

Table of Contents

Preface ixx

1 INTRODUCTION 1
1.1 Pre-PC Development 1
1.2 8008/8080/8085 6
1.3 8086/8088 13
1.4 80186/80188 19
1.5 80286 20
1.6 Post-PC development 21
1.7 Exercises 36
1.8 Notes from the author 40
1.9 DEC 45

2 BUSSES, INTERRUPTS AND PC SYSTEMS 49
2.1 Busses 49
2.2 Interrupts 61
2.3 Interfacing 69
2.4 PC Systems 76
2.8 Practical PC system 77
2.5 Exercises 79
2.6 Notes from the author 82

3 INTERFACING STANDARDS 85
3.1 Introduction 85
3.2 PC bus 85
3.3 ISA bus 87
3.4 Other legacy busses 91
3.5 Comparison of different types 92
3.6 Exercises 93
3.7 Summary of interface bus types 95
3.8 The fall of the MCA bus 97
3.9 Notes from the author 98

4 PCI BUS 103
4.1 Introduction 103
4.2 PCI operation 106
4.3 Bus arbitration 109
4.4 Other PCI pins 110
4.5 Configuration address space 110
4.6 I/O addressing 112

Table of contents xi

4.7 Exercises 116
4.8 Example manufacturer and plug-and-play IDs 118
4.9 Notes from the author 119

5 MOTHERBOARD DESIGN 121
5.1 Introduction 121
5.2 TX motherboard 132
5.3 Exercises 136
5.4 Notes from the author 137

6 IDE AND MASS STORAGE 139
6.1 Introduction 139
6.2 Tracks and sectors 139
6.3 Floppy disks 140
6.4 Fixed disks 141
6.5 Drive specifications 142
6.6 Hard disk and CD-ROM interfaces 142
6.7 IDE interface 143
6.8 IDE communication 144
6.9 Optical storage 150
6.10 Magnetic tape 153
6.11 Exercises 155
6.12 Notes from the author 156

7 SCSI 157
7.1 Introduction 157
7.2 SCSI types 157
7.3 SCSI interface 159
7.4 SCSI operation 162
7.5 SCSI pointers 164
7.6 Message system description 165
7.7 SCSI commands 167
7.8 Status 169
7.9 Exercises 171
7.10 Notes from the author 172

8 PCMCIA 173
8.1 Introduction 173
8.2 PCMCIA signals 173
8.3 PCMCIA registers 175
8.4 Exercises 179
8.5 Notes from the author 179

9 USB AND FIREWIRE 181
9.1 Introduction 181

xii Computer busses

9.2 USB 182
9.3 Firewire 186
9.4 Exercises 190
9.5 Notes from the author 190

10 GAMES PORT, KEYBOARD AND MOUSE 191
10.1 Introduction 191
10.2 Games port 191
10.3 Keyboard 195
10.4 Mouse and keyboard interface 198
10.5 Mouse 199
10.6 Exercises 200
10.7 Notes from the author 201

11 AGP 203
11.1 Introduction 203
11.2 PCI and AGP 204
11.3 Bus transactions 205
11.4 Pin description 205
11.5 AGP master configuration 208
11.6 Bus commands 209
11.7 Addressing modes and bus operations 210
11.8 Register description 210
11.9 Exercises 215
11.10 Notes from the author 215

12 FIBRE CHANNEL 217
12.1 Introduction 217
12.2 Comparison 217
12.3 Fibre channel standards 218
12.4 Cables, hubs, adapters and connectors 219
12.5 Storage Devices and storage area networks 221
12.6 Networks 221
12.7 Exercises 222
12.8 Notes from the author 222

13 RS-232 223
13.1 Introduction 223
13.2 Electrical characteristics 223
13.3 Communications between two nodes 228
13.4 Programming RS-232 233
13.5 RS-232 programs 237
13.6 Exercises 241
13.7 Notes from the author 246

Table of contents xiii

14 RS-422, RS-423 AND RS-485 247
14.1 Introduction 247
14.2 RS-485 (ISO 8482) 247
14.3 Line drivers 249
14.4 RS-232/485 converter 250
14.5 Exercises 251
14.6 Note from the author 251

15 MODEMS 253
15.1 Introduction 253
15.2 RS-232 communications 254
15.3 Modem standards 255
15.4 Modem commands 256
15.5 Modem set-ups 258
15.6 Modem indicator 260
15.7 Profile viewing 260
15.8 Test modes 261
15.9 Digital modulation 264
15.10 Typical modems 265
15.11 Fax transmission 267
15.12 Exercises 268
15.13 Notes from the author 269

16 PARALLEL PORT 271
16.1 Introduction 271
16.2 PC connections 271
16.3 Data handshaking 272
16.4 I/O addressing 275
16.5 Interrupt-driven parallel port 279
16.6 Exercises 284
16.7 Notes from the author 287

17 ENHANCED PARALLEL PORT 289
17.1 Introduction 289
17.2 Compatibility mode 289
17.3 Nibble mode 290
17.4 Byte mode 293
17.5 EPP 294
17.6 ECP 296
17.7 Exercises 300
17.8 Note from the author 300

18 MODBUS 301
18.1 Modbus protocol 301
18.2 Function codes 307

xiv Computer busses

18.3 Modbus diagnostics 309
18.4 Exercises 311
18.5 Notes from the author 312

19 FIELDBUS 313
19.1 Introduction 313
19.2 Fieldbus types 313
19.3 FOUNDATION Fieldbus 316
19.4 Exercises 323
19.5 Notes from the author 323

20 WORLDFIP 325
20.1 Introduction 325
20.2 Physical layer 325
20.3 Data link layer 326
20.4 Exercises 330
20.5 Notes from the author 331

21 CAN BUS 333
21.1 Introduction 333
21.2 CAN physical 335
21.3 CAN bus basics 336
21.4 Message transfer 337
21.5 Fault confinement 340
21.6 Bit timing 341
21.7 CAN open 342
21.8 Exercises 342
21.9 Notes from the author 343

22 IEEE-488, VME AND VXI 345
22.1 Introduction 345
22.2 IEEE-488 bus 345
22.3 VME bus 348
22.4 VXI bus 349
22.5 Exercises 352
22.6 Notes from the author 353

23 TCP/IP 355
23.1 Introduction 355
23.2 TCP/IP gateways and hosts 356
23.3 Function of the IP protocol 356
23.4 Internet datagram 357
23.5 ICMP 359
23.6 TCP/IP internets 362
23.7 Domain name system 366

Table of contents xv

23.8 Internet naming structure 367
23.9 Domain name server 368
23.10 Bootp protocol 369
23.11 Example network 371
23.12 ARP 373
23.13 IP multicasting 373
23.14 Exercises 375
23.15 Notes from the author 377
23.16 Additional material 378

24 TCP AND UDP 385
24.1 Introduction 385
24.2 Transmission control protocol 385
24.3 UDP 389
24.4 TCP specification 390
24.5 TCB parameters 392
24.6 Connection states 392
24.7 Opening and closing a connection 395
24.8 TCP user commands 397
24.9 WinSock 399
24.10 Visual Basic socket implementation 408
24.11 Exercises 414
24.12 TCP/IP services reference 416
24.13 Notes from the author 416

25 NETWORKS 419
25.1 Introduction 419
25.2 Network topologies 421
25.3 OSI model 424
25.4 Routers, bridges and repeaters 426
25.5 Network cable types 429
25.6 Exercises 431
25.7 Notes from the author 432

26 ETHERNET 435
26.1 Introduction 435
26.2 IEEE standards 436
26.3 Ethernet – media access control (MAC) layer 437
26.4 IEEE 802.2 and Ethernet SNAP 439
26.5 OSI and the IEEE 802.3 standard 441
26.6 Ethernet transceivers 442
26.7 Ethernet types 443
26.8 Twisted-pair hubs 445
26.9 100 Mbps Ethernet 445
26.10 Comparison of fast Ethernet other technologies 450
26.11 Switches and switching hubs 451

xvi Computer busses

26.12 Network interface card design 453
26.13 Gigabit Ethernet 457
26.14 Exercises 462
26.15 Ethernet crossover connections 464
26.16 Notes from the author 465

27 RS-232 PROGRAMMING USING VISUAL BASIC 467
27.1 Introduction 467
27.2 Properties 467
27.3 Events 473
27.4 Example program 474
27.5 Error messages 475
27.6 RS-232 polling 476
27.7 Exercises 477

28 INTERRUPT-DRIVEN RS-232 479
28.1 Interrupt-driven RS-232 479
28.2 DOS-based RS-232 program 479
28.3 Exercises 486

A PC PROCESSORS 489
A.1 Introduction 489
A.2 8086/88 490
A.3 80386/80486 495
A.4 Pentium/Pentium Pro 501
A.5 Exercises 505

B VESA VL-LOCAL BUS 509

C MODEM CODES 511
C.1 AT commands 511
C.2 Result codes 513
C.3 S-registers 514

D REDUNDANCY CHECKING 519
D.1 Cyclic redundancy check (CRC) 519
D.2 Longitudinal/vertical redundancy checks (LRC/VRC) 523

E ASCII CHARACTER CODE 525
E.1 Standard ASCII 525
E.2 Extended ASCII code 527

Table of contents xvii

F QUICK REFERENCE 529
F.1 Notes from the author 531

G ISDN 533
G.1 Introduction 533
G.2 ISDN channels 534
G.3 ISDN physical layer interfacing 535
G.4 ISDN data link layer 538
G.5 ISDN network layer 541
G.6 Speech sampling 543
G.7 Exercises 544

H MICROSOFT WINDOWS 547
H.1 Introduction 547
H.2 Windows registry 548
H.3 Device drivers 550
H.4 Configuration manager 551
H.5 Virtual machine manager (VMM) 552
H.6 Multiple file systems 555
H.7 Core system components 557
H.8 Multitasking and threading 559
H.9 Plug-and-play process 561
H.10 Windows NT architecture 561
H.11 Windows 95 and Windows 98 564
H.12 Fundamentals of Operating Systems 565
H.13 Exercises 567

I HDLC 569
I.1 Introduction 569
I.2 HDLC protocol 570
I.3 Transparency 574
I.4 Flow control 574
I.5 Derivatives of HDLC 576

J EXAMPLE WINSOCK CODE FOR VISUAL BASIC
J.1 My client (myClient.frm) 579
J.2 My server (myServer.frm) 583
J.3 Choice form (ChoiceSC.frm) 586
J.4 Error panel (ErrorPanel.frm) 587
J.5 Help form (help.frm) 589

Index 591

xviii Computer busses

xix

Preface

What is it that really determines the performance of a computer? Is it the processor? No,
not really. It is the amount of memory that it has? No, not really. Is it the speed of the
disk drives? No, not really. This is because computers can have a fast processor, and lots
of memory, and a fast disk drive, but they do not count for much if the busses that con-
nect them to each other do not operate efficiently. The performance of a computer thus
directly relates to the busses that connect it. The computer bus is thus the foundation of
the modern computer. Without them, a computer would just be a bundle of components.
 Busses provide the mechanism for the orderly flow of data over the required chan-
nel. They range vastly in their specification. From busses that transmit hundreds of mil-
lions of bytes every second (such as with the PCI bus) to busses which transmit only a
few thousand bytes per second (such as with the RS-232 bus). They vary in their speci-
fication as no one bus can provide the required specification for all applications. For
example, graphics adaptors and electronic memory require high data throughputs, and
must thus be closely coupled to the processor (known as a local bus connection),
whereas modems and printers require relatively slow transfer rates, and must be coupled
to a bus which does not try and hog the processor for long periods.
 The perfect bus system would use a single connector for every device that connects
to it, would be able to sense and configure whichever devices connected to it, would be
able to use any type of cable, and devices which connect to it would simply require a tap
from one connection onto the next (a daisy-chain connection). It would support high
data transfer devices, alongside low data transfer devices, but the low data transfer de-
vices would not hog the bus in favour of the high data transfer devices. It would support
real-time data (such as speech and audio) and non-real-time data (such as computer
data) in an integrated way, so that the non-real-time data would not swamp the real-time
data. This bus, of course, does not exist, or if it does exist, it will be too expensive, and
would be incompatible with all the existing busses. Thus, we have many different types
of busses, each with their own application. It is impossible to immediately change com-
puter systems every time a new application comes along. We do not immediately knock
down our house every time we want to upgrade it. This would be expensive, and we
probably would be able to sell it after we had done it. We thus try to use our existing
framework and integrate with it.
 Internal busses connect the processor to its memory and its interface busses (such as
the PCI and the ISA busses). The external busses allow the connection the external de-
vices to the computer, in an orderly manner.
 The book splits into five main areas, these are:

1. PC Interfaces.

• Introduction
• PC Interfacing.
• Interfacing Standards

2. Local busses.
• PC/ISA.

xx Computer busses

• PCI/AGP.
• Motherboard Design
• USB.
• Games Port, Keyboard and Mouse.
• Fibre Channel.
• RS-232/RS-422/Modems.
• Parallel Port.

3. Instrumentation busses.
• Modbus.
• Fieldbus.
• WorldFIP.
• CAN bus.
• IEEE-488.
• VME/VXI.

4. Network busses.
• Ethernet.
• ISDN/HDLC.
• Protocols (TCP/IP).

5. Bus programming/protocols
• TCP/IP.
• RS-232.
• Parallel port.

Slides and backup information can be found on my WWW site at:

http://www.dcs.napier.ac.uk/~bill/books.html

Questions and any feedback that you have on the book should be sent to:

w.buchanan@napier.ac.uk or bill@dcs.napier.ac.uk

I have included some notes at the end of most of the chapters which are much lighter in
content than the main text. These are my own options, and, of course, should not be
taken as fact. In fact they are there for debate, and in some cases your may disagree
with some of my comments. For example, I think that the TCP and IP protocols have
done more for the freedom of speech, and world peace than all of the diplomats around
the world, put together. They have no respect for borders, they do not favour any lan-
guage, and they do not mind what the data is, and on what computer it came from. They
are truly making the world into a village.
 Before I start on this book, I must reveal a little secret. My favourite bus, apart from
the Number 45 bus which takes me to work every day, is the RS-232 bus. It’s not be-
cause it is the most technological advanced bus, or that it is easy to interface. Its be-
cause I grew an excellent consultancy company by writing program for it. So, I’ve got a
soft spot for RS-232. Long may it reign.

1

Introduction

1.1 Pre-PC Development

One of the first occurrences of computer technology occurred in the USA in the 1880s. It
was due to the American Constitution demanding that a survey is undertaken every 10 years.
As the population in the USA increased, it took an increasing amount of time to produce the
statistics. By the 1880s, it looked likely that the 1880 survey would not be complete until
1890. To overcome this, Herman Hollerith (who worked for the Government) devised a ma-
chine which accepted punch cards with information on them. These cards allowed a current
to pass through a hole when there was a hole present.
 Hollerith’s electromechanical machine was extremely successful and used in the 1890
and 1900 Censuses. He even founded the company that would later become International
Business Machines (IBM): CTR (Computer Tabulating Recording). Unfortunately, Hol-
lerith’s business fell into financial difficulties and was saved by a young salesman at CTR,
named Tom Watson, who recognized the potential of selling punch card-based calculating
machines to American business. He eventually took over the company Watson, and, in the
1920s, he renamed it International Business Machines Corporation (IBM). After this, elec-
tromechanical machines were speeded up and improved. Electromechnical computers would
soon lead to electronic computers, using valves.
 The first electronic computers were developed, independently, in 1943; these were the
‘Harvard Mk I’ and Colossus. Colossus was developed in the UK and was used to crack the
German coding system (Lorenz cipher), whereas ‘Harvard Mk I’ was developed at Harvard
University and was a general-purpose electromechanical programmable computer. These led
to the first generation of computers which used electronic valves and used punched cards for
their main, non-volatile storage.
 The world’s first large electronic computer (1946), containing 19 000 values was built at
the University of Pennsylvania by John Eckert during World War II. It was called ENIAC
(Electronic Numerical Integrator and Computer) and it ceased operation in 1957. By today’s
standards, it was a lumbering dinosaur and by the time it was dismantled it weighed over 30
tons and spread itself over 1500 square feet. Amazingly, it also consumed over 25 kW of
electrical power (equivalent to the power of over 400, 60 W light bulbs), but could perform
over 100 000 calculations per second (which is reasonable, even by today’s standards). Un-
fortunately, it was unreliable, and would only work for a few hours, on average, before a
valve needed to be replaced. Faultfinding, though, was easier in those days, as a valve, which
was working, would not glow, and would be cold to touch.
 Valves were fine and were used in many applications, such as in TV sets and radios, but
they were unreliable and consumed great amounts of electrical power, mainly to the heating
element on the cathode. By the 1940s, several scientists at the Bell Laboratories were inves-
tigating materials called semiconductors, such as silicon and germanium. These substances
only conducted electricity moderately well, but when they where doped with impurities their

1

2 Introduction

resistance changed. From this work, they made a crystal called a diode, which worked like a
valve, but had many advantages, including the fact that it did not require a vacuum and was
much smaller. It also worked well at room temperatures, required little electrical current and
had no warm-up time. This was the start of microelectronics.
 One of the great revolutions of all time occurred on December 1948 when William
Shockley, Walter Brattain, and John Bardeen at the Bell Labs produced a transistor that
could act as a triode. It was made from a germanium crystal with a thin p-type section sand-
wiched between two n-type materials. Rather than release its details to the world, Bell
Laboratories kept its invention secret for over seven months so that they could fully under-
stand its operation. They soon applied for a patent for the transistor and, on 30 June 1948,
they finally revealed the transistor to the world. Unfortunately, as with many other great in-
ventions, it received little public attention and even less press coverage (the New York Times
gave it 4½ inches on page 46). It must be said that few men have made such a profound
change on the world, and Shockley, Brattain, and Bardeen were deservedly awarded the No-
bel Prize in 1956. To commercialize on his success, Shockley, in 1955, founded Shockley
Semiconductor. Then in 1957, eight engineers decided they could not work within Shockley
Semiconductor and formed Fairchild Semiconductors, which would become one of the most
inventive companies in Silicon Valley. Unfortunately, most of the time Fairchild Semicon-
ductors did not fully exploit its developments, and was more of an incubator for many of the
innovators in the electronics industry. Around the same time, Kenneth Olsen founded the
Digital Equipment Corporation (DEC), who would go on to become one of the key compa-
nies in the computer industry, along with IBM.
 Previously, in 1952, GW Dummer, a radar expert from Britain’s Royal Radar Establish-
ment had presented a paper proposing that a solid block of materials could be used to con-
nect electronic components, without connecting wires. This would lay the foundation of the
integrated circuit.
 Transistors were initially made from germanium, which is not a robust material and can-
not withstand high temperatures. The first company to propose the use of silicon transistors
was a geological research company named Texas Instruments (which had diversified into
transistors). Then, in May 1954, Texas Instruments started commercial production of silicon
transistors. Soon many companies were producing silicon transistors and, by 1955, the elec-
tronic valve market had peaked, while the market for transistors was rocketing. The larger
electronic valve manufacturers, such as Western Electric, CBS, Raytheon and Westinghouse
failed to adapt to the changing market and quickly lost their market share to the new transis-
tor manufacturing companies, such as Texas Instruments, Motorola, Hughes and RCA.
 In July 1958, at Texas Instruments, Jack St. Clair Kilby proposed the creation of a mono-
lithic device (an integrated circuit) on a single piece of silicon. Then, in September, he pro-
duced the first integrated circuit, containing five components on a piece of germanium that
was half an inch long and was thinner than a toothpick.
 The following year, Fairchild Semiconductor filed for a patent for the planar process of
manufacturing transistors. This process made commercial production of transistors possible
and led to Fairchild’s introduction, in two years, of the first commercial integrated circuit.
Within a few years, transistors were small enough to make hearing aids that fitted into the
ear, and soon within pacemakers. Companies, such as Sony, started to make transistors oper-
ate over higher frequencies and within larger temperature ranges. Eventually they became so
small that many of them could be placed on a single piece of silicon. These were referred to
as microchips and they started the microelectronics industry. The first two companies who
developed the integrated circuit, were Texas Instruments and Fairchild Semiconductor. At
Fairchild Semiconductor, Robert Noyce constructed an integrated circuit with components

Computer busses 3

connected by aluminium lines on a silicon-oxide surface layer on a plane of silicon. He then
went on to lead one of the most innovate companies in the world, the Intel Corporation.
 After ENIAC, progress was fast in the computer industry and, by 1948, small electronic
computers were being produced in quantity within five years (2000 were in use), in 1961 it
was 10 000, 1970 100 000. IBM, at the time, had a considerable share of the computer mar-
ket. So much so that a complaint was filed against them alleging monopolistic practices in its
computer business, in violation of the Sherman Act. By January 1954, the US District Court
made a final judgment on the complaint against IBM. For this, a ‘consent decree’ was then
signed by IBM, which placed limitations on how IBM conducts business with respect to
‘electronic data processing machines’.
 In 1954, the IBM 650 was built and was considered the workhorse of the industry at the
time (which sold about 1000 machines, and used valves). In November 1956, IBM showed
how innovative they were by developing the first hard disk, the RAMAC 305. It was tower-
ing by today’s standards, with 50 two-foot diameter platters, giving a total capacity of 5 MB.
Around the same time, the Massachusetts Institute of Technology produced the first transis-
torised computer: the TX-O (Transistorized Experimental computer). Seeing the potential of
the transistor, IBM quickly switched from valves to transistors and, in 1959, they produced
the first commercial transistorised computer. This was the IBM 7090/7094 series, and it
dominated the computer market for years.
 Programs written on these mainframe computers were typically either machine code (us-
ing the actual binary language that the computer understood) or using one of the new com-
piled languages, such as COBOL and FORTRAN. FORTRAN was well suited to engineer-
ing and science as it is based around mathematical formulas. COBOL was more suited to
business applications. FORTRAN was developed in 1957 (typically known as FORTRAN
57) and considerably enhanced the development of computer programs, as the program could
be writing in a near-English form, rather than using a binary language. With FORTRAN, the
compiler converts the FORTRAN statements into a form that the computer can understand.
At the time, FORTRAN programs were stored on punch cards, and loaded into a punch-card
reader to be read into the computer. Each punch card had holes punched into them to repre-
sent ASCII characters. Any changes to a program would require a new set of punch cards.
 In 1959, IBM built the first commercial transistorised computer named the IBM
7090/7094 series, which dominated the computer market for many years. In 1960, in New
York, IBM went on to develop the first automatic mass-production facility for transistors. In
1963, the Digital Equipment Company (DEC) sold their first minicomputer, to Atomic En-
ergy of Canada. DEC would become the main competitor to IBM, but eventually fail as they
dismissed the growth in the personal computer market.
 The second generation of computers started in 1961 when the great innovator, Fairchild
Semiconductor, released the first commercial integrated circuit. In the next two years, sig-
nificant advances were made in the interfaces to computer systems. The first was by Teletype
who produced the Model 33 keyboard and punched-tape terminal. It was a classic design and
was on many of the available systems. The other advance was by Douglas Engelbart who
received a patent for the mouse-pointing device for computers.
 The production of transistors increased, and each year brought a significant decrease in
their size. Gordon Moore, in 1964, plotted the growth in the number of transistors that could
be fitted onto a single microchip, and found that the number of transistors that can be fitted
onto an integrated circuit approximately doubles every 18 months. This is now known as
Moore’s law, and has been surprisingly accurate ever since. In 1964, Texas Instruments also
received a patent for the integrated circuit.
 At the time, there were only three main ways of writing computer programs: machine

4 Introduction

code, FORTRAN or COBOL. These languages were often difficult for inexperienced users
to use. So, in 1964, John Kemeny and Thomas Kurtz at Dartmouth College developed the
BASIC (Beginners All-purpose Symbolic Instruction Code) programming language. It was a
great success, although has never been used much in ‘serious’ applications, until Microsoft
developed Visual BASIC, which used BASIC as a foundation language, but enhanced it with
an excellent development system. Many of the first personal computers used BASIC as a
standard programming language.
 The third generation of computers started in 1965 with the use of integrated circuits
rather than discrete transistors. IBM again was innovative and created the System/360 main-
frame. In the course of history, it was a true classic computer. Then, in 1970, IBM introduced
the System/370, which included semiconductor memories. All of the computers were very
expensive (approx. $1 000 000), and were the great computing workhorses of the time.
Unfortunately, they were extremely expensive to purchase and maintain. Most companies
had to lease their computer systems, as they could not afford to purchase them. As IBM
happily clung to their mainframe market, several new companies were working away to
erode their share. DEC would be the first, with their minicomputer, but it would be the PC
companies of the future who would finally overtake them. The beginning of their loss of
market share can be traced to the development of the microprocessor, and to one company:
Intel. In 1967, though, IBM again showed their leadership in the computer industry by
developing the first floppy disk. The growing electronics industry started to entice new
companies to specialize in key areas, such as International Research who applied for a patent
for a method of constructing double-sided magnetic tape utilizing a Mumetal foil inter layer.
 The beginning of the slide for IBM occurred in 1968, when Robert Noyce and Gordon
Moore left Fairchild Semiconductors and met up with Andy Grove to found Intel Corpora-
tion. To raise the required finance they went to a venture capitalist named Arthur Rock. He
quickly found the required start-up finance, as Robert Noyce was well known for being the
person who first put more than one transistor of a piece of silicon.
 At the same time, IBM scientist John Cocke and others completed a prototype scientific
computer called the ACS, which used some RISC (Reduced Instruction Set Computer) con-
cepts. Unfortunately, the project was cancelled because it was not compatible with the IBM’s
System/360 computers.
 Several people were proposing the idea of a computer-on-a-chip, and International Re-
search Corp. were the first to develop the required architecture, modelled on an enhanced
DEC PDP-8/S concept. Wayne Pickette, at the time, proposed to Fairchild Semiconductor
that they should develop a computer-on-a-chip, but was turned down. So, he went to work
with IBM and went on to design the controller for Project Winchester, which had an en-
closed flying-head disk drive.
 In the same year, Douglas C. Engelbart, of the Stanford Research Institute, demonstrated
the concept of computer systems using a keyboard, a keypad, a mouse, and windows at the
Joint Computer Conference in San Francisco’s Civic Center. He also demonstrated the use of
a word processor, a hypertext system, and remote collaboration. His keyboard, mouse and
windows concept has since become the standard user interface to computer systems.
 In 1969, Hewlett-Packard branched into the world of digital electronics with the world’s
first desktop scientific calculator: the HP 9100A. At the time, the electronics industry was
producing cheap pocket calculators, which led to the development of affordable computers,
when the Japanese company Busicom commissioned Intel to produce a set of between eight
and 12 ICs for a calculator. Then instead of designing a complete set of ICs, Ted Hoff, at
Intel, designed an integrated circuit chip that could receive instructions, and perform simple
integrated functions on data. The design became the 4004 microprocessor. Intel produced a

Computer busses 5

set of ICs, which could be programmed to perform different tasks. These were the first ever
microprocessors and soon Intel (short for Integrated Electronics) produced a general-purpose
4-bit microprocessor, named the 4004.
 In April 1970, Wayne Pickette proposed to Intel that they use the computer-on-a-chip for
the Busicom project. Then, in December, Gilbert Hyatt filed a patent application entitled
‘Single Chip Integrated Circuit Computer Architecture’, the first basic patent on the micro-
processor.
 The 4004, as shown in Figure 1.1, caused a revolution in the electronics industry as pre-
vious electronic systems had a fixed functionality. With this processor, the functionality
could be programmed by software. Amazingly, by today’s standards, it could only handle
four bits of data at a time (a nibble), contained 2000 transistors, had 46 instructions and al-
lowed 4 KB of program code and 1 KB of data. From this humble start, the PC has since
evolved using Intel microprocessors. Intel had previously been an innovative company, and
had produced the first memory device (static RAM, which uses six transistors for each bit
stored in memory), the first DRAM (dynamic memory, which uses only one transistor for
each bit stored in memory) and the first EPROM (which allows data to be downloaded to a
device, which is then permanently stored).
 In the same year, Intel announced the 1 KB RAM chip, which was a significant increase
over previously produced memory chip. Around the same time, one of Intel’s major partners,
and also, as history has shown, competitors, Advanced Micro Devices (AMD) Incorporated
was founded. It was started when Jerry Sanders and
seven others left – yes, you’ve guessed it, Fairchild
Semiconductor. The incubator for the electronics
industry was producing many spin-off companies.
 At the same time, the Xerox Corporation gathered a
team at the Palo Alto Research Center (PARC) and gave
them the objective of creating ‘the architecture of
information.’ It would lead to many of the great
developments of computing, including personal
distributed computing, graphical user interfaces, the first
commercial mouse, bit-mapped displays, Ethernet,
client/server architecture, object-oriented programming,
laser printing and many of the basic protocols of the
Internet. Few research centers have ever been as
creative, and forward thinking as PARC was over those
years.
 In 1971, Gary Boone, of Texas Instruments, filed a
patent application relating to a single-chip computer
and the microprocessor was released in November.
Also in the same year, Intel copied the 4004 micro-
processor to Busicom. When released the basic specifi-
cation of the 4004 was:

• Data bus: 4-bit
• Clock speed: 108 kHz
• Price: $200
• Speed: 60 000 operations per second
• Transistors: 2300

Figure 1.1 Intel 4004 die

6 Introduction

• Silicon: 10-micron technology, 3×4 mm2
• Addressable memory: 640 bytes

Intel then developed an EPROM, which integrated into the 4004 to enhance development
cycles of microprocessor products.
 Another significant event occurred when Bill Gates and Paul Allen, calling themselves
the ‘Lakeside Programming Group’ signed an agreement with Computer Center Corporation
to report bugs in PDP-10 software, in exchange for computer time.
 Other significant effects at the time were:

• Ken Thompson, at AT&T’s Bell Laboratories, wrote the first version of the Unix operat-

ing system.
• Gary Starkweather, at Xerox, used a laser beam along with the standard photocopying

processor to produce a laser printer.
• The National Radio Institute introduced the first computer kit, for $503.
• Texas Instruments develops the first microcomputer-on-a-chip, containing over 15 000

transistors.
• IBM introduced the memory disk, or floppy disk, which was an 8-inch floppy plastic disk

coated with iron oxide.
• Wang Laboratories introduced the Wang 1200 word processor system.
• Niklaus Wirth invented the Pascal programming language. BASIC and FORTRAN had

long been known for producing unstructured programs, with lots of GOTOs and RE-
TURNs. Pascal was intended to teach good, modular programming practices, but was
quickly accepted for its clean, pseudocode-like language. Today it still survives, but has
struggled against C/C++ (mainly because of the popularity of Unix) and Java (because of
its integration with the Internet), but lives with Borland Delphi, an excellent Microsoft
Windows development system.

1.2 8008/8080/8085

In 1974, Intel was a truly innovative company, and was the first to develop an 8-bit micro-
processor. These devices could handle eight bits (a byte) of data at a time and were:

• 8008 (0.2 MHz, 0.06 MIPS, 3500 transistors, 10-micron technology, 16 KB memory).
• 8080 (2 MHz, 0.64 MIPS, 6000 transistors, 6-micron technology, 64 KB memory).
• 8085 (5 MHz, 0.37 MIPS, 6500 transistors, 3-micron technology, 64 KB memory).

These were much more powerful than the previous 4-bit devices and were used in many
early microcomputers and in applications such as electronic instruments and printers. The
8008 had a 14-bit address bus and could thus address up to 16 KB of memory, and the 8080
and 8085 had 16-bit address busses, giving them limit of 64 KB. Table 1.1 outlines the basic
specification for the main 8-bit microprocessors. At the time, Intel’s main product area was
memory, and microprocessors seemed like a good way of increasing sales for other product
lines, especially memory.

Computer busses 7

Table 1.1 Popular 8-bit microprocessors

Processor Release date
(manufacturer)

Computer used in Example computers

8008 April 1972 (Intel) Mark-8
8080 April 1974 (Intel) Sol-20

MITS Altair 8800
IMSAI 8080

8085 March 1976 (Intel)
Z80
Z80A

July 1976 (Zilog) Radio Shack TRS-80
Exidy Sorcerer
Sinclair ZX81
Osborne 1
Xerox 820
DEC Rainbow 100
Sord M5/ M23P
Sharp X1
Sony SMC-70

1. TRS-80 microcomputer, 4 KB RAM, 4 KB
ROM, keyboard, black-and-white video
display, and tape cassette, $600, Aug.
1977.

2. ZX81 (1 KB), $200, March 1981. ZX81
(2KB), $200. March 1981.

3. Osborne 1, 5-inch display, 64 KB RAM,
keyboard, keypad, modem, and two 5.25-
inch 100 KB disk drives, $17, April 1981.

6502/
6502A

June 1976 (MOS
Technologies)

Franklin Ace 1000
Atari 400/800
Commodore PET
Apple II/III

1. Atari 400/800, 8 KB, $550/1000, Oct 1979.
2. PET 2001,4 KB RAM, 14 KB ROM, key-

board, display, and tape drive, $600.
3. Apple II, 4 KB RAM, 16 KB ROM, key-

board, 8-slot motherboard, game paddles,
graphics/text interface to colour display
(first ever), and built-in BASIC, $1300,
April 1977.

4. Apple II Plus, 48 KB, June 1979.
5. Apple III, 5.25-inch floppy drive, $4500–

$8000, May 1980.
6. BBC Microcomputer System. 48 KB RAM,

73-key keyboard, and 16-colour graphics,
Sept 1981.

6800/ 6809 1974 (Motorola) MITS Altair 680

1. TRS-80 Colour Computer, 4 KB RAM,

$400.

780-1 NEC 1. ZX80, 1 KB RAM and 4 KB ROM, $200,
Feb. 1980.

 Excited by the new 8-bit microprocessors, two kids from a private high school, Bill Gates
and Paul Allen, rushed out to buy the new 8008 device (Figure 1.2). This they believed
would be the beginning of the end of the large, and expensive, mainframes (such as the IBM
range) and minicomputers (such as the DEC PDP range). They bought the processors for the
high price of $360 (possibly, a joke at the expense of the IBM System/360 mainframe), but
even they could not make it support BASIC programming. Instead, they formed the Traf-O-
Data company and used the 8008 to analyse tickertape read-outs of cars passing in a street.
The company would close down in the following year (1973) after it had made $20 000, but
from this enterprising start, one of the leading computer companies in the world would grow:
Microsoft (although it would initially be called Micro-soft).

8 Introduction

 Intel knew that providing a processor alone
would have very little impact on the market. It
required a development system, which would
allow industrial developers an easy method of
developing hardware and software around the new
processor. Thus, Intel introduced the Intellec 4
development system.
 The main competitors to the 8080 were: the
Motorola 6800, the Zilog Z80 and the MOS
Technology 6502. The Z80 had the advantage that
it could run any programs written for the 8080,
and, because it was also pin compatible, it could
be easily swapped with the 8080 processor,
without a change of socket. It also had many other
advantages over the 8080, such as direct memory
access, serial I/O technology, and full use of the
‘reserved’ op-codes (Intel had used only 246 out
of the 256 available op-codes). The Z80 was also
much cheaper than the 8080 and had a 2.5 MHz
clock speed. After the release of the Z80, Intel
produced a quick response: the 8085. This device
fully used all the op-codes, but it was too late to

stop the tide towards Zilog. Many personal
computers started to appear that were based on
the Z80 processor, including the Radio Shack
TRS-80, Osborne 1 and the Sinclair/Timex
ZX81. The ZX81 caused a great revolution because of
its cheapness, but unfortunately, most home users had
to wait for many months to receive their kit, or for
their prebuilt computer. However, as the computer
was so original and cost effective, users were willing
to wait for their prized system. Another great chal-
lenger was the 6502, which was released in June 1975
and cost $25. This compared well with the 8080,
which cost $150. It was used in many of the great
personal computer systems, such as the Apple II (Fig-
ure 1.3) and Atari 400.

 For the first
time, home users
could actually build their own computer, and were avail-
able from Altair and Mistral. With the success of the
Z80, many companies were demanding to produce a
second-source supply for the Z80 processors. The
Motorola processor was also more powerful than the
8080. It was simpler in its design and only required a
single 5 V supply, whereas the 8080 required three dif-
ferent power supplies.
 At the end of the 1970s, IBM’s virtual monopoly on

Figure 1.4 ZX80

Figure 1.2 Intel 8008 die

Figure 1.3 Apple II computer

Computer busses 9

computer systems started to erode from the high-powered end as DEC developed their range
of minicomputers and from the low-powered-end by companies developing computers based
around the newly available 8-bit microprocessors, such as the 6502 and the Z80. IBM’s main
contenders, other than DEC, were Apple and Commodore who introduced a new type of
computer – the personal computer (PC). The leading systems, at the time, were the Apple I
and the Commodore PET. These captured the interest of the home user and for the first time
individuals had access to cheap computing power. These flagship computers spawned many
others, such as the Sinclair ZX80/ZX81 (Figure 1.4), the BBC microcomputer, the Sinclair
Spectrum, the Commodore Vic-20 and the classic Apple II (all of which where based on the
6502 or Z80). Most of these computers were aimed at the lower end of the market and were
mainly used for playing games and not for business applications. IBM finally decided, with
the advice of Bill Gates, to use the 8088 for its version of the PC, and not, as they had first
thought, to use the 8080 device. Microsoft also persuaded IBM to introduce the IBM PC with
a minimum of 64 KB RAM, instead of the 16 KB that IBM planned.
 Also, in 1972, at XEROX PARC, Alan Kay proposed that XEROX should build a port-
able personal computer, called the Dynabook, which would be the size of an ordinary note-
book; unfortunately, the PARC management did not support it. In future years, companies
such as Toshiba and Compaq would fully exploit the idea. PARC eventually choose to de-
velop the Alto personal computer.
 At the time, most people thought that personal computers would be used mainly as games
computers. One of the major innovators in this was Atari, who were founded by Nolan
Bushnell. They produced the first ever commercial game based on tennis, named Pong. By
today’s standards, Pong used simple graphics. It had just two paddle lines, which could be
moved left and right, and a square ball, which moved back and forward between the paddles.
Atari and other companies would release many other classic games, such as Space Invaders,
Asteroids and Frogger.
 At the time, Texas Instruments was well advanced in microprocessor development and
introduced the TMS1000 one-chip microcomputer. It had 1 KB ROM, 32 bytes of RAM with
a simple 4-bit processor. In the following year (1973), Intel filed a patent application for a
memory system for a multichip digital computer.
 In 1973, the model for future computer systems occurred at Xerox’s PARC, when the
Alto workstation was demonstrated with a bit mapped screen (showing the Cookie Monster,
from Sesame Street). The following year, at Xerox, Bob Metcalfe demonstrated the Ethernet
networking technology, which was destined to become the standard local area networking
technique. It was far from perfect, as computers contended with each other for access to the
network, but it was cheap and simple, and it worked relatively well.
 Also in 1973, before the widespread acceptance of PC-DOS, the future for personal com-
puter operating systems looked to be CP/M (Control Program/Monitor), which was written
by Gary Kildall of Digital Research. One of his first applications of CP/M was on the Intel
8008, and then on the Intel 8080. At the time, computers based on the 8008 started to appear,
such as the Scelbi-8H, which cost $565 and had 1 KB of memory.
 IBM was also innovating at the time, creating a cheap floppy disk drive. They also pro-
duced the IBM 3340 hard disk unit (a Winchester disk) which had a recording head which
sat on a cushion of air, 18 millionths of an inch above the platter. The disk was made with
four platters, each was 8-inches in diameter, giving a total capacity of 70 MB.
 A year later (1974), at IBM, John Cocke produced a high-reliability, low-maintenance
computer called the ServiceFree. It was one of the first computers in the world to use RISC
technology and it operated at the unbelievable speed of 80 MIPS. Most computers at the time
were measured in a small fraction of a MIP, and, at the time, were over 50 times faster than

10 Introduction

IBM’s fastest mainframe. The project was eventually cancelled as a competing project
named ‘Future Systems’ was consuming much of IBM’s resources.
 In the next year (1974), several personal computers began to appear, including the MITS-
built (Micro Instrumentation and Telemetry Systems) computer based on Intel’s new 8080
device, at the cheap price of $500. It was released as the Altair 8800 microcomputer. One of
the first prototypes for the Altair computer was lost, en-route, to New York, as it was to be
reviewed and photographed for Popular Electronics. Eventually they did receive a new ver-
sion and at a selling price of $439, it received great reviews.
 At PARC, the Bravo was developed for the Xerox Alto computer and demonstrated the
first WYSIWYG (What You See Is What You Get) program for a personal computer. The
Alto computer was then released onto the market. The following year Xerox demonstrated
the Gypsy word-processing system, which was fully WYSIWYG. At Motorola, Chuck Ped-
dle and Charlie Melear developed the 6800 microprocessor, which was never really success-
ful in the personal computer market, but was used in many industrial and automotive applica-
tions.
 While many of the processors at the time ran at 1 MHz or, at the most, 5 MHz, RCA re-
leased the RISC-based 1802 processor, which ran at 6.4 MHz. It was used on a variety of
systems, from video games to NASA space probes.
 Up to 1974, most programming languages had been produced either as a teaching lan-
guage, such as Pascal or BASIC, or had been developed in the early days of computers, such
as FORTRAN and COBOL. No software language had been developed that would properly
interface with the operating system, and used both high-level commands, and supported low-
level commands (such as AND, OR and NOT bitwise operations). To overcome these prob-
lems, Brian Kernighan and Dennis Ritchie developed the C programming language. Its main
advantage was that it was supported in the Unix operating system. C has since led a charmed
existence by software developers for many proven (and unproven) reasons, and quickly took
off in a way that Pascal had failed to do. Its main advantages were stated as: being both a
high- and a low-level language, it produced small and efficient code, and that it was portable
on different systems. The main advantage was probably that it was a standard software lan-
guage that was supported on most operating systems, and the ANSI C standard helped its
adoption. For this, a program written on one computer system would compile on another
system, as long as both compilers conformed to a given standard (typically ANSI C). Pascal
always struggled because many compiler developments used non-standard additions to the
basic language, and thus Pascal programs were difficult to port from one system to another.
FORTRAN never really had this problem, as it only had a few standards, mainly FORTRAN
57 and FORTRAN 77. BASIC also had few problems because of the lack of additional
facilities. Most BASIC programs did not port well from one system to another, as they
tended to use different methods to access the hardware. Typically, BASIC accessed the
hardware directly, whereas C has tended to use the operating system to access the hardware.
The non-direct method had many advantages over direct access. Non-direct accesses allow
for multi-access to hardware, hardware independence, time-sharing, smoother running
programs and better error control. C moved from the Unix operating system down to the
PCs, as they become more advanced. It normally requires a relatively large amount of
storage space (for all of its standardised libraries), whereas BASIC requires very little
storage space. In 1975, Micro-soft (as it was known before the hyphen was dropped) realized the poten-
tial of BASIC for the newly developed 8-bit computers and use it to produce the first pro-
gramming language for the PC. Their first product was BASIC for the Altair, and licensed it
to MITS, their first customer. The MITS, Altair 8800 was a truly innovative system and sold
for $375 and has 1 KB memory (Figure 1.5). Soon Microsoft BASIC 2.0, for the Altair 8800,

Computer busses 11

was available in 4 K and 8 K
editions. The Altair was an instant
success, and MITS begin work on
a Motorola 6800-based system.
Even its bus become a standard:
the S-100 bus.
 At Xerox, work began on the
Alto II, which would be easier to
produce, more reliable, and more
easily maintained, whereas IBM
segmented their mainframe market
and moved down-market, with
their first briefcase-sized portable
computer: the IBM 5100. It cost $9000, used BASIC, had 16 KB RAM, tape storage, and a
built-in 5-inch screen. Also at IBM, after the rejection of the ServiceFree computer, John
Cocke began working on the 801 project, which would develop scaleable chip designs that
could be used in small computers, as well as large ones.
 In 1976, the personal computer industry started to evolve around a few companies. For
software development two companies stood out:

• Microsoft. The development of BASIC on the Altair allowed Microsoft to concentrate on

the development of software (while many other companies concentrated on the cutthroat
hardware market). Its core team of Paul Allen (ex-MITS) and Bill Gates (ex-Harvard) left
their job/study to devote their efforts, full-time, to Microsoft. They even employed their
first employee: Marc McDonald. The Microsoft trademark was also registered.

• Digital Research. Microsoft’s biggest competitor for PC software was Digital Research
who had copyrighted CP/M, which it hoped would become the industry-standard micro-
computer operating system. Soon CP/M was licensed to GNAT Computers and IMSAI.
But for a bad business decision at Digital Research, CP/M would have become the stan-
dard operating system for the PC, and the world may never have heard about MS-DOS.

For personal computer systems, five computers were leading the way:

• Apple. Steve Wozniak and Steve Jobs completed work on the Apple I computer, and on

April Fool’s Day, 1976, the Apple Computer Company was formed. It was initially avail-
able in kit form and cost $666.66 (hopefully nothing to do with it being a beast to con-
struct). With the success of the Apple I computer, Steve Wozniak began working on the
Apple II, and he soon left Hewlett-Packard to devote more time to this development.
Steve Wozniak and Steve Jobs proposed that Hewlett-Packard and Atari create a personal
computer. Both proposals were turned down.

• Commodore. Things were looking very good at Commodore, as Chuck Peddle designed
the Commodore PET. To ensure a good supply of the 6502, Commodore International
bought MOS Technology.

• Xerox. The innovation continued at great pace at Xerox with the Display Word Process-
ing Task Force recommending that Xerox produce an office information system, like the
Alto (the Janus project). On the negative side, Xerox management had always been
slightly suspicious about the change of business area, and rejected two proposals to mar-
ket the Alto computer as part of an advanced word processing system.

Figure 1.5 Altair 8800

12 Introduction

• Cray Research. Cray Research developed one of the first supercomputers with the Cray-
1. It used vector-processing computers and was a direct attack on IBM’s traditional com-
puter market. This caused major rumbles in IBM which was seeing its market attacked
from three sides: the personal computers (which started to show potential in lower-end
applications), the minicomputer (which were cheaper and easier to use than the main-
frames) and from the supercomputers (at the upper end). Processing power became the
key factor for supercomputers, whereas connectivity was the main feature for mainframe
computers. As DEC has done, Cray concentrated on the scientific and technical areas of
high-performance computers.

• Wang Laboratories. Wang emerged in the computing industry with its innovative word-
processing system which used computer technology, instead of traditional electronic
typewriters. It initially cost $30 000.

• MITS. After the success of the Altair 8800, MITS released the Altair 680, which was
based on the Motorola 6800 microprocessor.

And for microprocessors there were five major competitors:

• Zilog. Zilog released the 2.5 MHz Z80; an 8-bit microprocessor whose instruction set was

a superset of the Intel 8080.
• AMD. Intel realized that they must create alliances with key companies, in order to in-

crease the acceptance of the 8080 processor. Thus, they signed a patent cross-license
agreement with AMD, which gave AMD the right to copy Intel’s processor microcode
and instruction codes.

• MOS Technology. MOS Technology released the 1 MHz 6502 microprocessor to a great
reception, and started a wave of classic computers, such as the Apple II. The 6502A
processor would increase the clock speed.

• National Semiconductor. Released the SC/MP microprocessor, which used advanced
multiprocessing.

• Texas Instruments. After years of innovation at Intel in producing the first 4-bit (4004)
and the first 8-bit processor (8008), it was TI who developed the first 16-bit microproces-
sor: the TMS9900. Its first implementation was within the TI 990 minicomputer. The
processor was extremely advanced for the time, but, unfortunately, TI failed to provide
proper support for the processor. Its main failing was that there was no usable develop-
ment system (something that Intel and Motorola always made sure was available for their
systems).

The following year belonged to Apple, Commodore
and Radio Shack, who released the excellent Apple II,
the Commodore PET and the TRS-80, respectively, to
an eager market. In 1977, the Apple Computer Com-
pany was incorporated, and the employees moved to
California. The Apple II computer sold initially for
$1300 and used the 6502 CPU, had 4 KB RAM, 16 KB
ROM, a QWERTY keyboard, eight slot motherboard,
game paddles, graphics/text interface to colour display
and came with the Applesoft system (built-in BASIC
provided by Microsoft). Soon, Steve Wozniak was
working on software for a floppy disk controller. Figure 1.6 TRS Model I

Computer busses 13

 In has been shown that a killer software application, or game, is required for the wide-
spread adoption of a new computer system. This killer application occurred for the Apple II
when Dan Bricklin developed the VisiCalc spreadsheet program. Unfortunately, for him, and
fortunately for others, such as Lotus and Microsoft, he never patented his technology. If he
had done this, he would have become a multibillionaire. Dan got the idea of the electronic
spreadsheet while he sat in a class at Harvard Business School. He designed the interface,
while his partner, Bob Frankston, wrote the code. The VisiCalc software ran on the Apple II
computer, and had a significant effect on the sales of the computer. It has since been the fa-
ther of all other spreadsheet programs, such as Lotus 123 and Microsoft Excel (Lotus even-
tually bought the rights to VisiCalc for $800 000 in 1985), and was released in 1979.
 The Commodore PET 2001 was also based around the 6502 CPU, and had a simpler
specification (4 KB RAM, 14 KB ROM, keyboard, display, and tape drive), but it only cost
$600. In competition, and at the same price, Radio Shack developed the TRS-80 microcom-
puter. It was based around the Z80 processor and had 4KB RAM, 4KB ROM, keyboard,
black-and-white video display, and tape cassette, and sold well beyond expectations.
 Microsoft expanded their market by developing Microsoft FORTRAN for CP/M-based
computers, and granted Apple Computer a license to Microsoft’s BASIC.

1.3 8086/8088

The third generation of microprocessors began, in June 1976, with the launch of the 16-bit
processors, when Texas Instruments introduced the TMS9900. It initially used the TI 990
minicomputer. The processor never took-off as it lacked peripheral devices, and it was on
May 1978 that Intel released the 8086 microprocessor. This processor was mainly an exten-
sion to the original 8080 processor and thus retained a degree of software compatibility. Intel
first introduced the 4.77 MHz 8086 microprocessor, which had 16-bit registers, a 16-bit data
bus, and 29 000 transistors, using three-micron technology. It had a 20-bit address bus and
could thus access 1MB of memory. It had good performance at 0.33 MIPS and initially sold
for $360 (maybe a joke at the expense on the IBM System/360). Later speeds included
8 MHz (0.66 MIPS) and 10 MHz (0.75 MIPS).
 IBM’s designers, after discussions with Bill Gates, realized the power of the 8086 and
used it in the original IBM PC and IBM XT (eXtended Technology). It had a 16-bit data bus
and a 20-bit address bus, and thus has a maximum addressable capacity of 1 MB, and could
handle either 8 or 16 bits of data at a time (although in a messy way). Its main competitors
were the Motorola 68000 and the Zilog Z8000.
 It was important for Intel to keep compatibility with 8080. The difficulty was that the
8080 used a 16-bit address (64 KB or 65 ,536 locations), whereas the 8086 would use a 20-bit
address bus, allowing up to 1 MB of memory to be addressed. Thus, the 8086 was designed
with a segmented memory, where the memory was segmented in 64 KB chunks. The 20-bit
address was then made up of a segment address, and an offset address.
 In February 1979, Intel released the 8086 processor as follows:

The Intel 8086, a new microcomputer, extends the midrange 8080 family into the 16-bit
arena. The chip has attributes of both 8- and 16-bit processors. By executing the full set of
8080A/8085 8-bit instructions plus a powerful new set of 16-bit instructions, it enables a
system designer familiar with existing 8080 devices to boost performance by a factor of as
much as 10 while using essentially the same 8080 software package and development tools.

14 Introduction

The goals of the 8086 architectural design were to extend existing 8080 features symmetri-
cally, across the board, and to add processing capabilities not to be found in the 8080. The
added features include 16-bit arithmetic, signed 8- and 16-bit arithmetic (including multiply
and divide), efficient interruptible byte-string operations, and improved bit manipulation.
Significantly, they also include mechanisms for such minicomputer-type operations as reen-
trant code, position-independent code, and dynamically relocatable programs. In addition,
the processor may directly address up to 1 megabyte of memory and has been designed to
support multiple-processor configurations.

The 8086 and 8088 were binary compatible with each other, but not pin compatible. Binary
compatibility means that either microprocessor could execute the same program. Pin incom-
patibility means that you cannot plug the 8086 into the 8088, and vice-versa, and expect the
chips to work. The new ‘x86’ devices implemented a CISC (Complex Instruction Set Com-
puter design methodology). At the time, many companies were promoting RISC as the fast-
ing processor technology. Intel would eventually win the CISC battle with the release of the
Pentium processor, many years in the future.
 At the time, Intel Corporation struggled to supply enough chips to feed the hungry as-
sembly lines of the expanding PC industry. Therefore, to ensure sufficient supply to the per-
sonal computer industry, they subcontracted the fabrication rights of these chips to AMD,
Harris, Hitachi, IBM, Siemens, and possibly others. Amongst Intel and their cohorts, the
8086 line of processors ran at speeds ranging from 4 MHz to 16 MHz.
 The Z80 processor, which had beaten the 8080 processor in many ways, led the way for
its new 16-bit processor: the Z8000. Zilog had intended that it was to be compatible with the
previous processor. Unfortunately, the designer decided to redesign the processor, so that it
had an improved architecture, but was not compatible with the Z80. From that time on, Zilog
lost their market share, and this gives an excellent example of compatibility winning over
superior technology. The 8086 design was difficult to work with and was constrained by
compatibility, but it allowed easy migration for system designers.
 IBM realized the potential of the PC and microprocessor. Unlike many of their previous
computer systems, they developed their version of the PC using standard components, such
as Intel’s 16-bit 8086 microprocessor. They released it as a business computer, which could
run word processors, spread sheets and databases and was named the IBM PC (Figure 1.7). It
has since become the parent of all the PCs ever produced. To increase the production of this
software for the PC they made information on the hardware freely available. This resulted in
many software packages being developed and helped clone manufacturers to copy the origi-
nal design. So the term ‘IBM compatible’ was born and it quickly became an industry stan-
dard by sheer market dominance.
 On previous computers, IBM had written most of their programs for their systems. For
the PC they had a strict time limit, so they first went to Digital Research who was responsi-
ble for developing CP/M, which was proposed as a new standardised operating system for
microprocessors. Unfortunately, for Digital Research, they were unable to reach a final deal
because they could not sign a strict confidentiality agreement. They then went to a small
computer company called Microsoft. For this Bill Gates bought a program called Q-DOS
(often called the Quick and Dirty Operating System) from Seattle Computer Products. Q-
DOS was similar to CP/M, but totally incompatible. Microsoft paid less than $100 000 for
the rights to the software. It was released on the PC as PC-DOS, and Microsoft released their
own version called MS-DOS, which has since become the best selling software in history,
and IBM increased the market for Intel processors, a thousand times over.

Computer busses 15

 To give users some choice in their operating sys-
tem, the IBM PC was initially distributed with three
operating systems: PC-DOS (provided by Microsoft),
Digital Research’s CP/M-86 and UCSD Pascal P-
System. Microsoft understood that to make their op-
erating system the standard, that they must provide
IBM with a good deal. Thus, Microsoft offered IBM
the royalty-free rights to use Microsoft’s operating
system forever, for $80 000. This made PC-DOS
much cheaper than the other two (such as $450 for P-
System, $175 for CP/M and $60 for PC-DOS). Mi-
crosoft was smart in that they allowed IBM to use
PC-DOS for free, but they held the control of the
licensing of the software. This was one of the great-
est pieces of business ever conducted. Eventually

CP/M and P-System died off, while PC-DOS become the standard operating system for the
PC.
 The developed program was hardly earth shattering, but has since gone on to make bil-
lions of dollars. It was named the Disk Operating System (DOS) because of its original pur-
pose of controlling the disk drives. Compared with some of the work that was going on at
Apple and at Xerox, it was a very basic system. It had no graphical user interface and
accepted commands from the keyboard and displayed them to the monitor. These commands
were interpreted by the system to perform file management tasks, program execution and
system configuration. Its function was to run programs, copy and remove files, create direc-
tories, move within a directory structure and to list files. To most people this was their first
introduction to computing, but for many, DOS made using the computer too difficult, and it
would not be until proper graphical user interfaces, such as Windows 95, that PCs would
truly be accepted and used by the majority.
 It did not take long for the computer industry to start ‘cloning’ the IBM PC. Many com-
panies tried; but most of them failed because their BIOS were not compatible with IBM PC
BIOS. Columbia, Kayro and others went by the wayside because they were not totally PC
compatible. Compaq eventually broke though the compatibility barrier with the introduction
of the Compaq portable computer. Compaq’s success created the turning point that enabled
today’s modern computer industry. They produced sales of $111 million in the first year of
their operation, making it the fastest growing company in history.
 In Japan, NEC bought a license on the 8086/8088. They improved the design and pro-
duced two Intel ‘clones’, called the V20 (8088-compatible) and V30 (8086-compatible). The
V-series ran approximately 20% faster than the Intel chips when running at the same clock
speed. Therefore, the V-series chips provided a cheap upgrade to owners of the IBM-PC and
other clones computers. Although these chips were pin compatible with the 8086 and 8088,
they also had some extensions to the architecture. They featured all of the ‘new’ instructions
on the 80186/80188, and also were capable of running in Z80 mode (directly running pro-
grams written for the Z80 microprocessor). Much to Intel’s embarrassment, NEC refused to
pay royalties to NEC on the sale of their processors. Intel found that it was difficult to copy-
right the actual silicon design, and have since copyrighted the microcode, which runs on the
processor. The microcode for the 8086/8088 consisted of 90 different mini-programs. How-
ever, in a courtroom, NEC showed that they had not copied these mini-programs and had
designed their own.
 At this time, Intel was loosing a great deal of their memory product to Japanese compa-

Figure 1.7 IBM PC

16 Introduction

nies. Their focus, from now on, would be the PC-processor market. If they could always
keep one step ahead of the cloners they would have a virtual monopoly. Eventually they
would become so powerful as a market leader that they would overcome the basic rule that
you always need a second source of processors for new processors to be accepted in the mar-
ket. IBM had developed a system that would end up reducing their market share, and create a
quasi-monopoly at the end of the 1990s and the beginning of the millennium for Intel (with
processors and support devices) and Microsoft (for operating systems, and eventually appli-
cation software). IBM would eventually fail in its introduction of new industry standards,
such as MXA bus technology, whereas Intel would gain acceptance of new standards, such
as the PCI bus, and Microsoft would develop new standard in operating systems, such as
Windows NT.
 At the same time as Intel was developing the 8086 they were developing the 8800 proc-
essor, which would not be compatible with the 8080, and would be a great technological
break-though (as it would not have to be compatible with the older 8080 device). When the
8800 was finally released in 1981 as the iAPX432 (Intel Advanced Processor Architecture),
it reached the market just as the IBM PC took off, and died a quick death, as everyone
wanted the lower-powered 8086 device. The iAPX lives on as the ‘x86’ architecture.
 Apple was growing fast in 1978 and released a BASIC version of VisiCalc spreadsheet.
They also produced their first Apple II disk drive and Disk II, which was a 5.25-inch floppy
disk drive linked to the computer by a cable ($495). At the end of 1978, Apple Computer
began work on an enhanced Apple II with custom chips, code-named Annie, a supercom-
puter with a bit-sliced architecture, code-named Lisa, and also on Sara (the Apple III). Atari
released the Atari 400 and 800 personal computers, which used the 6502 processor. Micro-
soft was quick to spot the potential of the 8086 processor and developed Microsoft COBOL
and Microsoft BASIC for it.
 Computer systems also started to find their way into social pursuits when Atari developed
the Asteroids computer game and Taito developed the Space Invaders arcade game. They
were classics of their time, but hardly powerful by today’s bit-mapped, 3D graphics.
 Epson, who had had a successful market in typewriters, started to produce low-price,
high-performance dot matrix printers (the MX-80), and at the same time, Commodore re-
leased the CBM 2020 dot-matrix printer (as well as a dual 5.25-inch floppy disk drive unit).
 In 1979, Xerox finally lost its foothold on the computer industry when the Alto was ad-
vertised on TV, but then the president decides to drop its development. Microsoft, on the
other hand, was going from strength to strength. Microsoft 8080 BASIC eventually broke the
one million-dollar barrier, the first microprocessor product to do this. Soon, Microsoft had
developed BASIC, and FORTRAN for the 8086. They had also released Assembler language
system for 8080/Z80 microprocessors.
 Apple Computer released DOS 3.2, and the Apple II Plus computer, which had a 48 KB
memory, and cost $1195. They also highlighted their growing strength by introduces their
first printer, the Apple Silentype ($600). At PARC, Xerox was the leader in developing a
graphical user interface with their Alto computer. As a learning process, a group of engineers
and executives from Apple were given a demonstration of the Alton, and its associated soft-
ware, in exchange for Xerox spending $1 million buying 100 000 Apple Computer shares.
The investment would pay off many times over for Apple as it helped in their development
of the Apple Mac computer.
 1979 produced mixed fortunes for two of Intel’s competitors: Zilog and Motorola. It was
a bad year for Zilog when it distributed its new 16-bit processor, the Z8000. It main draw-
back was its incompatibility with its 8-bit predecessor, the classic Z80. For Motorola, it was
one of success as they released the excellent 68000, 16-bit microprocessor. It used 68 000

Computer busses 17

transistors (thus, its derived name).
 Radio Shack continued development of their TRS-80 computer (Figure 1.8), with the
TRS-80 Model II, and Texas Instruments introduced
the TI-99/4 personal computer ($1500). Atari also
started to distribute Atari 400 (8 KB memory, $550)
and Atari 800 ($1000) personal computers.
 In the UK, Clive Sinclair created Sinclair Re-
search, and was distended to develop classic com-
puters, such as the ZX81 and the Sinclair Spectrum.
He had already been a major innovator in the 1960s
and the 1970s, with watches, audio amplifiers and
pocket calculators. In the main these were extremely
successful however, he was also destined to develop
an electric car (Sinclair C5), which had the opposite
effect on sales as he had had with his computer sys-
tems.
 A key to the acceptance, and the sales of a com-
puter was its software. This was in terms of its oper-
ating systems and its applications. Initially it was
games that were used with the PCs, but three impor-
tant application packages were released, these were:

• Spreadsheet. The VisiCalc software was released for the Apple II at a cost of $100. Ap-

ple Computer eventually tried to buy the company, which developed VisiCalc, for $1
million in Apple stock, but Apple’s president refuses to approve the deal. Its eventual
rights would have been worth much more than this small figure.

• Wordprocessor. MicroPro released the WordStar word processor (written by Rob Ba-
rnaby). It is available for Intel 8080A and Zilog Z80-based CP/M-80 systems. Apple
Computer also released AppleWriter 1.0. The following year (1980) would see the re-
lease of the popular WordPerfect (from Satellite Software International).

• Database. The Vulcan database program, which become known at dBase II.

Two new companies were created in 1979, which would become important industry leaders
in peripherals. These were Seagate Technologies (founded by Alan Shugart founded in
Scotts Valley, California), and Hayes Microcomputer Products who produced the 110/300-

baud Micromodem II for the Apple II ($380).
 The following year (1979) saw Radio Shack
(with their TRS-80 range), Commodore (with the
PET range), Apple Computer (with their Apple
II/III) and Microsoft at the forefront of the personal
computer market. Two new companies joined the
growing personal computer market, at different
ends of technology. At the bottom end, which
covered the games and hobby market, Sinclair Re-
search appeared, and at the top end of the market,
the workstation end, which was aimed at serious
applications, came Apollo. Clive Sinclair in the
UK had started Sinclair Research. He had already Figure 1.9 TRS-80 Model III

Figure 1.8 TRS-80 Color

18 Introduction

had a significant effect on the electronics industry. In the 1960s, he had developed hi-fi, am-
plifier and radio kits for hobbyists, and then in the 1970s he had further developed into calcu-
lators, multimeters and, even, pocket TVs. His main market in the 1980s would be personal
computers, and it was on price that his company would gain the most on his competitors.
 The major developments of the year were:

• Radio Shack. In 1980, Radio Shack followed up their success of the TRS-80, with the

TRS-80 Model III (Figure 1.9). It was based around the Zilog Z80 processor and was
priced between $700 and $2500. They also released the TRS-80 Color Computer (Figure
1.8), which was based on the Motorola 6809E processor and had 4 KB RAM. It was
priced well below the Model III and cost $400. Radio Shack at the time were innovating
in other areas, and produced the TRS-80 Pocket Computer, which had a 24-character dis-
play, and sold for $230.

• Apple Computer. Apple Computer accelerated their development work and released the
Apple III computer. It was based on the 2 MHz 6502A microprocessor, and included a
5.25-inch floppy drive. It initially cost between $4500 and $8000. Work also began on
the Diana project, which would eventually become the Apple IIe. The company was also
floated on the stock market, where 4.6 million shares were sold at $22 a share. This made
many Apple employees instant millionaires.

• Sinclair Research. Sinclair Research burst on the com-
puter market place with the ZX80 computer. It was
based on the 3.25 MHz NEC Technologies 780-1 proc-
essor and came with 1 KB RAM and 4 KB ROM. It was
priced at a cut-down rate of $200, but it was far from
perfect. Its main drawback was its membrane type key-
board.

• Intel. Along with development of the 8086 processor,
Intel released a number of support devices, including
the 8087math coprocessor.

• Microsoft. Microsoft released a Unix operating sys-
tem, Microsoft XENIX OS, for the Intel 8086, Zilog
Z8000, Motorola M68000, and Digital Equipment
PDP-11.

• Hewlett-Packard. HP had developed a good market in powerful calculators, and pro-
duced a mixture of a computer and a calculator, with the HP-85. It cost $3250, had a 32-
character wide CRT display, a built-in printer, a cassette tape recorder, and a keyboard.

• Commodore. Commodore Business Machines enhanced their product range with the
CBM 8032 computer, which had 32 KB RAM and an 80-column monochrome display.
They also developed a dual 5.25-inch floppy disk drive unit (the CBM 8050). In Japan,
Commodore released the VIC-1001, which would later become the VIC-20. It had 5 KB
RAM, and a 22-column colour video output capability.

• Apollo. Apollo burst onto the computer market with high-end workstations based on the
Motorola 68000 processor. They were aimed at the serious user, and their main applica-
tion area was in computer-aided design. One of the first to be introduced was the DN300
(Figure 1.10), which was based around the excellent Motorola 68000 processor. It had a
built-in mono monitor, an external 60 MB hard disk drive, an 8-inch floppy drive, built-in
ATR (Apollo Token Ring) network card, and 1.5 MB RAM. It even had its own multi-
user, networked operating system called Aegis. Unfortunately, for all its power and us-

Figure 1.10 Apollo DN300

Computer busses 19

ability, Aegis never really took off, and when the market demanded standardized operat-
ing systems, Apollo switched to Domain/IX (which was a Unix clone). It is likely that
Apollo would have captured an even larger market if they had had changed to Unix at an
earlier time, as Sun (the other large workstation manufacturer) had done. The Token Ring
network was excellent in its performance, but suffered from several problems, such as the
difficulty in tracing faults, and the difficulty in adding and deleting nodes from the ring.
Over time, Ethernet eventually became the standard networking technology, as it was
relatively cheap and easy to maintain and install. Apollo attacked directly at the
IBM/DEC mainframe/minicomputer market, and soon developed a large market share of
the workstation market. The advantage that workstations had over mainframes is that
each workstation had its own local resources, including a graphical display, and typically,
windows/graphics-based packages. Mainframes and minicomputers tended to be based on
a central server with a number of text terminals. Apollo were successful in developing the
workstation market and their only real competitor was Sun. Hewlett-Packard eventually
took Apollo over. However, Apollo computers, as with the classic computers, such as the
Apple II and the Apple Macintosh, were well loved by their owners and some would say
that they were many years ahead of their time. There are many occurrences of Apollo
computers working continuously for five years, with only short breaks for Xmas holi-
days, and so on. After a skilled network manager set them up, they tended to cause few
problems. No crashes, no hardware problems, no network problems, no software incom-
patibilities. Nothing. Aegis, as Unix does, supported a networked file system, where a
global file system could be built up with local disk resources. Thus, a network of 10
workstations, each with 50 MB hard disks allowed for a global file system of 500 MB.

• Seagate Technology. Seagate become a market leader for hard disk drives when they
developed a 5.25-inch Winchester disk, with four platters and a capacity of 5 MB.

• Philips/Sony. These companies developed the CD–Audio standard for optical disk stor-
age of digital audio. At the same time, Sony Electronics introduced a 3.5-inch floppy disk
and drive, double-sided, double-density, which had a capacity of 875 KB (but less, when
formatted).

• Texas Instruments. TI were busy adding peripherals to their TI 99/4 computer, includ-
ing a thermal printer (30 cps on a 5×7 character matrix), a command module ($45), a mo-
dem, RS-232 interface ($225), a 5.25-inch mini-floppy disk drive which could store up to
90 KB on each disk. The floppy disk controller cost $300, and the disk drive cost $500.

• Digital Research. DR released CP/M-86 for Intel 8086- and 8088-based systems. Digital
Research could have easily become the Microsoft of the future, but for a misunderstand-
ing with IBM.

One of the few companies who developed a system around the Zilog Z8000 processor was
Onyx. The Onyx C8002 microcomputer was a powerful computer which contained 256 KB
RAM, a tape backup, a hard disk, serial ports for eight users, and the UNIX operating sys-
tem. Its cost was $20000.

1.4 80186/80188

Intel continued the evolution of the 8086 and 8088 by, in 1982, introducing the 80186 and
80188. These processors featured new instructions, new fault tolerance protection, and were

20 Introduction

Intel’s first of many failed attempts at the x86 chip integration game.
 The new instructions and fault tolerance additions were logical evolutions of the 8086
and 8088. Intel added instructions that made programming much more convenient for low-
level (assembly language) programmers. Intel also added some fault tolerance protection.
The original 8086 and 8088 would hang when they encountered an invalid computer instruc-
tion, whereas the 80186 and 80188 added the ability to trap this condition and attempt a re-
covery method.
 Intel integrated this processor with many of the peripheral chips already employed in the
IBM PC. The 80186/80188 integrated interrupt controllers, interval timers, DMA controllers,
clock generators, and other core support logic. In many ways, the device was produced a
decade ahead of its time. Unfortunately, this device did not catch on with many hardware
manufacturers; this spelled the end of Intel’s first attempt at CPU integration. However, this
device has enjoyed a tremendous success in the world of embedded processors. If you look
on your high performance disk driver or disk controller, you might still see an 80186 being
used.
 Eventually, many embedded processor vendors began manufacturing these devices as a
second source to Intel, or in clones of their own. Between the various vendors, the
80186/80188 was available in speeds ranging from 6 MHz to 40 MHz.

1.5 80286

In 1982, Intel introduced the 80286. For the first time, Intel did not simultaneously introduce
an 8-bit bus version of this processor (such as the 80288). The 80286 introduced some sig-
nificant microprocessor extensions. Intel continued to extend the instruction set; more sig-
nificantly, Intel added four more address lines and a new operating mode called ‘protected
mode’. The 8086, 8088, 80186 and 80188 all contained 20 address lines, giving these proc-
essors one megabyte of addressibility (220 = 1 MB). The 80286, with its 24 address lines,
gives 16 megabytes of addressibility (224 = 16 MB).
 For the most part, the new instructions of the 80286 were introduced to support the new
protected mode. Real mode was still limited to the one megabyte program addressing of the
8086, et al. Essentially, a program could not take advantage of the 16-megabyte address
space without using protected mode. Unfortunately, protected mode could not run real-mode
(DOS) programs. These limitations thwarted attempts to adopt the 80286 programming ex-
tensions for mainstream consumer use.
 During the reign of the 80286, the first ‘chipsets’ were introduced. These were nothing
more than a set of devices that replaced dozens of other peripheral devices, while maintain-
ing identical functionality. Chips and Technologies became one of the first popular chipset
companies.
 IBM was spurred by the huge success of the IBM PC and decided to use the 80286 in
their next generation computer, the IBM PC-AT. However, the PC-AT was not introduced
until 1985, which was three years after introduction of the 80286. IBM, it seems, were actu-
ally frightened by the thought of the 32-bit processors as they allowed PCs to challenge their
thriving minicomputer market. A new threat to the PC emerged from Apple, who used the
Motorola 68000 processor, with an excellent operating system, to produce the Apple Mac
computer. It had a full graphical user interface, which was based around windows and icon,
and had a mouse pointer to allow users to easily move around the computer system.

Computer busses 21

 Like the IBM PC, the PC-AT was hugely successful for home and business use. Intel
continued to second-source the device to ensure an adequate supply of chips to the computer
industry. Intel, AMD, IBM and Harris were now producing 80286 chips as OEM products,
whereas Siemens, Fujitsu, and Kruger either cloned it, or were also second sources. Between
these various manufacturers, the 80286 was offered in speeds ranging from 6 MHz to
25 MHz.
 Intel had had considerable trouble providing enough 8086/80186 processors, and had
created technology-sharing agreements with companies such as AMD. This also allowed
companies to have a second source for processors, as many organizations (especially mili-
tary-based organizations) did not trust a single-source supply for a product. In 1984, it was
estimated that Intel could only supply between one-fifth and one-third of the current demand
for the 80186 device. For the coming 80386 design, Intel decided to break the industry prac-
tice of second sourcing and go on their own.

1.6 Post-PC development

IBM dominated the computer industry in the 1950s and 1960s, and it was only in the 1970s
that their quasimonopoly started to erode but, at the time, most of their competitors feared
their power. If a competitor released a new product, they would often sit back and wait for
IBM to trump them, with a better product that had the magical IBM badge. Few companies
had the sales turnover to match IBM in research and development. This was shown to great
effect with the development of the System/360 range, which had one of the largest ever re-
search and development budgets ($5 billion). After initial development setbacks, the Sys-
tem/360 range was a great success and paid off the initial investment, many times over. IBM
sold over 50 000 System/360 computers in a period of six years, and then replaced it with the
System/370 series, which was one of the first computers with memory made from integrated
circuits.
 In 1981, IBM started the long slide from front-runner to also-ran, and within ten years,
their own child (the IBM PC) would match the power of their own mainframes. For example,
when the Pentium was released, in 1989, it had a processing power of 250 MIPS, while the
IBM System/370 mainframe had, at the time, a processing power of 400 MIPS. IBM even, in
the development of the IBM AT computer, tried to slug the power of the PC so that it would
not impinge on their lucrative mainframe market. As will be seen, IBM, after the overwhelm-
ing success of the IBM PC, made two major mistakes:

• The PCjr. The PCjr quickly sank without trace, as it was not compatible with the IBM

PC. The time and money spent on the PCjr was completely wasted and gave other manu-
facturers an opportunity to clone, and improve on the original IBM PC.

• Missing the portable market. IBM missed the IBM PC portable market, and when they
did realize its potential, their attempt was inferior to the market leader (Compaq Com-
puters). Later, though, they would produce an excellent portable, called the ThinkPad,
but, by that time, they had lost a large market share to companies such as Toshiba, Com-
paq and Dell.

After making these mistakes, other factors continued to affect their loss of market share.
These included:

22 Introduction

• Initially missing the market for systems based on 32-bit microprocessors (80386). IBM
missed the 32-bit processor when they developed their AT and PS/2 ranges of com-
puters, as, initially, they used the 16-bit 80286. This had been intentional, as IBM did
not want to make their new computer too powerful, as they would start to compete with
their lucrative mainframe market.

• Trying to move the market towards MCA. After IBM realized that they had lost the bat-
tle against the cloners, they developed their own architecture: MicroChannel Architec-
ture (MCA), which would force manufacturers to license the technology from them. Un-
fortunately, for IBM, Compaq took over the standard as they introduced a computer,
which used standard IBM PC architecture, but improved on it as they used the new Intel
80386 in their DeskPro range. IBM would, in time, come back into the fold and follow
the rest in their architecture. From then on, IBM became a follower rather than a leader.

After loosing a large market share, IBM soon realized, after the failure of MCA, that they
had also lost the market leadership for hardware development. They then decided to try to
turn the market for operating system software, with OS/2. It was becoming obvious that the
operating system held the key to the hardware architectures, and application software. In a
perfect world, an operating system can hide the hardware from the application software, so
the hardware becomes less important. Thus, if the software runs fast enough, the hardware
can be of any type and of any architecture, allowing application programmers to write their
software for the operating system and not for the specific hardware. Whichever company
developed the standards for the operating system would hold the key to hardware architec-
ture, and also the range of other packages, such as office tools, networking applications, and
so on. OS/2 would eventually fail, and it would be left to one company to lead in this area:
Microsoft. Not even the mighty Intel could hold the standards, as Microsoft holds the key
link between the software and the hardware. Their operating system would eventually de-
couple the software from the hardware. With the Microsoft Windows NT operating system,
they produced an operating system that could run on different architectures.
 Unfortunately, for IBM, OS/2 was a compromised operating system, which was devel-
oped for all their computers, whether they be mainframes or low-level PCs. Unlike the de-
velopment of the PC, many of the organizational units within IBM, including the powerful
main-frame divisions, had a say about what went into OS/2 and what was left out. For the
IBM PC, the PC team at Boca Raton was given almost independence from the rest of the
organization, but the development of OS/2 was riddled with compromises, reviews and
specification changes. At the time, mainframes differed from PCs in many different ways.
One of the most noticeable ways was the way that they were booted, and the regularity of
system crashes. Most users of PCs demanded fast boot times (less than a minute, if possible),
but had no great problems when it crashes at a few times a day. These crashes were typically
due to incorrectly functioning and configured hardware, and incorrectly installed software. In
the mainframe market, an operating system performs a great deal of system checks and tries
to properly configure the hardware. This causes long boot-up times, and is not a problem
with a mainframe, which will typically run for many weeks, months, or years without requir-
ing a re-boot. However, for the PC, a boot time of anything more than a few minutes is a big
problem. In the end, OS/2 had too long a boot time, and was too slow (possibly due to its
complexity) to compete in the marketplace. In total, IBM spent over $2 billion on OS/2 with
very little in return. It is perhaps ironical that new versions of the Microsoft operating system
perform a great deal of system checks and try to configure the system each time it is booted.
Now, though, this can now be done in a relatively short time, as the hardware is a great deal

Computer busses 23

faster than it was when graphical user interfaces first reached the market.
 Another casualty of the rise of the IBM PC was DEC. As IBM had done with the Sys-
tem/360 range, DEC invested billions of dollars in their VAX range, which became an unbe-
lievable success. As Compaq Computers would do in the 1980s, DEC achieved unbelievable
growth, going from its foundation in 1957 to a sales turnover of $8 billion in 1986 (the peak
year for DEC, before the PC destroyed the market for minicomputers).
 The introduction of the PC would see the end of computer manufacturing for Osborne,
Altair, Texas Instruments and Xerox. Going in the opposite direction were the new compa-
nies such as Compaq Computers, Sun Microsystems, Apollo (for a while), Cray and Micro-
soft. Compaq Computers, in 1981, generated $110 million in their first year, a further two
years on it was $503.9 million, and two years after that it was $1 billion. The following year
it was $2 billion. From zero to $2 billion, in six years (a world record, at the time). Microsoft
was another high-growth company going from $16 million in 1981 to $1.8 billion in 1991. In
most years, Microsoft doubled its size. Consistently Microsoft was also highly profitable
with at least 30 % of sales resulting in profit, and at least 10% invested in research and de-
velopment. The next 20 years would also see the creation of many computer-related multibil-
lionaires, such as Bill Gates who, within in twenty years, would be worth almost $100 bil-
lion.
 Before the introduction of the IBM PC, the biggest threats to IBM came, at the top end
from DEC and at the bottom end from Apple. Both companies could do little wrong. DEC
released their classic PDP-11, and then followed it up with the VAX range. Apple quickly
developed their range of computers, and moved from a mainly game-playing computer, to
one which could be used for game playing and also for business applications. For Apple, the
key to the move into the business environment was the introduction of VisiCalc. From the
1980s, software would become the dominant driving force, and the best hardware in the
world could not make up for a lack of application software.
 1981 would become a pivotal year for the development of computers. Before this year,
different computer standards thrived, and incompatibility reigned. After it, there would only
be one main standard, which would be a truly open standard, which would be driven not by
IBM, but by Intel and Microsoft.
 At the time, the computer industry split itself into two main areas:

• Serious/commercial computers. Mainly IBM and DEC with their range of mainframe

computers and minicomputers. Within 10 years, both IBM and DEC would change to be
different companies. IBM would end up loosing their quasi-monopoly on computers sys-
tems, and DEC would end up being taken over by Compaq, who would evolve from the
new market created by IBM.

• Hobby/home/game-playing computers. These computers had grown from the basic 8-
bit processors, such as the 6502 and the Z80. The main product leaders were Commo-
dore, Sinclair, Apple, Osborne, Altair, Acorn, Radio Shack and Xerox.

Few of these computers, at the time, were compatible with each other, and it was a great ad-
vantage to a manufacturer that their computers were incompatible with others, as software
written for one would not work on another. For example, the Apple II and the Commodore
PET were based on the same processor, but had incompatible hardware, especially with the
graphics system.
 It was in 1981 that IBM released, ahead of schedule, the IBM 5150 PC Personal Com-
puter. It featured the 4.77 MHz Intel 8088 processor, 64 KB RAM, 40 KB ROM, one 5.25-

24 Introduction

inch floppy drive (160 KB capacity), and PC-DOS 1.0 (Microsoft’s MS-DOS). It cost $3000,
and could be installed with Microsoft BASIC, VisiCalc, UCSD Pascal, CP/M-86, and Easy-
writer 1.0. Another version used a CGA graphics card, which gave 640×200 resolution with
16 colours.
 At the time, many of the other computer companies were following up the success of
their previous products, and few had any great worries of the business-oriented IBM PC. The
main developments were:

• Commodore. After its release in Japan, Commodore eventually released the VIC-20 to

an eager world market. It has a full-size 61-key keyboard, 5 KB RAM (expandable to
32 KB), 6502A CPU, a 22×23 line text display, and colour graphics. It initially sold for
$299, and at its peak, it was being produced at 9 000 units per day.

• Sinclair. Sinclair followed up the success of the ZX80 with the ZX81, which was re-
leased for $150 (in the USA it was released as the TS1000), and was based on the Z80A
processor. Within 10 months, over 250 000 were sold.

• Apple. Apple was very much a market leader, and would eventually be the only real
competitor to the IBM PC. In 1981, they reintroduced the Apple III, which was their first
with a hard disk. In 1981, Apple Computer got into a little bit of trouble over the Apple
name, as The Beatles used it for their record company (Apple Corps Limited). Eventu-
ally, Apple Computer signed an agreement allowing them to use the Apple name for their
business, but they were not allowed to market audio/video products with recording or
playback capabilities.

• Osborne. The Osborne Computer Corporation was going from strength to strength, and if
not for the release of the IBM PC would have been a major computer manufactures. In
1981, they released the Osborne 1 PC, which was based on the Z80A processor and in-
cluded a 5-inch display, 64 KB RAM, keyboard, a keypad, modem, and two 5.25-inch
100 KB disk drives. It sold for $1795, but included CP/M, BASIC, WordStar, and Super-
Calc. Sales were much great than expected, in fact they sold as many in a single month as
they expected for their total sales (up to 10 000 per month).

• Xerox. Xerox continued to innovate and released the Star 8010, which contained many of
the features that were used with the Alto, such as a bitmapped screen, WYSIWYG word
processor, mouse, laser printer, Smalltalk language, Ethernet, and software for combining
text and graphics in the same document. It sold for the unbelievably high price of
$16 000. This price, especially up against the IBM PC, was too great for the market, and
it quickly failed. At the same time, Xerox was planning the Xerox 820 (code named The
Worm), which would be based on the 8-bit Z80 processor, whereas the new IBM PC was
based on the 16-bit 8088. It, like the Star 8010, was doomed to fail. These were classic
cases of releasing the products at the wrong time, for the wrong price.

• Acorn. In the UK, Acorn Computer released an excellent computer named the BBC Mi-
crocomputer System. It was quickly adopted for a UK TV program, which the BBC was
running to introduce microcomputers. Against the ZX81, it had an excellent specification,
such as being based on the 6502A processor, addressing up to 48 KB RAM, and a 16-
color graphics display. Its great advantage, though, was that it had a real keyboard (and
not a horrible membrane keyboard, like the ZX81). The BBC TV program was a great
success in the UK, and so was the BBC Microcomputer.

Two other companies that became industry leaders, developed products in 1981. These were
Novell Data Systems and Aston-Tate. Novell created a simple networking operating system

Computer busses 25

that allowed two computers to share a single hard disk drive. Soon Novell would develop
their Novell NetWare operating system, which allowed computers to share resources over a
network. Ashton-Tate released the dBase II package which was the standard database pack-
age for many years.
 For Intel, the adoption of the 8088 in the IBM PC was a godsend, and they had great dif-
ficulties keeping up with the supply of the processor. Unlike the 8080, though, they did not
actively seek AMD for a second source for the processor. Intel had learnt that some second -
source rights caused problems when the second source company actually moved ahead of
them in their technology. Typically, second- source companies are able to charge a lower
rate, as they do not have to recoup the initial research and development investment. Intel
would eventually seek other companies, and AMD sought out Zilog for second source rights
for their up-and-coming Z8000 device. It seemed to AMD that Zilog would have greatest
potential for their new device, as they had shown with their Z80 device.
 Intel was starting to realise that the processor market was a winner as it had a great deal
of intellectual effort added to it. It differed from the memory market where designs could be
easily copied by competitors. With microprocessors, they could set new standards and pro-
tect their designs with copyrights. If they established a lead in the processor market, and kept
one step ahead of the copiers, they could make a great deal of profit in releasing new prod-
ucts and producing support devices for their processors, especially for the 8086/8088. For
this, Intel released the 8087 math coprocessor, which greatly speeded up mathematical calcu-
lations, especially floating point ones. The use of floating point long division would eventu-
ally come back to haunt Intel, when a college tutor discovered a bug in their Pentium proces-
sor.
 Intel were an innovative company, and had produced the first 4-bit and the first 8-bit
processor, but with the 16-bit market they were beaten by Texas Instruments (TI). Unfortu-
nately, for TI, the TMS 9900 was a rehash of an earlier product, and was generally under-
powered. Intel, though, had the great strength in their 8088 processor of releasing a whole
series of support devices which made it easier for designers to integrate the new processor.
Anyway, no one could have guessed the impact that the IBM PC would have on the market.
Intel was also beaten by National Semiconductor for the first 32-bit processor (the 32000).
 The year 1982 would see IBM throw open the market for computers, with the IBM PC,
and also through two great mistakes. Apart from IBM, five other companies would dominate
the year: Commodore, Sinclair, Compaq, Apple and Sun. Three of them, Commodore, Apple
and Sinclair, were from the old school, and the other two, Compaq and Sun Microsystems,
were from the new school, and would learn to adapt to the new ‘serious’ market in comput-
ing that the IBM PC had created. In the same year, the US Justice Department threw out an
antitrust lawsuit filed against IBM 13 years earlier. Within 15 years, it would be Microsoft
who was facing similar action.
 At IBM, the PC was taking off in ways that could never have been imagined. The IBM
PC was a work of genius in which everything had been planned with perfection. It would sell
over 200 000 computers within 12 months of its introduction, but the following year would
see two major mistakes by IBM. The first was the introduction of the PCjr, which was inten-
tionally incompatible with the IBM PC (because IBM did not want it to effect the IBM PC
market) and the IBM AT. The PCjr failed because of its incompatibility, whereas the AT
failed as it used a 16-bit processor (the 80286), while other computers were released using
the new Intel 32-bit processor (the 80386). IBM could have easily have overcome these
drawbacks, but, as these developments involved a much wider team than the IBM PC, they
were held back by the interests of other parties. For example, the mainframe division was
keen for the AT to use 16-bit processors, rather than the more powerful 32-bit processors, as

26 Introduction

this could further erode their market. These two decisions would open the door to the new
kid on the block – Compaq.
 Three former Texas Instruments managers founded Compaq Computer Corporation in
1982: Rod Canion, Jim Harris, and Bill Murto. Their first product was Compaq Portable PC.
It was released in the following year (1983), and cost $3000. The Compaq Portable was to-
tally compatible with the IBM PC and used the Intel 8088 (4.77 MHz), had 128 KB RAM, a
9-inch monochrome monitor and had a 320 KB 5.25-inch disk drive (Sony Electronics in the
same year demonstrated the 3.5-inch microfloppy disk system). A large part of the start-up
finance was used to create a version of the ROM BIOS which was IBM compatible, but did
not violate IBM’s copyright – a stroke of genius that many failed to follow. Compaq would
soon become the fastest growing company ever. Only in the computer industry could a com-
pany grow from zero to hundreds of millions of dollars within 12 months. Compaq created a
new market, which was based on IBM PC compatibility. They then waited for the great IBM
to come along and sink their product, but when IBM did produce a portable, it was too late,
too heavy, and failed to match the Compaq in its specification. Compaq were not in fact the
first company to clone the IBM PC as they finally released it in 1983 – that was achieved by
Columbia Data Products, with their MPC.
 Two companies who would battle against the PC for market share were Sun and Apple.
Sun Microsystems would quickly become a major computer company, and derived its name
from an acronym from the Stanford University Network. Their first product was the Sun 1
workstation computer. They, like Apple, fought the IBM in terms of architecture and operat-
ing system. Sun, almost single-handedly, made the Unix operating system popular. Their
computers succeed in the market, not because they were compatible with any other com-
puter, but because they were technically superior to anything that the IBM PC could offer.
The software that ran on the system fully used the processing power of the processor, and the
Unix operating system provided an excellent robust and reliable operating system. Compati-
bility can often lead to a great deal of problems, especially if the compatibility involves the
8088 processor.
 At Apple, champagne corks were popping, as they became the first PC company to gen-
erate $1 billion in annual sales. The Apple II Plus and Apple II had sold over 750 000 units.
After toying with the Lisa computer and new versions of the Apple II, Apple would have one
more trump card up their sleeve: the Apple Macintosh. Microsoft was keen to work with
Apple, in case the relationship with IBM did not work out, and signed an agreement to de-
velop applications for the forthcoming Macintosh (of which Microsoft were given an initial
prototype to work on). IBM had become slightly annoyed with the success of Microsoft,
from the success of their own creation. For Microsoft, it was a no-lose situation. They were,
in the main, sharing code across the two architectures, which would quickly become industry
standards. One would become an open standard (the IBM PC), and the other would be a
closed standard (the Apple Mac).
 The year 1982 saw a fantastic growth at Intel, and the only way that they could keep up
with demand was to license their products to other silicon design companies. For this, they
signed a 10-year technology exchange agreement with Advanced Micro Devices (AMD) that
focused on the x86 microprocessor architecture. This agreement would be later regretted as
AMD started to overtake them in the 80486 market. Intel, in the same year, released an up-
date to the 8086 processor, called the 80286. The processor was destined for the IBM AT
computer and it ran initially at 6 MHz, which improved on the 4.77 MHz of the 8088 proces-
sor. It had a 16-bit data bus, like the 8086, but had an extended 24-bit address bus that gave it
an addressing range of 16 MB, rather than the 1 MB addressing range of the 8086/8088, or
1 GB of virtual memory. It outperformed the 8086 with a throughput of 0.9 MIPS, but this

Computer busses 27

increased to 1.5 MIPS with a 10 MHz clock and 2.66 MIPS with a 12 MHz clock.
 Commodore was never slow at developing their products. After the success of the Vic-
20, in 1981, they released the Commodore 64 in the following year. It sold for $600 and had
an excellent specification based around the new 6510 processor, and was released with
64 KB RAM, 20 KB ROM, sound chip (the first PC to have integrated sound), eight sprites,
16-colour graphics, and a 40-column screen. It was the first personal computer with an inte-
grated sound synthesizer chip. They then released a whole range of peripherals, such as the
VIC Modem ($110). Commodore also moved into the business market, with the BX256 and
B128 computers for $3000 and $1700, respectively. The BX256 was a 16-bit multiprocessor
computer. It included 256 KB RAM, Intel 8088 for CP/M-86, 6509 CPU, 80-column B/W
monitor, built-in dual disk drives, and three-voice sound. The B128 computer featured
128 KB RAM, 40 KB ROM, 6509 CPU, 5.25-inch floppy drive, three-voice sound chip, car-
tridge slot, and an 80-column green screen.
 At Sinclair, the ZX81 had been an unbelievable success and, knowing that alone they
could not succeed in the USA market, they signed an agreement with the Timex Corporation
to license Sinclair computers in the USA. By the end of 1982, Sinclair Research had sold
over 500 000 ZX81s in over 30 countries. Atari also become a major computer company with
the Atari 800. Its main feature was an advanced graphics display. Radio Shack also released
the powerful TRS-80 Model 16. It used a 16-bit Motorola MC68000 microprocessor, a Z80
microprocessor, had 8-inch floppy drives, and an optional 8 MB hard drive. At the same time
as Compaq were releasing their portable, Radio Shack produced the TRS-80 Pocket Com-
puter; unfortunately, it was relatively slow as it used a 1.3 MHz 8-bit microprocessor, with a
26-character display.
 DEC also finally decided to enter the personal computer market with the dual-processor
Rainbow 100. It had an excellent specification with both a Z80 and an 8088 microprocessor,
and could run CP/M, CP/M-86 or MS-DOS. Unfortunately, at $3000, it was too expensive
for the market, which was already hot for the IBM PC.
 1983 was a mixed year for IBM. They continued their success with the released of the
IBM PC XT. It sold for $5000 and had a 10 MB hard drive, three extra expansion slots, and a
serial interface. In its basic form it had 128 KB RAM, and a 360 KB floppy drive. With the
success of PC-DOS 1.0, IBM followed it up with PC-DOS 2.1. On the downside, IBM re-
leased the IBM PCjr, which cost $700.
 The greatest winners in 1983 were the newly created Compaq Computers, and Microsoft.
In their first year, Compaq sold 47 000 computers, with a turnover of $111 million (and
raised $67 million on their first public stock offering). They would eventually reach the $1
billion within five years of their creation.
 The other winner was Microsoft who knew that they had to completely rewrite the MS-
DOS operating system, so that it coped better with current and future systems. For this they
introduced MS-DOS 2.0, which supported 10 MB hard drives, a tree-structured file system,
and 360 KB floppy disks. They had quickly released the potential of the IBM PC, and re-
leased XENIX 3.0 (a PC version of Unix), Multi-Tool Word for DOS (which would eventu-
ally become Microsoft Word 1.0), as well as producing the Microsoft mouse (which sold for
$200, with interface card and mouse). Microsoft also announced, in 1983, that it would be
developing Microsoft Windows (initially known as Interface Manager), which would even-
tually be released in 1985. At the same time as Microsoft announced Windows, IBM was
developing a program called TopView, and Digital Research was developing GEM (Graph-
ics Environment Manager). These programs would use DOS as the basic operating system,
but would allow the user to run multiple programs. The great problem with TopView was
that it was text based and not a graphical user interface (GUI, or ‘gooey’). Even allowing for

28 Introduction

this, most predicted, because of IBM’s strength, that TopView would become the standard
user interface. If IBM had won the battle for the user interface, they would have probably
taken over the standard for both the user interface and the operating system, and then eventu-
ally the standard for the architecture. IBM, though, did agree to work with Microsoft on
OS/2. Microsoft would eventually invest hundreds of millions of dollars on OS/2, with little
in return. Businesses must learn from their mistakes, and Microsoft has always done this.
The expertise gained in developing OS/2 was used in the development of Microsoft Win-
dows.
 In the same year as Microsoft released their new version of MS-DOS, AT&T was releas-
ing the version of Unix that would become a standard: Unix System V. It was the first at-
tempt at bringing together the different versions of Unix, including XENIX, SunOS and Unix
4.3 BSD. The two main families of Unix have become Unix System V and BSD (Berkeley
Software Distribution) Version 4.4. System V would eventually be sold to SCO (Santa Cruz
Operation). Currently available Unix systems include AIX (on IBM workstations and main-
frames), HP-UX (on HP workstations), Linux (on PC-based systems), OSF/1 (on DEC work-
stations) and Solaris (on Sun workstations).
 Other attempts at standardising Unix occurred with X/Open, OSF, and COSE, but have
mainly failed. The great strength of Unix is its communications and networking protocols
(such as TCP/IP, SMTP, SNMP, and so on), which provide the foundation for the Internet.
Many organizations have tried to create a new operating system, such as VMS (from DEC)
and Aegis (Apollo), but only Unix has become a serious competitor to Microsoft in operating
systems. In the PC market, they would totally dominate the market, although Linux (a Unix
clone) created a small market share for the technical experts. Unix-based systems used the
standardised networking software that was built-into Unix, but the PC still lacked any proper
form of networking. So, in 1983, Novell create one of the standards of the PC networking
market: the Novell NetWare network operating system. The only other operating system
which could have competed again Microsoft’s DOS and Windows, was the up-and-coming
Mac OS from Apple, which was at least 10 years ahead of its competitors. However, Apple
refused to license their system to other vendors, or to other computer manufacturers.
 Another significant event in software development occurred at AT&T, when Bjarn
Stroustrup designed the new object-oriented language C++. Its great strength, and also one of
its weaknesses, was that it was based on the popular C programming language. Its usage is
now widespread and most current applications have been written using C++, whether they be
for microcomputers, minicomputers and mainframe computers. The main drawback of C++
was that programmers could still use the C programming language, which, because of its
looseness and simplicity, allowed the programmer to produce programs that would compile,
but could crash because of a run-time error which was due to badly designed software. Typi-
cal errors were running off the end of an array, bad parameter passing into modules, or using
memory that was not reserved for other purposes. Object-oriented programming languages
are much tighter in their syntax, and the things that are allowed to be done. Thus, the com-
piler will typically catch more errors, whether they are run-time or syntax errors, before the
program is run. Java has since overcome the problems of C++, as it is totally object-oriented,
and much tighter in the rules of software coding.
 The great strength for the adoption of the PC was IBM’s intention to allow software com-
panies to quickly develop application software. They thus released information on the
hardware of the computer so that software companies could write compatible applications.
Like VisiCalc for the Apple II, in 1983, the two killer applications to help boost the accep-
tance, and sales, of the IBM PC were:

Computer busses 29

• Lotus 1-2-3. This was a spreadsheet designed and developed by Jonathan Sachs and
Mitch Kapor at Lotus Development. It initially required an extremely large amount of
memory, 256 KB. Over $1 million was spent on its initial promotion but, it paid back its
original investment a thousand times over. Its sales hit Microsoft’s Multiplan spread-
sheet, which had sold over 1 million copies. Microsoft learnt from this, and in the coming
years would release Excel, which would become the standard spreadsheet.

• WordPerfect. This was a word processing package developed by Satellite Software In-
ternational (who would eventually change their name to the WordPerfect Corporation.). It
initially cost $500, and was an instant success. Many believed that WordPerfect 5.1 was
the classic touch-type program, as it used keystrokes instead of long-winded menu op-
tions. Many typists have since had real troubles moving from WordPerfect to WIMPs-
based packages such as Microsoft Word (so much so that many current word processors
support all of the WordPerfect keystrokes).

The year 1983 was to be bleak for non-IBM PC compatible computers and saw prices falling
month upon month. It also spelt the end of the line, in different ways, for three great innova-
tors in the personal computer industry: Zilog, Osborne and Texas Instruments. It was the
beginning of the end for Zilog when they released their 32-bit microprocessor: the Z8000. It
was an advanced device that had a 256-byte on-chip cache, instruction pipelining, memory
management, and 10–25 MHz clock speed. Unfortunately, for Zilog, it was incompatible
with the great Z80 processor. It thus failed in the market against the strength of the Intel
8086, and the up-and-coming 80386 processor. Of the many computer manufacturers who
rushed to the market and used the 8086/8088, only one, Commodore, introduced a Z8000-
based system (Commodore Z8000). Apart from the failings at IBM and DEC, the release of
the Z8000 processor must rank amongst the poorest decisions in computing history. No one
could predict the effect that a Z80-compatiable 32-bit processor would have had on the mar-
ket. Certainly a 32-bit processor, which was functionally compatible with the 8086/8088 (as
the Z80 had been with the 8080) would have blown the market wide open, and would have
possibly stopped the slide to quasimonopoly of the Intel processors. Another failure in the
processor market was the extremely powerful 6 MHz, 32-bit NS32032 microprocessor from
National Semiconductor.
 Commodore Business Machines were becoming dominant in the home computers mar-
ket, and highlighted their dominance with the release of the Commodore 64, for $400, which
quickly fell to $200 and dropped the prices of the VIC-20 to below $100 (breaking it for the
first time). In 1983, the sales of the VIC-20 reached 1 000000.
 Commodore was also keen to develop the business market, and released the Commodore
Executive 64. It cost $1000 and had 64 KB RAM, a detachable keyboard, a 5-inch colour
monitor, and a 170 KB floppy drive. In 1983, Commodore became the first personal com-
puter to sell over $1 billion worth of computers.
 Many companies in the home computer market had made large profits, but one failure in
a product range could spell disaster for a company. The high profits for all would not last
long as Commodore, Atari and Sinclair started slashing prices. Sinclair, through Timex, in-
troduced the Timex/Sinclair 2000 in the USA (which was called the Sinclair Spectrum in
other countries). It cost $149 for a 16 KB model, while the ZX81 price was reduced to $49.
The squeeze was on, as prices tumbled.
 Atari released their 600XL for $199, and ceased production of the Atari 5200. The
600XL was based on the 1.79 MHz 6502C processor, had 16 KB RAM, 24 KB ROM, and an
optional CP/M module. As the push was on from other manufacturers to reduce prices, they

30 Introduction

also did the same and reduced the Atari 800 to $400. Atari also released the 1200XL home
computer, which had 64 KB RAM, and 256 colour capability, and cost $900. Production
eventually ended for the 1200XL, mainly because of compatibility problems.
 At the time, Japanese companies had been making great advances in the electronics in-
dustry, and many, such as NEC and Fujitsu were starting to overtake USA silicon companies,
such as Texas Instruments, Intel and National Semiconductor, in their product of integrated
circuits (although Intel had the x86 series of processors as their trump card). They were also
winning in producing peripherals and accessories for computer systems, such as:

• Fujitsu producing the first 256 Kbit memory chips.
• Sony developed a new standard for 3.5-inch floppy disks, with the Microfloppy Industry

Committee, and thus created the first double-sided, double-density, holding floppy disk
system that could store up to 1 MB. Sony was also working with Philips in creating the
CD-ROM, which was an extension of audio CD technology.

However, in computer manufacturing, Japanese companies struggled as the USA companies,
such as IBM and Apple, were setting the standards. The IBM PC was relatively easy to
clone, but the Apple computer required a license to manufacture, which, at the time, was
almost impossible to gain. Compared with many USA-based companies, the Japanese com-
panies were efficient and produced reliable electronics, but as long as they were one step
behind the US-based computer companies, they could not gain a serious share of the home
computer market. To overcome this, 14 Japanese companies and Microsoft joined an alliance
to create the MSX standard It used the Zilog Z80, TI TMS9918A video processor, General
Instruments AY-8910 sound processor, NEC cassette interface chip, Atari joystick interface,
64 KB RAM, and 32 KB ROM-based extended Microsoft BASIC. This was one of the first
attempts to standardize computer architecture, but was doomed to failure with the release of
the IBM PC, and that it was based on 8-bit technology. Several MSX computers did reach
the market, but quickly failed. It was a great idea, and one that should have worked. The key
to its failure was that there was a better, more defined standard: the IBM PC.
 In a classic case of releasing the right product at the wrong time, Osborne Computer re-
leased their own portable computer. Unlike the IBM PC, or Compaq’s portable, it was based
on the Z80A processor. The computer quickly failed in the market and Osborne eventually
filed for bankruptcy. Around the same time, Radio Shack also produced a non-IBM compati-
ble portable: the TRS-80 Model 100. They were also following the tried and tested technique
of improving their product line by releasing the TRS-80 Model 4. It would fail as it cost
$2000, and was non-IBM PC compatible (as it was based on the 4 MHz Zilog Z80A micro-
processor). Against the IBM PC, and the lower-end computers, such as the VIC-64 and the
Sinclair Spectrum, it was vastly overpriced.
 Another casualty of the success of the IBM PC was Texas Instruments who eventually
withdrew from the personal computer market. The TI 99/1 had sold well over the years (over
1 million), but was now struggling against the new, cheaper computers.
 Apple took a big gamble with the LISA1 (local integrated software architecture) com-
puter, as it cost $50 million, and its software cost $100 million (showing that the costs of
developing hardware were reducing, while software development costs were increasing). It
was released in 1984 and was expensive ($10 000), it was underpowered, but it was the first
personal computer to have a graphical user interface (GUI). Rather than going with the 8086,

1 LISA was actually named after Steve Job’s young daughter.

Computer busses 31

as most of the market was doing, they based it on the excellent 5 MHz 68000 microprocessor.
It had 1 MB RAM, 2 MB ROM, a 12-inch black/white monitor, 720×364 graphics, dual 5.25-
inch 860 KB floppy drives, and a 5 MB hard disk drive. LISA would sell over 100 000 units.
Apple was keen to develop the LISA computer, but it would be the new Mac, which would
become the focus for their operation.
 Apple was investing a great deal of effort in the Mac, and gave the Mac developers the
best environment possible. This caused considerable friction with the Apple II division, as all
the finances for the Mac facilities were generated from sales of the Apple II. Apple inten-
tionally kept the two divisions apart, which only helped to increase the friction. In the year,
the Apple II highlighted its success by selling its 1 millionth unit. They continued its devel-
opment with the Apple IIe, which had 64 KB RAM, Applesoft BASIC, upper/lower case
keyboard, seven expansion slots, 40×24 and 80×24 text, 1 MHz 6502 processor, up to
560×192 graphics, and a 140 KB 5.25-inch floppy drive.
 The software market, especially related to the IBM PC was growing fast. Satellite Soft-
ware International released WordPerfect 3.0 for $500, and Borland International, founded by
Philippe Kahn, created the first version of their excellent Turbo Pascal compiler. Borland,
single-handily, saved Pascal from an early exit. Borland were for years the main company
involved in producing software development tools for the PC, with Borland C++, Borland
Delphi and Borland JBuilder. Unfortunately, they would eventually struggle against the
might of Microsoft (who were able to invest a great deal of money into their development
tools, especially in Visual Basic and Visual C++). Microsoft has the privileged position of
being able to invest money in other areas of development, but redirecting them from profits
made from other areas. For example, they used profits from the DOS system to invest in
Windows, and profits from Windows to invest into office applications (Word, Excel and
PowerPoint), and profits from office applications to invest into software development tools
(Visual Basic, Visual C++ and Visual Java). Obviously, it is to Microsoft’s advantage that
they keep the tools up-to-date, as this is the same development system that they use to gener-
ate their own applications.

1984 obviously had futuristic connotations to it. However, it was less of a futuristic year
for IBM and more of a nightmare, when IBM released the IBM PCjr. It used the 8088 CPU,
includes 64 KB RAM, a ‘Freeboard’ keyboard (IBM would eventually release a new key-
board, which was a free upgrade to those who wanted it), and one 5.25-inch disk drive, and
no monitor, for $1300. A year later, in 1985, the PCjr was dropped. As the market became
more competitive, IBM started to show their teeth as the number of cloners increased. The
unfortunate companies who were the first to be taken to court were Corona Data Systems and
Eagle Computer. IBM sued them over a copyright violation of the IBM PC’s BIOS, and eas-
ily won the case. It was clear that, to avoid litigation, that companies required rewriting the
BIOS. This would not give a technical advantage, but would keep IBM’s lawyers away.

The next step for IBM was important in the development of the PC. For this they learned
from their mistakes with the PCjr, and made their new computer, the PC AT, compatible
with the IBM PC. It used the new Intel 6MHz 80286 processor, and had a 5.25-inch 1.2 MB
floppy drive, with 256 KB or 512 KB RAM, optional 20 MB hard drive, monochrome or col-
our monitor. The initial cost was $4000.

As the demand for IBM PCs increased, there was also an increase for demand for graph-
ics adaptors. For this IBM released the Enhanced Color Display (EGA) monitor with
640×350 resolution, 16 colours, at a cost of $850. They also released TopView which failed
in the market because it was text-based, and not a GUI. If they had done, they may have cap-
tured the market which Microsoft Windows gained.

32 Introduction

 The battle for the processor market started to heat up when Intel released the 80188,
which was an integrated version of the 8086. They also allowed IBM the legal rights to use
microlithography masks to make x86 processor chips. Intel, having survived the new 32-bit
processors, from Zilog and National Semiconductor, faced their biggest threat from NEC and
Motorola. NEC was the first to clone the 8088, with the 8 MHz V20 microprocessor and a
clone of the 8086 processor, with the 8 MHz V30 microprocessor. Another threat came from
Motorola who added the 68010 and 68020 32-bit processors to their range. Many non-PC-
based developers adopted the Motorola processor in favour of the 8086, as it was typically
easier to develop hardware for it, and much easier to write software (as the 8086 had a horri-
ble segmented memory architecture). For most, it was the only way for a computer manufac-
turer to differentiate themselves from the clone market. Some, such as Radio Shack, fol-
lowed the IBM PC market with the Tandy 1000/1200 HD, but there was little to differentiate
their clone from any other clone.
 New entries for the year included Silicon Graphics, who would go on to produce excel-
lent workstations, which had state-of-the-art graphics power. In 1984, they produced the first
3D graphics workstation. They were also involved, in the 1990s, in the development of the
graphics for Jurassic Park.
 It was to be the year of Compaq Computer and Apple Computers. Compaq introduced the
Compaq Deskpro. Apple Computer created the ultimate entry for their Macintosh computer,
by running their 1984 advert once, during the NFL SuperBowl. The advert had cost $1.5
million, but soon became one of the most talked about adverts, ever. The Macintosh was as
brilliant a computer as anyone could have conceived. It was designed by creative people, and
not just by technocrats. It was a fully integrated unit, which could be easily ported from place
to place. The Mac used the 8 MHz 32-bit Motorola 68000 processor, along with a 9-inch
B/W screen, 512×342 graphics, 400 KB 3.5-inch floppy disk drive, mouse, and 128 KB
RAM. It cost $2500. Microsoft knew that they could not just rely on the IBM PC market, so
they worked closely with Apple and released Microsoft BASIC (MacBASIC) and Microsoft
Multiplan for the Macintosh. After just 74 days of its introduction, over 50000 Macs had
been sold, and after 100 days they had sold 70 0 00 units. After six months, it was 100 000
units, and within the year, 250 000 units. This, to Apple, was a great disappointment as they
estimated that they would sell over 2 million units by the end of 1985. The main problem is
that it lacked resources, especially memory. Apple Computer overcame this by releasing the
Macintosh 512K for $3200.
 The Macintosh had everything going for it. It was a totally integrated system, where the
IBM PC felt like a basic system, which required lots of extra bits and pieces to make it work
properly. A great confusion at the time was the number of application packages which were
entering the market. Apple eased this problem with the release of AppleWorks, which inte-
grated a word processor, database management program, and a spreadsheet.
 Apple also continued developing the Lisa computer with Lisa 2, and also with the Apple
II, with the Apple IIc computer (the Apple III computer had not sold well, and production of
it soon stopped). The Apple IIc computer cost $1300 and was based on the 6502A processor,
had 128 KB RAM and a 3.5-inch floppy disk drive. On the first day of its release, Apple re-
ceived 52 000 orders. By the end of the year, over 2 million Apple II computers had been
sold. The Lisa 2 computer came with 512 KB RAM, and a 10 MB hard disk. Apple was also
innovating in the printer market, with the colour Apple Scribe printer and the LaserWriter.
At the same time, Hewlett-Packard introduced the LaserJet laser printer, for $3600, with
300 dpi resolution.
 As Apple had done, Commodore would release, in the following year, a computer based

Computer busses 33

on the 68000 processor (the Amiga, from newly purchased Amiga Corporation). In 1984,
they introduced the Commodore Plus/4 which used the 7501 microprocessor, had 64 KB
RAM, 320×200 pixel graphics with 128 colours, and also released the Commodore 16 with
16 KB of RAM, at a selling price of $100.
 At Microsoft, development was continuing on both Apple and IBM PC systems. No one
at the time could predict that the IBM PC market would eventually dwarf the Apple market.
The Macintosh looked to be the system of the future, thus Microsoft stopped working on
Excel, their new PC-based spreadsheet package, and switched their resources to developing
software for the Macintosh. This included Excel for the Macintosh. From now on Microsoft
would concentrate of GUI applications, for Microsoft Windows and for the Macintosh. They
released MS-DOS 3.0/3.1 which supported larger hard disks, networks and high capacity
floppy disks. After IBM lost out on the DOS operating system, Microsoft held out an olive
branch to them by demonstrating Microsoft Windows. IBM refused to become involved,
mainly because it competed with its newly developed interface, TopView. Microsoft and
Lotus Development also nearly agreed to merge their companies, but Jim Manzi at Lotus
Development convinced Mitch Kapor to back out of it. Microsoft’s Windows was superior to
TopView as it used a graphical user interface. The only other real competitor to Microsoft
was Digital Research, who had missed out on the IBM PC market. In 1984, they released the
Graphics Environment Manager (GEM) icon/desktop user interface for the IBM PC com-
puter.
 In the Unix market, in 1984, the Massachusetts Institute of Technology (MIT) began de-
veloping the X Window System. Their main objective was to create a good windows system
for Unix machines. Many versions evolved from this and, by 1985, it was decided that X
would be available to anyone who wanted it for a nominal cost. X, itself, is a portable user
interface and can be used to run programs remotely over a network. It has since become a de
facto standard because of its manufacturer independence, its portability, its versatility and its
ability to operate transparently across most network technologies and operating systems. The
main features of X-Windows are that:

• It is network transparent. The output from a program can either be sent to the local graph-
ics screen or to a remote node on the network. Application programs can output simulta-
neously to displays on the network. The communication mechanism used is machine-
independent and operating system independent.

• Many different styles of user interface can be supported. The management of the user
interface, such as the placing, sizing and stacking of windows is not embedded in the sys-
tem, but is controlled by an application program which can easily be changed.

• As X is not embedded into an operating system, it can be easily transported to a wide
range of computer systems.

• Calls are made from application programs to the X-windows libraries which control
WIMPs. The application program thus does not have to create any of these functions.

1985 was the year that Microsoft released their first version of Windows, at a price of $100.
It was hardly startling, and would take another two versions before it completely dominated
the market. It could not multitask, and still used DOS. Another major failing was that it did
not use the full capabilities of the new 32-bit processor (80386) or the enhanced 16-bit proc-
essor (80286), and could thus only access up to 1 MB of memory.
 Just as IBM were releasing their AT computer with the 80286, Intel released their new
32-bit 16 MHz 80386DX microprocessor, and the 80287 math coprocessor. The 80386 used

34 Introduction

32-bit registers and a 32-bit data bus, and incorporated 275 000 transistors (1.5 microns). The
initial price was $299. It could access up to 4 GB of physical memory, or up to 64 TB of vir-
tual memory. A worrying development for Intel came from the new start up company, Chips
& Technologies, which developed a set of five chips that were equivalent to 63 smaller chips
that were found on the IBM PC AT motherboard. This development meant that many of the
support devices produced by Intel could be replaced by many less devices, thus cutting pro-
duction costs. At Motorola, the success of the 68000 brought the 68008 processor.
 After Apple had released their 68000-based Macintosh in the previous year, Commodore
released their new flagship computer: the Amiga 1000. Unlike the IBM PC, it was fully mul-
titasking and used a WIMPs (windows, icons, menus and pointers) system. In its basic form
it cost $1300 and had 256 KB RAM, and 880 KB 3.5-inch disk drive. They also released the
Commodore 128 computer, which was an upgrade of the Commodore 64. Along with the
Amiga, Commodore were trying to get into the PC market with the PC10 and PC20 com-
puters, and tried to stop production of the Commodore 64 (but public demand restarted pro-
duction several times).
 At Apple Computer the success of the Macintosh continued. The battle was now on for
the PC market, and they had the IBM PC in their sights. During the SuperBowl, Apple ran a
TV advert for Macintosh Office, which showed blindfolded business executives walking off
a cliff, like lemmings. Things were becoming turbulent in Apple, after years of growth had
produced a grown-up company with formal business methods. This type of environment did
not suit Steve Jobs (the co-founder of Apple Computer), and he left, along with five senior
managers, to form NeXT Incorporated. In fact, John Sculley, the former Pepsi-Cola president
who, in 1984, had been brought in to train Steve to become the CEO, forced Steve Jobs out.
From then on, John Sculley was the man in charge of Apple.
 The future for Apple looked difficult, but the key to future growth would be the Macin-
tosh, and not Lisa or the Apple II. The software for the Macintosh was being produced as
quickly as the market was buying it. Microsoft released Microsoft Word 1.0 and the Micro-
soft Excel spreadsheet ($95). Apple were not really impressed with the first version of Excel,
and reckoned that Lotus Development’s equivalent was better (named Jazz). Another key
package for the Macintosh was Aldus PageMaker from Aldus, which created a new industry,
which for the first time, integrated text and graphics with a design package: desktop publish-
ing. For years, PageMaker was the de facto standard package for graphics design and desk-
top publishing. Microsoft obviously had a foot in both the IBM PC and the Macintosh mar-
ket, as they released Microsoft Word 2.0 for DOS, and QuickBASIC 1.0.
 The year produced many good deals for Microsoft, including:

• Microsoft signed a deal with IBM for a joint-development agreement to work together

on future operating systems and environments.
• Microsoft signed a deal with Apple to cover Apple’s copyrights on the visual display of

the Macintosh.
• Microsoft purchased all rights to DOS from Seattle Computer Products for $925000.

The deal of the century!

Atari struggled on, in face of the competition from Apple, Compaq, Commodore and the
IBM PC. With the might of Microsoft added to the equation, they had little chance in the
profitable business market. They continued their previous success in the home market with
the 65XE, the 130XE, and the 520ST, for $120, $400, and $600, respectively. Radio Shack
also continued to swim against the tide with the release of the Tandy 6000 multi-user system

Computer busses 35

(with up to nine users). It was extremely powerful and used the both a Z80A and a 68000
processor. It had 512 KB RAM, 80×24 text, graphics, 1.2 MB 8-inch disk, an optional 15 MB
hard drive, TRS-DOS, or XENIX 3.0. Another struggler with an excellent product was
Acorn who released The Advanced RISC Machine (ARM), which used a powerful 32-bit
processor.
 At IBM, there was despondency as they stopped production of their PCjr and released
their first version of TopView for $150. One of the successes of the previous year, Compaq
Computer, was jubilant as they reported second year revenues of $329 million. They quickly
followed up the success of the Compaq portable with the Compaq Deskpro 286 and Portable
286, which was similar in specification to the IBM AT. IBM also moved into networking
with IBM Token Ring; unfortunately, even though Token Ring was an excellent networking
technology, the future would be Ethernet.
 Each year in the computer industry had seen a new significant company being born. The
previous years had seen the birth of Compaq Computers, Sun Microsystems and Apollo. In
the 1985, it was Nintendo, and Chip and Technologies. Nintendo would become one of the
leading computer companies in the lucrative computer games market. They again highlighted
the strength of the USA in generating new and innovative computer companies. Software
companies were also being created, such the Corel Corporation (by Michael Cowpland), and
Quarterdeck Office Systems. On of the successes of the previous years was Sun Microsys-
tems who had started work on their SPARC processor.
 On the PC, new software versions were coming thick and fast. Lotus 1-2-3 has moved to
2.0, WordPerfect moved to Version 4.1, Novell NetWare was now at Version 2.0 and dBase
was at Version 3. 1985 also saw the first CD-ROM drives for computer use.

