Its main competitor is SCS, which is unlikely to ever to beat it for compatibility
and cogt, thus it is likely to stay around for much longer than some of its earlier PC
partners. For systems which have less than four disk drives (in a combination of CD-
ROM or hard disks) it is still the best choice, and is often integrated in the PC moth-
erboard.

VL-Local bus. The bus that showed the way for local bus technology, especially the
PCI bus. It always knew that it was a short-term fix, but it did its job effectively and
quietly. Apart from the 80486, it was one of leading factors which increased the adop-
tion of Microsoft Windows (asit allowed the fast transfer to graphical data).

Parallel port. Another classic bus which was created to purely interface to an exter-
nal printer, but has now been developed to support a multi-attachment busses with
reasonable transfer rates (over 150kB/s).

Let’s not forget about the great-grandfather of all the PC busses: the PC bus. It is now en-
joying a well-earned retirement (but can be pulled back from retirement at any time). It isthe
bus that has launched a million computers.

Finally, the relegation zone for computer busses (in order of the problems that they have
caused or for their lack of adoption).

RELEGATION ZONE FOR BUSSES

I SA bus. Like the 8088 processor and DOS, it has a Dr Jekyll and Mr Hyde appear-
ance, and is both the top computer bus of all-time, and worst bus of all-time. It is the
bus, which, in the past, has provided the foundation for upgrading the PC, and has
gently handed over its mantel to the PCI bus. But, it has caused lots of problems as it
quickly fossilized the connection between the processor and the peripherals. Its major
problems were it fixed rate transfer rate, the way that it handled interrupts, its lack of
address lines (only up to 24), its lack of data lines (only up to 16), and the way that
fast, medium and slow devices all connected to the same bus (thus allowing slow de-
vices to ‘hog’ the bus). It started to show its age when 32-hit processors appeared
and as the motherboard speeds increased. The beginning of its end was the introduc-
tion of Microsoft Windows 3, which started to properly use a graphical user interface.
The VL-local bus quickly came in as a stand-in. From there on, local bus technology

Interfacing standards 101

become the standard way to transfer large amounts of data.

MCA bus. IBM tried to pull the standard for bus technology back to a closed system
with the MCA bus. It failed as it came up against the technologically inferior 1SA, as
the | SA bus was an open standard.

VME bus. Powerful, complex and very misunderstood. Avoid in the same way that
you would avoid the plague. The designers decided to create a bus that had every-
thing, all that's lacking is kitchen sink.

RS-232 port. Another bus, along with the 1SA bus, which manages to get into the Top
5 busses of all-time, and also into the relegation zone. It is an extremely useful bus,
but suffers because of a lack of speed and its incompatibility (even although everyone
isworking to the same standard, the level of implementation of the standard varies).
Keyboard connection/serial port mouse connection. Two extremely limited connec-
tors. The keyboard connector has virtually no intelligence built into it, and provides
for limited sensing of the keyboard type, or extra functionality. Its only real advantage
isthat it looks so different from other connectors. Another advantage is that is has al-
lowed the integration of the new PS2-type mouse connector. Serial port mouse con-
nections have always caused problems, mainly because the use up one of the serial
port connection.

Well that’s the bus awards. As we gtill have half a page to complete, here's the winners of
the specialist technologies:

Local Area Networking bus award:

1

Ethernet (one horse race). Although ISDN deserves a mention.

Wide Area Networking bus award:

1

3.

In

1

2.

3.

In
1.

ATM. A proper networking technology that integrates real-time signals (such as
speech) and non-real-time data (such as computer data) into a networking tech-
nology.

Gigabit Ethernet. Uses standard Ethernet technology to gives an extremely fast
transfer rate, but still suffers from the problems of the original Ethernet specifica-
tion.

FDDI. A reliable ring-based networking technology that allows for the transmis-
sion of data over a large geographical area.

strumentation bus award:

RS422. An excellent bus which allows multiple attachments to a single bus, and
up to 1Mbps.

|EEE-488. An easy-to-use, robust, widely used, standardised and easy-to-connect-
to bus, which israther limited, but extremely useful.

CAN bus. An excellent multi-drop system, for closely connected devices, especially
in automobile applications. It overcomes some of the problems that Ethernet has,
as devices are so closely connected.

terconnecting protocol award.

TCP/IP (one horse race).

4 || PCl Bus

4.1 Introduction

The PC was conceived at a time when processor clock speeds were measured in several
MHz. Initially this was set at 4.77MHz, and then increased to 8MHz. The PC and ISA bus-
ses fossilised with these clock frequencies. In the first few years of its design, the mother-
board ran at the same speed as the processor. Soon, with improvements in silicon design, the
speed of the processor was increased to tens of megahertz. Soon the maximum limit of the
motherboard was reached and the only way to break this limit was to double or treble the
motherboard clock speed. This limit was set at 33MHz or 50MHz. Processor speed has since
been risen to over 500MHz. Local bus technology uses the speed of the motherboard, rather
than a fixed rate. Most new PCs have a motherboard speed of 100MHz, which is at least
twice as fast as 50MHz motherboards.

The greatest need for greater data throughput is the video adaptor. A high-resolution
video screen with high screen update rate can require burst rates of over 100MB/s. For ex-
ample a screen of 1024" 640 with 16.7 million colours (24-bit colour) will require the follow-
ing amount of memory for a single screen:

Memory =1024" 640" 3 B
=1966080B

_ =1966080 _, oo

1024° 1024

If this screen is updated 10 times every second (10Hz) then the data throughput is

Datatransfer =1.875" 20 MB/s
=37.5MB/s

This transfer rate is far too fast for busses such as ISA and EISA, and the only solution is a
fast 32-bit bus, transferring at a rate of at least 33MHz. The maximum transfer rates for vari-
ouslocal bustransfers are as follows:

Databus size Transfer clock (MHZz) Datatransfer rate (MB/s)

16 33 66
16 50 100
32 33 132
32 50 200
32 100 320

64 50 400

104 Computer busses

Intel have developed a standard interface, named the PCI (Peripheral Component Inter-
connection) local bus, for the Pentium processor. This technology allows fast memory, disk
and video access. A standard set of interface |Cs known as the 82430 PCI chipset is available
to interface to the bus. Figure 4.1 shows how the PCI bus integrates into the PC. The proces-
sor runs at a multiple of the motherboard clock speed, and is closely coupled to a local
SRAM cache (first-level, or primary, cache). If the processor requires data it will first look in
the primary cache of its contents. If it is in this cache it will read its contents, and there is
thus no need to either read from the second level cache or from DRAM memory. If the data
is not in the primary cache then the processor slows downs to the motherboard clock speed,
and contacts the system controller (which contains a cache controller). The controller then
examines the second-level cache and if the contents are there, it passes the data onto the
processor. If it does not have the contents then DRAM memory is accessed (which is arela-
tively slow transfer).

The system controller also interfaces to PCI bus, which is running at the motherboard
clock frequency. This then bridges onto other busses, such as ISA, IDE and USB, each of
which is running at different clock rates. The PCI bus thus provides a foundation bus for
most of the internal and external busses.

Local bus design involves direct access to fast address and data busses. The ISA bus was
a great bottleneck because it could only run at 8MHz. This chapter discusses the VL-local
bus and the PCI bus. The PCI busis now the main interface bus used in most PCs, and is rap-
idly replacing the ISA bus for internal interface devices. It is a very adaptable bus and most
of the external busses, such as SCSI and USB connect to the processor viathe PCI bus.

SRAM cache
memory

SRAM tag address

DRAM
addresses
: L ﬁ
Processor /t’-)\ddress System DRAM
us Controller DRAM memory
Data bus
Data —
g bus
? PCI bus connections
(typicaly up to 5 devices)
B : Motherboard clock
us s eed
bridge : *
‘Processor dlock : g
speed : i Differing clock

i speeds

Figure 4.1 Local bus architecture

PCI bus 105

The PCI bus transfers data using the system clock, and can operate over a 32-hit or 64-bit
data path. The high transfer rates used in PCI architecture machines limit the number of PCI
bus interfaces to two or three (normally the graphics adapter and hard disk controller). If data
is transferred at 64 bits (8 bytes) at a rate of 33MHz then the maximum transfer rate is
264 MBY/s. Figure 4.1 shows the PCI architecture. Notice that an I/O bridge gives access to
ISA, IDE and USB. Unfortunately, to accommodate for the high data rates and for a reduc-
tion in the size of the interface card, the PCI connector is not compatible with PC, ISA or
EISA.

The maximum data rate of the PCI bus is 264 MB/s, which can only be achieved using
64-hit software on a Pentium-based system. On a system based on the 80486 processor this
maximum data rate will only be 132 M B/s (that is, using a 32-bit data bus).

The PCI local busis a radical redesign of the PC bus technology. Table 4.1 lists the pin
connections for the 32-bit PCI local bus and it shows that there are two lines of connections,
the A and the B side. Each side has 64 connections giving 128 connections. A 64-bit, 2" 94-
pin connector version is also available. The PCI bus runs at the speed of the motherboard
which for the Pentium processor is typically 33 MHz.

Table 4.1 32-bit PCI local bus connections

Pin SdeA SdeB Pin SdeA SdeB
1 -12v TRST 32 AD17 AD16

2 TCK +12V 33 C/BE2 +3.3V

3 GND T™MS 34 GND FRAME
4 TDO TDI 35 IRDY GND

5 +5V +5V 36 +3.3V TRDY
6 +5V INTA 37 DEVSEL GND

7 INTB INTC 38 GND STOP
8 INTD +5V 39 LOCK +3.3V

9 PRSNTL Reserved 40 PERR SDONE
10 Reserved +5V(1/0) 41 +3.3V SBO

11 PRSNT2 Reserved 42 SERR GND
12 GND GND 43 +3.3V PAR

13 GND GND 44 C/BE1L AD15
14 Reserved Reserved 45 AD14 +3.3V
15 GND RST 46 GND AD13
16 CLK +5V(1/0) 47 AD12 AD11
17 GND GNT 48 AD10 GND
18 REQ GND 49 GND ADO9
19 +5V(1/0) Reserved 50 KEY KEY

20 AD31 AD30 51 KEY KEY

21 AD29 +3.3V 52 ADO8 C/BEO
22 GND AD28 53 ADO7 +3.3V
23 AD27 AD26 54 +3.3V ADO6
24 AD25 GND 55 ADO5 ADO4
25 +3.3V AD24 56 ADO3 GND
26 C/BE3 IDSEL 57 GND ADO02
27 AD23 +3.3V 58 ADO1 ADOO
28 GND FRAME 59 +5V(1/0) +5V(1/0)
29 AD21 AD20 60 ACK64 REQ64
30 AD19 GND 61 +5V +5V

31 +3.3V TRDY 62 +5V +5V

106 Computer busses

4.2 PCl operation

The PCI bus cleverly saves lines by multiplexing the address and data lines. It has two modes
(Figure 4.2):

Multiplexed mode — the address and data lines are used aternately. First, the address is
sent, followed by a data read or write. Unfortunately, this requires two or three clock cy-
cles for a single transfer (either an address followed by a read or write cycle, or an ad-
dress followed by read and write cycl€). This causes a maximum data write transfer rate
of 66 MB/s (address then write) and a read transfer rate of 44 MB/s (address, write then
read), for a 32-bit data bus width.

Burst mode — the multiplexed mode obviously slows down the maximum transfer rate.
Additionally, it can be operated in burst mode, where a single address can be initialy
sent, followed by implicitly addressed data. Thus, if a large amount of sequentialy ad-
dressed memory is transferred then the data rate approach the maximum transfer of
133 MB/sfor a32-bit data bus and 266 MB/s for a 64-bit data bus.

If the data from the processor is sequentially addressed data then PCI bridge buffers the in-
coming data and then releases it to the PCI bus in burst mode. The PCI bridge may also use
burst mode when there are gaps in the addressed data and use a handshaking line to identify
that no data is transferred for the implied address. For example in Figure 4.2 the burst mode
could involve Addresst+1, Address+2 and Address+3 and Addresst5, then the byte enable
signal can be made inactive for the fourth data transfer cycle.

Data3 [-¢— Address3
Address1
Datal
Address2 PClI bus
Data2 (normal mode) —— Addressi
Address3
Data

Data2 [-¢— Address2
Address
Datal Datal [Address
Data2 PCl bus Data2
— P
Data3 (burst mode) Dats
Data4 —
Data5

Data5

Figure 4.2 PCI bus transfer modes

To accommodate the burst mode, the PCI bridge has a prefetch and posting buffer on both
the host bus and the PCI bus sides. This alows the bridge to build the data access up into
burst accesses. For example, the processor typically transfers data to the graphics card with
sequential accessing. The bridge can detect this and buffer the transfer. It will then transfer

PCI bus 107

the data in burst mode when it has enough data. Figure 4.3 shows an example where the PCI
bridge buffers the incoming data and transfers it using burst mode. The transfers between the
processor and the PCI bridge, and between the PCI bridge and the PCI bus can be independ-
ent where the processor can be transferring to its local memory while the PCI bus is transfer-
ring data. This helps to decouple the PCI bus from the processor.

The primary bus in the PCI bridge connects to the processor bus and the secondary bus
connects to the PCI bus. The prefetch buffer stores incoming data from the connected bus
and the posting buffer holds the data ready to be sent to the connected bus.

The PCI bus also provides for a configuration memory address (along with direct mem-
ory access and isolated 1/0 memory access). This memory is used to access the configuration
register and 256-byte configuration memory of each PCI unit.

Processor PClI bus
bus

L |
Address1

| Prefetch
Datal o | | buffer
Address2 o |
Data2 ;

»-| | Posting Address1
Address3 buffer ————»

- Datal

Processor Data3

L Data2
Address4 Prefetch

L Data3
Datad buffer

| Data4 o
Posting
buffer
PCI bridge
i transfers with
burst mode

Primary Secondary
bus bus

Figure 4.3 PCI bridge using buffering for burst transfer
4.2.1 PCI buscycles

The PCI has built-in intelligence where the command/byte enable signals (cies —c/seo) are
used to identify the command. They are given by:

CIBE3 C/BE2 C/BE1 C/BEO Description

INTA seguence

Special cycle

1/O read access

1/0 write access

Memory read access
Memory write access
Configuration read access
Configuration write access
Memory multiple read access
Dual addressing cycle

Line memory read access
Memory write access with invalidations

PRPRRPRPRRPPOOOOOO
PFRPPPRPOORRLROOOO
RrROORRRRRROO
PORPORORORORO

The PCI bus alows any device to talk to any other device, thus one device can tak to an-

108 Computer busses

other without the processor being involved. The device that starts the conversion is known as
the initiator and the addressed PCI device is known as the target. The sequence of operation
for write cycles, in burst mode, is:

Address phase — the transfer data is started by the initiator activating the Frrame signal.
The command is set on the command lines (cBes —cieeo) and the address/data pins
(AD31-ADO) are used to transfer the address. The bus then uses the byte enable lines
(ciBE3 —C/BED) tO transfer a number of bytes.

The target sets the Troy signal (target ready) active to indicate that the data has on the
AD31-ADO0 (Or AD62—ADO for a 64-hit transfer) lines is valid. In addition, the initiator indi-
cates its readiness to the PCI bridge by setting the iroy signal (indicator ready) active.
Figure 4.4 illustrates this.

The transfer continues using the byte enable lines. The initiator can block transfers if it
sets iroy and the target with Trov— .

Transfer is ended by deactivating the Frame signal.

The read cycle is similar but the Troy~ line is used by the target to indicate that the data on
the busisvalid.

Write access Read access
Data Data
FRAME FRAME _
PCI device P?rla?e;/{ce PCI device P(?rlac:egltce
Initiator —_— (addregssed Initiator —_— (addregssed
TRDY IRDY
(busmaster) | * PCI device) (busmaster) | PCI device)
_ 1 4
IDRY | _| TDRY !
™ -
|
} ! b
[1 !
[| !
| |
: Indicates that target can : Indicates that initiator can
| accept data from the bus | accept data from the bus
Indicates that initiator has Indicates that there is
placed valid data on the bus valid data on the bus

Figure 4.4 PCI handshaking

4.2.2 PCl commands
Thefirst phase of the bus access is the command/addressing phase. Its main commands are:

INTA sequence — addresses an interrupt controller where interrupt vectors are transferred
after the command phase.

Specia cycle — used to transfer information to the PCI device about the processor’s
status. The lower 16 bits contain the information codes, such as 0000h for a processor

PCI bus 109

shutdown, 0001h for a processor halt, 0002h for x86specific code and 0003h to FFFFh
for reserved codes. The upper 16 bits (AD31-AD16) indicate x86specific codes when the
information code is set to 0002h.

I/O read access — indicates a read operation for 1/0O address memory, where the AD lines
indicate the 1/0O address. The address lines ADO and AD1 are decoded to define whether
an 8-hit or 16-bit accessis being conducted.

I/O write access — indicates a write operation to an I/O address memory, where the AD
linesindicate the I/O address.

Memory read access — indicates a direct memory read operation. The byte-enable lines
(c/BE3 —C/BEO) identify the size of the data access.

Memory write access — indicates a direct memory write operation. The byte-enable lines
(c/BE3 —C/BEO) identify the size of the data access.

Configuration read access — used when accessing the configuration address area of a PCI
unit. The initiator sets the |1 DSEL line activated to select it. It then uses address bits AD7—
AD2 to indicate the addresses of the double words to be read (aD1 and ADo are set to 0).
The address lines AD10—AD18 can be used for selecting the addressed unit in a multi-
function unit.

Configuration write access — as the configuration read access, but data is written from the
initiator to the target.

Memory multiple read access — used to perform multiple data read transfers (after the ini-
tial addressing phase). Data is transferred until the initiator sets the FRAME signal inac-
tive.

Dual addressing cycle — used to transfer a 64-bit address to the PCI device (normally only
32-hit addresses are used) in either a single or a double clock cycle. In a single clock cy-
cle the address lines AD63—AD0 contain the 64-bit address (note that the Pentium processor
only has a 32-bit address bus, but this mode has been included to support other systems).
With a 32-bit address transfer the lower 32 bits are placed on the AD31—-ADo lines, fol-
lowed by the upper 32 bits on the AD31—ADO lines.

Line memory read access — used to perform multiple data read transfers (after the initial
addressing phase). Datais transferred until the initiator setsthe FRAME signal inactive.
Memory write access with invalidations — used to perform multiple data write transfers
(after the initial addressing phase).

4.2.3 PCI interrupts

The PCI bus support four interrupts (INTA —INTD). The INTA signal can be used by any of
the PCI units, but only a multifunction unit can use the other three interrupt lines (INTB —
INTD). These interrupts can be steered, using system BIOS, to one of the IRQx interrupts by
the PCI bridge. For example, a 100 Mbps Ethernet PCI card can be set to interrupt with INTA
and this could be steered to | RQL0.

4.3 Bus arbitration

Busmasters are devices on a bus which are allowed to take control of the bus. For this pur-
pose, PCl uses the Reg (reguest) and GNT (grant) signals. Thereis no real standard for this

arbitration, but normally the PCI busmaster activates the ReEg signal to indicate a request to

110 Computer busses

the PCI bus, and the arbitration logic must then activate the GNT signal so that the request-
ing master gains control of the bus. To prevent a bus lock-up, the busmaster is given 16 CLK
cycles before atime-overrun error occurs.

4.4 Other PCI pins

The other PCI pins are:

RST (Pin A15) —resets all PCI devices.

PRsNT1 and PrsNT2 (Pins B9 and B11) — these, individualy, or jointly, show that there
is an installed device and what the power consumption is. A setting of 11 (that is, PRSNTL
isaland prsnT2 isal) indicates no adapter installed, 01 indicates maximum power dis-
sipation of 25W, 10 indicates a maximum dissipation of 15W and 00 indicate a maxi-
mum power dissipation of 7.5W.

pevseL (Pin B37) —indicates that addressed deviceis the target for a bus operation.

TMS (test mode select), TDI (test data input), TDO (test data output), TrsT (test reset),
and TCK (test clock) — used to interface to the JTAG boundary scan test.

IDSEL (Pin A26) — used for device initialization select signal during the accessing of the
configuration area.

Ltock (Pin A15) —indicates that an addressed device is to be locked-out of bus transfers.
All other unlocked devices can still communicate.

PAR, PERR (Pins A43 and B40) — The parity pin (PAR) is used for even parity for AD31—
ADO and C/BE3—C/BEDO, and peRR indicates that a parity error has occurred.

SDONE, s8o (Pins A40 and A41) — used in snoop cycles. SDONE (snoop done) and sso
(snoop back off signal).

SERR (Pin B42) — used to indicate a system error.

stop (Pin A38) — used by adevice to stop the current operation.

ACKe4, REQ64 (Pins B60 and A60) — the REQes signdl is an active request for a 64-bit

transfer and ackes isthe acknowledge for a 64-bit transfer.

4.5 Configuration address space

Each PCI device has 256 bytes of configuration data, which is arranged as 64 registers of 32
bits. It contains a 64-byte predefined header followed by an extra 192 bytes which contain
extra configuration data. Figure 4.5 shows the arrangement of the header. The definitions of
thefields are:

Unit ID and Man. ID — a Unit ID of FFFFh defines that there is no unit installed, while
any other address defines its ID. The PCI SIG, which is the governing body for the PCI
specification, alocates a Man. ID. This ID is normally shown at BIOS start-up. Section
4.8 gives some example Man. IDs (and plug-and-play 1Ds).

Status and command.

PCI bus 111

Class code and Revision — the class code defines PCI device type. It splitsinto two 8-hit
values with a further 8-bit value that defines the programming interface for the unit. The
first defines the unit classification (00h for no class code, O1h for mass storage, 02h for
network controllers, 03h for video controllers, 04h for multimedia units, 05h for memory
controller and 06h for a bridge), followed by a subcode which defines the actua type.
Typical codes are:

® (0100h — SCSl controller 0101h - IDE controller.
e (0102h — Floppy controller 0200h — Ethernet network adapter
e (0201h— Token ring network adapter 0202h — FDDI network adapter
® (0280h — Other network adapter 0300h — VGA video adapter
® (0301h— XGA video adapter 0380h — Other video adapter
® (0400h — Video multimediadevice 0401h — Audio multimediadevice
® (0480h — Other multimediadevice 0500h — RAM memory controller
® (0501h - Flash memory controller 0580h — Other memory controller
® (0600h — Host 0601h — [|SA Bridge
® 0602h — EISA Bridge 0603h — MAC Bridge
® (0604h — PCI-PCI Bridge 0680h — Other Bridge
31 0
Unit ID Man. ID A
Status Command
Class code Rev.

BIST |Header|Latency CLS

Base Address Register

64-byte
header

in PCI
configuration
space

Reserved

Reserved

Expansion ROM Base Address

Reserved

Reserved
MaxLat|MinGNT [INT-Pin[INT-Line| ¥

Figure 4.5 PCI configuration space

BIST, header, latency, CLS — the BIST (built-in self test) is an 8-bit field, where the most
significant bit defines if the device can carry out a BIST, the next bit defines if aBIST is
to be performed (a 1 in this position indicates that it should be performed) and bits 3-0
define the status code after the BIST has been performed (a value of zero indicates no er-
ror). The header field defines the layout of the 48 bytes after the standard 16-byte header.
The most significant bit of the header field defines whether the device is a multifunction
device or not. A 1 defines a multi-function unit. The CLS (cache line size) field defines
the size of the cache in units of 32 bytes. Latency indicates the length of time for a PCI

112 Computer busses

bus operation, where the amount of time is the latency+8 PCI clock cycles.

Base address register — this area of memory alows the device to be programmed with an
I/0O or memory address area. It can contain a number of 32- or 64-bit addresses. The for-
mat of amemory addressis

Bit 644 Base address.

Bit 3 PRF. Prefetching, O identifies not possible, 1 identifies possible.

Bit 2,1 Type. 00 — any 32-hit address, 01 — less than 1IMB, 10 — any
64-bit address and 11 — reserved.

Bit 0 0. Always set to a 0 for amemory address.

For an 1/O address spaceit is defined as:

Bit 31-2 Base address.
Bit 1,0 01. Always set to a01 for an 1/O address.

Expansion ROM base address — allows a ROM expansion to be placed at any position in
the 32-bit memory address area.

MaxLat, MinGNT, INT-pin, INT-line —the MinGNT and MaxL at registers are read-only
registers that define the minimum and maximum latency values. The INT-Line field is a
4-hit field that defines the interrupt line used (IRQO-IRQ15). A value of 0 corresponds to
IRQO and a value of 15 corresponds to IRQ15. The PCI bridge can then redirect this in-
terrupt to the correct IRQ line. The 4-bit INT-pin defines the interrupt line that the device
isusing. A value of 0 defines no interrupt line, 1 defines INTA , 2 defines INnTB , and soO
on.

4.6 /O addressing

The standard PC 1/0O addressing ranges from 0000h to FFFFh, which gives an addressable
space of 64 KB, whereas the PCI bus can support a 32-bit or 64-bit addressable memory. The
PCI device can be configured using one of two mechanisms.

Configuration mechanism 1

Passing two 32-hit values to two standard addresses configures the PCI bus:

Address Name Description
0CF8h Configuration Used to access the configuration address area.
address

OCFCh Configuration data Used to read or write a 32-hit (double word) value to the
configuration memory of the PCI device.

The format of the configuration address register is

Bit 31 ECD (eEnabl e CONFI G DATA) hit. A 1 activates the CONFI G_DATA register, while
aOdisablesit.

PCI bus

Bit 30-24
Bit 23-16

Bit 15-11

Bit 10-8
Bit 7-2

Bit 1,0

113

Reserved.

PCI bus number. Defines the number of the number of the PCI bus (to a
maximum of 256).

PCI unit. Selects a PCI device (to a maximum of 32). PCI thus supports
a maximum of 256 attached buses with a maximum of 32 devices on
each bus.

PCI function. Selects a function within a PClI multifunction device (one
of eight functions).

Register. Selects a Dword entry in a specified configuration address
area (one of 64 Dwords).

Type. 00 — decode unit, 01 — CONFI G_ADDRESS value copy to ADX.

Configuration mechanism 2

In this mode, each PCI device is mapped to a 4KB 1/O address range between C000h and
CFFFh. This is achieved by used in the activation register CSE (configuration space enable)
for the configuration area at the port address OCF8h. The format of the CSE register is lo-
cated at OCF8h and is defined as

Bit 74

Bit 3-1

Bit 0

Key. 0000 — normal mode, 0001...1111 — configuration area activated.
A vaue other than zero for the key activates the configuration area
mapping, that is, al 1/O addresses to the 4KB range between CO0Ch
and CFFFh would be performed as normal /O cycles.

Function. Defines the function number within the PCI device (if it
represents a multifunction device).

SCE. 0 defines a configuration cycle, 1 defines a special cycle.

The forward register is stored at address OCFAh and contains

Bit 7-0

PCI bus.

The 1/O address is defined by:

Bit 31-12 Contains the bit value of 0000Ch.
Bit 11-8 PCI unit.

Bit 7-2 Register index.

Bit 1,0 Containsthe bit value of 00 (binary).

4.6.1 Sampletest program

PCI bridgetest

An example BASIC program to test the PCI bridge device is given next.

Program 4.1

130 Print "Host PCl bridge test"

160 Print " PCl Configuration Address &B30000000": Print
170 | OMNRI TE &CF8, 2, &0000000

180 | OREAD &CFC, 2

190 | F B1<>&10000E11 THEN GOTO 410

114 Computer busses

200 Print "Testl Passed....Conponent |D Test"

210 Di m TEST(4)

220 TEST(1) =&FFFFFFFF
230 TEST(2) =RAAAAAAAA
240 TEST(3) =8&065555555
250 TEST(4) =&

260 D9=&80000000
270 REG = &60

280 REPEAT

290 TST = &OL

300 | OARI TE &CF8, 2, D9 + REG

310 REPEAT

320 | OARI TE &CFC, 2, TEST(TST)

330 | OREAD &CFC, 2

340 If Bl <> TEST(TST) Then GoTo 450
350 TST = TST + &O1

360 UNTI L TST=&5
370 REG = REG + &4
380 UNTIL REG=&68

390 Print "Test2 Passed...Internal Register Test"

400 GoTo 480

410 Print "Testl Failed...."

420 Print "Conponent ID Test...."

430 PRINT "Expected | D &0000E11 Actual |ID "~B1

440 GCoTo 480

450 Print "Test2 Failed...."

460 Print "Internal register test...."

470 PRINT "Register "~REG', Expected "~TEST(TST)" Actual "~Bl

The code:

170 1 ONRITE &CF8, 2, &80000000
180 | OREAD &CFC, 2
190 | F B1<>&10008086 THEN GOTO 410

writes the value 80000000h (1000 0000 ... 0000b) to the CF8h register (configuration ad-
dress), where the most signification bit activates the configuration data register. Next the pro-
gram reads from the CFCh register (configuration data), after this the B1 value contains the
32-hit value read from the configuration data register. In this case the value will be the first
32 bits from the configuration memory of the PCI device. The value tested in this case is
10000E11h, where 1000h identifies the unit ID and 8086h identifies the manufacturer ID (In-
tel).

The values written to the registers are FFFFFFFFh (1111 1111 ... 1111), AAAAAAAA
(1010 1010 ... 1010), 55555555h (0101 0101 ... 0101) and 00000000h. These values are then
read back and tested to determine if they match the values that where written.

Video device test
An example BASIC program to test the video adaptor on the PCI busis given next.
Program 4.2

112 Print "PCl test: Conponent |ID and PCl Register Test"
122 | ORI TE &CF8, 2, &80005000

PCI bus 115

124 | OREAD &CFC, 2
126 | F B1<>&00A81013 THEN PRI NT : GOTO 172
128 Print " Passed. ... Conponent |ID Test"

130 Di m TEST(4)

132 TEST(1) =&FF000000
134 TEST(2) =&AA000000
136 TEST(3) =&065000000
138 TEST(4) =&Q0

140 ADDR=&80005000
142 REG =&010

144 REPEAT

146 TST = &O1

148 | ORI TE &CF8, 2, ADDR + REG

150 REPEAT

152 | OARI TE &CFC, 2, TEST(TST)

154 | OREAD &CFC, 2

156 If Bl <> TEST(TST) Then Print: GoTo 180
158 TST = TST + &0OL

160 UNTI L TST=&5

162 REG = REG + &O20
164 UNTIL REG=&50

166 Print " Test 02 Passed....PCl Register Test"

168 GoTo 188

172 Print " FAI L: Conponent ID Test"

174 PRINT " Expected | D &0A81013 Actual ID "~Bl

176 Print: GoTo 130

180 Print " FAIL: PCl Register Test...."

182 PRINT * Regi ster "~REG', Expected "~TEST(TST)" Actual "~Bl
188 etc

The code:

122 1 ORI TE &CF8, 2, &80005000
124 |1 OREAD &CFC, 2
126 | F B1<>&00A81013 THEN PRI NT : GOTO 172

writes the value 80005000h (1000 0000 ... 0000b) to the CF8h register (configuration ad-
dress), where the most signification bit activates the configuration data register. Next the pro-
gram reads from the CFCh register (configuration data), after this the B1 value contains the
32-hit value read from the configuration data register. In this case the value will be the first
32 bits from the configuration memory of the PCI device. The value tested in this case is
00A81013h, where 00A8h identifies the Unit ID and 1013h identifies the manufacturer 1D
(Cirrus Logic).

The following code tests four 32-bit words from the configuration memory. The values
written are:

FF000000h, AA000000h, 55000000h, O0h

These values are then read back and tested against the values actual written. It should be
noted that the least significant 24 bits are read-only registers, thus they cannot be written to.

116

144 REPEAT

146 TST = 1

148 | OWRI TE &CFS8, 2, ADDR + REG

150 REPEAT

152 | ORI TE &CFC, 2, TEST(TST)

154 | OREAD &CFC, 2

156 If BL <> TEST(TST) Then Print: GoTo 180
158 TST = TST + 1

160 UNTI L TST=5

162 REG = REG + &O20
164 UNTIL REG=&50

Note, C/C++ can only access 8 or 16 bits at atime, thus the code:

122 1 ORI TE &CF8, 2, &80005000
124 |1 OREAD &CFC, 2
126 | F B1<>&00A81013 THEN PRI NT : GOTO 172

would be replaced with:

#i ncl ude <coni o. h>

int main(void)

{
unsi gned int val 1, val 2, val 3, val 4;
unsi gned | ong int val
_out p(0xcf 8, 0x00) ; /* least significant byte */
_out p(0xcf9, 0x00);
_out p(0xcf a, 0x00) ;
_out p(0xcf b, 0x80); /* nost significant byte */
val 1=_i np(0Oxcfc) & Oxff; val 2=_i np(0xcfd) & Oxff;
val 3=_i np(0Oxcfe) & Oxff; val 4=_i np(Oxcff) & Oxff;
val = val 1 + (val 2<<8) + (val 3<<16)+ (val 4<<24)
if (val ==0x00a81013)
printf(“Success”);
etc
return(0);
}

4.7 Exercises

Computer busses

4.7.1 What is the maximum data throughput for a 33MHz, 32-bit data PCI bus:

(8 33MB/s (b) 66MB/s
(© 132MB/s (d 264MB/s

PCI bus

4.7.2

4.7.3

4.7.4

4.7.5

4.7.6

4.7.7

4.7.8

4.7.9

4.7.10

4.7.11

4.7.12

4.7.13

117

Which I/O register address is used to access PCI configuration address space:

(@ 1Fsh (b) CFgh
() 3F8h (d 2Fsh

Which I/O register address is used read and write to registers in the PCI configura-
tion address space:

(@ 1FCh (b) CFCh
(© 3FCh (d) 1FCh

How many bits can be accessed, at atime, with the configuration address register:

@ 8 () 16
© 32 d 64

Which company has the manufacture ID of 8086:

(@ Compaqg (b Motorola
(c0 NCR (d) Intel

Explain how PCI architecture uses bridges.

Outline the operation of Program 4.1 and Program 4.2. Highlight the range of ad-
dresses used. Why does Program 4.2 write the bit pattern FFO00000h and not
FFFFFFFFh?

Explain how the 32-bit PCI bus transfers data. Prove that the maximum data rate
for a 32-bit PCI in its normal mode is only 66 MB/s. Explain the mechanism that
the PCI bus uses to increase the maximum data rate to 132 MB/s.

How does buffering in the PCI bridge aid the transfer of datato and from the proc-
€ssor.

Explain how the PCI bus uses the command phase to set up a peripheral.

How are interrupt lines used in the PCI bus. Explain how these interrupts can be
steered to the |SA businterrupt lines.

Outline the concept of bus mastering and how it occurs on the PCI bus. What sig-
nal lines are used?

Explain how the PCI bus uses configuration addresses.

118

Computer busses

4.8 Example manufacturer and plug-and-play IDs

Manufacturer
NCR

VLS|

Reply Group
EPSON
National Semi
AST

Video Logic Ltd
Micronics
IBM

Spea Software
Elite

Vitesse
American Mega
Hitachi

AMD

Acer
Siemens
Matrox

Wyse
Toshiba
Compag
Future Domain
AMP

Tatung
Genoa

SGS Thomson
Tl

OAK

ICL

Vtech
Mitsubishi
Hyundai
Daewood

Y amaha
Cyrix
Networth
Goldstar
Interphase
Data General
Intergraph
National Instruments
Samsung
Gemlight
3COM

Acer
Tsenglabs
Award
Neomagic
Fujitsu
Tandem
Xilinx
Matsushita
PC Direct
Creative Labs
Rockwell

3

Adaptec

Man. ID
1000
1004
1006
1008
100b
100d
1010
1012
1014
1017
1019
101b
10le
1020
1022
1025
1029
102b
102d
102f
1032
1036
1038
103b
1047
104a
104c
104e
1056
105e
1067
106c
1070
1073
1078
107a
107c
107e
1089
1091
1093
1099
109b
10b7
10b9
10be
10c4
10c8
10d0
10e4
10ee
10f7
10f9
1102
1112
5333
9004

PNP ID
4096
4100
4102
4104
4107
4109
4112
4114
4116
4119
4121
4123
4126
4128
4130
4133
4137
4139
4141
4143
4146
4150
4152
4155
4167
4170
4172
4174
4182
4190
4199
4204
4208
4211
4216
4218
4220
4222
4233
4241
4243
4249
4251
4279
4281
4286
4292
4296
4304
4324
4334
4343
4345
4354
4370
21299
36868

Manufacturer
ULSI

ALR
Netframe
Phoenix
Tseng Labs
Weitek
Digital

Cirrus Logic
ICL

UNISYS
NCR
Western Digital
PictureTel

Oki

Trident

Dell

LS

Chipsand Tech.
Olivetti

Miro Computer
NEC
HITACH
Seiko Epson
HP

Fountain
Buslogic
SONY
Hitachi
Motorola
United Micro
Apple
Sequent
Mitac
Nexgen
I-BUS
Gateway 2000
L eadtek
Tulip

Elonex
Diamond
Quantum Designs
Packard Bell
Megachips
SMC
Mitsubishi
Samsung
Xerox

Fujitsu
Newbridge
Micro Industries
Creative
Altos
Truevision
Santa Cruz
Zilog

Intel

Man. ID
1003
1005
1007
100a
100c
100e
1011
1013
1016
1018
10l1a
101c
101f
1021
1023
1028
102a
102c
102e
1031
1033
1037
103a
103c
1049
104b
104d
1054
1057
1060
106b
106d
1071
1074
1079
107b
107d
1085
108c
1092
1098
109a
109c
10b8
10ba
10c3
10c5
10ca
10e3
10e5
10f6
10f8
10fa
1111
1121
8086

PNP ID
4099
4101
4103
4106
4108
4110
4113
4115
4118
4120
4122
4124
4127
4129
4131
4136
4138
4140
4142
4145
4147
4151
4154
4156
4169
4171
4173
4180
4183
4192
4203
4205
4209
4212
4217
4219
4221
4229
4236
4242
4248
4250
4252
4280
4282
4291
4293
4298
4323
4325
4342
4344
4346
4369
4385
32902

PCI bus 119

4.9 Notes from the author

There is an amusing statement that was made in 1981, in the book 30 Hour BASIC Standard,
1981:

Microcomputers are the tool of the 80's. BASC is the language that all of them use. So the sooner you
learn BASIC, the sooner you will understand the microcomputer revolution

WEell, as it has proven, a good knowledge of BASC will not really help your understanding
of microcomputers, but if there is one bus that you need to understand in the PC, it is the PCI
bus. Thisis because it is the main interface bus within the PC. Most external devices eventu-
ally connect to the PCI through bridge devices. There were several short-term fixes for local
bus technology, but the PCI was the first attempt at a properly designed system bus. It allows
the PC to be segmented into differing data transfer rates. PCI provides a buffer between the
main system core, such as the processor and its memory, and the slower peripherals, such as
the hard-disk, serial ports, and so on.

With interrupts, the PCI has the great advantage over |SA in that it allows interrupts to
be properly assigned at system start-up. The BIOS or the operating system can communicate
with the PCI-connected bus with the configuration address area. From this, the system can
determine the type of device it is, whether it be a graphics card or a network card. The sys-
tem can then properly configure the device and grant it the required resources. The days of
users having to assign interrupts (using card jumpers, in some cases) and I/O addresses are
reducing (thankful ly!).

The great leap forward in PC systems happened with local bus technology. The demand
came from graphics cards as Windows 3.0 was being adopted. The | SA bus was far too slow,
as it only supported 8MHz transfers. Graphic card manufacturers got together and devel-
oped the VESA-backed VL-local bus standard. It showed how fast transfer devices could be
connected to a local bus, while other slower devices had to access the processor through a
bridge, which allowed a different clock speed, and a different data and address bus. Most
PCs are now based around this local busidea, and they can be split into there main areas:

Local processor bus. Direct connection of the processor to its local cache memory (ei-
ther Level-1 or Level-2 cache.

Local bus. Connection onto the PCI bus. This connects to the local processor busvia a
bridge.

External bus. |SA, IDE, RS-232, and so on. This connects to the local busvia a bridge.

There is great potential in the PCI bus. At present, most systems use 32-bit data transfers,
but there is scope for 64-bit data transfers. Also, the 33MHz clock can be increased to
66MHz with double edge clocking. A new enhanced PCI-based system called the AGP (Ad-
vanced Graphics Port) has been devel oped which allows for data transfers of over 500 MB/s.

I'm dlightly annoyed with the success of the PCI bus, as I’ve got an |SA-based sound
card, an 1SA-based Ethernet card and an 1SA-based video camera, and I’ ve only got two 1 SA
dots. So, every so often, | have to swap the sound card for the video camera, and vice-versa.
At present, I’ve got four empty PCI slots, and | think one of them is waiting for a PCl-based
Ethernet card. Then I'll be able to have a proper video conference, with sound and video.
But, never mind, I've just got myself a lovely new Dell notebook, and a USB-based video
camera, and a single PCMCIA card for my modem and network connections, so | may never
need my desktop computer again (here's hoping).

5 || Motherboard Design

5.1 Introduction

This chapter analyses a Pentium-based motherboard. An example board is the Intel 430HX
motherboard which supports most Pentium processors and has the following component
parts:

PClset components — 82438 System Controller (TXC) and 82371SB PCI ISA Xcelerator
(PIIX3).

82091AA (AIP) for serial and parallel ports, and floppy disk controller.

DRAM main memory.

L2 cache SRAM.

Universal seria bus (USB).

Interface slots (typically 4 PCI and 3 1SA).

1 Mbit flash RAM.

Figure 5.1 illustrates the main connections of the PClset (which are the TXC and PIIX3 de-
vices). The TCX alows for a host-to-PCI bridge, whereas the PI1X 3 device supports:

PCI-to-ISA bridge.

Fast IDE.

APIC interface.

USB host/hub controller.
Power management.

The 430HX board has 3V and 5V busses. PCI bus connections are 5V and the Pentium bus
is3V.

5.1.1 Pentium-11/l11 processor

Figure 5.2 illustrates the main connections to the Pentium I1/I11 processor. It can be seen that
it has:

64-bit data bus (DO-D63) which connects to the TXC (HDO-HDG63).

32-bit address bus (A0-A31) which connectsto the TXC (HAO-HA31).

8-byte address lines (BEO#-BET#) to alow the processor to access from 1 to 8 bytes (64
bits) at atime, which connectsto TXC (HBEO#-HBET7#).

Read/write line (W/R#) which connectsto TXC (HW/R#).

Memory/lO (M/10#) which connectsto TXC (HM/IO#).

Data/control (D/C#) which connectsto TXC (HD/CH#).

122

Pentium
processor

Computer busses

——————
Cache
(SRAM)
A
Control: HCACHE#, Control: CCS#, CTAG
HKEN#, HSMIACT#, | COE#, CADS#, | [10:0]
HADS#, HBRDY, CBWE#,CGWE#
HNA#, HAHOLD, CTWE#
HEADS#, HBOFF# ,
HCLKTXC, HLOCK#,
HWI/R#, HD/CH#, Parity: MP[7:0] -
< | | HMIO#, HHITM# o
_ Data: MD[63:0] o
Data: HD[63:0] 82439HX - > Main
L System
Controller Address: MA[11:0], memory
| Address: HA[3L:0] _ (TXC) MRAS#(3:0], MCAS#{7:0] | ~(DRAM)
Address: HBE#{7:0] Control: MWE# -

Fast IDE ~—— B AD[31:0] .
USB 4— - o
C/BE#[3:0] _
82371SB [P PCl bus
B2091AA g PCI /O IDE | PIRQ[5:0] o
AIP -t -
Xcelerator
(PIIX3) PTRST#, PCLK#, PREQ#[3:0],IRDY#,
DEVSEL#, PLOCK#{3:0], PERR#, SERR#,
2 serial ports ISA ACKG64#[3:0], REQ64#[3:0], PAR, SBO#,
1 para||e| pon bus . FRAME#, PGNT#[3ZO]. PCIRST# -
Floppy disk controller
Figure 5.1 PClset system architecture
HAQ ~4——® A3 D0 [<———® HDO
HAL <—>¢ AL DL <—>¢ HD1
HA30 ~4———— | A30 D62 [——m HDG62
HA31 <4——®| A31 D63 [—® HD63
- HBEQ<#——® - BEO
i - —— -FERR [#——» - HFERR
- HBE3-<#———| - BE3
i m——
' - ety -BFO |[<——® _HBFO
1= — = -BF1 |«——» _HBF1
- HBOFF <«— | _BOFF -ITM [——® _H TM
- oM - _ 0
-H NTR <4—» - | NTR
- H\M > - \M -ADS [<——» - HADS
-H GNNE ~<——» - | GNNE D-C |[@——® -HY-C
- HKEN <4——» - KEN W-R [— -
- HFLUSHA ~———® - FL USH M-10 [4—®» -HV-10
- D w—— A D
-HEADS -~— - EADS
- HBRDY -~—— - BRDY
HRESET <&——® RESET
HI NV > | NV
- HBUSCHK ~——®| - BUSCHK
Pentium 11

Figure 5.2 Pentium II/lll connections

Motherboard Design 123

5.1.2 82371SB PCl | SA Xcelerator (P11X3)

The PIIX3 is a 208-pin QFP (quad flat pack) IC that integrates much the functionality of the
ISA bus interface onto a single device. Table 5.1 outlines the main connections to the PI1X3
IC.

Table 5.1 PIIX3 connections

Addresslines IRQ Lines ISA Lines ISA Lines

Sgnal Pin Sgnal Pin Sgnal Pin Sgnal Pin
ADO 206 | RQL 4 BALE 64 SA8/ DDO0 55

AD1 205 | RB 58 AEN 20 SA9/ DD1 50

AD2 204 | R4 56 LAL17 86 SA10/ DD2 49
AD3 203 | RQB 34 LA18 84 SA11/ DD3 48
AD4 202 | R 33 LA19 82 SA12/ DD4 47
AD5 201 | RQ7 32 LA20 80 SA13/ DD5 46
AD6 200 -1 RQB 5 LA21 76 SA14/ DD6 45
AD7 199 | RQ® 10 LA22 74 SA15/ DD7 44
ADS 197 | RQLO 73 LA23 72 SA16/ DD8 43
AD9 194 I RQL1 75 SAO 69 SA17/ DD9 41
AD10 193 I RQL2/ M 77 SAl 68 SA18/ DD10 40
AD11 192 | RQL4 83 SA2 67 SA19/ DD11 39
AD12 191 | RQL5 81 SA3 66 SA20/ DD12 38
AD13 190 SAd 63 SA21/ DD13 37
AD14 189 SA5 61 SA22/ DD14 36
AD15 188 SA6 59 SA23/ DD15 35
AD16 177 SA7 57 - o8 15
AD17 176 DRQO 87 - SNEMWV 22
AD18 175 DRQL 30 - SMEMR 19
AD19 174 DRQ2 12 -1 oW 24
AD20 173 DR 25 -IOR 23
AD21 172 DR 91 - REFRESH 31
AD22 171 DRQ6 95 T/ C 62
AD23 168 DRQ7 99 osC

AD24 166 - DACKO 85 - MEMCS16 70
AD25 165 - DACK1 29 -1 0Cs16 71

AD26 164 - DACK2 60 - MASTER

AD27 163 - DACK3 21 | OCHK 6
AD28 162 - DACK5 89 | OCHRDY 18

AD29 161 - DACK6 93 -SBHE (DD12)
AD30 160 - DACK? 97 - MEMR 88
AD31 159 RSTI SA - MEMV 90
usB

Signal Pin

USBP1- 143

USBP1+ 142

USBPO- 145

USBPO+ 144

PI1X3' s functionality includes:

Enhanced 7-channel DMA with two 8237 controllers. This is supported with the hand-
shaking lines DRQO-DRQ7 and DRQO#-DRQ7#.

ISA-PCI bridge.

Fast IDE support for up to four disk drives (two masters and two slaves). It supports
mode four timings, which gives transfer rates of up to 22MB/s.

I/0 APIC (advanced programmable interrupt controller) support.

Implementation of PCI 2.1.

124 Computer busses

Incorporates 82C54 timer for system timer, refresh request and speaker output tone.
Non-maskable interrupts (NMI).

PCI clock speed of 25/33MHz. Motherboard configurable clock speed (normally
33MH2).

Plug-and-play support with one steerable interrupt line and one programmable chip se-
lect. The motherboard interrupt MIRQO can be steered to any one of 11 interrupts (IRQ3—
IRQ7, IRQ9-IRQ12, IRQ14 and IRQ15).

Steerable PCI interrupts for PCI device plug-and-play. The PCI interrupt lines (PIRQA-
PIRQD) can be steered to one of 11 interrupt (IRQ3-IRQ7, IRQ9-1RQ12, IRQ14 and
IRQ15).

Support for PS/2-type mouse and seria port mouse. IRQ12/M can be enabled for the
PS/2-type mouse or disable for a serial port mouse.

Support for five ISA dots. Typical applications for ISA include 10M bps Ethernet adaptor
cards, serial/parallel port cards, sound cards, and so on.

System power management. Allows the system to operate in a low power state without
being powered down. This can be triggered either by a software, hardware or external
event.

Math coprocessor error function. The FERR# line goes active (LOW) when a math co-
processor error occurs. The PlIX3 device automatically generates an IRQ13 interrupt and
sets the INTR line to the processor. The PXI13 device then sets the IGNNE# active and
INTR inactive when there is awrite to address FOh.