After a few frantic years, things started to settle down in 1986. The IBM PC and the Ap-
ple Macintosh would now dominate the market, especially at the business end. One of the
biggest winners was Compaq Computers who had seen their turnover for their third year rise
to $503.9 million and, by the middle of the year, they would sell their 50 000th computer.
Compaq Computer introduced the Compaq Portable II. Against its excellent quality and
specification, IBM would eventually withdraw from the portable computer for a while, as it
was obviously inferior to the Compaq portable. It would take many years before IBM would
regain some of the portable market (with the ThinkPad).
 Compaq blasted the PC market wide open with the first 16 MHz Intel 80386-based PC:
the Compaq Deskpro 386. The best that IBM could manage was the IBM AT which had an
8 MHz Intel 80286. The Deskpro 386 was thus running at twice the clock speed, and had the
potential, with 32-bit software, to run twice as fast again. The 80386 also had significant
improvements in the number of clock cycles that it took for an operation to be performed.
Thus, the Deskpro 386 sprinted, while all the other PCs dawdled, and its full potential was
yet to be realised.
 IBM knew that the PC was a compromised system, and released the IBM RT Personal
Computer. This was based on a 32-bit RISC-based processor, with 1 MB RAM, a 1.2 MB
floppy, and 40 MB hard drive, and cost $11 700. Even with the RISC processor, it only had a
performance of 2 MIPS, and thus its price/performance ratio was too great for it to be
adopted in the market.
 Apple was starting to suffer against the growing power of the IBM PC developers. They
still had a closed system, where it was up to them to develop the software and hardware for
the Macintosh, whereas the IBM had hundreds, if not thousands, working on it, and improv-
ing it. The Apple Mac was now looking underpowered and lacking other facilities, especially
in networking on IBM PC-based networks. Apple overcame part of this with the release of

36 Introduction

the Macintosh Plus, which was based around the 8 MHz 68000 processor, had 1 MB RAM,
SCSI-based hard disk connector (the first ever computer to have integrated SCSI interfaces)
and an 800 KB 3.5-inch floppy drive. It cost $2600 (while a 512 KB version cost $2000).
Unfortunately, it was still not possible to connect an Apple Mac onto an IBM PC-based net-
work, unless a telephone connection was used. This held it back from wider adoption in the
commercial market. Apple, though, was starting to make great inroads into the publishing
industry with the release of the innovative LaserWriter Plus printer.
 Microsoft had over the past few years initiated many new products for both the IBM PC,
and the Apple Macintosh. In 1985, they consolidated their market with new versions of the
successful software, such as MS-DOS 3.2 and Microsoft Word 3.0. In MS-DOS 3.2, support
was added for 3.5-inch 720 KB floppy disk drives (these disks were much more reliable than
the older, ‘floppy’, 5-inch floppy disk, as they had a hard case to protect them). The initial
investment of time, and energy, for those involved in Microsoft was rewarded when, for the
first time, Microsoft sold its shares to the public. When floated, each share was worth $21,
which raised $61 million for Microsoft, and made Bill Gates the world’s youngest billion-
aire.
 The UK also showed that they could innovate in market niches with the release of the
Inmos T800 Transputer, which was a powerful RISC processor that could be used in parallel
processing applications.
 Several computer manufacturers, such as Silicon Graphics, started to move towards the
new range of RISC processors produced by MIP Technologies, such as the 8 MHz, 32-bit,
R2000 processor. This used 110 000 transistors and gave a speed of 5 MIPS. At Motorola,
they were working on the 68030 processor, which would have over 300 000 transistors. They
also began work on the 88000 processor.
 At IBM, work had begun on a computer range which would become a classic: the IBM
RS/6000 series. The newcomer of the year was Gateway 2000, which shipped its first PC. In
addition, after using the Small Computer System Interface (SCSI) on Apple’s Macintosh
(SCSI-1), it was standardised with the ANSI X3.131-1986 standard.

1.7 Exercises

The following questions are multiple choice. Please select from a–d.

1.7.1 Who solved the US Governments Census problems:

 (a) Bill Gates (b) Herman Hollerith
 (c) William Shockley (d) Lee De Forest

1.7.2 Which computer helped aid the British Government to crack codes in World War

II:

 (a) ENIAC (b) Harvard Mk I
 (c) IBM System/360 (d) Colossus

1.7.3 What is ENIAC an acronym for:

 (a) Electronic Numerical Integrator and Computer

Computer busses 37

 (b) Electronic Number Interface Analysis Computer
 (c) Electronic Number Interface and Computer
 (d) Electronic Numerical Interchange Computer

1.7.4 Who invented the transistor:

 (a) Bill Gates (b) Herman Hollerith
 (c) William Shockley (d) Lee De Forest

1.7.5 Which company did William Shockley form:

 (a) Shockley Semiconductor (b) Shockley Devices
 (c) Shockley Electronics (d) Shockley Electrics

1.7.6 Which company proposed that silicon could be used for transistors:

 (a) IBM (b) Texas Instruments
 (c) Motorola (d) Fairchild Semiconductors

1.7.7 Which company first proposed the integrated circuit:

 (a) IBM (b) Texas Instruments
 (c) Motorola (d) Fairchild Semiconductors

1.7.8 Who first produced an integrated circuit:

 (a) John Cocke (b) Robert Noyce
 (c) Gordon Moore (d) William Shockley

1.7.9 Who proposed that the number of transistors that can be fitted onto an integrated

circuit doubles each year:

 (a) John Cocke (b) Robert Noyce
 (c) Gordon Moore (d) William Shockley

1.7.10 Which computer was the first to use integrated circuits:

 (a) Apple I (b) IBM System/360
 (c) IBM PC (d) DEC PDP-11

1.7.11 Which one of the following formed Intel:

 (a) Bill Gates and Paul Allen
 (b) Robert Noyce, Gordon Moore and Andy Grove
 (c) Jerry Sanders
 (d) Steve Wozniak and Steve Jobs

1.7.12 Which one of the following formed Microsoft:

38 Introduction

 (a) Bill Gates and Paul Allen
 (b) Robert Noyce, Gordon Moore and Andy Grove
 (c) Jerry Sanders
 (d) Steve Wozniak and Steve Jobs

1.7.13 Which one of the following formed Apple Computers:

 (a) Bill Gates and Paul Allen
 (b) Robert Noyce, Gordon Moore and Andy Grove
 (c) Jerry Sanders
 (d) Steve Wozniak and Steve Jobs

1.7.14 Which company did Kenneth Olsen help form:

 (a) Compaq (b) DEC
 (c) Microsoft (d) IBM

1.7.15 Which company developed the first microprocessor:

 (a) Texas Instruments (b) Motorola
 (c) Zilog (d) Intel

1.7.16 Which company developed the first 8-bit microprocessor:

 (a) NEC (780-1) (b) Motorola (6800)
 (c) Zilog (Z80) (d) Intel (8008)

1.7.17 Which company developed the first 16-bit microprocessor:

 (a) Texas Instruments (9900) (b) Motorola (68000)
 (c) Zilog (Z8000) (d) Intel (8086)

1.7.18 Which company was the first to demonstrate the usage of windows, mouse and

keyboard:

 (a) IBM (b) Xerox
 (c) Microsoft (d) DEC

1.7.19 Which company was the first to demonstrate the WYSIWYG concept:

 (a) IBM (b) Xerox
 (c) Microsoft (d) DEC

1.7.20 What was the name of the Xerox research center:

 (a) PARC (b) XRES
 (c) PERC (d) RESP

1.7.21 Which company did Bill Gates and Paul Allen initially create:

Computer busses 39

 (a) Micro-Traffic (b) Traf-O-Data
 (c) Traffic Software (d) Gates & Allen

1.7.22 Who developed the C programming language:

 (a) Bill Gates and Paul Allen
 (b) Brian Kernighan and Dennis Ritchie
 (c) Niklaus Wirth
 (d) Steve Wozniak and Steve Jobs

1.7.23 Who developed the Pascal programming language:

 (a) Bill Gates and Paul Allen
 (b) Brian Kernighan and Dennis Ritchie
 (c) Niklaus Wirth
 (d) Steve Wozniak and Steve Jobs

1.7.24 Which was the first ever commercial microprocessor:

 (a) 4000 (b) 4004
 (c) 8080 (d) 1000

1.7.25 The 8008 device could address up to 1 KB. Thus how much address lines did it

have:

 (a) 6 (b) 10
 (c) 20 (d) 1000

1.7.26 Which processor did Zilog produce:

 (a) Z80 (b) 6502
 (c) 8080 (d) 6800

1.7.27 Which processor did MOS Technology produce:

 (a) Z80 (b) 6502
 (c) 8080 (d) 6800

1.7.28 Which processor did Motorola produce:

 (a) Z80 (b) 6502
 (c) 8080 (d) 6800

1.7.29 Which processor did the Apple II use:

 (a) Zilog Z80 (b) MOS Technology 6502
 (c) Intel 8080 (d) NEC 780-1

40 Introduction

1.7.30 Which processor did the Commodore PET use:

 (a) Zilog Z80 (b) MOS Technology 6502
 (c) Intel 8080 (d) NEC 780-1

1.7.31 Which processor did the TRS-80 use:

 (a) Zilog Z80 (b) MOS Technology 6502
 (c) Intel 8080 (d) NEC 780-1

1.7.32 Which processor did the ZX80 use:

 (a) Zilog Z80 (b) MOS Technology 6502
 (c) Intel 8080 (d) NEC 780-1

1.7.33 Which company distributed CP/M:

 (a) Microsoft (b) Digital Research
 (c) Xerox (d) Applesoft

1.7.34 Which software language was standard on most early PCs:

 (a) C (b) BASIC
 (c) Pascal (d) Assembly Language

1.7.35 How did the Motorola 68000 gain its name:

 (a) No reason (b) It was sold for $680.00
 (c) It sounded like the 8008 (d) It had 68 000 transistors

1.7.36 Which company produced the VAX range of computers:

 (a) IBM (b) DEC
 (c) Compaq (d) Apple

1.8 Notes from the author

The history of the PC is an unbelievable story, full of successes and failures. Many people
who used some of the computer systems before the IBM PC was developed, wipe a tear from
their eyes, for various reasons, when they remember their first introduction to computers,
typically with the Sinclair Spectrum or the Apple II. In those days, all your programs could
be saved to a single floppy disk, 128 KB of memory was more than enough to run any pro-
gram, and the nearest you got to a GUI was at the adhesives shelf at your local DIY store. It
must be said that computers were more interesting in those days. Open one up, and it was
filled with processor chips, memory chips, sound chips, and so on. You could almost see the
thing working (a bit like it was in the days of valves). These days, computers lack any soul;

Computer busses 41

one computer is much like the next. There’s the processor, there’s the memory, that’s a
bridge chip, and, oh, there’s the busses, that’s it.
 As we move to computers on a chip, they will, in terms of hardware, become even more
boring to look at. But, maybe I’m just biased. Oh, and before the IBM PC, it was people who
made things happen in the computer industry, such as William Shockley, Steve Jobs, Kenneth
Olson, Sir Clive Sinclair, Bill Gates, and so on. These days it is large teams of software and
hardware engineers who move the industry. Well, enough of this negative stuff. The PC is an
extremely exciting development, which has changed the form of modern life. Without its
flexibility, its compatibility, and, especially, its introduction into the home, we would not
have seen the fast growth of the Internet.
 Here are my Top 15 successes in the computer industry:

1. IBM PC (for most), which was a triumph of design and creativity. One of the few com-

puter systems to ever to be released on time, within budget, and within specification. Bill
Gates must take some credit in getting IBM to adopt the 8088 processor, rather than
8080. After its success, every man and his dog had a say in what went into it. The rise of
the bland IBM PC was a great success of an open system over closed systems. Compa-
nies who have quasimonopolies are keen on keeping their systems closed, while compa-
nies against other competitors prefer open systems. The market, and thus, the user, pre-
fers open systems.

2. TCP/IP, which is the standard protocol used by computers communicating over the
Internet. It has been designed to be computer independent to any type of computer, can
talk to any other type. It has withstood the growth of the Internet with great success. Its
only problem is that we are now running out of IP addresses to grant to all the com-
puters that connect to the Internet. It is thus a victim of its own success.

3. Electronic mail, which has taken the paperless office one step nearer. Many mourned
the death of the letter writing. Before email, TV and the telephone had suppressed the
art of letter writing, but with email it is back again, stronger than ever. It is not without
its faults, though. Many people have sent emails in anger, or ignorance, and then regret-
ted them later. It is just too quick, and does not allow for a cooling off period. My motto
is: ‘If you are annoyed about something sleep on it, and send the email in the morning’.
Also, because email is not a face-to-face communication, or a voice-to-voice communi-
cation, it is easy to take something out of context. So another motto is: ‘Carefully read
everything that you have written, and make sure there is nothing’. Only on the Internet
could email address format be accepted, worldwide, in such a short time.

4. Microsoft, who made sure that they could not lose in the growth of the PC, by teaming
up with the main computer manufacturers, such as IBM (for DOS and OS/2), Apple (for
Macintosh application software) and for their own operating system: Windows. Luckily
for them it was their own operating system which became the industry standard. With
the might of having the industry-standard operating system, they captured a large mar-
ket for industry-standard application programs, such as Word and Excel.

5. Intel, who was presented with an enormous market with the development of the IBM PC,
but have since invested money in enhancing their processors, but still keeping compati-
bility with their earlier ones. This has caused a great deal of hassle for software devel-
opers, but is a dream for users. With processors, the larger the market you have, the
more money you can invest in new ones, which leads to a larger market, and so on. Un-
fortunately, the problem with this is that other processor companies can simply copy
their designs, and change them a little so that they are still compatible. This is some-
thing that Intel have fought against, and, in most cases have succeed in regaining their

42 Introduction

market share, either with improved technology or through legal action. The Pentium
processor was a great success, as it was technologically superior to many other proces-
sors in the market, even the enhanced RISC devices. It has since become faster and
faster.

6. 6502 and Z80 processors, the classic 16-bit processors which became a standard part in
most of the PCs available before the IBM PC. The 6502 competed against the Motorola
6800, while the Z80 competed directly with the Intel 8080.

7. Apple II, which brought computing into the classroom, the laboratory and even the
home.

8. Ethernet, which has become the standard networking technology. It is not the best net-
working technology, but has survived because of its upgradeabliity, its ease-of-use, and
its cheapness. Ethernet does not cope well with high capacity network traffic. This is be-
cause it is based on contention, where nodes must contend with each other to get access
to a network segment. If two nodes try to get access at the same time, a collision results,
and no data is transmitted. Thus, the more traffic there is on the network, the more colli-
sions there are. This reduces the overall network capacity. However, Ethernet had two
more trump cards up its sleeve. When faced with network capacity problems, it in-
creased its bit rate from the standard 10 Mbps (10 BASE) to 100 Mbps (100 BASE). So
there was 10 times the capacity, which reduced contention problems. For networks
backbones it also suffered because it could not transmit data fast enough. So, it played
its next card: 1000 BASE. This increased the data rate to 1Gbps (1000 Mbps). Against
this type of player, no other networking technology had a chance.

9. WWW, which is often confused with the Internet, and is becoming the largest, database
ever created (okay, 99% of it is rubbish, but even if 1% is good then its all worthwhile).
The WWW is one of the uses of the Internet (others include file transfer, remote login,
electronic mail, and so on).

10. Apple Macintosh, which was one of few PC systems which competed with the IBM PC.
It succeeded mainly because of its excellent operating system (MAC OS), which was ap-
proximately 10 years ahead of its time. Possibly if Apple had spent as much time in de-
veloping application software rather than for their operating system it would have con-
siderably helped the adoption of the Mac. Apple refusing to license it to other manufac-
turers also held its adoption back. For a long time it thus stayed a closed system.

11. Compaq DeskPro 386. Against all the odds, Compaq stole the IBM PC standard from
the creators, who had tried to lead the rest of the industry up a dark alley, with MCA.

12. Sun SPARC, which succeed against of the growth of the IBM PC, because of its excel-
lent technology, its reliable Unix operating system, and its graphical user interface (X-
Windows). Sun did not make the mistakes that Apple made, and allowed other compa-
nies to license their technology. They also supported open systems in terms of both the
hardware and software.

13. Commodore, who bravely fought on against the IBM PC. They released mainly great
computers, such as the Vic range and the Amiga. Commodore was responsible for forc-
ing the price of computers down.

14. Sinclair, who, more than any other company, made computing acceptable to the masses.
Okay, most of them had terrible membrane keyboards, and memory adaptor that wob-
bled, and it took three fingers to get the required command (Shift-2nd Function-Alt etc).
and it required a cassette recorder to download programs, and it would typically crash
after you had entered one thousand lines of code. But, all of this aside, in the Sinclair
Spectrum they found the right computer, for the right time, at the right price. Sometimes
success can breed complacency, and so it turned out with the Sinclair QL and the Sin-

Computer busses 43

clair C-5 (the electric slipper).
15. Compaq, for startling growth, that is unlikely to be ever repeated. From zero to one bil-

lion dollars in five years. They achieved this growth, not by luck, but by shear superior
technology, and with the idea of sharing their developments.

Other contenders include Hewlett-Packard (for their range of printers), CISCO (for their
networking products), Java (for ignoring the make of the computer, and its network, and,
well, everything), the Power PC (for trying to head off the PC, at the pass), Dell notebooks
(because I’ve got one), the Intel 80386, the Intel Pentium, Microsoft Visual Basic (for bring-
ing programming to the masses), Microsoft Windows 95, Microsoft Windows NT, and so on.
Okay, Windows 95, Windows NT, the 80386 and the Pentium would normally be in the Top
10, but, as Microsoft and Intel are already there, I’ve left them out. Here’s to the Wintel
Corporation. We are in their hands. One false move and they will bring their world around
themselves. Up to now, Wintel have made all the correct decisions.

When it comes to failures, there are no failures really, and it is easy to be wise after the
event. Who really knows what would have happened if the industry had taken another route.
So instead of the Top 15 failures, I’ve listed the following as the Top 15 under-achievers
(please forgive me for adding a few of my own, such as DOS and the Intel 8088):

1. DOS, which became the best selling, standard operating systems for IBM PC systems.

Unfortunately, it held the computer industry back for at least 10 years. It was text-based,
command-oriented, had no graphical user interface, could only access up to 640 KB, it
could only use 16 bits at a time, and so on, … . Many with a short memory will say that
the PC is easy to use, and intuitive, but they are maybe forgetting how it used to be. With
Windows 95 (and to a lesser extent with Windows 3.x), Microsoft made computers much
easier to use. From then on, users could actually switch their computer on without have
to register for a high degree in Computer Engineering. DOS would have been fine, as it
was compatible with all its previous parents, but the problem was MAC OS, which really
showed everyone how a user interface should operate. Against this competition, it was
no contest. So, what was it? Application software. The PC had application software
coming out of its ears.

2. Intel 8088, which became the standard processor, and thus the standard machine code
for PC applications. So why is it in the failures list? Well, like DOS, its because it was
so difficult to use, and was a compromised system. While Amiga and Apple program-
mers were writing proper programs which used the processor to its maximum extent, PC
programs were still using their processor in ‘sleepy-mode’ (8088-compatiable mode),
and could only access a maximum of 1 MB of memory (because of the 20-bit address bus
limit for 8088 code). The big problem with the 8088 was that it kept compatibility with
its father: the 8080. For this Intel decided to use a segmented memory access, which is
fine for small programs, but a nightmare for large programs (basically anything over
64 KB).

3. Alpha processor, which was DEC’s attack on the processor market. It had blistering
performance, which blew every other processor out of the water (and still does). It has
never been properly exploited, as there is a lack of development tools for it. The Intel
Pentium proved that it was a great all-comer and did many things well, and was willing
to improve the bits that it was not so good at.

4. Z8000 processor, which was a classic case of being technically superior, but was not
compatible with its father, the mighty Z80, and its kissing cousin, the 8080. Few compa-

44 Introduction

nies have given away such an advantage with a single product. Where are Zilog now?
Head buried in the sand, probably.

5. DEC, who was one of the most innovative companies in the computer industry. They
developed a completely new market niche with their minicomputers, but they refused to
see, until it was too late, that the microcomputer would have an impact on the computer
market. DEC went from a company that made a profit of $1.31 billion in 1988, to a
company which, in one quarter of 1992, lost $2 billion. Their founder, Ken Olsen, even-
tually left the company in 1992, and his successor brought sweeping changes. Eventu-
ally, though, in 1998 it was one of the new PC companies, Compaq, who would buy
DEC. For Compaq, DEC seemed a good match, as DEC had never really created much
of a market for PCs, and had concentrated on high-end products, such as Alpha-based
workstations and network servers.

6. Fairchild Semiconductor. Few companies have ever generated so many ideas and incu-
bated so many innovative companies, and got so little in return.

7. Xerox. Many of the ideas in modern computing, such as GUIs and networking, were
initiated at Xerox’s research facility. Unfortunately, Xerox lacked force to develop them
into products, maybe because they reduced Xerox’s main market, which was, and still is,
very much based on paper.

8. PCjr, which was another case of incompatibility. IBM lost a whole year in releasing the
PCjr, and lost a lot of credibility with their suppliers (many of whom were left with un-
sold systems) and their competitors (who were given a whole year to catch up with
IBM).

9. OS/2, IBM’s attempt to regain the operating system market from Microsoft. It was a
compromised operating system, and their development team lacked the freedom of the
original IBM PC development. Too many people and too many committees were in-
volved in its development. It thus lacked the freedom, and independence that the Boca
Raton development team had. IBM’s mainframe divisions were, at the time, a powerful
force in IBM, and could easily stall, or veto a product if it had an effect on their profit-
able market.

10. CP/M, which many believed would become the standard operating system for micro-
computers. Digital Research had an excellent opportunity to make it the standard oper-
ating system for the PC, but Microsoft overcame them by making their DOS system
much cheaper.

11. MCA, which was the architecture that IBM tried to move the market with. It failed be-
cause Compaq, and several others, went against it, and kept developing the existing ar-
chitecture.

12. RISC processors, which were seen as the answer to increased computing power. As
Intel has shown, one of the best ways to increase computing speed is to simply ramp up
the clock speed, and make the busses faster.

13. Sinclair Research, who after the success of the ZX81 and the Spectrum, threw it all
away by releasing a whole range of under-achievers, such as the QL, and the C5.

14. MSX, which was meant to be the technology that would standardize computer software
on PCs. Unfortunately, it hadn’t heard of the new 16-bit processors, and most of all, the
IBM PC.

15. Lotus Development, who totally misjudged the market, by not initially developing their
Lotus 1-2-3 spreadsheet for Microsoft Windows. They instead developed it for OS/2, and
eventually lost the market leadership to Microsoft Excel. Lotus also missed an excellent
opportunity to purchase a large part of Microsoft when they were still a small company.
The profits on that purchase would have been gigantic.

Computer busses 45

So was/is the IBM PC a success? Of course it was/is. But, for IBM it has been a double-
edged sword. It opened up a new and exciting market, and made the company operate in
ways that would have never been possible before. Before the IBM PC, their systems sold by
themselves, because they were made by IBM. It also considerably reduced their market
share. Many questions remained unanswered: ‘Would it have been accepted in the same way
if it had been a closed system, which had to be licensed from IBM?’ ‘Would it have been ac-
cepted if it had used IBM components rather than other standard components, especially the
Intel processors?’, ‘Would they have succeeded in the operating system market if they had
written DOS by themselves?’, and so on. Who knows? But, from now on we will refer to
those computers based on the x86 architecture as PCs.
 Oh, and as an academic I would like to give a special mention to the C programming
language, which has given me great heartaches over the years. Oh, yeah, it’s used exten-
sively in industry and is extremely useful. It is the programming language that I would auto-
matically use for consultancy work. C is well supported by the major language package de-
velopers, and there is a great deal of code available for it. But for teaching programming, it
is a complete non-starter. Without going into too much detail, the problems with C are not
to do with the basic syntax of the language. It’s to do with a thing called pointers. They are
the most horrible things imaginable when it comes to teaching programming languages, and
they basically ‘point’ to a location in memory. This is fine, but in most cases you don’t really
have to bother about where in memory things are stored. But, C forces you to use them,
rather than hiding them away. So, in a C programming class, things go very well until about
the 8th week, when pointers are introduced, and then that’s it. Oh, and don’t get me started
on C++.

1.9 DEC

The main rival to IBM before the advent of the PC was DEC (Digital Equipment Corpora-
tion). They were formed in 1957, and grew to become the second largest computer company
in the world. Their unbelievable growth, and fall, is a lesson for any industry. Brothers Ken-
neth Olson and Stanley Olson, and Harlan Anderson started DEC on a start-up capital of
$70 000 (which was 70% owned by American Research and Development Corporation). This
should compare this with the start-up capital of Compaq, which was $10 million). DEC had
an initial clear strategy, which was to make cheap computers, which appealed to the special-
ist scientific and technical market. At the time, IBM had a quasimonopoly, and DEC did not
have a chance to compete with them on a like-for-like product range. DEC eventually thrived
because they attacked a small market niche with technically superior products. At the time,
they could not possibly compete with IBM in the larger commercial market, where IBM had
made a considerable investment. So, DEC turned to the scientific and technical market,
which required relatively small and configurable products. DEC could not compete with the
mighty IBM, who had a solid foundation of great marketing and sales teams. DEC was basi-
cally a company of engineers, and they were proud of it. Their main product was the mini-
computer, which was much cheaper than mainframes, but had a great deal of power, and
could be easily configured and managed by a small group.
 The big winner for DEC was the PDP (Programmed Data Processor) series, which be-
come the foundation of many scientific and engineering groups. No research group or indus-

46 Introduction

trial company was complete without a PDP computer. By today’s standards, there was more
power in a pocket calculator, as there was in the PDP-8. It was also relatively large, weighing
250 pounds, and came in a rack-mounted unit which was over 6 feet tall. However, the PDP
range was much cheaper than IBM mainframes. For example, the PDP-1 sold for $120 000,
while the comparable IBM computer cost millions. The PDP range also introduced comput-
ing to many young minds. Two exceptional minds, Bill Gates and Paul Allen, cut their teeth
on a DEC PDP-8, where they wrote programs to support the BASIC programming language.
 The next great winner for DEC was the VAX (Virtual Address eXtension) computer
which cost billions to develop, but was a great technical and commercial success. It covered
the complete range of computer hardware from basic terminal interface up to large main-
frame computers. For the first time, DEC produced every part of the computer system: the
operating system, the hardware and the software. One of the great successes of the VAX
range was the VMS operating system (produced by David Culter). It allowed computer pro-
grammers to create programs which had more memory than the computer actually had (a
virtual memory), and allowed several programs to run at the same time (multitasking). After
the success of VMS, David Culter eventually went on develop a RISC operating system, but
DEC management cancelled the project. After this he left DEC in disgust and went to Micro-
soft to lead the development of the Windows NT operating system. Microsoft and Intel have
strong recruitment policies, and often hire the best brains in the computer industry.
 In these days of networked computers, it is difficult to believe, but, at the time, the VAX
range was a radical concept. Before VAX computers, DEC, with their PDP range, was never
touched $7.6 billion. Unfortunately, DEC’s bubble burst for two reasons. The first was the
really a threat to IBM’s core market in mainframes. However, the VAX range was. The fu-
ture looked destined to be DEC’s, and not IBM’s. In 1986, their sales reached $2 billion, and
soon recession of the 1990s. It was a situation that many companies had difficulty coping
with, but it could not be avoided. The only reason was one that could have been avoided if
DEC had realized the changing market, and the power of the new 16-bit microprocessors. It
was basically the IBM PC which eventually beat IBM’s mainframes and DEC’s minicom-
puters on performance, at a fraction of the price, from whichever company you wanted. DEC
actually, in 1979, had the opportunity to enter into the PC market when they allowed Heath-
Kit to sell the PDP-11 minicomputer in kit form. At the time, DEC believed there was more
profit to be made with corporate clients, thus didn’t really believe there was a great market
for PCs. Ken Olsen believed that PCs were a passing fad that would never really evolve into
proper computers. Many computers at the time were bought, played with, and then put in the
cupboard, never to be used again. The great advantages with personal computers were that
they were designed for individuals, whereas minicomputers where designed for businesses.
 DEC struggled though the 1990s and could never regain their dominance. As with IBM’s
mainframe business, they relied on their existing customer base buying their new products. A
well-known brand name, with its associated image is extremely important for corporate com-
panies when they buy computers. Most companies believe that brand names such as DEC (as
they were), IBM, Compaq and Dell are associated with reliable and well-built products.
Companies buying the brand name kept DEC’s brand alive in many cases. As many compa-
nies used DEC equipment, DEC in the 1990s was still a well-respected brand name. They
showed that they could innovate and lead the market with one of the most respected RISC
processors ever made: the Alpha. This had a blistering performance and is still used in many
workstations. It would take several years before Intel could even match the power of the
Alpha device. Unfortunately, DEC failed to support the processor with the required software.
DEC, as IBM had, had always seen itself as a computer hardware company, and not a soft-
ware one.

Computer busses 47

 So from the 1980s to the 1990s, DEC had gone from being a fast-moving, innovative and
enterprising company, to one which was entrenched in its existing product lines. As PCs
grew in strength, DEC kept developing their minicomputers (as IBM was doing with their
mainframes). DEC’s other main problem was that, like IBM, they did everything, from writ-
ing software, design and making the processors, developing hard disk drives, and so on. This
made them vulnerable from specialist companies who could beat DEC in each of the areas. A
focused, specialist company will typically innovate faster than a large, generalized company.
They also failed to become involved in alliances. This was because DEC felt that they could
turn the market in whichever way they wanted, thus they did not need alliances. At present,
only Microsoft and Intel can claim to not requiring alliance pacts. All other companies typi-
cally need to become involved in alliances to get their non-Intel and non-Microsoft products
accepted in the market.
 DEC went from a company that made a profit of $1.31 billion in 1988, to a company that,
in one quarter of 1992, lost $2 billion. Olsen eventually left the company in 1992, and his
successor brought sweeping changes. Eventually, though, in 1998 it was one of the new PC
companies, Compaq, who would buy DEC. For Compaq, DEC seemed a good match, as
DEC had never really created much of a market for PCs, and had concentrated on high-end
products, such as Alpha-based workstations and network servers.
 Unlike IBM, DEC did not pull the walls down around themselves. They had found an
excellent market share and were coping well. If not for the advent of the PC, DEC would
probably be the market leader by now. Their VAX range would have probably evolved to
include a closed-system personal computer in which DEC could have held control of (as
IBM would have done). However, the open-system approach of the PC spelt disaster for both
IBM and DEC.

Busses, Interrupts and PC Systems

2.1 Busses

The part that makes computers operate and allows devices to be easily plugged in is the com-
puter bus, which allows the orderly flow of data between one device and another. The PC,
and other computer systems, has an amazing number of different types of interfaces and bus
systems, these include the PC bus, ISA bus, PCI bus, CAN bus, AGP bus, games port, paral-
lel port, serial port, and so on.
 The main elements of a basic computer system are a central processing unit (or micro-
processor), memory, and I/O interfacing circuitry. These connect by means of three main
buses: the address bus, the control bus and the data bus. A bus is a collection of common
electrical connections grouped by a single name. Figure 2.1 shows a basic system. External
devices such as a keyboard, display, disk drives can connect directly onto the data, address
and control buses or through the I/O interface circuitry.

CPU or
Micro-
processor

Memory
(RAM or
ROM)

I/O
Interfacing
Circuitry

External
Devices

Data Bus

Address Bus

Control
Lines

Figure 2.1 Block diagram of a simple computer system

 Electronic memory consists of RAM (random access memory) and ROM (read only
memory). ROM stores permanent binary information, whereas RAM is a non-permanent
memory and loses its contents on a loss of power. Applications of this type of memory in-
clude running programs and storing temporary information. RAM is normally made up of
either DRAM (Dynamic RAM) or SRAM (Static RAM). DRAM uses a single capacitor and
a transistor to store a single bit of data, whereas SRAM uses six transistors, arranged as a
flip-flop device, to store a single bit of data. DRAM has the advantage that more memory
can be crammed onto a microchip (as only one transistor is required for each bit stored).
DRAM, though, has two major disadvantages: it is relatively slow (because of the charging

2

50 Busses, interrupts and PC systems

and discharging of the storage capacitors) and it requires that the complete contents of its
memory be refreshed with power many times a second (because the tiny capacitors loose
their charge over a short time). This power refresh is thus wasteful of electrical power and
leads to heat dissipation.
 The microprocessor is the main controller of the computer. It only understands binary
information and operates on a series of binary commands known as machine code. It fetches
binary instructions from memory, decodes these instructions into a series of simple actions
and carries out the actions in a sequence of steps. A system clock synchronises these steps.
 To access a location in memory the microprocessor puts the address of the location on the
address bus. The contents at this address are then placed on the data bus and the microproc-
essor reads the data from the data bus. To store data in memory the microprocessor places
the data on the data bus. The address of the location in memory is then put on the address bus
and data is read from the data bus into the memory address location.
 The classification of a microprocessor relates to the maximum number of bits it can proc-
ess at a time, that is their word length. The evolution has gone from 4-bit, 8-bit, 16-bit, 32-bit
and to 64-bit architectures.

2.1.1 Bus specification

The basic specification of a computer can be determined by analysing the performance of the
busses within the system. Each bus performs a specific function and is suited to the devices
that connect to it. The basic specifications for busses include:

• Data rate (in bytes per second or bits per second). This defines the maximum amount of
data that can be transferred, at a time. For example, the ISA bus has a maximum data
rate of 16 MB/s, Gigabit Ethernet has a maximum data rate of 125 MB/s, and the local
bus which connects a PC processor to local memory can have a data rate of over
800 MB/s (64 bits at 100 MHz).

• Maximum number of devices which connect to the bus. The number of devices which
connect to a bus can have a great effect on its performance as they all provide an electri-
cal loading on the bus and the more that connect to the bus, the greater the overhead of
bus arbitration will be. Standard SCSI only allows a maximum of seven devices to be
connected to the bus, whereas Ethernet can allow thousands of devices to connect to the
bus.

• Bus reliability. This defines how well the bus copes with any errors which occur on the
bus. Some busses, especially in industrial environments, can be susceptible to externally
generated noise. A good bus should be able to detect if it has received data which has
been corrupted by noise (or was sent incorrectly).

• Data robustness. This is the ability of the bus to react to faults within the bus or from
the malfunctioning of connected devices. Busses such as the CAN bus can isolate incor-
rectly operating devices.

• Electrical/physical robustness. This is the ability of the bus to cope with electrical
faults, especially due to short-circuits and power surges. Problems can also be caused by
open circuit electrical connections, although these tend not to cause long term damage to
the bus. The physical robustness of a bus is also important, especially in industrial or
safety critical situations.

• Electrical characteristics. This involves the basic electrical parameters of the bus, such
as the range of voltage levels used, electrical current ranges, short-circuit protection sys-

Computer busses 51

tem, capacitance and impedance of cables, cross-talk (the amount of interference be-
tween local signal transmissions), and so on.

• Ease-of-connection. This includes the availability of cables and connectors, and how
easy it is to add and remove devices from the bus. Some busses allow devices to be
added or removed while the bus is in operation (hot pluggable). A good example of a
hot-pluggable bus, which is easy to connect to, is the USB.

• Communications overhead. This is a measure of the amount of data that is added to the
original data, so that it can be sent in a reliable way. Local, fast busses normally have a
minimum of overhead, whereas remote, networked busses have a relatively large over-
head on the transmitted data.

• Bus controller topology. This relates to the method that is used to control the flow of
data around the bus. Some busses, such as SCSI, require a dedicated bus controller
which is involved in all of the data transfers, whereas the PCI bus can operate with one
or more bus controller devices taking control of the bus. Other busses, such as Ethernet,
have a distributed topology where any device can take control of the bus.

• Software interfacing. This defines how easy it is to interface to the bus with software,
especially when using standard interface protocols, such as TCP/IP or MODBUS.

• Cable and connectors. This defines the range of cables and connectors that can be used
with the bus. There is a wide range of cables available, such as ribbon cables (which are
light and are useful inside computer systems), twisted-pair cables (which are easy to con-
nect to and are useful in minimising cross-talk between transmitted signals) and fibre op-
tic cables (which provide a high capacity communications link and minimise cross talk
between transmitted signals). For example, Ethernet can use BNC connectors with coax-
ial cables, RJ-45 connectors with twisted-pair cables and SNA connectors with fibre op-
tic cables.

• Standardisation of the bus. Most busses must comply with a given international stan-
dard, which allows hardware and software to interconnect in a standard form. There are
normally standards for the electrical/mechanical interface, the logical operation of the
bus, and its interface to software. For example, the IEEE has defined most of the
Ethernet standard (especially IEEE 802.3), and the EIA have defined the RS-232 stan-
dard. International standard agencies, such as the IEEE, ISO, ANSI and EIA, provide a
more secure standard than a vendor-led standard.

• Power supply modes. Some busses allow power saving modes, where devices can
power themselves down and be powered up by an event on the bus. This is particularly
useful with devices that have a limited power supply, such as being battery supplied.

2.1.2 Bus components

Devices connect to each other within a computer using a bus. The bus can either be an inter-
nal bus (such as the IDE bus which connects to hard disks and CD-ROM drives within a PC)
or an external bus (such as the USB which can connect to a number of external devices, typi-
cally to scanners, joypads and printers). Busses typically have a number of basic compo-
nents: a data bus, an optional address bus, control lines and handshaking lines, as illustrated
in Figure 2.2. Other lines, such as clock rates and power supply lines are not normally dis-
played when discussing the logical operation of the bus. If there is no address bus, or no con-
trol and handshaking lines, then the data bus can be used to provide addressing, control and
handshaking. This is typical in serial communications, and helps to reduce the number of
connections in the bus, although will generally slow down the communications.

52 Busses, interrupts and PC systems

Device 1Device 1 Device 2Device 2

Data bus

Address bus

Handshaking lines

Control lines

Computer bus

Figure 2.2 Model of a computer bus

Data bus

The data bus is responsible for passing data from one device and another. This data is either
passed in a serial manner (one bit at a time) or in parallel (several bits at a time). In a parallel
data bus, the bits are normally passed in a multiple of eight bits at a time. Typical parallel
data busses are 8 bits, 16 bits, 32 bits, 64 bits or 128 bits wide.
 The bus size defines the maximum size of the bus, but the bus can be used to transmit any
number of bits which is less than the maximum size. For example, a 32-bit bus can be used
to transmit eight bits, 16 bits or 32 bits at a time. Most modern computer systems use a 64-bit
address bus, although the software which runs on the computer only uses a maximum of 32
bits at a time (known as 32-bit software).
 Parallel busses are normally faster than serial busses (as they can transmit more bits in a
single operation), but require many more lines (thus requiring more wires in the cable). A
parallel data bus normally requires extra data handshaking lines to synchronise the flow of
data between devices. Serial data transmission normally uses a start and end bit sequence to
define the start and end of transmission. Figure 2.3 illustrates the differences between serial
and parallel data busses. Parallel busses are typically used for local busses, or where there are
no problems with cables with a relatively large number of wires. Typically, parallel busses
are SCSI and IDE which are used to connect to hard disk drives, and typical serial busses are
RS-232, and the USB.
 Serial communications can operate at very high transmission rates; the main limiting fac-
tor is the transmission channel and the transmitter/receiver electronics. Gigabit Ethernet, for
example, uses a transmission rate of 1 Gbps (125 MB/s) over high-quality twisted-pair copper
cables, or over fibre optic cables (although this is a theoretical rate as more than one bit is
sent at a time). For a 32-bit parallel bus, this would require a clocking rate of only
31.25 MHz (which requires much lower quality connectors and cables than the equivalent
serial interface).

Computer busses 53

Device
1

Device
1

Device
2

Device
2

Device
1

Device
1

Device
2

Device
2

Handshaking line
for synchronising
data (defines when
data is valid on bus)

Parallel Data
Bus

Serial Data
Bus

Start
bit sequence

End
bit sequence

Data
bus

Handshaking
line

Data (sent one bit
at a time)

Figure 2.3 Serial/parallel data busses

Data transfer rates

The amount of data that a system can transfer at a time is normally defined either in bits per
second (bps) or bytes per second (B/s). The more bytes (or bits) that can be transferred the
faster the transfer will be. Typically serial busses are defined in bps, whereas parallel busses
use B/s.
 The transfer of the data occurs are regular intervals, which is defined by the period of the
transfer clock. This period is either defined as a time interval (in seconds), or as a frequency
(in Hz). For example, if a clock operates at a rate of 1 000 000 cycles per second, its fre-
quency is 1 MHz, and its time interval will be one millionth of a second (1×10-6 s).
 In general, if f is the clock frequency (in Hz), then the clock period (in seconds) will be

 sec
1

f
T =

For example, if the clock frequency is 8 MHz, then the clock period will be:

s0.125

sec 50.00000012
108

1
6

µ=

=
×

=T

The data transfer rate (in bits/second) is defined as:

Conversion from clock frequency
to clock time interval

Example of a calculation of clock
time interval from clock frequency

54 Busses, interrupts and PC systems

(s)operation per imeTransfer t

(bits)operation per ed transmittbits ofNumber
 (bps) rate transfer Data =

If operated with a fixed clock frequency for each operation then the data transfer rate (in
bits/second) will be

(Hz) rate Clocking(bits)operation per ed transmittbits ofNumber (bps) rate transfer Data ×=

For example, the ISA bus uses an 8 MHz (8×106 Hz) clocking frequency and has a 16-bit data
bus. Thus the maximum data transfer rate (in bps) will be:

 128Mbpsb/s 10128 10816 rate transfer Data 66 =×=××=

Often it is required that the data rate is given in B/s, rather and bps. To convert from bps to
B/s, eight divides the bps value. Thus to convert 128Mbps to B/s

16MB/sMbps

8

128

128Mbps rate transfer Data

==

=

For serial communication, if the time to transmit a single bit is 104.167 µs then the maximum
data rate will be

 bps 9600
10104.167

1
 rate transfer Data

6
=

×
=

-

2.1.3 Address bus

The address bus is responsible for identifying the location into which the data is to be passed
into. Each location in memory typically contains a single byte (8 bits), but could also be ar-
ranged as words (16 bits), or long words (32 bits). Byte-oriented memory is the most flexible
as it also enables access to any multiple of eight bits. The size of the address bus thus indi-
cates the maximum addressable number of bytes. Table 2.3 shows the size of addressable
memory for a given address bus size. The number of addressable bytes is given by:

 bytesn 2locations eAddressabl =

where n is the number of bits in the address bus. For example:

• A 1-bit address bus can address up to two locations (that is 0 and 1).
• A 2-bit address bus can address 22 or 4 locations (that is 00, 01, 10 and 11).
• A 20-bit address bus can address up to 220 addresses (1 MB).
• Α 32-bit address bus can address up to 232 addresses (4 GB).

The units used for computers for defining memory are B (Bytes), kB (kiloBytes), MB
(megaBytes) and GB (gigabytes). These are defined as:

Example conversion from bps to B/s

Example conversion to bps for a serial
transmission with a given transfer time
interval

Addressable locations for a
given address bus size

Computer busses 55

• KB (kiloByte). This is defined as 210 bytes, which is 1024 B.
• MB (megaByte). This is defined as 220 bytes, which is 1024 kB, or 1 048 576 bytes.
• GB (gigaByte). This is defined as 230 bytes, which is 1024 MB, or 1 048 576 kB, or

1 073 741 824 B.

Table 2.1 gives a table with addressable space for given address bus sizes.

Table 2.1 Addressable memory (in bytes) related to address bus size

Address bus size Addressable memory (bytes) Address bus size Addressable memory (bytes)
 1 2 15 32 K
 2 4 16 64 K
 3 8 17 128 K
 4 16 18 256 K
 5 32 19 512 K
 6 64 20 1 M†
 7 128 21 2 M
 8 256 22 4 M
 9 512 23 8 M
10 1 K* 24 16 M
11 2 K 25 32 M
12 4 K 26 64 M
13 8K 32 4 G‡
14 16K 64 16 GG

* 1 K represents 1024 † 1 M represents 1 048 576 (1024 K)
‡ 1 G represents 1 073 741 824 (1024 M)

Data handshaking

Handshaking lines are also required to allow the orderly flow of data. This is illustrated in
Figure 2.4. Normally there are several different types of busses which connect to the system,
these different busses are interfaced to with a bridge, which provides for the conversion be-
tween one type of bus and another. Sometimes devices connect directly onto the processor’s
bus; this is called a local bus, and is used to provide a fast interface with direct access with-
out any conversions.
 The most basic type of handshaking has two lines:

• Sending identification line – this identifies that a device is ready to send data.

• Receiving identification line – this identifies that device is a device is ready to receive
data, or not.

56 Busses, interrupts and PC systems

ProcessorProcessor

BridgeBridge

BridgeBridge

BridgeBridge

Computer bus type 1

Computer bus type 2

Computer bus type 3

Data/addressing
line

Handshaking
line Direct-connect

bus

Figure 2.4 Computer bus connections

Figure 2.5 shows a simple form of handshaking of data, from Device 1 to Device 2. The
sending status is identified by READY? and the receiving status by STATUS. Normally an
event is identified by a signal line moving from one state to another, this is described as
edge-triggered (rather than level-triggered where the actual level of the signal identifies its
state). In the example in Figure 2.5, initially Device 1 puts data on the data bus, and identi-
fies that it is ready to send data by changing the READY? line from a LOW to a HIGH level.
Device 2 then identifies that it is reading the data by changing its STATUS line from a LOW
to a HIGH. Next it identifies that it has read the data by changing the STATUS line from a
HIGH to a LOW. Device 1 can then put new data on the data bus and start the cycle again by
changing the READY? line from a LOW to a HIGH.
 This type of communication only allows communication in one direction (from Device 1
to Device 2) and is know as simplex communications. The main types of communication are:

• Simplex communication. Only one device can communicate with the other, and thus
only requires handshaking lines for one direction.

• Half-duplex communication. This allows communications from one device to the
other, in any direction, and thus requires handshaking lines for either direction.

• Full-duplex communications. This allows communication from one device to another,
in either direction, at the same time. A good example of this is in a telephone system,
where a caller can send and receive at the same time. This requires separate transmit and
receive data lines, and separate handshaking lines for either direction.

Computer busses 57

Device
1

READY?

STATUS Device
2

DATA

READY?

STATUS

Device 1 wants to
send data to Device 2

Device 2 is
not busy

Device 2 is
busy

Device 2 has
read the data

LOW

HIGH
LOW

HIGH

Figure 2.5 Simple handshaking of data

Control lines

Control lines define the operation of the data transaction, such as:

• Data flow direction – this identifies that data is either being read from a device or writ-
ten to a device.

• Memory addressing type – this is typically either by identifying that the address access
is direct memory accessing or indirect memory access. This identifies that the address on
the bus is either a real memory location or is an address tag.

• Device arbitration – this identifies which device has control of the bus, and is typically
used when there are many devices connected to a common bus, and any of the devices
are allowed to communicate with any other of the devices on the bus.

2.1.4 Cables

The cable type used to transmit the data over the bus depends on several parameters, includ-
ing:

• The signal bandwidth.
• The reliability of the cable.
• The maximum length between nodes.
• The possibility of electrical hazards.
• Power loss in the cables.

58 Busses, interrupts and PC systems

• Tolerance to harsh conditions.
• Expense and general availability of the cable.
• Ease of connection and maintenance.
• Ease of running cables, and so on.

The main types of cables used are standard copper cable, unshielded twisted-pair copper
(UTP), shielded twisted-pair cable (STP), coaxial and fibre optic. Twisted-pair and coaxial
cables transmit electric signals, whereas fibre optic cables transmit light pulses. Twisted-pair
cables are not shielded and thus interfere with nearby cables. Public telephone lines generally
use twisted-pair cables. In LANs they are generally used up to bit rates of 10 Mbps and with
maximum lengths of 100 m.
 Coaxial cable has a grounded metal sheath around the signal conductor. This limits the
amount of interference between cables and thus allows higher data rates. Typically, they are
used at bit rates of 100 Mbps for maximum lengths of 1 km.
 The highest specification of the three cables is fibre optic. This type of cable allows ex-
tremely high bit rates over long distances. Fibre optic cables do not interfere with nearby
cables and give greater security, give more protection from electrical damage by external
equipment and greater resistance to harsh environments; they are also safer in hazardous en-
vironments.

Cable characteristics

The main characteristics of cables are attenuation, cross-talk and characteristic impedance.
Attenuation defines the reduction in the signal strength at a given frequency for a defined
distance. It is normally defined in dB/100 m, which is the attenuation (in dB) for 100 m. An
attenuation of 3 dB/100 m gives a signal voltage reduction of 0.5 for every 100 m. Table 2.2
lists some attenuation rates and equivalent voltage ratios; they are illustrated in Figure 2.6.
Attenuation is given by

 dB log20nAttenuatio
out

in
10 








=

V

V

For example if the input voltage to a cable is 10 V and the voltage at the other end is only
7 V, then the attenuation is calculated as

 dB 3.1
7

10
log20nAttenuatio 10 =






=

Coaxial cables have an inner core separated from an outer shield by a dielectric. They have
an accurate characteristic impedance (which reduces reflections), and because they are
shielded they have very low cross-talk levels. They tend also to have very low attenuation,
(such as 1.2 dB at 4 MHz), with a relatively flat response. UTPs (unshielded twisted-pair
cables) have either solid cores (for long cable runs) or are stranded patch cables (for shorts
run, such as connecting to workstations, patch panels, and so on). Solid cables should not be
flexed, bent or twisted repeatedly, whereas stranded cable can be flexed without damaging
the cable. Coaxial cables use BNC connectors while UTP cables use either the RJ-11 (small

Calculation of attenuation from
input and output voltages

Computer busses 59

connector which is used to connect the handset to the telephone) or the RJ-45 (larger connec-
tor which is typically used in networked applications to connect a network adapter to a net-
work hub).
 The characteristic impedance of a cable and its connectors are important, as all parts of
the transmission system need to be matched to the same impedance. This impedance is nor-
mally classified as the characteristic impedance of the cable. Any differences in the matching
result in a reduction of signal power and produce signal reflections (or ghosting).
 Cross-talk is important as it defines the amount of signal that crosses from one signal
path to another. This causes some of the transmitted signal to be received back where it was
transmitted. Capacitance (pF/100 m) defines the amount of distortion in the signal caused by
each signal pair. The lower the capacitance value, the lower the distortion.

Table 2.2 Attenuation rates as a ratio

dB Ratio dB Ratio dB Ratio

0 1.000 10 0.316 60 0.001

1 0.891 15 0.178 65 0.000 6

2 0.794 20 0.100 70 0.000 3

3 0.708 25 0.056 75 0.000 2

4 0.631 30 0.032 80 0.000 1

5 0.562 35 0.018 85 0.000 06

6 0.501 40 0.010 90 0.000 03

7 0.447 45 0.005 6 95 0.000 02

8 0.398 50 0.003 2 100 0.000 01

9 0.355 55 0.001 8

0.0001

0.001

0.01

0.1

1

0 10 20 30 40 50 60

Attenuation (dB)

S
ig

na
l r

at
io

Figure 2.6 Signal ratio related to attenuation

60 Busses, interrupts and PC systems

Typical cables used are:

• Coaxial cable – cables with an inner core and a conducting shield having characteristic

impedance of either 75 Ω for TV signal or 50 Ω for other types.
• Cat-3 UTP cable – level 3 cables have non-twisted-pair cores with a characteristic im-

pedance of 100 Ω (±15 Ω) and a capacitance of 59 pF/m. Conductor resistance is around
9. 2 Ω/100 m.

• Cat-5 UTP cable – level 5 cables have twisted-pair cores with a characteristic impedance
of 100 Ω (±15 Ω) and a capacitance of 45.9 pF/m. Conductor resistance is around
9 Ω/100 m.

The Electrical Industries Association (EIA) has defined five main types of cables. Levels 1
and 2 are used for voice and low-speed communications (up to 4 Mbps). Level 3 is designed
for LAN data transmission up to 16 Mbps and level 4 is designed for speeds up to 20 Mbps.
Level 5 cables, have the highest specification of the UTP cables and allow data speeds of up
to 100 Mbps. The main EIA specification on these types of cables is EIA/TIA568 and the
ISO standard is ISO/IEC11801.
 Table 2.3 gives typical attenuation rates (dB/100 m) for Cat-3, Cat-4 and Cat-5 cables.
Notice that the attenuation rates for Cat-4 and Cat-5 are approximately the same. These two
types of cable have lower attenuation rates than equivalent Cat-3 cables. Notice that the at-
tenuation of the cable increases as the frequency increases. This is due to several factors,
such as the skin effect, where the electrical current in the conductors becomes concentrated
around the outside of the conductor, and the fact that the insulation (or dielectric) between
the conductors actually starts to conduct as the frequency increases.
 The Cat-3 cable produces considerable attenuation over a distance of 100 m. The table
shows that the signal ratio of the output to the input at 1 MHz, will be 0.76 (2.39 dB), then, at
4 MHz it is 0.55 (5.24 dB), until at 16 MHz it is 0.26. This differing attenuation at different
frequencies produces not just a reduction in the signal strength but also distorts the signal
(because each frequency is affected differently by the cable. Cat-4 and Cat-5 cables also pro-
duce distortion but their effects will be lessened because attenuation characteristics have flat-
ter shapes.
 Table 2.4 gives typical near-end cross-talk rates (dB/100 m) for Cat-3, Cat-4 and Cat-5
cables. The higher the figure, the smaller the cross-talk. Notice that Cat-3 cables have the
most cross-talk and Cat-5 have the least, for any given frequency. Notice also that the cross
talk increases as the frequency of the signal increases. Thus, high-frequency signals have
more cross-talk than lower-frequency signals.

Table 2.3 Attenuation rates (dB/100 m) for Cat-3, Cat-4 and Cat-5 cable

Frequency (MHz) Attenuation rate (dB/100 m)

 Cat-3 Cat-4 Cat-5

 1 2.39 1.96 2.63

 4 5.24 3.93 4.26

10 8.85 6.56 6.56

16 11.8 8.2 8.2

Computer busses 61

Table 2.4 Near-end cross-talk (dB/100 m) for Cat-3, Cat-4 and Cat-5 cable

Near end cross-talk (dB/100 m) Frequency (MHz)

Cat-3 Cat-4 Cat-5

 1 13.45 18.36 21.65

 4 10.49 15.41 18.04

10 8.52 13.45 15.41

16 7.54 12.46 14.17

2.2 Interrupts

An interrupt allows a program or an external device to interrupt the execution of a program.
The generation of an interrupt can occur by hardware (hardware interrupt) or software (soft-
ware interrupt). When an interrupt occurs an interrupt service routine (ISR) is called. For a
hardware interrupt the ISR then communicates with the device and processes any data. When
it has finished the program execution returns to the original program. A software interrupt
causes the program to interrupt its execution and goes to an interrupt service routine. Typical
software interrupts include reading a key from the keyboard, outputting text to the screen and
reading the current date and time. The operating system must respond to interrupts from
external devices, as illustrated in Figure 2.7.

Interrupt
controller
Interrupt
controller

Hardware interrupts

Interrupt
Service
Routine

(ISR)

Interrupt
Service
Routine

(ISR)

Software interrupts

Operating
system

Program requestsProgram requests

Interrupt
controller
Interrupt
controller

Hardware interrupts

Interrupt
Service
Routine

(ISR)

Interrupt
Service
Routine

(ISR)

Software interrupts

Operating
system

Program requestsProgram requests

Figure 2.7 Interrupt service routine

62 Busses, interrupts and PC systems

2.2.1 Software interrupts

BIOS and the operating system

The Basic Input/Output System (BIOS) communicates directly with the hardware of the
computer. It consists of a set of programs which interface with devices such as keyboards,
displays, printers, serial ports and disk drives. These programs allow the user to write appli-
cation programs that contain calls to these functions, without having to worry about control-
ling them or which type of equipment is being used. Without BIOS, the computer system
would simply consist of a bundle of wires and electronic devices.
 There are two main parts to BIOS. The first is the part permanently stored in a ROM (the
ROM BIOS). It is this part that starts the computer (or bootstap) and contains programs
which communicate with resident devices. The second stage is loaded when the operating
system is started. This part is non-permanent.
 An operating system allows the user to access the hardware in an easy-to-use manner. It
accepts commands from the keyboard and displays them to the monitor. The Disk Operating
System, or DOS, gained its name from its original purpose of providing a controller for the
computer to access its disk drives. The language of DOS consists of a set of commands
which are entered directly by the user and are interpreted to perform file management tasks,
program execution and system configuration. It makes calls to BIOS to execute these. The
main functions of DOS are to run programs, copy and remove files, create directories, move
within a directory structure and to list files. Microsoft Windows calls BIOS programs di-
rectly.

Interrupt vectors

Interrupt vectors are addresses which inform the interrupt handler as to where to find the
ISR. All interrupts are assigned a number from 0 to 255. The interrupt vectors associated
with each interrupt number are stored in the lower 1024 bytes of PC memory. For example,
interrupt 0 is stored from 0000:0000 to 0000:0003, interrupt 1 from 0000:0004 to
0000:0007, and so on. The first two bytes store the offset and the next two store the seg-
ment address. Each interrupt number is assigned a predetermined task, as outlined in Table
2.5. An interrupt can be generated either by external hardware, software, or by the processor.
Interrupts 0, 1, 3, 4, 6 and 7 are generated by the processor. Interrupts from 8 to 15 and inter-
rupt 2 are generated by external hardware. These get the attention of the processor by activat-
ing a interrupt request (IRQ) line. The IRQ0 line connects to the system timer, the keyboard
to IRQ1, and so on. Most other interrupts are generated by software.

Processor interrupts

The processor-generated interrupts normally occur either when a program causes a certain
type of error or if it is being used in a debug mode. In the debug mode the program can be
made to break from its execution when a break-point occurs. This allows the user to test the
status of the computer. It can also be forced to step through a program one operation at a
time (single-step mode).

Computer busses 63

Table 2.5 Interrupt handling (codes followed by ‘h’ are in hexadecimal)

Interrupt Name Generated by
00 (00h) Divide error processor
01 (00h) Single step processor
02 (02h) Non-maskable interrupt external equipment
03 (03h) Breakpoint processor
04 (04h) Overflow processor
05 (05h) Print screen Shift-Print screen key stroke
06 (06h) Reserved processor
07 (07h) Reserved processor
08 (08h) System timer hardware via IRQ0
09 (09h) Keyboard hardware via IRQ1
10 (0Ah) Reserved hardware via IRQ2
11 (0Bh) Serial communications (COM2) hardware via IRQ3
12 (0Ch) Serial communications (COM1) hardware via IRQ4
13 (0Dh) Reserved hardware via IRQ5
14 (0Eh) Floppy disk controller hardware via IRQ6
15 (0Fh) Parallel printer hardware via IRQ7
16 (10h) BIOS – Video access software
17 (11h) BIOS – Equipment check software
18 (12h) BIOS – Memory size software
19 (13h) BIOS – Disk operations software
20 (14h) BIOS – Serial communications software
22 (16h) BIOS – Keyboard software
23 (17h) BIOS – Printer software
25 (19h) BIOS – Reboot software
26 (1Ah) BIOS – Time of day software
28 (1Ch) BIOS – Ticker timer software
33 (21h) DOS – DOS services software
39 (27h) DOS – Terminate and stay resident software

2.2.2 Hardware interrupts

Computer systems either use polling or interrupt-driven software to service external equip-
ment. With polling the computer continually monitors a status line and waits for it to become
active, whereas an interrupt-driven device sends an interrupt request to the computer, which
is then serviced by an interrupt service routine (ISR). Interrupt-driven devices are normally
better in that the computer is thus free to do other things, whereas polling slows the system
down as it must continually monitor the external device. Polling can also cause problems in
that a device may be ready to send data and the computer is not watching the status line at
that point. Figure 2.8 illustrates polling and interrupt-driven devices.
 The generation of an interrupt can occur by hardware or software, as illustrated in Figure
2.9. If a device wishes to interrupt the processor, it informs the programmable interrupt con-
troller (PIC). The PIC then decides whether it should interrupt the processor. If there is a
processor interrupt then the processor reads the PIC to determine which device caused the
interrupt. Then, depending on the device that caused the interrupt, a call to an ISR is made.
The ISR then communicates with the device and processes any data. When it has finished the
program execution returns to the original program.
 A software interrupt causes the program to interrupt its execution and goes to an interrupt
service routine. Typical software interrupts include reading a key from the keyboard, output-

64 Busses, interrupts and PC systems

ting text to the screen and reading the current date and time.
 Hardware interrupts allow external devices to gain the attention of the processor.
Depending on the type of interrupt the processor leaves the current program and goes to a
special program called an interrupt service routine (ISR). This program communicates with
the device and processes any data. After it has completed its task then program execution
returns to the program that was running before the interrupt occurred. Examples of interrupts
include the processing of keys from a keyboard and data from a sound card.
 As previously mentioned, a device informs the processor that it wants to interrupt it by
setting an interrupt line on the PC. Then, depending on the device that caused the interrupt, a
call to an ISR is made. Each PIC allows access to eight interrupt request lines. Most PCs use
two PICs which gives access to 16 interrupt lines.

Processor

Interrupt-driven:
external devices
interrupt the processor
when they wish to communicate

Polling:
processor polls
devices to see if they
wish to communicate

External
device

Processor

External
device

Figure 2.8 Polling or interrupt-driven communications

Interrupt
controller

Interrupt
controller

Processor

Interrupt
service
routines

INT

Interrupt
linesSoftware

interrupt

Keyboard (IRQ1) Mouse (IRQ12)

Modem (IRQ4)

Printer (IRQ7)

Floppy (IRQ6)

Serial port (IRQ3/4)

Figure 2.9 Interrupt handling

Computer busses 65

Interrupt vectors

Each device that requires to be ‘interrupt-driven’ is assigned an IRQ (interrupt request) line.
Each IRQ is active high. The first eight (IRQ0–IRQ7) map into interrupts 8 to 15 (08h–0Fh)
and the next eight (IRQ8–IRQ15) into interrupts 112 to 119 (70h–77h). Table 2.6 outlines
the usage of each of these interrupts. When IRQ0 is made active, the ISR corresponds to
interrupt vector 8. IRQ0 normally connects to the system timer, the keyboard to IRQ1, and
so on. The standard set-up of these interrupts is illustrated in Figure 2.10. The system timer
interrupts the processor 18.2 times per second and is used to update the system time. When
the keyboard has data, it interrupts the processor with the IRQ1 line.

System timer

Keyboard

Serial port

(COM2:)

Serial port

(COM1:)

Floppy disk

controller

Parallel port

(LPT2:)

Parallel port

(LPT1:)

IRQ0

IRQ1

IRQ3

IRQ4

IRQ5

IRQ6

IRQ7

Interrupt
service
routine

Programmable
interrupt
controller (PIC)

Processor
INT

Figure 2.10 Standard usage of IRQ lines

Table 2.6 Interrupt handling

Interrupt Name Generated by
 08 (08h) System timer IRQ0
 09 (09h) Keyboard IRQ1
 10 (0Ah) Reserved IRQ2
 11 (0Bh) Serial communications (COM2:) IRQ3
 12 (0Ch) Serial communications (COM1:) IRQ4
 13 (0Dh) Parallel port (LPT2:) IRQ5
 14 (0Eh) Floppy disk controller IRQ6
 15 (0Fh) Parallel printer (LPT1:) IRQ7
112 (70h) Real-time clock IRQ8
113 (71h) Redirection of IRQ2 IRQ9
114 (72h) Reserved IRQ10
115 (73h) Reserved IRQ11
116 (74h) Reserved IRQ12
117 (75h) Math co-processor IRQ13
118 (76h) Hard disk controller IRQ14
119 (77h) Reserved IRQ15

66 Busses, interrupts and PC systems

Data received from serial ports interrupts the processor with IRQ3 and IRQ4 and the paral-
lel ports use IRQ5 and IRQ7. If one of the parallel, or serial, ports does not exist then the
IRQ line normally assigned to it can be used by another device. It is typical for interrupt-
driven I/O cards, such as a sound card, to have a programmable IRQ line which is mapped to
an IRQ line that is not being used.
 Note that several devices can use the same interrupt line. A typical example is COM1:
and COM3: sharing IRQ4 and COM2: and COM4: sharing IRQ3. If they do share then the
ISR must be able to poll the shared devices to determine which of them caused the interrupt.
If two different types of device (such as a sound card and a serial port) use the same IRQ line
then there may be a contention problem as the ISR may not be able to communicate with
different types of interfaces.
 Figure 2.11 shows a sample window displaying interrupt usage. In this case it can be seen
that the system timer uses IRQ0, the keyboard uses IRQ1, the PIC uses IRQ2, and so on.
Notice that a sound blaster is using IRQ5. This interrupt is normally reserved for the secon-
dary printer port. If there is no printer connected then IRQ5 can be used by another device.
Some devices can have their I/O address and interrupt line changed. An example is given in
Figure 2.12. In this case, the IRQ line is set to IRQ7 and the base address is 378h.
 Typical uses of interrupts are:

IRQ0: System timer The system timer uses IRQ0 to interrupt the proc-

essor 18.2 times per second and is used to keep the
time-of-day clock updated.

IRQ1: Keyboard data ready The keyboard uses IRQ1 to signal to the processor
that data is ready to be received from the key-
board. This data is normally a scan code.

IRQ2: Redirection of IRQ9 The BIOS redirects the interrupt for IRQ9 back
here.

Figure 2.11 Standard usage of IRQ lines

Computer busses 67

Figure 2.12 Standard set-up of IRQ lines

IRQ3: Secondary serial port (COM2:) The secondary serial port (COM2:) uses IRQ3 to
interrupt the processor. Typically, COM3: to
COM8: also use it, although COM3: may use
IRQ4.

IRQ4: Primary serial port (COM1:) The primary serial port (COM1:) uses IRQ4 to
interrupt the processor. Typically, COM3: also
uses it.

IRQ5: Secondary parallel port (LPT2:) On older PCs the IRQ5 line was used by the fixed
disk. On newer systems the secondary parallel port
uses it. Typically, it is used by a sound card on
PCs which have no secondary parallel port con-
nected.

IRQ6: Floppy disk controller The floppy disk controller activates the IRQ6 line
on completion of a disk operation.

IRQ7: Primary parallel port (LPT1:) Printers (or other parallel devices) activate the
IRQ7 line when they become active. As with
IRQ5 it may be used by another device, if there
are no other devices connected to this line.

IRQ9 Redirected to IRQ2 service routine.

68 Busses, interrupts and PC systems

Programmable interrupt controller (PIC)

The PC uses the 8259 PIC to control hardware-generated interrupts. It is known as a pro-
grammable interrupt controller and has eight input interrupt request lines and an output line
to secondary PIC are then assigned IRQ lines of IRQ8 to IRQ15. This set-up is shown in
Figure 2.13. When an interrupt occurs on any of these lines it is sensed by the processor on
interrupt the processor. Originally, PCs only had one PIC and eight IRQ lines (IRQ0-IRQ7).
Modern PCs can use up to 15 IRQ lines which are set up by connecting a secondary PIC in-
terrupt request output line to the IRQ2 line of the primary PIC. The interrupt lines on the
IRQ2 line. The processor then interrogates the primary and secondary PIC for the interrupt
line which caused the interrupt.
 The primary and secondary PICs are programmed via port addresses 20h and 21h, as
given in Table 2.7. The operation of the PIC is programmed using registers. The IRQ input
lines are either configured as level-sensitive or edge-triggered interrupt. With edge-triggered
interrupts, a change from a low to a high on the IRQ line causes the interrupt. A level-
sensitive interrupt occurs when the IRQ line is high. Most devices generate edge-triggered
interrupts.

IRQ0

IRQ1

IRQ2

IRQ3

IRQ4

IRQ5

IRQ6

IRQ7

PIC 1

PIC 2

Interrupt
request

IRQ8

IRQ9

IRQ10

IRQ11

IRQ12

IRQ13

IRQ14

IRQ15

Figure 2.13 PC PIC connections

In the IMR an interrupt line is enabled by setting the assigned bit to a 0 (zero). This allows
the interrupt line to interrupt the processor. Figure 2.14 shows the bit definitions of the IMR.
For example, if bit 0 is set to a zero then the system timer on IRQ0 is enabled.

Table 2.7 Interrupt port addresses

Port address Name Description
20h Interrupt control register

(ICR)
Controls interrupts and signifies the end of an
interrupt

21h Interrupt mask register
(IMR)

Used to enable and disable interrupt lines

Computer busses 69

IRQ6 IRQ4 IRQ2 IRQ0

IRQ7 IRQ5 IRQ3 IRQ1

IMR (21h)

0 – enable

1 – disable

0 – enable

1 – disable

0 – enable

1 – disable

0 – enable

1 – disable

0 – enable

1 – disable

0 – enable

1 – disable

0 – enable

1 – disable

0 – enable

1 – disable

Figure 2.14 Interrupt mask register bit definitions

In the example code given next the lines IRQ0, IRQ1 and IRQ6 are allowed to interrupt the
processor, whereas, IRQ2, IRQ3, IRQ4 and IRQ7 are disabled:

 _outp(0x21)=0xBC; /* 1011 1100 enable disk
 (bit 6), keyboard (1) and timer (0) interrupts */

When an interrupt occurs all other interrupts are disabled and no other device can interrupt
the processor. Interrupts are enabled again by setting the EOI bit on the interrupt control port,
as shown in Figure 2.15.
 The following code enables interrupts:

 _outp(0x20,0x20); /* EOI command */

EOI signal

1 – end of interrupt

Interrupt request

level to be acted on

0 – 000

1 – 001

2 – 010

and so on.

ICR (20h) 0 00

Figure 2.15 Interrupt control register bit definitions

2.3 Interfacing

There are two main methods of communicating with external equipment, either they are
mapped into the physical memory and given a real address on the address bus (memory
mapped I/O) or they are mapped into a special area of input/output memory (isolated I/O).

70 Busses, interrupts and PC systems

Figure 2.16 shows the two methods. Devices mapped into memory are accessed by reading
or writing to the physical address. Isolated I/O provides ports which are gateways between
the interface device and the processor. They are isolated from the system using a buffering
system and are accessed by four machine code instructions. The IN instruction inputs a byte,
or a word, and the OUT instruction outputs a byte, or a word. A high-level compiler interprets
the equivalent high-level functions and produces machine code which uses these instructions.

Interface device
accessed directly
in memory

I/O ports

Interface
hardware

Interface device
accessed via ports
with IN and OUT
assembly language
instructions

Interface
device

Device
buffering

Pascal
program

Interface
device

Figure 2.16 Memory mapping or isolated interfacing

2.3.1 Interfacing with memory

The 80x86 processor interfaces with memory through a bus controller, as shown in Figure
2.17. This device interprets the microprocessor signals and generates the required memory
signals. Two main output lines differentiate between a read or a write operation (R / W) and
between direct and isolated memory access (M / IO). The R / W line is low when data is being
written to memory and high when data is being read. When M / IO is high, direct memory
access is selected and when low, the isolated memory is selected.

2.3.2 Memory mapped I/O

Interface devices can map directly onto the system address and data bus. In a PC-compatible
system the address bus is 20 bits wide, from address 00000h to FFFFFh (1 MB). If the PC
is being used in an enhanced mode (such as with Microsoft Windows) it can access the area
of memory above 1 MB. If it uses 16-bit software (such as Microsoft Windows 3.1) then it
can address up to 16 MB of physical memory, from 000000h to FFFFFFh. If it uses 32-bit
software (such as Microsoft Windows 95/98/NT/2000) then the software can address up to
4 GB of physical memory, from 00000000h to FFFFFFFFh. Figure 2.18 gives a typical
memory allocation.

Computer busses 71

M/IO

R/W

Memory

mapped

I/O

Isolated

I/O

Read/ Write

Memory/Isolated

Address bus

Data bus

Bus controller

Microprocessor

Interface
devices

Figure 2.17 Access memory mapped and isolated I/O

Extended
memory

Extended
memory

Video graphics
Text display

Application programs
(640 KB)

Interrupt vectors
BIOS

00000000h

00000600h

0009FFFFh (640 KB)

000FFFFFh (1 MB)

00FFFFFFh (16 MB)

FFFFFFFFh (4 GB)

Figure 2.18 Typical PC memory map

2.3.3 Isolated I/O

Devices are not normally connected directly onto the address and data bus of the computer
because they may use part of the memory that a program uses or they could cause a hardware
fault. On modern PCs only the graphics adaptor is mapped directly into memory, the rest
communicate through a specially reserved area of memory, known as isolated I/O memory.
 Isolated I/O uses 16-bit addressing from 0000h to FFFFh, thus up to 64 KB of memory
can be mapped. Figure 2.19 shows an example for a computer in the range from 0000h to
0064h and Figure 2.20 shows from 0378h to 03FFh. It can be seen from Figure 2.19 that
the keyboard maps into addresses 0060h and 0064h, the speaker maps to address 0061h

72 Busses, interrupts and PC systems

and the system timer between 0040h and 0043h. Table 2.8 shows the typical uses of the
isolated memory area.

Figure 2.19 Example I/O memory map from 0000h to 0064h

Figure 2.20 Example I/O memory map from 0378h to 03FFh

Computer busses 73

Table 2.8 Typical isolated I/O memory map

Address Device
000h-01Fh DMA controller
020h-021h Programmable interrupt controller
040h-05Fh Counter/Timer
060h-07Fh Digital I/O
080h-09Fh DMA controller
0A0h-0BFh NMI reset
0C0h-0DFh DMA controller
0E0h-0FFh Math coprocessor
170h-178h Hard disk (Secondary IDE drive or CD-ROM drive)
1F0h-1F8h Hard disk (Primary IDE drive)
200h-20Fh Game I/O adapter
210h-217h Expansion unit
278h-27Fh Second parallel port (LPT2:)
2F8h-2FFh Second serial port (COM2:)
300h-31Fh Prototype card
378h-37Fh Primary parallel port (LPT1:)
380h-38Ch SDLC interface
3A0h-3AFh Primary binary synchronous port
3B0h-3BFh Graphics adapter
3C0h-3DFh Graphics adapter
3F0h-3F7h Floppy disk controller
3F8h-3FFh Primary serial port (COM1:)

Inputting a byte from an I/O port

 The assembly language command to input a byte is

 IN AL,DX

where DX is the data register which contains the address of the input port. The 8-bit value
loaded from this address is put into the register A

For Turbo/Borland C the equivalent function is inportb(). Its general syntax is as fol-
lows:

 value=inportb(PORTADDRESS);

where PORTADDRESS is the address of the input port and value is loaded with the 8-
bit value from this address. This function is prototyped in the header file dos.h.

For Turbo Pascal the equivalent is accessed via the port[] array. Its general syntax is as
follows:

 value:=port[PORTADDRESS];

where PORTADDRESS is the address of the input port and value the 8-bit value at this
address. To gain access to this function the statement uses dos requires to be placed
near the top of the program.

74 Busses, interrupts and PC systems

Microsoft C++ uses the equivalent _inp() function (which is prototyped in conio.h).

Inputting a word from a port

The assembly language command to input a word is

 IN AX,DX

where DX is the data register which contains the address of the input port. The 16-bit
value loaded from this address is put into the register AX.

For Turbo/Borland C the equivalent function is inport(). Its general syntax is as follows:

 value=inport(PORTADDRESS);

where PORTADDRESS is the address of the input port and value is loaded with the 16-
bit value at this address. This function is prototyped in the header file dos.h.

For Turbo Pascal the equivalent is accessed via the portw[] array. Its general syntax is as
follows:

 value:=portw[PORTADDRESS];

where PORTADDRESS is the address of the input port and value is the 16-bit value at
this address. To gain access to this function the statement uses dos requires to be
placed near the top of the program.

Microsoft C++ uses the equivalent _inpw() function (which is prototyped in conio.h).

Outputting a byte to an I/O port

The assembly language command to output a byte is

 OUT DX,AL

where DX is the data register which contains the address of the output port. The 8-bit
value sent to this address is stored in register AL.

For Turbo/Borland C the equivalent function is outportb(). Its general syntax is as fol-
lows:

 outportb(PORTADDRESS,value);

where PORTADDRESS is the address of the output port and value is the 8-bit value to
be sent to this address. This function is prototyped in the header file dos.h.

For Turbo Pascal the equivalent is accessed via the port[] array. Its general syntax is as
follows:

Computer busses 75

 port[PORTADDRESS]:=value;

where PORTADDRESS is the address of the output port and value is the 8-bit value to
be sent to that address. To gain access to this function the statement uses dos requires
to be placed near the top of the program.

Microsoft C++ uses the equivalent _outp() function (which is prototyped in conio.h).

Outputting a word

The assembly language command to input a byte is:

 OUT DX,AX

where DX is the data register which contains the address of the output port. The 16-bit
value sent to this address is stored in register AX.

For Turbo/Borland C the equivalent function is outport(). Its general syntax is as fol-
lows:

 outport(PORTADDRESS,value);

where PORTADDRESS is the address of the output port and value is the 16-bit value to
be sent to that address. This function is prototyped in the header file dos.h.

For Turbo Pascal the equivalent is accessed via the port[] array. Its general syntax is as
follows:

 portw[PORTADDRESS]:=value;

where PORTADDRESS is the address of the output port and value is the 16-bit value to
be sent to that address. To gain access to this function the statement uses dos requires
to be placed near the top of the program.

Microsoft C++ uses the equivalent _outp() function (which is prototyped in conio.h).

In-line assembly language

Most modern C++ development systems use an inline assembler which allows assembly lan-
guage code to be embedded with C++ code. This code can use any C variable or function
name that is in scope. The __asm keyword invokes the inline assembler and can appear wher-
ever a C statement is legal. The following code is a simple __asm block enclosed in braces.

__asm
{
 /* Initialize serial port */
 mov dx,0x01; /* COM2: */
 mov al,0xD2; /* serial port parameters */
 mov ah,0x0; /* initialize serial port */
 int 14h;
 line_status=ah;
 modem_status=al;
}

76 Busses, interrupts and PC systems

Note these statements can also be inserted after the __asm keyword, such as:

__asm mov dx,0x01; /* COM2: */
__asm mov al,0xD2; /* serial port parameters */
__asm mov ah,0x0; /* initialize serial port */
__asm int 14h;
__asm line_status=ah;
__asm modem_status=al;

2.4 PC Systems

In selecting a PC many different components must be considered, especially in the way that
they connect. Figure 2.21 outlines some of the component parts and the decisions that have
to be made on each component.

+ Processor:
Type
Cache size (Level-1)
Clock speed

+ Internal Busses:
ISA
PCI
IDE

+

+ Graphics:
Type (Chipset)
Processing (3D/Accelerator)
Memory (Local memory)

AGP

+ External Busses:
Parallel Port
Serial Port
SCSI
USB

+ Memory:
Type (DIMM/SDRAM/SIMM)
Cache (Level-2)
Speed

+
Type (Optical/Hard disk/Floppy disk)
Interface (SCSI/IDE)
Capacity (KB/MB/GB)

Storage:

Socket (SEC/Socket) Interface (PCI/AGP)

 Figure 2.21 PC components

The Top 5 things that affect the general performance of a PC (in ranked order) are:

1. Processor. The type of the processor, its speed, its socket (which helps in upgrading in

the future), its interface to Level-2 cache, and so on. Additionally, MMXTM, (which is an
Intel trademark, but many read it as MultiMedia eXtension) can speed-up multi-media
applications.

2. Local Memory. Most operating systems can run multiple programs, each of which re-
quire their own memory space. When the system runs out of electronic memory (local
memory), it uses the hard disk for an extra storage (to create a virtual memory). Hard
disk accesses are much slower than electronic memory, thus the system is severely
slowed down if there is a lack of local electronic memory. Most modern operating sys-

Computer busses 77

tems require a great deal of local electronic memory to operate.
3. Graphics adaptor. The graphics adaptor can be a major limiting factor on the perform-

ance of a system. New interfaces, such as AGP, considerably speed-up graphics per-
formance. Another limiting factor is the amount of local memory on the graphics adap-
tor. The more memory, the higher the resolution that can be used, and the more colours
that can be displayed. AGP is overcoming this limiting factor, as it allows the main elec-
tronic memory to be used to store graphics images.

4. Cache capacity. Cache memory has caused a great increase in the performance of a
system. If a cache controller makes a correct guess, the processor merely has to examine
the contents of the cache to get the required information. A level-1 cache is the fastest
and is typically connected directly to the processor (normally inside the processor pack-
age), and the level-2 cache is on the motherboard.

5. Hard disk capacity/interface. The hard disk typically has an affect on the running of a
program, as the program and its component parts must be loaded from the disk. The in-
terface is thus extremely important as it defines the maximum data rate. SCSI has fast
modes which give up to 40 MB/s, while IDE gives a maximum rate of 33 MB/s. The ca-
pacity of the disk also can lead to problems as the system can use unused disk capacity
of a virtual memory capacity.

Obviously, applications that are more specific will be affected by other factors, such as:

• Internet access. Affected mainly by the network connection (especially if a modem is

used).
• CD-ROM access. Affected by the interface to the CD-ROM.
• Modelling software. Affected by mathematical processing.
• 3D game playing. Affected mainly by the graphics adaptor and graphics processing

(and possibly the network connection, if playing over a network).

2.8 Practical PC system

At one time PCs were crammed full of microchips, wires and connectors. These days they
tend to be based on just a few microchips, and contain very few interconnecting wires. The
main reason for this is that much of the functionality of the PC has been integrated into sev-
eral key devices. In the future, PCs may only require one or two devices to make them oper-
ate.
 The architecture of the PC has changed over the past few years. It is now mainly based on
the PCI bus. Figure 2.22 shows the architecture of a modern PC. The system controller is the
real heart of the PC, as it transfers data to and from the processor to the rest of the system.
Bridges are used to connect one type of bus to another. There are two main bridges: the sys-
tem controller (the north bridge), and the bus bridge (the south bridge).

78 Busses, interrupts and PC systems

ProcessorProcessor System
Controller

System
Controller

DRAM
memory

DRAM
memory

SRAM cache
memory

SRAM cache
memory

Bus
bridge

Bus
bridge

PCI bus connections
(typically up to 5 devices)

ISA bus IDE bus USB bus

Data
bus

Address
bus

DRAM
addresses

DRAM
Data bus

SRAM tag address

Motherboard clock
speed

Processor clock
speed

Local
SRAM
cache

Local
SRAM
cache

A
dd

re
ss

bu
s

D
at

a
bu

s

Differing clock
speeds

Figure 2.22 Local bus architecture

An example PC motherboard is illustrated in Figure 2.23. The main components are:

• Processor. The processor is typically a Pentium processor, which has a SEC (single-

edge connector) or fits into a socket. The processor can run at a faster rate than the rest
of the motherboard (called clock multiplication). Typically, the motherboard runs at
50MHz, and the clock rate is multiplied by a given factor, such as 500MHz (for a ×10
clock multiplier).

• System controller. Controls the interface between the processor, memory and the PCI
bus.

• PCI/ISA/IDE Xcelerated Controller. Controls the interface between the PCI bus and
the ISA, USB and IDE busses.

• I/O controller. Controls the interface between the ISA and the other busses, such as the
parallel bus, serial bus, floppy disk drive, keyboard, mouse, and infrared transmission.

• DIMM sockets. This connects to the main memory of the computer. Typically it uses
either EDO DRAM and SDRAM (Synchronous DRAM). SDRAM transfers data faster
than EDO DRAM as its uses the clock rate of the processor, rather than the clock rate of
the motherboard.

• Flash memory. Used to store the program which starts the computer up (the boot proc-
ess).

• PCI connectors. Used to connect to PCI-based interface adaptors, such as a network
card, sound card, and so on.

• ISA connectors. Used to connect to ISA-based interface adaptors, such as a sound
cards.

• IDE connectors. Used to connect to hard disks or CD-ROM drives. Up to two drives

Computer busses 79

can connect to each connector (IDE0 or IDE1) as a master or a slave. Thus, the PC can
support up to four disk drives on the IDE bus.

• TV out socket. Used to provide an output which will interface to a TV, using either
PAL (for the UK) or NSTC (for the US).

• Level-2 cache (SRAM). Used to store information from DRAM memory.
• Video memory. Used to store video information.
• Graphics controller. Used to control the graphics output.
• Audio codec. Used to process audio data.

ISA
connectors

PCI
connectors

DIMM
sockets

IDE
connectors

Graphics
controller

82430TX
System
Controller

82430TX
PCI/ISA/IDE
Xcelerator (PIIX4)

Level 2 cache
SRAM

Audio
codec

Audio
(OP4-ML)

Pentium
processor

TV-out
device

Video
memory

Flash
memory
device

PC87307UL
I/O Controller

Video
capture
processor

Figure 2.23 AN430TX board

2.5 Exercises

The following questions are multiple choice. Please select from a–d.

2.4.1 Which type of memory does not lose its contents when the power is withdrawn:

 (a) ROM (b) RAM
 (c) DRAM (d) SRAM

2.4.2 Which type of memory uses a single capacitor and a transistor to store a single bit

of data:

80 Busses, interrupts and PC systems

 (a) EPROM (b) ERAM
 (c) DRAM (d) SRAM

2.4.3 Which type of memory requires its memory of be refreshed at regular intervals:

 (a) EPROM (b) ERAM
 (c) DRAM (d) SRAM

2.4.4 If a processor can operate on four bytes at a time, which is its classification:

 (a) 8-bit (b) 16-bit
 (a) 32-bit (b) 64-bit

2.4.5 Which of the following defines the amount of memory that can be accessed:

 (a) Address bus (b) Control lines
 (c) Handshaking lines (d) Data bus

2.4.6 Which of the following defines the number of bits that can be transmitted at a

time:

 (a) Address bus (b) Control lines
 (c) Handshaking lines (d) Data bus

2.4.7 Which is the maximum data throughput for a 32-bit parallel data bus with a

clocked data rate of 10 MHz:

 (a) 4 MB/s (b) 40 MB/s
 (c) 32 MB/s (d) 320 MB/s

2.4.8 Which is the maximum data throughput for a serial bus which has a bit transmis-

sion time of 69.44 µs:

 (a) 6944 bps (b) 9600 bps
 (c) 1440 bps (d) 144 00 bps

2.4.9 How much memory can be accessed with a 20-bit address bus:

 (a) 20 B (b) 20 KB
 (c) 1 MB (d) 20 MB

2.4.10 How much memory can be accessed with a 32-bit address bus:

 (a) 32 B (b) 32 KB
 (c) 1 GB (d) 32 MB

2.4.11 Which interrupt does the primary serial port of a PC (COM1:) normally use:

 (a) IRQ0 (b) IRQ3

Computer busses 81

 (c) IRQ4 (d) IRQ7

2.4.12 Which interrupt does the secondary serial port of a PC (COM2:) normally use:
 (a) IRQ0 (b) IRQ3
 (c) IRQ4 (d) IRQ7

2.4.13 Which interrupt does the system timer on the PC use:

 (a) IRQ0 (b) IRQ3
 (c) IRQ4 (d) IRQ7

2.4.14 Which interrupt was used to increase the amount of interrupts from 8 to 16:

 (a) IRQ0 (b) IRQ1
 (c) IRQ2 (d) IRQ15

2.4.15 Which interrupt is used by the keyboard:

 (a) IRQ0 (b) IRQ1
 (c) IRQ2 (d) IRQ15

2.4.16 What does ISR stand for:

 (a) Interval Status Register (b) Interrupt Status Register
 (c) Interrupt Service Routine (d) Interrupt Standard Routine

2.4.17 How is isolated memory differentiated from memory added I/O:

 (a) Different address bus (b) Different data bus
 (c) Control line differentiates between them (Memory/Isolated)
 (d) There is no differentiation as they are physically the same

2.4.18 How many addresses can be accessed in the address range 0000h to FFFFh:

 (a) 32 768 (32 kB) (b) 65 536 (64 kB)
 (c) 262 144 (256 kB) (d) 1 048 576 (1 MB)

2.4.19 How much physical memory can a DOS-compatible program access:

 (a) 32 768 (32 kB) (b) 65 536 (64 kB)
 (c) 262 144 (256 kB) (d) 1 048 576 (1 MB)

2.4.20 Which address is the interrupt control port register:

 (a) 0002h (b) 0020h
 (c) 0200h (d) 2000h

2.4.21 Which is normally the base address for the primary parallel port:

 (a) 0378h (b) 0278h
 (c) 03F8h (d) 02F8h

82 Busses, interrupts and PC systems

2.4.22 Contrast the operation of polling and interrupt-driven software when interfacing to
external equipment.

2.4.23 Access a PC and determine the following:

Interrupt Device connected
IRQ1
IRQ3
IRQ5
IRQ7
IRQ9
IRQ11
IRQ13
IRQ15
I/O address Device connected
0060h, 0064h
0070h
0090h
00F0h
0278h
02F8h
0378h
03F8h
DMA channel Device connected
DMA0
DMA1
DMA2
DMA3

2.6 Notes from the author

This chapter has introduced some of the key concepts used in defining computer systems. So,
what is it that differentiates one PC system from another? It is difficult to say, but basically
its all about how well bolted together systems are, how compatible the parts are with the
loaded software, how they organise the peripherals, and so on. The big problem though is
compatibility, and compatibility is all about peripherals looking the same, that is, having the
same IRQ, the same I/O address, and so on.
 The PC is an amazing device, and has allowed computers to move from technical special-
ists to, well, anyone. However, they are also one of the most annoying of pieces of technol-
ogy of all time, in terms of their software, their operating system, and their hardware. If we
bought a car and it failed at least a few times every day, we would take it back and demand
another one. When that failed, we would demand our money back. Or, sorry I could go on
forever here, imagine a toaster that failed half way through making a piece of toast, and we
had to turn the power off, and restart it. We just wouldn’t allow it.
 So why does the PC lead such a privileged life. Well it’s because it’s so useful and multi-
talented, although it doesn’t really excel at much. Contrast a simple games computer against
the PC and you find many lessons in how to make a computer easy-to-use, and to configure.

Computer busses 83

One of the main reasons for many of its problems is the compatibility with previous systems
both in terms of hardware compatibility and software compatibility (and dodgy software, of
course). The big change on the PC was the introduction of proper 32-bit software, Windows
95/NT.
 In the future systems will be configured by the operating system, and not by the user.
How many people understand what an IRQ is, what I/O addresses are, and so on. Maybe if
the PC faced some proper competition it would become easy to use and become totally reli-
able. Then when they were switched on they would configure themselves automatically, and
you could connect any device you wanted and it would understand how to configure (we’re
nearly there, but it’s still not perfect). Then we would have a tool which could be used to
improve creativity and you didn’t need a degree in computer engineering to use one (in your
dreams!). But, anyway, it’s keeping a lot of technical people in a job, so, don’t tell anyone
our little secret. The Apple Macintosh was a classic example of a well-designed computer
that was designed as a single unit. When initially released it started up with messages like
I’m glad to be out of that bag and Hello, I am Macintosh. Never trust a computer you cannot lift.
 So, apart from the IBM PC, what are the all-time best computers? A list by Byte in Sep-
tember 1995 stated the following:

1. MITS Altair8800
2. Apple II
3. Commodore PET
4. Radio Shack TRS-80
5. Osborne 1 Portable
6. Xerox Star
7. IBM PC
8. Compaq Portable
9. Radio Shack TRS-80 Model 100
10. Apple Macintosh

11. IBM AT
12. Commodore Amiga 1000
13. Compaq Deskpro 386
14. Apple Macintosh II
15. Next Nextstation
16. NEC UltraLite
17. Sun SparcStation 1
18. IBM RS/6000
19. Apple Power Macintosh
20. IBM ThinkPad 701C

And the Top 10 computer people as:

1. Dan Bricklin (VisiCalc)
2. Bill Gates (Microsoft)
3. Steve Jobs (Apple)
4. Robert Noyce (Intel)
5. Dennis Ritchie (C Programming)
6. Marc Andreessen (Netscape Communications)
7. Bill Atkinson (Apple Mac GUI)
8. Tim Berners-Lee (CERN)
9. Doug Engelbart (Mouse/Windows/etc)
10. Grace Murray Hopper (COBOL)

11. Philippe Kahn (Turbo Pascal)
12. Mitch Kapor (Lotus 123)
13. Donald Knuth (TEX)
14. Thomas Kurtz
15. Drew Major (NetWare)
16. Robert Metcalfe (Ethernet)
17. Bjarne Strousstrup (C++)
18. John Warnock (Adobe)
19. Niklaus Wirth (Pascal)
20 Steve Wozniak (Apple)

One of the classic comments of all time was by Ken Olson at DEC, who stated, that there is no reason
anyone would want a computer in their home. This seems farcical now, but at the time, in the 1970s,
there were no CD-ROMs, no microwave ovens, no automated cash dispensers, and no Internet. Few
people predicted them, so, predicting the PC was also difficult. But the two best comments were:

Computers in the future may weigh no more than 1.5 tons. Popular Mechanics.
I think there is a world market for maybe five computers, Thomas Watson, chairman of IBM, 1943.

Interfacing Standards

3.1 Introduction

The type of interface card used greatly affects the performance of a PC system. Early models
of PCs relied on expansion options to improve their specification. These expansion options
were cards that plugged into an expansion bus. Eight slots were usually available and these
added memory, video, fixed and floppy disk controllers, printer output, modem ports, serial
communications and so on.
 There are eight main types of interface busses available for the PC. The number of data
bits they handle at a time determines their classification. They are:

• PC (8-bit) ISA (16-bit)
• EISA (32-bit) MCA (32-bit)
• VL-Local Bus (32-bit) PCI bus (32/64-bit)
• SCSI (16/32-bit) PCMCIA (16-bit)

3.2 PC bus

The PC bus uses the architecture of the Intel 8088 processor which has an external 8-bit data
bus and 20-bit address bus. A PC bus connector has a 62-pin printed circuit card edge con-
nector and a long narrow or half-length plug-in card. As it uses a 20-bit address bus, it can
address a maximum of 1 MB of memory. The transfer rate is fixed at 4.772 727 MHz; thus, a
maximum of 4 772 727 bytes can be transferred every second. Dividing a crystal oscillator
frequency of 14.318 18 MHz by three derives this clock speed. Figure 3.1 shows a PC card.
Figure 3.2 defines the signal connections. The direction of the signal is taken as input if a
signal comes from the ISA bus controller. An output comes from the slave device and in-
put/output identifies that the signal can originate from either the ISA controller or the slave
device.
 The following gives the 8-bit PC bus connections:

SA0-SA19 Address bus (input/output). The lower 20 bits of the system address bus.

D0-D7 Data bus (input/output). The eight data bits that allow a transfer between the
busmaster and the slave.

AEN Address enable (output). The address enable allows for an expansion bus board
to disable its local I/O address decode logic. It is active high. When active, ad-
dress enable indicates that either DMA or refresh are in control of the busses.

3

86 Computer busses

CL340
XYZ11

CL340

XYZ11CL340

CS220

M
S

14
32

Figure 3.1 PC card

CLK Clock (output). The bus CLK is set to 4.772 727 MHz (for PC bus and 8.33
MHz for ISA bus) and provides synchronisation of the data transmission (it is
derived from the OSC clock).

ALE Address latch (output). The bus address latch indicates to the expansion bus that
the address bus and bus cycle control signals are valid. It thus indicates the be-
ginning of a bus cycle on the expansion bus.

IOR I/O read (input/output). I/O read command signal indicates that an I/O read
cycle is in progress.

IOW I/O write (input/output). I/O write command signal indicates that an I/O write
bus cycle is in progress.

SMEMR System memory read (output). System memory read signal indicates a memory
read bus cycle for the 20-bit address bus range (0h to FFFFFh).

SMEMW System memory write (output). System memory write signal indicates a mem-
ory read bus cycle from the 20-bit address bus range (0h to FFFFFh).

IO CH RDY Bus ready (input). The bus ready signal allows a slave to lengthen the amount
of time required for a bus cycle.

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

B
9

B
10

B
11

B
12

B
13

B
14

B
15

B
16

B
17

B
18

B
19

B
20

B
21

B
22

B
23

B
24

B
25

B
26

B
27

B
28

B
29

B
30

B
31

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

A
19

A
20

A
21

A
22

A
23

A
24

A
25

A
26

A
27

A
28

A
29

A
30

G
N

D

R
E

S
E

T
D

R
V

+5
V

IR
Q

2

-
5V

D
R

Q
2

-
12

V

0W
S

+1
2

V

G
N

D

S
M

E
M

W

S
M

E
M

R
IO

W

IO
R

D
A

C
K

3

D
R

Q
3

D
A

C
K

1

D
R

Q
1

R
E

F
C

LK

IR
Q

7

IR
Q

6

IR
Q

5

IR
Q

4

IR
Q

3

D
A

C
K

2

T
/C

A
LE +5
V

O
S

C

G
N

D

I/O
 C

H
 C

H
K

S
D

7

S
D

6

S
D

5

S
D

4

S
D

3

S
D

2

S
D

1

S
D

0
I/O

 C
H

 R
D

Y

A
E

N

S
A

19

S
A

18

S
A

17

S
A

16

S
A

15

S
A

14

S
A

13

S
A

12

S
A

11

S
A

10

S
A

9

S
A

8

S
A

7

S
A

6

S
A

5

S
A

4

S
A

3

S
A

2

S
A

1

S
A

0
A

31

Figure 3.2 PC card connections

Interfacing standards 87

0WS Zero wait states (input). The zero wait states (or no wait state) allows a slave to
shorten the amount of time required for a bus cycle.

DRQ1-DRQ3 DMA request (input). The DMA request indicates that a slave device is request-
ing a DMA transfer.

DACK1-DACK3 DMA acknowledge (output). The DMA acknowledge indicates to the request-
ing slave that the DMA is handling its request.

T/C Terminal count (input). The terminal count indicates that the DMA transfer has
been successful and all the bytes have been transferred.

REF Refresh (output). The refresh signal is used to inform a memory board that it
should perform a refresh cycle.

IRQ2-IRQ7 Interrupt request. The interrupt request signals indicate that the slave device is
requesting service by the processor.

RESET DRV Reset drive (output). The reset drive resets and plug-in boards connected to the
ISA bus.

OSC Crystal oscillator (output). The crystal oscillator signal is 14.318 18 MHz signal
provided for use by expansion boards. This clock speed is three times the CLK
speed.

CHK CH IO I/O check (input). The I/O check signal indicates that a memory slave has de-
tected a parity error.

±5V, ±12V and GND Power (output).

3.3 ISA bus

IBM developed the ISA (Industry Standard Architecture) for their 80286-based AT (Ad-
vanced Technology) computer. It had the advantage of being able to deal with 16 bits of data
at a time. An extra edge connector gives compatibility with the PC bus. This gives an extra 8
data bits and 4 address lines. Thus, the ISA bus has a 16-bit data and a 24-bit address bus.
This gives a maximum of 16 MB of addressable memory and like the PC bus it uses a fixed
clock rate of 8 MHz. The maximum data rate is thus 2 bytes (16 bits) per clock cycle, giving
a maximum throughput of 16 MB/sec. In machines that run faster than 8 MHz the ISA bus
runs slower than the rest of the computer.
 A great advantage of PC bus cards is that they can be plugged into an ISA bus connector.
ISA cards are very popular as they give good performance for most interface applications.
The components used are extremely cheap and it is a well-proven reliable technology. Typi-
cal applications include serial and parallel communications, networking cards and sound
cards. Figure 3.3 illustrates an ISA card and Figure 3.4 gives the pin connections for the bus.
It can be seen that there are four main sets of connections, the A, B, C and D sections (Figure
3.4). The standard PC bus connection contains the A and B sections. The A section includes
the address lines A0–A19 and 8 data lines, D0–D7. The B section contains interrupt lines,
IRQ0–IRQ7, power supplies and various other control signals. The extra ISA lines are added
with the C and D section; these include the address lines, A17–A23, data lines D8–D15 and
interrupt lines IRQ10–IRQ14.

88 Computer busses

CL340
XYZ11

CL340

XYZ11CL340

CS220

M
S

14
32

ISA extension PC bus connector

Figure 3.3 ISA card

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

B
9

B
10

B
11

B
12

B
13

B
14

B
15

B
16

B
17

B
18

B
19

B
20

B
21

B
22

B
23

B
24

B
25

B
26

B
27

B
28

B
29

B
30

B
31

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

A
19

A
20

A
21

A
22

A
23

A
24

A
25

A
26

A
27

A
28

A
29

A
30

A
31

C
1

C
2

C
3

C
4

C
5

C
6

C
7 C

8

C
9

C
10

C
11

C
12

C
13

C
14

C
15

C
16

C
17

C
18

G
N

D

R
E

S
E

T
D

R
V +5

V

IR
Q

2

-
5V

D
R

Q
2

-
12

V
0W

S

+1
2

V

G
N

D

S
M

E
M

W

S
M

E
M

R
IO

W

IO
R

D
A

C
K

3

D
R

Q
3

D
A

C
K

1

D
R

Q
1

R
E

F
C

LK

IR
Q

7

IR
Q

6

IR
Q

5

IR
Q

4

IR
Q

3

D
A

C
K

2

T
/C

B
A

LE
+5

V

O
S

C

G
N

D

M
E

M
 C

S
16

I/O
 C

S
16

IR
Q

10

IR
Q

11

IR
Q

12

IR
Q

13

IR
Q

14

D
A

C
K

0

D
R

Q
0

D
A

C
K

5

D
R

Q
5

D
A

C
K

6

D
A

C
K

6

D
A

C
K

7

D
R

Q
7

+5
V

M
A

S
TE

R

G
N

D

I/O
 C

H
 C

H
K

S
D

7

S
D

6

S
D

5

S
D

4

S
D

3

S
D

2

S
D

1

S
D

0
I/O

 C
H

 R
D

Y

A
E

N

S
A

19

S
A

18

S
A

17

S
A

16

S
A

15

S
A

14

S
A

13

S
A

12

S
A

11

S
A

10

S
A

9

S
A

8

S
A

7

S
A

6

S
A

5

S
A

4

S
A

3

S
A

2

S
A

1

S
A

0

S
B

H
E

S
A

23

S
A

22

S
A

21

S
A

20

S
A

19

S
A

18

S
A

17
M

E
M

R

M
E

M
W

S
D

8

S
D

9

S
D

10

S
D

11

S
D

12

S
D

13

S
D

14

S
D

15

Figure 3.4 ISA bus connections

 The Industry Standard Architecture (ISA) bus uses a 16-bit data bus (D0-D15) a 24-bit

address bus (A0–A24) and the CLK signal is set to 8.33 MHz. The SMEMR and SMEMW lines
are used to transfer data for the lowest 1 MB (0h to FFFFFh) of memory (where the S prefix
can be interpreted as small memory model) and the signals MEMR and MEMW are used to
transfer data between 1 MB (FFFFFh) and 16 MB (FFFFFFh). For example if reading from

the address is 001000h then the SMEMR the line is made active low, while if the address
1F0000h then the MEMR line is made active. For a 16-bit transfer the M16 and IO16 lines are
made active.
 The extra 16-bit ISA bus connections are:

A17-A23 Address bus (input/output). The upper 7 bits of the address of the

system address bus.

SBHE System byte high enable (output). The system byte high enable
indicates that data is expected on the upper 8 bits of the data bus
(D8–D15).

D8-D15 Data bus (input/output). The upper 8 bits of the data bus provides
for the second half of the 16-bit data bus.

Interfacing standards 89

MEMR Memory read (input/output). The memory read command indicates
a memory read when the memory address is in the range 100000h –
FFFFFFh (16 MB of memory).

MEMW Memory write (input/output). The memory write command indi-
cates a memory write when the memory address is in the range
100000h – FFFFFFh (16 MB of memory).

M16 16-bit memory slave. Indicates that the addressed slave is a 16-bit
memory slave.

IO16 16-bit I/O slave (input/output). Indicates that the addressed slave is
a 16-bit I/O slave.

DRQ0, DRQ5-DRQ7 DMA request lines (input). Extra DMA request lines that indicate
that a slave device is requesting a DMA transfer.

DACK0, DACK5-DACK7 DMA acknowledge lines (output). Extra DMA acknowledge lines
that indicate to the requesting slave that the DMA is handling its re-
quest.

MASTER Bus ready (input). This allows another processor to take control of
the system address, data and control lines.

IRQ9-IRQ12, IRQ14, IRQ15 Interrupt requests (input). Additional interrupt request signals that
indicate that the slave device is requesting service by the processor.
Note that the IRQ13 line is normally used by the hard disk and in-
cluded in the IDE bus.

3.3.1 Handshaking lines

Figure 3.5 shows a typical connection to the ISA bus. The ALE (or sometimes known as
BALE) controls the address latch and, when active low, it latches the address lines A2–A19
to the ISA bus. The address is latched when ALE goes from a high to a low.
 The Pentium’s data bus is 64 bits wide, whereas the ISA expansion bus is 16-bits wide. It
is the bus controller’s function to steer data between the processor and the slave device for
either 8-bit or 16-bit communications. For this purpose the bus controller monitors BE0 –
BE3 , R/W , M16 and IO16 to determine the movement of data.
 When the processor outputs a valid address it sets address lines (AD2–AD31), the byte
enables (BE0 – BE3) and sets ADS active. The bus controller then picks up this address and
uses it to generate the system address lines, SA0–SA19 (which are just a copy of the lines
A2–A19. The bus controller then uses the byte enable lines to generate the address bits SA0
and SA1.
 The EADS signal returns an active low signal to the processor if the external bus control-
ler has sent a valid address on address pins A2–A21.
 It can be seen from Figure 3.6 that the BE0 line accesses the addresses ending with 0h,
4h, 8h and Ch, the BE1 line accesses addresses ending with 1h, 5h, 9h and Dh, the BE2 line
accesses addresses ending with 02, 5h, Ah and Eh, and so on.
 Thus if the BE0 line is asserted and the SBHE line is high then a single byte is accessed
through the D0–D7. If a word is to be accessed then SBHE is low and D0–D15 contains the
data.

90 Computer busses

Bus
controller

Address
latch

Memory

ALE

A0

A1

SBHE

M16

IO16

ISA
bus

EADS

A2-A19A2-A31

BE0-BE3

Processor

Data
latch

D0-D31
D0-D15

Figure 3.5 ISA bus connections

0000h
0001h
0002h
0003h
0004h
0005h
0006h
0007h
0008h
0009h
000Ah

BE0
BE1
BE2
BE3
BE0
BE1
BE2
BE3
BE0
BE1
BE2

0 1 2 3

4 5 6 7

8 9 A B

C D E F

BE0 BE1 BE2 BE3
D0–D7

D8–D15
D16–D23

D24–D31

Figure 3.6 Address decoding

Table 3.1 shows three examples of handshaking lines. The first is an example of a byte trans-
fer with an 8-bit slave at an even address. The second example gives a byte transfer for an 8-
bit slave at an odd address. Finally, the table shows a 2-byte transfer with a 16-bit slave at an
even address.

Table 3.1 Example handshaking lines

BE0 BE1 BE2 BE3 IO16 M16 SBHE SA0 SA1 Data
0 1 1 1 1 1 1 0 0 SD0–SD7
1 0 1 1 1 1 0 1 0 SD8–SD15
0 0 1 1 0 1 0 0 0 SD0–SD15

If 32-bit data is to be accessed then BE0–BE3 will each be 0000 which makes 4 bytes active.
The bus controller will then cycle through SA0, SA1 = 00 to SA0, SA1 = 11. Each time the
8-bit data is placed into a copy buffer which is then passed to the processor as 32 bits.

Interfacing standards 91

3.3.2 82344 IC

Much of the electronics in a PC has been integrated onto single ICs. The 82344 IC is one that
interfaces directly to the ISA bus. Figure 3.7 shows its pin connections.

C
L

K
B

A
L

E
A

E
N

-
IO

R
-

IO
W

-
R

E
F

R
S

T
 D

R
V

- S
M

E
M

R
-

S
EM

W
- S

B
H

E
-

D
A

C
K

0
-

D
A

C
K

1
-

D
A

C
K

2
-

D
A

C
K

3
-

D
A

C
K

5
-

D
A

C
K

6
-

D
A

C
K

7
D

R
Q

0
D

R
Q

1
D

R
Q

2
D

R
Q

3
D

R
Q

5
D

R
Q

6
D

R
Q

7
T

/C -
M

A
S

T
E

R
-

M
E

M
 C

S1
6

-
IO

C
S1

6
-

IO
C

H
K

IO
C

H
R

D
Y

-
0W

S
IR

Q
1

IR
Q

3
IR

Q
4

IR
Q

5
IR

Q
6

IR
Q

7
IR

Q
9

IR
Q

10
IR

Q
11

IR
Q

12
IR

Q
13

IR
Q

14
IR

Q
15

S
A

0
S

A
1

S
A

2
S

A
3

S
A

4
S

A
5

S
A

6
S

A
7

S
A

8
S

A
9

S
A

10
S

A
11

S
A

12
S

A
13

S
A

14
S

A
15

S
A

16
S

A
17

S
A

18
S

A
19

S
A

17
S

A
18

S
A

19
S

A
20

S
A

21
S

A
22

S
A

23

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

A
19

A
20

A
21

A
22

A
23

A
24

A
25

-
A

D
S

X
T
A
L
IN

X
T
A
L
OU

T
P
S

V
B
A
T

S
PK

R
X

D
0

X
D

1
X

D
2

X
D

3
X

D
4

X
D

5
X

D
6

X
D

7
-

X
R

E
A

D
-

S
D

SW
A

P
S

D
H

L
-

L
A

T
LO

- L
A

T
H

I
PC

K
P

O
W

E
R

G
O

O
D

-
R

O
M

B
-

H
ID

R
IV

E
-

38
6D

X
-

C
S

80
42

IN
TR

N
M

I
H

L
D

A
-

B
E

0
-

B
E

1
- B

E
2

- B
E

03
-C

H
R

EA
D

Y
- C

H
S

0
-

C
H

S
1

C
H

M
-

B
L

K
A

20
D

M
A

H
R

Q
D

M
A

H
D

LA
-

B
R

D
R

A
M

O
U

T
1

- T
R

I

82
34

4
IS

A
C

on
tr

ol
le

r

14
8

6 12
8

13
4

13
2

14
6

12
2

12
9

12
7

14 29 14
2

2 13
6

34 37 39 32 14
4

12
4

13
8

36 38 41 4 42 13 15 12
1

12
6

12
5

10
9

15
9

15
7

15
5

15
3

15
1

12
3

17 21 23 11
0

27 25 12 11 8 7 5 3 1 15
8

15
6

15
4

15
2

14
9

14
7

14
5

14
3

14
1

13
7

13
5

13
3

13
1

31 28 26 24 22 18 16

69 67 66 65 64 63 62 61 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 83 11
8

11
9

11
7

11
6

10
7

99 98 97 96 95 94 92 91 10
3

10
1

10
2

10
4

10
5

11
1

11
5

11
2

11
3

73 10
8

75 76 74 72 71 70 69 85 77 78 82 87 89 88 84 90 11
4

26

Figure 3.7 82344 IC connections

3.4 Other legacy busses

Two other busses which were used in the past are:

• MCA. IBM developed the Microchannel Interface Architecture (MCA) bus for their
PS/2 computers. This bus is completely incompatible with ISA bus. It can operate as a
16-bit or 32-bit data bus. The main technical difference between the MCA and PC/ISA
(and EISA) is that the MCA is an asynchronous bus whereas PC/ISA/EISA use a syn-
chronous bus. An synchronous bus works at a fixed clock rate whereas an asynchronous
bus data transfer is not dependent on a fixed clock. Asynchronous buses take their tim-
ings from the devices involved in the data transfer (that is, the processor or system
clock). The original MCA specification resulted in a maximum transfer rate of 160
MB/sec. Very few manufacturers have adopted MCA technology and it is mainly found
in IBM PS/2 computers.

• EISA. Several manufacturers developed the EISA (Extended Industry Standard Archi-
tecture) bus in direct competition to the MCA bus. It provides compatibility with PC/ISA
but not MCA. The EISA connector looks like an ISA connector. It is possible to plug an
ISA card into an EISA connector, but a special key allows the EISA card to be inserted

92 Computer busses

deeper into the EISA bus connector. It then makes connections with a 32-bit data and
address bus. An EISA card has twice the number of connections over an ISA card and
there are extra slots that allow it to be inserted deeper into the connector. The ISA card
only connects with the upper connectors because it has only a single key slot. EISA uses
a synchronous transfer at a clock speed of 8 MHz. It has a full 32-bit data and address
bus and can address up to 4 GB of memory. In theory the maximum transfer rate is 4
bytes for every clock cycle. As the clock runs at 8 MHz, the maximum data rate is
32 MB/s.

3.5 Comparison of different types

Data throughput depends on the number of bytes being communicated for each transfer and
the speed of the transfer. With the PC, ISA and EISA buses this transfer rate is fixed at 8
MHz, whereas the PCI and VL local buses use the system clock. For many applications the
ISA bus offers the best technology as it has been around for a long time, it gives a good data
throughput and it is relatively cheap and reliable. It has a 16-bit data bus and can thus trans-
fer data at a maximum rate of 16 MB/s. The EISA bus can transfer four bytes for each clock
cycle, thus if four bytes are transferred for each clock cycle, it will be twice as fast as ISA.
The maximum data rates for the different interface cards are:

PC 8 MB/s
ISA 16 MB/s
EISA 32 MB/s
VL-Local bus 132 MB/s (33 MHz system clock using 32-bit transfers)
PCI 264 MB/s (33 MHz system clock using 64-bit transfers)
MCA 20 MB/s (160 MB/s burst)

The type of interface technology used depends on the data throughput. Table 3.2 shows some
typical transfer data rates. The heaviest usage on the system are microprocessor to memory
and graphics adaptor transfers. These data rates depend on the application and the operating
system used. Graphical user interface (GUI) programs have much greater data throughput
than programs running in text mode. Notice that a high specification sound card with re-
cording standard quality (16-bit samples at 44.1 kHz sampling rate) only requires a transfer
rate of 172 kB/s. The transfer rate for audio is:

kB/s 172.26
1024

400 166

B/s 400 176

B/s 2)2100 44(

(B/s) sampleper bytes ofNumber secondper samples ofNumber fi)-(hi rateTransfer

==

=
××=

×=

A standard Ethernet local area network card transfers at data rates of up 10 Mbps (about
1 MB/s), although new fast Ethernet cards can transfer at data rates of up to 100 Mbps (about
10 MB/s). These transfers thus require local bus type interfaces.

Interfacing standards 93

Table 3.2 Example transfer rates

Device Transfer rate Application
Hard disk 4 MB/s Typical transfer
Sound card 88 KB/s 16-bit, 44.1 kHz sampling
LAN 1 MB/s 10 Mbps Ethernet
RAM 66 MB/s Microprocessor to RAM
Serial Communications 1 KB/s 9600 bps
Super VGA 15 MB/s 1024×768 pixels with 256 colours

For a graphics adaptor with a screen resolution of 1024×640, 64k colours (16-bit colour)
which is updated 20 times per second (20 Hz), the maximum transfer rate will be:

MB/s 246.2
10241024

400 214 26

B/s 400 214 26
8

200 715 209

b/s 200 715 209

b/s 2016)6401024(

(b/s) updatesscreen of No.pixelper bits of No.screenper pixels of No.(max) rateTransfer

=
×

=

==

=
×××=

××=

The PCI Local bus has become a standard on most new PC systems and has replaced the VL-
local bus for graphics adaptors. It has the advantage over the VL-local bus in that it can
transfer at much higher rates. Unfortunately, most available software packages cannot use
the full power of the PCI bus because they do not use the full 64-bit data bus. PCI and VL-
local bus are discussed in the next chapter.

3.6 Exercises

3.6.1 How many bits are transferred in a single clock operation with the PC bus:

 (a) 1 (b) 8
 (c) 16 (d) 32

3.6.2 What is the standard clock frequency which is used in ISA transfers:

 (a) 4.77 MHz (b) 8 MHz
 (c) 10 MHz (d) 16 MHz

3.6.3 What is the maximum transfer rate for the ISA bus:

 (a) 8 MB/s (b) 16 MB/s
 (c) 32 MB/s (d) 64 MB/s

3.6.4 What is the maximum transfer rate for the EISA bus:

 (a) 8 MB/s (b) 16 MB/s

94 Computer busses

 (c) 32 MB/s (d) 64 MB/s

3.6.5 What is the main disadvantage of PC, ISA and EISA busses:

 (a) They are incompatible with each other.
 (b) They use a fixed clock frequency.
 (c) They are not supported in PC systems.
 (d) They are expensive to implement.

3.6.6 What is the maximum transfer rate (in B/s) for a 10 Mbps Ethernet adaptor:
 (a) 1 MB/s (b) 1.221 MB/s
 (c) 10 MB/s (d) 100 MB/s

3.6.7 Prove, apart from the MCA bus, the transfer rates given in Section 3.5.

3.6.8 If an audio card is using 16-bit sampling at a rate of 44.1kHz. Prove that the trans-

fer rate for stereo sound will be 176.4 KB/sec. Show, also that this is equivalent to
1.411 Mbps (note that this is approximately the standard rate for CD-ROMs). Can
this rate be transferred using the ISA bus? Using this transfer rate, determine the
maximum transfer speed of a ×32 CD-ROM drive.

3.6.9 Determine amount of data for a single screen that required to be transferred for the

following screen resolutions:

(a) 800×600, 65 536 colours (960 000 B/s).
(b) 800×600, 16 777 216 colours (1 440 000 B/s).
(c) 1024×768, 65 536 colours (1 572 864 B/s).

Determine the maximum number of screen updates that is required for a 32-bit
PCI bus for each of the above.

3.6.10 Identify the main ISA signal lines and how they are used to transfer data. Answer
clearly the following:

(a) The main differences between a PC card and an ISA card.
(b) How the byte enable lines are used.
(c) How is a read or write transfer identified?
(d) How is a memory read/write or isolated memory read/write transfer identi-

fied?
(e) The interrupt lines which are available on a PC card and an ISA card.

 Typically what devices could be supported by a PC card (that is, what devices use

the interrupts that a PC card can support). How does this related to the original
specification of the PC?

Interfacing standards 95

3.7 Summary of interface bus types

Devices connect to the microprocessor using a computer bus. The specification of this bus
defines the transfer speed between the microprocessor and the connected device. Peripherals
can connect to the computer using either an internal or an external interface. Table 3.3 and
Table 3.4 give some examples of typical PC interfaces.

Table 3.3 Internal PC busses

Bus Description Typical devices
connected

ISA The ISA (International Standards Architecture) bus uses an inter-
face card which has two edge connectors (as one of the connec-
tors was used on the original PC bus). Typical ISA connections
are network interface adaptors, video camera interfaces and
sound cards. It can transfer up to 16 bits at a time, and uses a
fixed transfer rate of 8 MHz (8 000 000 transfers every second).
Max: 16 MB/s.

Network adaptor
Video camera adaptor
Sound card

PCI The PCI (Peripheral Component Interconnection) bus is used
connect internal devices in the PC. Typically, modern PCs have
at least four PCI adaptors, which are used to connect to network
interface cards, graphics adaptors and sound cards. It can transfer
up to 32 bits at a time. Max: 132 MB/s (more typically, 66 MB/s).

Network adaptor
Video camera adaptor
Sound card

AGP The AGP (Accelerated Graphics Port) bus is used solely to con-
nect to video cards. It uses a special connector, but builds on the
standard PCI bus. It is optimised so that it uses the main memory
of the computer, and does not depend on memory on the graphics
card. Max: 500 MB/s.

Graphics adaptor

IDE The Integrated Drive Electronics (IDE) bus is used solely to con-
nect to either hard disk drives, or CD-ROM drives. There are two
IDE connections: IDE0 and IDE1. Up to two devices can connect
to each IDE connector, thus up to four disk drives can connect to
the IDE bus.
Max: 16.6 MB/s (IDE, Mode 4).

Hard disk drive
CD-ROM drive

PCMCIA The Personal Computer Memory Card International Association
(PCMCIA) interface allows small thin cards to be plugged into
laptop, notebook or palmtop computers. It was originally de-
signed for memory cards (Version 1.0) but has since been
adopted for many other types of adapters (Version 2.0), such as
fax/modems, sound-cards, local area network cards, CD-ROM
controllers, digital I/O cards, and so on. Most PCMCIA cards
comply with either PCMCIA Type II or Type III. Type I cards
are 3.3 mm thick, Type II take cards up to 5 mm thick, Type III
allows cards up to 10.5 mm thick. A new standard, Type IV,
takes cards which are greater than 10.5 mm. Type II interfaces
can accept Type I cards, Type III accept Types I and II and Type
IV interfaces accept Types I, II and III. It uses a 16-bit data trans-
fer.

Network adaptor
Modem adaptor
Sound card
CD-ROM drive
Memory upgrade
Hard disk drive

96 Computer busses

Table 3.4 External PC busses

Bus Description Typical devices
connected

SCSI The SCSI (Small Computer System Interface) bus is used to connect to
a wide range of device, and is typically used in workstations and Apple
computers. It allows devices to connect using cables which connect
from one to the next (a daisy chain). In its standard form, it allows for
up to seven devices to be connected (SCSI-I), but new standards
(SCSI-II/III) allow up to 15 devices to connect. It can also be used as
an internal bus system or as an external one. In Apple Macs and work-
stations, SCSI is used to connect hard disk drives.
Max: 5 MB/s (SCSI-I), 20 MB/s (SCSI-II), 40 MB/s (SCSI-III).

Hard disk drive
CD-ROM drive
Scanner
Back-up device

RS-232 RS-232 is a standard interface on most computer systems. It uses serial
communications, to send data one bit at a time. The speed of the trans-
fer is set by the bit rate. Typical bit rates are 9600 bps (bits per second),
14 400 bps, 28 800 bps and 56 000 bps. It is typically used to transfer
files from one computer to another, and to connect to a modem. In the
past, it was also used to connect to a serial mouse, but mice typically
connect using the PS/2 mouse connector. Typically PCs have one or
two serial port, which are given the names: COM1: and COM2:.
Max: 7 KB/s (56 000 bps)

Modem
Mouse
File Transfer (with
Null Modem cable)

Parallel
port

The parallel port transfers 8 bits of data at a time. In its standard form,
it only supports a maximum rate of 150kbps, with only one connected
device. It also slows down the processor, as it must involve itself with
the transfer of the data. In its standard form, it uses a 25-pin D-type
connector to connect to the PC. As technology has improved a new
standard named ECP (Extended Capabilities Port Protocol)/EPP (En-
hanced Parallel Port) was been developed to increase the data rate, and
also to connect multiple devices to it (as the SCSI bus). These allow the
transfer of data to be automatically controlled by the system, and not
by the processor. Typically, now with ECP/EPP, several devices can
connect to the port, such as a printer, external CD-ROM drive, scanner,
and so on. Its main advantage is that it is standard on most PCs, but
suffers from many disadvantages. Typically PCs have a single parallel
port, which is given the name LPT1:. In many cases, it is being re-
placed by USB.
Max: 150 kbps (Standard), 1.5 Mbps (ECP/EPP)

Printer
CD-ROM drive
Scanner
File Transfer (with
Parallel Port cable)

USB USB (Universal Serial Bus) allows for the connection of medium
bandwidth peripherals such as keyboards, mice, tablets, modems, tele-
phones, CD-ROM drives, printers and other low to moderate speed
external peripherals in a tiered-star topology. It is typically used to
connect to printers, scanners, external CD-ROM drives, digital speak-
ers, and so on. It is likely to replace the printer port and the serial port
for connecting external devices.
Max: 12 Mbps.

Digital speakers
Scanner
Printer
Video camera
Modem
Joystick
Monitor

PS/2
Port/
Key-
board

Initially, on PCs, the serial port was used to connect a mouse to, which
reduced the number of connections to the serial port. Typically, these
days, a mouse connects to the PS/2 mouse port, which has a small 5-
pin DIN-like connector. This is the same connector that is used to con-
nect to the keyboard.

Keyboard
Mouse

Interfacing standards 97

3.8 The fall of the MCA bus

The leading computer companies of 1987 were Intel, IBM, Compaq, and Microsoft, but a
special mention must go to Apple, Commodore and Sun Microsystems, who fought bravely
against the growing IBM PC market. With the release of the IBM AT and now the PS/2,
IBM had presented Intel with a large market for their 80286 design, but it was Compaq who
increased it even more with the release of the DeskPro 386. The new Intel processors were
now so successful that Intel had little to do, but try to keep up with demand, and try to stop
cloners from copying their designs. They could now consolidate on their success with other
support devices, such as the 80387-math coprocessor. By the end of the year, their only real
mass-market competitor was Motorola, who released their excellent Motorola 68030 micro-
processor, which would become the foundation of many Apple Mac computers. Within a few
years, Motorola would become extremely reliant on the Apple Mac, while Intel held onto the
PC market.
 At IBM, things were hectic. They were phasing out their IBM PC range, and introduced
their new computer range, the PS/2. IBM realised that the open architecture of the IBM PC
held little long term advantages for them, as clone manufacturers could always sell com-
puters at much less cost than themselves. IBM had large development teams, sales staff, dis-
tribution centres, training centres, back up support, and so on. They thus need to make
enough profit on each computer to support all these functions. The PS/2 was their attempt at
trying to close the open system, and make one that required to be licensed through them-
selves. It was also an attempt at trying to reduce some of the problems that were caused with
the limited technology of the IBM PC. One of the main problems was the PC bus, which
allowed users to easily add peripherals to the computer, by plugging them into the system
with a standard card which had a standard edge connector. Initially this used an 8-bit data
bus, and operated at 8 MHz, which gave a data throughput of 8 MB/s (as one byte is 8 bits).
This was upgraded on the AT computer with the AT bus, which used a 16-bit data bus, giv-
ing a data throughput of 16 MB/s. The great advantage of the AT bus, was that it was still
compatible with the PC bus, where PC bus cards could still be slotted into AT bus connectors
(soon to be renamed the ISA, or Industry Standard Bus).
 The AT bus was fine for slow devices, such as printer, modems, and so on. However, for
colour graphics it was far to slow. For example, a colour monitor with a resolution of
640×480, with 256 colours (8 bits per colour), and a screen refresh of 25 Hz, requires a data
throughput of 7 680 000 B/s (640×480×1×25 B/s).
 IBM’s concept was to use a bus, which, intentionally, had a different connector to the PC
and the AT bus, which did not use a fixed clock rate, and could thus operate at the speed of
the processor, which was now moving above 20 MHz. The MCA (Micro Channel Architec-
ture) bus also used a 32-bit data bus, which allowed data throughputs of 100 MB/s.
 The PS/2 was an excellent concept, and was boosted by an extensive advertising cam-
paign that boosted performance improvement over previous systems. It was the right move,
and the system looked well, with 3.5-inch disk drives, and a rugged gray plastic case. Com-
puters had never look so professional. For many businesses, they were heaven sent. How-
ever, the fly-in-the-ointment for IBM was Compaq, who had previously released their Desk-
Pro 386. The big problem with the PS/2 range was that the lower-end PCs were based on the
8086 and the 80286, and against the 80386-based Compaq they seem slow. The initial range
was:

• Model 30, which used the, at the time, relatively slow, 8 MHz 8086. IBM also intro-

98 Computer busses

duced the Model 25, also with an 8 MHz Intel 8086, which had no hard drive, and a re-
duced keyboard for $1350.

• Model 50 and 60, which used a 10 MHz 80286 with MCA.
• Model 80, which used a 20 MHz 80386 with MCA.

In 1988, the battle lines had been drawn the year before. IBM was trying to pull the market
towards their architecture. The strength, of this was highlighted by John Akers, the then IBM
Chairman:

We’re trying to change the habits of an awful lot of people. That won’t happen overnight, but
it will bloody well happen.

IBM thought they would win the battle, and the older IBM PC architecture would die off.
Several companies went with IBM, including Tandy (Tandy 5000MC), Dell and Olivetti. But
the first signs of problems for IBM came when 61 companies developed the 32-bit version of
the ISA bus, the EISA (Extended Industry Standard Architecture). This allowed 32 bits to be
transferred at a time. Unfortunately, it was still based on an 8 MHz clocking rate, which gave
it a data throughput of 32 MB/s. It was supported by the leading computer companies, such
as Compaq Computer, AST, Epson, Hewlett-Packard, NEC Technologies, Olivetti, Tandy,
Wyse, Zenith, and Microsoft. Along with this, Compaq Computer and eight other companies
started developing the ISA standard to improve the AT-bus. Rod Canion, the Compaq Com-
puter and CEO, showed his company’s resistance to the MCA bus:

If people are going to buy Micro Channel, they’re going to buy it from IBM.

The market would eventually reject the MCA bus, mainly because of the weight of the new
x86, 80386 computers on the market. It would take a company such as Intel to develop a
totally new bus system: the PCI bus.

3.9 Notes from the author

Oh boy, is it confusing! There are so many different busses used in systems, especially in
PCs. There are three main reasons for the number of busses: legacy, compatibility and effi-
ciency. With legacy, busses exist because they have existed in the past, and are required to
be supported for the time being. With compatibility, busses allow the segmentation of a sys-
tem and provide, most of the time, a standard interface that allows an orderly flow of data
and allows manufactures to interconnect their equipment. If allowed, many manufacturers
would force users to use their own versions of busses, but the trend these days is to use inter-
nationally defined busses. Efficient busses have been designed to take into account the type
of data that is being transmitted. So, in the end, we win.
 Sometimes, though, the bus technology does always win, and manufacturers who try to
develop systems on their own can often fail miserably. This has been shown with the MCA
bus, which was an excellent step in bus technology, and made up for the mistakes made in
the original PC design. But, IBM tried to force the market, and failed. In these days, it is
international standards that are important. Products to be accepted in the market or in the
industry require an international standards body to standardise them, such as the IEEE, the
ISO, ANSI and so on. Without them, very few companies will accept the product. A classic

Interfacing standards 99

case of an open standard winning against a closed system was Betamax video which was a
closed standard produced by Sony, up against VHS which was an open standard. VHS was
the inferior technology, but won because there were more companies willing to adopt it.
 The days of having a single computer bus for internal and external connections are a
long way off (if ever), as there will always be some peripherals that need to transmit data in
a certain way that differs from other peripheral. Also standard technology always tends to
win over newer, faster technology. Few companies can now define new standards on their
own.
 Before we start to look at the technology behind computer busses, here is my All-Time
Best Busses (in order of their current and future usefulness).

TOP BUSSES OF ALL-TIME AWARD

1. PCI bus. An excellent internal bus that provides the backbone to most modern PCs. It
has been a complete success, and provides for many modern enhancements, such as
plug-and-play technology, steerable interrupts, and so on. In its acceptance speech
for Best Bus of All-Time it would thank the VL-local bus for starting the trend toward
local bus technology. The VL-local bus held-the-fort for a short time, and gave a
short-term fix for high-speed graphics transfers, but Intel busily developed a proper
bus which could support other high-speed devices. With local bus technology, low-
speed devices were pushed away from the processor, and can only communicate with
it over a bridge. A worthy champion that is the bedrock of modern computing. It even
has a few trump cards yet to play (including increasing its transfer rate, integration
with the AGP port, and increasing its data bus size).

2. SCSI bus. The most general-purpose of the external busses and in many respects as
great as the PCI bus, but it looses out to the PCI bus in that it is not used in as many
computers. It provides an easy method of connecting external devices in a daisy-chain
connection. New standards for the SCSI bus support fast transfer rates (over
40 MB/s), and allow up to 15 internal or external devices to be connected.

3. USB. An external bus which shows great potential in the way that it integrates many
of the low and medium bit rate devices onto a single bus system. New standards for
USB are trying to also integrate high bit rate devices. It supports hot plug-and-play,
which allows users to connect and disconnect peripherals from the bus, while the
computer is still on.

4. AGP port. The PCI, SCSI and USB busses are a long-way out in front to the other
busses, and the forth place in the table goes to AGP port which overcomes the last
great problem area of the PC: the graphics adaptor. AGP provides for fast transfer
rates using the PCI bus as a foundation, and allows the PC to use local memory for
graphics transfers.

5. PCMCIA. A long way behind in fifth place comes the PCMCIA bus, which is an ex-
ternal bus that provides for easy upgrades on notebook technology. It highlights how
small and compact interface devices can be. Typical additions are modem and net-
work adaptors. Its future will depend on how the USB bus is used in the future.

And let’s not forget the busses which have helped us to get to this point. We may call them
legacy busses, but they have allowed us to get to where we are now, and still provide a useful
function. Thus, the awards for the Most Helpful Busses of the Past (in order of their previous
usefulness) are given next.

100 Computer busses

MOST HELPFUL BUSSES OF ALL-TIME

1. ISA bus. The ISA bus competed head-to-head with the MCA, and although it was

much slower, it triumphed, as it was compatible with the older PC bus. For many
years its performance was acceptable (16MB/s), but the advent of the graphical user
interface was the beginning of the end for it. It has sadly seen the number of PCI slots
increasing while it has seen its own connections reduce from over five, to less than
two.

2. RS-232 port. A classic bus, which is compatible (almost) with all the other RS-232
ports on every computer in the world. It provides a standard way to talk to devices,
such as instruments, other computers, and modems.

3. IDE bus. A rather quiet and unassuming internal bus, which does its job of interfac-
ing to disk drives well, without, these days, much troubles. It has reasonable perform-
ance (over 14MB/s) and does not really have any intentions of ever becoming any-
thing other than a disk interfacing bus. It, like Ethernet, has overcome early retire-
ment by increasing its transfer rate, but still keeping compatibility with previous sys-
tems. Its main competitor is SCSI, which is unlikely to ever to beat it for compatibility
and cost, thus it is likely to stay around for much longer than some of its earlier PC
partners. For systems which have less than four disk drives (in a combination of CD-
ROM or hard disks) it is still the best choice, and is often integrated in the PC moth-
erboard.

4. VL-Local bus. The bus that showed the way for local bus technology, especially the
PCI bus. It always knew that it was a short-term fix, but it did its job effectively and
quietly. Apart from the 80486, it was one of leading factors which increased the adop-
tion of Microsoft Windows (as it allowed the fast transfer to graphical data).

5. Parallel port. Another classic bus which was created to purely interface to an exter-
nal printer, but has now been developed to support a multi-attachment busses with
reasonable transfer rates (over 150kB/s).

Let’s not forget about the great-grandfather of all the PC busses: the PC bus. It is now en-
joying a well-earned retirement (but can be pulled back from retirement at any time). It is the
bus that has launched a million computers.
 Finally, the relegation zone for computer busses (in order of the problems that they have
caused or for their lack of adoption).

RELEGATION ZONE FOR BUSSES

1. ISA bus. Like the 8088 processor and DOS, it has a Dr Jekyll and Mr Hyde appear-
ance, and is both the top computer bus of all-time, and worst bus of all-time. It is the
bus, which, in the past, has provided the foundation for upgrading the PC, and has
gently handed over its mantel to the PCI bus. But, it has caused lots of problems as it
quickly fossilized the connection between the processor and the peripherals. Its major
problems were it fixed rate transfer rate, the way that it handled interrupts, its lack of
address lines (only up to 24), its lack of data lines (only up to 16), and the way that
fast, medium and slow devices all connected to the same bus (thus allowing slow de-
vices to ‘hog’ the bus). It started to show its age when 32-bit processors appeared
and as the motherboard speeds increased. The beginning of its end was the introduc-
tion of Microsoft Windows 3, which started to properly use a graphical user interface.
The VL-local bus quickly came in as a stand-in. From there on, local bus technology

Interfacing standards 101

become the standard way to transfer large amounts of data.
2. MCA bus. IBM tried to pull the standard for bus technology back to a closed system

with the MCA bus. It failed as it came up against the technologically inferior ISA, as
the ISA bus was an open standard.

3. VME bus. Powerful, complex and very misunderstood. Avoid in the same way that
you would avoid the plague. The designers decided to create a bus that had every-
thing, all that’s lacking is kitchen sink.

4. RS-232 port. Another bus, along with the ISA bus, which manages to get into the Top
5 busses of all-time, and also into the relegation zone. It is an extremely useful bus,
but suffers because of a lack of speed and its incompatibility (even although everyone
is working to the same standard, the level of implementation of the standard varies).

5. Keyboard connection/serial port mouse connection. Two extremely limited connec-
tors. The keyboard connector has virtually no intelligence built into it, and provides
for limited sensing of the keyboard type, or extra functionality. Its only real advantage
is that it looks so different from other connectors. Another advantage is that is has al-
lowed the integration of the new PS/2-type mouse connector. Serial port mouse con-
nections have always caused problems, mainly because the use up one of the serial
port connection.

Well that’s the bus awards. As we still have half a page to complete, here’s the winners of
the specialist technologies:

• Local Area Networking bus award:

1. Ethernet (one horse race). Although ISDN deserves a mention.
• Wide Area Networking bus award:

1. ATM. A proper networking technology that integrates real-time signals (such as
speech) and non-real-time data (such as computer data) into a networking tech-
nology.

2. Gigabit Ethernet. Uses standard Ethernet technology to gives an extremely fast
transfer rate, but still suffers from the problems of the original Ethernet specifica-
tion.

3. FDDI. A reliable ring-based networking technology that allows for the transmis-
sion of data over a large geographical area.

• Instrumentation bus award:
1. RS-422. An excellent bus which allows multiple attachments to a single bus, and

up to 1Mbps.
2. IEEE-488. An easy-to-use, robust, widely used, standardised and easy-to-connect-

to bus, which is rather limited, but extremely useful.
3. CAN bus. An excellent multi-drop system, for closely connected devices, especially

in automobile applications. It overcomes some of the problems that Ethernet has,
as devices are so closely connected.

• Interconnecting protocol award.
1. TCP/IP (one horse race).

PCI Bus

4.1 Introduction

The PC was conceived at a time when processor clock speeds were measured in several
MHz. Initially this was set at 4.77 MHz, and then increased to 8 MHz. The PC and ISA bus-
ses fossilised with these clock frequencies. In the first few years of its design, the mother-
board ran at the same speed as the processor. Soon, with improvements in silicon design, the
speed of the processor was increased to tens of megahertz. Soon the maximum limit of the
motherboard was reached and the only way to break this limit was to double or treble the
motherboard clock speed. This limit was set at 33 MHz or 50 MHz. Processor speed has since
been risen to over 500 MHz. Local bus technology uses the speed of the motherboard, rather
than a fixed rate. Most new PCs have a motherboard speed of 100 MHz, which is at least
twice as fast as 50 MHz motherboards.
 The greatest need for greater data throughput is the video adaptor. A high-resolution
video screen with high screen update rate can require burst rates of over 100 MB/s. For ex-
ample a screen of 1024×640 with 16.7 million colours (24-bit colour) will require the follow-
ing amount of memory for a single screen:

1.875MB
10241024

 080 966 1

B 080 966 1

B 36401024Memory

=
×

=
=

=
××=

If this screen is updated 10 times every second (10Hz) then the data throughput is
:

MB/s 37.5

MB/s 20875.1 transferData

=
×=

This transfer rate is far too fast for busses such as ISA and EISA, and the only solution is a
fast 32-bit bus, transferring at a rate of at least 33 MHz. The maximum transfer rates for vari-
ous local bus transfers are as follows:

 Data bus size Transfer clock (MHz) Data transfer rate (MB/s)
 16 33 66
 16 50 100
 32 33 132
 32 50 200
 32 100 320
 64 50 400

4

104 Computer busses

 Intel have developed a standard interface, named the PCI (Peripheral Component Inter-
connection) local bus, for the Pentium processor. This technology allows fast memory, disk
and video access. A standard set of interface ICs known as the 82430 PCI chipset is available
to interface to the bus. Figure 4.1 shows how the PCI bus integrates into the PC. The proces-
sor runs at a multiple of the motherboard clock speed, and is closely coupled to a local
SRAM cache (first-level, or primary, cache). If the processor requires data it will first look in
the primary cache of its contents. If it is in this cache it will read its contents, and there is
thus no need to either read from the second level cache or from DRAM memory. If the data
is not in the primary cache then the processor slows downs to the motherboard clock speed,
and contacts the system controller (which contains a cache controller). The controller then
examines the second-level cache and if the contents are there, it passes the data onto the
processor. If it does not have the contents then DRAM memory is accessed (which is a rela-
tively slow transfer).
 The system controller also interfaces to PCI bus, which is running at the motherboard
clock frequency. This then bridges onto other busses, such as ISA, IDE and USB, each of
which is running at different clock rates. The PCI bus thus provides a foundation bus for
most of the internal and external busses.
 Local bus design involves direct access to fast address and data busses. The ISA bus was
a great bottleneck because it could only run at 8 MHz. This chapter discusses the VL-local
bus and the PCI bus. The PCI bus is now the main interface bus used in most PCs, and is rap-
idly replacing the ISA bus for internal interface devices. It is a very adaptable bus and most
of the external busses, such as SCSI and USB connect to the processor via the PCI bus.

ProcessorProcessor System
Controller

System
Controller

DRAM
memory

DRAM
memory

SRAM cache
memory

SRAM cache
memory

Bus
bridge

Bus
bridge

PCI bus connections
(typically up to 5 devices)

ISA bus IDE bus USB bus

Data
bus

Address
bus

DRAM
addresses

DRAM
Data bus

SRAM tag address

Motherboard clock
speed

Processor clock
speed

Local
SRAM
cache

Local
SRAM
cache

A
dd

re
ss

bu
s

D
at

a
bu

s

Differing clock
speeds

Figure 4.1 Local bus architecture

PCI bus 105

 The PCI bus transfers data using the system clock, and can operate over a 32-bit or 64-bit
data path. The high transfer rates used in PCI architecture machines limit the number of PCI
bus interfaces to two or three (normally the graphics adapter and hard disk controller). If data
is transferred at 64 bits (8 bytes) at a rate of 33 MHz then the maximum transfer rate is
264 MB/s. Figure 4.1 shows the PCI architecture. Notice that an I/O bridge gives access to
ISA, IDE and USB. Unfortunately, to accommodate for the high data rates and for a reduc-
tion in the size of the interface card, the PCI connector is not compatible with PC, ISA or
EISA.
 The maximum data rate of the PCI bus is 264 MB/s, which can only be achieved using
64-bit software on a Pentium-based system. On a system based on the 80486 processor this
maximum data rate will only be 132 M B/s (that is, using a 32-bit data bus).
 The PCI local bus is a radical redesign of the PC bus technology. Table 4.1 lists the pin
connections for the 32-bit PCI local bus and it shows that there are two lines of connections,
the A and the B side. Each side has 64 connections giving 128 connections. A 64-bit, 2×94-
pin connector version is also available. The PCI bus runs at the speed of the motherboard
which for the Pentium processor is typically 33 MHz.

Table 4.1 32-bit PCI local bus connections

Pin Side A Side B Pin Side A Side B
1 –12V TRST 32 AD17 AD16
2 TCK +12V 33 C / BE2 +3.3V

3 GND TMS 34 GND FRAME
4 TDO TDI 35 IRDY GND
5 +5V +5V 36 +3.3V TRDY
6 +5V INTA 37 DEVSEL GND
7 INTB INTC 38 GND STOP
8 INTD +5V 39 LOCK +3.3V
9 PRSNT1 Reserved 40 PERR SDONE

10 Reserved +5V(I/O) 41 +3.3V SBO
11 PRSNT2 Reserved 42 SERR GND
12 GND GND 43 +3.3V PAR
13 GND GND 44 C / BE1 AD15

14 Reserved Reserved 45 AD14 +3.3V
15 GND RST 46 GND AD13
16 CLK +5V(I/O) 47 AD12 AD11
17 GND GNT 48 AD10 GND
18 REQ GND 49 GND AD09

19 +5V(I/O) Reserved 50 KEY KEY
20 AD31 AD30 51 KEY KEY
21 AD29 +3.3V 52 AD08 C / BE0
22 GND AD28 53 AD07 +3.3V
23 AD27 AD26 54 +3.3V AD06
24 AD25 GND 55 AD05 AD04
25 +3.3V AD24 56 AD03 GND
26 C / BE3 IDSEL 57 GND AD02

27 AD23 +3.3V 58 AD01 AD00
28 GND FRAME 59 +5V(I/O) +5V(I/O)
29 AD21 AD20 60 ACK64 REQ64
30 AD19 GND 61 +5V +5V
31 +3.3V TRDY 62 +5V +5V

106 Computer busses

4.2 PCI operation

The PCI bus cleverly saves lines by multiplexing the address and data lines. It has two modes
(Figure 4.2):

• Multiplexed mode – the address and data lines are used alternately. First, the address is

sent, followed by a data read or write. Unfortunately, this requires two or three clock cy-
cles for a single transfer (either an address followed by a read or write cycle, or an ad-
dress followed by read and write cycle). This causes a maximum data write transfer rate
of 66 MB/s (address then write) and a read transfer rate of 44 MB/s (address, write then
read), for a 32-bit data bus width.

• Burst mode – the multiplexed mode obviously slows down the maximum transfer rate.
Additionally, it can be operated in burst mode, where a single address can be initially
sent, followed by implicitly addressed data. Thus, if a large amount of sequentially ad-
dressed memory is transferred then the data rate approach the maximum transfer of
133 MB/s for a 32-bit data bus and 266 MB/s for a 64-bit data bus.

If the data from the processor is sequentially addressed data then PCI bridge buffers the in-
coming data and then releases it to the PCI bus in burst mode. The PCI bridge may also use
burst mode when there are gaps in the addressed data and use a handshaking line to identify
that no data is transferred for the implied address. For example in Figure 4.2 the burst mode
could involve Address+1, Address+2 and Address+3 and Address+5, then the byte enable
signal can be made inactive for the fourth data transfer cycle.

PCI bus
(normal mode)

Address1

Data1

Address2

Data2

Address3

Data

PCI bus
(burst mode)

Address

Data1

Data2

Data3

Data4

Data5

Data1

Data2

Data3

Data4

Data5

Data3

Data1

Data2

Address1

Address3

Address2

Address

Figure 4.2 PCI bus transfer modes

To accommodate the burst mode, the PCI bridge has a prefetch and posting buffer on both
the host bus and the PCI bus sides. This allows the bridge to build the data access up into
burst accesses. For example, the processor typically transfers data to the graphics card with
sequential accessing. The bridge can detect this and buffer the transfer. It will then transfer

PCI bus 107

the data in burst mode when it has enough data. Figure 4.3 shows an example where the PCI
bridge buffers the incoming data and transfers it using burst mode. The transfers between the
processor and the PCI bridge, and between the PCI bridge and the PCI bus can be independ-
ent where the processor can be transferring to its local memory while the PCI bus is transfer-
ring data. This helps to decouple the PCI bus from the processor.
 The primary bus in the PCI bridge connects to the processor bus and the secondary bus
connects to the PCI bus. The prefetch buffer stores incoming data from the connected bus
and the posting buffer holds the data ready to be sent to the connected bus.
 The PCI bus also provides for a configuration memory address (along with direct mem-
ory access and isolated I/O memory access). This memory is used to access the configuration
register and 256-byte configuration memory of each PCI unit.

Address1

Data1

Address2

Data2

Address3

Data3

Address1

Data1

Data2

Data3

Data4

Address4

Data4

PCI busProcessor
bus

Processor

PCI bridge
transfers with
burst mode

Prefetch
buffer

Posting
buffer

Prefetch
buffer

Posting
buffer

Primary
bus

Secondary
bus

Figure 4.3 PCI bridge using buffering for burst transfer

4.2.1 PCI bus cycles

The PCI has built-in intelligence where the command/byte enable signals (C/BE3 – C/BE0) are
used to identify the command. They are given by:

C/BE3 C/BE2 C/BE1 C/BE0 Description
 0 0 0 0 INTA sequence
 0 0 0 1 Special cycle
 0 0 1 0 I/O read access
 0 0 1 1 I/O write access
 0 1 1 0 Memory read access
 0 1 1 1 Memory write access
 1 0 1 0 Configuration read access
 1 0 1 1 Configuration write access
 1 1 0 0 Memory multiple read access
 1 1 0 1 Dual addressing cycle
 1 1 1 0 Line memory read access
 1 1 1 1 Memory write access with invalidations

The PCI bus allows any device to talk to any other device, thus one device can talk to an-

108 Computer busses

other without the processor being involved. The device that starts the conversion is known as
the initiator and the addressed PCI device is known as the target. The sequence of operation
for write cycles, in burst mode, is:

• Address phase – the transfer data is started by the initiator activating the FRAME signal.

The command is set on the command lines (C/BE3 – C/BE0) and the address/data pins
(AD31–AD0) are used to transfer the address. The bus then uses the byte enable lines
(C/BE3 – C/BE0) to transfer a number of bytes.

• The target sets the TRDY signal (target ready) active to indicate that the data has on the
AD31–AD0 (or AD62–AD0 for a 64-bit transfer) lines is valid. In addition, the initiator indi-
cates its readiness to the PCI bridge by setting the IRDY signal (indicator ready) active.
Figure 4.4 illustrates this.

• The transfer continues using the byte enable lines. The initiator can block transfers if it
sets IRDY and the target with TRDY .

• Transfer is ended by deactivating the FRAME signal.

The read cycle is similar but the TRDY line is used by the target to indicate that the data on
the bus is valid.

PCI device
Initiator

(busmaster)

PCI device
Target

(addressed
PCI device)

FRAME

TRDY

IDRY

Indicates that initiator has
placed valid data on the bus

Data

PCI device
Initiator

(busmaster)

PCI device
Target

(addressed
PCI device)

FRAME

IRDY

TDRY

Indicates that there is
valid data on the bus

Data

Write access Read access

Indicates that target can
accept data from the bus

Indicates that initiator can
accept data from the bus

Figure 4.4 PCI handshaking

4.2.2 PCI commands

The first phase of the bus access is the command/addressing phase. Its main commands are:

• INTA sequence – addresses an interrupt controller where interrupt vectors are transferred

after the command phase.
• Special cycle – used to transfer information to the PCI device about the processor’s

status. The lower 16 bits contain the information codes, such as 0000h for a processor

PCI bus 109

shutdown, 0001h for a processor halt, 0002h for x86specific code and 0003h to FFFFh
for reserved codes. The upper 16 bits (AD31–AD16) indicate x86specific codes when the
information code is set to 0002h.

• I/O read access – indicates a read operation for I/O address memory, where the AD lines
indicate the I/O address. The address lines AD0 and AD1 are decoded to define whether
an 8-bit or 16-bit access is being conducted.

• I/O write access – indicates a write operation to an I/O address memory, where the AD
lines indicate the I/O address.

• Memory read access – indicates a direct memory read operation. The byte-enable lines
(C/BE3 – C/BE0) identify the size of the data access.

• Memory write access – indicates a direct memory write operation. The byte-enable lines
(C/BE3 – C/BE0) identify the size of the data access.

• Configuration read access – used when accessing the configuration address area of a PCI
unit. The initiator sets the IDSEL line activated to select it. It then uses address bits AD7–
AD2 to indicate the addresses of the double words to be read (AD1 and AD0 are set to 0).
The address lines AD10–AD18 can be used for selecting the addressed unit in a multi-
function unit.

• Configuration write access – as the configuration read access, but data is written from the
initiator to the target.

• Memory multiple read access – used to perform multiple data read transfers (after the ini-
tial addressing phase). Data is transferred until the initiator sets the FRAME signal inac-
tive.

• Dual addressing cycle – used to transfer a 64-bit address to the PCI device (normally only
32-bit addresses are used) in either a single or a double clock cycle. In a single clock cy-
cle the address lines AD63–AD0 contain the 64-bit address (note that the Pentium processor
only has a 32-bit address bus, but this mode has been included to support other systems).
With a 32-bit address transfer the lower 32 bits are placed on the AD31–AD0 lines, fol-
lowed by the upper 32 bits on the AD31–AD0 lines.

• Line memory read access – used to perform multiple data read transfers (after the initial
addressing phase). Data is transferred until the initiator sets the FRAME signal inactive.

• Memory write access with invalidations – used to perform multiple data write transfers
(after the initial addressing phase).

4.2.3 PCI interrupts

The PCI bus support four interrupts (INTA – INTD). The INTA signal can be used by any of
the PCI units, but only a multifunction unit can use the other three interrupt lines (INTB –

INTD). These interrupts can be steered, using system BIOS, to one of the IRQx interrupts by
the PCI bridge. For example, a 100 Mbps Ethernet PCI card can be set to interrupt with INTA
and this could be steered to IRQ10.

4.3 Bus arbitration

Busmasters are devices on a bus which are allowed to take control of the bus. For this pur-
pose, PCI uses the REQ (request) and GNT (grant) signals. There is no real standard for this
arbitration, but normally the PCI busmaster activates the REQ signal to indicate a request to

110 Computer busses

the PCI bus, and the arbitration logic must then activate the GNT signal so that the request-
ing master gains control of the bus. To prevent a bus lock-up, the busmaster is given 16 CLK
cycles before a time-overrun error occurs.

4.4 Other PCI pins

The other PCI pins are:

• RST (Pin A15) – resets all PCI devices.
• PRSNT1 and PRSNT2 (Pins B9 and B11) – these, individually, or jointly, show that there

is an installed device and what the power consumption is. A setting of 11 (that is, PRSNT1
is a 1 and PRSNT2 is a 1) indicates no adapter installed, 01 indicates maximum power dis-
sipation of 25 W, 10 indicates a maximum dissipation of 15 W and 00 indicate a maxi-
mum power dissipation of 7.5 W.

• DEVSEL (Pin B37) – indicates that addressed device is the target for a bus operation.
• TMS (test mode select), TDI (test data input), TDO (test data output), TRST (test reset),

and TCK (test clock) – used to interface to the JTAG boundary scan test.
• IDSEL (Pin A26) – used for device initialization select signal during the accessing of the

configuration area.
• LOCK (Pin A15) – indicates that an addressed device is to be locked-out of bus transfers.

All other unlocked devices can still communicate.
• PAR, PERR (Pins A43 and B40) – The parity pin (PAR) is used for even parity for AD31–

AD0 and C/BE3–C/BE0, and PERR indicates that a parity error has occurred.
• SDONE, SBO (Pins A40 and A41) – used in snoop cycles. SDONE (snoop done) and SBO

(snoop back off signal).
• SERR (Pin B42) – used to indicate a system error.
• STOP (Pin A38) – used by a device to stop the current operation.
• ACK64 , REQ64 (Pins B60 and A60) – the REQ64 signal is an active request for a 64-bit

transfer and ACK64 is the acknowledge for a 64-bit transfer.

4.5 Configuration address space

Each PCI device has 256 bytes of configuration data, which is arranged as 64 registers of 32
bits. It contains a 64-byte predefined header followed by an extra 192 bytes which contain
extra configuration data. Figure 4.5 shows the arrangement of the header. The definitions of
the fields are:

• Unit ID and Man. ID – a Unit ID of FFFFh defines that there is no unit installed, while

any other address defines its ID. The PCI SIG, which is the governing body for the PCI
specification, allocates a Man. ID. This ID is normally shown at BIOS start-up. Section
4.8 gives some example Man. IDs (and plug-and-play IDs).

• Status and command.

PCI bus 111

• Class code and Revision – the class code defines PCI device type. It splits into two 8-bit
values with a further 8-bit value that defines the programming interface for the unit. The
first defines the unit classification (00h for no class code, 01h for mass storage, 02h for
network controllers, 03h for video controllers, 04h for multimedia units, 05h for memory
controller and 06h for a bridge), followed by a subcode which defines the actual type.
Typical codes are:

• 0100h – SCSI controller 0101h – IDE controller.

• 0102h – Floppy controller 0200h – Ethernet network adapter

• 0201h – Token ring network adapter 0202h – FDDI network adapter

• 0280h – Other network adapter 0300h – VGA video adapter

• 0301h – XGA video adapter 0380h – Other video adapter

• 0400h – Video multimedia device 0401h – Audio multimedia device

• 0480h – Other multimedia device 0500h – RAM memory controller

• 0501h – Flash memory controller 0580h – Other memory controller

• 0600h – Host 0601h – ISA Bridge

• 0602h – EISA Bridge 0603h – MAC Bridge

• 0604h – PCI–PCI Bridge 0680h – Other Bridge

Unit ID Man. ID

Status Command

Class code Rev.

BIST

Base Address Register

Reserved

Reserved

Expansion ROM Base Address

Reserved

Reserved

MaxLat MinGNT INT-Pin INT-Line

64-byte
header
in PCI
configuration
space

31 0

Header Latency CLS

Figure 4.5 PCI configuration space

• BIST, header, latency, CLS – the BIST (built-in self test) is an 8-bit field, where the most
significant bit defines if the device can carry out a BIST, the next bit defines if a BIST is
to be performed (a 1 in this position indicates that it should be performed) and bits 3–0
define the status code after the BIST has been performed (a value of zero indicates no er-
ror). The header field defines the layout of the 48 bytes after the standard 16-byte header.
The most significant bit of the header field defines whether the device is a multifunction
device or not. A 1 defines a multi-function unit. The CLS (cache line size) field defines
the size of the cache in units of 32 bytes. Latency indicates the length of time for a PCI

112 Computer busses

bus operation, where the amount of time is the latency+8 PCI clock cycles.
• Base address register – this area of memory allows the device to be programmed with an

I/O or memory address area. It can contain a number of 32- or 64-bit addresses. The for-
mat of a memory address is

Bit 64–4 Base address.

 Bit 3 PRF. Prefetching, 0 identifies not possible, 1 identifies possible.
Bit 2, 1 Type. 00 – any 32-bit address, 01 – less than 1MB, 10 – any
 64-bit address and 11 – reserved.
Bit 0 0. Always set to a 0 for a memory address.

For an I/O address space it is defined as:

Bit 31–2 Base address.
Bit 1, 0 01. Always set to a 01 for an I/O address.

• Expansion ROM base address – allows a ROM expansion to be placed at any position in

the 32-bit memory address area.
• MaxLat, MinGNT, INT-pin, INT-line – the MinGNT and MaxLat registers are read-only

registers that define the minimum and maximum latency values. The INT-Line field is a
4-bit field that defines the interrupt line used (IRQ0–IRQ15). A value of 0 corresponds to
IRQ0 and a value of 15 corresponds to IRQ15. The PCI bridge can then redirect this in-
terrupt to the correct IRQ line. The 4-bit INT-pin defines the interrupt line that the device
is using. A value of 0 defines no interrupt line, 1 defines INTA , 2 defines INTB , and so
on.

4.6 I/O addressing

The standard PC I/O addressing ranges from 0000h to FFFFh, which gives an addressable
space of 64 KB, whereas the PCI bus can support a 32-bit or 64-bit addressable memory. The
PCI device can be configured using one of two mechanisms.

Configuration mechanism 1

Passing two 32-bit values to two standard addresses configures the PCI bus:

Address Name Description
0CF8h Configuration

address
Used to access the configuration address area.

0CFCh Configuration data Used to read or write a 32-bit (double word) value to the
configuration memory of the PCI device.

The format of the configuration address register is

Bit 31 ECD (Enable CONFIG_DATA) bit. A 1 activates the CONFIG_DATA register, while

a 0 disables it.

PCI bus 113

Bit 30–24 Reserved.
Bit 23–16 PCI bus number. Defines the number of the number of the PCI bus (to a

maximum of 256).
Bit 15–11 PCI unit. Selects a PCI device (to a maximum of 32). PCI thus supports

a maximum of 256 attached buses with a maximum of 32 devices on
each bus.

Bit 10–8 PCI function. Selects a function within a PCI multifunction device (one
of eight functions).

Bit 7–2 Register. Selects a Dword entry in a specified configuration address
area (one of 64 Dwords).

Bit 1, 0 Type. 00 – decode unit, 01 – CONFIG_ADDRESS value copy to ADx.

Configuration mechanism 2

In this mode, each PCI device is mapped to a 4 KB I/O address range between C000h and
CFFFh. This is achieved by used in the activation register CSE (configuration space enable)
for the configuration area at the port address 0CF8h. The format of the CSE register is lo-
cated at 0CF8h and is defined as

Bit 7–4 Key. 0000 – normal mode, 0001…1111 – configuration area activated.
A value other than zero for the key activates the configuration area
mapping, that is, all I/O addresses to the 4 KB range between C000h
and CFFFh would be performed as normal I/O cycles.

Bit 3–1 Function. Defines the function number within the PCI device (if it
represents a multifunction device).

Bit 0 SCE. 0 defines a configuration cycle, 1 defines a special cycle.

The forward register is stored at address 0CFAh and contains

Bit 7–0 PCI bus.

The I/O address is defined by:

Bit 31–12 Contains the bit value of 0000Ch.
Bit 11–8 PCI unit.
Bit 7–2 Register index.
Bit 1, 0 Contains the bit value of 00 (binary).

4.6.1 Sample test program

PCI bridge test

An example BASIC program to test the PCI bridge device is given next.

2 Program 4.1
130 Print "Host PCI bridge test"
160 Print " PCI Configuration Address &80000000": Print
170 IOWRITE &CF8,2,&80000000
180 IOREAD &CFC,2
190 IF B1<>&10000E11 THEN GOTO 410

114 Computer busses

200 Print "Test1 Passed....Component ID Test"

210 Dim TEST(4)
220 TEST(1)=&FFFFFFFF
230 TEST(2)=&AAAAAAAA
240 TEST(3)=&O55555555
250 TEST(4)=&O0

260 D9=&80000000
270 REG = &O60

280 REPEAT
290 TST = &O1
300 IOWRITE &CF8,2,D9 + REG
310 REPEAT
320 IOWRITE &CFC,2,TEST(TST)
330 IOREAD &CFC,2
340 If B1 <> TEST(TST) Then GoTo 450
350 TST = TST + &O1
360 UNTIL TST=&5
370 REG = REG + &O4
380 UNTIL REG=&68

390 Print "Test2 Passed...Internal Register Test"
400 GoTo 480
410 Print "Test1 Failed...."
420 Print "Component ID Test...."
430 PRINT "Expected ID &10000E11 Actual ID "~B1
440 GoTo 480
450 Print "Test2 Failed...."
460 Print "Internal register test...."
470 PRINT "Register "~REG", Expected "~TEST(TST)" Actual "~B1

The code:

170 IOWRITE &CF8,2,&80000000
180 IOREAD &CFC,2
190 IF B1<>&10008086 THEN GOTO 410

writes the value 80000000h (1000 0000 ... 0000b) to the CF8h register (configuration ad-
dress), where the most signification bit activates the configuration data register. Next the pro-
gram reads from the CFCh register (configuration data), after this the B1 value contains the
32-bit value read from the configuration data register. In this case the value will be the first
32 bits from the configuration memory of the PCI device. The value tested in this case is
10000E11h, where 1000h identifies the unit ID and 8086h identifies the manufacturer ID (In-
tel).
 The values written to the registers are FFFFFFFFh (1111 1111 ... 1111), AAAAAAAAh
(1010 1010 ... 1010), 55555555h (0101 0101 ... 0101) and 00000000h. These values are then
read back and tested to determine if they match the values that where written.

Video device test

An example BASIC program to test the video adaptor on the PCI bus is given next.

2 Program 4.2
112 Print "PCI test: Component ID and PCI Register Test"
122 IOWRITE &CF8,2,&80005000

PCI bus 115

124 IOREAD &CFC,2
126 IF B1<>&00A81013 THEN PRINT : GOTO 172
128 Print " Passed....Component ID Test"

130 Dim TEST(4)
132 TEST(1)=&FF000000
134 TEST(2)=&AA000000
136 TEST(3)=&O55000000
138 TEST(4)=&O0

140 ADDR=&80005000
142 REG =&O10

144 REPEAT
146 TST = &O1
148 IOWRITE &CF8,2,ADDR + REG
150 REPEAT
152 IOWRITE &CFC,2,TEST(TST)
154 IOREAD &CFC,2
156 If B1 <> TEST(TST) Then Print: GoTo 180
158 TST = TST + &O1
160 UNTIL TST=&5

162 REG = REG + &O20
164 UNTIL REG=&50

166 Print " Test02 Passed....PCI Register Test"
168 GoTo 188

172 Print " FAIL: Component ID Test"
174 PRINT " Expected ID &00A81013 Actual ID "~B1
176 Print: GoTo 130
180 Print " FAIL: PCI Register Test...."
182 PRINT " Register "~REG", Expected "~TEST(TST)" Actual "~B1
188 etc

The code:

122 IOWRITE &CF8,2,&80005000
124 IOREAD &CFC,2
126 IF B1<>&00A81013 THEN PRINT : GOTO 172

writes the value 80005000h (1000 0000 ... 0000b) to the CF8h register (configuration ad-
dress), where the most signification bit activates the configuration data register. Next the pro-
gram reads from the CFCh register (configuration data), after this the B1 value contains the
32-bit value read from the configuration data register. In this case the value will be the first
32 bits from the configuration memory of the PCI device. The value tested in this case is
00A81013h, where 00A8h identifies the Unit ID and 1013h identifies the manufacturer ID
(Cirrus Logic).
 The following code tests four 32-bit words from the configuration memory. The values
written are:

FF000000h, AA000000h, 55000000h, 00h

These values are then read back and tested against the values actual written. It should be
noted that the least significant 24 bits are read-only registers, thus they cannot be written to.

116 Computer busses

144 REPEAT
146 TST = 1
148 IOWRITE &CF8,2,ADDR + REG
150 REPEAT
152 IOWRITE &CFC,2,TEST(TST)
154 IOREAD &CFC,2
156 If B1 <> TEST(TST) Then Print: GoTo 180
158 TST = TST + 1
160 UNTIL TST=5

162 REG = REG + &O20
164 UNTIL REG=&50

Note, C/C++ can only access 8 or 16 bits at a time, thus the code:

122 IOWRITE &CF8,2,&80005000
124 IOREAD &CFC,2
126 IF B1<>&00A81013 THEN PRINT : GOTO 172

would be replaced with:

#include <conio.h>

int main(void)
{
unsigned int val1, val2, val3, val4;
unsigned long int val;

 _outp(0xcf8,0x00); /* least significant byte */
 _outp(0xcf9,0x00);
 _outp(0xcfa,0x00);
 _outp(0xcfb,0x80); /* most significant byte */

 val1=_inp(0xcfc) & 0xff; val2=_inp(0xcfd) & 0xff;
 val3=_inp(0xcfe) & 0xff; val4=_inp(0xcff) & 0xff;

 val= val1 + (val2<<8) + (val3<<16)+ (val4<<24);

 if (val==0x00a81013)
 {
 printf(“Success”);
 }

 etc
 return(0);
}

4.7 Exercises

4.7.1 What is the maximum data throughput for a 33 MHz, 32-bit data PCI bus:

 (a) 33 MB/s (b) 66 MB/s
 (c) 132 MB/s (d) 264 MB/s

PCI bus 117

4.7.2 Which I/O register address is used to access PCI configuration address space:

 (a) 1F8h (b) CF8h
 (c) 3F8h (d) 2F8h

4.7.3 Which I/O register address is used read and write to registers in the PCI configura-

tion address space:

 (a) 1FCh (b) CFCh
 (c) 3FCh (d) 1FCh

4.7.4 How many bits can be accessed, at a time, with the configuration address register:

 (a) 8 (b) 16
 (c) 32 (d) 64

4.7.5 Which company has the manufacture ID of 8086:

 (a) Compaq (b) Motorola
 (c) NCR (d) Intel

4.7.6 Explain how PCI architecture uses bridges.

4.7.7 Outline the operation of Program 4.1 and Program 4.2. Highlight the range of ad-

dresses used. Why does Program 4.2 write the bit pattern FF000000h and not
FFFFFFFFh?

4.7.8 Explain how the 32-bit PCI bus transfers data. Prove that the maximum data rate

for a 32-bit PCI in its normal mode is only 66 MB/s. Explain the mechanism that
the PCI bus uses to increase the maximum data rate to 132 MB/s.

4.7.9 How does buffering in the PCI bridge aid the transfer of data to and from the proc-

essor.

4.7.10 Explain how the PCI bus uses the command phase to set up a peripheral.

4.7.11 How are interrupt lines used in the PCI bus. Explain how these interrupts can be

steered to the ISA bus interrupt lines.

4.7.12 Outline the concept of bus mastering and how it occurs on the PCI bus. What sig-

nal lines are used?

4.7.13 Explain how the PCI bus uses configuration addresses.

118 Computer busses

4.8 Example manufacturer and plug-and-play IDs

Manufacturer Man. ID PNP ID Manufacturer Man. ID PNP ID
NCR 1000 4096 ULSI 1003 4099
VLSI 1004 4100 ALR 1005 4101
Reply Group 1006 4102 Netframe 1007 4103
EPSON 1008 4104 Phoenix 100a 4106
National Semi 100b 4107 Tseng Labs 100c 4108
AST 100d 4109 Weitek 100e 4110
Video Logic Ltd 1010 4112 Digital 1011 4113
Micronics 1012 4114 Cirrus Logic 1013 4115
IBM 1014 4116 ICL 1016 4118
Spea Software 1017 4119 UNISYS 1018 4120
Elite 1019 4121 NCR 101a 4122
Vitesse 101b 4123 Western Digital 101c 4124
American Mega 101e 4126 PictureTel 101f 4127
Hitachi 1020 4128 Oki 1021 4129
AMD 1022 4130 Trident 1023 4131
Acer 1025 4133 Dell 1028 4136
Siemens 1029 4137 LSI 102a 4138
Matrox 102b 4139 Chips and Tech. 102c 4140
Wyse 102d 4141 Olivetti 102e 4142
Toshiba 102f 4143 Miro Computer 1031 4145
Compaq 1032 4146 NEC 1033 4147
Future Domain 1036 4150 HITACHI 1037 4151
AMP 1038 4152 Seiko Epson 103a 4154
Tatung 103b 4155 HP 103c 4156
Genoa 1047 4167 Fountain 1049 4169
SGS Thomson 104a 4170 Buslogic 104b 4171
TI 104c 4172 SONY 104d 4173
OAK 104e 4174 Hitachi 1054 4180
ICL 1056 4182 Motorola 1057 4183
Vtech 105e 4190 United Micro 1060 4192
Mitsubishi 1067 4199 Apple 106b 4203
Hyundai 106c 4204 Sequent 106d 4205
Daewood 1070 4208 Mitac 1071 4209
Yamaha 1073 4211 Nexgen 1074 4212
Cyrix 1078 4216 I-BUS 1079 4217
Networth 107a 4218 Gateway 2000 107b 4219
Goldstar 107c 4220 Leadtek 107d 4221
Interphase 107e 4222 Tulip 1085 4229
Data General 1089 4233 Elonex 108c 4236
Intergraph 1091 4241 Diamond 1092 4242
National Instruments 1093 4243 Quantum Designs 1098 4248
Samsung 1099 4249 Packard Bell 109a 4250
Gemlight 109b 4251 Megachips 109c 4252
3COM 10b7 4279 SMC 10b8 4280
Acer 10b9 4281 Mitsubishi 10ba 4282
Tsenglabs 10be 4286 Samsung 10c3 4291
Award 10c4 4292 Xerox 10c5 4293
Neomagic 10c8 4296 Fujitsu 10ca 4298
Fujitsu 10d0 4304 Newbridge 10e3 4323
Tandem 10e4 4324 Micro Industries 10e5 4325
Xilinx 10ee 4334 Creative 10f6 4342
Matsushita 10f7 4343 Altos 10f8 4344
PC Direct 10f9 4345 Truevision 10fa 4346
Creative Labs 1102 4354 Santa Cruz 1111 4369
Rockwell 1112 4370 Zilog 1121 4385
S3 5333 21299 Intel 8086 32902
Adaptec 9004 36868

PCI bus 119

4.9 Notes from the author

There is an amusing statement that was made in 1981, in the book 30 Hour BASIC Standard,
1981:

Microcomputers are the tool of the 80’s. BASIC is the language that all of them use. So the sooner you
learn BASIC, the sooner you will understand the microcomputer revolution

Well, as it has proven, a good knowledge of BASIC will not really help your understanding
of microcomputers, but if there is one bus that you need to understand in the PC, it is the PCI
bus. This is because it is the main interface bus within the PC. Most external devices eventu-
ally connect to the PCI through bridge devices. There were several short-term fixes for local
bus technology, but the PCI was the first attempt at a properly designed system bus. It allows
the PC to be segmented into differing data transfer rates. PCI provides a buffer between the
main system core, such as the processor and its memory, and the slower peripherals, such as
the hard-disk, serial ports, and so on.
 With interrupts, the PCI has the great advantage over ISA in that it allows interrupts to
be properly assigned at system start-up. The BIOS or the operating system can communicate
with the PCI-connected bus with the configuration address area. From this, the system can
determine the type of device it is, whether it be a graphics card or a network card. The sys-
tem can then properly configure the device and grant it the required resources. The days of
users having to assign interrupts (using card jumpers, in some cases) and I/O addresses are
reducing (thankfully!).
 The great leap forward in PC systems happened with local bus technology. The demand
came from graphics cards as Windows 3.0 was being adopted. The ISA bus was far too slow,
as it only supported 8MHz transfers. Graphic card manufacturers got together and devel-
oped the VESA-backed VL-local bus standard. It showed how fast transfer devices could be
connected to a local bus, while other slower devices had to access the processor through a
bridge, which allowed a different clock speed, and a different data and address bus. Most
PCs are now based around this local bus idea, and they can be split into there main areas:

• Local processor bus. Direct connection of the processor to its local cache memory (ei-
ther Level-1 or Level-2 cache.

• Local bus. Connection onto the PCI bus. This connects to the local processor bus via a
bridge.

• External bus. ISA, IDE, RS-232, and so on. This connects to the local bus via a bridge.

There is great potential in the PCI bus. At present, most systems use 32-bit data transfers,
but there is scope for 64-bit data transfers. Also, the 33 MHz clock can be increased to
66MHz with double edge clocking. A new enhanced PCI-based system called the AGP (Ad-
vanced Graphics Port) has been developed which allows for data transfers of over 500 MB/s.
 I’m slightly annoyed with the success of the PCI bus, as I’ve got an ISA-based sound
card, an ISA-based Ethernet card and an ISA-based video camera, and I’ve only got two ISA
slots. So, every so often, I have to swap the sound card for the video camera, and vice-versa.
At present, I’ve got four empty PCI slots, and I think one of them is waiting for a PCI-based
Ethernet card. Then I’ll be able to have a proper video conference, with sound and video.
But, never mind, I’ve just got myself a lovely new Dell notebook, and a USB-based video
camera, and a single PCMCIA card for my modem and network connections, so I may never
need my desktop computer again (here’s hoping).

Motherboard Design

5.1 Introduction

This chapter analyses a Pentium-based motherboard. An example board is the Intel 430HX
motherboard which supports most Pentium processors and has the following component
parts:

• PCIset components – 82438 System Controller (TXC) and 82371SB PCI ISA Xcelerator
(PIIX3).

• 82091AA (AIP) for serial and parallel ports, and floppy disk controller.
• DRAM main memory.
• L2 cache SRAM.
• Universal serial bus (USB).
• Interface slots (typically 4 PCI and 3 ISA).
• 1 Mbit flash RAM.

Figure 5.1 illustrates the main connections of the PCIset (which are the TXC and PIIX3 de-
vices). The TCX allows for a host-to-PCI bridge, whereas the PIIX3 device supports:

• PCI-to-ISA bridge.
• Fast IDE.
• APIC interface.
• USB host/hub controller.
• Power management.

The 430HX board has 3 V and 5 V busses. PCI bus connections are 5 V and the Pentium bus
is 3V.

5.1.1 Pentium-II/III processor

Figure 5.2 illustrates the main connections to the Pentium II/III processor. It can be seen that
it has:

• 64-bit data bus (D0–D63) which connects to the TXC (HD0–HD63).
• 32-bit address bus (A0–A31) which connects to the TXC (HA0–HA31).
• 8-byte address lines (BE0#–BE7#) to allow the processor to access from 1 to 8 bytes (64

bits) at a time, which connects to TXC (HBE0#–HBE7#).
• Read/write line (W/R#) which connects to TXC (HW/R#).
• Memory/IO (M/IO#) which connects to TXC (HM/IO#).
• Data/control (D/C#) which connects to TXC (HD/C#).

5

122 Computer busses

Pentium
processor

82439HX
System

Controller
(TXC)

Control: HCACHE#,
HKEN#, HSMIACT#,
HADS#, HBRDY,
HNA#, HAHOLD,
HEADS#, HBOFF# ,
HCLKTXC, HLOCK#,
HW/R#, HD/C#,
HM/IO#, HHITM#

Address: HA[31:0]

Data: HD[63:0] Main
memory
(DRAM)

Address: MA[11:0],
MRAS#[3:0], MCAS#[7:0]

Data: MD[63:0]

Control: MWE#

82371SB
PCI I/O IDE
Xcelerator

(PIIX3)

Fast IDE

USB

ISA
bus

AD[31:0]

PCI bus

Cache
(SRAM)

Parity: MP[7:0]

CTAG
[10:0]

Control: CCS#,
COE#, CADS#,
CBWE#,CGWE#
CTWE#

Address: HBE#[7:0]

C/BE#[3:0]

PIRQ[5:0]

PTRST#, PCLK#, PREQ#[3:0],IRDY#,
DEVSEL#, PLOCK#{3:0], PERR#, SERR#,
ACK64#[3:0], REQ64#[3:0], PAR, SBO#,
FRAME#, PGNT#[3:0]. PCIRST#

82091AA
AIP

2 serial ports
1 parallel port
Floppy disk controller

Figure 5.1 PCIset system architecture

A3
A4

A30
A31

D0
D1

D62
D63

HD0
HD1

HD62
HD63

HA0
HA1

HA30
HA31

-BE0-HBE0
-BE1
-BE2
-BE3
-BE4
-BE5
-BE6
-BE7

-HBE1
-HBE2
-HBE3
-HBE4
-HBE5
-HBE6
-HBE7

-BOFF-HBOFF
-A20
-INTR
-NMI
-IGNNE
-KEN
-FLUSH
AHOLD

-HA20M
-HINTR
-HNMI
-HIGNNE
-HKEN
-HFLUSHA
-HAHOLD

-EADS-HEADS
-BRDY-HBRDY
RESETHRESET
INVHINV
-BUSCHK-HBUSCHK

-HFERR-FERR

-HBF0-BF0
-HBF1-BF1

-HITM-ITM

-HADS-ADS
-HD/-CD/-C
-HW/-RW/-R
-HM/-IOM/-IO

Pentium II

Figure 5.2 Pentium II/III connections

Motherboard Design 123

5.1.2 82371SB PCI ISA Xcelerator (PIIX3)

The PIIX3 is a 208-pin QFP (quad flat pack) IC that integrates much the functionality of the
ISA bus interface onto a single device. Table 5.1 outlines the main connections to the PIIX3
IC.

Table 5.1 PIIX3 connections

Address lines IRQ Lines ISA Lines ISA Lines
Signal Pin Signal Pin Signal Pin Signal Pin
AD0 206 IRQ1 4 BALE 64 SA8/DD0 55
AD1 205 IRQ3 58 AEN 20 SA9/DD1 50
AD2 204 IRQ4 56 LA17 86 SA10/DD2 49
AD3 203 IRQ5 34 LA18 84 SA11/DD3 48
AD4 202 IRQ6 33 LA19 82 SA12/DD4 47
AD5 201 IRQ7 32 LA20 80 SA13/DD5 46
AD6 200 -IRQ8 5 LA21 76 SA14/DD6 45
AD7 199 IRQ9 10 LA22 74 SA15/DD7 44
AD8 197 IRQ10 73 LA23 72 SA16/DD8 43
AD9 194 IRQ11 75 SA0 69 SA17/DD9 41
AD10 193 IRQ12/M 77 SA1 68 SA18/DD10 40
AD11 192 IRQ14 83 SA2 67 SA19/DD11 39
AD12 191 IRQ15 81 SA3 66 SA20/DD12 38
AD13 190 SA4 63 SA21/DD13 37
AD14 189 SA5 61 SA22/DD14 36
AD15 188 SA6 59 SA23/DD15 35
AD16 177 SA7 57 -OWS 15
AD17 176 DRQ0 87 -SMEMW 22
AD18 175 DRQ1 30 -SMEMR 19
AD19 174 DRQ2 12 -IOW 24
AD20 173 DRQ3 25 -IOR 23
AD21 172 DRQ5 91 -REFRESH 31
AD22 171 DRQ6 95 T/C 62
AD23 168 DRQ7 99 OSC
AD24 166 -DACK0 85 -MEMCS16 70
AD25 165 -DACK1 29 -IOCS16 71
AD26 164 -DACK2 60 -MASTER
AD27 163 -DACK3 21 IOCHK 6
AD28 162 -DACK5 89 IOCHRDY 18
AD29 161 -DACK6 93 -SBHE (DD12)
AD30 160 -DACK7 97 -MEMR 88
AD31 159 RSTISA -MEMW 90
USB
Signal Pin
USBP1- 143
USBP1+ 142
USBP0- 145
USBP0+ 144

PIIX3’s functionality includes:

• Enhanced 7-channel DMA with two 8237 controllers. This is supported with the hand-

shaking lines DRQ0–DRQ7 and DRQ0#–DRQ7#.
• ISA-PCI bridge.
• Fast IDE support for up to four disk drives (two masters and two slaves). It supports

mode four timings, which gives transfer rates of up to 22MB/s.
• I/O APIC (advanced programmable interrupt controller) support.
• Implementation of PCI 2.1.

124 Computer busses

• Incorporates 82C54 timer for system timer, refresh request and speaker output tone.
• Non-maskable interrupts (NMI).
• PCI clock speed of 25/33 MHz. Motherboard configurable clock speed (normally

33 MHz).
• Plug-and-play support with one steerable interrupt line and one programmable chip se-

lect. The motherboard interrupt MIRQ0 can be steered to any one of 11 interrupts (IRQ3–
IRQ7, IRQ9–IRQ12, IRQ14 and IRQ15).

• Steerable PCI interrupts for PCI device plug-and-play. The PCI interrupt lines (PIRQA-
PIRQD) can be steered to one of 11 interrupt (IRQ3–IRQ7, IRQ9–IRQ12, IRQ14 and
IRQ15).

• Support for PS/2-type mouse and serial port mouse. IRQ12/M can be enabled for the
PS/2-type mouse or disable for a serial port mouse.

• Support for five ISA slots. Typical applications for ISA include 10Mbps Ethernet adaptor
cards, serial/parallel port cards, sound cards, and so on.

• System power management. Allows the system to operate in a low power state without
being powered down. This can be triggered either by a software, hardware or external
event.

• Math coprocessor error function. The FERR# line goes active (LOW) when a math co-
processor error occurs. The PIIX3 device automatically generates an IRQ13 interrupt and
sets the INTR line to the processor. The PXII3 device then sets the IGNNE# active and
INTR inactive when there is a write to address F0h.

• Two 82C59 controllers with 14 interrupts. The interrupts lines IRQ1, IRQ3–IRQ15 are
available (IRQ0 is used by the system time and IRQ2 by the cascaded interrupt line).

• Universal serial bus with root hub and two USB ports. With the USB the host controller
transfers data between the system memory and USB devices. This is achieved by process-
ing data structures set up to by the host software and generated the transaction on USB.

The address lines (AD0–AD22) connect to the TXC IC and the available interrupt lines at
IRQ1, IRQ2–IRQ12, IRQ14 and IRQ15 (IRQ0 is generated by the system timer and IRQ2 is
the cascaded interrupt line). The PS/2-type mouse uses the IRQ12/M line.

5.1.3 82438 System Controller (TXC)

The 324-pin TXC BGA (ball grid array) provides an interface between the processor, DRAM
and the external buses (such as the PCI, ISA, and so on). Table 5.2 outlines its main pin con-
nections. The TXC’s functionality includes:

• Supports 50 MHz, 60 MHz and 66 MHz host bus.
• Integrated DRAM controller. Supports four CAS lines and eight RAS lines. The memory

supports symmetrical and asymmetrical addressing for 1 MB, 2 MB and 4 MB-deep
SIMMs and symmetrical addressing for 16 MB-deep SIMMs.

• Integrated second level cache controller. Supports up to 512 MB of second-level cache
with synchronous pipelined burst SRAM.

• Dual processor support.
• Optional parity.
• Optional error checking and correction on DRAM. The ECC mode is software configur-

able and allows for single bit error correction and multibit error detection on single nib-
bles in DRAM.

Motherboard Design 125

• Swapable memory bank support. This allows memory banks to be swapped out.
• PCI 2.1-compliant bus.
• Supports USB.

The TXC controls the processor cycles for:

• Second-level cache transfer – the processor directly sends data to the second level cache
and the TXC controls its operation.

• All other processor cycles – the TXC directs all other processor cycles to their destination
(DRAM, PCI or internal TXC configuration space).

Table 5.2 TXC connections

PCI Memory Cache Memory Cache Memory Data
Addresses Addresses
Signal Pin Signal Pin Signal Pin Signal Pin
AD0 15 HD0 305 HD32 179
AD1 14 HD1 307 HD33 178
AD2 33 HD2 306 HD34 149
AD3 13 HA3 275 HD3 308 HD35 180
AD4 52 HA4 315 HD4 285 HD36 136
AD5 32 HA5 252 HD5 286 HD37 135
AD6 12 HA6 316 HD6 265 HD38 138
AD7 51 HA7 312 HD7 212 HD39 125
AD8 11 HA8 272 HD8 245 HD40 126
AD9 50 HA9 271 HD9 287 HD41 115
AD10 30 HA10 311 HD10 267 HD42 137
AD11 10 HA11 291 HD11 288 HD43 117
AD12 49 HA12 251 HD12 225 HD44 128
AD13 29 HA13 310 HD13 268 HD45 114
AD14 9 HA14 270 HD14 247 HD46 127
AD15 48 HA15 290 HD15 266 HD47 102
AD16 47 HA16 250 HD16 248 HD48 101
AD17 27 HA17 309 HD17 247 HD49 116
AD18 7 HA18 289 HD18 246 HD50 104
AD19 46 HA19 269 HD19 214 HD51 103
AD20 26 HA20 249 HD20 228 HD52 81
AD21 6 HA21 273 HD21 213 HD53 84
AD22 45 HA22 254 HD22 226 HD54 82
AD23 25 HA23 253 HD23 201 HD55 61
AD24 66 HA24 294 HD24 215 HD56 83
AD25 44 HA25 293 HD25 203 HD57 63
AD26 24 HA26 274 HD26 202 HD58 62
AD27 4 HA27 313 HD27 191 HD59 41
AD28 23 HA28 314 HD28 204 HD60 42
AD29 3 HA29 255 HD29 193 HD61 43
AD30 22 HA30 295 HD30 192 HD62 21
AD31 2 HA31 292 HD31 194 HD63 1

PCI control lines
C/BE0# 21 FRAME# 86 PREQ0# 67 PGNT0# 68
C/BE1# 31 DEVSEL# 89 PREQ1# 69 PGNT1# 70
C/BE2# 8 IRDY# 88 PREQ2# 71 PGNT2# 72
C/BE3# 5 STOP# 91 PREQ3# 73 PGNT3# 74
 LOCK# 85
 PHOLD# 64
 PHLDA# 65
 PAR 92
 SERR# 93

126 Computer busses

Cache Memory Parity Address
Tag Lines
Signal Pin Signal Pin Signal Pin Signal Pin
CTAG0 207 MP0 133 MD32 74
CTAG1 260 MP1 123 MD33 75
CTAG2 261 MP2 146 MA2 317 MD34 76
CTAG3 281 MP3 113 MA3 297 MD35 76
CTAG4 238 MP4 132 MA4 277 MD36 76
CTAG5 282 MP5 124 MA5 257 MD37 76
CTAG6 302 MP6 134 MA6 237 MD38 76
CTAG7 322 MP7 122 MA7 298 MD39 76
CTAG8 303 MA8 258
CTAG9 323 MA9 319
CTAG10 324 MA10 318
 MA11 278

Cache address lines
MRASR0# 121 MCASR0# 145 MAA0 300
MRASR1# 110 MCASR1# 159 MAA1 300
MRASR2# 109 MCASR2# 131 MAB0 300
MRASR3# 96 MCASR3# 173 MAB1 300
 MCASR4# 130
 MCASR5# 144
 MCASR6# 120
 MCASR7# 172

Cache control lines
CBWE# 321 COE# 259 CCS# 300 CADS# 299
CGWE# 320 CADV# 279

5.1.4 82091AA (AIP)

The AIP device integrates the serial ports, parallel ports and floppy disk interfaces. Figure
5.3 shows its connections and Figure 5.4 shows the interconnection between the AIP and the
PIIX3 device. The OSC frequency is set to 14.218 18 MHz. It can be seen that the range of
interrupts for the serial, parallel and floppy disk drive is IRQ3, IRQ4, IRQ5, IRQ6 and IRQ7.
Normally the settings are:

• IRQ3 – secondary serial port (COM2/COM4).
• IRQ4 – primary serial port (COM1/COM3).
• IRQ6 – floppy disk controller.
• IRQ7 – parallel port (LPT1).

Figure 5.4 shows the main connections between the TXC, PIIX3 and the AIP. It can be seen
that the AIP uses many of the ISA connections (such as 0WS#, IOCHRDY, and so on). The
interface between the TCX and the PIIX3 defines the PCI bus and the interface between the
PIIX3 and AIP defines some of the ISA signals.

Motherboard Design 127

82091AA (API)

-
D
S
K
C
H
G

7
4

-
S
I
D
E
1

7
5

-
R
D
A
T
A

7
6

-
W
P
T

7
7

-
T
R
K
0

7
8

-
W
G
A
T
E

7
9

-
W
D
A
T
A

8
0

-
S
T
E
P

8
1

-
D
I
R

8
2

-
M
O
T
E
B

8
3

-
D
R
V
S
A

8
4

-
D
R
V
S
B

8
5

-
M
O
T
E
A

8
6

-
I
N
D
E
X

8
7

-
D
R
A
T
E
0

9
0

-
F
D
D
E
N

8
9

-
C
T
S
1

-
R
I
1

5
0

4
8

-
R
T
S
1

-
T
X
1

4
7

4
6

-
D
S
R
1

-
R
X
1

4
5

4
4

-
D
C
D
1

4
3

-
D
T
R
1

4
9

-
C
T
S
0

-
R
I
0

4
2

4
0

-
R
T
S
0

-
T
X
0

3
9

3
8

-
D
S
R
0

-
R
X
0

3
7

3
6

-
D
C
D
0

3
5

-
D
T
R
0

4
1

-
I
N
T
R

-
A
u
t
o
F

4
2

4
0

-
E
R
R

-
S
L
I
N

3
9

3
8

B
U
S
Y

-
A
C
K

3
7

3
6

3
5

-
S
T
R

4
1

P
E

3
5

6
9

S
L
C
T

D
0

6
7

D
1

6
5

D
2

6
0

D
3

5
8

D
4

5
7

D
5

5
6

D
6

5
5

D
7

S
A
1
0

1
7
1
5
1
2
1
0 8 7 5 4 3 2 1

S
A
9

S
A
8

S
A
7

S
A
6

S
A
5

S
A
4

S
A
3

S
A
2

S
A
1

S
A
0

S
D
7

3
2

S
D
6

3
1

S
D
5

3
0

S
D
4

2
9

S
D
3

2
7

S
D
2

2
6

S
D
1

2
5

S
D
0

2
4

-
0
W
S

2
3

I
O
C
H
R
D
Y

2
2

A
E
N

2
1

-
I
O
W
C

2
0

-
I
O
R
C

1
9

-
I
O
1
6

9
6

T
C

6

D
R
Q
5

1
0
0

-
D
A
C
K
5

9
9

D
R
Q
2

9
8

-
D
A
C
K
2

9
7

I
R
Q
7

1
8

I
R
Q
6

1
6

I
R
Q
5

1
3

I
R
Q
4

1
1

I
R
Q
3

9

R
S
T
D
R
V

3
3

X
1
/
O
S
C

6
3

Floppy disk
interface

Secondary serial
port interface

Primary serial
port interface

Parallel port
interface

DMA Interrupt
lines

ISA
handshaking

Data
lines

Address
lines

Figure 5.3 API IC

PIIX3

SA[10:0]

SD[7:0]

OWS#

IOCHRDY

AEN

XIOW#

XIOR#

T/C

IRQ[15:0]

DRQ[7:0]

DACK#[7:0]

RSTDRV

AD[31:0]

C/BE#[3:0]

PIRQ[3:0]

PGNT[1:0]

FRAME#

TRDY#

IRDY#

STOP#

DEVSEL#

SERR#

PHLDA#

HFERR#

EXTSMI#

IOCS16#, IOCHK#

DSKCHG#
SIDE1#

FDDEN

RI1#
CTS1#

DCD1#

RI0#
CTS0#

DCD0#

PD[7:0]
STR#

SLCT

Disk
drive

Secondary
serial
port

Primary
serial
port

Parallel
port

TXC

FRAME#

PREQ[3:0]

PHOLD#

PCIRST#

IDE

LA[23:17]

DD[15:0]

Control lines

HINTR

HSMI#

HSTPC

HIGNNG#

BALE, MEMCS16

REFRESH#, SYSCLK

AIP
SMEMW#, SMEMR#

SMEMR#,

HD[63:0]

HA[31:0]

HBE#[7:0]

Control

MEMR#, MEMW#

Figure 5.4 Connections between TXC, PIIX3 and AIP

128 Computer busses

5.1.5 DRAM interface

The DRAM interface supports from 4 MB to 512 MB with eight RAS lines (RAS0–RAS7)
and a 64-bit data path with eight parity bits. It can use either a 3.3 V or a 5 V power supply
and both standard page mode and extended data out (EDO) memory are supported with a
mixture of memory sizes for 1 MB, 2 MB and 4 MB-deep SIMMs and symmetrical address-
ing for 16 MB-deep SIMMs.
 Each SIMM (single in-line memory module) has 12 input address lines and has a 32-bit
data output. They are normally available with 72 pins (named tabs) on each side. These pins
can read the same signal because they are shorted together on the board. For example, tab 1
(pin 1) on side A is shorted to tab 1 on side B. Thus, the 144 tabs only gives 72 useable sig-
nal connections.
 Figure 5.5 shows how the DRAM memory is organized. It shows bank 1 and 2 (and does
not show banks 3 and 4). Each bank has two modules, such as modules 0 and 1 are in bank 0.
The bank is selected with the MRAS lines, for example bank 1 is selected with MRAS0 and
MRAS1, bank 1 by MRAS2 and MRAS3, and so on. An even-numbered module gives the
lower 32 bits (MD0–MD31) and the odd number modules give the upper 32 bits (MD32–
MD63). Each module also provides four parity bits (MP0–MP3 and MP4–MP7).
 DIMMs (dual in-line memory modules) have independent signal lines on each side of the
module and are available with 72 (36 tabs on each side), 88 (44 tabs on each side), 144 (72
tabs on each side), 168 (84 tabs on each side) or 200 tabs (100 tabs on each side). They give
greater reliability and density and are used in modern high performance PC servers.

-RAS0
-RAS1
-RAS2
-RAS3
-CAS0
-CAS1
-CAS2
-CAS3

MCAS0
MCAS1
MCAS2
MCAS3

MRAS0
MRAS1
MRAS0
MRAS1

MD0-MD31

MD32-MD63

MA0-MA11

MA0-MA11

MCAS4
MCAS5
MCAS6
MCAS7

MRAS0
MRAS1
MRAS0
MRAS2

-WMWE

-WMWE

MCAS0
MCAS1
MCAS2
MCAS3

MRAS2
MRAS3
MRAS2
MRAS3

MA0-MA11

MA0-MA11

MCAS4
MCAS5
MCAS6
MCAS7

MRAS2
MRAS3
MRAS2
MRAS3

-WMWE

-WMWE

Bank 1 Bank 2

Module 0

Module 1

Module 2

Module 2MP4-P7

MD32-MD63

MP4-P7

MP0-P3

MD0-MD31

MP0-P3

-RAS0
-RAS1
-RAS2
-RAS3
-CAS0
-CAS1
-CAS2
-CAS3

-RAS0
-RAS1
-RAS2
-RAS3
-CAS0
-CAS1
-CAS2
-CAS3

-RAS0
-RAS1
-RAS2
-RAS3
-CAS0
-CAS1
-CAS2
-CAS3

Figure 5.5 DRAM memory interface

Motherboard Design 129

5.1.6 Clock rates

The system board runs at several clock frequencies. These are:

• Processor speed – the processor, TXC and SRAM run at the system frequency (such as

66 MHz),
• PCI bus speed – TCX, PIIX3 and PCI slots.
• 24 or 48 MHz – USB (Universal Serial Bus).
• 12 MHz – keyboard.
• 24 MHz – floppy clock.
• 14 MHz – ISA bus OSC.
• 8 MHz – ISA bus clock.

5.1.7 ISA/IDE interface

The IDE and ISA buses share several data, address and control lines. Figure 5.6 shows the
connections to the buses. The IDE interface uses the DD[12:0] and LA[23:17] lines, and the
ISA uses these lines as SBHE#, SA[19:8}, CS1S, CS3S, CS1P, CS3P and DA[2:0]. A multi-
plexor (MUX) is used to select either the ISA or IDE interface lines.

5.1.8 DMA interface

The PIIX3 device incorporates the functionality of two 8237 DMA controllers to give seven
independently programmable channel (channels 0–3 and Channels 5–7). DMA channel 4 is
used to cascade the two controllers and defaults to cascade mode in the DMA channel mode
(DCM) register. Figure 5.7 shows the interface connections.

ISA

SD[15:0]
IOCS16#
MEMCS16#
MEMR#
MEMW#
AEN
IOCHRDY
IOCHK#
SYSCLK
BALE
IOR#
IOW#
SMEMR#
SMEMW#
0WS#
SA[7:0]

M
U
X

DD[11:0]/SA[19:8]
LA23/CS16
LA22/CS3S
LA21/CS1P
LA20/CS3P
LA[19:17]/DA[2:0]

DD12/SBHE#

DIOR#
DIOW#
DDRQ[1:0]
DDAK[1:0]#
IORDY
SOE#
SDIR
DD13

IDE

PIIX3

Figure 5.6 IDE/ISA interface with PIIX3

130 Computer busses

DMA
DREQ[7:5,3:0]
DACK[7:5.3:0]
TC
REFRESH#

PIIX3

Figure 5.7 DMA interface

5.1.9 Interval timer

The PIIX3 contains three 8251-compatible counters. The three counters are contained in one
PIIX3 timer unit, referred to as Timer 1. Each counter provides an essential system function.
The functions of the counters are:

• Counter 0 – connects to the IRQ0 line and provides a system timer interrupt for a time-of-

day, diskette time-out, and so on. The input to the counter is a 14.218 18 MHz clock
(OSC). This is then used to increment a 16-bit register, which rolls over every 55 ms.

• Counter 1 – generates a refresh request signal.
• Counter 2 – generates the speaker tone.

5.1.10 Interrupt controller

The PXII3 incorporates two 8259-compatible interrupt controllers which provide an ISA-
compatible interrupt controller. These are cascaded to give 13 external and three internal in-
terrupts. The primary interrupt controller connects to IRQ0–IRQ7 and the secondary con-
nects to IRQ8–IRQ15. The three internal interrupts are:

• IRQ0 – used by the system timer and is connected to Timer 1, Counter 0.
• IRQ2 – used by the primary and secondary controller (see Figure 2.2 in Section 2.3.2).
• IRQ13 – used by the math coprocessor, which is connected to the FERR pin on the

processor.

Figure 5.8 shows that the PC uses IRQ0 as the system timer and IRQ2 by the programmable
interrupt controller.
 The interrupt unit also supports interrupt steering. The four PCI active low interrupts
(PIRQ#[D:A]) can be internally routed in the PIIX3 to one of 11 interrupts (IRQ15, IRQ14,
IRQ12–IRQ9, IRQ7–IRQ3).

5.1.11 Mouse function

The mouse normally either connects to one of the serial ports (COM1: or COM2:) or a PS/2-
type connector. If they connect to the PS/2-type connector then IRQ12 is used, else a serial
port connected mouse uses the serial interrupts (such as IRQ4 for COM1 and IRQ3 for
COM2). Thus, a system with a serial connected mouse must have the IRQ12/M interrupt dis-
abled. This is normally done with a motherboard jumper (to enable or disable the mouse in-
terrupt). Figure 5.8 shows an example of a mouse using IRQ12.

Motherboard Design 131

Figure 5.8 Interrupts usage shows PS/2 port mouse

5.1.12 Power management

PIIX3 has extensive power management capability permitting a system to operate in a low
power state without being powered down. In a typical desktop PC there are two states –
power on and power off. Leaving a system powered on when not in use wastes power. PIIX3
provides a fast on/off feature that creates a third state called fast off. When in the fast off
state, the system consumes less power than the power on state.
 The PIIX3’s power management function is based on two modes:

• System management mode (SMM).
• Advanced power management (APM).

Software (called SMM code) controls the transitions between the power on state and the fast
off state. PIIX3 invokes this software by generating an SMI (system management interrupt)
to the CPU (asserting the SMI signal). The SMM code places the system in either the power
on state or the fast off state.

5.1.13 Graphics subsystem

The 430HX incorporates the S3 ViRGE graphics device with 2 MB of graphics memory,
which has:

• High performance 64-bit 2D/3D graphics engine.

• RAMDAC/clock synthesiser capable of pixel rates of 135 MHz.

• S3 streams processor, enabling the device to convert YUV formatted video data to RGB
format.

• 3D features including flat shading and texture mapping support.

• Fast linear addressing scheme.

• VESA (Video Electronics Standards Association) capability.

132 Computer busses

5.2 TX motherboard

The Intel 430HX motherboard only supports up to 128 MB of memory and has a relatively
small second level cache (256 kB). The Intel 430TX board has many enhanced devices, such
as standardised USB connections and enhanced super I/O device. Figure 5.9 shows the main
layout. The 430TX board uses 168-pin DIMM sockets for memory addition. It supports both
EDO DRAM and SDRAM (synchronous DRAM). SDRAM synchronous data transfers using
the system clock. This simplifies memory timing, leading to an increase in memory transfer.
The 430TX motherboard supports a 64-bit data path to memory.
The 430TX board uses the 82430TX PCI chipset, which has:

• 82439TX Xcelerated Controller (MTXC), which replaces the TXC (82439HX) in the
HX board.

• 82371AB PCI/ISA IDE Xcelerator (PIIX4), which replaces the PIIX3 (82371SB) in the
HX board. This is a 324-pin BGA that integrates PCI-to-ISA bridge (two 82C37 DMA
controllers, two 82C59 interrupt controllers, an 82C54 timer/counter and a real-time
clock), PCI/IDE interface, USB host/hub function and power management functions.

ISA
connectors

PCI
connectors

DIMM
sockets

IDE
connectors

Graphics
controller

82430TX
System
Controller

82430TX
PCI/ISA/IDE
Xcelerator (PIIX4)

Level 2 cache
SRAM

Audio
codec

Audio
(OP4-ML)

Pentium
processor

TV-out
device

Video
memory

Flash
memory
device

PC87307UL
I/O Controller

Video
capture
processor

Figure 5.9 AN430TX board

5.2.1 PIIX4

The PIIX4 supports two types of PCI DMA protocol, PC/PCI DMA which uses dedicated
request and grant signals to permit PCI devices to request transfers associated with specific

Motherboard Design 133

DMA channels, and distribute DMA which is based on monitoring CPU accesses to the 8237
controller (this was not implemented on the PIIX3).
 The PIIX4 also supports Ultra DMA/33 Synchronous DMA mode transfers up to
33MB/s. Ultra DMA is a newer protocol for the IDE hard drive interface that doubles the
burst data rate from 16.6 MB/s (as supported by the PIIX3). Ultra DMA widens the path to
the hard drive by transferring twice as much data per clock cycle, so doubling the perform-
ance. The Ultra DMA protocol lets host computers send and receive data faster, removing
bottlenecks associated with data transfers.
 In addition to speed improvements, the protocol brings new data integrity capabilities to
the IDE interface such as improved timing margins and data protection verification. Ultra
DMA protocol also allows drives and system to retain backward compatibility with the pre-
vious ATA standard.

Real time clock

The real-time clock provides a data-and-time keeping device with alarm features and battery-
backed operation. The RTC counts seconds, minutes, hours, days, day of the week, date,
month and year. It counts 256 bytes of battery-backed SRAM in two banks. The RTC mod-
ule requires an external oscillator source of 32.768 kHz connected between TXCX1 and
RTCX2.

5.2.2 I/O controller

The PC87306B I/O controller is similar to the 82091AA (AIP) used in the 430HX board. It
has:

• Floppy disk interface – provides support for several different floppy disk capacities and
sizes.

• Multimode parallel port – supports for output only compatibility mode, bidirectional
mode, EPP mode and ECP mode.

• Two FIFO serial ports. Giving transfers rates up to 921Kbps.

• Real-time clock – provides time-of-day, 100-year calendar and alarm features.

• Keyboard and mouse controller – keyboard and mouse interfaces (as well as power
on/reset password protection).

• Infrared support – connection to infrared transmitter/receiver.

5.2.3 Graphics subsystem

The 430HX incorporates the ATI-241 Rage II+ graphics controller which has:

• Drawing coprocessor that operates concurrently with the host processor.

• Video coprocessor.

• Video scalar, colour space converter, true colour palette.

• ATI multimedia.

• Enhanced power features.

• VGA/VESA capability.

The 430HX also has an optional video capture processor for digitising analogue inputs from

134 Computer busses

VCRs, cameras, TVs, and so on. It also has an optional ATI-ImpactTC NSTC/PAL encoder
which provides a TV output for the graphics accelerators.

5.2.4 DRAM interface

The DRAM interface is a 64-bit data path that supports fast page mode (FPM) and extended
data out (EDO) memory. The integrated DRAM controller supports from 4 MB to 256 MB of
main memory. The 12 multiplexed address lines (MA[11:0]) allow the chips to support 4-bit,
16-bit and 64-bit memory, both symmetrical and asymmetrical addressing. The MTXC has
six RAS lines which enables support to up to six rows of DRAM (the TXC has eight RAS
lines).
 The MTXC supports SRAM. The 14 multiplexed address lines (MA[13:0]) allow the
MTXC to support 16-bit and 64-bit SDRAM devices. The MTXC has six CS (chip select)
lines (muxed into RAS[5:0]) which allows six rows of the faster SDRAM modules to be in-
stalled.
 All these memory types FPM, EDO and SDRAM can be mixed on the 430TX (but only
the FPM and EDO are supported in the 430HX board). The extra lines that have been added
in the MTXC are:

• SRAS [A,B] – SRAM row address strobe.
• SCAS [A,B] – DRAM column address.

5.2.5 Second- level cache

The MTXC supports cache memory area of 64 MB using either 8 K×8 or 16 K×8 SRAM
blocks to store the cache tags for either 256 KB or 512 KB SRAM cache. (8 K×8 is used for
256 KB and 16 K×8 is used for 512 KB). Each cache entry is 32 bits (4 bytes) thus the total
cache memory size is 512 KB (16 K×8×4). The signals are:

CCS Cache chip select – set active upon power-up and allows access to the
cache.

TWE Tag write enable – allows new state and tag addresses to be written into
the cache.

COE Cache output enable – puts the cache data onto the data bus.

GWE Global write enable – causes all bytes to be written to.

CADS Cache address strobe – cache loads the address register from the ad-
dress pins.

CADV Cache advance – the address is automatically increment to the next
word.

0]:TIO[7 Tag address – input lines for tag addresses.

CS4_64KRQAK/ . Cache chip select – KRQAK specifies DRAM cache, else implements a
64 MB main memory cache.

BWE Byte write enable – enables up to eight bytes from the data bus.

Figure 5.10 shows the interface between the MTXC and the second-level cache. Note that
four 32 K×32 devices make up the 512 KB (4×32×4) SRAM cache. Only two are shown in
Figure 5.10, as the other two are connected in parallel with the two shown.

Motherboard Design 135

GWE#
BWE#
BE[3:0]#

D[31:24]

D[23:16]

D[15:8]

D[7:0]

HD[31:24]
HD[23:16]
HD[15:8]
HD[7:0]

CLK
A[14:0]
OE#
CS1#
ADSC#
ADV#
ADSP#
CS2
CS2#
GWE#
BWE#
BE[3:0]#

D[7:0]

WE#

OE#

A[13:0]

TIO[7:0]

TWE#

HA[17:3]

ADS#]
HA18
GND]

HBE[7:4]#

COE#
CCS#
CADS#
CADV#

GWE#
BWE#

HA[18:5]

HCLK]

32K×32 SRAM

16K×8 Tag RAMMTXC

D[31:24]

D[23:16]

D[15:8]

D[7:0]

HD[63:56]
HD[55:48]
HD[47:40]
HD[39:32]

HBE[3:0]#

Figure 5.10 Second-level cache interface

Cache control register (CC)

This is an 8-bit register which is located at 52h in the I/O memory. It defines secondary
cache operations. Its format is:

Bit Description
7:6 Secondary cache size – 00 (disabled), 01 (256K), 10 (512K), 11 (reserved).
5:4 SRAM cache type – 00 (pipelined burst SRAM), 01 (reserved), 10 (re-

served), 11 (two banks of pipelined burst).
3 NA disable – 1 (disable), 0 (enabled); normally enabled.
2 Reserved.
1 Secondary cache force miss or invalidated (SCFMI). When set to a 1, the

Level 2 hit/miss facility is disabled, else it is enabled.
0 First-level cache enable (FLCE) – 1 (enable), 0 (disable). When it is set to a

1, the control responds to processor cycles with KEN# active. Normal
mode for FLCE, SCFMI is 1, 0.

Extended cache control register (CEC)

This is an 8-bit register which is located at 53h in the I/O memory. It defines the refresh rate
for DRAM Level 2. Its format is:

136 Computer busses

Bit Description
7:6 Reserved.
5 Defines if DRAM cache is present – 1 (present), 0 (not present).
4:0 DRAM cache refresh timer value.

5.2.6 Power management

The PIIX4 has enhanced power management over the PIIX3 and can detect when a specific
device is idle. The system management software is then informed, which then can place the
idle device into a power managed condition (such as local standby or powered off). Accesses
targeted to that device are then monitored. When detected, an SMI is generated to allow the
software to restore the device to operation.
 The PIIX4 supports the Advanced Configuration and Power Interface (ACPI) specifica-
tion. The software consists of system management mode (SMM) BIOS for legacy control
and operating system for ACPI. The basic operation consists of software setting up the de-
sired configurations and power management mode and corresponding power saving levels.
The hardware then performs the necessary actions to maintain the power mode. The I/O chip
also monitors the system for events which may require changing the system power mode.

5.3 Exercises
5.3.1 The data bus signals which connect to the processor are:

 (a) HD0–HD63 (b) D0–D63
 (c) HA0–HA63 (d) AD0–AD63

5.3.2 Which device provides the bridge between the processor, second-level cache,

DRAM and the PCI bus:

 (a) PIIX3/4 (b) HXC
 (c) RFC/MRFC (d) TXC/MTXC

5.3.3 Which device provides the bridge between the PCI bus and other busses, such as

the IDE, ISA and USB:

 (a) PIIX3/4 (b) HXC
 (c) RFC (d) TXC

5.3.4 The maximum achievable data throughput for a 33 MHz, 32-bit PCI is 132 MB/s.

Why is this not achievable in the normal multiplexed mode:

 (a) Half of the bus is used for addresses, the other half for data
 (b) The bus must slow down because of synchronisation problems
 (c) The address and data line are shared (multiplexed address then data).
 (d) The clock rate is halved for all transfers

5.3.5 How does a cache identify the address of the data it has in its memory:

 (a) The full address is stored along with the data
 (b) It is tagged (CTAG).

Motherboard Design 137

 (c) It guesses the address
 (d) It checks the address with the contents of the DRAM

5.3.6 How many data bits are transferred between the processor and the second-level

cache:

 (a) 16 (b) 32 (c) 64 (c) 128

5.3.7 Outline the importance of the TXC (system controller) device in the PC. Outline

also the main ICs that are used in a PC.

5.3.8 Describe, in detail, the architecture of the HX PCI chip set, and how the Pentium

processor communicates with: DRAM memory, Level-2 SRAM cache, the PCI
bus, the ISA bus and the IDE bus.

5.3.9 Explain, with reference to the PIIX3 and Pentium processor, how interrupts on the

PCI and ISA busses are dealt with.

5.3.10 Explain, with reference to the level-1 cache, the level-2 cache and DRAM, how

the processor accesses memory. What advantage does level-1 have over level-2
cache, and what advantage do these have over DRAM.

5.3.11 Discuss the power management modes supported by the PXII3, and also by the

PXII4.

5.3.12 Which interrupts are supported with the AIP and where are they typically used?

5.3.13 Explain how the ISA and IDE busses share the same control and data lines.

5.3.14 Contrast the HX motherboard with the LX motherboard.

5.4 Notes from the author

I hope that this chapter was not too heavy. It is important to realise that it is not just the
speed of the processor that defines the performance of a system – it is the cache controllers,
the bridge devices, the PCI bus, and so on. So have tried to give you an understanding of the
segmentation that is used in typical PCs. The devices used will change, but the basic concept
is likely to stay the same (I hope!). The days of a PC on a chip will happen, someday.
 The most amazing thing about modern PC systems is that they are almost completely
compatible with the original PC, the big change has happened in the integration of many of
the components parts. The great strength of the PC is its availability, durability and up-
gradeability of its components. I find it amazing that it can disconnect the cable to the disk
drives, turn it round, and connect it and the system will not be damage, in any way (although
it won’t start). I can even put the processor in the wrong way, and it will not damage it.
 The other amazing thing about PCs is the way that new peripherals are quickly adopted,
and become standard parts of the PC. This has included CD-ROM drives, USB connectors,
PS/2-type mouse connectors, PCMCIA connectors (in notebooks), VGA graphics adaptors,
TV output, DVD drives, network cards, sound cards, and so on. Who would have believed
that such a basic system as the original PC would support all this expansion, without ever
the need to redesign it (although the PCI bus provided a new architectural design).

IDE and Mass Storage

6.1 Introduction

This chapter and the next chapter discuss IDE and SCSI interfaces which are used to inter-
face to disk drives and mass storage devices. Disks are used to store data reliably in the long
term. Typical disk drives either store binary information as magnetic fields on a fixed disk
(as in a hard disk drive), a plastic disk (as in a floppy disk or tape drive), or as optical repre-
sentation (on optical disks).
 The main sources of permanent read/writeable storage are:

• Magnetic tape – where the digital bits are stored with varying magnetic fields. Typical

devices are tape cartridges, DAT and 8 mm video tape.
• Magnetic disk – as with the magnetic tape the bits are stored as varying magnetic fields

on a magnetic disk. This disk can either be permanent (such as a hard disk) or flexible
(such as a floppy disk). Large capacity hard disks allow storage of several gigabytes of
data. Normally fixed disks are designed to a much higher specification than floppy disks
and can thus store much more information.

• Optical disk – where the digital bits are stored as pits on an optical disk. A laser then
reads these bits. This information can either be read only (CD-ROM), write once read
many (WORM) or can be reprogrammable. A standard CD-ROM stores up to 650 MB of
data. Their main disadvantage in the past has been their relative slowness as compared
with Winchester hard disks; this is now much less of a problem as speeds have steadily
increased over the years.

6.2 Tracks and sectors

A disk must be formatted before it is used, which allows data to be stored in a logical man-
ner. The format of the disk is defined by a series of tracks and sectors on either one or two
sides. A track is a concentric circle around the disk where the outermost track is track 40 and
the innermost track is 0. The next track is track 1 and so on, as shown in Figure 6.1. Each of
these tracks is divided into a number of sectors. The first sector is named sector 1, the second
is sector 2, and so on. Most disks also have two sides: the first side of the disk is called side 0
and the other is side 1.

6

140 Computer busses

Track 0

Track 40

Sector 1
(512 bytes)

Sector 2
(512 bytes)

Figure 6.1 Tracks and sectors on a disk

Figure 6.1 also shows how each track is split into a number of sectors, in this case there are
eight sectors per track. Typically each sector stores 512 bytes. The total disk space, in bytes,
will thus be given by

Disk space = Number of sides × tracks × sectors per track × bytes per sector

For example, a typical floppy disk has two sides, 80 tracks per side, 18 sectors per track and
512 bytes per sector, so

 Disk capacity = 2×80×18×512 = 1 474 560 B
 = 1 474 560/1 024 KB = 1 440 KB
 = 1440/1024 MB = 1.4 MB

6.3 Floppy disks

A 3.5-inch DD (double density) disk can be formatted with two sides, nine sectors per track
and 40 tracks per side. This gives a total capacity of 720 KB. A 3.5 inch HD (high density)
disk has a maximum capacity when formatted with 80 tracks per side.
 A 5.25-inch DD disk can be formatted with two sides, nine sectors per disk with either 40
or 80 tracks per side. The maximum capacity of these formats is 360 KB (40 tracks) or 720
KB (80 tracks). A 5.25-inch HD disk can be formatted with 15 sectors per track which gives
a total capacity of 1.2 MB. When reading data the disks rotate at 300 rpm. Table 6.1 outlines
the differing formats.

Table 6.1 Capacity of different disk types

Size Tracks per side Sectors per track Capacity
5.25 -inch 40 9 360 KB
5.25-inch 80 15 1.2 MB
3.5-inch 40 9 720 KB
3.5-inch 80 18 1.44 MB

IDE and mass storage 141

6.4 Fixed disks

Fixed disks store large amounts of data and vary in their capacity, from several MB to sev-
eral GB. A fixed disk (or hard disk) consists of one or more platters which spin at around
3000 rpm (10 times faster than a floppy disk). A hard disk with four platters is shown in Fig-
ure 6.2. Data is read from the disk by a flying head which sits just above the surface of the
platter. This head does not actually touch the surface as the disk is spinning so fast. The dis-
tance between the platter and the head is only about 10µin (which is no larger than the thick-
ness of a human hair or a smoke particle). It must thus be protected from any outer particles
by sealing it in an airtight container. A floppy disk is prone to wear as the head touches the
disk as it reads but a fixed disk has no wear as its heads never touch the disk.
 One problem with a fixed disk is head crashes, typically caused when the power is
abruptly interrupted or if the disk drive is jolted. This can cause the head to crash into the
disk surface. In most modern disk drives the head is automatically parked when the power is
taken away. Older disk drives that do not have automatic head parking require a program to
park the heads before the drive is powered down.
 There are two sides to each platter and, like floppy disks, each side divides into a number
a tracks which are subdivided into sectors. A number of tracks on fixed disks are usually
named cylinders. For example a 40 MB hard disk has two platters with 306 cylinders, four
tracks per cylinder, 17 sectors per track and 512 bytes per sector, thus each side of a platter
stores

 306×4×17×512 B = 10 653 696 B
 = 10 653 696/ 1 048 576 MB
 = 10.2 MB

Platters

Read/write heads

Head movement

Figure 6.2 Hard disk with four platters

142 Computer busses

6.5 Drive specifications

Access time is the time taken for a disk to locate data. Typical access times for modern disk
drives range from 10 to 30 ms. The average access time is the time for the head to travel half
way across the platters. Once the head has located the correct sector then there may be an-
other wait until it locates the start of the data within the sector. If it is positioned at a point
after the start of the data, it requires another rotation of the disk to locate the data. This aver-
age wait, or latency time, is usually taken as half of a revolution of the disk. If the disk spins
at 3600 rpm then the latency is 8.33 ms.
 The main parameters which affect the drive specification are the data transfer rate and the
average access time. The transfer rate is dependent upon the interface for the controller/disk
drive and system/controller and the access time is dependent upon the disk design.

6.6 Hard disk and CD-ROM interfaces
There are two main interfaces involved with a hard disks (and CD-ROMs). One connects the
disk controller to the system (system–controller interface) and the other connects the disk
controller to the disk drive (disk–controller interface).
 The controller can be interfaced by standards such as ISA, EISA, MCA, VL-Local bus or
PCI bus. For the interface between the disk drive and the controller then standards such as
ST-506, ESDI, SCSI or IDE can be used. ST-506 was developed by Seagate Technologies
and is used in many older machines with hard disks of a capacity less than 40 MB. The en-
hanced small disk interface (ESDI) is capable of transferring data between itself and the
processor at rates approaching 10 MB/s.
 The small computer system interface (SCSI) allows up to seven different disk drives or
other interfaces to be connected to the system through the same interface controller. SCSI is
a common interface for large capacity disk drives and is illustrated in Figure 6.3.
 The most popular type of PC disk interface is the integrated drive electronics (IDE) stan-
dard. It has the advantage of incorporating the disk controller in the disk drive, and attaches
directly to the motherboard through an interface cable. This cable allows many disk drives to
be connected to a system without worrying about bus or controller conflicts. The IDE inter-
face is also capable of driving other I/O devices besides a hard disk. It also normally contains
at least 32K of disk cache memory. Common access times for an IDE are often less than 16
ms, where as access times for a floppy disk are about 200 ms. With a good disk cache system
the access time can reduce to less than 1 ms. A comparison of the maximum data rates is
given in Table 6.2.

Table 6.2 Capacity of different disk types

Interface Maximum data rate (MB/s) Interface Maximum data rate (MB/s)
ST-506 0.6 E-IDE 16.6
ESDI 1.25 SCSI 4 .0
IDE 8.3 SCSI-II 10.0

IDE and mass storage 143

Peripheral

Controller
1

Peripheral

Controller
2

Peripheral

Controller
7

SCSI host
adapter

System data bus

System address bus

Common SCSI connection

Figure 6.3 SCSI interface

 A typical modern PC contains two IDE connections on the motherboard, named IDE0
and IDE1. The IDE0 connection connects to the master drive (C:) and IDE1 to the slave
drive (D:). These could connect either to two hard disks or, possibility, to one hard disk and a
CD-ROM drive (or even a tape backup system). Unfortunately, the IDE standard only allows
disk access up to 528 MB. A new standard called Enhanced-IDE (E-IDE) allows for disk
capacities of over this limit. The connector used is the same as IDE but the computers’ BIOS
must be able to recognise the new standard. Most computers manufactured since 1993 are
able to fully access E-IDE disk drives.
 The specifications for the IDE and EIDE are

 IDE

• Maximum of two devices (hard disks).
• Maximum capacity for each disk of 528 MB.
• Maximum cable length of 18 inches.
• Data transfer rates of 3.3, 5.2 and 8.3 MB/s.

 EIDE
• Maximum of four devices (hard disks, CD-ROM and tape).
• Uses two ports (for master and slave).
• Maximum capacity for each disk is 8.4 GB.
• Maximum cable length of 18 inches.
• Data transfer rates of 3.3, 5.2, 8.3, 11.1 and 16.6 MB/s.

6.7 IDE interface

The most popular interface for hard disk drives is the Integrated Drive Electronics (IDE)
interface. Its main advantage is that the hard disk controller is built into the disk drive and
the interface to the motherboard simply consists of a stripped-down version of the ISA bus.
The most common standard is the ANSI-defined ATA-IDE standard. It uses a 40-way ribbon
cable to connect to 40-pin header connectors. Table 6.3 lists the pin connections. It has a 16-
bit data bus (D0–D15) and the only available interrupt line used is IRQ14 (the hard disk uses

144 Computer busses

IRQ14).
 The standard allows for the connection of two disk drives in a daisy-chain configuration.
This can cause problems because both drives have controllers within their drives. The pri-
mary drive (Drive 0) is assigned as the master and the secondary driver (Drive 1) as the
slave. A drive is set as a master or a slave by setting jumpers on the disk drive. They can also
be set by software using the cable select (CSEL) pin on the interface.
 EIDE has various modes (ANSI modes) of operation, these are

• Mode 0 – 600 ns read/write cycle time, 3.3 MB/s burst data transfer rate.
• Mode 1 – 383 ns read/write cycle time, 5.2 MB/s burst data transfer rate.
• Mode 2 – 240 ns read/write cycle time, 8.3 MB/s burst data transfer rate.
• Mode 3 – 180 ns read/write cycle time, 11.1MB/s burst data transfer rate.
• Mode 4 – 120 ns read/write cycle time, 16.6MB/s burst data transfer rate.

Table 6.3 IDE connections

Pin IDE signal AT signal Pin IDE signal AT signal
 1 RESET RESET DRV 2 GND –
 3 D7 SD7 4 D8 SD8
 5 D6 SD6 6 D9 SD9
 7 D5 SD5 8 D10 SD10
 9 D4 SD4 10 D11 SD11
11 D3 SD3 12 D12 SD12
13 D2 SD2 14 D13 SD13
15 D1 SD1 16 D14 SD14
17 D0 SD0 18 D15 SD15
19 GND – 20 KEY –
21 DRQ3 DRQ3 22 GND –
23 IOW IOW 24 GND –
25 IO R IO R 26 GND –
27 IOCHRDY IOCHRDY 28 CSEL –
29 DACK3 DACK3 30 GND –
31 IRQ14 IRQ14 32 IOCS16 IOCS16
33 Address bit 1 SA1 34 PDIAG –
35 Address bit 0 SA0 36 Address bit 2 SA2
37 CS1FX – 38 CS3FX –
39 SP / DA – 40 GND –

6.8 IDE communication

The IDE (or AT bus) is the de facto standard for most hard disks in PCs. It has the advantage
over older type interfaces that the controller is integrated into the disk drive. Thus the com-
puter only has to pass high-level commands to the unit and the actual control can be achieved
with the integrated controller. Several companies developed a standard command set for an
ATA (AT attachment). Commands include:

• Read sector buffer – reads contents of the controller’s sector buffer.
• Write sector buffer – writes data to the controller’s sector buffer.

IDE and mass storage 145

• Check for active.
• Read multiple sectors.
• Write multiple sectors.
• Lock drive door.

The control of the disk is achieved by passing a number of high-level commands through a
number of I/O port registers. Table 6.3 outlined the pin connections for the IDE connector.
Typically pin 20 is missing on the connector cable so that it cannot be inserted the wrong
way, although most systems buffer the signals so that the bus will not be damaged if the ca-
ble is inserted the wrong way. The five control signals which are unique to the IDE interface
(and not the AT bus) are

• CS3FX , CS1FX – these are used to identify either the master or the slave.
• PDIAG (passed diagnostic) – used by the slave drive to indicate that it has passed its di-

agnostic test.
• SP / DA (slave present/drive active) – used by the slave drive to indicate that it is present

and active.

The other signals are

• IOCHRDY – This signal is optional and is used by the drive to tell the processor that it re-

quires extra clock cycles for the current I/O transfer. A high level informs the processor
that it is ready, while a low informs it that it needs more time.

• DRQ3, DACK3 – These are used for DMA transfers.

6.8.1 AT task file

The processor communicates with the IDE controller through data and control registers (typi-
cally known as the AT task file). The base registers used are between 1F0h and 1F7h for the
primary disk (170h and 177h for secondary), and 3F6h (376h for secondary), as shown in
Figure 6.4. Their function is:

Port Function Bits Direction
1F0h Data register 16 R/W
1F1h Error register 8 R
 Precompensation 8 W
1F2h Sector count 8 R/W
1F3h Sector number 8 R/W
1F4h Cylinder LSB 8 R/W
1F5h Cylinder MSB 8 R/W
1F5h Drive/head 8 R/W
1F6h Status register 8 R
 Command register 8 W
3F6h Alternative status register 8 R
 Digital output register 8 W
3F7h Drive address 8 R

146 Computer busses

Figure 6.4 Typical hard-disk controller settings for the primary and secondary drive

Data register (1F0h)

The data register is a 16-bit register which is used to read/write data from/to the disk.

Error register (1F1h)

The error register is read-only and contains error information relating to the last command.
Its definitions are

 b7 b6 b5 b4 b3 b2 b1 b0
 BBK UNC MC NID MCR ABT NT0 NDM

where

• BBK – set to 1 if the sector is bad.
• UNC – set to 1 if there is an unrecoverable error.
• NID – set to 1 if mark not found.
• ABT – set to 1 if command aborted.
• NT0 – set to 1 if track 0 not found.
• MC – set to 1 identifies that the medium has changed (EIDE only). The EIDE standard

support disks which can be changed while the system is running (such as CD-ROMs, tape
drives, and so on).

• MCR – set to 1 identifies that the medium requires to be changed (EIDE only).

Sector count register (1F2h)

This is a read/write 8-bit register which defines the number of sectors to be read, written or
verified. After each transfer to/from the disk causes the register value to be decremented by
one.

IDE and mass storage 147

Sector number register (1F3h)

This is a read/write 8-bit register which defines the start sector to be read, written or verified.
After each transfer to/from the disk, the register contains the last processed sector.

Cylinder register (1F4h/1F5h)

These are read/write 8-bit registers which define the LSB (1F4h) and MSB (1F5h) of the
cylinder number. The two registers are capable of containing a 16-bit value. In standard IDE
the cylinder number is 10-bit and can only vary from 0 to 1023 (0 to 210–1). For E-IDE the
value can be a 16-bit value and can thus vary from 0 to 65 535 (0 to 216–1). This is one of the
main reasons that E-IDE can address much more data than IDE.

Drive/head register (1F6h)

This is a read/write 8-bit register which defines the currently used head. Its definitions are:

 b7 b6 b5 b4 b3 b2 b1 b0
 1 L 1 DRV HD3 HD2 HD1 HD0

where:

• L – set to 1 if LBA (logical block addressing) mode else set to 0 if CHS (EIDE only).
• DRV – set to 1 for the slave, else it is master.
• HD3–HD0 – identifies the head number, where 0000 identifies head 0, 0001 identifies head

1, and so on.

Status register (1F7h)

The 1F7h register has two modes. If it is written to then it is a command register (see next
section) else, if it is read from, then it is a status register. The status register is a read-only 8-
bit register which contains status information from the previously issued command. Its defi-
nitions are:

 b7 b6 b5 b4 b3 b2 b1 b0
 BUSY RDY WFT SKT DRQ COR IDX ERR

where:

• BUSY – set to 1 if the drive is busy.
• RDY – set to 1 if the drive is ready.
• WFT– set to 1 if there is a write fault.
• SKT– set to 1 if head seek positioning is complete.
• DRQ – set to 1 if data can be transferred.
• COR – set to 1 if there is a correctable data error.
• IDX – set to 1 identifies that the disk index has just passed.
• ERR – set to 1 identifies that the error register contains error information.

Command register (1F7h)

If the 1F7h register is written-to then it is a command register. The command register is a 8-
bit register can contain commands, such as:

148 Computer busses

Command b7 b6 b5 b4 b3 b2 b1 b0 Related registers
Calibrate drive 0 0 0 1 – – – – 1F6h
Read sector 0 0 1 0 – – L R 1F2h–1F6h
Write sector 0 0 1 1 – – L R 1F2h–1F6h
Verify sector 0 1 0 0 – – – R 1F2h–1F6h
Format track 0 1 0 1 – – – – 1F3h–1F6h
Seek 0 1 1 1 – – – – 1F4h–1F6h
Diagnostics 1 0 0 1 – – – – 1F2h, 1F6h
Read sector buffer 1 1 1 0 0 1 0 0 1F6h
Write sector buffer 1 1 1 0 1 0 0 0 1F6h
Identify drive 1 1 1 0 1 1 – – 1F6h

where R is set to 0 if the command is automatically retried and L identifies the long-bit.

Digital output register (3F6h)

This is a write-only 8-bit register which allows drives to be reset and also IRQ14 to be
masked. Its definitions are

 b7 b6 b5 b4 b3 b2 b1 b0
 – – – – – SRST IEN –

where

• SRST– set to a 1 to reset all connected drives, else accept the command.
• IEN – controls the interrupt enable. If set to 1 then IRQ14 is always masked, else inter-

rupted after each command.

Drive address register (3F7h)

The drive address register is a read-only register which contains information on which drive
and which head is currently active. Its definitions are:

 b7 b6 b5 b4 b3 b2 b1 b0
 – WTGT HS3 HS2 HS1 HS0 DS1 DS0

where

• WTGT – set to 1 if the write gate is closed, else the write gate is open.
• HS3 – HS0 –1’s complement value of currently active head.
• DS1 – DS0 – identifies the selected drive.

6.8.2 Command phase

The IRQ14 line is used by the disk to when it wants to interrupt the processor, either when it
wants to read or write data to/from memory. For example, using Microsoft C++ (for Borland
replace _outp() and _inp() with outport() and inport()) to write to a disk at cylinder
150, head 0 and sector 7:

IDE and mass storage 149

#include <conio.h>
int main(void)
{
int sectors=4, sector_no=7, cylinder=150, drive=0, command=0x33, i;
unsigned int buff[1024], *buff_pointer;
 do
 {
 /* wait until BSY signal is set to a 1 */

 } while ((_inp(0x1f7) & 0x80) != 0x80);

 _outp(0x1f2,sectors); /* set number of sectors */
 _outp(0x1f3,sector_no); /* set sector number */
 _outp(0x1f4,cylinder & 0x0ff); /* set cylinder number LSB */
 _outp(0x1f5,cylinder & 0xf00); /* set cylinder number MSB */
 _outp(0x1f6,drive); /* set DRV=0 and head=0 */
 _outp(0x1f7,command); /* 0011 0011 (write sector) */

 do
 {
 /* wait until BSY signal is set to a 1 and DRQ is set to a 1 */

 } while (((_inp(0x1f7) & 0x80) != 0x80) &&
 ((_inp(0x1f7) & 0x08) !=0x08));
 buff_pointer= buff;
 for (i=0;i<512;i++,buff_pointer++)
 {
 _outp(0x1f0,*buff_pointer); /* output 16-bits at a time */
 }
 return(0);
}

Note that if the L bit is set then an extra four ECC (error correcting code) bytes must be writ-
ten to the sector (thus a total of 516 bytes are written to each sector). The code used is cyclic
redundancy check, which, while it cannot correct errors is very powerful at detecting them.

6.8.3 E-IDE

The main differences between IDE and E-IDE are:

• E-IDE support removable media.
• E-IDE supports a 16-bit cylinder value, which gives a maximum of 65 636 cylinders.
• Higher transfer rates. In mode 4, E-IDE has a 120 ns read/write cycle time, which gives a

16.6 MB/s burst data transfer rate.
• E-IDE supports LBA (logical block addressing) which differs from CHS (cylinder head

sector) in that the disk drive appears to be a continuous stream of sequential blocks. The
addressing of these blocks is achieved from within the controller and the system does not
have to bother about which cylinder, header and sector is being used.

IDE is limited to 1024 cylinders, 16 heads (drive/head register has only four bits for the
number of heads) and 63 sectors, which gives

 Disk capacity = 1024×16×63×512 = 504 MB

With enhanced BIOS this is increased to 1024 cylinders, 256 heads (8-bit definition for the
number of heads) and 63 sectors, to give

150 Computer busses

 Disk capacity = 1024×256×63×512 = 7.88 GB

With E-IDE the maximum possible is 65 536 cylinders, 256 heads and 63 sectors, to give

 Disk capacity = 65536×256×63×512 = 128 GB

Normally a 3.5-inch hard disk would be limited to around two platters, with four heads.
Thus, the capacity is around 8.1GB.

6.9 Optical storage

Optical storage devices can store extremely large amounts of digital data. They use a laser
beam which reflects from an optical disk. If a pit exists in the disk then the laser beam does
not reflect back. Figure 6.5 shows the basic mechanism for reading from optical disks. A
focusing lens directs the laser light to an objective lens which focuses the light onto a small
area on the disk. If a pit exists then the light does not reflect back from the disk. If the pit
does not exist then it is reflected and directed through the objective lens and a quarter-wave
plate to the polarised prism. The quarter-wave polarises the light by 45° thus the reflected
light will have a polarisation of 90°, with respect to the original incident light in the prism.
The polarised prism then directs this polarised light to the sensor.

Sensor

Laser

Focusing
lens

Objective
lens

Polarizing
prism

Reflecting
coating (~30 µm)

Transparent
coating (~1.2 mm)

Pit depth
(~0.1 µm)

Figure 6.5 Reading from an optical disk

6.9.1 CD-ROM
In a permanent disk (also known as compact disk or CD) the pits are set up by pressing them
onto the disk at production. The data on this type of disk is permanent and cannot be repro-
grammed to store different data, and is known as CD-ROM (compact disk read-only mem-
ory). This type of disk is normally only cost effective in large quantities.
 Standard CD-ROM disks have a diameter of 120 mm (4.7 inch) and a thickness of

IDE and mass storage 151

1.2 mm. They can store up to 650 MB of data which gives around 74 minutes of compressed
video (MPEG format with near VCR quality) or uncompressed hi-fi audio. The reflective
coating (normally aluminium) on the disk is approximately 30 µm and the pits are approxi-
mately 0.1 µm long and deep. A protective transparent coating is applied on top of the reflec-
tive coating with a depth of 1.2 mm (the approximate thickness of the disk). The protective
coating also helps to focus the light beam from about 0.7 mm on the surface of the coating to
the 0.1 µm pit. Data is stored on the disk as a spiral starting from the inside and ending at the
outside (which is opposite to hard disk. The thickness of the track is 1.6 µm, which gives a
total spiral length of 5.7 km.

6.9.2 WORM drives
WORM (write once read many) disks allow data to be written to the optical disk once. The
data is then permanent and thus cannot be altered. They are typically used in data logging
applications and in making small volumes of CD-ROMs. A 350 mm (14inch) WORM disk
can store up to 10GBs of data (5GB per side). This gives around 15 hours of compressed
video (MPEG format with near VCR quality).
 WORM disks consist of two pieces of transparent material (normally glass) with a layer
of metal (typically tellurium) sandwiched in between. Initially the metal recording surface is
clear. A high intensity laser beam then writes information to the disk by burning small pits
into the surface.

6.9.3 CD-R and CD-RW disks
CD-R (CD-recordable) disks are write-once disks that can store up to 650 MB of data or 74
minutes of audio. For a disk to be read by any CD-ROM drive they must comply with ISO
9660 format. A CD-R disk can also be made multisession where a new file system is written
each time the disk is written to. Unfortunately, this takes up around 14 MB of header data for
each session. Typical parameters for sessions are:

No. of sessions Header information Data for each session
 1 approx. 14MB 636MB one session
 5 approx. 70MB 116MB each session
 10 approx. 140MB 51MB each session
 30 approx. 420MB 7.7MB each session

Typically CD recorders write at two (or even four) times the standard writing/playback speed
of 150 KB (75 sectors) per second.
 A CD-RW (CD-rewriteable) disk allows a disk to be written-to many times, but the file
format is incompatible with standard CD-ROM systems (IS0 9660). The formatting of the
CD-RW disk (which can take a few hours) takes up about 157 MB of disk space, which only
leaves about 493 MB for data.
 New CD-R and CD-RW writing systems incorporate a smart laser system that eradicates
the problem of dirt on the disk. It does this by adjusting the write power of the laser using
Automatic Power Control. This allows the unit to continue to write when it encounters minor
media errors such as dirt, smudges, small scratches, and so on.

6.9.4 CD-ROM disk format

The two main standards for writing a CD-ROM are ISO 9660 and UDF (universal disk for-
mat). The ISO 9660 disk unfortunately uses 14 MB for each write to the disk.
 In 1980, Philips NV and Sony Corporation first announced the CD-DA (digital audio)

152 Computer busses

and in 1983 released the standard for CD-ROM. Then in 1988, they released the Red Book
standard for recordable CD audio disks (CD-DA)
 This served as a blueprint for the Yellow Book specification for CD-ROMs (CD-ROM
and CD-ROM-XA data format) and the Orange Book Parts 1 and 2 specifications for CD-
Recordable (CD-R/CD-E (CD-recordable/CD-erasable)). In the Red Book standard a disk is
organized into a number of segments:

• Lead in – contains the table of contents for the disk that specifies the physical location of

each track.
• Program area – contains the actual disk data or audio data and is divided up into 99

tracks, with a two-second gap between each track.
• Lead out – contains a string of zeros which is a legacy of the old Red Book standard.

These zeros enabled old CD players to identify the end of a CD.

The CD is laid out in a number of sectors. Each of these sectors contains 2352 bytes, made
up of 2048 bytes of data and other information such as headers, sub-headers, error detection
codes and so on. The data is organised into logical blocks. After each session a logical block
has a logical address, which is used by the drive to find a particular logical block number
(LBN).
 Within the tracks the CD can contain either audio or computer data. The most common
formats for computer data are ISO 9660, hierarchical file system (HFS) and the Joliet file
system.
 The ISO 9660 was developed at a time when disks required to be mass replicated. It thus
wrote the complete file system at the time of creation, as there was no need for incremental
creation. Now, with CD-R technology, it is possible to incrementally write to a disk. This is
described as multisession. Unfortunately, after each session a new lead in and lead out must
be written (requiring a minimum of 13 MB of disk space). This consists of:

• 13.2 MB for the lead out for the first session and 4.4 MB for each subsequent session.
• 8.8 MB for lead in for each session comprising 8.8 MB.

Thus multisession is useful for writing large amounts of data for each session, but is not effi-
cient when writing many small updates. Most new CD-R systems now use a track-at-once
technique which stores the data one track at a time and only writes the lead in and lead out
data when the session is actually finished. In this technique the CD can be built up with data
over a long period of time. Unfortunately the disk cannot be read by standard CD-ROM
drives until the session is closed (and written with the ISO 9660 format). Another disadvan-
tage is that the Red Book only specifies up to 99 tracks for each CD.
 Unfortunately the ISO 9660 is not well-suited for packet writing and is likely to be
phased out over the coming years.

6.9.5 Magneto-optical (MO) disks

As with CD-R disks, magneto-optical (MO) disks allow the data to be rewritten many times.
These disks use magnetic and optical fields to store the data. Unfortunately the disk must
first be totally erased before data is written (although new developments are overcoming this
limitation).

6.9.6 Transfer rates

Optical disks spin at variable speeds, they spin at a lower rate on the outside of the disk than

IDE and mass storage 153

on the inside. Thus the disk increases its speed progressively as the data is read from the
disk. The actual rate at which the drive reads the data is constant for the disk. The basic
transfer rate for a typical CD-ROM is 150 KB/s. This has recently been increased to
300 KB/s (×2 CD drives), 600 KB/s (×4), 900 KB/s (×6), 1.5 MB/s (×10) and even 6 MB/s
(×40).

6.9.7 Standards

Data disks are described in the following standards books, each of them specific to an area or
type of data application. These books can be obtained by becoming a licensed CD developer
with Philips. These standards apply to media, hardware, operating systems, file systems and
software.

Red Book World standard for all compact disks (CD-DA) (audio).
Yellow Book Covers CD-ROM and CD-ROM-XA data formats.
Green Book Covers CD-I data formats and operating systems (photo).
White Book CD-I (video)
Orange Book Covers CD-R/CD-E (CD-Recordable/CD-Eraseable).
Blue Book CD-Enhanced (CD Extra, CD Plus).

6.9.8 Silver, green, blue or gold

CD-ROMs are available in a number of colours, these are:

• Silver. These are read-only disks which are a stamped as an original disk.
• Gold. These are recordable disks which use a basic phthalocyanine formulation which

was patented by Mitsui Toatsu Chemicals (MTC) of Japan, and is licensed to other
phthalocyanine media manufacturers. They generally work better with 2m writing speeds
as some models of disk can not be written to at 1m writing speed.

• Green. These are recordable disks which are based on cyanine-based formulations. They
are not covered by a governing patent, and are more or less unique to the individual
manufacturers. An early problem was encountered with cyanine-based disk as the dye
became chemically unstable in the presence of sunlight. Other problems included a wide
variation in electrical performance depending on write speed and location (inner or outer
portion of the disk). Eventually, in 1995, some stabilising compounds were added. The
best attempt produced a metal-stabilised cyanine dye formulation that gave excellent
overall performance. Gradually the performance of these disks is approaching gold disk
performance.

• Blue. These are recordable disks which are based on an azo media. This was designed
and manufactured by Mitsubishi Chemical Corporation (MCC) and marketed through its
US subsidiary, Verbatim Corporation.

6.10 Magnetic tape

Magnetic tapes use a thin plastic tape with a magnetic coating (normally of ferric oxide).
Most modern tapes are either reel-to-reel or cartridge type. A reel-to-reel tape normally has
two interconnected reels of tape with tension arms (similar to standard compact audio cas-
settes). The cartridge type has a drive belt to spin the reels, this mechanism reduces the strain

154 Computer busses

on the tape and allows faster access speeds.
 Magnetic tapes have an extremely high capacity and are relatively cheap. Data is saved in
a serial manner with one bit (or one record) at a time. This has the disadvantage that they are
relatively slow when moving back and forward within the tape to find the required data.
Typically, it may take many seconds (or even minutes) to search from the start to the end of a
tape. In most applications, magnetic tapes are used to back up a system. This type of applica-
tion requires large amounts of data to be stored reliably over time but the recall speed is not
important.
 The most common types of tape are:

• Reel-to-reel tapes – the tapes have two interconnected reels with an interconnecting tape

which is tensioned by tension arms. They were used extensively in the past to store com-
puter-type data but have been replaced by the following three types (8 mm, QIC and DAT
tapes).