Two 82C59 controllers with 14 interrupts. The interrupts lines IRQ1, IRQ3-IRQ15 are
available (IRQO is used by the system time and IRQ2 by the cascaded interrupt line).
Universal seria bus with root hub and two USB ports. With the USB the host controller
transfers data between the system memory and USB devices. Thisis achieved by process-
ing data structures set up to by the host software and generated the transaction on USB.

The address lines (ADO-AD22) connect to the TXC IC and the available interrupt lines at
IRQL, IRQ2-IRQ12, IRQ14 and IRQ15 (IRQO is generated by the system timer and IRQ2 is
the cascaded interrupt line). The PS/2-type mouse uses the IRQ12/M line.

5.1.3 82438 System Controller (TXC)

The 324-pin TXC BGA (ball grid array) provides an interface between the processor, DRAM
and the external buses (such as the PCI, ISA, and so on). Table 5.2 outlines its main pin con-
nections. The TXC’s functionality includes:

Supports 50MHz, 60 MHz and 66 MHz host bus.

Integrated DRAM controller. Supports four CAS lines and eight RAS lines. The memory
supports symmetrical and asymmetrical addressing for 1MB, 2MB and 4MB-deep
SIMMs and symmetrical addressing for 16 MB-deep SIMMs.

Integrated second level cache controller. Supports up to 512MB of second-level cache
with synchronous pipelined burst SRAM.

Dual processor support.

Optional parity.

Optional error checking and correction on DRAM. The ECC mode is software configur-
able and allows for single bit error correction and multibit error detection on single nib-
blesin DRAM.

Motherboard Design

Swapable memory bank support. This allows memory banks to be swapped ouit.

PCI 2.1-compliant bus.
Supports USB.

The TXC controls the processor cycles for:

125

Second-level cache transfer — the processor directly sends data to the second level cache
and the TXC controls its operation.
All other processor cycles —the TXC directs all other processor cycles to their destination
(DRAM, PCI or internal TXC configuration space).

Table 5.2 TXC connections

PCI Memory Cache Memory Cache Memory Data
Addresses Addresses
Sgnal Pin Sgnal Pin Sgnal Pin Sgnal Pin
ADO 15 HDO 305 HD32 179
AD1 14 HD1 307 HD33 178
AD2 33 HD2 306 HD34 149
AD3 13 HA3 275 HD3 308 HD35 180
AD4 52 HA4 315 HD4 285 HD36 136
AD5 32 HAS 252 HD5 286 HD37 135
AD6 12 HAG 316 HD6 265 HD38 138
AD7 51 HA7 312 HD7 212 HD39 125
ADS 11 HA8 272 HD8 245 HD40 126
AD9 50 HA9 271 HD9 287 HD41 115
AD10 30 HA10 311 HD10 267 HD42 137
AD11 10 HAL1 291 HD11 288 HD43 117
AD12 49 HA12 251 HD12 225 HD44 128
AD13 29 HA13 310 HD13 268 HD45 114
AD14 9 HA14 270 HD14 247 HD46 127
AD15 48 HA15 290 HD15 266 HD47 102
AD16 47 HA16 250 HD16 248 HD48 101
AD17 27 HAL7 309 HD17 247 HD49 116
AD18 7 HA18 289 HD18 246 HD50 104
AD19 46 HA19 269 HD19 214 HD51 103
AD20 26 HA20 249 HD20 228 HD52 81
AD21 6 HA21 273 HD21 213 HD53 84
AD22 45 HA22 254 HD22 226 HD54 82
AD23 25 HA23 253 HD23 201 HD55 61
AD24 66 HA24 294 HD24 215 HD56 83
AD25 44 HA25 293 HD25 203 HD57 63
AD26 24 HA26 274 HD26 202 HD58 62
AD27 4 HA27 313 HD27 191 HD59 41
AD28 23 HA28 314 HD28 204 HD60 42
AD29 3 HA29 255 HD29 193 HD61 43
AD30 22 HA30 295 HD30 192 HD62 21
AD31 2 HA31 292 HD31 194 HD63 1
PCI control lines
C/BEO# 21 FRAME# 86 PREQD# 67 PGNTO# 68
C/ BE1# 31 DEVSEL# 89 PREQL# 69 PGNT1# 70
C/BE2# 8 | RDY# 88 PREQ2# 71 PGNT2# 72
C/BE3# 5 STOP# 91 PREQ3# 73 PGNT3# 74

LOCK# 85

PHOLD# 64

PHLDA# 65

PAR 92

SERR# 93

126 Computer busses

Cache Memory Parity Address
Tag Lines
Sgnal Pin Sgnal Pin Sgnal Pin Sgnal Pin
CTAD 207 MPO 133 MD32 74
CTAGL 260 MP1 123 VD33 75
CTAR2 261 MP2 146 VA2 317 VD34 76
CTAG3 281 MP3 113 VA3 297 VD35 76
CTAA 238 MP4 132 MM 277 MD36 76
CTAGS 282 MP5 124 MAS 257 MD37 76
CTAGG 302 MP6 134 MAG 237 VD38 76
CTAGY 322 MP7 122 VA7 298 VD39 76
CTA 303 MAS 258
CTA®® 323 MA9 319
CTAGLO 324 MA10 318

VA1l 278

Cache addresslines

MRASRO# 121 MCASRO# 145 MAAO 300
MRASR1# 110 MCASR1# 159 MAAL 300
MRASR2# 109 MCASR2# 131 MABO 300
MRASR3# 96 MCASR3# 173 MAB1 300

MCASR4# 130
MCASRS# 144
MCASR6# 120
MCASR7# 172

Cachecontrol lines
CBW\E# 321 COE# 259 CCSt 300 CADS# 299
CONE# 320 CADV# 279

5.1.4 82091AA (AIP)

The AIP device integrates the seria ports, parald ports and floppy disk interfaces. Figure
5.3 shows its connections and Figure 5.4 shows the interconnection between the AIP and the
PI1X3 device. The OSC frequency is set to 14.21818MHz. It can be seen that the range of
interrupts for the serial, parallel and floppy disk drive is IRQ3, IRQ4, IRQ5, IRQ6 and IRQ?7.
Normally the settings are:

IRQ3 — secondary serial port (COM2/COMA4).
IRQ4 — primary serial port (COM1/COM3).
IRQ6 — floppy disk controller.

IRQ7 —paralld port (LPT1).

Figure 5.4 shows the main connections between the TXC, PIIX3 and the AIP. It can be seen
that the AIP uses many of the ISA connections (such as OWS#, IOCHRDY, and so on). The
interface between the TCX and the PI1X3 defines the PCI bus and the interface between the
PI1X3 and AIP defines some of the ISA signals.

Motherboard Design

gﬁﬁgﬂﬁ&ﬁ%%@@g 2 BBRE BoBoBoPR mSEZpaub
— 5= w
hoshESarshesboen EoPxOoRR FofoleRf rooogdiub sanmasss
FYYYYVYVY Ak A A AA A AAdA AAAAA
NP P pSIEE Eo i vl S I R RS P 1 % B S 2 2 P L e R et
\ Yy | vy \AANAA YyYVYY
Floppy disk Secondary serial Primary serial Parallel port
interface port interface port interface interface
82091AA (API)
Address Data ISA
Interrupt
lines lines handshaking DMA ”r:]eesrrup
YYY IYY I}
e N PR PRI N PO :nn'T e N 3
vy YYY(Y VYvYVYY Yyvyvy
= ~ o >Z ©O O
F33sssayysy DAAEORD SpESR PRy EEEER g
P BEa X
© Co r X
Figure 5.3 APIIC
AD[31:0] LA[23:17] DSKCHG#
) SIDET#
C/BEAS:0] DDI[15:0] IDE Dk :
)l
FRAME# Control lines drive i
TRDY# ¢ ‘
IRDY# SA[10:0] FDDEN
STOPH# SD[7:0] -
DEVSEL# M
¢ Oows# crsw »
HD[63:0] SERR# IOCHRDY . ‘
Secondal
) > PHOLD#) AEN powsrianld BN
HA[3L:0] 1
N PHLDA# X1OW# port DCD1#
HBE#[7:0] TXC HFERR# oiixa XIOR#
contra > EXTSMI# TIC RIO#
ontrol
< R PCIRST# . IRQ[15:0] CTso#
PIRQ[3:0] DRQ[7:0] !
Al Primary |
PGNT[1:0] DACK#[T7:0] serial 1
PREQ[3:0] RSTDRV port %
HINTR I0CS16#, |IOCHK#
HSMI# MEMR#, MEMW# PD[7:0]
STRA
HSTPC BALE, MEMCS16
+— Parallel |
HIGNNG# REFRESH#, SYSCLK port ;
SMEMW#, SMEMR# 1
AlP sLCT
SMEMR¥, —>

Figure 5.4 Connections between TXC, PIIX3 and AIP

128 Computer busses

5.1.5 DRAM interface

The DRAM interface supports from 4MB to 512MB with eight RAS lines (RASO-RASY)
and a 64-bit data path with eight parity bits. It can use either a 3.3V or a5V power supply
and both standard page mode and extended data out (EDO) memory are supported with a
mixture of memory sizes for 1MB, 2MB and 4MB-deep SIMMs and symmetrical address-
ing for 16 MB-deep SIMMs.

Each SIMM (single in-line memory module) has 12 input address lines and has a 32-bit
data output. They are normally available with 72 pins (named tabs) on each side. These pins
can read the same signal because they are shorted together on the board. For example, tab 1
(pin 1) on side A is shorted to tab 1 on side B. Thus, the 144 tabs only gives 72 useable sig-
nal connections.

Figure 5.5 shows how the DRAM memory is organized. It shows bank 1 and 2 (and does
not show banks 3 and 4). Each bank has two modules, such as modules 0 and 1 are in bank 0.
The bank is selected with the MRAS lines, for example bank 1 is selected with MRASO and
MRASL, bank 1 by MRAS2 and MRAS3, and so on. An even-numbered module gives the
lower 32 bits (MD0O-MD31) and the odd number modules give the upper 32 bits (MD32-
MD63). Each module also provides four parity bits (MPO-MP3 and MP4-MP7).

DIMMs (dual in-line memory modules) have independent signal lines on each side of the
module and are available with 72 (36 tabs on each side), 88 (44 tabs on each side), 144 (72
tabs on each side), 168 (84 tabs on each side) or 200 tabs (100 tabs on each side). They give
greater reliability and density and are used in modern high performance PC servers.

MRASO — | - RASO MRAS2 — | - RASO

MRAS] — | - RAS1 MRAS3 — ®{ - RAS1

MRASO) ——#| - RAS2 MRAS2 ——#| - RAS2

MRAS1T — ™| - RAS3 MRAS3 — | - RAS3

MCASO — ™| - CASO MCASO — ® - CASO

MCAS1] — 1 - CAS1 MCAS1 — - CAS1

MCAS2 — | - CAS2 MCAS2 — | - CAS2

MCAS3 — ™| - CAS3 MCAS3 — ™| - CAS3

MAE —® W MAE —_— W

MDO- MD31 MDO- MD31
#
Module 0 MPO- P3 Module 2 MPO- P3
MAO- MA11 MAO- MA11

—_ —_— —

MRASO — | - RASO MRAS2 — | - RASO

MRAS1T — P - RAS1 MRAS3 — | - RAS1

MRASO) — | - RAS2 MRAS2 — | - RAS2

MRAS2 — | - RAS3 MRAS3 — | - RAS3

MCAS4 — | - CASO MCAS4 — | - CASO

MCAS5 —— ®| - CAS1 MCAS5 —— ® - CASL

MCAS6 — ®| - CAS2 MCAS6 — ®| - CAS2

MCAS7 — ™ - CAS3 MCAS7 — ™| - CAS3

—_— —_—

MAE W MD32- M3 WE w MD32- MD63

— S ——
MAO- VALl Module 1 NP4- P7 MAO- VA1l Module 2 VP4- P7
— S ——
Bank 1 Bank 2

Figure 5.5 DRAM memory interface

Motherboard Design

5.1.6 Clock rates

The system board runs at several clock frequencies. These are:

129

Processor speed — the processor, TXC and SRAM run at the system frequency (such as

66MH2),

PCI bus speed — TCX, PI1X3 and PCI dlots.

24 or 48MHz — USB (Universal Serial Bus).
12MHz — keyboard.

24MHz - floppy clock.

14MHz — I SA bus OSC.

8MHz —ISA bus clock.
5.1.7 ISA/IDE interface

The IDE and I1SA buses share several data, address and control lines. Figure 5.6 shows the
connections to the buses. The IDE interface uses the DD[12:0] and LA[23:17] lines, and the
ISA uses these lines as SBHE#, SA[19:8}, CS1S, CS3S, CS1P, CS3P and DA[2:0]. A multi-
plexor (MUX) is used to select either the ISA or IDE interface lines.

5.1.8 DMA interface

The PI1X3 device incorporates the functionality of two 8237 DMA controllers to give seven
independently programmable channel (channels 0-3 and Channels 5-7). DMA channel 4 is
used to cascade the two controllers and defaults to cascade mode in the DMA channel mode
(DCM) register. Figure 5.7 shows the interface connections.

PIIX3

ISA

v

v

SD[15:0]
10CSI!
MEMCS16#
MEMR#
MEMW#

IDE

xc=Z

LA20/CS3P
LA[19:17]/DA[2:0]

AAAAR AR A4

DIOR#
DIOW#
DDR% 1:0]
DDAKI[1:0]#
IORD

E#

SDIR
DD13

Figure 5.6 IDE/ISA interface with PIIX3

130 Computer busses

DREQI[7:5,3:0
DACK]7:5.3:
TC

REFRESH#

DMA

v | v

PIIX3

Figure 5.7 DMA interface
5.1.9 Interval timer

The PI1X3 contains three 8251-compatible counters. The three counters are contained in one
PI1X3 timer unit, referred to as Timer 1. Each counter provides an essential system function.
The functions of the counters are:

Counter 0 — connects to the IRQO line and provides a system timer interrupt for a time-of-
day, diskette time-out, and so on. The input to the counter is a 14.21818MHz clock
(OSC). Thisisthen used to increment a 16-bit register, which rolls over every 55ms.
Counter 1 — generates arefresh request signal.

Counter 2 — generates the speaker tone.

5.1.10 Interrupt controller

The PXI113 incorporates two 8259-compatible interrupt controllers which provide an 1SA-
compatible interrupt controller. These are cascaded to give 13 externa and three internal in-
terrupts. The primary interrupt controller connects to IRQO-IRQ7 and the secondary con-
nects to IRQ8-1RQ15. The three internal interrupts are:

IRQO — used by the system timer and is connected to Timer 1, Counter O.

IRQ2 — used by the primary and secondary controller (see Figure 2.2 in Section 2.3.2).
IRQ13 — used by the math coprocessor, which is connected to the FERR pin on the
Processor.

Figure 5.8 shows that the PC uses IRQO as the system timer and IRQ2 by the programmable
interrupt controller.

The interrupt unit also supports interrupt steering. The four PCl active low interrupts
(PIRQ#[D:A]) can be internally routed in the PIIX3 to one of 11 interrupts (IRQ15, IRQ14,
IRQ12-1RQY, IRQ7-IRQ3).

5.1.11 Mouse function

The mouse normally either connects to one of the serial ports (COM1: or COM2:) or a PS/2-
type connector. If they connect to the PS/2-type connector then IRQ12 is used, else a serial
port connected mouse uses the serial interrupts (such as IRQ4 for COM1 and IRQ3 for
COM2). Thus, a system with a serial connected mouse must have the IRQ12/M interrupt dis-
abled. Thisis normally done with a motherboard jumper (to enable or disable the mouse in-
terrupt). Figure 5.8 shows an example of amouse using IRQ12.

Motherboard Design 131

Computer Properties
WView Resources | Fieserve Resources |

% Intermupt request IRQ) © Direct memony access [DMA)
™ Inputoutput [1/0)) Memaony

Setting | Hardware using the setting |_A_I
Communications Part [COM1T]

Standard Floppy Disk Contraller

Printer Port [LFT1]

Syztemn CWOS freal time clock

ESE88 AudioDiive

Standard PS/2 Port Mouze

Mumeric data processor

Standard IDE/ESDI Hard Digk Controller LI

ak. I Cancel |

Figure 5.8 Interrupts usage shows PS/2 port mouse
5.1.12 Power management

PIIX3 has extensive power management capability permitting a system to operate in a low
power state without being powered down. In a typical desktop PC there are two states —
power on and power off. Leaving a system powered on when not in use wastes power. PlI X3
provides a fast on/off feature that creates a third state called fast off. When in the fast off
state, the system consumes less power than the power on state.

The PI1X3's power management function is based on two modes:

System management mode (SMM).
Advanced power management (APM).

Software (called SMM code) controls the transitions between the power on state and the fast
off state. PIIX3 invokes this software by generating an SMI (system management interrupt)
to the CPU (asserting the sur signal). The SMM code places the system in either the power
on state or the fast off state.

5.1.13 Graphics subsystem

The 430HX incorporates the S3 ViRGE graphics device with 2MB of graphics memory,
which has:

* High performance 64-bit 2D/3D graphics engine.
RAMDAC/clock synthesiser capable of pixel rates of 135MHz.

e S3 streams processor, enabling the device to convert YUV formatted video data to RGB
format.

e 3D featuresincluding flat shading and texture mapping support.
® Fast linear addressing scheme.
® VESA (Video Electronics Standards Association) capability.

132 Computer busses

5.2 TX motherboard

The Intel 430HX motherboard only supports up to 128MB of memory and has a relatively
small second level cache (256kB). The Intel 430TX board has many enhanced devices, such
as standardised USB connections and enhanced super 1/O device. Figure 5.9 shows the main
layout. The 430TX board uses 168-pin DIMM sockets for memory addition. It supports both
EDO DRAM and SDRAM (synchronous DRAM). SDRAM synchronous data transfers using
the system clock. This simplifies memory timing, leading to an increase in memory transfer.
The 430TX motherboard supports a 64-bit data path to memory.

The 430TX board uses the 82430TX PCI chipset, which has:

® 82439TX Xcelerated Controller (MTXC), which replaces the TXC (82439HX) in the
HX board.

e 82371AB PCI/ISA IDE Xcelerator (PI1X4), which replaces the PI1X3 (82371SB) in the
HX board. This is a 324-pin BGA that integrates PCI-to-1SA bridge (two 82C37 DMA
controllers, two 82C59 interrupt controllers, an 82C54 timer/counter and a real-time
clock), PCI/IDE interface, USB host/hub function and power management functions.

Audio Audio
codec (OP4 ML)

..........................

Level 2 cache

SRAM i Pentium
- processor
Video [["t :
capture

PCI processor 82430TX
connectors System
. TV-out Controller
ISA device 82430TX
connectors DIMM
e sOCKetS PCI/ISA/IDE
. i i . e Xcelerator (PI1X4)
i . . - — PC87307UL
memory | _ : 1/0 Controller
device : : :
! Video | Graphics IDE :
memory controller connectors

Figure 5.9 AN430TX board

521 PIIX4

The PI1X4 supports two types of PCI DMA protocol, PC/PCI DMA which uses dedicated
request and grant signals to permit PCI devices to request transfers associated with specific

Motherboard Design 133

DMA channels, and distribute DMA which is based on monitoring CPU accesses to the 8237
controller (this was not implemented on the PI1X3).

The PlIX4 aso supports Ultra DMA/33 Synchronous DMA mode transfers up to
33MB/s. Ultra DMA is a newer protocol for the IDE hard drive interface that doubles the
burst data rate from 16.6 MB/s (as supported by the PI1X3). Ultra DMA widens the path to
the hard drive by transferring twice as much data per clock cycle, so doubling the perform-
ance. The Ultra DMA protocol lets host computers send and receive data faster, removing
bottlenecks associated with data transfers.

In addition to speed improvements, the protocol brings new data integrity capabilities to
the IDE interface such as improved timing margins and data protection verification. Ultra
DMA protocol also allows drives and system to retain backward compatibility with the pre-
vious ATA standard.

Real time clock

The real-time clock provides a data-and-time keeping device with alarm features and battery-
backed operation. The RTC counts seconds, minutes, hours, days, day of the week, date,
month and year. It counts 256 bytes of battery-backed SRAM in two banks. The RTC mod-
ule requires an external oscillator source of 32.768kHz connected between TXCX1 and
RTCX2.

5.2.2 /O controller

The PC87306B 1/O controller is similar to the 82091AA (AIP) used in the 430HX board. It
has:

* Floppy disk interface — provides support for severa different floppy disk capacities and
Sizes.

* Multimode parallel port — supports for output only compatibility mode, bidirectional
mode, EPP mode and ECP mode.

* Two FIFO serial ports. Giving transfers rates up to 921K bps.

® Real-time clock — provides time-of-day, 100-year calendar and alarm features.

* Keyboard and mouse controller — keyboard and mouse interfaces (as well as power
on/reset password protection).

* Infrared support — connection to infrared transmitter/receiver.
5.2.3 Graphics subsystem
The 430HX incorporates the ATI-241 Rage |1+ graphics controller which has:

* Drawing coprocessor that operates concurrently with the host processor.
* Video coprocessor.

* Video scalar, colour space converter, true colour palette.

® ATI multimedia

* Enhanced power features.

* VGA/VESA capabhility.

The 430HX also has an optional video capture processor for digitising analogue inputs from

134 Computer busses

VCRs, cameras, TVs, and so on. It also has an optional ATI-ImpactTC NSTC/PAL encoder
which providesa TV output for the graphics accelerators.

5.2.4 DRAM interface

The DRAM interface is a 64-bit data path that supports fast page mode (FPM) and extended
data out (EDO) memory. The integrated DRAM controller supports from 4MB to 256 MB of
main memory. The 12 multiplexed address lines (MA[11:0]) alow the chips to support 4-bit,
16-bit and 64-bit memory, both symmetrical and asymmetrical addressing. The MTXC has
six RAS lines which enables support to up to six rows of DRAM (the TXC has eight RAS
lines).

The MTXC supports SRAM. The 14 multiplexed address lines (MA[13:0]) alow the
MTXC to support 16-bit and 64-bit SDRAM devices. The MTXC has six CS (chip select)
lines (muxed into RAS[5:0]) which allows six rows of the faster SDRAM modules to be in-
stalled.

All these memory types FPM, EDO and SDRAM can be mixed on the 430TX (but only
the FPM and EDO are supported in the 430HX board). The extra lines that have been added
inthe MTXC are;

SRAS[A,B] — SRAM row address strobe.
SCAS[A,B] — DRAM column address.

5.2.5 Second- level cache

The MTXC supports cache memory area of 64MB using either 8K" 8 or 16K" 8 SRAM
blocks to store the cache tags for either 256 KB or 512KB SRAM cache. (8K" 8 is used for
256KB and 16K" 8 is used for 512K B). Each cache entry is 32 bits (4 bytes) thus the total
cache memory sizeis512KB (16K" 8 4). The signals are:

ccs Cache chip select — set active upon power-up and allows access to the
cache.

TWE Tag write enable — allows new state and tag addresses to be written into
the cache.

COE Cache output enable — puts the cache data onto the data bus.

GWE Global write enable — causes al bytes to be written to.

CADS Cache address strobe — cache loads the address register from the ad-
dress pins.

CADV Cache advance — the address is automatically increment to the next
word.

TIO[7:0] Tag address — input lines for tag addresses.

KRQAK/CS4 64. Cache chip select — KRQAK specifies DRAM cache, else implements a
64MB main memory cache.

BWE Byte write enable — enables up to eight bytes from the data bus.

Figure 5.10 shows the interface between the MTXC and the second-level cache. Note that
four 32K” 32 devices make up the 512KB (4" 32" 4) SRAM cache. Only two are shown in
Figure 5.10, as the other two are connected in parallel with the two shown.

Motherboard Design 135

MTXC 16K” 8 Tag RAM
TIO[7:0] D[7:0]
TWE# WE# A[L3:0] [¢ HA[18:5]
OE#
32k” 32 SRAM
HCLK] ——» CLK
HA[17:3] —»| A[14:0]
COE# > OE#
ccs# > Ccsi#
CADS# > ADSCH#
CADV# > ADV#
ADS#| —» ADSP#
HAlS —® Cs2 D[31:24] [4—{ % HD[63:56]
GND] ——» CS2# D[23:16] [4——» HD[55:48]
GWE# » GWE# D[15:8] [¢ ¥ HD[47:40]
BWE# »| BWE# p[7.0) [* > HD[39:32]
HBE[7:4]# —p{ BE[3:0#

D[31:24] 4—» HD[31:24]

D[23:16] [¢—» HD[23:16]
GWE# D[15:8] ¢ HD[15:8]
BWE# p7.g) [* HD[7:0]
HBE[3:0j# —» BE[3:0J#

Figure 5.10 Second-level cache interface

Cache control register (CC)

This is an 8-bit register which is located at 52h in the 1/O memory. It defines secondary
cache operations. Itsformat is:

Bit Description

7:6 Secondary cache size — 00 (disabled), 01 (256K), 10 (512K), 11 (reserved).

5:4 SRAM cache type — 00 (pipelined burst SRAM), 01 (reserved), 10 (re-
served), 11 (two banks of pipelined burst).

3 NA disable—1 (disable), O (enabled); normally enabled.

2 Reserved.

1 Secondary cache force miss or invalidated (SCFMI). When set to a 1, the
Level 2 hit/missfacility isdisabled, elseit is enabled.

0 First-level cache enable (FLCE) — 1 (enable), O (disable). When itissetto a

1, the control responds to processor cycles with KEN# active. Normal
mode for FLCE, SCFMI is 1, 0.

Extended cache control register (CEC)

This is an 8-bit register which is located at 53h in the 1/O memory. It defines the refresh rate
for DRAM Leve 2. Itsformat is:

136 Computer busses

Bit Description

7:6 Reserved.

5 Definesif DRAM cacheis present — 1 (present), O (not present).
4:0 DRAM cache refresh timer value.

5.2.6 Power management

The PI1X4 has enhanced power management over the PlIX3 and can detect when a specific
device isidle. The system management software is then informed, which then can place the
idle device into a power managed condition (such as local standby or powered off). Accesses
targeted to that device are then monitored. When detected, an swi is generated to allow the
software to restore the device to operation.

The PIIX4 supports the Advanced Configuration and Power Interface (ACPI) specifica-
tion. The software consists of system management mode (SMM) BIOS for legacy control
and operating system for ACPI. The basic operation consists of software setting up the de-
sired configurations and power management mode and corresponding power saving levels.
The hardware then performs the necessary actions to maintain the power mode. The 1/O chip
also monitors the system for events which may require changing the system power mode.

5.3 Exercises
531 The data bus signals which connect to the processor are:

(8 HDO-HD63 () DO-D63
(00 HAO-HAG3 (d ADO-AD63

532 Which device provides the bridge between the processor, second-level cache,
DRAM and the PCI bus:

(& PIIX3/4 () HXC
(0 RFC/IMRFC (d TXCMTXC

533 Which device provides the bridge between the PCI bus and other busses, such as
the IDE, ISA and USB:

(@ PlIX3/4 (b) HXC
(9 RFC (d TXC

534 The maximum achievable data throughput for a 33MHz, 32-bit PCl is 132MB}/s.
Why is this not achievable in the normal multiplexed mode:

(@ Haf of the busisused for addresses, the other half for data

(b) Thebus must ow down because of synchronisation problems

(c) Theaddress and dataline are shared (multiplexed address then data).
(d) Theclock rateis halved for al transfers

535 How does a cache identify the address of the data it hasin its memory:

(@ Thefull addressis stored along with the data
(b) Itistagged (CTAG).

Motherboard Design 137
(c) It guessesthe address
(d) It checksthe address with the contents of the DRAM

5.3.6 How many data hits are transferred between the processor and the second-level
cache:

@ 16 () 32 (¢ 64 () 128

537 Outline the importance of the TXC (system controller) device in the PC. Outline
also themain ICsthat are used in a PC.

538 Describe, in detail, the architecture of the HX PCI chip set, and how the Pentium
processor communicates with: DRAM memory, Level-2 SRAM cache, the PCI
bus, the ISA bus and the IDE bus.

539 Explain, with reference to the PI1X3 and Pentium processor, how interrupts on the
PCI and | SA busses are dealt with.

5.3.10 Explain, with reference to the level-1 cache, the level-2 cache and DRAM, how
the processor accesses memory. What advantage does level-1 have over level-2
cache, and what advantage do these have over DRAM.

5.3.11 Discuss the power management modes supported by the PX113, and also by the
PXI14.

5.3.12 Which interrupts are supported with the AIP and where are they typically used?
5.3.13 Explain how the ISA and I DE busses share the same control and data lines.

5314 Contrast the HX motherboard with the L X motherboard.

5.4 Notes from the author

I hope that this chapter was not too heavy. It is important to realise that it is not just the
speed of the processor that defines the performance of a system — it is the cache controllers,
the bridge devices, the PCI bus, and so on. So have tried to give you an under standing of the
segmentation that is used in typical PCs. The devices used will change, but the basic concept
islikely to stay the same (1 hope!). The days of a PC on a chip will happen, someday.

The most amazing thing about modern PC systems is that they are almost completely
compatible with the original PC, the big change has happened in the integration of many of
the components parts. The great strength of the PC is its availability, durability and up-
gradeability of its components. | find it amazing that it can disconnect the cable to the disk
drives, turn it round, and connect it and the system will not be damage, in any way (although
it won't start). | can even put the processor in the wrong way, and it will not damage it.

The other amazing thing about PCs is the way that new peripherals are quickly adopted,
and become standard parts of the PC. This has included CD-ROM drives, USB connectors,
PS2-type mouse connectors, PCMCIA connectors (in notebooks), VGA graphics adaptors,
TV output, DVD drives, network cards, sound cards, and so on. Who would have believed
that such a basic system as the original PC would support all this expansion, without ever
the need to redesign it (although the PCI bus provided a new architectural design).

6 || IDE and Mass Storage

6.1 Introduction

This chapter and the next chapter discuss IDE and SCSI interfaces which are used to inter-
face to disk drives and mass storage devices. Disks are used to store data reliably in the long
term. Typical disk drives either store binary information as magnetic fields on a fixed disk
(as in a hard disk drive), a plastic disk (as in a floppy disk or tape drive), or as optical repre-
sentation (on optical disks).

The main sources of permanent read/writeable storage are:

e Magnetic tape — where the digital bits are stored with varying magnetic fields. Typical
devices are tape cartridges, DAT and 8 mm video tape.

o Magnetic disk — as with the magnetic tape the bits are stored as varying magnetic fields
on a magnetic disk. This disk can either be permanent (such as a hard disk) or flexible
(such as a floppy disk). Large capacity hard disks allow storage of several gigabytes of
data. Normally fixed disks are designed to a much higher specification than floppy disks
and can thus store much more information.

o Optical disk — where the digital bits are stored as pits on an optical disk. A laser then
reads these bits. This information can either be read only (CD-ROM), write once read
many (WORM) or can be reprogrammable. A standard CD-ROM stores up to 650 MB of
data. Their main disadvantage in the past has been their relative slowness as compared
with Winchester hard disks; this is now much less of a problem as speeds have steadily
increased over the years.

6.2 Tracks and sectors

A disk must be formatted before it is used, which allows data to be stored in a logical man-
ner. The format of the disk is defined by a series of tracks and sectors on either one or two
sides. A track is a concentric circle around the disk where the outermost track is track 40 and
the innermost track is 0. The next track is track 1 and so on, as shown in Figure 6.1. Each of
these tracks is divided into a number of sectors. The first sector is named sector 1, the second
is sector 2, and so on. Most disks also have two sides: the first side of the disk is called side 0
and the other is side 1.

140

Sector 1
«— (512 bytes)

Track 0

Track 40

Sector 2
(512 bytes)

Figure 6.1 Tracks and sectors on a disk

Computer busses

Figure 6.1 also shows how each track is split into a humber of sectors, in this case there are
eight sectors per track. Typically each sector stores 512 bytes. The total disk space, in bytes,

will thus be given by

Disk space = Number of sides x tracks x sectors per track x bytes per sector

For example, a typical floppy disk has two sides, 80 tracks per side, 18 sectors per track and
512 bytes per sector, so

Disk capacity = 2x80x18x512 =1474560 B
=1474560/1024 KB =1440 KB
=1440/1024 MB =14 MB

6.3 Floppy disks

A 3.5-inch DD (double density) disk can be formatted with two sides, nine sectors per track
and 40 tracks per side. This gives a total capacity of 720 KB. A 3.5inch HD (high density)
disk has a maximum capacity when formatted with 80 tracks per side.

A 5.254inch DD disk can be formatted with two sides, nine sectors per disk with either 40
or 80 tracks per side. The maximum capacity of these formats is 360 KB (40 tracks) or 720
KB (80 tracks). A 5.25-inch HD disk can be formatted with 15 sectors per track which gives
a total capacity of 1.2 MB. When reading data the disks rotate at 300 rpm. Table 6.1 outlines

the differing formats.

Table 6.1 Capacity of different disk types

Size Tracks per side Sectors per track ~ Capacity
5.254nch 40 9 360KB
5.25-inch 80 15 1.2MB
3.5-inch 40 9 720KB
3.5-inch 80 18 1.44MB

IDE and mass storage 141

6.4 Fixed disks

Fixed disks store large amounts of data and vary in their capacity, from several MB to sev-
eral GB. A fixed disk (or hard disk) consists of one or more platters which spin at around
3000 rpm (10 times faster than a floppy disk). A hard disk with four platters is shown in Fig-
ure 6.2. Data is read from the disk by a flying head which sits just above the surface of the
platter. This head does not actually touch the surface as the disk is spinning so fast. The dis-
tance between the platter and the head is only about 10pin (which is no larger than the thick-
ness of a human hair or a smoke particle). It must thus be protected from any outer particles
by sealing it in an airtight container. A floppy disk is prone to wear as the head touches the
disk as it reads but a fixed disk has no wear as its heads never touch the disk.

One problem with a fixed disk is head crashes, typically caused when the power is
abruptly interrupted or if the disk drive is jolted. This can cause the head to crash into the
disk surface. In most modern disk drives the head is automatically parked when the power is
taken away. Older disk drives that do not have automatic head parking require a program to
park the heads before the drive is powered down.

There are two sides to each platter and, like floppy disks, each side divides into a number
a tracks which are subdivided into sectors. A number of tracks on fixed disks are usually
named cylinders. For example a 40 MB hard disk has two platters with 306 cylinders, four
tracks per cylinder, 17 sectors per track and 512 bytes per sector, thus each side of a platter
stores

306x4x17x512 B 10653696 B
10653696/ 1048576 MB
10.2MB

Read/write heads

/

Platters

Head movement

Figure 6.2 Hard disk with four platters

142 Computer busses

6.5 Drive specifications

Access time is the time taken for a disk to locate data. Typical access times for modern disk
drives range from 10 to 30ms. The average access time is the time for the head to travel half
way across the platters. Once the head has located the correct sector then there may be an-
other wait until it locates the start of the data within the sector. If it is positioned at a point
after the start of the data, it requires another rotation of the disk to locate the data. This aver-
age wait, or latency time, is usually taken as half of a revolution of the disk. If the disk spins
at 3600 rpm then the latency is 8.33 ms.

The main parameters which affect the drive specification are the data transfer rate and the
average access time. The transfer rate is dependent upon the interface for the controller/disk
drive and system/controller and the access time is dependent upon the disk design.

6.6 Hard disk and CD-ROM interfaces

There are two main interfaces involved with a hard disks (and CD-ROMs). One connects the
disk controller to the system (system—controller interface) and the other connects the disk
controller to the disk drive (disk—controller interface).

The controller can be interfaced by standards such as ISA, EISA, MCA, VL-Local bus or
PCI bus. For the interface between the disk drive and the controller then standards such as
ST-506, ESDI, SCSI or IDE can be used. ST-506 was developed by Seagate Technologies
and is used in many older machines with hard disks of a capacity less than 40 MB. The en-
hanced small disk interface (ESDI) is capable of transferring data between itself and the
processor at rates approaching 10 MB/s.

The small computer system interface (SCSI) allows up to seven different disk drives or
other interfaces to be connected to the system through the same interface controller. SCSI is
a common interface for large capacity disk drives and is illustrated in Figure 6.3.

The most popular type of PC disk interface is the integrated drive electronics (IDE) stan-
dard. It has the advantage of incorporating the disk controller in the disk drive, and attaches
directly to the motherboard through an interface cable. This cable allows many disk drives to
be connected to a system without worrying about bus or controller conflicts. The IDE inter-
face is also capable of driving other 1/O devices besides a hard disk. It also normally contains
at least 32K of disk cache memory. Common access times for an IDE are often less than 16
ms, where as access times for a floppy disk are about 200 ms. With a good disk cache system
the access time can reduce to less than 1 ms. A comparison of the maximum data rates is
given in Table 6.2.

Table 6.2 Capacity of different disk types

Interface Maximum data rate (MB/s) Interface Maximum data rate (MB/s)
ST-506 0.6 E-IDE 16.6
ESDI 1.25 SCsI 40

IDE 8.3 SCSI-II 10.0

IDE and mass storage 143

i [—— -
| 111 . {—
| Peripheral | Peripheral Peripheral |

I I I

—_—— — -

N I S
|| Controller || Controller | | Controller |
1 2 7 I

| Il I |

Common SCSI connection

SCSI host System data bus |
adapter

System address bus |

Figure 6.3 SCSl interface

A typical modern PC contains two IDE connections on the motherboard, named IDEO
and IDE1. The IDEO connection connects to the master drive (C:) and IDE1 to the slave
drive (D:). These could connect either to two hard disks or, possibility, to one hard disk and a
CD-ROM drive (or even a tape backup system). Unfortunately, the IDE standard only allows
disk access up to 528MB. A new standard called Enhanced-IDE (E-IDE) allows for disk
capacities of over this limit. The connector used is the same as IDE but the computers’ BIOS
must be able to recognise the new standard. Most computers manufactured since 1993 are
able to fully access E-IDE disk drives.

The specifications for the IDE and EIDE are

IDE

e Maximum of two devices (hard disks).

e Maximum capacity for each disk of 528 MB.

e Maximum cable length of 18 inches.

o Data transfer rates of 3.3, 5.2 and 8.3 MB/s.

EIDE

o Maximum of four devices (hard disks, CD-ROM and tape).
Uses two ports (for master and slave).

Maximum capacity for each disk is 8.4 GB.

Maximum cable length of 18 inches.

Data transfer rates of 3.3, 5.2, 8.3, 11.1 and 16.6 MB/s.

6.7 IDE interface

The most popular interface for hard disk drives is the Integrated Drive Electronics (IDE)
interface. Its main advantage is that the hard disk controller is built into the disk drive and
the interface to the motherboard simply consists of a stripped-down version of the ISA bus.
The most common standard is the ANSI-defined ATA-IDE standard. It uses a 40-way ribbon
cable to connect to 40-pin header connectors. Table 6.3 lists the pin connections. It has a 16-
bit data bus (D0-D15) and the only available interrupt line used is IRQ14 (the hard disk uses

144 Computer busses

IRQ14).

The standard allows for the connection of two disk drives in a daisy-chain configuration.
This can cause problems because both drives have controllers within their drives. The pri-
mary drive (Drive 0) is assigned as the master and the secondary driver (Drive 1) as the
slave. A drive is set as a master or a slave by setting jumpers on the disk drive. They can also
be set by software using the cable select (CSEL) pin on the interface.

EIDE has various modes (ANSI modes) of operation, these are

Mode 0 — 600 ns read/write cycle time, 3.3 MB/s burst data transfer rate.
Mode 1 — 383 ns read/write cycle time, 5.2 MB/s burst data transfer rate.
Mode 2 — 240 ns read/write cycle time, 8.3 MB/s burst data transfer rate.
Mode 3 — 180 ns read/write cycle time, 11.1MB/s burst data transfer rate.
Mode 4 — 120 ns read/write cycle time, 16.6MB/s burst data transfer rate.

Table 6.3 IDE connections

Pin IDE signal AT signal Pin IDE signal AT signal
1 RESET RESET DRV 2 GND -
3 D7 sD7 4 D8 SD8
5 D6 SD6 6 D9 SD9
7 D5 SD5 8 D10 SD10
9 D4 SD4 10 D11 SD11

11 D3 SD3 12 D12 SD12

13 D2 SD2 14 D13 SD13

15 D1 SD1 16 D14 SsD14

17 DO SDO 18 D15 SD15

19 GND - 20 KEY -

21 DRQ3 DRQ3 22 GND -

23 oW 1ow 24 GND -

25 TOR 1OR 26 GND -

27 IOCHRDY IOCHRDY 28 CSEL -

29 DACK3 DACK3 30 GND -

31 IRQ14 IRQ14 32 10CS16 10CS16

33 Address bit 1 SAl 34 PDIAG -

35 Address bit 0 SAO0 36 Address bit 2 SA2

37 CS1FX - 38 CS3FX -

39 SP / DA - 40 GND -

6.8 IDE communication

The IDE (or AT bus) is the de facto standard for most hard disks in PCs. It has the advantage
over older type interfaces that the controller is integrated into the disk drive. Thus the com-
puter only has to pass high-level commands to the unit and the actual control can be achieved
with the integrated controller. Several companies developed a standard command set for an
ATA (AT attachment). Commands include:

¢ Read sector buffer — reads contents of the controller’s sector buffer.
e Write sector buffer — writes data to the controller’s sector buffer.

IDE and mass storage 145

Check for active.
Read multiple sectors.
Write multiple sectors.
Lock drive door.

The control of the disk is achieved by passing a humber of high-level commands through a
number of 1/O port registers. Table 6.3 outlined the pin connections for the IDE connector.
Typically pin 20 is missing on the connector cable so that it cannot be inserted the wrong
way, although most systems buffer the signals so that the bus will not be damaged if the ca-
ble is inserted the wrong way. The five control signals which are unique to the IDE interface
(and not the AT bus) are

e CS3FX, CSIFX — these are used to identify either the master or the slave.

o pPDIAG (passed diagnostic) — used by the slave drive to indicate that it has passed its di-
agnostic test.

o sp/DA (slave present/drive active) — used by the slave drive to indicate that it is present
and active.

The other signals are

e IOCHRDY — This signal is optional and is used by the drive to tell the processor that it re-
quires extra clock cycles for the current I/O transfer. A high level informs the processor
that it is ready, while a low informs it that it needs more time.

e DRQ3, DACK3 — These are used for DMA transfers.

6.8.1 AT task file

The processor communicates with the IDE controller through data and control registers (typi-
cally known as the AT task file). The base registers used are between 1F0h and 1F7h for the
primary disk (170h and 177h for secondary), and 3F6h (376h for secondary), as shown in
Figure 6.4. Their function is:

Port Function Bits Direction
1FOh Data register 16 R/W
1F1h Error register 8 R
Precompensation 8 W
1F2h Sector count 8 RW
1F3h Sector number 8 R/W
1F4h Cylinder LSB 8 RW
1F5h Cylinder MSB 8 R/W
1F5h Drive/head 8 R/W
1F6h Status register 8 R
Command register 8 W
3F6h Alternative status register 8 R
Digital output register 8 W
3F7h Drive address 8 R

146 Computer busses

Standard IDEZESDI Hard Disk Controller Properties [l E4 Standard IDE/ESDI Hard Disk Controller Properties [E3
General Resources | General Resources I
Standard IDE/ESDI Hard Digk Controller Standard IDE/ESDI Hard Disk Contraller
Resource settings: Resource settings:

Setting
input/Output B ange e rr
Input/Output Range 0376 - 0377
Interupt Request 158

Setting
01F0 - O1F7
Input/Output Range 03FE - 03FE
Intermupt Request 14

Sefting based ar IBasic configuration 0000 j Sething based o IBasic configuration 0000 j
LEhange Setting. . v [hatige Setfing).. V' Use automatic settings
Conflicting device list: Conflicting device list:
Mo conflicts. ;I Mo conflicts. ;I
(] 8 I Cancel | (] 8 I Cancel |

Figure 6.4 Typical hard-disk controller settings for the primary and secondary drive

Data register (1FOh)

The data register is a 16-bit register which is used to read/write data from/to the disk.

Error register (1F1h)

The error register is read-only and contains error information relating to the last command.
Its definitions are

b, bs bs b, bs b, b; bo
BBK UNC MCNID MCR ABT NTO NDM

where

BBK - set to 1 if the sector is bad.

UNC - set to 1 if there is an unrecoverable error.

NID - set to 1 if mark not found.

ABT - set to 1 if command aborted.

NTO - set to 1 if track O not found.

MC - set to 1 identifies that the medium has changed (EIDE only). The EIDE standard
support disks which can be changed while the system is running (such as CD-ROMs, tape
drives, and so on).

e MCR-setto 1 identifies that the medium requires to be changed (EIDE only).

Sector count register (1F2h)

This is a read/write 8-bit register which defines the number of sectors to be read, written or
verified. After each transfer to/from the disk causes the register value to be decremented by
one.

IDE and mass storage 147

Sector number register (1F3h)

This is a read/write 8-bit register which defines the start sector to be read, written or verified.
After each transfer to/from the disk, the register contains the last processed sector.

Cylinder register (1F4h/1F5h)

These are read/write 8-bit registers which define the LSB (1F4h) and MSB (1F5h) of the
cylinder number. The two registers are capable of containing a 16-bit value. In standard IDE
the cylinder number is 10-bit and can only vary from 0 to 1023 (0 to 2'°-1). For E-IDE the
value can be a 16-bit value and can thus vary from 0 to 65535 (0 to 2'°-1). This is one of the
main reasons that E-IDE can address much more data than IDE.

Drive/head register (1F6h)

This is a read/write 8-bit register which defines the currently used head. Its definitions are:

b, be bs by by b, b bo
1 L 1 DRV HD; HD, HD; HD,

where:

e L - settolif LBA (logical block addressing) mode else set to 0 if CHS (EIDE only).

e DRV -setto 1 for the slave, else it is master.

e HDs;-HD, _ identifies the head number, where 0000 identifies head 0, 0001 identifies head
1, and so on.

Status register (1F7h)

The 1F7h register has two modes. If it is written to then it is a command register (see next
section) else, if it is read from, then it is a status register. The status register is a read-only 8-
bit register which contains status information from the previously issued command. Its defi-
nitions are:

b, bs bs b, bs b, b, bo
BUSY RDY WFT SKT DRQ COR IDX ERR

where:

BUSY - set to 1 if the drive is busy.

RDY -set to 1 if the drive is ready.

WFT-set to 1 if there is a write fault.

SKT-set to 1 if head seek positioning is complete.

DRQ - set to 1 if data can be transferred.

COR -set to 1 if there is a correctable data error.

IDX - set to 1 identifies that the disk index has just passed.

ERR - set to 1 identifies that the error register contains error information.

Command register (1F7h)

If the 1F7h register is written-to then it is a command register. The command register is a 8-
bit register can contain commands, such as:

148 Computer busses

Command b, bg bs b, b, b, b, by Related registers
Calibrate drive 0 0 0 1 - - - — 1F6h

Read sector 0 0 1 0 - - L R 1F2h-1F6h
Write sector 0 0 1 1 - - L R 1F2h-1F6h
Verify sector 0 1 0 0 - - - R 1F2h-1F6h
Format track 0 1 0 1 - - - — 1F3h-1F6h
Seek 0 1 1 1 - - - — 1F4h-1F6h
Diagnostics 1 0 0 1 - - - — 1F2h, 1F6h
Read sector buffer 1 1 1 0 0 1 0 0 1F6h
Write sector buffer 1 1 1 0 1 0 0 0 1F6h
Identify drive 1 1 1 0 1 1 - - 1F6h

where R is set to 0 if the command is automatically retried and L identifies the long-bit.

Digital output register (3F6h)
This is a write-only 8-bit register which allows drives to be reset and also IRQ14 to be
masked. Its definitions are

b, bs bs by by b, by bo
- - - - - SRST i -

where

e SRST-settoal toresetall connected drives, else accept the command.
e en - controls the interrupt enable. If set to 1 then IRQ14 is always masked, else inter-
rupted after each command.

Drive address register (3F7h)
The drive address register is a read-only register which contains information on which drive
and which head is currently active. Its definitions are:

b, be bs b, bs b, b, bo
- WTGT HS3 HS2 HS1 HSO DS1 DSO

where

e wreT -set to 1 if the write gate is closed, else the write gate is open.
e hs3—nso -1’s complement value of currently active head.
e Dpsi-Dpso - identifies the selected drive.

6.8.2 Command phase

The IRQ14 line is used by the disk to when it wants to interrupt the processor, either when it
wants to read or write data to/from memory. For example, using Microsoft C++ (for Borland
replace _outp () and _inp () with outport () and inport ()) to write to a disk at cylinder
150, head 0 and sector 7:

IDE and mass storage 149

#include <conio.h>
int main(void)

{

int sectors=4, sector no=7, cylinder=150, drive=0, command=0x33, i;
unsigned int buff[1024], *buff pointer;
do

{

/* wait until BSY signal is set to a 1 */

} while ((_inp(0x1£7) & 0x80) != 0x80);

_outp (0x1f2, sectors) ; /* set number of sectors */
_outp (0x1£f3, sector_no) ; /* set sector number */
_outp (0x1f4,cylinder & Ox0ff); /* set cylinder number LSB */
_outp (0x1f5,cylinder & 0xf00); /* set cylinder number MSB */
_outp (0x1f6,drive) ; /* set DRV=0 and head=0 */
_outp (0x1£7, command) ; /* 0011 0011 (write sector) */
do

/* wait until BSY signal is set to a 1 and DRQ is set to a 1 */

} while (((_inp(0x1£f7) & 0x80) != 0x80) &&
((_inp (0x1£f7) & 0x08) !=0x08));

buff pointer= buff;
for (i=0;1i<512;i++,buff pointer++)

{

_outp (0x1f0, *buff pointer); /* output 16-bits at a time */

}

return(0) ;

}

Note that if the L bit is set then an extra four ECC (error correcting code) bytes must be writ-
ten to the sector (thus a total of 516 bytes are written to each sector). The code used is cyclic
redundancy check, which, while it cannot correct errors is very powerful at detecting them.