• 8 mm video cartridge tapes – this type of tape was developed to be used in video cameras
and is extremely compact. As with videotapes the tape wraps round the read/write head in
a helix.

• Quarter inch cartridge (QIC) tapes – a QIC is available in two main sizes: 5.25 inch and
3.5 inch. They give capacities of 40 MB to tens of GB.

• Digital audio tapes (DAT) – this type of tape was developed to be used in hi-fi applica-
tions and is extremely compact. As with the 8 mm tape, the tape wraps round the
read/write head in a helix. The tape itself is 4 mm wide and can store several GBs of data
with a transfer rate of several hundred kbps.

6.10.1 QIC tapes

QIC tapes are available in two sizes: 5.25 -inch and 3.5 -inch. The tape length ranges from
200 to 1000 feet, with a tape width of 0.25 -inch. Typical capacities range from 40 MB to tens
of GB. A single capstan drive is driven by the tape drive. Figure 6.6 illustrates a QIC tape.

Drive belt

Capstan
drive

Access
door

Figure 6.6 QIC tape

6.10.2 8 mm video tape

The 8 mm video tape is a high specification tape and was originally used in video cameras.
These types are also known as Exabyte after the company that originally developed a back
up system using 8 mm videotapes. They can be used to store several GBs of data with a
transfer rate of 500 kbps. In order to achieve this high transfer rate the read/write head spins
at 2000 rpm and the tape passes it at a relatively slow speed.

IDE and mass storage 155

6.11 Exercises

6.11.1 What is a typical data capacity for a CD-ROM disk:

 (a) 100 MB (b) 650 MB
 (c) 800 MB (d) 1 GB

6.11.2 Which interface is most often used in PCs to connect to hard-disk drives:

 (a) ST-506 (b) ISA
 (c) EISA (d) IDE

6.11.3 Which bus does the IDE share many of its signals with:

 (a) ST-506 (b) ISA
 (c) EISA (d) PCI

6.11.4 How many devices can a single IDE bus support:

 (a) 1 (b) 2
 (c) 4 (d) 7

6.11.5 What is the base address for the primary IDE controller:

 (a) 1F0h (b) 170h
 (c) 2F0h (d) 270h

6.11.6 What is the base address for the secondary IDE controller:

 (a) 1F0h (b) 170h
 (c) 2F0h (d) 270h

6.11.7 What is the main advantage of E-IDE over IDE:

 (a) It is compatible with more hard-disk drives
 (b) It allows for larger hard-disk capacities
 (c) It is easier to interface to
 (d) It has a large data bus size

6.11.8 What is the main advantage, apart from increased transfer rate, that IDE has over

older interface standards, such as ST-506 and ESDI?

6.11.9 Explain how IDE differs from E-IDE and how E-IDE supports larger disk capaci-

ties. How does E-IDE use modes to define the maximum transfer rate. Which
mode is the fastest?

6.11.10 Show that the maximum capacity of IDE is 528 MB and that the maximum capac-

ity (per disk) is 8.4 GB for E-IDE.

156 Computer busses

6.11.11 Which IRQ does an IDE connected disk drive normally use and what is the size of
its data bus.

6.11.12 A floppy disk ribbon cable has a cable twist to differentiate between the A: drive

and the B: drive. How does the ribbon cable that connects two IDE connected
drives differ. In addition, how many wires does the ribbon cable have.

6.11.13 Outline how three hard disks and a CD-ROM can be connected to the IDE bus.

What settings are required for the disks to connect properly? Which signal line
differentiates between a master and a slave?

6.11.14 How are I/O addresses used to communicate with hard disks. How is data trans-

ferred to and from the disk? What are the standard address ranges for the primary
and the secondary? If possible, check these on an available PC.

6.11.15 Which register is used to identify a hard disk error. Explain its operation.

6.11.16 Which is the IDE signal line that identifies if a slave device exists?

6.11.17 Prove that, 16-bit, 44.1 kHz sampled, stereo audio gives over 65 minutes for a

650 MB optical disk.

6.12 Notes from the author

The IDE bus. What can you say about it? Not much really. It has no future plans for glory
and is looking forward to a graceful retirement. It works, it’s reliable, it’s standard, it’s
cheap, blah, blah, and relatively easy to set up. I’ve spent many a happy hour (not!) setting
the jumpers on CD-ROM drives and secondary hard-disk drives which I want to add to a PC
system. Luckily, these days, modern disk drives and BIOS cope well with adding and deleting
disk drives to systems.
 On its negative side, IDE is not really that fast, but it really doesn’t have to be, as disk
drives do not require high data rates. E-IDE improved IDE a great deal and only required a
simple change in the BIOS. In conclusion, SCSI is the natural choice for disk drives and al-
lows for much greater flexibility in configuration and also high data rates. But, it tends to be
more expensive, and we’d miss IDE, wouldn’t we?
 In Chapter 3, I voted the IDE bus as the third most helpful bus of all-time. It merited this
position as, over the years, it has quietly interfaced to disk drives, and has even supported
the addition of CD-ROM drives. By the flick of a BIOS chip, it supported large capacity disk
drives (EIDE). It also requires very little to set it up, as the BIOS tends is able to determine
the capacity of the disk drive, and properly set it up. At present, there are no real plans to
phase the IDE out, thus it is likely to stay a standard part of the motherboard.
 Unix workstations and Apple computers have always used the SCSI bus, as it gives easy
external disk upgrades, but, as few users of PC require to add external disk drives to their
computer, there has never really been a great demand for SCSI-based disk drives for the PC.
IDE drives have two interrupts lines set aside for themselves, so why not use them to inter-
face to disk drives. The SCSI bus, though, now offers high data rates, improved connectivity,
improved command and message structure, and easy-of-upgrade. So why isn’t it the stan-
dard bus for PC system. Well it costs more, doesn’t it, and well, it isn’t PC, is it? It’s an Ap-
ple thing, isn’t it. When has the PC ever done anything in the right way?

SCSI

7.1 Introduction

SCSI has many advantages over IDE, these include:

• A single bus system for up to seven connected devices.
• It supports many different peripherals, such as hard disks, tape drives, CD-ROMs, and so

on.
• It supports device priority where a higher SCSI-ID has priority over a lower SCSI-ID.
• It supports both high-quality connectors and cables, and low-quality connection and rib-

bon cable.
• It supports differential signals, which gives longer cable lengths.
• Extended support for commands and messaging.
• Devices do not need individual IRQ lines (as they do in IDE) as the controller communi-

cates with the devices.
• It has great potential for faster transfer and enhanced peripheral support.

7.2 SCSI types

SCSI has an intelligent bus subsystem and can support multiple devices cooperating cur-
rently. Each device is assigned a priority. The main types of SCSI are:

• SCSI-I. Transfer rate of 5 MB/s with an 8-bit data bus and seven devices per controller.
• SCSI-II. Support for SCSI-1 and with one or more of the following:

• Fast SCSI which uses a synchronous transfer to give 10 MB/s transfer rate. The initia-
tor and target initially negotiate to see if they can both support synchronous transfer.
If they can they then go into a synchronous transfer mode.

• Fast/wide SCSI-2 which doubles the data bus width to 16 bits to give 20 MB/s trans-
fer rate.

• 15 devices per master device.
• Tagged command queuing (TCQ) which greatly improves performance and is sup-

ported by Windows NT, NetWare and OS/2.
• Multiple commands sent to each device.
• Commands executed in whatever sequence will maximize device performance.

• Ultra SCSI (SCSI-III). Operates either as 8-bit or 16-bit with either 20 MB/s or 40 MB/s
transfer rate.

7

158 Computer busses

7.2.1 SCSI-II

SCSI-II supports fast SCSI which is basically SCSI-I operating at a rate of 10 MB/s (using
synchronous versus asynchronous) and Wide SCSI which uses a 64-pin connector and a 16-
bit data bus. The SCSI-II controller is also more efficient and processes commands up to
seven times faster than SCSI-I.
 The SCSI-II drive latency is also much less than SCSI-I due mainly to tag command
queuing (TCQ) which allows multiple commands to be sent to each device. Each device then
holds its own commands and executes them in whatever sequence that will maximize per-
formance (such as by minimizing the latency associated with disk rotation). Table 7.1 con-
trasts Fast SCSI-II and Fast/Wide SCSI-II. It can be seen that both disks have predictive fail-
ure analysis (PFA) and automatic defect reallocation (ADR).
 The normal 50-core cable is typically known as A-cable, while the 68-core cable is
known as B-cable.

Table 7.1 Comparison of SCSI-II disks

 Seek
time
(ms)

Latency
(ms)

Rotational
speed (rpm)

Sustained
data read (MB/s)

PFA ADR

1 GB SCSI-II fast 10.5 5.56 5400 4

4.5 GB SCSI-II fast/ wide 8.2 4.17 7200 12

7.2.2 Ultra SCSI

Ultra SCSI (or SCSI-III) allows for 20 MB/s burst transfers on an 8-bit data path and 40
MB/s burst transfer on a 16-bit data path. It uses the same cables as SCSI-II and the maxi-
mum cable length is 1.5 m. Ultra SCSI disks are compatible with SCSI-2 controllers; how-
ever the transfer will be at the slower speed of the SCSI controller. SCSI disks are compati-
ble with UltraSCSI controllers; however, the transfer will be at the slower speed of the SCSI
disk.
 SCSI-I and Fast SCSI-II use a 50-pin 8-bit connector, whereas fast/wide SCSI-II and Ul-
tra SCSI uses a 68-pin 16-bit connector. The 16-bit connector is physically smaller than the
8-bit connector and the 16-bit connector cannot connect directly to the 8-bit connector. The
cable used is called P-cable and replaces the A/B-cable.
 Note that SCSI-II, and Ultra SCSI require an active terminator on the last external device.
Table 7.2 compares the main types of SCSI.

Table 7.2 SCSI types

 Data
bus
(bits)

Transfer rate
(MB/s)

Tagged
command
queuing

Parity
checking

Maximum
devices

Pins on
cable and
connector

SCSI-I 8 5 × ×/ (optional) 7 50
SCSI-II Fast 8 10 (10MHz) 7 50
SCSI-II fast/
wide

16 20 (10MHz) 15 68

Ultra SCSI 16 40 (20MHz) 15 68

SCSI 159

7.3 SCSI interface

In its standard form the small computer systems interface (SCSI) standard uses a 50-pin
header connector and a ribbon cable to connect to up to eight devices. It overcomes the prob-
lems of the IDE, where devices have to be assigned as a master and a slave. SCSI and fast
SCSI transfer one byte at a time with a parity check on each byte. SCSI-II, wide SCSI and
Ultra SCSI use a 16-bit data transfer and a 68-pin connector. Table 7.3 lists the pin connec-
tions for SCSI-I (single-ended cable) and Fast SCSI (differential cable) and Table 7.4 lists
the pin connections for SCSI-II, wide SCSI and ultra SCSI.

Table 7.3 SCSI-I and Fast SCSI connections

 Single-ended cable Differential cable
Pin Signal Pin Signal Pin Signal Pin Signal
 1 GND 2 D0 1 GND 2 GND
 3 GND 4 D1 3 + D0 4 – D0
 5 GND 6 D2 5 + D1 6 – D1
 7 GND 8 D3 6 + D2 8 – D2
 9 GND 10 D4 8 + D3 10 – D3
11 GND 12 D5 11 + D4 12 – D4
13 GND 14 D6 13 + D5 14 – D5
15 GND 16 D7 15 + D6 16 – D6
17 GND 18 D(PARITY) 17 + D7 18 – D7
19 GND 20 GND 19 D(PARITY) 20 – D(PARITY)
21 GND 22 GND 21 DIFFSEN 22 GND
23 RESERVED 24 RESERVED 23 RESERVED 24 RESERVED
25 Open 26 TERMPWR 25 TERMPWR 26 TEMPWR
27 RESERVED 28 RESERVED 27 RESERVED 28 RESERVED
29 GND 30 GND 29 + ATN 30 – ATN
31 GND 32 ATN 31 GND 32 GND
33 GND 34 GND 33 + RST 34 – RST
35 GND 36 BSY 35 + ACK 36 – ACK
37 GND 38 ACK 37 + RST 38 – RST
39 GND 40 RST 39 + MSG 40 – MSG
41 GND 42 MSG 41 + SEL 42 – SEL
43 GND 44 SEL 43 + C / D 44 – C / D
45 GND 46 C / D 45 + REQ 46 – REQ
47 GND 48 REQ 47 + I / O 48 – I / O
49 GND 50 I / O 49 GND 50 GND

7.3.1 Signals

A SCSI bus is made up of a SCSI host adapter connected to a number of SCSI units via a
SCSI bus. As all units connect to a common bus, only two units can transfer data at a time,
either from one SCSI unit to another or from one SCSI unit to the SCSI host. The great ad-
vantage of this transfer is that is does not involve the processor.

160 Computer busses

Table 7.4 SCSI-II, wide SCSI and ultra SCSI

Pin Signal Pin Signal
1 GND 35 GND
2 GND 36 D8
3 GND 37 D9
4 GND 38 D10
5 GND 39 D11
6 GND 40 D12
7 GND 41 D13
8 GND 42 D14
9 GND 43 D15
10 GND 44 D(PARITY1)
11 GND 45 ACKB
12 GND 46 GND
13 GND 47 REQB
14 GND 48 D16
15 GND 49 D17
16 GND 50 D18
17 TERMPWR 51 TERMPWR
18 TERMPWR 52 TERMPWR
19 GND 53 D19
20 GND 54 D20
21 GND 55 D21
22 GND 56 D22
23 GND 57 D23
24 GND 58 D(PARITY2)
25 GND 59 D24
26 GND 60 D25
27 GND 61 D26
28 GND 62 D27
29 GND 63 D28
30 GND 64 D29
31 GND 65 D30
32 GND 66 D31
33 GND 67 D(PARITY3)
34 GND 68 GND

 Each unit on a SCSI is assigned a SCSI ID address. In the case of SCSI-I this ranges from
0 to 7 (where 7 is normally reserved for a tape drive). The host adapter takes one of the ad-
dresses thus a maximum of seven units can connect to the bus. Most systems allow the units
to take on any SCSI ID address, but older systems required boot drives to be connected to a
specific SCSI address. When the system is initially booted, the host adapter sends out a Start
Unit command to each SCSI unit. This allows each of the units to start in an orderly manner
(and not overloading the local power supply). The host will start with the highest priority
address (ID=7) and finishes with the lowest address (ID=0). Typically, the ID is set with a
rotating switch selector or by three jumpers.
 SCSI defines an initiator control and a target control. The initiator requests a function
from a target, which then executes the function, as illustrated in Figure 7.1. The initiator ef-

SCSI 161

fectively takes over the bus for the time to send a command and the target executes the com-
mand and then contacts the initiator and transfers any data. The bus will then be free for
other transfers.
 The main signals are:

• BSY – indicates that the bus is busy, or not (an OR-tied signal).
• ACK – activated by the initiator to indicate an acknowledgement for a REQ information

transfer handshake.
• RST – when active (low) resets all the SCSI devices (an OR-tied signal).
• ATN – activated by the initiator to indicate the attention state.
• MSG – activated by the target to indicate the message phase.
• SEL – activated by the initiator and is used to select a particular target device (an OR-tied

signal).
• C / D (control/data) – activated by the target to identify if there is data or control on the

SCSI bus.
• REQ – activated by the target to acknowledge to indicate a request for an ACK informa-

tion transfer handshake.
• I / O (input/output) – activated by the target to show the direction of the data on the data

bus. Input defines that data is an input to the initiator, else it is an output.

Each of the control signals can be true or false. They can be:

• OR-tied driven, where the driver does not drive the signal to the false state. In this case

the bias circuitry of the bus terminators pulls the signal false whenever it is released by
the drivers at every SCSI device. If any driver is asserted, then the signal is true. The
BSY , SEL , and RST signals are OR-tied. In the ordinary operation of the bus, the BSY
and RST signals may be simultaneously driven true by several drivers.

• Non-OR-tied driven, where the signal may be actively driven false. No signals other than
BSY , RST and D(PARITY) are simultaneously driven by two or more drivers.

Initiator Target

Function
request

Function
executor

SCSI bus

Figure 7.1 Initiator and target in SCSI

162 Computer busses

7.4 SCSI operation

The SCSI bus allows any unit to talk to any other unit, or the host to talk to any unit. Thus
there must be some way of arbitration where units capture the bus. The main phases that the
bus goes through are:

• Free-bus. In this state there are no units which either transfer data or have control of the

bus. It is identified by disactive SEL and BSY (both will be high). Thus, any unit can cap-
ture the bus.

• Arbitration. In this state a unit can take control of the bus and become an initiator. To do
this it activates the BSY signal and puts its own ID address on the data bus. Next, after a
delay, it tests the data bus to determine if a high-priority unit has put its own address on
the bus. If it has then it will allow the other unit access to the bus. If its address is still on
the bus then it asserts the SEL line. After a delay, it then has control of the bus.

• Selection. In this state the initiator selects a target unit and gets the target to carry out a
given function, such as reading or writing data. The initiator outputs the OR value of its
SCSI-ID and the SCSI-ID of the target onto the data bus (for example, if the initiator is 2
and the target is 5 then the OR-ed ID on the bus will be 00100100.). The target then de-
termines that its ID is on the data bus and set the BSY line active. If this does not happen
within a given time then the initiator deactivates the SEL signal, and the bus will be free.
The target determines that it is selected when the SEL signal and its SCSI ID bit are ac-
tive and the BSY and I / O signals are false. It then asserts the BSY signal within a selec-
tion abort time.

• Reselection. When the arbitration phase is complete, the winning SCSI device asserts the
BSY and SEL signals and has delayed at least a bus clear delay plus a bus settle delay.
The winning SCSI device sets the DATA BUS to a value that is the logical OR of its
SCSI ID bit and the initiator’s SCSI ID bit. Sometimes the target takes some time to reply
to the initiators request. The initiator determines that it is reselected when the SEL and
I / O signals and its SCSI ID bit are true and the BSY signal is false. The reselected initia-
tor then asserts the BSY signal within a selection abort time of its most recent detection
of being reselected. An initiator does not respond to a reselection phase if other than two
SCSI ID bits are on the data bus. After the target detects that the BSY signal is true, it
also asserts the BSY signal and waits a given time delay and then releases the SEL signal.
The target may then change the I / O signal and the data bus. After the reselected initiator
detects the SEL signal is false, it releases the BSY signal. The target continues to assert
the BSY signal until it gives up the SCSI bus.

• Command. The command phase is used by the target to request command information
from the initiator. The target asserts the C / D signal and negates the I / O and MSG sig-
nals during the REQ / ACK handshake(s) of this phase.

• Data. The data phase covers both the data in and data out phases. In the data in phase the
target requests that data be sent to the initiator from the target. For this purpose the target
asserts the I / O signal and negates the C / D and MSG signals during the REQ / ACK
handshake(s) of this phase. In the data out phase, the target requests that data be sent
from the initiator to the target. The target negates the C / D , I / O and MSG signals during
the REQ / ACK handshake(s) of this phase.

SCSI 163

• Message. The message phase covers both the message out and message in phase. The
first byte transferred in either of these phases can be either a single-byte message or the
first byte of a multiple-byte message. Multiple-byte messages are completely contained
within a single message phase.

• Status. The status phase allows the target to request that status information be sent from
the target to the initiator. The target shall assert the C / D and I / O signals and negate the
MSG signal during the REQ / ACK handshake of this phase.

Typical times are:

• Arbitration delay, 2–4 µs. This is the minimum time that a SCSI device waits from assert-

ing BSY for arbitration until the data bus can be examined to see if arbitration has been
won.

• Power-on to selection time, 10 s. This is the maximum time from power start-up until a
SCSI target is able to respond with appropriate status and sense data.

• Selection abort time, 200 µs. This is the maximum time that a target (or initiator) takes
from its most recent detection of being selected (or reselected) until asserting a BSY re-
sponse. This is required to ensure that a target (or initiator) does not assert BSY after a se-
lect (or reselection) phase has been aborted.

• Selection time-out delay, 250ms. The minimum time that a SCSI device should wait for a
BSY response during the selection or reselection phase before starting the time-out pro-
cedure.

• Disconnection delay, 200µs. The minimum time that a target shall wait after releasing
BSY before participating in an arbitration phase when honouring a disconnect message
from the initiator.

• Reset hold time, 25µs. The minimum time for which RST is asserted.

The signals C / D , I / O , and MSG distinguish between the different information transfer
phases, as summarised in Table 7.5 (where a 1 identifies an active signal and a 0 identifies a
false signal). The target drives these three signals and therefore controls all changes from one
phase to another. The initiator can request a message out phase by asserting the ATN signal,
while the target can cause the bus free phase by releasing the MSG , C / D , I / O , and BSY
signals.

Table 7.5 Information transfer phases

MSG C / D I / O Phase Direction
0 0 0 Data out Initiator→target
0 0 1 Data in Initiator←target
0 1 0 Command Initiator→target
0 1 1 Status Initiator←target
1 0 0 – –
1 0 1 – –
1 1 0 Message out Initiator→target
1 1 1 Message in Initiator←target

164 Computer busses

The information transfer phases use one or more REQ / ACK handshakes to control the infor-
mation transfer. Each REQ / ACK handshake allows the transfer of one byte of information.
During the information transfer phases the BSY signal shall remain true and the SEL signal
shall remain false. Additionally, during the information transfer phases, the target shall con-
tinuously envelope the REQ / ACK handshake(s) with the C / D , I / O and MSG signals in
such a manner that these control signals are valid for a bus settle delay before the assertion of
the REQ signal of the first handshake and remain valid until after the negation of the ACK
signal at the end of the handshake of the last transfer of the phase.
 The I / O signal allows the target to control the direction of information, when its I / O
signal is true then the information is transferred from the target to the initiator and when
false, the transfer is from the initiator to the target.
 The handshaking operation for a transfer to the initiator is as follows:

• The I / O signal is asserted as a true.
• The target sets the data bus lines.
• The target asserts the REQ signal.
• The initiator reads the data bus.
• The initiator then indicates its acceptance of the data by asserting the ACK signal.
• The target may change or release the data bus.
• The target negates the REQ signal.
• The initiator shall then negate the ACK signal.
• The target may continue the transfer by driving the data bus and asserting the REQ signal,

and so on.

The handshaking operation for a transfer from the initiator is as follows:

• The I / O signal is asserted as a false.
• The target asserts the REQ signal (requesting information).
• The initiator sets the data bus lines.
• The initiator asserts the ACK signal.
• The target then reads the data bus.
• The target negates the REQ signal (acknowledging transfer).
• The initiator may then set the data bus, and so on.

7.5 SCSI pointers

SCSI provides for three pointers for each I/O process (called saved pointers), for command,
data and status. When an I/O process becomes active, its three saved pointers are copied into
the initiator’s set of three current pointers. These current pointers point to the next command,
data or status byte to be transferred between the initiator’s memory and the target.

SCSI 165

7.6 Message system description

The message system allows the initiator and the target to communicate over the interface
connection. Each message can be one, two, or multiple bytes in length. In a single message
phase, one or more messages can be transmitted, (but a message cannot be split between
multiple message phases). Table 7.6 lists the message format, where the first byte of the mes-
sage determines the format. The initiator ends the message out phase (by negating ATN)
when it sends certain messages identified in Table 7.7.
 Single-byte messages consist of a single byte transferred during a message phase. Table
7.7 defines the message type.

Table 7.6 Message format

Value Message format
00h One byte message (command complete)
01h Extended messages
02h–1Fh One-byte messages
20h–2Fh Two-byte messages
30h–7Fh Reserved
80h–FFh One-byte message (identify)

Table 7.7 Message codes

Code Message Direction Description
00h Command complete In Sent from a target to an initiator to indicate that

the execution of an I/O process has completed
and that valid status has been sent to the initia-
tor. After successfully sending this message,
the target shall go to the bus free phase by re-
leasing the BSY signal. The target considers
the message transmission to be successful when
it detects the negation of ACK for the com-
mand complete message with the ATN signal
false.

03h Restore pointers

In

04h Disconnect In/Out Sent from a target to inform an initiator that the
present connection is going to be broken (the
target plans to disconnect by releasing the BSY
signal), but that a later reconnect will be re-
quired in order to complete the current I/O
process. This message shall not cause the initia-
tor to save the data pointer. After successfully
sending this message, the target shall go to the
bus free phase by releasing the BSY signal.
The target shall consider the message transmis-
sion to be successful when it detects the nega-
tion of the ACK signal for the disconnect mes-
sage with the ATN signal false.

166 Computer busses

05h Initiator-detected
error

Out

06h Abort Out Sent from the initiator to the target to clear any
I/O process. The target goes to the bus-free
phase following successful receipt of this mes-
sage.

07h Message reject Out Sent from either the initiator or target to indi-
cate that the last message or message byte it
received was inappropriate or has not been
implemented.

08h No operation Out Sent from an initiator in response to a target’s
request for a message when the initiator does
not currently have any other valid message to
send.

09h Message parity error Out

0Ah Linked command
complete

In

0Bh Linked command
complete (with flag)

In

0Ch Bus device reset Out Sent from an initiator to direct a target to clear
all I/O processes on that SCSI device. This
message forces a hard reset condition to the
selected SCSI device.

0Dh Abort tag Out

0Eh Clear queue Out

0Fh Initiate recovery In/Out

10h Release recovery Out

11h Terminate I/O
process

Out

12h–1Fh

Reserved

23h Ignore wide residue
(2 bytes)

24h–2Fh Reserved for two-
byte messages

30h–7Fh

Reserved

80h–FFh Identify In/Out

SCSI 167

7.7 SCSI commands

A command is sent from the initiator to the target. The first byte of all SCSI commands con-
tains an operation code, followed by a command descriptor block and finally the control
byte.
 The format of the command descriptor block for 6-byte commands is:

• Byte 0 – operation code.
• Byte 1 – logical unit number (MSB, if required).
• Byte 2 – logical bock address.
• Byte 3 – logical bock address (LSB, if required).
• Byte 4 – transfer length (if required) / Parameter list length (if required) / allocation

 length (if required).
• Byte 5 – control.

7.7.1 Operation code

Figure 7.2 shows the operation code of the command descriptor block. It has a group code
field and a command code field. The 3-bit group code field provides for eight groups of com-
mand codes and the 5-bit command code field provides for 32 command codes in each
group.
 The group code specifies one of the following groups:

• Group 0 – 6-byte commands.
• Group 1/2 – 10-byte commands.
• Group ¾ – reserved.
• Group 5 – 12-byte commands.
• Group 6/7 – vendor-specific.

b7 b6 b5 b4 b3 b2 b1 b0

Command codeGroup code

Figure 7.2 Operation code

7.7.2 Logical unit number

The logical unit number (LUN) is defined in the identify message. The target ignores the
LUN specified within the command descriptor block if an identify message was received
(normally the logical unit number in the command descriptor block to be set to zero).

7.7.3 Logical block address

The logical block address (LBA) on logical units or within a partition on device volumes
begins with block zero and is contiguous up to the last logical block on that logical unit or
within that partition.
 A 10-byte and a 12-byte command descriptor blocks contain 32-bit logical block ad-
dresses, whereas a 6-byte command descriptor block contains a 21-bit logical block address.

168 Computer busses

7.7.4 Transfer length

The transfer length field specifies the amount of data to be transferred (normally the number
of blocks). For several commands the transfer length indicates the requested number of bytes
to be sent as defined in the command description. A command that uses 1 byte for the trans-
fer length will thus allow up to 256 blocks of data for one command (a value of 0 identifies a
transfer bock of 256 blocks).

7.7.5 Parameter list length

The parameter list length specifies the number of bytes to be sent during the data-out phase.
It is typically used in command descriptor blocks for parameters that are sent to a target
(such as, mode parameters, diagnostic parameters, log parameters, and so on).

7.7.6 Allocation length

The allocation length field specifies the maximum number of bytes that an initiator has allo-
cated for returned data. The target terminates the data in phase when allocation length bytes
have been transferred or when all available data have been transferred to the initiator, which-
ever is less. The allocation length is used to limit the maximum amount of data (for example,
sense data, mode data, log data, diagnostic data, and so on) returned to an initiator.

7.7.7 Control field

The control field is the last byte of every command descriptor block. Its format is shown in
Figure 7.3. The flag bit specifies which message the target returns to the initiator if the link
bit is a 1 and the command completes without error. If the link bit is 0 then the flag bit
should be a 0, else the target returns check condition status.

b7 b6 b5 b4 b3 b2 b1 b0

LinkFlagReservedVendor-
specific

Figure 7.3 Control field

7.7.8 Command code

Commands for all device types are (bold type identifies the mandatory commands and the
operation code is given in brackets):

• Change definition (40h). This command modifies the operating definition of the selected

logical unit or target with respect to commands from the selecting initiator or for all ini-
tiators.

• Compare (39h). This command allows for a compare operation of data on one logical unit
with another or the same logical unit in a manner similar to the copy command.

• Copy (18h). This command allows the copying of data from one logical unit to another or
the same logical unit. The logical unit that receives and performs the copy command is
the copy manager. It is responsible for copying data from the source device to the desti-
nation device.

• Copy and compare (3Ah). This command performs the same function as the COPY

SCSI 169

command, except that a verification of the data written to the destination logical unit is
performed after the data is written.

• Inquiry (12h). This command requests that information regarding parameters of the target
and its attached peripheral device(s) be sent to the initiator.

• Log select (4Ch). This command provides a means for the initiator to manage statistical
information maintained by the device about the device or its logical units. Targets that
implement the log select command shall also implement the log sense command. Struc-
tures in the form of log parameters within log pages are defined as a way to manage the
log data. The log select command provides for sending zero or more log pages during a
data out phase.

• Log sense (4Dh). This command allows the initiator to retrieve statistical information
maintained by the device about the device or its logical units. It is a complementary
command to the log select command.

• Mode select (15h). This command provides a means for the initiator to specify medium,
logical unit, or peripheral device parameters to the target. Targets that implement the
mode select command shall also implement the mode sense command.

• Mode sense (1Ah). This command allows a target to report parameters to the initiator and
is a complementary command to the mode select command.

• Read buffer (3Ch). This command is used in conjunction with the write buffer command
as a diagnostic function for testing target memory and the SCSI bus integrity.

• Receive diagnostic results (1Ch). This command requests analysis data be sent to the ini-
tiator after completion of a send diagnostic.

• Send diagnostic (1Dh). This command requests the target to perform diagnostic opera-
tions on itself, on the logical unit, or on both.

• Test unit ready (00h). This command provides a means to check if the logical unit is
ready. This is not a request for a self-test. If the logical unit would accept an appropriate
medium-access command without returning check condition status, this command shall
return a good status.

• Write buffer (3Bh). This command is used in conjunction with the read buffer command
as a diagnostic for testing target memory and the SCSI bus integrity.

7.8 Status

The status phase normally occurs at the end of a command (although in some cases may oc-
cur before transferring the command descriptor block). Figure 7.4 shows the format of the
status byte and Table 7.8 defines the status byte codes. This status byte is sent from the target
to the initiator during the status phase at the completion of each command unless the com-
mand is terminated by one of the following events:

• Abort message.
• Abort tag message.
• Bus device reset message.
• Clear queue message.
• Hard reset condition.
• Unexpected disconnect.

170 Computer busses

b7 b6 b5 b4 b3 b2 b1 b0

ReservedStatus byte codeReserved

Figure 7.4 Status field

Table 7.8 Status byte codes

Bit values of status byte Status Description
7 6 5 4 3 2 1 0
R R 0 0 0 0 0 R Good Indicates that the target has successfully completed the

command.

R R 0 0 0 0 1 R Check
condition

Indicates that a contingent allegiance condition has oc-
curred.

R R 0 0 0 1 0 R Condition met This status or INTERMEDIATE-CONDITION MET is
returned whenever the requested operation is satisfied.

R R 0 0 1 0 0 R Busy Indicates that the target is busy. This status shall be re-
turned whenever a target is unable to accept a command
from an otherwise acceptable initiator (that is, no reserva-
tion conflicts).

R R 0 1 0 0 0 R Immediate This status or INTERMEDIATE-CONDITION MET
shall be returned for every successfully completed com-
mand in a series of linked commands (except the last
command).

R R 0 1 0 1 0 R Immediate-
condition met

This status is the combination of the CONDITION MET
and INTERMEDIATE status’s.

R R 0 1 1 0 0 R Reservation
conflict

This status occurs whenever an initiator attempts to ac-
cess a logical unit that is reserved with a conflicting res-
ervation type for another SCSI device.

R R 1 0 0 0 1 R Command
conflict

This status occurs whenever the target terminates the
current I/O process after receiving a TERMINATE I/O
PROCESS message.

R R 1 0 1 0 0 R Queue full This status shall be implemented if tagged queuing is
implemented.

R R R R R R R R Reserved

SCSI 171

7.9 Exercises

7.9.1 What is the maximum number of devices that can connect to a standard SCSI bus:

 (a) 1 (b) 4
 (c) 7 (d) 8

7.9.2 How many data bits does the SCSI-I bus use:

 (a) 8 (b) 16
 (c) 32 (d) 64

7.9.3 How many data bits does the SCSI-II fast/wide bus use:

 (a) 8 (b) 16
 (c) 32 (d) 64

7.9.4 How is device priority implemented on the SCSI bus:

 (a) by active polling (b) by interrupt priority
 (c) by brute force (d) by unit IDs

7.9.5 What method does the SCSI bus use to prevent devices from hogging the bus:

 (a) Time-outs (b) Interrupts
 (c) Active polling (d) Memory mapping

7.9.6 The transfer clock for a SCSI bus is 20 MHz. Which is the transfer rate for a 16-bit

data bus:

 (a) 10 MB/s (b) 20 MB/s
 (c) 40 MB/s (d) 80 MB/s

7.9.7 Explain the main differences between SCSI-I, SCSI-II and ultra SCSI. Outline

their maximum data throughput, the connectors used and the size of their data bus-
ses. Also, outline some of the advantages of SCSI over busses such as the ISA
bus.

7.9.8 State the SCSI lines that are used for simple error detection. Why is it not possible

to detect which bits are in error?

7.9.9 Discuss the main system lines that are used in the SCSI bus and the operation of

OR-tied driven signals.

7.9.10 Outline the main phases that the initiator and target go through in setting up a con-

nection. Also, outline the importance of device time-outs for the different SCSI
phases.

172 Computer busses

7.9.11 Discuss how the MSG , C / D and I / O signals are used to set up different transfer
phases.

7.9.12 Explain how SCSI uses the SCSI-ID address to set up a device priority system.

7.9.13 Discuss the usage of the message phase in SCSI and cite typical examples of its

usage.

7.9.14 Discuss the usage of the command phase in SCSI and cite typical examples of its

usage.

7.9.15 Discuss the usage of the status phase in SCSI and cite typical examples.

7.10 Notes from the author

Well I did it. I covered SCSI in a single chapter. It wasn’t easy, but its here. SCSI is a mas-
sive area, and one which could fill this book three or four times over. So, as I do not have
enough space for the full specification, I’ve tried to give a flavour of the bus.
 SCSI’s full grown-up name is the small computer systems interface. It is difficult to define
exactly what a small computer system is1, but SCSI has outgrown its original application of
interfacing to ‘small’ systems and to external disk drives. It now has the potential of being
able to interface virtually any external peripheral to a system. It can also be used to connect
devices internally within a system. Typically, it takes a bit longer to initially boot the system,
but once it has, it should be as reliable as any non-SCSI device.
 An important concept in SCSI is the prioritisation of devices using SCSI IDs. Few busses
allow the system to prioritise peripherals. Thus, in a properly configured system, fast devices
which require to be quickly serviced will always get access onto the bus before slow devices
which do not require fast servicing. Unfortunately, the method SCSI uses limits the number
of devices to one less than the number of bits on the data bus (seven for an 8-bit data bus and
15 for a 16-bit data bus). In most cases, this is not a major problem. For example, two hard
disks, two CD-ROM drives, a tape backup system, a zip drive and a midi keyboard could all
be attached to a standard SCSI-I bus.
 In most PCs the IDE drive is still used in the majority of systems, as it is relatively easy to
set up and its cheap. It is also dedicated to interfacing to the disk drives; thus, no other pe-
ripheral can hog the disk drive bus. However, for most general-purpose applications, SCSI is
best. New standards for SCSI give a 16-bit data bus, at a transfer rate of 20 MHz, giving a
maximum data throughput of 40 MB/s, which is much faster than IDE. It is also much easier
to configure a SCSI system than it is connecting peripherals internally in a PC. A SCSI sys-
tem only requires a single interrupt line, for all the devices that are connected.
 Ask someone who has set up a Unix network, or who has configured an Apple computer,
and they will tell you that there is little to beat a well set up SCSI bus. It’s reliable, and it is
easy-to-upgrade.

1 Probably, ‘small computer’ means ‘not a mainframe computer’ or ‘a less powerful com-

puter’. One must remember that SCSI was developed at a time when mainframe com-
puters were kings and PCs were seen as glorified typewriters.

PCMCIA

8.1 Introduction

The Personal Computer Memory Card International Association (PCMCIA) interface allows
small thin cards to be plugged into laptop, notebook or palmtop computers. It was originally
designed for memory cards (Version 1.0) but has since been adopted for many other types of
adapters (Version 2.0), such as fax/modems, sound cards, local area network cards, CD-
ROM controllers, digital I/O cards, and so on. Most PCMCIA cards comply with either
PCMCIA Type II or Type III. Type I cards are 3.3 mm thick, Type II take cards up to 5 mm
thick, Type III allows cards up to 10.5 mm thick. A new standard, Type IV, takes cards
which are greater than 10.5 mm. Type II interfaces can accept Type I cards, Type III accept
Types I and II and Type IV interfaces accept Types I, II and III.
 The PCMCIA standard uses a 16-bit data bus (D0–D15) and a 26-bit address bus (A0–
A25), which gives an addressable memory of 226 bytes (64 MB). The memory is arranged as:

• Common memory and attribute memory, which gives a total addressable memory of

128 MB.
• I/O addressable space of 65 536 (64 k) 8-bit ports.

The PCMCIA interface allows the PCMCIA device to map into the main memory or into the
I/O address space. For example, a modem PCMCIA device would map its registers into the
standard COM port addresses (such as 3F8h–3FFh for COM1 or 2F8h–2FF for COM2). Any
accesses to the mapped memory area will be redirected to the PCMCIA rather that the main
memory or I/O address space. These mapped areas are called windows. A window is defined
with a START address and a LAST address. The PCMCIA control register contains these
addresses.

8.2 PCMCIA signals

Table 8.1 shows the pin connections. The main PCMCIA signals are:

• A25–A0, D15–D0 – data bus (D15–D0) and a 26-bit memory address (A25–A0) or 16-bit

I/O memory address (A15–A0).
• 1 DETECT CARD , CARD DETECT 2 – used to detect if a card is present in a socket. When a

card is inserted one of these lines is pulled to a low level.

8

174 Computer busses

Table 8.1 PCMCIA connections

Pin Signal Pin Signal Pin Signal Pin Signal
 1 GND 18 Vpp1 35 GND 52 Vpp2
 2 D3 19 A16 36 See below 53 A22
 3 D4 20 A15 37 D11 54 A23
 4 D5 21 A12 38 D12 55 A24
 5 D6 22 A7 39 D13 56 A25
 6 D7 23 A6 40 D14 57 RFU
 7 CARD ENABLE 1 24 A5 41 D15 58 RESET
 8 A10 25 A4 42 See below 59 WAIT

 9 OUTPUT ENABLE 26 A3 43 REFRESH 60 INPACK
10 A11 27 A2 44 IOR 61 REGISTER SELECT
11 A9 28 A1 45 IOW 62 SPKR
12 A8 29 A0 46 A17 63 STSCHG
13 A13 30 D0 47 A18 64 D8
14 A14 31 D1 48 A19 65 D9
15 See below 32 D2 49 A20 66 D10
16 BUSY/READY 33 IOIS16 50 A21 67 CARD DETECT 2
17 +5V 34 GND 51 +5V 68 GND

Pin 15 WRITE ENABLE / PROGRAM Pin 33 IOIS16 (Write Protect)
Pin 36 CARD DETECT 1 Pin 42 2 ENABLE CARD

• CARD ENABLE 1 , 2 ENABLE CARD – used to enable the upper 8-bits of the data bus

(CARD ENABLE 1) and/or the lower 8 bits of the data bus (2 ENABLE CARD).
• OUTPUT ENABLE – set low by the computer when reading data from the PCMCIA unit.
• REGISTER SELECT – set high when accessing common memory or a low when accessing

attribute memory.
• RESET – used to reset the PCMCIA card.
• REFRESH – used to refresh PCMCIA memory.
• WAIT – used by the PCMCIA device when it cannot transfer data fast enough and re-

quests a wait cycle.
• WRITE ENABLE / PROGRAM – used to program the PCMCIA device.
• Vpp1, Vpp2 – programming voltages for flash memories.
• BUSY/READY – used by the PCMCIA card when it is ready to process more data (when a

high) or is still occupied by a previous access (when it is a low).
• IOIS16 – used to indicate the state of the write-protect switch on the PCMCIA card. A

high level indicates that the write-protect switch has been set.
• INPACK – used by the PCMCIA card to acknowledge the transfer of a signal.
• IOR – used to issue an I/O read access from the PCMCIA card (must be used with an

active REGISTER SELECT signal).
• IOW – used to issue an I/O write access to the PCMCIA card (must be used with an ac-

tive REGISTER SELECT signal).
• SPKR – used by PCMCIA card to send audio data to the system speaker.
• STSCHG – used to identify that the card has changed its status.

PCMCIA 175

8.3 PCMCIA registers

A typical PCMCIA interface controller (PCIC) is the 82365SL. Figure 8.1 shows the main
registers for the first socket. The second socket index values are simply offset by 40h. Figure
8.2 shows that the base address of the PCIC is, in Windows, set to 3E0h, by default. Figure
8.3 shows an example of a FIRST and LAST memory address. The PCIC is accessed using
two addresses: 3E0h and 3E1h. The I/O windows 0/1 are accessed through:

• 08h/0Ch for the low byte of the FIRST I/O address.
• 09h/0Dh for the high byte of the FIRST I/O address.
• 0Ah/0Eh for the high byte of the LAST I/O address.
• 0Bh/0Fh for the high byte of the LAST I/O address.

The registers are accessed by loading the register index into 3E0h and then the indexed regis-
ter is accessed through the 3E1h. The memory windows 0/1/2/3/4 are accessed through:

• 10h/18h/20h/28h/30h for the low byte of the FIRST memory address.
• 11h/19h/21h/29h/31h for the high byte of the FIRST memory address.
• 12h/1Ah/22h/2Ah/32h for the low byte of the LAST memory address.
• 13h/1Bh/23h/2Bh/33h for the high byte of the LAST memory address.
• 14h/1Ch/24h/2Ch/34h for the low byte of the card offset.
• 15h/1Dh/25h/2Dh/35h for the high byte of the card offset.

PCIC identification

Interface status

Power supply (RESETDRV)

Interrupt control

Card status change

Configuration

Memory window enable

I/O window control

FIRST setup for I/O window 0 (lo)

00h

01h

02h

03h

04h

05h

06h

07h

08h

09h

0Ah

0Bh

0Ch

FIRST setup for I/O window 0 (hi)

LAST setup for I/O window 0 (lo)

LAST setup for I/O window 0 (hi)

FIRST setup for I/O window 1 (lo)

FIRST setup for I/O window 1 (hi)

LAST setup for I/O window 1 (lo)

LAST setup for I/O window 1 (hi)

0Dh

0Eh

0Fh

10h FIRST setup for memory window 0 (lo)

FIRST setup for memory window 0 (hi)

LAST setup for memory window 1 (lo)

LAST setup for memory window 1 (hi)

11h

12h

13h

Register index

PCIC identification

Interface status

Power supply (RESETDRV)

Interrupt control

Card status change

Configuration

Memory window enable

I/O window control

FIRST setup for I/O window 0 (lo)

00h

01h

02h

03h

04h

05h

06h

07h

08h

09h

0Ah

0Bh

0Ch

FIRST setup for I/O window 0 (hi)

LAST setup for I/O window 0 (lo)

LAST setup for I/O window 0 (hi)

FIRST setup for I/O window 1 (lo)

FIRST setup for I/O window 1 (hi)

LAST setup for I/O window 1 (lo)

LAST setup for I/O window 1 (hi)

0Dh

0Eh

0Fh

10h FIRST setup for memory window 0 (lo)

FIRST setup for memory window 0 (hi)

LAST setup for memory window 1 (lo)

LAST setup for memory window 1 (hi)

11h

12h

13h

Register index

 Figure 8.1 PCMCIA controller status and control registers

176 Computer busses

For example, to load a value of 22h into the Card status change register, the following would
be used:

_outp(0x3E0,5h); /* point to Card status change register */
_outp(0x3E1,22h); /* load 22h into Card status change register */

Figure 8.2 Start and end of shared memory

Figure 8.3 Base address of the PCIC

PCMCIA 177

8.3.1 Window enable register

The window enable register has a register index of 06h (and 46h for the second socket). The
definition of the register is

Bit 7 IOW1 I/O window 1 enable (1)/ disable (0).
Bit 6 IOW0 I/O window 0 enable (1)/ disable (0).
Bit 5 DEC If active (1) MEMCS16 generated from A23–A12, else from A23–A17.
Bit 4 MW4 Memory window 4 enable (1)/ disable (0).
Bit 3 MW3 Memory window 3 enable (1)/ disable (0).
Bit 2 MW2 Memory window 2 enable (1)/ disable (0).
Bit 1 MW1 Memory window 1 enable (1)/ disable (0).
Bit 0 MW0 Memory window 0 enable (1)/ disable (0).

8.3.2 FIRST set up for memory window

The FIRST window memory address is made up of a low byte and a high byte. The format of
the high-byte register is

Bit 7 DS Data bus size: 16-bit (1)/ 8-bit (0).
Bit 6 0WS Zero wait states: no wait states (1)/ additional wait states (0).
Bit 5 SCR1 Scratch bit (not used).
Bit 4 SCR0 Scratch bit (not used).
Bit 3–0 Window start address A23–A20.

The format of the low-byte register is

Bit 7–0 A19–A12. Window start address A19–A12.

8.3.3 LAST set up for memory window

The LAST window memory address is made up of a low byte and a high byte. The format of
the high-byte register is

Bit 7, 6 WS1, WS0 Wait state.
Bit 5, 4 Reserved.
Bit 3–0 A23–A20 Window start address A23–A20.

The format of the low-byte register is

Bit 7–0 Window start address A19–A12.

8.3.4 Card offset set up for memory window

The card offset memory address is made up of a low byte and a high byte. The format of the
high-byte register is

Bit 7 WP Write protection: protected (1)/ unprotected (0).
Bit 6 REG REGISTER SELECT enabled. If set to a 1 then access to attribute

 memory, else common memory.
Bit 5–0 Window start address A25–A20.

178 Computer busses

The format of the low-byte register is

Bit 7–0 Window start address A19–A12

8.3.5 FIRST set up for I/O window

The FIRST window I/O address is made up of a low byte and a high byte. The format of the
high-byte register is

Bit 7–0 A15–A8

The format of the low-byte register is

Bit 7–0 A7–A8

8.3.6 LAST setup for I/O window

The LAST window I/O address is made up of a low byte and a high byte. The format of the
high-byte register is

Bit 7–0 A15–A8.

The format of the low-byte register is

Bit 7–0 A7–A8

8.3.7 Control register for I/O address window

The control register for the I/O address window is made up from a single byte. Its format is

Bit 7, 3 WS1, WS0 Wait states for window 1 and 0.
Bit 6, 2 0WS1, 0WS0 Zero wait states for window 1 and 0.
Bit 5, 1 CS1, CS0 IOIS16 source. Select IOIS16 from PC (1) or select
 data size from DS1 and DS0 (0).
Bit 4, 0 DS1, DS0. Data size: 16-bit (1)/ 8-bit (0).

8.3.8 Examples

A typical application of the PCMCIA socket is to use it for a modem. This is an example of a
program to set up a modem on the COM2 port. For this purpose, the socket must be set up to
map into the I/O registers from 02F8h to 02FFh. The following code will achieve this:

/* load 02f8 into FIRST and 02FFh into LAST registers */
_outp(0x3E0,08h); /* point to FIRST low byte */
_outp(0x3E1,f8h); /* load f8h into FIRST low byte */
_outp(0x3E0,09h); /* point to FIRST high byte */
_outp(0x3E1,02h); /* load 02h into FIRST high byte */

_outp(0x3E0,0Ah); /* point to LAST low byte */
_outp(0x3E1,ffh); /* load ffh into LAST low byte */

_outp(0x3E0,0Bh); /* point to LAST high byte */
_outp(0x3E1,02h); /* load 02h into LAST high byte */

/*setup control register: no wait states, 8-bit data access */

PCMCIA 179

_outp(0x3E0,07h); /* point to I/O Control register */
_outp(0x3E1,00h); /* load 00h into register */

/* enable window 0 */
_outp(0x3E0,06h); /* point to memory enable window */
_outp(0x3E1,04h); /* load 0100 0000b to enable I/O window 0 */

8.4 Exercises

8.4.1 How many data bits does the PCMCIA bus have:

 (a) 8 (b) 16 (c) 24 (d) 32

8.4.2 How are devices typically added to the system:

 (a) They are mapped into the I/O memory address
 (b) They directly into the physical address of the system
 (c) They use polled interrupts
 (d) They interface to a main controller

8.4.3 What is the base address of the registers that are used to program the PCMCIA

device:

 (a) 1E0h (b) 2E0h
 (c) 3E0h (d) 4E0h

8.4.4 Prove that the maximum address memory with PCMCIA is 64 MB.

8.4.5 Explain how I/O registers are used to program the PCMCIA device.

8.4.6 Show the lines of C code that would be required to mount a primary serial port

(3F8h–3FFh) and an ECP printer port (378h–37Ah).

8.4.7 Show the lines of C code that would be required to mount a primary (1F0h–1F7h)

and a secondary hard disk (170h–177h).

8.4.8 How would the programming for extra memory differ from an isolated I/O device.

8.5 Notes from the author

PCMCIA devices – To save paper, I’ve got seven lines to tell you about them. Well, in sum-
mary, they’re really good, but tend to be relatively expensive. Their principle use is to add a
network adapter or a modem to a notebook computer. They are typically not used to add to
the memory of the notebook or to increase its hard disk space (an internal upgrade is much
better for these). Personally, I find them a little too thin, and I do not believe they can get all
the required electronics into them (but I remember when simple logic ICs, like AND and OR
gates, were as big as your thumb and they could heat it if you required).

USB and Firewire

9.1 Introduction

The PC is now evolving into a powerful system through:

• Microprocessor developments.
• Improved graphics systems, such as AGP.
• The PCI bus architecture, especially the PCI bridge.
• Improved plug-and-play technology and automated set-up. The USB port aids in its ease

of connection.

USB (Universal Serial Bus) allows for the connection of medium bandwidth peripherals such
as keyboards, mice, tablets, modems, telephones, CD-ROM drives, printers and other low to
moderate speed external peripherals in a tiered-star topology. Its basic specification is:

• Isochronous (‘continuous’) transfers which supports audio and video. With isochronous

data transfers, devices transmit and receive data in a guaranteed and predictable fash-
ion. USB also supports non-isochronous devices (the highest priority), and both
isochronous and non-isochronous can exist at the same time.

• Standardised industry-wide plug-and-play specification, cables and connections.
• Multiple-tiered hubs with almost unlimited expansion (with up to 127 physical de-

vices), and concurrent operations.
• 12 Mbps transfer rate and different packet sizes. It supports many device bandwidth

requirements from a few kbps to 12 Mbps.
• Wide range of device data rates by accommodating packet buffer size and latencies.
• A hot-plug capability which allows peripherals to be connected without powering down

the computer. Dynamically attachable and reconfigurable peripherals.
• Enhanced power management with system hibernation and sleep modes.
• Self-identifying peripherals, automatic mapping of function to driver and configuration.
• Support for compound devices which have multiple functions.
• Flow control for buffer handling built into protocol.
• Error handling/fault recovery mechanism.
• Support for identification of faulty devices.
• Simple protocol to implement and integrate.

9

182 Computer busses

USB is a balanced bus architecture which hides the complexity of the operation from the
devices connected to the bus. The USB host controller controls system bandwidth. Each de-
vice is assigned a default address when the USB device is first powered or reset. Hubs and
functions are assigned a unique device address by USB software.
 Typical examples of USB connected devices are:

• Digital speakers/ microphones.
• Joysticks.
• Scanners/ modems/ printers/ monitors.
• Game controllers/ graphics tablets.
• Video conferencing cameras.
• Musical interfaces, such as MIDI.

9.2 USB

9.2.1 Physical USB connection

USB uses a four-wire cable to connect to devices. One pair of the twisted-pair lines gives the
differential data lines (D+ and D–), while the other two gives a 5 V and a GND supply rail, as
given in Table 9.1.
 Data transfer rate is up to 12 Mbps, with a 1.5 Mbps subchannel for low-data-rate devices
(such as a mouse). A single unit can connect directly to the PC, but a hub is required when
more than one device is connected. Each peripheral can extend up to 5 m from each hub con-
nection, with a maximum of 127 different devices to a single PC.

Table 9.1 USB connections

Pin Name Description
1 VCC +5 VDC
2 D– Data–
3 D+ Data+
4 GND Ground

9.2.2 Bus protocol

Each bus transaction involves the transmission of up to three packets. These are

• Token packet transmission – on a scheduled basis, the host controller sends a USB

packet which describes the type and direction of a transaction, the USB device address
and endpoint number. The addressed USB device selects itself by decoding the appropri-
ate address fields.

• Data packet transmission – the source of the transaction then sends a data packet, or in-
dicates it has no data to transfer.

• Handshake packet transmission – destination device responds with a handshake packet to
indicate whether the transfer was successful.

USB and firewire 183

USB supports two types of transfers: stream and message. A stream has no defined structure,
whereas a message does. At start-up one message pipe, Control Pipe 0, always exists as it
provides access to the device’s configuration, status and control information.
 The USB protocol supports hardware or software error handling. In hardware error han-
dling the host controller retries three times before informing the client software of the error.
 Each packet includes a CRC field which detects all single and double bit errors, as well
as many multibit errors. Typically error conditions are short term.
A major advantage of USB is the hot attachment and detachment of devices. USB does this
by sensing when a device is attached or detached. When this happens, the host system is no-
tified, and system software interrogates the device. It then determines its capabilities, and
automatically configures the device. All the required drivers are then loaded and applications
can immediately make use of the connected device.

9.2.3 Data transfers types

USB optimizes large data transfers and real-time data transfers. When a pipe is established
for an endpoint, most of the pipe’s transfer characteristics are determined and remain fixed
for the lifetime of the pipe. Transfer characteristics that can be modified are described for
each transfer type.
 USB defines four transfer types:

• Control transfers – bursty, non-periodic, host software initiated request/response com-

munication typically used for command/status operations.
• Isochronous transfers – periodic, continuous communication between host and device

typically used for time relevant information. This transfer type also preserves the con-
cept of time encapsulated in the data. This does not imply, however, that the delivery
needs of such data are always time critical.

• Interrupt transfers – small data, non-periodic, low frequency, bounded latency, device
initiated communication typically used to notify the host of device service needs.

• Bulk transfers – non-periodic, large bursty communication typically used for data that
can use any available bandwidth and also is delayed until bandwidth is available.

9.2.4 USB implementation

There are two main ways to implement USB. These are:

• OHCI (open host controller interface). This method defines the register level inter-
face that enables the USB controller to communicate with the host computer and the op-
erating system. OHCI is an industry-standard hardware interface for operating systems,
device drivers, and the basic input output system (BIOS) to manage the USB. It opti-
mises performance of the USB bus while minimising central processing unit (CPU)
overhead to control the USB. Its main features are:

• Scatter/gather bus master hardware support reduces CPU overhead to handle multiple
data transfers across the USB.

• Efficient isochronous data transfers allow for high USB bandwidth without slowing
down the host CPU.

• Assurance of full compatibility with all USB devices.

184 Computer busses

• UHCI (universal host controller interface). This method defines how the USB control-
ler talks to the host computer and its operating system. It is optimised to minimise host
computer design complexity and uses the host CPU to control the USB bus. Its main fea-
tures are:

• Simple design reduces the transistor count required to implement the USB inter-
face on the host computer, thus reducing system cost.

• Assurance of full compatibility with all USB devices.

The PCI bridge device (PIIX3/PIIX4) contains a USB host controller (HC) with a root hub
with two USB ports. This allows two USB peripheral devices to directly communicate with
the PCI bridge without an external hub. When more than two USB devices require to be con-
nected then an external hub can be added. The USB’s PCI configuration registers are located
in the PCI configuration space.
 The host controller uses the UHCI standard and thus uses UHCI standard software driv-
ers. It basically consists of two parts:

• Host controller driver (HCD). This is the software that manages the host controller
operation and is responsible for scheduling the traffic on USB by posting and maintain-
ing transactions in system memory. It interprets requests from the USBD and builds
frame list, transfer descriptor, queue head, and data buffer data structures for the host
controller. These data structures are built in system memory and contain all necessary
information to provide end-to-end communication between client software in the host
and devices on the USB. The host controller moves data between system memory and
devices on the USB by processing these data structures and generating the transaction
on USB. The host controller executes the schedule lists generated by HCD and reports
the status of transactions on the USB to HCD. Command execution includes generating
serial bus token and data packets based on the command and initiating transmission on
USB. For commands that require the Host Controller to receive data from the USB de-
vice, the host controller receives the data and then transfers it to the system memory
pointed to by the command. The UHCI’s HCD provides sufficient commands and data
to keep ahead of the host controller execution and analyses the results as the commands
are completed.

• Host controller (HC). The host controller interfaces to the USB system software in the
host via the HCD.

Attachment of USB devices

All USB devices attach to the USB via a port on specialised USB devices known as hubs.
Hubs indicate the attachment or removal of a USB device in its per port status. The host que-
ries the hub to determine the reason for the notification. The hub responds by identifying the
port used to attach the USB device. The host enables the port and addresses the USB device
with a control pipe using the USB Default Address. All USB devices are addressed using the
USB Default Address when initially connected or after they have been reset. The host deter-
mines if the newly attached USB device is a hub or a function and assigns a unique USB
address to the USB device. The host establishes a control pipe for the USB device using the
assigned USB address and endpoint number zero. If the attached USB device is a hub and
USB devices are attached to its ports, then the above procedure is followed for each of the

USB and firewire 185

attached USB devices. If the attached USB device is a function, then attachment notifications
will be dispatched by USB software to interested host software.

Removal of USB devices

When a USB device has been removed from one of its ports, the hub automatically disables
the port and provides an indication of device removal to the host. Then the host removes
knowledge of the USB device. If the removed USB device is a hub, the removal process
must be performed for all of the USB devices that were previously attached to the hub. If the
removed USB device is a function, removal notifications are sent to interested host software.

USB host: hardware and software

The USB host interacts with USB devices through the host controller. The host is responsible
for the following:

• Detecting the attachment and removal of USB devices
• Managing control flow between the host and USB devices
• Managing data flow between the host and USB devices
• Collecting status and activity statistics
• Providing a limited amount of power to attached USB devices

USB system software on the host manages interactions between USB devices and host-based
device software. There are five areas of interactions between USB system software and de-
vice software, they are:

• Device enumeration and configuration.
• Isochronous data transfers.
• Asynchronous data transfers.
• Power management.
• Device and bus management information.

Whenever possible, USB software uses existing host system interfaces to manage the above
interactions. For example, if a host system uses Advanced Power Management (APM) for
power management, USB system software connects to the APM message broadcast facility
to intercept suspend and resume notifications.

9.2.5 USB host controller registers

VID (vendor identification register)

Address offset 00–01h
Default value 8086h
Attribute Read only

The VID register contains the vendor identification number. This register, along with the
device identification register, uniquely identifies any PCI device. Writes to this register have
no effect. Bit description 15:0 vendor identification number. This is a 16-bit value assigned
to Intel.

186 Computer busses

DID (device identification register)

Address offset 02–03h
Default value 7112h
Attribute Read only

The DID register contains the device identification number. This register, along with the VID
register, defines the USB host controller.

9.3 Firewire

The main competitor to USB is the Firewire standard (IEEE
1394-1995) which is a high-speed serial bus for desktop peripheral devices, typically
for video transfers. It supports rates of approximately 100, 200 and 400 Mbps, known as
S100, S200 and S400 respectively. Future standards promise higher data rates, and ultimately
it is envisaged that rates of 3.2Gbps will be achieved when optical fibre is introduced into the
system. It is generally more expensive than USB to implement for both the host computer
and peripherals.
 Its main features are:

• 100/200/400 Mbps transfer rate.
• Point-to-point interconnect with a tree topology; 1000 buses with 64 nodes gives 64 000

nodes.
• Automatic configuration and hot plugging.
• Isochronous data transfer, where a fixed bandwidth is dedicated to a particular periph-

eral.
• Maximum cable length of 4.5m.

Firewire also complements USB in that it supports high-speed peripherals, whereas USB
supports low-to-medium speed peripherals. It is an attractive alternative to technologies such
as SCSI and it may provide a universal connection to replace many of the older connectors
normally found at the back of a standard PC. This should subsequently reduce the costs of
production of computer interfaces and peripheral connectors, as well as simplifying the re-
quirements placed on users when setting up their devices. This is made possible by the fol-
lowing features of the IEEE-1394 bus:

• Hot pluggable – devices can be added or removed while the bus is still active.
• Easy to use – there are no terminators, device addressing or elaborate configuration of-

ten associated with technologies like SCSI.
• Flexible topology – devices can be connected together in many configurations, thus the

user need not consider logical locations on the network.
• Fast – suitable for high bandwidth applications.
• Rate mixing – a single cable medium can carry a mix of different speed capabilities at

the same time
• Inexpensive – targeted at consumer devices.

USB and firewire 187

9.3.1 Topology

There are two bus categories:

• Cable. This is a bus which connects external devices via a cable, The cable environment

is a non-cyclic network with finite branches consisting of bus bridges and nodes (cable
devices). Non-cyclic networks contain no loops and results in a tree topology, with de-
vices daisy-chained and branched (where more than one device branch is connected to a
device). Figure 9.1 shows an example of an IEEE-1394 Splitter which has three branches
and the telephone is daisy-chained from the digital camera.
 The finite branches restriction imposes a limit of 16 cable hops between nodes. There-
fore branching should be used to take advantage of the maximum number of nodes on a
bus. 6-bit node addressing allows up to 63 nodes on each bus, while 10-bit bus address-
ing allows up to 1023 buses, interconnected using IEEE-1394 bridges. Devices on the
bus are identified by node IDs. Configuration of the node IDs is performed by the self ID
and tree ID processes after every bus reset. This happens every time a device is added to
or removed from the bus, and is invisible to the user.
 A final restriction is that, using standard cables, the length between nodes is limited to
4.5m. This can be increased by adding repeaters between nodes, but lengths are expected
to improve as work on the standard ensues. Although a PC is shown in Figure 9.1, a
principal advantage of IEEE-1394 is that, unlike USB, no PC is actually required to form
a bus, and devices can talk to each other without intervention from a computer.

• Backplane. This type is an internal bus. An internal IEEE-1394 device can be used
alone, or incorporated into another backplane bus. For example, two pins are reserved
for a serial bus by various ANSI and IEEE bus standards. Implementation of the back-
plane specification lags the development of the cable environment, but one could image
internal IEEE-1394 hard disks in one computer being directly accessed by another
IEEE-1394 connected computer.

PC PC

DVD DVD

IEEE-1394
Splitter

IEEE-1394
splitter

Digital
Camera
Digital

Camera

Printer Printer

TV/Stereo TV/Stereo

Telephone Telephone

Figure 9.1 IEEE-1394 topology example

188 Computer busses

9.3.2 Asynchronous and isochronous transfer

One of the key capabilities of IEEE-1394 is isochronous data transfer. Both asynchronous
and isochronous are supported, and are useful for different applications. Isochronous trans-
mission transmits data like real-time speech and video, both of which must be delivered
uninterrupted, and at the rate expected, whereas asynchronous transmission is used to
transfer data that is not tied to a specific transfer time. With IEEE-1394, asynchronous is the
conventional transfer method of sending data to an explicit address, and receiving
confirmation when it is received. Isochronous, however, is an unacknowledged guaranteed-
bandwidth transmission method, useful for just-in-time delivery of multimedia-type data.
 An isochronous ‘talker’, requests an amount of bandwidth and a channel number. Once
the bandwidth has been allocated, it can transmit data preceded by a channel ID. The
isochronous listeners can then listen for the specified channel ID and accept the data follow-
ing. If the data is not intended for a node, it will not be set to listen on the specific channel
ID. Up to 64 isochronous channels are available, and these must be allocated, along with
their respective bandwidths, by an isochronous resource manager on the bus.
 Figure 9.2 shows an example situation where two isochronous channels are allocated.
These have a guaranteed bandwidth, and any remaining bandwidth is used by pending asyn-
chronous transfers. Thus isochronous traffic takes some priority over asynchronous traffic.
 By comparison, asynchronous transfers are sent to explicit addresses on the 1394 bus
(Figure 9.3). When data is to be sent, it is preceded by a destination address, which each
node checks to identify packets for itself. If a node finds a packet addressed to itself, it copies
it into its receive buffer. Each node is identified by a 16-bit ID, containing the 10-bit bus ID
and 6-bit node or physical ID. The actual packet addressing, however, is 64 bits wide, pro-
viding a further 48 bits for addressing a specific offset within a node’s memory. This ad-
dressing conforms to the control and status register (CSR) bus architecture standard. The
ISO/IEC 13213:1994 minimises the amount of circuitry required by 1394 ICs to interconnect
with standard parallel buses. The 48-bit offset allows for the addressing of 256 terabytes of
memory and registers on each node.

Isochronous channel
#1 time slot

Isochronous channel
#2 time slot

Time slot available for
asynchronous transport

Packet frame = 125 µs

Timing indicator

Isochronous channel
#1 time slot

Isochronous channel
#2 time slot

Time slot available for
asynchronous transport

Packet frame = 125 µs

Timing indicator

Figure 9.2 Bandwidth allocation on the IEEE-1394 bus

USB and firewire 189

Destination ID (16 bits)

Data length (16 bits) Extended tcode (16 bits)

Header CRC (32 bits)

Zero padded bytes (8n bits)

Data CRC (32 bits)

Data field

tl
(6 bits)

rtl
(2 bits)

tcode
(4 bits)

prl
(4 bits)

Destination offset (48 bits)

Source ID (16 bits)

Figure 9.3 Asynchronous write data block payload

9.3.3 IEEE-1394 packet formats
There are a number of different packet formats specified in 1394-1995, however only the
asynchronous block write will be presented here, as it is the main transaction type used
within this project.
 The asynchronous block write is described in the 1394-1995 specification as a packet
type that requests a data block be written to the specified destination address. It is the packet
type used on asynchronous transmits, for a variable length of data.
 The destination_ID field should contain the 16-bit destination node ID, while the destina-
tion_offset field contains the remaining 48 bits required for CSR addressing. The data is sent
in the data field, which can be any quadlet-aligned length up to a maximum given by the
transmission speed. At 200 Mbps, for example, the data field may hold anything from 0 to
1024 bytes, in stages of four bytes. The header information is followed by a CRC (cyclic
redundancy check) for error checking, as is the block of data.

9.3.4 Bus management
Two bus management entities are available in the cable environment: the isochronous re-
source manager and the bus manager. They provide services such as maintaining topology
maps, or acting as a central resource from which bandwidth and channel allocations can be
made. Further information on bus management can be found in the 1394-1995 specification.

9.3.5 Cable
Figure 9.4 shows that the 1394 cable consists of three individually shielded cable pairs.
There are two power lines and two (screened) twisted pairs for data and strobe transmission.

9.3.6 Transmission rates
As already discussed, the cable rate definitions for 1394-1995 are termed S100, S200 and
S400, give actually data rates of 98.304Mbps, 196.608Mbps and 393.216Mbps, respec-
tively. The high data rates are achieved by using differential non-return to zero (nrz), signal-
ling on each shielded twisted pair.

190 Computer busses

Figure 9.4 IEEE-1394 cable and connectors

9.4 Exercises

9.4.1 How many USB ports are available from the host controller on a PC (PIIX3/4):

 (a) 1 (b) 2 (c) 4 (d) 8

9.4.2 Discuss the advantages of USB connected devices over:

 (i) ISA devices (ii) PCI devices
 (iii) Serial/parallel port connected devices

9.4.3 Outline the main difference between isochronous and asynchronous data traffic. In

which applications is it isochronous.

9.4.4 Outline the main types of data transfer on the USB port.

9.4.5 By searching the Internet or a computer catalogue, locate some USB connected

devices.

9.5 Notes from the author

Congratulations go to the USB port. It was the first truly generic, easy-to-use, connection
bus for the PC that has mechanisms for non-real-time (such as printer data) and real-time
data (such as video, audio and speech). It allows for the easy addition and removal of de-
vices from the system, and it also supports hot plugging (adding or removing a device while
the computer is on). Microsoft first supported USB in Windows 95 OSR2, and it has since
become one of the most used ports, for devices such as video cameras, CD-ROM drives,
printers, digital speakers, monitors, and so on. The only problem with USB is that it only
gives a data throughput of 12 Mbps, and thus cannot be used for high-speed devices. Possi-
bly, over time, this rate may be increased, or other faster busses, such as Firewire could be
used for high-speed applications, such as Fast Ethernet, multimedia communications, hard
disk interfaces, and so on.
 The IEEE-1394 specification (or i.LINK) is now being used on some systems (especially
in notebooks). Its adoption as a standard interface device will depend on whether new stan-
dard for the USB specification increase the transfer bit rate to support, at least, 100Mbps.
When the USB port can do this, there will be a lesser need for IEEE-1394.

Games Port, Keyboard and Mouse

10.1 Introduction

PCs have traditionally been difficult to connect to and set up, for reasons such as:

• Different connectors – there are so many different types of connectors for many different
types of devices that connect to the PC. For example, the keyboard uses a 5-pin DIN
plug, the parallel port uses a 25-pin D-type connector, the primary serial port uses a 9-
pin D-type connector, the video adaptor uses a 15-pin D-type connector, and so on. The
future is likely to bring a standardisation of these connectors, possibly with the USB
port.

• Different configurations – typically different peripherals required assigned interrupts
and I/O addresses. For example, the keyboard uses IRQ1 and I/O ports at 60h and 64h.
This is now being overcome by busses such as SCSI and USB, which only require a sin-
gle interrupt and a limited range of addresses. They also cope better with hot plug-and-
play devices and operating system configurable devices.

• Different data traffic rates – relatively low speed interfaces, such as the ISA bus, have
often reduced the rate of other faster busses, such as the PCI bus. This is now being
overcome by the use of bridges and the USB bus.

The games port, the keyboard and the mouse are also relatively slow devices which, in their
standard form, all have different connectors. In the future PCs may standardise these low-
and medium-speed devices on the USB port. The keyboard port and mouse port are now
standard items on a PC, and most PCs now have a games port, which supports up to two joy-
sticks.
 Most PCs support either a PS/2-style mouse or one connected to the serial port (COM1:
or COM2:). The operating system automatically scans all the mouse and keyboard ports to
determine where the mouse is connected to, and whether there is a keyboard connected.
 Typically, these days, a mouse connects to the PS/2 port, which is basically an extension
of the keyboard port. The keyboard connects to either a 5-pin DIN plug, or more typically on
modern PCs to a smaller 5-pin plug. With the smaller connector, the PS/2 mouse and the
keyboard can share the same port (this is typical in new PCs and also for notebooks).

10.2 Games port

The PC was never really designed to provide extensive games support, but as it is so general
purpose, it is now used to run arcade style games. A mouse is well designed for precise

10

192 Computer busses

movements and to select objects, but is not a good device to play games with; thus, a joystick
is typically used. The games port adapter supports up to two joysticks connected to the same
port. It has 15 pins, which are outlined in Table 10.1 and connects to the system via:

• Lower eight bits of the data bus.

• Lower 10 bits of the address bus.

• IOR and IOW .

Table 10.1 Game adapter connections

Pin Description Pin Description
1 +5V 9 +5V
2 1st button for joystick A (BA1) 10 1st button for joystick B (BB1)
3 X-potentiometer of joystick A (AX) 11 X-potentiometer of joystick B (BX)
4 GND 12 GND
5 GND 13 Y-potentiometer of joystick B (BY)
6 Y-potentiometer of joystick A (AY) 14 2nd button for joystick B (BB1)
7 2nd button for joystick A (BA1) 15 +5V
8 +5V

Each joystick has two buttons, which are normally open circuit, and two potentiometers
which give a variable resistance from 0 Ω to 100 kΩ, to indicate the x- and y-position of the
joystick handle. Figure 10.1 shows its connections. An unpressed button corresponds to a
high level and a button press to a low level.

GND

GND

GND

GND

1

9

2

10

3

11

4

12

5

13

6

14

7

15

8

Joystick A Joystick B

BA1

BA2

AX

AY

BB1

BB2 BY

BX

Figure 10.1 Joystick interface

Games port, keyboard and mouse 193

Figure 10.2 Memory map showing Gameport I/O address

The status of the button can be determined by reading the 201h address (see Figure 10.2), its
format is given in Figure 10.3. Thus to test for a button press the upper four bits of the regis-
ter are tested to determine if they are a zero. Figure 10.4 shows a simple C program to test
the status of the buttons.

BB2 BB1 BA2 BA1 BY BX AY AX

Jo
ys

tic
k

B
:

B
u

tt
o

n
 2

Jo
ys

tic
k

B
:

B
u

tt
o

n
 1

Jo
ys

tic
k

A
:

B
u

tt
o

n
 2

Jo
ys

tic
k

B
:

B
u

tt
o

n
 1

Jo
ys

tic
k

B
:

Y
-p

o
te

n
tio

m
e

te
r

st
a

tu
s

Jo
ys

tic
k

B
:

X
-p

o
te

n
tio

m
e

te
r

st
a

tu
s

Jo
ys

tic
k

A
:

Y
-p

o
te

n
tio

m
e

te
r

st
a

tu
s

Jo
ys

tic
k

A
:

X
-p

o
te

n
tio

m
e

te
r

st
a

tu
s

Address: 201h

Figure 10.3 Joystick status register format

The reading of the position of the joystick is a little more difficult. For this an event is
triggered by writing to the status register. This triggers a one-shot multivibrator, the status of
which is given on the lower four bits of the status register, which change from a zero to a one
when it has completed the single-shot. The resistance is given by

()
Ω

−
=

011.0

2.24ìs interval Time
Resistance

194 Computer busses

Figure 10.4 Simple C program to test joystick button status

Thus, the timing values will change from 24.2 µs (for 0 kΩ) to 1.124 ms (for 100 kΩ). A sim-
ple program that determines the time it takes for AX to be set is given next:

2 Program 10.1
#include <stdio.h>
#include <conio.h>

int main(void)
{
unsigned int inval, start1, start2, start, end1, end2, end;

 do
 {
 _outp(0x43,0); /* Specify Counter 0 */

 start1=_inp(0x40); /* get LSB of Counter 0 */
 start2=_inp(0x40); /* get MSB of Counter 0 */

 _outp(0x201,0); /* start one-shot */

 do
 {
 inval=_inp(0x201); /* read button status of joystick */
 } while ((inval & 1)==1); /* wait till set to a 0 */

 _outp(0x43,0); /* Specify Counter 0 */

 end1=_inp(0x40); /* get LSB of Counter 0 */
 end2=_inp(0x40); /* get MSB of Counter 0 */

Games port, keyboard and mouse 195

 start=(start1 &0xff)+((start2 &0xff)<<8);
 end=(end1 & 0xff)+((end2 & 0xff)<<8);

 if (start>end)
 printf("Value = %u\n",start-end);
 else /* roll-over has occurred */
 printf("Value = %u\n",start+(0xffff-end));
 } while (!kbhit()) ;

 return(0);
}

Program 10.1 uses Counter 0 which is loaded from address 40h. It has a 16-bit counter regis-
ter and has a 1.2 MHz clock as its input. It thus rolls-over every 55 ms.
 In a sample test run of the above program the output value varied from 62 to 2740, with a
static value of 1400. The joystick could be easily calibrated with these values, which are the
extremes for either x or y. Note that AY is tested with:

 do
 {
 inval=_inp(0x201); /* read button status of joystick */
 } while ((inval & 2)==1); /* wait till set to a 0 */

and BX is tested with:

 do
 {
 inval=_inp(0x201); /* read button status of joystick */
 } while ((inval & 4)==1); /* wait till set to a 0 */

10.3 Keyboard

Figure 10.5 shows the main connections in the keyboard interface. It uses a 5-pin DIN socket
for the connection. The data is sent from the keyboard to the PC in an 11-bit SDU (serial data
unit) format over the KBD Data line. When a key has been pressed the IRQ1 interrupt line is
activated. The keyboard interface IC scans the keys on the keyboard by activating the X-
decoder lines and then sensing the Y-decoder lines to see if there has been a keypress. It then
decodes this to sense if a key has changed its state. It then converts the keypress or release to
a code which it sends to the keyboard controller on the PC. The format of the code is in the
form of an RS-232 interface with eight data bits, one parity bit, one start bit and one stop bit.
Unlike RS-232, it uses a synchronous transfer where the clock speed is defined by the KDB
clock line.
 It is very unlikely that a programmer would ever need to interface directly with the key-
board, as there are a whole host of standard functions that are well tested and interface well
with the operating system. It is always advisable to use the standard input keyboard func-
tions, over direct interfacing. Typically the operating system takes over control of all input
key presses and sends these to the required process, thus it is not a good idea to interrupt the
flow.

196 Computer busses

X
-D

e
co

d
e

r

Y-Decoder

Scan matrix

K
eyboard

Interface IC
 (K

/B
)

K
eyboard

C
ontroller IC

 (P
C

)

11-bit
SDU
code

IRQ1

D0-D7

(1) KBD Clock

(4) GND

(2) KDB Data

(3) KBD Reset

(5) +5V

Figure 10.5 Keyboard interface

The keyboard uses two I/O addresses. These are shown in Figure 10.6, and are:

• Input/output buffer (address: 60h) – used to read the code from the keyboard.

• Control/status register (address: 64h) – used either to determine the status of the key-
board (when a value is read from the register) or to set up the keyboard (when a value is
written to the register). The commands used are listed in Table 10.2. On a read opera-
tion, it acts as a status register. Figure 10.7 shows the bit definitions, these are:

Figure 10.6 Keyboard I/O addresses (60h and 64h)

Games port, keyboard and mouse 197

PARE Parity bit – 1 = last byte has a parity error, 0 = no error.
TIM General time-out – 1 = error, 0 = no error.
AUXB Output buffer for auxiliary device – 1 = holds data for auxiliary device,

0 = holds keyboard data.
KEYL Keyboard lock status – 1 = keyboard unlocked, 0 = keyboard locked.
C/D Command/data – 1 command byte written via port 64h, data byte writ-

ten via port 60h.
SYSF. System flag – 1 = self-test successful, 0 = power-on reset.
INPB. Input buffer status – 0 = Data in input buffer, 0 = no data.
OUTB. Output buffer status – 0 = Controller data in output buffer, 0 = buffer

empty.

The auxiliary device is typically a PS/2 style mouse. Program 10.2 shows an example pro-
gram which reads from the keyboard buffer. It disables the IRQ1 interrupt. (Note that this
may cause some systems to not respond to the keyboard if the program does not terminate
properly.)

PARE TIM AUXB KEYL C/D SYSF INPB OUTB Address: 64h
Status register

Figure 10.7 Status register bits

Table 10.2 Control register commands

Code Command Return value (in output buffer)

a7h Disable auxiliary device
a8h Enable auxiliary device
a9h Check interface to auxiliary device 00h = no error, 01h = clock line low, 02h = clock

line high, 03h = data line low, 04h = data line
high and ffh = no auxiliary device.

aah Self-test 55h, on success
abh Check keyboard interface 00h = no error, 01h = clock line low, 02h = clock

line high, 03h = data line low, 04h = data line
high and ffh = no auxiliary device

adh Disable keyboard
aeh Enable keyboard
c0h Read input port
c1h Read input port (low)
c2h Read input port (high)
d0h Read output port
d1h Write output port
d2h Write keyboard output buffer
d3h Write output buffer of auxiliary device
d4h Write auxiliary device
e0h Read test input port

198 Computer busses

2 Program 10.2
/* This program may not work in Windows 95/98/NT/2000 */
/* as it tries to take direct control of the keyboard */
#include <stdio.h>
#include <conio.h>
int main(void)
{
unsigned int inval, hit=0;
char ch;
 _outp(0x21,0x02); /* disable IRQ1 */
 do
 {
 do
 {
 inval=_inp(0x64); /* read status register */
 if ((inval & 0x01)==0x01) /* set for output buffer */
 {
 puts("Key pressed");
 ch=_inp(0x60); /* read key from buffer */
 printf("%c",ch);
 hit=1;
 }
 } while (hit==0);
 hit=0;
 if (ch==0x1) break; /* wait for ESC key */
 } while (1);
 _outp(0x21,0); /* enable IRQ1 */
 return(0);
}

10.4 Mouse and keyboard interface

Modern PCs typically use the 8242 device to provide for a PS/2 mouse and keyboard func-
tion, as illustrated in Figure 10.8. It can be seen that the two interrupts which are available
are IRQ1 (the keyboard interrupt) and IRQ12 (PS/2 style mouse). If the mouse connects to the
serial port then the IRQ12 line does not cause an interrupt. All clock frequencies are derived
from the keyboard clock frequency (see Figure 10.8). Notice that the interface for the PS/2-
style mouse is identical to the keyboard connection. They are interfaced through the same
registers (60h and 64h).

8242PCPL

KBDCLK

MSCLK

KBDATA

KBDCLK

+5V

GND

MSDATA

MSCLK

+5V

GND

Mouse
interface

K/B
interface

IRQ1

IRQ12

MSDATA

KBDATA

KBCLK

DD[7:0]

IOR#

IOW#

KEYLOCK

Figure 10.8 Mouse and keyboard interface

Games port, keyboard and mouse 199

10.5 Mouse

Typically on modern PCs the PS/2-style mouse is preferred over serial port mice. PS/2-style
mice free up the serial port for other uses, such as for data transfers, modem connections, and
so on. Table 10.3 outlines the commands that can be used to program the mouse.

Table 10.3 Control register commands

Code Command Description
e6h Reset scaling

e7h Set scaling

e8h Set resolution Sets the resolution: 00h = 1 count/mm, 01h = 2 counts/mm,
02h = 4 counts/mm and 03 = 8 counts/mm.

e9h Determine status 3 status bytes
Byte 1:
 Bit 0: Right mouse button pressed (if 1).
 Bit 2: Left mouse button pressed (if 1).
 Bit 4: Scaling (0=1:1, 1=1:2).
 Bit 5: Mouse (0=enabled, 1=disabled).
 Bit 6: Mode (0=stream, 1=remote).
Byte 2: Resolution.
Byte 3: Sample rate.

eah Set stream mode

ebh Read data Reads an 8-byte data packet from the mouse.

ech Resets mouse to normal
mode

eeh Sets mouse to wrap mode In wrap mode all the commands or data sent to the mouse.

f0h Set remote mode

f2h Identify unit 00h = mouse

f3h Set sampling rate Sampling rate is then set by the value put into output
buffer: 0ah = 10 samples/s, 14h = 20 samples/s, 28h = 40
samples/s, 3c = 60 samples/s, 50h = 80 samples/s, 64h =
100 samples/s and c8h = 200 samples/s.

f4h Enable mouse

f5h Disable mouse

f6h Set standard mouse to stan-
dard values

feh Resend

ffh Reset

The PS/2 mouse is programmed by:

200 Computer busses

• Sending the write auxiliary device (d4h) command to 64h (Control register).

• The next byte is a command code which is sent to port 60h, and then transferred to the
mouse port (valid codes are given in Table 10.3). This command transfer only occurs for
a single transfer.

The mouse can either be set into a stream mode or a remote mode, and writes movement data
into the keyboard buffer. In stream mode, the mouse transmits movement data when it is
moved by a given amount (set by the sample rate). In remote mode the mouse only transfers
movement data when there is a specific read data command.
 When the read data command is sent, the 8-byte data packet is read from the addresses as
specified in Table 10.4. An example of programming the mouse is given next:

 _outp(0x64,0xd4); /* Write aux. device */

 do
 {
 inval=_inp(0x64);
 } while ((inval & 0x02)==0x02); /* wait until input buffer empty */
 _outp(0x60,0xe7); /* set scaling */

Table 10.4 Control register commands

Offset Description
00h Bit 7: YOV (Y-data overflow), Bit 6: XOV (X-data overflow),

Bit 5: YNG (Y-value negative), Bit 4: XNG (X-value negative),
Bit 1: RIG (right button pressed), Bit 0: LEF (left button pressed).

02h X-data movement since last access

04h Y-data movement since last access

10.6 Exercises

10.6.1 What is the base address of the joystick port:

 (a) 101h (b) 201h
 (c) 301h (d) 401h

10.6.2 Which I/O port addresses are used for the keyboard:

 (a) 60h, 64h (b) 160h, 164h
 (c) 260h, 264h (d) 360h, 364h

10.6.3 How is the x position and y position determined:

 (a) The time for a single-shot (b) A voltage level
 (c) An electrical current (d) A value in a register

Games port, keyboard and mouse 201

10.6.4 What interrupt does the keyboard use:

 (a) IRQ1 (b) IRQ3
 (c) IRQ4 (d) IRQ12

10.6.5 What interrupt does the PS/2 style mouse use:

 (a) IRQ1 (b) IRQ3
 (c) IRQ4 (d) IRQ12

10.6.6 Run the program in Figure 10.4 and show that the joystick buttons are working.

Modify the program so that it only displays a change of status in a button press
(rather that scrolling down the screen). For example:

 if ((inval & 0x80) == 1) && (button==0)) { button=1; puts(“B:Button 2 Press”);}
 if ((inval & 0x80) == 0) && (button==1)) { button=0; puts(“B:Button 2 Reset”);}

10.6.7 Run Program 10.1 and test the movement detection. Modify it so that it detects the

y movement.

10.6.8 Run Program 10.1 so that the user can calibrate the joystick. The user should be

asked to move the joystick to its maximum x directions, and also the maximum y
directions. From this write a program which displays the joystick movement as a
value from –1 to +1.

10.7 Notes from the author

Phew. I’m glad I got these three interfaces out of the way, in a single chapter. All three are
based on a legacy type system. Over time, the USB port should replace each interface type,
but as they work well at the present they may be around for a while longer.
 The method that the games port uses to determine position is rather cumbersome, where
it uses a single-shot monostable timer to determine the x and y positions. An improved
method is to pass the data using a serial interface, just as the mouse does. But, it’s a stan-
dard, and that’s the most important thing.
 The keyboard and PS/2-style mouse connections have proved popular, as they are both
now small 5-pin DIN-style connectors, and as the software automatically scans the port for
devices, they can be plugged into either socket. This allows for an extra keyboard or a sec-
ond mouse to be used with a notebook.
 As I’ve got a few extra lines at the end of this chapter, I would like to review the material
that has been covered up to this point. The key to understanding internal busses is contained
in the Motherboard chapter, where the processor interfaces with the TXC device, which di-
rects any requests to the second-level cache, the DRAM memory or the PCI bus. The PCI
bridge device is also important as it isolates the other busses, such as ISA/IDE, USB, se-
rial/parallel port from the PCI bus, and thus the rest of the system. The keyboard, games port
and mouse interfaces are accessed via the PCI bridge.

AGP

11.1 Introduction

The AGP (accelerated graphics port) is a major advancement in the connection of 3D graph-
ics applications, and is based on an enhancement of the PCI bus. One of the major motivat-
ing factors is to improve the speed of transfer between the main system memory and the lo-
cal graphics card. This reduces the need for large areas of memory on the graphics card, as
illustrated in Figure 11.1.
 The main gain in moving graphics memory from the display buffer (on the graphics card)
to the main memory is the display of text information as:

• It is generally read-only, and does not have to be displayed in any special order.
• Shifting text does not require a great deal of data transfer and can be easily cached in

memory, thus reducing data transfer. A shift in text can be loaded from the cached mem-
ory.

• It is dependent on the graphics quality of the application, rather that the resolution of the
display. There is thus great scope in the future for improvement in the quality of graphics
images, rather than their resolution.

• It is not persistent, as it resides in memory only for the duration that it is required. When
it has completed the main memory it can be assigned to another application. A display
buffer, on the other hand, is permanent.

PCI-based
graphics card

AGP-based
graphics card

System
memory

On-board
memory to
store graphics

Figure 11.1 AGP card using main system memory

11

204 Computer busses

The 440LX is the first AGPset product designed to support the AGP interface. The HOST
BRIDGE AGP implementation is compatible with the accelerated graphics port Specification
1.0. HOST BRIDGE supports only a synchronous AGP interface, coupling to the host bus
frequency. The AGP interface can reach a theoretical ~532 Mbytes/sec transfer rate. The
actual bandwidth will be limited by the capability of the HOST BRIDGE memory subsys-
tem.

11.1.1 PCI interface

The HOST BRIDGE PCI interface is 33-MHz Revision 2.1 compliant and supports up to
five external PCI bus masters in addition to the I/O bridge (PIIX4). HOST BRIDGE supports
only synchronous PCI coupling to the host bus frequency.
 HOST BRIDGE defines a sophisticated data buffering scheme to support the required
level of concurrent operations and provide adequate sustained bandwidth between the
DRAM subsystem and all other system interfaces (CPU, AGP and PCI).

11.2 PCI and AGP

AGP defines the master as the graphics controller and the corelogic as the graphics card. The
AGP interface is based on the 66 MHz PCI standard, but has four additional exten-
sions/enhancements. These extensions are:

• Deeply pipelined memory read and write operations, which fully hide memory access

latency.
• Address bus and data bus demultiplexing, allowing for nearly 100% bus efficiency.
• Extension to the PCI timing cycle which allows for one or two data transfers per 66 MHz

clock cycle. This provides a maximum data rate of 500 MB/s.
• Extension to the PCI timing cycle which allows for four data transfers per 66 MHz clock

cycle. This provides for a maximum data rate of 1GB/s.

All these enhancements are implemented using extra signal lines (sideband signals), and it is
not intended as a replacement to the PCI bus. The AGP is physically, logically and electri-
cally independent of the PCI bus, and has its own connector which is reserved solely for
graphics devices (and is not interchangeable with the AGP connector). Figure 11.2 shows the
main AGP signal lines.
 AGP uses deep pipelining which allows the total memory READ throughput equal to that
which is possible for memory WRITE (in PCI the memory read throughput is about half of
memory write throughput, as memory read access time is visible as wait states on this un-
pipelined bus). This and optional higher transfer rates and address demultiplexing, allows for
a large increase in memory read throughput over standard PCI implementations.

AGP 205

.

SBA[7:0]

AGP
AGP

connector
AGP

connector

PIPE

RBF

WBF

ST[2:0]

/AD_STB0AD_STB0

/AD_STB1AD_STB1

/SB_STB1SB_STB1

CLK

GFRAME

GIRDY
GTRDY
GSTOP

GDEVSEL
GPERR

GSERR
GREQ

GGNT
0]:GAD[15

0]:GC/BE[3

GPAR

AGP
addressing

AGP
flow
control

AGP
status

AGP
clocks/
strobe

PCI
signals

SBA[7:0]

AGP
AGP

connector
AGP

connector

PIPEPIPE

RBFRBF

WBFWBF

ST[2:0]

/AD_STB0AD_STB0 /AD_STB0AD_STB0

/AD_STB1AD_STB1/AD_STB1AD_STB1

/SB_STB1SB_STB1 /SB_STB1SB_STB1

CLK

GFRAMEGFRAME

GIRDYGIRDY
GTRDYGTRDY
GSTOPGSTOP

GDEVSELGDEVSEL
GPERRGPERR

GSERRGSERR
GREQGREQ

GGNTGGNT
0]:GAD[15 0]:GAD[15

0]:GC/BE[3 0]:GC/BE[3

GPARGPAR

AGP
addressing

AGP
flow
control

AGP
status

AGP
clocks/
strobe

PCI
signals

Figure 11.2 The main AGP signal lines

11.3 Bus transactions

AGP uses two types of bus operation. These are:

• Queuing requests. This can be done over the SBA port, or the AD bus, and is set up

using Bit 9 for the status register (only one type at a time can be used). With the SBA
port, the AD bus cannot be used, and vice versa. The sideband signals (SBA[7:0]) are
used exclusively to transmit AGP access requests (all PCI transactions use the AD pins
for both data and address), and are sent from the master to the core logic (the AGP re-
quests are the same when sent over the AD bus or the SBA bus). A master that uses the
SBA port does not require the PIPE signal which is used only to frame requests on the
AD pins.

• Address demultiplexing option. This allows the complete AGP access request to be
transmitted over the 8-bit SBA port. For this the request is broken into three parts: low-
order address bits and length (type 1), mid-order address bits and command (type 2), and
high-order address bits (type 3).

11.4 Pin description

AGP adds an extra 21 signal lines to the PCI specification. The basic implementation of
AGP should support ×1 and ×2 transfer rates, and may optionally support ×4 data transfer
rates. All devices should support low priority (LP) data writes, but optionally support fast
write (FW) data transfers.

206 Computer busses

 The signal lines split into four main groups:

• AGP requests.
• AGP flow control.
• AGP status.
• AGP clocking.

Also, the PCI lines are identified with a preceding G, such as GAD[31:0] for the PCI AD
bus, GSTOP for STOP , and so on.

11.4.1 Requests

AGP supports two methods of queuing requests by an AGP master. A master selects the re-
quired method during start-up and is not allowed to change when set up. The methods either
use the PIPE signal line or they use the SBA port. These signals cannot be used at the same
time. These lines are defined as:

PIPE On the master (the graphics controller), PIPE is a sustained tristate signal

and is an input to the target (the core logic). When assessed by the current
master it indicates a pipelined request, so that the full width request is to be
queued by the target. The master queues one request each rising edge of
CLK while PIPE is asserted.

SBA[7:0] These signals are outputs from the master and are inputs to the target, and
they indicate the sideband address (SBA) port which gives an additional
bus to pass requests (address and command) to the target from the master.

11.4.2 Flow control

Apart from the normal PCI flow control lines, the following have been added to AGP:

RBF The read buffer full (RBF) signal indicates that the master is ready to ac-

cept previously requested low priority (LP) read data or not. When it is ac-
tive (LOW), the arbiter is not allowed to initiate the return of low priority
read data to the master. It is made inactive by either the AGP target or
motherboard.

WBF The write buffer full (WBF) signal indicates that the master is ready to ac-

cept fast write (FW) data. When it is active (LOW), the core logic arbiter is
not allowed to initiate a transaction to provide FW data. It is made inactive
by either the AGP target or motherboard.

11.4.3 Status signals

The AGP status signals indicate how the AD bus is used in future transactions, such as using
it to queue new requests, return previously requested read data, or send previously queued
write data. These lines are always an output from the corelogic and an input to the master,
and are:

ST[2:0] These provide information from the arbiter to the master on the mode of

AGP 207

.

operation, and they only have a meaning when GNT is asserted (else they
are ignored). Their settings are:

000 Previously requested low priority read or flush data is being re-

turned to the master.
001 Previously requested high priority read data is being returned to the

master.
010 Master is to provide low priority write data for a previous queued

write command.
011 Master is to provide high priority write data for a previous queued

write command.
100 Reserved.
101 Reserved.
110 Reserved.
111 Master has been given permission to start a bus transaction.

11.4.4 Clocks

The CLK signal provides the basic clock signal for all control signals and is based on the ×1
transfer mode. Two other strobes are used to transfer data on the AD bus or the SBA port. As
the AD bus has 32 bits then two copies of the AD_STB are required. In ×4 mode is used, the
compliments of the strobes are also required.

CLK Basic clock information for both AGP and PCI control signals.
AD_STB0 This strobe provides for timing in a ×2 data transfer mode on GAD[15:0]

and is provided by the agent that is providing data.
AD_STB0 This strobe provides for timing in a ×4 data transfer mode on GAD[15:0]

and is provided by the agent that is providing data.
AD_STB1 This strobe provides for timing in a ×2 data transfer mode on GAD[31:16]

and is provided by the agent that is providing data.
AD_STB1 This strobe provides for timing in a ×4 data transfer mode on GAD[31:16]

and is provided by the agent that is providing data.
SB_STB This strobe provides the strobe for the SBA[7:0] (when required). It is

driven by the AGP master.
SB_STB This strobe provides the strobe for the SBA[7:0] (when required) at ×4 data

transfer mode. It is driven by the AGP master.

11.4.5 USB signals

USB+ Used to send USB data and control packets to an externally connected USB
capable video monitor.

USB- Inverse of USB+.
OVRCNT The USB overcurrent indicator is set low when there is too much current

being taken from the 5 V supply.
11.4.6 Other signals
PME Power management event. Not used by the AGP bus, but used by the PCI

bus.
TYPEDET The type detect signal identifies whether the interface is 1.5 V or 3.3 V.

208 Computer busses

11.4.7 PCI signals and AGP

AGP supports most of the PCI signals. IDSEL, LOCK , INTC and INTD are not supported
on the AGP connector, whereas, FRAME , IDSEL, STOP and DEVSEL are used in FW
transactions, but not in AGP pipelined operations.

FRAME Used for FW transactions, but not for AGP pipelined transaction.
IRDY Used by the AGP master to indicate that it is ready to provide all write data

for the current transaction. When the master asserts it, then, it cannot insert
any wait states either when reading or writing blocks of data (but it can in-
between blocks). In FW transactions, the core logic sets the line to indicate
that there is write data on the bus. The core logic cannot insert wait states
with data blocks.

TRDY Used by an AGP target to indicate that it is ready to provide read data for
the entire transaction or is ready to transfer a block of data when the trans-
fer/transaction requires more than four clocks to complete the operation. In
FW transactions, the AGP master uses it to indicate when it is willing to
transfer a subsequent block.

STOP Used in FW transactions to signal a device disconnection.
DEVSEL Used in FW transactions to signal that a transaction cannot complete during

the block.
IDSEL Not used in the AGP connector, and generated internally in the graphics

device.
PERR Not used in the AGP transaction.
SERR As PCI bus.
REQ Used to request access to the bus to initiate an AGP request.
GNT Same meaning as PCI (but extra information is added by ST[2:0]).
RST As PCI bus.
AD[31:00] As PCI bus.

0]:C/BE[3 AGP command information (see Section 11.5).
PAR Not valid during an AGP transaction.
LOCK Not supported on the AGP interface.
INTA , INTB As PCI bus.
INTC , INTD Not supported on the AGP connector.

11.5 AGP master configuration

The AGP master is configured in the same way as a device on the PCI bus, which requires
that it responds to a PCI configuration transaction. This occurs when:
• A configuration command is decoded.
• AD01 and AD00 are ‘00’.

AGP 209

.

• The IDSEL signal is asserted. As the AGP connector does not support IDSEL then it is
connected to AD16. This is done by connecting it internally for AGP operation, but ex-
ternally for PCI operation.

Initially the AGP device asserts DEVSEL when the bus command is configuration (read or
write). AD16 is set to a ‘1’ and AD1 and AD0 are ‘00’. These cause the device’s configura-
tion space to be accessed. The system software then scans all configuration spaces by assert-
ing different AD signals between AD16 and AD31, and using PCI configuration read or
write commands.

11.6 Bus commands

The AGP bus uses the command lines (0]:C/BE[3) to indicate the type of pipelined transac-
tion on the AD bus or SBA port. These are:

0000 Read – Starting at the specified address, read n sequential Qwords, where n

= (length_field + 1). The length_field is provided by the lower three bits on
the AD bus (A2–A0).

0001 Read (hi-priority). As ‘Read’, but the request is queued in the high priority
queue. The reply data may be returned out of order with respect to other
requests.

0010 Reserved.
0011 Reserved.
0100 Write – Starting at the specified address, write n sequential Qwords, as

enabled by the 0]:C/BE[3 , where n = (length_field + 1).
0101 Write (hi-priority) – As ‘Write’, but indicates that the write data must be

transferred from the master within the maximum latency window estab-
lished for high priority accesses.

0110 Reserved.
0111 Reserved.
1000 Long read – As ‘Read’, except for access size, in this case, n = 4×

(length_field + 1) allowing up to 256 byte transfers.
1001 Long read (hi-priority) – As ‘Read (hi-priority)’ except for access size

which is the same as for ‘Long Read’.
1010 Flush – Similar to ‘Read’. Forces all low-priority write accesses ahead of it

to the point that all the results are fully visible to all other system agents.
1011 Reserved.
1100 Fence – Creates a boundary in a single master’s low-priority access stream

around which writes may not pass reads.
1101 Dual address cycle (DAC) – used by the master to transfer a 64-bit address

to the core logic when using the AD bus.
1110 Reserved.
1111 Reserved.

210 Computer busses

The master uses two clock periods to transfer the entire address using AD[31:0] and
0]:C/BE[3 . Within the first clock period, the master provides the lower address bits (A31–

A03) and the length encoding on (A2–A0), as with a 32-bit request, but uses the 1101 com-
mand (DAC) encoding on 0]:C/BE[3 instead of the actual command. The second clock of
the request contains the upper address bits (A63–A32) on AD[31:0] and the actual command
on 0]:C/BE[3 .

11.7 Addressing modes and bus operations

AGP transactions differ from PCI transactions in several ways:

• In AGP, pipelined read/write transactions are disconnected from their associated access

request, where the request and associated data may be separated by other AGP opera-
tions. Conversely, a PCI data phase is connected to its associated address phase, with no
interventions allowed. This helps to maintain the pipe depth and allows the core logic to
ensure a sufficiently large buffer for receiving the write data, before locking up the bus
on a data transfer that could be blocked awaiting buffer space. The rules for the order of
accesses on the AGP bus are not based on the order of the data transfer, but on the arrival
order of access requests.

• AGP has different bus commands which allow access only to the main system memory.
PCI allows access to multiple address spaces: memory, I/O and configuration.

• In AGP, memory addresses are always aligned in 8-byte references, whereas PCI uses 4-
byte, or lower, references (the number of bytes addressed is defined with the 0]:C/BE[3).
The reason for the increased AGP addressing granularity (from four in the PCI bus to
eight in AGP) is because modern processors use a 64-bit data bus and can manipulate 64
bits at a time. The memory systems are also 64 bits wide.

• In AGP, pipelined access requests have an explicitly defined access length or size. In PCI
transfer lengths are defined by the duration of FRAME .

11.8 Register description

The PCI bridge supports AGP through two sets of registers, which are accessed via I/O ad-
dresses. These are:

• Configuration address (CONFADD) – Enables/disables the configuration space and de-

termines what portion of configuration space is visible through the configuration data
window.

• Configuration data (CONFDATA) – 32-bit/16-bit/8-bit read/write window into configu-
ration space.

AGP 211

.

Configuration address register

I/O address 0CF8h accessed as a DWord (32-bit)
Default value 00000000h
Access Read/write

CONFADD is accessed with an 8-bit or a 16-bit value, then it will ‘pass through’ this regis-
ter and go onto the PCI bus as an I/O cycle. The register contains the bus number, device
number, function number, and register number for which a subsequent configuration access
is intended. Its format is:

Bit Description
31 Configuration enable (CFGE) 1=enable, 0=disable.
30:24 Reserved.
23:16 Bus number (BUSNUM) – If it has a value of 00h then the target of the

configuration cycle is either the HOST BRIDGE or the PCI bus that is di-
rectly connected to the HOST BRIDGE.

15:11 Device number (DEVNUM) – Selects one agent on the PCI bus selected by
the bus number. In the configuration cycles this field is mapped to
AD[15:11].

10:8 Function number (FUNCNUM) – This field is mapped to AD[10:8] during
PCI configuration cycles. It allows for the configuration of a multifunction
device.

7:2 Register number (REGNUM) – This field selects one register within a par-
ticular bus, device, and function as specified by the other fields in the con-
figuration address register. This field is mapped to AD[7:2] during PCI
configuration cycles.

1:0 Reserved.

Configuration data register

I/O address 0CFCh
Default value 00000000h
Access Read/Write

CONFDATA is a 32-bit/16-bit/8-bit read/write window into configuration space. The portion
of configuration space that is referenced by CONFDATA is determined by the settings in the
CONFADD register.

11.8.2 Configuration access

The routing of configuration accesses to PCI or AGP is controlled by PCI-to-PCI bridge
standard mechanism using the following:

• Primary bus number register.
• Secondary bus number register.
• Subordinate bus number register.

The PCI bus 0 is frequently known as the primary PCI.

212 Computer busses

PCI bus configuration mechanism

The PCI bus has a slot based configuration space which allows each device to contain up to
eight functions, with each function containing up to 256, 8-bit configuration registers.
 PCI configuration is achieved with two bus cycles: configuration read and configuration
write. A device can be configured using the CONFADD and CONFDATA registers. First a
DWord value is placed into the CONFADD register that enables the configuration
(CONFADD[31]=1), specifies the PCI bus (CONFADD[23:16]), the device on that bus
(CONFADD[15:11]), the function within the device (CONFADD[10:8]). CONFDATA then
becomes a window for which four bytes of configuration space are specified by the contents
of CONFADD. Any read or write to CONFDATA results in the host bridge translating
CONFADD into a PCI configuration cycle.
 If the bus number is 0 then a Type 0 configuration cycle is performed on primary PCI
bus, where:

• CONFADD[10:2] (FUNCNUM and REGNUM) are mapped directly to AD[10:2].
• CONFADD[15:11] (DEVNUM) is decoded onto AD[31:16].

The host bridge entity within HOST BRIDGE is accessed as a Device 0 on the primary PCI
bus segment and a virtual PCI-to-PCI bridge entity is accessed as a Device 1 on the primary
PCI bus.

11.8.3 PCI configuration space

HOST BRIDGE is implemented as a dual PCI device residing within a single physical com-
ponent, where:

• Device 0 is the host-to-PCI bridge, and includes PCI bus number 0 interface, main mem-

ory controller, graphics aperture control and HOST BRIDGE’s specific AGP control
registers.

• Device 1 is the virtual PCI-to-PCI bridge, and includes mapping of AGP space and stan-
dard PCI interface control functions of the PCI-to-PCI bridge.

Table 11.1 shows the configuration space for Device 0. Corresponding configuration regis-
ters for both devices are mapped as devices residing at the primary PCI bus (bus #0). The
configuration registers layout and functionality for Device 0 is implemented with a high level
of compatibility with a previous generation of PCIsets (i.e., 440FX). Configuration registers
of HOST BRIDGE Device 1 are based on the standard configuration space template of a
PCI-to-PCI bridge.

AGP 213

.

Table 11.1 PCI configuration space (Device 0)

Address Reference Register name
00−01h VID Vendor identification
02−03h DID Device identification
04−05h PCICMD PCI command register
06−07h PCISTS PCI status register
08h RID Revision identification
0Ah SUBC Subclass code
0Bh BCC Base class code
0Dh MLT Master latency timer
0Eh HDR Header type
10−13h APBASE Aperture base address
34h CAPPTR Capabilities pointer
50−51h HOST BRIDGECFG Host bridge configuration
53h DBC Data buffering control
55−56h DRT DRAM row type
57h DRAMC DRAM control
58h DRAMT DRAM timing
59−5Fh PAM[6:0] Programmable attribute map (7 registers)
60−67h DRB[7:0] DRAM row boundary (8 registers)
68h FDHC Fixed DRAM hole control
6A-6Bh DRAMXC DRAM extended mode select
6C-6Fh MBSC Memory buffer strength control register
70h MTT Multitransaction Timer
71h CLT CPU latency timer register
72h SMRAM System management RAM control
90h ERRCMD Error command register
91h ERRSTS0 Error status register 0
92h ERRSTS1 Error status register 1
93h RSTCTRL Reset control register
A0−A3h ACAPID AGP capability identifier
A4−A7h AGPSTAT AGP status register
A8–ABh AGP Command register
B0–B3h AGPCTRL AGP control register
B4h APSIZE Aperture size control register
B8–BBh ATTBASE Aperture translation table base register
BCh AMTT AGP MTT control register
BDh LPTT AGP low-priority transaction timer register

AGPCMD register

The AGPCMD register reports AGP device capability/status. Its main parameters are:

Address offset A8–ABh
Default value 00000000h
Access Read/write

214 Computer busses

Bit Description
31:10 Reserved.
9 AGP side band enable – 1=enable. 0=disable (Default).
8 AGP enable – 1=enable. 0=disable (Default). When this bit is set to a 0, the

HOST BRIDGE ignores all AGP operations. Any AGP operations received
(queued) while this bit is 1, will be serviced even if this bit is subsequently
reset to 0. If it is 1, the HOST BRIDGE responds to AGP operations deliv-
ered via PIPE (or responds to the SBA, if the AGP side band enable bit is
set to 1).

7:2 Reserved.
1:0 AGP data transfer rate – One bit in this field must be set to indicate the

desired data transfer rate. Bit 0 identifies ×1, and bit 1 identifies ×2.

11.8.4 AGP memory address ranges

The HOST BRIDGE can be programmed for direct memory accesses of the AGP bus inter-
face when addresses are within the appropriate range. This uses two subranges:

• AMBASE/AMLIMIT – this method is controlled with the memory base register

(AMBASE) and the memory limit register (AMLIMIT).
• APMBASE/APMLIMIT – this method is controlled with the prefetchable memory base

register (APMBASE) and AGP prefetchable memory limit Register (APMLIMIT).

The decoding of these addresses is based on the top 12 bits of the memory base and memory
limit registers which correspond to address bits A[31:20] of a memory address. When ad-
dress decoding, the HOST BRIDGE assumes that address bits A[19:0] of the memory ad-
dress are zero and that address bits A[19:0] of the memory limit address are FFFFFh. This
forces the memory address range to be aligned to 1 MB boundaries and to have a size granu-
larity of 1 MB. The base and limit addresses define the minimum and maximum range of the
addresses.

11.8.5 Graphics aperture

AGP supports a graphic aperture which uses memory-mapped graphics data structures. Its
starting address is defined by APBASE configuration register of HOST BRIDGE and its
range is defined by the APSIZE register, such as 4 MB (default), 8 MB, 16 MB, 32 MB,
64 MB, 128 MB and 256 MB.

11.8.6 AGP address mapping

HOST BRIDGE directs I/O accesses to the AGP port in the address range defined by AGP
I/O address range. This range is defined by the AGP I/O base register (AIOBASE) and AGP
I/O limit register (AIOLIMIT). These are decoded, where the top four bits of the I/O base
and I/O limit registers correspond to address bits A[15:12] of an I/O address. For address
decoding, the HOST BRIDGE assumes that the lower 12 address bits A[11:0] of the I/O base
are zero and that address bits A[11:0] of the I/O limit address are FFFh. This forces the I/O
address range to be aligned to 4 KB boundary and to have a size granularity of 4 KB.

AGP 215

.

11.9 Exercises

11.9.1 Which bus is the AGP bus based on:

 (a) PCI (b) IDE
 (c) ISA (d) USB

11.9.2 How does AGP increase the data rate by x2 (and even x4):

 (a) Extra clock signals (b) Increased data bus size
 (c) Direct memory accesses (d) Increased address bus size

11.9.3 Which of the following is not an advantage of using the AGP bus:

 (a) Faster transfers between memory and the graphics devices
 (b) Increased usage of main memory (with reduced need for localized
 memory)
 (c) Reduced requirement for interrupts
 (d) Increase throughput compared with the standard PCI bus

11.9.4 Which of the following identifies the address/data lines on the AGP bus:

 (a) HAD[31:0] (b) GAD[31:0]
 (c) AAD[31:0] (d) AD[31:0]

11.9.5 Explain the main objectives of the AGP bus and outline the advantages of moving

textural information into main memory.

11.9.6 Contrast the PCI and AGP busses and how AGP increases the data throughput.

Also discuss the extra signal lines used with AGP, and how they are used.

11.10 Notes from the author

So, what’s the biggest weakness of the PC. In the past, it has probably been the graphics
facilities. This is mainly because the bus systems within the PC did not support large data
throughput (ISA/EISA is way too slow). The design of the graphics system also required that
the video card required to store all the data which was to be displayed on the screen. Thus
no matter the amount of memory on the system, it was still limited by the amount of memory
on the graphics card. AGP overcomes this by allowing graphical images to be stored in the
main memory and then transferred to the video displayed over a fast bus.
 The data demand for graphical displays is almost unlimited, as the faster they can be
driven, the greater their application. The AGP bus is an excellent extension to the PCI bus,
and gives data throughput of over 500 MB/s, whereas standard PCI devices can typically
only be run at less than 100 MB/s. AGP is now a standard part of most PC motherboards,
and it is still to be seen if many systems will start to use this port.

Fibre Channel

12.1 Introduction

The increase in demand for bandwidth requires faster server-to-storage and server-to-server
networking. This is mainly due to the increase in client/server applications. Fibre Channel is
one solution to this, as it is a highly reliable technology which operates at gigabit speeds. It
interconnects well with other technologies, especially SCSI and TCP/IP. The main applica-
tions have been in switches, hubs, storage systems, storage devices and adapters. The term
fibre is a generic term which can indicate either optical or a copper cable
 Its development started in 1988 and ANSI standard approval in 1994. It has the following
advantages:

• Cost-effective channel – it is a cost-effective for storage and networks.

• Reliable – it is reliable with assured information delivery.

• Gigabit bitrate – bit rate of 1.06 Gbps, but scalable to 2.12 Gbps and 4.24 Gbps.

• Multiple topologies – it has dedicated point-to-point, shared loops, and scaled switched
topologies meet application requirements.

• Multiple protocols – it supports SCSI, TCP/IP, video, or raw data, and is especially
suited to real-time video/audio.

• Scalable – it supports single point-to-point gigabit links to integrated enterprises with
hundreds of servers.

• Congestion free – data can be sent as fast as the destination buffer can receive it.

• High efficiency – fibre channel has very little transmission overhead.

12.2 Comparison

Fibre channel is designed to support scalable gigabit technology, and provides flow control,
self-management, and ultrareliability. It does not suffer from the problems associated with
traditional networking technologies. Table 12.1 compares Fibre channel with gigabit ethernet
and ATM.
 In real-time applications, the data must have a guaranteed quality of service. gigabit
ethernet does not provide for an assured quality of service, whereas ATM does. Fibre chan-
nel improves on ATM as it gives guaranteed delivery, along with gigabit bandwidth, as well
as a given quality of service.

12

218 Computer busses

Table 12.1 Comparison between Fibre Channel and other networking technologies

Parameter Fibre channel Gigabit ethernet ATM
Technology application Storage, network, video,

clusters

Network Network, video

Topologies Point-to-point loop hub,
switched

Point-to-point hub,
switched

Switched

Baud rate 1.06 Gbps

1.25 Gbps 622 Mbps

Scalability 2.12 Gbps, 4.24 Gbps

Not defined 1.24 Gbps

Guaranteed delivery Yes

No No

Congestion data loss None

Yes Yes

Frame size Variable, 0–2 KB

Variable, 0–1.5 KB Fixed, 53 B

Flow control Credit based

Rate based Rate based

Physical media Copper/fibre

Copper/fibre Copper/fibre

Protocols supported

Network, SCSI, video Network Network, video

12.3 Fibre channel standards

The ANSI T11 committee developed the X.3230-1994-Fibre channel physical and signaling
standard (FC-PH). Its objectives where:

• Performance from 266 Mbps to over 4 Gbps.

• Support for distances up to 10 km.

• Small connectors.

• High-bandwidth utilisation with distance insensitivity.

• Greater connectivity than existing multidrop channels.

• Broad availability using standard components.

• Support for many different system types, from small computers to mainframes.

• Supports multiple existing interface command sets, such as internet protocol (IP), SCSI,
IPI, HIPPI-FP and audio/video.

Fibre channel is a channel/network standard which contains networking features to provide
for the required connectivity, distance and protocol multiplexing. It also supports traditional
channel features for simplicity, repeatable performance, and guaranteed delivery. Fibre chan-
nel also works as a generic transport mechanism.

Fibre Channel 219

 Fibre channel architecture is based on channel/network integration with an active, intelli-
gent interconnection among devices. A port in Fibre channel simply has to manage a simple
point-to-point connection. The transmission is isolated from the control protocol, so point-to-
point links, arbitrated loops, and switched topologies are used to meet the specific needs of
an application. The fabric is self-managing. Nodes do not need station management, which
greatly simplifies implementation.

12.4 Cables, hubs, adapters and connectors

Fibre channel uses either fibre optic cables (either multimode or single mode) or four types
of copper cables. Normally the copper cables use twin axial with DB-9 or HSSD connectors.
Typically, low-cost copper cables are used for short and medium length runs, and fibre optic
cable is used for longer lengths. Thus, most hubs and adapters have a standard copper inter-
face. For fibre optic cable one of the following is used:

• Multimode cable. This type is used for short distances of up to 22 km. It has a 62.5 µm
or 50 µm inner core diameter and allows light to propagate in multiple modes. These
modes tend to disperse the signal and thus limits the distance of the cable. Typical band-
width ratings for 62.5 µm cable are 200 MHz/km, which gives a range of 200 m at
1 Gbps.

• Single mode cable. This type is used for long cable runs. Its only limitation is the
transmitter power and receiver sensitivity. The inner core is 7 µm or 9 µm, which only al-
lows a single ray of light to propagate along the cable. There will thus be no dispersion
of the signal.

The three main types of connectors used are:

• SC connector. The SC connector is the standard connector for most fibre optic cables
and is also used for Fibre Channel. It is basically a push-pull connector and is preferred
over the ST screw-on connector.

• Galaxy connector. This is a new type of connector and reduces the size of the connector
by 50%, allowing increased connector densities.

There are also various connector/adapter modules, these include:

• Gigabit interface converters (GBIC). These convert a copper cable connector to an
optical interface. They use an HSSD connector for the copper interface and media inter-
face converters use the DB-9 copper interface.

• Gigabit link modules (GLM). These are pluggable modules which provide either a
copper or fibre optic interface, and allow users to easily change the media interface from
copper to fibre optics. GLMs include a serialiser-deserialiser (SERDES) and have a me-
dia independent parallel interface to the host bus adapter.

• Extenders. These provide for extended cable runs. They typically use multimode cable,
and they convert the multimode interface to single-mode, as well as boosting the laser

220 Computer busses

power. For example, an extender can provide a single mode cable distance of 30 km.

• Host bus adapters (HBAs) These are similar to SCSI host bus adapters and network
interface cards (NICs) They typically connect directly to the host computer using a stan-
dard bus, such as SBus, PCI, MCA, EISA, GIO, HIO, PMC and compact PCI.

• SNA gateway These provide gateways between from Fibre channel to SNA.

• Switch WAN extender These allow the interconnection to WANs using ATM or STM
services.

Fibre channel systems can be integrated into virtually any network topology. It can use point-
to-point dedicated connection, loop connection (with a shared bandwidth) or switched scaled
bandwidth. Fibre channel devices typically either connect to one of the following:

• Hubs. Fibre channel hubs typically connect to a hub using copper cables. These hubs are
similar to token ring/FDDI hubs with ‘ring in’ and ‘ring out’, and each port of the hub
has an automatic port bypass circuit to automatically open and close the loop. Hubs thus
support hot insertion and removal from the loop. If an attached node is not connected or
powered on then the hub detects this and bypasses the node. Typically, a hub has 7 to 10
ports and can be stacked to the maximum loop size of 127 ports.

• Switches These allow the simultaneous communication or one or more connections at
the same time.

Figure 12.1 shows an example network topology.

Switch

Hub

SCSI RAID

Fibre
channel
storage
system
(hot swap)

Point-to-
point
connection

WAN connection
(ATM/STM/FDDI)

Ring network
(up to 127 hubs)

Hub

Hub

Workstation
cluster

Figure 12.1 Fibre Channel connections

Fibre Channel 221

The networking options include:

• Point-to-point connections – these are point-to-point connections, and are not connected
as a ring.

• Switch connections.

• Hub connections – these connect onto a ring, with the ‘ring out’ of each switch con-
nected to the ‘ring in’ of the next, and so on. This makes a ring with devices connecting
to the hub (and not to the ring).

• Fibre channel storage system – this contains hot swap disks with a 100 MB/s data trans-
fer.

• SCSI RAID connection.

• Cluster connection – workstations plug directly to a hub. The hub detects if a work-
station is connected and automatically connects it to the ring.

• WAN connection – connection to WAN, such as ATM, STM or FDDI.

12.5 Storage Devices and storage area networks

One of the largest uses of fibre channel is likely to be in storage interfaces. It has many ad-
vantages over SCSI, including distance, bandwidth, scalability and reliability. Many manu-
facturers now provide RAID-based systems with Fibre channel.
 A good area of application for Fibre channel is in storage area networks. These typically
contain one or more servers, which also connect to one or more storage systems. These stor-
age systems could be RAID, tape back-up, CD-ROMs or disk drives.
 In a fibre channel network, SCSI devices are interfaced to the Fibre channel using a Fibre
channel to SCSI bridge, and IP is used for server to server and client/server communications.
 Fibre channel disks have a back plane with a built-in fibre channel loop. At each disk
location in the back-plane loop is a port bypass circuit which permits hot swapping of disks.
If a disk is not present, the circuit automatically closes the loop. When a disk is inserted, the
loop is opened to connect to the disk.

12.6 Networks

Fibre channel has many advantages over traditional networking technologies, these include:

• Automatic configuration – support for automatic configuration protocols, such as ARP,
RARP and other self-discovery protocols.

• Automatic self-discovery of Fibre channel topology.

• Confirmed delivery – this enhances reliability, and does not rely on higher-level proto-
cols to confirm delivery.

• Efficient, high-bandwidth low-latency transfers – this uses a variable length frame (up to
2 kB). It uses an efficient protocol which only has an overhead of up to 100 bytes.

222 Computer busses

• Fast connection time – instant circuit setup time using hardware enhanced Fibre channel
protocol.

• Guaranteed Quality of Service (QoS) True connection service or fractional bandwidth,
connection-oriented virtual circuits to guarantee QoS for critical back-ups or other
operations.

• Hybrid topology – Supports many different topologies, such as dedicated point-to-point
circuits, shared bandwidth ring networks or scalable bandwidth switched circuits.

• Low latency – extremely low latency connection and connectionless service.

• Real or virtual circuits.

• Synchronous support – this is used with video connections, and uses fractional band-
width virtual circuits.

12.7 Exercises

12.7.1 Which of the following offers the highest potential data rate:

 (a) Single-mode fibre optic (b) Multimode fibre optic
 (c) Cat-3, shielded twisted pair (d) Cat-5, shielded twisted pair

12.7.2 What is the topology of a large Fibre Channel network:

 (a) Back plane (b) Bus network
 (c) Star network (d) Ring network

12.7.3 What devices do workstations normally connect to with a Fibre channel network:

 (a) Router (b) Hub
 (c) Bridge (d) Repeater

12.7.4 Which of the following is not an advantage of Fibre channel:

 (a) High data rate
 (b) Hot swappable local devices
 (c) Can be used with many networking protocols
 (d) Increased amount of ring connections

12.8 Notes from the author

Well, ask any Managing Director of a large commercial organisation about what their key
resources is, and, at least, if they are honest, 9 out of 10 of them will say their IT infrastruc-
ture. Thus, if a company were to loose electronic mail or their Intranet connections, it would
be very costly in lack of efficiency. What is required, then, is a fast and robust network back-
bone. This is what fibre channel does best. It’s not cheap, but it’s as good as it gets.

RS-232

13.1 Introduction

RS-232 is one of the most widely used techniques used to interface external equipment to
computers. It uses serial communications where one bit is sent along a line, at a time. This
differs from parallel communications which send one or more bytes, at a time. The main ad-
vantage that serial communications has over parallel communications is that a single wire is
needed to transmit and another to receive. RS-232 is a de facto standard that most computer
and instrumentation companies comply with. It was standardised in 1962 by the Electronics
Industries Association (EIA). Unfortunately this standard only allows short cable runs with
low bit rates. The standard RS-232 only allows a bit rate of 19 600 bps for a maximum dis-
tance of 20 m. New serial communications standards, such as RS-422 and RS-449, allow
very long cable runs and high bit rates. For example, RS-422 allows a bit rate of up to
10 Mbps over distances up to 1 mile, using twisted-pair, coaxial cable or optical fibres. The
new standards can also be used to create computer networks. This chapter introduces the RS-
232 standard and gives simple programs which can be used to transmit and receive using RS-
232.

13.2 Electrical characteristics

13.2.1 Line voltages

The electrical characteristics of RS-232 defines the minimum and maximum voltages of a
logic ‘1’ and ‘0’. A logic ‘1’ ranges from –3 V to –25 V, but will typically be around –12 V.
A logical ‘0’ ranges from 3 V to 25 V, but will typically be around +12 V. Any voltage be-
tween –3 V and +3 V has an indeterminate logical state. If no pulses are present on the line
the voltage level is equivalent to a high level, that is –12 V. A voltage level of 0 V at the re-
ceiver is interpreted as a line break or a short circuit. Figure 13.1 shows an example trans-
mission.

+12V

–12V

1 10 0010
Inactive condition

Figure 13.1 RS-232 voltage levels

13

224 Computer busses

13.2.2 DB25S connector

The DB25S connector is a 25-pin D-type connector and gives full RS-232 functionality. Fig-
ure 13.2 shows the pin number assignment. A DCE (the terminating cable) connector has a
male outer casing with female connection pins. The DTE (the computer) has a female outer
casing with male connecting pins. There are three main signal types: control, data and
ground. Table 13.1 lists the main connections. Control lines are active HIGH, that is they are
HIGH when the signal is active and LOW when inactive.

113

14

23456789101112

1516171819202122232425

Pin Signal
2 TxData
3 RxData
4 RTS
5 CTS
6 DSR
7 GND
20 DTR

Figure 13.2 RS-232 DB25S connector

13.2.3 DB9S Connector

The 25-pin connector is the standard for RS-232 connections but as electronic equipment
becomes smaller, there is a need for smaller connectors. For this purpose most PCs now use
a reduced function 9-pin D-type connector rather than the full function 25-way D-type. As
with the 25-pin connector the DCE (the terminating cable) connector has a male outer casing
with female connection pins. The DTE (the computer) has a female outer casing with male
connecting pins. Figure 13.3 shows the main connections.

1

6

2345

789

Pin Signal
2 RxData
3 TxData
4 DTR
5 GND
6 DSR
7 RTS
8 CTS

Figure 13.3 RS-232 DB9S interface

13.2.4 PC connectors

All PCs have at least one serial communications port. The primary port is named COM1: and
the secondary is COM2:. There are two types of connectors used in RS-232 communications,
these are the 25- and 9-way D-type. Most modern PCs use either a 9-pin connector for the
primary (COM1:) serial port and a 25-pin for a secondary serial port (COM2:), or they use
two 9-pin connectors for serial ports. The serial port can be differentiated from the parallel
port in that the 25-pin parallel port (LPT1:) is a 25-pin female connector on the PC and a
male connector on the cable. The 25-pin serial connector is a male on the PC and a female on
the cable. The different connector types can cause problems in connecting devices. Thus a
25-to-9 pin adapter is a useful attachment, especially to connect a serial mouse to a 25-pin
connector.

RS-232 225

Table 13.1 Main pin connections used in 25-pin connector

Pin Name Abbreviation Functionality
1 Frame ground FG This ground normally connects the outer sheath of the

cable and to earth ground.

2 Transmit data TD Data is sent from the DTE (computer or terminal) to a
DCE via TD.

3 Receive data RD Data is sent from the DCE to a DTE (computer or ter-
minal) via RD.

4 Request to send RTS DTE sets this active when it is ready to transmit data.

5 Clear to send CTS DCE sets this active to inform the DTE that it is ready
to receive data.

6 Data set ready DSR Similar functionality to CTS but activated by the DTE
when it is ready to receive data.

7 Signal ground SG All signals are referenced to the signal ground (GND).

20 Data
terminal ready

DTR Similar functionality to RTS but activated by the DCE
when it wishes to transmit data.

13.2.5 Frame format

RS-232 uses asynchronous communication which has a start/stop data format (Figure 13.4).
Each character is transmitted one at a time with a delay between them. This delay is called
the inactive time and is set at a logic level high (–12 V) as shown in Figure 13.5. The trans-
mitter sends a start bit to inform the receiver that a character is to be sent in the following bit
transmission. This start bit is always a ‘0’. Next, 5, 6 or 7 data bits are sent as a 7-bit ASCII
character, followed by a parity bit and finally either 1, 1.5 or 2 stop bits. Figure 13.5 shows a
frame format and an example transmission of the character ‘A’, using odd parity. The timing
of a single bit sets the rate of transmission. Both the transmitter and receiver need to be set to
the same bit-time interval. An internal clock on both sets this interval. These only have to be
roughly synchronised at approximately the same rate as data is transmitted in relatively short
bursts.

Tx Character Tx Character Tx Character

Inactive condition

Figure 13.4 Asynchronous communications

226 Computer busses

0 b 0 b 1 P S1 S2 1

start
bit ASCII

character
Parity
bit Stop

bit(s)

0 1 0 0 0 0 0 1 1 1 1

‘A’ (100 0001)

b 2 b 3 b 4 b 5 b 6

Figure 13.5 RS-232 frame format

Example
An RS-232 serial data link uses 1 start bit, 7 data bits, 1 parity bit, 2 stop bits, ASCII coding
and even parity. Determine the message sent from the following bit stream.

First bit sent
⇓
11111010000010110000011111111111111000001111111100011001111010
10 0111111111111

Answer
The format of the data string sent is given next:

{idle} 11111 {start bit} 0 {‘A’} 1000001 {parity bit} 0 {stop bits } 11 {start bit} 0
{‘p’} 0000111 {parity bit} 1 {stop bits} 11 {idle} 11111111 {start bit} 0 {‘p’}
0000111 {parity bit} 1 {stop bits} 11 {idle} 11 {start bit} 0 {‘L’} 0011001 {parity
bit} 1 {stop bits} 11

The message sent was thus ‘AppL’.

Parity

Error control is data added to transmitted data in order to detect or correct an error in trans-
mission. RS-232 uses a simple technique known as parity to provide a degree of error detec-
tion.
 A parity bit is added to transmitted data to make the number of 1s sent either even (even
parity) or odd (odd parity). It is a simple method of error coding and only requires exclusive-
OR (XOR) gates to generate the parity bit. The parity bit is added to the transmitted data by

RS-232 227

inserting it into the shift register at the correct bit position.
 A single parity bit can only detect an odd number of errors, that is, 1, 3, 5, and so on. If
there is an even number of bits in error then the parity bit will be correct and no error will be
detected. This type of error coding is not normally used on its own where there is the possi-
bility of several bits being in error.

Baud rate

One of the main parameters, which specify RS-232 communications, is the rate of transmis-
sion at which data is transmitted and received. It is important that the transmitter and receiver
operate at, roughly, the same speed.
 For asynchronous transmission the start and stop bits are added in addition to the 7 ASCII
character bits and the parity. Thus a total of 10 bits are required to transmit a single charac-
ter. With 2 stop bits, a total of 11 bits are required. If 10 characters are sent every second and
if 11 bits are used for each character, then the transmission rate is 110 bits per second (bps).
Table 13.2 lists how the bit rate relates to the characters sent per second (assuming 10 trans-
mitted bits per character). The bit rate is measured in bits per second (bps).

 Bits
ASCII character 7
Start bit 1
Stop bit 2
Total 10

Table 13.2 Bits per second related to characters sent per second

Speed (bps) Characters per second
 300 30
1200 120
2400 240

 In addition to the bit rate, another term used to describe the transmission speed is the
baud rate. The bit rate refers to the actual rate at which bits are transmitted, whereas the baud
rate relates to the rate at which signalling elements, used to represent bits, are transmitted. As
one signalling element encodes one bit, the two rates are then identical. Only in modems
does the bit rate differ from the baud rate.

Bit stream timings

Asynchronous communications is a stop/start mode of communication and both the transmit-
ter and receiver must be set up with the same bit timings. A start bit identifies the start of
transmission and is always a low logic level. Next, the least significant bit is sent followed
by the rest of the bits in the character. After this, the parity bit is sent followed by the stop
bit(s). The actual timing of each bit relates to the baud rate and can be found using the fol-
lowing formula:

second
rate baud

1biteach of period Time =

228 Computer busses

For example, if the baud rate is 9600 baud (or bps) then the time period for each bit sent is
1/9600 s or 104 µs. Table 13.3 shows some bit timings as related to baud rate. An example of
the voltage levels and timings for the ASCII character ‘V’ is given in Figure 13.6.

Table 13.3 Bit timings related to baud rate

Baud rate Time for each bit (µs)
1 200 833
2 400 417
9 600 104
19 200 52

Start

bit
0 1 1 0 1 0 1

Stop

bit

ASCII ‘V’ 101 0110

Baud rate: 9600 baud

+12 V

-12 V

Figure 13.6 ASCII ‘V’ at RS-232 voltage levels

13.3 Communications between two nodes

RS-232 is intended to be a standard but not all manufacturers abide by it. Some implement
the full specification while others implement just a partial specification. This is mainly be-
cause not every device requires the full functionality of RS-232, for example a modem re-
quires many more control lines than a serial mouse.
 The rate at which data is transmitted and the speed at which the transmitter and receiver
can transmit/receive the data dictates whether data handshaking is required.

13.3.1 Handshaking

In the transmission of data, there can either be no handshaking, hardware handshaking or
software handshaking. If no handshaking is used then the receiver must be able to read the
received characters before the transmitter sends another. The receiver may buffer the re-
ceived character and store it in a special memory location before it is read. This memory lo-
cation is named the receiver buffer. Typically, it may only hold a single character. If it is not
emptied before another character is received then any character previously in the buffer will
be overwritten. An example of this is illustrated in Figure 13.6. In this case, the receiver has
read the first two characters successfully from the receiver buffer, but it did not read the third
character as the fourth transmitted character has overwritten it in the receiver buffer. If this
condition occurs then some form of handshaking must be used to stop the transmitter sending
characters before the receiver has had time to service the received characters.
 Hardware handshaking involves the transmitter asking the receiver if it is ready to receive

120 µS

RS-232 229

data. If the receiver buffer is empty it will inform the transmitter that it is ready to receive
data. Once the data is transmitted and loaded into the receiver buffer the transmitter is in-
formed not to transmit any more characters until the character in the receiver buffer has been
read. The main hardware handshaking lines used for this purpose are:

• CTS – Clear to send.
• RTS – Ready to send.
• DTR – Data terminal ready.
• DSR – Data set ready.

Software handshaking involves sending special control characters. These include the DC1
(Xon)-DC4 (Xoff) control characters.

Transmitter Receiver

Receiver
reads from
buffer

receiver
buffer

transmitted
characters

transmitter
buffer

Receiver has
failed to read the
buffer before another
character has been
received

Figure 13.7 Transmission and reception of characters

13.3.2 RS-232 set-up

Microsoft Windows allows the serial port setting to be set by selecting control panel → sys-
tem → device manager → ports (COM and LPT) → port settings. The settings of the com-
munications port (the IRQ and the port address) can be changed by selecting control panel →
system → device manager → ports (COM and LPT) → resources for IRQ and addresses.
Figure 13.8 shows example parameters and settings. The selectable baud rates are typically
110, 300, 600, 1200, 2400, 4800, 9600 and 19 200 baud for an 8250-based device. A 16650
UART also gives enhanced speeds of 38 400, 57 600, 115 200, 230 400, 460 800 and 921 600
baud. Notice that the flow control can either be set to software handshaking (Xon/Xoff),
hardware handshaking or none. The parity bit can either be set to none, odd, even, mark or
space. A mark in the parity option sets the parity bit to a ‘1’ and a space sets it to a ‘0’.
 In this case COM1: is set at 9600 baud, 8 data bits, no parity, 1 stop bit and no parity
checking.

230 Computer busses

Figure 13.8 Changing port setting and parameters

13.3.3 Simple no-handshaking communications

In this form of communication it is assumed that the receiver can read the received data from
the receive buffer before another character is received. Data is sent from a TD pin connection
of the transmitter and is received in the RD pin connection at the receiver. When a DTE
(such as a computer) connects to another DTE, then the transmit line (TD) on one is con-
nected to the receive (RD) of the other and vice versa. Figure 13.9 shows the connections
between the nodes.

TD

RD

RTS

CTS

DTR

DSR

GND

TD

RD

RTS

CTS

DTR

DSR

GND

3

2

7

8

4

6

5

3

2

7

8

4

6

5

9-pin 9-pin

TD

RD

RTS

CTS

DTR

DSR

GND

TD

RD

RTS

CTS

DTR

DSR

GND

3

2

7

8

4

6

5

2

3

4

5

20

6

7

9-pin 25-pin

Figure 13.9 RS-232 connections with no hardware handshaking

13.3.4 Software handshaking

There are two ASCII characters that start and stop communications. These are X-ON (^S ,
Cntrl-S or ASCII 11) and X-OFF (^Q, Cntrl-Q or ASCII 13). When the transmitter receives
an X-OFF character it ceases communications until an X-ON character is sent. This type of
handshaking is normally used when the transmitter and receiver can process data relatively

RS-232 231

quickly. Normally, the receiver will also have a large buffer for the incoming characters.
When this buffer is full, it transmits an X-OFF. After it has read from the buffer the X-ON is
transmitted, see Figure 13.10.

X-OFF

X-ON

Tr
an

sm
itt

er

Data
transmission

Data
transmission

R
ec

ei
ve

r

Figure 13.10 Software handshaking using X-ON and X-OFF

13.3.5 Hardware handshaking

Hardware handshaking stops characters in the receiver buffer from being overwritten. The
control lines used are all active HIGH. Figure 13.11 shows how the nodes communicate.
When a node wishes to transmit data it asserts the RTS line active (that is, HIGH). It then
monitors the CTS line until it goes active (that is, HIGH). If the CTS line at the transmitter
stays inactive then the receiver is busy and cannot receive data, at the present. When the re-
ceiver reads from its buffer the RTS line will automatically go active indicating to the trans-
mitter that it is now ready to receive a character.

Are you ready
to receive ?

No
CTS

RTS

Yes
CTS

TD

Send
character

Transmitting
node

CTS

RTS

RD

RTS

Receiving
node

Figure 13.11 Handshaking lines used in transmitting data

232 Computer busses

Receiving data is similar to the transmission of data, but the lines DSR and DTR are used
instead of RTS and CTS. When the DCE wishes to transmit to the DTE the DSR input to the
receiver will become active. If the receiver cannot receive the character, it will set the DTR
line inactive. When it is clear to receive it sets the DTR line active and the remote node then
transmits the character. The DTR line will be set inactive until the character has been proc-
essed.

13.3.6 Two-way communications with handshaking

For full handshaking of the data between two nodes the RTS and CTS lines are crossed over
(as are the DTR and DSR lines). This allows for full remote node feedback (see Figure
13.12).

DTE DTE

RTS

CTS

DTR

DSR

GND

TD

RD

RTS

CTS

DTR

DSR

GND

3

7

8

4

6

5

3
TD

RD 2 2

7

8

4

6

5

3

2

7

8

4

6

5

2

3

4

5

20

6

7

9-pin 9-pin 9-pin 25-pin

DTE DTE

TD

RD

RTS

CTS

DTR

DSR

GND

TD

RD

RTS

CTS

DTR

DSR

GND

Figure 13.12 RS-232 communications with handshaking

13.3.7 DTE-DCE connections (PC to modem)

A further problem occurs in connecting two nodes. A DTE/DTE connection requires cross-
overs on their signal lines, whereas DTE/DCE connections require straight-through lines. An
example computer to modem connection is shown in Figure 13.13.

3

7

8

4

6

5

2

2

4

5

20

6

7

3

3

7

8

4

6

5

2

3

7

8

4

6

5

2

DTE DCE

RTS

CTS

DTR

DSR

GND

TD

RD

9-pin 9-pin 9-pin 25-pin

DTE DCE

RTS

CTS

DTR

DSR

GND

TD

RD

RTS

CTS

DTR

DSR

GND

TD

RD

RTS

CTS

DTR

DSR

GND

TD

RD

Figure 13.13 DTE to DCE connections

RS-232 233

13.4 Programming RS-232

Normally, serial transmission is achieved via the RS-232 standard. Although 25 lines are
defined usually only a few are used. Data is sent along the TD line and received by the RD
line with a common ground return. The other lines, used for handshaking, are RTS (ready to
send) which is an output signal to indicate that data is ready to be transmitted and CTS (clear
to send), which is an input indicating that the remote equipment is ready to receive data.
 The 8250/NS16650 IC is commonly used in serial communications. It is typically inte-
grated in the PC chip set, or can be mounted on an I/O card. This section discusses how it is
programmed.

Programming the serial device

The main registers used in RS-232 communications are the line control register (LCR), the
line status register (LSR) and the transmit and receive buffers (see Figure 13.14). The trans-
mit and receive buffers share the same addresses.
 The base address of the primary port (COM1:) is normally set at 3F8h and the secondary
port (COM2:) at 2F8h. A standard PC can support up to four COM ports. These addresses
are set in the BIOS memory and the address of each of the ports is stored at address locations
0040:0000 (COM1:), 0040:0002 (COM2:), 0040:0004 (COM3:) and 0040:0008
(COM4:). Program 13.1 can be used to identify these addresses. The statement:

 ptr=(int far *)0x0400000;

initializes a far pointer to the start of the BIOS communications port addresses. Each address
is 16 bits thus the pointer points to an integer value. A far pointer is used as this can access
the full 1 MB of memory, a near pointer can only access a maximum of 64 kB.

 Program 13.1
#include <stdio.h>
#include <conio.h>
int main(void)
{
int far *ptr; /* 20-bit pointer */
 ptr=(int far *)0x0400000; /* 0040:0000 */
 clrscr();
 printf("COM1: %04x\n",*ptr);
 printf("COM2: %04x\n",*(ptr+1));
 printf("COM3: %04x\n",*(ptr+2));
 printf("COM4: %04x\n",*(ptr+3));
 return(0);
}

Test run 3.1 shows a sample run. In this case, there are four COM ports installed on the PC.
If any of the addresses is zero then that COM port is not installed on the system.

 Test run 3.1
COM1: 03f8
COM2: 02f8
COM3: 03e8
COM4: 02e8

234 Computer busses

 TD/RD Base address

Interrupt enable Base address+1

Interrupt Identity Base address+2

Line control Base address+3

Modem control Base address+4

Line status Base address+5

Modem status Base address+6

Scratch pad Base address+7

Base address
COM1: 3F8h
COM2: 2F8h

Figure 13.14 Serial communication registers

Line Status Register (LSR)

The LSR determines the status of the transmitter and receiver buffers. It can only be read
from, and all the bits are automatically set by hardware. The bit definitions are given in Fig-
ure 13.15. When an error occurs in the transmission of a character one (or several) of the
error bit is (are) set to a ‘1’.

0 S6 S5 S4 S3 S2 S1 S0

Set to 1 when data
has been received

Set to 1 when transmitter
buffer contents loaded
into transmit register

Set to 1 when transmitter
buffer is empty

Overrun error

Parity error

Framing error

Break detected

Figure 13.15 Line status register

One danger when transmitting data is that a new character can be written to the transmitter
buffer before the previous character has been sent. This overwrites the contents of the
character being transmitted. To avoid this the status bit S6 is tested to determine if there is
still a character in the buffer. If there is then it is set to a ‘1’, else the transmitter buffer is

RS-232 235

character in the buffer. If there is then it is set to a ‘1’, else the transmitter buffer is empty.
 To send a character

 Test bit 6 until set;
 Send character;

A typical Pascal routine is

 repeat
 status := port[LSR] and $40;
 until (status=$40);

When receiving data the S0 bit is tested to determine if there is a bit in the receiver buffer. To
receive a character

 Test bit 0 until set;
 Read character;

A typical Pascal routine is

 repeat
 status := port[LSR] and $01;
 until (status=$01);

Figure 13.16 shows how the LSR is tested for the transmission and reception of characters.

Line control register (LCR)

The LCR sets up the communications parameters. These include the number of bits per char-
acter, the parity and the number of stop bits. It can be written to or read from and has a simi-
lar function to that of the control registers used in the PPI (programmable parallel interface)
and PTC (programmable timer/counter). The bit definitions are given in Figure 13.17.

TX buffer RX buffer

Character to be
transmitted

Character
received

1

Transmitter Receiver

1

LSR

LSR

Test S0 to determine
if the RX buffer is full

Test S6 to determine if
the TX buffer is empty

Figure 13.16 Testing of the LSR for the transmission and reception of characters

236 Computer busses

C7 C6 C5 C4 C3 C2 C1 C0

Set bits per word
00 – 5 bits, 01 – 6 bits
10 – 7 bits, 11 – 8 bits

Parity bit
0 – No parity
1 – Parity

Parity type
0 – Even parity
1 – Odd parity

Break
0 – Normal output
1 – Send a break

Stick bit
0 – No stick bit
1 – Stick bit

Stop bits
0 – 1 stop bit
1 – 1.5 stop bits

Register address
discriminator

Figure 13.17 Line control register

 The MSB, C7, must to be set to a ‘0’ in order to access the transmitter and receiver buff-
ers, else if it is set to a ‘1’ the baud rate divider is set up. The baud rate is set by loading an
appropriate 16-bit divisor into the addresses of transmitter/receiver buffer address and the
next address. The value loaded depends on the crystal frequency connected to the IC. Table
13.4 shows divisors for a crystal frequency of 1.8432 MHz. In general, the divisor, N, is re-
lated to the baud rate by:

N×

=
16

frequencyClock rate Baud

For example, for 1.8432 MHz and 9600 baud N = 1.8432×106/(9600×16) = 12 (000Ch).

Table 13.4 Baud rate divisors

Register addresses

The addresses of the main registers are given in Table 13.5. To load the baud rate divisor,
first the LCR bit 7 is set to a ‘1’, then the LSB is loaded into divisor LSB and the MSB into

Baud rate Divisor (value loaded into Tx/Rx buffer)
 110
 300
 600
 1200
 1800
 2400
 4800
 9600
19200

0417h
0180h
00C0h
0060h
0040h
0030h
0018h
000Ch
0006h

RS-232 237

the divisor MSB register. Finally, bit 7 is set back to a ‘0’. For example, for 9600 baud,
COM1 and 1.8432 MHz clock then 0Ch is loaded in 3F8h and 00h into 3F9h.
 When bit 7 is set at a ‘0’ then a read from the base address reads from the RD buffer and
a write operation writes to the TD buffer. An example of this is shown in Figure 13.9.

TD buffer
TD3F8h

Write to TD/RD
buffer

RD buffer
RD3F8hRead from TD/RD

buffer

Figure 13.18 Read and write from TD/RD buffer

Table 13.5 Serial communications addresses

Primary Secondary Register Bit 7 of LCR
3F8h 2F8h TD buffer ‘0’
3F8h 2F8h RD buffer ‘0’
3F8h 2F8h Divisor LSB ‘1’
3F9h 2F9h Divisor MSB ‘1’
3FBh 2FBh Line Control Register
3FDh 2FDh Line Status Register

13.5 RS-232 programs

Figure 13.19 shows the main RS-232 connections for 9 and 25-pin connections without
hardware handshaking. The loopback connections are used to test the RS-232 hardware and
the software, while the null modem connections are used to transmit characters between two
computers. Program 13.2 uses a loop back on the TD/RD lines so that a character sent by the
computer will automatically be received into the receiver buffer. This set-up is useful in test-
ing the transmit and receive routines. The character to be sent is entered via the keyboard. A
CNTRL-D (^D) keystroke exits the program.
 Program 13.3 can be used as a sender program (send.c) and Program 13.4 can be used as
a receiver program (receive.c). With these programs, the null modem connections shown in
Figure 13.19 are used.
 Note that programs 13.2 to 13.4 are written for Microsoft Visual C++. For early versions
of Borland C/C++ program change _inp for inportb and _outp for outportb.

238 Computer busses

RD

TD

GND

2

3

9-pin D-type
connector
(loopback)

RD

TD

GND

2

3

9-pin D-type
connector
(loopback)

RD

TD

GND

2

9-pin D-type
to 9-pin connection
(null modem without
handshaking)

RD

TD

GND

3

5

2

3

5

TD

RD

GND

2

25-pin D-type
to 25-pin connection
(null modem without
handshaking)

TD

RD

GND

3

7

2

3

7

RD

TD

GND

2

9-pin D-type
to 25-pin connection
(null modem without
handshaking)

TD

TD

GND

3

5

2

3

7

Figure 13.19 System connections

 Program 13.2
/* This program transmits a character from COM1: and receives */
/* it via this port. The TD is connected to RD. */

#define COM1BASE 0x3F8
#define COM2BASE 0x2F8
#define TXDATA COM1BASE
#define LCR (COM1BASE+3) /* 0x3FB line control */
#define LSR (COM1BASE+5) /* 0x3FD line status */

#include <conio.h> /* required for getch() */
#include <dos.h> /* */
#include <stdio.h>

/* Some ANSI C prototype definitions */
void setup_serial(void);
void send_character(int ch);
int get_character(void);

int main(void)
{
int inchar,outchar;

 setup_serial();
 do
 {
 puts("Enter char to be transmitted (Cntrl-D to end)");
 outchar=getch();
 send_character(outchar);
 inchar=get_character();
 printf("Character received was %c\n",inchar);
 } while (outchar!=4);
 return(0);
}

void setup_serial(void)
{

RS-232 239

 _outp(LCR, 0x80);
 /* set up bit 7 to a 1 to set Register address bit */

 _outp(TXDATA,0x0C);
 _outp(TXDATA+1,0x00);
 /* load TxRegister with 12, crystal frequency is 1.8432MHz */

 _outp(LCR, 0x0A);
 /* Bit pattern loaded is 00001010b, from msb to lsb these are: */
 /* 0 - access TD/RD buffer , 0 - normal output */
 /* 0 - no stick bit , 0 - even parity */
 /* 1 - parity on, 0 - 1 stop bit */
 /* 10 - 7 data bits */
}

void send_character(int ch)
{
char status;
 do
 {
 status = _inp(LSR) & 0x40;
 } while (status!=0x40);
 /*repeat until Tx buffer empty ie bit 6 set*/

 _outp(TXDATA,(char) ch);
}

int get_character(void)
{
int status;
 do
 {
 status = _inp(LSR) & 0x01;
 } while (status!=0x01);
 /* Repeat until bit 1 in LSR is set */

 return((int)_inp(TXDATA));
}

 Program 13.3

/* send.c */
#define TXDATA 0x3F8
#define LSR 0x3FD
#define LCR 0x3FB

#include <stdio.h>
#include <conio.h> /* included for getch */
#include <dos.h>

void setup_serial(void);
void send_character(int ch);

int main(void)
{
int ch;
 puts("Transmitter program. Please enter text (Cntl-D to end)");
 setup_serial();
 do
 {
 ch=getche();
 send_character(ch);

240 Computer busses

 } while (ch!=4);
 return(0);
}

void setup_serial(void)
{
 _outp(LCR, 0x80);
 /* set up bit 7 to a 1 to set Register address bit */
 _outp(TXDATA,0x0C);
 _outp(TXDATA+1,0x00);
 /* load TxRegister with 12, crystal frequency is 1.8432MHz */
 _outp(LCR, 0x0A);
 /* Bit pattern loaded is 00001010b, from msb to lsb these are: */
 /* Access TD/RD buffer, normal output, no stick bit */
 /* even parity, parity on, 1 stop bit, 7 data bits */
}
void send_character(int ch)
{
char status;
 do
 {
 status = _inp(LSR) & 0x40;
 } while (status!=0x40);
 /*repeat until Tx buffer empty ie bit 6 set*/
 _outp(TXDATA,(char) ch);
}

 Program 13.4

/* receive.c */
#define TXDATA 0x3F8
#define LSR 0x3FD
#define LCR 0x3FB
#include <stdio.h>
#include <conio.h> /* included for getch */
#include <dos.h>

void setup_serial(void);
int get_character(void);
int main(void)
{
int inchar;
 setup_serial();
 do
 {
 inchar=get_character();
 putchar(inchar);
 } while (inchar!=4);
 return(0);
}
void setup_serial(void)
{
 _outp(LCR, 0x80);
 /* set up bit 7 to a 1 to set Register address bit */
 _outp(TXDATA,0x0C);
 _outp(TXDATA+1,0x00);
 /* load TxRegister with 12, crystal frequency is 1.8432MHz */
 _outp(LCR, 0x0A);
 /* Bit pattern loaded is 00001010b, from msb to lsb these are: */
 /* Access TD/RD buffer, normal output, no stick bit */
 /* even parity, parity on, 1 stop bit, 7 data bits */
}

RS-232 241

int get_character(void)
{
int status;
 do
 {
 status = _inp(LSR) & 0x01;
 } while (status!=0x01); /* Repeat until bit 1 in LSR is set */
 return((int)_inp(TXDATA));
}

13.6 Exercises

13.6.1 Which is the maximum cable length for a standard RS-232 connection:

 (a) 2 m (b) 2 0m
 (c) 200 m (d) 2 km

13.6.2 Which enhancement to RS-232 allows for 1Mbps bit rates and increased cable

lengths:

 (a) RS-232x (b) RS-422
 (c) RS-444 (d) RS-233

13.6.3 Which of the following is not a standard RS-232 bit rate:

 (a) 110 bps (b) 4800 bps
 (c) 9600 bps (d) 12 200 bps

13.6.4 Which voltage range is used for a ‘0’ bit value:

 (a) –3 V to –25 V (b) 0 V to –3 V
 (c) +3 V to +25 V (d) 0 V to +3 V

13.6.5 In RS-232, how is the inactive period identified:

 (a) A high voltage level (b) A low voltage level
 (c) Zero voltage level (d) Open circuit

13.6.6 How is a null modem cable identified:

 (a) Direct connection between all the signal lines
 (b) No connections to TD and RD lines
 (c) Cross-over between the TD and RD, and handshaking lines
 (d) No hardware handshaking lines

13.6.7 How is a modem cable identified:

 (a) Direct connection between all the signal lines

242 Computer busses

 (b) No connections to TD and RD lines
 (c) Cross-over between the TD and RD, and handshaking lines
 (d) No hardware handshaking lines

13.6.8 The main connections used to transmit data over a null modem cable with no

hardware handshaking are:

 (a) TD, RD, GND (b) RTS, CTS, GND
 (c) DSR, DTR, GND (d) TD, RD, RTS, CTS

13.6.9 If a device transmits at 9600 bps, approximately how many characters are

transmitted every minute:

 (a) 5760 (b) 57600
 (c) 576000 (d) 5760000

13.6.10 If a device transmits at 4800 bps, approximately what is the period of a single bit:

 (a) 2.08µs (b) 20.8µs
 (c) 208µs (d) 2.08 ms

13.6.11 Which handshaking line is used by a transmitter to identify that it is read to send

data:

 (a) RTS (b) CTS
 (c) DTR (d) DTE

13.6.12 Which handshaking line is used by a receiver to identify that it is ready to receive

data:

 (a) RTS (b) CTS
 (c) DTR (d) DTE

13.6.13 Which characters are used to start and stop data transfer in software handshaking:

 (a) X-ON, X-OFF (b) OFF, ON
 (c) IN, OUT (d) LF, CR

13.6.14 Which is the standard I/O port address for COM1:

 (a) 1F8h (b) 2F8h
 (c) 3F8h (d) 4F8h

13.6.15 Which is the standard I/O port address for COM2:

 (a) 1F8h (b) 2F8h
 (c) 3F8h (d) 4F8h

13.6.16 The standard IC used in RS-232 communications is:

RS-232 243

 (a) 8232 (b) 8086
 (c) 8088 (d) 8250

13.6.17 Which register is used to determine the status of the RS-232 connection:

 (a) LSR (b) LCR
 (c) STATUS (d) TD/RD buffer

13.6.18 Which register is used to configure the RS-232 connection:

 (a) LSR (b) LCR
 (c) STATUS (d) TD/RD buffer

13.6.19 Write a program that continuously sends the character ‘A’ to the serial line. Ob-

serve the output on an oscilloscope and identify the bit pattern and the baud rate.

13.6.20 Write a program that continuously sends the characters from ‘A’ to ‘Z’ to the se-

rial line. Observe the output on an oscilloscope.

13.6.21 Modify Program 13.2 so that the program prompts the user for the baud rate when

the program is started. A sample run is shown in Sample run 13.1.

 Sample run 13.1
Enter baud rate required:
1 110 2 150 3 300 4 600
5 1200 6 2400 7 4800 8 9600
>> 8
RS232 transmission set to 9600 baud

13.6.22 Complete Table 13.6 to give the actual time to send 1000 characters for the given

baud rates. Compare these values with estimated values.
 Note that approximately 10 bits are used for each character thus 960 characters

per second will be transmitted at 9600 baud.

Table 13.6 Baud rate divisors

Baud
rate

Time to send 1000 characters (s)

 110
 300
 600
 1200
 2400
 4800
 9600
19200

13.6.23 Modify the setup_serial() routine so that the RS232 parameters can be passed
to it. These parameters should include the comport (either COM1: or COM2:), the

244 Computer busses

baud rate, the number of data bits and the type of parity. An outline of the modi-
fied function is given in Program 13.5.

 Program 13.5
#define COM1BASE 0x3F8
#define COM2BASE 0x2F8
#define COM1 0
#define COM2 1
enum baud_rates {BAUD110,BAUD300,BAUD600,BAUD1200,
 BAUD2400,BAUD4800,BAUD9600};
enum parity {NO_PARITY,EVEN_PARITY,ODD_PARITY};
enum databits {DATABITS7,DATABITS8};
#include <conio.h>
#include <dos.h>
#include <stdio.h>
void setup_serial(int comport, int baudrate, int parity,
 int databits);
void send_character(int ch);
int get_character(void);
int main(void)
{
int inchar,outchar;

 setup_serial(COM1,BAUD2400,EVEN_PARITY,DATABITS7);
 :::::::::::etc.
}

void setup_serial(int comport, int baudrate,
 int parity, int databits)
{
int tdreg,lcr;
 if (comport==COM1)
 {
 tdreg=COM1BASE; lcr=COM1BASE+3;
 }
 else
 {
 tdreg=COM2BASE; lcr=COM2BASE+3;
 }
 _outp(lcr, 0x80);
 /* set up bit 7 to a 1 to set Register address bit */
 switch(baudrate)
 {
 case BAUD110: _outp(tdreg,0x17);_outp(tdreg+1,0x04); break;
 case BAUD300: _outp(tdreg,0x80);_outp(tdreg+1,0x01); break;
 case BAUD600: _outp(tdreg,0x00);_outp(tdreg+1,0xC0); break;
 case BAUD1200: _outp(tdreg,0x00);_outp(tdreg+1,0x40);break;
 case BAUD2400: _outp(tdreg,0x00);_outp(tdreg+1,0x30);break;
 case BAUD4800: _outp(tdreg,0x00);_outp(tdreg+1,0x18);break;
 case BAUD9600: _outp(tdreg,0x00);_outp(tdreg+1,0x0C);break;
 }
 :::::::::: etc.
}

13.6.24 One problem with Programs 13.2 and 13.3 is that when the return key is pressed

only one character is sent. The received character will be a carriage return which
returns the cursor back to the start of a line and not to the next line. Modify the re-
ceiver program so that a line feed will be generated automatically when a carriage
return is received. Note a carriage return is an ASCII 13 and line feed is a 10.

RS-232 245

13.6.25 Modify the get_character() routine so that it returns an error flag if it detects an
error or if there is a time-out. Table 13.7 lists the error flags and the returned error
value. An outline of the C code is given in Program 13.6. If a character is not re-
ceived within 10 s an error message should be displayed.

 Table 13.7 Error returns from get_character().

Error condition Error flag
return

Notes

Parity error –1
Overrun error –2
Framing error –3
Break detected –4
Time out –5 get_character() should time out if no

characters are received with 10 seconds.

 Test the routine by connecting two PCs together and set the transmitter with dif-

fering RS-232 parameters.

 Program 13.6
#include <stdio.h>
#include <dos.h>
#define TXDATA 0x3F8
#define LSR 0x3FD
#define LCR 0x3FB
void show_error(int ch);
int get_character(void);
enum RS232_errors {PARITY_ERROR=-1, OVERRUN_ERROR=-2,
 FRAMING_ERROR=-3, BREAK_DETECTED=-4, TIME_OUT=-5};
int main(void)
{
int inchar;
 do
 {
 inchar=get_character();
 if (inchar<0) show_error(inchar);
 else printf("%c",inchar);
 } while (inchar!=4);
 return(0);
}
void show_error(int ch)
{
 switch(ch)
 {
 case PARITY_ERROR: printf("Error: Parity error/n"); break;
 case OVERRUN_ERROR: printf("Error: Overrun error/n"); break;
 case FRAMING_ERROR: printf("Error: Framing error/n"); break;
 case BREAK_DETECTED: printf("Error: Break detected/n");break;
 case TIME_OUT: printf("Error: Time out/n"); break;
 }
}
int get_character(void)
{
int instatus;
 do
 {
 instatus = _inp(LSR) & 0x01;

246 Computer busses

 if (instatus & 0x02) return(BREAK_DETECTED);
 :::: etc
 } while (instatus!=0x01);
 return((int) _inp(TXDATA));
}

13.7 Notes from the author

Good old RS-232. My bank manager would certainly agree with this, as I have made more
consultancy income with it than any other piece of computer equipment. I have also run
more RS-232 training courses than all the trendy subjects areas (such as Java and C++) put
together (well, anyway, it doesn’t take much to run a C++ course!). The reason for this is
because it is one of the least understood connections on computer equipment. I’ve interfaced
PCs to gas chromatographs (using an 8-port RS-232 card, heavy!), a PC to a VAX, a Sun
workstation to a PC, a PC to another PC, a Honeywell TDC to a PC, a PC to a PLC, and so
on. For most applications, a serial port to serial port connection is still the easiest method to
transfer data from one computer to another.
 RS-232 is one of the most widely used ‘standards’ in the world. It is virtually standard on
every computer and, while it is relatively slow, it is a standard device. This over-rules its
slowness, its non-standardness, its lack of powerful error checking, its lack of address facili-
ties, and, well, need I go on. It shares its gold stars with solid performers, such as Ethernet
and the parallel port. Neither of these are star performers and are far from perfect, but they
are good, old robust performers who will outlast many of their more modern contenders.
When their position is challenged by a young contender, the standards agency simply invest
a lot of experience and brainpower to increase their performance. Who would believe that
the data rate, over copper wires, could be increased to 1 Gbps for Ethernet to 1MBps for RS-
422. One trusted piece of equipment I could have never done without is an RS-232 transmit-
ter/receiver. For this, I used an old 80386-based laptop computer (which weights as much as
a modern desktop computers) which ran either a simple DOS-based transmitter/receiver
program (see previous chapter), or the excellent Windows 3.1 Terminal program. These I
could use just as an electronic engineer would use a multimeter to test the voltages and cur-
rents in a circuit. A telltale sign that I was transmitting at the wrong bit rate or using an in-
correct number of data bits was the incorrectly received characters (but at least it was re-
ceiving characters, which was an important test).
 On technical questions, I get more requests on RS-232 than any other technical area. I’ve
done a quick search of my emails, and here are my ‘most requested’ list:

1. C++ student assignment problems (I seem to get more than my fair share of C++

problems from students, even although I don’t actually teach the subject anymore, or
use it on any of my assignments). I must admit, I really didn’t enjoy teaching pro-
gramming, as it allowed little scope for discussing interesting things.

2. Coursework questions.
3. Questions from students who are having problems with the PC they have at home.
4. Examination questions (requests for past papers, problems with previous exam ques-

tions, and so on).
5. Work-based problems (obviously sometimes universities provide better on-line ser-

vices than my company support services). These are typically related to problems with
networking.

RS-422, RS-423 and RS-485

14.1 Introduction

The main standards organisations for data communications are the ITU (International Tele-
communications Union), the EIA (Electronic Industry Association) and the ISO (Interna-
tional Standards Organisation). The ITU standards related to serial communications are de-
fined in the V-series specifications and EIA standards as the RS-series. The EIA has defined
many standards for serial communications. RS-232 has many limitations, such as:

• One transmitter and one receiver.
• Maximum connection length of 20 m.
• Maximum baud rate of 20 kbps.

The RS-422 and RS-423 standards replace the RS-232 standards and support higher data
rates and greater immunity to electrical interference. The main standards are:

• RS-422A – Supports multipoint connections. It defines the electrical characteristics of

balanced load voltage digital interface circuits.
• RS-423A – Supports only point-to-point connections. It defines electrical characteristics

of unbalanced voltage digital interface circuits.
• RS-449 – Defines the basic interface standards and refers to the RS-422/3 standards. It

defines a general-purpose 37-position and 9-position interface for DTE and DCE em-
ploying serial binary data interchange.

• RS-485 – Similar to RS-422 but can support more nodes per line because it uses lower-
impedance drivers and receivers.

14.2 RS-485 (ISO 8482)

RS-485 is an upgraded version of RS-422 and extends the number of peripherals that can be
interfaced. It allows for bidirectional multipoint party line communications. This can be used
in networking applications. RS-422 and RS-232 facilitate simplex communication, whereas
RS-485 allows for multiple receivers on a single line, facilitating half-duplex communica-
tions. The maximum data rate is unlimited and is set by the rise time of the pulses, but it is
usually limited to 10 Mbps. A network using the RS-485 standard can have up to 32 transmit-
ters/receivers with a maximum cable length of 1.2 km, as shown in Figure 14.1. The maxi-
mum cable length is 1200 m.

14

248 Computer busses

Host

system

Station

1

Station

2

Station

32

Data flow

Figure 14.1 RS-485 connecting to multiple nodes

RS-485 operates in one of two modes:

• Two-wire, multidrop, party line – in this mode, a balanced transmission line is used to

connect to all of the stations, which share a common communications channel. Up to 32
driver/receiver pairs can share the common channel.

• Four-wire – in this mode, each station connects to a four-wire bus, as illustrated in Fig-
ure 14.2. It is necessary in this mode that one node acts a master station and all others as
slaves. The master then communicates with each of the slaves. All slave nodes commu-
nicate only with the master node. A master–slave network is useful when mixed proto-
cols are used.

Station 1 Station 32

Master
Terminating
impedance

Figure 14.2 RS-485 connecting to multiple nodes

The RS-485 four-wire connection involves a half-duplex transmission mode, that is, only one
device can transmit data at a time. This thus involves a polling procedure, with a master and
up to 32 slaves. The slaves must wait in a high-impedance state (a stand-by mode). The con-
trol of the driver on the slave is either with:

RS-232 249

• An active RTS line.
• Bit changes on the transmit data line.
• Sends of the X-ON/X-OFF flow control characters.

Slaves cannot send data unless they are selected.
 In a four-wire operation RS-485 devices connect with two twisted pair cables with char-
acteristic impedance of 120Ω and general shielding. Each link requires a terminating load on
the ends of the cable.

14.3 Line drivers

Transmission lines have effects on digital pulses in the following ways:

• Attenuation – The transmission line contains series resistance that causes a reduction in

the pulse amplitude.
• Pulse distortion – The transmission line insulation produces a shunt capacitance on the

signal path and a series resistance and inductance of the conductors. This causes the
transmission line to distort the shape of the pulse. The two main effects are the block of
high frequencies in the pulse and phase distortion.

• Noise – Noise is any unwanted electrical signals added to a signal. A digital system is
less prone to noise as it has only two levels and it takes a relatively large change in volt-
age to cause an error.

Table 14.1 shows the electrical characteristics of the different serial communication stan-
dards. The two main standards agencies are the EIA and the ITU.
 Balanced lines use two lines for each signal line, whereas unbalanced lines use one wire
for each signal and a common return circuit (see Figure 14.3). RS-422 is a balanced interface
and uses two conductors to carry the signal (see Figure 14.4). The electrical currents in each
of the conductors are 180° out-of-phase with each other. Balanced lines are generally less
prone to noise as any noise induced into the conductors will be of equal magnitude. At the
receiver the noise will tend to cancel out.
 The voltage levels for RS-232 range from ±3 to ±25 V, whereas, for RS422/ RS423 the
voltage ranges are ±0.2 to ±6 V. For very high bit rates the cable is normally terminated with
the characteristic impedance of the line; for example, a 50Ω cable is terminated with a 50Ω
termination.
 RS-422 interface circuits can have up to 10 receivers. They have no ground connection
and are thus useful in isolating two nodes. For two-way communications four connections
are required, the TX+ and TX- on one node connects to the RX+ and RX- on the other.
 Nodes may have a direct RS-422 connection or can be fitted with a special interface
adaptor to convert from RS-232 to RS-422 (although the maximum data rate is likely to be
limited to the maximum RS-232 rate).
 It should also be noted that the maximum connection distance relates to the maximum
data rate. If a lower data rate is used then the maximum distance can be increased. For exam-
ple, in some situations with a good quality cable and in a low noise environment, it is possi-
ble to have cable runs of 1 km using RS-232 at 1200 bps.

250 Computer busses

Table 14.1 Main serial standards

EIA RS-232-C RS-423-A RS-422-A RS-485
ITU V.28 V.10/X.26 V.11/X.27
Data rate 20 kbps 300 kbps

10 Mbps 10 Mbps

Max distance 15 m 1200 m

1200 m 1200 m

Type Unbalanced Unbalanced dif-
ferential

Balanced differ-
ential

Balanced differ-
ential

Number of drivers
and
 receivers

1 driver
1 receiver

1 driver
10 receivers

1 driver
10 receivers

32 drivers
32 receivers

Driver voltages

±15 V ± 6 V ±5 V ±5 V

Number of con-
ductors per signal

1 2 2 2

common ground

common

Figure 14.3 Unbalanced digital interface circuit (RS-423)

Noise

Noise

RX+
Termination
resistance

RX-TX-

TX+

Figure 14.4 Balanced digital interface circuit (RS-422)

14.4 RS-232/485 converter

RS-232 is a standard port on many systems, including PCs and many instruments. A com-
mon requirement is to convert from RS-232 to RS-485, as this allows for long transmission
lengths. If a computer connects to external equipment, it is important to isolate the grounds.

RS-232 251

This is typically achieved with an opto-isolator which converts between the RS-232 interface
and the RS-485 interface, as shown in Figure 14.5. Data is transmitted from the RS-232 port
to the RS-485 line only if the RS-485 driver is in active mode. This active mode is controlled
by the RTS signal from the RS-232 port (or by detecting transitions on the transmit data line,
TD).

Opto-
isolator
Opto-

isolator
RS-485
interface
RS-485
interface

RS-232
interface
RS-232
interface

T+
T–

R+
R –

COM

TD

RD

RTS

GND

Figure 14.5 Isolation between RS-232 and RS-485

14.5 Exercises

14.5.1 Which device provides isolation between RS-232 and RS-485:

 (a) Capacitor (b) Opto-isolator
 (c) Integrator (d) Resistor

14.5.2 What is the maximum range for RS-422:

 (a) 500 m (b) 1.2 km
 (c) 5 km (d) 10 km

14.5.3 Outline the advantages of balanced lines as opposed to unbalanced lines.

14.6 Note from the author

The RS-422/RS-485 standard really does enhance the basic RS-232 standard and allows for
standard RS-232 connections to be increased to over 1.2 km (although at low bit rates and
unnoisy environments allows for even greater distances). A surprising thought in these days
of cheap electronics, and PC motherboards that cost less than $100, is that RS-232 to RS-
485 convertors are relatively expensive. In fact, it is possible to get a complete PC mother-
board for the same price as an RS-232/RS485 convertor (which contains just a few internal
components), but as the convertor saves lots of time and energy, they are probably worth the
high costs.

Modems

15.1 Introduction

Modems (MOdulator/DEModulator) connect digital equipment to a telephone line. It con-
nects digital equipment to a speech bandwidth-limited communications channel. Typically,
modems are used on telephone lines, which have a bandwidth of between 400 Hz and
3.4 kHz. If digital pulses were applied directly to these lines, they would end up severely
distorted.
 Modem speeds range from 300 bps to 56 kbps. A modem normally transmits about 10 bits
per character (each character has 8 bits). Thus, the maximum rate of characters for a high-
speed modem is 2880 characters per second. This chapter contains approximately 15 000
characters and thus to transmit the text in this chapter would take approximately 5 seconds.
Text, itself, is relatively fast transfer; unfortunately, even compressed graphics can take some
time to be transmitted. A compressed image of 20 KB (equivalent to 20 000 characters) will
take nearly 6 seconds to load on the fastest modem.
 The document that was used to store this chapter occupies, in an uncompressed form,
360 KB. Thus to download this document over a modem, on the fastest modem, would take

 s 125
800 2
000 360

secondper Characters
size file Total takenTime ===

A 14.4 kbps modem would take 250 seconds. Typically home users connect to the Internet
and WWW through a modem (although increasingly ISDN is being used). The example
above shows the need to compress files when transferring them over a modem. On the
WWW, documents and large files are normally compressed into a ZIP file and images and
video compressed in GIF and JPG.
 Most modems are able to do the following:

• Automatically dial (known as auto-dial) another modem using either touch-tone or pulse

dialing.
• Automatically answer (known as auto-answer) calls and make a connection with another

modem.
• Disconnect a telephone connection when data transfer has completed or if an error oc-

curs.
• Automatic speed negotiation between the two modems.
• Convert bits into a form suitable for the line (modulator).
• Convert received signals back into bits (demodulator).
• Transfer data reliably with the correct type of handshaking.

15

254 Computer busses

Figure 15.1 shows how two computers connect to each other using RS-232 converters and
modems. The RS-232 converter is normally an integral part of the computer, while the mo-
dem can either be external or internal to the computer. If it is externally connected then it is
normally connected by a cable with a 25-pin male D-type connector on either end.
 Modems are either synchronous or asynchronous. A synchronous modem recovers the
clock at the receiver. There is no need for start and stop bits in a synchronous modem. Asyn-
chronous modems are, by far, the most popular types. Synchronous modems have a typical
speed of 56 Kbps whereas for asynchronous modems it is 33 Kbps. A measure of the speed of
the modem is the baud rate or bps (bits per second).
 There are two types of circuits available from the public telephone network: either direct
dial or a permanent connection. The direct dial type is a dial-up network where the link is
established in the same manner as normal voice calls with a standard telephone or some kind
of an automatic dial/answer machine. They can use either touch-tones or pulses to make the
connection. With private line circuits, the subscriber has a permanent dedicated communica-
tion link.

Computer RS-232 Modem

Computer RS-232 Modem

Telephone
connection

Figure 15.1 Data transfer using modems

15.2 RS-232 communications

The communication between the modem and the computer is via RS-232. RS-232 uses asyn-
chronous communication which has a start–stop data format. Each character is transmitted
one at a time with a delay between characters. This delay is called the inactive time and is set
at a logic level high as shown in Figure 15.2. The transmitter sends a start bit to inform the
receiver that a character is to be sent in the following bit transmission. This start bit is always
a ‘0’. The following data bits are sent as a 7-bit ASCII character, followed by a parity bit and
finally either 1, 1.5 or 2 stop bits. The rate of transmission is set by the timing of a single bit.
Both the transmitter and receiver need to be set to the same bit-time interval. An internal
clock on both of them sets this interval. They only have to be roughly synchronised and ap-
proximately at the same rate as data is transmitted in relatively short bursts.

15.2.1 Bit rate and the baud rate

One of the main parameters for specifying RS-232 communications is the rate at which data
is transmitted and received. It is important that the transmitter and receiver operate at roughly
the same speed.

Modems 255

0 B0 B1 B2 B3 B4 B5 B6 P S1 S2 1

ASCII character Stop
bit(s)

ParityStart
bit

RS-232 character RS-232 character RS-232 character

Start
bit

Stop
bit(s)

Figure 15.2 RS-232 frame format

 For asynchronous transmission the start and stop bits are added in addition to the seven
ASCII character bits and the parity. Thus a total of 10 bits are required to transmit a single
character. With 2 stop bits, a total of 11 bits are required. If 10 characters are sent every sec-
ond and if 11 bits are used for each character, then the transmission rate is 110 bits per sec-
ond (bps). The fastest modem thus has a character transmission rate of 2880 characters per
second.
 In addition to the bit rate, another term used to describe the transmission speed is the
baud rate. The bit rate refers to the actual rate at which bits are transmitted, whereas the baud
rate is the rate at which signalling elements, used to represent bits, are transmitted. As one
signalling element encodes 1 bit, the two rates are then identical. Only in modems does the
bit rate differ from the baud rate.

15.3 Modem standards

The CCITT (now known as the ITU) has defined standards which relate to RS-232 and mo-
dem communications. Each uses a V number to define their type. Modems tend to state all
the standards they comply with. An example FAX/modem has the following compatibility:

• V.32bis (14.4 Kbps). V.32 (9.6 Kbps).
• V.22bis (2.4 Kbps). V.22 (1.2 Kbps).
• Bell 212A (1.2 Kbps). Bell 103 (300 bps).
• V.17 (14.4 bps FAX). V.29 (9.6 Kbps FAX).
• V.27ter (4.8 Kbps FAX). V.21 (300 bps FAX – secondary channel).
• V.42bis (data compression). V.42 (error correction).
• MNP5 (data compression). MNP2–4 (error correction).

A 28.8 Kbps modem also supports the V.34 standard.

256 Computer busses

15.4 Modem commands

Most modems are Hayes compatible. Hayes was the company that pioneered modems and
defined the standard method of programming the mode of the modem, which is the AT
command language. A computer gets the attention of the modem by sending an ‘AT’ com-
mand. For example, ‘ATDT’ is the touch-tone dial command. Initially, a modem is in the
command mode and accepts commands from the computer. These commands are sent at ei-
ther 300 bps or 1200 bps (the modem automatically detects which of the speeds is being
used).
 Most commands are sent with the AT prefix. Each command is followed by a carriage
return character (ASCII character 13 decimal); a command without a carriage return charac-
ter is ignored (after a given time delay). More than one command can be placed on a single
line and, if necessary, spaces can be entered to improve readability. Commands can be sent
in either upper or lower case. Table 15.1 lists some AT commands. The complete set is de-
fined in Appendix C.

Table 15.1 Example AT modem commands

Command Description
ATDT54321 Automatically phones number 54321 using touch-tone dialing. Within the

number definition, a comma (,) represents a pause and a W waits for a sec-
ond dial tone and an @ waits for a 5 second silence.

ATPT12345 Automatically phones number 12345 using pulse dialing.

AT S0=2 Automatically answers a call. The S0 register contains the number of rings
the modem uses before it answers the call. In this case there will be two rings
before it is answered. If S0 is zero, the modem will not answer a call.

ATH Hang up telephone line connection.

+++ Disconnect line and return to on-line command mode.

AT A Manually answer call.

AT E0 Commands are not echoed (AT E1 causes commands to be echoed). See
Table 15.2.

AT L0 Low speaker volume (AT L1 gives medium volume and AT L2 gives high
speaker volume).

AT MO Internal speaker off (ATM1 gives internal speaker on until carrier detected,
ATM2 gives the speaker always on, AT M3 gives speaker on until carrier
detect and while dialing).

AT QO Modem sends responses (AT Q1 does not send responses). See Table 15.2.

AT V0 Modem sends numeric responses (AT V1 sends word responses). See Table
15.2.

The modem can enter one of two states: the normal state and the command state. In the nor-
mal state the modem transmits and/or receives characters from the computer. In the com-

Modems 257

mand state, characters sent to the modem are interpreted as commands. Once a command is
interpreted, the modem goes into the normal mode. Any characters sent to the modem are
then sent along the line. To interrupt the modem so that it goes back into command mode,
three consecutive ‘+’ characters are sent, i.e. ‘+++’.
 After the modem has received an AT command it responds with a return code. Some re-
turn codes are given in Table 15.2 (a complete set is defined in Appendix C). For example, if
a modem calls another which is busy then the return code is 7. A modem dialing another
modem returns the codes for OK (when the ATDT command is received), CONNECT (when
it connects to the remote modem) and CONNECT 1200 (when it detects the speed of the
remote modem). Note that the return code from the modem can be suppressed by sending the
AT command ‘ATQ1’. The AT code for it to return the code is ‘ATQ0’; normally this is the
default condition

Table 15.2 Example return codes

Message Digit Description
OK 0 Command executed without errors
CONNECT 1 A connection has been made
RING 2 An incoming call has been detected
NO CARRIER 3 No carrier detected
ERROR 4 Invalid command
CONNECT 1200 5 Connected to a 1200 bps modem
NO DIALTONE 6 Dial-tone not detected
BUSY 7 Remote line is busy
NO ANSWER 8 No answer from remote line
CONNECT 600 9 Connected to a 600 bps modem
CONNECT 2400 10 Connected to a 2400 bps modem
CONNECT 4800 11 Connected to a 4800 bps modem
CONNECT 9600 13 Connected to a 9600 bps modem
CONNECT 14400 15 Connected to a 14 400 bps modem
CONNECT 19200 61 Connected to a 19 200 bps modem
CONNECT 28800 65 Connected to a 28 800 bps modem
CONNECT 1200/75 48 Connected to a 1200/75 bps modem

Figure 15.3 shows an example session when connecting one modem to another. Initially the
modem is set up to receive commands from the computer. When the computer is ready to
make a connection it sends the command ‘ATDH 54321’ which makes a connection with tele-
phone number 54321 using tone dialing. The modem then replies with an OK response (a 0
value) and the modem tries to make a connection with the remote modem. If it cannot make
the connection it returns back a response of NO CARRIER (3), BUSY (7), NO DIALTONE
(6) or NO ANSWER (8). If it does connect to the remote modem then it returns a connect
response, such as CONNECT 9600 (13). The data can then be transmitted between the mo-
dem at the assigned rate (in this case 9600 bps). When the modem wants to end the connec-
tion it gets the modem’s attention by sending it three ‘+’ characters (‘+++’). The modem will
then wait for a command from the host computer. In this case the command is hang-up the
connection (ATH). The modem will then return an OK response when it has successfully
cleared the connection.

258 Computer busses

Computer

ATDT 54321

OK

Connect 9600

+++

ATH

OK

OK

Connection made

Disconnection made

Modem

Figure 15.3 Commands and responses when making a connection

 The modem contains various status registers called the S-registers which store modem
settings. Table 15.3 lists some of these registers (Appendix C gives a complete listing). The
S0 register sets the number of rings that must occur before the modem answers an incoming
call. If it is set to zero (0) then the modem will not answer incoming calls. The S1 register
stores the number of incoming rings when the modem is rung. S2 stores the escape character,
normally this is set to the ‘+’ character and the S3 register stores the character which defines
the end of a command, normally the CR character (13 decimal).

Table 15.3 Modem registers

Register Function Range (typical default)
S0 Rings to auto-answer 0–255 rings (0 rings)
S1 Ring counter 0–255 rings (0 rings)
S2 Escape character (43)
S3 Carriage return character (13)
S6 Wait time for dial tone 2–255 s (2 s)
S7 Wait time for carrier 1–255 s (50 s)
S8 Pause time for automatic dialling 0–255 (2 s)

15.5 Modem set-ups

Figure 15.4 shows a sample window from the Microsoft Windows Terminal program (in
both Microsoft Windows 3.x and Windows 95/98). It shows the modem commands window.
In this case, it can be seen that when the modem dials a number the prefix to the number di-
alled is ‘ATDT’. The hang-up command sequence is ‘+++ ATH’. A sample dialling window is
shown in Figure 15.5. In this case, the number dialled is 9,123456789. A ‘,’ character repre-
sents a delay. The actual delay is determined by the value in the S8 register (see Table 15.3).
Typically, this value is about 2 seconds.
 On many private switched telephone exchanges in the UK a ‘9’ must prefix the number if

Modems 259

an outside line is required (in Australia it is a ‘0’, by contrast). A delay is normally required
after the 9 prefix before dialing the actual number. To modify the delay to 5 seconds, dial the
number 9 0112432 and wait 30 seconds for the carrier, then the following command line can
be used:

 ATDT 9,0112432 S8=5 S7=30

It can be seen in Figure 15.4 that a prefix and a suffix are sent to the modem. This is to en-
sure there is a time delay between the transmission prefix and the suffix string. For example,
when the modem is to hang-up the connection, the ‘+++’ is sent followed by a delay then the
‘ATH’.
 In Figure 15.4 there is an option called Originate. This string is sent initially to the mo-
dem to set it up. In this case the string is ‘ATQ0V1E1S0=0’. The Q0 part informs the modem to
return a send status code. The V1 part informs the modem that the return code message is to
be displayed rather than just the value of the return code; for example, it displays CONNECT
1200 rather than the code 5 (V0 displays the status code). The E1 part enables the command
message echo (E0 disables it).
 Figure 15.6 shows the modem set-up windows for CompuServe access. The string in this
case is:

ATS0=0 Q0 V1 &C1&D2^M

as previously seen, S0 stops the modem from auto-answering. V1 causes the modem to re-
spond with word responses. &C1 and &D2 set up the hardware signals for the modem. Finally
^M represents Cntrl-M which defines the carriage return character.
 The modem reset command in this case is AT &F. This resets the modem and restores the
factor default settings.

Figure 15.4 Modem commands

Figure 15.5 Dialling a remote modem

260 Computer busses

Figure 15.6 Example modem settings

15.6 Modem indicator

Most external modems have status indicators to inform the user of the current status of a con-
nection. Typically, the indicator lights are:

• AA – is ON when the modem is ready to receive calls automatically. It flashes when a

call is incoming. If it is OFF then it will not receive incoming calls. Note that if the S0
register is loaded with any other value than 0 then the modem goes into auto-answer
mode. The value stored in the S0 register determines the number of rings before the mo-
dem answers.

• CD – is ON when the modem detects the remote modem’s carrier, else it is OFF.
• OH – is ON when the modem is on-hook, else it is OFF.
• RD – flashes when the modem is receiving data or is getting a command from the com-

puter.
• SD – flashes when the modem is sending data.
• TR – shows that the DTR line is active (i.e. the computer is ready to transmit or receive

data).
• MR – shows that the modem is powered up.

15.7 Profile viewing

The settings of the modem can be determined by using the AT command with &V. An ex-
ample is shown next (which uses a program from Chapter 13). In this it can be seen that the
settings include: B0 (CCITT 300 or 1200 bps for call establishment), E1 (enable command

Modems 261

echo), L2 (medium volume), M1 (speaker is off when receiving), Q1 (prohibits modem from
sending result codes to the DTE) T (set tone dial) and V1 (display result codes in a verbose
form). It can be seen that the S0 register is set to 3 which means that the modem waits for
three rings before it will automatically answer the call.

+++
AT &V
ACTIVE PROFILE:
B0 E1 L2 M1 Q1 T V1 X4 Y0 &C1 &D0 &E0 &G2 &L0 &M0 &O0 &P1 &R0 &S0 &X0 &Y1
%A000 %C1 %D1 %E1 %P0 %S0 \A3 \C0 \E0 \G0 \J0 \K5 \N6 \Q0 \T000 \V1 \X0
S00:003 S01:000 S06:004 S07:045 S08:002 S09:006 S10:014 S11:085 S12:050
S16:1FH S18:000 S21:20H S22:F6H S23:B2H S25:005 S26:001 S27:60H S28:00H
STORED PROFILE 0:
B0 E1 L2 M1 Q0 T V1 X4 Y0 &C1 &D2 &E0 &G2 &L0 &M0 &O0 &P1 &R0 &S0 &X0
%A000 %C1 %D1 %E1 %P0 %S0 \A3 \C0 \E0 \G0 \J0 \K5 \N6 \Q3 \T000 \V1 \X0
S00:000 S16:1FH S21:30H S22:F6H S23:89H S25:005 S26:001 S27:000 S28:000
STORED PROFILE 1:
B0 E0 L2 M1 Q1 T V1 X4 Y0 &C1 &D0 &E0 &G2 &L0 &M0 &O0 &P1 &R0 &S0 &X0
%A000 %C1 %D1 %E1 %P0 %S0 \A3 \C0 \E0 \G0 \J0 \K5 \N6 \Q0 \T000 \V1 \X0
S00:003 S16:1FH S21:20H S22:F6H S23:95H S25:005 S26:001 S27:096 S28:000
TELEPHONE NUMBERS:
&Z0=
&Z1=
&Z2=
&Z3=

15.8 Test modes

There are several modes associated with the modems.

15.8.1 Local analogue loopback (&T1)

In the analogue loopback test the modem connects the transmit and receive lines on its out-
put, as illustrated in Figure 15.7. This causes all transmitted characters to be received. It is
initiated with the &T1 mode. For example:

AT &Q0 <Enter>
AT S18=0 &T1 <Enter>
CONNECT 9600
Help the bridge is on fire <Enter>
+++
OK
AT &T0
OK

The initial command AT &Q0 sets the modem into an asynchronous mode (stop–start). Next
the AT S18=0 &T1 command sets the timer test time to zero (which disables any limit to the
time of the test) and &T1 sets an analogue test. The modem responds with the message
CONNECT 9600. Then the user enters the text Help on fire followed by an <Enter>. Next
the user enters three + characters which puts the modem back into command mode. Finally,
the user enters AT &T0 which disables the current test.

262 Computer busses

 If a time-limited test is required then the S18 register is loaded with the number of sec-
onds that the test should last. For example, a test that last 2 minutes will be set up with:

AT S18=120 &T1

Transmit

Receive

Computer

Local
modem

Loop
back

Figure 15.7 Analogue loopback with self-test

15.8.2 Local analog loopback with self-test (&T8)

In the analog loopback test with self-test the modem connects the transmit and receive lines
on its output and then automatically sends a test message which is then automatically re-
ceived, as illustrated in Figure 15.8. The local error checker then counts the number of errors
and displays a value when the test is complete. For example, the following test has found two
errors:

AT &Q0 <Enter>
AT S18=0 &T8 <Enter>
+++
AT &T0
002
OK

Transmit

Receive

Local modem

Error checker

Test message

Loopback

Figure 15.8 Analogue loopback with self-test

15.8.3 Remote digital loopback (&T6)

The remote digital loopback checks the local computer to modem connection, the local mo-
dem, the telephone line and the remote modem. The remote modem performs a loopback at
the connection from the remote modem to its attached computer. Figure 15.9 illustrates the
test set-up. An example session is:

Modems 263

AT &Q0 <Enter>
AT S18=0 &T6 <Enter>
CONNECT 9600
Help the bridge is on fire <Enter>
+++
OK
AT &T0
OK

Transmit

Receive

Receive

Transmit

Computer

Local
modem

Remote
modem

Phone
line

Figure 15.9 Remote digital loopback test

15.8.4 Remote digital loopback with self-test (&T7)

The remote digital loopback with self-test checks the local computer to modem connection,
the local modem, the telephone line and the remote modem. The remote modem performs a
loopback at the connection from the remote modem to its attached computer. The local mo-
dem sends a test message and checks the received messages for errors. On completion of the
test, the local modem transmits the number of errors. Figure 15.10 illustrates the test setup.
An example session is:

AT &Q0 <Enter>
AT S18=0 &T7 <Enter>
+++
AT &T0
004
OK

or with a test of 60 seconds then the user does not have to send the break sequence:

AT &Q0 <Enter>
AT S18=60 &T7 <Enter>
004
OK

Transmit

Receive

Receive

Transmit

Local
modem

Remote
modem

Phone
line

Error checker

Test message

Figure 15.10 Remote digital loopback test with self-test

264 Computer busses

15.9 Digital modulation

Digital modulation changes the characteristic of a carrier according to binary information.
With a sine wave carrier the amplitude, frequency or phase can be varied. Figure 15.11 illus-
trates the three basic types: amplitude-shift keying (ASK), frequency-shift keying (FSK) and
phase-shift keying (PSK).

15.9.1 Frequency-shift keying (FSK)

FSK, in the most basic case, represents a 1 (a mark) by one frequency and a 0 (a space) by
another. These frequencies lie within the bandwidth of the transmission channel.
 On a V.21, 300 bps, full-duplex modem the originator modem uses the frequency 980 Hz
to represent a mark and 1180 Hz a space. The answering modem transmits with 1650 Hz for a
mark and 1850 Hz for a space. The four frequencies allow the caller originator and the an-
swering modem to communicate at the same time; that is, full-duplex communication.
 FSK modems are inefficient in their use of bandwidth, with the result that the maximum
data rate over normal telephone lines is 1800 bps. Typically, for rates over 1200 bps, other
modulation schemes are used.

1 1 0 1 0

ASK

PSK

FSK

Figure 15.11 Waveforms for ASK, PSK and FSK

15.9.2 Phase-shift keying (PSK)

In coherent PSK a carrier gets no phase shift for a 0 and a 180° phase shift for a 1, as given
next:

 0 ⇒ 0°
 1 ⇒ 180°

Its main advantage over FSK is that as it uses a single frequency it uses much less band-
width. It is thus less affected by noise. It has an advantage over ASK because its information
is not contained in the amplitude of the carrier, thus again it is less affected by noise.

Modems 265

15.9.3 M-ary modulation

With M-ary modulation a change in amplitude, phase or frequency represents one of M pos-
sible signals. It is possible to have M-ary FSK, M-ary PSK and M-ary ASK modulation
schemes. This is where the baud rate differs from the bit rate. The bit rate is the true measure
of the rate of the line, whereas the baud rate only indicates the signalling element rate, which
might be a half or a quarter of the bit rate.
 For four-phase differential phase-shift keying (DPSK) the bits are grouped into two and
each group is assigned a certain phase shift. For two bits there are four combinations: a 00 is
coded as 0°, 01 coded as 90°, and so on:

 00 ⇒ 0° 01 ⇒ 90°
 11 ⇒ 180° 10 ⇒ 270°

It is also possible to change a mixture of amplitude, phase or frequency. M-ary amplitude-
phase keying (APK) varies both the amplitude and phase of a carrier to represent M possible
bit patterns.
 M-ary quadrature amplitude modulation (QAM) changes the amplitude and phase of the
carrier. 16-QAM uses four amplitudes and four phase shifts, allowing it to code four bits at a
time. In this case, the baud rate will be a quarter of the bit rate.
 Typical technologies for modems are:

 FSK – used up to 1200 bps
 Four-phase DPSK – used at 2400 bps
 Eight-phase DPSK – used at 4800 bps
 16-QAM – used at 9600 bps

15.10 Typical modems

Most modern modems operate with V.22bis (2400 bps), V.32 (9600 bps) or V.32bis
(14 400 bps); some standards are outlined in Table 15.4. The V.32 and V.32bis modems can
be enhanced with echo cancellation. They also typically have built-in compression using
either the V.42bis standard or MNP level 5.

Table 15.4 Example AT modem commands

ITU recommendation Bit rate
(bps)

Modulation

V.21 300 FSK
V.22 1 200 PSK
V.22bis 2 400 ASK/PSK
V.27ter 4 800 PSK
V.29 9 600 PSK
V.32 9 600 ASK/PSK
V.32bis 14 400 ASK/PSK
V.34 28 800 ASK/PSK

266 Computer busses

15.10.1 V.42bis and MNP compression

There are two main standards used in modems for compression. The V.42bis standard is de-
fined by the ITU and the MNP (Microcom networking protocol) has been developed by a
company named Microcom. Most modems will try to compress using V.42bis but if this fails
they try MNP level 5. V.42bis uses the Lempel-Ziv algorithm, which builds dictionaries of
code words for recurring characters in the data stream. These code words normally take up
fewer bits than the uncoded bits. V.42bis is associated with the V.42 standard which covers
error correction.

15.10.2 V.22bis modems

V.22bis modems allow transmission at up to 2400 bps. It uses four amplitudes and four
phases. Figure 15.12 shows the 16 combinations of phase and amplitude for a V.22bis mo-
dem. It can be seen that there are 12 different phase shifts and four different amplitudes.
Each transmission is known as a symbol, thus each transmitted symbol contains four bits.
The transmission rate for a symbol is 600 symbols per second (or 600 b aud), thus the bit rate
will be 2400bps.
 Trellis coding tries to ensure that consecutive symbols differ as much as possible.

Amplitude 1

Amplitude 2

Amplitude 3

Amplitude 4

Phase 1

Phase 2Phase 3

90°

0°180°

270°

Figure 15.12 Phase and amplitude coding for V.32

15.10.3 V.32 modems

V.32 modems include echo cancellation which allows signals to be transmitted in both direc-
tions at the same time. Previous modems used different frequencies to transmit on different
channels. Echo cancellation uses DSP (digital signal processing) to subtract the sending sig-
nal from the received signal.
 V.32 modems use trellis encoding to enhance error detection and correction. They encode
32 signalling combinations of amplitude and phase. Each of the symbols contains four data
bits and a single trellis bit. The basic symbol rate is 2400 bps; thus the actual data rate will be
9600 bps. A V.32bis modem uses seven bits per symbol; thus the data rate will be 14 400 bps
(2400 × 6).

Modems 267

15.11 Fax transmission

Facsimile (fax) transmission involves the transmission of images over a telephone line using
a modem. A stand-alone fax consists of:

• An image scanner.
• A graphics printer.
• A transmission/reception modem.

The fax scans an A4 image with 1142 scan lines (3.85 lines per millimetre) and 1728 pixels
per line. The EIA and ITU originally produced the RS-328 standard for the transmission of
analogue voltage levels to represent different brightness. The ITU recommendations are
known as Group I and Group II standards. The Group III standard defines the transmission of
faxes using digital transmission with 1142 × 1728 pixels of black or white. Group IV is an
extension to Group III but allows different gray scales and also colour (unfortunately it re-
quires a high bit rate.)
 An A4 scan would consist of 1 976 832 (1142 × 1728) scanned elements. If each element
is scanned for black and white, then, at 9600 bps, it would take over 205 s to transmit. Using
RLE (run length encoding) coding can drastically reduced this transmission time.

15.11.1 Modified Huffman coding

Group III compression uses modified Huffman code to compress the transmitted bit stream.
It uses a table of codes in which the most frequent run lengths are coded with a short code.
Typically, documents contain long runs of white or black. A compression ratio of over 10:1
is easily achievable (thus a single-page document can be sent in under 20 s, for a 9600 bps
transmission rate). Table 15.5 shows some code runs of white and Table 15.6 shows some
codes for runs of black. The transmitted code always starts on white code. The codes range
from 0 to 63. Values from 64 to 2560 use two codes. The first gives the multiple of 64 fol-
lowed by the normally coded remainder.

Table 15.5 White run length coding

Run length Coding Run length Coding Run length Coding
 0 00110101 1 000111 2 0111
 3 1000 4 1011 5 1100
 6 1110 7 1111 8 10011
 9 10100 10 00111 11 01000
12 001000 13 000011 14 110100
15 110101 16 101010 17 101011
18 0100111 19 0001100 61 00110010
62 00110011 63 00110100 EOL 00000000001

For example, if the data to be encoded is:

16 white, 4 black, 16 white, 2 black, 63 white, 10 black, 63 white

it would be coded as:

101010 011 101010 11 00110100 0000100 00110100

268 Computer busses

This would take 40 bits to transmit the coding, whereas it would take 304 bits without coding
(i.e. 16 + 4 + 16 + 2 + 128 + 10 + 128). This results in a compression ratio of 7.6:1.

Table 15.6 Black run-length coding

Run
length

Coding Run
length

Coding Run
length

Coding

 0 0000110111 1 010 2 11
 3 10 4 011 5 0011
 6 0010 7 00011 8 000101
 9 000100 10 0000100 11 0000101
12 0000111 13 00000100 14 00000111
15 000011000 16 0000010111 17 0000011000
18 0000001000 19 00001100111 61 000001011010
62 0000001100110 63 000001100111 EOL 00000000001

15.12 Exercises

15.12.1 What is the bandwidth of a telephone line:

 (a) Almost infinite (b) 400 Hz to 3.4 kHz
 (c) 400 Hz to 20 kHz (d) 400 Hz to 100 kHz

15.12.2 How does a modem transmit at 9600bps, when the symbol rate is 4800 sym-

bols/sec (baud):

 (a) It sends two bits for every symbol sent
 (b) Its impossible as the bit rate is always the same as the symbol rate
 (c) It hides data
 (d) It uses more than one data line

15.12.3 How long does it take to transmit a 1 MB file over a 9600 bps modem connection:

 (a) 13.89 min (b) 1.74 min
 (c) 833.33 min (d) 104.2 min

15.12.4 What modem command is used to tone dial the number 123-456-789:

 (a) AT 123456789 (b) AT 987654321
 (c) ATDT 123456789 (d) DIAL 123456789

15.12.5 What character sequence is used to put the modem in the command mode:

 (a) AT (b) +++
 (c) HELLO? (d) +

15.12.6 Which character must appear at the end of a command string:

Modems 269

 (a) Full stop (‘.’) (b) Null (ASCII, 0)
 (c) Line feed (ASCII, 10) (d) Carriage return (ASCII, 13)

15.12.7 Which modem indicators would be ON when a modem has made a connection and

is receiving data? Which indicators would be flashing?

15.12.8 Which modem indicators would be ON when a modem has made a connection and

is sending data? Which indicators will be flashing?

15.12.9 Investigate the complete set of AT commands by referring to a modem manual or

reference book.

15.12.10 Investigate the complete set of S-registers by referring to a modem manual or ref-

erence book.

15.12.11 Determine the location of modems on a network or in a works building. If possi-

ble, determine the type of data being transferred and its speed.

15.12.12 Connect a modem to a computer and dial a remote modem. If possible connect

two modems together and, using a program such as Terminal, transfer text from
one computer to the another.

15.13 Notes from the author

What a strange device a modem is. It has such as thankless task – converting information
from lovely, pure digital signals into something that passes over a speech-limited voice
channel. It does its job well and with compression can achieve reasonable results. But,
really, it’s a short-term fix, before we all use high-speed connections with proper data ca-
bles, whether they be shield twisted-pair cables or fibre optic cables. So, modems allow us to
migrate our telephone connection to a full-blown network connection. The motivation for the
increased bandwidth is the Internet and especially the integration of fully digital multimedia
connections.
 The AT command code allows for a standardisation in the modem operation, but as many
have seen, modems are not quite as compatible as they may seem. Like the great RS-232 that
it is based upon, it is infuriating who non-standardised modems are. I think the big problem
here is that the true standard is held with a few major manufacturers, such as Hayes, and
software drivers are made compatible with these modems rather than with actual standards.
Sometimes industry-led standard are adopted into the market quicker than ones developed by
standards organisations.
 Why are modems is expensive? Why can you buy five network cards for the price of a
modem, or even a whole PC motherboard? Is it because they are so useful, maybe, but it’s
probably because, at present, they have a virtual monopoly in the home, as their only real
general-purpose competitor, ISDN, is still too expensive for its installation, running costs
and costs of the equipment. So for just now, the annoying little devices that screech and
whine will be around for a little longer yet. But, the people of the future will laugh when they
see these archaic devices, in just the same way that we laugh at dish-washer style computers,
and home computers with cassette storage and 1KB memory.

Parallel Port

16.1 Introduction

This chapter discusses parallel communications. The Centronics printer interface transmits
eight bits of data at a time to an external device, normally a printer. A 25-pin D-type connec-
tor is used to connect to the PC and a 36-pin Centronics interface connector normally con-
nects to the printer. This interface is not normally used for other types of interfacing as the
standard interface only transmits data over the data lines in one direction, that is, from the PC
to the external device. Some interface devices overcome this problem by using four of the
input handshaking lines to input data and then multiplexing using an output handshaking line
to multiplex them to produce eight output bits.
 As technology has improved there is a great need for a bidirectional parallel port to con-
nect to devices such as tape backup drives, CD-ROMs, and so on. The Centronics interface
unfortunately lacks speed (150 kbps), has limited length of lines (2 m) and very few computer
manufacturers comply with an electrical standard.
 Thus, in 1991, several manufacturers (including IBM and Texas Instruments) formed a
group called NPA (National Printing Alliance). Their original objective was to develop a
standard for controlling printers over a network. To achieve this a bi-directional standard was
developed which was compatible with existing software. This standard was submitted to the
IEEE so that they could standardise it. The committee that the IEEE set up was known as the
IEEE 1284 committee and the standard they produced is known as the IEEE 1284-1994
Standard (as it was released in 1994).
 With this standard all parallel ports use a bidirectional link in either a compatible, nibble
or byte mode. These modes are relatively slow as the software must monitor the handshaking
lines (up to 100 kbps). To allow high-speed the EPP (enhanced parallel port) and ECP (ex-
tended capabilities port protocol) modes which allows high-speed data transfer using auto-
matic hardware handshaking. In addition to the previous three modes, EPP and ECP are be-
ing implemented on the latest I/O controllers by most of the Super I/O chip manufacturers.
These modes use hardware to assist in the data transfer. For example, in EPP mode, a byte of
data can be transferred to the peripheral by a simple OUT instruction. The I/O controller
handles all the handshaking and data transfer to the peripheral.

16.2 PC connections

Figure 16.1 shows the pin connections on the PC connector. The data lines (D0–D7) output
data from the PC and each of the data lines has an associated ground line (GND).

16

272 Computer busses

STROBE 1
D0 2
D1 3
D2 4
D3 5
D4 6
D5 7
D6 8
D7 9
ACK 10
BUSY 11
OUT OF PAPER 12
SELECT 13
AUTO FEED 14
ERROR 15
INITIALIZE PRINTER 16
SELECT INPUT 17
GROUND 18–25

Computer Printer

Signal
name

Pin number
on PC connection

Figure 16.1 Centronics parallel interface showing pin numbers on PC connector

16.3 Data handshaking

The main handshaking lines are ACK , BUSY and STROBE . Initially the computer places the
data on the data bus, then it sets the STROBE line low to inform the external device that the
data on the data bus is valid. When the external device has read the data, it sets the ACK
lines low to acknowledge that it has read the data. The PC then waits for the printer to set the
BUSY line inactive, that is, low. Figure 16.2 shows a typical handshaking operation and Ta-
ble 16.1 outlines the definitions of the pins.

STROBE

ACK

BUSY

DATAValid data

0.5µs (min.)
5 µs (min.)

Figure 16.2 Data handshaking with the Centronics parallel printer interface

Parallel port 273

 The parallel interface can be accessed either by direct reads to and writes from the I/O
memory addresses or from a program which uses the BIOS printer interrupt. This interrupt
allows a program either to get the status of the printer or to write a character to it. Table 16.2
outlines the interrupt calls.

Table 16.1 Signal definitions

Signal In/out Description
STROBE Out Indicates that valid data is on the data lines (active low)

FEED AUTO Out Instructs the printer to insert a line feed for every carriage return

(active low)

INPUT SELECT Out Indicates to the printer that it is selected (active low)

INIT Out Resets the printer

ACK In Indicate that the last character was received (active low)

BUSY In Indicates that the printer is busy and thus cannot accept data

PAPER OF OUT In Out of paper

SELECT In Indicates that the printer is on line and connected

ERROR In Indicates that an error exists (active low)

Table 16.2 BIOS printer interrupt

Description Input registers Output registers
Initialise printer
port

AH = 01h
DX = printer number (00h–02h)

AH = printer status
 bit 7: not busy
 bit 6: acknowledge
 bit 5: out of paper
 bit 4: selected
 bit 3: I/O error
 bit 2: unused
 bit 1: unused
 bit 0: timeout

Write character
to printer

AH = 00h
AL = character to write
DX = printer number (00h–02h)

AH = printer status

Get printer
status

AH = 02h
DX = printer number (00h–02h)

AH = printer status

274 Computer busses

16.3.1 BIOS printer

Program 16.1 uses the BIOS printer interrupt to test the status of the printer and output char-
acters to the printer.

 Program 16.1
#include <dos.h>
#include <stdio.h>
#include <conio.h>

#define PRINTERR -1

void print_character(int ch);
int init_printer(void);

int main(void)
{
int status,ch;

 status=init_printer();
 if (status==PRINTERR) return(1);

 do
 {
 printf("Enter character to output to printer");
 ch=getch();
 print_character(ch);
 } while (ch!=4);
 return(0);
}

int init_printer(void)
{
union REGS inregs,outregs;

 inregs.h.ah=0x01; /* initialize printer */
 inregs.x.dx=0; /* LPT1: */
 int86(0x17,&inregs,&outregs);
 if (inregs.h.ah & 0x20)
 { puts("Out of paper"); return(PRINTERR); }
 else if (inregs.h.ah & 0x08)
 { puts("I/O error"); return(PRINTERR); }
 else if (inregs.h.ah & 0x01)
 { puts("Printer timeout"); return(PRINTERR); }

 return(0);
}

void print_character(int ch)
{
union REGS inregs,outregs;

 inregs.h.ah=0x00; /* print character */
 inregs.x.dx=0; /* LPT1: */
 inregs.h.al=ch;

 int86(0x17,&inregs,&outregs);
}

Parallel port 275

16.4 I/O addressing

16.4.1 Addresses

The printer port has three I/O addresses assigned for the data, status and control ports. These
addresses are normally assigned to:

 Printer Data register Status register Control register
 LPT1 378h 379h 37ah
 LPT2 278h 279h 27ah

The DOS debug program can be used to display the base addresses for the serial and parallel
ports by displaying the 32 memory location starting at 0040:0008. For example:

-d 40:00
0040:0000 F8 03 F8 02 00 00 00 00-78 03 00 00 00 00 29 02

The first four 16-bit addresses give the serial communications ports. In this case, there are
two COM ports at address 03F8h (COM1) and 02F8h (for COM2). The next four 16-bit ad-
dresses gives the parallel port addressees. In this case there is two parallel ports. One at
0378h (LPT1) and one at 0229h (LPT4).

16.4.2 Output lines

Figure 16.3 shows the bit definitions of the registers. The data port register links to the out-
put lines. Writing a 1 to the bit position in the port sets the output high, while a 0 sets the
corresponding output line to a low. Thus to output the binary value 1010 1010b (AAh) to the
parallel port data then using Visual C++:

_outp(0x378,0xAA); /* in Visual C this is _outp(0x378,0xAA); */

The output data lines are each capable of sourcing 2.6 mA and sinking 24 mA; it is thus es-
sential that the external device does not try to pull these lines to ground.
 The control port also contains five output lines, of which the lower four bits are
STROBE , FEED AUTO , INIT and INPUT SELECT , as illustrated in Figure 16.3. These lines
can be used as either control lines or as data outputs. With the data line, a 1 in the register
gives an output high, while the lines in the control port have inverted logic. Thus a 1 to a bit
in the register causes an output low.
 Program 16.2 outputs the binary pattern 0101 0101b (55h) to the data lines and sets

INPUT SELECT =0, INIT=1, FEED AUTO =1, and STROBE =0, the value of the data port will
be 55h and the value written to the control port will be XXXX 1101 (where X represents
don’t care). The value for the control output lines must be invert, so that the STROBE line
will be set to a 1 so that it will be output as a LOW.

276 Computer busses

D7

D6

D5

D4

D3

D2

D1

D0

Busy

ACK

PE

SELECT

ERROR

IRQ

Reserved

Reserved

Reserved

Reserved

Direction

IRQ ENABLE

SELECT INPUT

INIT

AUTOFEED

STROBE

Data
port

Status
port

Control
port

Figure 16.3 Port assignments

 Program 16.2

#define DATA 0x378
#define STATUS DATA+1
#define CONTROL DATA+2

int main(void)
{
int out1,out2;
 out1 = 0x55; /* 0101 0101 */
 _outp(DATA, out1);
 out2 = 0x0D; /* 0000 1101 */
 _outp(CONTROL, out2); /* STROBE=LOW, AUTOFEED=HIGH, etc */
 return(0);
}

The setting of the output value (in this case, out2) looks slightly confusing as the output is
the inverse of the logical setting (that is, a 1 sets the output low). An alternative method is to
exclusive-OR (EX-OR) the output value with $B which will invert the 1st, 2nd and 4th least
significant bits (INPUT SELECT =0, FEED AUTO =1, and STROBE =0), while leaving the 3rd
least significant bit (INIT) untouched. Thus the following will achieve the same as the previ-
ous program:

 out2 = 0x06; /* 0000 0110 */
 _outp(CONTROL, out2 ^ 0xb); /* STROBE=LOW, AUTOFEED=HIGH, etc */

If the 5th bit on the control register (IRQ enable) is written as 1 then the output on this line
will go from a high to a low which will cause the processor to be interrupted.
 The control lines are driven by open collector drivers pulled to +5 Vdc through 4.7 kΩ
resistors. Each can sink approximately 7 mA and maintain 0.8 V down-level.

Parallel port 277

SELECT INPUT

INIT

AUTOFEED

STROBE
1

14

16

17

Control register

Data register

D0
2

D7
9

Figure 16.4 Output lines

16.4.3 Inputs

There are five inputs from the parallel port (BUSY, ACK , PE, SELECT and ERROR). The
status of these lines can be found by simply reading the upper 5 bits of the status register, as
illustrated in Figure 16.5.

BUSY

ACK

PE

SELECT

ERROR
15

13

12

10

11

Status register

Figure 16.5 Input lines

Unfortunately, the BUSY line has an inverted status. Thus when a LOW is present on
BUSY, the bit will actually be read as a 1. For example Program 16.3 reads the bits from the

278 Computer busses

status register, inverts the BUSY bit and then shifts the bits three places to the right so that
the five inputs bit are in the five least significant bits.

 Program 16.3

#include <stdio.h>
#define DATA 0x378
#define STATUS DATA+1
int main(void)
{
unsigned int in1;

 in1 = _inp(STATUS); /* read from status register */
 in1 = in1 ^ 0x80 /* invert BUSY bit */
 in1 = in1 >> 3; /* move bits so that the inputs are the least
 significant bits */
 printf(″Status bits are %d\n″,in1);
 return(0);
}

16.4.4 Electrical interfacing

The output lines can be used to drive LEDs. Figure 16.6 shows an example circuit where a
LOW output will cause the LED to be ON while a HIGH causes the output to be OFF. For an
input an open push button causes a HIGH on the input.

5 V

5 V

GND

D0-D7

Control
lines

330 Ω

10 KΩ

Figure 16.6 Interfacing to inputs and outputs

16.4.5 Simple example

Program 16.4 uses a push button connected to pin 11 (BUSY). When the button is open then
the input to BUSY will be a HIGH and the most significant bit in the status register will thus
be a 0 (as the BUSY signal is inverted). When the button is closed then this bit will be a 1.

Parallel port 279

This is tested with

if (in1&0x80)==1)

When this condition is TRUE (that is, when the button is closed) then the output data lines
(D0–D7) will flash on and off with a delay of 1 second between flashes. An output of all 1s
to the data lines causes the LEDs to be off, and all 0s cause the LEDs to be on.

 Program 16.4
/* Flash LEDs on and off when the push button connected to BUSY */
/* is closed */
#include <stdio.h>
#include <dos.h>

#define DATA 0x378
#define STATUS DATA+1
#define CONTROL DATA+2

int main(void)
{
int in1;
 do
 {
 in1 = _inp(STATUS);

 if (in1&0x80)==1) /* if switch closed this is TRUE */
 {
 _outp(DATA,0x00); /* LEDs on */
 delay(1000);
 _outp(DATA, 0xff); /* LEDs off */
 delay(1000);
 }
 else
 _outp(DATA,0x01); /* switch open */
 } while (!kbhit());
 return(0);
}

16.5 Interrupt-driven parallel port

16.5.1 Introduction

The previous section discusses how the parallel port is used to output data. This chapter dis-
cusses how an external device can interrupt the processor. It does this by hooking onto the
interrupt server routine for the interrupt that the port is attached to. Normally this interrupt
routine serves as a printer interrupt (such as lack of paper, paper jam and so on). Thus, an
external device can use the interrupt service routine to transmit data to or from the PC.

16.5.2 Interrupts

Each parallel port is hooked to an interrupt. Normally the primary parallel port is connected
to IRQ7. It is assumed in this section that this is the case. As with the serial port this interrupt
line must be enabled by setting the appropriate bit in the interrupt mask register (IMR),

280 Computer busses

which is based at address 21h. The bit for IRQ7 is the most significant bit, and it must be set
to a 0 to enable the interrupt. As with the serial port, the end of interrupt signal must be
acknowledged by setting the EOI signal bit of the interrupt control register (ICR) to a 1. See
Section 8.5.2 for more information on these operations.
 The interrupt on the parallel port is caused by the ACK line (pin 10) going from a high to
a low (just as a printer would acknowledge the reception of a character). For this interrupt to
be passed to the PIC then bit 4 of the control port (IRQ Enable) must be set to a 1.

16.5.3 Example program

Program 16.5 is a simple interrupt-driven parallel port Borland C program. The program in-
terrupts the program each time the ACK line is pulled LOW. When this happens the output
value should change corresponding to a binary count (0000 0000 to 1111 1111, and then
back again). The user can stop the program by pressing any key on the keyboard. Figure 16.7
shows a sample set-up with a push button connected to the ACK line and LEDs connected to
the output data lines.

D0

ACK

5 V

330 Ω

5 V

GND

10 KΩ

10

5 V

330 Ω

D7

2

9

Figure 16.7 Example set-up for interrupt-driven parallel port

 Program 16.5

/* Program to sample data from the parallel port */
/* when the ACK line goes low */
#include <stdio.h>
#include <bios.h>
#include <conio.h>
#include <dos.h>
#define TRUE 1
#define FALSE 0
#define DATA 0x378
#define STATUS DATA+1
#define CONTROL DATA+2
#define IRQ7 0x7F /* LPT1 interrupt */

Parallel port 281

#define EOI 0x20 /* End of Interrupt */
#define ICR 0x20 /* Interrupt Control Register */
#define IMR 0x21 /* Interrupt Mask Register */

void interrupt far pl_interrupt(void);
void setup_parallel (void);
void set_vectors(void);
void enable_interrupts(void);
void disable_interrupts(void);
void reset_vectors(void);
void interrupt far (*oldvect)();
int int_flag = TRUE;
int outval=0;

int main(void)
{
 set_vectors();
 setup_parallel();
 do
 {
 if (int_flag)
 {
 printf("New value sent\n");
 int_flag=FALSE;
 }
 } while (!kbhit());
 reset_vectors();
 return(0);
}

void setup_parallel(void)
{

 outportb(CONTROL, inportb(CONTROL) | 0x10);
 /* Set Bit 4 on control port to a 1 */
}

void interrupt far pl_interrupt(void)
{
 disable();
 outportb(DATA,outval);
 if (outval!=255) outval++; else outval=0;
 int_flag=TRUE;
 outportb(ICR,EOI);
 enable();
}

void set_vectors(void)
{
int int_mask;
 disable(); /* disable all ints */
 oldvect=getvect(0x0f); /* save any old vector */
 setvect (0x0f,pl_interrupt); /* set up for new int serv */
}

void enable_interrupts(void)
{
int ch;
 disable();
 ch=inportb(IMR);
 outportb(IMR, ch & IRQ7);
 enable();

282 Computer busses

}

void disable_interrupts(void)
{
int ch;
 disable();
 outportb(IMR, ch & ~IRQ7);
 enable();
}

void reset_vectors(void)
{
 setvect(0x0f,oldvect);
}

16.5.4 Program explanation

The initial part of the program enables the interrupt on the parallel port by setting bit 4 of the
control register to 1:

void setup_parallel(void)
{

 outportb(CONTROL, inportb(CONTROL) | 0x10); /* Set Bit 4 on control port*/
}

After the serial port has been initialized the interrupt service routine for the IRQ7 line is set to
point to a new ‘user-defined’ service routine. The primary parallel port LPT1: normally sets
the IRQ7 line active when the ACK line goes from a high to a low. The interrupt associated
with IRQ7 is 0Fh (15). The getvect() function gets the ISR address for this interrupt, which
is then stored in the variable oldvect so that at the end of the program it can be restored.
Finally, in the set_vectors() function, the interrupt assigns a new ‘user-defined’ ISR (in
this case it is the function pl_interrupt()):

void set_vectors(void)
{
int int_mask;
 disable(); /* disable all ints */
 oldvect=getvect(0x0f); /* save any old vector */
 setvect (0x0f,pl_interrupt); /* set up for new int serv */
}

At the end of the program the ISR is restored with the following code:

void reset_vectors(void)
{
 setvect(0x0f,oldvect);
}

To enable the IRQ7 line on the PIC, bit 5 of the IMR (interrupt mask register) is to be set to a
0 (zero). The statement

 ch = inportb(IMR) & 0x7F;

achieves this as it bitwise ANDs all the bits, except for bit 7, with a 1. This is because any bit

Parallel port 283

which is ANDed with a 0 results in a 0. The bit mask 0x7F has been defined with the macro
IRQ7:

void enable_interrupts(void)
{
int ch;
 disable();
 ch=inportb(IMR);
 outportb(IMR, ch & IRQ7);
 enable();
}

At the end of the program the interrupt on the parallel port is disabled by setting bit 7 of the
IMR to a 1; this disables IRQ7 interrupts:

void disable_interrupts(void)
{
int ch;
 disable();
 outportb(IMR, ch & ~IRQ7);
 enable();
}

The ISR for the IRQ7 function is set to pl_interrupt(). It outputs the value of outval,
which is incremented each time the interrupt is called (note that there is a roll-over statement
which resets the value of outval back to zero when its value is 255). At the end of the ISR
the end of interrupt flag is set in the interrupt control register with the statement out-
portb(ICR, EOI);,as follows:

void interrupt far pl_interrupt(void)
{
 disable();
 outportb(DATA,outval);
 if (outval!=255) outval++; else outval=0;
 int_flag=TRUE;
 outportb(ICR,EOI);
 enable();
}

The main() function calls the initialisation and the de-initialisation functions. It also contains
a loop which continues until any key is pressed. Within this loop, the keyboard is tested to
determine if a key has been pressed. The interrupt service routine sets int_flag. If the main
routine detects that it is set it displays the message ‘New value sent’ and resets the flag:

int main(void)
{
 set_vectors();
 outportb(CONTROL, inportb(CONTROL) | 0x10);
 /* set bit 4 on control port to logic one */
 do
 {
 if (int_flag)
 {
 printf("New value sent\n");
 int_flag=FALSE;
 }
 } while (!kbhit());

284 Computer busses

 reset_vectors();

 return(0);

}

16.6 Exercises

16.6.1 How many pins does a standard D-type parallel port connector have:

 (a) 9 (b) 12
 (c) 25 (d) 36

16.6.2 How many data bits can the parallel port transmit at a time:

 (a) 8 (b) 12
 (c) 16 (d) 32

16.6.3 What is the major limitation of a standard Centronics parallel port:

 (a) It is only an output (b) It is not compatible with many printers
 (c) Incompatibility of software (d) Limited cable types

16.6.4 What is the maximum data of a standard Centronics parallel port:

 (a) 15 kbps (b) 150 kbps
 (c) 1.5 Mbps (d) 10 Mbps

16.6.5 What is the standard I/O base address for a standard parallel port:

 (a) 3F8h (b) 378h
 (c) 2F8h (d) 278h

16.6.6 What is the standard I/O base address for a secondary parallel port:

 (a) 3F8h (b) 378h
 (c) 2F8h (d) 278h

16.6.7 What is the standard interrupt line for a standard parallel port:

 (a) IRQ3 (b) IRQ4
 (c) IRQ5 (d) IRQ7

16.6.8 Write a program that sends a ‘walking-ones’ code to the parallel port. The delay

between changes should be 1 second. A ‘walking-ones’ code is as follows:

Parallel port 285

 00000001
 00000010
 00000100
 00001000
 : :
 10000000
 00000001
 00000010
 and so on.

 Hint: Use a do…while loop with either the shift left operators (<<) or output the

values 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, and so on.

16.6.9 Write separate programs which output the patterns in (a) and (b). The sequences

are as follows:

 (a) 00000001 (b) 10000001
 00000010 01000010
 00000100 00100100
 00001000 00011000
 00010000 00100100
 00100000 01000010
 01000000 10000001
 10000000 01000010
 01000000 00100100
 00100000 00011000
 00010000 00100100

 : : and so on.
 00000001
 00000010
 and so on.

16.6.10 Write separate programs which output the following sequences:

 (a) 1010 1010 (b) 1111 1111
 0101 0101 0000 0000
 1010 1010 1111 1111
 0101 0101 0000 0000
 and so on. and so on.

 (c) 0000 0001 (d) 0000 0001
 0000 0011 0000 0011
 0000 1111 0000 0111
 0001 1111 0000 1111
 0011 1111 0001 1111
 0111 1111 0011 1111
 1111 1111 0111 1111
 0000 0001 1111 1111
 0000 0011 0111 1111
 0000 0111 0011 1111
 0000 1111 0001 1111
 0001 1111 0000 1111

 and so on. and so on.

 (e) The inverse of (d) above.

286 Computer busses

16.6.11 Binary coded decimal (BCD) is used mainly in decimal displays and is equivalent
to the decimal system where a 4-bit code represents each decimal number. The
first 4 bits represent the units, the next 4 the tens, and so on. Write a program that
outputs to the parallel port a BCD sequence with a 1-second delay between
changes. A sample BCD table is given in Table 16.3. The output should count
from 0 to 99.

 Hint: One possible implementation is to use two variables to represent the units

and tens. These would then be used in a nested loop. The resultant output value
will then be (tens << 4)+units. An outline of the loop code is given next.

 for (tens=0;tens<10;tens++)
 for (units=0;units<10;units++)
 {
 }

 Table 16.3 BCD conversion

Digit BCD
00
01
02
03
04
05
06
07
08
09
10
11

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00010000
00010001

 .
 .
 .

 .
 .
 .

97
98
99

10010111
10011000
10011001

16.6.12 Write a program which interfaces to a 7-segment display and displays an incre-

mented value every second. Each of the segments should be driven from one of
the data lines on the parallel port. For example:

 Value Segment Hex
 A B C D E F G value
 0 1 1 1 0 1 1 1 77h
 1 0 0 1 0 0 1 0 12h
 2 1 1 0 1 0 1 1 6Bh
 : : :
 9 0 0 1 1 1 1 1 1Fh

 Two ways of implementing this is either to determine the logic for each segment

or to have a basic look-up table, such as:

E

B

F

C

A

D

G

Parallel port 287

 int seg_val[8]={0x77, 0x12, 0x6B, … 0x1F};
 val=seq_val(count % 10);
 /* mask-off the least-significant digit */
 outportb(0x378,seg_val[val]);

16.6.13 Write a program counts the number of pushes of a button. The display should

show the value.

16.6.14 Modify the program developed in Exercise 16.6.13 so that it outputs the count

value to the parallel port.

16.6.15 Modify the program developed in Exercise 16.6.14 so that the display is incre-

mented when the user presses a button.

16.6.16 Write a program in which the user presses a button which causes the program to

read from the parallel port.

16.6.17 Write a printer driver in which a string buffer is passed to it and this is then out-

putted to the printer. The driver should include all the correct error checking (such
as out-of-paper, and so on).

16.7 Notes from the author

The parallel port is hardly the greatest piece of technology. In its truly standard form, it only
allows for simplex communications, from the PC outwards. However, like the RS-232 port,
it’s a standard part of the PC, and its cheap. So, interface designers have worked under dif-
ficult circumstances to try and improving its specification, such as increasing its bit rate and
allowing multiple devices to connect to it at the same time, but it still suffers from a lack of
controllability. Anyone who has changed the interface of a device from the parallel port to
the USB will know how much better the USB port is over the parallel port.
 The parallel port and RS-232 are the two top requests that I get from users, especially
related to project work. The Top 10 requests, in order of the most requests I have received,
are:

1. RS-232.
2. Parallel Port.
3. Converting a DOS program to Microsoft Windows.
4. Borland Delphi interfacing.
5. ISA card design.

6. Interrupt-driven software.
7. PCMCIA.
8. Network card design.
9. Visual Basic interfacing
10. Using buffered systems.

One of the most amusing emails that I ever received related to an ISA card which I had
drawn. In the card, I had drawn a few chips, to basically show that it had some electronics
on it. So that the chips would not be confused with real chips I labelled one of them XYZ123.
One user sent me an email saying:

‘Thanks for … Please could you tell me the function of the XYZ123 device. I have searched
for this component, and cannot find any information on it. Please could you send me some’

288 Computer busses

I didn’t really have the heart to write back to the user and say that it was a made-up chip, so
I sent an email back saying that it was not available at the present time (which was true).
 So why has the serial port become more popular than the parallel port. Well it’s because
of one reason: since PC’s started, the serial port has always been a standard port and most
manufacturers abide with it, whereas the parallel port was a quick fix so that the original PC
could communicate with a printer. In its standard form, it can only send information in a
single direction, and, even worse, only eight bits can be sent at a time. Nevertheless, it has
survived, and now has several uses, especially with printers, scanners and external CD-
ROMs. So it will hold the fort for a few years yet before the USB port takes over in creating a
truly integrated bus system. But, you may say, the USB port is serial. So why transmit one bit
at a time when you can transmit 8 or 16 or even 32 bits at a time. Well it’s all to do with the
number of wires that must be connected. A serial bus always has the advantage over a paral-
lel bus, in that you only really need one signal line in a serial bus to transmit all the data.
This saves space in both the connector, and in the cable. It is also cheaper to install.
 Personally, I think that there is no better bus for a student to start to learn how to inter-
face to external devices. It is relatively easy to build the interface electronics, and to connect
a few LEDs. How great it is to see a student’s face after they have written their first program
to make a few LEDs flash on and off. I remember a third year student commented: ‘I’ve been
programming for three years, and finally, we’re doing something real.’ Whether you agree
with this comment or not depends on the type of programming that you would like to do.
Some of us like doing databases, some like writing user-interfaces, but there are lots who like
to make computers sense things and make physical things happen. In the past, especially in
the 1970s and 1980s, electronic engineers used breadboards and wires to prototypes cir-
cuits. Sometimes the circuits blew-up, or times they would stop working, but at least you
knew where you were with the electronics. These days with massively integrated circuits, it is
difficult to know one end of a microchip from another. They normally work first time, they’re
easy to connect to, and when they don’t work you just throw them in the bin. Image the size
of the bin that would have been required if someone had had build a Pentium processor from
the discrete transistors (over 20 million of them). Image the heat that would have been gen-
erated. Assuming 15mW for each transistor, the total power would be 300kW, which is
equivalent to the heat given of by 3000 100W light builds, or 300 1kW heaters. So it shows
how far we have come in such a short time, as now we can touch the processor, and it just
feels a little hot. Personally, I would have no problems in going back to the days when tran-
sistors had three legs and a tin hat, and you had to look up a data sheet to tell which of the
legs was the base, and which was the collector.
 So, as the technology has moved on, the parallel port seems like an old friend. It has
watched the PC develop as the inners have become more integrated and faster, but it has
never really been a high flier, preferring instead to quietly perform its duties without much
bother. From CGA and EGA to VGA, from the serial port to the USB port, from 5.25inch
floppy disks to 6550MB CD-ROMs, and so on. But, there’s no way that the parallel port
could be allowed to stay as it was in the original parallel specification. It has potential, but
that potential is severely limited because it must always keep compatibility with previous
ports. So how is it possible to connect a printer on the parallel port, and other devices, with-
out the printer reading communications that are destined for another device. If it wasn’t the
PC, the designers would have simply ripped up the original specification, and started again.
But, you don’t do that with the PC, or you’ll not sell. So, we’ll see in the next chapter how
the parallel port has been dragged into the modern age. But, as we’ll see, it’s more like a
difficult toddler, than an enterprising businessman. The prize for the best upgrade goes to
Ethernet, which has increased its transmission rate by a factor of 100 (10Mbps to 1Gbps).

Enhanced Parallel Port

17.1 Introduction

The Centronics parallel port only allows data to be sent from the host to a peripheral. To
overcome this the IEEE published the 1284 standard, entitled ‘Standard Signaling Method
for a Bidirectional Parallel Peripheral Interface for Personal Computers’. It allows for bi-
directional communication and high communication speeds, while being backwardly com-
patible with existing parallel ports.
 The IEEE-1284 standard defines the following modes:

• Compatibility mode (forward direction only) – This mode defines the transfer of data

between the PC and the printer (Centronics mode, as covered in the previous chapter).
• Nibble mode (reverse direction) – This mode defines how four bits are transferred, at a

time, using status lines for the input data (sometimes known as Hewlett Packard Bi-
tronics). The Nibble mode can thus be used for bidirectional communication, with the
data lines being used as outputs. To input a byte, requires two nibble cycles.

• Byte mode (reverse direction) – This mode defines how eight bits are transferred at a
time.

• Enhanced parallel port (EPP) – This mode defines a standard bidirectional communica-
tions and is used by many peripherals, such as CD-ROMs, tape drives, external hard
disks, and so on.

In the IEEE 1284 standard the control and status signal for nibble, byte and EPP modes have
been renamed. It also classifies the modes as forward (data goes from the PC), reverse (data
is input into the PC) and bidirectional. Both the compatibility and nibble modes can be im-
plemented with all parallel ports (as the nibble mode uses the status lines and the compatibil-
ity mode only outputs data). Some parallel ports support input and output on the data lines
and thus support the byte mode. This is usually implemented by the addition of a direction
bit on the control register.

17.2 Compatibility mode

The compatibility mode was discussed in Chapter 16. In this mode, the program sends data
to the data lines and then sets the STROBE LOW and then HIGH. These then latch the data
to the printer. The operations that the program does are:

1. Data is written to the data register.

17

290 Computer busses

2. The program reads from the status register to test to see if the BUSY signal is LOW (that
is, the printer is not busy)

3. If the printer is not busy then the program sets the STROBE line active LOW.
4. Program then makes the STROBE line HIGH by de-asserting it.

STROBE

ACK

BUSY

DATAValid data

0.5ms (min.)
5 ms (min.)

Figure 17.1 Compatibility mode transfer

17.3 Nibble mode

This mode defines how four bits are transferred, at a time, using status lines for the input data
(sometimes known as Hewlett Packard Bi-tronics). The Nibble mode can thus be used for bi-
directional communication, with the data lines being used as outputs. To input a byte, re-
quires two nibble cycles.
 As seen in Chapter 16 there are five inputs from the parallel port (BUSY, ACK , PE,
SELECT and ERROR). The status of these lines can be found by simply reading the upper

five bits of the status register. The BUSY, PE, SELECT and ERROR are normally used as
ACK used to interrupt the processor.
 Table 17.1 defines the names of the signal in the nibble mode and Figure 17.2 shows the
handshaking for this mode.
 The nibble mode has the following sequence:

1. Host (PC) indicates that it is ready to receive data by setting HostBusy LOW.
2. The peripheral then places the first nibble on the status lines.
3. The peripheral indicates that the data is valid on the status line by setting PtrClk low.
4. The host then reads from the status lines and sets HostBusy high to indicate that it has

received the nibble, but it is not yet ready for another nibble.
5. The peripheral sets PtrClk HIGH as an acknowledgement to the host.
6. Repeat steps 1–5 for the second nibble.

Enhanced parallel port 291

Table 17.1 Nibble mode signals

Compatibility
signal name

Nibble mode name In/out Description

STROBE STROBE Out Not used.

FEED AUTO HostBusy Out Host nibble mode handshake signal. It is set
LOW to indicate that the host is ready for nib-
ble and set HIGH when the nibble has been
received.

INPUT SELECT 1284Active Out Set HIGH when the host is transferring data.

INIT INIT Out Not used.

ACK PtrClk In Indicates valid data on the status lines. It is set
low to indicate that there is valid data on the
control lines and then set HIGH when the Host-
Busy going high.

BUSY PtrBusy In Data bit 3 for one cycle then data bit 7.

PE AckDataReq In Data bit 2 for one cycle then data bit 6.

SELECT Xflag In Data bit 1 for one cycle then data bit 5.

ERROR DataAvail In Data bit 0 for one cycle then data bit 4.

D0–D7 D0–D7 Not Used.

HostBusy

DATA lines
(PtrBusy, AckDataReq,
XFlag and DataAval)

Valid data
Bits 0-3

Valid data
Bits 4-7

PtrClk

Figure 17.2 Nibble mode data transfer cycle

These operations are software intensive as the driver requires to set and read the handshaking
lines. This limits transfer to about 50 kBps. Its main advantage is that it will work with all
printer ports because it uses the standard Centronics set-up and is normally used in low-
speed bi-directional operations, such as ADC adapters, reading data from switches, and so
on.
 Figure 17.3 illustrates the operation of the nibble mode, where four data bits are read into
the parallel port using the four input handshaking lines. The status of these lines is then read
by interrogating the upper four bits of the status register. This method is fine when there is

292 Computer busses

no handshaking and when there are four, or less, data bits to be read in. If there are more, or
if there is handshaking, then extra circuitry is required.

PtrBusy (BUSY)

AckDataReq (PE)

XFlag (SELECT)

DataAvail (ERROR)

b7 b6 b5 b4 b3 b2 b1 b0

Status port (379h)

inval=(_inp(0x379) & 0xf0) >> 4

Data
input

Figure 17.3 Nibble mode interfacing

 Figure 17.4 shows how the nibble mode can be used to read-in eight bits at a time. For
this one bit of the data output lines (D0) is used to select either the upper four bits or the
lower four bits of the 8-bit data byte. If D0 is a low (0) then the lower four bits are selected,
else if it is a high (1) then the upper four bits are selected. The D0 output line connects to a
multiplexor which will select the lower or the upper four bits. If A is the multiplexor selector
line, X[1:4] are the input data bits and Z[1:4] the output from the multiplexor, then the equa-
tion for the multiplexor is

]1[]5[]1[XAAXZ +=

]2[]6[]2[XAAXZ +=

]3[]7[]3[XAAXZ +=

]4[]8[]4[XAAXZ +=

A

X[1]

X[5]
Z[1]

Enhanced parallel port 293

PtrBusy (BUSY)

AckDataReq (PE)

XFlag (SELECT)

DataAvail (ERROR)

b7 b6 b5 b4 b3 b2 b1 b0

Status port (379h)

_outp(0x378,0); /* set lower 4 bits */
inval1=(_inp(0x379) & 0xf0) >> 4;
_outp(0x378,1); /* set upper 4 bits */
inval=(_inp(0x379) & 0xf0) +inval1;

b7 b6 b5 b4 b3 b2 b1 b0

Multiplexor
(1 of 2)

Data port (378h)

D0

0

1

8-
bi

t d
at

a
in

pu
t

Figure 17.4 Nibble mode for 8-bit input

17.4 Byte mode

The byte mode is often known as a bidirectional port and it uses bidirectional data lines. It
has the advantage over nibble mode in that it only takes a single cycle to transfer a byte. Un-
fortunately, it is only compatible with newer ports. Table 17.2 defines the names of the sig-
nal in the nibble mode and Figure 17.5 shows the handshaking for this mode.
 The byte mode has the following sequence:

1. Host (PC) indicates that it is ready to receive data by setting HostBusy LOW.
2. The peripheral then places the byte on the status lines.
3. The peripheral indicates that the data is valid on the status line by setting PtrClk LOW.
4. The host then reads from the data lines and sets HostBusy HIGH to indicate that it has

received the nibble, but it is not yet ready for another nibble.
5. The peripheral sets PtrClk HIGH as an acknowledgement to the host.
6. Host then acknowledges the transfer by pulsing HostClk.

294 Computer busses

Table 17.2 Byte-mode signals

Compatibility
signal name

Byte-mode name In/Out Description

STROBE HostClk Out Used as an acknowledgment signal. It is
pulsed low after each transferred byte.

FEED AUTO HostBusy Out It is set LOW to indicate that the host is
ready for nibble and set HIGH when the nib-
ble has been received.

INPUT SELECT 1284Active Out Set HIGH when the host is transferring data.

INIT INIT Out Not used.

ACK PtrClk In Indicates valid data byte. It is set LOW to
indicate that there is valid data on the data
lines and then set HIGH when the HostBusy
going high.

BUSY PtrBusy In Busy status (for forward direction).

PE AckDataReq In Same as DataAvail .

SELECT Xflag In Not used.

ERROR DataAvail In Indicates that there is reverse data available.

D0–D7 D0–D7 In/Out Input/output data lines.

HostBusy

Valid data

PtrClk

Data

HostClk

Figure 17.5 Byte mode data transfer cycle

17.5 EPP

The enhanced parallel port (EPP) mode defines a standard bidirectional communications
mode and is used by many peripherals, such as CD-ROMs, tape drives, external hard disks
and so on.
 The EPP protocol provides four types of data transfer cycles:

Enhanced parallel port 295

1. Data read and write cycles – These involve transfers between the host and the peripheral.
2. Address read and write cycles – These pass address, channel, or command and control

information.

Table 17.3 defines the names of the signal in the nibble mode. The WRITE occurs automati-
cally when the host writes data to the output lines.
 The data write cycle has the following sequence:

1. Program executes an I/O write cycle to the base address port + 4 (EPP data port), see Ta-

ble 17.4. Then the following occur with hardware:
2. The WRITE line is set LOW, which puts the data on the data bus.
3. The DATASTB is then set LOW.
4. The host waits for peripheral to set the WAIT line HIGH.
5. The DATASTB and WRITE are then HIGH and the cycle ends.

The important parameter is that it takes just one memory-mapped I/O operation to transfer
data. This gives transfer rates of up to 2 million bytes per second. Although it is not as fast as
a peripheral transferring over the ISA, it has the advantage that the peripheral can transfer
data at a rate that is determined by the peripheral.

Table 17.3 EPP mode signals

Compatibility
signal name

EPP mode
name

In/out Description

STROBE WRITE Out A LOW for a write operation while a HIGH indi-
cates a read operation.

FEED AUTO DATASTB Out Indicates a data read or write operation.

INPUT SELECT ADDRSTROBE

Out Indicates an address read or write operation.

INIT

RESET Out Peripheral reset when LOW.

ACK INTR In Peripheral sets this line LOW when it wishes to
interrupt to the host.

BUSY WAIT In When it is set LOW it indicates that it is valid to
start a cycle, else if it is HIGH then it is valid to end
the cycle.

PE User defined In Can be set by each peripheral.

SELECT User defined In Can be set by each peripheral.

ERROR User defined In Can be set by each peripheral.

D0–D7 AD0–AD7 In/out Bidirectional address and data lines.

296 Computer busses

17.5.1 EPP registers

Several extra ports are defined, these are the EPP address register and EPP data register. The
EPP address register has an offset of three bytes from the base address and the EPP data reg-
ister is offset by four bytes. Table 17.4 defines the registers.