6.8.3 E-IDE
The main differences between IDE and E-IDE are:

e E-IDE support removable media.

e E-IDE supports a 16-bit cylinder value, which gives a maximum of 65636 cylinders.

e Higher transfer rates. In mode 4, E-IDE has a 120ns read/write cycle time, which gives a
16.6 MB/s burst data transfer rate.

o E-IDE supports LBA (logical block addressing) which differs from CHS (cylinder head
sector) in that the disk drive appears to be a continuous stream of sequential blocks. The
addressing of these blocks is achieved from within the controller and the system does not
have to bother about which cylinder, header and sector is being used.

IDE is limited to 1024 cylinders, 16 heads (drive/head register has only four bits for the
number of heads) and 63 sectors, which gives

Disk capacity = 1024x16x63x512 =504 MB

With enhanced BIOS this is increased to 1024 cylinders, 256 heads (8-bit definition for the
number of heads) and 63 sectors, to give

150 Computer busses

Disk capacity = 1024x256x63x512 = 7.88 GB
With E-IDE the maximum possible is 65536 cylinders, 256 heads and 63 sectors, to give
Disk capacity = 65536x256x63x512 =128 GB

Normally a 3.5-inch hard disk would be limited to around two platters, with four heads.
Thus, the capacity is around 8.1GB.

6.9 Optical storage

Optical storage devices can store extremely large amounts of digital data. They use a laser
beam which reflects from an optical disk. If a pit exists in the disk then the laser beam does
not reflect back. Figure 6.5 shows the basic mechanism for reading from optical disks. A
focusing lens directs the laser light to an objective lens which focuses the light onto a small
area on the disk. If a pit exists then the light does not reflect back from the disk. If the pit
does not exist then it is reflected and directed through the objective lens and a quarter-wave
plate to the polarised prism. The quarter-wave polarises the light by 45° thus the reflected
light will have a polarisation of 90°, with respect to the original incident light in the prism.
The polarised prism then directs this polarised light to the sensor.

Laser

Focusing < >
lens "—/"
Sensor
Polarizing o
prism
A
Objective A
lens
* \/] Transparent
denth coating (~1.2 mm)
Pit dept]
(~0.1 um) —,_l | | | |—, - Refl_ectlng
+ coating (~30 um)

Figure 6.5 Reading from an optical disk

6.9.1 CD-ROM

In a permanent disk (also known as compact disk or CD) the pits are set up by pressing them
onto the disk at production. The data on this type of disk is permanent and cannot be repro-
grammed to store different data, and is known as CD-ROM (compact disk read-only mem-
ory). This type of disk is normally only cost effective in large quantities.

Standard CD-ROM disks have a diameter of 120mm (4.7inch) and a thickness of

IDE and mass storage 151

1.2mm. They can store up to 650 MB of data which gives around 74 minutes of compressed
video (MPEG format with near VCR quality) or uncompressed hi-fi audio. The reflective
coating (normally aluminium) on the disk is approximately 30 um and the pits are approxi-
mately 0.1 um long and deep. A protective transparent coating is applied on top of the reflec-
tive coating with a depth of 1.2mm (the approximate thickness of the disk). The protective
coating also helps to focus the light beam from about 0.7 mm on the surface of the coating to
the 0.1 um pit. Data is stored on the disk as a spiral starting from the inside and ending at the
outside (which is opposite to hard disk. The thickness of the track is 1.6 um, which gives a
total spiral length of 5.7 km.

6.9.2 WORM drives

WORM (write once read many) disks allow data to be written to the optical disk once. The
data is then permanent and thus cannot be altered. They are typically used in data logging
applications and in making small volumes of CD-ROMs. A 350mm (14inch) WORM disk
can store up to 10GBs of data (5GB per side). This gives around 15 hours of compressed
video (MPEG format with near VCR quality).

WORM disks consist of two pieces of transparent material (normally glass) with a layer
of metal (typically tellurium) sandwiched in between. Initially the metal recording surface is
clear. A high intensity laser beam then writes information to the disk by burning small pits
into the surface.

6.9.3 CD-R and CD-RW disks

CD-R (CD-recordable) disks are write-once disks that can store up to 650 MB of data or 74
minutes of audio. For a disk to be read by any CD-ROM drive they must comply with ISO
9660 format. A CD-R disk can also be made multisession where a new file system is written
each time the disk is written to. Unfortunately, this takes up around 14 MB of header data for
each session. Typical parameters for sessions are:

No. of sessions Header information Data for each session
1 approx. 14MB 636MB one session
5 approx. 70MB 116MB each session
10 approx. 140MB 51MB each session
30 approx. 420MB 7.7MB each session

Typically CD recorders write at two (or even four) times the standard writing/playback speed
of 150 KB (75 sectors) per second.

A CD-RW (CD-rewriteable) disk allows a disk to be written-to many times, but the file
format is incompatible with standard CD-ROM systems (IS0 9660). The formatting of the
CD-RW disk (which can take a few hours) takes up about 157 MB of disk space, which only
leaves about 493 MB for data.

New CD-R and CD-RW writing systems incorporate a smart laser system that eradicates
the problem of dirt on the disk. It does this by adjusting the write power of the laser using
Automatic Power Control. This allows the unit to continue to write when it encounters minor
media errors such as dirt, smudges, small scratches, and so on.

6.9.4 CD-ROM disk format

The two main standards for writing a CD-ROM are 1SO 9660 and UDF (universal disk for-
mat). The 1SO 9660 disk unfortunately uses 14 MB for each write to the disk.
In 1980, Philips NV and Sony Corporation first announced the CD-DA (digital audio)

152 Computer busses

and in 1983 released the standard for CD-ROM. Then in 1988, they released the Red Book
standard for recordable CD audio disks (CD-DA)

This served as a blueprint for the Yellow Book specification for CD-ROMs (CD-ROM
and CD-ROM-XA data format) and the Orange Book Parts 1 and 2 specifications for CD-
Recordable (CD-R/CD-E (CD-recordable/CD-erasable)). In the Red Book standard a disk is
organized into a number of segments:

e Lead in — contains the table of contents for the disk that specifies the physical location of
each track.

e Program area — contains the actual disk data or audio data and is divided up into 99
tracks, with a two-second gap between each track.

e Lead out — contains a string of zeros which is a legacy of the old Red Book standard.
These zeros enabled old CD players to identify the end of a CD.

The CD is laid out in a number of sectors. Each of these sectors contains 2352 bytes, made
up of 2048 bytes of data and other information such as headers, sub-headers, error detection
codes and so on. The data is organised into logical blocks. After each session a logical block
has a logical address, which is used by the drive to find a particular logical block humber
(LBN).

Within the tracks the CD can contain either audio or computer data. The most common
formats for computer data are 1SO 9660, hierarchical file system (HFS) and the Joliet file
system.

The 1SO 9660 was developed at a time when disks required to be mass replicated. It thus
wrote the complete file system at the time of creation, as there was no need for incremental
creation. Now, with CD-R technology, it is possible to incrementally write to a disk. This is
described as multisession. Unfortunately, after each session a new lead in and lead out must
be written (requiring a minimum of 13 MB of disk space). This consists of:

e 13.2MB for the lead out for the first session and 4.4 MB for each subsequent session.
e 8.8MB for lead in for each session comprising 8.8 MB.

Thus multisession is useful for writing large amounts of data for each session, but is not effi-
cient when writing many small updates. Most new CD-R systems now use a track-at-once
technique which stores the data one track at a time and only writes the lead in and lead out
data when the session is actually finished. In this technique the CD can be built up with data
over a long period of time. Unfortunately the disk cannot be read by standard CD-ROM
drives until the session is closed (and written with the 1SO 9660 format). Another disadvan-
tage is that the Red Book only specifies up to 99 tracks for each CD.

Unfortunately the 1SO 9660 is not well-suited for packet writing and is likely to be
phased out over the coming years.

6.9.5 Magneto-optical (MO) disks

As with CD-R disks, magneto-optical (MO) disks allow the data to be rewritten many times.
These disks use magnetic and optical fields to store the data. Unfortunately the disk must
first be totally erased before data is written (although new developments are overcoming this
limitation).

6.9.6 Transfer rates

Optical disks spin at variable speeds, they spin at a lower rate on the outside of the disk than

IDE and mass storage 153

on the inside. Thus the disk increases its speed progressively as the data is read from the
disk. The actual rate at which the drive reads the data is constant for the disk. The basic
transfer rate for a typical CD-ROM is 150KB/s. This has recently been increased to
300KB/s (x2 CD drives), 600 KB/s (x4), 900 KB/s (x6), 1.5MB/s (x10) and even 6 MB/s
(x40).

6.9.7 Standards

Data disks are described in the following standards books, each of them specific to an area or
type of data application. These books can be obtained by becoming a licensed CD developer
with Philips. These standards apply to media, hardware, operating systems, file systems and
software.

Red Book World standard for all compact disks (CD-DA) (audio).
Yellow Book Covers CD-ROM and CD-ROM-XA data formats.
Green Book Covers CD-I data formats and operating systems (photo).
White Book CD-I (video)

Orange Book Covers CD-R/CD-E (CD-Recordable/CD-Eraseable).
Blue Book CD-Enhanced (CD Extra, CD Plus).

6.9.8 Silver, green, blue or gold

CD-ROMs are available in a number of colours, these are:

o Silver. These are read-only disks which are a stamped as an original disk.

e Gold. These are recordable disks which use a basic phthalocyanine formulation which
was patented by Mitsui Toatsu Chemicals (MTC) of Japan, and is licensed to other
phthalocyanine media manufacturers. They generally work better with 2m writing speeds
as some models of disk can not be written to at 1m writing speed.

o Green. These are recordable disks which are based on cyanine-based formulations. They
are not covered by a governing patent, and are more or less unique to the individual
manufacturers. An early problem was encountered with cyanine-based disk as the dye
became chemically unstable in the presence of sunlight. Other problems included a wide
variation in electrical performance depending on write speed and location (inner or outer
portion of the disk). Eventually, in 1995, some stabilising compounds were added. The
best attempt produced a metal-stabilised cyanine dye formulation that gave excellent
overall performance. Gradually the performance of these disks is approaching gold disk
performance.

o Blue. These are recordable disks which are based on an azo media. This was designed
and manufactured by Mitsubishi Chemical Corporation (MCC) and marketed through its
US subsidiary, Verbatim Corporation.

6.10 Magnetic tape

Magnetic tapes use a thin plastic tape with a magnetic coating (normally of ferric oxide).
Most modern tapes are either reel-to-reel or cartridge type. A reel-to-reel tape normally has
two interconnected reels of tape with tension arms (similar to standard compact audio cas-
settes). The cartridge type has a drive belt to spin the reels, this mechanism reduces the strain

154 Computer busses

on the tape and allows faster access speeds.

Magnetic tapes have an extremely high capacity and are relatively cheap. Data is saved in
a serial manner with one bit (or one record) at a time. This has the disadvantage that they are
relatively slow when moving back and forward within the tape to find the required data.
Typically, it may take many seconds (or even minutes) to search from the start to the end of a
tape. In most applications, magnetic tapes are used to back up a system. This type of applica-
tion requires large amounts of data to be stored reliably over time but the recall speed is not
important.

The most common types of tape are:

o Reel-to-reel tapes — the tapes have two interconnected reels with an interconnecting tape
which is tensioned by tension arms. They were used extensively in the past to store com-
puter-type data but have been replaced by the following three types (8 mm, QIC and DAT
tapes).

e 8 mm video cartridge tapes — this type of tape was developed to be used in video cameras
and is extremely compact. As with videotapes the tape wraps round the read/write head in
a helix.

o Quarter inch cartridge (QIC) tapes — a QIC is available in two main sizes: 5.25 inch and
3.5inch. They give capacities of 40 MB to tens of GB.

o Digital audio tapes (DAT) — this type of tape was developed to be used in hi-fi applica-
tions and is extremely compact. As with the 8mm tape, the tape wraps round the
read/write head in a helix. The tape itself is 4mm wide and can store several GBs of data
with a transfer rate of several hundred kbps.

6.10.1 QIC tapes

QIC tapes are available in two sizes: 5.25-inch and 3.5-inch. The tape length ranges from
200 to 1000 feet, with a tape width of 0.25-inch. Typical capacities range from 40 MB to tens
of GB. A single capstan drive is driven by the tape drive. Figure 6.6 illustrates a QIC tape.

Drive belt

Access / ¥~ Capstan

door drive

Figure 6.6 QIC tape

6.10.2 8 mm video tape

The 8mm video tape is a high specification tape and was originally used in video cameras.
These types are also known as Exabyte after the company that originally developed a back
up system using 8 mm videotapes. They can be used to store several GBs of data with a
transfer rate of 500 kbps. In order to achieve this high transfer rate the read/write head spins
at 2000 rpm and the tape passes it at a relatively slow speed.

IDE and mass storage 155

6.11 Exercises

6.11.1

6.11.2

6.11.3

6.11.4

6.11.5

6.11.6

6.11.7

6.11.8

6.11.9

6.11.10

What is a typical data capacity for a CD-ROM disk:

(a 100MB (b) 650 MB
(c) 8oo0MB (d) 1GB

Which interface is most often used in PCs to connect to hard-disk drives:

(@ ST-506 (b) ISA
(c) EISA (d) IDE

Which bus does the IDE share many of its signals with:

@) ST-506 (b) ISA
(c) EISA (d) PCI

How many devices can a single IDE bus support:

@ 1 by 2
(c) 4 d 7

What is the base address for the primary IDE controller:

(@) 1FOh (b) 170h
() 2FOh (d) 270h

What is the base address for the secondary IDE controller:

(@ 1FOh (b) 170h
(c) 2FOh (d) 270h

What is the main advantage of E-IDE over IDE:

@) It is compatible with more hard-disk drives
(b) Itallows for larger hard-disk capacities

(c) It is easier to interface to

(d) Ithas a large data bus size

What is the main advantage, apart from increased transfer rate, that IDE has over
older interface standards, such as ST-506 and ESDI?

Explain how IDE differs from E-IDE and how E-1DE supports larger disk capaci-
ties. How does E-IDE use modes to define the maximum transfer rate. Which
mode is the fastest?

Show that the maximum capacity of IDE is 528 MB and that the maximum capac-
ity (per disk) is 8.4 GB for E-IDE.

156 Computer busses

6.11.11 Which IRQ does an IDE connected disk drive normally use and what is the size of
its data bus.

6.11.12 A floppy disk ribbon cable has a cable twist to differentiate between the A: drive
and the B: drive. How does the ribbon cable that connects two IDE connected
drives differ. In addition, how many wires does the ribbon cable have.

6.11.13 Outline how three hard disks and a CD-ROM can be connected to the IDE bus.
What settings are required for the disks to connect properly? Which signal line
differentiates between a master and a slave?

6.11.14 How are 1/O addresses used to communicate with hard disks. How is data trans-
ferred to and from the disk? What are the standard address ranges for the primary
and the secondary? If possible, check these on an available PC.

6.11.15 Which register is used to identify a hard disk error. Explain its operation.
6.11.16 Which is the IDE signal line that identifies if a slave device exists?

6.11.17 Prove that, 16-bit, 44.1kHz sampled, stereo audio gives over 65minutes for a
650 MB optical disk.

6.12 Notes from the author

The IDE bus. What can you say about it? Not much really. It has no future plans for glory
and is looking forward to a graceful retirement. It works, it’s reliable, it’s standard, it’s
cheap, blah, blah, and relatively easy to set up. I’ve spent many a happy hour (not!) setting
the jumpers on CD-ROM drives and secondary hard-disk drives which | want to add to a PC
system. Luckily, these days, modern disk drives and BIOS cope well with adding and deleting
disk drives to systems.

On its negative side, IDE is not really that fast, but it really doesn’t have to be, as disk
drives do not require high data rates. E-IDE improved IDE a great deal and only required a
simple change in the BIOS. In conclusion, SCSI is the natural choice for disk drives and al-
lows for much greater flexibility in configuration and also high data rates. But, it tends to be
more expensive, and we’d miss IDE, wouldn’t we?

In Chapter 3, I voted the IDE bus as the third most helpful bus of all-time. It merited this
position as, over the years, it has quietly interfaced to disk drives, and has even supported
the addition of CD-ROM drives. By the flick of a BIOS chip, it supported large capacity disk
drives (EIDE). It also requires very little to set it up, as the BIOS tends is able to determine
the capacity of the disk drive, and properly set it up. At present, there are no real plans to
phase the IDE out, thus it is likely to stay a standard part of the motherboard.

Unix workstations and Apple computers have always used the SCSI bus, as it gives easy
external disk upgrades, but, as few users of PC require to add external disk drives to their
computer, there has never really been a great demand for SCSI-based disk drives for the PC.
IDE drives have two interrupts lines set aside for themselves, so why not use them to inter-
face to disk drives. The SCSI bus, though, now offers high data rates, improved connectivity,
improved command and message structure, and easy-of-upgrade. So why isn’t it the stan-
dard bus for PC system. Well it costs more, doesn’t it, and well, it isn’t PC, is it? It’s an Ap-
ple thing, isn’t it. When has the PC ever done anything in the right way?

@ SCSI

7.1 Introduction

SCSI has many advantages over IDE, these include:

A single bus system for up to seven connected devices.

It supports many different peripherals, such as hard disks, tape drives, CD-ROMs, and so
on.

It supports device priority where a higher SCSI-ID has priority over a lower SCSI-ID.

It supports both high-quality connectors and cables, and low-quality connection and rib-
bon cable.

It supports differential signals, which gives longer cable lengths.

Extended support for commands and messaging.

Devices do not need individual IRQ lines (as they do in IDE) as the controller communi-
cates with the devices.

It has great potential for faster transfer and enhanced peripheral support.

7.2 SCSItypes

SCSI has an intelligent bus subsystem and can support multiple devices cooperating cur-
rently. Each device is assigned a priority. The main types of SCSI are:

SCSI-I. Transfer rate of 5 MB/s with an 8-bit data bus and seven devices per controller.

SCSI-I11. Support for SCSI-1 and with one or more of the following:

e Fast SCSI which uses a synchronous transfer to give 10 MB/s transfer rate. The initia-
tor and target initially negotiate to see if they can both support synchronous transfer.
If they can they then go into a synchronous transfer mode.

o Fast/wide SCSI-2 which doubles the data bus width to 16 bits to give 20 MB/s trans-
fer rate.

o 15 devices per master device.

e Tagged command queuing (TCQ) which greatly improves performance and is sup-
ported by Windows NT, NetWare and OS/2.

e Multiple commands sent to each device.

e Commands executed in whatever sequence will maximize device performance.

Ultra SCSI (SCSI-I1I). Operates either as 8-bit or 16-bit with either 20 MB/s or 40 MB/s

transfer rate.

158 Computer busses

7.2.1 SCSI-II

SCSI-II supports fast SCSI which is basically SCSI-I operating at a rate of 10 MB/s (using
synchronous versus asynchronous) and Wide SCSI which uses a 64-pin connector and a 16-
bit data bus. The SCSI-II controller is also more efficient and processes commands up to
seven times faster than SCSI-I.

The SCSI-II drive latency is also much less than SCSI-I due mainly to tag command
queuing (TCQ) which allows multiple commands to be sent to each device. Each device then
holds its own commands and executes them in whatever sequence that will maximize per-
formance (such as by minimizing the latency associated with disk rotation). Table 7.1 con-
trasts Fast SCSI-I1 and Fast/Wide SCSI-II. It can be seen that both disks have predictive fail-
ure analysis (PFA) and automatic defect reallocation (ADR).

The normal 50-core cable is typically known as A-cable, while the 68-core cable is
known as B-cable.

Table 7.1 Comparison of SCSI-Il disks

Seek Latency Rotational Sustained PFA ADR
time (ms) speed (rpm) data read (MB/s)
(ms)
1GB SCSI-II fast 10.5 5.56 5400 4 v v
4.5GB SCSI-II fast/ wide 8.2 4.17 7200 12 v v

7.2.2 Ultra SCSI

Ultra SCSI (or SCSI-111) allows for 20 MB/s burst transfers on an 8-bit data path and 40
MB/s burst transfer on a 16-bit data path. It uses the same cables as SCSI-II and the maxi-
mum cable length is 1.5m. Ultra SCSI disks are compatible with SCSI-2 controllers; how-
ever the transfer will be at the slower speed of the SCSI controller. SCSI disks are compati-
ble with UltraSCSI controllers; however, the transfer will be at the slower speed of the SCSI
disk.

SCSI-I and Fast SCSI-11 use a 50-pin 8-bit connector, whereas fast/wide SCSI-II and Ul-
tra SCSI uses a 68-pin 16-bit connector. The 16-bit connector is physically smaller than the
8-bit connector and the 16-bit connector cannot connect directly to the 8-bit connector. The
cable used is called P-cable and replaces the A/B-cable.

Note that SCSI-II, and Ultra SCSI require an active terminator on the last external device.
Table 7.2 compares the main types of SCSI.

Table 7.2 SCSI types

Data Transfer rate Tagged Parity Maximum Pins on

bus (MBI/s) command checking devices cable and

(bits) queuing connector
SCSI-I 8 5 X x/v' (optional) 7 50
SCSI-Il Fast 8 10 (10MHz) v v 7 50
SCSI-Il fast/ 16 20 (10MHz) v v 15 68

wide
Ultra SCSI 16 40 (20MHz) v v 15 68

SCSI 159

7.3 SCSlinterface

In its standard form the small computer systems interface (SCSI) standard uses a 50-pin
header connector and a ribbon cable to connect to up to eight devices. It overcomes the prob-
lems of the IDE, where devices have to be assigned as a master and a slave. SCSI and fast
SCSI transfer one byte at a time with a parity check on each byte. SCSI-1I, wide SCSI and
Ultra SCSI use a 16-bit data transfer and a 68-pin connector. Table 7.3 lists the pin connec-
tions for SCSI-I (single-ended cable) and Fast SCSI (differential cable) and Table 7.4 lists
the pin connections for SCSI-11, wide SCSI and ultra SCSI.

Table 7.3 SCSI-I and Fast SCSI connections

Single-ended cable Differential cable
Pin Signal Pin Signal Pin Signal Pin Signal
1 GND 2 Do 1 GND 2 GND
3 GND 4 D1 3 +D0 4 -Do
5 GND 6 D2 5 +D1 6 -D1
7 GND 8 D3 6 +D2 8 -D2
9 GND 10 D4 8 +D3 10 -D3
11 GND 12 D5 11 +Da 12 -Da
13 GND 14 D6 13 +D5 14 -D5
15 GND 16 D7 15 +D6 16 -D6
17 GND 18 D(PARITY) 17 +D7 18 -D7
19 GND 20 GND 19 D(PARITY) 20 ~-D(PARITY)
21 GND 22 GND 21 DIFFSEN 22 GND
23 RESERVED 24 RESERVED 23 RESERVED 24 RESERVED
25 Open 26 TERMPWR 25 TERMPWR 26 TEMPWR
27 RESERVED 28 RESERVED 27 RESERVED 28 RESERVED
29 GND 30 GND 29 +ATN 30 -ATN
31 GND 32 ATN 31 GND 32 GND
33 GND 34 GND 33 +RST 34 —RST
35 GND 36 BSY 35 +ACK 36 —ACK
37 GND 38 ACK 37 +RST 38 -RST
39 GND 40 RST 39 +MSG 40 -MSG
41 GND 42 MSG 41 +SEL 42 _SEL
43 GND 44 SEL 43 +C/D 44 -C/D
45 GND 46 C/D 45 +REQ 46 -REQ
47 GND 48 REQ 47 *i/o 48 -1/0
49 GND 50 1/0 49 GND 50 GND
7.3.1 Signals

A SCSI bus is made up of a SCSI host adapter connected to a number of SCSI units via a
SCSI bus. As all units connect to a common bus, only two units can transfer data at a time,
either from one SCSI unit to another or from one SCSI unit to the SCSI host. The great ad-
vantage of this transfer is that is does not involve the processor.

160 Computer busses

Table 7.4 SCSI-ll, wide SCSI and ultra SCSI

Pin Signal Pin Signal

1 GND 35 GND

2 GND 36 D8

3 GND 37 D9

4 GND 38 D10

5 GND 39 D11

6 GND 40 D12

7 GND 41 D13

8 GND 42 D14

9 GND 43 D15

10 GND 44 DEARITYL)
11 GND 45 ACKE

12 GND 46 GND

13 GND 47 REQB

14 GND 48 D6

15 GND 49 D17

16 GND 50 D8

17 TERMPWR 51 TERMPWR
18 TERMPWR 52 TERMPWR
19 GND 53 D19

20 GND 54 D20

21 GND 55 D21

22 GND 56 D22

23 GND 57 D23

24 GND 58 DEARITY2)
25 GND 59 Doa

26 GND 60 D25

27 GND 61 D%

28 GND 62 D27

29 GND 63 D28

30 GND 64 D29

31 GND 65 D30

32 GND 66 D31

33 GND 67 D(PARITY3)
34 GND 68 GND

Each unit on a SCSI is assigned a SCSI ID address. In the case of SCSI-I this ranges from
0 to 7 (where 7 is normally reserved for a tape drive). The host adapter takes one of the ad-
dresses thus a maximum of seven units can connect to the bus. Most systems allow the units
to take on any SCSI ID address, but older systems required boot drives to be connected to a
specific SCSI address. When the system is initially booted, the host adapter sends out a Start
Unit command to each SCSI unit. This allows each of the units to start in an orderly manner
(and not overloading the local power supply). The host will start with the highest priority
address (ID=7) and finishes with the lowest address (ID=0). Typically, the ID is set with a
rotating switch selector or by three jumpers.

SCSI defines an initiator control and a target control. The initiator requests a function
from a target, which then executes the function, as illustrated in Figure 7.1. The initiator ef-

SCSI 161

fectively takes over the bus for the time to send a command and the target executes the com-
mand and then contacts the initiator and transfers any data. The bus will then be free for
other transfers.

The main signals are:

BSY - indicates that the bus is busy, or not (an OR-tied signal).

ACK - activated by the initiator to indicate an acknowledgement for a Req information
transfer handshake.

RST - When active (low) resets all the SCSI devices (an OR-tied signal).

ATN - activated by the initiator to indicate the attention state.

MSG - activated by the target to indicate the message phase.

SEL - activated by the initiator and is used to select a particular target device (an OR-tied
signal).

¢ /b (control/data) — activated by the target to identify if there is data or control on the
SCSI bus.

REQ - activated by the target to acknowledge to indicate a request for an ack informa-
tion transfer handshake.

i/ 0 (input/output) — activated by the target to show the direction of the data on the data
bus. Input defines that data is an input to the initiator, else it is an output.

Each of the control signals can be true or false. They can be:

OR-tied driven, where the driver does not drive the signal to the false state. In this case
the bias circuitry of the bus terminators pulls the signal false whenever it is released by
the drivers at every SCSI device. If any driver is asserted, then the signal is true. The
BsY , SEL, and RsT signals are OR-tied. In the ordinary operation of the bus, the sy
and RrsT signals may be simultaneously driven true by several drivers.

Non-OR-tied driven, where the signal may be actively driven false. No signals other than
BSY , RST and prariTy) are simultaneously driven by two or more drivers.

SCSI bus
Initiator Target
Function Function
request executor

Figure 7.1 Initiator and target in SCSI

162 Computer busses

7.4 SCSI operation

The SCSI bus allows any unit to talk to any other unit, or the host to talk to any unit. Thus
there must be some way of arbitration where units capture the bus. The main phases that the
bus goes through are:

e Free-bus. In this state there are no units which either transfer data or have control of the
bus. It is identified by disactive SeC and Bsy (both will be high). Thus, any unit can cap-
ture the bus.

e Arbitration. In this state a unit can take control of the bus and become an initiator. To do
this it activates the Bsy signal and puts its own ID address on the data bus. Next, after a
delay, it tests the data bus to determine if a high-priority unit has put its own address on
the bus. If it has then it will allow the other unit access to the bus. If its address is still on
the bus then it asserts the Sgr line. After a delay, it then has control of the bus.

e Selection. In this state the initiator selects a target unit and gets the target to carry out a
given function, such as reading or writing data. The initiator outputs the OR value of its
SCSI-ID and the SCSI-ID of the target onto the data bus (for example, if the initiator is 2
and the target is 5 then the OR-ed ID on the bus will be 00100100.). The target then de-
termines that its ID is on the data bus and set the Bsvy line active. If this does not happen
within a given time then the initiator deactivates the SeC signal, and the bus will be free.
The target determines that it is selected when the SgL signal and its SCSI ID bit are ac-
tive and the Bsy and 7,0 signals are false. It then asserts the Bsy signal within a selec-
tion abort time.

o Reselection. When the arbitration phase is complete, the winning SCSI device asserts the
BSy and SeL signals and has delayed at least a bus clear delay plus a bus settle delay.
The winning SCSI device sets the DATA BUS to a value that is the logical OR of its
SCSI ID bit and the initiator’s SCSI ID bit. Sometimes the target takes some time to reply
to the initiators request. The initiator determines that it is reselected when the sec and
/0 signals and its SCSI ID bit are true and the Bsy signal is false. The reselected initia-
tor then asserts the Bsy signal within a selection abort time of its most recent detection
of being reselected. An initiator does not respond to a reselection phase if other than two
SCSI ID hits are on the data bus. After the target detects that the Bsy signal is true, it
also asserts the Bsy signal and waits a given time delay and then releases the SEL signal.
The target may then change the 1/0 signal and the data bus. After the reselected initiator
detects the SELC signal is false, it releases the BSy signal. The target continues to assert
the Bsy signal until it gives up the SCSI bus.

e Command. The command phase is used by the target to request command information
from the initiator. The target asserts the ¢;p signal and negates the 7/0 and mMsG Sig-
nals during the REQ/ACK handshake(s) of this phase.

e Data. The data phase covers both the data in and data out phases. In the data in phase the
target requests that data be sent to the initiator from the target. For this purpose the target
asserts the /0 signal and negates the ¢/p and msc signals during the REQ/ACK
handshake(s) of this phase. In the data out phase, the target requests that data be sent
from the initiator to the target. The target negates the ¢/p, 170 and msG signals during
the REQ/AcK handshake(s) of this phase.

SCSI 163

o Message. The message phase covers both the message out and message in phase. The
first byte transferred in either of these phases can be either a single-byte message or the
first byte of a multiple-byte message. Multiple-byte messages are completely contained
within a single message phase.

e Status. The status phase allows the target to request that status information be sent from
the target to the initiator. The target shall assert the ¢/p and 1/0 signals and negate the

msG signal during the Req/Ack handshake of this phase.
Typical times are:

e Arbitration delay, 2-4 ps. This is the minimum time that a SCSI device waits from assert-
ing Bsy for arbitration until the data bus can be examined to see if arbitration has been
won.

e Power-on to selection time, 10s. This is the maximum time from power start-up until a
SCSI target is able to respond with appropriate status and sense data.

e Selection abort time, 200us. This is the maximum time that a target (or initiator) takes
from its most recent detection of being selected (or reselected) until asserting a Bsy re-
sponse. This is required to ensure that a target (or initiator) does not assert Bsy after a se-
lect (or reselection) phase has been aborted.

e Selection time-out delay, 250ms. The minimum time that a SCSI device should wait for a
BSY response during the selection or reselection phase before starting the time-out pro-
cedure.

e Disconnection delay, 200us. The minimum time that a target shall wait after releasing
BSy before participating in an arbitration phase when honouring a disconnect message
from the initiator.

¢ Reset hold time, 25us. The minimum time for which RsT is asserted.

The signals c/p, 1/0, and msc distinguish between the different information transfer
phases, as summarised in Table 7.5 (where a 1 identifies an active signal and a 0 identifies a
false signal). The target drives these three signals and therefore controls all changes from one
phase to another. The initiator can request a message out phase by asserting the ATn signal,
while the target can cause the bus free phase by releasing the msG, c/p, 170, and Bsy
signals.

Table 7.5 Information transfer phases

MSG c/D 1/0 Phase Direction

0 0 0 Data out Initiator—target
0 0 1 Data in Initiator«target
0 1 0 Command Initiator—target
0 1 1 Status Initiator«—target
1 0 0 - -

1 0 1 - -

1 1 0 Message out Initiator—target
1 1 1 Message in Initiator<target

164 Computer busses

The information transfer phases use one or more Req/Ack handshakes to control the infor-
mation transfer. Each Req/Ack handshake allows the transfer of one byte of information.
During the information transfer phases the Bsy signal shall remain true and the SeL signal
shall remain false. Additionally, during the information transfer phases, the target shall con-
tinuously envelope the Reg/Ack handshake(s) with the ¢/p, 1/0 and msc signals in
such a manner that these control signals are valid for a bus settle delay before the assertion of
the Req signal of the first handshake and remain valid until after the negation of the ack
signal at the end of the handshake of the last transfer of the phase.

The 71/0 signal allows the target to control the direction of information, when its 1,0
signal is true then the information is transferred from the target to the initiator and when
false, the transfer is from the initiator to the target.

The handshaking operation for a transfer to the initiator is as follows:

e The 1/0 signal is asserted as a true.

e The target sets the data bus lines.

e The target asserts the Req signal.

e The initiator reads the data bus.

e The initiator then indicates its acceptance of the data by asserting the ack signal.

e The target may change or release the data bus.

e The target negates the Reg signal.

e The initiator shall then negate the ack signal.

e The target may continue the transfer by driving the data bus and asserting the Req signal,
and so on.

The handshaking operation for a transfer from the initiator is as follows:

e The 1/0 signal is asserted as a false.

e The target asserts the Req signal (requesting information).
e The initiator sets the data bus lines.

e The initiator asserts the Ack signal.

e The target then reads the data bus.

e The target negates the Reg signal (acknowledging transfer).
o The initiator may then set the data bus, and so on.

7.5 SCSI pointers

SCSI provides for three pointers for each 1/O process (called saved pointers), for command,
data and status. When an 1/O process becomes active, its three saved pointers are copied into
the initiator’s set of three current pointers. These current pointers point to the next command,
data or status byte to be transferred between the initiator’s memory and the target.

SCSI

7.6 Message system description

165

The message system allows the initiator and the target to communicate over the interface
connection. Each message can be one, two, or multiple bytes in length. In a single message
phase, one or more messages can be transmitted, (but a message cannot be split between
multiple message phases). Table 7.6 lists the message format, where the first byte of the mes-
sage determines the format. The initiator ends the message out phase (by negating ATN)
when it sends certain messages identified in Table 7.7.

Single-byte messages consist of a single byte transferred during a message phase. Table

7.7 defines the message type.

Table 7.6 Message format

Value Message format
00h One byte message (command complete)
01h Extended messages
02h-1Fh One-byte messages
20h—2Fh Two-byte messages
30h-7Fh Reserved
80h—FFh One-byte message (identify)
Table 7.7 Message codes
Code Message Direction Description
00h Command complete In Sent from a target to an initiator to indicate that
the execution of an 1/0 process has completed
and that valid status has been sent to the initia-
tor. After successfully sending this message,
the target shall go to the bus free phase by re-
leasing the BSY signal. The target considers
the message transmission to be successful when
it detects the negation of Ack for the com-
mand complete message with the ATN signal
false.
03h Restore pointers In
04h Disconnect In/Out Sent from a target to inform an initiator that the

present connection is going to be broken (the
target plans to disconnect by releasing the BSY
signal), but that a later reconnect will be re-
quired in order to complete the current 1/0
process. This message shall not cause the initia-
tor to save the data pointer. After successfully
sending this message, the target shall go to the
bus free phase by releasing the BSY signal.
The target shall consider the message transmis-
sion to be successful when it detects the nega-
tion of the ACK signal for the disconnect mes-
sage with the ATN signal false.

166

05h

06h

07h

08h

09h

0Ah

0Bh

0Ch

0Dh
OEh
OFh
10h

11h

12h-1Fh

23h

24h-2Fh

30h-7Fh

80h-FFh

Initiator-detected
error

Abort

Message reject

No operation

Message parity error

Linked command
complete

Linked command
complete (with flag)

Bus device reset

Abort tag

Clear queue
Initiate recovery
Release recovery

Terminate I/0O
process

Reserved

Ignore wide residue

(2 bytes)

Reserved for two-
byte messages

Reserved

Identify

Out

Out

Out

Out

Out

Out

Out

Out

In/Out

Out

Out

In/Out

Computer busses

Sent from the initiator to the target to clear any
1/0 process. The target goes to the bus-free
phase following successful receipt of this mes-
sage.

Sent from either the initiator or target to indi-
cate that the last message or message byte it
received was inappropriate or has not been
implemented.

Sent from an initiator in response to a target’s
request for a message when the initiator does

not currently have any other valid message to

send.

Sent from an initiator to direct a target to clear
all 1/0 processes on that SCSI device. This
message forces a hard reset condition to the
selected SCSI device.

SCSI 167

7.7 SCSIcommands

A command is sent from the initiator to the target. The first byte of all SCSI commands con-
tains an operation code, followed by a command descriptor block and finally the control
byte.

The format of the command descriptor block for 6-byte commands is:

Byte 0 — operation code.

Byte 1 — logical unit number (MSB, if required).

Byte 2 — logical bock address.

Byte 3 — logical bock address (LSB, if required).

Byte 4 — transfer length (if required) / Parameter list length (if required) / allocation
length (if required).

e Byte 5 - control.

7.7.1 Operation code

Figure 7.2 shows the operation code of the command descriptor block. It has a group code
field and a command code field. The 3-bit group code field provides for eight groups of com-
mand codes and the 5-bit command code field provides for 32 command codes in each
group.

The group code specifies one of the following groups:

Group 0 - 6-byte commands.
Group 1/2 — 10-byte commands.
Group % — reserved.

Group 5 - 12-byte commands.
Group 6/7 - vendor-specific.

Group code Command code

Figure 7.2 Operation code

7.7.2 Logical unit number

The logical unit number (LUN) is defined in the identify message. The target ignores the
LUN specified within the command descriptor block if an identify message was received
(normally the logical unit number in the command descriptor block to be set to zero).

7.7.3 Logical block address

The logical block address (LBA) on logical units or within a partition on device volumes
begins with block zero and is contiguous up to the last logical block on that logical unit or
within that partition.

A 10-byte and a 12-byte command descriptor blocks contain 32-bit logical block ad-
dresses, whereas a 6-byte command descriptor block contains a 21-bit logical block address.

168 Computer busses

7.7.4 Transfer length

The transfer length field specifies the amount of data to be transferred (normally the number
of blocks). For several commands the transfer length indicates the requested number of bytes
to be sent as defined in the command description. A command that uses 1 byte for the trans-
fer length will thus allow up to 256 blocks of data for one command (a value of 0 identifies a
transfer bock of 256 blocks).

7.7.5 Parameter list length

The parameter list length specifies the number of bytes to be sent during the data-out phase.
It is typically used in command descriptor blocks for parameters that are sent to a target
(such as, mode parameters, diagnostic parameters, log parameters, and so on).

7.7.6 Allocation length

The allocation length field specifies the maximum number of bytes that an initiator has allo-
cated for returned data. The target terminates the data in phase when allocation length bytes
have been transferred or when all available data have been transferred to the initiator, which-
ever is less. The allocation length is used to limit the maximum amount of data (for example,
sense data, mode data, log data, diagnostic data, and so on) returned to an initiator.

7.7.7 Control field

The control field is the last byte of every command descriptor block. Its format is shown in
Figure 7.3. The flag bit specifies which message the target returns to the initiator if the link
bit is a 1 and the command completes without error. If the link bit is O then the flag bit
should be a 0, else the target returns check condition status.

b, | b | by | b, | by | b, | by | b

- P
Vendor- Reserved
specific

Flag Link

Figure 7.3 Control field
7.7.8 Command code

Commands for all device types are (bold type identifies the mandatory commands and the
operation code is given in brackets):

o Change definition (40h). This command modifies the operating definition of the selected
logical unit or target with respect to commands from the selecting initiator or for all ini-
tiators.

e Compare (39h). This command allows for a compare operation of data on one logical unit
with another or the same logical unit in a manner similar to the copy command.

e Copy (18h). This command allows the copying of data from one logical unit to another or
the same logical unit. The logical unit that receives and performs the copy command is
the copy manager. It is responsible for copying data from the source device to the desti-
nation device.

e Copy and compare (3Ah). This command performs the same function as the COPY

SCSI 169

command, except that a verification of the data written to the destination logical unit is
performed after the data is written.

Inquiry (12h). This command requests that information regarding parameters of the target
and its attached peripheral device(s) be sent to the initiator.

Log select (4Ch). This command provides a means for the initiator to manage statistical
information maintained by the device about the device or its logical units. Targets that
implement the log select command shall also implement the log sense command. Struc-
tures in the form of log parameters within log pages are defined as a way to manage the
log data. The log select command provides for sending zero or more log pages during a
data out phase.

Log sense (4Dh). This command allows the initiator to retrieve statistical information
maintained by the device about the device or its logical units. It is a complementary
command to the log select command.

Mode select (15h). This command provides a means for the initiator to specify medium,
logical unit, or peripheral device parameters to the target. Targets that implement the
mode select command shall also implement the mode sense command.

Mode sense (1Ah). This command allows a target to report parameters to the initiator and
is a complementary command to the mode select command.

Read buffer (3Ch). This command is used in conjunction with the write buffer command
as a diagnostic function for testing target memory and the SCSI bus integrity.

Receive diagnostic results (1Ch). This command requests analysis data be sent to the ini-
tiator after completion of a send diagnostic.

Send diagnostic (1Dh). This command requests the target to perform diagnostic opera-
tions on itself, on the logical unit, or on both.

Test unit ready (00h). This command provides a means to check if the logical unit is
ready. This is not a request for a self-test. If the logical unit would accept an appropriate
medium-access command without returning check condition status, this command shall
return a good status.

Write buffer (3Bh). This command is used in conjunction with the read buffer command
as a diagnostic for testing target memory and the SCSI bus integrity.

7.8 Status

The status phase normally occurs at the end of a command (although in some cases may oc-
cur before transferring the command descriptor block). Figure 7.4 shows the format of the
status byte and Table 7.8 defines the status byte codes. This status byte is sent from the target
to the initiator during the status phase at the completion of each command unless the com-
mand is terminated by one of the following events:

Abort message.

Abort tag message.

Bus device reset message.
Clear queue message.
Hard reset condition.
Unexpected disconnect.

Computer busses

Indicates that the target has successfully completed the

Indicates that a contingent allegiance condition has oc-

This status or INTERMEDIATE-CONDITION MET is
returned whenever the requested operation is satisfied.

Indicates that the target is busy. This status shall be re-

turned whenever a target is unable to accept a command
from an otherwise acceptable initiator (that is, no reserva-

This status or INTERMEDIATE-CONDITION MET
shall be returned for every successfully completed com-
mand in a series of linked commands (except the last

This status is the combination of the CONDITION MET

This status occurs whenever an initiator attempts to ac-
cess a logical unit that is reserved with a conflicting res-

This status occurs whenever the target terminates the
current 1/O process after receiving a TERMINATE 1/O

This status shall be implemented if tagged queuing is

b; | bg | bs by | b, | by | by
-t > -
Reserved Status byte code Reserved
Figure 7.4 Status field
Table 7.8 Status byte codes
Status Description
10
0 R Good
command.
1 R Check
condition curred.
0 R Condition met
0 R Busy
tion conflicts).
0 R Immediate
command).
0 R Immediate-
condition met and INTERMEDIATE status’s.
0 R Reservation
conflict
ervation type for another SCSI device.
1 R Command
conflict
PROCESS message.
0 R Queue full
implemented.
R R Reserved

SCsI 171
7.9 Exercises
7.9.1 What is the maximum number of devices that can connect to a standard SCSI bus:
(@ 1 (b) 4
() 7 d 8
7.9.2 How many data bits does the SCSI-I bus use:
@ 8 (b) 16
() 32 (d) 64
7.9.3 How many data bits does the SCSI-I1 fast/wide bus use:
@ 8 (b) 16
() 32 (d) 64
7.9.4 How is device priority implemented on the SCSI bus:
(@) by active polling (b) by interrupt priority
(c) by brute force (d) by unit IDs
7.9.5 What method does the SCSI bus use to prevent devices from hogging the bus:
(@) Time-outs (b) Interrupts
(c) Active polling (d) Memory mapping
7.9.6 The transfer clock for a SCSI bus is 20 MHz. Which is the transfer rate for a 16-bit
data bus:
@ 10MBI/s (b) 20MB/s
(c) 40MBI/s (d 80MB/s
7.9.7 Explain the main differences between SCSI-I, SCSI-Il and ultra SCSI. Outline
their maximum data throughput, the connectors used and the size of their data bus-
ses. Also, outline some of the advantages of SCSI over busses such as the ISA
bus.
7.9.8 State the SCSI lines that are used for simple error detection. Why is it not possible
to detect which bits are in error?
7.9.9 Discuss the main system lines that are used in the SCSI bus and the operation of
OR-tied driven signals.
7.9.10 Outline the main phases that the initiator and target go through in setting up a con-

nection. Also, outline the importance of device time-outs for the different SCSI
phases.

172 Computer busses

7.9.11 Discuss how the MsG, c/p and 7/ o signals are used to set up different transfer
phases.

7.9.12 Explain how SCSI uses the SCSI-ID address to set up a device priority system.

7.9.13 Discuss the usage of the message phase in SCSI and cite typical examples of its
usage.

7.9.14 Discuss the usage of the command phase in SCSI and cite typical examples of its
usage.

7.9.15 Discuss the usage of the status phase in SCSI and cite typical examples.

7.10 Notes from the author

Well | did it. | covered SCSI in a single chapter. It wasn’t easy, but its here. SCSI is a mas-
sive area, and one which could fill this book three or four times over. So, as | do not have
enough space for the full specification, I’ve tried to give a flavour of the bus.

SCSI’s full grown-up name is the small computer systems interface. It is difficult to define
exactly what a small computer system isl, but SCSI has outgrown its original application of
interfacing to ‘small’ systems and to external disk drives. It now has the potential of being
able to interface virtually any external peripheral to a system. It can also be used to connect
devices internally within a system. Typically, it takes a bit longer to initially boot the system,
but once it has, it should be as reliable as any non-SCSI device.

An important concept in SCSI is the prioritisation of devices using SCSI IDs. Few busses
allow the system to prioritise peripherals. Thus, in a properly configured system, fast devices
which require to be quickly serviced will always get access onto the bus before slow devices
which do not require fast servicing. Unfortunately, the method SCSI uses limits the number
of devices to one less than the number of bits on the data bus (seven for an 8-bit data bus and
15 for a 16-bit data bus). In most cases, this is not a major problem. For example, two hard
disks, two CD-ROM drives, a tape backup system, a zip drive and a midi keyboard could all
be attached to a standard SCSI-1 bus.

In most PCs the IDE drive is still used in the majority of systems, as it is relatively easy to
set up and its cheap. It is also dedicated to interfacing to the disk drives; thus, no other pe-
ripheral can hog the disk drive bus. However, for most general-purpose applications, SCSI is
best. New standards for SCSI give a 16-bit data bus, at a transfer rate of 20 MHz, giving a
maximum data throughput of 40 MB/s, which is much faster than IDE. It is also much easier
to configure a SCSI system than it is connecting peripherals internally in a PC. A SCSI sys-
tem only requires a single interrupt line, for all the devices that are connected.

Ask someone who has set up a Unix network, or who has configured an Apple computer,
and they will tell you that there is little to beat a well set up SCSI bus. It’s reliable, and it is
easy-to-upgrade.

1 Probably, ‘small computer’ means ‘not a mainframe computer’ or ‘a less powerful com-
puter’. One must remember that SCSI was developed at a time when mainframe com-
puters were kings and PCs were seen as glorified typewriters.

8 | PCMCIA

8.1 Introduction

The Personal Computer Memory Card International Association (PCMCIA) interface allows
small thin cards to be plugged into laptop, notebook or palmtop computers. It was originally
designed for memory cards (Version 1.0) but has since been adopted for many other types of
adapters (Version 2.0), such as fax/modems, sound cards, local area network cards, CD-
ROM controllers, digital 1/O cards, and so on. Most PCMCIA cards comply with either
PCMCIA Typell or Type lll. Type | cards are 3.3 mm thick, Type |l take cards up to 5 mm
thick, Type Il alows cards up to 10.5 mm thick. A new standard, Type IV, takes cards
which are greater than 10.5 mm. Type Il interfaces can accept Type | cards, Type |11 accept
Types| and Il and Type IV interfaces accept Types|, Il and 1.

The PCMCIA standard uses a 16-hit data bus (D0O-D15) and a 26-hit address bus (A0—
A25), which gives an addressable memory of 2 bytes (64MB). The memory is arranged as:

Common memory and attribute memory, which gives a total addressable memory of
128MB.
I/O addressabl e space of 65536 (64 k) 8-hit ports.