Table 17.4 EPP register definitions

Port Name I/O address Read/
write

Description

Data register BASE_AD W

Status register

BASE_AD +1 R

Control register

BASE_AD +2 W

EPP address port BASE_AD+3 R/W Generates EPP address read or write cycle

EPP data port BASE_AD+4 R/W Generates EPP data read or write cycle

17.6 ECP

The extended capability port (ECP) protocol was proposed by Hewlett Packard and Micro-
soft as an advanced mode for communication with printer and scanner type peripherals. It
provides a high performance bidirectional data transfer between a host and a peripheral.
 The standard provides for two cycle types in both forward and reverse directions:

1. Data cycles.
2. Command cycles which can either be a run length count or a channel address.

It has many advantages over the EPP standard, including:

• Standard addresses – ECP has standard register addresses – Figure 17.6 shows that the

addresses from 0778h to 077Ah have been defined for the extra functionality of ECP.
• Run length encoding (RLE) – RLE allows for compression. It allows high compression

rates when there is a great deal of repetitive information in a file (typically with graphics
files). A repetitive sequence is identified by a count followed by the repeated byte.

• FIFOs for both the forward and reverse channels.
• DMA as well as programmed I/O for the host register interface.
• Channel addressing – This allows multiple logical devices to be located within a single

physical device. This channel address is passed in the command phase and can support up
to 128 devices (addresses 0 to 127). For example, a single unit could have an integrated
printer, fax and modem. ECP channel address allows them all to be accessed over a sin-
gle connection. Within one physical package, having a single parallel port attached, there
is a printer, fax and modem. This has the advantage that the printer can be busy printing
while the modem can be accessed at the same time.

ECP redefines the SPP signals to be consistent with the ECP handshake. Table 17.5 de-

Enhanced parallel port 297

scribes these signals.
 Figure 17.7 shows two forward data transfer cycles. It has data followed by a command
phase. A high on the HostAck line indicates a data cycle, whereas a low indicates a com-
mand cycle. In the low state (command cycle) the data either represents an RLE count or a
channel address. The most significant bit of the data byte indicates whether it is an RLE
count or a channel address. If it is a 0, then bits the other 7 bits represent a RLE Count (from
0 to 127), else a 1 represents a channel address (from 0 to 127).

Figure 17.6 ECP input/output address ranges

Table 17.5 ECP mode signals

Compatibility
signal name

ECP mode name In/out Description

STROBE

HostClk I Transfers data or address information in
the forward direction (along with Pe-
riphAck).

FEED AUTO HostAck O Command/Data status in the forward
direction. Data transfer in reverse direc-
tion (along with PeriphClk).

INPUT SELECT 1284Active O Set high when host is in a 1284 transfer
mode.

INIT uestReverseReq O A low puts channnel in reverse direc-
tion.

ACK PeriphClk I Transfer data in the reverse direction
(along with HostAck).

BUSY PeriphAck I Transfer data or command information
(along with HostClk).

PE nAckReverse I Acknowledgement to nReverseRequest.

SELECT Xflag I Extensibility flag.

ERROR nPeriphRequest I Set low by peripheral to indicate that
reverse data is available.

D0–D7 Data[8:1] I/O Data lines.

298 Computer busses

HostClk

PeriphAck

D0-D7

HostAck Data Command

First byte Second byte

1 2 3 4

Figure 17.7 ECP forward data and command cycle

In the forward mode, the transfer of the data is from the host to the peripheral. Initially the
host places its data on the data bus. It sets the HostAck line high to indicate a data cycle and
sets HostClk low to indicate valid data. Next, the peripheral acknowledges the host by setting
PeriphAck high. The host sets HostClk high which clocks the data into the peripheral. After
this, the peripheral sets PeriphAck low to indicate that it is ready for the next byte.
 Figure 17.7 illustrates an example of the reverse channel transfer where the peripheral
transfers information to the host. As before, it shows a command cycle followed by a data
cycle. It is similar to the forward phase except that the host requests a reverse channel by
setting the nReverseRequest low. The peripheral then sets the nAckReverse line low to indi-
cate that it is ready to transfer data, then it puts the data on the data bus. It then sets the Pe-
riphAck high to indicate that it is a data cycle and set PeriphClk low to indicate valid data.
After this the host sets HostAck high to acknowledge these events and the peripheral sets
PeriphClk high. This clock edge then clocks the data into the host. Finally, the host sets
HostAck low to indicate that it is ready for the next byte.

17.6.1 ECP software and register interface

The ECP specification (‘The IEEE 1284 Extended Capabilities Port Protocol and ISA Inter-
face Standard’) defines a number of operational modes. These are defined in Table 17.6. The
registers used to program ECP are based on the standard parallel port setting and uses an
address which are offset by 1024 (400h) from the standard port address. Thus:

Standard port base address = 378h
ECP extended registers = 378h + 400h = 778h

There are six extra registers defined for ECP, these are given in Table 17.7. These six regis-
ters are mapped into three memory addresses and are shown in Figure 17.8 (778h, 779h and
77Ah). The ECR register used to set the current operational mode and can also be used to
determine if an ECP-capable port is installed in the PC. Detection software can try to access
any ECR registers by adding 402h to the base address of the LPT ports identified in the
BIOS LPT port table.

Enhanced parallel port 299

HostClk

PeriphAck

D0-D7

HostAck Data Command

First byte Second byte

nReverse
Request

nAck
Reverse

Figure 17.8 ECP Reverse data and command cycle

The operation of the ECP port is similar to the EPP port. The ECR register is used to set an
operational mode, after which an I/O port is used to transfer data (the actual port depends on
the mode). Handshaking is done automatically by the hardware and there is no need for the
software to control it.

Table 17.6 ECR Register Modes

Mode Description Mode Description
000 SPP mode 100 EPP parallel port mode (note 1)

001 Bidirectional mode (byte
mode)

101 (reserved)

010 Fast Centronics 110 Test mode

011 ECP parallel port mode 111 Configuration mode

Table 17.7 ECP register description

Offset Name Read/Write ECP Mode Function
000 Data R/W 000-001 Data register
000 ecpAfifo R/W 011 ECP address FIFO
001 dsr R/W all Status register
002 dcr R/W all Control register
400 cFifo R/W 010 Parallel port data FIFO
400 ecpDfifo R/W 011 ECP data FIFO
400 tfifo R/W 110 Test FIFO
400 cnfgA R 111 Configuration register A
401 cnfgB R/W 111 Configuration register B
402 ecr R/W all Extended control register

300 Computer busses

17.7 Exercises

17.8.1 How many pins does a standard D-type parallel port connector have:

 (a) 9 (b) 12
 (c) 25 (d) 36

17.8.2 What is the maximum transfer rate for ECP/EPP mode:

 (a) 100 kB/s (b) 150 kB/s
 (c) 1 MB/s (d) 1.2 MB/s

17.8.3 Outline the operation of the nibble mode. How does the parallel port allow data to

be inputted?

17.8.4 Design a circuit for nibble mode operation which will sample data bits. The design

should include ground connections (GND), connector types and pin numbers. If
possible, implement the design by adding switches to simulate input levels (power
can be supplied by the parallel port connection).

17.8.5 Explain how several devices can be connected to the parallel port, and identify

how the operating system identifies each of the devices.

17.8 Note from the author

The parallel port was never really been destined for glory. It is basically a legacy port,
which, in the past, was only really useful in connecting printers. The future for printer con-
nections is either with network connections, such as Ethernet, or with a USB connection. In
its standard form, it has a large, bulky connector, which in many systems is never even used.
 It has always struggled against the serial port, because it lacks the flexibility of RS-232
and, until recently, had no standards agency to support it. However, it’s there and it has
great potential for fast data transfers. RS-232 has always been a great success and has many
of the large manufacturers supporting it, and all importantly, it is defined by several stan-
dards agencies. The key to its current success was due to the intervention of the NPA which
brought together many of the leading computer and printer manufacturers. In these days,
there are only a few major companies, such as Intel and Microsoft, who can lead the market
and define new standards (such as the PCI bus, with Intel).
 The main difficulties are how to keep compatibility with previous implementations and
software, and also how to connect multiple devices on a bus system, and allow them to pass
data back and forward without interfering with other devices. This has finally been achieved
with ECP/EPP mode. It is a bit complex, but it works, and even supports data compression.
At the present, my notebook connects to a CD-R drive, a scanner and a printer, all of the
same parallel port (just like SCSI). This arrangement works well most of the time and is a
relative cheap way of connecting devices, but it is in no way as flexible and as fast a SCSI.

Modbus

18.1 Modbus protocol

The Modbus protocol is an industry-standard protocol which allows programmable control-
lers to communicate over a network or local communications link. It defines a standard mes-
sage structure that all Modbus-compatible controllers recognise and implement, regardless of
the network type. It describes:

• The format of requests to Modbus-compatible devices.
• The format of responses from Modbus-compatible devices.
• The layout and contents of message fields for Modbus-compatible devices. The Modbus

protocol provides the internal standard that the Modicon controllers use for parsing mes-
sages.

• How each controller knows its own device address and recognizes any messages ad-
dressed to it.

• The format of the data and other information contained in the message.

18.1.1 Transactions on Modbus networks

Standard Modbus controllers communicate using RS-232C and can be networked or con-
nected via a modem. Each controller (such as a host processor) communicates with the con-
nected devices (such as a PLC) using a master–slave technique (Figure 18.1). The controller
(the master) initiates transactions (queries) which are sent to the other devices (the slaves).
The addressed slave then responses to the request by sending back data or by implementing
the required action. This addressing can be to an individual device, or can be broadcasted to
all connected slaves. There are no responses from a broadcast query.
 The query takes the form of:

• An address (either an individual address or a broadcast address).
• A function code, which defines the requested action.
• Sent data, the format of which depends on the function code. For example, a function

code of 03 defines that the slave read from the started register defined in the data field
and it also contains the number of registers to read.

• Error-checking field, to allow the slave to validate the message integrity.

The response message takes the form:

• Action confirmation – on error, this field contains an echo of the query function code.

On an error, the function code is modified to indicate that the response is an error re-
sponse, and the returned data field contains an error code.

18

302 Computer busses

• Returned data – this contains the data returned by the slave, either register values or a
status.

• Error-checking field – this allows the master to validate the message integrity.

A standard Modbus network only contains masters and slaves. On a Modbus Plus network
controllers can operate as a master or a slave. The Modbus protocol is still applied to the
transaction. This typically occurs over a network.

Master

Slave
�������������������������������
�������������������������������
�������������������������������
�������������������������������

Slave
��������������������������������
��������������������������������
��������������������������������
��������������������������������

Slave
���������������������������������
���������������������������������
���������������������������������
���������������������������������

Slave

Figure 18.1 Master–slave

18.1.2 Transmission modes

Modbus transmits values from the master to the slave either using ASCII or RTU (remote
terminal unit). All the devices on the network must be set to the same setting. These are:

• ASCII – Modbus transmits the bit values as ASCII characters which represent the hexa-

decimal of the transmitted bit values. The transmitted characters will range from ‘0’ to
‘9’ and ‘A’ to ‘F’. For example, if the transmitted bit stream is to be:

 0110 1111 0001 0011 1100 1100 1011 0000

 this would be transmitted as the ASCII characters:

 ‘6’ ‘F’ ‘1’ ‘3’ ‘C’ ‘C’ ‘B’ ‘0’

In this mode, a start bit is transmitted, followed by a 7-bit ASCII character, an optional
parity bit and then two stop bits. The least-significant bit of the ASCII character is sent
first.

• RTU – an 8-bit value is sent as two hexadecimal values. For example:

 0110 1111 0001 0011 1100 1100 1011 0000

 this would be transmitted as the following:

Modbus 303

 ‘0110 1111’ ‘0001 0011’ ‘1100 1100’ ‘1011 0000’

which allows for a faster transmission of values, and they can thus be decoded quicker
than the ASCII mode. RTU will obviously be twice as fast as the ASCII method. It also
allows continuous bit streams to be transmitted. In this mode, a start bit is transmitted,
followed by an 8-bit binary value, an optional parity bit and then two stop bits.

In summary, the modes are:

 ASCII RTU
Coding Hexadecimal characters 8-bit binary
Start bits 1 1
No of bits/character 7 8
Parity Optional Optional
Stop bits 1 or 2 1 or 2
Error checking LRC CRC

18.1.3 Modbus message frame

The Modbus message has different formats, depending on the transmission mode. These are:

• ASCII framing – a colon ASCII character (:, or 3Ah) starts the message and the carriage

return–line feed sequence ends the message (CRLF, or 0Dh and 0Ah). The characters
within the message will then be ‘0’ to ‘9’ or ‘A’ to ‘F’. On a network, devices continu-
ally listen for the colon character. The field after this is the address field. The maximum
interval between characters is one second. Figure 18.2 shows the standard format.

• RTU framing – messages start with a silent interval of at least 3.5 character times. After
this, the device address is transmitted. All devices on the network listen to the bus, and
wait for a silent period, which must be at least 3.5 characters since the last message. It
then transmits the message as a continuous stream. The first eight bits are the target ad-
dress. Errors occur if there is a silent period of more than 1.5 character times or if a de-
vice transmits its message before 3.5 character delays after the previous message. Figure
18.2 shows the standard format.

Start
(:) Address Function DATA LRC Check End

(CR-LF)

1 2 2 n 2 2
Number of
characters:

Start Address Function DATA LRC Check End

3.5 characters 8 bits 8 bits n x 8 bits 16 bits 3.5 charactersTime:

ASCII
frame

RTU
frame

Figure 18.2 ASCII and RTU message frame

304 Computer busses

18.1.4 Address field

The address field contains either two ASCII characters (for ASCII mode) or eight bits (for
RTU mode). Addresses range from 0 to 247 (00h to F7h), where 0 is the broadcast address
and 1 to 247 are used for slaves addresses. A master communicating with the slave puts the
slave’s address in the address field, and the slave, when responding, puts its own address in
the address field (to identify itself).

18.1.5 Function field

The function field contains either two ASCII characters (for ASCII mode) or eight bits (for
RTU mode). Codes range from 1 to 255 (00h to FFh), and they are used by the master to
inform the slave as to the action which requires to be performed. Typical codes (in decimal)
are:

 01 Read coil status 02 Read input status 03 Read holding registers
 04 Read input registers 05 Force single coil 06 Preset single register
 07 Read exception status 08 Diagnostics 11 Fetch comm. event counter
 12 Fetch comm. event log 13 Program controller 14 Poll controller
 15 Force multiple coils 16 Preset multiple registers
 17 Report Slave ID 18 Program 884/M84 19 Reset communication link
 20 Read general reference 21 Write general reference
 22 Mask write 4x reference 23 Read/write 3x registers 24 Read FIFO queue

For example, the read coil status gives an ON/OFF status for discrete outputs. When there
are no errors the slave sends back the original function code, else, on an error, the same code
is sent back, expect the most-significant bit is set to a 1. For example, if the function code
was 0000 1000, then, on an error, the return value will be 1000 1000. A status code is also
added in the data field, these are outlined in Table 18.1.

Table 18.1 Exception codes

Code Name Description
01 Illegal function The message function received is not an allowable action for the

addressed salve.

02 Illegal data address The address referenced in the data field is not an allowable address
for the addressed slave location.

03 Illegal data value The value referenced in the data field is not allowable in the ad-
dressed slave location.

04 Failure in associated
device

The slave’s subcontroller has failed to respond to a message or an
abortive error occurred.

05 Acknowledge The slave has accepted and is processing the long duration program
command.

06 Busy, rejected mes-
sage

The message was received without error, but the slave is currently
busy.

For example, if the master sends the message

Modbus 305

 Address Function Start address (hi) Start address (lo) No. (hi) No. (low) LRC
:12 01 02 10 00 01 DA

Then on an error, the response would send back the function code of 81 (which sets the most
significant bit of the function code (that is, 1000 0001). If the slave were busy then the ex-
ception code would be 06. Thus the code sent back will be:

Address Function Exception code LRC
12 81 06 67

18.1.6 Data field

The data fields contains even multiples of hexadecimal digits (in ASCII mode) or an even
number of binary values (in RTU mode). The format of the field depends on the function
code, and contains information, such as register addresses, the number of values required and
the number of bytes in the data field.
 For example if the function code is 01 (read code status), then the format of the frame
send from the master to the slave is:

• Slave address (xx).
• Function (01) – read coil status.
• Starting address high (xx) – most-significant byte of the starting register address.
• Starting address low (xx) – least-significant byte of the starting register address.
• Number of Points high (xx) – most-significant byte of the number of points to be sent.
• Number of Points low (xx) – least-significant byte of the number of points to be sent.
• Error check (xx).

If there are no errors, then the response is:

• Slave address (xx).
• Function (01) – read coil status.
• Byte count.
• Data (Coils 8 to 1) – data for the first eight coils, where a 1 value in a coil bit position

represents ON, whereas a 0 represent OFF.
• Data (Coil 16 to 9) –data for the next eight coils.
• etc.
• Error check (xx).

Some data fields are empty, such as the communication event log function (12, or 0Bh).

18.1.7 Error checking field

The error checking method depends on the type of transmission, these are:

• ASCII – in this mode the error checking field contains two characters, which performs a

longitudinal redundancy check (LRC) for all characters, excluding the start and end ter-
minating characters (:, CR and LF).

• RTU – in this mode, the error-checking field contains a 16-bit value which performs a
cyclical redundancy check (CRC). This field is added to the end of the message; the
low-order byte of the field is appended first, followed by the high-order byte.

306 Computer busses

LRC

The ASCII mode uses the LRC method. It basically adds up the values of each of the 8-bit
fields, apart from the starting colon and the end CRLF, and then takes the two’s complement
of the result (ignoring any carries). For example, from the previous example the transmitted
values are

Start address (12) 0001 0010
Function (01) 0000 0001
Start address, high (02) 0000 0010
Start address, low (10) 0001 0000
Number, high (00) 0000 0000
Number, low (01) 0000 0001
Total 0010 0110

To convert to 2’s complement, invert all the bits, to give

1101 1001

and then add 1, to give

1101 1010

which is DA, in hexadecimal. Thus the transmitted message would be:

:120102100001DA<CRLF>

CRC checking

The RTU mode uses CRC, which is a much stronger error checking method. This method is
outlined in Appendix D. Its operation is as follows:

1. 16-bit register is preloaded with all bits set to 1.
2. The first eight-bit data character is exclusive ORed (XOR) with the higher order-byte in

the register and the result is put in the register.
3. The register is then right shifted by one bit position and a zero filled into the most signifi-

cant bit (MSB) position.
4. If the shifted bit out is a 1, XOR the generator polynomial 1010 0000 0000 0001 with the

16-bit register, else return to Step 3.
5. Repeat steps 3 and 4 for eight right shifts.
6. XOR the next 8-bit value with the 16-bit register.
7. Repeat Steps 3 to 6 until all the bytes in the message have been XOR with the 16-bit reg-

ister and shifted eight times.
8. The resultant content of the 16-bit register is the CRC error check.

Modbus 307

18.2 Function codes

Each value is addressed via a register. The first register address on the Modbus is referenced
to zero. The following sections outline the main function codes.

18.2.1 Read coil status (01)

This function reads the ON/OFF status in Boolean logic. The query message specifies the
starting coil and quantity of coils to be read. For example to read 12 values (0Ch) from de-
vice 18 (12h), starting at address 02DE, then the following is used:

 Address Function Start address (hi) Start address (lo) No. (hi) No. (low) LRC
:12 01 02 DE 00 0C 01

The response contains the coil status, in which the data field is packed with bit values, one
for each coil. A one represents ON, a zero represents OFF and the lsb of the first byte con-
tains the first address coil. Other coil values follow this and, if the number of coil values is
not a multiple of eight, then zeros are used to pad the end values. The byte count field pre-
cedes the coil values and specifies the quantity of complete bytes of data. An example re-
sponse to the above query is

 Address Function Number of bytes Data values (8 to 1) Data values (12 to 9) LRC
:12 01 02 BA 10 FB

Thus, if the addressed coils are Coil 1 to Coil 12, then the Coils 8 to Coil 1 have the status of
1101 1100 (BAh), which means that Coil 8, Coil 7, Coil 5, Coil 4 and Coil 3 are ON, and
Coil 6, Coil 2 and Coil 1 are OFF. The other four coils are 0001 for Coil 12 to Coil 9. Thus,
Coil 9 is ON and Coil 12, Coil 11 and Coil 10 are OFF.

18.2.2 Read Input Status (02)

This function reads the ON/OFF status of discrete inputs from the slave device. This function
reads the ON/OFF status of logic Boolean. It has the same format as the read coil Status
function code. For example to read four values, starting at address 11FF, then the following is
used:

 Address Function Start address (hi) Start address (lo) No. (hi) No. (low) LRC
:12 02 11 FF 00 04 D8

The response is in the same format as the read coil status function. An example response to
the above query is

 Address Function Number of bytes Data values (4 to 1) LRC
:12 02 01 02 CC

which returns the status of the four inputs as

Input 4 (Address: 1202) OFF (0000 0010)
Input 3 (Address: 1201) OFF (0000 0010)
Input 2 (Address: 1200) ON (0000 0010)
Input 1 (Address: 11FF) OFF (0000 0010)

308 Computer busses

18.2.3 Read holding registers (03)

The function reads the binary contents of holding registers (4x references) in the slave. Hold-
ing registers are identified starting from 40001, which is addressed as register 0000. Register
40002 is addressed as register 0001, and so on.
 For example, to read two values, starting at address 0E2 (register 40226), then the follow-
ing is used:

 Address Function Start address (hi) Start address (lo) No. (hi) No. (low) LRC
:12 03 00 E1 00 02 05

The response gives 16 bits for every register value. An example response is,

Address Function Number of bytes Data value (40226) Data values (40227) LRC
:12 03 04 BA A2 FF 10 7c

18.2.4 Read input registers (04)

This function reads the binary contents of input registers (3x references) in the slave. Input
registers are identified starting from 30001, which is addressed as register 0000. Register
30002 is addressed as register 0001, and so on. The response gives 16 bits for every register
value.

18.2.5 Force single coil (05)

This function forces a single coil (0x reference) to either an ON or an OFF state. For example,
to force coil at address 101 (65h) to be ON, then the following is used:

 Address Fun. Start add. (hi) Start add. (lo) Force data (hi) Force data (low) LRC
:12 05 00 65 FF 00 85

A value of FF00 sets the coil ON, while a value of 0000 sets the coil OFF. The response
should just be the echo of the query.

18.2.6 Preset Single Register (06)
This function presets a value into a single 16-bit holding register (4x reference). For example
to preset register 40226 (address E1) to 021F then:

 Address Function Start address (hi) Start address (lo) No. (hi) No. (low) LRC
:12 06 00 E1 02 1F 05

The response should just be the echo of the query.

18.2.7 Read Exception Status (07)

This function reads the current status of the slave. Normally the settings for the addresses
and the bits within the addresses are normally manufacture defined. For example, for the
Honeywell 2500 series chromatograph the returned status codes are:

Coil Assignment Coil Assignment
1 Shutdown 2 Unknown fail
3 Power fail 4 Unacknowledged alarms
5 Starting 6 Running
7 Warm start 8 Cold start

Modbus 309

Other set-ups (especially on newer equipment) allow access to the batteries status. An exam-
ple query is

Address Function LRC
:12 07 E7

and an example response is

Address Function Flag data LRC
:12 07 7D 6A

18.2.8 Fetch Communications event counter (11, 0Bh)

This function returns a status word and an event count for the slave’s communications event
counter. An example query is

Address Function LRC
:12 0B E3

and an example response is

Address Function Status (hi) Status (lo) Event count (hi) Event count (lo) LRC
:12 0B FF FF 02 08 DB

A status of FFFFh indicates that the slave is still progressing a program function, else it will
be 0000h. The event counter holds the number of events that have been counted by the con-
troller.

18.2.9 Fetch communication event log (12, 0Ch)

This function returns a status word, event count, message count, and a field of event bytes
from the slave. The status word and event count are identical to that returned by the fetch
communications event counter function, but it is followed by a 16-bit value which defines
the number of events stored. The events are then listed after this.

18.3 Modbus diagnostics

The 08 function is used to get slave diagnostics. This is used with a number of subfunctions.
The format, and example, of a diagnostics function are

Address Function Subfunction (hi) Subfunction (lo) Data (hi) Data (lo) LRC
:12 08 00 FF 02 08 DB

The subfunctions are given in the following table.

310 Computer busses

Sub
function

Description Query (data field) Reply

00 00 Return query data Same as the query. Same as query.
00 01 Restart communication

option
00 00 (leave log as it
was prior to restart)
FF 00 (clear event
log)

Same as query.

00 02 Return diagnostic
register

00 00

Diagnostic 16-bit register contents.
The contents depends on the Modbus
type. An example is:

Bit
0 Continue on error
1 Run light failed
2 T-Bus test failed
3 Asynchronous bus test failed
4 Force listen mode
7 ROM Chip 0 test failed
8 Continuous ROM checksum test in

execution
9 ROM 1 test failed
10 ROM 2 test failed
11 ROM 3 test failed

00 03 Change ASCII input
delimiter

‘char’ 00

Change end-of-message character.
Return is the same as query.

00 04 Force listen only-mode 00 00

Slave goes into a listen-only mode
and thus does not respond.

00 0A Clear counters and di-
agnostic register

00 00 Return is the same as query.

00 0B Return bus message
count

00 00 Return is the same as query.

00 0C Return bus communica-
tion error count

00 00 CRC Error count.

00 0D Return bus exception
error count

00 00 Exception error count.

00 0E Return slave message
count

00 00 Slave message count.

00 0F Return slave no re-
sponse count

00 00 Slave no response count.

00 10 Return slave NAK
count

00 00 Slave NAK count.

00 11 Return slave busy count 00 00 Slave busy count.
00 12 Slave character overrun

count
00 00

Slave character overrun count.

00 13 Return overrun error
count

00 00

00 14 Clear overrun counter
and flag

00 00

00 15 Get/clear Modbus Plus
statistics

Modbus 311

18.4 Exercises

18.4.1 What is the basic topology of a Modbus network:

 (a) One or many masters and one slave
 (b) One or many master and one or many slaves
 (c) One master and one slave
 (d) One master and one or many slaves

18.4.2 How is the start of an ASCII message frame identified:

 (a) 01111110 (b) ‘:’
 (c) Start bit (a 1) (d) LFCR (line feed, carriage return)

18.4.3 What is the maximum number of nodes on a Modbus network:

 (a) 8 (b) 256
 (c) 1024 (d) No limit

18.4.4 What is the addressing range for the Modbus protocol:

 (a) 00h–FFh (b) 0000h–FFFFh
 (c) 000000h–FFFFFFh (d) No limit

18.4.5 Determine the LRC (in hex) that is to be added to the message transmission of

4F2A10h:

 (a) 89h (b) 77h
 (c) 88h (d) 76h

18.4.6 Determine the LRC (in binary) that is to be added to the message transmission of

1000 1100 0001 0110 1111 0110b:

 (a) 01101000b (b) 10011000b
 (c) 00000000b (d) 01100111b

18.4.7 What ASCII characters are transmitted for the data transmission of 1010 0011

1110 1010b:

 (a) ‘10’, ‘3’, ‘15’, ‘A’ (b) ‘1’, ‘0’, ‘3’, ‘1’, ‘5’, ‘A’
 (c) ‘A’, ‘3’, ‘E’, ‘A’ (d) ‘0’, ‘1’, ‘3’, ‘5’, ‘1’, ‘A’

312 Computer busses

18.5 Notes from the author

Modbus is an important protocol and has grown in its popularity because of its simplicity. It
has a very basic structure, and is easy extremely easy to implement as it is based on a mas-
ter–slave relationship where a master device sends commands and the addressed slave re-
sponses back with the required information. Its main advantages are its simplicity, its stan-
dardization and its robustness.
 Modbus can be operated on a wide range of computers running any type of software,
from a simple terminal-type connection, where the user can enter the required commands
and views the responses, through to a graphical user interface, with the commands and re-
sponse messages hidden from the user. The basic protocol is, of course, limited in its basic
specification, such as the limited number of nodes (256, maximum) and the limited address-
ing range (0000h to FFFFh).
 The basic communications link is also simple to implement (normally, RS-232), but newer
Modbus implementations use network connections, such as Ethernet. Another change is to
implement the Modbus protocol over a standard TCP/IP-based network. This will allow
Modbus to be used over an Internet connection.
 RS-232 does not have strong error checking, and only provides for basic parity check.
Modbus using ASCII-based transmission of the Modbus protocol adds a simple checksum to
provide an improved error detection technique (LRC). For more powerful error detection the
data can be transmitted in RTU format, which uses the more powerful technique (CRC).
 The Modbus Plus protocol now allows for devices to be either a master or a slave. This
allows for distributed instrumentation, where any device can request data from any other
device, at a given time.

Fieldbus

19.1 Introduction

Field buses are special local area networks that are dedicated to data acquisition and the con-
trol of sensors and actuators. They typically run over low-cost twisted pair cable. They differ
from many traditional LANs (such as Ethernet) in that they are optimised for the exchange of
short point-to-point status and command messages. There are many Fieldbus standards that
exist, each developed for a specific purpose.
 The potential market for Fieldbus equipment is enormous. Figure 19.1 shows an estimate
of sales over time. It can be seen that the expected market in 2003 is over 50%. Instrumenta-
tion interfaces have evolved from 3–15 PSI transmitters, to 4–20 mA analogue interfaces,
now to serial interfaces (typically either RS-232 or RS-485) and now to Fieldbus interfaces.
This evolution over time is illustrated in Figure 19.2.

10

20

30

40

50

60
Total estimated
sales (%)

1993 1995 1997 1999 2001 2003

Fieldbus
compatible
sensors

Figure 19.1 Market for Fieldbus

19.2 Fieldbus types

The main Fieldbus types are outlined in this section, but most of the chapter is devoted to the
FOUNDATION Fieldbus, which is a truly open standard, and the WorldFIB, which are sup-
ported by many major vendors.

19

314 Computer busses

Sales

1930 1960 1990

3-15 PSI

4-20mA
analogue

Fieldbus

Serial
links

Time

Figure 19.2 Changes in the market for instrumentation parameter transmissions

There are three main categories for Fieldbus installations, these are Fieldbus standard, Other
domain standards and non-Fieldbus. The main Fieldbus standard are WorldFIP (standard in
France), Profibus (standard in Germany) and P-Net (standard in Denmark), and are all part of
the CENELEC European standard EN 50170. WorldFIP has the advantage over the others in
that it uses the IEC physical layer (the IEC 1158-2). The Fieldbus Foundation is an initiative
of mainly USA-based vendors. Its main aim is to standardise Fieldbus for the petrochemi-
cal/chemical industries. One of its aims is not to replace traditional DCSs (distributed control
systems), but to integrate with them. The main standards for Fieldbus products are:

• Fieldbus Foundation – this was formed 1994 have defined low speed 31.25 kbps trans-

mission (H1). The H2 standard (which is equivalent to WorldFIP) will operate at 1Mbps.
• WorldFIP (or WorldFIP Europe) – this standard has been incorporated into many prod-

ucts and supports a 1 Mbps transmission rate. WorldFIP contributes to the Fieldbus
Foundation, in their standardisation process.

• Profibus – this has three main types: FMS (flexible manufacturing systems), DP (distrib-
uted peripherals) and PA (process automation). FMS and DP use RS-485 signalling,
whereas PA uses the IEC physical layer at low speeds. FMS and DP are part of
EN50170.

Other busses, such as the CAN bus, use only the lower layers of functionality, especially for
remote I/O.

19.2.1 BITBUS

Intel introduced the BITBUS for remote I/O capability to multibus systems. It allows pro-
grams to be downloaded and executed in a remote node for truly distributed system configu-
rations. Its outline specification is

Speed 375 kbps
Maximum nodes with/without repeaters 250/32
Maximum distance with/without repeaters 13.2 km max/1.2 km max
Arbitration master/slave

Fieldbus 315

Cable type twisted-pair
Header/data size 1 to 13 or 52 bytes
Major benefits large number of users
Nodes programmable intelligent I/O modules
Primary applications process control

19.2.2 WorldFIP

WorldFIP operates at 1 Mbps over twisted-pair cables, and is a reliable method of transmit-
ting variables (from sensors and to actuators) and messages (such as events, configuration
commands). It uses a bus arbitrator that broadcasts variable identifiers to all the nodes on the
network. This triggers the required node which produces the node to respond with the re-
quired value. All modules that need this value must then read it. Its main characteristics are:

• It supports a distributed, decentralised database of variables.
• It does not require node addresses as messages are broadcasted by a bus arbitrator, and

then the response is from the node which contains the processor parameter.

Its outline specification is

Speed 1 Mbps
Maximum nodes with/without repeaters 256/64
Maximum distance with/without repeaters Greater than 10 km/2 km
Arbitration bus arbiter
Cable type twisted-pair
Header/Data size 1 to 128 bytes
Major benefits distributed data base/ very deterministic
Primary applications Real-time control/process/machine

19.2.3 CAN

Controller area network (CAN) was developed mainly for the automobile industry, and is
now popular in factory automation. It transmits at 1Mbps and uses twisted-pair cable for up
to 40 devices. Its main features are:

• Nodes can communicate when there are no nodes communicating on the bus.
• It uses a non-destructive bit-wise arbitration which allows fast detection of multiple ac-

cesses. This allows full use of the bandwidth. This differs from bus-topology LAN tech-
nologies, such as Ethernet, which detects collisions over long distances, and suffers from
propagation delays, and nodes may transmit many bits before they can determine if two
or more nodes are communicating at a time. In Ethernet, nodes back off from the net-
work when a collision occurs.

• Message priority system, which is based on an 11-bit packet identifier.
• Architecture can be many masters, and involves peer-to-peer communications or multi-

cast transmissions.
• Automatic error detection, signalling and retries.
• Short data packets of eight bytes.

Its outline specification is

316 Computer busses

Speed 1 Mbps
Maximum nodes with (/without repeaters) N/A (30)
Maximum distance with (/without repeaters) N/A (40m at 1Mbps, 1 km at 20 kbps)
Arbitration CSMA
Cable type twisted-pair
Header/data size 8 bytes fixed
Major benefits Low cost/efficient for short messages
Primary applications Automotive

19.3 FOUNDATION Fieldbus

FOUNDATION Fieldbus, is an open specification for sensors, actuators, analysers, and so
on. It allows:

• The control functionality actually resides in field devices.
• The support of other diagnostic, process operation and maintenance functions within field

devices.

In the past, 4–20 mA standards have been used to transmit plant information to controllers.
This has in some places, been replaced by transmitter vendors providing their own digital
protocol to allow bidirectional communication between the control system and smart trans-
mitters. Fieldbus has finally allowed a standardised method for process control to move from
being centralized to become distributed, and the control to actual reside in field devices, such
as transmitters, values and analysers. It provides a digital communications channel and a user
layer to provide intercommunications. Its benefits are:

• Interoperability – this allows different suppliers to be used for devices.
• Wiring cost savings – one communication channel can transmit many digital signals.
• Flexible control implementations.
• Increased field information – this includes processed data, averages, minimas, maxima,

diagnostic information and operational information.

Fieldbus was initially defined by the ISA’s SP50 fieldbus standards committee, which out-
lined a two-way, multidrop, digital communications standard for the interconnection of sen-
sors, actuators, instruments and control systems. The Fieldbus Foundation has since set out
to commercialise it as the FOUNDATION Fieldbus.

19.3.1 Fieldbus topology

Most analogue transmission methods, and many digital field communications methods, re-
quire a single twisted-pair wire for the transmission of a single process variable. Fieldbus
differs from this in that it can connect using point-to-point, with buses with spurs, as a daisy
chain, as a tree, or as a combination of any of these. The methods are:

• Bus with spurs – all the devices connect to a common bus and they connect through

junction boxes, as illustrated in Figure 19.3.

Fieldbus 317

• Daisy-chained – all the devices are chained to each other, one-by-one. It is similar to the
bus with spurs, but does not use junction boxes. It is a useful method of connecting de-
vices as new devices can be added by simply daisy-chaining from a close device. The
disadvantage is devices must be disconnected in order to connect a nearby device, unless
a special connector can be used that allows a connected device to be connected.

• Tree – type of topology uses a single junction box, with the devices connecting directly
to the junction box. Typically, it is used when devices are added and deleted from the
network on a regular basis.

Sensor/
Actuator

Sensor/
Actuator

Sensor/
Actuator

Sensor/
Actuator

PLC

Junction boxes

Daisy
chain

Sensor/
Actuator

Sensor/
Actuator

Sensor/
Actuator

Sensor/
Actuator

PLC

Bus, with
spurs

Sensor/
Actuator

Sensor/
Actuator

Sensor/
Actuator

Sensor/
Actuator

PLC

Junction
boxes

Tree

Figure 19.3 Fieldbus connection topologies

19.3.2 FOUNDATION Fieldbus layers

Process control communications can be group into three different levels:

• Hardware-address buses – this type of bus uses hardware addresses and registers to store

values. Examples are I/O buses, PLCs, SCADA protocols with RTUs (remote termina-
tion units).

• Symbolically addressed buses – this type of bus uses addresses that actually have a sym-
bolic name. This works at a higher-level than the hardware-address bus.

• Comprehensive user-layer functionality buses – this type of bus operates at a higher level
than hardware and symbolic addressing. It is used in the FOUNDATION Fieldbus and
supports function blocks, standardised parameters, operational modes, cascade initialisa-
tion sequences, antiwindup mechanisms, quality-of-data propagation and response, fail-
state initiation, alarm reporting and control mechanisms, process control data structures,
and so on.

318 Computer busses

The FOUNDATION Fieldbus consists of two main layers: the communications layer and the
user layer. The components in these layers are illustrated in Figure 19.4. The user layer oper-
ates above the communications layer and includes function blocks, resource blocks, trans-
ducer blocks and alarm notifications.

Object
dictionary

Transducer
block

Function
block

Transducer
block

Function
block

Resource
block

Function
block
shell

Comm-
unication
Protocol

(Data
link)

Comm-
unication
interface
(physical)

Fieldbus
network

Input/
output
signals

Figure 19.4 FOUNDATION Fieldbus architecture

19.3.3 Function blocks (FB)

The user layer supports device configuration, and uses function blocks. A device can have
any number of function blocks. These are used for control, diagnostic, safety and production
accounting purposes, and define such things as:

• Standardised parameter names.
• Data types.
• A cascade initialisation mechanism.
• Status propagation.
• An antiwindup mechanism.
• Trend collection mechanism.
• An execution scheduling mechanism.
• Block modes and behaviors in response to mode changes.
• Status of process variables.
• Rules for propagation of status.
• Behaviours in response to status changes.

These include:

• Standardised function blocks.
• Vendor-enhanced function blocks and vendor-custom function blocks.

19.3.4 Resource blocks (RB)

Each device also has an RB, which contain parameters relating to the physical device, such
as:

Fieldbus 319

• Manufacturer ID.
• Device type of device.
• Revision.
• Memory usage and free space.
• Computational time.
• Device state (on-line/off-line/standby/fault condition/etc).

19.3.5 Transducer block (TB)

Each device has a TB, which the named entity that stores the parameters associated with the
sensor or actuator.

19.3.6 Alarm notifications

Each block (functional, resource or transducer) can produce an alarm notification which is
associated with that particular block, such as:

• Process problems with function blocks.
• Sensor/actuator problems with transducer blocks.
• Overall device problems with resource blocks.

The devices each have parameters, which are structured using an object dictionary, which is
a standardised method of interrogating and referencing parameters over the communications
link.
 In FOUNDATION Fieldbus the trip-point values are low, low-low (LO_LO_LIM), high
(HI_LIM), high-high (HI_HI_LIM), deviation-low (DEV_LO) and deviation-high
(DEV_HI). These trip values can generate alarms, which have certain priority levels. These
are:
• Priority 0 – disables alarms including the setting of the alarm condition status flag.
• Priority 1 – disable report, but causes the status flag to be set.
• Priority 2 to 7 – advisory alarms.
• Priority 8 to 15 – critical alarms.

19.3.7 Device description language (DDL)

The FBs, TBs and RBs are not just limited to a standardized set of parameters, a new DDL
allows manufactures to specify additional parameters in a standardised manner. This includes
names, data types, enumerations, units, valid ranges, user entry limits, entry conditions (such
as out-of service or manual mode), connection properties, presentation information and help
text. Updates can be easily installed with DDs (device descriptions), which is a compiled
form of DDL. This allows easy updates and bug fixes on equipment, as updates can be
downloaded onto the equipment.

19.3.8 Control

The two main control advantages of the Fieldbus are that it truly distributes control and that
control processing can be done concurrently (rather than being centralised in a controller).
The devices can implement many of the control functions that a traditional DCS would do.
Most of the control functions are implemented by the following:

320 Computer busses

• Two input blocks (analogue and digital).
• Two output blocks (analogue and digital).
• Six control blocks, such as PID (proportional-integral-derivative).

Other, less well used, control functions include pulse input, arithmetic, dead time, splitter
and signal characterisation.
 Most current control systems use a DCS (distributed control system) to control and the
transmitter simply determines the process variable. Smart transmitters will change this as
basic regulatory control can be moved to the transmitter. This reduces the loading on the
controller, and as the functions become more complex may eliminate the controller all to-
gether.
 The control with Fieldbus is relatively easy if the devices are located on the same bus,
and are located in near proximity. Control in the field devices works well if the elements of
control are located relatively close to each other. This allows function blocks to be linked
without having to span different bus segments, and thus reduces delays.
 Messages on the bus are divided into two classes:

• Cyclic – these messages involve process data which is transferred between linked func-

tion blocks and can be made part of a network. The 31.25 kbps Fieldbus supports ap-
proximately 30 messages per second

• Acyclic – these are single transfers of data. The scheduling of these is determined by the
control equipment and is flexible in its approach, thus allowing the bandwidth to be used
effectively.

19.3.9 Diagnostic information

Maintenance methods differ from plant to plant. These are:

• Preventative maintenance (PM) – this is where plant is inspected and, if necessary, re-

placed, before faults occur. In some cases, PM can cause more problems than it is worth,
because when a piece of plant is disturbed it can often lead to faults that would not have
happened.

• Unfortunately, to operate PM properly, it requires a great deal of information about the
operation of the plant for its previous history.

• Deferred maintenance (DM) – this is where maintenance is deferred to save costs. Unfor-
tunately, deferred maintenance can often lead to long-term costs, typically causing plant
shutdowns, complete rebuilds for expensive equipment or leading to an unsafe plant.

In the past manufacturers have built in diagnostic information to microprocessor-based de-
vices. Unfortunately, the method of implementation has been non-standard. Typically, each
diagnostic signal required an additional 4–20mA signal to be sent to a host or DCS. In some
cases, a proprietary digital protocol allowed the transmission of multiple diagnostic signals
over the same pair of wires. This all required extra control system programming and alarm
handling.
 The Fieldbus overcomes this with a standardised comprehensive alarm-reporting mecha-
nism and the DDL. A host or DCS supporting Fieldbus does not require any special configu-
ration or programming to accept the manufacturer-specific predictive diagnostic information.
 The diagnostic information can be used to determine when a device needs to be main-

Fieldbus 321

tained or replaced. For example, an instrument may have a battery backup. The microproces-
sor can then monitor the voltage level of the battery. If it falls to a given value, the micro-
processor can report an alarm that the battery requires maintenance. The intelligent plant that
warns its operators when it is about to fail is one step closer.
 The Fieldbus allows for peer-to-peer communications. Thus intelligent sensors can talk to
each other, and allow the interaction of devices, typically to make calculations from process
measurements, that allow instruments to determine if a fault is localised or due to a process
upset.

19.3.10 Operational Information

In the transmission of 4–20 mA, analogue signals reduces the resolution of any measured
value. As the Fieldbus uses digital technology, the resolution of the measured signals does
not depend on the transmission channel, and only on the sensor and its associated analogue-
to-digital conversion. The TB passes transducer passes the measured signal, which has been
compensated for operating conditions, to the FB which converts the value into the required
units. The Fieldbus allows for 6.5 decimal places of precision with the desired engineering
units. Typical operation information includes:

• Range values, engineering units, secondary variables, serial number or tag name, calibra-

tion information, calibration date, materials of construction, and time stamping.
• Trending/calculations – from these measurements, statistics such as minimum, maxi-

mum, rms and average values can be logged and trended, over any time interval. The op-
eration can be controlled by certain events, such as process start-up, process changes,
time events, and so on. System time is automatically synchronised between devices.
These values can be stored and automatically reset without the host or DCS having to
control the operation. In custody transactions, such as gas/oil flow rates, values can be
automatically stored and not tampered with by external parties. The calculation of trend
releases the processing of a centralised system and also reduces network traffic, as the
host or DCS only has to communicate with the Fieldbus device when it requires informa-
tion.

• Device-related statistics – these include device identification (such as ID, model number,
and so) and operation parameters, such as operational time, number of alarm conditions,
number of power-ups, and so on, and are typically used in maintenance records.

19.3.11 New installations and upgrades

Fieldbus has the greater advantage in new installations in that it can significantly reduce the
amount of cabling on the plant, and provide an increased amount of information than many
other digital protocols. It also allows different venders equipment to be used (as long as they
abide with a Fieldbus standard). On an existing site it is often difficult to justify the complete
upgrade of a plant, as plant upsets can lead to financial losses. Thus many venders allow ex-
isting equipment to be upgraded. This normally requires a change of hardware, but is diffi-
cult in hazardous environments. A more typical situation is to replace failed devices with
new smart transmitters, but this obviously requires a change of host software to be able to
communicate with the device.
 There has been considerable investment in DCSs. For Fieldbus to be a success it will
have to be integrated with existing DCSs. The DCS will then change its functionality from
low-level/high-level control to implementing high-level control, leaving the low-level con-
trol to the Fieldbus devices, as illustrated in Figure 19.5. Functions that will move from the

322 Computer busses

DCS to the Fieldbus are:

• Low-level control.
• Process parameters.
• Alarm generation.
• Calibration information.
• Device status.
• Area control.

The DCS will still be responsible for the high-level control functionality and the interopera-
tiablily between areas. Thus, the functions that will stay on the DCS are:

• Advanced control.
• Interarea control (bring together the control of areas).
• Production co-ordination.
• Centralised configuration.
• Alarm filtering.
• Network administration.
• Communicate with devices and service their requirements.
• Maintain an overall database.

Centralized host/
DCS

Area

DCS responsible for:
• Advanced Control.
• Interarea Control.
• Production Co-ordination.
• Centralized Configuration.
• Alarm filtering.
• Network Administration.
• Maintaining a Global Database.

Smart
transmitter

Area

Smart
transmitter

Function moved to the field:
• Low-level control.
• Parameter calculation.
• Alarm handling.
• Local area control.

Smart transmitters
responsible for:
• Low-level control.
• Process Parameters.
• Alarm Generation.
• Calibration information.
• Device Status.

Figure 19.5 Functionality of a DCS/Fieldbus system

Fieldbus 323

19.4 Exercises

19.4.1 The evolution of instrumentation transmission has generally progressed:

 (a) 3–15 psi → 4–20 mA → serial link → Fieldbus
 (b) 4–20 mA → 3–15 psi → serial link → Fieldbus
 (c) 3–15 psi → serial link → 4–20 mA → Fieldbus
 (d) serial link → 3–15 psi → 4–20 mA → Fieldbus

19.4.2 A 500 Ω resistor at the end of a 4-20mA transmission signal will give which volt-

age range:

 (a) 0–5 V (b) 0–10 V
 (c) 1–5 V (d) 2–10 V

19.4.3 Which field bus is used in the automotive industry:

 (a) CAN bus (b) Profibus
 (a) FOUNDATION (b) WorldFIP

19.4.4 Outline the advantages of Fieldbus compared with traditional methods. This

should include topology flexibility, interoperatability, wiring costs, parameter
resolution, and so on.

19.4.5 Discuss how Fieldbus will change the operation of a large instrumentation net-

work. Outline the functions that are likely to be controlled by the DCS and which
are likely to be controlled locally, in the field (refer to Figure 19.5).

19.5 Notes from the author

The instumentation industry has moved over the years from instrumentation networks made
from dumb instruments which reported back to a central controller, to smart instruments
with distributed control. Fieldbus is really the first true implementer of totally distributed
systems, but as the scope of the Fieldbus is limited to areas, there is still a need for a global
control system (such as a DCS). The Fieldbus is excellent at allowing local control and pa-
rameter conversion, but is not so good at providing a global control strategy. This disadvan-
tage is outweighed by reduced cabling costs, as Fieldbus connects onto a bus, and devices
easily connect to the bus.
 Future instrumentation networks have no need to involve a complex main controller, as
the instruments themselves have the power to locally control. The function of the main con-
troller will change from getting involved with the low-level operations of instrumentation to
the high-level functions of advanced control, interarea control, centralised configuration,
alarm filtering and maintaining a global database.
 Serial communication, such as RS-485, has allowed for multidrop serial communication
networks, and has proved to be an excellent method of providing a highly reliable, fast com-
munications channel. Unfortunately, it is still basically a communication channel and most

324 Computer busses

of the higher-level protocols are vendor specific. The Fieldbus is an attempt to overcome this
and to provide a standard method that is well matched for control and data acquisition.
 The days of manufacturers creating a virtual monopoly with vendor-specific components
is now, thankfully, receding. At one time organisations were generally tied by the vendor of
the main control system, this was the only way that they could guarantee compatibility. In-
ternational standards overcome this problem by forcing manufacturers to conform to the
standard. Any vendor who does not conform will quickly lose market share, unless they are a
true market leader, and have the power to force the whole industry in a certain direction.
Today even the market leaders, such as Honeywell, have to conform to standards and be-
come involved with other companies to develop industry standard, which are then developed
as international standards by the relevant standards agency.

WorldFIP

20.1 Introduction

The WorldFIP protocol is an open system, international fieldbus standard (EN50170) and is
used to interface to level zero (sensors and actuators) and level one (PLCs, controllers, and
so on) devices. It can be used in many different architectures, such as centralised,
decentralised and master–slave. The control algorithm can be located within a single
processor or can be distributed. Figure 20.1 shows the layers of the WorldFIP standard.

Physica l Layer

Data Link Layer

M PS
(M anufacturing

Periodica l/
APeriodical
Services)

M CS
(M essage

Contro l
Services)

subM M S
(Subset of
M essag ing
Services)

N
et

w
or

k
M

an
ag

em
en

t

Figure 20.1 WorldFIP layers

20.2 Physical layer

The physical layer ensures the transfer of bits from one device to another. In the main
specification the transmission rate is 1 Mbps over shielded twisted-pair (STP) or optical fibre
cable. The three defined rates are S1 (31.2 kbps), S2 (1 Mbps) and S3 (2.5 Mbps) and an
additional speed of 5 Mbps (fibre optic).
 As Ethernet, WorldFIP uses Manchester coding. This codes a ‘1’ as a high to a low
transition, and a ‘0’ as a low to a high transition, as illustrated in Figure 20.2. A constant
high or a constant low level is a violation to the coding. A high level is a V+ volition and a
low level is a V– violation. Manchester coding has the advantage of embedding the clock
within the transmitted signal.

20

326 Computer busses

‘1’ ‘0’

T T

Figure 20.2 WorldFIP bit coding

The frame start sequence (FSS) is illustrated in Figure 20.3, and contains the following
fields:

• Preamble (PRE) – apredefined pattern of 10101010. This is used to synchronise the

receiving clocks.
• Frame start delimiter (FSD) – a predefined pattern of 1V+V–10V–V+0, which defines the

start of the CAD field. Note that violations (V+ and V–) cannot occur within this field.
• Control and data (CAD) – contains information on the data link layer.
• Frame end delimiter (FED) – a predefined pattern of 1V+V–V+V–101, which defines the

end of the CAD field.

0 1 0 1 0 1 0 1 V + V − 1 0 V − V + 0 1 V + V − V + V − 1 0 1 1

CAD

Preamble

V +
0
V −

FSD FED

Figure 20.3 WorldFIP frame

20.3 Data link layer

The data link layer supports two types of service:

• Exchanges of variables.
• Message transfers.

WorldFIP 327

These can either be cyclic or an explicit user request. A cyclic message is when the system
configures object names. These exchanges are automatically sent without the user requesting
them. An explicit user request involves requesting variables and the related response.

20.3.1 Addressing

WorldFIP has two addressing modes:

• Variable addressing – this is a global addressing scheme, where each variable in the

distributed system has an associated identifier, which uniquely identifies the variable.
Each identifier is a 16-bit integer value. A device requesting the variable does not need to
know the location of the variable, and uses broadcasting to all connected devices.

• Message addressing – this is an addressing scheme which uses a 24-bit address for each
device on the segment. Each address identifies the network segment and the node address
on that segment.

20.3.2 Application layer–physical layer interfaces

The data link layer provides an interface between the application layer and the physical layer.
It consists of a number of produced and consumed buffers, which contain the latest values
updated by the user or by the network. These buffers are overwritten when the value is
updated, and are automatically created on the initial configuration of a station.
 Transactions involve passing an ID_DAT frame, which is followed by an RP_DAT
frame. The format of these is illustrated in Figure 20.4. Frames begin with a control byte
which allows network devices to determine the frame type. It is used to identify variable
transfer requests, acknowledgement frames, and so on. Frames end with a frame check
sequence (FCS) which is used to provide error detection.

User data INDEN Application
layer

Control Data link
layer FCS

FSD FTR DTR Physical
layer

DTR FTR Control Identifier FCS
2 bytes 1 byte 2 bytes 2 bytes 1 byte

ID-DAT

DTR FTR Control Data FCS
2 bytes 1 byte n bytes

(< 128B)
2 bytes 1 byte

RP-DAT

Figure 20.4 WorldFIP frames

Question frames are ID_DAT types, and are ID_RQ (ID request) and ID_MSG (ID
message). These types are identified by the bits set in the control field. The responses are:

328 Computer busses

• RP_RQ (response request transfer). When a station that has made a variable transfer
request receives an ID_RQ frame it responds with an RP_RQ frame coded as follows.
The DATA field contains a list of identifiers, each of 16 bits (it can thus store up to 64
identifiers).

• RP_MSG_xxx (response message transfer). When a station that has made a message
transfer request receives an ID_MSG frame it responds with an RP_MSG_NOACK or an
RP_MSG_ACK frame coded as follows. The Data field contains a 3-byte destination
address, a 3-byte source address and, up to, 256 message bytes. A bit in the control field
indicates if the message transfer is acknowledged or unacknowledged. The destination
and source fields show the addresses of the communicating entities.

• RP_ACK (response acknowledgement transfer). When a destination station receives a
message with a request for acknowledgement it transmits an acknowledgement frame. No
data is transmitted in the DATA field. This frame is very short, as the acknowledgement
information is contained in the control field.

• RP_FIN (end-of message transaction response frame). When a message has been
transmitted the sender, after waiting for an acknowledgement if necessary, transmits an
end of message transaction frame. No data is transmitted in the DATA field. This frame
is very short, as the transaction finished information is contained in the control field.

WorldFIP involves the sending of an ID_DAT, followed by an RP_DAT. The RP_DAT
frame must be send within a given time interval. This is called the turnaround time. Typically
the turnaround time is between 10 bit and 70 bit transmissions. Thus at 1 Mbps the time to
transmit a single bit will be 1µs, and the turnaround time will be between 10µs and 70 µs.

20.3.3 Medium allocation mechanism

The WorldFIP network automatically achieves bus arbitration and production/consumption
functions. The bus arbitrator (BA) contains the resources required to scan for variables when
they are required. This involves a scanning table with a list of identifiers to circulate on the
bus. It does this by:

• Broadcasting the name of the variable by sending an ID_DAT frame. This is read by all
the devices on the bus. One of these identifies itself as being the producer of the variable.
One or more other stations can recognise that they are consumers of the variable.

• Next the single producer of the variable transmits the value of the variable within a
response frame (RP_DAT). All the consumers then read this.

• The arbitrator next goes to the next identifier, and follows the same sequence.

20.3.4 Bus arbitrating tables

The bus arbitrating table contains the variable identifier, the periodicity, the scanning time
period, the data type and the conversation time:

Variable Period(ms) Type Time (µs)
TEMP_1 5 INT_8 170
TEMP_2 10 INT_16 178
PRES_1 15 OSTR_32 418
PRES_2 20 SFPOINT 194

WorldFIP 329

The bus arbitrator then repeats the table, indefinitely. The period is the scan period (in ms),
the type defines the data type (such as INT_8 for an 8-bit integer, INT_16 for a 16-bit
integer, OSTR_32 for a 32-character string) and time represent the total transaction time. In
the case, the initial sequence would be:

(0 ms) (5 ms) (10 ms) (15 ms) (20 ms) (25 ms)
TEMP_1 TEMP_1 TEMP_1 TEMP_1 TEMP_1 TEMP_2
TEMP_2 TEMP_2 TEMP_2
PRES_1 PRES_1
PRES_2 PRES_2

The total time scanning must not exceed the repetition period, and the time which is not used
with a periodic scan can be used by an aperiod transfer. A macrocycle goes through the scan
sequence, and repeats. For example, in the case above the macrocycle will be:

1st Macrocycle 2nd Macrocycle
111111111111 111111111111
2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4

On a WorldFIP network there may be one or more bus arbitrators, but only one bus arbitrator
can be active at any time. When a bus arbitrator is active, the others are silent to the traffic on
the bus, and if a fault occurs on the currently active arbitrator elect a new arbitrator. This
election takes place without consultation.
 Within a WorldFIP network, each station has a physical station address of between 0 and
255. The mechanism of electing the new arbitrator is a function of the stations address and
also for a time period (T3). When a dormant arbitrator detects a silence on the bus it waits for
the time period T3, and then elects itself as the bus arbitrator (if another arbitrator has not
elected itself). The time period (T3) is calculated as:

 o3)1(4 TnT +=

where n is the station address and To is basic time filler (110µs by default).

Thus the lower the address of a potential arbitrator the higher the chance it has to become the
arbitrator. After election, the bus arbitrator begins scanning. The new arbitrators must be set
up with the same elementary cycles and macrocycles as the previous arbitrator. The new bus
arbitrator can then change these by transmitting a bus arbitrator synchronisation variable,
which contains an elementary cycle number and a macrocycle number. All other dormant
bus arbitrators read these values and change their values for the macrocycles and elementary
cycles.

20.3.5 Aperiodic transfer

Variables that are not in the bus arbitrators cyclic scanning table can also be transmitted
using an aperiodic transfer. A station that can request an aperiodic transfer can be a producer
of a variable, a consumer, or both. It involves:

330 Computer busses

• The bus arbitrator broadcasting a question frame for the required parameter, in a time that

is used not used for periodic traffic. Next the producer of the parameter responds with
the parameter and sets an aperiodic request bit in the control field of the response frame
(RQ). Aperiodic transfers have the two priority levels of urgent or normal.

• The bus arbitrator sending an identification request frame (ID_RQ) to ask the producer of
the required parameter to transmit its request. The producer of the parameter responds
with an RP_RQ frame. This frame contains a list of identifiers (between 1 and 64
identifier).

20.4 Exercises

20.4.1 In WorldFIP, Manchester coding is used as a line code. How does this code the
bits:

 (a) 0 is a positive voltage, 1 is a negative voltage
 (b) 0 is a negative voltage, 1 is a positive voltage
 (c) 0 is a transition from low to high, 1 is a transition from high to low
 (d) 0 is a zero voltage, 1 is a positive voltage

20.4.2 In WorldFIP, what is defined as a bit volition over a single bit period:

 (a) A constant low or a constant high voltage level:
 (b) A change from low to high voltage
 (c) A change from high to low voltage
 (d) A transition which is the same as the previous transition

20.4.3 How is the start and end of a frame determined in WorldFIP:

 (a) They are a constant voltage level (b) They contain violations
 (c) They contain no violations (d) They contain no transitions

20.4.4 What is the purpose of the preamble in WorldFIP:

 (a) It reduces power dissipation
 (b) It allows all the connected devices to synchronise their receiving clocks
 (c) It increases the bit rate
 (d) It contain information

20.4.5 Discuss how parameters on a WorldFIP network can be assigned a unique ID.

What is the maximum number of IDs that can be allocated. Also, what is the
maximum number of devices that can be connected to a WorldFIP network.

20.4.6 Outline the main method that WorldFIP uses to request and broadcast data on the

network.

WorldFIP 331

20.4.7 Discuss how WorldFIP uses bus arbitrating tables.

20.5 Notes from the author

WorldFIP is an excellent example of a well-designed bus that is simple to set up and use. It
uses many of the techniques developed in computer networks, such as the use of Manchester
coding and collision detection. It is also based on a layer approach, such as having a
physical layer, a data link layer, a management layer, and so on. This fits in well with the
OSI seven-layered model that is used in computer networks (see Chapter 25), and allows
manufacturers of different systems to interconnect their equipment through standard
interfaces. It also allows software and hardware to integrate well and be portable on
differing systems.
 The layered approach also allows for different implementations on each layer. In its
current form it supports bitrates of 31.5 kbps, 1 Mbps, 2.5 Mbps and 5 Mbps, over copper and
fibre optic cables. The polling of data on a WorldFIP network is also extremely flexible
where messages can either be sent periodically or aperiodically.
 Another great advantage of WorldFIP is that each parameter on the network can be
assigned a unique ID (a tag). As it is a 16-bit field, up to 65,636 of these tags can be used.
The addressing of the devices is also powerful, and over 1 million addressable devices is
possible (24-bit address).

CAN bus

21.1 Introduction

The Controller Area Network (CAN) protocol is an ISO-defined standard (ISO 11898) for
serial data communication at bit rates up to 1 Mbps. It was initially developed for the auto-
motive industry, and has the great advantage that it uses a common bus which reduces the
need for wiring harnesses. It has since outgrown this application. The standard includes a
physical layer and a data-link layer, which defines different message types, arbitration rules
for bus access and methods for fault detection and fault confinement.

Its basic features are:

• Differential transmission using twisted-pair cables.
• Arbitration – access to the bus is controlled by a non-destructive bitwise arbitration tech-

nique. In arbitration, every transmitter compares the level of the bit transmitted with the
level that is monitored on the bus. If these levels are the same then the unit will continue
to send.

• Small messages (only up to 8 bytes in length), each with an associated checksum. These
have fixed format messages, which transmit data and other information. Nodes only
transmit messages when the bus is free. The content of a message is identified by the
IDENTIFIER, which describes the meaning of the data, but does not provide for the des-
tination of the information. All the nodes on the network can decide whether they need to
read the data or not (multicast).

• No addressing structure – messages are broadcast on the common bus with a message
with a priority level and identification.

• Prioritisation of messages – each message has a defined priority. On a free bus, any node
can transmit their message. Two or more units which transmit a message at the same time
produce an error condition. The unit with a message of higher priority always gains ac-
cess to the bus over a lower priority node.

• Multicast reception with time synchronisation – all nodes are able to receive transmitted
data and can also quickly synchronise their clocks to the transmitted data.

• Error detection and signalling – powerful error handling scheme that allows for the re-
transmission of messages when they are not properly received. There is also automatic re-
transmission of corrupted messages as soon as the bus is idle again. The recovery time
from detecting an error until the start of the next message is at most 29 bit times, if there
is no further error.

• Multimaster – any device can gain control of the bus.
• Enhanced fault finding and fault isolation. Implementation of methods of fault finding

and removal of faulty nodes from the bus. There is also a distinction between temporary

21

334 Computer busses

errors and permanent failures of nodes. Defective nodes are switched off.
• Unlimited number of connections – any number of units can connect to the bus (without

causing a disruption) and they can also be easily disconnected.
• Guaranteed latency times.
• System-wide data consistency.
• System flexibility – nodes can be added to the CAN network without requiring any

change in the software or hardware of any node and application layer.
• Sleep mode/wake-up – a CAN device may be set into sleep mode without any internal

activity and with disconnected bus drivers. This helps to save power. The sleep mode is
finished with a wake-up by any activity or by internal conditions of the system.

• Acknowledgements – all receivers check the consistency of received messages, acknowl-
edge a consistent message and flag an inconsistent message.

The CAN protocol defines the two layer layers of the OSI seven-layered model, the physical
layer and the data-link layer. It does not contain specifications on higher level protocols,
such as flow control, transportation of larger data packets, node addresses, communication
establishments, and so on. These are implemented by a HLP (higher level protocol), which:

• Standardises the start-up procedures, such as setting the bitrate.
• Creates logical addresses for nodes.
• Formats messages.
• Organises system error handling.

The CAN bus is a truly distributed control system as it does not need a controller to control
the flow of data between nodes.
 The CAN bus splits into three main layers, as shown in Figure 21.1, and consists of:

• Object layer – implements part of the data link layer. It involves finding which messages
are to be transmitted, deciding which messages that are received by the transfer layer are
actually to be used and also provides an interface to the application layer.

• Transfer layer – implements the other part of the data link layer. It involves controlling
the framing, performing arbitration, error checking, error signalling and fault confine-
ment. This layer decides whether the bus is free for starting a new transmission or
whether reception is just starting. It also provides other features, such as bit timing.

• Physical layer – the layer involves the definition of the electrical (signal levels and bit
representations) and mechanical aspects (cable/connector type) of the physical connec-
tion.

CAN bus 335

 Application Application
Presentation Presentation

Session Session
Transport Transport
Network Network

Object
layer

Object
layer

Transfer
layer

Transfer
layer

Physical
layer

Physical
layer

Data link
layer

Data link
layer

Physical
layer

Physical
layer

Application
layer

Application
layer

Message filtering
Message handling
Status handling
Fault confinement
Error detection
Error signalling
Message validation
Arbitration
Message framing
Bit timings
Signal levels
Connector types
Cable types

OSI model CAN model

Figure 21.1 CAN/OSI models

21.2 CAN physical

The CAN bus uses non-return to zero (NRZ) with bit-stuffing for the physical layer. A bit
can either be dominant (a logical 0) or recessive (logical 1), which corresponds to certain
electrical levels which depend on the physical layer used. Modules are connected to the bus
in a wired AND, thus if one node puts the line to a dominant level, then the whole line goes
to this state, regardless of the other levels on the line.
 Several physical layers can be used, such as:

• ISO 11898 – this uses a two-wire balanced signalling scheme, which can be shielded or

unshielded. Implemented by the 82C250 transceiver device; the cable impedance is
nominally 120 Ω.

• ISO 11519 – lower speed applications for two-wire balanced signalling scheme.
• Proprietary physical layers.
• RS-485 standard connection.
• SAE J2411 – single-wire cable.

The maximum speed of a CAN bus is 1 Mbps. At this maximum speed the maximum cable
length of is 40 m (130 ft). This is a limited length, as the arbitration scheme requires that the
first pulse propagates to the most remote node and back again before the bit is sampled.

336 Computer busses

Typical maximum lengths are:

• 500 kbps (100 m).
• 250 kbps (200 m).
• 125 kbps (500 m).
• 10 kbps (6 km).

There are no standard CAN connectors, typical types, as illustrated in Figure 21.2, are:

• 9-pole DSUB. The main connections are CAN_L (CAN_L bus line), CAN_GND (CAN

ground), CAN_H (CAN_H bus line) and CAN_V+ (power, between +7 V and 13 V,
100 mA). Modules have a male connector (plug) and cables have a female connector
(socket). Pins 3 and 6 are connected internally.

• 5-pole Mini-C (DeviceNet and SDS). Power supply is 24 V and modules have male con-
nectors.

• 6-pole Deutch DT04-6P connector (proposed by CANHUG for hydraulic systems). It
uses a male connector on the module and has six pins. The main connections are
CAN_H (pin 2), power (pin 5), GND (pin 1) and CAN_L (pin 6).

C
A

N
_L

1 2 3 4 5

6 7 8 9

C
A

N
_G

N
D

C
A

N
_S

H
IE

L

G
N

D

C
A

N
_H

C
A

N
_V

+

1
2

3
4

5

1 Drain
2 V+ (RED)
3 V- (BLACK)
4 CAN_H (WHITE)
5 CAN_L (BLUE)

9-pole DSUB 5-pole Mini-C

Figure 21.2 Typical CAN connectors

21.3 CAN bus basics

Many of the basics of the CAN bus were outlined in Section 21.1.

CAN bus 337

21.3.1 Bus values

The CAN bus defines two levels for bits on the bus, these are:

• Dominant level – all nodes on the bus connect to the common bus. A dominant bit will

always overrule a recessive bit. In a wired-AND implementation of the bus, a dominant
level is represented by a logical 0 and the recessive level by a logical 1.

• Recessive level – a recessive level on the bus is always overruled by a dominant level. If
all levels are at a recessive level, the resulting level will also be recessive. In a wired-OR
connection a recessive level will be a logical 0 (as a single logical 1 level will make the
output also a logical 1).

Message bit streams uses a non-return-to zero (NRZ) technique. The frame segments start of
frame, arbitration field, control field, data field and CRC sequence are coded using bit stuff-
ing. When the transmitter detects five consecutive bits of identical values in the bit stream, it
automatically adds an extra complementary bit in the actually transmitted bit stream. When
the receiver detects this is automatically deletes the inserted bit.
 In data frames and remote frames, the CRC delimiter, ACK field and end of frame are not
stuffed. Error frames and overload frames are not bit stuffed.

21.3.2 Error detection

The main error detection methods are:

• Monitoring bit levels – transmitters check the transmitted level with the level on the bus.
• Cyclic redundancy check.
• Bit stuffing.
• Message frame check.

The error detection scheme detects the following:

• All global errors.
• All local errors at transmitters.
• Up to five randomly distributed errors in a message.
• Burst errors of length less that 15 in a message.

The resultant probability of undeleted errors is less than 4.7×10–11.

21.4 Message transfer

Message transfer involves four different frame types:

• Data frame – contains data from a transmitter to a number of receivers.
• Remote frame – transmitted by a unit to request the transmission of the data frame with

the same identifier.

338 Computer busses

• Error frame – transmitted by a unit on a bus error.
• Overload frame– provides for an extra delay between the preceding and the succeeding

data or remote frames.

Data frames and remote frames are separated from preceding frames by an interframespace.
 There is no explicit address in the messages. Instead, messages are contents-addressed,
so that their contents implicitly determine their address.
 In order to wake up other nodes of the system, which are in sleep-mode, a special wake-
up message with the dedicated, lowest possible identifier (rrr rrrd rrrr; r= recessive, d =
dominant) may be used.

21.4.1 Data frame

Data frames have seven different bit fields, as illustrated in Figure 21.3, these are:

• Start of frame – this defines the start of a data frame or a remote frame. It consists of a

single dominant bit. All units on the bus synchronise to the leading edge of the bit.
• Arbitration field – this field consists of the identifier and the RTR bit. The identifier

length is 11 bits (from ID-10 to ID-0). The seven most-signification bits (ID-10 to ID-4)
must not be all recessive. The RTR bit (remote transmission request bit) is dominant in a
dataframe, and recessive in a remote frame. Note that CAN 2.0B (extended CAN), uses a
29-bit Identifier (which also contains two recessive bits: SRR and IDE) and the RTR bit.

• Control field – this field has six bits and includes a 4-bit data length code(DLC) and two
bits which are reserved for future expansion (dominant, at present). The codes for the
DLC are dddd (for 0 bytes), dddr (for 1 byte), ddrd (for 2 bytes), up to rddd (for 8 bytes).
Thus up to 8 bytes can be defined in the data field.

• Data field – this field consists of up to eight bytes of data (MSB first).
• CRC field – this field contains the CRC sequence, followed by a CRC delimiter (which is

a single recessive bit).
• ACK slot – a receiver which correctly receives a message, reports an acknowledgement

by sending a message back to the transmitter with a dominant bit in the ACK slot. After
this field is the ACK delimiter field which is a single recessive bit.

• End of frame – this delimits a data frame and remote frame and consists of seven reces-
sive bits.

Start of
frame

Arbitration
field

Control
field

Data
field

CRC
field

ACK
field

End of
frame

Interframe
Space

Data frame

Figure 21.3 Data frame format

The 15-bit CRC calculation uses the message fields as a polynomial which is divided by a
defined CRC generator polynomial (using modulo-2 division), which is:

CAN bus 339

 x15+x14+x10+x8+x7+x4+x3+1

The remainder of this polynomial division is the CRC sequence. The algorithm uses a 15-bit
shift register buffer(14:0).

buffer=0;
repeat
 nextbit= nextbit ⊕ buffer(14);
 buffer(14:1) = buffer(13:0);
 buffer(0)=0;
 if nextbit then
 buffer(14:0) = buffer(14:0) ⊕ (100010110011001b);
 endif
until (the start of the CRC SEQUENCE field);

where nextbit denotes the next bit of the bit stream. The resulting buffer will then be stored
in the CRC sequence field.

21.4.2 Remote frame

The receiver for certain data can initiate the transmission of the required data by sending a
remote frame. It has the same fields as a data frame, but does not have a data field. It is iden-
tified with a recessive bit in the RTR bit (a dominant bit identifies a data frame).
 For example, if node A transmits a remote frame with the arbitration field set to 123, then
node B could respond with a data frame with the arbitration field also set to 123. This type of
frame is used to implement a request–response type of bus traffic management.

21.4.3 Error frame

Error frames have two different fields, error flags and an error delimiter (eight recessive
bits). There are two types of error flag, these are an active error flag and a passive error flag.
An active error flag has six consecutive dominant bits, whereas the passive error flag has six
consecutive recessive bits (unless they are overwritten by dominant bits from other nodes).
 After transmission of an error flag, each node sends recessive bits and then monitors the
bus until it detects a recessive bit. Afterwards it starts transmitting seven more recessive bits.
The error frame thus violates the bit stuffing rules of a CAN message. It is transmitted when
a node detects a fault and causes all other nodes to detect a fault (and they will also send er-
ror frames). After this the transmitter automatically resends the message.
 The error frame consists of an error flag, which is 6 bits of the same value (thus violating
the bit-stuffing rule) and an error delimiter, which is 8 recessive bits.

21.4.4 Overload frame

An overload frame contains the two bit fields: overload flag (six dominant bits) and overload
delimiter (eight recessive bits). At the most, two overload frames may be generated to delay
the next data or remote frame. The overload flags form destroys the fixed form of the inter-
mission field. Thus, all other stations detect an overload condition. The conditions that cause
an overload frame are:

• Receiver internal conditions, which requires a delay of the next data frame or remote

frame.
• Detection of a dominant bit during intermission.

340 Computer busses

After transmission of an overload flag, nodes monitor the bus until they detect a transition
from a dominant to a recessive bit. Then every node start transmission of seven more reces-
sive bits.

21.4.5 Interframe spacing

Data frames and remote frames are separated from preceding frames by an interframe space.
It contains intermission (three recessive bits) and bus idle bit fields. During intermission, no
station can start to transmit data. The period of bus idle is of any length (a free bus condi-
tion). After this, the detection of a dominant bit on the bus is interpreted as a start of frame.

21.5 Fault confinement

With respect to fault confinement a unit may be in one of three states:

• Error active – these nodes can normally take part in bus communications and sends an

active errorr flag when an error has been detected.
• Error passive – these nodes must not send an active error flag. They take part in bus

communication but when an error has been detected they only send a passive error flag.
• Bus off – these nodes are not allowed to have any influence on the bus.

For fault confinement, two counts are implemented in every bus unit. The first is the transmit
error count. For example:

• A transmitter sending an error flag, increases it by 8.
• A transmitter detecting a bit error while sending an active error flag or an overload Tflag,

increases it by 8.
• Successful transmission of a message, decreases by 1 (unless it is already 0).

The second is the receive error count. For example:

• A receiver detects an error, increase it by one.
• A receiver detecting a dominant bit as the first bit after sending an error flag, increased

by eight.
• A receiver detects a bit error while sending an active error flag or an overload flag, in-

creased by eight.
• After the successful reception of a message, decreased by one.

Nodes are initially error active. An error active node transmits active error flags when it de-
tects errors. A node becomes error passive when the transmit error count equals or exceeds
128, or when the receive error count equals or exceeds 128. An error passive node transmits
passive error flags when it detects errors. A node is bus off when the transmit error count is
greater that or equal to 256. A node which is bus off will not transmit anything on the bus at
all.

CAN bus 341

21.6 Bit timing

Each bit on the CAN bus is, for timing purposes, divided into at least 4 quanta. The quanta
are logically divided into four groups or segments:

• Synchronisation segment – this is one quantum long and is used for synchronisation of

the clocks. A bit edge is expected to take place here when the data changes on the bus.
• Propagation segment – this is required to compensate for the delay in the bus lines.
• Phase segment 1 – this may be shortened (Phase segment 1) or lengthened (Phase seg-

ment 2), if necessary, to keep the clocks in synchronisation. The bus levels are sampled
at the border between Phase segment 1 and Phase segment 2.

• Phase segment 2.

Figure 21.4 shows a schematic of the bit. Most CAN controllers also provide an option to
sample three times during a bit. In this case, the sampling occurs on the borders of the two
quanta that precedes the sampling point, and the result is subject to majority decoding.

Sync Prop-seg Phase 1 Phase 2

Sampling point

One bit

Figure 21.4 Bit timing

21.6.1 Clock synchronisation

In order to adjust the on-chip bus clock, a CAN controller can either shorten or lengthen a bit
by a whole number of quanta. The maximum number of quanta is defined as the
synchronisation jump width:

• Hard synchronisation – occurs on the recessive-to-dominant transition of the start bit.

The bit time is restarted from that edge.
• Resynchronisation – occurs when a bit edge does not occur within the synchronisation

segment in a message. For this one of the phase segments is shortened or lengthened
with an amount that depends on the phase error in the signal (the maximum value is de-
fined by the synchronisation jump width).

21.6.2 Bus failure modes

The ISO 11898 standard defines several fault modes on a CAN bus cable, these are:

1. CAN_H interrupted.
2. CAN_L interrupted.
3. CAN_H shorted to battery voltage.

342 Computer busses

4. CAN_L shorted to ground.
5. CAN_H shorted to ground.
6. CAN_L shorted to battery voltage.
7. CAN_L shorted to CAN_H wire.
8. CAN_H and CAN_L interrupted at the same location.
9. Loss of connection to termination network.

A fault tolerant network will be able to survive these faults, and still transmit data (although
the SNR will be reduced). An 82C250-type transceiver may not be able to survive many of
the conditions. Fault-tolerant drivers, such as the TJA1053, can handle these failures (though
at a reduced maximum speed).

21.7 CAN open

The CAN Application Layer (CAL) was originally developed by CiA and involves:

• CMS (CAN-based message specification) – defines protocols for transferring data be-

tween CAN modules.
• NMT (network management service) – defines the protocols for system start-up and

shutdown and error logging.
• DBT (distributor service) – defines a protocol for distributing identifiers to the different

modules in a system.

21.8 Exercises

21.8.1 In the CAN bus, what is the basic bit rate:

 (a) 125 kbps (b) 1 Mbps
 (c) 10 Mbps (d) 100 Mbps

21.8.2 Which of the following best describes a dominant bit:

 (a) A bit, that when transmitted will be overruled by a recessive bit
 (b) A bit, that when transmitted will overrule a recessive bit
 (c) A bit that is always a high level
 (d) A bit that is always a low level

21.8.3 Which of the following best describes a recessive bit:

 (a) A bit, that when transmitted will be overruled by a dominant bit
 (b) A bit, that when transmitted will overrule a dominant bit
 (c) A bit that is always a high level
 (d) A bit that is always a low level

CAN bus 343

21.8.4 Explain the concept of dominant and recessive levels, and how these can be used

to determine if two or more devices are communicating at the same time.

21.9 Notes from the author

As with the WorldFIP bus, the CAN bus is a well-designed network, based on techniques
learned from computer networks. It is a serially connected bus, where all nodes have access
to the network, and collisions between nodes are detected within a very short time. This al-
lows devices to have a relatively equal share of the bandwidth of the bus. As automobiles are
noisy environments, the CAN bus is a rugged bus which copes well with errors, and also
devices which are not operating correctly.
 The relatively high bit rates of the CAN bus allows a great deal of information to be
passed between instruments and their controllers. To prevent major problems, the bus can be
organized into segments, so that a major fault in one are a does not greatly affect other
areas. A failure of any of the controllers can lead to major problems, so secondary control-
lers can be made to monitor the operation of the primary, and can remove the primary con-
troller from the bus if they are not operating correctly. Another method is to allow localized
control when the primary control is not functioning properly.
 Power dissipation is also a major factor in cars as devices must be ready to respond
quickly to events, but not to dissipate much power when they are idle. Thus, the CAN bus has
methods to allow devices to sleep if they are inactive and then is awoken when a specific
event occurs.
 The car of the future, based on the CAN bus, would have little need for complex wiring
harnesses, and would simply require the daisy chaining of devices onto the common bus. The
connector used can be matched to the environment, such as heavy-duty connector for robust
situations, or a light connector for ease of connection/disconnection.
 As the CAN bus has been designed with a thought for the seven-layered OSI model, which
is used in computer networks, there is great potential for using standard computer network
protocols, such as TCP/IP. Thus will allow CAN busses to connect straight into the Internet,
and allow for remote control and remote data acquisition over the Internet, or over a local
or wide area network. The data could be protected using data encryption techniques. So,
maybe one day you could log into the Internet and switch on the air conditioning in your car
before you even leave your house.

IEEE-488, VME and VXI

22.1 Introduction

The IEEE-488, VME and VXI busses have all been used to interface to programmable in-
strumentation and controllers. They were at one time very popular, but with the increasing
development of PCI, SCSI and RS-232 they have been replaced in many applications. IEEE-
488 has the advantage of being very robust and simple to use, but suffers from a lack of
speed. The VME bus has the opposite problem. It has fast data transfers and is powerful, but
it is also difficult to use.

22.2 IEEE-488 bus

The IEEE-488 bus was developed in the 1970s as an answer to problems in interfacing with
programmable instruments and controllers. Its history is as follows:

• 1975 – the IEEE published the IEEE-488 standard, which was based on work done by

Gerald Nelson and David Ricci at Hewlett-Packard.
• 1978 – the IEEE published a revised specification known as the ANSI/IEEE standard

488-1978. IEC (International Electrotechnical Commission) then adopted the specifica-
tion as an international standard (IEC 625-i).

• 1987 – revised standard, known as ANSI/IEEE standard 488.l-l987. This specification
deals with the mechanical interconnection and the electrical protocol.

• 1987 – ANSI adopted the ANSI/IEEE standard. 488.2-1987 which standardises the soft-
ware interfaces in terms of codes, formats, protocols and common commands.

The IEEE-488 bus is an excellent interface to programmable instruments as it is relatively
simple to add to, operates at reasonable speeds and is available from various manufacturers.
It is also know as the general-purpose interface bus (GPIB).
 The IEEE-488 bus allows for the interconnection of instruments using a standard cable
and a standard interface. It supports different data-transfer rates and also different message
lengths. The maximum transmission path length is 20 m, and it is recommended the maxi-
mum interconnection length between instruments is limited to 2 m, each. A maximum of 15
instruments can be connected to the bus, although bus extender can increase this number. All
devices connect to a common bus (a party-line) using 16 lines. These are shown in Figure
22.1 and are:

22

346 Computer busses

• Eight data lines (DIO1…DIO8). These allow eight bits to be transmitted, at a time. If
more than eight bits are to be transmitted then they are sent one at a time. This gives a
maximum throughput of 1 MB/s.

• Three handshaking lines (DAV , NRFD and NDAC). These handshake the data be-
tween a talker and a listener.

• Five bus management lines (IFC, ATN, SRQ, REN and EOI). These provide status in-
formation on the bus.

Talker/Listener Talker/listener Talker/Listener Talker/listener

Data bus (DIO1-DIO8)

Management lines (ATN, IFC, SRQ, REN and EOI)

Handshaking lines (DAV, NRFD and NDAC)

Figure 22.1 IEEE-488 bus lines

The IEEE-488 bus is a bidirectional bus where data can flow in either direction. Devices are
set up with their functionality. These are either a talker, a listener or a controller, or any com-
bination of these. The function types are:

• Talkers – these are devices which can send data to other devices or to the control. These

include multi-meters and oscilloscopes. Only one device is allowed to talk at a time.
• Listeners – these are devices which only receive data. A device can also be a talker and a

listener. For example, a multimeter can be a talker when it is sending voltage samples,
but a listener when it is receiving data on range changes.

• Controller – these are devices which are responsible for information management on the
bus, and include setting up tasks, monitoring the progress of measurements and interpret-
ing results. To avoid a conflict, only one controller may be active at any time, but there
may be more than one controller connected to the bus. Thus a controller can pass control
to another controller.

It is possible to construct a system which does not have a controller and only has a talker and
a listener. For example, a talker could be a digital multimeter and the listener could be a
printer. The multimeter is then hardwired as a talker (using switches) and the printer as a
listener.

22.2.1 Signal lines

Figure 22.2 shows the connections on the GPIB connector. Each instrument on the bus has
an assignable and unique address on the bus. These addresses are selected by switches, al-

IEEE-488,VME and VXI 347

though many new types are configured using configuration menus. The addresses range from
0 to 31 (although address 31 is often used by some manufacturers for self-diagnostics). Nor-
mally only 15 address can be used, unless a bus extender is used. The assigned address is the
primary address of the instrument. If the instrument is a host for other instruments, each of
the connected instruments can be assigned a unique secondary address.

12 11 10 9 8 7 6 5 4 3 2 1

24 23 22 21 20 19 18 17 16 15 14 13

SH
IE

LD
AT

N
SR

Q
IF

C
N

D
AC

N
R

FD
D

A
V

EO
I

D
IO

4
D

IO
3

D
IO

2
D

IO
1

G
N

D
G

N
D

 (A
TN

)
G

N
D

 (S
R

Q
)

G
N

D
 (I

FC
)

G
N

D
 (N

D
AC

)
G

N
D

 (N
R

FD
)

G
N

D
 (D

AV
)

R
E

N
D

IO
8

D
IO

7
D

IO
6

D
IO

5

Figure 22.2 GPIB connector

Handshaking lines

The handshaking signal lines are:

• DAV (data valid) – a talker sets this line to a LOW, after it detects a HIGH on the

NRFD line, and when the data on its I/O are settled and valid.
• NRFD (not ready for data) – a listener sets this line LOW when it is not ready for data. A

HIGH level thus indicates that it is ready for data. This line will be held LOW. The
NRFD line only goes HIGH when all the addressed listeners are ready to accept data.

• NDAC (not data accepted) – the listener sets this line LOW when it has not accepted the
data. When it accepts the data, it releases the NDAC line. The NDAC line does not go
HIGH until all the listeners have accepted the data.

Every byte transferred must be handshaked, and more than one device can receive data at a
time. The three handshaking signals are active-LOW and can be pulled LOW by any device.
Figure 22.3 shows a basic handshaking operation. Initially, with the first byte, the talker puts
the data byte of the data bus and then waits for the NRFD line to be set HIGH. It then sets
the DAV line active LOW. The devices then read the data and set their NDAC lines HIGH,
but as long as one device as not read the data it will be set to an active LOW. Once the slow-
est device has read the data it sets the NDAC line HIGH. The talker then knows that the data
has been read and can then put more data on the bus.

348 Computer busses

DAV

NRFD

NDAC

NOT VALID VALID NOT VALID VALID

All devices ready
to receive data

All devices have
accepted the
received data

First byte Second byte DIO1-DIO8

Figure 22.3 GPIB handshaking

Interface management lines

The interface management lines are:

• ATN (attention) – this causes all the devices on the bus to interpret the data, either as a

controller command or as an address.
• IFC (interface clear) – bus reset.
• SRQ (service request) – used by a device to alert the controller that it requires to com-

municate.
• REN (remote enable) – enables devices to respond to remote program control.
• EOI (end or identify) – indicates the last transferred data byte of data.

22.3 VME bus

The VME computer bus is based on the IEEE-1014-1987 standard. Its main features are:

• A high-speed asynchronous data bus to transfer 8, 16 or 32 bits at a time.
• Four buses: data-transfer, arbitration, priority interrupt and utilities.
• Supports several bus controllers, such as the CPU, DMA, I/O controllers and any other

device that needs to control the bus. The arbitration bus avoids conflicts.
• Priority-interrupt buses where devices can request service from a VME interrupt handler

(similar to the service request [SRQ] line in IEEE-488).
• A utilities bus which provides power distribution, clocks, initialisation and failure detec-

tion.

The VXI (VME extension for instrumentation) is an extension to the VME bus, and is simi-
lar in its approach to the IEEE-488 bus. It is made up of several buses: VME bus, clock and
sync bus, the star bus, the trigger bus, the local bus, the analogue sum bus, the module
identification bus and the power distribution bus.

IEEE-488,VME and VXI 349

 The VXI bus is intended for rack-mounted devices; each slot can take a module that is 30
mm (larger modules can take up more than one slot). Figure 22.4 shows the different sizes of
modules that can be used with the VXI bus. Modules stand on edge, with cooling holes at the
top and bottom edge of each module.

VME (A size)
100x160mm

VME (B size)
233x160mm

VXI (C size)
233x340mm

VXI (D size)
366x340mm

Figure 22.4 VMI module sizes

22.4 VXI bus

The VXI has several buses. These buses are global, unique or private. A global bus is a com-
mon bus that connects to all of the cards. A private bus is used for local communications
between a set of cards, and a unique bus provides additional, named signal lines. The buses
can be grouped as follows:

• Global – VME computer bus, trigger bus, analogue sum bus and power distribution bus.
• Private – local bus.
• Unique – star bus.

22.4.1 Clock and synchronisation bus

This bus contains two clocks and a clock synchronisation signal. One clock operates at
10 MHz, and the other is at 100 MHz, and these are accompanied by a sync signal. Each of
the clocks uses ECL (emitter-coupled logic) and are buffered on the backplane, as illustrated
in Figure 22.5.

22.4.2 Star bus

The star bus allows high-serial communications between each of the modules. It uses two
high-performance ECL lines, named STARX and STARY. The bus is designed so that the
path length between slot 0 and the other 12 slots is the same, and gives a maximum delay of
5 ns between slot 0 and any other module, as illustrated in Figure 22.6.

350 Computer busses

Slot 0 (Generates bus clocks)

Slot 1

Slot 2

Bus plane contains ECL buffers for
clock distribution

Slot 12

Figure 22.5 VMI clock distribution

Slot 0

Slot 1

Slot 2
Slot 3

Slot 12
STARX
STARY

Equal
distance
between all
the slots and
slot 0

Figure 22.6 VMI clock distribution

22.4.3 Trigger bus

The trigger bus is a general-purpose logic bus that can be used for triggering, handshaking,
clocking or data transmission. It uses eight TTL trigger lines and six ECL trigger lines.

22.4.4 Local bus

The local bus is used for intercommunication between two or more modules that does not use
a global bus. It has 72 lines on each module, which are partitioned into 36 lines on each side
of the module, as illustrated in Figure 22.7. The purpose of the bus is to decrease the need for
jumpers between modules and to provide local communications between two or more mod-
ules without using a global bus. For example, two cards could be placed in consecutive sock-
ets and communicate with each other using the right-hand side pins on left-most card and the
left-hand side pins on the right-most card.

IEEE-488,VME and VXI 351

Slot 1 Slot 2 Slot 3 Slot 4

Slot 0 Slot 5

P2 has
2×12 lines

P3 has
2×24 lines

Figure 22.7 Local bus backplane

22.4.5 Analogue SUMBUS

The Analogue SUMBUS provides for an analogue-summing node for all connected modules.
It is possible for each module to drive the summing line using an analogue current source.
Every module can also read from this line, using a high-impedance receiver. It is typically
used to generate a complex waveform, where one or more modules can each provide a part
of the waveform. For example, three modules could each provide a single frequency which
are then summated onto the SUMBUS.

22.4.6 Module identification bus

This bus provides for an identification of the connected modules. It uses 12 identification
wires which all connect to slot 0, and then one connection to each of the other slots. If a
module is plugged into a slot, then it provides a ground connection for the module identifica-
tion line, otherwise it will be an open circuit. This allows for quick system configuration at
start-up and aids in diagnostics. Typically the module in slot 0 will scan the bus when it is
started, if a module that is connected fails to communicate, the device in slot 0 may display
an error for that device.

22.4.7 Power bus

The power bus provides:

• Up to 268 W for each module.
• Voltages of +5 V, +12 V, –12 V and +5V standby (battery backup) from the VME bus.
• Voltages of +24 V and –24 V for analogue circuits for the VXI bus.
• ECL voltages of –5.2 V and –2 V for ECL.

352 Computer busses

22.5 Exercises

22.5.1 What does GPIB standard for:

 (a) General-purpose interrupt bus
 (b) General-programmable interface bus
 (c) General-purpose interface bus
 (d) General-programmable interrupt bus

22.5.2 Which international specification defines the GPIB:

 (a) IEEE-488 (b) RS-486
 (c) IEE-488 (d) GP-IB

22.5.3 How many data bits can be transferred over the IEEE-488 bus, at a time:

 (a) 8 (b) 16
 (c) 32 (d) 64

22.5.4 An oscilloscope is likely to be which of the following GPIB function types:

 (a) Talker (b) Listener
 (c) Priority generator (d) Controller

22.5.5 A temperature instrument device is likely to be which of the following GPIB func-

tion types:

 (a) Talker (b) Listener
 (c) Priority generator (d) Controller

22.5.6 A data acquisition/controller PC is likely to be which of the following GPIB func-

tion types:

 (a) Talker (b) Listener
 (c) Priority generator (d) Controller

22.5.7 What is the function of the DAV handshaking line:

 (a) It defines that all the devices have received the data
 (b) It identifies when all the devices are ready
 (c) It resets the bus
 (d) It defines valid data on the bus

22.5.8 What is the function of the NDAC handshaking line:

 (a) It defines that all the devices have received the data
 (b) It identifies when all the devices are ready
 (c) It resets the bus

IEEE-488,VME and VXI 353

 (d) It defines valid data on the bus

22.5.9 What is the function of the NDFD handshaking line:

 (a) It defines that all the devices have received the data
 (b) It identifies when all the devices are ready
 (c) It resets the bus
 (d) It defines valid data on the bus

22.5.10 Define the operation of the handshaking lines on the IEEE-488 bus.

22.5.11 Define the actions of talkers, listeners and controllers on an IEEE-488 bus. Give

examples of each type of device.

22.5.12 The IEEE-488 bus is a common bus, where all the devices connect to each of the

signal lines. Why are most of the handshaking lines active low?

22.6 Notes from the author

This chapter has covered one of the most simple busses, the IEEE-488 bus, and one of the
most complex ones, the VME bus. So, why did I include them in a single chapter. Well, I
cheated a little, because they didn’t really merit a chapter of their own, so I merged them
(I’m sure I’ll receive lots of e-mails complaining about this, so I’ll give them both a chapter
of their own in the second edition, if they both still exist and if I’m allowed a second edition).
 The IEEE-488 is a beautifully designed bus, which is well supported by software ven-
dors, and is easy to set up. It will basically run quietly for many years without requiring any
intervention by the user. The connector and cable are very well designed and can stand a
great deal of abuse. It has typically been used a standard interface for instrumentation, but
the growth of the serial busses is likely to reduce its importance.
 And what can I say about the VME bus. Oh boy, it’s complex. Its little brother, the VXI is
a little less complex, but still is an extremely powerful and flexible bus for building modular
instrumentation systems. Unfortunately it suffers from being too flexible and can be complex
to write software for. The popularity of the PCI bus, and especially the CompactPCI bus (the
PCI bus for modular systems) is overtaking the VXI bus.

TCP/IP

23.1 Introduction

Networking technologies such as Ethernet, Token Ring and FDDI provide a data link layer
function; that is, they allow a reliable connection between one node and another on the same
network. They do not provide internetworking where data can be transferred from one net-
work to another or from one network segment to another. For data to be transmitted across a
network requires an addressing structure which is read by a bridge, gateway and router. The
interconnection of networks is known as internetworking (or an internet). Each part of an
internet is a subnetwork (or subnet). Transmission control protocol (TCP) and Internet proto-
col (IP) are a pair of protocols that allow one subnet to communicate with another. A proto-
col is a set of rules that allows the orderly exchange of information. The IP part corresponds
to the network layer of the OSI model and the TCP part to the transport layer. Their opera-
tion is transparent to the physical and data link layers and can thus be used on ethernet, FDDI
or token ring networks. This is illustrated in Figure 23.1. The address of the data link layer
corresponds to the physical address of the node, such as the MAC address (in Ethernet and
Token Ring) or the telephone number (for a modem connection). The IP address is assigned
to each node on the Internet. It is used to identify the location of the network and any sub-
nets.
 TCP/IP was originally developed by the US Defense Advanced Research Projects
Agency (DARPA). Their objective was to connect a number of universities and other re-
search establishments to DARPA. The resultant internet is now known as the Internet. It has
since outgrown this application and many commercial organizations now connect to the
Internet. The Internet uses TCP/IP to transfer data. Each node on the Internet is assigned a
unique network address, called an IP address. Note that any organisation can have its own
internets, but if it is to connect to the Internet then the addresses must conform to the Internet
addressing format.

Transport

Network

Data link

Physical

TCP

IP

Ethernet/
Token Ring/

FDDI/
ISDN

Figure 23.1 TCP/IP and the OSI model

23

356 Computer busses

 The ISO have adopted TCP/IP as the basis for the standards relating to the network and
transport layers of the OSI model. This standard is known as ISO-IP. Most currently avail-
able systems conform to the IP addressing standard.
 Common applications that use TCP/IP communications are remote login and file transfer.
Typical programs used in file transfer and login over TCP communication are ftp for file
transfer program and telnet which allows remote log into another computer. The ping
program determines if a node is responding to TCP/IP communications.

23.2 TCP/IP gateways and hosts

TCP/IP hosts are nodes which communicate over interconnected networks using TCP/IP
communications. A TCP/IP gateway node connects one type of network to another. It con-
tains hardware to provide the physical link between the different networks and the hardware
and software to convert frames from one network to the other. Typically, it converts a Token
Ring MAC layer to an equivalent Ethernet MAC layer, and vice versa.
 A router connects a network of a similar type to another of the same kind through a point-
to-point link. The main operational difference between a gateway, a router, and a bridge is
that for a Token Ring and Ethernet network, the bridge uses the 48-bit MAC address to route
frames, whereas the gateway and router use the IP network address. As an analogy to the
public telephone system, the MAC address would be equivalent to a randomly assigned tele-
phone number, whereas the IP address would contain the information on where the telephone
is logically located, such as which country, area code, and so on.
 Figure 23.2 shows how a gateway (or router) routes information. It reads the frame from
the computer on network A, and reads the IP address contained in the frame and makes a
decision whether it is routed out of network A to network B. If it does then it relays the
frame to network B.

23.3 Function of the IP protocol

The main functions of the IP protocol are to:

• Route IP data frames (which are called Internet datagrams) around an internet. The IP

protocol program running on each node knows the location of the gateway on the net-
work. The gateway must then be able to locate the interconnected network. Data then
passes from node to gateway through the Internet.

• Fragment the data into smaller units, if it is greater than a given amount (64 kB).
• Report errors – when a datagram is being routed or is being reassembled an error can

occur. If this happens then the node that detects the error reports back to the source node.
Datagrams are deleted from the network if they travel through the network for more than
a set time. Again, an error message is returned to the source node to inform it that the in-
ternet routing could not find a route for the datagram or that the destination node, or net-
work, does not exist.

TCP/IP 357

Physical

Data link

Network

Transport

Ethernet,
Token Ring,

FDDI
modem

IP

TCP

Convertor to
Ethernet,

Token Ring,
FDDI

modem

IP

Ethernet,
Token Ring,

FDDI
modem

IP

TCP Internet
gateway

Network A Network B

Figure 23.2 Internet gateway layers

23.4 Internet datagram

The IP protocol is an implementation of the network layer of the OSI model. It adds a data
header onto the information passed from the transport layer, the resultant data packet is
known as an internet datagram. The header contains information such as the destination and
source IP addresses, the version number of the IP protocol and so on. Figure 23.3 shows its
format.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Version Header length Type of service

Total length

Identification

Fragment offset

Protocol

Header checksum

Source IP address

Time-to-live

Destination IP address

0 D M

Options

Data (less than 64 kB)

H
ea

de
r

Figure 23.3 Internet datagram format and contents

358 Computer busses

 The datagram can contain up to 65 536 bytes (64 kB) of data. If the data to be transmitted
is less than, or equal to, 64 kB, then it is sent as one datagram. If it is more than this then the
sender splits the data into fragments and sends multiple datagrams. When transmitted from
the source each datagram is routed separately through the internet and the received fragments
are finally reassembled at the destination.
 The fields in the IP datagram are:

• Version. The TCP/IP version number helps gateways and nodes interpret the data unit

correctly. Differing versions may have a different format. Most current implementations
will have a version number of four (IPv4).

• Type of service. The type of service bit field is an 8-bit bit pattern in the form

PPPDTRXX, where PPP defines the priority of the datagram (from 0 to 7). The precedence
levels are:

111 (network control) 110 (Internetwork control) 101 (CRITIC/ECP)
100 (flash override) 011 (flash) 010 (immediate)
001 (priority) 000 (routine)

D sets a low delay service (0 = normal delay, 1 = low delay).
T sets high throughput (0 = normal throughput, 1 = high throughput).
R sets high reliability (0 = normal reliability, 1 = high reliability).
The XX bits are currently not used (and set to 00).

• Header length (4 bits). The header length defines the size of the data unit in multi-

plies of four bytes (32 bits). The minimum length is five bytes and the maximum is
65 536 bytes. Padding bytes fill any unused spaces.

• Identification (16 bits). A value which is assigned by the sender to aid the assembly of
the frames of a datagram.

• D and M bits. A gateway may route a datagram and split it into smaller fragments. The D
bit informs the gateway that it should not fragment the data and thus it signifies that a re-
ceiving node should receive the data as a single unit or not at all. The M bit is the ‘more
fragments’ bit and is used when data is split into fragments. The fragment offset
contains the fragment number. The bit settings are:

 D (don’t fragment) – 0 = may fragment, 1 = don’t fragment.
 M (last fragment) – 0 = last fragment, 1 = more fragments.

• Fragment offset (13 bits). Indicates which datagram this fragment belongs to. The frag-
ment offset is measured in units of eight bytes (64 bits). The first fragment has an offset
of zero.

• Time-to-live (8 bits). A datagram could propagate through the internet indefinitely. To

prevent this, the 8-bit time-to-live value is set to the maximum transit time in seconds
and is set initially by the source IP. Each gateway then decrements this value by a defined
amount. When it becomes zero the datagram is discarded. It also defines the maximum

TCP/IP 359

amount of time that a destination IP node should wait for the next datagram fragment.

• Protocol (8 bits). Different IP protocols can be used on the datagram. The 8-bit proto-

col field defines the type to be used. A full list is given later in Table 23.5 (Section
23.16.1). Typical values are: 1 = ICMP and 6 = TCP.

• Header checksum (16 bits). The header checksum contains a 16-bit pattern for error

detection. As values within the header change from gateway to gateway (such as the
time-to-live field), it must be recomputed every time the IP header is processed. The al-
gorithm is:
The 16-bit 1’s complement of the 1’s complement sum of all the 16-bit words in the
header. When calculating the checksum the header checksum field is assumed to be set to
a zero.

• Source and destination IP addresses (32 bits). The source and destination IP

addresses are stored in the 32-bit source and destination IP address fields.

• Options. The options field contains information such as debugging, error control and

routing information. Section 23.16.2 gives further information.

23.5 ICMP

Messages, such as control data, information data and error recovery data, are carried between
Internet hosts using the Internet control message protocol (ICMP). These messages are sent
with a standard IP header. Typical messages are:

• Destination unreachable (message type 3) – sent by a host on the network to say that a

host is unreachable. The message can also include the reason the host cannot be reached.
• Echo request/echo reply (message type 8 or 0) – used to check the connectivity between

two hosts. The ping command uses this message, where it sends an ICMP ‘echo request’
message to the target host and waits for the destination host to reply with an ‘echo reply’
message.

• Redirection (message type 5) – sent by a router to a host that is requesting its routing ser-
vices. This helps to find the shortest path to a desired host.

• Source quench (message type 4) – used when a host cannot receive any more IP packets
at the present (or reduce the flow).

An ICMP message is sent within an IP header, with the version field, source and destination
IP addresses, and so on. The type of service field is set to a 0 and the protocol field is set to a
1 (which identifies ICMP). After the IP header, follows the ICMP message, which starts with
three fields, as per Figure 23.4. The message type has eight bits and identifies the type of
message, as given in Table 23.1. The code fields are also eight bits long and a checksum
field is 16 bits long. The checksum is the 1’s complement of the 1’s complement sum of all
16-bit words in the header (the checksum field is assumed to be zero in the addition).
 The information after this field depends on the type of message, such as:

360 Computer busses

• For echo request and reply, the message header is followed by an 8-bit identifier, then an
8-bit sequence number followed by the original IP header.

• For destination unreachable, source quelch and time, the message header is followed by
32 bits which are unused and then the original IP header.

• For timestamp request, the message header is followed by a 16-bit identifier, then by a
16-bit sequence number, followed by a 32-bit originating timestamp.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Version Header length Value = 0
Total length

Identification
Fragment offset

Time-to-live Value = 1 (ICMP)
Header checksum
Source IP address

Destination IP address

Options

D

IP packet
header

0 M

IP packet header Type Code Checksum Additional
information

8 bits 8 bits 16 bits

ICMP message

Figure 23.4 ICMP message format

Where:

• Pointer (8-bit) – identifies the byte location of the parameter error in the original IP

header. For example, a value of 9 would identify the protocol field, and 12 would identify
the source IP address field.

• Identifier (16-bit) – helps the matching of requests and replies (possibly set to zero). It
can be used to identify a unique connection.

• Sequence number (16-bit) – helps in matching request and replies (possibly set to zero).
• Timestamps (32-bit) –this is the time in milliseconds since midnight UT (universal time).

If this is not possible then it is anytime, as long as the high-order bit of the timestamp is
set to a 1 to indicate that it is non-standard time.

• Gateway address (32-bit) – the address of the gateway to which network traffic specified
in the original datagram should be sent to.

• Internet header + 64 bits of data datagram – this is the original IP header and the first 64
byte of the data part. It is used by the host to match the match to the required high-level
application (such as TCP port values).

TCP/IP 361

Table 23.1 Message type field value

Value Description Code field Additional information
0 Echo reply message 0

16-bit identifier
16-bit sequence number

3 Destination
Unreachable

0 = net unreachable
1 = host unreachable
2 = protocol unreachable
3 = port unreachable
4 = fragmentation needed

and D bit set
5 = source route failed

32 bits unused.
Internet header + 64 bits of
original data datagram

4 Source quench
message

0

32 bits unused.
Internet header + 64 bits of
original data datagram

5 Redirect message 0 = redirect datagram for
the network

1 = redirect datagram for
the host

2 = redirect datagram for
the type of service and
network

3 = redirect datagram for
the type of service and
host

32 bits gateway address.
Internet header + 64 bits of
original data datagram

8 Echo request 0

11 Time-to-live
exceeded

0 = time-to-live exceeded in
transit

1 = fragment reassembly
time exceeded

32 bits unused.
Internet header + 64 bits of
original data datagram

12 Parameter problem 0 = pointer indicates the
error

8-bit pointer.
24 bits unused.
Internet header + 64 bits of
original data datagram

13 Timestamp request 0

16-bit identifier
16-bit sequence number
32-bit originate timestamp
32-bit receive timestamp
32-bit transmit timestamp

14 Timestamp reply 0

As above

15 Information request 0 16-bit identifier
16-bit sequence number

16 Information reply 0 As above

362 Computer busses

The descriptions of the messages and replies are:

• Source quench message (4) – sent by a gateway or a destination host when it discards a

datagram (possibly through lack of buffer memory), and identifies that the sender should
reduce the flow of traffic transmission. The host should then reduce the flow, and gradu-
ally increase it, as long as it does not receive any more source quench messages.

• Time exceeded message (11) – this is sent either by a gateway when a datagram has a
Time-to-Live field which is zero and has been deleted, or when a host cannot reassemble
a fragmented datagram due to missing fragments, within a certain time limit.

• Parameter problem message (12) – sent by a gateway or a host when they encounter a
problem with one of the parameters in an IP header.

• Destination unreachable message (3) – sent by a gateway to identify that a host cannot be
reached or a TCP port process does not exist.

• Redirected message (5) – sent by a gateway to inform other gateways that there is a better
route to a given network destination address.

• Information reply message (15)– sent in reply to an information request.(see information
request (16) for a typical usage).

• Information request (16) – this request can be sent with a fully specified source IP ad-
dress, and a zero destination IP address. The replying IP gateway then replies with an in-
formation reply message with its fully specified IP address. In this way the host can de-
termine the network address that it is connected to.

• Echo message (8) – requests an echo. (see echo reply message (0)).
• Echo reply message (0) – the data received in the echo message (8) must be returned in

this message.

23.6 TCP/IP internets

Figure 23.5 illustrates a sample TCP/IP implementation. A gateway MERCURY provides a link
between a Token Ring network (NETWORK A) and the Ethernet network (ETHER C). An-
other gateway PLUTO connects NETWORK B to ETHER C. The TCP/IP protocol allows a
host on NETWORK A to communicate with VAX01.

23.6.1 Selecting internet addresses

Each node using TCP/IP communications requires an IP address which is then matched to its
Token Ring or Ethernet MAC address. The MAC address allows nodes on the same segment
to communicate with each other. In order for nodes on a different network to communicate,
each must be configured with an IP address.
 Nodes on a TCP/IP network are either hosts or gateways. Any nodes that run application
software or are terminals are hosts. Any node that routes TCP/IP packets between networks
is called a TCP/IP gateway node. This node must have the necessary network controller
boards to physically interface to other networks it connects with.

23.6.2 Format of the IP address
A typical IP address consists of two fields: the left field (or the network number) identifies
the network, and the right number (or the host number) identifies the particular host within
that network. Figure 23.6 illustrates this.

TCP/IP 363

VAX02

MOON

JUPITERMARS

MERCURY

PLUTO

OBERONVENUS

DIONE

VAX01

NETWORK A

NETWORK B

ETHER C

Figure 23.5 Example internet

Host numberNetwork number

[Host number]

Network A
[Network
number]

Network B
[Network
number]

[Host number]

[Host number]

Network C
[Network
number]

Figure 23.6 IP addressing over networks

364 Computer busses

 The IP address is 32 bits long and can address over four billion physical addresses (232 or
4294967296 hosts). There are three main address formats and these are shown in Figure
23.7.

0

Network (7 bits) Node (24 bits)

1 0

Network (14 bits) Node (16 bits)

1 1 0

Network (21 bits) Node (8 bits)

Class A

Class B

Class C

Figure 23.7 Type A, B and C IP address classes

 Each of these types is applicable to certain types of networks. Class A allows up to 128
(27) different networks and up to 16777216 (224) hosts on each network. Class B allows up
to 16384 (214) networks and up to 65536 (216) hosts on each network. Class C allows up to
2097152 (221) networks each with up to 256 (28) hosts.
 The class A address is thus useful where there are a small number of networks with a
large number of hosts connected to them. Class C is useful where there are many networks
with a relatively small number of hosts connected to each network. Class B addressing gives
a good compromise of networks and connected hosts.
 When selecting internet addresses for the network, the address can be specified simply
with decimal numbers within a specific range. The standard DARPA IP addressing format is
of the form:

W.X.Y.Z

where W, X, Y and Z represent 1 byte of the IP address. As decimal numbers they range from
0 to 255. The 4 bytes together represent both the network and host address.
 The valid range of the different IP addresses is given in Figure 23.7 and Table 23.2 de-
fines the valid IP addresses. Thus for a class A type address there can be 127 networks and
16 711680 (256×256×255) hosts. Class B can have 16320 (64×255) networks and class C
can have 2088960 (32×256×255) networks and 255 hosts.
 Addresses above 223.255.254 are reserved, as are addresses with groups of zeros.

Table 23.2 Ranges of addresses for type A, B and C internet address

Type Network portion Host portion
A 1 - 126 0.0.1 - 255.255.254
B 128.1 - 191.254 0.1 - 255.254
C 192.0.1 - 223.255.254 1 - 254

23.6.3 Creating IP addresses with subnet numbers

Besides selecting IP addresses of internets and host numbers, it is also possible to designate
an intermediate number called a subnet number. Subnets extend the network field of the IP

TCP/IP 365

address beyond the limit defined by the type A, B, C scheme. They allow a hierarchy of
internets within a network. For example, it is possible to have one network number for a
network attached to the internet, and various subnet numbers for each subnet within the net-
work. This is illustrated in Figure 23.8.

Subnet numberNetwork number

Network A
[Network
number] Network C

[Network
number]

Host number

Subnet A
[Subnet
number]

Subnet B
[Subnet
number]

Subnet C
[Subnet
number]

Subnet A
[Subnet
number]

Subnet B
[Subnet
number]

W.X.Y

W.X.Y

Figure 23.8 IP addresses with subnets

 For an address W.X.Y.Z for a type A address W specifies the network and X the subnet.
For type B the Y field specifies the subnet, as illustrated in Figure 23.9.
 To connect to a global network a number is normally assigned by a central authority. For
the Internet network it is assigned by the network information center (NIC). Typically, on the
Internet an organisation is assigned a type B network address. The first two fields of the ad-
dress specify the organisation network, the third specifies the subnet within the organization
and the final value specifies the host.

Subnet number
(Y)

Network number
(W.X)

Network A
[Network
number] Network C

[Network
number]

W.X.Y.Z

Host number
(Z)

Subnet A
[Subnet
number]

Subnet B
[Subnet
number]

Subnet C
[Subnet
number]

Subnet A
[Subnet
number]

Subnet B
[Subnet
number]

W.X

W.X.Y

W.X.Y

W.X.Y

W.X

W.X.Y

W.X.Y.Z

Figure 23.9 Internet addresses with subnets

366 Computer busses

23.6.4 Specifying subnet masks

If a subnet is used then a bit mask, or subnet mask, must be specified to show which part of
the address is the network part and which is the host.
 The subnet mask is a 32-bit number that has 1’s for bit positions specifying the network
and subnet parts and 0’s for the host part. A text file called hosts is normally used to set up
the subnet mask. Table 23.3 shows example subnet masks.

Table 23.3 Default subnet mask for type A, B and C IP addresses

Address Type Default mask
Class A 255.0.0.0

Class B 255.255.0.0

Class C and Class B with a subnet 255.255.255.0

 To set up the default mask the following line is added to the hosts file.

 Hosts file
255.255.255.0 defaultmask

23.7 Domain name system

An IP address can be defined in the form WWW.XXX.YYY.ZZZ, where XXX, YYY, ZZZ and WWW
are integer values in the range 0 to 255. On the Internet, with Class B IP addresses, it is
WWW.XXX.YYY that normally defines the subnet and ZZZ that defines the host. Such names
may be difficult to remember. A better method is to use symbolic names rather than IP ad-
dresses.
 Users and application programs can then use symbolic names rather than the IP ad-
dresses. The directory network service on the Internet determines the IP address of the
named destination user or application program. This has the advantage that users and appli-
cation programs can move around the Internet and are not fixed to an IP address.
 An analogy relates to the public telephone service. A telephone directory contains a list
of subscribers and their associated telephone numbers. If someone looks for a telephone
number, first the user name is looked up and then the associated telephone number found.
The telephone directory listing maps a user name (symbolic name) to an actual telephone
number (the actual address).
 Table 23.4 lists some Internet domain assignments for World Wide Web (WWW) serv-
ers. Note that domain assignments are not fixed and can change their corresponding IP ad-
dresses, if required. The binding between the symbolic name and its address can thus change
at any time.

TCP/IP 367

Table 23.4 Internet domain assignments for web servers

Web server Internet domain name Internet IP address
NEC web.nec.com 143.101.112.6

Sony www.sony.com 198.83.178.11

Intel www.intel.com 134.134.214.1

IEEE www.ieee.com 140.98.1.1

University of Bath www.bath.ac.uk 136.38.32.1

University of Edinburgh www.ed.ac.uk 129.218.128.43

IEE www.iee.org.uk 193.130.181.10

University of Manchester www.man.ac.uk 130.88.203.16

23.8 Internet naming structure

The Internet naming structure uses labels separated by periods; an example is
eece.napier.ac.uk. It uses a hierarchical structure where organisations are grouped into
primary domain names. These are com (for commercial organisations), edu (for educational
organisations), gov (for government organisations), mil (for military organisations), net
(Internet network support centers) or org (other organisations). The primary domain name
may also define the country in which the host is located, such as uk (United Kingdom), fr
(France), and so on. All hosts on the Internet must be registered to one of these primary do-
main names.
 The labels after the primary field describe the subnets within the network. For example in
the address eece.napier.ac.uk, the ac label relates to an academic institution within the uk,
napier to the name of the institution and eece the subnet within that organisation. An exam-
ple structure is illustrated in Figure 23.10.

edu gov com mil usa uk fr

ac

ed bath napier man

eece cs mmseeece.napier.ac.uk

intel sony nec

wwwwww.eece.napier.ac.uk

Figure 23.10 Example domain naming

368 Computer busses

23.9 Domain name server

Each institution on the Internet has a host that runs a process called the domain name server
(DNS). The DNS maintains a database called the directory information base (DIB) which
contains directory information for that institution. When a new host is added, the system
manager adds its name and its IP address. It can then access the Internet.

23.9.1 DNS program

The DNS program is typically run on a Linux-based PC with a program called named (lo-
cated in /usr/sbin) with an information file of named.boot. To run the program the fol-
lowing is used:

/usr/bin/named -b /usr/local/adm/named/named.boot

The following shows that the DNS program is currently running.

$ ps -ax
 PID TTY STAT TIME COMMAND
 295 con S 0:00 bootpd
 35 con S 0:00 /usr/sbin/lpd
 272 con S 0:00 /usr/sbin/named -b /usr/local/adm/named/named.boot
 264 p 1 S 0:01 bash
 306 pp0 R 0:00 ps -ax

In this case the data file named.boot is located in the /usr/local/adm/named directory.
A sample named.boot file is

/usr/local/adm/named - soabasefile
 eece.napier.ac.uk -main record of computer names
 net/net144 -reverse look-up database
 net/net145 “ “
 net/net146 “ “
 net/net147 “ “
 net/net150 “ “
 net/net151 “ “

This file specifies that the reverse look-up information on computers on the subnets 144,
145, 146, 147, 150 and 151 is contained in the net144, net145, net146, net147, net150
and net151 files, respectively. These are stored in the net subdirectory. The main file
which contains the DNS information is, in this case, eece.napier.ac.uk.
 Whenever a new computer is added onto a network, in this case, the
eece.napier.ac.uk file and the net/net1** (where ** is the relevant subnet name) are
updated to reflect the changes. Finally, the serial number at the top of these data files is up-
dated to reflect the current date, such as 19970321 (for 21st March 1997).
 The DNS program can then be tested using nslookup; For example,

$ nslookup
Default Server: ees99.eece.napier.ac.uk
Address: 146.176.151.99
> src.doc.ic.ac.uk
Server: ees99.eece.napier.ac.uk
Address: 146.176.151.99
Non-authoritative answer:

TCP/IP 369

Name: swallow.doc.ic.ac.uk
Address: 193.63.255.4
Aliases: src.doc.ic.ac.uk

23.10 Bootp protocol

The bootp protocol allocates IP addresses to computers based on a table of network card
MAC addresses. When a computer is first booted, the bootp server interrogates its MAC ad-
dress and then looks up the bootp table for its entry. It then grants the corresponding IP ad-
dress to the computer. The computer then uses it for connections.

23.10.1 Bootp program

The bootp program is typically run on a Linux-based PC with the bootp program. The fol-
lowing shows that the bootp program is currently running on a computer:

$ ps -ax

PID TTY STAT TIME COMMAND
 1 con S 0:06 init
 31 con S 0:01 /usr/sbin/inetd
14142 con S 0:00 bootpd -d 1
 35 con S 0:00 /usr/sbin/lpd
 49 p 3 S 0:00 /sbin/agetty 38400 tty3
14155 pp0 R 0:00 ps -ax
10762 con S 0:18 /usr/sbin/named -b /usr/local/adm/named/named.boot

For the bootp system to operate then a table is required that reconciles the MAC addresses of
the card to an IP address. In the previous example this table is contained in the bootptab file
which is located in the /etc directory. The following file gives an example bootptab:

 Contents of bootptab file

/etc/bootptab: database for bootp server
Blank lines and lines beginning with '#' are ignored.
Legend:
first field -- hostname
(may be full domain name and probably should be)
hd -- home directory
bf -- bootfile
cs -- cookie servers
ds -- domain name servers
gw -- gateways
ha -- hardware address
ht -- hardware type
im -- impress servers
ip -- host IP address
lg -- log servers
lp -- LPR servers
ns -- IEN-116 name servers
rl -- resource location protocol servers
sm -- subnet mask
tc -- template host (points to similar host entry)
to -- time offset (seconds)
ts -- time servers

370 Computer busses

#hostname:ht=1:ha=ether_addr_in_hex:ip=ip_addr_in_dec:tc=allhost:
.default150:\
 :hd=/tmp:bf=null:\
 :ds=146.176.151.99 146.176.150.62 146.176.1.5:\
 :sm=255.255.255.0:gw=146.176.150.253:\
 :hn:vm=auto:to=0:
.default151:\
 :hd=/tmp:bf=null:\
 :ds=146.176.151.99 146.176.150.62 146.176.1.5:\
 :sm=255.255.255.0:gw=146.176.151.254:\
 :hn:vm=auto:to=0:

pc345: ht=ethernet: ha=0080C8226BE2: ip=146.176.150.2: tc=.default150:
pc307: ht=ethernet: ha=0080C822CD4E: ip=146.176.150.3: tc=.default150:
pc320: ht=ethernet: ha=0080C823114C: ip=146.176.150.4: tc=.default150:
pc331: ht=ethernet: ha=0080C823124B: ip=146.176.150.5: tc=.default150:
pc401: ht=ethernet: ha=0080C82379F7: ip=146.176.150.6: tc=.default150:
pc404: ht=ethernet: ha=0080C8238369: ip=146.176.150.7: tc=.default150:
pc402: ht=ethernet: ha=0080C8238467: ip=146.176.150.8: tc=.default150:
 : :
pc460: ht=ethernet: ha=0000E8C7BB63: ip=146.176.151.142: tc=.default151:
pc414: ht=ethernet: ha=0080C8246A84: ip=146.176.151.143: tc=.default151:
pc405: ht=ethernet: ha=0080C82382EE: ip=146.176.151.145: tc=.default151:

The format of the file is:

#hostname:ht=1:ha=ether_addr_in_hex:ip=ip_addr_in_dec:tc=allhost:

where hostname is the hostname, the value defined after ha= is the Ethernet MAC address,
the value after ip= is the IP address and the name after the tc= field defines the host infor-
mation script. For example:

pc345: ht=ethernet: ha=0080C8226BE2: ip=146.176.150.2:
tc=.default150;

defines the hostname of pc345, ethernet indicates it is on an Ethernet network, and shows
its IP address is 146.176.150.2. The MAC address of the computer is 00:80:C8:
22:6B:E2 and it is defined by the script .default150. This file defines a subnet of
255.255.255.0 and has associated DNS of

 146.176.151.99 146.176.150.62 146.176.1.5

and uses the gateway at

 146.176.150.253

TCP/IP 371

23.11 Example network

A university network is shown in Figure 23.11. The connection to the outside global Internet
is via the Janet gateway node and its IP address is 146.176.1.3. Three subnets,
146.176.160, 146.176.129 and 146.176.151, connect the gateway to departmental
bridges. The Computer Studies bridge address is 146.176.160.1 and the Electrical De-
partment bridge has an address 146.176.151.254.
 The Electrical Department bridge links, through other bridges, to the subnets
146.176.144, 146.176.145, 146.176.147, 146.176.150 and 146.176.151. The
main bridge (Figure 23.12) into the department connects to two Ethernet networks of PCs
(subnets 146.176.150 and 146.176.151) and to another bridge (Bridge 1). Bridge 1
connects to the subnet 146.176.144. Subnet 146.176.144 connects to workstations and
X-terminals. It also connects to the gateway Moon that links the Token Ring subnet
146.176.145 with the Ethernet subnet 146.176.144. The gateway Oberon, on the
146.176.145 subnet, connects to an Ethernet link 146.176.146. This then connects to the
gateway Dione that is also connected to the Token Ring subnet 146.176.147.
 The topology of the Electrical Department network is shown in Figure 23.12. Each node
on the network is assigned an IP address. The hosts file for the set-up in Figure 23.12 is
shown next. For example the IP address of Mimas is 146.176.145.21 and for miranda it
is 146.176.144.14. Notice that the gateway nodes, Oberon, Moon and Dione, all have
two IP addresses.

Global
Internet

Computer
Studies
bridge

Electrical
Department
bridge

146.176.160

146.176.151

146.176.151.254

146.176.144

146.176.145

146.176.147

146.176.150

146.176.151

Janet
gateway
146.176.1.3

146.176.160.1

146.176.129
146.176Mechanical

Department
bridge
146.176.129.1

Figure 23.11 A university network

 Contents of host file
146.176.1.3 janet
146.176.144.10 hp
146.176.145.21 mimas
146.176.144.11 mwave
146.176.144.13 vax
146.176.144.14 miranda
146.176.144.20 triton
146.176.146.23 oberon
146.176.145.23 oberon
146.176.145.24 moon

372 Computer busses

146.176.144.24 moon
146.176.147.25 uranus
146.176.146.30 dione
146.176.147.30 dione
146.176.147.31 saturn
146.176.147.32 mercury
146.176.147.33 earth
146.176.147.34 deimos
146.176.147.35 ariel
146.176.147.36 neptune
146.176.147.37 phobos
146.176.147.39 io
146.176.147.40 titan
146.176.147.41 venus
146.176.147.42 pluto
146.176.147.43 mars
146.176.147.44 rhea
146.176.147.22 jupiter
146.176.144.54 leda
146.176.144.55 castor
146.176.144.56 pollux
146.176.144.57 rigel
146.176.144.58 spica
146.176.151.254 cubridge
146.176.151.99 bridge_1
146.176.151.98 pc2
 :::::
146.176.151.71 pc29
146.176.151.70 pc30
146.176.151.99 ees99
146.176.150.61 eepc01
146.176.150.62 eepc02
255.255.255.0 defaultmask

146.176.144

pc2 pc3

Dione

Saturn

Mercury

Earth

Pluto

Venus

Titan

Io

Phobos

Neptune

Ariel

Rhea

+Demos
+Uranus

Oberon

Moon

Mimas

HP

VAX

Miranda

Triton

Vega(X)

Rigel(X)

Mwave

Intel

Leda

Castor

Pollux

Spica

Token Ring networks

Workstation
Ethernet
network

PC Ethernet
network

Electrical
Department
bridge/router

146.176.151

146.176.150

146.176.146

146.176.145
146.176.147

eepc02eepc01

Bridge
1

Figure 23.12 Network topology for the Electrical Department network

TCP/IP 373

23.12 ARP

ARP (address resolution protocol) translates IP addresses to Ethernet addresses. This is used
when IP packets are sent from a computer, and the Ethernet address is added to the Ethernet
frame. A table look-up, called the ARP table, is used to translate the addresses. One column
has the IP address and the other has the Ethernet address. The following is an example ARP
table:

IP address Ethernet address
146.176.150.2 00-80-C8-22-6BE2
146.176.150.3 00-80-C8-22-CD4E
146.176.150.4 00-80-C8-23-114C

A typical conversation is as follows:

1. Application sends an application message to TCP.
2. TCP sends the corresponding TCP message to the IP module. The destination IP address

is known by the application, the TCP module, and the IP module.
3. At this point the IP packet has been constructed and is ready to be given to the Ethernet

driver, but first the destination Ethernet address must be determined.
4. The ARP table is used to look up the destination Ethernet address.

The sequence of determining the Ethernet address is as follows:

1. An ARP request packet with a broadcast Ethernet address (FF-FF-FF-FF-FF-FF) is

sent out on the network to every computer. Other typical Ethernet broadcast addresses
are given in Section 23.16.3.

2. The outgoing IP packet is queued.
3. All the computers on the network segment read the broadcast Ethernet frame, and exam-

ine the Type field to determine if it is an ARP packet. If it is then it is passed to the ARP
module.

4. If the IP address of a receiving station matches the IP address in the IP packet then it
sends a response directly to the source Ethernet address.

5. The originator then receives the Ethernet frame and checks the Type field to determine if
it an ARP packet. If it is then it adds the sender’s IP address and Ethernet address to its
ARP table.

6. The IP packet can now be sent with the correct Ethernet address.

Each computer has a separate ARP table for each of its Ethernet interfaces.

23.13 IP multicasting

Many applications of modern communications require the transmission of IP datagrams to
multiple hosts. Typical applications are video conferencing, remote teaching and so on. This
is supported by IP multicasting, where a host group is identified by a single IP address. The

374 Computer busses

main parameters of IP multicasting are:

• The group membership is dynamic.
• Hosts may join and leave the group at any time.
• There is also no limit to the location or number of members in a host group.
• A host may be a member of more than one group at a time.
• A host group may be permanent or transient. Permanent groups are well-known and are

administratively assigned a permanent IP address. The group is then dynamically associ-
ated with this IP address. IP multicast addresses that are not reserved to permanent
groups are available for dynamic assignment to transient groups.

• Multicast routers forward IP multicast datagrams into the Internet.

23.13.1 Group addresses

A special group of addresses are assigned to multicasting. These are known as Class D ad-
dresses, and they begin with 1110 as their starting 4 bits (Class E addresses with the upper
bits of 1111 are reserved for future uses). The Class D addresses thus range from

224.0.0.0 (11100000 00000000 00000000 00000000)

239.255.255.255 (11101111 11111111 11111111 11111111)

The address 224.0.0.0 is reserved. 224.0.0.1 is also assigned to the permanent group of all IP
hosts (including gateways), and is used to address all multicast hosts on the directly con-
nected network. Reserved and allocated addresses are:

224.0.0.0 Reserved
224.0.0.1 All systems on current subnet
224.0.0.2 All routers on current subnet
224.0.0.3 Unassigned
224.0.0.4 DVMRP routers
224.0.0.5 OSPFIGP all routers
224.0.0.6 OSPFIGP designated routers
224.0.0.7 ST routers
224.0.0.8 ST hosts
224.0.0.9 RIP2 routers
224.0.0.10–224.0.0.255 Unassigned
224.0.1.0 VMTP managers group
224.0.1.1 NTP network time protocol
224.0.1.2 SGI-dogfight
224.0.1.3 Rwhod
224.0.1.4 VNP
224.0.1.5 Artificial horizons–aviator
224.0.1.6 NSS–name service server
224.0.1.7 AUDIONEWS–audio news multicast
224.0.1.8 SUN NIS+ information service
224.0.1.9 MTP multicast transport protocol
224.0.1.10–224.0.1.255 Unassigned
224.0.2.1 rwho group (BSD) (unofficial)
224.0.2.2 SUN RPC PMAPPROC_CALLIT
224.0.3.0–224.0.3.255 RFE generic service
224.0.4.0–224.0.4.255 RFE individual conferences

TCP/IP 375

224.1.0.0–224.1.255.255 ST multicast groups
224.2.0.0–224.2.255.255 Multimedia conference calls
232.x.x.x VMTP transient groups

All the above addresses are listed in the domain name service under MCAST.NET and
224.IN-ADDR.ARPA. On an Ethernet or IEEE 802 network, the 23 low-order bits of the IP
multicast address are placed in the low-order 23 bits of the Ethernet or IEEE 802 net multi-
cast address.

23.13.2 Conformance

There are three levels of conformance:

• Level 0, no IP multicasting support – in this, a Level 0 host ignores, or deletes, all Class

D addressed datagrams.
• Level 1, sending support, but no receiving – in this, a Level 1 host can send multicast

datagrams, but cannot receive them.
• Level 2, Full multicasting support – in this, a Level 2 host can send and receive IP multi-

casting. It also requires the implementation of the Internet group management protocol
(IGMP).

23.14 Exercises

23.14.1 Which OSI layer does the IP layer correspond to:

 (a) Data link (b) Network
 (c) Transport (d) Session

23.14.2 Which OSI layer does the TCP layer correspond to:

 (a) Data link (b) Network
 (c) Transport (d) Session

23.14.3 Which IP version do most TCP/IP hosts use:

 (a) Version 2 (b) Version 4
 (c) Version 5 (d) Version 6

23.14.4 How much data can be carried within an IP datagram:

 (a) 64 kB (b) 128 kB
 (c) 256 kB (d) Unlimited

23.14.5 How many IP addresses are possible:

 (a) 1048 576 (b) 16 777 216
 (c) 4 294 967 296 (d) 3.402 823 669×1038

376 Computer busses

23.14.6 How are IP datagrams deleted from the network:

 (a) They are deleted when the time-to-live field becomes zero.
 (b) They are never deleted, and will always be delivered.
 (c) They are buffered on intermediate systems, and then deleted after
 a given time.
 (d) They are returned to the originator if they are not deleted, and the
 originator either resends them or deletes them.

23.14.7 Which of the following is a Class A IP address:

 (a) 12.1.14.12 (b) 146.176.151.130
 (c) 194.50.100.1 (d) 224.50.50.1

23.14.8 Which of the following is a Class D IP address:

 (a) 12.1.14.12 (b) 146.176.151.130
 (c) 194.50.100.1 (d) 224.50.50.1

23.14.9 What are Class D IP addresses used for:

 (a) Dynamic IP addressing (b) Testing networks
 (c) Static IP addressing (d) Multicasting

23.14.10 Which of the following is the country domain for Germany:

 (a) ge (b) de (c) dr (d) gy

23.14.11 Which service allows hosts to determine the IP address for a given domain name:

 (a) TCP (b) ICMP
 (c) ARP (d) DNS

23.14.12 Which protocol is used by a node to determine the Ethernet address to a host with

a given IP address:

 (a) TCP (b) ICMP
 (c) ARP (d) DNS

23.14.13 Which Ethernet address is used for broadcast messages:

 (a) FF-FF-FF-FF-FF-FF (b) 11-11-11-11-11-11-11
 (c) 00-00-00-00-00-00 (d) AA-AA-AA-AA-AA-AA

23.14.14 Outline how ARP uses the broadcast address and the type field to identify that an

ARP request is being transmitted. Also, discuss a typical ARP conversation.

23.14.15 Outline how the protocol is identified in the IP header. Discuss how the format of

the data after the header differs with different protocols (such as TCP and ICMP).

TCP/IP 377

23.14.16 Explain how ICMP and the options field would be used to determine the following
information:

 (i) Whether a destination node is responding to TCP/IP communications.
 (ii) The route to a destination node.
 (iii) The route to a destination node, with the time delay between each
 gateway.

23.14.17 Explain how the Options field can be used to set the route that a datagram can

take.

23.14.18 Determine the IP addresses, and their type (i.e. class A, B or C), of the following

32-bit addresses:

 (i) 10001100.01110001.00000001.00001001
 (ii) 01000000.01111101.01000001.11101001
 (iii) 10101110.01110001.00011101.00111001

23.14.19 Determine the countries which use the following primary domain names:

 (a) de (b) nl (c) it (d) se (e) dk (f) sg
 (g) ca (h) ch (i) tr (j) jp (k) au

 Determine some other domain names.

23.14.20 For a known TCP/IP network determine the names of the nodes and their Internet

addresses.

23.14.21 For a known TCP/IP network determine how the DNS is implemented and how IP

addresses are granted.

23.14.22 If a subnet mask on a Class B network is 255.255.240.0, show that there can be 16

connected networks, each with 4095 nodes on a Class B network.

23.15 Notes from the author

Which two people have done more for world unity than anyone else? Well, Prof. TCP and
Dr. IP must be somewhere in the Top 10. They have done more to unify the world than all the
diplomats in the world have. They do not respect national borders, time zones, cultures, in-
dustrial conglomerates or anything like that. They allow the sharing of information around
the world, and are totally open for anyone to use. Top marks to Prof. TCP and Dr. IP, the
true champions of freedom and democracy.
 Many of the great inventions/developments of our time were things that were not really
predicted, such as CD-ROMs, RADAR, silicon transistors, fibre optic cables, and, of course,
the Internet. The Internet itself is basically an infrastructure of interconnected networks
which run a common protocol. The nightmare of interfacing the many computer systems
around the world was solved because of two simple protocols: TCP and IP. Without them the

378 Computer busses

Internet would not have evolved so quickly and possibly would not have occurred at all. TCP
and IP are excellent protocols as they are simple and can be run over any type of network,
on any type of computer system.
 The Internet is often confused with the World Wide Web (WWW), but the WWW is only
one application of the Internet. Others include electronic mail (the No.1 application), file
transfer, remote login and so on.
 The amount of information transmitted over networks increases by a large factor every
year. This is due to local area networks, wide area networks and of course, traffic over the
Internet. It is currently estimated that traffic on the Internet doubles every 100 days and that
three people join the Internet every second. This means an eightfold increase in traffic over a
whole year. It is hard to imagine such growth in any other technological area. Imagine if
cars were eight times faster each year, or could carry eight times the number of passengers
each year (and of course roads and driveways would have to be eight times larger each
year).

23.16 Additional material

23.16.1 Assigned Internet protocol numbers

Table 23.5 outlines the values that are used in the protocol field of the IP header.

Table 23.5 Assigned Internet protocol numbers

Value Protocol Value Protocol
0 Reserved 18 Multiplexing
1 ICMP 19 DCN
2 IGMP (Internet group management) 20 TAC monitoring
3 Gateway-to-gateway 21–62
4 CMCC gateway monitoring message 63 Any local network
5 ST 64 SATNET and backroom EXPAK
6 TCP 65 MIT subnet support
7 UCL 66–68 Unassigned
8 EGP (exterior gateway protocol) 69 SATNET monitoring
9 Secure 70 Unassigned
10 BBN RCC monitoring 71 Internet Packet core utility
11 NVP 72–75 Unassigned
12 PUP 76 Backroom SATNET monitoring
13 Pluribus 77 Unassigned
14 Telenet 78 WIDEBAND monitoring
15 XNET 79 WIDEBAND EXPAK
16 Chaos 80–254 Unassigned
17 User datagram 255 Reserved

23.16.2 Options field in an IP header

The options field in an IP header is an optional field which may or may not appear in the
header, and is also variable in length. It is a field which must be implemented by all hosts
and gateways. There are two classes of option:

TCP/IP 379

• An option-type byte.
• An option-type byte, followed by an option-length byte, and then the actual option-data

bytes. The option-length byte counts all the bytes in the options field.

The option-type byte is the first byte and has three fields, as illustrated in Figure 23.13. The
copied flag indicates that this option is (or is not) copied into all fragments on fragmentation.

Copied flag
0 - No copied
1 - Copied

Option classes
00 - Control
01 - Reserved
10 - Debugging
11 - Reserved

Number
0 - End of Option List (followed by 0 bytes)
1 - No operation (followed by 0 bytes)
2 - Security (followed by 11 bytes)
3 - Loose Source Routing (followed by variable bytes)
4 - Internet Timestamp (followed by variable bytes)
7 - Record Route (followed by variable bytes)
8 - Stream ID (followed by 4 bytes)
9 - Strict Source Routing (followed by variable bytes)

Figure 23.13 Options-type byte

End of option list (Type = 0)

This option indicates the end of the option list, but does not necessarily need to coincide with
the end of the IP header according to the internet header length. It is used at the end of all
options, but not the end of each option. It may be copied, introduced, or deleted on fragmen-
tation, or for any other reason.

No operation (type = 1)

This option may be used between options, and can be used to align the beginning of a subse-
quent option on a 32-bit boundary. It may be copied, introduced, or deleted on fragmenta-
tion, or for any other reason.

Security (type = 130)

This option allows hosts to send security, compartmentation, handling restrictions, and TCC
(closed user group) parameters. In this option, the Type field is a 2, and the Class field is also
a 2. Thus the option-type byte has a value of 130 (0100 0010), and has 11 bytes in total. Its
format is

 +--------+--------+---...---+---...---+---...---+---...---+
 |10000010|00001011|SSS SSS|CCC CCC |HHH HHH | TCC |
 +--------+--------+---...---+---...---+---...---+---...---+

380 Computer busses

The fields are

• SSS…SSS, security (16 bits) – These specify one of 16 levels of security, such as

 00000000 00000000 – Unclassified 11110001 00110101 – Confidential
 01111000 10011010 – EFTO 10111100 01001101 – MMMM
 01011110 00100110 – PROG 10101111 00010011 – Restricted
 11010111 10001000 – Secret 01101011 11000101 – Top Secret
 00110101 11100010 – Reserved 10011010 11110001 – Reserved
 01001101 01111000 – Reserved 00100100 10111101 – Reserved
 00010011 01011110 – Reserved 10001001 10101111 – Reserved
 11000100 11010110 – Reserved 11100010 01101011 – Reserved

• CCC…CCC, compartments (16 bits) – When this field contains all zero values then the

transmitted information is not compartmented, other values can be obtained from the
Defense Intelligence Agency.

• HHH…HHH, handling restrictions (16 bits) – This field is defined in the Defense In-

telligence Agency Manual DIAM 65-19.

• TCC, transmission control code (24 bits) – This field allows the segregation of traffic

and to define controlled communities of interest among subscribers (available from HQ
DCA Code 530). Must be copied on fragmentation.

Loose source and record route (Type = 131)

Loose source and record route (LSRR) allows for the source of an internet datagram to sup-
ply routing information to be used by the gateways in forwarding the datagram to the desti-
nation. It can also be used to record routing information.
 When routing the source host adds the IP addresses of the route to the route data, and
each gateway routes the datagram using the recorded route, and not with its own internal
routing table. This allows datagrams to take alternative routes through the Internet. Its format
is

 +--------+--------+--------+---------...--------+
 |10000011| Length | Pointer| Route data |
 +--------+--------+--------+---------...--------+

where
• Length – this is a single byte which contains the number of bytes in the option field.
• Pointer – this is a pointer, which is relative to this option, into the route data which indi-

cates the byte which begins the next source address to be processed. The smallest value
is 4.

• Route data – this is constructed with a number of internet addresses, each of 4 bytes in
length. If the pointer is greater than the length, the source route is empty (and the re-
corded route full) and the routing is to be based on the destination address field.

When reaching the address in the destination address field, and when the pointer is not
greater than the length in the route data, then the next address in the source route data re-
places the address in the destination field. The pointer is also incremented by 4, to point to

TCP/IP 381

the next address. It is loose as the gateways are allowed to use any route to get to the next
specified address in the routing table.
 It must be copied on fragmentation and occurs, at the most, once in a datagram.

Strict source and record route (Type = 137)

The SSRR is similar to the LSRR, but the routing must follow, exactly, the addresses in the
routing table. It thus cannot use any intermediate routes to get to these addresses. Its format
is

 +--------+--------+--------+---------...--------+
 |10001001| Length | Pointer| Route data |
 +--------+--------+--------+---------...--------+

Record route (type = 7)

The record route option records the route of an internet datagram. It can thus be used by such
utilities as Traceroute. Its format is

 +--------+--------+--------+---------...--------+
 |00000111| Length | Pointer| Route data |
 +--------+--------+--------+---------...--------+

where
• Length – this is a single byte which contains the number of bytes in the option field.
• Pointer – this is a pointer, which is relative to this option, into the route data which indi-

cates the byte at which the next address should be added to. The smallest value is 4.
• Route data – contains a list of the route which a datagram has taken. Each entry has 4

bytes. The originating host must reserve enough area for the total number of addresses in
the routing table, as the size of this option does not change as it transverses over the
Internet. If there is a problem adding the address then an ICMP Parameter Problem can
be sent back to the source host.

It is not copied on fragmentation, and goes in the first fragment only. In addition, it occurs, at
the most, once in a datagram.

Internet timestamp (type = 68)

The Internet timestamp option records a timestamp for each gateway along the route of a
datagram. It allows the source host to trace the time that each part of the route takes. Its for-
mat is

 +--------+--------+--------+--------+
 |01000100| Length | Pointer|Ov |Flg|
 +--------+--------+--------+--------+
 | internet address |
 +--------+--------+--------+--------+
 | timestamp |
 +--------+--------+--------+--------+
 | . |
 .

where

382 Computer busses

• Length. – is a single byte which contains the number of bytes in the option field (maxi-
mum is 40).

• Pointer – this is a pointer, which is relative to this option, into the route data which indi-
cates the byte at which the next timestamp should be added to. The smallest value is 5.

• Overflow (Ov) – this has four bits and holds the number of IP modules that cannot regis-
ter timestamps due to lack of space.

• Flag (Flg) – this has four bits and defines the format of the timestamp. Valid values are:

0 – Store only the time stamps as 32-bit words.
 1 – Store IP address followed by a time stamp.
 3 – In this mode the IP addresses are specified in a table. A gateway only adds its time-

stamp if its IP address is in this table.

• Timestamp – this is a 32-bit value for the number of milliseconds since midnight UT

(universal time). If this is not possible then it is any time, as long as the high-order bit of
the timestamp is set to a 1 to indicate that it is non-standard time.

The originating host must reserve enough area for the total number of timestamps, as the size
of this option does not change as it transverses over the Internet. If there is a problem adding
the address then an ICMP parameter problem can be sent back to the source host. Initially the
contents of the timestamp data area is either zero, or has IP addresses with zero time stamps.
The timestamp area is full when the pointer is greater than the length.
 It is not copied on fragmentation, and goes in the first fragment only. Also, it occurs, at
the most once in a datagram.

Stream identifier (type =136)

This option allows for a 16-bit SATNET stream identifier to be carried through networks that
do not support the stream concept. Its format is

 +--------+--------+--------+--------+
 |10001000|00000010| Stream ID |
 +--------+--------+--------+--------+

23.16.3 Ethernet multicast/broadcast addresses

The following is a list of typical Ethernet multicast addresses:

Ethernet address Type field Usage
01-00-5E-00-00-00 0800 Internet multicast (RFC-1112)
01-80-C2-00-00-00 0802 Spanning tree (for bridges)
09-00-09-00-00-01 8005 HP probe
09-00-09-00-00-04 8005 HP DTC
09-00-1E-00-00-00 8019 Apollo DOMAIN
09-00-2B-00-00-03 8038 DEC lanbridge traffic monitor (LTM)
09-00-4E-00-00-02 8137 Novell IPX
CF-00-00-00-00-00 9000 Ethernet configuration test protocol

The following is a list of typical Ethernet broadcast addresses:

Ethernet address Type field Usage
FF-FF-FF-FF-FF-FF 0600 XNS packets, hello or gateway search.

TCP/IP 383

FF-FF-FF-FF-FF-FF 0800 IP (such as RWHOD with UDP)
FF-FF-FF-FF-FF-FF 0804 CHAOS
FF-FF-FF-FF-FF-FF 0806 ARP (for IP and CHAOS) as needed
FF-FF-FF-FF-FF-FF 0BAD Banyan
FF-FF-FF-FF-FF-FF 1600 VALID packets, hello or gateway search.
FF-FF-FF-FF-FF-FF 8035 Reverse ARP
FF-FF-FF-FF-FF-FF 807C Merit Internodal (INP)
FF-FF-FF-FF-FF-FF 809B EtherTalk

TCP and UDP

24.1 Introduction

TCP, ICMP and IP are extremely important protocols as they allow hosts to communicate
over the Internet in a reliable way. The TCP layer is defined by RFC793 and RFC1122,
ICMP by RFC792 and the IP layer by RFC791. TCP provides a connection between two
hosts and supports error handling. This chapter discusses TCP in more detail and shows how
a connection is established and then maintained. An important concept of TCP/IP communi-
cations is the usage of ports and sockets. A port identifies the process type (such as FTP,
TELNET and so on) and the socket identifies a unique connection number. In this way,
TCP/IP can support multiple simultaneous connections of applications over a network.
 The IP header is added to higher-level data. This header contains a 32-bit IP address of
the destination node. Unfortunately, the standard 32-bit IP address is not large enough to
support the growth in nodes connecting to the Internet. Thus a new standard, IP Version 6,
has been developed to support a 128-bit address, as well as additional enhancements.

24.2 Transmission control protocol

In the OSI model, TCP fits into the transport layer and IP fits into the network layer. TCP
thus sits above IP, which means that the IP header is added onto the higher-level information
(such as transport, session, presentation and application). The main function of TCP is to
provide a robust and reliable transport protocol. It is characterised as a reliable, connection-
oriented, acknowledged and datastream-oriented server. IP, itself, does not support the con-
nection of two nodes, whereas TCP does. With TCP, a connection is initially established and
is then maintained for the length of the transmission.
 The main aspects of TCP are:

• Data transfer – data is transmitted between two applications by packaging the data within

TCP packets. This data is buffered and forwarded whenever necessary. A push function
can be used when the data is required to be sent immediately.

• Reliability – TCP uses sequence numbers and positive acknowledgements (ACK) to
keep track of transmitted packets. Thus, it can recover from data that is damaged, lost,
duplicated, or delivered out of order, such as:

• Time-outs – the transmitter waits for a given time (the timeout interval), and if it does
not receive an ACK, the data is retransmitted.

• Sequence numbers – the sequence numbers are used at the receiver to correctly order
the packets and to delete duplicates.

24

386 Computer busses

• Error detection and recovery – each packet has a checksum, which is checked by the
receiver. If it is incorrect the receiver discards it, and can use the acknowledgements
to indicate the retransmission of the packets.

• Flow control – TCP returns a window with every ACK. This window indicates a range

of acceptable sequence numbers beyond the last segment successfully received. This
window also indicates the number of bytes that the sender can transmit before receiving
further acknowledgements.

• Multiplexing – to support multiple connections to a single host, TCP provides a set of
ports within each host. This, along with the IP addresses of the source and destination,
makes a socket. Each connection is uniquely identified by a pair of sockets. Ports are
normally associated with various services and allow service programs to listen for de-
fined port numbers.

• Connections – a connection is defined by the sockets, sequence numbers and window
sizes. Each host must maintain this information for the length of the connection. When
the connection is closed, all associated resources are freed. As TCP connections can be
made with unreliable hosts and over unreliable communication channels, TCP uses a
handshake mechanism with clock-based sequence numbers to avoid inaccurate connec-
tion initialisation.

• Precedence and security – TCP allows for different security and precedence levels.

TCP information contains simple acknowledgement messages and a set of sequential num-
bers. It also supports multiple simultaneous connections using destination and source port
numbers, and manages them for both transmission and reception. As with IP, it supports data
fragmentation and reassembly, and data multiplexing/demultiplexing.
 The set-up and operation of TCP is as follows:

1. When a host wishes to make a connection, TCP sends out a request message to the desti-

nation machine that contains unique numbers called a socket number, and a port number.
The port number has a value which is associated with the application (for example a
TELNET connection has the port number 23 and an FTP connection has the port number
21). The message is then passed to the IP layer, which assembles a datagram for trans-
mission to the destination.

2. When the destination host receives the connection request, it returns a message contain-
ing its own unique socket number and a port number. The socket number and port num-
ber thus identify the virtual connection between the two hosts.

3. After the connection has been made the data can flow between the two hosts (called a
data stream).

After TCP receives the stream of data, it assembles the data into packets, called TCP seg-
ments. After the segment has been constructed, TCP adds a header (called the protocol data
unit) to the front of the segment. This header contains information such as a checksum, the
port number, the destination and source socket numbers, the socket number of both machines
and segment sequence numbers. The TCP layer then sends the packaged segment down to
the IP layer, which encapsulates it and sends it over the network as a datagram.

24.2.1 Ports and sockets

As previously mentioned, TCP adds a port number and socket number for each host. The
port number identifies the required service, whereas the socket number is a unique number

TCP and UDP 387

for that connection. Thus, a node can have several TELNET connections with the same port
number but each connection will have a different socket number. A port number can be any
value but there is a standard convention that most systems adopt. Table 24.1 defines some of
the most common values. Standard applications normally use port values from 0 to 255,
while unspecified applications can use values above 255. Section 24.12 outlines the main
ports.

Table 24.1 Typical TCP port numbers

Port Process name Notes
20 FTP-DATA File transfer protocol (data)
21 FTP File transfer protocol (control)
23 TELNET Telnet
25 SMTP Simple mail transfer protocol
49 LOGIN Login protocol
53 DOMAIN Domain name server
79 FINGER Finger
161 SNMP Simple network management protocol

24.2.2 TCP header format

The sender’s TCP layer communicates with the receiver’s TCP layer using the TCP protocol
data unit. It defines parameters such as the source port, destination port, and so on, and is
illustrated in Figure 24.1. The fields are:

• Source and destination port number – 16-bit values that identify the local port number

(source number and destination port number or destination port).
• Sequence number – identifies the current sequence number of the data segment. This al-

lows the receiver to keep track of the data segments received. Any segments that are
missing can be easily identified. The sequence number of the first data byte in this seg-
ment (except when SYN is present). If SYN is present the sequence number is the initial
sequence number (ISN) and the first data octet is ISN+1.

• Acknowledgement number – when the ACK bit is set, it contains the value of the next
sequence number the sender of the packet is expecting to receive. This is always set after
the connection is made.

• Data offset – a 32-bit value that identifies the start of the data. It is defined as the number
of 32-bit words in the header (as the TCP header always has a multiple number of 32-bit
words).

• Flags – the flag field is defined as UAPRSF, where U is the urgent flag (URG), A the ac-
knowledgement flag (ACK), P the push function (PSH), R the reset flag (RST), S the se-
quence synchronise flag (SYN) and F the end-of-transmission flag (FIN).

• Window – a 16-bit value that gives the number of data bytes that the receiving host can
accept at a time, beginning with the one indicated in the acknowledgement field of this
segment.

• Checksum – a 16-bit checksum for the data and header. It is the 1’s complement of all the
1’s complement sum of all the 16-bit words in the TCP header and text. The checksum is
assumed to be a zero when calculating the checksum.

• UrgPtr – the urgent pointer used to identify an important area of data (most systems do
not support this facility). It is only used when the URG bit is set. This field communicates
the current value of the urgent pointer as a positive offset from the sequence number in
this segment.

388 Computer busses

• Options (discussed in Section 24.2.3).
• Padding (variable) – The TCP header padding is used to ensure that the TCP header ends

and data begins on a 32-bit boundary. The padding is composed of zeros.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Source port

Destination port

Sequence number

Acknowledgment number

Checksum

ReservedData offset Flags

UrgPtr

DATA

Window

Figure 24.1 TCP header format

In TCP, a packet is termed as the complete TCP unit; that is, the header and the data. A seg-
ment is a logical unit of data, which is transferred between two TCP hosts. Thus a packet is
made up of a header and a segment.

24.2.3 Options

Like IP, the option field can precede the data. It is variable in length and the contents of the
header beyond the end-of-option must be header padding. It must be implemented by all
hosts and gateways. There are two classes of option:

• An option-type byte.
• An option-type byte, followed by an option-length byte, and then the actual option-data

bytes. The option-length byte counts all the bytes in the options field.

Supported types are:

Type Length Description
0 End of option list
1 No operation
2 4 Maximum segment size

24.2.4 End of option list (Type=0)

The end of option list indicates the end of all the options, not just the end of each option. It
may not necessarily coincide with the end of the TCP header (according to the data offset
field). It is only needed if the end of the options would not otherwise coincide with the end of

TCP and UDP 389

the TCP header. Its format is

 +--------+
 |00000000|
 +--------+

24.2.5 No-operation (type=1)

The no-operation can be used between options. A typical application is to align the beginning
of a subsequent option, so that it is on a 32-bit word boundary. Its format is

 +--------+
 |00000001|
 +--------+

24.2.6 Maximum segment size (type=2, length=4)

In this option the maximum receive segment size is defined, and is preceeded by a 16-bit
maximum segment size. It is only sent in an initial connection request, that is, when the
SYN control bit is set. If it is not included, then any segment size is allowed. Its format is

 +--------+--------+---------+--------+
 |00000010|00000100| max seg size |
 +--------+--------+---------+--------+

24.3 UDP

TCP allows for a reliable connection-based transfer of data. The User datagram protocol
(UDP) is an unreliable connection-less approach, where datagrams are sent into the network
without an acknowledgement or connections. It is defined in RFC768 and uses IP as its un-
derlying protocol. It has the advantage over TCP in that it has a minimal protocol mecha-
nism, but does not guarantee delivery of any of the data. Figure 24.2 shows its format. The
fields are:

• Source port – this is an optional field and is set to a zero if not used. It identifies the local

port number which should be used when the destination host requires to contact the
originator.

• Destination – port to connect to on the destination.
• Length – number of bytes in the datagram, including the UDP header and the data.
• Checksum – it is the 16-bit 1’s complement of all 1’s complement sum of the IP header,

the UDP header and the data (which, if necessary, is padded with zero bytes at the end, to
make an even number of bytes).

When used with IP the UDP/IP header is shown in Figure 24.3. The protocol field is set to 17
to identify UDP.

390 Computer busses

Length

Source port

Destination port

Checksum

DATA

32 bits

Figure 24.2 UDP header format

Length

Source port

Destination port

Checksum

DATA

32 bits

Source IP address

Destination IP address

Zero Protocol=
17 UDP length

IP
header

UDP
header

Figure 24.3 UDP/IP header format

24.4 TCP specification

TCP is made reliable with the following:

• Sequence numbers – each TCP packet is sent with a sequence number. Theoretically,

each data byte is assigned a sequence number. The sequence number of the first data
byte in the segment is transmitted with that segment and is called the segment sequence
number (SSN).

TCP and UDP 391

• Acknowledgements – packets contain an acknowledgement number, which is the se-
quence number of the next expected transmitted data byte in the reverse direction. On
sending, a host stores the transmitted data in a storage buffer, and starts a timer. If the
packet is acknowledged then this data is deleted, else, if no acknowledgement is re-
ceived before the timer runs out, the packet is retransmitted.

• Window – with this, a host sends a window value which specifies the number of bytes,
starting with the acknowledgement number, that the host can receive.

24.4.1 Connection establishment, clearing and data transmission

The main interfaces in TCP are shown in Figure 24.4. The calls from the application program
to TCP include:

• OPEN and CLOSE – to open and close a connection.
• SEND and RECEIVE – to send and receive.
• STATUS – to receive status information.

TCP

IP

OPEN() SEND() RECEIVE() CLOSE() ABORT() STATUS()

States:
LISTEN
SYN-SENT
SYN-RECEIVED
ESTABLISHED
FIN-WAIT1
FIN-WAIT2
CLOSE-WAIT
CLOSING
LAST-ACK
TIME-WAIT

TCP Interface

RST
flag

SYN
flag

Src
Port

Dest
Port

Seq.
No.

Ack
No.

ACK
flag

FIN
flag

Check
Sum

DATAPUSH
flag

Figure 24.4 TCP interface

The OPEN call initiates a connection with a local port and foreign socket arguments. A
transmission control block (TCB) stores the information on the connection. After a success-
ful connection, TCP adds a local connection name by which the application program refers to
the connection in subsequent calls.
 The OPEN call supports two different types of call, as illustrated in Figure 24.5. These
are:

• Passive OPEN – TCP waits for a connection from a foreign host, such as from an active

OPEN. In this case, the foreign socket is defined by a zero. This is typically used by

392 Computer busses

servers, such as TELNET and FTP servers. The connection can either be from a fully
specified or an unspecified socket.

• Active OPEN – TCP actively connects to a foreign host, typically a server (which is
opened with a passive OPEN). Two processes which issue active OPENs to each other,
at the same time, will also be connected.

A connection is established with the transmission of TCP packets with the SYN control flag
set and uses a three-way handshake (see Section 24.6). A connection is cleared by the ex-
change of packets with the FIN control flag set. Data flows in a stream using the SEND call
to send data and RECEIVE to receive data.
 The PUSH flag is used to send data in the SEND immediately to the recipient. This is
required as a sending TCP is allowed to collect data from the sending application program
and sends the data in segments when convenient. Thus, the PUSH flag forces it to be sent.
When the receiving TCP sees the PUSH flag, it does not wait for any more data from the
sending TCP before passing the data to the receiving process.

OPEN (active) OPEN (passive)
Fully specified
the foreign socket

OPEN (active) OPEN (passive)
Unspecified
the foreign socket

OPEN (active) OPEN (active)

Figure 24.5 TCP connections

24.5 TCB parameters

Table 24.2 outlines the send and receive packet parameters, as well as the current segment
parameter, which are stored in the TCB. Along with this, the local and remote port number
require to be stored.

24.6 Connection states

Figure 24.6 outlines the states the connection goes into, and the events that cause them. The
events from applications programs are OPEN, SEND, RECEIVE, CLOSE, ABORT and
STATUS, and the events from the incoming TCP packets include the SYN, ACK, RST and
FIN flags. The definition of each of the connection states are:

TCP and UDP 393

Table 24.2 TCB parameters

Send sequence variables Receive sequence variables Current packet variable
SND.UNA
SND.NXT Send next

SND.WND Send window

SND.UP Send urgent pointer

SND.WL1 Segment sequence
number used for last window
update

SND.WL2 Segment acknowl-
edgement number used for last
window update

ISS Initial send sequence num-
ber

RCV.NXT Receive next

RCV.WND Receive window

RCV.UP Receive urgent pointer

IRS Initial receive sequence number

SEG.SEQ Segment sequence
number

SEG.ACK Segment
acknowledgement number

SEG.LEN Segment length

SEG.WND Segment window

SEG.UP Segment urgent
pointer

SEG.PRC Segment precedence
value

• LISTEN – this is the state in which TCP is waiting for a remote connection on a given

port.
• SYN-SENT– this is the state where TCP is waiting for a matching connection request

after it has sent a connection request.
• SYN-RECEIVED – is the state where TCP is waiting for a confirming connection re-

quest acknowledgement after having both received and sent a connection request.
• ESTABLISHED – this is the state that represents an open connection. Any data received

can be delivered to the application program. This is the normal state for data to be trans-
mitted.

• FIN-WAIT-1– this is the state in which TCP is waiting for a connection termination re-
quest, or an acknowledgement of a connection termination, from the remote TCP.

• FIN-WAIT-2 – this is the state in which TCP is waiting for a connection termination re-
quest from the remote TCP.

• CLOSE-WAIT – this is the state where TCP is waiting for a connection termination re-
quest from the local application.

• CLOSING – this is the state where TCP is waiting for a connection termination request
acknowledgement from the remote TCP.

• LAST-ACK – this is the state where TCP is waiting for an acknowledgement of the con-
nection termination request previously sent to the remote TCP.

• TIME-WAIT – this is the state in which TCP is waiting for enough time to pass to be
sure the remote TCP received the acknowledgement of its connection termination re-
quest.

• CLOSED – this is the notational state, which occurs after the connection has been closed.

394 Computer busses

CLOSECLOSE

LISTENLISTEN

ESTABLISHESTABLISHFIN
WAIT-1
FIN

WAIT-1
CLOSE
WAIT

CLOSE
WAIT

CLOSINGCLOSINGFIN
WAIT-2
FIN

WAIT-2 LAST-ACKLAST-ACK

SYN
RECEIVED

SYN
RECEIVED

SYN
SENT
SYN
SENT

Passive
OPEN CLOSE

SEND and
SYN

Receive SYN
and SYN, ACK

Receive SYN
and SYN, ACK

Receive ACK
of SYN

Active
OPEN CLOSE

CLOSE and
FIN

Receive FIN
and ACK

Receive ACK
of FIN

CLOSE and
FIN

Receive FIN
and ACK

TIME WAITTIME WAIT

Receive ACK
of FIN

CLOSEDCLOSED

CLOSE and
FIN

Receive FIN
and ACK

Timeout = 2MSL

Figure 24.6 TCP connection states

24.6.1 Sequence numbers

TCP packets contain a 32-bit sequence number (0 to 4 294 967 295), which relates to every
byte sent. It uses a cumulative acknowledgement scheme, where an acknowledgement with a
value of VAL, validates all bytes up to, but not including, byte VAL. Each byte at which the
packet starts is numbered consecutively, at the first byte.
 When sending data, TCP should receive acknowledgements for the transmitted data. The
required TCB parameters will be:

SND.UNA Oldest unacknowledged sequence number.
SND.NXT Next sequence number to send.
SEG.ACK Acknowledgement from the receiving TCP (next sequence num-

ber expected by the receiving TCP).
SEG.SEQ First sequence number of a segment.
SEG.LEN Number of bytes in the TCP packet.
SEG.SEQ+SEG.LEN–1 Last sequence number of a segment.

On receiving data, the following TCB parameters are required:

RCV.NXT Next sequence number expected on an incoming segment, and is
the left or lower edge of the receive window.

RCV.NXT+RCV.WND–1 Last sequence number expected on an incoming segment, and is

TCP and UDP 395

the right or upper edge of the receive window.
SEG.SEQ First sequence number occupied by the incoming segment.
SEG.SEQ+SEG.LEN–1 Last sequence number occupied by the incoming segment.

24.6.2 ISN selection

The initial sequence number (ISN) is selected so that previous sockets are not confused with
new sockets. Typically, this can happen when a host application crashes and then quickly re-
establishes the connection before the other side can time-out the connection. To avoid this a
32-bit initial sequence number (ISN) generator is created when the connection is made. The
number is generated by a 32-bit clock, which is incremented approximately every 4µs (giv-
ing an ISN cycle of 4.55 hours). Thus, within 4.55 hours, each ISN will be unique.
 As each connection has a send and receive sequence number, these are an initial send
sequence number (ISS) and an initial receive sequence number (IRS). When establishing a
connection, the two TCPs synchronise their initial sequence numbers. This is done by ex-
changing connection establishing packets, with the SYN bit set and with the initial sequence
numbers (these packets are typically called SYNs). Thus four packets must be initially ex-
changed:

• A sends to B. SYN with ASEQ.
• B sends to A. ACK of the sequence number (ASEQ).
• B sends to A. SYN with BSEQ.
• A sends to B. ACK of the sequence number (BSEQ).

Note that the two intermediate steps can be combined into a single message. This is some-
times knows as a three-way handshake. This handshake is necessary as the sequence num-
bers are not tied to a global clock, only to local clocks, and has many advantages, including
the fact that old packets will be discarded as they occurred in a previous time.
 To make sure that a sequence number is not duplicated, a host must wait for a maximum
segment lifetime (MSL) before starting to retransmit packets (segments) after start-up or
when recovering from a crash. An example MSL is 2 minutes. However, if it is recovering,
and it has a memory of the previous sequence numbers, it may not need to wait for the MSL,
as it can use sequence numbers which are much greater than the previously used sequence
numbers.

24.7 Opening and closing a connection

Figure 24.7 shows a basic three-way handshake. The steps are:

1. The initial state on the initiator is CLOSED and, on the recipient, it is LISTEN (the re-

cipient is waiting for a connection see figure 24.7).
2. The initiator goes into the SYN-SENT state and sends a packet with the SYN bit set and

then indicates that the starting sequence number will be 999 (the current sequence num-
ber, thus the next number sent will be 1000). When this is received the recipient goes
into the SYN-RECEIVED state.

3. The recipient sends back a TCP packet with the SYN and ACK bits set (which identifies
that it is a SYN packet and also that it is acknowledging the previous SYN packet). In

396 Computer busses

this case, the recipient tells the originator that it will start transmitting at a sequence
number of 100. The acknowledgement number is 1000, which is the sequence number
that the recipient expects to receive next. When this is received, the originator goes into
the ESTABLISHED state.

4. The originator sends back a TCP packet with the SYN and ACK bits set and the ac-
knowledgement number is 101, which is the sequence number it expects to see next.

5. The originator transmits data with the sequence number of 1000.

 Originator Recipient
 1. CLOSED LISTEN
 2. SYN-SENT → <SEQ=999><CTL=SYN> SYN-RECEIVED
 3. ESTABLISHED <SEQ=100><ACK=1000> <CTL=SYN,ACK> ← SYN-RECEIVED
 4. ESTABLISHED → <SEQ=1000><ACK=101> <CTL=ACK> ESTABLISHED
 5. ESTABLISHED → <SEQ=1000><ACK=101> <CTL=ACK><DATA> ESTABLISHED

Figure 24.7 TCP connection

Note that the acknowledgement number acknowledges every sequence number up to but not
including the acknowledgement number.
 Figure 24.8 shows how the three-way handshake prevents old duplicate connection initia-
tions from causing confusion. In state 3, a duplicate SYN has been received, which is from a
previous connection. The recipient sends back an acknowledgement for this (4), but when
this is received by the originator, the originator sends back a RST (reset) packet. This causes
the recipient to go back into a LISTEN state. It will then receive the SYN packet sent in 2,
and after acknowledging it, a connection is made.
 TCP connections are half-open if one of the TCPs has closed or aborted, and the other
end is still connected. They can also occur if the two connections have become desynchro-
nised because of a system crash. This connection is automatically reset if data is sent in ei-
ther direction. This is because the sequence numbers will be incorrect, otherwise the connec-
tion will time-out.
 A connection is normally closed with the CLOSE call. A host who has closed cannot
continue to send, but can continue to RECEIVE until it is told to close by the other side. Fig-
ure 24.9 shows a typical sequence for closing a connection. Normally the application pro-
gram sends a CLOSE call for the given connection. Next, a TCP packet is sent with the FIN
bit set, the originator enters into the FIN-WAIT-1 state. When the other TCP has acknowl-
edged the FIN and sent a FIN of its own, the first TCP can ACK this FIN.

 Originator Recipient
1. CLOSED LISTEN
2. SYN-SENT → <SEQ=999><CTL=SYN>
3. (duplicate) → <SEQ=900><CTL=SYN>
4. SYN-SENT <SEQ=100><ACK=901> <CTL=SYN,ACK> ← SYN-RECEIVED
5. SYN-SENT → <SEQ=901><CTL=RST> LISTEN
6. (packet 2 received) →
7. SYN-SENT <SEQ=100><ACK=1000><CTL=SYN,ACK> ← SYN-RECEIVED
8. ESTABLISHED → <SEQ=1000><ACK=101><CTL=ACK><DATA> ESTABLISHED

Figure 24.8 TCP connection with duplicate connections

TCP and UDP 397

 Originator Recipient
 1. ESTABLISHED ESTABLISHED
 (CLOSE call)
 2. FIN-WAIT-1 → <SEQ=1000><ACK=99> <CTL=SFIN,ACK> CLOSE-WAIT
 3. FIN-WAIT-2 <SEQ=99><ACK=1001> <CTL=ACK> ← CLOSE-WAIT
 4. TIME-WAIT <SEQ=99><ACK=101><CTL=FIN,ACK> ← LAST-ACK
 5. TIME-WAIT → <SEQ=1001><ACK=102><CTL=ACK> CLOSED

Figure 24.9 TCP close connection

24.8 TCP user commands

The commands in this section characterise the interface between TCP and the application
program. Their actual implementation depends on the operating system. Section 24.9 dis-
cusses the WinSock implementation.

24.8.1 OPEN

The OPEN call initiates an active or a passive TCP connection. The basic parameters passed
and returned from the call are given next. Parameters in brackets are optional.

Parameters passed: local port, foreign socket, active/passive [, timeout]
 [, precedence] [, security/compartment] [, options])
Parameters returned: local connection name

These parameters are defined as:

• Local port – the local port to be used.
• Foreign socket – the definition of the foreign socket.
• Active/passive – a passive flag causes TCP to LISTEN, else it will actively seek a con-

nection.
• Timeout – if present, this parameter allows the caller to set up a timeout for all data sub-

mitted to TCP. If the data is not transmitted successfully within the timeout period, the
connection is aborted.

• Security/compartment – specifies the security of the connection.
• Local connection name – a unique connection name is returned which identifies the

socket.

24.8.2 SEND

The SEND call causes the data in the output buffer to be sent to the indicated connection.
Most implementations return immediately from the SEND call, even if the data has not been
sent, although some implementations will not return until either there is a timeout or the data
has been sent. The basic parameters passed and returned from the call are given next. Pa-
rameters in brackets are optional.

Parameters passed: local connection name, buffer address, byte count, PUSH
flag, URGENT flag [,timeout]

398 Computer busses

These parameters are defined as:

• Local connection name – a unique connection name which identifies the socket.
• Buffer address – address of data buffer.
• Byte count – number of bytes in the buffer.
• PUSH flag – if this flag is set then the data will be transmitted immediately, else the TCP

may wait until it has enough data.
• URGENT flag – sets the urgent pointer.
• Timeout – sets a new timeout for the connection.

24.8.3 RECEIVE

The RECEIVE call allocates a receiving buffer for the specified connection. Most implemen-
tations return immediately from the RECEIVE call, even if the data has not been received,
although some implementation will not return until either there is a timeout or the data has
been received. The basic parameters passed and returned from the call are given next. Pa-
rameters in brackets are optional.

Parameters passed: local connection name, buffer address, byte count
Parameters returned: byte count, URGENT flag, PUSH flag

These parameters are defined as:

• Local connection name – a unique connection name which identifies the socket.
• Buffer address – address of the receive data buffer.
• Byte count – number of bytes received in the buffer.
• PUSH flag – if this flag is set then the PUSH flag has been set on the received data.
• URGENT flag – if this flag is set then the URGENT flag has been set on the received

data.

24.8.4 CLOSE

The CLOSE call closes the connections and releases associated resources. All pending
SENDs will be transmitted, but after the CLOSE call has been implemented, no further
SENDs can occur. RECEIVEs can occur until the other host has also closed the connection.
The basic parameters passed and returned from the call are given next.

Parameters passed: local connection name

24.8.5 STATUS

The STATUS call determines the current status of a connection, typically listing the TCBs.
The basic parameters passed and returned from the call are given next.

Parameters passed: local connection name
Parameters returned: status data

The returned information should include status information on the following:

• local socket, foreign socket, local connection name;

TCP and UDP 399

• receive window, send window, connection state;
• number of buffers awaiting acknowledgement, number of buffers pending receipt;
• urgent state, precedence, security/compartment;
• transmission timeout.

24.8.6 ABORT

The ABORT call causes all pending SENDs and RECEIVEs to be aborted. All TCBs are
also removed and a RESET message sent to the other TCP. The basic parameters passed and
returned from the call are given next. Parameters in brackets are optional.

Parameters passed: local connection name

24.9 WinSock

24.9.1 Introduction

The Windows sockets specification describes a common interface for networked Windows
programs. WinSock uses TCP/IP communications and provides for binary and source code
compatibility for different network types.
 The Windows sockets API (WinSock application programming interface or WSA) is a
library of functions that implement the socket interface by the Berkley Software distribution
of UNIX. WinSock augments the Berkley socket implementation by adding Windows-
specific extensions to support the message-driven nature of Windows system.
 The basic implementation normally involves:

• Opening a socket – this allows for multiple connections with multiple hosts. Each socket

has a unique identifier. It normally involves defining the protocol suite, the socket type
and the protocol name. The API call used for this is socket().

• Naming a socket – this involves assigning location and identity attributes to a socket. The
API call used for this is bind().

• Associate with another socket – this involves either listening for a connection or actively
seeking a connection. The API calls used in this are listen(), connect()and ac-
cept().

• Send and receive between sockets – the API calls used in this are send(), sendto(),
recv() and recvfrom().

• Close the socket – the API calls used in this are close() and shutdown().

24.9.2 Windows sockets

The main WinSock API calls are:

socket() Creates a socket.
accept() Accepts a connection on a socket.
connect() Establishes a connection to a peer.
bind() Associates a local address with a socket.
listen() Establishes a socket to listen for incoming connection.

400 Computer busses

send() Sends data on a connected socket.
sendto() Sends data on an unconnected socket.
recv() Receives data from a connected socket.
recvfrom() Receives data from an unconnected socket.
shutdown() Disables send or receive operations on a socket.
closesocket() Closes a socket.

Figure 24.10 shows the operation of a connection of a client to a server. The server is defined
as the computer which waits for a connection, the client is the computer which initially
makes contact with the server.
 On the server the computer initially creates a socket with the socket() function, and this
is bound to a name with the bind() function. After this, the server listens for a connection
with the listen() function. When the client calls the connect() function the server then
accepts the connection with accept(). After this the server and client can send and receive
data with the send() or recv() functions. When the data transfer is complete the close-
socket() is used to close the socket.

socket()
create a socket

bind()
give socket a

name

listen()
listen for

connections

accept()
accept a new
connection

send()/recv()
send/receive

data

closesocket()
close a socket

socket()
create a socket

connect()
connect to a socket

send()/recv()
send/receive

data

closesocket()
close a socket

Server Client

Figure 24.10 WinSock connection

socket()

The socket() function creates a socket. Its syntax is

TCP and UDP 401

SOCKET socket (int af, int type, int protocol)

where
af A value of PF_INET specifies the ARPA Internet address format specifica-

tion (others include AF_IPX for SPX/IPX and AF_APPLETALK for Apple-
Talk).

type Socket specification, which is typically either SOCK_STREAM or SOCK_DGRAM.
The SOCK_STREAM uses TCP and provides a sequenced, reliable, two-way,
connection-based stream. SOCK_DGRAM uses UDP and provides for connec-
tionless datagrams. This type of connection is not recommended. A third
type is SOCK_RAW, for types other than UDP or TCP, such as for ICMP.

protocol Defines the protocol to be used with the socket. If it is zero then the caller
does not wish to specify a protocol.

If the socket function succeeds then the return value is a descriptor referencing the new
socket. Otherwise, it returns SOCKET_ERROR, and the specific error code can be tested with
WSAGetLastError. An example creation of a socket is given next:

SOCKET s;

 s=socket(PF_INET,SOCK_STREAM,0);
 if (s == INVALID_SOCKET)
 {
 cout << ″Socket error″
 }

bind()

The bind() function associates a local address with a socket. It is called before the connect
or listen function. When a socket is created with socket, it exists in a name space (address
family), but it has no name assigned. The bind function gives the socket a local association
(host address/port number). Its syntax is:

int bind(SOCKET s, const struct sockaddr FAR * addr, int namelen)

where

s A descriptor identifying an unbound socket.
namelen The length of addr.
addr The address to assign to the socket. The sockaddr structure is
 defined as follows:

 struct sockaddr
 {
 u_short sa_family;
 char sa_data[14];
 };

In the Internet address family, the sockadd_in structure is used by Windows Sockets to spec-
ify a local or remote endpoint address to which to connect a socket. This is the form of the
sockaddr structure specific to the Internet address family and can be cast to sockaddr. This

402 Computer busses

structure can be filled with the sockaddr_in structure which has the following form:

struct SOCKADDR_IN
{
 short sin_family;
 unsigned short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
}

where

sin_family must be set to AF_INET.
sin_port IP port.
sin_addr IP address.
sin_zero padding to make structure the same size as sockaddr.

If an application does not care what address is assigned to it, it may specify an Internet ad-
dress equal to INADDR_ANY, a port equal to 0, or both. An Internet address equal to
INADDR_ANY causes any appropriate network interface be used. A port value of 0 causes the
Windows sockets implementation to assign a unique port to the application with a value be-
tween 1024 and 5000.
 If no error occurs then it returns a zero value. Otherwise, it returns INVALID_SOCKET, and
the specific error code can be tested with WSAGetLastError. If an application needs to bind
to an arbitrary port outside of the range 1024 to 5000 then the following outline code can be
used:

#include <windows.h>
#include <winsock.h>
int main(void)
{

SOCKADDR_IN sin;

 SOCKET s;
 s = socket(AF_INET,SOCK_STREAM,0);

 if (s == INVALID_SOCKET)
 {
 // Socket failed
 }

 sin.sin_family = AF_INET;
 sin.sin_addr.s_addr = 0;

 sin.sin_port = htons(100); // port=100

 if (bind(s, (LPSOCKADDR)&sin, sizeof (sin)) == 0)
 {
 // Bind failed
 }
 return(0);
}

The Windows sockets htons function converts an unsigned short (u_short) from host byte
order to network byte order.

TCP and UDP 403

connect()

The connect() function establishes a connection with a peer. If the specified socket is un-
bound then unique values are assigned to the local association by the system and the socket
is marked as bound. Its syntax is

int connect (SOCKET s, const struct sockaddr FAR * name, int namelen)

where

s Descriptor identifying an unconnected socket.
name Name of the peer to which the socket is to be connected.
namelen Name length.

If no error occurs then it returns a zero value. Otherwise, it returns SOCKET_ERROR, and the
specific error code can be tested with WSAGetLastError.

listen()

The listen() function establishes a socket which listens for an incoming connection. The
sequence to create and accept a socket is:

• socket()– Creates a socket.
• listen()– this creates a queue for incoming connections and is typically used by a

server that can have more than one connection at a time.
• accept()– these connections are then accepted with accept.

The syntax of listen() is

int listen (SOCKET s, int backlog)

where

s Describes a bound, unconnected socket.
backlog Defines the queue size for the maximum number of pending connections

may grow (typically a maximum of 5).

If no error occurs then it returns a zero value. Otherwise, it returns SOCKET_ERROR, and the
specific error code can be tested with WSAGetLastError.

#include <windows.h>
#include <winsock.h>

int main(void)
{

SOCKADDR_IN sin;
SOCKET s;

 s = socket(AF_INET,SOCK_STREAM,0);
 if (s == INVALID_SOCKET)
 {

404 Computer busses

 // Socket failed
 }

 sin.sin_family = AF_INET;
 sin.sin_addr.s_addr = 0;

 sin.sin_port = htons(100); // port=100

 if (bind(s, (struct sockaddr FAR *)&sin, sizeof (sin))==SOCKET_ERROR)
 {
 // Bind failed
 }

 if (listen(s,4)==SOCKET_ERROR)
 {
 // Listen failed
 }
 return(0);
}

accept()

The accept() function accepts a connection on a socket. It extracts any pending connections
from the queue and creates a new socket with the same properties as the specified socket.
Finally, it returns a handle to the new socket. Its syntax is

SOCKET accept(SOCKET s, struct sockaddr FAR *addr, int FAR *addrlen)

where

s Descriptor identifying a socket that is in listen mode.
addr Pointer to a buffer that receives the address of the connecting entity, as

known to the communications layer.
addrlen Pointer to an integer which contains the length of the address addr.

If no error occurs then it returns a zero value. Otherwise, it returns INVALID_SOCKET, and the
specific error code can be tested with WSAGetLastError.

#include <windows.h>
#include <winsock.h>

int main(void)
{

SOCKADDR_IN sin;
SOCKET s;
int sin_len;

 s = socket(AF_INET,SOCK_STREAM,0);
 if (s == INVALID_SOCKET)
 {
 // Socket failed
 }

 sin.sin_family = AF_INET;
 sin.sin_addr.s_addr = 0;
 sin.sin_port = htons(100); // port=100

TCP and UDP 405

 if (bind(s, (struct sockaddr FAR *)&sin, sizeof (sin))==SOCKET_ERROR)
 {
 // Bind failed
 }

 if (listen(s,4)<0)
 {
 // Listen failed
 }
 sin_len = sizeof(sin);
 s=accept(s,(struct sockaddr FAR *) & sin,(int FAR *) &sin_len);
 if (s==INVALID_SOCKET)
 {
 // Accept failed
 }
 return(0);
}

send()

The send() function sends data to a connected socket. Its syntax is:

int send (SOCKET s, const char FAR *buf, int len, int flags)

where

s Connected socket descriptor.
buf Transmission data buffer.
len Buffer length.
flags Calling flag.

The flags parameter influences the behaviour of the function. These can be

MSG_DONTROUTE Specifies that the data should not be subject to routing.
MSG_OOB Send out-of-band data.

If send() succeeds then the return value is the number of characters sent (which can be less
than the number indicated by len). Otherwise, it returns SOCKET_ERROR, and the specific error
code can be tested with WSAGetLastError.

#include <windows.h>
#include <winsock.h>
#include <string.h>
#define STRLENGTH 100

int main(void)
{

SOCKADDR_IN sin;
SOCKET s;
int sin_len;
char sendbuf[STRLENGTH];

 s = socket(AF_INET,SOCK_STREAM,0);
 if (s == INVALID_SOCKET)

406 Computer busses

 {
 // Socket failed
 }
 sin.sin_family = AF_INET;
 sin.sin_addr.s_addr = 0;
 sin.sin_port = htons(100); // port=100
 if (bind(s, (struct sockaddr FAR *)&sin, sizeof (sin))==SOCKET_ERROR)
 {
 // Bind failed
 }

 if (listen(s,4)<0)
 {
 // Listen failed
 }
 sin_len = sizeof(sin);

 s=accept(s,(struct sockaddr FAR *) & sin,(int FAR *) &sin_len);

 if (s<0)
 {
 // Accept failed
 }

 while (1)
 {
 // get message to send and put into sendbuff
 send(s,sendbuf,strlen(sendbuf),80);
 }
 return(0);
}

recv()

The recv() function receives data from a socket. It waits until data arrives and its syntax is:

int recv(SOCKET s, char FAR *buf, int len, int flags)

where

s Connected socket descriptor.
buf Incoming data buffer.
len Buffer length.
flags Specifies the method by which the data is received.

If recv() succeeds then the return value is the number of bytes received (a zero identifies
that the connection has been closed). Otherwise, it returns SOCKET_ERROR, and the specific
error code can be tested with WSAGetLastError.
 The flags parameter may have one of the following values:

MSG_PEEK Peek at the incoming data. Any received data is copied into the buffer, but
not removed from the input queue.

MSG_OOB Process out-of-band data.

#include <windows.h>
#include <winsock.h>

TCP and UDP 407

#define STRLENGTH 100

int main(void)
{

SOCKADDR_IN sin;
SOCKET s;
int sin_len,status;
char recmsg[STRLENGTH];

 s = socket(AF_INET,SOCK_STREAM,0);

 if (s == INVALID_SOCKET)
 {
 // Socket failed
 }

 sin.sin_family = AF_INET;
 sin.sin_addr.s_addr = 0;

 sin.sin_port = htons(100); // port=100

 if (bind(s, (struct sockaddr FAR *)&sin, sizeof (sin))==SOCKET_ERROR)
 {
 // Bind failed
 }

 if (listen(s,4)<0)
 {
 // Listen failed
 }
 sin_len = sizeof(sin);

 s=accept(s,(struct sockaddr FAR *) & sin,(int FAR *) &sin_len);

 if (s<0)
 {
 // Accept failed
 }
 while (1)
 {
 status=recv(s,recmsg,STRLENGTH,80);

 if (status==SOCKET_ERROR)
 {
 // no socket
 break;
 }
 recmsg[status]=NULL; // terminate string
 if (status)
 {
 // szMsg contains received string
 }
 else
 {
 break;
 // connection broken
 }
 }
 return(0);
}

408 Computer busses

shutdown()

The shutdown() function disables send or receive operations on a socket and does not close
any opened sockets. Its syntax is

int shutdown(SOCKET s, int how)

where

s Socket descriptor.
how Flag that identifies operation types that will no longer be allowed. These are:

 0 – Disallows subsequent receives.
 1 – Disallows subsequent sends.
 2 – Disables send and receive.

If no error occurs then it returns a zero value. Otherwise, it returns INVALID_SOCKET, and the
specific error code can be tested with WSAGetLastError.

closesocket()

The closesocket() function closes a socket. Its syntax is:

int closesocket (SOCKET s);

where

s Socket descriptor.

If no error occurs then it returns a zero value. Otherwise, it returns INVALID_SOCKET, and the
specific error code can be tested with WSAGetLastError.

24.10 Visual Basic socket implementation

Visual Basic supports a WinSock control and allows the connection of hosts over a network.
It supports both UDP and TCP. Figure 24.11 shows a sample Visual Basic screen with a
WinSock object (in this case, it is named Winsock1). To set the protocol used then either
select the properties window on the WinSock object, click protocol and select sckTCPProto-
col, or sckUDPProtocol. Otherwise, within the code it can be set to TCP with:

Winsock1.Protocol = sckTCPProtocol

The WinSock object has various properties, such as:

obj.RemoteHost Defines the IP address or domain name of the remote host.
obj.LocalPort Defines the local port number.

The methods that are used with the WinSock object are:

TCP and UDP 409

obj.Connect Connects to a remote host (client invoked).
obj.Listen Listens for a connection (server invoked).
obj.GetData Reads data from the input steam.
obj.SendData Sends data to an output stream.

The main events are:

ConnectionRequest Occurs when a remote host wants to make a connection with a
server.

DataArrival Occurs when data has arrived from a connection (data is then
read with GetData).

Figure 24.11 WinSock object

24.10.1 Creating a server

A server must listen for connection. To do this, do the following:

1 Create a new standard EXE project.
2 Change the name of the default form to myServer.
3 Change the caption of the form to ‘Server Application’ (see Figure 24.12).
4 Put a WinSock control on the main form and change its name to myTCPServer.
5 Add two TextBox controls to the form. Name the first SendTextData, and the second

ShowText (see Figure 24.12).

410 Computer busses

6 Add the code given below to the form.

Private Sub Form_Load()
 ' Set the local port to 1001 and listen for a connection
 myTCPServer.LocalPort = 1001
 myTCPServer.Listen
 myClient.Show
End Sub

Private Sub myTCPServer_ConnectionRequest (ByVal requestID As Long)
 ' Check state of socket, if it is not closed then close it.
 If myTCPServer.State <> sckClosed Then myTCPServer.Close
 ' Accept the request with the requestID parameter.
 myTCPServer.Accept requestID
End Sub

Private Sub SendTextData_Change()
 ' SendTextData contains the data to be sent.
 ' This data is setn using the SendData method
 myTCPServer.SendData = SendTextData.Text
End Sub

Private Sub myTCPServer_DataArrival (ByVal bytesTotal As Long)
 ' Read incoming data into the str variable,
 ' then display it to ShowText
 Dim str As String
 myTCPServer.GetData = str
 ShowText.Text = str
End Sub

Figure 24.12 Server set-ups

Figure 24.13 shows the server setup.

TCP and UDP 411

Figure 24.13 Server form

24.10.2 Creating a client

The client must actively seek a connection. To create a client, do the following:

1 Add a new form to the project, and name it myClient.
2 Change the caption of the form to ‘Client Application’.
3 Add a WinSock control to the form and name it myTCPClient.
4 Add two TextBox controls to the form. Name the first SendTextData, and the second

ShowText.
5 Draw a CommandButton control on the form and name it cmdConnect.
6 Change the caption of the CommandButton control to Connect.
7 Add the code given below to the form.

Private Sub Form_Load()
 ' In this case it will connect to 146.176.151.130
 ' change this to the local IP address or DNS of the local computer
 myTCPClient.RemoteHost = "146.176.151.130"
 myTCPClient.RemotePort = 1001
End Sub

Private Sub cmdConnect_Click()
 ' Connect to the server
 myTCPClient.Connect
End Sub

Private Sub SendTextData_Change()
 tcpClient.SendData txtSend.Text

412 Computer busses

End Sub

Private Sub tcpClient_DataArrival (ByVal bytesTotal As Long)
 Dim str As String
 myTCPClient.GetData str
 ShowText.Text = str
End Sub

Figure 24.14 Client form

The program, when it is run, will act as a client and a server. Any text typed in the
SendTxtData TextBox will be sent to the ShowText TextBox on the other form.

24.10.3 Multiple connections

In Visual Basic, it is also possible to create multiple connections to a server. This is done by
creating multiple occurrences of the server object. A new one is created every time there is a
new connection (with the Connection_Request event). Each new server accepts the incoming
connection. The following code, which has a WinSock control on a form called multServer,
is given below.

Private ConnectNo As Long

Private Sub Form_Load()
 ConnectNo = 0
 multServer(0).LocalPort = 1001
 multServer(0).Listen
End Sub

Private Sub multServer_ConnectionRequest _

TCP and UDP 413

 (Index As Integer, ByVal requestID As Long)
 If Index = 0 Then
 ConnectNo = ConnectNo + 1
 Load multServer(ConnectNo)
 multServer(ConnectNo).LocalPort = 0
 multServer(ConnectNo).Accept requestID
 Load txtData(ConnectNo)
 End If
End Sub

24.10.4 Connect event

The Connect event connects to a server. If an error occurs then a flag (ErrorOccurred) is set
to True, else it is False. Its syntax is

Private Sub object.Connect(ErrorOccurred As Boolean)

24.10.5 Close event

The Close event occurs when the remote computer closes the connection. Applications
should use the Close method to correctly close their connection. Its syntax is

object_Close()

24.10.6 DataArrival event

The DataArrival event occurs when new data arrives, and returns the number of bytes read
(bytesTotal). Its syntax is

object_DataArrival (bytesTotal As Long)

24.10.7 Bind method

The Bind method specifies the local port (LocalPort) and the local IP address (LocalIP) to be
used for TCP connections. Its syntax is

object.Bind LocalPort, LocalIP

24.10.8 Listen method

The Listen method creates a socket and goes into listen mode (for server applications). Its
stays in this mode until a ConnectionRequest event occurs, which indicates an incoming con-
nection. After this, the Accept method should be used to accept the connection. Its syntax is:

 object.Listen

24.10.9 Accept method

The Accept method accepts incoming connections after a ConnectionRequest event. Its syn-
tax is

object.Accept requestID

The requestID parameter is passed into the ConnectionRequest event and is used with the

414 Computer busses

Accept method.

24.10.10 Close method

The Close method closes a TCP connection. Its syntax is

object.Close

24.10.11 SendData method

The SendData methods sends data (Data) to a remote computer. Its syntax is

object.SendData Data

24.10.12 GetData method

The GetData method gets data (Data) from an object. Its syntax is

object.GetData data, [type,] [maxLen]

24.11 Exercises

24.11.1 Which of the following is not part of a TCP header:

 (a) Host IP address (b) Time-to-live field
 (c) Host port number (d) Acknowledgement number

24.11.2 Which port does a TELNET server listen to:

 (a) 21 (b) 25
 (c) 25 (d) 80

24.11.3 Which port does an Email server (using SMTP) listen to:

 (a) 21 (b) 25
 (c) 25 (d) 80

24.11.4 Which port does a WWW server (using HTTP) listen to:

 (a) 21 (b) 25
 (c) 25 (d) 80

24.11.5 Which port does an FTP server listen to:

 (a) 21 (b) 25
 (c) 25 (d) 80

24.11.6 What is the main difference between UDP and TCP:

 (a) TCP uses sequence numbers, makes connections and uses acknowledge-

TCP and UDP 415

ments.
 (b) They use different addressing schemes.
 (c) They use different port allocations.
 (d) UDP only supports one-way traffic, while TCP supports multiplexed traf-

fic.

24.11.7 What is the main method that TCP uses to create a reliable connection:

 (a) Enhanced error correction
 (b) Specially coded data
 (c) Encrypted data
 (d) Sequence numbers and acknowledgements

24.11.8 How is the initial sequence number of a TCP packet generated:

 (a) Randomly
 (b) From a 32-bit clock which is updated every 4 µs
 (c) From a universal Internet-based clock
 (d) From the system clock

24.11.9 How many packets are exchanged in setting up an established TCP connection:

 (a) 1 (b) 2
 (c) 3 (d) 4

24.11.10 Outline the operation of the three-way handshaking.

24.11.11 What advantages does TCP have over UDP. Investigate server applications which

use UDP.

24.11.12 If possible, implement a basic client/server application with either C++ or Visual

Basic. As a test, run the client and the server on the same computer. (Note the IP
address of the computer as this is required by the client.)

24.11.13 Change the program in Exercise 24.11.12 so that the client and the server run on

different computers (note the IP address of the server as this is required by the cli-
ent). If possible, run the program on different network segments.

 For the following questions, download a program from the WWW which connects

to a specified port on a specified server.

24.11.14 Connect to a WWW server using port 13. This port should return the current date

and time.

24.11.15 Connect to a WWW server using port 19.

24.11.16 Connect two computers over a network and set up a chat connection. One of the

computers should be the chat server and the other the chat client. Modify it so that
the server accepts calls from one or many clients.

416 Computer busses

24.12 TCP/IP services reference

Port Service Comment Port Service Comment
1 TCPmux 7 echo
9 discard Null 11 systat Users
13 daytime 15 netstat
17 qotd Quote 18 msp Message send protocol
19 chargen ttytst source 21 ftp
23 telnet 25 smtp Mail
37 time Timserver 39 rlp Resource location
42 nameserver IEN 116 43 whois Nicname
53 domain DNS 57 mtp Deprecated
67 bootps BOOTP server 67 bootps
68 bootpc BOOTP client 69 tftp
70 gopher Internet Gopher 77 rje Netrjs
79 finger 80 www WWW HTTP
87 link Ttylink 88 kerberos Kerberos v5
95 supdup 101 hostnames
102 iso-tsap ISODE 105 csnet-ns CSO name server
107 rtelnet Remote Telnet 109 pop2 POP version 2
110 pop3 POP version 3 111 sunrpc
113 auth Rap ID 115 sftp
117 uucp-path 119 nntp USENET
123 ntp Network Timel 137 netbios-ns NETBIOS name service
138 netbios-dgm NETBIOS 139 netbios-ssn NETBIOS session
143 imap2 161 snmp SNMP
162 snmp-trap SNMP trap 163 cmip-man ISO management over IP
164 cmip-agent 177 xdmcp X display manager
178 nextstep NeXTStep 179 bgp BGP
191 prospero 194 irc Internet relay chat
199 smux SNMP multiplexor 201 at-rtmp AppleTalk routing
202 at-nbp AppleTalk name binding 204 at-echo AppleTalk echo
206 at-zis AppleTalk zone information 210 z3950 NISO Z39.50 database
213 ipx IPX 220 imap3 Interactive mail access
372 ulistserv UNIX Listserv 512 exec Comsat 513 login
513 who Whod 514 shell No passwords used
514 syslog 515 printer Line printer spooler
517 talk 518 ntalk
520 route RIP 525 timed Timeserver
526 tempo Newdate 530 courier Rpc
531 conference Chat 532 netnews Readnews
533 netwall Emergency broadcasts 540 uucp Uucp daemon
543 klogin Kerberized ‘rlogin’ (v5) 544 kshell Kerberized ‘rsh’ (v5)

24.13 Notes from the author

In this chapter I have presented the two opposite ends of code development for TCP/IP com-
munications. The C++ code is complex, but very powerful, and allows for a great deal of
flexibility. On the other hand, the Visual Basic code is simple to implement but is difficult to

TCP and UDP 417

implement for non-typical applications. Thus, the code used tends to reflect the type of appli-
cation. In many cases Visual Basic gives an easy-to-implement package, with the required
functionality. I’ve seen many a student wilt at the prospect of implementing a Microsoft Win-
dows program in C++. ‘Where do I start’, is always the first comment, and then ‘How do I
do text input’, and so on. Visual Basic, on the other hand, has matured into an excellent de-
velopment system which hides much of the complexity of Microsoft Windows away from the
developer. So, don’t worry about computer language snobbery. Pick the best language to
implement the specification.
 UDP transmission can be likened to sending electronic mail. In most electronic mail
packages the user can request that a receipt is sent back to the originator when the elec-
tronic mail has been opened. This is equivalent to TCP, where data is acknowledged after a
certain amount of data has been sent. If the user does not receive a receipt for their elec-
tronic mail then they will send another one, until it is receipted or until there is a reply. UDP
is equivalent to a user sending an electronic mail without asking for a receipt, thus the origi-
nator has no idea if the data has been received, or not.
 TCP/IP is an excellent method for networked communications, as IP provides the routing
of the data, and TCP allows acknowledgements for the data. Thus, the data can always be
guaranteed to be correct. Unfortunately there is an overhead in the connection of the TCP
socket, where the two communicating stations must exchange parameters before the connec-
tion is made, then they must maintain and acknowledge received TCP packets. UDP has the
advantage that it is connectionless. So there is no need for a connection to be made, and data
is simply thrown in the network, without the requirement for acknowledgments. Thus UDP
packets are much less reliable in their operation, and a sending station cannot guarantee
that the data is going to be received. UDP is thus useful for remote data acquisition where
data can be simply transmitted without it being requested or without a TCP/IP connection
being made.
 The concept of ports and sockets is important in TCP/IP. Servers wait and listen on a
given port number. They only read packets which have the correct port number. For exam-
ple, a WWW server listens for data on port 80, and an FTP server listens for port 21. Thus a
properly set up communication network requires a knowledge of the ports which are ac-
cessed. An excellent method for virus writers and hackers to get into a network is to install a
program which responds to a given port which the hacker uses to connect to. Once into the
system they can do a great deal of damage. Programming languages such as Java have
built-in security to reduce this problem.

Networks

25.1 Introduction

Most computers in organisations connect to a network using a LAN. These networks nor-
mally consist of a backbone, which is the common link to all the networks within the organi-
zation. This backbone allows users on different network segments to communicate and al-
lows data into and out of the local network. Figure 25.1 shows a local area network which
contains various segments: LAN A, LAN B, LAN C, LAN D, LAN E and LAN F. These are
connected to the local network via the BACKBONE 1. Thus, if LAN A talks to LAN E then
the data must travel out of LAN A, onto BACKBONE 1, then into LAN C and through onto
LAN E.
 Networks are partitioned from other networks with a bridge, a gateway or a router. A
bridge links a network of one type to an identical type, such as Ethernet to Ethernet, or To-
ken Ring to Token Ring. A gateway connects two dissimilar types of networks and routers
operate in a similar way to gateways and can either connect to two similar or dissimilar net-
works. The essential operation of a gateway, bridge or router is that they only allow data
traffic through that is intended for another network, which is outside the connected network.

LAN A LAN C LAN D

LAN E

LAN B

Bridge
Gateway
or Router

LAN F

BACKBONE 1

BACKBONE 2

Local network

Local network

Local network

Local network Local network
BACKBONE3

Bridge
Gateway
or Router

Figure 25.1 Interconnection of local networks

25

420 Computer busses

This filters traffic and stops traffic, not intended for the network, from clogging-up the back-
bone. Most modern bridges, gateways and routers are intelligent and can automatically de-
termine the topology of the network.
 Spanning-tree bridges have built-in intelligence and can communicate with other bridges.
They can then build up a picture of the interconnected networks. So, if more than one path
exists between individual segments, the bridge automatically finds alternate routes. This is
useful when a fault develops on a route or a route becomes too heavily loaded. Conventional
bridges can cause frames to loop around forever.

25.1.1 Peer-to-peer and client/server

An important concept is the differentiation between a peer-to-peer connection and a cli-
ent/server connection. A peer-to-peer connection allows users on a local network access to a
local computer. Typically, this might be access to:

Local printers – Printers, local to a computer, can be accessed by other users
if the printer is shareable. This can be password protected, or not. Shareable
printers on a Microsoft network have a small hand under the icon.

Local disk drives and folders – The disk drives, such as the hard disk or CD-
ROM drives can be accessed if they are shareable. Normally the drives must
be shareable. On a Microsoft network a drive can be made shareable by select-
ing the drive and selecting the right-hand mouse button, then selecting the
Sharing option. User names and passwords can be set-up locally or can be
accessed from a network server. Typically, only the local computer grants
access to certain folders, whereas others are not shared.

These shared resources can also be mounted as disk drives to the remote computer. Thus, the
user of the remote computer can simply access resources on the other computers as if they
were mounted locally. This option is often the best when there is a small local network, as it
requires the minimum of set-up and does not need any complicated server set-ups.
 A client/server network has a central server which is typically used to:

• Store usernames, group names and passwords.
• Run print queues for networked printers.
• Allocate IP addresses for Internet accesses.
• Provide centralised file services, such as hard disks or networked CD-ROM drives.
• Provide system back-up facilities, such as CD-R disk drives and DAT tape drives.
• Centralise computer settings.
• Provide access to other centralised peripherals, such as networked faxes, dial-in network

connections, and so on.
• Provide WWW and TCP/IP services, such as remote login and file transfer.

If in doubt, a peer-to-peer network is normally the best for a small office environment. Care
must be taken, though, when setting up the attributes of the shared resources. Figure 25.2
shows an example of the sharing setting for a disk drive. It can be seen that the main attrib-
utes are:

Networks 421

• Read only – this should be used when the remote user only requires to copy or execute
files. The remote user cannot modify any of the files.

• Full – this option should only be used when the remote user has full access to the files
and can copy, erase or modify the files.

• Depends on password – in this mode the remote user must provide a password for either
read-only access or full access.

If the peer-to-peer network has a local server, such as Novell NetWare or Windows NT/2000
then access can be provided for certain users and/or groups, if they provide the correct pass-
word.

Figure 25.2 File access rights

25.2 Network topologies

There are three basic topologies for LANs, which are shown in Figure 25.3. These are

a star network, a ring network and a bus network.

There are other topologies which are either a combination of two or more topologies or are
derivatives of the main types. A typical topology is a tree topology, that is essentially a com-
bined star and a bus network, as illustrated in Figure 25.4. A concentrator (or hub) is used to
connect the nodes to the network.

422 Computer busses

Central
server

Bus network

Ring network

Figure 25.3 Network topologies

Concentrator
(or hub)

Network backbone

Workgroup
- with printer
- file server
- etc

Figure 25.4 Tree topology

25.2.1 Star network

In a star topology, a central server switches data around the network. Data traffic between
nodes and the server will thus be relatively low. Its main advantages are:

Networks 423

• As the data rate is relatively low between central server and the node, a low-
specification twisted-pair cable can be used to connect the nodes to the server.

• A fault on one of the nodes will not affect the rest of the network. Typically, mainframe
computers use a central server with terminals connected to it.

The main disadvantage of this type of topology is that the network is highly dependent upon
the operation of the central server. If it were to slow significantly then the network becomes
slow. In addition, if it were to become unoperational then the complete network would shut
down.

25.2.2 Ring network

In a ring network, computers link together to form a ring. To allow an orderly access to the
ring, a single electronic token passes from one computer to the next around the ring, as illus-
trated in Figure 25.5. A computer can only transmit data when it captures the token. In a
manner similar to the star network, each link between nodes is a point-to-point link and al-
lows the usage of almost any type of transmission medium. Typically, twisted-pair cables to
allow a bit rate of up to 16 Mbps, but coaxial and fibre optic cables are normally used for
extra reliability and higher data rates.
 A typical ring network is IBM Token Ring. The main advantage of token ring networks is
that all nodes on the network have an equal chance of transmitting data. Unfortunately it suf-
fers from several problems; the most severe is that if one of the nodes goes down then the
whole network may go down.

Nodes can only
transmit data when
they capture
the token

Electronic token
is passed from
node to node

Figure 25.5 Token passing ring network

25.2.3 Bus network

A bus network uses a multidrop transmission medium, as shown in Figure 25.6. All nodes on
the network share a common bus and all share communications. This allows only one device
to communicate at a time. A distributed medium access protocol determines which station is
to transmit. As with the ring network, data frames contain source and destination addresses,
where each station monitors the bus and copies frames addressed to itself.
 Twisted-pair cables give data rates up to 100 Mbps, whereas, coaxial and fibre optic ca-
bles give higher bit rates and longer transmission distances. A bus network is a good com-

424 Computer busses

promise over the other two topologies as it allows relatively high data rates. Also, if a node
goes down, it does not affect the rest of the network. The main disadvantage of this topology
is that it requires a network protocol to detect when two nodes are transmitting at the same
time. It also does not cope well with heavy traffic rates. A typical bus network is Ethernet
2.0.

Common bus

All computers have access to
a common bus at the same time

Figure 25.6 Bus topology

25.3 OSI model

A major problem in the electronics industry is the interconnection of equipment and soft-
ware compatibility. Other problems can occur in the connection of electronic equipment in
one part of the world to another, in another part. For these reasons, the International Stan-
dards Organization (ISO) developed a model known as the OSI (open systems interconnec-
tion) model. Its main objects were to:

• Allow manufacturers of different systems to interconnect their equipment through stan-

dard interfaces.
• Allow software and hardware to integrate well and be portable on differing systems.
• Create a model which all the countries of the world use.

Figure 25.7 shows the OSI model. Data passes from the top layer of the sender to the bottom
and then up from the bottom layer to the top on the recipient. Each layer on the sender,
though, communicates directly the recipient’s corresponding layer. This creates a virtual data
flow between layers.
 The top layer (the application layer) initially gets data from an application and appends it
with data that the recipients application layer reads. This appended data passes to the next
layer (the presentation layer). Again, it appends it with its own data, and so on, down to the
physical layer. The physical layer is then responsible for transmitting the data to the recipi-
ent. The data sent can be termed as a data frame, whereas data sent by the network or trans-
port layer is typically referred to as a data packet.
 The basic function of each of the layers are:

1. Physical. Defines the electrical characteristics of the communications channel and the

transmitted signals, such as voltage levels, connector types, cabling, and so on.

Networks 425

2. Data link. Ensures that the transmitted bits are received in a reliable way, such as adding
extra bits to define the start and end of a data frame, adding extra error detec-
tion/correction bits and ensuring that multiple nodes do not try to access a common com-
munication channel at the same time.

3. Network. Routes data frames through a network. If data packets require to go out of a
network then the transport layer routes them through interconnected networks. Its task
may involve, for example, splitting data for transmission and re-assembling it upon
reception. The IP part of TCP/IP is involved with the network layer.

4. Transport. Network transparent data transfer and transmission protocol. It supports the
transmission of multiple streams from a single computer. The TCP part of TCP/IP is in-
volved with the transport layer.

5. Session. Provides an open communications path with the other system. It involves the
setting up, maintaining and closing down of a session. The communication channel and
the internetworking of the data should be transparent to the session layer. A typical ses-
sion protocol is telnet, which allows for the remote login over a network.

6. Presentation. Uses a set of translations that allows the data to be interpreted properly. It
may have to translate between two systems if they use different presentation standards,
such as different character sets or differing character codes. The presentation layer can
also add data encryption for security purposes.

7. Application. Provides network services to application programs, such as file transfer and
electronic mail.

Figure 25.8 shows how typical networking systems fit into the OSI model. The data link and
physical layers are covered by networking technologies such as Ethernet, Token Ring and
FDDI. The networking layer is covered by IP (internet protocol) and transport by TCP
(transport control protocol).

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

D N T S P A D

N T S P A

T S P A

S P A

P A

A

Sender Receiver

Virtual
data flow

Actual
data flow

Figure 25.7 Seven-layer OSI model

426 Computer busses

Application

Presentation

Session

Transport

Network

Data link

Physical

TCP or SPX

IP or IPX

Ethernet/
Token Ring/
ISDN/FDDI/
ATM

Figure 25.8 Typical technologies used in network communications

25.4 Routers, bridges and repeaters

Networks connect to other networks through repeaters, bridges or routers. A repeater corre-
sponds to the physical layer of the OSI model and routes data from one network segment to
another. Bridges route data using the data link layer (with the media access control address
(MAC) address), and routers route data using the network layer (that is, using a network ad-
dress, such as an IP address). Normally, at the data-link layer, the transmitted data is known
as a data frame, while at the network layer it is referred to as a data packet. Figure 25.9 illus-
trates the three interconnection types.

25.4.1 Repeaters

All network connections suffer from a reduction in signal strength (attenuation) and digital
pulse distortion. Thus, for a given cable specification and bit rate, each connection will have
a maximum length of cable that can be used to transmit the data reliably. Repeaters can be
used to increase the maximum interconnection length, and may do the following:

• Clean signal pulses.
• Pass all signals between attached segments.
• Boost signal power.
• Possibly translate between two different media types (such as fibre to twisted-pair cable).

Networks 427

Router

NetworkNetwork

Data LinkData Link

PhysicalPhysical
A router routes with
the network address
(such as the IP address)

Data LinkData Link

PhysicalPhysical
A bridge routes with
the MAC address

PhysicalPhysical A repeater boosts the
signal

Repeater

Bridge

Figure 25.9 Repeaters, bridges and routers

25.4.2 Bridges

Bridges filter input and output traffic so that only data frames distended for a network are
actually routed into that network and only data frames destined for the outside are allowed
out of the network.
 The performance of a bridge is governed by two main factors:

• The filtering rate. A bridge reads the MAC address of the Ethernet/Token ring/FDDI

node and then decides if it should forward the frames into the network. Filter rates for
bridges range from around 5000–70 000 pps (packets per second).

• The forward rate. Once the bridge has decided to route the frame into the internetwork,
the bridge must forward the frame onto the destination network. Forwarding rates range
from 500 to 140 000 pps and a typical forwarding rate is 90 000 pps.

A typical Ethernet bridge has the following specifications:

Bit rate 10 Mbps
Filtering rate 17 500 pps
Forwarding rate 11 000 pps
Connectors Two DB15 AUI (female), one DB9 male console port, two BNC

 (for 10BASE2) or two RJ-45 (for 10BASE-T).
Algorithm Spanning tree protocol. This automatically learns the addresses of all

devices on both interconnected networks and builds a separate table for
each network.

428 Computer busses

25.4.3 Spanning tree architecture (STA) bridges

The IEEE 802.1 standard has defined the spanning tree algorithm. It is normally imple-
mented as software on STA-compliant bridges. On power-up they automatically learn the
addresses of all the nodes on both interconnected networks and build up a separate table for
each network.
 They can also support two connections between two LANs so that when the primary path
becomes disabled, the spanning tree algorithm re-enables the previously disabled redundant
link, as illustrated in Figure 25.10.

Router
2

Network
A

Router
3

Router
1

Network
B

Spanning tree architecture routers determine
the topology of the network and can enable
the backup route between Network A and
Network B when the primary route is d isab led

Primary route

Backup route

Figure 25.10 Spanning tree routers

25.4.4 Source route bridging

With source route bridging a source device, not the bridge, is used to send special explorer
packets, these are then used to determine the best path to the destination. Explorer packets
are sent out from the source routing bridges until they reach their destination workstation.
Each source routing bridge along the route enters its address in the routing information field
(RIF) of the explorer packet. The destination node then sends back the completed RIF field
to the source node. When the source device has determined the best path to the destination, it
sends the data message along with the path instructions to the local bridge. It then forwards
the data message according to the received path instructions.

25.4.5 Routers

Routers examine the network address field and determine the best route for the packet. They
have the great advantage in that they normally support several different types of network
layer protocols.
 Routers need to communicate with other routers so that they can exchange routing infor-
mation. Most network operating systems have associated routing protocols which support the
transfer of routing information. Typical routing protocols using Internet communications are:

• BGP (border gateway protocol).
• EGP (exterior gateway protocol).

Networks 429

• OSPF (open shortest path first).
• RIP (routing information protocol).

Most routers support RIP and EGP. In the past, RIP was the most popular router protocol
standard. Its widespread use is due, in no small part, to the fact that it was distributed along
with the Berkeley Software Distribution (BSD) of UNIX (from which most commercial ver-
sions of UNIX are derived). It suffers from several disadvantages and has been largely re-
placed by OSFP and EGB. These newer protocols have the advantage over RIP in that they
can handle large internetworks, as well as reducing routing table update traffic.
 RIP uses a distance vector algorithm which measures the number of network jumps
(known as hops), up to a maximum of 16, to the destination router. This has the disadvantage
that the smallest number of hops may not be the best route from source to destination. The
OSPF and EGB protocol uses a link state algorithm that can decide between multiple paths to
the destination router. These are based, not only on hops, but on other parameters such as
delay capacity, reliability and throughput.
 With distance vector routing each router maintains tables by communicating with neigh-
bouring routers. The number of hops in its own table are then computed as it knows the
number of hops to local routers, as illustrated in Figure 25.11. Unfortunately, the routing
table can take some time to be updated when changes occur, because it takes time for all the
routers to communicate with each other (known as slow convergence).

Router
1

Router
2

Router
3

Router
4

Router
5

Router Hops
2 1
3 1
4 2
5 3

Router Hops
1 1
3 1
4 2
5 3

Router Hops
1 1
2 1
4 1
5 2

Router Hops
1 2
2 2
3 1
5 1

Router Hops
1 2
2 2
3 2
4 1

Routing table for
Router 1 is send to
neighbouring routers

Figure 25.11 Routing tables with number of hops

25.5 Network cable types

The cable type used on a network depends on several parameters, including:

• The data bit rate.

430 Computer busses

• The reliability of the cable.
• The maximum length between nodes.
• The possibility of electrical hazards and tolerance to harsh conditions.
• Power loss in the cables.
• Expense and general availability of the cable.
• Ease of connection, maintenance and ease of running cables.

The main types of cables used in networks are twisted-pair, coaxial and fibre optic; these are
illustrated in Figure 25.12. Twisted-pair and coaxial cables transmit electrical signals,
whereas fibre optic cables transmit light pulses.

����
����������������
��������

����
����
����

����
����
����

����
����������������
��������

����
����
����

����������������������
����������������������
����������������������

����������������������
����������������������
����������������������

M etal sheath Inner
conducto r

Insulating outer conductor

C oax ial
cable

Tw isted-pair
cable

Inner cladding
(g lass)Inner fib re

(g lass)

O uter cladding
(PVC)

Fibre
op tic
cable

Figure 25.12 Typical network cable types

The basic specification for the cable types are:

• Twisted-pair cables – unshielded twisted-pair (UTP) cables are not shielded and thus

interfere with nearby cables, whereas, shielded twisted-pair (STP) cables have a less ef-
fect on nearby cables. Public telephone lines generally use UTP cables. In LANs, they
are generally used up to bit rates of 100 Mbps and with maximum lengths of 100 m.

• Coaxial cables – these have a grounded metal sheath around the signal conductor. This
limits the amount of interference between cables and thus allows higher data rates. Typi-
cally, they are used at bit rates of 100 Mbps for maximum lengths of 1 km.

• Fibre optic cables – having the highest specifications of the three types, they allow ex-
tremely high bit rates over long distances. Fibre optic cables do not interfere with nearby
cables and give greater security, give more protection from electrical damage from by
external equipment, are more resistance to harsh environments and are safer in hazard-
ous environments. A typical bit rate for a LAN using fibre optic cables is 100 Mbps, in
other applications this can reach several gigabits/per second. The maximum length of the
fibre optic cable depends on the transmitter and receiver electronics, but a single length
of 20 km is possible.

Networks 431

25.6 Exercises

The following questions are multiple choice. Please select from a to d.

25.6.1 The cable type which offers the highest bit rate is:

 (a) Fibre optic cable (b) Twisted pair cable
 (c) Coaxial cable (d) Untwisted pair cable

25.6.2 Which of the following is the main disadvantage of a star network:

 (a) That the data transmitted between the central server and the

 node is relatively high compared to other network topologies
 (b) That the network is reliant on a central server
 (c) All nodes compete for the network
 (d) Nodes can only transmit data once they have a token

25.6.3 Which of the following is the main disadvantage of a ring network:

 (a) That the data transmitted between the central server and the

 node is relatively high compared to other network topologies
 (b) That the network is reliant on a central server
 (c) All nodes compete for the network
 (d) A break in the ring stops data from being transmitted

25.6.4 Which of the following is the main disadvantage of a bus network:

 (a) Nodes can only transmit data once they have a token
 (b) That the network is reliant on a central server
 (c) All nodes compete for the network
 (d) A break in the ring stops data from being transmitted

25.6.5 On a network which address does a bridge route with:

 (a) IP address
 (b) Interrupt address
 (c) MAC address
 (d) Source address

25.6.6 On a network which address does a router route with:

 (a) IP address
 (b) Interrupt address
 (c) MAC address
 (d) Source address

25.6.7 Which of the following best describes a peer-to-peer network:

432 Computer busses

 (a) Resources are centralised on a server
 (b) Local resources, such as memory and processor, are shared between users

over the network
 (c) Local resources, such as disk drives and printers, are shared between users

over the network
 (d) Internet connections are allocated centrally

25.6.8 Which of the following best describes a client/server network:

 (a) Resources are centralised on a server
 (b) Local resources, such as memory and processor, are shared between users

 (c) Local resources, such as disk drives and printers, are shared between users
 (d) Internet connections are allocated centrally

25.6.9 Explain how peer-to-peer networks differ from server-based networks. When

might peer-to-peer networks be used and how must they be carefully set up.

25.6.10 If possible, set up a peer-to-peer connection between two computers and share

some folders.

25.6.11 Locate a LAN within an organisation, such as a college or university network, and

determine the cables that are used.

25.7 Notes from the author

Many of the great inventions/developments of our time were things that were not really pre-
dicted, such as CD-ROMs, RADAR, silicon transistors, fibre optic cables, and, of course, the
Internet. The Internet itself is basically an infrastructure of interconnected networks which
run a common protocol. The nightmare of interfacing the many computer systems around the
world was solved because of two simple protocols: TCP and IP. Without them the Internet
would not have evolved so quickly and possibly would not have occurred at all. TCP and IP
are excellent protocols as they are simple and can be run over any type of network, on any
type of computer system.
 The Internet is often confused with the World Wide Web (WWW), but the WWW is only
one application of the Internet. Others include electronic mail (the No.1 application), file
transfer, remote login, and so on.
 The amount of information transmitted over networks increases by a large factor every
year. This is due to local area networks, wide area networks and traffic over the Internet. It
is currently estimated that traffic on the Internet doubles every 100 days and that three peo-
ple join the Internet every second. This means an eight-fold increase in traffic over a whole
year. It is hard to imagine such growth in any other technological area. Imagine if cars were
eight times faster each year, or could carry eight times the number of passengers each year
(and of course roads and driveways would have to be eight times larger each year).
 Networks have grown vastly since the 1970s, and most companies now have some form of
network. At the beginning of the 1980s, PCs were relatively complex machines to use, and
required application programs to be installed locally to their disk drives. Many modern

Networks 433

computers now run their application programs over a network, which makes the administra-
tion of the application software must simpler, and also allows users to share their resources.
 The topology of a network is all-important, as it can severely effect the performance of
the network, and can also be used to find network faults. I have run a network for many
years and know the problems that can occur if a network grows without any long-term strat-
egy. Many users (especially managers) perceive that a network can be expanded to an infi-
nite degree. Many also think that new users can simply be added to the network without a
thought on the amount of traffic that they are likely to generate, and its effect on other users.
It is thus important for network managers to have a short-term, a medium-term and a long-
term plan for the network.
 So, what are the basic elements of a network. I would say:

• IP addresses/domain names (but only if the network connects to the Internet or uses

TCP/IP).
• A network operating system (such as Microsoft Windows, Novell NetWare, UNIX and

Linux). Many companies run more than one type of network operating system, which
causes many problems, but has the advantage of being able to migrate from one network
operating system to another. One type of network operating system can also have advan-
tages over other types. For example, UNIX is a very robust networking operating system
which has good network security and directly supports TCP/IP for all network traffic.

• The cables (twisted-pair, fibre optic or coaxial cables). These directly affect the bit rate
of the network, its reliability and the ease of upgrade of the network.

• Network servers, client/server connections and peer-to-peer connections.
• Bridges, routers and repeaters. These help to isolate traffic from one network segment to

another. Routers and bridges are always a good long-term investment and help to isolate
network traffic and can also isolate segment faults.

The networking topology of the future is likely to evolve around a client/server architecture.
With this, server machines run special programs which wait for connections from client ma-
chines. These server programs typically respond to networked applications, such as elec-
tronic mail, WWW, file transfer, remote login, date/time servers, and so on.
 Many application programs are currently run over local area networks, but in the future
many could be run over wide area networks, or even over the Internet. This means that com-
puters would require the minimum amount of configuration and allows the standardisation
of programs at a single point (this also helps with bug fixes and updates). There may also be
a time when software licensing is charged by the amount of time that a user actually uses the
package. This requires applications to be run from a central source (the server).
 The Internet, networks and increased computing power will have great effects on all ar-
eas of life, whether they are in commerce, in industry or in home life. The standardisation of
networking technology has allowed for the standardisation of systems, especially in elec-
tronic mail, and remote working. The key of this success is the worldwide acceptance of the
TCP/IP protocol, which allows different computer systems over the world to communicate,
no matter their type, their architecture, or their operating system.
 The Internet is likely to have a great effect on how companies do business. It is likely that
in the coming years that many companies will become reliant on electronic commerce for
much of their business, whether it is by direct sales over the Internet or the integration of
their financial operation in an electronic form.

434 Computer busses

 Electronic commerce involves customers using electronic communications to purchase
goods, typically using the Internet. This will change the way that many businesses do busi-
ness, and the way that consumers purchase their goods. Society is now moving from a cash
based society to a cashless society. Most consumers now use ATMs (Automatic Telling Ma-
chines) for cash withdrawals, and debit and credit cards to purchase goods. The future is
likely to see an increase in consumers using electronic methods to pay for their goods. An
important key to the acceptance of Internet-based purchases is that the must be secure, and
cannot be used by criminals to make false purchases, or criminals setting up companies
which take payments for incorrect services.
 Computer networks are a crucial part of many organisations and many users now even
have a network connection in their own home. Without networks, there would be no elec-
tronic mail, no Internet access and no networked applications. It is one of the fastest growing
technological areas and brings benefits to virtually every country in the world. With the in-
terconnection of networks to the Internet, the world has truly become a Global Village. For
many people, especially children, the first place to search for a given topic is the World Wide
Web (WWW).
 Who would believe the pace of technology over ten short years, such as:

• From networks of tens of computers operating at speeds of thousands of bits per second

to networks with thousands of computers operating at billions of bits per second.
• From organisations that passed paper documents back and forward, to the totally pa-

perless organisations.
• From people who sent one letter each month to people who send tens of electronic mails

every day.
• From sending letters around the world which would take days or weeks to be arrive to

the transmission of information around the world within a fraction of a second.
• From businesses that relied on central operations to ones that can be distributed around

the world, but can communicate as if they were next door.
• From the transmission of memos which could be viewed by people and organisation

which were not meant to the read the message, to the transmission of messages can only
be read by the intended destination (and maybe, by space aliens). Not even the CIA can
decrypt these messages.

• From written signatures that can be easily forged, to digital signatures which are almost
impossible to forge, and not only authenticate the sender but also all of the contents of a
message.

These days virtually every computer in a company is networked and networks are key to the
effective working of an organisation. Without them, few people could work effectively. They
provide us with:

• Electronic mail.
• Networked application software.
• Remote connections.
• Shared printers.
• Networked video conferencing.
• Remote control of remote equipment.
• Remote data acquisition.
• Shared disk resources.

Ethernet

26.1 Introduction

Most of the computers in business now connect through a LAN and the most commonly used
LAN is Ethernet. DEC, Intel and the Xerox Corporation initially developed Ethernet and the
IEEE 802 committee has since defined standards for it, the most common of which are
Ethernet 2.0 and IEEE 802.3. This section discusses Ethernet technology and the different
types of Ethernet.
 In itself Ethernet cannot make a network and needs some other protocol such as TCP/IP
to allow nodes to communicate. Unfortunately, Ethernet in its standard form does not cope
well with heavy traffic, but this is offset by the following:

• Ethernet networks are easy to plan and cheap to install.
• Ethernet network components, such as network cards and connectors, are cheap and well

supported.
• It is a well-proven technology, which is fairly robust and reliable.
• It is simple to add and delete computers on the network.
• It is supported by most software and hardware systems.

A major problem with Ethernet is that, because computers must contend to get access to the
network, there is no guarantee that they will get access within a given time. This contention
also causes problems when two computers try to communicate at the same time – they must
both back off and no data can be transmitted. In its standard form Ethernet allows a bit rate
of 10 Mbps, but new standards for fast Ethernet systems minimise the problems of contention
and also increase the bit rate to 100 Mbps (and even 1 Gbps). Ethernet uses coaxial, fibre
optic or twisted-pair cable.
 Ethernet uses a shared-media, bus-type network topology where all nodes share a com-
mon bus. These nodes must then contend for access to the network as only one node can
communicate at a time. Data is then transmitted in frames which contain the MAC (media
access control) source and destination addresses of the sending and receiving node, respec-
tively. The local shared media is known as a segment. Each node on the network monitors
the segment and copies any frames addressed to it.
 Ethernet uses carrier sense, multiple access with collision detection (CSMA/CD). On a
CSMA/CD network, nodes monitor the bus (or Ether) to determine if it is busy. A node
wishing to send data waits for an idle condition then transmits its message. Unfortunately,
collisions can occur when two nodes transmit at the same time, thus nodes must monitor the
cable when they transmit. When a collision occurs, both nodes stop transmitting frames and
transmit a jamming signal. This informs all nodes on the network that a collision has oc-
curred. Each of the nodes involved in the collision then waits a random period of time before
attempting a retransmission. As each node has a random delay time then there can be a pri-
oritisation of the nodes on the network, as illustrated in Figure 26.1.

26

436 Computer busses

 Each node on the network must be able to detect collisions and be capable of transmitting
and receiving simultaneously. These nodes either connect onto a common Ethernet connec-
tion or can connect to an Ethernet hub. Nodes thus contend for the network and are not guar-
anteed access to it. Collisions generally slow the network.

CSMA/CD
Ethernet uses carrier sense, multiple access with
collision detection (CSMA/CD).
Nodes monitor the bus (or Ether) to determine if
it is busy. A node wishing to send data waits for an
idle condition then transmits its message.
Collisions can occur when two nodes transmit at
the same time, thus nodes must monitor the cable
when they transmit.
When a collision occurs, both nodes stop
transmitting frames and transmit a jamming signal.
This informs all nodes on the network that a
collision has occurred.
Each of the nodes involved in the collision then
waits a random period of time before attempting a
re-transmission.
As each node has a random delay time then there

can be a prioritisation of the nodes on the network.

CSMA/CD
Ethernet uses carrier sense, multiple access with
collision detection (CSMA/CD).
Nodes monitor the bus (or Ether) to determine if
it is busy. A node wishing to send data waits for an
idle condition then transmits its message.
Collisions can occur when two nodes transmit at
the same time, thus nodes must monitor the cable
when they transmit.
When a collision occurs, both nodes stop
transmitting frames and transmit a jamming signal.
This informs all nodes on the network that a
collision has occurred.
Each of the nodes involved in the collision then
waits a random period of time before attempting a
re-transmission.
As each node has a random delay time then there

can be a prioritisation of the nodes on the network.

Two nodes transmit
at the same time

Node detect there
has been a collision

Nodes transmit a
jamming signal

Nodes wait a random
period before retransmitted

Common bus

All computers have access to
a common bus at the same time

CSMA/CD
Ethernet uses carrier sense, multiple access with
collision detection (CSMA/CD).
Nodes monitor the bus (or Ether) to determine if
it is busy. A node wishing to send data waits for an
idle condition then transmits its message.
Collisions can occur when two nodes transmit at
the same time, thus nodes must monitor the cable
when they transmit.
When a collision occurs, both nodes stop
transmitting frames and transmit a jamming signal.
This informs all nodes on the network that a
collision has occurred.
Each of the nodes involved in the collision then
waits a random period of time before attempting a
re-transmission.
As each node has a random delay time then there

can be a prioritisation of the nodes on the network.

CSMA/CD
Ethernet uses carrier sense, multiple access with
collision detection (CSMA/CD).
Nodes monitor the bus (or Ether) to determine if
it is busy. A node wishing to send data waits for an
idle condition then transmits its message.
Collisions can occur when two nodes transmit at
the same time, thus nodes must monitor the cable
when they transmit.
When a collision occurs, both nodes stop
transmitting frames and transmit a jamming signal.
This informs all nodes on the network that a
collision has occurred.
Each of the nodes involved in the collision then
waits a random period of time before attempting a
re-transmission.
As each node has a random delay time then there

can be a prioritisation of the nodes on the network.

Two nodes transmit
at the same time

Node detect there
has been a collision

Nodes transmit a
jamming signal

Nodes wait a random
period before retransmitted

Common bus

All computers have access to
a common bus at the same time

Common bus

All computers have access to
a common bus at the same time

Figure 26.1 Ethernet transmission

26.2 IEEE standards

The IEEE are the main standards organization for LANs and they refer to the standard for
Ethernet as CSMA/CD. Figure 26.2 shows how the IEEE standards for CSMA/CD fit into
the OSI model. The two layers of the IEEE standards correspond to the physical and data
link layers of the OSI model. On Ethernet networks, most hardware complies with IEEE
802.3 standard. The MAC layer allows many nodes to share a single communication chan-
nel. It also adds the start and end frame delimiters, error detection bits, access control infor-
mation, and source and destination addresses. Each frame also has an error detection scheme
known as cyclic redundancy check (CRC).

LLC (IEE E 802.2)Data link

Physica l
M edia access

control (IEE E 802.3)

Figure 26.2 Standards for IEEE 802 LANs

Ethernet 437

26.3 Ethernet – media access control (MAC) layer

When sending data the MAC layer takes the information from the LLC link layer. Figure
26.3 shows the IEEE 802.3 frame format. It contains 2 or 6 bytes for the source and destina-
tion addresses (16 or 48 bits each), 4 bytes for the CRC (32 bits) and 2 bytes for the LLC
length (16 bits). The LLC part may be up to 1500 bytes long. The preamble and delay com-
ponents define the start and end of the frame. The initial preamble and start delimiter are, in
total, 8 bytes long and the delay component is a minimum of 96 bytes long.
 A seven-byte preamble precedes the Ethernet 802.3 frame. Each byte of the preamble has
a fixed binary pattern of 10101010 and each node on the network uses it to synchronise
their clock and transmission timings. It also informs nodes that a frame is to be sent and for
them to check the destination address in the frame.
 The end of the frame there is a 96-bit delay period, which provides the minimum delay
between two frames. This slot time delay allows for the worst-case network propagation de-
lay. The start delimiter field (SDF) is a single byte (or octet) of 10101011. It follows the
preamble and identifies that there is a valid frame being transmitted. Most Ethernet systems
use a 48-bit MAC address for the sending and receiving node. Each Ethernet node has a
unique MAC address, which is normally defined as hexadecimal digits, such as:

 4C - 31 - 22 - 10 - F1 - 32 or 4C31 : 2210: F132.

A 48-bit address field allows 248 different addresses (or approximately 281 474 976 710 000
different addresses). The LLC length field defines whether the frame contains information or
it can be used to define the number of bytes in the logical link field. The logical link field can
contain up to 1500 bytes of information and has a minimum of 46 bytes; its format is given
in Figure 26.3. If the information is greater than this upper limit then multiple frames are
sent. Also, if the field is less than the lower limit then it is padded with extra redundant bits.
 The 32-bit frame check sequence (or FCS) is an error detection scheme. It is used to de-
termine transmission errors and is often referred to as a cyclic redundancy check (CRC) or
simply as a checksum.

7 bytes 1 byte 6 bytes 6 bytes

46 to 1500 bytes

4 bytes 96 bits

10101...0101010

10101011

2 bytes

DelayFCSLengthSource
address

Destination
address

Start
delimiterPreamble

Data field (Logical Link Control)

Figure 26.3 IEEE 802.3 frame format

If the transmission rate is 10Mbps, the time for one bit to be transmitted will be:

438 Computer busses

 ns 100s
1010

1
ratebit
1

6 =
×

==T

Thus the maximum and minimum times to transmit a frame will be:

 () ms 2.1ns 1008124150026617max =××+++++++=T
 () μs 067.0ns 10081244626617min =××+++++++=T

It may be assumed that an electrical signal propagates at about half the speed of light
(c=3×108m/s). Thus, the time for a bit to propagate a distance of 500 m is:

 s
speed
distT m µ33.3

105.1
500

8500 =
×

==

by which time, the number of bits transmitted will be:

 33.33
100

33.3
ed transmittbits ofNumber 500 ===

ns
s

T
T

bit

m µ

Thus, if two nodes are separated by 500m then it will take more than 33 bits to be transmitted
before a node can determine if there has been a collision of the line, as illustrated in Figure
26.4. If the propagation speed is less that this, it will take even longer. This shows the need
for the preamble and the requirement for a maximum segment length.

For a distance of 500m, there are approximately
33.33 bits transmitted before the sender can sense

a collision

Figure 26.4 Bits transmitted before a collision is detected

26.3.1 Ethernet II

The first standard for Ethernet was Ethernet I. Most currently available systems implement
either Ethernet II or IEEE 802.3 (although most networks are now defined as being IEEE
802.3 compliant). An Ethernet II frame is similar to the IEEE 802.3 frame; it consists of
eight bytes of preamble, six bytes of destination address, six bytes of source address, two
bytes of frame type, between 46 and 1500 bytes of data, and four bytes of the frame check
sequence field.

Ethernet 439

 When the protocol is IPX/SPX the frame type field contains the bit pattern 1000 0001
0011 0111, but when the protocol is TCP/IP the type field contains 0000 1000 0000 0000.

26.4 IEEE 802.2 and Ethernet SNAP

The LLC is embedded in the Ethernet frame and is defined by the IEEE 802.2 standard. Fig-
ure 26.5 illustrates how the LLC field is inserted into the IEEE 802.3 frame. The DSAP and
SSAP fields define the types of network protocol used. A SAP code of 1110 0000 identifies
the network operating system layer as NetWare, whereas 0000 0110 identifies the TCP/IP
protocol. These SAP numbers are issued by the IEEE. The control field is, among other
things, for the sequencing of frames.
 In some cases, it was difficult to modify networks to be IEEE 802 compliant. Thus, an
alternative method was to identify the network protocol, known as Ethernet SNAP (subnet-
work access protocol). This was defined to ease the transition to the IEEE 802.2 standard and
is illustrated in Figure 26.6. It simply adds an extra two fields to the LLC field to define an
organisation ID and a network layer identifier. NetWare allows for either Ethernet SNAP or
Ethernet 802.2 (as Novell used Ethernet SNAP to translate to Ethernet 802.2).
 Non-compliant protocols are identified with the DSAP and SSAP code of 1010 1010, and
a control code of 0000 0011. After these fields come

• Organization ID – which indicates where the company that developed the embedded

protocol belongs. If this field contains all zeros it indicates a non company-specific ge-
neric Ethernet frame.

• EtherType field – which defines the networking protocol. A TCP/IP protocol uses 0000
1000 0000 0000 for TCP/IP, whereas NetWare uses 1000 0001 0011 0111. NetWare
frames adhering to this specification are known as NetWare 802.2 SNAP.

Preamble Start
delimiter

Destination
address

Source
address

Logical
link control FCS Delay

7 bytes 1 byte 6 bytes 6 bytes 46 to 1500 bytes 4 bytes 96 bytes

10101...0101010

10101011

Length

2 bytes

Destination
service access
point (DSAP)

Source
service access
point (SSAP)

Control
field

DATA

1/2 bytes1 byte1 byte

Figure 26.5 Ethernet IEEE 802.3 frame with LLC

440 Computer busses

Preamble Start
delimiter

Destination
address

Source
address

Logical
link control FCS Delay

7 bytes 1 byte 6 bytes 6 bytes 46 to 1500 bytes 4 bytes 96 bytes

10101...0101010

10101011

Length

2 bytes

1010 1010 DATA

3 bytes

1010 1010 0000 0011 Organization
ID EtherType

2 bytes

SNAP header

Figure 26.6 Ethernet IEEE 802.3 frame with LLC containing SNAP header

26.4.1 LLC protocol

The 802.3 frame provides some of the data link layer functions, such as node addressing
(source and destination MAC addresses), the addition of framing bits (the preamble) and
error control (the FCS). The rest of the functions of the data link layer are performed with the
control field of the LLC field; these functions are:

• Flow and error control – each data frame sent has a frame number. A control frame is

sent from the destination to a source node informing that it has or has not received the
frames correctly.

• Sequencing of data – large amounts of data are sliced and sent with frame numbers. The
spliced data is then reassembled at the destination node.

Figure 26.7 shows the basic format of the LLC frame. There are three principal types of
frame: information, supervisory and unnumbered. An information frame contains data, a
supervisory frame is used for acknowledgement and flow control, and an unnumbered frame
is used for control purposes. The first two bits of the control field determine which type of
frame it is. If they are 0X (where X is a don’t care) then it is an information frame, 10 speci-
fies a supervisory frame and 11 specifies an unnumbered frame.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

DSAP

1 byte 1 byte 1/2 byte(s) ≥1 byte

SSAP Control Data

0 Send seq. no
(0-127) P 0Receive seq. no

(0-127)
Information
frame

1 S P 0Receive seq. no
(0-127)

Supervisory
frame0

RR, RNR
or REJ

Figure 26.7 LLC frame format

Ethernet 441

 An information frame contains a send sequence number in the control field which ranges
from 0 to 127. Each information frame has a consecutive number, N(S) (note that there is a
roll-over from frame 127 to frame 0). The destination node acknowledges that it has re-
ceived the frames by sending a supervisory frame. The function of the supervisory frame is
specified by the 2-bit S field. This can either be set to receiver ready (RR), receiver not ready
(RNR) or reject (REJ). If an RNR function is set then the destination node acknowledges that
all frames up to the number stored in the receive sequence number N(R) field were received
correctly. An RNR function also acknowledges the frames up to the number N(R), but in-
forms the source node that the destination node wishes to stop communicating. The REJ
function specifies that frame N(R) has been rejected and all other frames up to N(R) are ac-
knowledged.

26.5 OSI and the IEEE 802.3 standard

Ethernet fits into the data link and the physical layer of the OSI model. These two layers only
deal with the hardware of the network. The data link layer splits into two parts: the LLC and
the MAC layer.
 The IEEE 802.3 standard splits into three sublayers:

• MAC (media access control).
• Physical signalling (PLS).
• Physical media attachment (PMA).

The interface between PLS and PMA is called the attachment unit interface (AUI) and the
interface between PMA and the transmission media is called the media dependent interface
(MDI). This grouping into modules allows Ethernet to be very flexible and to support a
number of bit rates, signalling methods and media types. Figure 26.8 illustrates how the lay-
ers interconnect.

PLS

PMA

MDI

MAC

Medium

AUI

MAU

Figure 26.8 Organisation of the IEEE 802.3 standard

442 Computer busses

26.5.1 Media access control (MAC)

The CSMA/CD function is implemented in the MAC layer. The functions of the MAC layers
are:

• When sending frames – receive frames from LLC; control whether the data fills the LLC

data field, if not add redundant bits; make the number of bytes an integer, and calculate
the FCS; add the preamble, SFD and address fields to the frame; send the frame to the
PLS in a serial bit stream.

• When receiving frames – receive one frame at a time from the PLS in a serial bit stream;
check whether the destination address is the same as the local node; ensure the frame
contains an integer number of bytes and the FCS is correct; remove the preamble, SFD,
address fields, FCS and remove redundant bits from the LLC data field; send the data to
the LLC.

• Avoid collisions when transmitting frames and keep the right distance between frames
by not sending when another node is sending; when the medium is free, wait a specified
period before starting to transmit.

• Handle any collision that appears by sending a jam signal; generate a random number
and back off from sending during that random time.

26.5.2 Physical signalling (PLS) and physical medium attachment (PMA)

PLS defines transmission rates, types of encoding/decoding and signalling methods. In PMA
a further definition of the transmission media is accomplished, such as coaxial, fibre or
twisted-pair. PMA and MDI together form the media attachment unit (MAU), often known
as the transceiver.