The PCMCIA interface allows the PCMCIA device to map into the main memory or into the
I/O address space. For example, a modem PCMCIA device would map its registers into the
standard COM port addresses (such as 3F8h—3FFh for COM1 or 2F8h—2FF for COM2). Any
accesses to the mapped memory area will be redirected to the PCMCIA rather that the main
memory or 1/O address space. These mapped areas are called windows. A window is defined
with a START address and a LAST address. The PCMCIA control register contains these
addresses.

8.2 PCMCIA signals

Table 8.1 shows the pin connections. The main PCMCIA signals are:

A25-A0, D15-D0 — data bus (D15-D0) and a 26-bit memory address (A25-A0) or 16-bit
[/0 memory address (A15-A0).

CARD DETECT 1, CARD DETECT 2 — Used to detect if a card is present in a socket. When a
card isinserted one of these linesis pulled to alow level.

174 Computer busses

Table 8.1 PCMCIA connections

Pin Sgnal Pin Sgnal Pin Sgnal Pin Sgnal

1 GND 18 Vppl 35 GND 52 Vpp2

2 D3 19 Al6 36 Scebelow 53 A22

3 D4 20 A15 37 D11 54 A23

4 D5 21 A12 38 Di12 55 A24

5 D6 22 A7 39 D13 56 A25

6 D7 23 A6 40 D14 57 RFU

7 CARDENABLE1 24 A5 41 D15 58 RESET

8 Al0 25 A4 42 Seebelow 59 WAIT

9 OUTPUT ENABLE 26 A3 43 REFRESH 60 INPACK

10 A1l 27 A2 44 TOR 61 REGISTER SELECT
11 A9 28 Al 45 oW 62 SPKR

12 A8 29 A0 46 Al7 63 STSCHG

13 A13 30 DO 47 A18 64 D8

14 Al4 31 D1 48 A19 65 D9

15 Seebelow 32 D2 49 A0 66 D10

16 READY /BUSY 33 101S16 50 A2l 67 CARD DETECT 2
17 45V 34 GND 51 +5V 68 GND

Pin 15 WRITE ENABLE / PROGRAM Pin 33 joI1s16 (Write Protect)

Pin 36 CARD DETECT 1 Pin 42 cARD ENABLE 2

CARD ENABLE 1, CARD ENABLE 2 — used to enable the upper 8-bits of the data bus
(cArD ENABLE 1) and/or the lower 8 bits of the data bus (CARD ENABLE 2).

OUTPUT ENABLE — Set low by the computer when reading data from the PCM CIA unit.
REGISTER SELECT — Set high when accessing common memory or a low when accessing
attribute memory.

RESET — used to reset the PCMCIA card.

REFRESH — used to refresh PCMCIA memory.

waAIT— used by the PCMCIA device when it cannot transfer data fast enough and re-
quests await cycle.

WRITE ENABLE / PROGRAM — Used to program the PCMCIA device.
Vppl, Vpp2 — programming voltages for flash memories.

READY /BUSY — used by the PCMCIA card when it is ready to process more data (when a
high) or is still occupied by a previous access (when it isalow).

jorsi6— used to indicate the state of the write-protect switch on the PCMCIA card. A
high level indicates that the write-protect switch has been set.

INPACK — used by the PCMCI A card to acknowledge the transfer of asignal.

TOR — used to issue an 1/O read access from the PCMCIA card (must be used with an
active REGISTER SELECT signal).

fow — used to issue an 1/0O write access to the PCMCIA card (must be used with an ac-
tive REGISTER SELECT signal).

SPKR —used by PCMCIA card to send audio data to the system spesker.

STSCHG — used to identify that the card has changed its status.

PCMCIA 175

8.3 PCMCIA registers

A typical PCMCIA interface controller (PCIC) is the 82365SL. Figure 8.1 shows the main
registers for the first socket. The second socket index values are ssimply offset by 40h. Figure
8.2 shows that the base address of the PCIC is, in Windows, set to 3EOh, by default. Figure
8.3 shows an example of a FIRST and LAST memory address. The PCIC is accessed using
two addresses: 3E0h and 3E1h. The I/O windows 0/1 are accessed through:

08h/0Ch for the low byte of the FIRST 1/0 address.

09h/0Dh for the high byte of the FIRST 1/0 address.
OAN/QEh for the high byte of the LAST /O address.
0Bh/OFh for the high byte of the LAST 1/O address.

The registers are accessed by loading the register index into 3EOh and then the indexed regis-
ter is accessed through the 3E1h. The memory windows 0/1/2/3/4 are accessed through:

10h/18h/20h/28h/30h for the low byte of the FIRST memory address.
11h/19h/21h/29h/31h for the high byte of the FIRST memory address.
12h/1ANh/22h/2ANh/32h for the low byte of the LAST memory address.
13h/1Bh/23h/2Bh/33h for the high byte of the LAST memory address.
14h/1Ch/24h/2Ch/34h for the low byte of the card offset.
15h/1Dh/25nh/2Dh/35h for the high byte of the card offset.

Register index

00h —» PCIC identification

01h —™ Interface status

02h —™ Power supply (RESETDRYV)

03h —P Interrupt control

04h —™ Card status change

05h —P Configuration

0o6h —P Memory window enable

07h —» 1/0 window control

08h —®| FIRST setup for I/O window O (lo)
09h —®| FIRST setup for I/O window O (hi)
0Ah —®| LAST setup for I/O window O (lo)
0Bh —®| LAST setup for I/O window 0 (hi)
0Ch —®{ FIRST setup for I/O window 1 (lo)
obh —®| FIRST setup for I/O window 1 (hi)
OEh —» LAST setup for I/O window 1 (lo)
OFh —™ LAST setup for I/O window 1 (hi)
10h —®| FIRST setup for memory window 0 (lo)
11h —®| FIRST setup for memory window O (hi)
12h —®| LAST setup for memory window 1 (lo)
13h —™| LAST setup for memory window 1 (hi)

Figure 8.1 PCMCIA controller status and control registers

176 Computer busses
For example, to load a value of 22h into the Card status change register, the following would

be used:

_out p(0x3E0, 5h); /* point to Card status change register */
_out p(0x3E1, 22h); /* load 22h into Card status change register */

PC Card (PCMCIA) Properties | 2| x|

Socket Statyz Global Settings |

— Card zervices shared memon——

Stat [0DOCO00D
End [DOFFFFFF
Length [00007 000

[Dizable PC card sound effects

ak. I Cancel Apply

Figure 8.2 Start and end of shared memory

PCIC or compatible PCMCIA controller Properties

General | Driver Resources

“ PCIC or compatible PCMCLA contraller

Resource zettings:

Resource type Setting
Input/ Dutput FangeRud vyl

Setting based o IBasic configuration 0000 j

LEhange Setting:.. ¥ Use automatic setings

Conflicting device list;
Mo conflicts. ﬂ

I
Ok I Cancel |

Figure 8.3 Base address of the PCIC

PCMCIA 177

8.3.1 Window enable register

The window enable register has a register index of 06h (and 46h for the second socket). The
definition of the register is

Bit7 10OW1 1/Owindow 1 enable (1)/ disable (0).

Bit6 10OWO0 1/Owindow O enable (1)/ disable (0).

Bit5 DEC If active (1) memcsie generated from A23-A12, else from A23-A17.
Bit4 MW4 Memory window 4 enable (1)/ disable (0).

Bit3 MW3 Memory window 3 enable (1)/ disable (0).

Bit2 MW2 Memory window 2 enable (1)/ disable (0).

Bitl MW1 Memory window 1 enable (1)/ disable (0).

Bit0O MWO Memory window 0 enable (1)/ disable (0).

8.3.2 FIRST set up for memory window
The FIRST window memory address is made up of alow byte and a high byte. The format of
the high-byte register is

Bit 7 DS Data bus size: 16-bit (1)/ 8-hit (0).

Bit 6 ows Zero wait states: no wait states (1)/ additional wait states (0).
Bit5 SCR1 Scratch bit (not used).

Bit4 SCRO Scratch bit (not used).

Bit 3-0 Window start address A23-A20.

The format of the low-byte register is

Bit 7-0 A19-A12.Window start address A19-A12.
8.3.3 LAST set up for memory window
The LAST window memory address is made up of alow byte and a high byte. The format of
the high-byte register is

Bit7,6 WSI1, WS0 Wait state.
Bit5, 4 Reserved.
Bit3-0 A23-A20 Window start address A23—-A20.

The format of the low-byte register is

Bit 7-0 Window start address A19-A12.
8.3.4 Card offset set up for memory window

The card offset memory address is made up of alow byte and a high byte. The format of the
high-byte register is

Bit 7 WP Write protection: protected (1)/ unprotected (0).

Bit 6 REG REGISTERSELECT enabled. If set to a1 then access to attribute
memory, else common memory.

Bit5-0 Window start address A25-A20.

178 Computer busses

The format of the low-byte register is

Bit 7-0 Window start address A19-A12
8.3.5 FIRST set up for 1/0 window
The FIRST window 1/0 address is made up of alow byte and a high byte. The format of the
high-byte register is
Bit 7-0 A15-A8
The format of the low-byte register is

Bit 7-0 A7-A8
8.3.6 LAST setup for 1/0 window
The LAST window 1/O address is made up of alow byte and a high byte. The format of the
high-byte register is
Bit 7-0 A15-A8.
The format of the low-byte register is

Bit 7-0 A7-A8
8.3.7 Control register for 1/0 address window

The control register for the 1/O address window is made up from asingle byte. Itsformat is

Bit7,3 WSI1, WSO Wait states for window 1 and O.
Bit6,2 OWS1, OWS0 Zero wait states for window 1 and O.

Bit5,1 CS1,CS0 Torsi6 source. Select 1orsie from PC (1) or select
data size from DS1 and DSO (0).
Bit4,0 DSL, DSO. Datasize: 16-hit (1)/ 8-bit (0).
8.3.8 Examples

A typical application of the PCMCIA socket isto use it for amodem. Thisis an example of a
program to set up a modem on the COM2 port. For this purpose, the socket must be set up to
map into the /O registers from 02F8h to 02FFh. The following code will achieve this:

/* load 02f8 into FIRST and O02FFh into LAST registers */

_out p(0x3EO0, 08h) ; /* point to FIRST | ow byte */
_out p(0x3EL, f 8h); /* load f8h into FIRST | ow byte */
_out p(0x3EQ0, 09h) ; /* point to FIRST high byte */
_out p(0x3E1, 02h); /* load 02h into FIRST high byte */
_out p(0x3E0, 0Ah) ; /* point to LAST |ow byte */
_out p(0x3EL, ffh); /* load ffh into LAST | ow byte */
_out p(0x3EQ, 0Bh) ; /* point to LAST high byte */
_out p(0x3E1, 02h); /* load 02h into LAST high byte */

/*setup control register: no wait states, 8-bit data access */

PCMCIA 179

_out p(0x3E0, 07h) ; /* point to I/O Control register */
_out p(0x3E1, 00h) ; /* load 00Oh into register */
/* enabl e wi ndow 0 */

_out p(0x3EO0, 06h) ; /* point to nenory enabl e wi ndow */
_out p(0x3E1, 04h); /* |l oad 0100 0000b to enable I/ O w ndow O*/

8.4 Exercises

84.1 How many data bits does the PCMCIA bus have:
@ 8 (b) 16 () 24 (d 32
8.4.2 How are devices typically added to the system:

(@ They are mapped into the I/O memory address

(b) They directly into the physical address of the system
(c) They use polled interrupts

(d) They interface to amain controller

8.4.3 What is the base address of the registers that are used to program the PCMCIA

device:
(& 1EOh (b) 2EOh
() 3EOh (d) 4EOh

8.4.4 Prove that the maximum address memory with PCMCIA is 64 MB.
8.4.5 Explain how 1/0 registers are used to program the PCMCIA device.

8.4.6 Show the lines of C code that would be required to mount a primary serial port
(3F8h—3FFh) and an ECP printer port (378h-37Ah).

8.4.7 Show the lines of C code that would be required to mount a primary (1FOh-1F7h)
and a secondary hard disk (170h-177h).

8.4.8 How would the programming for extra memory differ from an isolated I/O device.

8.5 Notes from the author

PCMCIA devices — To save paper, I’ve got seven lines to tell you about them. Well, in sum-
mary, they're really good, but tend to be relatively expensive. Their principle use isto add a
network adapter or a modem to a notebook computer. They are typically not used to add to
the memory of the notebook or to increase its hard disk space (an internal upgrade is much
better for these). Personally, | find them a little too thin, and | do not believe they can get all
the required electronics into them (but | remember when simple logic ICs, like AND and OR
gates, were as big as your thumb and they could heat it if you required).

L:‘ﬁ USB and Firewire

9.1

Introduction

The

PC is now evolving into a powerful system through:

Microprocessor developments.
Improved graphics systems, such as AGP.
The PCI bus architecture, especially the PCI bridge.

Improved plug-and-play technology and automated set-up. The USB port aids in its ease
of connection.

USB (Universal Serial Bus) allows for the connection of medium bandwidth peripherals such
as keyboards, mice, tablets, modems, telephones, CD-ROM drives, printers and other low to
moderate speed external peripherals in a tiered-star topology. Its basic specification is:

Isochronous (“continuous’) transfers which supports audio and video. With isochronous
data transfers, devices transmit and receive data in a guaranteed and predictable fash-
ion. USB also supports non-isochronous devices (the highest priority), and both
isochronous and non-isochronous can exist at the same time.

Standardised industry-wide plug-and-play specification, cables and connections.

Multiple-tiered hubs with almost unlimited expansion (with up to 127 physical de-
vices), and concurrent operations.

12Mbps transfer rate and different packet sizes. It supports many device bandwidth
requirements from a few kbps to 12 Mbps.

Wide range of device data rates by accommodating packet buffer size and latencies.

A hot-plug capability which allows peripherals to be connected without powering down
the computer. Dynamically attachable and reconfigurable peripherals.

Enhanced power management with system hibernation and sleep modes.
Self-identifying peripherals, automatic mapping of function to driver and configuration.
Support for compound devices which have multiple functions.

Flow control for buffer handling built into protocol.

Error handling/fault recovery mechanism.

Support for identification of faulty devices.

Simple protocol to implement and integrate.

182 Computer busses

USB is a balanced bus architecture which hides the complexity of the operation from the
devices connected to the bus. The USB host controller controls system bandwidth. Each de-
vice is assigned a default address when the USB device is first powered or reset. Hubs and
functions are assigned a unique device address by USB software.

Typical examples of USB connected devices are:

* Digital speakers/ microphones.

* Joysticks.

* Scanners/ modems/ printers/ monitors.
* Game controllers/ graphics tablets.

* Video conferencing cameras.

* Musical interfaces, such as MIDI.

9.2 USB

9.2.1 Physical USB connection

USB uses a four-wire cable to connect to devices. One pair of the twisted-pair lines gives the
differential data lines (D+ and D-), while the other two gives a 5V and a GND supply rail, as
given in Table 9.1.

Data transfer rate is up to 12 Mbps, with a 1.5Mbps subchannel for low-data-rate devices
(such as a mouse). A single unit can connect directly to the PC, but a hub is required when
more than one device is connected. Each peripheral can extend up to 5m from each hub con-
nection, with a maximum of 127 different devices to a single PC.

Table 9.1 USB connections

Pin Name Description
1 Vee +5Vpe

2 D- Data—

3 D+ Data+

4 GND Ground

9.2.2 Bus protocol

Each bus transaction involves the transmission of up to three packets. These are

* Token packet transmission — on a scheduled basis, the host controller sends a USB
packet which describes the type and direction of a transaction, the USB device address
and endpoint number. The addressed USB device selects itself by decoding the appropri-
ate address fields.

e Data packet transmission — the source of the transaction then sends a data packet, or in-
dicates it has no data to transfer.

e Handshake packet transmission — destination device responds with a handshake packet to
indicate whether the transfer was successful.

USB and firewire 183

USB supports two types of transfers: stream and message. A stream has no defined structure,
whereas a message does. At start-up one message pipe, Control Pipe 0, always exists as it
provides access to the device’s configuration, status and control information.
The USB protocol supports hardware or software error handling. In hardware error han-
dling the host controller retries three times before informing the client software of the error.
Each packet includes a CRC field which detects all single and double bit errors, as well
as many multibit errors. Typically error conditions are short term.
A major advantage of USB is the hot attachment and detachment of devices. USB does this
by sensing when a device is attached or detached. When this happens, the host system is no-
tified, and system software interrogates the device. It then determines its capabilities, and
automatically configures the device. All the required drivers are then loaded and applications
can immediately make use of the connected device.

9.2.3 Data transfers types

USB optimizes large data transfers and real-time data transfers. When a pipe is established
for an endpoint, most of the pipe’s transfer characteristics are determined and remain fixed
for the lifetime of the pipe. Transfer characteristics that can be modified are described for
each transfer type.

USB defines four transfer types:

Control transfers — bursty, non-periodic, host software initiated request/response com-
munication typically used for command/status operations.

* Isochronous transfers — periodic, continuous communication between host and device
typically used for time relevant information. This transfer type also preserves the con-
cept of time encapsulated in the data. This does not imply, however, that the delivery
needs of such data are always time critical.

* Interrupt transfers — small data, non-periodic, low frequency, bounded latency, device
initiated communication typically used to notify the host of device service needs.

e Bulk transfers — non-periodic, large bursty communication typically used for data that
can use any available bandwidth and also is delayed until bandwidth is available.

9.2.4 USB implementation
There are two main ways to implement USB. These are:

e OHCI (open host controller interface). This method defines the register level inter-
face that enables the USB controller to communicate with the host computer and the op-
erating system. OHCI is an industry-standard hardware interface for operating systems,
device drivers, and the basic input output system (BIOS) to manage the USB. It opti-
mises performance of the USB bus while minimising central processing unit (CPU)
overhead to control the USB. Its main features are:

® Scatter/gather bus master hardware support reduces CPU overhead to handle multiple
data transfers across the USB.

e Efficient isochronous data transfers allow for high USB bandwidth without slowing
down the host CPU.

* Assurance of full compatibility with all USB devices.

184 Computer busses

e UHCI (universal host controller interface). This method defines how the USB control-
ler talks to the host computer and its operating system. It is optimised to minimise host
computer design complexity and uses the host CPU to control the USB bus. Its main fea-
tures are:

e Simple design reduces the transistor count required to implement the USB inter-
face on the host computer, thus reducing system cost.

* Assurance of full compatibility with all USB devices.

The PCI bridge device (P11X3/P11X4) contains a USB host controller (HC) with a root hub
with two USB ports. This allows two USB peripheral devices to directly communicate with
the PCI bridge without an external hub. When more than two USB devices require to be con-
nected then an external hub can be added. The USB’s PCI configuration registers are located
in the PCI configuration space.

The host controller uses the UHCI standard and thus uses UHCI standard software driv-
ers. It basically consists of two parts:

* Host controller driver (HCD). This is the software that manages the host controller
operation and is responsible for scheduling the traffic on USB by posting and maintain-
ing transactions in system memory. It interprets requests from the USBD and builds
frame list, transfer descriptor, queue head, and data buffer data structures for the host
controller. These data structures are built in system memory and contain all necessary
information to provide end-to-end communication between client software in the host
and devices on the USB. The host controller moves data between system memory and
devices on the USB by processing these data structures and generating the transaction
on USB. The host controller executes the schedule lists generated by HCD and reports
the status of transactions on the USB to HCD. Command execution includes generating
serial bus token and data packets based on the command and initiating transmission on
USB. For commands that require the Host Controller to receive data from the USB de-
vice, the host controller receives the data and then transfers it to the system memory
pointed to by the command. The UHCI’s HCD provides sufficient commands and data
to keep ahead of the host controller execution and analyses the results as the commands
are completed.

* Host controller (HC). The host controller interfaces to the USB system software in the
host via the HCD.

Attachment of USB devices

All USB devices attach to the USB via a port on specialised USB devices known as hubs.
Hubs indicate the attachment or removal of a USB device in its per port status. The host que-
ries the hub to determine the reason for the notification. The hub responds by identifying the
port used to attach the USB device. The host enables the port and addresses the USB device
with a control pipe using the USB Default Address. All USB devices are addressed using the
USB Default Address when initially connected or after they have been reset. The host deter-
mines if the newly attached USB device is a hub or a function and assigns a unique USB
address to the USB device. The host establishes a control pipe for the USB device using the
assigned USB address and endpoint number zero. If the attached USB device is a hub and
USB devices are attached to its ports, then the above procedure is followed for each of the

USB and firewire 185

attached USB devices. If the attached USB device is a function, then attachment notifications
will be dispatched by USB software to interested host software.

Removal of USB devices

When a USB device has been removed from one of its ports, the hub automatically disables
the port and provides an indication of device removal to the host. Then the host removes
knowledge of the USB device. If the removed USB device is a hub, the removal process
must be performed for all of the USB devices that were previously attached to the hub. If the
removed USB device is a function, removal notifications are sent to interested host software.

USB host: hardware and software

The USB host interacts with USB devices through the host controller. The host is responsible
for the following:

* Detecting the attachment and removal of USB devices

* Managing control flow between the host and USB devices

* Managing data flow between the host and USB devices

® Collecting status and activity statistics

* Providing a limited amount of power to attached USB devices

USB system software on the host manages interactions between USB devices and host-based
device software. There are five areas of interactions between USB system software and de-
vice software, they are:

* Device enumeration and configuration.

* Isochronous data transfers.

* Asynchronous data transfers.

* Power management.

* Device and bus management information.

Whenever possible, USB software uses existing host system interfaces to manage the above
interactions. For example, if a host system uses Advanced Power Management (APM) for
power management, USB system software connects to the APM message broadcast facility
to intercept suspend and resume notifications.

9.2.5 USB host controller registers

VID (vendor identification register)

Address offset 00-01h
Default value 8086h
Attribute Read only

The VID register contains the vendor identification number. This register, along with the
device identification register, uniquely identifies any PCI device. Writes to this register have
no effect. Bit description 15:0 vendor identification number. This is a 16-bit value assigned
to Intel.

186 Computer busses

DID (device identification register)

Address offset 02-03h
Default value 7112h
Attribute Read only

The DID register contains the device identification number. This register, along with the VID
register, defines the USB host controller.

9.3 Firewire

The main competitor to USB is the Firewire standard (IEEE
1394-1995) which is a high-speed serial bus for desktop peripheral devices, typically
for video transfers. It supports rates of approximately 100, 200 and 400 Mbps, known as
S100, S200 and S400 respectively. Future standards promise higher data rates, and ultimately
it is envisaged that rates of 3.2Gbps will be achieved when optical fibre is introduced into the
system. It is generally more expensive than USB to implement for both the host computer
and peripherals.
Its main features are:

e 100/200/400 Mbps transfer rate.

* Point-to-point interconnect with a tree topology; 1000 buses with 64 nodes gives 64000
nodes.

e Automatic configuration and hot plugging.

* Isochronous data transfer, where a fixed bandwidth is dedicated to a particular periph-
eral.

® Maximum cable length of 4.5m.

Firewire also complements USB in that it supports high-speed peripherals, whereas USB
supports low-to-medium speed peripherals. It is an attractive alternative to technologies such
as SCSI and it may provide a universal connection to replace many of the older connectors
normally found at the back of a standard PC. This should subsequently reduce the costs of
production of computer interfaces and peripheral connectors, as well as simplifying the re-
quirements placed on users when setting up their devices. This is made possible by the fol-
lowing features of the IEEE-1394 bus:

e Hot pluggable — devices can be added or removed while the bus is still active.

e Easy to use — there are no terminators, device addressing or elaborate configuration of-
ten associated with technologies like SCSI.

o Flexible topology — devices can be connected together in many configurations, thus the
user need not consider logical locations on the network.

e Fast —suitable for high bandwidth applications.

e Rate mixing — a single cable medium can carry a mix of different speed capabilities at
the same time

e Inexpensive — targeted at consumer devices.

USB and firewire 187

9.3.1 Topology

There are two bus categories:

Cable. This is a bus which connects external devices via a cable, The cable environment
is a non-cyclic network with finite branches consisting of bus bridges and nodes (cable
devices). Non-cyclic networks contain no loops and results in a tree topology, with de-
vices daisy-chained and branched (where more than one device branch is connected to a
device). Figure 9.1 shows an example of an IEEE-1394 Splitter which has three branches
and the telephone is daisy-chained from the digital camera.

The finite branches restriction imposes a limit of 16 cable hops between nodes. There-
fore branching should be used to take advantage of the maximum number of nodes on a
bus. 6-bit node addressing allows up to 63 nodes on each bus, while 10-bit bus address-
ing allows up to 1023 buses, interconnected using IEEE-1394 bridges. Devices on the
bus are identified by node IDs. Configuration of the node IDs is performed by the self ID
and tree 1D processes after every bus reset. This happens every time a device is added to
or removed from the bus, and is invisible to the user.

A final restriction is that, using standard cables, the length between nodes is limited to
4.5m. This can be increased by adding repeaters between nodes, but lengths are expected
to improve as work on the standard ensues. Although a PC is shown in Figure 9.1, a
principal advantage of IEEE-1394 is that, unlike USB, no PC is actually required to form
a bus, and devices can talk to each other without intervention from a computer.
Backplane. This type is an internal bus. An internal IEEE-1394 device can be used
alone, or incorporated into another backplane bus. For example, two pins are reserved
for a serial bus by various ANSI and IEEE bus standards. Implementation of the back-
plane specification lags the development of the cable environment, but one could image
internal 1EEE-1394 hard disks in one computer being directly accessed by another
IEEE-1394 connected computer.

Printer
IEEE-1394
splitter
TV/Stereo
PC Digital
Camera
DVD Telephone

Figure 9.1 |EEE-1394 topology example

188 Computer busses

9.3.2 Asynchronous and isochronous transfer

One of the key capabilities of IEEE-1394 is isochronous data transfer. Both asynchronous
and isochronous are supported, and are useful for different applications. Isochronous trans-
mission transmits data like real-time speech and video, both of which must be delivered
uninterrupted, and at the rate expected, whereas asynchronous transmission is used to
transfer data that is not tied to a specific transfer time. With IEEE-1394, asynchronous is the
conventional transfer method of sending data to an explicit address, and receiving
confirmation when it is received. Isochronous, however, is an unacknowledged guaranteed-
bandwidth transmission method, useful for just-in-time delivery of multimedia-type data.

An isochronous ‘talker’, requests an amount of bandwidth and a channel number. Once
the bandwidth has been allocated, it can transmit data preceded by a channel ID. The
isochronous listeners can then listen for the specified channel ID and accept the data follow-
ing. If the data is not intended for a node, it will not be set to listen on the specific channel
ID. Up to 64 isochronous channels are available, and these must be allocated, along with
their respective bandwidths, by an isochronous resource manager on the bus.

Figure 9.2 shows an example situation where two isochronous channels are allocated.
These have a guaranteed bandwidth, and any remaining bandwidth is used by pending asyn-
chronous transfers. Thus isochronous traffic takes some priority over asynchronous traffic.

By comparison, asynchronous transfers are sent to explicit addresses on the 1394 bus
(Figure 9.3). When data is to be sent, it is preceded by a destination address, which each
node checks to identify packets for itself. If a node finds a packet addressed to itself, it copies
it into its receive buffer. Each node is identified by a 16-bit ID, containing the 10-bit bus ID
and 6-bit node or physical ID. The actual packet addressing, however, is 64 bits wide, pro-
viding a further 48 bits for addressing a specific offset within a node’s memory. This ad-
dressing conforms to the control and status register (CSR) bus architecture standard. The
ISO/IEC 13213:1994 minimises the amount of circuitry required by 1394 ICs to interconnect
with standard parallel buses. The 48-bit offset allows for the addressing of 256 terabytes of
memory and registers on each node.

Timing indicator

Isochronous channel | Isochronous channel Time slot available for
#1 time slot #2 time slot asynchronous transport

A
v

Packet frame = 125 us

Figure 9.2 Bandwidth allocation on the IEEE-1394 bus

USB and firewire 189

tl rtl tcode prl

Destination ID (16 bits) | ¢ i) | (2 bits) | (4 bits) | (4 bits)

Source ID (16 bits)

Destination offset (48 bits)

Data length (16 bits) Extended tcode (16 bits)

Header CRC (32 bits)

Data field

Zero padded bytes (8n bits)

Data CRC (32 bits)

Figure 9.3 Asynchronous write data block payload

9.3.3 IEEE-1394 packet formats

There are a number of different packet formats specified in 1394-1995, however only the
asynchronous block write will be presented here, as it is the main transaction type used
within this project.

The asynchronous block write is described in the 1394-1995 specification as a packet
type that requests a data block be written to the specified destination address. It is the packet
type used on asynchronous transmits, for a variable length of data.

The destination_ID field should contain the 16-bit destination node 1D, while the destina-
tion_offset field contains the remaining 48 bits required for CSR addressing. The data is sent
in the data field, which can be any quadlet-aligned length up to a maximum given by the
transmission speed. At 200 Mbps, for example, the data field may hold anything from 0 to
1024 bytes, in stages of four bytes. The header information is followed by a CRC (cyclic
redundancy check) for error checking, as is the block of data.

9.3.4 Bus management

Two bus management entities are available in the cable environment: the isochronous re-
source manager and the bus manager. They provide services such as maintaining topology
maps, or acting as a central resource from which bandwidth and channel allocations can be
made. Further information on bus management can be found in the 1394-1995 specification.

9.3.5 Cable
Figure 9.4 shows that the 1394 cable consists of three individually shielded cable pairs.
There are two power lines and two (screened) twisted pairs for data and strobe transmission.

9.3.6 Transmission rates

As already discussed, the cable rate definitions for 1394-1995 are termed S100, S200 and
S400, give actually data rates of 98.304Mbps, 196.608 Mbps and 393.216 Mbps, respec-
tively. The high data rates are achieved by using differential non-return to zero (nrz), signal-
ling on each shielded twisted pair.

190 Computer busses

[— — T
ﬁ 12 mm
— m— l
.
10.2 mm 1394 Connector

Figure 9.4 |IEEE-1394 cable and connectors

9.4 Exercises

94.1 How many USB ports are available from the host controller on a PC (P11X3/4):

(@ 1 (b) 2 c) 4 d 8
9.4.2 Discuss the advantages of USB connected devices over:
(i) ISA devices (ii) PCl devices

(iii) Serial/parallel port connected devices

9.4.3 Outline the main difference between isochronous and asynchronous data traffic. In
which applications is it isochronous.

94.4 Outline the main types of data transfer on the USB port.

9.45 By searching the Internet or a computer catalogue, locate some USB connected
devices.

9.5 Notes from the author

Congratulations go to the USB port. It was the first truly generic, easy-to-use, connection
bus for the PC that has mechanisms for non-real-time (such as printer data) and real-time
data (such as video, audio and speech). It allows for the easy addition and removal of de-
vices from the system, and it also supports hot plugging (adding or removing a device while
the computer is on). Microsoft first supported USB in Windows 95 OSR2, and it has since
become one of the most used ports, for devices such as video cameras, CD-ROM drives,
printers, digital speakers, monitors, and so on. The only problem with USB is that it only
gives a data throughput of 12 Mbps, and thus cannot be used for high-speed devices. Possi-
bly, over time, this rate may be increased, or other faster busses, such as Firewire could be
used for high-speed applications, such as Fast Ethernet, multimedia communications, hard
disk interfaces, and so on.

The IEEE-1394 specification (or i.LINK) is now being used on some systems (especially
in notebooks). Its adoption as a standard interface device will depend on whether new stan-
dard for the USB specification increase the transfer bit rate to support, at least, 100Mbps.
When the USB port can do this, there will be a lesser need for IEEE-1394.

10 gl Games Port, Keyboard and Mouse

10.1 Introduction

PCs have traditionally been difficult to connect to and set up, for reasons such as:

* Different connectors — there are so many different types of connectors for many different
types of devices that connect to the PC. For example, the keyboard uses a 5-pin DIN
plug, the parallel port uses a 25-pin D-type connector, the primary serial port uses a 9-
pin D-type connector, the video adaptor uses a 15-pin D-type connector, and so on. The
future is likely to bring a standardisation of these connectors, possibly with the USB
port.

e Different configurations — typically different peripherals required assigned interrupts
and 1/0 addresses. For example, the keyboard uses IRQ1 and 1/O ports at 60h and 64h.
This is now being overcome by busses such as SCSI and USB, which only require asin-
gle interrupt and a limited range of addresses. They also cope better with hot plug-and-
play devices and operating system configurable devices.

* Different data traffic rates — relatively low speed interfaces, such as the ISA bus, have
often reduced the rate of other faster busses, such as the PCI bus. This is now being
overcome by the use of bridges and the USB bus.

The games port, the keyboard and the mouse are also relatively slow devices which, in their
standard form, all have different connectors. In the future PCs may standardise these low-
and medium-speed devices on the USB port. The keyboard port and mouse port are now
standard items on a PC, and most PCs now have a games port, which supports up to two joy-
sticks.

Most PCs support either a PS/2-style mouse or one connected to the serial port (COM 1.
or COM2:). The operating system automatically scans all the mouse and keyboard ports to
determine where the mouse is connected to, and whether there is a keyboard connected.

Typically, these days, a mouse connects to the PS/2 port, which is basically an extension
of the keyboard port. The keyboard connects to either a 5-pin DIN plug, or more typically on
modern PCs to a smaller 5-pin plug. With the smaller connector, the PS/2 mouse and the
keyboard can share the same port (thisistypical in new PCs and also for notebooks).

10.2 Games port

The PC was never really designed to provide extensive games support, but as it is so general
purpose, it is now used to run arcade style games. A mouse is well designed for precise

192 Computer busses

movements and to select objects, but is not a good device to play games with; thus, ajoystick
is typically used. The games port adapter supports up to two joysticks connected to the same
port. It has 15 pins, which are outlined in Table 10.1 and connects to the system via:

® Lower eight hits of the data bus.
* Lower 10 bits of the address bus.
e |ORand IOW.

Table 10.1 Game adapter connections

Pin Description Pin Description

1 +5V 9 +bvV

2 1st button for joystick A (BA1) 10 1st button for joystick B (BB1)

3 X-potentiometer of joystick A (AX) 11 X-potentiometer of joystick B (BX)
4 GND 12 GND

5 GND 13 Y-potentiometer of joystick B (BY)
6 Y -potentiometer of joystick A (AY) 14 2nd button for joystick B (BB1)

7 2nd button for joystick A (BA1) 15 +5V

8 +5V

Each joystick has two buttons, which are normally open circuit, and two potentiometers
which give a variable resistance from 0Wto 100kW, to indicate the x- and y-position of the
joystick handle. Figure 10.1 shows its connections. An unpressed button corresponds to a
high level and a button pressto alow level.

%

h 4

el

0O 6 6 E
@O OO 6 e

R@

Joystick A Joystick B

Figure 10.1 Joystick interface

Games port, keyboard and mouse

Computer Properties
Wiew Resources I Reserve Resources I

" Direct memory access [DMA)
" Memory

EE

| Hardware uzsing the zetting

Gamepart Joystick

ES1869 Plug and Play AudioDrive [WDHM)
10 read data part for 1S4 Plug and Play enumerataor
Mo description available

ES1869 Plug and Play AudioDrive [WDHM)

Intel B2371AB/EB PCI Bus Master IDE Contraller
Secondary IDE contraller (dual fifo)

- il

o]

Cancel |

Figure 10.2 Memory map showing Gameport I/O address

193

The status of the button can be determined by reading the 201h address (see Figure 10.2), its
format is given in Figure 10.3. Thus to test for a button press the upper four bits of the regis-
ter are tested to determine if they are a zero. Figure 10.4 shows a simple C program to test

the status of the buttons.
BB2 | BB1 | BA2 | BAl BY BX AY AX
T T T T o 1o 1o Ta
2 = 2 2
8 8 8 8
i} i} < m 2] 17} 7] 7]
XN v N 3] o > 3]
QS < Qc QO c L c % % % %
PS8 8 e w8 £ £ £ £
=] = E = > E
§2 82 53 82 BSES L8 &
55 385 38 36
52 =8 =8 582
@S o o ®»©o
g8 g2 22 g2
m, > mX m> »nX

Figure 10.3 Joystick status register format

Address: 201h

The reading of the position of the joystick is a little more difficult. For this an event is
triggered by writing to the status register. This triggers a one-shot multivibrator, the status of
which is given on the lower four bits of the status register, which change from a zero to a one
when it has completed the single-shot. The resistance is given by

Resistance =

Timeinterval (is)- 24.2
0.011

194

Computer busses

*.. Microsoft Developer Studio - [joy2.cpp]

JJ File Edit “iew Insert Project Buld Toole ‘Window Help 18] x|

Q| sHF e o DEE| S e =3 a

i | | Lol

= +#include <=tdioc h: [
#include <conio. h» P
f int main(wvoid)

; unsigned int inwval:

do

z {
I inval=_inp{0=x201): % read button status of joystlck *®.

g | if ({inwal & 0x80) == 0) put=("Joystick B: Button 2 o
= if ({inwal & 0=x40) == 0) put={"Joystick B: Button 1"):

2 3 if ({inwval & 0=x20) == 0) put=("Joystick A: Button 2 N

?‘ if ({inwal & 0xl0) == 0) put=s({"Joysticlk A: Button 1"):
'{‘* } while (lkbhit()) :
‘i‘. return(0):
AT il
&
= _ﬁl
g N S ;
Ready | Lni.Cald REC [COL [OVE [READ 2

Figure 10.4 Simple C program to test joystick button status

Thus, the timing values will change from 24.2ns (for 0 kW) to 1.124ms (for 100 kW). A sim-
ple program that determines the time it takes for AX to be set is given next:

Program 10.1
#i ncl ude <stdio. h>
#i ncl ude <coni o. h>

int main(void)

{
unsi gned i nt inval, startl, start2, start, endl, end2, end;
do
_out p(0x43,0); /* Specify Counter 0 */
start1=_i np(0x40); /* get LSB of Counter O */
start2=_i np(0x40); /* get MSB of Counter O */
_out p(0x201, 0); /* start one-shot */
do
{
i nval =_i np(0x201); /* read button status of joystick */

} while ((inval & 1)==1); /* wait till set to a 0 */

_out p(0x43,0); /* Specify Counter 0 */

endl=_inp(0x40); /* get LSB of Counter 0 */
end2=_i np(0x40); /* get MSB of Counter 0 */

Games port, keyboard and mouse 195

start=(startl &xff)+((start2 &0xff)<<8);
end=(endl & Oxff)+((end2 & Oxff)<<8);

if (start>end)
printf("Value = %\n",start-end);
else /* roll-over has occurred */
printf("Value = %\ n",start+(0xffff-end))
} while (tkbhit()) ;

return(0);

}

Program 10.1 uses Counter O which is loaded from address 40h. It has a 16-bit counter regis-
ter and hasa 1.2 MHz clock asitsinput. It thus rolls-over every 55ms.

In a sample test run of the above program the output value varied from 62 to 2740, with a
static value of 1400. The joystick could be easily calibrated with these values, which are the
extremes for either x or y. Notethat AY istested with;

do

i nval =_i np(0x201); /* read button status of joystick */
} while ((inval & 2)==1); /* wait till set to a 0 */

and BX is tested with:

do

{
i nval =_i np(0x201); /* read button status of joystick */
} while ((inval & 4)==1); /* wait till set to a 0 */

10.3 Keyboard

Figure 10.5 shows the main connections in the keyboard interface. It uses a 5-pin DIN socket
for the connection. The data is sent from the keyboard to the PC in an 11-bit SDU (serial data
unit) format over the KBD Data line. When a key has been pressed the IRQL interrupt lineis
activated. The keyboard interface IC scans the keys on the keyboard by activating the X-
decoder lines and then sensing the Y-decoder lines to see if there has been a keypress. It then
decodes this to sense if a key has changed its state. It then converts the keypress or release to
a code which it sends to the keyboard controller on the PC. The format of the code is in the
form of an RS-232 interface with eight data bits, one parity bit, one start bit and one stop bit.
Unlike RS-232, it uses a synchronous transfer where the clock speed is defined by the KDB
clock line.

It is very unlikely that a programmer would ever need to interface directly with the key-
board, as there are a whole host of standard functions that are well tested and interface well
with the operating system. It is always advisable to use the standard input keyboard func-
tions, over direct interfacing. Typically the operating system takes over control of al input
key presses and sends these to the required process, thus it is not a good idea to interrupt the
flow.

196 Computer busses

(3) KBD Reset

(1) KBD Clock
(4) GND &) +sv ‘
Y-Decoder
(2) KDB Data

«1 8 3
2 e x
IRQ1) g2 o
Ty I« 8% P 3
‘ , o2 11-bit og %
<5 Sbu 2 =

D0-D7 e code <

Scan matrix

Figure 10.5 Keyboard interface

The keyboard uses two 1/0 addresses. These are shown in Figure 10.6, and are:

* Input/output buffer (address: 60h) — used to read the code from the keyboard.

® Control/status register (address: 64h) — used either to determine the status of the key-
board (when avalue is read from the register) or to set up the keyboard (when avalue is
written to the register). The commands used are listed in Table 10.2. On a read opera-
tion, it acts as a status register. Figure 10.7 shows the bit definitions, these are:

Computer Properties H
Yiew Resources I Feserve Resources I

© Interupt request (IRQ] O Direct memaory access [DMA]
& InputAoutput (140) " Memory

| Hardware using the setting AI
i Standard 101A102-Key or Microzoft M atural Ke_l,lboan:‘"1
Syztem speaker

In uze by unknown device.

Standard 101/102-K.ey or Microsoft M atural Keyboarc

In uze by unknown device.

Syztem COS freal time clock,

Direct memary access contraller =
! _'J_]

oK I Cancel |

Figure 10.6 Keyboard I/O addresses (60h and 64h)

Games port, keyboard and mouse 197

PARE Parity bit — 1 = last byte has a parity error, 0 = no error.

TIM General time-out — 1 = error, 0 = no error.

AUXB Output buffer for auxiliary device — 1 = holds data for auxiliary device,
0 = holds keyboard data.

KEYL Keyboard lock status— 1 = keyboard unlocked, 0 = keyboard locked.

C/ID Command/data — 1 command byte written via port 64h, data byte writ-
ten via port 60h.

SYSF. System flag — 1 = self-test successful, O = power-on reset.

INPB. Input buffer status— 0 = Datain input buffer, 0 = no data.

OUTB. Output buffer status — 0 = Controller data in output buffer, 0 = buffer

empty.

The auxiliary deviceistypicaly a PS/2 style mouse. Program 10.2 shows an example pro-
gram which reads from the keyboard buffer. It disables the IRQL interrupt. (Note that this
may cause some systems to not respond to the keyboard if the program does not terminate

properly.)

PARE| TIM |AUXB|KEYL| C/D |SYSF|INPB |OUTB| Address:64h
Status register

Figure 10.7 Status register bits

Table 10.2 Control register commands

Code Command Return value (in output buffer)

arh Disable auxiliary device

ash Enable auxiliary device

a%h Check interface to auxiliary device 00h = no error, 01h = clock line low, 02h = clock
line high, 03h = dataline low, 04h = dataline
high and ffh = no auxiliary device.

aah Self-test 55h, on success

abh Check keyboard interface 00h = no error, 01h = clock line low, 02h = clock
line high, 03h = dataline low, 04h = dataline
high and ffh = no auxiliary device

adh Disable keyboard

aeh Enable keyboard

cOh Read input port

clh Read input port (low)

c2h Read input port (high)

doh Read output port

dih Write output port

d2h Write keyboard output buffer

d3h Write output buffer of auxiliary device

d4h Write auxiliary device

eOh Read test input port

198

Program 10.2

/* This program nmay not work in Wndows 95/98/ NT/ 2000
/* as it tries to take direct control of the keyboard
#i ncl ude <stdio. h>

#i ncl ude <coni o. h>

int main(voi d)
{

unsi gned int
char

i nval ,
ch;
_out p(0x21, 0x02) ;
do

{

hi t =0;

/* disable IRQL */

do

{
i nval =_i np(0x64) ;
if ((inval & 0x01)==0x01) /* set for output

puts("Key pressed");

ch=_i np(0x60); /* read key frombuffer */
printf("%",ch);

hi t =1,

}
} while (hit==0);
hi t =0;
i f (ch==0x1) break;
} while (1);
_out p(0x21, 0);
return(0);

/* wait for ESC key */

/* enable I RQL */
}

10.4 Mouse and keyboard interface

/* read status register */

Computer busses

*/

buffer */

Modern PCs typically use the 8242 device to provide for a PS/2 mouse and keyboard func-
tion, as illustrated in Figure 10.8. It can be seen that the two interrupts which are available
are | RQL (the keyboard interrupt) and | RQL2 (PS/2 style mouse). If the mouse connects to the
serial port then the | RQL2 line does not cause an interrupt. All clock frequencies are derived
the interface for the PS/2-
style mouse is identical to the keyboard connection. They are interfaced through the same

from the keyboard clock frequency (see Figure 10.8). Notice that

registers (60h and 64h).

IRQ1

——»
IRQ12 >
KEYLOC!§

KBDCLK >

8242PCPL
DD[7:0] ——¥

—
—

IOR#
MSCLK »
MSDATAI

KBDATA)

KBCLK)

IoW#

Figure 10.8 Mouse and keyboard interface

Mouse
interface

MSDATA —»
MSCLK ——
—_—
—_—

+5V
GND
K/B
interface
KBDATA ——— ¥
KBDCLK »
E—
B

+5V
GND

Games port, keyboard and mouse

10.5 Mouse

199

Typically on modern PCs the PS/2-style mouse is preferred over seria port mice. PS/2-style
mice free up the serial port for other uses, such as for data transfers, modem connections, and
so on. Table 10.3 outlines the commands that can be used to program the mouse.

Table 10.3 Control register commands

Code Command Description
e6h Reset scaling
erh Set scaling
esh Set resolution Sets the resolution: 00h = 1 count/mm, 01h = 2 counts/mm,
02h = 4 counts/mm and 03 = 8 counts/mm.
e%h Determine status 3 status bytes
Byte 1:
Bit 0: Right mouse button pressed (if 1).
Bit 2: Left mouse button pressed (if 1).
Bit 4: Scaling (0=1:1, 1=1:2).
Bit 5: Mouse (O=enabled, 1=disabled).
Bit 6: Mode (O=stream, 1=remote).
Byte 2: Resolution.
Byte 3: Samplerate.
eah Set stream mode
ebh Read data Reads an 8-byte data packet from the mouse.
ech Resets mouse to normal
mode
eeh Sets mouse to wrap mode In wrap mode al the commands or data sent to the mouse.
fOh Set remote mode
f2h Identify unit 00h = mouse
f3h Set sampling rate Sampling rate is then set by the value put into output
buffer: 0ah = 10 samples/s, 14h = 20 samples/s, 28h = 40
samples/s, 3¢ = 60 samples/s, 50h = 80 samples/s, 64h =
100 samples/s and c8h = 200 samples/s.
f4h Enable mouse
f5h Disable mouse
féh Set standard mouse to stan-
dard values
feh Resend
ffh Reset

The PS/2 mouse is programmed by:

200 Computer busses

® Sending the write auxiliary device (d4h) command to 64h (Control register).

® The next byte is a command code which is sent to port 60h, and then transferred to the
mouse port (valid codes are given in Table 10.3). This command transfer only occurs for
asingle transfer.

The mouse can either be set into a stream mode or a remote mode, and writes movement data
into the keyboard buffer. In stream mode, the mouse transmits movement data when it is
moved by a given amount (set by the sample rate). In remote mode the mouse only transfers
movement data when there is a specific read data command.

When the read data command is sent, the 8-byte data packet is read from the addresses as
specified in Table 10.4. An example of programming the mouseis given next:

_out p(0x64, 0xd4) ; /* Wite aux. device */
do
i nval =_i np(0x64);

} while ((inval & 0x02)==0x02); /* wait until input buffer enpty */
_out p(0x60, Oxe7); /* set scaling */

Table 10.4 Control register commands

Offset Description

00h Bit 7: YOV (Y-data overflow), Bit 6: XOV (X-data overflow),
Bit 5: YNG (Y-value negative), Bit 4: XNG (X-value negative),
Bit 1: RIG (right button pressed), Bit 0: LEF (l€eft button pressed).

02h X-data movement since last access

04h Y -data movement since last access

10.6 Exercises

10.6.1 What isthe base address of the joystick port:

(@ 101h (b) 201h
() 301h (d) 401h

10.6.2 Which I/O port addresses are used for the keyboard:

(8 60h, 64h (b) 160h, 164h
(c) 260h, 264h (d) 360h, 364h

10.6.3 How isthe x position and y position determined:

(& Thetimefor asingle-shot (b) A voltagelevel
(©) Anélectrica current (d) Avaueinaregister

Games port, keyboard and mouse 201

10.6.4 What interrupt does the keyboard use:

(@ IRQ1 (b) IRQ3
(9 IRQ4 (d IRQI2

10.6.5 What interrupt does the PS/2 style mouse use:

(@ IRQ1L (b) IRQ3
(© IRQ4 (d IRQ12

10.6.6 Run the program in Figure 10.4 and show that the joystick buttons are working.
Modify the program so that it only displays a change of status in a button press
(rather that scrolling down the screen). For example:

if ((inval & 0x80) == 1) && (button==0)) { button=1; puts(“B:Button 2 Press”);}
if ((inval & 0x80) == 0) && (button==1)) { button=0; puts(“B:Button 2 Reset”);}

10.6.7 Run Program 10.1 and test the movement detection. Modify it so that it detects the
y movement.

10.6.8 Run Program 10.1 so that the user can calibrate the joystick. The user should be
asked to move the joystick to its maximum x directions, and aso the maximum y
directions. From this write a program which displays the joystick movement as a
value from —1 to +1.

10.7 Notes from the author

Phew. I'm glad | got these three interfaces out of the way, in a single chapter. All three are
based on a legacy type system. Over time, the USB port should replace each interface type,
but as they work well at the present they may be around for a while longer.

The method that the games port uses to determine position is rather cumbersome, where
it uses a single-shot monostable timer to determine the x and y positions. An improved
method is to pass the data using a serial interface, just as the mouse does. But, it's a stan-
dard, and that’ s the most important thing.

The keyboard and PS2-style mouse connections have proved popular, as they are both
now small 5-pin DIN-style connectors, and as the software automatically scans the port for
devices, they can be plugged into either socket. This allows for an extra keyboard or a sec-
ond mouse to be used with a notebook.

As I've got a few extra lines at the end of this chapter, | would like to review the material
that has been covered up to this point. The key to understanding internal bussesis contained
in the Motherboard chapter, where the processor interfaces with the TXC device, which di-
rects any requests to the second-level cache, the DRAM memory or the PCI bus. The PCI
bridge device is also important as it isolates the other busses, such as ISA/IDE, USB, se-
rial/parallel port from the PCI bus, and thus the rest of the system. The keyboard, games port
and mouse interfaces are accessed via the PCI bridge.

11 || AGP

11.1 Introduction

The AGP (accelerated graphics port) is a major advancement in the connection of 3D graph-
ics applications, and is based on an enhancement of the PCI bus. One of the major motivat-
ing factors is to improve the speed of transfer between the main system memory and the lo-
cal graphics card. This reduces the need for large areas of memory on the graphics card, as
illustrated in Figure 11.1.

The main gain in moving graphics memory from the display buffer (on the graphics card)
to the main memory is the display of text information as:

* |tis generally read-only, and does not have to be displayed in any special order.

e Shifting text does not require a great deal of data transfer and can be easily cached in
memory, thus reducing data transfer. A shift in text can be loaded from the cached mem-
ory.

e It is dependent on the graphics quality of the application, rather that the resolution of the
display. There is thus great scope in the future for improvement in the quality of graphics
images, rather than their resolution.

* Itis not persistent, as it resides in memory only for the duration that it is required. When
it has completed the main memory it can be assigned to another application. A display
buffer, on the other hand, is permanent.

On-board System
memory to “ “ memory
store graphics

==

PCl-based AGP-based
graphics card graphics card

Figure 11.1 AGP card using main system memory

204 Computer busses

The 440LX is the first AGPset product designed to support the AGP interface. The HOST
BRIDGE AGP implementation is compatible with the accelerated graphics port Specification
1.0. HOST BRIDGE supports only a synchronous AGP interface, coupling to the host bus
frequency. The AGP interface can reach a theoretical ~532 Mbytes/sec transfer rate. The
actual bandwidth will be limited by the capability of the HOST BRIDGE memory subsys-
tem.

11.1.1 PCI interface

The HOST BRIDGE PCI interface is 33-MHz Revision 2.1 compliant and supports up to
five external PCI bus masters in addition to the I/O bridge (P11X4). HOST BRIDGE supports
only synchronous PCI coupling to the host bus frequency.

HOST BRIDGE defines a sophisticated data buffering scheme to support the required
level of concurrent operations and provide adequate sustained bandwidth between the
DRAM subsystem and all other system interfaces (CPU, AGP and PCl).

11.2 PCl and AGP

AGP defines the master as the graphics controller and the corelogic as the graphics card. The
AGP interface is based on the 66 MHz PCI standard, but has four additional exten-
sions/enhancements. These extensions are:

* Deeply pipelined memory read and write operations, which fully hide memory access
latency.

* Address bus and data bus demultiplexing, allowing for nearly 100% bus efficiency.

* Extension to the PCI timing cycle which allows for one or two data transfers per 66 MHz
clock cycle. This provides a maximum data rate of 500 MB/s.

e Extension to the PCI timing cycle which allows for four data transfers per 66 MHz clock
cycle. This provides for a maximum data rate of 1 GB/s.

All these enhancements are implemented using extra signal lines (sideband signals), and it is
not intended as a replacement to the PCI bus. The AGP is physically, logically and electri-
cally independent of the PCI bus, and has its own connector which is reserved solely for
graphics devices (and is not interchangeable with the AGP connector). Figure 11.2 shows the
main AGP signal lines.

AGP uses deep pipelining which allows the total memory READ throughput equal to that
which is possible for memory WRITE (in PCI the memory read throughput is about half of
memory write throughput, as memory read access time is visible as wait states on this un-
pipelined bus). This and optional higher transfer rates and address demultiplexing, allows for
a large increase in memory read throughput over standard PCI implementations.

AGP 205

AGP | PIPE B
addressin .
oL = | GrRAVE
e oy
AGP | ReE_ 000 S ——
Eg\rzrol WBF_ | | GSTOP
— VSEL PCI
ot [sTRO AGP E GPERR [~ signals
status] ————— connector | GSERR
AD_STBO/AD_STBO GRE(
| | GGNT
AGP AD_STB1/AD_STB1 | | GADI5 0]
clocks/ — IGC/BE[3:0]
strobe — SB_STBL1/SB STBL |
CLK - GEAR]
o .

Figure 11.2 The main AGP signal lines

11.3 Bus transactions

AGP uses two types of bus operation. These are:

® Queuing requests. This can be done over the SBA port, or the AD bus, and is set up
using Bit 9 for the status register (only one type at a time can be used). With the SBA
port, the AD bus cannot be used, and vice versa. The sideband signals (SBA[7:0]) are
used exclusively to transmit AGP access requests (all PCI transactions use the AD pins
for both data and address), and are sent from the master to the core logic (the AGP re-
quests are the same when sent over the AD bus or the SBA bus). A master that uses the
SBA port does not require the PIPE signal which is used only to frame requests on the
AD pins.

* Address demultiplexing option. This allows the complete AGP access request to be
transmitted over the 8-bit SBA port. For this the request is broken into three parts: low-
order address bits and length (type 1), mid-order address bits and command (type 2), and
high-order address bits (type 3).

11.4 Pin description

AGP adds an extra 21 signal lines to the PCI specification. The basic implementation of
AGP should support x1 and x2 transfer rates, and may optionally support x4 data transfer
rates. All devices should support low priority (LP) data writes, but optionally support fast
write (FW) data transfers.

206 Computer busses

The signal lines split into four main groups:

* AGP requests.

* AGP flow control.
* AGP status.

* AGP clocking.

Also, the PCI lines are identified with a preceding G, such as GAD[31:0] for the PCI AD
bus, GSTOP for STOP, and so on.

11.4.1 Requests

AGP supports two methods of queuing requests by an AGP master. A master selects the re-
quired method during start-up and is not allowed to change when set up. The methods either

use the PIPE signal line or they use the SBA port. These signals cannot be used at the same
time. These lines are defined as:

PIPE On the master (the graphics controller), PIPE is a sustained tristate signal
and is an input to the target (the core logic). When assessed by the current
master it indicates a pipelined request, so that the full width request is to be
queued by the target. The master queues one request each rising edge of

CLK while PIPE is asserted.

SBAJ[7:0] These signals are outputs from the master and are inputs to the target, and
they indicate the sideband address (SBA) port which gives an additional
bus to pass requests (address and command) to the target from the master.

11.4.2 Flow control

Apart from the normal PCI flow control lines, the following have been added to AGP:

RBF The read buffer full (RBF) signal indicates that the master is ready to ac-
cept previously requested low priority (LP) read data or not. When it is ac-
tive (LOW), the arbiter is not allowed to initiate the return of low priority
read data to the master. It is made inactive by either the AGP target or
motherboard.

WBF The write buffer full (WBF) signal indicates that the master is ready to ac-
cept fast write (FW) data. When it is active (LOW), the core logic arbiter is
not allowed to initiate a transaction to provide FW data. It is made inactive
by either the AGP target or motherboard.

11.4.3 Status signals

The AGP status signals indicate how the AD bus is used in future transactions, such as using
it to queue new requests, return previously requested read data, or send previously queued
write data. These lines are always an output from the corelogic and an input to the master,
and are:

ST[2:0] These provide information from the arbiter to the master on the mode of

AGP

11.4.4 Clocks

207

operation, and they only have a meaning when GNT is asserted (else they
are ignored). Their settings are:

000 Previously requested low priority read or flush data is being re-
turned to the master.

001 Previously requested high priority read data is being returned to the
master.

010 Master is to provide low priority write data for a previous queued
write command.

011 Master is to provide high priority write data for a previous queued
write command.

100 Reserved.

101 Reserved.

110 Reserved.

111 Master has been given permission to start a bus transaction.

The CLK signal provides the basic clock signal for all control signals and is based on the x1
transfer mode. Two other strobes are used to transfer data on the AD bus or the SBA port. As
the AD bus has 32 bits then two copies of the AD_STB are required. In x4 mode is used, the
compliments of the strobes are also required.

CLK
AD_STBO

AD_STBO
AD_STB1
AD_STB1

SB_STB

SB_STB

Basic clock information for both AGP and PCI control signals.

This strobe provides for timing in a x2 data transfer mode on GAD[15:0]
and is provided by the agent that is providing data.

This strobe provides for timing in a x4 data transfer mode on GAD[15:0]
and is provided by the agent that is providing data.

This strobe provides for timing in a x2 data transfer mode on GAD[31:16]
and is provided by the agent that is providing data.

This strobe provides for timing in a x4 data transfer mode on GAD[31:16]
and is provided by the agent that is providing data.

This strobe provides the strobe for the SBA[7:0] (when required). It is
driven by the AGP master.

This strobe provides the strobe for the SBA[7:0] (when required) at x4 data
transfer mode. It is driven by the AGP master.

11.4.5 USB signals

USB+

USB-
OVRCNT

Used to send USB data and control packets to an externally connected USB
capable video monitor.
Inverse of USB+.

The USB overcurrent indicator is set low when there is too much current
being taken from the 5V supply.

11.4.6 Other signals

PME

TYPEDET

Power management event. Not used by the AGP bus, but used by the PCI
bus.

The type detect signal identifies whether the interface is 1.5V or 3.3 V.

208

Computer busses

11.4.7 PCI signals and AGP

AGP supports most of the PCI signals. IDSEL, LOCK, INTC and INTD are not supported

on the AGP connector, whereas, FRAME, IDSEL, STOP and DEVSEL are used in FW
transactions, but not in AGP pipelined operations.

FRAME
IRDY

TRDY

STOP
DEVSEL

IDSEL

PERR
SERR

REQ

GNT

RST
ADI[31:00]
C/BE[3:0]
PAR

LOCK
INTA , INTB

INTC, INTD

Used for FW transactions, but not for AGP pipelined transaction.

Used by the AGP master to indicate that it is ready to provide all write data
for the current transaction. When the master asserts it, then, it cannot insert
any wait states either when reading or writing blocks of data (but it can in-
between blocks). In FW transactions, the core logic sets the line to indicate
that there is write data on the bus. The core logic cannot insert wait states
with data blocks.

Used by an AGP target to indicate that it is ready to provide read data for
the entire transaction or is ready to transfer a block of data when the trans-
fer/transaction requires more than four clocks to complete the operation. In
FW transactions, the AGP master uses it to indicate when it is willing to
transfer a subsequent block.

Used in FW transactions to signal a device disconnection.

Used in FW transactions to signal that a transaction cannot complete during
the block.

Not used in the AGP connector, and generated internally in the graphics
device.

Not used in the AGP transaction.

As PCI bus.

Used to request access to the bus to initiate an AGP request.

Same meaning as PCI (but extra information is added by ST[2:0]).

As PCI bus.
As PCI bus.

AGP command information (see Section 11.5).
Not valid during an AGP transaction.

Not supported on the AGP interface.
As PCI bus.
Not supported on the AGP connector.

11.5 AGP master configuration

The AGP master is configured in the same way as a device on the PCI bus, which requires
that it responds to a PCI configuration transaction. This occurs when:

e A configuration command is decoded.
e ADO1 and ADOO are ‘00’.

AGP 209

e The IDSEL signal is asserted. As the AGP connector does not support IDSEL then it is
connected to AD16. This is done by connecting it internally for AGP operation, but ex-
ternally for PCI operation.

Initially the AGP device asserts DEVSEL when the bus command is configuration (read or
write). AD16 is set to a ‘1’ and AD1 and ADO are ‘00’. These cause the device’s configura-
tion space to be accessed. The system software then scans all configuration spaces by assert-
ing different AD signals between AD16 and AD31, and using PCI configuration read or
write commands.

11.6 Bus commands

The AGP bus uses the command lines (C/BE[3:0]) to indicate the type of pipelined transac-
tion on the AD bus or SBA port. These are:

0000 Read — Starting at the specified address, read n sequential Qwords, where n
= (length_field + 1). The length_field is provided by the lower three bits on
the AD bus (A2-A0).

0001 Read (hi-priority). As ‘Read’, but the request is queued in the high priority
queue. The reply data may be returned out of order with respect to other
requests.

0010 Reserved.

0011 Reserved.

0100 Write — Starting at the specified address, write n sequential Qwords, as
enabled by the C/BE[3:0], where n = (length_field + 1).

0101 Write (hi-priority) — As “Write’, but indicates that the write data must be

transferred from the master within the maximum latency window estab-
lished for high priority accesses.

0110 Reserved.

0111 Reserved.

1000 Long read — As ‘Read’, except for access size, in this case, n = 4X
(length_field + 1) allowing up to 256 byte transfers.

1001 Long read (hi-priority) — As ‘Read (hi-priority)’ except for access size
which is the same as for ‘Long Read’.

1010 Flush — Similar to ‘Read’. Forces all low-priority write accesses ahead of it

to the point that all the results are fully visible to all other system agents.
1011 Reserved.

1100 Fence — Creates a boundary in a single master’s low-priority access stream
around which writes may not pass reads.

1101 Dual address cycle (DAC) — used by the master to transfer a 64-bit address
to the core logic when using the AD bus.

1110 Reserved.

1111 Reserved.

210 Computer busses

The master uses two clock periods to transfer the entire address using AD[31:0] and
C/BE[3:0]. Within the first clock period, the master provides the lower address bits (A31-
A03) and the length encoding on (A2-A0), as with a 32-bit request, but uses the 1101 com-
mand (DAC) encoding on C/BE[3:0] instead of the actual command. The second clock of
the request contains the upper address bits (A63-A32) on AD[31:0] and the actual command

on C/BE[3:0].

11.7 Addressing modes and bus operations

AGP transactions differ from PCI transactions in several ways:

* In AGP, pipelined read/write transactions are disconnected from their associated access
request, where the request and associated data may be separated by other AGP opera-
tions. Conversely, a PCI data phase is connected to its associated address phase, with no
interventions allowed. This helps to maintain the pipe depth and allows the core logic to
ensure a sufficiently large buffer for receiving the write data, before locking up the bus
on a data transfer that could be blocked awaiting buffer space. The rules for the order of
accesses on the AGP bus are not based on the order of the data transfer, but on the arrival
order of access requests.

* AGP has different bus commands which allow access only to the main system memory.
PCI allows access to multiple address spaces: memory, 1/O and configuration.

* In AGP, memory addresses are always aligned in 8-byte references, whereas PCI uses 4-
byte, or lower, references (the number of bytes addressed is defined with the C/BE[3:0]).
The reason for the increased AGP addressing granularity (from four in the PCI bus to

eight in AGP) is because modern processors use a 64-bit data bus and can manipulate 64
bits at a time. The memory systems are also 64 bits wide.

* In AGP, pipelined access requests have an explicitly defined access length or size. In PCI
transfer lengths are defined by the duration of FRAME .

11.8 Register description

The PCI bridge supports AGP through two sets of registers, which are accessed via 1/0 ad-
dresses. These are:

® Configuration address (CONFADD) — Enables/disables the configuration space and de-
termines what portion of configuration space is visible through the configuration data
window.

e Configuration data (CONFDATA) — 32-bit/16-bit/8-bit read/write window into configu-
ration space.

AGP 211

Configuration address register

I/0 address OCF8h accessed as a DWord (32-bit)
Default value 00000000h
Access Read/write

CONFADD is accessed with an 8-bit or a 16-bit value, then it will ‘pass through’ this regis-
ter and go onto the PCI bus as an 1/O cycle. The register contains the bus number, device
number, function number, and register number for which a subsequent configuration access
is intended. Its format is:

Bit Description

31 Configuration enable (CFGE) 1=enable, O=disable.

30:24 Reserved.

23:16 Bus number (BUSNUM) — If it has a value of 00h then the target of the

configuration cycle is either the HOST BRIDGE or the PCI bus that is di-
rectly connected to the HOST BRIDGE.

15:11 Device number (DEVNUM) — Selects one agent on the PCI bus selected by
the bus number. In the configuration cycles this field is mapped to
AD[15:11].

10:8 Function number (FUNCNUM) — This field is mapped to AD[10:8] during
PCI configuration cycles. It allows for the configuration of a multifunction
device.

7:2 Register number (REGNUM) — This field selects one register within a par-
ticular bus, device, and function as specified by the other fields in the con-
figuration address register. This field is mapped to AD[7:2] during PCI
configuration cycles.

1:0 Reserved.

Configuration data register

1/0 address 0CFCh
Default value 00000000h
Access Read/Write

CONFDATA is a 32-bit/16-bit/8-bit read/write window into configuration space. The portion
of configuration space that is referenced by CONFDATA is determined by the settings in the
CONFADD register.

11.8.2 Configuration access

The routing of configuration accesses to PCI or AGP is controlled by PCI-to-PCI bridge
standard mechanism using the following:

® Primary bus number register.
* Secondary bus number register.
e Subordinate bus number register.

The PCI bus 0 is frequently known as the primary PCI.

212 Computer busses

PCI bus configuration mechanism

The PCI bus has a slot based configuration space which allows each device to contain up to
eight functions, with each function containing up to 256, 8-bit configuration registers.

PCI configuration is achieved with two bus cycles: configuration read and configuration
write. A device can be configured using the CONFADD and CONFDATA registers. First a
DWord value is placed into the CONFADD register that enables the configuration
(CONFADD[31]=1), specifies the PCI bus (CONFADDI[23:16]), the device on that bus
(CONFADDI[15:11]), the function within the device (CONFADDI[10:8]). CONFDATA then
becomes a window for which four bytes of configuration space are specified by the contents
of CONFADD. Any read or write to CONFDATA results in the host bridge translating
CONFADD into a PCI configuration cycle.

If the bus number is O then a Type 0 configuration cycle is performed on primary PCI
bus, where:

* CONFADD[10:2] (FUNCNUM and REGNUM) are mapped directly to AD[10:2].
e CONFADD[15:11] (DEVNUM) is decoded onto AD[31:16].

The host bridge entity within HOST BRIDGE is accessed as a Device 0 on the primary PCI
bus segment and a virtual PCI-to-PClI bridge entity is accessed as a Device 1 on the primary
PCI bus.

11.8.3 PCI configuration space

HOST BRIDGE is implemented as a dual PCI device residing within a single physical com-
ponent, where:

* Device 0 is the host-to-PCI bridge, and includes PCI bus number O interface, main mem-
ory controller, graphics aperture control and HOST BRIDGE’s specific AGP control
registers.

* Device 1 is the virtual PCI-to-PCI bridge, and includes mapping of AGP space and stan-
dard PCI interface control functions of the PCI-to-PCI bridge.

Table 11.1 shows the configuration space for Device 0. Corresponding configuration regis-
ters for both devices are mapped as devices residing at the primary PCI bus (bus #0). The
configuration registers layout and functionality for Device 0 is implemented with a high level
of compatibility with a previous generation of PClsets (i.e., 440FX). Configuration registers
of HOST BRIDGE Device 1 are based on the standard configuration space template of a
PCI-to-PClI bridge.

AGP

Table 11.1 PCI configuration space (Device 0)

213

Address Reference Register name

00-01h VID Vendor identification

02-03h DID Device identification

04-05h PCICMD PCI command register

06-07h PCISTS PCI status register

08h RID Revision identification

0Ah SUBC Subclass code

0Bh BCC Base class code

0Dh MLT Master latency timer

OEh HDR Header type

10-13h APBASE Aperture base address

34h CAPPTR Capabilities pointer

50-51h HOST BRIDGECFG Host bridge configuration

53h DBC Data buffering control

55-56h DRT DRAM row type

57h DRAMC DRAM control

58h DRAMT DRAM timing

59-5Fh PAM[6:0] Programmable attribute map (7 registers)
60—67h DRBJ7:0] DRAM row boundary (8 registers)
68h FDHC Fixed DRAM hole control

6A-6Bh DRAMXC DRAM extended mode select

6C-6Fh MBSC Memory buffer strength control register
70h MTT Multitransaction Timer

71h CLT CPU latency timer register

72h SMRAM System management RAM control
90h ERRCMD Error command register

91h ERRSTSO Error status register 0

92h ERRSTS1 Error status register 1

93h RSTCTRL Reset control register

A0-A3h ACAPID AGP capability identifier

A4—ATh AGPSTAT AGP status register

A8-ABh AGP Command register

B0-B3h AGPCTRL AGP control register

B4h APSIZE Aperture size control register

B8-BBh ATTBASE Aperture translation table base register
BCh AMTT AGP MTT control register

BDh LPTT AGP low-priority transaction timer register

AGPCMD register

The AGPCMD register reports AGP device capability/status. Its main parameters are:

Address offset
Default value

Access

A8-ABh
00000000h
Read/write

214 Computer busses

Bit Description

31:10 Reserved.

9 AGP side band enable — 1=enable. O=disable (Default).

8 AGP enable — 1=enable. 0=disable (Default). When this bit is set to a 0, the

HOST BRIDGE ignores all AGP operations. Any AGP operations received
(queued) while this bit is 1, will be serviced even if this bit is subsequently
reset to 0. If it is 1, the HOST BRIDGE responds to AGP operations deliv-

ered via PIPE (or responds to the SBA, if the AGP side band enable bit is

set to 1).
7:2 Reserved.
1:0 AGP data transfer rate — One bit in this field must be set to indicate the

desired data transfer rate. Bit O identifies X1, and bit 1 identifies X2.

11.8.4 AGP memory address ranges

The HOST BRIDGE can be programmed for direct memory accesses of the AGP bus inter-
face when addresses are within the appropriate range. This uses two subranges:

e AMBASE/AMLIMIT - this method is controlled with the memory base register
(AMBASE) and the memory limit register (AMLIMIT).

e APMBASE/APMLIMIT - this method is controlled with the prefetchable memory base
register (APMBASE) and AGP prefetchable memory limit Register (APMLIMIT).

The decoding of these addresses is based on the top 12 bits of the memory base and memory
limit registers which correspond to address bits A[31:20] of a memory address. When ad-
dress decoding, the HOST BRIDGE assumes that address bits A[19:0] of the memory ad-
dress are zero and that address bits A[19:0] of the memory limit address are FFFFFh. This
forces the memory address range to be aligned to 1 MB boundaries and to have a size granu-
larity of 1 MB. The base and limit addresses define the minimum and maximum range of the
addresses.

11.8.5 Graphics aperture

AGP supports a graphic aperture which uses memory-mapped graphics data structures. Its
starting address is defined by APBASE configuration register of HOST BRIDGE and its
range is defined by the APSIZE register, such as 4MB (default), 8MB, 16 MB, 32 MB,
64 MB, 128 MB and 256 MB.

11.8.6 AGP address mapping

HOST BRIDGE directs /O accesses to the AGP port in the address range defined by AGP
I/0O address range. This range is defined by the AGP 1/O base register (AIOBASE) and AGP
I/0 limit register (AIOLIMIT). These are decoded, where the top four bits of the 1/0 base
and /O limit registers correspond to address bits A[15:12] of an 1/O address. For address
decoding, the HOST BRIDGE assumes that the lower 12 address bits A[11:0] of the I/O base
are zero and that address bits A[11:0] of the I/O limit address are FFFh. This forces the 1/0
address range to be aligned to 4 KB boundary and to have a size granularity of 4 KB.

AGP 215

11.9 Exercises

11.9.1 Which bus is the AGP bus based on:

(@ PCI (b) IDE
(c) ISA (d USB

11.9.2 How does AGP increase the data rate by x2 (and even x4):

(@) Extra clock signals (b) Increased data bus size
(c) Direct memory accesses (d) Increased address bus size

11.9.3 Which of the following is not an advantage of using the AGP bus:
@) Faster transfers between memory and the graphics devices
(b) Increased usage of main memory (with reduced need for localized
memory)
(c) Reduced requirement for interrupts
(d) Increase throughput compared with the standard PCI bus
11.9.4 Which of the following identifies the address/data lines on the AGP bus:

() HAD[3L:0] (b) GAD[3L:0]
(c) AAD[3L:0] (d) AD[3L:0]

11.9.5 Explain the main objectives of the AGP bus and outline the advantages of moving
textural information into main memory.

11.9.6 Contrast the PCI and AGP busses and how AGP increases the data throughput.
Also discuss the extra signal lines used with AGP, and how they are used.

11.10 Notes from the author

So, what’s the biggest weakness of the PC. In the past, it has probably been the graphics
facilities. This is mainly because the bus systems within the PC did not support large data
throughput (ISA/EISA is way too slow). The design of the graphics system also required that
the video card required to store all the data which was to be displayed on the screen. Thus
no matter the amount of memory on the system, it was still limited by the amount of memory
on the graphics card. AGP overcomes this by allowing graphical images to be stored in the
main memory and then transferred to the video displayed over a fast bus.

The data demand for graphical displays is almost unlimited, as the faster they can be
driven, the greater their application. The AGP bus is an excellent extension to the PCI bus,
and gives data throughput of over 500 MB/s, whereas standard PCI devices can typically
only be run at less than 100 MB/s. AGP is now a standard part of most PC motherboards,
and it is still to be seen if many systems will start to use this port.

12 || Fibre Channel

12.1 Introduction

The increase in demand for bandwidth requires faster server-to-storage and server-to-server
networking. This is mainly due to the increase in client/server applications. Fibre Channel is
one solution to this, asiit is a highly reliable technology which operates at gigabit speeds. It
interconnects well with other technologies, especially SCSI and TCP/IP. The main applica
tions have been in switches, hubs, storage systems, storage devices and adapters. The term
fibre is a generic term which can indicate either optical or a copper cable

Its development started in 1988 and ANSI standard approval in 1994. It has the following
advantages:

* Cost-effective channel —it is a cost-effective for storage and networks.
* Rdiable—itisreliable with assured information delivery.
® Gigabit bitrate — bit rate of 1.06 Gbps, but scalable to 2.12 Gbps and 4.24 Gbps.

e Multiple topologies — it has dedicated point-to-point, shared loops, and scaled switched
topol ogies meet application requirements.

e Multiple protocols — it supports SCSI, TCP/IP, video, or raw data, and is especialy
suited to real-time video/audio.

® Scalable — it supports single point-to-point gigabit links to integrated enterprises with
hundreds of servers.

® Congestion free — data can be sent as fast as the destination buffer can receive it.

* High efficiency — fibre channel has very little transmission overhead.

12.2 Comparison

Fibre channel is designed to support scalable gigabit technology, and provides flow control,
self-management, and ultrareliability. It does not suffer from the problems associated with
traditional networking technologies. Table 12.1 compares Fibre channel with gigabit ethernet
and ATM.

In rea-time applications, the data must have a guaranteed quality of service. gigabit
ethernet does not provide for an assured quality of service, whereas ATM does. Fibre chan-
nel improves on ATM as it gives guaranteed delivery, along with gigabit bandwidth, as well
asagiven quality of service.

218 Computer busses
Table 12.1 Comparison between Fibre Channel and other networking technologies

Parameter Fibre channel Gigabit ethernet ATM

Technology application Storage, network, video, Network Network, video

Topologies

Baud rate
Scalability
Guaranteed delivery
Congestion dataloss
Frame size

Flow control
Physical media

Protocols supported

clusters

Point-to-point loop hub,

switched

1.06 Gbps

2.12Gbps, 4.24Gbps

Yes

None

Variable, 0-2KB
Credit based

Copper/fibre

Network, SCSI, video

Point-to-point hub,
switched

1.25Gbps

Not defined

No

Yes

Variable, 0-1.5KB
Rate based
Copper/fibre

Network

Switched

622 Mbps
1.24Gbps
No

Yes

Fixed, 53B
Rate based
Copper/fibre

Network, video

12.3 Fibre channel standards

The ANSI T11 committee developed the X.3230-1994-Fibre channel physical and signaling
standard (FC-PH). Its objectives where:

* Performance from 266 Mbps to over 4 Gbps.

® Support for distances up to 10km.

® Small connectors.

* High-bandwidth utilisation with distance insensitivity.
® Greater connectivity than existing multidrop channels.

* Broad availability using standard components.

e Support for many different system types, from small computers to mainframes.

® Supports multiple existing interface command sets, such as internet protocol (IP), SCSI,
IPl, HIPPI-FP and audio/video.

Fibre channel is a channel/network standard which contains networking features to provide
for the required connectivity, distance and protocol multiplexing. It also supports traditional
channel features for simplicity, repeatable performance, and guaranteed delivery. Fibre chan-

nel also works as a generic transport mechanism.

Fibre Channel 219

Fibre channel architecture is based on channel/network integration with an active, intelli-
gent interconnection among devices. A port in Fibre channel simply has to manage a simple
point-to-point connection. The transmission is isolated from the control protocol, so point-to-
point links, arbitrated loops, and switched topologies are used to meet the specific needs of
an application. The fabric is self-managing. Nodes do not need station management, which
greatly simplifies implementation.

12.4 Cables, hubs, adapters and connectors

Fibre channel uses either fibre optic cables (either multimode or single mode) or four types
of copper cables. Normally the copper cables use twin axial with DB-9 or HSSD connectors.
Typicaly, low-cost copper cables are used for short and medium length runs, and fibre optic
cable is used for longer lengths. Thus, most hubs and adapters have a standard copper inter-
face. For fibre optic cable one of the following is used:

* Multimode cable. This type is used for short distances of up to 22km. It has a 62.5mm
or 50mm inner core diameter and alows light to propagate in multiple modes. These
modes tend to disperse the signal and thus limits the distance of the cable. Typical band-
width ratings for 62.5mm cable are 200MHz/km, which gives a range of 200m at
1Gbps.

* Single mode cable. This type is used for long cable runs. Its only limitation is the
transmitter power and receiver sensitivity. The inner coreis 7 mm or 9nm, which only a-
lows a single ray of light to propagate along the cable. There will thus be no dispersion
of the signal.

The three main types of connectors used are:

® SC connector. The SC connector is the standard connector for most fibre optic cables
and is also used for Fibre Channel. It is basically a push-pull connector and is preferred
over the ST screw-on connector.

e Galaxy connector. Thisis anew type of connector and reduces the size of the connector
by 50%, allowing increased connector densities.

There are a so various connector/adapter modules, these include:

* Gigabit interface converters (GBIC). These convert a copper cable connector to an
optical interface. They use an HSSD connector for the copper interface and media inter-
face converters use the DB-9 copper interface.

® Gigabit link modules (GLM). These are pluggable modules which provide either a
copper or fibre optic interface, and alow usersto easily change the media interface from
copper to fibre optics. GLMs include a serialiser-deserialiser (SERDES) and have a me-
diaindependent parallel interface to the host bus adapter.

e Extenders. These provide for extended cable runs. They typically use multimode cable,
and they convert the multimode interface to single-mode, as well as boosting the laser

220 Computer busses

power. For example, an extender can provide a single mode cable distance of 30km.

* Host bus adapters (HBAS) These are similar to SCSI host bus adapters and network
interface cards (NICs) They typically connect directly to the host computer using a stan-
dard bus, such as SBus, PCI, MCA, EISA, GIO, HIO, PMC and compact PCI.

® SNA gateway These provide gateways between from Fibre channel to SNA.

e Switch WAN extender These alow the interconnection to WANs using ATM or STM
services.

Fibre channel systems can be integrated into virtually any network topology. It can use point-
to-point dedicated connection, loop connection (with a shared bandwidth) or switched scaled
bandwidth. Fibre channel devicestypically either connect to one of the following:

* Hubs. Fibre channel hubs typically connect to a hub using copper cables. These hubs are
similar to token ring/FDDI hubs with ‘ring in" and ‘ring out’, and each port of the hub
has an automatic port bypass circuit to automatically open and close the loop. Hubs thus
support hot insertion and removal from the loop. If an attached node is not connected or
powered on then the hub detects this and bypasses the node. Typically, a hub has 7 to 10
ports and can be stacked to the maximum loop size of 127 ports.

e Switches These allow the simultaneous communication or one or more connections at
the same time.

Figure 12.1 shows an example network topology.

=
.
Point-to-
point u
connection JE:'L Eibre
channel
storage
system
(hot swap)
Ring network
(up to 127 hubs)
SCSI RAID

[amaumamaman

/ 7 P :
S =

WAN connection
v (ATM/STM/FDDI)

Workstation
cluster

=

Figure 12.1 Fibre Channel connections

Fibre Channel 221

The networking options include:

* Point-to-point connections — these are point-to-point connections, and are not connected
asaring.
® Switch connections.

* Hub connections — these connect onto a ring, with the ‘ring out’ of each switch con-
nected to the ‘ring in’ of the next, and so on. This makes a ring with devices connecting
to the hub (and not to the ring).

® Fibre channel storage system — this contains hot swap disks with a 100MB/s data trans-
fer.

® SCSI RAID connection.

e Cluster connection — workstations plug directly to a hub. The hub detects if a work-
station is connected and automatically connectsit to the ring.

e WAN connection — connection to WAN, such asATM, STM or FDDI.

12.5 Storage Devices and storage area networks

One of the largest uses of fibre channel is likely to be in storage interfaces. It has many ad-
vantages over SCSI, including distance, bandwidth, scalability and reliability. Many manu-
facturers now provide RAID-based systems with Fibre channel.

A good area of application for Fibre channel is in storage area networks. These typically
contain one or more servers, which also connect to one or more storage systems. These stor-
age systems could be RAID, tape back-up, CD-ROMs or disk drives.

In afibre channel network, SCSI devices are interfaced to the Fibre channel using a Fibre
channel to SCSI bridge, and IP is used for server to server and client/server communications.

Fibre channel disks have a back plane with a built-in fibre channel loop. At each disk
location in the back-plane loop is a port bypass circuit which permits hot swapping of disks.
If adisk is not present, the circuit automatically closes the loop. When a disk is inserted, the
loop is opened to connect to the disk.

12.6 Networks

Fibre channel has many advantages over traditional networking technologies, these include;

e Automatic configuration — support for automatic configuration protocols, such as ARP,
RARP and other self-discovery protocols.

e Automatic self-discovery of Fibre channel topology.
* Confirmed delivery — this enhances reliability, and does not rely on higher-level proto-
colsto confirm delivery.

e Efficient, high-bandwidth low-latency transfers — this uses a variable length frame (up to
2kB). It uses an efficient protocol which only has an overhead of up to 100 bytes.

222 Computer busses

® Fast connection time — instant circuit setup time using hardware enhanced Fibre channel
protocol.

* Guaranteed Quality of Service (QoS) True connection service or fractional bandwidth,
connection-oriented virtual circuits to guarantee QoS for critical back-ups or other

operations.

e Hyhbrid topology — Supports many different topologies, such as dedicated point-to-point

circuits, shared bandwidth ring networks or scalable bandwidth switched circuits.
* Low latency — extremely low latency connection and connectionless service.
* Redl or virtua circuits.

* Synchronous support — this is used with video connections, and uses fractional band-

width virtual circuits.

12.7 Exercises

12.7.1 Which of the following offers the highest potential data rate:

(@ Single-mode fibre optic (b) Multimode fibre optic
(c) Cat-3, shielded twisted pair (d) Cat-5, shielded twisted pair

12.7.2 What isthe topology of alarge Fibre Channel network:

(@ Back plane (b) Busnetwork
(c) Star network (d) Ring network

12.7.3 What devices do workstations normally connect to with a Fibre channel network:

(@ Router (b) Hub
(c) Bridge (d) Repeater

12.7.4 Which of the following is not an advantage of Fibre channel:
(@ Highdatarate
(b) Hot swappable local devices

(c) Can be used with many networking protocols
(d) Increased amount of ring connections

12.8 Notes from the author

Well, ask any Managing Director of a large commercial organisation about what their key
resourcesis, and, at least, if they are honest, 9 out of 10 of themwill say their IT infrastruc-
ture. Thus, if a company were to loose electronic mail or their Intranet connections, it would
be very costly in lack of efficiency. What is required, then, is a fast and robust network back-

bone. Thisiswhat fibre channel does best. It's not cheap, but it's as good as it gets.

13 | RS-232

13.1 Introduction

RS-232 is one of the most widely used techniques used to interface external equipment to
computers. It uses serial communications where one bit is sent along a line, at a time. This
differs from parallel communications which send one or more bytes, at a time. The main ad-
vantage that serial communications has over parallel communications is that a single wire is
needed to transmit and another to receive. RS-232 is a de facto standard that most computer
and instrumentation companies comply with. It was standardised in 1962 by the Electronics
Industries Association (EIA). Unfortunately this standard only allows short cable runs with
low bit rates. The standard RS-232 only allows a bit rate of 19600bps for a maximum dis-
tance of 20m. New serial communications standards, such as RS-422 and RS-449, allow
very long cable runs and high bit rates. For example, RS-422 allows a bit rate of up to
10 Mbps over distances up to 1 mile, using twisted-pair, coaxial cable or optical fibres. The
new standards can also be used to create computer networks. This chapter introduces the RS-
232 standard and gives simple programs which can be used to transmit and receive using RS-
232.

13.2 Electrical characteristics

13.2.1 Line voltages

The electrical characteristics of RS-232 defines the minimum and maximum voltages of a
logic “1” and ‘0’. A logic ‘1’ ranges from -3V to —25 V, but will typically be around -12 V.
A logical ‘0’ ranges from 3 V to 25V, but will typically be around +12 V. Any voltage be-
tween -3V and +3 V has an indeterminate logical state. If no pulses are present on the line
the voltage level is equivalent to a high level, that is =12 V. A voltage level of 0V at the re-
ceiver is interpreted as a line break or a short circuit. Figure 13.1 shows an example trans-
mission.

+12V

-12v

0 1 0 0 1 1 0
Inactive condition

Figure 13.1 RS-232 voltage levels

224 Computer busses

13.2.2 DB25S connector

The DB25S connector is a 25-pin D-type connector and gives full RS-232 functionality. Fig-
ure 13.2 shows the pin number assignment. A DCE (the terminating cable) connector has a
male outer casing with female connection pins. The DTE (the computer) has a female outer
casing with male connecting pins. There are three main signal types: control, data and
ground. Table 13.1 lists the main connections. Control lines are active HIGH, that is they are
HIGH when the signal is active and LOW when inactive.

TxData

2
80885060656 5H50H0 i ms
OO0OO0O0OOOOOOOOO 5 CTsS
25 24 23 22 21 20 19 18 17 16 15 14 6 DSR
7 GND
20 DTR

Figure 13.2 RS-232 DB25S connector

13.2.3 DB9S Connector

The 25-pin connector is the standard for RS-232 connections but as electronic equipment
becomes smaller, there is a need for smaller connectors. For this purpose most PCs now use
a reduced function 9-pin D-type connector rather than the full function 25-way D-type. As
with the 25-pin connector the DCE (the terminating cable) connector has a male outer casing
with female connection pins. The DTE (the computer) has a female outer casing with male
connecting pins. Figure 13.3 shows the main connections.

. .
RxData
TxData
DTR

GND

DSR

RTS

CTS

\666‘36&/

9900

O~NO UL WN

Figure 13.3 RS-232 DBO9S interface

13.2.4 PC connectors

All PCs have at least one serial communications port. The primary port is named coM1 : and
the secondary is coM2 : . There are two types of connectors used in RS-232 communications,
these are the 25- and 9-way D-type. Most modern PCs use either a 9-pin connector for the
primary (coM1 :) serial port and a 25-pin for a secondary serial port (COM2 :), or they use
two 9-pin connectors for serial ports. The serial port can be differentiated from the parallel
port in that the 25-pin parallel port (LPT1:) is a 25-pin female connector on the PC and a
male connector on the cable. The 25-pin serial connector is a male on the PC and a female on
the cable. The different connector types can cause problems in connecting devices. Thus a
25-t0-9 pin adapter is a useful attachment, especially to connect a serial mouse to a 25-pin
connector.

RS-232 225
Table 13.1 Main pin connections used in 25-pin connector

Pin Name Abbreviation Functionality

1 Frame ground FG This ground normally connects the outer sheath of the
cable and to earth ground.

2 Transmit data D Data is sent from the DTE (computer or terminal) to a
DCE via TD.

3 Receive data RD Data is sent from the DCE to a DTE (computer or ter-
minal) via RD.

4 Requesttosend RTS DTE sets this active when it is ready to transmit data.

5 Clear to send CTS DCE sets this active to inform the DTE that it is ready
to receive data.

6 Data set ready DSR Similar functionality to CTS but activated by the DTE
when it is ready to receive data.

7 Signal ground SG All signals are referenced to the signal ground (GND).

20 Data DTR Similar functionality to RTS but activated by the DCE

terminal ready

when it wishes to transmit data.

13.2.5 Frame format

RS-232 uses asynchronous communication which has a start/stop data format (Figure 13.4).
Each character is transmitted one at a time with a delay between them. This delay is called
the inactive time and is set at a logic level high (=12 V) as shown in Figure 13.5. The trans-
mitter sends a start bit to inform the receiver that a character is to be sent in the following bit
transmission. This start bit is always a ‘0’. Next, 5, 6 or 7 data bits are sent as a 7-bit ASCI|I
character, followed by a parity bit and finally either 1, 1.5 or 2 stop bits. Figure 13.5 shows a
frame format and an example transmission of the character ‘A’, using odd parity. The timing
of a single bit sets the rate of transmission. Both the transmitter and receiver need to be set to
the same bit-time interval. An internal clock on both sets this interval. These only have to be
roughly synchronised at approximately the same rate as data is transmitted in relatively short

bursts.

Tx Character

Tx Character Tx Character

Inactive condition

Figure 13.4 Asynchronous communications

226 Computer busses

0 bo b, b, bs b, bs be p s1 52 1
A o | A A A
start Parity Stop
: ASCII _ '
bit character bit bit(s)

‘A’ (100 0001)
Figure 13.5 RS-232 frame format

Example
An RS-232 serial data link uses 1 start bit, 7 data bits, 1 parity bit, 2 stop bits, ASCII coding
and even parity. Determine the message sent from the following bit stream.

First bit sent

[}
11111010000010110000011111111111111000001111111100011001111010
100111111111111

Answer
The format of the data string sent is given next:

{idle} 11111 {start bit} o {"A’} 1000001 {parity bit} o {stop bits } 11 {start bit} o
{'‘p’} 0000111 {parity bit} 1 {stop bits} 11 {idle} 11111111 {start bit} o {'p’}
0000111 {parity bit} 1 {stop bits} 11 {idle} 11 {start bit} o {‘L’} oo11001 {parity
bit} 1 {stop bits} 11

The message sent was thus ‘AppL.’.

Parity

Error control is data added to transmitted data in order to detect or correct an error in trans-
mission. RS-232 uses a simple technique known as parity to provide a degree of error detec-
tion.

A parity bit is added to transmitted data to make the number of 1s sent either even (even
parity) or odd (odd parity). It is a simple method of error coding and only requires exclusive-
OR (XOR) gates to generate the parity bit. The parity bit is added to the transmitted data by

RS-232 227

inserting it into the shift register at the correct bit position.

A single parity bit can only detect an odd number of errors, that is, 1, 3, 5, and so on. If
there is an even number of bits in error then the parity bit will be correct and no error will be
detected. This type of error coding is not normally used on its own where there is the possi-
bility of several bits being in error.

Baud rate

One of the main parameters, which specify RS-232 communications, is the rate of transmis-
sion at which data is transmitted and received. It is important that the transmitter and receiver
operate at, roughly, the same speed.

For asynchronous transmission the start and stop bits are added in addition to the 7 ASCI|I
character bits and the parity. Thus a total of 10 bits are required to transmit a single charac-
ter. With 2 stop bits, a total of 11 bits are required. If 10 characters are sent every second and
if 11 bits are used for each character, then the transmission rate is 110 bits per second (bps).
Table 13.2 lists how the bit rate relates to the characters sent per second (assuming 10 trans-
mitted bits per character). The bit rate is measured in bits per second (bps).

Bits
ASCII character 7
Start bit 1
Stop bit 2
Total 10

Table 13.2 Bits per second related to characters sent per second

Speed (bps) Characters per second
300 30

1200 120

2400 240

In addition to the bit rate, another term used to describe the transmission speed is the
baud rate. The bit rate refers to the actual rate at which bits are transmitted, whereas the baud
rate relates to the rate at which signalling elements, used to represent bits, are transmitted. As
one signalling element encodes one bit, the two rates are then identical. Only in modems
does the bit rate differ from the baud rate.

Bit stream timings

Asynchronous communications is a stop/start mode of communication and both the transmit-
ter and receiver must be set up with the same bit timings. A start bit identifies the start of
transmission and is always a low logic level. Next, the least significant bit is sent followed
by the rest of the bits in the character. After this, the parity bit is sent followed by the stop
bit(s). The actual timing of each bit relates to the baud rate and can be found using the fol-
lowing formula:

Time period of each bit = _ second
baud rate

228 Computer busses

For example, if the baud rate is 9600 baud (or bps) then the time period for each bit sent is
1/9600 s or 104 us. Table 13.3 shows some bit timings as related to baud rate. An example of
the voltage levels and timings for the ASCII character ‘V’ is given in Figure 13.6.

Table 13.3 Bit timings related to baud rate

Baud rate Time for each bit (us)

1200 833

2400 417

9600 104

19200 52
+12V

Start L L . Stop
12V bit ’ ’ ’ b
- ASCIE'V' 101 0110
120 uS

Baud rate: 9600 baud

Figure 13.6 ASCII 'V’ at RS-232 voltage levels

13.3 Communications between two nodes

RS-232 is intended to be a standard but not all manufacturers abide by it. Some implement
the full specification while others implement just a partial specification. This is mainly be-
cause not every device requires the full functionality of RS-232, for example a modem re-
quires many more control lines than a serial mouse.

The rate at which data is transmitted and the speed at which the transmitter and receiver
can transmit/receive the data dictates whether data handshaking is required.

13.3.1 Handshaking

In the transmission of data, there can either be no handshaking, hardware handshaking or
software handshaking. If no handshaking is used then the receiver must be able to read the
received characters before the transmitter sends another. The receiver may buffer the re-
ceived character and store it in a special memory location before it is read. This memory lo-
cation is named the receiver buffer. Typically, it may only hold a single character. If it is not
emptied before another character is received then any character previously in the buffer will
be overwritten. An example of this is illustrated in Figure 13.6. In this case, the receiver has
read the first two characters successfully from the receiver buffer, but it did not read the third
character as the fourth transmitted character has overwritten it in the receiver buffer. If this
condition occurs then some form of handshaking must be used to stop the transmitter sending
characters before the receiver has had time to service the received characters.

Hardware handshaking involves the transmitter asking the receiver if it is ready to receive

RS-232 229

data. If the receiver buffer is empty it will inform the transmitter that it is ready to receive
data. Once the data is transmitted and loaded into the receiver buffer the transmitter is in-
formed not to transmit any more characters until the character in the receiver buffer has been
read. The main hardware handshaking lines used for this purpose are:

e CTS - Cleartosend.
e RTS - Readyto send.
e DTR - Dataterminal ready.
e DSR - Data setready.

Software handshaking involves sending special control characters. These include the Dc1
(Xon)-Dc4 (Xoff) control characters.

transmitter receiver
buffer

transmitted
characters

Receiver
reads from
buffer

Receiver has

— — - failed to read the
buffer before another
character has been
received

UL

/[l
ol

>

Transmitter Receiver

Figure 13.7 Transmission and reception of characters

13.3.2 RS-232 set-up

Microsoft Windows allows the serial port setting to be set by selecting control panel — sys-
tem — device manager — ports (COM and LPT) — port settings. The settings of the com-
munications port (the IRQ and the port address) can be changed by selecting control panel —
system — device manager — ports (COM and LPT) — resources for IRQ and addresses.
Figure 13.8 shows example parameters and settings. The selectable baud rates are typically
110, 300, 600, 1200, 2400, 4800, 9600 and 19 200 baud for an 8250-based device. A 16650
UART also gives enhanced speeds of 38400, 57600, 115200, 230400, 460800 and 921600
baud. Notice that the flow control can either be set to software handshaking (Xon/Xoff),
hardware handshaking or none. The parity bit can either be set to none, odd, even, mark or
space. A mark in the parity option sets the parity bit to a ‘1’ and a space sets it to a ‘0.

In this case COM1.: is set at 9600 baud, 8 data bits, no parity, 1 stop bit and no parity
checking.

230

Communications Port [COM 1] Properties

General Part Settings IDriver | Resources |

Computer busses

EHE Communications Port [COM1]) Properties EHE

General' PortSettingsl Driver Resources I

\> Communications Port [COR1]

EBits per second: ISEDD 'l [-
. Resource type Setting
Data bits: IE j' iInput/Dutput Rangs e Re o
Internipt Fequest 04
PBarity: INone 'l
Setting based o IBasic configuration 0000 j
Stop bits: IT 'l
LEhange Sethingr. ¥ Use automatic settings
Flow control: IHardware 'I
Conflicting device list:
Mo conflicts. -]
BRestore Defaults |
I
ok | Cancel | Cancel |

Figure 13.8

Changing port setting and parameters

13.3.3 Simple no-handshaking communications

In this form of communication it is assumed that the receiver can read the received data from
the receive buffer before another character is received. Data is sent from a TD pin connection
of the transmitter and is received in the RD pin connection at the receiver. When a DTE

(such as a computer) connects to
nected to the receive (RD) of the
between the nodes.

another DTE, then the transmit line (TD) on one is con-
other and vice versa. Figure 13.9 shows the connections

9-pin 9-pin 9-pin 25-pin
3 3 3 2
™ D ™ D
RD |42 2| rp RD ‘2 > < 3 »| RD
) Lad
7 7 7 4
RTS :| l: RTS RTS :| l: RTS
8 8 8 5
CTS CTS CTS CTS
4 4 4 20
DTR DTR DTR DTR
;6 6 , ;6 6 ,
DSR DSR DSR DSR
5 5 5 7
GND GND GND GND

Figure 13.9 RS-232 connections with no hardware handshaking

13.3.4 Software handshaking

There are two ASCII characters that start and stop communications. These are X-ON (*s ,
Cntrl-S or ASCII 11) and X-OFF (*q, Cntrl-Q or ASCII 13). When the transmitter receives
an X-OFF character it ceases communications until an X-ON character is sent. This type of
handshaking is normally used when the transmitter and receiver can process data relatively

RS-232 231

quickly. Normally, the receiver will also have a large buffer for the incoming characters.
When this buffer is full, it transmits an X-OFF. After it has read from the buffer the X-ON is
transmitted, see Figure 13.10.

Data
transmission

5 X-OFF 5
=]
I o
2 X-ON &
1
'_

Data

transmission

Figure 13.10 Software handshaking using X-ON and X-OFF

13.3.5 Hardware handshaking

Hardware handshaking stops characters in the receiver buffer from being overwritten. The
control lines used are all active HIGH. Figure 13.11 shows how the nodes communicate.
When a node wishes to transmit data it asserts the RTS line active (that is, HIGH). It then
monitors the cTs line until it goes active (that is, HIGH). If the cTs line at the transmitter
stays inactive then the receiver is busy and cannot receive data, at the present. When the re-
ceiver reads from its buffer the rTs line will automatically go active indicating to the trans-
mitter that it is now ready to receive a character.

RTS

o Are you read
Transmitting m cTs
node
RTS
No
CTS

RTS
Yes
CTS Receiving
TD node

N
character RD

Figure 13.11 Handshaking lines used in transmitting data

232 Computer busses

Receiving data is similar to the transmission of data, but the lines DSR and DTR are used
instead of RTS and cTS. When the DCE wishes to transmit to the DTE the DSR input to the
receiver will become active. If the receiver cannot receive the character, it will set the DTR
line inactive. When it is clear to receive it sets the DTR line active and the remote node then
transmits the character. The DTR line will be set inactive until the character has been proc-
essed.

13.3.6 Two-way communications with handshaking

For full handshaking of the data between two nodes the RTS and CTS lines are crossed over
(as are the DTR and DSR lines). This allows for full remote node feedback (see Figure
13.12).

9-pin 9-pin 9-pin 25-pin
3 3 3 2
D D ™D D
RD <2_><_€ RD RD <2_><_L RD
7 7 7 4
RTS RTS RTS RTS
3 >< 8 8 >< 5
cTs CTS cTS | cTs
4 4 4 20
DTR DTR DTR DTR
s X g s X g
DSR DSR DSR DSR
5 7
GND |5 51 awp GND GND
DTE DTE DTE DTE

Figure 13.12 RS-232 communications with handshaking

13.3.7 DTE-DCE connections (PC to modem)

A further problem occurs in connecting two nodes. A DTE/DTE connection requires cross-
overs on their signal lines, whereas DTE/DCE connections require straight-through lines. An
example computer to modem connection is shown in Figure 13.13.

9-pin 9-pin 9-pin 25-pin
3 3 3 2
TD D D D
2 2 2 3
RD RD RD RD
RTS | 7] rrs RTS | 4 rrs
CTs 8 8 CTs CTs 8 > CTs
pTR 2 41 bR DIR [200 prr
Dsr [= psr |2 61 psr
5 5 5 7
GND GND GND GND
DTE DCE DTE DCE

Figure 13.13 DTE to DCE connections

RS-232 233

13.4 Programming RS-232

Normally, serial transmission is achieved via the RS-232 standard. Although 25 lines are
defined usually only a few are used. Data is sent along the TD line and received by the RD
line with a common ground return. The other lines, used for handshaking, are RTS (ready to
send) which is an output signal to indicate that data is ready to be transmitted and cTs (clear
to send), which is an input indicating that the remote equipment is ready to receive data.

The 8250/NS16650 IC is commonly used in serial communications. It is typically inte-
grated in the PC chip set, or can be mounted on an 1/O card. This section discusses how it is
programmed.

Programming the serial device

The main registers used in RS-232 communications are the line control register (LCR), the
line status register (LSR) and the transmit and receive buffers (see Figure 13.14). The trans-
mit and receive buffers share the same addresses.

The base address of the primary port (CoM1 :) is normally set at 3F8h and the secondary
port (coM2 :) at 2F8h. A standard PC can support up to four COM ports. These addresses
are set in the BIOS memory and the address of each of the ports is stored at address locations
0040:0000 (COM1:), 0040:0002 (COM2:), 0040:0004 (COM3:) and 0040:0008
(coM4 :). Program 13.1 can be used to identify these addresses. The statement:

ptr=(int far *)0x0400000;

initializes a far pointer to the start of the BIOS communications port addresses. Each address
is 16 bits thus the pointer points to an integer value. A far pointer is used as this can access
the full 1 MB of memory, a near pointer can only access a maximum of 64 kB.

Program 13.1

#include <stdio.h>

#include <conio.h>

int main (void)

{

int far *ptr; /* 20-bit pointer */
ptr=(int far *)0x0400000; /* 0040:0000 */
clrscr();
printf ("COM1: %04x\n", *ptr) ;
printf ("COM2: %04x\n", * (ptr+l)) ;

printf ("COM3: %04x\n",* (ptr+2));

printf ("COM4: %04x\n", * (ptr+3));

return(0) ;

}

Test run 3.1 shows a sample run. In this case, there are four COM ports installed on the PC.
If any of the addresses is zero then that COM port is not installed on the system.

Test run 3.1

COM1: 03f8
COM2: 02f8
COM3: 03e8
COM4: 02e8

234

Base address ———®
COM1: 3F8h
COM2: 2F8h

TD/RD

Interrupt enable

Interrupt Identity

Line control

Modem control

Line status

Modem status

Scratch pad

Computer busses

Base address

Base address+1

Base address+2

Base address+3

Base address+4

Base address+5

Base address+6

Base address+7

Figure 13.14 Serial communication registers

Line Status Register (LSR)

The LSR determines the status of the transmitter and receiver buffers. It can only be read
from, and all the bits are automatically set by hardware. The bit definitions are given in Fig-
ure 13.15. When an error occurs in the transmission of a character one (or several) of the
error bit is (are) settoa ‘1’

Se Ss S,

Ss

S, S,

So

Figure 13.15 Line status register

Overrun error
Parity error
Framing error
Break detected

Set to 1 when data
has been received

Set to 1 when transmitter
buffer contents loaded
into transmit register

Set to 1 when transmitter
buffer is empty

One danger when transmitting data is that a new character can be written to the transmitter
buffer before the previous character has been sent. This overwrites the contents of the
character being transmitted. To avoid this the status bit Sg is tested to determine if there is
still a character in the buffer. If there is then it is set to a ‘1’, else the transmitter buffer is

RS-232 235

character in the buffer. If there is then it is set to a ‘1, else the transmitter buffer is empty.
To send a character

Test bit 6 until set;
Send character;

A typical Pascal routine is

repeat
status := port [LSR] and $40;
until (status=$40);

When receiving data the S bit is tested to determine if there is a bit in the receiver buffer. To
receive a character

Test bit 0 until set;
Read character;

A typical Pascal routine is
repeat

status := port[LSR] and $01;
until (status=$01) ;

Figure 13.16 shows how the LSR is tested for the transmission and reception of characters.

Line control register (LCR)

The LCR sets up the communications parameters. These include the number of bits per char-
acter, the parity and the number of stop bits. It can be written to or read from and has a simi-
lar function to that of the control registers used in the PPl (programmable parallel interface)
and PTC (programmable timer/counter). The bit definitions are given in Figure 13.17.

Character to be

transmitted
I:I Transmitter Receiver
\
\
v —p TX buffer — —> RX buffer
Y \ Character

Test S to determine if
the TX buffer is empty

Ll LT Ju

\ received

Test S, to determine '\
if the RX buffer is full «

i EEEEEEE

Figure 13.16 Testing of the LSR for the transmission and reception of characters

236

Break

Computer busses

0 — Normal output
1 - Send a break

Stick bit

0 — No stick bit
1 — Stick bit

* Stop bits

C; Cs Cs

!

Register address
discriminator

0 — 1 stop bit
1 - 1.5 stop bits

A t 1
Set bits per word

00 - 5 bits, 01 — 6 bits
10 - 7 bits, 11 — 8 bits

Parity bit
0 — No parity
1 — Parity

Parity type

0 — Even parity
1 - Odd parity

Figure 13.17 Line control register

The MSB, C,, must to be set to a ‘0’ in order to access the transmitter and receiver buff-
ers, else if it is set to a ‘1’ the baud rate divider is set up. The baud rate is set by loading an
appropriate 16-bit divisor into the addresses of transmitter/receiver buffer address and the
next address. The value loaded depends on the crystal frequency connected to the IC. Table
13.4 shows divisors for a crystal frequency of 1.8432 MHz. In general, the divisor, N, is re-

lated to the baud rate by:

Baud rate =

Clock frequency

16x N

For example, for 1.8432 MHz and 9600 baud N = 1.8432x106/(9600x16) = 12 (000Ch).

Table 13.4 Baud rate divisors

Baud rate

Divisor (value loaded into Tx/Rx buffer)

110
300
600
1200
1800
2400
4800
9600
19200

0417h
0180h
00COh
0060h
0040h
0030h
0018h
000Ch
0006h

Register addresses

The addresses of the main registers are given in Table 13.5. To load the baud rate divisor,
first the LCR bit 7 is set to a ‘1’, then the LSB is loaded into divisor LSB and the MSB into

RS-232 237

the divisor MSB register. Finally, bit 7 is set back to a ‘0’. For example, for 9600 baud,
coM1 and 1.8432 MHz clock then och is loaded in 3F8h and 00h into 3F9h.

When bit 7 is set at a ‘0’ then a read from the base address reads from the RD buffer and
a write operation writes to the TD buffer. An example of this is shown in Figure 13.9.

\éVrfifte to TD/RD

utier — 3Fgh| TP
T TD buffer >

Read from TD/RD | 3F8h| RD

buffer « RD buffer <

Figure 13.18 Read and write from TD/RD buffer

Table 13.5 Serial communications addresses

Primary Secondary Reqgister Bit 7 of LCR
3F8h 2F8h TD buffer ‘0’

3Fs8h 2F8h RD buffer ‘0’

3Fs8h 2F8h Divisor LSB ‘r

3F%h 2F9h Divisor MSB ‘v

3FBh 2FBh Line Control Register

3FDh 2FDh Line Status Register

13.5 RS-232 programs

Figure 13.19 shows the main RS-232 connections for 9 and 25-pin connections without
hardware handshaking. The loopback connections are used to test the RS-232 hardware and
the software, while the null modem connections are used to transmit characters between two
computers. Program 13.2 uses a loop back on the TD/RD lines so that a character sent by the
computer will automatically be received into the receiver buffer. This set-up is useful in test-
ing the transmit and receive routines. The character to be sent is entered via the keyboard. A
CNTRL-D (~D) keystroke exits the program.

Program 13.3 can be used as a sender program (send.c) and Program 13.4 can be used as
a receiver program (receive.c). With these programs, the null modem connections shown in
Figure 13.19 are used.

Note that programs 13.2 to 13.4 are written for Microsoft Visual C++. For early versions
of Borland C/C++ program change _inp for inportb and outp for outportb.

238 Computer busses

| 2 12 2 2
RD RD RD RD
3 3
™ f ™ | ™ |3 3| ™
5 5 | GND
GND GND GND
9-pin D-type 9-pin D-type 9-pin D-type
connector connector to 9-pin connection
(loopback) (loopback) (null modem without
handshaking)
2 2 2 2
D TD RD D
rD | 3 3| RD ™ |3 3| m™
7 7 | GND 5 7 | GND
GND GND
25-pin D-type 9-pin D-type
to 25-pin connection to 25-pin connection
(null modem without (null modem without
handshaking) handshaking)

Figure 13.19 System connections

Program 13.2

/* This program transmits a character from COM1l: and receives */
/* it via this port. The TD is connected to RD. */

#define COM1BASE 0x3F8

#define COM2BASE 0x2F8

#define TXDATA COM1BASE

#define LCR (COM1BASE+3) /* 0x3FB line control */
#define LSR (COM1BASE+5) /* 0x3FD line status */
#include <conio.h> /* required for getch() */
#include <dos.h> /* */

#include <stdio.h>

/* Some ANSI C prototype definitions */
void setup serial (void) ;

void send_character (int ch);

int get_character (void) ;

int main (void)

{

int inchar, outchar;

setup_serial();
do
{
puts ("Enter char to be transmitted (Cntrl-D to end)");
outchar=getch() ;
send_ character (outchar) ;
inchar=get_ character() ;
printf ("Character received was %c\n", inchar) ;
} while (outchar!=4);
return (0) ;

void setup_ serial (void)

RS-232

_outp(LCR, 0x80);
/* set up bit 7 to a 1 to set Register address bit */

_outp (TXDATA, 0x0C) ;
_outp (TXDATA+1, 0x00) ;
/* load TxRegister with 12, crystal frequency is 1.8432MHz

_outp (LCR, 0x0A) ;

/* Bit pattern loaded is 00001010b, from msb to lsb these are:
/* 0 - access TD/RD buffer , 0 - normal output

/* 0 - no stick bit , 0 - even parity

/* 1 - parity on, 0 - 1 stop bit

/* 10 - 7 data bits

void send character (int ch)

char status;
do

{
status = _inp(LSR) & 0x40;
} while (status!=0x40);
/*repeat until Tx buffer empty ie bit 6 setx/

_outp (TXDATA, (char) ch);

int get character (void)

int status;
do

status = _inp(LSR) & 0x01;
} while (status!=0x01);
/* Repeat until bit 1 in LSR is set */

return((int)_ inp (TXDATA)) ;

Program 13.3

/* send.c */
#define TXDATA O0x3F8

#define LSR 0x3FD

#define LCR 0x3FB

#include <stdio.h>

#include <conio.h> /* included for getch */
#include <dos.h>

void setup_serial (void) ;

void send_character (int ch) ;

int main (void)

{

int ch;

puts ("Transmitter program. Please enter text (Cntl-D to end)");
setup serial() ;
do
{
ch=getche () ;
send_character (ch) ;

*/

*/
*/
*/
*/
*/

239

240 Computer busses

} while (ch!=4);
return(0) ;

void setup_ serial (void)

_outp(LCR, 0x80);

/* set up bit 7 to a 1 to set Register address bit */
_outp (TXDATA, 0x0C) ;

outp (TXDATA+1, 0x00) ;

/* load TxRegister with 12, crystal frequency is 1.8432MHz */
_outp (LCR, O0xO0A);

/* Bit pattern loaded is 00001010b, from msb to lsb these are: */
/* Access TD/RD buffer, normal output, no stick bit */

/* even parity, parity on, 1 stop bit, 7 data bits */

void send_character (int ch)

char status;
do

{
status = _inp(LSR) & 0x40;
} while (status!=0x40);
/*repeat until Tx buffer empty ie bit 6 setx/
_outp (TXDATA, (char) ch);

Program 13.4

/* receive.c */
#define TXDATA O0x3F8

#define LSR 0x3FD

#define LCR 0x3FB

#include <stdio.h>

#include <conio.h> /* included for getch */
#include <dos.h>

void setup_serial (void) ;
int get_character (void) ;
int main (void)
{
int inchar;
setup_serial() ;
do
{
inchar=get character () ;
putchar (inchar) ;
} while (inchar!=4);
return(0) ;

}

void setup serial (void)
{
_outp(LCR, 0x80);
/* set up bit 7 to a 1 to set Register address bit */
_outp (TXDATA, 0x0C) ;
outp (TXDATA+1, 0x00) ;

/* load TxRegister with 12, crystal frequency is 1.8432MHz */
_outp (LCR, O0xO0A) ;

/* Bit pattern loaded is 00001010b, from msb to lsb these are: */
/* Access TD/RD buffer, normal output, no stick bit */

/* even parity, parity on, 1 stop bit, 7 data bits */

RS-232 241

int get_character (void)
{
int status;
do
{
status = inp(LSR) & 0x01;
} while (status!=0x01); /* Repeat until bit 1 in LSR is set */
return((int)_inp (TXDATA)) ;
1
13.6 Exercises
13.6.1 Which is the maximum cable length for a standard RS-232 connection:
@ 2m (b) 20m
(c) 200m (d) 2km
13.6.2 Which enhancement to RS-232 allows for 1Mbps bit rates and increased cable
lengths:
(@ RS-232x (b) RS-422
(c) RS-444 (d RS-233
13.6.3 Which of the following is not a standard RS-232 bit rate:
@) 110 bps (b) 4800 bps
(c) 9600 bps (d) 12200 bps
13.6.4 Which voltage range is used for a ‘0’ bit value:
@ -3Vto-25V (b) OVto-3V
(c) +3Vto+25V (d O0Vto+3V
13.6.5 In RS-232, how is the inactive period identified:
(a8 Ahigh voltage level (b) Alow voltage level
(c) Zero voltage level (d) Open circuit
13.6.6 How is a null modem cable identified:
(@) Direct connection between all the signal lines
(b) No connections to TD and RD lines
(c) Cross-over between the TD and RD, and handshaking lines
(d) No hardware handshaking lines
13.6.7 How is a modem cable identified:

@ Direct connection between all the signal lines

242

13.6.8

13.6.9

13.6.10

13.6.11

13.6.12

13.6.13

13.6.14

13.6.15

13.6.16

Computer busses

(b) No connections to TD and RD lines
(c) Cross-over between the TD and RD, and handshaking lines
(d) No hardware handshaking lines

The main connections used to transmit data over a null modem cable with no
hardware handshaking are:

(@ TD,RD, GND (b) RTS, CTS, GND
(c) DSR,DTR, GND (d) TD,RD,RTS, CTS

If a device transmits at 9600bps, approximately how many characters are
transmitted every minute:

(@) 5760 (b) 57600
(c) 576000 (d) 5760000

If a device transmits at 4800 bps, approximately what is the period of a single bit:

(@ 2.08us (b) 20.8us
(c) 208us (d 2.08ms

Which handshaking line is used by a transmitter to identify that it is read to send
data:

(@ RTS (b) CTS
(¢ DTR (d) DTE

Which handshaking line is used by a receiver to identify that it is ready to receive
data:

(@ RTS (b)y CTS
(c) DTR (d) DTE

Which characters are used to start and stop data transfer in software handshaking:

() X-ON, X-OFF (b) OFF, ON
() IN,0oUT (d) LF,CR

Which is the standard 1/O port address for COM1.:

(@ 1F8h (b) 2F8h
(c) 3F8h (d) 4F8h

Which is the standard 1/O port address for COM2:

(@) 1F8h (b) 2F8h
() 3F8h (d) 4F8h

The standard I1C used in RS-232 communications is:

RS-232

13.6.17

13.6.18

13.6.19

13.6.20

13.6.21

13.6.22

13.6.23

243

(@) 8232 (b) 8086
(c) 8088 (d) 8250

Which register is used to determine the status of the RS-232 connection:

(@ LSR (b) LCR
(c) STATUS (d) TD/RD buffer

Which register is used to configure the RS-232 connection:

(@ LSR (b) LCR
() STATUS (d) TD/RD buffer

Write a program that continuously sends the character ‘A’ to the serial line. Ob-
serve the output on an oscilloscope and identify the bit pattern and the baud rate.

Write a program that continuously sends the characters from ‘A’ to ‘Z’ to the se-
rial line. Observe the output on an oscilloscope.

Modify Program 13.2 so that the program prompts the user for the baud rate when
the program is started. A sample run is shown in Sample run 13.1.

Sample run 13.1

Enter baud rate required:

1 110 2 150 3 300 4 600
5 1200 6 2400 7 4800 8 9600
>> 8

RS232 transmission set to 9600 baud

Complete Table 13.6 to give the actual time to send 1000 characters for the given
baud rates. Compare these values with estimated values.

Note that approximately 10 bits are used for each character thus 960 characters
per second will be transmitted at 9600 baud.

Table 13.6 Baud rate divisors

Baud Time to send 1000 characters (s)
rate
110
300
600
1200
2400
4800
9600
19200

Modify the setup serial () routine so that the RS232 parameters can be passed
to it. These parameters should include the comport (either comi: or comz:), the

244

13.6.24

Computer busses

baud rate, the number of data bits and the type of parity. An outline of the modi-
fied function is given in Program 13.5.

Program 13.5

#define COM1BASE 0x3F8

#define COM2BASE 0x2F8

#define CcoM1 0

#define COM2 1

enum baud rates {BAUD110,BAUD300,BAUD600,BAUD1200,
BAUD2400,BAUD4800, BAUD9600} ;

enum parity {NO_PARITY,EVEN PARITY,ODD PARITY};

enum databits {DATABITS7,DATABITSS};

#include <conio.h>

#include <dos.h>

#include <stdio.h>

void setup_serial (int comport, int baudrate, int parity,
int databits) ;

void send character (int ch);

int get character(void) ;

int main (void)

{

int inchar, outchar;

setup_serial (COM1,BAUD2400,EVEN PARITY,DATABITS7) ;

void setup_serial (int comport, int baudrate,
int parity, int databits)
{

int tdreg, lcr;
if (comport==COM1)
{

tdreg=COM1BASE; lcr=COM1BASE+3;

}

else

{

tdreg=COM2BASE; lcr=COM2BASE+3;

_outp(lcr, 0x80);
/* set up bit 7 to a 1 to set Register address bit */
switch (baudrate)

{

case BAUD110: _outp(tdreg, 0x17);
case BAUD300: _outp(tdreg, 0x80) ;
case BAUD600: _outp(tdreg, 0x00) ;
case BAUD1200: _outp(tdreg, 0x00)
case BAUD2400: outp(tdreg, 0x00)
case BAUD4800: outp(tdreg, 0x00)
case BAUD9600: _outp(tdreg, 0x00)

outp (tdreg+1, 0x04) ; break;
outp (tdreg+1, 0x01) ; break;
outp (tdreg+1, 0xC0) ; break;
outp (tdreg+1, 0x40) ;break;
outp (tdreg+1, 0x30) ;break;
; _outp(tdreg+l,0x18) ;break;
;_outp (tdreg+1, 0x0C) ;break;

7
7

One problem with Programs 13.2 and 13.3 is that when the return key is pressed
only one character is sent. The received character will be a carriage return which
returns the cursor back to the start of a line and not to the next line. Modify the re-
ceiver program so that a line feed will be generated automatically when a carriage
return is received. Note a carriage return is an ASCII 13 and line feed is a 10.

RS-232

13.6.25

245

Modify the get character () routine so that it returns an error flag if it detects an
error or if there is a time-out. Table 13.7 lists the error flags and the returned error
value. An outline of the C code is given in Program 13.6. If a character is not re-
ceived within 10 s an error message should be displayed.

Table 13.7 Error returns from get_character().

Error condition Error flag Notes
return
Parity error -1
Overrun error -2
Framing error -3
Break detected -4
Time out -5 get_character () should time out if no

characters are received with 10 seconds.

Test the routine by connecting two PCs together and set the transmitter with dif-
fering RS-232 parameters.

Program 13.6

#include <stdio.h>

#include <dos.h>

#define TXDATA O0x3F8

#define LSR 0x3FD

#define LCR 0x3FB

void show_error (int ch) ;

int get_character (void) ;

enum RS232 errors { PARITY ERROR=-1, OVERRUN_ERROR=-2,
FRAMING ERROR=-3, BREAK DETECTED=-4, TIME OUT=-5 } ;

int main (void)

{
int inchar;
do
inchar=get character () ;
if (inchar<0) show_error (inchar) ;
else printf ("%c", inchar) ;
} while (inchar!=4);
return(0) ;
1
void show_error (int ch)
{
switch(ch)
case PARITY ERROR: printf ("Error: Parity error/n"); break;
case OVERRUN ERROR: printf ("Error: Overrun error/n"); break;
case FRAMING ERROR: printf ("Error: Framing error/n"); break;
case BREAK DETECTED: printf ("Error: Break detected/n") ;break;
case TIME OUT: printf ("Error: Time out/n"); break;
1
1
int get_character (void)
{
int instatus;
do

{

instatus = _inp(LSR) & 0x01;

246 Computer busses

if (instatus & 0x02) return(BREAK DETECTED) ;
: : etc
} while (instatus!=0x01);
return((int) _inp (TXDATA));

}

13.7 Notes from the author

Good old RS-232. My bank manager would certainly agree with this, as | have made more
consultancy income with it than any other piece of computer equipment. | have also run
more RS-232 training courses than all the trendy subjects areas (such as Java and C++) put
together (well, anyway, it doesn’t take much to run a C++ course!). The reason for this is
because it is one of the least understood connections on computer equipment. I’ve interfaced
PCs to gas chromatographs (using an 8-port RS-232 card, heavy!), a PC to a VAX, a Sun
workstation to a PC, a PC to another PC, a Honeywell TDC to a PC, a PC to a PLC, and so
on. For most applications, a serial port to serial port connection is still the easiest method to
transfer data from one computer to another.

RS-232 is one of the most widely used ‘standards’ in the world. It is virtually standard on
every computer and, while it is relatively slow, it is a standard device. This over-rules its
slowness, its non-standardness, its lack of powerful error checking, its lack of address facili-
ties, and, well, need | go on. It shares its gold stars with solid performers, such as Ethernet
and the parallel port. Neither of these are star performers and are far from perfect, but they
are good, old robust performers who will outlast many of their more modern contenders.
When their position is challenged by a young contender, the standards agency simply invest
a lot of experience and brainpower to increase their performance. Who would believe that
the data rate, over copper wires, could be increased to 1 Gbps for Ethernet to 1MBps for RS-
422. One trusted piece of equipment | could have never done without is an RS-232 transmit-
ter/receiver. For this, | used an old 80386-based laptop computer (which weights as much as
a modern desktop computers) which ran either a simple DOS-based transmitter/receiver
program (see previous chapter), or the excellent Windows 3.1 Terminal program. These |
could use just as an electronic engineer would use a multimeter to test the voltages and cur-
rents in a circuit. A telltale sign that | was transmitting at the wrong bit rate or using an in-
correct number of data bits was the incorrectly received characters (but at least it was re-
ceiving characters, which was an important test).

On technical questions, | get more requests on RS-232 than any other technical area. 1’ve
done a quick search of my emails, and here are my ‘most requested’ list:

1. C++ student assignment problems (I seem to get more than my fair share of C++
problems from students, even although I don’t actually teach the subject anymore, or
use it on any of my assignments). I must admit, | really didn’t enjoy teaching pro-
gramming, as it allowed little scope for discussing interesting things.

2. Coursework questions.

3. Questions from students who are having problems with the PC they have at home.

4, Examination questions (requests for past papers, problems with previous exam ques-
tions, and so on).

5. Work-based problems (obviously sometimes universities provide better on-line ser-

vices than my company support services). These are typically related to problems with
networking.

14 || RS-422, RS-423 and RS-485

14.1 Introduction

The main standards organisations for data communications are the ITU (International Tele-
communications Union), the EIA (Electronic Industry Association) and the ISO (Interna-
tional Standards Organisation). The ITU standards related to serial communications are de-
fined in the V-series specifications and EIA standards as the RS-series. The EIA has defined
many standards for serial communications. RS-232 has many limitations, such as:

* One transmitter and one receiver.
* Maximum connection length of 20m.
e Maximum baud rate of 20 kbps.

The RS-422 and RS-423 standards replace the RS-232 standards and support higher data
rates and greater immunity to electrical interference. The main standards are:

e RS-422A - Supports multipoint connections. It defines the electrical characteristics of
balanced load voltage digital interface circuits.

e RS-423A - Supports only point-to-point connections. It defines electrical characteristics
of unbalanced voltage digital interface circuits.

e RS-449 — Defines the basic interface standards and refers to the RS-422/3 standards. It
defines a general-purpose 37-position and 9-position interface for DTE and DCE em-
ploying serial binary data interchange.

e RS-485 — Similar to RS-422 but can support more nodes per line because it uses lower-
impedance drivers and receivers.

14.2 RS-485 (ISO 8482)

RS-485 is an upgraded version of RS-422 and extends the number of peripherals that can be
interfaced. It allows for bidirectional multipoint party line communications. This can be used
in networking applications. RS-422 and RS-232 facilitate simplex communication, whereas
RS-485 allows for multiple receivers on a single line, facilitating half-duplex communica-
tions. The maximum data rate is unlimited and is set by the rise time of the pulses, but it is
usually limited to 10 Mbps. A network using the RS-485 standard can have up to 32 transmit-
ters/receivers with a maximum cable length of 1.2 km, as shown in Figure 14.1. The maxi-
mum cable length is 1200 m.

248 Computer busses

Data flow
Host

system

Y Y Y

Station Station Station

1 2 32

Figure 14.1 RS-485 connecting to multiple nodes

RS-485 operates in one of two modes:

e Two-wire, multidrop, party line — in this mode, a balanced transmission line is used to
connect to all of the stations, which share a common communications channel. Up to 32
driver/receiver pairs can share the common channel.

® Four-wire — in this mode, each station connects to a four-wire bus, as illustrated in Fig-
ure 14.2. It is necessary in this mode that one node acts a master station and all others as
slaves. The master then communicates with each of the slaves. All slave nodes commu-
nicate only with the master node. A master-slave network is useful when mixed proto-
cols are used.

_____________________________________ X Terminating
Master impedance

Station 1 Station 32

Figure 14.2 RS-485 connecting to multiple nodes

The RS-485 four-wire connection involves a half-duplex transmission mode, that is, only one
device can transmit data at a time. This thus involves a polling procedure, with a master and
up to 32 slaves. The slaves must wait in a high-impedance state (a stand-by mode). The con-
trol of the driver on the slave is either with:

RS-232 249

e An active RTS line.
e Bit changes on the transmit data line.
e Sends of the X-ON/X-OFF flow control characters.

Slaves cannot send data unless they are selected.

In a four-wire operation RS-485 devices connect with two twisted pair cables with char-
acteristic impedance of 120 and general shielding. Each link requires a terminating load on
the ends of the cable.

14.3 Line drivers

Transmission lines have effects on digital pulses in the following ways:

e Attenuation — The transmission line contains series resistance that causes a reduction in
the pulse amplitude.

e Pulse distortion — The transmission line insulation produces a shunt capacitance on the
signal path and a series resistance and inductance of the conductors. This causes the
transmission line to distort the shape of the pulse. The two main effects are the block of
high frequencies in the pulse and phase distortion.

o Noise — Noise is any unwanted electrical signals added to a signal. A digital system is
less prone to noise as it has only two levels and it takes a relatively large change in volt-
age to cause an error.

Table 14.1 shows the electrical characteristics of the different serial communication stan-
dards. The two main standards agencies are the EIA and the ITU.

Balanced lines use two lines for each signal line, whereas unbalanced lines use one wire
for each signal and a common return circuit (see Figure 14.3). RS-422 is a balanced interface
and uses two conductors to carry the signal (see Figure 14.4). The electrical currents in each
of the conductors are 180° out-of-phase with each other. Balanced lines are generally less
prone to noise as any noise induced into the conductors will be of equal magnitude. At the
receiver the noise will tend to cancel out.

The voltage levels for RS-232 range from £3 to £25 V, whereas, for RS422/ RS423 the
voltage ranges are +0.2 to £6 V. For very high bit rates the cable is normally terminated with
the characteristic impedance of the line; for example, a 50Q cable is terminated with a 502
termination.

RS-422 interface circuits can have up to 10 receivers. They have no ground connection
and are thus useful in isolating two nodes. For two-way communications four connections
are required, the TX+ and TX - on one node connects to the RX+ and RX- on the other.

Nodes may have a direct RS-422 connection or can be fitted with a special interface
adaptor to convert from RS-232 to RS-422 (although the maximum data rate is likely to be
limited to the maximum RS-232 rate).

It should also be noted that the maximum connection distance relates to the maximum
data rate. If a lower data rate is used then the maximum distance can be increased. For exam-
ple, in some situations with a good quality cable and in a low noise environment, it is possi-
ble to have cable runs of 1 km using RS-232 at 1200 bps.

250 Computer busses
Table 14.1 Main serial standards

EIA RS-232-C RS-423-A RS-422-A RS-485

ITU V.28 V.10/X.26 V.11/X.27

Data rate 20kbps 300 kbps 10 Mbps 10 Mbps

Max distance 15m 1200 m 1200m 1200 m

Type Unbalanced Unbalanced dif- Balanced differ- Balanced differ-
ferential ential ential

Number of drivers 1 driver 1 driver 1 driver 32 drivers

and 1 receiver 10 receivers 10 receivers 32 receivers

receivers
Driver voltages +15V t6V BV 5V
Number of con- 1 2 2 2

ductors per signal

uu

common

Noise

common ground

Figure 14.3 Unbalanced digital interface circuit (RS-423)

WA

W ﬂ (/
TX+ o
Termination

TX-

resistance

RX-

Figure 14.4 Balanced digital interface circuit (RS-422)

JLIL x

Noise

14.4 RS-232/485 converter

RX+

RS-232 is a standard port on many systems, including PCs and many instruments. A com-
mon requirement is to convert from RS-232 to RS-485, as this allows for long transmission
lengths. If a computer connects to external equipment, it is important to isolate the grounds.

RS-232 251

This is typically achieved with an opto-isolator which converts between the RS-232 interface
and the RS-485 interface, as shown in Figure 14.5. Data is transmitted from the RS-232 port
to the RS-485 line only if the RS-485 driver is in active mode. This active mode is controlled
by the RTS signal from the RS-232 port (or by detecting transitions on the transmit data line,
TD).

™D ——» T+
RD +— T
RTS —» RS-232 Opto- RS-485
interface [| isolator interface R+
GND —— R—
COM

Figure 14.5 Isolation between RS-232 and RS-485

14.5 Exercises

14.5.1 Which device provides isolation between RS-232 and RS-485:

(a) Capacitor (b) Opto-isolator
(c) Integrator (d) Resistor

1452 What is the maximum range for RS-422:

(@ 500m (b) 1.2km
(c) 5km (d) 10km

14.5.3 Outline the advantages of balanced lines as opposed to unbalanced lines.

14.6 Note from the author

The RS-422/RS-485 standard really does enhance the basic RS-232 standard and allows for
standard RS-232 connections to be increased to over 1.2km (although at low bit rates and
unnoisy environments allows for even greater distances). A surprising thought in these days
of cheap electronics, and PC motherboards that cost less than $100, is that RS-232 to RS-
485 convertors are relatively expensive. In fact, it is possible to get a complete PC mother-
board for the same price as an RS-232/RS485 convertor (which contains just a few internal
components), but as the convertor saves lots of time and energy, they are probably worth the
high costs.

15 || Modems

15.1 Introduction

Modems (MOdulator/DEModulator) connect digital equipment to a telephone line. It con-
nects digital equipment to a speech bandwidth-limited communications channel. Typically,
modems are used on telephone lines, which have a bandwidth of between 400 Hz and
3.4 kHz. If digital pulses were applied directly to these lines, they would end up severely
distorted.

Modem speeds range from 300 bps to 56 kbps. A modem normally transmits about 10 bits
per character (each character has 8 bits). Thus, the maximum rate of characters for a high-
speed modem is 2880 characters per second. This chapter contains approximately 15000
characters and thus to transmit the text in this chapter would take approximately 5 seconds.
Text, itself, is relatively fast transfer; unfortunately, even compressed graphics can take some
time to be transmitted. A compressed image of 20 KB (equivalent to 20000 characters) will
take nearly 6 seconds to load on the fastest modem.

The document that was used to store this chapter occupies, in an uncompressed form,
360 KB. Thus to download this document over a modem, on the fastest modem, would take

Total filesize 360000

= =125s
Characters per second 2800

Time taken =

A 14.4 kbps modem would take 250 seconds. Typically home users connect to the Internet
and WWW through a modem (although increasingly ISDN is being used). The example
above shows the need to compress files when transferring them over a modem. On the
WWW, documents and large files are normally compressed into a ZIP file and images and
video compressed in GIF and JPG.

Most modems are able to do the following:

e Automatically dial (known as auto-dial) another modem using either touch-tone or pulse
dialing.

e Automatically answer (known as auto-answer) calls and make a connection with another
modem.

o Disconnect a telephone connection when data transfer has completed or if an error oc-

curs.

Automatic speed negotiation between the two modems.

Convert bits into a form suitable for the line (modulator).

Convert received signals back into bits (demodulator).

Transfer data reliably with the correct type of handshaking.

254 Computer busses

Figure 15.1 shows how two computers connect to each other using RS-232 converters and
modems. The RS-232 converter is normally an integral part of the computer, while the mo-
dem can either be external or internal to the computer. If it is externally connected then it is
normally connected by a cable with a 25-pin male D-type connector on either end.

Modems are either synchronous or asynchronous. A synchronous modem recovers the
clock at the receiver. There is no need for start and stop bits in a synchronous modem. Asyn-
chronous modems are, by far, the most popular types. Synchronous modems have a typical
speed of 56 Kbps whereas for asynchronous modems it is 33 Kbps. A measure of the speed of
the modem is the baud rate or bps (bits per second).

There are two types of circuits available from the public telephone network: either direct
dial or a permanent connection. The direct dial type is a dial-up network where the link is
established in the same manner as normal voice calls with a standard telephone or some kind
of an automatic dial/answer machine. They can use either touch-tones or pulses to make the
connection. With private line circuits, the subscriber has a permanent dedicated communica-
tion link.

Computer > RS-232 > Modem

Telephone
connection

Computer [RS-232 - Modem | -—-—

Figure 15.1 Data transfer using modems

15.2 RS-232 communications

The communication between the modem and the computer is via RS-232. RS-232 uses asyn-
chronous communication which has a start-stop data format. Each character is transmitted
one at a time with a delay between characters. This delay is called the inactive time and is set
at a logic level high as shown in Figure 15.2. The transmitter sends a start bit to inform the
receiver that a character is to be sent in the following bit transmission. This start bit is always
a ‘0’. The following data bits are sent as a 7-bit ASCII character, followed by a parity bit and
finally either 1, 1.5 or 2 stop bits. The rate of transmission is set by the timing of a single bit.
Both the transmitter and receiver need to be set to the same bit-time interval. An internal
clock on both of them sets this interval. They only have to be roughly synchronised and ap-
proximately at the same rate as data is transmitted in relatively short bursts.

15.2.1 Bit rate and the baud rate

One of the main parameters for specifying RS-232 communications is the rate at which data
is transmitted and received. It is important that the transmitter and receiver operate at roughly
the same speed.

Modems 255

0 B, | B, | B, | B, | B, | B | Bg | P s, | s, 1

B e — e B
Start ASCII character Parity Stop
bit bit(s)

p

—| RS-232 character |—| RS-232 character |—| RS-232 character |—

Start Stop
bit bit(s)

Figure 15.2 RS-232 frame format

For asynchronous transmission the start and stop bits are added in addition to the seven
ASCII character bits and the parity. Thus a total of 10 bits are required to transmit a single
character. With 2 stop bits, a total of 11 bits are required. If 10 characters are sent every sec-
ond and if 11 bits are used for each character, then the transmission rate is 110 bits per sec-
ond (bps). The fastest modem thus has a character transmission rate of 2880 characters per
second.

In addition to the bit rate, another term used to describe the transmission speed is the
baud rate. The bit rate refers to the actual rate at which bits are transmitted, whereas the baud
rate is the rate at which signalling elements, used to represent bits, are transmitted. As one
signalling element encodes 1 bit, the two rates are then identical. Only in modems does the
bit rate differ from the baud rate.

15.3 Modem standards

The CCITT (now known as the 1TU) has defined standards which relate to RS-232 and mo-
dem communications. Each uses a V number to define their type. Modems tend to state all
the standards they comply with. An example FAX/modem has the following compatibility:

e V.32bis (14.4Kbps). V.32 (9.6 Kbps).

o V.22bis (2.4 Kbps). V.22 (1.2 Kbps).

e Bell 212A (1.2 Kbps). Bell 103 (300 bps).

o V.17 (14.4 bps FAX). V.29 (9.6 Kbps FAX).

o V.27ter (4.8KbpsFAX). V.21 (300 bps FAX — secondary channel).
e V.42bis (data compression). V.42 (error correction).

[]

MNP5 (data compression). MNP2-4 (error correction).

A 28.8 Kbps modem also supports the V.34 standard.

256 Computer busses

15.4 Modem commands

Most modems are Hayes compatible. Hayes was the company that pioneered modems and
defined the standard method of programming the mode of the modem, which is the AT
command language. A computer gets the attention of the modem by sending an ‘at’ com-
mand. For example, ‘atpr’ is the touch-tone dial command. Initially, a modem is in the
command mode and accepts commands from the computer. These commands are sent at ei-
ther 300 bps or 1200 bps (the modem automatically detects which of the speeds is being
used).

Most commands are sent with the AT prefix. Each command is followed by a carriage
return character (ASCII character 13 decimal); a command without a carriage return charac-
ter is ignored (after a given time delay). More than one command can be placed on a single
line and, if necessary, spaces can be entered to improve readability. Commands can be sent
in either upper or lower case. Table 15.1 lists some AT commands. The complete set is de-

fined in Appendix C.
Table 15.1 Example AT modem commands

Command Description

ATDT54321 Automatically phones number 54321 using touch-tone dialing. Within the
number definition, a comma () represents a pause and a W waits for a sec-
ond dial tone and an @ waits for a 5 second silence.

ATPT12345 Automatically phones number 12345 using pulse dialing.

AT S0=2 Automatically answers a call. The SO register contains the number of rings
the modem uses before it answers the call. In this case there will be two rings
before it is answered. If SO is zero, the modem will not answer a call.

ATH Hang up telephone line connection.

+++ Disconnect line and return to on-line command mode.

AT A Manually answer call.

AT EO Commands are not echoed (AT E1 causes commands to be echoed). See
Table 15.2.

AT LO Low speaker volume (AT L1 gives medium volume and AT L2 gives high

speaker volume).

AT MO Internal speaker off (ATML1 gives internal speaker on until carrier detected,
ATM?2 gives the speaker always on, AT M3 gives speaker on until carrier
detect and while dialing).

AT QO Modem sends responses (AT Q1 does not send responses). See Table 15.2.
AT VO Modem sends numeric responses (AT V1 sends word responses). See Table
15.2.

The modem can enter one of two states: the normal state and the command state. In the nor-
mal state the modem transmits and/or receives characters from the computer. In the com-

Modems 257

mand state, characters sent to the modem are interpreted as commands. Once a command is
interpreted, the modem goes into the normal mode. Any characters sent to the modem are
then sent along the line. To interrupt the modem so that it goes back into command mode,
three consecutive ‘+’ characters are sent, i.e. “+++".

After the modem has received an AT command it responds with a return code. Some re-
turn codes are given in Table 15.2 (a complete set is defined in Appendix C). For example, if
a modem calls another which is busy then the return code is 7. A modem dialing another
modem returns the codes for OK (when the ATDT command is received), CONNECT (when
it connects to the remote modem) and CONNECT 1200 (when it detects the speed of the
remote modem). Note that the return code from the modem can be suppressed by sending the
AT command ‘atg1’. The AT code for it to return the code is ‘argo’; normally this is the
default condition

Table 15.2 Example return codes

Message Digit Description

OK 0 Command executed without errors
CONNECT 1 A connection has been made

RING 2 An incoming call has been detected
NO CARRIER 3 No carrier detected

ERROR 4 Invalid command

CONNECT 1200 5 Connected to a 1200 bps modem
NO DIALTONE 6 Dial-tone not detected

BUSY 7 Remote line is busy

NO ANSWER 8 No answer from remote line
CONNECT 600 9 Connected to a 600 bps modem
CONNECT 2400 10 Connected to a 2400 bps modem
CONNECT 4800 11 Connected to a 4800 bps modem
CONNECT 9600 13 Connected to a 9600 bps modem
CONNECT 14400 15 Connected to a 14 400 bps modem
CONNECT 19200 61 Connected to a 19 200 bps modem
CONNECT 28800 65 Connected to a 28 800 bps modem
CONNECT 1200/75 48 Connected to a 1200/75 bps modem

Figure 15.3 shows an example session when connecting one modem to another. Initially the
modem is set up to receive commands from the computer. When the computer is ready to
make a connection it sends the command ‘ator 54321” which makes a connection with tele-
phone number 54321 using tone dialing. The modem then replies with an OK response (a 0
value) and the modem tries to make a connection with the remote modem. If it cannot make
the connection it returns back a response of NO CARRIER (3), BUSY (7), NO DIALTONE
(6) or NO ANSWER (8). If it does connect to the remote modem then it returns a connect
response, such as CONNECT 9600 (13). The data can then be transmitted between the mo-
dem at the assigned rate (in this case 9600bps). When the modem wants to end the connec-
tion it gets the modem’s attention by sending it three ‘+’ characters (‘+++”). The modem will
then wait for a command from the host computer. In this case the command is hang-up the
connection (ATH). The modem will then return an OK response when it has successfully
cleared the connection.

258 Computer busses

ATDT 54321

\ Connection made

—_——
-
-

/ -

OK

JEBAE

Connect 9600

Computer \ Modem

\ Disconnection made

S— -
-

-
g

Figure 15.3 Commands and responses when making a connection

The modem contains various status registers called the S-registers which store modem
settings. Table 15.3 lists some of these registers (Appendix C gives a complete listing). The
SO register sets the number of rings that must occur before the modem answers an incoming
call. If it is set to zero (0) then the modem will not answer incoming calls. The S1 register
stores the number of incoming rings when the modem is rung. S2 stores the escape character,
normally this is set to the ‘+’ character and the S3 register stores the character which defines
the end of a command, normally the CR character (13 decimal).

Table 15.3 Modem registers

Register Function Range (typical default)
SO Rings to auto-answer 0-255 rings (0 rings)
S1 Ring counter 0-255 rings (0rings)
S2 Escape character (43)

S3 Carriage return character (13)

S6 Wait time for dial tone 2-2555 (25)

S7 Wait time for carrier 1-2555(505)

S8 Pause time for automatic dialling 0-255 (25)

15.5 Modem set-ups

Figure 15.4 shows a sample window from the Microsoft Windows Terminal program (in
both Microsoft Windows 3.x and Windows 95/98). It shows the modem commands window.
In this case, it can be seen that when the modem dials a number the prefix to the number di-
alled is ‘atpr’. The hang-up command sequence is “+++ ata’. A sample dialling window is
shown in Figure 15.5. In this case, the number dialled is 9,123456789. A *,” character repre-
sents a delay. The actual delay is determined by the value in the S8 register (see Table 15.3).
Typically, this value is about 2 seconds.

On many private switched telephone exchanges in the UK a ‘9" must prefix the number if

Modems 259

an outside line is required (in Australia it is a ‘0’, by contrast). A delay is normally required
after the o prefix before dialing the actual number. To modify the delay to 5 seconds, dial the
number 9 0112432 and wait 30 seconds for the carrier, then the following command line can
be used:

ATDT 9,0112432 S8=5 S7=30

It can be seen in Figure 15.4 that a prefix and a suffix are sent to the modem. This is to en-
sure there is a time delay between the transmission prefix and the suffix string. For example,
when the modem is to hang-up the connection, the ‘+++ is sent followed by a delay then the
‘ATH’.

In Figure 15.4 there is an option called Originate. This string is sent initially to the mo-
dem to set it up. In this case the string is ‘aTgovieiso=0’. The QO part informs the modem to
return a send status code. The V1 part informs the modem that the return code message is to
be displayed rather than just the value of the return code; for example, it displays CONNECT
1200 rather than the code 5 (VO displays the status code). The E1 part enables the command
message echo (EO disables it).

Figure 15.6 shows the modem set-up windows for CompuServe access. The string in this
case is:

ATS0=0 Q0 V1 &C1&D2™M

as previously seen, so stops the modem from auto-answering. vi causes the modem to re-
spond with word responses. sc1 and sp2 set up the hardware signals for the modem. Finally
~m represents Cntrl-M which defines the carriage return character.

The modem reset command in this case is at &r. This resets the modem and restores the
factor default settings.

Modem Commands
—C ds m
Prefix: Suffix: -
Dial Cancel |
Hangup: |+++ | |ATH |
Bi ™ Modem Defaults
inary TX:
) @ Hayes
Binary BX: € MultiTech
Originate: [ATQOVIE150=0 | " TrailBlazer
" Mone
Figure 15.4 Modem commands
Phone Humber
Dial: [9.123456789 | | oK |
Timeout If Hot Connected In Seconds Cancel |
[Redial After Timing Out [Signal When Connected

Figure 15.5 Dialling a remote modem

260 Computer busses

MUdEWICurrent Settings (Hayes) jJ
lnitia|i293|ATSD=D Q01 &C1&024M
Ereﬁx:IAT guﬁix:lnm

Dial Ione:l[)‘ri Dial F'ulse:lDPi
Eeset:l&fi Hang Up:ll—mi
Escape:lmi &cknowledge:lop(i
Qonnect:lW Ea”UrEZW

™ Errar Correction: I [T Data Compression: I

Modern Security

QserID:I
Password:l | oK I| Cancel || Help I

% Speaker Off

Figure 15.6 Example modem settings

15.6 Modem indicator

Most external modems have status indicators to inform the user of the current status of a con-
nection. Typically, the indicator lights are:

AA - is ON when the modem is ready to receive calls automatically. It flashes when a
call is incoming. If it is OFF then it will not receive incoming calls. Note that if the SO
register is loaded with any other value than O then the modem goes into auto-answer
mode. The value stored in the SO register determines the number of rings before the mo-
dem answers.

CD - is ON when the modem detects the remote modem’s carrier, else it is OFF.

OH - is ON when the modem is on-hook, else it is OFF.

RD - flashes when the modem is receiving data or is getting a command from the com-
puter.

SD - flashes when the modem is sending data.

TR - shows that the DTR line is active (i.e. the computer is ready to transmit or receive
data).

MR — shows that the modem is powered up.

15.7 Profile viewing

The settings of the modem can be determined by using the AT command with &V. An ex-
ample is shown next (which uses a program from Chapter 13). In this it can be seen that the
settings include: BO (CCITT 300 or 1200 bps for call establishment), E1 (enable command

Modems 261

echo), L2 (medium volume), M1 (speaker is off when receiving), Q1 (prohibits modem from
sending result codes to the DTE) T (set tone dial) and V1 (display result codes in a verbose
form). It can be seen that the SO register is set to 3 which means that the modem waits for
three rings before it will automatically answer the call.

+++

AT &V

ACTIVE PROFILE:

BO E1 L2 M1 Q1 T V1 X4 Y0 &Cl &DO &EO &G2 &LO &MO &00 &P1 &RO &S0 &XO0 &Y1
$A000 %C1 %D1 %E1 %P0 %S0 \A3 \CO \EO \GO \J0 \K5 \Né6 \Q0 \T000 \V1 \XO0
S00:003 S01:000 S06:004 S07:045 S08:002 S09:006 S10:014 S11:085 S12:050
S16:1FH S818:000 S21:20H S22:F6H S23:B2H S25:005 S26:001 S27:60H S28:00H
STORED PROFILE O:

BO E1 L2 M1 Q0 T V1 X4 Y0 &Cl &D2 &EO0 &G2 &LO &MO &00 &P1 &RO &S0 &XO
$A000 %C1 %D1 %E1 %P0 %S0 \A3 \CO \EO \GO \J0 \K5 \Né6 \Q3 \T000 \V1 \XO0
S00:000 S16:1FH S21:30H S22:F6H S23:89H S25:005 S26:001 S27:000 S28:000
STORED PROFILE 1:

BO EO L2 M1 Q1 T V1 X4 Y0 &Cl &DO &EO0 &G2 &LO &MO &00 &P1 &RO &S0 &XO
$A000 %C1 %D1 %E1 %PO %S0 \A3 \CO \EO \GO \J0 \K5 \Né6 \Q0 \T000 \V1 \XO0
S00:003 S16:1FH S21:20H S22:F6H S23:95H S25:005 S26:001 S27:096 S28:000
TELEPHONE NUMBERS:

&Z0=

&Z1=

&Z2=

&Z3=

15.8 Test modes

There are several modes associated with the modems.
15.8.1 Local analogue loopback (&T1)

In the analogue loopback test the modem connects the transmit and receive lines on its out-
put, as illustrated in Figure 15.7. This causes all transmitted characters to be received. It is
initiated with the &1 mode. For example:

AT &QO0 <Enters>

AT S18=0 &T1 <Enter>

CONNECT 9600

Help the bridge is on fire <Enters
+++

OK

AT &TO

OK

The initial command at s0o0 sets the modem into an asynchronous mode (stop-start). Next
the AT si18=0 &T1 command sets the timer test time to zero (which disables any limit to the
time of the test) and sT1 sets an analogue test. The modem responds with the message
CONNECT 9600. Then the user enters the text Help on fire followed by an <Enter>. Next
the user enters three + characters which puts the modem back into command mode. Finally,
the user enters aT sTo which disables the current test.

262 Computer busses

If a time-limited test is required then the S18 register is loaded with the number of sec-
onds that the test should last. For example, a test that last 2 minutes will be set up with:

AT S18=120 &T1

Transmit

Loop

Computer
back

Receive

A

Local
modem

Figure 15.7 Analogue loopback with self-test

15.8.2 Local analog loopback with self-test (&T8)

In the analog loopback test with self-test the modem connects the transmit and receive lines
on its output and then automatically sends a test message which is then automatically re-
ceived, as illustrated in Figure 15.8. The local error checker then counts the number of errors
and displays a value when the test is complete. For example, the following test has found two
errors:

AT &QO0 <Enters>
AT S18=0 &T8 <Enter>
+++

AT &TO

002

OK

Loopback

| Test message |—>| Transmit
| Error checker |<—| Receive

Local modem

Figure 15.8 Analogue loopback with self-test

15.8.3 Remote digital loopback (&T6)

The remote digital loopback checks the local computer to modem connection, the local mo-
dem, the telephone line and the remote modem. The remote modem performs a loopback at
the connection from the remote modem to its attached computer. Figure 15.9 illustrates the
test set-up. An example session is:

Modems 263

AT &QO0 <Enters>

AT S18=0 &T6 <Enter>

CONNECT 9600

Help the bridge is on fire <Enters>

+4++
OK
AT &TO
OK
L Transmit Receive
|] | M
Computer
- [Receive |<——' L Transmit
Phone
line
Local Remote
modem modem

Figure 15.9 Remote digital loopback test
15.8.4 Remote digital loopback with self-test (&T7)

The remote digital loopback with self-test checks the local computer to modem connection,
the local modem, the telephone line and the remote modem. The remote modem performs a
loopback at the connection from the remote modem to its attached computer. The local mo-
dem sends a test message and checks the received messages for errors. On completion of the
test, the local modem transmits the number of errors. Figure 15.10 illustrates the test setup.
An example session is:

AT &QO0 <Enters>
AT S18=0 &T7 <Enters>
+++

AT &TO

004

OK

or with a test of 60 seconds then the user does not have to send the break sequence:

AT &QO0 <Enters>
AT S18=60 &T7 <Enter>
004
OK

Receive

]
1

5

Transmit

Test message Transmit
‘ 9 }—" Fﬁ
‘ Error checker F_‘ Receive ’*J

Phone
line

Local Remote
modem modem

Figure 15.10 Remote digital loopback test with self-test

264 Computer busses

15.9 Digital modulation

Digital modulation changes the characteristic of a carrier according to binary information.
With a sine wave carrier the amplitude, frequency or phase can be varied. Figure 15.11 illus-
trates the three basic types: amplitude-shift keying (ASK), frequency-shift keying (FSK) and
phase-shift keying (PSK).

15.9.1 Frequency-shift keying (FSK)

FSK, in the most basic case, represents a 1 (a mark) by one frequency and a 0 (a space) by
another. These frequencies lie within the bandwidth of the transmission channel.

On a V.21, 300 bps, full-duplex modem the originator modem uses the frequency 980 Hz
to represent a mark and 1180 Hz a space. The answering modem transmits with 1650 Hz for a
mark and 1850 Hz for a space. The four frequencies allow the caller originator and the an-
swering modem to communicate at the same time; that is, full-duplex communication.

FSK modems are inefficient in their use of bandwidth, with the result that the maximum
data rate over normal telephone lines is 1800 bps. Typically, for rates over 1200 bps, other
modulation schemes are used.

ASK

Figure 15.11 Waveforms for ASK, PSK and FSK

15.9.2 Phase-shift keying (PSK)

In coherent PSK a carrier gets no phase shift for a 0 and a 180° phase shift for a 1, as given
next:

0 = 0°
1 = 180°

Its main advantage over FSK is that as it uses a single frequency it uses much less band-
width. It is thus less affected by noise. It has an advantage over ASK because its information
is not contained in the amplitude of the carrier, thus again it is less affected by noise.

Modems 265

15.9.3 M-ary modulation

With M-ary modulation a change in amplitude, phase or frequency represents one of M pos-
sible signals. It is possible to have M-ary FSK, M-ary PSK and M-ary ASK modulation
schemes. This is where the baud rate differs from the bit rate. The bit rate is the true measure
of the rate of the line, whereas the baud rate only indicates the signalling element rate, which
might be a half or a quarter of the bit rate.

For four-phase differential phase-shift keying (DPSK) the bits are grouped into two and
each group is assigned a certain phase shift. For two bits there are four combinations: a 00 is
coded as 0°, 01 coded as 90°, and so on:

00 = 0° 01 = 90°
11 = 180° 10 = 270°

It is also possible to change a mixture of amplitude, phase or frequency. M-ary amplitude-
phase keying (APK) varies both the amplitude and phase of a carrier to represent M possible
bit patterns.

M-ary quadrature amplitude modulation (QAM) changes the amplitude and phase of the
carrier. 16-QAM uses four amplitudes and four phase shifts, allowing it to code four bits at a
time. In this case, the baud rate will be a quarter of the bit rate.

Typical technologies for modems are:

FSK — used up to 1200 bps
Four-phase DPSK — used at 2400 bps
Eight-phase DPSK — used at 4800 bps
16-QAM — used at 9600 bps

15.10 Typical modems

Most modern modems operate with V.22bis (2400 bps), V.32 (9600 bps) or V.32bis
(14 400 bps); some standards are outlined in Table 15.4. The V.32 and V.32bis modems can
be enhanced with echo cancellation. They also typically have built-in compression using
either the V.42bis standard or MNP level 5.

Table 15.4 Example AT modem commands

ITU recommendation Bit rate Modulation
(bps)

V.21 300 FSK

V.22 1200 PSK
V.22bis 2400 ASK/PSK
V.27ter 4800 PSK

V.29 9600 PSK

V.32 9600 ASK/PSK
V.32bis 14400 ASK/PSK

V.34 28800 ASK/PSK

266 Computer busses

15.10.1 V.42bis and MNP compression

There are two main standards used in modems for compression. The V.42bis standard is de-
fined by the ITU and the MNP (Microcom networking protocol) has been developed by a
company named Microcom. Most modems will try to compress using V.42bis but if this fails
they try MNP level 5. V.42bis uses the Lempel-Ziv algorithm, which builds dictionaries of
code words for recurring characters in the data stream. These code words normally take up
fewer bits than the uncoded bits. V.42bis is associated with the V.42 standard which covers
error correction.

15.10.2 V.22bis modems

V.22bis modems allow transmission at up to 2400bps. It uses four amplitudes and four
phases. Figure 15.12 shows the 16 combinations of phase and amplitude for a V.22bis mo-
dem. It can be seen that there are 12 different phase shifts and four different amplitudes.
Each transmission is known as a symbol, thus each transmitted symbol contains four bits.
The transmission rate for a symbol is 600 symbols per second (or 600 b aud), thus the bit rate
will be 2400bps.

Trellis coding tries to ensure that consecutive symbols differ as much as possible.

90°

770777077707770 777777 Amplitude 4
Phase 3 f Phase 2
,,O,,,O,, 777777 Amplitude 3
Phase 1
180°
O*O***O’77{> 777777 Amplitude 2
77077707770777@ 777777 Amplitude 1

270°

Figure 15.12 Phase and amplitude coding for V.32

15.10.3 V.32 modems

V.32 modems include echo cancellation which allows signals to be transmitted in both direc-
tions at the same time. Previous modems used different frequencies to transmit on different
channels. Echo cancellation uses DSP (digital signal processing) to subtract the sending sig-
nal from the received signal.

V.32 modems use trellis encoding to enhance error detection and correction. They encode
32 signalling combinations of amplitude and phase. Each of the symbols contains four data
bits and a single trellis bit. The basic symbol rate is 2400 bps; thus the actual data rate will be
9600 bps. A V.32bis modem uses seven bits per symbol; thus the data rate will be 14 400 bps
(2400 % 6).

Modems 267

15.11 Fax transmission

Facsimile (fax) transmission involves the transmission of images over a telephone line using
a modem. A stand-alone fax consists of:

e An image scanner.
e A graphics printer.
e A transmission/reception modem.

The fax scans an A4 image with 1142 scan lines (3.85lines per millimetre) and 1728 pixels
per line. The EIA and ITU originally produced the RS-328 standard for the transmission of
analogue voltage levels to represent different brightness. The ITU recommendations are
known as Group I and Group Il standards. The Group 11 standard defines the transmission of
faxes using digital transmission with 1142x1728 pixels of black or white. Group IV is an
extension to Group Il but allows different gray scales and also colour (unfortunately it re-
quires a high bit rate.)

An A4 scan would consist of 1976 832 (1142 x1728) scanned elements. If each element
is scanned for black and white, then, at 9600 bps, it would take over 205 s to transmit. Using
RLE (run length encoding) coding can drastically reduced this transmission time.

15.11.1 Modified Huffman coding

Group 11 compression uses modified Huffman code to compress the transmitted bit stream.
It uses a table of codes in which the most frequent run lengths are coded with a short code.
Typically, documents contain long runs of white or black. A compression ratio of over 10:1
is easily achievable (thus a single-page document can be sent in under 20s, for a 9600 bps
transmission rate). Table 15.5 shows some code runs of white and Table 15.6 shows some
codes for runs of black. The transmitted code always starts on white code. The codes range
from 0 to 63. Values from 64 to 2560 use two codes. The first gives the multiple of 64 fol-
lowed by the normally coded remainder.

Table 15.5 White run length coding

Run length Coding Run length Coding Run length Coding
0 00110101 1 000111 2 0111
3 1000 4 1011 5 1100
6 1110 7 1111 8 10011
9 10100 10 00111 11 01000
12 001000 13 000011 14 110100
15 110101 16 101010 17 101011
18 0100111 19 0001100 61 00110010
62 00110011 63 00110100 EOL 00000000001

For example, if the data to be encoded is:
16 white, 4 black, 16 white, 2 black, 63 white, 10 black, 63 white

it would be coded as:

101010 011 101010 11 00110100 0000100 00110100

268 Computer busses

This would take 40 bits to transmit the coding, whereas it would take 304 bits without coding
(i.e. 16+ 4+16+2+128+10+128). This results in a compression ratio of 7.6:1.

Table 15.6 Black run-length coding

Run Coding Run Coding Run Coding
length length length

0 0000110111 1 010 2 11

3 10 4 011 5 0011

6 0010 7 00011 8 000101

9 000100 10 0000100 11 0000101
12 0000111 13 00000100 14 00000111
15 000011000 16 0000010111 17 0000011000
18 0000001000 19 00001100111 61 000001011010
62 0000001100110 63 000001100111 EOL 00000000001

15.12 Exercises

15.12.1 What is the bandwidth of a telephone line:

(@ Almost infinite (b) 400 Hz to 3.4kHz
(c) 400 Hzto 20kHz (d) 400 Hzto 100kHz

15.12.2 How does a modem transmit at 9600bps, when the symbol rate is 4800 sym-
bols/sec (baud):

@ It sends two bits for every symbol sent
(b) Its impossible as the bit rate is always the same as the symbol rate
(c) It hides data
(d) It uses more than one data line
15.12.3 How long does it take to transmit a 1 MB file over a 9600 bps modem connection:

@) 13.89 min (b) 1.74 min
(c) 833.33min (d) 104.2 min

15.12.4 What modem command is used to tone dial the number 123-456-789:

(a) AT 123456789 (b) AT 987654321
(c) ATDT 123456789 (d) DIAL 123456789

15.12.5 What character sequence is used to put the modem in the command mode:

(@ AT (b) +++
(c) HELLO? d +

15.12.6 Which character must appear at the end of a command string:

Modems 269

(@ Fullstop (“.") (b) Null (ASCII, 0)
(c) Line feed (ASCII, 10) (d) Carriage return (ASCII, 13)

15.12.7 Which modem indicators would be ON when a modem has made a connection and
is receiving data? Which indicators would be flashing?

15.12.8 Which modem indicators would be ON when a modem has made a connection and
is sending data? Which indicators will be flashing?

15.12.9 Investigate the complete set of AT commands by referring to a modem manual or
reference book.

15.12.10 Investigate the complete set of S-registers by referring to a modem manual or ref-
erence book.

15.12.11 Determine the location of modems on a network or in a works building. If possi-
ble, determine the type of data being transferred and its speed.

15.12.12 Connect a modem to a computer and dial a remote modem. If possible connect

two modems together and, using a program such as Terminal, transfer text from
one computer to the another.

15.13 Notes from the author

What a strange device a modem is. It has such as thankless task — converting information
from lovely, pure digital signals into something that passes over a speech-limited voice
channel. It does its job well and with compression can achieve reasonable results. But,
really, it’s a short-term fix, before we all use high-speed connections with proper data ca-
bles, whether they be shield twisted-pair cables or fibre optic cables. So, modems allow us to
migrate our telephone connection to a full-blown network connection. The motivation for the
increased bandwidth is the Internet and especially the integration of fully digital multimedia
connections.

The AT command code allows for a standardisation in the modem operation, but as many
have seen, modems are not quite as compatible as they may seem. Like the great RS-232 that
it is based upon, it is infuriating who non-standardised modems are. | think the big problem
here is that the true standard is held with a few major manufacturers, such as Hayes, and
software drivers are made compatible with these modems rather than with actual standards.
Sometimes industry-led standard are adopted into the market quicker than ones developed by
standards organisations.

Why are modems is expensive? Why can you buy five network cards for the price of a
modem, or even a whole PC motherboard? Is it because they are so useful, maybe, but it’s
probably because, at present, they have a virtual monopoly in the home, as their only real
general-purpose competitor, ISDN, is still too expensive for its installation, running costs
and costs of the equipment. So for just now, the annoying little devices that screech and
whine will be around for a little longer yet. But, the people of the future will laugh when they
see these archaic devices, in just the same way that we laugh at dish-washer style computers,
and home computers with cassette storage and 1KB memory.

16 || Parallel Port

16.1 Introduction

This chapter discusses parallel communications. The Centronics printer interface transmits
eight bits of data at a time to an external device, normally a printer. A 25-pin D-type connec-
tor is used to connect to the PC and a 36-pin Centronics interface connector normally con-
nects to the printer. This interface is not normally used for other types of interfacing as the
standard interface only transmits data over the data lines in one direction, that is, from the PC
to the external device. Some interface devices overcome this problem by using four of the
input handshaking lines to input data and then multiplexing using an output handshaking line
to multiplex them to produce eight output bits.

As technology has improved there is a great need for a bidirectional parallel port to con-
nect to devices such as tape backup drives, CD-ROMs, and so on. The Centronics interface
unfortunately lacks speed (150kbps), has limited length of lines (2m) and very few computer
manufacturers comply with an electrical standard.

Thus, in 1991, several manufacturers (including IBM and Texas Instruments) formed a
group called NPA (National Printing Alliance). Their original objective was to develop a
standard for controlling printers over a network. To achieve this a bi-directional standard was
developed which was compatible with existing software. This standard was submitted to the
IEEE so that they could standardise it. The committee that the IEEE set up was known as the
IEEE 1284 committee and the standard they produced is known as the IEEE 1284-1994
Standard (as it was released in 1994).

With this standard all parallel ports use a bidirectional link in either a compatible, nibble
or byte mode. These modes are relatively slow as the software must monitor the handshaking
lines (up to 100 kbps). To allow high-speed the EPP (enhanced parallel port) and ECP (ex-
tended capabilities port protocol) modes which allows high-speed data transfer using auto-
matic hardware handshaking. In addition to the previous three modes, EPP and ECP are be-
ing implemented on the latest 1/0O controllers by most of the Super I/O chip manufacturers.
These modes use hardware to assist in the data transfer. For example, in EPP mode, a byte of
data can be transferred to the peripheral by a simple OUT instruction. The 1/O controller
handles all the handshaking and data transfer to the peripheral.

16.2 PC connections

Figure 16.1 shows the pin connections on the PC connector. The data lines (D0O-D7) output
data from the PC and each of the data lines has an associated ground line (GND).

272 Computer busses

Signal Pin number
name on PC connection
STROBE 1
>
DO 2
>
D1 3
>
D2 4
L
D3 5
>
D4 6 o
>
D5 7
L
D6 8
Ll
Computer D7 9 > Printer
o ACK 10
<
_, BUSY 11
-
| OUT OF PAPER 12
<
 SELECT 13
<
AUTO FEED 14
——— >
_, ERROR 15
< —————
INITIALIZE PRINTER 16
P — >
SELECT INPUT 17
>
GROUND 18-25

Figure 16.1 Centronics parallel interface showing pin numbers on PC connector

16.3 Data handshaking

The main handshaking lines are ACK , BUSY and STROBE . Initially the computer places the
data on the data bus, then it sets the STROBE line low to inform the external device that the
data on the data bus is valid. When the external device has read the data, it sets the ACK
lines low to acknowledge that it has read the data. The PC then waits for the printer to set the

BUSY line inactive, that is, low. Figure 16.2 shows a typical handshaking operation and Ta-
ble 16.1 outlines the definitions of the pins.

Valid data DATA
STROBE
|
| BUSY
|
| | —
| | ACK
Il >
0.5ps (min.) [) >]
5us (min.)

Figure 16.2 Data handshaking with the Centronics parallel printer interface

Parallel port 273

The parallel interface can be accessed either by direct reads to and writes from the 1/0
memory addresses or from a program which uses the BIOS printer interrupt. This interrupt
allows a program either to get the status of the printer or to write a character to it. Table 16.2
outlines the interrupt calls.

Table 16.1 Signal definitions

Signal In/out Description

STROBE Out Indicates that valid data is on the data lines (active low)

AUTO FEED Out Instructs the printer to insert a line feed for every carriage return
(active low)

SELECT INPUT Out Indicates to the printer that it is selected (active low)

INIT Out Resets the printer

ACK In Indicate that the last character was received (active low)

BUSY In Indicates that the printer is busy and thus cannot accept data

OUT OF PAPER In Out of paper

SELECT In Indicates that the printer is on line and connected

ERROR In Indicates that an error exists (active low)

Table 16.2 BIOS printer interrupt

Description Input registers Output registers
Initialise printer ~ AH =01h AH = printer status
port DX = printer number (00h—02h) bit 7: not busy

bit 6: acknowledge
bit 5: out of paper
bit 4: selected

bit 3: 1/0 error

bit 2: unused
bit 1: unused
bit 0: timeout
Write character ~ AH = 00h AH = printer status
to printer AL = character to write
DX = printer number (00h—02h)
Get printer AH =02h AH = printer status

status DX = printer number (00h—02h)

274

16.3.1 BIOS printer

Program 16.1 uses the BIOS printer interrupt to test the status of the printer and output char-
acters to the printer.

Program 16.1
#include <dos.h>
#include <stdio.h>
#include <conio.h>

#define PRINTERR -1

void
int

int

{

int

int

union

void

union

print_character (int ch);
init_printer (void) ;

main (void)
status, ch;

status=init printer();
if (status==PRINTERR) return(l) ;

do

printf ("Enter character to output to printer");

ch=getch () ;

print_character(ch) ;
} while (ch!=4);
return (0) ;

init_printer (void)

REGS inregs,outregs;

inregs.h.ah=0x01; /* initialize printer */
inregs.x.dx=0; /* LPT1l: *x/

int86 (0x17, &inregs, &outregs) ;
if (inregs.h.ah & 0x20)

{ puts("out of paper"); return(PRINTERR); }
else if (inregs.h.ah & 0x08)

{ puts("I/0O error"); return(PRINTERR); }

else if (inregs.h.ah & 0x01)

{ puts("Printer timeout"); return(PRINTERR); }
return (0) ;

print_character (int ch)

REGS inregs,outregs;

inregs.h.ah=0x00; /* print character */
inregs.x.dx=0; /* LPTl: *x/

inregs.h.al=ch;

int86 (0x17, &lnregs, &outregs) ;

Computer busses

Parallel port 275

16.4 1/0 addressing

16.4.1 Addresses

The printer port has three 1/0 addresses assigned for the data, status and control ports. These
addresses are normally assigned to:

Printer Data register ~ Status register ~ Control register
LPT1 378h 379h 37ah
LPT2 278h 279h 27ah

The DOS debug program can be used to display the base addresses for the serial and parallel
ports by displaying the 32 memory location starting at 0040 : 0008. For example:

-d 40:00
0040:0000 F8 03 F8 02 00 00 00 00-78 03 00 00 00 00 29 02

The first four 16-bit addresses give the serial communications ports. In this case, there are
two COM ports at address 03F8h (COM1) and 02F8h (for COM2). The next four 16-bit ad-
dresses gives the parallel port addressees. In this case there is two parallel ports. One at
0378h (LPT1) and one at 0229h (LPT4).

16.4.2 Output lines

Figure 16.3 shows the bit definitions of the registers. The data port register links to the out-
put lines. Writing a 1 to the bit position in the port sets the output high, while a 0 sets the
corresponding output line to a low. Thus to output the binary value 1010 1010b (AAh) to the
parallel port data then using Visual C++:

_outp(0x378, 0xAA) ; /* in Visual C this is _outp(0x378,0xAA); */

The output data lines are each capable of sourcing 2.6 mA and sinking 24 mA; it is thus es-
sential that the external device does not try to pull these lines to ground.

The control port also contains five output lines, of which the lower four bits are
STROBE , AUTO FEED, INIT and SELECT INPUT, as illustrated in Figure 16.3. These lines

can be used as either control lines or as data outputs. With the data line, a 1 in the register
gives an output high, while the lines in the control port have inverted logic. Thus a 1 to a bit
in the register causes an output low.

Program 16.2 outputs the binary pattern 0101 0101b (55h) to the data lines and sets

SELECT INPUT =0, INIT=1, AUTO FEED =1, and STROBE =0, the value of the data port will
be 55h and the value written to the control port will be XXXX 1101 (where X represents

don’t care). The value for the control output lines must be invert, so that the STROBE line
will be set to a 1 so that it will be output as a LOW.

276 Computer busses

——®» D7 —— Busy —— Reserved
—» D6 -—— ACK —— Reserved
—® D5 +—— PE —® Direction
—» D4 —— SELECT ™ IRQ ENABLE
—» D3 «—— ERROR — SELECT INPUT
—» D2 -—— RQ — INIT
—» D1 —— Reserved —® AUTOFEED
—» DO —— Reserved —» STROBE

Data Status Control

port port port

Figure 16.3 Port assignments

Program 16.2

#define DATA 0x378
#define STATUS DATA+1
#define CONTROL DATA+2

int main (void)

{

int outl,out2;

outl = 0x55; /* 0101 0101 */

_outp (DATA, outl);

out2 = 0x0D; /* 0000 1101 */

_outp (CONTROL, out2) ; /* STROBE=LOW, AUTOFEED=HIGH, etc */
return(0) ;

}

The setting of the output value (in this case, out2) looks slightly confusing as the output is
the inverse of the logical setting (that is, a 1 sets the output low). An alternative method is to
exclusive-OR (EX-OR) the output value with $B which will invert the 1st, 2nd and 4th least
significant bits (SELECT INPUT =0, AUTO FEED =1, and STROBE =0), while leaving the 3rd

least significant bit (INIT) untouched. Thus the following will achieve the same as the previ-
ous program:

out2 = 0x06; /* 0000 0110 */
_outp (CONTROL, out2 * 0xb); /* STROBE=LOW, AUTOFEED=HIGH, etc */

If the 5th bit on the control register (IRQ enable) is written as 1 then the output on this line
will go from a high to a low which will cause the processor to be interrupted.

The control lines are driven by open collector drivers pulled to +5Vdc through 4.7 kQ
resistors. Each can sink approximately 7 mA and maintain 0.8 VV down-level.

Parallel port
Data register
2
L o ©
I
: - 9 -
Control register
- 1 -
Figure 16.4 Output lines
16.4.3 Inputs

277

DO

D7

STROBE
AUTOFEED
INIT

SELECT INPUT

There are five inputs from the parallel port (BUSY, ACK, PE, SELECT and ERROR). The
status of these lines can be found by simply reading the upper 5 bits of the status register, as

illustrated in Figure 16.5.

Status register

15

13

ERROR

12

A

SELECT

10

PE

ACK

A

11

Figure 16.5 Input lines

BUSY

Unfortunately, the BUSY line has an inverted status. Thus when a LOW is present on
BUSY, the bit will actually be read as a 1. For example Program 16.3 reads the bits from the

278 Computer busses

status register, inverts the BUSY bit and then shifts the bits three places to the right so that
the five inputs bit are in the five least significant bits.

Program 16.3

#include <stdio.h>
#define DATA 0x378
#define STATUS DATA+1
int main (void)

{

unsigned int inl;

inl = _inp(STATUS); /* read from status register */
inl = inl * 0x80 /* invert BUSY bit */
inl = inl >> 3; /* move bits so that the inputs are the least

significant bits */
printf (“Status bits are %d\n”,inl);
return(0) ;

1
16.4.4 Electrical interfacing

The output lines can be used to drive LEDs. Figure 16.6 shows an example circuit where a
LOW output will cause the LED to be ON while a HIGH causes the output to be OFF. For an
input an open push button causes a HIGH on the input.

5V

330 Q

DO-D7
5V

10 KQ

Control
lines

=
1.

Figure 16.6 Interfacing to inputs and outputs

16.4.5 Simple example

Program 16.4 uses a push button connected to pin 11 (BUSY). When the button is open then
the input to BUSY will be a HIGH and the most significant bit in the status register will thus
be a 0 (as the BUSY signal is inverted). When the button is closed then this bit will be a 1.

Parallel port 279

This is tested with
if (inl1&0x80)==1)

When this condition is TRUE (that is, when the button is closed) then the output data lines
(DO0-D7) will flash on and off with a delay of 1 second between flashes. An output of all 1s
to the data lines causes the LEDs to be off, and all Os cause the LEDs to be on.

Program 16.4

/* Flash LEDs on and off when the push button connected to BUSY */
/* is closed */
#include <stdio.h>

#include <dos.h>

#define DATA 0x378
#define STATUS DATA+1
#define CONTROL DATA+2

int main(void)

{

int inl;
do
{
inl = _inp(STATUS) ;
if (inl&0x80)==1) /* if switch closed this is TRUE */
{
_outp (DATA, 0x00) ; /* LEDs on */
delay (1000) ;
_outp (DATA, O0xff); /* LEDs off */
delay (1000) ;
1
else

_outp (DATA, 0x01) ; /* switch open */
} while (!kbhit());
return(0) ;

16.5 Interrupt-driven parallel port

16.5.1 Introduction

The previous section discusses how the parallel port is used to output data. This chapter dis-
cusses how an external device can interrupt the processor. It does this by hooking onto the
interrupt server routine for the interrupt that the port is attached to. Normally this interrupt
routine serves as a printer interrupt (such as lack of paper, paper jam and so on). Thus, an
external device can use the interrupt service routine to transmit data to or from the PC.

16.5.2 Interrupts

Each parallel port is hooked to an interrupt. Normally the primary parallel port is connected
to IRQ7. It is assumed in this section that this is the case. As with the serial port this interrupt
line must be enabled by setting the appropriate bit in the interrupt mask register (IMR),

280 Computer busses

which is based at address 21h. The bit for IRQ7 is the most significant bit, and it must be set
to a 0 to enable the interrupt. As with the serial port, the end of interrupt signal must be
acknowledged by setting the EOI signal bit of the interrupt control register (ICR) to a 1. See
Section 8.5.2 for more information on these operations.

The interrupt on the parallel port is caused by the ACK line (pin 10) going from a high to
a low (just as a printer would acknowledge the reception of a character). For this interrupt to
be passed to the PIC then bit 4 of the control port (IRQ Enable) must be setto a 1.

16.5.3 Example program

Program 16.5 is a simple interrupt-driven parallel port Borland C program. The program in-
terrupts the program each time the ACK line is pulled LOW. When this happens the output
value should change corresponding to a binary count (0000 0000 to 1111 1111, and then
back again). The user can stop the program by pressing any key on the keyboard. Figure 16.7
shows a sample set-up with a push button connected to the ACK line and LEDs connected to
the output data lines.

5V
5V 330 Q
330 Q «
«
D7 o
A «
4
I 2
DO
5V
10 KQ
10
ACK t]
jE'GND

Figure 16.7 Example set-up for interrupt-driven parallel port

Program 16.5

/* Program to sample data from the parallel port */
/* when the ACK line goes low */
#include <stdio.h>

#include <bios.h>

#include <conio.h>

#include <dos.h>

#define TRUE 1
#define FALSE 0
#define DATA 0x378

#define STATUS DATA+1
#define CONTROL DATA+2
#define IRQ7 0x7F /* LPT1 interrupt */

Parallel port

#define EOI 0x20 /* End of Interrupt */

#define ICR 0x20 /* Interrupt Control Register */
#define IMR 0x21 /* Interrupt Mask Register */

void interrupt far pl interrupt (void);
void setup parallel (void);

void set_vectors(void) ;

void enable interrupts(void);

void disable interrupts(void) ;

void reset vectors(void);

void interrupt far (*oldvect) ();

int int_flag = TRUE;

int outval=0;

int main(void)
{
set_vectors() ;
setup_parallel() ;
do
{
if (int_flag)
{
printf ("New value sent\n") ;
int_flag=FALSE;

} while (!kbhit());
reset_vectors () ;
return(0) ;

}

void setup_parallel (void)

{

outportb (CONTROL, inportb (CONTROL) | 0x10) ;
/* Set Bit 4 on control port to a 1 */

}

void interrupt far pl_ interrupt (void)
{
disable () ;
outportb (DATA, outval) ;
if (outval!=255) outval++; else outval=0;
int flag=TRUE;
outportb (ICR,EOI) ;
enable () ;

}

void set_vectors(void)

{

int int mask;

disable () ; /* disable all ints */
oldvect=getvect (0x0f) ; /* save any old vector */
setvect (0x0f,pl interrupt); /* set up for new int serv */

}

void enable interrupts (void)
{
int ch;
disable() ;
ch=inportb (IMR) ;
outportb (IMR, ch & IRQ7);
enable () ;

281

282 Computer busses

void disable interrupts (void)

{

int ch;
disable () ;
outportb (IMR, ch & ~IRQ7);
enable () ;

void reset_vectors(void)

{

}
16.5.4 Program explanation

setvect (0x0f,oldvect) ;

The initial part of the program enables the interrupt on the parallel port by setting bit 4 of the
control register to 1:

void setup parallel (void)

{

outportb (CONTROL, inportb (CONTROL) | 0x10); /* Set Bit 4 on control port*/

}

After the serial port has been initialized the interrupt service routine for the 1ro7 line is set to
point to a new ‘user-defined’ service routine. The primary parallel port .er1: normally sets

the Tro7 line active when the ACK line goes from a high to a low. The interrupt associated
with 1ro7 is OFh (15). The getvect () function gets the ISR address for this interrupt, which
is then stored in the variable o1dvect so that at the end of the program it can be restored.
Finally, in the set_vectors () function, the interrupt assigns a new ‘user-defined” ISR (in
this case it is the function p1_interrupt ()):

void set_vectors(void)

{

int int mask;

disable(); /* disable all ints */
oldvect=getvect (0x0f); /* save any old vector */
setvect (0x0f,pl interrupt); /* set up for new int serv */

}

At the end of the program the ISR is restored with the following code:

void reset vectors(void)

{
}

setvect (0x0f,oldvect) ;
To enable the 1ro7 line on the PIC, bit 5 of the IMR (interrupt mask register) is to be set to a
0 (zero). The statement

ch = inportb(IMR) & O0x7F;

achieves this as it bitwise ANDs all the bits, except for bit 7, with a 1. This is because any bit

Parallel port 283

which is ANDed with a 0 results in a 0. The bit mask ox7r has been defined with the macro
IRQ7:

void enable interrupts (void)

{
int ch;
disable() ;
ch=inportb (IMR) ;
outportb (IMR, ch & IRQ7);
enable () ;

}

At the end of the program the interrupt on the parallel port is disabled by setting bit 7 of the
IMR to a 1; this disables 1rq7 interrupts:

void disable interrupts (void)

{

int ch;
disable () ;
outportb (IMR, ch & ~IRQ7);
enable () ;

}

The ISR for the 1rg7 function is set t0 p1_interrupt (). It outputs the value of outvai,
which is incremented each time the interrupt is called (note that there is a roll-over statement
which resets the value of outva1 back to zero when its value is 255). At the end of the ISR
the end of interrupt flag is set in the interrupt control register with the statement out-
portb (ICR, EOI);,as follows:

void interrupt far pl_ interrupt (void)
{
disable () ;
outportb (DATA, outval) ;
if (outval!=255) outval++; else outval=0;
int_flag=TRUE;
outportb (ICR,EOI) ;
enable () ;

}

The main () function calls the initialisation and the de-initialisation functions. It also contains
a loop which continues until any key is pressed. Within this loop, the keyboard is tested to
determine if a key has been pressed. The interrupt service routine sets int_flag. If the main
routine detects that it is set it displays the message ‘New value sent’ and resets the flag:

int main(void)
{
set_vectors() ;
outportb (CONTROL, inportb (CONTROL) | 0x10) ;
/* set bit 4 on control port to logic one */
do
{
if (int_flag)
{
printf ("New value sent\n") ;
int_flag=FALSE;

} while (!kbhit());

284 Computer busses

reset_vectors() ;

return(0) ;

16.6 Exercises

16.6.1 How many pins does a standard D-type parallel port connector have:

@ 9 (b)y 12
() 25 (d) 36

16.6.2 How many data bits can the parallel port transmit at a time:

(@ 8 b 12
(c) 16 (d 32

16.6.3 What is the major limitation of a standard Centronics parallel port:

@ It is only an output (b) Itis not compatible with many printers
(c) Incompatibility of software (d) Limited cable types

16.6.4 What is the maximum data of a standard Centronics parallel port:

@) 15kbps (b) 150Kkbps
(c) 1.5Mbps (d) 10Mbps

16.6.5 What is the standard 1/0 base address for a standard parallel port:

(@ 3F8h (b) 378h
(c) 2F8h (d) 278h

16.6.6 What is the standard 1/0 base address for a secondary parallel port:

(@ 3F8h (b) 378h
(c) 2F8h (d) 278h

16.6.7 What is the standard interrupt line for a standard parallel port:

(@ IRQ3 (b) IRQ4
() IRQ5 (d) IRQ7

16.6.8 Write a program that sends a ‘walking-ones’ code to the parallel port. The delay
between changes should be 1 second. A ‘walking-ones’ code is as follows:

Parallel port

00000001
00000010
00000100
00001000

10000000
00000001
00000010

and so on.

285

Hint: Use a do...while loop with either the shift left operators (<<) or output the
values 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, and so on.

16.6.9 Write separate programs which output the patterns in (a) and (b). The sequences
are as follows:

@

16.6.10 Write separate programs which output the following sequences:

(€)

@

00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000
01000000
00100000
00010000

00000001
00000010

and so on.

1010
0101
1010
0101
and so

0000
0000
0000
0001
0011
0111
1111
0000
0000
0000
0000
0001

1010
0101
1010
0101
on.

0001
0011
1111
1111
1111
1111
1111
0001
0011
0111
1111
1111

and so on.

(b) 10000001
01000010
00100100
00011000
00100100
01000010
10000001
01000010
00100100
00011000
00100100

and so on.

(b) 1111
0000
1111
0000

1111
0000
1111
0000

and so on.

(d) 0000
0000
0000
0000
0001
0011
0111
1111
0111
0011
0001
0000

0001
0011
0111
1111
1111
1111
1111
1111
1111
1111
1111
1111

and so on.

The inverse of (d) above.

286

16.6.11

16.6.12

Binary coded decimal (BCD) is used mainly in decimal displays and is equivalent
to the decimal system where a 4-bit code represents each decimal number. The
first 4 bits represent the units, the next 4 the tens, and so on. Write a program that
outputs to the parallel port a BCD sequence with a 1-second delay between
changes. A sample BCD table is given in Table 16.3. The output should count

from 0 to 99.

Hint: One possible implementation is to use two variables to represent the units
and tens. These would then be used in a nested loop. The resultant output value
will then be (tens << 4)+units. An outline of the loop code is given next.

for (tens=0;tens<10;tens++)

for (units=0;units<10;units++)

{
}

Computer busses

Table 16.3 BCD conversion

Digit BCD
00 00000000
01 00000001
02 00000010
03 00000011
04 00000100
05 00000101
06 00000110
07 00000111
08 00001000
09 00001001
10 00010000
11 00010001
97 10010111
98 10011000
99 10011001

Write a program which interfaces to a 7-segment display and displays an incre-
mented value every second. Each of the segments should be driven from one of
the data lines on the parallel port. For example:

Value

w
@D
Q

Hex
value

0
1
2

Horip

= o =W

°orrlo
moolol
“oormz

9

o

o 1 1 1

Two ways of implementing this is either to determine the logic for each segment

R oRoe T

1

o r|

1

77h
12h
6Bh

1Fh

or to have a basic look-up table, such as:

Parallel port 287

int seg val[8]={0x77, 0x12, 0x6B, ... 0x1F};
val=seq val (count % 10);
/* mask-off the least-significant digit */
outportb (0x378,seg_val([vall);

16.6.13 Write a program counts the number of pushes of a button. The display should
show the value.

16.6.14 Modify the program developed in Exercise 16.6.13 so that it outputs the count
value to the parallel port.

16.6.15 Modify the program developed in Exercise 16.6.14 so that the display is incre-
mented when the user presses a button.

16.6.16 Write a program in which the user presses a button which causes the program to
read from the parallel port.

16.6.17 Write a printer driver in which a string buffer is passed to it and this is then out-

putted to the printer. The driver should include all the correct error checking (such
as out-of-paper, and so on).

16.7 Notes from the author

The parallel port is hardly the greatest piece of technology. In its truly standard form, it only
allows for simplex communications, from the PC outwards. However, like the RS-232 port,
it’s a standard part of the PC, and its cheap. So, interface designers have worked under dif-
ficult circumstances to try and improving its specification, such as increasing its bit rate and
allowing multiple devices to connect to it at the same time, but it still suffers from a lack of
controllability. Anyone who has changed the interface of a device from the parallel port to
the USB will know how much better the USB port is over the parallel port.

The parallel port and RS-232 are the two top requests that | get from users, especially
related to project work. The Top 10 requests, in order of the most requests | have received,
are:

1. RS-232. 6. Interrupt-driven software.
2. Parallel Port. 7. PCMCIA.

3. Converting a DOS program to Microsoft Windows. 8. Network card design.

4. Borland Delphi interfacing. 9. Visual Basic interfacing
5. ISA card design. 10. Using buffered systems.

One of the most amusing emails that | ever received related to an ISA card which | had
drawn. In the card, | had drawn a few chips, to basically show that it had some electronics
on it. So that the chips would not be confused with real chips I labelled one of them XYZ123.
One user sent me an email saying:

‘Thanks for ... Please could you tell me the function of the XYZ123 device. | have searched
for this component, and cannot find any information on it. Please could you send me some’

288 Computer busses

I didn’t really have the heart to write back to the user and say that it was a made-up chip, so
I sent an email back saying that it was not available at the present time (which was true).

So why has the serial port become more popular than the parallel port. Well it’s because
of one reason: since PC’s started, the serial port has always been a standard port and most
manufacturers abide with it, whereas the parallel port was a quick fix so that the original PC
could communicate with a printer. In its standard form, it can only send information in a
single direction, and, even worse, only eight bits can be sent at a time. Nevertheless, it has
survived, and now has several uses, especially with printers, scanners and external CD-
ROMs. So it will hold the fort for a few years yet before the USB port takes over in creating a
truly integrated bus system. But, you may say, the USB port is serial. So why transmit one bit
at a time when you can transmit 8 or 16 or even 32 bits at a time. Well it’s all to do with the
number of wires that must be connected. A serial bus always has the advantage over a paral-
lel bus, in that you only really need one signal line in a serial bus to transmit all the data.
This saves space in both the connector, and in the cable. It is also cheaper to install.

Personally, | think that there is no better bus for a student to start to learn how to inter-
face to external devices. It is relatively easy to build the interface electronics, and to connect
a few LEDs. How great it is to see a student’s face after they have written their first program
to make a few LEDs flash on and off. | remember a third year student commented: ‘I’ve been
programming for three years, and finally, we’re doing something real.” Whether you agree
with this comment or not depends on the type of programming that you would like to do.
Some of us like doing databases, some like writing user-interfaces, but there are lots who like
to make computers sense things and make physical things happen. In the past, especially in
the 1970s and 1980s, electronic engineers used breadboards and wires to prototypes cir-
cuits. Sometimes the circuits blew-up, or times they would stop working, but at least you
knew where you were with the electronics. These days with massively integrated circuits, it is
difficult to know one end of a microchip from another. They normally work first time, they’re
easy to connect to, and when they don’t work you just throw them in the bin. Image the size
of the bin that would have been required if someone had had build a Pentium processor from
the discrete transistors (over 20 million of them). Image the heat that would have been gen-
erated. Assuming 15mW for each transistor, the total power would be 300kW, which is
equivalent to the heat given of by 3000 100W light builds, or 300 1kW heaters. So it shows
how far we have come in such a short time, as now we can touch the processor, and it just
feels a little hot. Personally, | would have no problems in going back to the days when tran-
sistors had three legs and a tin hat, and you had to look up a data sheet to tell which of the
legs was the base, and which was the collector.

So, as the technology has moved on, the parallel port seems like an old friend. It has
watched the PC develop as the inners have become more integrated and faster, but it has
never really been a high flier, preferring instead to quietly perform its duties without much
bother. From CGA and EGA to VGA, from the serial port to the USB port, from 5.25inch
floppy disks to 6550MB CD-ROMSs, and so on. But, there’s no way that the parallel port
could be allowed to stay as it was in the original parallel specification. It has potential, but
that potential is severely limited because it must always keep compatibility with previous
ports. So how is it possible to connect a printer on the parallel port, and other devices, with-
out the printer reading communications that are destined for another device. If it wasn’t the
PC, the designers would have simply ripped up the original specification, and started again.
But, you don’t do that with the PC, or you’ll not sell. So, we’ll see in the next chapter how
the parallel port has been dragged into the modern age. But, as we’ll see, it’s more like a
difficult toddler, than an enterprising businessman. The prize for the best upgrade goes to
Ethernet, which has increased its transmission rate by a factor of 100 (L0Mbps to 1Gbps).

17 || Enhanced Parallel Port

17.1 Introduction

The Centronics parallel port only allows data to be sent from the host to a peripheral. To
overcome this the IEEE published the 1284 standard, entitled ‘Standard Signaling Method
for a Bidirectional Parallel Peripheral Interface for Personal Computers’. It allows for bi-
directional communication and high communication speeds, while being backwardly com-
patible with existing parallel ports.

The IEEE-1284 standard defines the following modes:

o Compatibility mode (forward direction only) — This mode defines the transfer of data
between the PC and the printer (Centronics mode, as covered in the previous chapter).

o Nibble mode (reverse direction) — This mode defines how four bits are transferred, at a
time, using status lines for the input data (sometimes known as Hewlett Packard Bi-
tronics). The Nibble mode can thus be used for bidirectional communication, with the
data lines being used as outputs. To input a byte, requires two nibble cycles.

e Byte mode (reverse direction) — This mode defines how eight bits are transferred at a
time.

e Enhanced parallel port (EPP) — This mode defines a standard bidirectional communica-
tions and is used by many peripherals, such as CD-ROMs, tape drives, external hard
disks, and so on.

In the IEEE 1284 standard the control and status signal for nibble, byte and EPP modes have
been renamed. It also classifies the modes as forward (data goes from the PC), reverse (data
is input into the PC) and bidirectional. Both the compatibility and nibble modes can be im-
plemented with all parallel ports (as the nibble mode uses the status lines and the compatibil-
ity mode only outputs data). Some parallel ports support input and output on the data lines
and thus support the byte mode. This is usually implemented by the addition of a direction
bit on the control register.

17.2 Compatibility mode

The compatibility mode was discussed in Chapter 16. In this mode, the program sends data
to the data lines and then sets the STROBE LOW and then HIGH. These then latch the data
to the printer. The operations that the program does are:

1. Data is written to the data register.

290 Computer busses

2. The program reads from the status register to test to see if the BUSY signal is LOW (that
is, the printer is not busy)

3. If the printer is not busy then the program sets the STROBE line active LOW.
4. Program then makes the STROBE line HIGH by de-asserting it.

Valid data DATA
STROBE
|
| BUSY
I -
I I ACK
| |
0.5ns (min.) |< >|
5ns (min.)

Figure 17.1 Compatibility mode transfer

17.3 Nibble mode

This mode defines how four bits are transferred, at a time, using status lines for the input data
(sometimes known as Hewlett Packard Bi-tronics). The Nibble mode can thus be used for bi-
directional communication, with the data lines being used as outputs. To input a byte, re-
quires two nibble cycles.

As seen in Chapter 16 there are five inputs from the parallel port (BUSY, ACK, PE,
SELECT and ERROR). The status of these lines can be found by simply reading the upper

five bits of the status register. The BUSY, PE, SELECT and ERROR are normally used as

ACK used to interrupt the processor.

Table 17.1 defines the names of the signal in the nibble mode and Figure 17.2 shows the
handshaking for this mode.

The nibble mode has the following sequence:

Host (PC) indicates that it is ready to receive data by setting HostBusy LOW.

The peripheral then places the first nibble on the status lines.

The peripheral indicates that the data is valid on the status line by setting PtrClk low.

The host then reads from the status lines and sets HostBusy high to indicate that it has
received the nibble, but it is not yet ready for another nibble.

The peripheral sets PtrClk HIGH as an acknowledgement to the host.

6. Repeat steps 1-5 for the second nibble.

hPOONDE

o

Enhanced parallel port 291

Table 17.1 Nibble mode signals

Compatibility Nibble mode name In/out Description

signal name

STROBE STROBE Out Not used.

AUTO FEED HostBusy Out Host nibl_)le _mode handshake s_ignal. Itis set
LOW to indicate that the host is ready for nib-
ble and set HIGH when the nibble has been
received.

SELECTINPUT 1284Active Out Set HIGH when the host is transferring data.

INIT INIT Out Not used.

ACK PtrClk In Indicates valid data on the status lines. It is set
low to indicate that there is valid data on the
control lines and then set HIGH when the Host-
Busy going high.

BUSY PtrBusy In Data bit 3 for one cycle then data bit 7.

PE AckDataReq In Data bit 2 for one cycle then data bit 6.

SELECT Xflag In Data bit 1 for one cycle then data bit 5.

ERROR DataAvail In Data bit 0 for one cycle then data bit 4.

DO0-D7 DO-D7 Not Used.

valid data valid data DATA lines
Bits 0-3 Bits 4-7 (PtrBusy, AckDataReq,

XFlag and DataAval)

HostBusy

PtrClk

Figure 17.2 Nibble mode data transfer cycle

These operations are software intensive as the driver requires to set and read the handshaking
lines. This limits transfer to about 50kBps. Its main advantage is that it will work with all
printer ports because it uses the standard Centronics set-up and is normally used in low-
speed bi-directional operations, such as ADC adapters, reading data from switches, and so
on.

Figure 17.3 illustrates the operation of the nibble mode, where four data bits are read into
the parallel port using the four input handshaking lines. The status of these lines is then read
by interrogating the upper four bits of the status register. This method is fine when there is

292 Computer busses

no handshaking and when there are four, or less, data bits to be read in. If there are more, or
if there is handshaking, then extra circuitry is required.

PtrBusy (BUSY)
AckDataReq (PE) Data
XFlag (SELECT) nput

——— DataAvail (ERROR)

b, | bs | bs | by | by | b, | by | by

Status port (379h)

inval=(_inp (0x379) & 0xf0) >> 4

Figure 17.3 Nibble mode interfacing

Figure 17.4 shows how the nibble mode can be used to read-in eight bits at a time. For
this one bit of the data output lines (DO0) is used to select either the upper four bits or the
lower four bits of the 8-bit data byte. If DO is a low (0) then the lower four bits are selected,
else if it is a high (1) then the upper four bits are selected. The DO output line connects to a
multiplexor which will select the lower or the upper four bits. If A is the multiplexor selector
line, X[1:4] are the input data bits and Z[1:4] the output from the multiplexor, then the equa-
tion for the multiplexor is

Z[1] = AX[5]+ AX[1]
Z[2] = AX[6]+ AX[2] A

Z[3] = AX[7]+ AX[3] X[1]—

_ Z[1]
Z[4] = AX[8] + AX[4] X[5]

Enhanced parallel port 293

I DO
b7 bG b5 b4 b3 b2 bl bO
Data port (378h) v -
0
PtrBusy (BUSY) _
>
AckDataReq (PE) g
XFlag (SELECT) %
- ©
DataAvail (ERROR) =
)
1
A AN
b; | bg | bs | by | by | by | by | by —
Status port (379h) I(\?Ilu(ltflgl;axor

_outp(0x378,0); /* set lower 4 bits */
invall=(_inp (0x379) & 0xf0) >> 4;
_outp(0x378,1); /* set upper 4 bits */
inval=(_inp(0x379) & 0xf0) +invall;

Figure 17.4 Nibble mode for 8-bit input

17.4 Byte mode

The byte mode is often known as a bidirectional port and it uses bidirectional data lines. It
has the advantage over nibble mode in that it only takes a single cycle to transfer a byte. Un-
fortunately, it is only compatible with newer ports. Table 17.2 defines the names of the sig-
nal in the nibble mode and Figure 17.5 shows the handshaking for this mode.

The byte mode has the following sequence:

Host (PC) indicates that it is ready to receive data by setting HostBusy LOW.

The peripheral then places the byte on the status lines.

The peripheral indicates that the data is valid on the status line by setting PtrClk LOW.
The host then reads from the data lines and sets HostBusy HIGH to indicate that it has
received the nibble, but it is not yet ready for another nibble.

The peripheral sets PtrClk HIGH as an acknowledgement to the host.

Host then acknowledges the transfer by pulsing HostCIk.

NS S

I

294 Computer busses

Table 17.2 Byte-mode signals

Compatibility Byte-mode name In/Out Description
signal name
STROBE HostClk Out Used as an acknowledgment signal. It is

pulsed low after each transferred byte.

ANTO EEFER HostBusy Out It is set LOW to indicate that the host is

AUTO FEED . .
ready for nibble and set HIGH when the nib-
ble has been received.

SELECT INPUT 1284Active Out Set HIGH when the host is transferring data.
INIT INIT Out Not used.
ACK PtrClk In Indicates valid data byte. It is set LOW to

indicate that there is valid data on the data
lines and then set HIGH when the HostBusy

going high.
BUSY PtrBusy In Busy status (for forward direction).
PE AckDataReq In Same as DataAvail.
SELECT Xflag In Not used.
ERROR DataAvail In Indicates that there is reverse data available.

D0-D7 D0-D7 In/Out Input/output data lines.

Valid data Data

HostBusy

PtrClk

HostClk

Figure 17.5 Byte mode data transfer cycle

17.5 EPP

The enhanced parallel port (EPP) mode defines a standard bidirectional communications
mode and is used by many peripherals, such as CD-ROMs, tape drives, external hard disks
and so on.

The EPP protocol provides four types of data transfer cycles:

Enhanced parallel port 295

1. Data read and write cycles — These involve transfers between the host and the peripheral.
2. Address read and write cycles — These pass address, channel, or command and control
information.

Table 17.3 defines the names of the signal in the nibble mode. The WRITE occurs automati-
cally when the host writes data to the output lines.
The data write cycle has the following sequence:

1. Program executes an 1/O write cycle to the base address port + 4 (EPP data port), see Ta-
ble 17.4. Then the following occur with hardware:

The WRITE line is set LOW, which puts the data on the data bus.
The DATASTB is then set LOW.

The host waits for peripheral to set the WAIT line HIGH.

The DATASTB and WRITE are then HIGH and the cycle ends.

a ks~ wn

The important parameter is that it takes just one memory-mapped 1/O operation to transfer
data. This gives transfer rates of up to 2 million bytes per second. Although it is not as fast as
a peripheral transferring over the ISA, it has the advantage that the peripheral can transfer
data at a rate that is determined by the peripheral.

Table 17.3 EPP mode signals

Compatibility EPP mode Infout Description

signal name name

STROBE WRITE Out A LOW for a write operation while a HIGH indi-
cates a read operation.

AUTO FEED DATASTB Out Indicates a data read or write operation.

SELECTINPUT ADDRSTROBE Out Indicates an address read or write operation.

INIT RESET Out Peripheral reset when LOW.

ACK INTR In Peripheral sets this line LOW when it wishes to
interrupt to the host.

BUSY WAIT In When it is set LOW it indicates that it is valid to
start a cycle, else if it is HIGH then it is valid to end
the cycle.

PE User defined In Can be set by each peripheral.

SELECT User defined In Can be set by each peripheral.

ERROR User defined In Can be set by each peripheral.

DO0-D7 ADO-AD7 In/out Bidirectional address and data lines.

296 Computer busses

17.5.1 EPP registers

Several extra ports are defined, these are the EPP address register and EPP data register. The
EPP address register has an offset of three bytes from the base address and the EPP data reg-
ister is offset by four bytes. Table 17.4 defines the registers.

Table 17.4 EPP register definitions

Port Name 1/0 address Read/ Description
write

Data register BASE_AD w

Status register BASE_AD +1 R

Control register BASE_AD +2 w

EPP address port BASE_AD+3 R/W Generates EPP address read or write cycle

EPP data port BASE_AD+4 R/W Generates EPP data read or write cycle

17.6 ECP

The extended capability port (ECP) protocol was proposed by Hewlett Packard and Micro-
soft as an advanced mode for communication with printer and scanner type peripherals. It
provides a high performance bidirectional data transfer between a host and a peripheral.

The standard provides for two cycle types in both forward and reverse directions:

1. Data cycles.
2. Command cycles which can either be a run length count or a channel address.

It has many advantages over the EPP standard, including:

e Standard addresses — ECP has standard register addresses — Figure 17.6 shows that the
addresses from 0778h to 077Ah have been defined for the extra functionality of ECP.

¢ Run length encoding (RLE) — RLE allows for compression. It allows high compression
rates when there is a great deal of repetitive information in a file (typically with graphics
files). A repetitive sequence is identified by a count followed by the repeated byte.

e FIFOs for both the forward and reverse channels.

o DMA as well as programmed 1/O for the host register interface.

o Channel addressing — This allows multiple logical devices to be located within a single
physical device. This channel address is passed in the command phase and can support up
to 128 devices (addresses 0 to 127). For example, a single unit could have an integrated
printer, fax and modem. ECP channel address allows them all to be accessed over a sin-
gle connection. Within one physical package, having a single parallel port attached, there
is a printer, fax and modem. This has the advantage that the printer can be busy printing
while the modem can be accessed at the same time.

ECP redefines the SPP signals to be consistent with the ECP handshake. Table 17.5 de-

Enhanced parallel port 297

scribes these signals.

Figure 17.7 shows two forward data transfer cycles. It has data followed by a command
phase. A high on the HostAck line indicates a data cycle, whereas a low indicates a com-
mand cycle. In the low state (command cycle) the data either represents an RLE count or a
channel address. The most significant bit of the data byte indicates whether it is an RLE
count or a channel address. If it is a 0, then bits the other 7 bits represent a RLE Count (from
0to 127), else a 1 represents a channel address (from 0 to 127).

ECP Printer Port (LPT1] Properties

Generall Driver FResources |

.\> ECP Frirter Port [LPT1)

Resource settings:

Resource type | Setting | -
Input/Output Range 0378 - 0374

0778 - 0774 =
Interrupt Request a7 LI

Input/Output Bange

Figure 17.6 ECP input/output address ranges

Table 17.5 ECP mode signals

Compatibility ECP mode name In/out Description

signal name

STROBE HostClk | Transfers data or address information in
the forward direction (along with Pe-
riphAck).

AUTO FEED HostAck o Command/Data status in the forward

direction. Data transfer in reverse direc-
tion (along with PeriphCIk).

SELECT INPUT 1284Active (0] Set high when host is in a 1284 transfer
mode.

INIT ReverseRequest 0 A low puts channnel in reverse direc-
tion.

ACK PeriphClk I Transfer data in the reverse direction
(along with HostAck).

BUSY PeriphAck | Transfer data or command information
(along with HostCIk).

PE nAckReverse | Acknowledgement to nReverseRequest.

SELECT Xflag | Extensibility flag.

ERROR nPeriphRequest | Set low by peripheral to indicate that

reverse data is available.
D0-D7 Data[8:1] 110 Data lines.

298 Computer busses

HostClk

PeriphAck

Command

HostAck >< Data

v v v A

DO0-D7 >< First byte >< >< Second byte ><
A

1 2 3 4
Figure 17.7 ECP forward data and command cycle

In the forward mode, the transfer of the data is from the host to the peripheral. Initially the
host places its data on the data bus. It sets the HostAck line high to indicate a data cycle and
sets HostCIk low to indicate valid data. Next, the peripheral acknowledges the host by setting
PeriphAck high. The host sets HostClk high which clocks the data into the peripheral. After
this, the peripheral sets PeriphAck low to indicate that it is ready for the next byte.

Figure 17.7 illustrates an example of the reverse channel transfer where the peripheral
transfers information to the host. As before, it shows a command cycle followed by a data
cycle. It is similar to the forward phase except that the host requests a reverse channel by
setting the nReverseRequest low. The peripheral then sets the nAckReverse line low to indi-
cate that it is ready to transfer data, then it puts the data on the data bus. It then sets the Pe-
riphAck high to indicate that it is a data cycle and set PeriphClk low to indicate valid data.
After this the host sets HostAck high to acknowledge these events and the peripheral sets
PeriphClIk high. This clock edge then clocks the data into the host. Finally, the host sets
HostAck low to indicate that it is ready for the next byte.

17.6.1 ECP software and register interface

The ECP specification (‘The IEEE 1284 Extended Capabilities Port Protocol and ISA Inter-
face Standard”) defines a number of operational modes. These are defined in Table 17.6. The
registers used to program ECP are based on the standard parallel port setting and uses an
address which are offset by 1024 (400h) from the standard port address. Thus:

Standard port base address = 378h
ECP extended registers = 378h + 400h = 778h

There are six extra registers defined for ECP, these are given in Table 17.7. These six regis-
ters are mapped into three memory addresses and are shown in Figure 17.8 (778h, 779h and
77Ah). The ECR register used to set the current operational mode and can also be used to
determine if an ECP-capable port is installed in the PC. Detection software can try to access
any ECR registers by adding 402h to the base address of the LPT ports identified in the
BIOS LPT port table.

Enhanced parallel port

HostClk

PeriphAck

299

DO0-D7

First byte

Second byte

HostAck ><

Data

X
X

Command

X
X

nReverse
Request

nAck
Reverse

— LN

Figure 17.8 ECP Reverse data and command cycle

The operation of the ECP port is similar to the EPP port. The ECR register is used to set an
operational mode, after which an 1/O port is used to transfer data (the actual port depends on
the mode). Handshaking is done automatically by the hardware and there is no need for the

software to control it.

Table 17.6 ECR Register Modes

Mode Description Mode Description

000 SPP mode 100 EPP parallel port mode (note 1)

001 Bidirectional mode (byte 101 (reserved)

mode)
010 Fast Centronics 110 Test mode
011 ECP parallel port mode 111 Configuration mode
Table 17.7 ECP register description

Offset Name Read/Write ECP Mode Function
000 Data R/W 000-001 Data register
000 ecpAfifo R/W 011 ECP address FIFO
001 dsr R/W all Status register
002 der R/W all Control register
400 cFifo R/W 010 Parallel port data FIFO
400 ecpDfifo R/W 011 ECP data FIFO
400 tfifo R/W 110 Test FIFO
400 cnfgA R 111 Configuration register A
401 cnfgB R/W 111 Configuration register B
402 ecr R/W all Extended control register

300 Computer busses

17.7 Exercises

17.8.1 How many pins does a standard D-type parallel port connector have:

@ 9 (b)y 12
() 25 (d) 36

17.8.2 What is the maximum transfer rate for ECP/EPP mode:

(@ 100kBIs (b) 150kB/s
(c) 1MBIs (d) 1.2MB/s

17.8.3 Outline the operation of the nibble mode. How does the parallel port allow data to
be inputted?

17.8.4 Design a circuit for nibble mode operation which will sample data bits. The design
should include ground connections (GND), connector types and pin numbers. If
possible, implement the design by adding switches to simulate input levels (power
can be supplied by the parallel port connection).

17.8.,5 Explain how several devices can be connected to the parallel port, and identify
how the operating system identifies each of the devices.

17.8 Note from the author

The parallel port was never really been destined for glory. It is basically a legacy port,
which, in the past, was only really useful in connecting printers. The future for printer con-
nections is either with network connections, such as Ethernet, or with a USB connection. In
its standard form, it has a large, bulky connector, which in many systems is never even used.

It has always struggled against the serial port, because it lacks the flexibility of RS-232
and, until recently, had no standards agency to support it. However, it’s there and it has
great potential for fast data transfers. RS-232 has always been a great success and has many
of the large manufacturers supporting it, and all importantly, it is defined by several stan-
dards agencies. The key to its current success was due to the intervention of the NPA which
brought together many of the leading computer and printer manufacturers. In these days,
there are only a few major companies, such as Intel and Microsoft, who can lead the market
and define new standards (such as the PCI bus, with Intel).

The main difficulties are how to keep compatibility with previous implementations and
software, and also how to connect multiple devices on a bus system, and allow them to pass
data back and forward without interfering with other devices. This has finally been achieved
with ECP/EPP mode. It is a bit complex, but it works, and even supports data compression.
At the present, my notebook connects to a CD-R drive, a scanner and a printer, all of the
same parallel port (just like SCSI). This arrangement works well most of the time and is a
relative cheap way of connecting devices, but it is in no way as flexible and as fast a SCSI.

@;J Modbus

18.1 Modbus protocol

The Modbus protocol is an industry-standard protocol which allows programmable control-
lers to communicate over a network or local communications link. It defines a standard mes-
sage structure that all Modbus-compatible controllers recognise and implement, regardless of
the network type. It describes:

e The format of requests to Modbus-compatible devices.

e The format of responses from Modbus-compatible devices.

e The layout and contents of message fields for Modbus-compatible devices. The Modbus
protocol provides the internal standard that the Modicon controllers use for parsing mes-
sages.

e How each controller knows its own device address and recognizes any messages ad-
dressed to it.

e The format of the data and other information contained in the message.

18.1.1 Transactions on Modbus networks

Standard Modbus controllers communicate using RS-232C and can be networked or con-
nected via a modem. Each controller (such as a host processor) communicates with the con-
nected devices (such as a PLC) using a master—slave technique (Figure 18.1). The controller
(the master) initiates transactions (queries) which are sent to the other devices (the slaves).
The addressed slave then responses to the request by sending back data or by implementing
the required action. This addressing can be to an individual device, or can be broadcasted to
all connected slaves. There are no responses from a broadcast query.
The query takes the form of:

e Anaddress (either an individual address or a broadcast address).

o A function code, which defines the requested action.

e Sent data, the format of which depends on the function code. For example, a function
code of 03 defines that the slave read from the started register defined in the data field
and it also contains the number of registers to read.

e Error-checking field, to allow the slave to validate the message integrity.

The response message takes the form:
e Action confirmation — on error, this field contains an echo of the query function code.

On an error, the function code is modified to indicate that the response is an error re-
sponse, and the returned data field contains an error code.

302 Computer busses

e Returned data — this contains the data returned by the slave, either register values or a
status.
e Error-checking field — this allows the master to validate the message integrity.

A standard Modbus network only contains masters and slaves. On a Modbus Plus network
controllers can operate as a master or a slave. The Modbus protocol is still applied to the
transaction. This typically occurs over a network.

Master

Slave v
Slave ¥
Slave v
Slave

Figure 18.1 Master—slave

18.1.2 Transmission modes

Modbus transmits values from the master to the slave either using ASCII or RTU (remote
terminal unit). All the devices on the network must be set to the same setting. These are:

e ASCII — Modbus transmits the bit values as ASCII characters which represent the hexa-
decimal of the transmitted bit values. The transmitted characters will range from ‘0’ to
‘9” and ‘A’ to ‘F’. For example, if the transmitted bit stream is to be:
0110 1111 0001 0011 1100 1100 1011 0000
this would be transmitted as the ASCII characters:
‘6’ ‘F’ ‘1’ '3 'C’ ‘'C’ ‘B0
In this mode, a start bit is transmitted, followed by a 7-bit ASCII character, an optional
parity bit and then two stop bits. The least-significant bit of the ASCII character is sent
first.
e RTU - an 8-bit value is sent as two hexadecimal values. For example:

01101111 0001 0011 1100 1100 1011 0000

this would be transmitted as the following:

Modbus 303

‘0110 1111° ‘0001 0011” “1100 1100* ‘1011 0000’

which allows for a faster transmission of values, and they can thus be decoded quicker
than the ASCII mode. RTU will obviously be twice as fast as the ASCII method. It also
allows continuous bit streams to be transmitted. In this mode, a start bit is transmitted,
followed by an 8-bit binary value, an optional parity bit and then two stop bits.

In summary, the modes are:

ASCII RTU
Coding Hexadecimal characters 8-bit binary
Start bits 1 1
No of bits/character 7 8
Parity Optional Optional
Stop bits lor2 lor2
Error checking LRC CRC

18.1.3 Modbus message frame

The Modbus message has different formats, depending on the transmission mode. These are:

ASCII framing — a colon ASCII character (:, or 3Ah) starts the message and the carriage
return—line feed sequence ends the message (CRLF, or ODh and 0Ah). The characters
within the message will then be ‘0’ to ‘9’ or ‘A’ to ‘F’. On a network, devices continu-
ally listen for the colon character. The field after this is the address field. The maximum
interval between characters is one second. Figure 18.2 shows the standard format.

RTU framing — messages start with a silent interval of at least 3.5 character times. After
this, the device address is transmitted. All devices on the network listen to the bus, and
wait for a silent period, which must be at least 3.5 characters since the last message. It
then transmits the message as a continuous stream. The first eight bits are the target ad-
dress. Errors occur if there is a silent period of more than 1.5 character times or if a de-
vice transmits its message before 3.5 character delays after the previous message. Figure
18.2 shows the standard format.

St'art Address Function DATA LRC Check End ASCII
() (CR-LF)
frame
4Pt — P4t —MWH—Pp4t— >
Number of
characters: 1 2 2 n 2 2
Start Address Function DATA LRC Check End RTU
frame

+—rt———Pt—Pt——H—Pp4—>

Time: 3.5characters 8 bits 8 bits n x 8 bits 16 bits 3.5 characters

Figure 18.2 ASCII and RTU message frame

304 Computer busses

18.1.4 Address field

The address field contains either two ASCII characters (for ASCII mode) or eight bits (for
RTU mode). Addresses range from 0 to 247 (00h to F7h), where O is the broadcast address
and 1 to 247 are used for slaves addresses. A master communicating with the slave puts the
slave’s address in the address field, and the slave, when responding, puts its own address in
the address field (to identify itself).

18.1.5 Function field

The function field contains either two ASCII characters (for ASCII mode) or eight bits (for
RTU mode). Codes range from 1 to 255 (00h to FFh), and they are used by the master to
inform the slave as to the action which requires to be performed. Typical codes (in decimal)
are:

01 Read coil status 02 Read input status 03 Read holding registers

04 Read input registers 05 Force single coil 06 Preset single register

07 Read exception status 08 Diagnostics 11 Fetch comm. event counter
12 Fetch comm. event log 13 Program controller 14 Poll controller

15 Force multiple coils 16 Preset multiple registers

17 Report Slave ID 18 Program 884/M84 19 Reset communication link

20 Read general reference 21 Write general reference
22 Mask write 4x reference 23 Read/write 3x registers 24 Read FIFO queue

For example, the read coil status gives an ON/OFF status for discrete outputs. When there
are no errors the slave sends back the original function code, else, on an error, the same code
is sent back, expect the most-significant bit is set to a 1. For example, if the function code
was 0000 1000, then, on an error, the return value will be 1000 1000. A status code is also
added in the data field, these are outlined in Table 18.1.

Table 18.1 Exception codes

Code Name Description
01 Illegal function The message function received is not an allowable action for the
addressed salve.
02 Illegal data address The address referenced in the data field is not an allowable address
for the addressed slave location.
03 Illegal data value The value referenced in the data field is not allowable in the ad-
dressed slave location.
04 Failure in associated The slave’s subcontroller has failed to respond to a message or an
device abortive error occurred.
05 Acknowledge The slave has accepted and is processing the long duration program
command.
06 Busy, rejected mes- The message was received without error, but the slave is currently
sage busy.

For example, if the master sends the message

Modbus 305

Address Function Start address (hi) Start address (o) No. (hi) No. (low) LRC
:12 01 02 10 00 01 DA

Then on an error, the response would send back the function code of 81 (which sets the most
significant bit of the function code (that is, 1000 0001). If the slave were busy then the ex-
ception code would be 06. Thus the code sent back will be:

Address Function Exception code LRC
12 81 06 67

18.1.6 Data field

The data fields contains even multiples of hexadecimal digits (in ASCII mode) or an even
number of binary values (in RTU mode). The format of the field depends on the function
code, and contains information, such as register addresses, the number of values required and
the number of bytes in the data field.

For example if the function code is 01 (read code status), then the format of the frame
send from the master to the slave is:

Slave address (xx).

Function (01) — read coil status.

Starting address high (xx) — most-significant byte of the starting register address.
Starting address low (xx) — least-significant byte of the starting register address.
Number of Points high (xx) — most-significant byte of the number of points to be sent.
Number of Points low (xx) — least-significant byte of the number of points to be sent.
Error check (xx).

If there are no errors, then the response is:

Slave address (xx).

Function (01) — read coil status.

Byte count.

Data (Coils 8 to 1) — data for the first eight coils, where a 1 value in a coil bit position
represents ON, whereas a 0 represent OFF.

o Data (Coil 16 to 9) —data for the next eight coils.

e efc.

o Error check (xx).

Some data fields are empty, such as the communication event log function (12, or 0Bh).
18.1.7 Error checking field

The error checking method depends on the type of transmission, these are:

e ASCII - in this mode the error checking field contains two characters, which performs a
longitudinal redundancy check (LRC) for all characters, excluding the start and end ter-
minating characters (:, CR and LF).

e RTU - in this mode, the error-checking field contains a 16-bit value which performs a
cyclical redundancy check (CRC). This field is added to the end of the message; the
low-order byte of the field is appended first, followed by the high-order byte.

306

Computer busses

LRC

The ASCII mode uses the LRC method. It basically adds up the values of each of the 8-bit
fields, apart from the starting colon and the end CRLF, and then takes the two’s complement
of the result (ignoring any carries). For example, from the previous example the transmitted

values are
Start address (12) 0001 0010
Function (01) 0000 0001

Start address, high (02) 0000 0010
Start address, low (10) 0001 0000
Number, high (00) 0000 0000
Number, low (01) 0000 0001
Total 0010 0110

To convert to 2’s complement, invert all the bits, to give

1101 1001

and then add 1, to give

1101 1010

which is DA, in hexadecimal. Thus the transmitted message would be:

:120102100001DA<CRLF>

CRC checking

The RTU mode uses CRC, which is a much stronger error checking method. This method is
outlined in Appendix D. Its operation is as follows:

1.
2.

3.

16-bit register is preloaded with all bits set to 1.

The first eight-bit data character is exclusive ORed (XOR) with the higher order-byte in
the register and the result is put in the register.

The register is then right shifted by one bit position and a zero filled into the most signifi-
cant bit (MSB) position.

If the shifted bit out is a 1, XOR the generator polynomial 1010 0000 0000 0001 with the
16-bit register, else return to Step 3.

Repeat steps 3 and 4 for eight right shifts.

XOR the next 8-bit value with the 16-bit register.

Repeat Steps 3 to 6 until all the bytes in the message have been XOR with the 16-bit reg-
ister and shifted eight times.

The resultant content of the 16-bit register is the CRC error check.

Modbus 307

18.2 Function codes

Each value is addressed via a register. The first register address on the Modbus is referenced
to zero. The following sections outline the main function codes.

18.2.1 Read coil status (01)

This function reads the ON/OFF status in Boolean logic. The query message specifies the
starting coil and quantity of coils to be read. For example to read 12 values (OCh) from de-
vice 18 (12h), starting at address 02DE, then the following is used:

Address Function Start address (hi) Start address (Ilo) No. (hi) No. (low) LRC
:12 01 02 DE 00 oc 01

The response contains the coil status, in which the data field is packed with bit values, one
for each coil. A one represents ON, a zero represents OFF and the Isb of the first byte con-
tains the first address coil. Other coil values follow this and, if the number of coil values is
not a multiple of eight, then zeros are used to pad the end values. The byte count field pre-
cedes the coil values and specifies the quantity of complete bytes of data. An example re-
sponse to the above query is

Address Function Number of bytes Data values (8 to 1) Data values (12to 9) LRC
:12 01 02 BA 10 FB

Thus, if the addressed coils are Coil 1 to Coil 12, then the Coils 8 to Coil 1 have the status of
1101 1100 (BAh), which means that Coil 8, Coil 7, Coil 5, Coil 4 and Coil 3 are ON, and
Coil 6, Coil 2 and Coil 1 are OFF. The other four coils are 0001 for Coil 12 to Coil 9. Thus,
Coil 9 is ON and Coil 12, Coil 11 and Coil 10 are OFF.

18.2.2 Read Input Status (02)

This function reads the ON/OFF status of discrete inputs from the slave device. This function
reads the ON/OFF status of logic Boolean. It has the same format as the read coil Status
function code. For example to read four values, starting at address 11FF, then the following is
used:

Address Function Start address (hi) Start address (Ilo) No. (hi) No. (low) LRC
:12 02 11 FF 00 04 D8

The response is in the same format as the read coil status function. An example response to
the above query is

Address Function Number of bytes Data values (4to1) LRC
:12 02 01 02 cc

which returns the status of the four inputs as

Input4 (Address: 1202) OFF (0000 0010)
Input 3 (Address: 1201) OFF (0000 0010)
Input 2 (Address: 1200) ON (0000 0010)
Input1 (Address: 11FF) OFF (0000 0010)

308 Computer busses

18.2.3 Read holding registers (03)

The function reads the binary contents of holding registers (4x references) in the slave. Hold-
ing registers are identified starting from 40001, which is addressed as register 0000. Register
40002 is addressed as register 0001, and so on.

For example, to read two values, starting at address OE2 (register 40226), then the follow-
ing is used:

Address Function Start address (hi) Start address (Ilo) No. (hi) No. (low) LRC
:12 03 00 El 00 02 05

The response gives 16 bits for every register value. An example response is,

Address Function Number of bytes Data value (40226) Data values (40227) LRC
:12 03 04 BA A2 FF 10 7c

18.2.4 Read input registers (04)

This function reads the binary contents of input registers (3x references) in the slave. Input
registers are identified starting from 30001, which is addressed as register 0000. Register
30002 is addressed as register 0001, and so on. The response gives 16 bits for every register
value.

18.2.5 Force single coil (05)

This function forces a single coil (Ox reference) to either an ON or an OFF state. For example,
to force coil at address 101 (65h) to be ON, then the following is used:

Address Fun. Start add. (hi)Start add. (lo)Force data (hi) Force data (low) LRC
:12 05 00 65 FF 00 85

A value of FFOO sets the coil ON, while a value of 0000 sets the coil OFF. The response
should just be the echo of the query.

18.2.6 Preset Single Register (06)
This function presets a value into a single 16-bit holding register (4x reference). For example
to preset register 40226 (address E1) to 021F then:

Address Function Start address (hi) Start address (Ilo) No. (hi) No. (low) LRC
:12 06 00 El 02 1F 05
The response should just be the echo of the query.
18.2.7 Read Exception Status (07)

This function reads the current status of the slave. Normally the settings for the addresses
and the bits within the addresses are normally manufacture defined. For example, for the
Honeywell 2500 series chromatograph the returned status codes are:

Coil Assignment Coil Assignment

1 Shutdown 2 Unknown fail

3 Power fail 4 Unacknowledged alarms
5 Starting 6 Running

7 Warm start 8 Cold start

Modbus 309

Other set-ups (especially on newer equipment) allow access to the batteries status. An exam-
ple query is

Address Function LRC
112 07 E7

and an example response is

Address Function Flagdata LRC
:12 07 7D 6A

18.2.8 Fetch Communications event counter (11, 0Bh)
This function returns a status word and an event count for the slave’s communications event
counter. An example query is

Address Function LRC
112 0B E3

and an example response is

Address Function Status (hi) Status (lo) Event count (hi) Event count (Io) LRC
:12 0B FF FF 02 08 DB

A status of FFFFh indicates that the slave is still progressing a program function, else it will
be 0000h. The event counter holds the number of events that have been counted by the con-
troller.

18.2.9 Fetch communication event log (12, 0Ch)

This function returns a status word, event count, message count, and a field of event bytes
from the slave. The status word and event count are identical to that returned by the fetch
communications event counter function, but it is followed by a 16-bit value which defines
the number of events stored. The events are then listed after this.

18.3 Modbus diagnostics

The 08 function is used to get slave diagnostics. This is used with a number of subfunctions.
The format, and example, of a diagnostics function are

Address Function Subfunction (hi) Subfunction (lo) Data (hi) Data (lo) LRC
:12 08 00 FF 02 08 DB

The subfunctions are given in the following table.

310 Computer busses
Sub Description Query (data field) Reply
function
0000 Return query data Same as the query. Same as query.
0001 Restart communication 00 00 (leave log asit ~ Same as query.
option was prior to restart)
FF 00 (clear event
log)
00 02 Return diagnostic 0000 Diagnostic 16-bit register contents.
register The contents depends on the Modbus
type. An example is:
Bit
0 Continue on error
1 Run light failed
2 T-Bus test failed
3 Asynchronous bus test failed
4 Force listen mode
7 ROM Chip 0 test failed
8 Continuous ROM checksum test in
execution
9 ROM 1 test failed
10 ROM 2 test failed
11 ROM 3 test failed
0003 Change ASCII input ‘char’ 00 Change end-of-message character.
delimiter Return is the same as query.
0004 Force listen only-mode 00 00 Slave goes into a listen-only mode
and thus does not respond.
00 0A Clear counters and di- 0000 Return is the same as query.
agnostic register
00 0B Return bus message 00 00 Return is the same as query.
count
000C Return bus communica- 00 00 CRC Error count.
tion error count
00 0D Return bus exception 0000 Exception error count.
error count
00 OE Return slave message 00 00 Slave message count.
count
00 OF Return slave no re- 00 00 Slave no response count.
sponse count
00 10 Return slave NAK 00 00 Slave NAK count.
count
0011 Return slave busy count 00 00 Slave busy count.
0012 Slave character overrun 00 00 Slave character overrun count.
count
0013 Return overrun error 00 00
count
00 14 Clear overrun counter 00 00
and flag
00 15 Get/clear Modbus Plus

statistics

Modbus 311

18.4 Exercises

18.4.1 What is the basic topology of a Modbus network:

(@ One or many masters and one slave

(b) One or many master and one or many slaves
(c) One master and one slave

(d) One master and one or many slaves

18.4.2 How is the start of an ASCII message frame identified:

(@ 01111110 () 7
(c) Startbit(al) (d) LFCR (line feed, carriage return)

18.4.3 What is the maximum number of nodes on a Modbus network:

(@ 8 (b) 256
(c) 1024 (d) No limit

18.4.4 What is the addressing range for the Modbus protocol:

(@ 00h-FFh (b) 0000h-FFFFh
(c) 000000h-FFFFFFh (d) Nolimit
18.45 Determine the LRC (in hex) that is to be added to the message transmission of
4F2A10h:
(@ 89h (b) 77h
(c) 88h (d) 76h

18.4.6 Determine the LRC (in binary) that is to be added to the message transmission of
1000 1100 0001 0110 1111 0110b:

(a) 01101000b (b) 10011000b
(c) 00000000b (d) 01100111b

18.4.7 What ASCII characters are transmitted for the data transmission of 1010 0011
1110 1010b:
@) ‘10°, ‘37, ‘157, ‘A’ (b) ‘1’, ‘0%, °37, ‘17, ‘57, ‘A’
(©) ‘A, 3B A (d) ‘0’, ‘17, °3”, ‘57, ‘17, A

312 Computer busses

18.5 Notes from the author

Modbus is an important protocol and has grown in its popularity because of its simplicity. It
has a very basic structure, and is easy extremely easy to implement as it is based on a mas-
ter—slave relationship where a master device sends commands and the addressed slave re-
sponses back with the required information. Its main advantages are its simplicity, its stan-
dardization and its robustness.

Modbus can be operated on a wide range of computers running any type of software,
from a simple terminal-type connection, where the user can enter the required commands
and views the responses, through to a graphical user interface, with the commands and re-
sponse messages hidden from the user. The basic protocol is, of course, limited in its basic
specification, such as the limited number of nodes (256, maximum) and the limited address-
ing range (0000h to FFFFh).

The basic communications link is also simple to implement (normally, RS-232), but newer
Modbus implementations use network connections, such as Ethernet. Another change is to
implement the Modbus protocol over a standard TCP/IP-based network. This will allow
Modbus to be used over an Internet connection.

RS-232 does not have strong error checking, and only provides for basic parity check.
Modbus using ASClII-based transmission of the Modbus protocol adds a simple checksum to
provide an improved error detection technique (LRC). For more powerful error detection the
data can be transmitted in RTU format, which uses the more powerful technique (CRC).

The Modbus Plus protocol now allows for devices to be either a master or a slave. This
allows for distributed instrumentation, where any device can request data from any other
device, at a given time.

Fieldbus

19.1 Introduction

Field buses are special local area networks that are dedicated to data acquisition and the con-
trol of sensors and actuators. They typically run over low-cost twisted pair cable. They differ
from many traditional LANSs (such as Ethernet) in that they are optimised for the exchange of
short point-to-point status and command messages. There are many Fieldbus standards that
exist, each developed for a specific purpose.

The potential market for Fieldbus equipment is enormous. Figure 19.1 shows an estimate
of sales over time. It can be seen that the expected market in 2003 is over 50%. Instrumenta-
tion interfaces have evolved from 3-15PSI transmitters, to 4-20mA analogue interfaces,
now to serial interfaces (typically either RS-232 or RS-485) and now to Fieldbus interfaces.
This evolution over time is illustrated in Figure 19.2.

A
Total estimated

60 + sales (%)

Fieldbus
compatible
Sensors

50 T

30 7

10

| | | | N

T T I I [
1993 1995 1997 1999 2001 2003

Figure 19.1 Market for Fieldbus

19.2 Fieldbus types

The main Fieldbus types are outlined in this section, but most of the chapter is devoted to the
FOUNDATION Fieldbus, which is a truly open standard, and the WorldFIB, which are sup-
ported by many major vendors.

314 Computer busses

Sales

Serial

4-20mA

analogue \

Fieldbus
3-15 PSI

4

| | |
: | \ \ ' Time

1930 1960 1990
Figure 19.2 Changes in the market for instrumentation parameter transmissions

There are three main categories for Fieldbus installations, these are Fieldbus standard, Other
domain standards and non-Fieldbus. The main Fieldbus standard are WorldFIP (standard in
France), Profibus (standard in Germany) and P-Net (standard in Denmark), and are all part of
the CENELEC European standard EN 50170. WorldFIP has the advantage over the others in
that it uses the IEC physical layer (the IEC 1158-2). The Fieldbus Foundation is an initiative
of mainly USA-based vendors. Its main aim is to standardise Fieldbus for the petrochemi-
cal/chemical industries. One of its aims is not to replace traditional DCSs (distributed control
systems), but to integrate with them. The main standards for Fieldbus products are:

* Fieldbus Foundation — this was formed 1994 have defined low speed 31.25kbps trans-
mission (H1). The H2 standard (which is equivalent to WorldFIP) will operate at 1Mbps.

e WorldFIP (or WorldFIP Europe) — this standard has been incorporated into many prod-
ucts and supports a 1Mbps transmission rate. WorldFIP contributes to the Fieldbus
Foundation, in their standardisation process.

* Profibus — this has three main types: FMS (flexible manufacturing systems), DP (distrib-
uted peripherals) and PA (process automation). FMS and DP use RS-485 signalling,
whereas PA uses the IEC physical layer at low speeds. FMS and DP are part of
EN50170.

Other busses, such as the CAN bus, use only the lower layers of functionality, especially for
remote 1/0.

19.2.1 BITBUS

Intel introduced the BITBUS for remote I/O capability to multibus systems. It allows pro-
grams to be downloaded and executed in a remote node for truly distributed system configu-
rations. Its outline specification is

Speed 375 kbps

Maximum nodes with/without repeaters 250/32

Maximum distance with/without repeaters ~ 13.2 km max/1.2 km max
Avrbitration master/slave

Fieldbus 315

Cable type twisted-pair
Header/data size 1to 13 or 52 bytes
Major benefits large number of users
Nodes programmable intelligent 1/0 modules
Primary applications process control

19.2.2 WorldFIP

WorldFIP operates at 1 Mbps over twisted-pair cables, and is a reliable method of transmit-
ting variables (from sensors and to actuators) and messages (such as events, configuration
commands). It uses a bus arbitrator that broadcasts variable identifiers to all the nodes on the
network. This triggers the required node which produces the node to respond with the re-
quired value. All modules that need this value must then read it. Its main characteristics are:

* It supports a distributed, decentralised database of variables.

* |t does not require node addresses as messages are broadcasted by a bus arbitrator, and
then the response is from the node which contains the processor parameter.

Its outline specification is

Speed 1 Mbps

Maximum nodes with/without repeaters 256/64

Maximum distance with/without repeaters ~ Greater than 10 km/2km

Avrbitration bus arbiter

Cable type twisted-pair

Header/Data size 1 to 128 bytes

Major benefits distributed data base/ very deterministic

Primary applications Real-time control/process/machine
19.2.3 CAN

Controller area network (CAN) was developed mainly for the automobile industry, and is
now popular in factory automation. It transmits at 1Mbps and uses twisted-pair cable for up
to 40 devices. Its main features are:

* Nodes can communicate when there are no nodes communicating on the bus.

* It uses a non-destructive bit-wise arbitration which allows fast detection of multiple ac-
cesses. This allows full use of the bandwidth. This differs from bus-topology LAN tech-
nologies, such as Ethernet, which detects collisions over long distances, and suffers from
propagation delays, and nodes may transmit many bits before they can determine if two
or more nodes are communicating at a time. In Ethernet, nodes back off from the net-
work when a collision occurs.

* Message priority system, which is based on an 11-bit packet identifier.

* Architecture can be many masters, and involves peer-to-peer communications or multi-
cast transmissions.

e Automatic error detection, signalling and retries.

* Short data packets of eight bytes.

Its outline specification is

316 Computer busses

Speed 1 Mbps
Maximum nodes with (/without repeaters) N/A (30)
Maximum distance with (/without repeaters) N/A (40m at 1Mbps, 1km at 20 kbps)

Arbitration CSMA

Cable type twisted-pair

Header/data size 8 bytes fixed

Major benefits Low cost/efficient for short messages
Primary applications Automotive

19.3 FOUNDATION Fieldbus

FOUNDATION Fieldbus, is an open specification for sensors, actuators, analysers, and so
on. It allows:

* The control functionality actually resides in field devices.

* The support of other diagnostic, process operation and maintenance functions within field
devices.

In the past, 4-20mA standards have been used to transmit plant information to controllers.
This has in some places, been replaced by transmitter vendors providing their own digital
protocol to allow bidirectional communication between the control system and smart trans-
mitters. Fieldbus has finally allowed a standardised method for process control to move from
being centralized to become distributed, and the control to actual reside in field devices, such
as transmitters, values and analysers. It provides a digital communications channel and a user
layer to provide intercommunications. Its benefits are:

* Interoperability — this allows different suppliers to be used for devices.
* Wiring cost savings — one communication channel can transmit many digital signals.
* Flexible control implementations.

* Increased field information — this includes processed data, averages, minimas, maxima,
diagnostic information and operational information.

Fieldbus was initially defined by the ISA’s SP50 fieldbus standards committee, which out-
lined a two-way, multidrop, digital communications standard for the interconnection of sen-
sors, actuators, instruments and control systems. The Fieldbus Foundation has since set out
to commercialise it as the FOUNDATION Fieldbus.

19.3.1 Fieldbus topology

Most analogue transmission methods, and many digital field communications methods, re-
quire a single twisted-pair wire for the transmission of a single process variable. Fieldbus
differs from this in that it can connect using point-to-point, with buses with spurs, as a daisy
chain, as a tree, or as a combination of any of these. The methods are:

* Bus with spurs — all the devices connect to a common bus and they connect through
junction boxes, as illustrated in Figure 19.3.

Fieldbus 317

¢ Daisy-chained — all the devices are chained to each other, one-by-one. It is similar to the
bus with spurs, but does not use junction boxes. It is a useful method of connecting de-
vices as new devices can be added by simply daisy-chaining from a close device. The
disadvantage is devices must be disconnected in order to connect a nearby device, unless
a special connector can be used that allows a connected device to be connected.

* Tree — type of topology uses a single junction box, with the devices connecting directly
to the junction box. Typically, it is used when devices are added and deleted from the
network on a regular basis.

Daisy

PLe \/‘\ /\ /\chain
Sensor/ Sensor/ Sensor/ Sensor/

Actuator Actuator Actuator Actuator

Junction boxes

— T
T T T T

Sensor/ Sensor/ Sensor/ Sensor/
Actuator Actuator Actuator Actuator
Junction
boxes
N A;ee
Sensor/ Sensor/ Sensor/ Sensor/
Actuator Actuator Actuator Actuator

Figure 19.3 Fieldbus connection topologies

19.3.2 FOUNDATION Fieldbus layers

Process control communications can be group into three different levels:

* Hardware-address buses — this type of bus uses hardware addresses and registers to store
values. Examples are 1/0 buses, PLCs, SCADA protocols with RTUs (remote termina-
tion units).

¢ Symbolically addressed buses — this type of bus uses addresses that actually have a sym-
bolic name. This works at a higher-level than the hardware-address bus.

* Comprehensive user-layer functionality buses — this type of bus operates at a higher level
than hardware and symbolic addressing. It is used in the FOUNDATION Fieldbus and
supports function blocks, standardised parameters, operational modes, cascade initialisa-
tion sequences, antiwindup mechanisms, quality-of-data propagation and response, fail-
state initiation, alarm reporting and control mechanisms, process control data structures,
and so on.

318 Computer busses

The FOUNDATION Fieldbus consists of two main layers: the communications layer and the
user layer. The components in these layers are illustrated in Figure 19.4. The user layer oper-
ates above the communications layer and includes function blocks, resource blocks, trans-
ducer blocks and alarm notifications.

Fieldbus Resource
network block
Comm- Function | | Transducer .
unication block block
Protocol
(Data Object) ; ;
link) dictionary Function | | Input/
B block : : output
Comm- shell v v signals
unication
interface Function Transducer |
(physical) block block

Figure 19.4 FOUNDATION Fieldbus architecture
19.3.3 Function blocks (FB)

The user layer supports device configuration, and uses function blocks. A device can have
any number of function blocks. These are used for control, diagnostic, safety and production
accounting purposes, and define such things as:

¢ Standardised parameter names.

¢ Data types.

* A cascade initialisation mechanism.

* Status propagation.

* An antiwindup mechanism.

* Trend collection mechanism.

* An execution scheduling mechanism.

* Block modes and behaviors in response to mode changes.
* Status of process variables.

* Rules for propagation of status.

* Behaviours in response to status changes.

These include:

¢ Standardised function blocks.
¢ Vendor-enhanced function blocks and vendor-custom function blocks.

19.3.4 Resource blocks (RB)

Each device also has an RB, which contain parameters relating to the physical device, such
as:

Fieldbus 319

* Manufacturer ID.

* Device type of device.

* Revision.

* Memory usage and free space.

¢ Computational time.

* Device state (on-line/off-line/standby/fault condition/etc).

19.3.5 Transducer block (TB)

Each device has a TB, which the named entity that stores the parameters associated with the
sensor or actuator.

19.3.6 Alarm notifications

Each block (functional, resource or transducer) can produce an alarm notification which is
associated with that particular block, such as:

* Process problems with function blocks.
* Sensor/actuator problems with transducer blocks.
* Overall device problems with resource blocks.

The devices each have parameters, which are structured using an object dictionary, which is
a standardised method of interrogating and referencing parameters over the communications
link.

In FOUNDATION Fieldbus the trip-point values are low, low-low (LO_LO_LIM), high
(HI_LIM), high-high (HI_HI_LIM), deviation-low (DEV_LO) and deviation-high
(DEV_HI). These trip values can generate alarms, which have certain priority levels. These
are:

* Priority 0 — disables alarms including the setting of the alarm condition status flag.
* Priority 1 — disable report, but causes the status flag to be set.

* Priority 2 to 7 — advisory alarms.

* Priority 8 to 15 — critical alarms.

19.3.7 Device description language (DDL)

The FBs, TBs and RBs are not just limited to a standardized set of parameters, a new DDL
allows manufactures to specify additional parameters in a standardised manner. This includes
names, data types, enumerations, units, valid ranges, user entry limits, entry conditions (such
as out-of service or manual mode), connection properties, presentation information and help
text. Updates can be easily installed with DDs (device descriptions), which is a compiled
form of DDL. This allows easy updates and bug fixes on equipment, as updates can be
downloaded onto the equipment.

19.3.8 Control