26.6 Ethernet transceivers

Ethernet requires a minimal amount of hardware. The cables used to connect it are typically
either unshielded twisted-pair cable (UTP) or coaxial cables. These cables must be termi-
nated with their characteristic impedance, which is 50Ω for coaxial cables and 100Ω for
UTP cables.
 Each node has transmission and reception hardware to control access to the cable and
also to monitor network traffic. The transmission/reception hardware is called a transceiver
(short for transmitter/receiver) and a controller builds up and strips down the frame. For
10 Mbps Ethernet, the transceiver builds the transmitted bits at a rate of 10 Mbps – thus the
time for one bit is 1/10×1 06, which is 0.1µs (100 ns).
 The Ethernet transceiver transmits onto a single ether. When there are no nodes transmit-
ting, the voltage on the line is +0.7 V. This provides a carrier sense signal for all nodes on the
network, it is also known as the heartbeat. If a node detects this voltage then it knows that the
network is active and there are no nodes currently transmitting.
 Thus, when a node wishes to transmit a message it listens for a quiet period. Then, if two
or more transmitters transmit at the same time, a collision results. When they detect a colli-
sion, each node transmits a ‘jam’ signal. The nodes involved in the collision then wait for a
random period of time (ranging from 10 to 90 ms) before attempting to transmit again. Each
node on the network also awaits for a retransmission. Thus, collisions are inefficient in net-
works as they stop nodes from transmitting. Transceivers normally detect collisions by moni-

Ethernet 443

toring the DC (or average) voltage on the line.
 When transmitting, a transceiver unit transmits the preamble of consecutive 1s and 0s.
The coding used is a Manchester coding, which represents a 0 as a high to a low voltage tran-
sition and a 1 as a low to high voltage transition. A low voltage is represented by –0.7 V and
a high is +0.7 V. Thus, when the preamble is transmitted the voltage changes between +0.7V
and –0.7 V; as illustrated in Figure 26.9. If after the transmission of the preamble no
collisions are detected then the rest of the frame is sent.

Idle Preamble

+0.7 V

0.1 µs

1 0 1 0 1

–0.7 V

Idle
Figure 26.9 Ethernet digital signal

26.7 Ethernet types

The six main types of standard Ethernet are:

• Standard, or thick-wire, Ethernet (10BASE5).
• Thinnet, or thin-wire Ethernet, or Cheapernet (10BASE2).
• Twisted-pair Ethernet (10BASE-T).
• Optical fibre Ethernet (10BASE-FL).
• Fast Ethernet (100BASE-TX and 100VG-Any LAN).
• Gigabit Ethernet (1000BASE-SX, 1000BASE-T, 1000BASE-LX and 1000BASE-CX).

The thin- and thick-wire types connect directly to an Ethernet segment; these are shown in
Figure 26.10 and Figure 26.11. Standard Ethernet, 10BASE5, uses a high specification cable
(RG-50) and N-type plugs to connect the transceiver to the Ethernet segment. A node con-
nects to the transceiver using a 9-pin D-type connector and a vampire (or bee-sting) connec-
tor can be used to clamp the transceiver to the backbone cable.
 Thin-wire, or Cheapernet, uses a lower specification cable (it has a lower inner conductor
diameter). The cable connector required is also of a lower specification, that is, BNC rather
than N-type connectors. In standard Ethernet the transceiver unit is connected directly onto
the backbone tap. On a Cheapernet network the transceiver is integrated into the node.
 Most modern Ethernet connections are to a 10BASE-T hub, which connects UTP cables
to the Ethernet segment. A RJ-45 connector is used for 10BASE-T. The fibre optic type,
10BASE-FL, allows long lengths of interconnected lines, typically up to 2 km. They use ei-
ther SMA connectors or ST connectors. SMA connectors are screw-on types whereas ST
connectors are push-on. Table 26.1 shows the basic specifications for the different types.

444 Computer busses

10BASE510BASE5

RG-50 backbone
cable

N-type
T-connector

9-pin D-type
connector (AUI)

9-pin D-type
connector (AUI)

Vampire
(or bee-sting)
tap

 Figure 26.10 Ethernet connections for thick Ethernet

BNC
T-connector

BNC connector

10BASE2

10BASE-T

Hub

RG-50 backbone
cable

Twisted-pair
cable

RJ-45
connector

Figure 26.11 Ethernet connections for thin Ethernet and 10BASE-T

Table 26.1 10BASE network parameters

Parameter 10BASE5 10BASE2 10BASE-T
Common name Standard or thick-wire

Ethernet
Thinnet or thin-wire
Ethernet

Twisted-pair
Ethernet

Data rate 10 Mbps 10 Mbps 10 Mbps
Maximum segment
length

500 m 200 m 100 m

Maximum nodes on a
segment

100 30 3

Maximum number of
repeaters

2 4 4

Maximum nodes per
network

1024 1024

Minimum node spacing 2.5 m 0.5 m no limit
Location of transceiver
electronics

located at the cable
connection

integrated within
the node

in a hub

Typical cable type

RG-50
(0.5 in diameter)

RG-6
(0.25 i n diameter)

UTP cables

Connectors N-type BNC RJ-45/ Telco
Cable impedance

50 Ω 50 Ω 100 Ω

Ethernet 445

26.8 Twisted-pair hubs

Twisted-pair Ethernet (10BASE-T) nodes normally connect to the backbone using a hub, as
illustrated in Figure 26.12. Connection to the twisted-pair cable is via an RJ-45 connector.
The connection to the backbone can either be to thin or thick Ethernet. Hubs are also stack-
able, with one hub connected to another. This leads to concentrated area networks (CANs)
and limits the amount of traffic on the backbone. Twisted-pair hubs normally improve net-
work performance.
 10BASE-T uses two twisted-pair cables, one for transmit and one for receive. A collision
occurs when the node (or hub) detects that it is receiving data when it is currently transmit-
ting data.

10BASE-T
hub

Ethernet backbone

Figure 26.12 10BASE-T connection

26.9 100Mbps Ethernet

Standard 10 Mbps Ethernet does not perform well when many users are running multimedia
applications. Two improvements to the standard are Fast Ethernet and 100VG-AnyLAN. The
IEEE has defined standards for both of them, IEEE 802.3u for Fast Ethernet and 802.12 for
100VG-AnyLAN. They are supported by many manufacturers and use bit rates of 100 Mbps.
This gives at least 10 times the performance of standard Ethernet.
 New standards relating to 100 Mbps Ethernet are now becoming popular:

• 100BASE-TX (twisted-pair) – which uses 100 Mbps over two pairs of Cat-5 UTP cable

or two pairs of Type 1 STP cable.
• 100BASE-T4 (twisted-pair) – which is the physical layer standard for 100 Mbps over

Cat-3, Cat-4 or Cat-5 UTP.
• 100VG-AnyLAN (twisted-pair) – which uses 100 Mbps over two pairs of Cat-5 UTP

cable or two pairs of Type 1 STP cable.

446 Computer busses

• 100BASE-FX (fiber-optic cable) – which is the physical layer standard for 100 Mbps
over fiber-optic cables.

Fast Ethernet, or 100BASE-T, is simply 10BASE-T running at 10 times the bit rate. It is a
natural progression from standard Ethernet and thus allows existing Ethernet networks to be
easily upgraded. Unfortunately, as with standard Ethernet, nodes contend for the network,
reducing the network efficiency when there are high traffic rates. Also, as it uses collision
detect, the maximum segment length is limited by the amount of time for the farthest nodes
on a network to properly detect collisions. On a Fast Ethernet network with twisted-pair cop-
per cables this distance is 100 m, and for a fibre-optic link, it is 400 m. Table 26.2 outlines
the main network parameters for Fast Ethernet.

Table 26.2 Fast Ethernet network parameters

 100BASE-TX 100VG-AnyLAN
Standard IEEE 802.3u IEEE 802.12

Bit rate 100 Mbps 100 Mbps

Actual throughput up to 50 Mbps up to 96 Mbps

Maximum distance
(hub to node)

100 m (twisted-pair, CAT-5)
400 m (fiber)

100 m (twisted-pair, CAT-3)
200 m (twisted-pair, CAT-5)
2 km (fibre)

Scaleability none up to 400 Mbps

Advantages Easy migration from
10BASE-T

greater throughput, greater distance

As 100BASE-TX standards are compatible with 10BASE-TX networks then the network al-
lows both 10 Mbps and 100 Mbps bit rates on the line. This makes upgrading simple, as the
only additions to the network are dual-speed interface adapters. Nodes with the 100 Mbps
capabilities can communicate at 100 Mbps, but they can also communicate with slower
nodes, at 10 Mbps.
 The basic rules of a 100BASE-TX network are:

• The network topology is a star network and there must be no loops.
• Cat-5 cable is used.
• Up to two hubs can be cascaded in a network.
• Each hub is the equivalent of 5 m in latency.
• Segment length is limited to 100 m.
• Network diameter must not exceed 205 m.

26.9.1 100BASE-T4

100BASE-T4 allows the use of standard Cat-3 cables. These contain eight wires made up of
four twisted-pairs. 100BASE-4T uses all of the pairs to transmit at 100 Mbps. This differs
from 10BASE-T in that 10BASE-T uses only two pairs, one to transmit and one to receive.

Ethernet 447

100BASE-T allows compatibility with 10BASE-T in that the first two pairs (Pair 1 and Pair
2) are used in the same way as 10BASE-T connections. 100BASE-T then uses the other two
pairs (Pair 3 and Pair 4) with half-duplex links between the hub and the node. The connec-
tions are illustrated in Figure 26.13.

26.9.2 Line code

100BASE-4T uses four separate Cat-3 twisted-pair wires. The maximum clock rate that can
be applied to Cat-3 cable is 30 Mbps. Thus, some mechanism must be devised which reduces
the line bit rate to under 30 Mbps but gives a symbol rate of 100 Mbps. This is achieved with
a three-level code (+, – and 0) and is known as 8B6T. This code converts eight binary digits
into six ternary symbols.

Node Hub

Tx Rx

Rx Tx

Tx Rx

Rx Tx

Pair 1

Pair 2

Pair 3

Pair 4

Com patible with
10BASE

Figure 26.13 100BASE-4T connections

The first six codes are:

Data byte Code Data byte Code Data byte Code
00000000 –+0 0–+ 00000001 0–+ –+0 00000010 0–+ 0–+

00000011 0–+ +0– 00000100 –+0 +0– 00001001 +0– –+0

Thus, the bit sequence 00000000 will be coded as a negative voltage, a positive voltage, a
zero voltage, a zero voltage, a negative voltage and a positive voltage.
 The maximum base frequency for a 100 Mbps signal will be produced when the input
bitstream is 010101010 …01010. As each bit lasts 10 ns then the period between consecutive
levels is 20 ns. Thus, the minimum frequency contained will be 50 MHz. This is greater than
the bandwidth of Cat-3 cable, so it would not pass through the cable.
 Apart from reducing the frequencies with the digital signal, the 8B6T code has the advan-
tage of reducing the DC content of the signal. Most of the codes contain the same number of
positive and negative voltages. This is because only 256 of the possible 729 (36) codes are
actually used. The codes are also chosen to have at least two transitions in every code word,
thus the clock information is embedded into the signal.
 Unfortunately, it is not possible to have all codes with the same number of negative volt-

448 Computer busses

ages as positive voltages. Thus, there are some codes that have a different number of nega-
tives and positives, these include:

0100 0001+0–00+
0111 1001+++–0–

Most transceiver circuits use a transformer to isolate the external equipment from the com-
puter equipment. These transformers do not allow the passage of DC current. Thus if the line
code has a sequence which consecutively has more positives than negatives, the DC current
will move away from its zero value. As this does not pass across the transformer, the receive
bitstream on the output of the transformer can reduce the amplitude of the received signal
(and may thus cause errors). This phenomenon is known as DC wander. A code that has one
more positive level than the negative levels is defined as having a weighing of +1.
 The technique used to overcome this is to invert consecutive codes that have a weighing
of +1. For example, suppose the line code were

+0++–– ++0+–– +++––0 +++––0

it would actually be coded as

+0 ++– – – – 0 – ++ +++––0 –––++0

The receiver detects the –1 weighted codes as an inverted pattern.

26.9.3 100VG-AnyLAN

The 100VG-AnyLAN standard (IEEE 802.12) was developed mainly by Hewlett Packard
and overcomes the contention problem by using a priority-based round-robin arbitration
method, known as demand priority access method (DPAM). Unlike Fast Ethernet, nodes
always connect to a hub which regularly scans its input ports to determine whether any nodes
have requests pending.
 100VG-AnyLAN has the great advantage over 100BASE in that it supports both IEEE
802.3 (Ethernet) and IEEE 802.5 (Token Ring) frames and can thus integrate well with exist-
ing 10BASET and Token Ring networks.
 100VG-AnyLAN has an in-built priority mechanism with two priority levels: a high pri-
ority request and a normal priority request. A normal priority request is used for non real-
time data, such as data files, and so on. High priority requests are used for real-time data,
such as speech or video data. At present, there is limited usage of this feature and there is no
support mechanism for this facility after the data has left the hub.
 100VG-AnyLAN allows up to seven levels of hubs (i.e. one root and six cascaded hubs)
with a maximum distance of 150 m between nodes. Unlike other forms of Ethernet, it allows
any number of nodes to be connected to a segment.

Connections

100BASE-TX, 100BASE-T4 and 100VG-AnyLAN use the RJ-45 connector, which has eight
connections. 100BASE-TX uses pairs 2 and 3, whereas 100BASE-T4 and 100VG-AnyLAN
use pairs 1, 2, 3 and 4. The connections for the cables are defined in Table 26.3. The
white/orange colour identifies the cable which is white with an orange stripe, whereas or-
ange/white identifies an orange cable with a white stripe.

Ethernet 449

Table 26.3 Cable connections for 100BASE-TX

Pin Cable colour Cable colour Pair
1 white/orange white/orange Pair 4
2 orange/white orange/white Pair 4
3 white/green white/green Pair 3
4 blue/white blue/white Pair 3
5 white/blue white/blue Pair 1
6 green/white green/white Pair 1
7 white/brown white/brown Pair 2
8 brown/white brown/white Pair 2

Migration to fast Ethernet

If an existing network is based on standard Ethernet then, in most cases, the best network
upgrade is either to fast Ethernet or 100VG-AnyLAN. As the protocols and access methods
are the same, there is no need to change any of the network management software or applica-
tion programs. The upgrade path for Fast Ethernet is simple and could be:

• Upgrade high data rate nodes, such as servers or high-powered workstations to Fast
Ethernet.

• Gradually upgrade NICs (network interface cards) on Ethernet segments to cards which
support both 10BASE-T and 100BASE-T. These cards automatically detect the trans-
mission rate to give either 10 or 100 Mbps.

The upgrade path to 100VG-AnyLAN is less easy as it relies on hubs and, unlike Fast
Ethernet, most NICs have different network connectors, one for 10BASE-T and the other for
100VG-AnyLAN (although it is likely that more NICs will have automatic detection). A
possible path could be:

• Upgrade high data rate nodes, such as servers or high-powered workstations to 100VG-
AnyLAN.

• Install 100VG-AnyLAN hubs.
• Connect nodes to 100VG-AnyLAN hubs and change over connectors.

It is difficult to assess the performance differences between Fast Ethernet and 100VG-
AnyLAN. Fast Ethernet uses a well-proven technology, but suffers from network contention.
100VG-AnyLAN is a relatively new technology and the handshaking with the hub increases
delay time. The maximum data throughput of a 100BASE-TX network is limited to around
50 Mbps, whereas 100VG-AnyLAN allows rates up to 96 Mbps. 100VG-AnyLAN allows
possible upgrades to 400 Mbps.

450 Computer busses

26.10 Comparison of fast Ethernet other technologies

Table 26.4 compares fast Ethernet with other types of networking technologies.

Table 26.4 Comparison of fast Ethernet with other networking technologies

Feature 100VG-AnyLAN
(Cat 3, 4, or 5)

100BASE-T
(TX/FX/T4)

FDDI ATM Gigabit
Ethernet
(802.3z)

Maximum
segment
length

100 m 100 m (Cat-5)
412 m (Fibre)

2000 m 200 m (Cat-5)
2000 m (Fibre)

100 m (Cat 5)
1k m (Fibre)

Maximum
network
diameter with
repeater(s)

6000 m 320 m 100 km N/A To be
determined by
the standard

Bit rate

100 Mbps 100 Mbps 100 Mbps 155 Mbps 1 Gbps

Media access
method

Demand priority CSMA/CD Token
passing

PVC/SVC CSMA/CD

Maximum
nodes on each
domain

1024 Limited by hub

500

N/A To be
determined

Frame type

Ethernet and
Token Ring

Ethernet 802.5 53-byte cell Ethernet

Multimedia
support

 FDDI-I ()
FDDI-II ()

 YES (with
802.1p)

Integration
with
10BASE2

Yes with
bridges, switches
and routers

Yes with
switches

Yes with
routers and
switches

Yes with
routers or
switches

Yes with
10/100 Mbps
switching

Relative cost Low

Low

Medium

High

Medium

Relative
complexity

Low Low Medium High Low

26.10.1 Switching technology

A switch uses store-and-forward packets to switch between ports. The main technologies
used are:

• Shared bus – this method uses a high-speed backplane to interconnect the switched
ports. It is frequently used to build modular switches that give a large number of ports,

Ethernet 451

and to interconnect multiple LAN technologies, such as FDDI, 100VG-AnyLAN,
100BASE-T, and ATM.

• Shared memory – these use a common memory area (several megabytes) in which data
is passed between the ports. It is very common in low-cost, small-scale switches and has
the advantage that it can cope with different types of network, which are operating at dif-
ferent speeds. The main types of memory allocation are:

• Pooled memory – memory is allocated as it is needed by the ports from a common

memory pool.
• Dedicated shared memory – memory is fixed and shared by a single pair of I/O ports.
• Distributed memory – memory is fixed and dedicated to each port.

26.11 Switches and switching hubs

A switch is a very fast, low-latency, multiport bridge that is used to segment LANs. They are
typically also used to increase communication rates between segments with multiple parallel
conversations and also communication between technologies (such as between FDDI and
100BASE-TX).
 A 4-port switching hub is a repeater that contains four distinct network segments (as if
there were four hubs in one device). Through software, any of the ports on the hub can di-
rectly connect to any of the four segments at any time. This allows for a maximum capacity
of 40 Mbps in a single hub.
 Ethernet switches overcome the contention problem on normal CSMA/CD networks.
They segment traffic by giving each connect a guaranteed bandwidth allocation. Figure
26.14 and Figure 26.15 show the two types of switches; their main features are:

• Desktop switch (or workgroup switch) – These connect directly to nodes. They are eco-

nomical with fixed configurations for end-node connections and are designed for stand-
alone networks or distributed workgroups in a larger network.

• Segment switch – These connect both 10 Mbps workgroup switches and 100 Mbps inter-
connect (backbone) switches that are used to interconnect hubs and desktop switches.
They are modular, high-performance switches for interconnecting workgroups in mid- to
large-size networks.

26.11.1 Segment switch

A segment switch allows simultaneous communication between any client and any server. A
segment switch can simply replace existing Ethernet hubs. Figure 26.15 shows a switch with
five ports each transmitting at 10 Mbps; this allows up to five simultaneous connections giv-
ing a maximum aggregated bandwidth of 50 Mbps. If the nodes support 100 Mbps communi-
cation then the maximum aggregated bandwidth will be 500 Mbps. To optimise the network,
nodes should be connected to the switch that connects to the server with which it most often
communicates. This allows for a direct connection with that server.

452 Computer busses

Local
serverLocal

printer

Workgroup
nodes

Desktop
switch

Local
serverLocal

printer

Workgroup
nodes

Desktop
switch

Main
server

Network backbone connection

Segment switches allow
simultaneous communication
between any client and any
server.

Segment switches allow
simultaneous communication
between any client and any
server.

Store-and-forward switches
minimise collisions and they
can store Ethernet frames and
retransmit them when segment
is quiet.

Store-and-forward switches
minimise collisions and they
can store Ethernet frames and
retransmit them when segment
is quiet.

Figure 26.14 Desktop switch

Switch

Server

External connection (uses store-and-
forward for external connection)

Switch connects any of the input
segments directly to another

Hub Hub Hub

Server

Figure 26.15 Segment switch

26.11.2 Desktop switch

A desktop switch can simply replace an existing 10BASET/100BASET hub. It has the ad-
vantage that any of the ports can connect directly to any other. In the network in Figure

Ethernet 453

26.14, any of the computers in the local workgroup can connect directly to any other, or to
the printer, or the local disk drive. This type of switch works well if there is a lot of local
traffic, typically between a local server and local peripherals.

26.11.3 Store-and-forward switching

Store-and-forwarding techniques have been used extensively in bridges and routers, and are
now used with switches. It involves reading the entire Ethernet frame, before forwarding it,
with the required protocol and at the correct speed, to the destination port. This has the ad-
vantages of:

• Improved error check – Bad frames are blocked from entering a network segment.
• Protocol filtering – Allows the switch to convert from one protocol to another.
• Speed matching – Typically, for Ethernet, reading at 10 Mbps or 100 Mbps and transmit-

ting at 100 Mbps or 10 Mbps. Also, can be used for matching between ATM (155 Mbps),
FDDI (100Mbps), Token Ring (4/16 Mbps) and Ethernet (10/100 Mbps).

The main disadvantage is:

• System delay – As the frame must be totally read before it is transmitted there is a delay

in the transmission. The improvement in error checking normally overcomes this disad-
vantage.

26.12 Network interface card design

When receiving data, the network interface card (NIC) copies all data transmitted on the
network, decodes it and transfers it to the computer. An Ethernet NIC contains three parts:

• Physical medium interface – the physical medium interface corresponds to the PLS and

PMA in the standard and is responsible for the electrical transmission and reception of
data. It consists of two parts: the transceiver, which receives and transmits data from or
onto the transmission media; and a code converter that encodes/decodes the data. It also
recognises a collision on the media.

• Data link controller – the controller corresponds to the MAC layer.
• Computer interface.

It can be split into four main functional blocks:

• Network interface.
• Manchester decoder.
• Memory buffer.
• Computer interface.

26.12.1 Network interface

The network interface must listen, recreate the waveform transmitted on the cable into a digi-

454 Computer busses

tal signal and transfer the digital signal to the Manchester decoder. The network interface
consists of three parts:

• BNC/RJ-45 connector.
• Reception hardware – the reception hardware translates the waveforms transmitted on

the cable to digital signals then copies them to the Manchester decoder.
• Isolator – the isolator is connected directly between the reception hardware and the rest

of the Manchester decoder; it guarantees that no noise from the network affects the com-
puter, and vice versa (as it isolates ground levels).

The reception hardware is called a receiver and is the main component in the network inter-
face. It acts as an earphone, listening and copying the traffic on the cable. Unfortunately, the
Ether and transceiver electronics are not perfect. The transmission line contains resistance
and capacitance which distort the shape of the bit stream transmitted onto the Ether. Distor-
tion in the system causes pulse spreading, which leads to intersymbol interference. There is
also a possibility of noise affecting the digital pulse as it propagates through the cable.
Therefore, the receiver also needs to recreate the digital signal and filter noise.
 Figure 26.16 shows a block diagram of an Ethernet receiver. The received signal goes
through a buffer with high input impedance and low capacitance to reduce the effects of
loading on the coaxial cable. An equaliser passes high frequencies and attenuates low fre-
quencies from the network, flattening the network passband. A 4-pole Bessel low-pass filter
provides the average dc level from the received signal. The quench circuit activates the line
driver only when it detects a true signal. This prevents noise activating the receiver.

Low-pass
filter

Receive
equaliser

Squelch

RX+
RX–

Data
buffer

GND

RXI

Line
driver

GND is –9V (isolated)
RX is receive output
RXI is network signal receiver

Figure 26.16 Ethernet receiver block diagram

26.12.2 Manchester decoder

Manchester coding has the advantage of embedding timing (clock) information within the
transmitted bits. A positively edged pulse (low to high) represents a 1 and a negatively edged
pulse (high to low) a 0, as shown in Figure 26.17. Another advantage of this coding method
is that the average voltage is always zero when used with equal positive and negative voltage
levels.
 Figure 26.18 is an example of transmitted bits using Manchester encoding. The receiver
passes the received Manchester-encoded bits through a low-pass filter. This extracts the low-
est frequency in the received bit stream, i.e. the clock frequency. With this clock the receiver

Ethernet 455

can then determine the transmitted bit pattern.

‘1’ ‘0’

Figure 26.17 Manchester encoding

 For Manchester decoding, the Manchester-encoded signal is first synchronised to the re-
ceiver (called bit synchronisation). A transition in the middle of each bit cell is used by a
clock recovery circuit to produce a clock pulse in the center of the second half of the bit cell.
In Ethernet the bit synchronisation is achieved by deriving the clock from the preamble field
of the frame using a clock and data recovery circuit. Many Ethernet decoders use the SEEQ
8020 Manchester code converter, which uses a phase-locked loop (PLL) to recover the clock.
The PLL is designed to lock onto the preamble of the incoming signal within 12-bit cells.
Figure 26.19 shows a circuit schematic of bit synchronisation using Manchester decoding
and a PLL.
 The PLL is a feedback circuit which is commonly used for the synchronisation of digital
signals. It consists of a phase detector (such as an EXOR gate) and a voltage-controlled
oscillator (VCO) which uses a crystal oscillator as a clock source.

0 1 1 0 1 1 1 1 1 0 0 0 1

0 1 1 0 1 1 1 1 1 0 0 0 1

Bit stream
to be
transmitted

Manchester
encoding

Extracted
receiver
clock

Receiver
bit stream

Figure 26.18 Example of Manchester coding

PLL Squelch

Recovered
synchronized
clock

Decoded
data

Received Manchester-encoded signal

Figure 26.19 Manchester decoding with bit synchronization

456 Computer busses

The frequency of the crystal is twice the frequency of the received signal. It is so constant
that it only needs irregular and small adjustments to be synchronised to the received signal.
The function of the phase detector is to find irregularities between the two signals and adjust
the VCO to minimise the error. This is accomplished by comparing the received signals and
the output from the VCO. When the signals have the same frequency and phase the PLL is
locked. Figure 26.20 shows the PLL components and the function of the EXOR.

Phase
detector

Low-pass
filter

ref
VCO

control voltage

out

sig

ref

out control voltage

Figure 26.20 PLL and example waveform for the phase detector

26.12.3 Memory buffer

The rate at which data is transmitted on the cable differs from the data rate used by the re-
ceiving computer, and the data appears in bursts. To compensate for the difference between
the data rate, a first-in first-out (FIFO) memory buffer is used to produce a constant data rate.
An important condition is that the average data input rate should not exceed the frequency of
the output clock; if this is not the case the buffer will be filled up regardless of its size.
 A FIFO is a RAM that uses a queuing technique where the output data appears in the
same order that it went in. The input and output are controlled by separate clocks, and the
FIFO keeps track of the data that has been written and the data that has been read and can
thus be overwritten. This is achieved with a pointer. Figure 26.21 shows a block diagram of
the FIFO configuration. The FIFO status is indicated by flags, the empty flag (EF) and the
full flag (FF), which show whether the FIFO is either empty or full.

26.12.4 Ethernet implementation

The completed circuit for the Ethernet receiver is given in Section 26.15 and is outlined in
Figure 26.22. It uses the SEEQ Technologies 82C93A Ethernet transceiver as the receiver
and the SEEQ 8020 Manchester code converter which decodes the Manchester code. A
transformer and a dc-to-dc converter isolate the SEEQ 82C92A and the network cable from
the rest of the circuit (and the computer). The isolated dc-to-dc converter converts a 5 V sup-
ply to the -9 V needed by the transceiver.
 The memory buffer used is the AMD AM7204 FIFO which has 4096 data words with 9-
bit words (but only eight bits are actually used). The output of the circuit is eight data lines,
the control lines FF , EF , RS , R and W , and the +5 V and GND supply rails.

Ethernet 457

SIPO
(serial-in

parallel-out)

FIFO
(first-in

first-out)

Write

Computer
clockControl logicRecovered

clock from
network

Data in

Reset FF EFResetCLK

Interface
signal

Read

reset

Data
out

Figure 26.21 Memory buffering

SEEQ
83C92A

NMA
0509S

(5V to – 9V
convertor)

RXI RX+

RX–

RX+

RX–

X1 X2

Data

CLK

–9V GND

5VGND

W

D0 Q0

R

QA
A

74164
(SIPO)

CLK

QH

RxD

RxC

SEEQ 8020
(PLL)

AM7204A
(FIFO)

D7 Q7

20 MHz

Figure 26.22 Ethernet receiver

26.13 Gigabit Ethernet

The IEEE 802.3 working group initiated the 802.3z gigabit Ethernet task force to create the
gigabit Ethernet standard (which was finally defined in 1998). The Gigabit Ethernet Alliance
(GEA) was founded in May 1996 and promotes gigabit Ethernet collaboration between or-
ganisations. Companies, which were initially involved in the GEA include: 3Com, Bay Net-
works, Cisco Systems, Compaq, Intel, LSI Logic, Sun and VLSI.
 The amount of available bandwidth for a single segment is massive. For example, almost
125 million characters (125 MB) can be sent in a single second. A large reference book with
over 1000 pages could be send over a network, 10 times in a single second. Compare it also
with a ×24, CD-ROM drive which transmits at a maximum rate of 3.6 MB/s (24×150 kB/s).
Gigabit Ethernet operates almost 35 times faster than this drive. With network switches, this
bandwidth can be multiplied by a given factor, as they allow multiple simultaneous connec-
tions.

458 Computer busses

 Gigabit Ethernet is an excellent challenger for network backbones as it interconnects
10/100BASE-T switches, and also provides high-bandwidth to high-performance servers.
Initial aims were:

• Half/full-duplex operation at 1000 Mbps.
• Standard 802.3 Ethernet frame format. Gigabit Ethernet uses the same variable-length

frame (64–1514-byte packets), and thus allows for easy upgrades.
• Standard CSMA/CD access method.
• Compatibility with existing 10BASE-T and 100BASE-T technologies.
• Development of an optional gigabit media independent interface (GMII).

The compatibility with existing 10/100BASE standards make the upgrading to Gigabit
Ethernet much easier, and considerably less risky than changing to other networking types,
such as FDDI and ATM. It will happily interconnect with, and autosense, existing slower
rated Ethernet devices. Figure 26.23 illustrates the functional elements of Gigabit Ethernet.
Its main characteristics are:

• Full-duplex communication. As defined by the IEEE 802.3x specification, two nodes

connected via a full-duplex, switched path can simultaneously send and receive frames.
Gigabit Ethernet supports new full-duplex operating modes for switch-to-switch and
switch-to-end-station connections, and half-duplex operating modes for shared connec-
tions using repeaters and the CSMA/CD access method.

• Standard flow control. Gigabit Ethernet uses standard Ethernet flow control to avoid
congestion and overloading. When operating in half-duplex mode, gigabit Ethernet
adopts the same fundamental CSMA/CD access method to resolve contention for the
shared media.

• Enhanced CSMA/CD method. This maintains a 200m collision diameter at gigabit
speeds. Without this, small Ethernet packets could complete their transmission before
the transmitting node could sense a collision, thereby violating the CSMA/CD method.
To resolve this issue, both the minimum CSMA/CD carrier time and the Ethernet slot
time (the time, measured in bits, required for a node to detect a collision) have been ex-
tended from 64 bytes (which is 51.2 µs for 10BASE and 5.12 µs for 100BASE) to 512
bytes (which is 4.1µs for 1000BASE). The minimum frame length is still 64 bytes.
Thus, frames smaller than 512 bytes have a new carrier extension field following the
CRC field. Packets larger than 512 bytes are not extended.

• Packet bursting. The slot time changes affect the small-packet performance, but this
has been offset by a new enhancement to the CSMA/CD algorithm, called packet burst-
ing. This allows servers, switches and other devices to send bursts of small packets in
order to fully utilize the bandwidth.

Devices operating in full-duplex mode (such as switches and buffered distributors) are not
subject to the carrier extension, slot time extension or packet bursting changes. Full-duplex
devices use the regular Ethernet 96-bit interframe gap (IFG) and 64-byte minimum frame
size.

Ethernet 459

1000BASE-SX
Transceiver

1000BASE-LX
Transceiver

1000BASE-CX
Transceiver

1000BASE-T
Transceiver

1000BASE-X 8B/10B
Encoder/Decoder

1000BASE-T
Encoder/Decoder

Gigabit Media Independent Interface (GMII)

Media Access Control (MAC)

802.3z 802.3ab

Figure 26.23 Gigabit Ethernet functional elements

26.13.1 Ethernet transceiver

The IEEE 802.3z task force spent much of their time defining the gigabit Ethernet standard
for the transceiver (physical layer), which is responsible for the mechanical, electrical and
procedural characteristics for establishing, maintaining and deactivating the physical link
between network devices. The physical layers are:

• 1000BASE-SX (low cost, multimode fibre cables). These can be used for short inter-

connections and short backbone networks. The IEEE 802.3z task force have tried to in-
tegrate the new standard with existing cabling, whether it be twisted-pair cable, coaxial
cable or fibre optic cable. These tests involved firing lasers in long lengths of multimode
fibre cables. Through these tests it was found that a jitter component results which is
caused by a phenomenon known as differential mode delay (DMD). The 1000BASE-SX
standard has resolved this by defining the launch of the laser signal, and enhanced con-
formance tests. Typical maximum lengths are: 62.5µm, multimode fibre (up to 220m)
and 50µm, multi-mode fibre (550m).

• 1000BASE-LX (multimode/singlemode fibre cables). These can be used for longer runs,
such as on backbones and campus networks. Single-mode fibres are covered by the long-
wavelength standard, and provide for greater distances. External patch cords are used to
reduce DMD. Typical lengths are: 62.5µm, multimode fibre (up to 550m); 50µm, mul-
timode fibre (up to 550m) and 50µm, single-mode fibre (up to 5km).

• 1000BASE-CX (shielded balanced copper). This standard supports interconnection of
equipment using a copper-based cable, typically up to 25m. As with the 1000BASE-
LX/SX standards, it uses the Fibre channel-based 8B/10B coding to give a serial line rate
of 1.25Gbps. The 1000BASE-T is likely to supersede this standard, but it has been rela-
tively easy to define, and to implement.

• 1000BASE-T (UTP). This is a useful standard for connecting directly to workstations.

460 Computer busses

The 802.3ab Task Force has been assigned the task of defining the 1000BASE-T physi-
cal layer standard for gigabit Ethernet over four pairs of Cat-5 UTP cable, for cable dis-
tances of up to 100 m, or networks with a diameter of 200 m. As it can be used with ex-
isting cabling, it allows easy upgrades. Unfortunately, it requires new technology and
new coding schemes in order to meet the potentially difficult and demanding parameters
set by the previous Ethernet and fast Ethernet standards.

26.13.2 Fibre Channel components
The IEEE 802.3 committee based much of the physical layer technology on the ANSI-
backed X3.230 Fibre channel project. This allowed many manufacturers to re-use physical-
layer Fibre channel components for new gigabit Ethernet designs, and has allowed a faster
development time than is normal, and increased the volume production of the components.
These include optical components and high-speed 8B/10B encoders.
 The 1000BASE-T standard uses enhanced DSP (digital signal processing) and enhanced
silicon technology to enable gigabit Ethernet over UTP cabling. As Figure 26.23 shows, it
does not use the 8B/10B encoding.

26.13.3 Buffered distributors
Along with repeaters, bridges and switches, a new device called a buffered distributor (or
full-duplex repeater) has been developed for gigabit Ethernet. It is a full-duplex, multiport,
hub-like device that connects two or more gigabit Ethernet segments. Unlike a bridge, and
like a repeater, it forwards all the Ethernet frames from one segment to the others, but unlike
a standard repeater, a buffered distributor buffers one, or more, incoming frames on each link
before forwarding them. This reduces collisions on connected segments. The maximum
bandwidth for a buffered distributor will still only be 1 Gbps, as opposed to gigabit switches
which allow multi-gigabit bandwidths.

26.13.4 Quality of service
Many, real-time, networked applications require a given quality of server (QoS), which
might relate to bandwidth requirements, latency (network delays) and jitter. Unfortunately,
there is nothing built into Ethernet that allows for a QoS, thus new techniques have been de-
veloped to overcome this. These include:

• RSVP – allows nodes to request and guarantee a QoS, and works at a higher level to

Ethernet. For this, each network component in the chain must support RSVP and com-
municate appropriately. Unfortunately, this may require an extensive investment to to-
tally support RSVP, thus many vendors have responded in implementing proprietary
schemes, which may make parts of the network vendor-specific.

• IEEE 802.1p and IEEE 802.1Q – allows a QoS over Ethernet by tagging packets with an
indication of the priority or class of service desired for the frames. These tags allow ap-
plications to communicate the priority of frames to internetworking devices. RSVP sup-
port can be achieved by mapping RSVP sessions into 802.1p service classes.

• Routing – implemented at a higher layer.

26.13.5 Gigabit Ethernet migration
The greatest advantage of gigabit Ethernet is that it is easy to upgrade existing Ethernet-
based networks to higher bit rates. Typical migration might be:

• Switch-to-switch links – involves upgrading the connections between switches to

1 Gbps. As 1000BASE switches support both 100BASE and 1000BASE then not all the

Ethernet 461

switches require to be upgraded at the same time; this allows for gradual migration.
• Switch-to-server links – involves upgrading the connection between a switch and the

server to 1Gbps. The server requires an upgraded gigabit Ethernet interface card.
• Switched fast Ethernet backbone – involves upgrading a fast Ethernet backbone switch

to a 100/1000BASE switch. It thus supports both 100BASE and 1000BASE switching,
using existing cabling.

• Shared FDDI backbone – involves replacing FDDI attachments on the ring with gigabit
Ethernet switches or repeaters. Gigabit Ethernet uses the existing fibre-optic cable, and
provides a greatly increased segment bandwidth.

• Upgrade NICs on nodes to 1 Gbps. It is unlikely that users will require 1 Gbps connec-
tions, but this facility is possible.

26.13.6 1000BASE-T

One of the greatest challenges of gigabit Ethernet is to use existing Cat-5 cables, as this will
allow fast upgrades. Two critical parameters, which are negligible at 10BASE speeds, are:

• Return loss – defines the amount of signal energy that is reflected back towards the

transmitter due to impedance mismatches in the link (typically from connector and cable
bends).

• Far-end crosstalk – noise that is leaked from another cable pair.

The 1000BASE-T task force estimates that less than 10% of the existing Cat-5 cable were
improperly installed (as defined in ANSI/TIA/EIA568-A in 1995) and might not support
1000BASE-T (or even, 100BASE-TX). 100BASE-T uses two pairs, one for transmit and one
for receive, and transmits at a symbol rate of 125 Mbaud with a 3-level code. 1000BASE-T
uses:

• All four pairs with a symbol rate of 125 Mbaud (symbols/per second). One symbol con-

tains two bits of information.
• Each transmitted pulse uses a five-level PAM (pulse amplitude modulation) line code,

which allows two bits to be transmitted at a time.
• Simultaneous send and receive on each pair. Each connection uses a hybrid circuit to

split the send and receive signals.
• Pulse shaping matches the characteristics of the transmitted signal to the channel so that

the signal-to-noise ratio is minimised. It effectively reduces low frequency terms (which
contain little data information, can cause distortion and cannot be passed over the trans-
former-coupled hybrid circuit), reduces high frequency terms (which increases crosstalk)
and rejects any external high-frequency noise. It is thought that the transmitted signal
spectrum for 1000BASE will be similar to 100BASE.

• Forward error correction (FEC) provides a second level of coding that helps to recover
the transmitted symbols in the presence of high noise and crosstalk. The FEC bit uses the
fifth level of the five-level PAM.

A five-level code (–2, –1, 0, +1, +2) allows two bits to be sent at a time, if all four pairs are
used then eight bits are sent at a time. If each pair transmits at a rate of 125Mbaud (sym-
bols/sec), the resulting bit rate will be 1 Gbps.

462 Computer busses

26.14 Exercises

26.14.1 The base bit rate of standard Ethernet is:

 (a) 1 kbps (b) 1 Mbps (c) 10 Mbps (d) 100 Mbps

26.14.2 The base bit rate of fast Ethernet is:

 (a) 1 kbps (b) 1 Mbps (c) 10 Mbps (d) 100 Mbps

26.14.3 Standard Ethernet (thick-wire Ethernet) is also known as:

 (a) 10BASE2 (b) 10BASE5
 (c) 10BASE-T (d) 10BASE-FL

26.14.4 Thin-wire Ethernet (Cheapernet) is also known as:

 (a) 10BASE2 (b) 10BASE5
 (c) 10BASE-T (d) 10BASE-FL

26.14.5 Standard Ethernet (thick-wire Ethernet) uses which type of cable:

 (a) Twisted-pair cable (b) Coaxial cable
 (c) Fibre optic cable (d) Radio link

26.14.6 Thin-wire Ethernet (Cheapernet) uses which type of cable:

 (a) Twisted-pair cable (b) Coaxial cable
 (c) Fibre optic cable (d) Radio link

26.14.7 The IEEE standard for Ethernet is:

 (a) IEEE 802.1 (b) IEEE 802.2
 (c) IEEE 802.3 (d) IEEE 802.4

26.14.8 The main disadvantage of Ethernet is that:

 (a) Computers must contend for the network. (b) It does not network well.
 (c) It is unreliable. (d) It is not secure.

26.14.9 A MAC address has how many bits:

 (a) 8 bits (b) 24 bits
 (c) 32 bits (d) 48 bits

26.14.10 Which bit pattern identifies the start of an Ethernet frame:

 (a) 11001100…1100 (b) 00000000…0000
 (c) 11111111…1111 (d) 10101010…1010

Ethernet 463

26.14.11 The main standards relating to Ethernet networks are:

(a) IEEE 802.2 and IEEE 802.3 (b) IEEE 802.3 and IEEE 802.4
(c) ANSI X3T9.5 and IEEE 802.5 (d) EIA RS-422 and IEEE 802.3

26.14.12 Which layer in the Ethernet standard communicates with the OSI network layer:

 (a) the MAC layer (b) the LLC layer
 (c) the physical layer (d) the protocol layer

26.14.13 Standard, or thick-wire, Ethernet is also known as:

 (a) 10BASE2 (b) 10BASE5
 (c) 10BASE-T (d) 10BASE-F

26.14.14 Twisted-pair Ethernet is also known as:

 (a) 10BASE2 (b) 10BASE5
 (c) 10BASE-T (d) 10BASE-FL

26.14.15 Fiber optic Ethernet is also known as:

 (a) 10BASE2 (b) 10BASE5
 (c) 10BASE-T (d) 10BASE-F

26.14.16 Which type of connector does twisted-pair Ethernet use when connecting to a net-
work hub:

 (a) N-type (b) BNC
 (c) RJ-45 (d) SMA

26.14.17 Which type of connector does Cheapernet, or thin-wire Ethernet, use when con-

necting to the network backbone:

 (a) N-type (b) BNC
 (c) RJ-45 (d) SMA

26.14.18 What is the function of a repeater in an Ethernet network:

 (a) It increases the bit rate (b) It isolates network segments
 (c) It prevents collisions (d) It boosts the electrical signal

26.14.19 Discuss the limitations of 10BASE5 and 10BASE2 Ethernet.

26.14.20 Discuss the main reasons for the preamble in an Ethernet frame.

26.14.21 Discuss 100 Mbps Ethernet technologies with respect to how they operate and

their typical parameters.

26.14.22 Explain the usage of Ethernet SNAP.

464 Computer busses

26.14.23 State the main advantage of Manchester coding and show the line code for the bit

sequence

 01111010101101010001011010

26.14.24 Explain the main functional differences between 100BASE-T, 100BASE-4T and

100VG-AnyLAN.

26.14.25 Prove that the maximum length of segment that can be used with 10 Mbps

Ethernet is 840 metres. Assume that the propagation speed is 1.5×1 08m/s and the
length of the preamble is 56 bits. Note, a collision must be detected by the end of
the transmission of the preamble. Also, why might the maximum length of the
segment be less than this?

26.14.26 What problem might be encountered with fast Ethernet, with respect to the maxi-

mum segment length?

26.15 Ethernet crossover connections

The standard connections for 10BASE and 100BASE are

1 TD+
2 TD-
3 RD+
4 UNUSED
5 UNUSED
6 RD-
7 UNUSED
8 UNUSED

1 TD+
2 TD-
3 RD+
4 UNUSED
5 UNUSED
6 RD-
7 UNUSED
8 UNUSED

RJ-45 RJ-45

where RD is the receive signals (this is known as RECEIVE in 100BASE) and TD the
transmit signals (TRANSMIT). These cable connections are difficult to set-up and most con-
nections use a straight through connection (as given in Table 26.3). Ports which have the
cross-over connection internal in the port are marked with an “X”.
 The standard connections for 100BASE-T4 is given next:

Ethernet 465

1 TX_D1+
2 TX_D1-
3 RX_D2+
4 BI_D3+
5 BI_D3-
6 RX_D2-
7 BI_D4+
8 BI_D4-

1 TX_D1+
2 TX_D1-
3 RX_D2+
4 BI_D3+
5 BI_D3-
6 RX_D2-
7 BI_D4+
8 BI_D4-

RJ-45 RJ-45

where BI represents the bi-directional transmission signals, TX the transmit signals and RX
the receive signals. These cable connections are difficult to set-up and most connections use
a straight through connection (as given in Table 26.3). Ports which have the cross-over
connection internal in the port are marked with an “X”.

26.16 Notes from the author

Until recently, it seemed unlikely that Ethernet would survive as a provider of network back-
bones and for campus networks, and its domain would stay, in the short-term, with connec-
tions to local computers. The world seemed distended for the global domination of ATM, the
true integrator of real-time and non real-time data. This was due to Ethernet’s lack of sup-
port for real-time traffic and that it does not cope well with traffic rates that approach the
maximum bandwidth of a segment (as the number of collisions increases with the amount of
traffic on a segment). ATM seemed to be the logical choice as it analyses the type of data
being transmitted and reserves a route for the given quality of service. It looked as if ATM
would migrate down from large-scale networks to the connection of computers, telephones,
and all types analogue/digital communications equipment. But, remember, not always the
best technological solution wins the battle for the market – a specialist is normally always
trumped by a good all-rounder.
 Ethernet also does not provide for quality of service and requires other higher-level pro-
tocols, such as IEEE 802.1p. These disadvantages are often outweighed by its simplicity, its
upgradeability, its reliability and its compatibility. One way to overcome the contention
problem is to provide a large enough bandwidth so that the network is not swamped by
sources which burst data onto the network. For this, the gigabit Ethernet standard is likely to
be the best solution for most networks.

TCP and UDP

24.1 Introduction

TCP, ICMP and IP are extremely important protocols as they allow hosts to communicate
over the Internet in a reliable way. The TCP layer is defined by RFC793 and RFC1122,
ICMP by RFC792 and the IP layer by RFC791. TCP provides a connection between two
hosts and supports error handling. This chapter discusses TCP in more detail and shows how
a connection is established and then maintained. An important concept of TCP/IP communi-
cations is the usage of ports and sockets. A port identifies the process type (such as FTP,
TELNET and so on) and the socket identifies a unique connection number. In this way,
TCP/IP can support multiple simultaneous connections of applications over a network.
 The IP header is added to higher-level data. This header contains a 32-bit IP address of
the destination node. Unfortunately, the standard 32-bit IP address is not large enough to
support the growth in nodes connecting to the Internet. Thus a new standard, IP Version 6,
has been developed to support a 128-bit address, as well as additional enhancements.

24.2 Transmission control protocol

In the OSI model, TCP fits into the transport layer and IP fits into the network layer. TCP
thus sits above IP, which means that the IP header is added onto the higher-level information
(such as transport, session, presentation and application). The main function of TCP is to
provide a robust and reliable transport protocol. It is characterised as a reliable, connection-
oriented, acknowledged and datastream-oriented server. IP, itself, does not support the con-
nection of two nodes, whereas TCP does. With TCP, a connection is initially established and
is then maintained for the length of the transmission.
 The main aspects of TCP are:

• Data transfer – data is transmitted between two applications by packaging the data within

TCP packets. This data is buffered and forwarded whenever necessary. A push function
can be used when the data is required to be sent immediately.

• Reliability – TCP uses sequence numbers and positive acknowledgements (ACK) to
keep track of transmitted packets. Thus, it can recover from data that is damaged, lost,
duplicated, or delivered out of order, such as:

• Time-outs – the transmitter waits for a given time (the timeout interval), and if it does
not receive an ACK, the data is retransmitted.

• Sequence numbers – the sequence numbers are used at the receiver to correctly order
the packets and to delete duplicates.

24

386 Computer busses

• Error detection and recovery – each packet has a checksum, which is checked by the
receiver. If it is incorrect the receiver discards it, and can use the acknowledgements
to indicate the retransmission of the packets.

• Flow control – TCP returns a window with every ACK. This window indicates a range

of acceptable sequence numbers beyond the last segment successfully received. This
window also indicates the number of bytes that the sender can transmit before receiving
further acknowledgements.

• Multiplexing – to support multiple connections to a single host, TCP provides a set of
ports within each host. This, along with the IP addresses of the source and destination,
makes a socket. Each connection is uniquely identified by a pair of sockets. Ports are
normally associated with various services and allow service programs to listen for de-
fined port numbers.

• Connections – a connection is defined by the sockets, sequence numbers and window
sizes. Each host must maintain this information for the length of the connection. When
the connection is closed, all associated resources are freed. As TCP connections can be
made with unreliable hosts and over unreliable communication channels, TCP uses a
handshake mechanism with clock-based sequence numbers to avoid inaccurate connec-
tion initialisation.

• Precedence and security – TCP allows for different security and precedence levels.

TCP information contains simple acknowledgement messages and a set of sequential num-
bers. It also supports multiple simultaneous connections using destination and source port
numbers, and manages them for both transmission and reception. As with IP, it supports data
fragmentation and reassembly, and data multiplexing/demultiplexing.
 The set-up and operation of TCP is as follows:

1. When a host wishes to make a connection, TCP sends out a request message to the desti-

nation machine that contains unique numbers called a socket number, and a port number.
The port number has a value which is associated with the application (for example a
TELNET connection has the port number 23 and an FTP connection has the port number
21). The message is then passed to the IP layer, which assembles a datagram for trans-
mission to the destination.

2. When the destination host receives the connection request, it returns a message contain-
ing its own unique socket number and a port number. The socket number and port num-
ber thus identify the virtual connection between the two hosts.

3. After the connection has been made the data can flow between the two hosts (called a
data stream).

After TCP receives the stream of data, it assembles the data into packets, called TCP seg-
ments. After the segment has been constructed, TCP adds a header (called the protocol data
unit) to the front of the segment. This header contains information such as a checksum, the
port number, the destination and source socket numbers, the socket number of both machines
and segment sequence numbers. The TCP layer then sends the packaged segment down to
the IP layer, which encapsulates it and sends it over the network as a datagram.

24.2.1 Ports and sockets

As previously mentioned, TCP adds a port number and socket number for each host. The
port number identifies the required service, whereas the socket number is a unique number

TCP and UDP 387

for that connection. Thus, a node can have several TELNET connections with the same port
number but each connection will have a different socket number. A port number can be any
value but there is a standard convention that most systems adopt. Table 24.1 defines some of
the most common values. Standard applications normally use port values from 0 to 255,
while unspecified applications can use values above 255. Section 24.12 outlines the main
ports.

Table 24.1 Typical TCP port numbers

Port Process name Notes
20 FTP-DATA File transfer protocol (data)
21 FTP File transfer protocol (control)
23 TELNET Telnet
25 SMTP Simple mail transfer protocol
49 LOGIN Login protocol
53 DOMAIN Domain name server
79 FINGER Finger
161 SNMP Simple network management protocol

24.2.2 TCP header format

The sender’s TCP layer communicates with the receiver’s TCP layer using the TCP protocol
data unit. It defines parameters such as the source port, destination port, and so on, and is
illustrated in Figure 24.1. The fields are:

• Source and destination port number – 16-bit values that identify the local port number

(source number and destination port number or destination port).
• Sequence number – identifies the current sequence number of the data segment. This al-

lows the receiver to keep track of the data segments received. Any segments that are
missing can be easily identified. The sequence number of the first data byte in this seg-
ment (except when SYN is present). If SYN is present the sequence number is the initial
sequence number (ISN) and the first data octet is ISN+1.

• Acknowledgement number – when the ACK bit is set, it contains the value of the next
sequence number the sender of the packet is expecting to receive. This is always set after
the connection is made.

• Data offset – a 32-bit value that identifies the start of the data. It is defined as the number
of 32-bit words in the header (as the TCP header always has a multiple number of 32-bit
words).

• Flags – the flag field is defined as UAPRSF, where U is the urgent flag (URG), A the ac-
knowledgement flag (ACK), P the push function (PSH), R the reset flag (RST), S the se-
quence synchronise flag (SYN) and F the end-of-transmission flag (FIN).

• Window – a 16-bit value that gives the number of data bytes that the receiving host can
accept at a time, beginning with the one indicated in the acknowledgement field of this
segment.

• Checksum – a 16-bit checksum for the data and header. It is the 1’s complement of all the
1’s complement sum of all the 16-bit words in the TCP header and text. The checksum is
assumed to be a zero when calculating the checksum.

• UrgPtr – the urgent pointer used to identify an important area of data (most systems do
not support this facility). It is only used when the URG bit is set. This field communicates
the current value of the urgent pointer as a positive offset from the sequence number in
this segment.

388 Computer busses

• Options (discussed in Section 24.2.3).
• Padding (variable) – The TCP header padding is used to ensure that the TCP header ends

and data begins on a 32-bit boundary. The padding is composed of zeros.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Source port

Destination port

Sequence number

Acknowledgment number

Checksum

ReservedData offset Flags

UrgPtr

DATA

Window

Figure 24.1 TCP header format

In TCP, a packet is termed as the complete TCP unit; that is, the header and the data. A seg-
ment is a logical unit of data, which is transferred between two TCP hosts. Thus a packet is
made up of a header and a segment.

24.2.3 Options

Like IP, the option field can precede the data. It is variable in length and the contents of the
header beyond the end-of-option must be header padding. It must be implemented by all
hosts and gateways. There are two classes of option:

• An option-type byte.
• An option-type byte, followed by an option-length byte, and then the actual option-data

bytes. The option-length byte counts all the bytes in the options field.

Supported types are:

Type Length Description
0 End of option list
1 No operation
2 4 Maximum segment size

24.2.4 End of option list (Type=0)

The end of option list indicates the end of all the options, not just the end of each option. It
may not necessarily coincide with the end of the TCP header (according to the data offset
field). It is only needed if the end of the options would not otherwise coincide with the end of

TCP and UDP 389

the TCP header. Its format is

 +--------+
 |00000000|
 +--------+

24.2.5 No-operation (type=1)

The no-operation can be used between options. A typical application is to align the beginning
of a subsequent option, so that it is on a 32-bit word boundary. Its format is

 +--------+
 |00000001|
 +--------+

24.2.6 Maximum segment size (type=2, length=4)

In this option the maximum receive segment size is defined, and is preceeded by a 16-bit
maximum segment size. It is only sent in an initial connection request, that is, when the
SYN control bit is set. If it is not included, then any segment size is allowed. Its format is

 +--------+--------+---------+--------+
 |00000010|00000100| max seg size |
 +--------+--------+---------+--------+

24.3 UDP

TCP allows for a reliable connection-based transfer of data. The User datagram protocol
(UDP) is an unreliable connection-less approach, where datagrams are sent into the network
without an acknowledgement or connections. It is defined in RFC768 and uses IP as its un-
derlying protocol. It has the advantage over TCP in that it has a minimal protocol mecha-
nism, but does not guarantee delivery of any of the data. Figure 24.2 shows its format. The
fields are:

• Source port – this is an optional field and is set to a zero if not used. It identifies the local

port number which should be used when the destination host requires to contact the
originator.

• Destination – port to connect to on the destination.
• Length – number of bytes in the datagram, including the UDP header and the data.
• Checksum – it is the 16-bit 1’s complement of all 1’s complement sum of the IP header,

the UDP header and the data (which, if necessary, is padded with zero bytes at the end, to
make an even number of bytes).

When used with IP the UDP/IP header is shown in Figure 24.3. The protocol field is set to 17
to identify UDP.

390 Computer busses

Length

Source port

Destination port

Checksum

DATA

32 bits

Figure 24.2 UDP header format

Length

Source port

Destination port

Checksum

DATA

32 bits

Source IP address

Destination IP address

Zero Protocol=
17 UDP length

IP
header

UDP
header

Figure 24.3 UDP/IP header format

24.4 TCP specification

TCP is made reliable with the following:

• Sequence numbers – each TCP packet is sent with a sequence number. Theoretically,

each data byte is assigned a sequence number. The sequence number of the first data
byte in the segment is transmitted with that segment and is called the segment sequence
number (SSN).

TCP and UDP 391

• Acknowledgements – packets contain an acknowledgement number, which is the se-
quence number of the next expected transmitted data byte in the reverse direction. On
sending, a host stores the transmitted data in a storage buffer, and starts a timer. If the
packet is acknowledged then this data is deleted, else, if no acknowledgement is re-
ceived before the timer runs out, the packet is retransmitted.

• Window – with this, a host sends a window value which specifies the number of bytes,
starting with the acknowledgement number, that the host can receive.

24.4.1 Connection establishment, clearing and data transmission

The main interfaces in TCP are shown in Figure 24.4. The calls from the application program
to TCP include:

• OPEN and CLOSE – to open and close a connection.
• SEND and RECEIVE – to send and receive.
• STATUS – to receive status information.

TCP

IP

OPEN() SEND() RECEIVE() CLOSE() ABORT() STATUS()

States:
LISTEN
SYN-SENT
SYN-RECEIVED
ESTABLISHED
FIN-WAIT1
FIN-WAIT2
CLOSE-WAIT
CLOSING
LAST-ACK
TIME-WAIT

TCP Interface

RST
flag

SYN
flag

Src
Port

Dest
Port

Seq.
No.

Ack
No.

ACK
flag

FIN
flag

Check
Sum

DATAPUSH
flag

Figure 24.4 TCP interface

The OPEN call initiates a connection with a local port and foreign socket arguments. A
transmission control block (TCB) stores the information on the connection. After a success-
ful connection, TCP adds a local connection name by which the application program refers to
the connection in subsequent calls.
 The OPEN call supports two different types of call, as illustrated in Figure 24.5. These
are:

• Passive OPEN – TCP waits for a connection from a foreign host, such as from an active

OPEN. In this case, the foreign socket is defined by a zero. This is typically used by

392 Computer busses

servers, such as TELNET and FTP servers. The connection can either be from a fully
specified or an unspecified socket.

• Active OPEN – TCP actively connects to a foreign host, typically a server (which is
opened with a passive OPEN). Two processes which issue active OPENs to each other,
at the same time, will also be connected.

A connection is established with the transmission of TCP packets with the SYN control flag
set and uses a three-way handshake (see Section 24.6). A connection is cleared by the ex-
change of packets with the FIN control flag set. Data flows in a stream using the SEND call
to send data and RECEIVE to receive data.
 The PUSH flag is used to send data in the SEND immediately to the recipient. This is
required as a sending TCP is allowed to collect data from the sending application program
and sends the data in segments when convenient. Thus, the PUSH flag forces it to be sent.
When the receiving TCP sees the PUSH flag, it does not wait for any more data from the
sending TCP before passing the data to the receiving process.

OPEN (active) OPEN (passive)
Fully specified
the foreign socket

OPEN (active) OPEN (passive)
Unspecified
the foreign socket

OPEN (active) OPEN (active)

Figure 24.5 TCP connections

24.5 TCB parameters

Table 24.2 outlines the send and receive packet parameters, as well as the current segment
parameter, which are stored in the TCB. Along with this, the local and remote port number
require to be stored.

24.6 Connection states

Figure 24.6 outlines the states the connection goes into, and the events that cause them. The
events from applications programs are OPEN, SEND, RECEIVE, CLOSE, ABORT and
STATUS, and the events from the incoming TCP packets include the SYN, ACK, RST and
FIN flags. The definition of each of the connection states are:

TCP and UDP 393

Table 24.2 TCB parameters

Send sequence variables Receive sequence variables Current packet variable
SND.UNA
SND.NXT Send next

SND.WND Send window

SND.UP Send urgent pointer

SND.WL1 Segment sequence
number used for last window
update

SND.WL2 Segment acknowl-
edgement number used for last
window update

ISS Initial send sequence num-
ber

RCV.NXT Receive next

RCV.WND Receive window

RCV.UP Receive urgent pointer

IRS Initial receive sequence number

SEG.SEQ Segment sequence
number

SEG.ACK Segment
acknowledgement number

SEG.LEN Segment length

SEG.WND Segment window

SEG.UP Segment urgent
pointer

SEG.PRC Segment precedence
value

• LISTEN – this is the state in which TCP is waiting for a remote connection on a given

port.
• SYN-SENT– this is the state where TCP is waiting for a matching connection request

after it has sent a connection request.
• SYN-RECEIVED – is the state where TCP is waiting for a confirming connection re-

quest acknowledgement after having both received and sent a connection request.
• ESTABLISHED – this is the state that represents an open connection. Any data received

can be delivered to the application program. This is the normal state for data to be trans-
mitted.

• FIN-WAIT-1– this is the state in which TCP is waiting for a connection termination re-
quest, or an acknowledgement of a connection termination, from the remote TCP.

• FIN-WAIT-2 – this is the state in which TCP is waiting for a connection termination re-
quest from the remote TCP.

• CLOSE-WAIT – this is the state where TCP is waiting for a connection termination re-
quest from the local application.

• CLOSING – this is the state where TCP is waiting for a connection termination request
acknowledgement from the remote TCP.

• LAST-ACK – this is the state where TCP is waiting for an acknowledgement of the con-
nection termination request previously sent to the remote TCP.

• TIME-WAIT – this is the state in which TCP is waiting for enough time to pass to be
sure the remote TCP received the acknowledgement of its connection termination re-
quest.

• CLOSED – this is the notational state, which occurs after the connection has been closed.

394 Computer busses

CLOSECLOSE

LISTENLISTEN

ESTABLISHESTABLISHFIN
WAIT-1
FIN

WAIT-1
CLOSE
WAIT

CLOSE
WAIT

CLOSINGCLOSINGFIN
WAIT-2
FIN

WAIT-2 LAST-ACKLAST-ACK

SYN
RECEIVED

SYN
RECEIVED

SYN
SENT
SYN
SENT

Passive
OPEN CLOSE

SEND and
SYN

Receive SYN
and SYN, ACK

Receive SYN
and SYN, ACK

Receive ACK
of SYN

Active
OPEN CLOSE

CLOSE and
FIN

Receive FIN
and ACK

Receive ACK
of FIN

CLOSE and
FIN

Receive FIN
and ACK

TIME WAITTIME WAIT

Receive ACK
of FIN

CLOSEDCLOSED

CLOSE and
FIN

Receive FIN
and ACK

Timeout = 2MSL

Figure 24.6 TCP connection states

24.6.1 Sequence numbers

TCP packets contain a 32-bit sequence number (0 to 4 294 967 295), which relates to every
byte sent. It uses a cumulative acknowledgement scheme, where an acknowledgement with a
value of VAL, validates all bytes up to, but not including, byte VAL. Each byte at which the
packet starts is numbered consecutively, at the first byte.
 When sending data, TCP should receive acknowledgements for the transmitted data. The
required TCB parameters will be:

SND.UNA Oldest unacknowledged sequence number.
SND.NXT Next sequence number to send.
SEG.ACK Acknowledgement from the receiving TCP (next sequence num-

ber expected by the receiving TCP).
SEG.SEQ First sequence number of a segment.
SEG.LEN Number of bytes in the TCP packet.
SEG.SEQ+SEG.LEN–1 Last sequence number of a segment.

On receiving data, the following TCB parameters are required:

RCV.NXT Next sequence number expected on an incoming segment, and is
the left or lower edge of the receive window.

RCV.NXT+RCV.WND–1 Last sequence number expected on an incoming segment, and is

TCP and UDP 395

the right or upper edge of the receive window.
SEG.SEQ First sequence number occupied by the incoming segment.
SEG.SEQ+SEG.LEN–1 Last sequence number occupied by the incoming segment.

24.6.2 ISN selection

The initial sequence number (ISN) is selected so that previous sockets are not confused with
new sockets. Typically, this can happen when a host application crashes and then quickly re-
establishes the connection before the other side can time-out the connection. To avoid this a
32-bit initial sequence number (ISN) generator is created when the connection is made. The
number is generated by a 32-bit clock, which is incremented approximately every 4µs (giv-
ing an ISN cycle of 4.55 hours). Thus, within 4.55 hours, each ISN will be unique.
 As each connection has a send and receive sequence number, these are an initial send
sequence number (ISS) and an initial receive sequence number (IRS). When establishing a
connection, the two TCPs synchronise their initial sequence numbers. This is done by ex-
changing connection establishing packets, with the SYN bit set and with the initial sequence
numbers (these packets are typically called SYNs). Thus four packets must be initially ex-
changed:

• A sends to B. SYN with ASEQ.
• B sends to A. ACK of the sequence number (ASEQ).
• B sends to A. SYN with BSEQ.
• A sends to B. ACK of the sequence number (BSEQ).

Note that the two intermediate steps can be combined into a single message. This is some-
times knows as a three-way handshake. This handshake is necessary as the sequence num-
bers are not tied to a global clock, only to local clocks, and has many advantages, including
the fact that old packets will be discarded as they occurred in a previous time.
 To make sure that a sequence number is not duplicated, a host must wait for a maximum
segment lifetime (MSL) before starting to retransmit packets (segments) after start-up or
when recovering from a crash. An example MSL is 2 minutes. However, if it is recovering,
and it has a memory of the previous sequence numbers, it may not need to wait for the MSL,
as it can use sequence numbers which are much greater than the previously used sequence
numbers.

24.7 Opening and closing a connection

Figure 24.7 shows a basic three-way handshake. The steps are:

1. The initial state on the initiator is CLOSED and, on the recipient, it is LISTEN (the re-

cipient is waiting for a connection see figure 24.7).
2. The initiator goes into the SYN-SENT state and sends a packet with the SYN bit set and

then indicates that the starting sequence number will be 999 (the current sequence num-
ber, thus the next number sent will be 1000). When this is received the recipient goes
into the SYN-RECEIVED state.

3. The recipient sends back a TCP packet with the SYN and ACK bits set (which identifies
that it is a SYN packet and also that it is acknowledging the previous SYN packet). In

396 Computer busses

this case, the recipient tells the originator that it will start transmitting at a sequence
number of 100. The acknowledgement number is 1000, which is the sequence number
that the recipient expects to receive next. When this is received, the originator goes into
the ESTABLISHED state.

4. The originator sends back a TCP packet with the SYN and ACK bits set and the ac-
knowledgement number is 101, which is the sequence number it expects to see next.

5. The originator transmits data with the sequence number of 1000.

 Originator Recipient
 1. CLOSED LISTEN
 2. SYN-SENT → <SEQ=999><CTL=SYN> SYN-RECEIVED
 3. ESTABLISHED <SEQ=100><ACK=1000> <CTL=SYN,ACK> ← SYN-RECEIVED
 4. ESTABLISHED → <SEQ=1000><ACK=101> <CTL=ACK> ESTABLISHED
 5. ESTABLISHED → <SEQ=1000><ACK=101> <CTL=ACK><DATA> ESTABLISHED

Figure 24.7 TCP connection

Note that the acknowledgement number acknowledges every sequence number up to but not
including the acknowledgement number.
 Figure 24.8 shows how the three-way handshake prevents old duplicate connection initia-
tions from causing confusion. In state 3, a duplicate SYN has been received, which is from a
previous connection. The recipient sends back an acknowledgement for this (4), but when
this is received by the originator, the originator sends back a RST (reset) packet. This causes
the recipient to go back into a LISTEN state. It will then receive the SYN packet sent in 2,
and after acknowledging it, a connection is made.
 TCP connections are half-open if one of the TCPs has closed or aborted, and the other
end is still connected. They can also occur if the two connections have become desynchro-
nised because of a system crash. This connection is automatically reset if data is sent in ei-
ther direction. This is because the sequence numbers will be incorrect, otherwise the connec-
tion will time-out.
 A connection is normally closed with the CLOSE call. A host who has closed cannot
continue to send, but can continue to RECEIVE until it is told to close by the other side. Fig-
ure 24.9 shows a typical sequence for closing a connection. Normally the application pro-
gram sends a CLOSE call for the given connection. Next, a TCP packet is sent with the FIN
bit set, the originator enters into the FIN-WAIT-1 state. When the other TCP has acknowl-
edged the FIN and sent a FIN of its own, the first TCP can ACK this FIN.

 Originator Recipient
1. CLOSED LISTEN
2. SYN-SENT → <SEQ=999><CTL=SYN>
3. (duplicate) → <SEQ=900><CTL=SYN>
4. SYN-SENT <SEQ=100><ACK=901> <CTL=SYN,ACK> ← SYN-RECEIVED
5. SYN-SENT → <SEQ=901><CTL=RST> LISTEN
6. (packet 2 received) →
7. SYN-SENT <SEQ=100><ACK=1000><CTL=SYN,ACK> ← SYN-RECEIVED
8. ESTABLISHED → <SEQ=1000><ACK=101><CTL=ACK><DATA> ESTABLISHED

Figure 24.8 TCP connection with duplicate connections

TCP and UDP 397

 Originator Recipient
 1. ESTABLISHED ESTABLISHED
 (CLOSE call)
 2. FIN-WAIT-1 → <SEQ=1000><ACK=99> <CTL=SFIN,ACK> CLOSE-WAIT
 3. FIN-WAIT-2 <SEQ=99><ACK=1001> <CTL=ACK> ← CLOSE-WAIT
 4. TIME-WAIT <SEQ=99><ACK=101><CTL=FIN,ACK> ← LAST-ACK
 5. TIME-WAIT → <SEQ=1001><ACK=102><CTL=ACK> CLOSED

Figure 24.9 TCP close connection

24.8 TCP user commands

The commands in this section characterise the interface between TCP and the application
program. Their actual implementation depends on the operating system. Section 24.9 dis-
cusses the WinSock implementation.

24.8.1 OPEN

The OPEN call initiates an active or a passive TCP connection. The basic parameters passed
and returned from the call are given next. Parameters in brackets are optional.

Parameters passed: local port, foreign socket, active/passive [, timeout]
 [, precedence] [, security/compartment] [, options])
Parameters returned: local connection name

These parameters are defined as:

• Local port – the local port to be used.
• Foreign socket – the definition of the foreign socket.
• Active/passive – a passive flag causes TCP to LISTEN, else it will actively seek a con-

nection.
• Timeout – if present, this parameter allows the caller to set up a timeout for all data sub-

mitted to TCP. If the data is not transmitted successfully within the timeout period, the
connection is aborted.

• Security/compartment – specifies the security of the connection.
• Local connection name – a unique connection name is returned which identifies the

socket.

24.8.2 SEND

The SEND call causes the data in the output buffer to be sent to the indicated connection.
Most implementations return immediately from the SEND call, even if the data has not been
sent, although some implementations will not return until either there is a timeout or the data
has been sent. The basic parameters passed and returned from the call are given next. Pa-
rameters in brackets are optional.

Parameters passed: local connection name, buffer address, byte count, PUSH
flag, URGENT flag [,timeout]

398 Computer busses

These parameters are defined as:

• Local connection name – a unique connection name which identifies the socket.
• Buffer address – address of data buffer.
• Byte count – number of bytes in the buffer.
• PUSH flag – if this flag is set then the data will be transmitted immediately, else the TCP

may wait until it has enough data.
• URGENT flag – sets the urgent pointer.
• Timeout – sets a new timeout for the connection.

24.8.3 RECEIVE

The RECEIVE call allocates a receiving buffer for the specified connection. Most implemen-
tations return immediately from the RECEIVE call, even if the data has not been received,
although some implementation will not return until either there is a timeout or the data has
been received. The basic parameters passed and returned from the call are given next. Pa-
rameters in brackets are optional.

Parameters passed: local connection name, buffer address, byte count
Parameters returned: byte count, URGENT flag, PUSH flag

These parameters are defined as:

• Local connection name – a unique connection name which identifies the socket.
• Buffer address – address of the receive data buffer.
• Byte count – number of bytes received in the buffer.
• PUSH flag – if this flag is set then the PUSH flag has been set on the received data.
• URGENT flag – if this flag is set then the URGENT flag has been set on the received

data.

24.8.4 CLOSE

The CLOSE call closes the connections and releases associated resources. All pending
SENDs will be transmitted, but after the CLOSE call has been implemented, no further
SENDs can occur. RECEIVEs can occur until the other host has also closed the connection.
The basic parameters passed and returned from the call are given next.

Parameters passed: local connection name

24.8.5 STATUS

The STATUS call determines the current status of a connection, typically listing the TCBs.
The basic parameters passed and returned from the call are given next.

Parameters passed: local connection name
Parameters returned: status data

The returned information should include status information on the following:

• local socket, foreign socket, local connection name;

TCP and UDP 399

• receive window, send window, connection state;
• number of buffers awaiting acknowledgement, number of buffers pending receipt;
• urgent state, precedence, security/compartment;
• transmission timeout.

24.8.6 ABORT

The ABORT call causes all pending SENDs and RECEIVEs to be aborted. All TCBs are
also removed and a RESET message sent to the other TCP. The basic parameters passed and
returned from the call are given next. Parameters in brackets are optional.

Parameters passed: local connection name

24.9 WinSock

24.9.1 Introduction

The Windows sockets specification describes a common interface for networked Windows
programs. WinSock uses TCP/IP communications and provides for binary and source code
compatibility for different network types.
 The Windows sockets API (WinSock application programming interface or WSA) is a
library of functions that implement the socket interface by the Berkley Software distribution
of UNIX. WinSock augments the Berkley socket implementation by adding Windows-
specific extensions to support the message-driven nature of Windows system.
 The basic implementation normally involves:

• Opening a socket – this allows for multiple connections with multiple hosts. Each socket

has a unique identifier. It normally involves defining the protocol suite, the socket type
and the protocol name. The API call used for this is socket().

• Naming a socket – this involves assigning location and identity attributes to a socket. The
API call used for this is bind().

• Associate with another socket – this involves either listening for a connection or actively
seeking a connection. The API calls used in this are listen(), connect()and ac-
cept().

• Send and receive between sockets – the API calls used in this are send(), sendto(),
recv() and recvfrom().

• Close the socket – the API calls used in this are close() and shutdown().

24.9.2 Windows sockets

The main WinSock API calls are:

socket() Creates a socket.
accept() Accepts a connection on a socket.
connect() Establishes a connection to a peer.
bind() Associates a local address with a socket.
listen() Establishes a socket to listen for incoming connection.

400 Computer busses

send() Sends data on a connected socket.
sendto() Sends data on an unconnected socket.
recv() Receives data from a connected socket.
recvfrom() Receives data from an unconnected socket.
shutdown() Disables send or receive operations on a socket.
closesocket() Closes a socket.

Figure 24.10 shows the operation of a connection of a client to a server. The server is defined
as the computer which waits for a connection, the client is the computer which initially
makes contact with the server.
 On the server the computer initially creates a socket with the socket() function, and this
is bound to a name with the bind() function. After this, the server listens for a connection
with the listen() function. When the client calls the connect() function the server then
accepts the connection with accept(). After this the server and client can send and receive
data with the send() or recv() functions. When the data transfer is complete the close-
socket() is used to close the socket.

socket()
create a socket

bind()
give socket a

name

listen()
listen for

connections

accept()
accept a new
connection

send()/recv()
send/receive

data

closesocket()
close a socket

socket()
create a socket

connect()
connect to a socket

send()/recv()
send/receive

data

closesocket()
close a socket

Server Client

Figure 24.10 WinSock connection

socket()

The socket() function creates a socket. Its syntax is

TCP and UDP 401

SOCKET socket (int af, int type, int protocol)

where
af A value of PF_INET specifies the ARPA Internet address format specifica-

tion (others include AF_IPX for SPX/IPX and AF_APPLETALK for Apple-
Talk).

type Socket specification, which is typically either SOCK_STREAM or SOCK_DGRAM.
The SOCK_STREAM uses TCP and provides a sequenced, reliable, two-way,
connection-based stream. SOCK_DGRAM uses UDP and provides for connec-
tionless datagrams. This type of connection is not recommended. A third
type is SOCK_RAW, for types other than UDP or TCP, such as for ICMP.

protocol Defines the protocol to be used with the socket. If it is zero then the caller
does not wish to specify a protocol.

If the socket function succeeds then the return value is a descriptor referencing the new
socket. Otherwise, it returns SOCKET_ERROR, and the specific error code can be tested with
WSAGetLastError. An example creation of a socket is given next:

SOCKET s;

 s=socket(PF_INET,SOCK_STREAM,0);
 if (s == INVALID_SOCKET)
 {
 cout << ″Socket error″
 }

bind()

The bind() function associates a local address with a socket. It is called before the connect
or listen function. When a socket is created with socket, it exists in a name space (address
family), but it has no name assigned. The bind function gives the socket a local association
(host address/port number). Its syntax is:

int bind(SOCKET s, const struct sockaddr FAR * addr, int namelen)

where

s A descriptor identifying an unbound socket.
namelen The length of addr.
addr The address to assign to the socket. The sockaddr structure is
 defined as follows:

 struct sockaddr
 {
 u_short sa_family;
 char sa_data[14];
 };

In the Internet address family, the sockadd_in structure is used by Windows Sockets to spec-
ify a local or remote endpoint address to which to connect a socket. This is the form of the
sockaddr structure specific to the Internet address family and can be cast to sockaddr. This

402 Computer busses

structure can be filled with the sockaddr_in structure which has the following form:

struct SOCKADDR_IN
{
 short sin_family;
 unsigned short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
}

where

sin_family must be set to AF_INET.
sin_port IP port.
sin_addr IP address.
sin_zero padding to make structure the same size as sockaddr.

If an application does not care what address is assigned to it, it may specify an Internet ad-
dress equal to INADDR_ANY, a port equal to 0, or both. An Internet address equal to
INADDR_ANY causes any appropriate network interface be used. A port value of 0 causes the
Windows sockets implementation to assign a unique port to the application with a value be-
tween 1024 and 5000.
 If no error occurs then it returns a zero value. Otherwise, it returns INVALID_SOCKET, and
the specific error code can be tested with WSAGetLastError. If an application needs to bind
to an arbitrary port outside of the range 1024 to 5000 then the following outline code can be
used:

#include <windows.h>
#include <winsock.h>
int main(void)
{

SOCKADDR_IN sin;

 SOCKET s;
 s = socket(AF_INET,SOCK_STREAM,0);

 if (s == INVALID_SOCKET)
 {
 // Socket failed
 }

 sin.sin_family = AF_INET;
 sin.sin_addr.s_addr = 0;

 sin.sin_port = htons(100); // port=100

 if (bind(s, (LPSOCKADDR)&sin, sizeof (sin)) == 0)
 {
 // Bind failed
 }
 return(0);
}

The Windows sockets htons function converts an unsigned short (u_short) from host byte
order to network byte order.

TCP and UDP 403

connect()

The connect() function establishes a connection with a peer. If the specified socket is un-
bound then unique values are assigned to the local association by the system and the socket
is marked as bound. Its syntax is

int connect (SOCKET s, const struct sockaddr FAR * name, int namelen)

where

s Descriptor identifying an unconnected socket.
name Name of the peer to which the socket is to be connected.
namelen Name length.

If no error occurs then it returns a zero value. Otherwise, it returns SOCKET_ERROR, and the
specific error code can be tested with WSAGetLastError.

listen()

The listen() function establishes a socket which listens for an incoming connection. The
sequence to create and accept a socket is:

• socket()– Creates a socket.
• listen()– this creates a queue for incoming connections and is typically used by a

server that can have more than one connection at a time.
• accept()– these connections are then accepted with accept.

The syntax of listen() is

int listen (SOCKET s, int backlog)

where

s Describes a bound, unconnected socket.
backlog Defines the queue size for the maximum number of pending connections

may grow (typically a maximum of 5).

If no error occurs then it returns a zero value. Otherwise, it returns SOCKET_ERROR, and the
specific error code can be tested with WSAGetLastError.

#include <windows.h>
#include <winsock.h>

int main(void)
{

SOCKADDR_IN sin;
SOCKET s;

 s = socket(AF_INET,SOCK_STREAM,0);
 if (s == INVALID_SOCKET)
 {

404 Computer busses

 // Socket failed
 }

 sin.sin_family = AF_INET;
 sin.sin_addr.s_addr = 0;

 sin.sin_port = htons(100); // port=100

 if (bind(s, (struct sockaddr FAR *)&sin, sizeof (sin))==SOCKET_ERROR)
 {
 // Bind failed
 }

 if (listen(s,4)==SOCKET_ERROR)
 {
 // Listen failed
 }
 return(0);
}

accept()

The accept() function accepts a connection on a socket. It extracts any pending connections
from the queue and creates a new socket with the same properties as the specified socket.
Finally, it returns a handle to the new socket. Its syntax is

SOCKET accept(SOCKET s, struct sockaddr FAR *addr, int FAR *addrlen)

where

s Descriptor identifying a socket that is in listen mode.
addr Pointer to a buffer that receives the address of the connecting entity, as

known to the communications layer.
addrlen Pointer to an integer which contains the length of the address addr.

If no error occurs then it returns a zero value. Otherwise, it returns INVALID_SOCKET, and the
specific error code can be tested with WSAGetLastError.

#include <windows.h>
#include <winsock.h>

int main(void)
{

SOCKADDR_IN sin;
SOCKET s;
int sin_len;

 s = socket(AF_INET,SOCK_STREAM,0);
 if (s == INVALID_SOCKET)
 {
 // Socket failed
 }

 sin.sin_family = AF_INET;
 sin.sin_addr.s_addr = 0;
 sin.sin_port = htons(100); // port=100

TCP and UDP 405

 if (bind(s, (struct sockaddr FAR *)&sin, sizeof (sin))==SOCKET_ERROR)
 {
 // Bind failed
 }

 if (listen(s,4)<0)
 {
 // Listen failed
 }
 sin_len = sizeof(sin);
 s=accept(s,(struct sockaddr FAR *) & sin,(int FAR *) &sin_len);
 if (s==INVALID_SOCKET)
 {
 // Accept failed
 }
 return(0);
}

send()

The send() function sends data to a connected socket. Its syntax is:

int send (SOCKET s, const char FAR *buf, int len, int flags)

where

s Connected socket descriptor.
buf Transmission data buffer.
len Buffer length.
flags Calling flag.

The flags parameter influences the behaviour of the function. These can be

MSG_DONTROUTE Specifies that the data should not be subject to routing.
MSG_OOB Send out-of-band data.

If send() succeeds then the return value is the number of characters sent (which can be less
than the number indicated by len). Otherwise, it returns SOCKET_ERROR, and the specific error
code can be tested with WSAGetLastError.

#include <windows.h>
#include <winsock.h>
#include <string.h>
#define STRLENGTH 100

int main(void)
{

SOCKADDR_IN sin;
SOCKET s;
int sin_len;
char sendbuf[STRLENGTH];

 s = socket(AF_INET,SOCK_STREAM,0);
 if (s == INVALID_SOCKET)

406 Computer busses

 {
 // Socket failed
 }
 sin.sin_family = AF_INET;
 sin.sin_addr.s_addr = 0;
 sin.sin_port = htons(100); // port=100
 if (bind(s, (struct sockaddr FAR *)&sin, sizeof (sin))==SOCKET_ERROR)
 {
 // Bind failed
 }

 if (listen(s,4)<0)
 {
 // Listen failed
 }
 sin_len = sizeof(sin);

 s=accept(s,(struct sockaddr FAR *) & sin,(int FAR *) &sin_len);

 if (s<0)
 {
 // Accept failed
 }

 while (1)
 {
 // get message to send and put into sendbuff
 send(s,sendbuf,strlen(sendbuf),80);
 }
 return(0);
}

recv()

The recv() function receives data from a socket. It waits until data arrives and its syntax is:

int recv(SOCKET s, char FAR *buf, int len, int flags)

where

s Connected socket descriptor.
buf Incoming data buffer.
len Buffer length.
flags Specifies the method by which the data is received.

If recv() succeeds then the return value is the number of bytes received (a zero identifies
that the connection has been closed). Otherwise, it returns SOCKET_ERROR, and the specific
error code can be tested with WSAGetLastError.
 The flags parameter may have one of the following values:

MSG_PEEK Peek at the incoming data. Any received data is copied into the buffer, but
not removed from the input queue.

MSG_OOB Process out-of-band data.

#include <windows.h>
#include <winsock.h>

TCP and UDP 407

#define STRLENGTH 100

int main(void)
{

SOCKADDR_IN sin;
SOCKET s;
int sin_len,status;
char recmsg[STRLENGTH];

 s = socket(AF_INET,SOCK_STREAM,0);

 if (s == INVALID_SOCKET)
 {
 // Socket failed
 }

 sin.sin_family = AF_INET;
 sin.sin_addr.s_addr = 0;

 sin.sin_port = htons(100); // port=100

 if (bind(s, (struct sockaddr FAR *)&sin, sizeof (sin))==SOCKET_ERROR)
 {
 // Bind failed
 }

 if (listen(s,4)<0)
 {
 // Listen failed
 }
 sin_len = sizeof(sin);

 s=accept(s,(struct sockaddr FAR *) & sin,(int FAR *) &sin_len);

 if (s<0)
 {
 // Accept failed
 }
 while (1)
 {
 status=recv(s,recmsg,STRLENGTH,80);

 if (status==SOCKET_ERROR)
 {
 // no socket
 break;
 }
 recmsg[status]=NULL; // terminate string
 if (status)
 {
 // szMsg contains received string
 }
 else
 {
 break;
 // connection broken
 }
 }
 return(0);
}

408 Computer busses

shutdown()

The shutdown() function disables send or receive operations on a socket and does not close
any opened sockets. Its syntax is

int shutdown(SOCKET s, int how)

where

s Socket descriptor.
how Flag that identifies operation types that will no longer be allowed. These are:

 0 – Disallows subsequent receives.
 1 – Disallows subsequent sends.
 2 – Disables send and receive.

If no error occurs then it returns a zero value. Otherwise, it returns INVALID_SOCKET, and the
specific error code can be tested with WSAGetLastError.

closesocket()

The closesocket() function closes a socket. Its syntax is:

int closesocket (SOCKET s);

where

s Socket descriptor.

If no error occurs then it returns a zero value. Otherwise, it returns INVALID_SOCKET, and the
specific error code can be tested with WSAGetLastError.

24.10 Visual Basic socket implementation

Visual Basic supports a WinSock control and allows the connection of hosts over a network.
It supports both UDP and TCP. Figure 24.11 shows a sample Visual Basic screen with a
WinSock object (in this case, it is named Winsock1). To set the protocol used then either
select the properties window on the WinSock object, click protocol and select sckTCPProto-
col, or sckUDPProtocol. Otherwise, within the code it can be set to TCP with:

Winsock1.Protocol = sckTCPProtocol

The WinSock object has various properties, such as:

obj.RemoteHost Defines the IP address or domain name of the remote host.
obj.LocalPort Defines the local port number.

The methods that are used with the WinSock object are:

TCP and UDP 409

obj.Connect Connects to a remote host (client invoked).
obj.Listen Listens for a connection (server invoked).
obj.GetData Reads data from the input steam.
obj.SendData Sends data to an output stream.

The main events are:

ConnectionRequest Occurs when a remote host wants to make a connection with a
server.

DataArrival Occurs when data has arrived from a connection (data is then
read with GetData).

Figure 24.11 WinSock object

24.10.1 Creating a server

A server must listen for connection. To do this, do the following:

1 Create a new standard EXE project.
2 Change the name of the default form to myServer.
3 Change the caption of the form to ‘Server Application’ (see Figure 24.12).
4 Put a WinSock control on the main form and change its name to myTCPServer.
5 Add two TextBox controls to the form. Name the first SendTxtData, and the second

ShowText (see Figure 24.12).

410 Computer busses

6 Add the code given below to the form.

Private Sub Form_Load()
 ' Set the local port to 1001 and listen for a connection
 myTCPServer.LocalPort = 1001
 myTCPServer.Listen
 myClient.Show
End Sub

Private Sub myTCPServer_ConnectionRequest (ByVal requestID As Long)
 ' Check state of socket, if it is not closed then close it.
 If myTCPServer.State <> sckClosed Then myTCPServer.Close
 ' Accept the request with the requestID parameter.
 myTCPServer.Accept requestID
End Sub

Private Sub SendTxtData_Change()
 ' SendTextData contains the data to be sent.
 ' This data is setn using the SendData method
 myTCPServer.SendData = SendTextData.Text
End Sub

Private Sub myTCPServer_DataArrival (ByVal bytesTotal As Long)
 ' Read incoming data into the str variable,
 ' then display it to ShowText
 Dim str As String
 myTCPServer.GetData str
 ShowText.Text = str
End Sub

Figure 24.12 Server set-ups

Figure 24.13 shows the server setup.

TCP and UDP 411

Figure 24.13 Server form

24.10.2 Creating a client

The client must actively seek a connection. To create a client, do the following:

1 Add a new form to the project, and name it myClient.
2 Change the caption of the form to ‘Client Application’.
3 Add a WinSock control to the form and name it myTCPClient.
4 Add two TextBox controls to the form. Name the first SendTxtData, and the second

ShowText.
5 Draw a CommandButton control on the form and name it cmdConnect.
6 Change the caption of the CommandButton control to Connect.
7 Add the code given below to the form.

Private Sub Form_Load()
 ' In this case it will connect to 146.176.151.130
 ' change this to the local IP address or DNS of the local computer
 myTCPClient.RemoteHost = "146.176.151.130"
 myTCPClient.RemotePort = 1001
End Sub

Private Sub cmdConnect_Click()
 ' Connect to the server
 myTCPClient.Connect
End Sub

Private Sub SendTxtData_Change()
 myTCPClient.SendData SendTxtData.Text

412 Computer busses

End Sub

Private Sub tcpClient_DataArrival (ByVal bytesTotal As Long)
 Dim str As String
 myTCPClient.GetData str
 ShowText.Text = str
End Sub

Figure 24.14 Client form

The program, when it is run, will act as a client and a server. Any text typed in the
SendTxtData TextBox will be sent to the ShowText TextBox on the other form.

24.10.3 Multiple connections

In Visual Basic, it is also possible to create multiple connections to a server. This is done by
creating multiple occurrences of the server object. A new one is created every time there is a
new connection (with the Connection_Request event). Each new server accepts the incoming
connection. The following code, which has a WinSock control on a form called multServer,
is given below.

Private ConnectNo As Long

Private Sub Form_Load()
 ConnectNo = 0
 multServer(0).LocalPort = 1001
 multServer(0).Listen
End Sub

Private Sub multServer_ConnectionRequest _

TCP and UDP 413

 (Index As Integer, ByVal requestID As Long)
 If Index = 0 Then
 ConnectNo = ConnectNo + 1
 Load multServer(ConnectNo)
 multServer(ConnectNo).LocalPort = 0
 multServer(ConnectNo).Accept requestID
 Load txtData(ConnectNo)
 End If
End Sub

24.10.4 Connect event

The Connect event connects to a server. If an error occurs then a flag (ErrorOccurred) is set
to True, else it is False. Its syntax is

Private Sub object.Connect(ErrorOccurred As Boolean)

24.10.5 Close event

The Close event occurs when the remote computer closes the connection. Applications
should use the Close method to correctly close their connection. Its syntax is

object_Close()

24.10.6 DataArrival event

The DataArrival event occurs when new data arrives, and returns the number of bytes read
(bytesTotal). Its syntax is

object_DataArrival (bytesTotal As Long)

24.10.7 Bind method

The Bind method specifies the local port (LocalPort) and the local IP address (LocalIP) to be
used for TCP connections. Its syntax is

object.Bind LocalPort, LocalIP

24.10.8 Listen method

The Listen method creates a socket and goes into listen mode (for server applications). Its
stays in this mode until a ConnectionRequest event occurs, which indicates an incoming con-
nection. After this, the Accept method should be used to accept the connection. Its syntax is:

 object.Listen

24.10.9 Accept method

The Accept method accepts incoming connections after a ConnectionRequest event. Its syn-
tax is

object.Accept requestID

The requestID parameter is passed into the ConnectionRequest event and is used with the

414 Computer busses

Accept method.

24.10.10 Close method

The Close method closes a TCP connection. Its syntax is

object.Close

24.10.11 SendData method

The SendData methods sends data (Data) to a remote computer. Its syntax is

object.SendData Data

24.10.12 GetData method

The GetData method gets data (Data) from an object. Its syntax is

object.GetData data, [type,] [maxLen]

24.11 Exercises

24.11.1 Which of the following is not part of a TCP header:

 (a) Host IP address (b) Time-to-live field
 (c) Host port number (d) Acknowledgement number

24.11.2 Which port does a TELNET server listen to:

 (a) 21 (b) 25
 (c) 25 (d) 80

24.11.3 Which port does an Email server (using SMTP) listen to:

 (a) 21 (b) 25
 (c) 25 (d) 80

24.11.4 Which port does a WWW server (using HTTP) listen to:

 (a) 21 (b) 25
 (c) 25 (d) 80

24.11.5 Which port does an FTP server listen to:

 (a) 21 (b) 25
 (c) 25 (d) 80

24.11.6 What is the main difference between UDP and TCP:

 (a) TCP uses sequence numbers, makes connections and uses acknowledge-

TCP and UDP 415

ments.
 (b) They use different addressing schemes.
 (c) They use different port allocations.
 (d) UDP only supports one-way traffic, while TCP supports multiplexed traf-

fic.

24.11.7 What is the main method that TCP uses to create a reliable connection:

 (a) Enhanced error correction
 (b) Specially coded data
 (c) Encrypted data
 (d) Sequence numbers and acknowledgements

24.11.8 How is the initial sequence number of a TCP packet generated:

 (a) Randomly
 (b) From a 32-bit clock which is updated every 4 µs
 (c) From a universal Internet-based clock
 (d) From the system clock

24.11.9 How many packets are exchanged in setting up an established TCP connection:

 (a) 1 (b) 2
 (c) 3 (d) 4

24.11.10 Outline the operation of the three-way handshaking.

24.11.11 What advantages does TCP have over UDP. Investigate server applications which

use UDP.

24.11.12 If possible, implement a basic client/server application with either C++ or Visual

Basic. As a test, run the client and the server on the same computer. (Note the IP
address of the computer as this is required by the client.)

24.11.13 Change the program in Exercise 24.11.12 so that the client and the server run on

different computers (note the IP address of the server as this is required by the cli-
ent). If possible, run the program on different network segments.

 For the following questions, download a program from the WWW which connects

to a specified port on a specified server.

24.11.14 Connect to a WWW server using port 13. This port should return the current date

and time.

24.11.15 Connect to a WWW server using port 19.

24.11.16 Connect two computers over a network and set up a chat connection. One of the

computers should be the chat server and the other the chat client. Modify it so that
the server accepts calls from one or many clients.

416 Computer busses

24.12 TCP/IP services reference

Port Service Comment Port Service Comment
1 TCPmux 7 echo
9 discard Null 11 systat Users
13 daytime 15 netstat
17 qotd Quote 18 msp Message send protocol
19 chargen ttytst source 21 ftp
23 telnet 25 smtp Mail
37 time Timserver 39 rlp Resource location
42 nameserver IEN 116 43 whois Nicname
53 domain DNS 57 mtp Deprecated
67 bootps BOOTP server 67 bootps
68 bootpc BOOTP client 69 tftp
70 gopher Internet Gopher 77 rje Netrjs
79 finger 80 www WWW HTTP
87 link Ttylink 88 kerberos Kerberos v5
95 supdup 101 hostnames
102 iso-tsap ISODE 105 csnet-ns CSO name server
107 rtelnet Remote Telnet 109 pop2 POP version 2
110 pop3 POP version 3 111 sunrpc
113 auth Rap ID 115 sftp
117 uucp-path 119 nntp USENET
123 ntp Network Timel 137 netbios-ns NETBIOS name service
138 netbios-dgm NETBIOS 139 netbios-ssn NETBIOS session
143 imap2 161 snmp SNMP
162 snmp-trap SNMP trap 163 cmip-man ISO management over IP
164 cmip-agent 177 xdmcp X display manager
178 nextstep NeXTStep 179 bgp BGP
191 prospero 194 irc Internet relay chat
199 smux SNMP multiplexor 201 at-rtmp AppleTalk routing
202 at-nbp AppleTalk name binding 204 at-echo AppleTalk echo
206 at-zis AppleTalk zone information 210 z3950 NISO Z39.50 database
213 ipx IPX 220 imap3 Interactive mail access
372 ulistserv UNIX Listserv 512 exec Comsat 513 login
513 who Whod 514 shell No passwords used
514 syslog 515 printer Line printer spooler
517 talk 518 ntalk
520 route RIP 525 timed Timeserver
526 tempo Newdate 530 courier Rpc
531 conference Chat 532 netnews Readnews
533 netwall Emergency broadcasts 540 uucp Uucp daemon
543 klogin Kerberized ‘rlogin’ (v5) 544 kshell Kerberized ‘rsh’ (v5)

24.13 Notes from the author

In this chapter I have presented the two opposite ends of code development for TCP/IP com-
munications. The C++ code is complex, but very powerful, and allows for a great deal of
flexibility. On the other hand, the Visual Basic code is simple to implement but is difficult to

TCP and UDP 417

implement for non-typical applications. Thus, the code used tends to reflect the type of appli-
cation. In many cases Visual Basic gives an easy-to-implement package, with the required
functionality. I’ve seen many a student wilt at the prospect of implementing a Microsoft Win-
dows program in C++. ‘Where do I start’, is always the first comment, and then ‘How do I
do text input’, and so on. Visual Basic, on the other hand, has matured into an excellent de-
velopment system which hides much of the complexity of Microsoft Windows away from the
developer. So, don’t worry about computer language snobbery. Pick the best language to
implement the specification.
 UDP transmission can be likened to sending electronic mail. In most electronic mail
packages the user can request that a receipt is sent back to the originator when the elec-
tronic mail has been opened. This is equivalent to TCP, where data is acknowledged after a
certain amount of data has been sent. If the user does not receive a receipt for their elec-
tronic mail then they will send another one, until it is receipted or until there is a reply. UDP
is equivalent to a user sending an electronic mail without asking for a receipt, thus the origi-
nator has no idea if the data has been received, or not.
 TCP/IP is an excellent method for networked communications, as IP provides the routing
of the data, and TCP allows acknowledgements for the data. Thus, the data can always be
guaranteed to be correct. Unfortunately there is an overhead in the connection of the TCP
socket, where the two communicating stations must exchange parameters before the connec-
tion is made, then they must maintain and acknowledge received TCP packets. UDP has the
advantage that it is connectionless. So there is no need for a connection to be made, and data
is simply thrown in the network, without the requirement for acknowledgments. Thus UDP
packets are much less reliable in their operation, and a sending station cannot guarantee
that the data is going to be received. UDP is thus useful for remote data acquisition where
data can be simply transmitted without it being requested or without a TCP/IP connection
being made.
 The concept of ports and sockets is important in TCP/IP. Servers wait and listen on a
given port number. They only read packets which have the correct port number. For exam-
ple, a WWW server listens for data on port 80, and an FTP server listens for port 21. Thus a
properly set up communication network requires a knowledge of the ports which are ac-
cessed. An excellent method for virus writers and hackers to get into a network is to install a
program which responds to a given port which the hacker uses to connect to. Once into the
system they can do a great deal of damage. Programming languages such as Java have
built-in security to reduce this problem.

Interrupt-driven RS-232

28.1 Interrupt-driven RS-232

Interrupt-driven devices are efficient on processor time as they allow the processor to run a
program without having to poll the devices. This allows fast devices almost instant access to
the processor and stops slow devices from ‘hogging’ the processor. For example, a line
printer tends to be slow in printing characters. If the printer only interrupted the processor
when it was ready for data then the processor can do other things while the printer is printing
the character. Another example can be found in serial communications. Characters sent over
an RS-232 link are transmitted and received relatively slowly. In a non-interrupt-driven sys-
tem the computer must poll the status register to determine if a character has been received,
which is inefficient in processor time. But, if the amount of time spent polling the status reg-
ister is reduced, there is a possibility of the computer missing the received character as an-
other could be sent before the first is read from the receiver buffer. If the serial communica-
tions port was set up to interrupt the processor when a new character arrived then it is guar-
anteed that the processor will always process the receiver buffer.
 A major disadvantage with non-interrupt-driven software is when the processor is in-
volved in a ‘heavy processing’ task such as graphics or mathematical calculations. This can
have the effect of reducing the amount of time that can be spent in polling and/or reading
data.

28.2 DOS-based RS-232 program

Program 28.1 is a simple interrupt-driven DOS-based RS-232 program which is written for
Turbo/Borland C/C++. If possible, connect two PCs together with a cable which swaps the
TX and RX lines, as shown in Figure 13.18. Each of the computers should be able to trans-
mit and receive concurrently. A description of this program is given in the next section. The
header file associated with this program is serial.h.

 Program 28.1
#include <dos.h>
#include <conio.h>
#include <stdio.h>
#include <bios.h>
#include "serial.h"

void interrupt rs_interrupt(void);
void setup_serial(void);
void send_character(int ch);

28

480 Computer busses

int get_character(void);
int get_buffer(void);
void set_vectors(void);
void reset_vectors(void);
void enable_interrupts(void);
void disable_interrupts(void);

void interrupt(*oldvect)();

char buffer[RSBUFSIZE];

unsigned int startbuf=0,endbuf = 0;

int main(void)
{
int ch, done = FALSE;
 setup_serial();
 set_vectors(); /* set new interrupt vectors and store old ones */
 enable_interrupts();
 printf("Terminal emulator, press [ESC] to quit\n");
 do
 {
 if (kbhit())
 {
 ch=getche();
 if (ch==ESC) break;
 send_character(ch);
 }
 /* empty RS232 buffer */
 do
 {
 if ((ch=get_buffer()) != -1) putch(ch);
 } while (ch!=-1);
 } while (!done);
 disable_interrupts();
 reset_vectors();
 return(0);
}

void interrupt rs_interrupt(void)
{
 disable();
 if ((inportb(IIR) & RX_MASK) == RX_ID)
 {
 buffer[endbuf] = inportb(RXR);
 endbuf++;
 if (endbuf == RSBUFSIZE) endbuf=0;
 }
 /* Set end of interrupt flag */
 outportb(ICR, EOI);
 enable();
}

void setup_serial(void)
{
int RS232_setting;
 RS232_setting=BAUD1200 | STOPBIT1 | NOPARITY | DATABITS7;
 bioscom(0,RS232_setting,COM1);
}

void send_character(int ch)
{

Interrupt-driven RS-232 481

char status;
 do
 {
 status = inportb(LSR) & 0x40;
 } while (status!=0x40);
 /*repeat until Tx buffer empty ie bit 6 set*/
 outportb(TXDATA,(char) ch);
}

int get_character(void)
{
int status;
 do
 {
 status = inportb(LSR) & 0x01;
 } while (status!=0x01);
 /* Repeat until bit 1 in LSR is set */
 return((int)inportb(TXDATA));
}

int get_buffer(void)
{
int ch;
 if (startbuf == endbuf) return (-1);
 ch = (int) buffer[startbuf];
 startbuf++;
 if (startbuf == RSBUFSIZE) startbuf = 0;
 return (ch);
}

void set_vectors(void)
{
 oldvect = getvect(0x0C);
 setvect(0x0C, rs_interrupt);
}

/* Uninstall interrupt vectors before exiting the program */
void reset_vectors(void)
{
 setvect(0x0C, oldvect);
}

void disable_interrupts(void)
{
int ch;
 disable();
 ch = inportb(IMR) | ~IRQ4; /* disable IRQ4 interrupt */
 outportb(IMR, ch);
 outportb(IER, 0);
 enable();
}

void enable_interrupts(void)
{
int ch;
 disable();
 /* initialize rs232 port */
 ch = inportb(MCR) | MC_INT;
 outportb(MCR, ch);
 /* enable interrupts for IRQ4 */
 outportb(IER, 0x01);
 ch = inportb(IMR) & IRQ4;

482 Computer busses

 outportb(IMR, ch);
 enable();
}

 Header file 28.1: serial.h
#define FALSE 0
/* RS232 set up parameters */
#define COM1 0
#define COM2 1

#define DATABITS7 0x02
#define DATABITS8 0x03

#define STOPBIT1 0x00
#define STOPBIT2 0x04

#define NOPARITY 0x00
#define ODDPARITY 0x08
#define EVENPARITY 0x18

#define BAUD110 0x00
#define BAUD150 0x20
#define BAUD300 0x40
#define BAUD600 0x60
#define BAUD1200 0x80
#define BAUD2400 0xA0
#define BAUD4800 0xC0
#define BAUD9600 0xE0

#define ESC 0x1B /* ASCII Escape character */
#define RSBUFSIZE 10000 /* RS232 buffer size */

#define COM1BASE 0x3F8 /* Base port address for COM1 */

#define TXDATA COM1BASE /* Transmit register */
#define RXR COM1BASE /* Receive register */
#define IER (COM1BASE+1) /* Interrupt Enable */
#define IIR (COM1BASE+2) /* Interrupt ID */
#define LCR (COM1BASE+3) /* Line control */
#define MCR (COM1BASE+4) /* Line control */
#define LSR (COM1BASE+5) /* Line Status */

#define RX_ID 0x04
#define RX_MASK 0x07
#define MC_INT 0x08

/* Addresses of the 8259 Programmable Interrupt Controller (PIC).*/

#define IMR 0x21 /* Interrupt Mask Register port */
#define ICR 0x20 /* Interrupt Control Port */

/* An end of interrupt needs to be sent to the Control Port of */
/* the 8259 when a hardware interrupt ends. */
#define EOI 0x20 /* End Of Interrupt */

#define IRQ4 0xEF /* COM1 */

28.2.1 Description of program

The initial part of the program sets up the required RS-232 parameters. It uses bioscom() to

Interrupt-driven RS-232 483

set COM1: with the parameters of 1200 bps, 1 stop bit, no parity and 7 data bits.

void setup_serial(void)
{
int RS232_setting;
 RS232_setting=BAUD1200 | STOPBIT1 | NOPARITY | DATABITS7;
 bioscom(0,RS232_setting,COM1);
}

After the serial port has been initialized the interrupt service routine for the IRQ4 line is set to
point to a new ‘user-defined’ service routine. The primary serial port COM1: sets the IRQ4 line
active when it receives a character. The interrupt associated with IRQ4 is 0Ch (12). The get-
vect() function gets the ISR address for this interrupt, which is then stored in the variable
oldvect so that at the end of the program it can be restored. Finally, in the set_vectors()
function, the interrupt assigns a new ‘user-defined’ ISR (in this case it is the function
rs_interrupt()).

void set_vectors(void)
{
 oldvect = getvect(0x0C); /* store IRQ4 interrupt vector */
 setvect(0x0C, rs_interrupt); /* set ISR to rs_interrupt() */
}

At the end of the program the ISR is restored with the following code.

void reset_vectors(void)
{
 setvect(0x0C, oldvect); /* reset IRQ4 interrupt vector */
}

The COM1: port is initialized for interrupts with the code given next. The statement

 ch = inportb (MCR) | 0x08;

resets the RS-232 port by setting bit 3 for the modem control register (MCR) to a 1. Some
RS-232 ports require this bit to be set. The interrupt enable register (IER) enables interrupts
on a port. Its address is offset by 1 from the base address of the port (that is, 0x3F9 for
COM1:). If the least significant bit of this register is set to a 1 then interrupts are enabled, else
they are disabled.
 To enable the IRQ4 line on the PIC, bit 5 of the IMR (interrupt mask register) is to be set
to a 0 (zero). The statement:

 ch = inportb(IMR) & 0xEF;

achieves this as it bitwise ANDs all the bits, except for bit 4, with a 1. This is because any bit
which is ANDed with a 0 results in a 0. The bit mask 0xEF has been defined with the macro
IRQ4.

void enable_interrupts(void)
{
int ch;
 disable();
 ch = inportb(MCR) | MC_INT; /* initialize rs232 port */
 outportb(MCR, ch);
 outportb(IER, 0x01);
 ch = inportb(IMR) & IRQ4;

484 Computer busses

 outportb(IMR, ch); /* enable interrupts for IRQ4 */

 enable();
}

At the end of the program the function disable_interrupts() sets the IER register to all 0s.
This disables interrupts on the COM1: port. Bit 4 of the IMR is also set to a 1 which disables
IRQ4 interrupts.
void disable_interrupts(void)
{
int ch;
 disable();
 ch = inportb(IMR) | ~IRQ4; /* disable IRQ4 interrupt */
 outportb(IMR, ch);
 outportb(IER, 0);
 enable();
}

The ISR for the IRQ4 function is set to rs_interrupt(). When it is called, the Interrupt
Status Register (this is named IIR to avoid confusion with the interrupt service routine) is
tested to determine if a character has been received. Its address is offset by 2 from the base
address of the port (that is, 0x3FA for COM1:). The first 3 bits give the status of the interrupt.
A 000b indicates that there are no interrupts pending, a 100b that data has been received, or a
111b that an error or break has occurred. The statement if ((inportb(IIR) & 0x7) ==
0x4) tests if data has been received. If this statement is true then data has been received and
the character is then read from the receiver buffer array with the statement buffer[endbuf]
= inportb(RXR);. The end of the buffer variable (endbuf) is then incremented by 1.
 At the end of this ISR the end of interrupt flag is set in the interrupt control register with
the statement outportb(ICR, 0x20);. The startbuf and endbuf variables are global, thus
all parts of the program have access to them.
 Turbo/Borland functions enable() and disable() in rs_interrupt() are used to enable
and disable interrupts, respectively.

void interrupt rs_interrupt(void)
{
 disable();
 if ((inportb(IIR) & RX_MASK) == RX_ID)
 {
 buffer[endbuf] = inportb(RXR);
 endbuf++;
 if (endbuf == RSBUFSIZE) endbuf=0;
 }
 /* Set end of interrupt flag */
 outportb(ICR, EOI);
 enable();
}

The get_buffer() function is given next. It is called from the main program and it tests the
variables startbuf and endbuf. If they are equal then it returns –1 to the main(). This indi-
cates that there are no characters in the buffer. If there are characters in the buffer then the
function returns, the character pointed to by the startbuf variable. This variable is then in-
cremented. The difference between startbuf and endbuf gives the number of characters in
the buffer. Note that when startbuf or endbuf reach the end of the buffer (RSBUFSIZE) they
are set back to the first character, that is, element 0.

Interrupt-driven RS-232 485

int get_buffer(void)
{
int ch;

 if (startbuf == endbuf) return (-1);
 ch = (int) buffer[startbuf];
 startbuf++;
 if (startbuf == RSBUFSIZE) startbuf = 0;
 return (ch);
}

The get_character() and send_character() functions are similar to those developed in
Chapter 13. For completeness, these are listed next.

void send_character(int ch)
{
char status;
 do
 {
 status = inportb(LSR) & 0x40;
 } while (status!=0x40);

 /*repeat until Tx buffer empty ie bit 6 set*/
 outportb(TXDATA,(char) ch);
}

int get_character(void)
{
int status;

 do
 {
 status = inportb(LSR) & 0x01;
 } while (status!=0x01);
 /* Repeat until bit 1 in LSR is set */
 return((int)inportb(TXDATA));
}

The main() function calls the initialization and the de-initialization functions. It also contains
a loop, which continues until the Esc key is pressed. Within this loop, the keyboard is tested
to determine if a key has been pressed. If it has then the getche() function is called. This
function returns a key from the keyboard and displays it to the screen. Once read into the
variable ch it is tested to determine if it is the Esc key. If it is then the program exits the loop,
else it transmits the entered character using the send_character() function. Next the
get_buffer() function is called. If there are no characters in the buffer then a –1 value is
returned, else the character at the start of the buffer is returned and displayed to the screen
using putch().

int main(void)
{
int ch, done = FALSE;

 setup_serial();
 /* set new interrupt vectors and store old ones */
 set_vectors();
 enable_interrupts();
 printf("Terminal emulator, press [ESC] to quit\n");
 do

486 Computer busses

 {
 if (kbhit())
 {
 ch=getche();
 if (ch==ESC) break;
 send_character(ch);
 }
 /* empty RS232 buffer */
 do
 {
 if ((ch=get_buffer()) != -1) putch(ch);
 } while (ch!=-1);
 } while (!done);
 disable_interrupts();
 reset_vectors();
 return(0);
}

28.3 Exercises

28.3.1 Modify Program 28.1 so that a new-line character is displayed properly.

28.3.2 Prove that Program 28.1 is a true multitasking system by inserting a delay in the

main loop, as shown next. The program should be able to buffer all received char-
acters and display them to the screen when the sleep delay is over.

do
{
 sleep(10);
 /* go to sleep for 10 seconds, real-time system */
 /* will buffer all received characters */
 if (kbhit())
 {
 ch=getche();
 if (ch==ESC) break;
 send_character(ch);
 }
 /* empty RS232 buffer */
 do
 {
 if ((ch=get_buffer()) != -1) putch(ch);
 } while (ch!=-1);
} while (!done);

28.3.3 Modify Program 28.1 so that the transmitted characters are displayed in the top

half of the screen and then received in the bottom half of the screen.

28.3.4 Modify Program 28.1 so that it communicates via COM2: (if the PC has one).

28.3.5 Using a loopback connection on a serial port, write a program, which sends out the

complete ASCII table and checks it against the received characters.

28.3.6 Outline how a program could communicate with a serial port card with eight serial

Interrupt-driven RS-232 487

lines on it. Normally the IRQ lines for COM3 to COM8 can set to either IRQ3 to
IRQ4 with jumpers on the board. Investigate typical base addresses for COM3 to
COM8. Thus explain how multiple devices can be connected to a single interrupt
line.

28.3.7 Implement a program which has a write buffer system. This should fill a buffer

with characters and only send them once every 30 seconds. Modify the program so
that the user can enter the delay time.

28.3.8 Write a program which sends the complete contents of a text file from one com-

puter to another. The receiving program should wait for the sending program to
send the file and the sending program should prompt the user on the name of the
file. The sending program must thus identify the name of the file to the receiver. A
typical protocol could be:

 1. Send name of the file followed by an invalid file name character, such as:

 myfile.txt*

 which would identify that the name of the file to be sent is myfile.txt.

 2. Send each of the characters in the file one by one. The end of the file is
 then identified by the end-of-file (EOF) character.

28.3.9 Modify the program in Exercise 28.3.8 so that a binary file can be sent. Note that

in a binary file the EOF character can occur at a point in the file. There are two
possible methods which can be used to implement this. These are:

• Implement a time-out on the characters received. When no characters have

been received after, say, 1 second then it is assumed that the EOF has oc-
curred. The receiver will then close the file.

• The sender sends some initial information on the filename, number of bytes in

the file, date and time, and so on. This could be a fixed format header.

• Send a second EOF character whenever there is an EOF character which is not
the EOF marker. Thus when the receiver receives two consecutive EOF char-
acters, it simply deletes one of them. When it receives a single EOF character
(within a given time) then it knows it is at the end of the file.

28.3.10 Modify the program in Exercise 28.3.9 so that a user on the receiving computer

can specify the filename which is to be sent from the sending program.

PC Processors

A.1 Introduction

Intel marketed the first microprocessor, named the 4004. This device caused a revolution in
the electronics industry because previous electronic systems had a fixed functionality. With
this processor the functionality could be programmed by software. It could handle four bits
of data at a time (a nibble), contained 2000 transistors, had 46 instructions and allowed 4 KB
of program code and 1 KB of data. The PC has since evolved using Intel microprocessors
(Intel is a contraction of Integrated Electronics).
 The second generation of Intel microprocessors began in 1974. These could handle 8 bits
(a byte) of data at a time and were named the 8008, 8080 and the 8085. They were much
more powerful than the previous 4-bit devices and were used in many early microcomputers
and applications such as electronic instruments and printers. The 8008 has a 14-bit address
bus and can thus address up to 16 kB of memory (the 8080 has a 16-bit address bus giving it
a 64 kB limit).
 The third generation of microprocessors began with the launch of the 16-bit processors.
Intel released the 8086 microprocessor which was mainly an extension to the original 8080
processor and thus retained a degree of software compatibility. IBM’s designers realised the
power of the 8086 and used it in the original IBM PC and IBM XT (eXtended Technology).
It has a 16-bit data bus and a 20-bit address bus, and thus has a maximum addressable capac-
ity of 1 MB.
 A stripped-down 8-bit external data bus version called the 8088 is also available. This
stripped down processor allowed designers to produce less complex (and cheaper) computer
systems. The 8086 could handle either 8 or 16 bits of data at a time (although in a messy
way). An improved architecture version, called the 80286, was launched in 1982, and was
used in the IBM AT (Advanced Technology).
 In 1985, Intel introduced its first 32-bit microprocessor, the 80386DX. This device was
compatible with the previous 8088/8086/80286 (80X86) processors and gave excellent per-
formance handling 8, 16 or 32 bits at a time. It has full 32-bit data and address buses and can
thus address up to 4 GB of physical memory. A stripped-down 16-bit external data bus and
24-bit address bus version called the 80386SX was released in 1988. This processor can thus
only access up to 16 MB of physical memory.
 In 1989, Intel introduced the 80486DX which is basically an improved 80386DX with a
memory cache and math co-processor integrated onto the chip. It had an improved internal
structure making it around 50% faster than a comparable 80386. The 80486SX was also in-
troduced, which is merely a 80486DX with the link to the math co-processor broken. Clock
doubler/ trebler 80486 processors were also released. In these devices the processor runs at a
higher speed than the system clock. Typically, systems with clock doubler processors are
around 75% faster than the comparable non-doubled processors. Typical clock doubler proc-
essors are DX2-66 and DX2-50 which run from 33 MHz and 25 MHz clocks, respectively.
Intel also produced a new range of microprocessors which run at three or four times the sys-

A

490 Computer busses

tem clock speed and are referred to as DX4 processors. These include the Intel DX4-100 (25
MHz clock) and Intel DX4-75 (25 MHz clock).
 The Pentium (or P-5) is a 64-bit ‘superscalar’ processor. It can execute more than one
instruction at a time and has a full 64-bit (8-byte) data bus and a 32-bit address bus. In terms
of performance, it operates almost twice as fast as the equivalent 80486. It also has improved
floating-point operations (roughly three times faster) and is fully compatible with previous
80x86 processors.
 The Pentium II/III is an enhancement of the P-5 and has a bus which supports up to four
processors on the same bus without extra supporting logic. With clock multiplying speeds of
over 500 MHz are possible. It also has major savings of electrical power and the minimisa-
tion of electromagnetic interference (EMI). A great enhancement of the Pentium II/III bus is
that it detects and corrects all single bit data bus errors and also detects multiple bit errors on
the data bus.

A.2 8086/88

A.2.1 Introduction

The great revolution in processing power arrived with the 16-bit 8086 processor. This had a
20-bit address bus and a 16-bit address bus, whereas the 8088 has an 8-bit external data bus.
Figure A.1 shows the pin connections of the 8086 and also the main connections to the proc-
essor. Many of the 40 pins of the 8086 have dual functions. The lines AD0–AD7 act either a
the lower eight bits of the address bus (A0–A7) or as the lower eight bits of the data bus
(D0–D7). The lines A16/S3-A19/S6 also have a dual function, S3–S6 are normally not used
by the PC thus they are used as the four upper bits of the address bus. The latching of the
address is achieved when the ALE (address latch enable) goes from a high to a low.
 The bus controller (8288) generates the required control signals form the 8088 status
lines S0 – S2 . For example, if S0 is high, S1 is low and S2 is low then the MEMR line
goes low. The main control signals are:

• IOR (I/O read) which means that the processor is reading from the contents of the address

which is on the I/O bus.
• IOW (I/O write) which means that the processor is writing the contents of the data bus to

the address which is on the I/O bus.
• MEMR (memory read) which means that the processor is reading from the contents of

the address which is on the address bus.
• MEMW (memory write) which means that the processor is writing the contents of the

data bus to the address which is on the address bus.
• INTA (interrupt acknowledgement) which is used by the processor to acknowledge an

interrupt (S0 , S1and S2 all go low). When a peripheral wants the attention of the proc-
essor it sends an interrupt request to the 8259 which, if it is allowed, sets the INTR high.

The processor either communicates directly with memory (with MEMW and MEMR) or
communicates with peripherals through isolated I/O ports (with IOR and IOW).

PC processors 491

-S0
-S1
-S2

-S0
-S1
-S2

MN/-MX

-MEMR
-MEMW
-IOR
-IOW
-INTA

DEN
DT/-R
ALE

CLK
READY
RESET

AD0-AD19

A16-A19

STB

DIR

-G

8288 Bus
Controller8088

Processor

8284
Clock
Generator

CLK

40 VCC
39

A16/S338
A17/S437
A18/S536
A19/S635
SSO34
MN/-MX33
-RD32
-RQ/-GT031
-RQ/-GT130
-LOCK29
-S228
-S127
-S026
QS025
QS124
-TEST23
READY22
RESET

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

2120

A15
GND

A13
A12
A11
A10
A9
A8
AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0
NMI
INTR
CLK
GND

A14

8088
Processor

Address
bus

Data
bus

GND

Buffer

Latch

8259
Interrupt
controller

INTR

IRQ0
IRQ1
IRQ2

IRQ7

Interrupt
requests

Figure A.1 8088 connections

Registers

Each of the PC-based Intel microprocessors is compatible with the original 8086 processor
and are normally backwardly compatible. Thus, for example, a Pentium can run 8086 and
80386 code. Microprocessors use registers to perform their operations. These registers are
basically special memory locations in that they are given names. The 8086/88 has 14 regis-
ters which are grouped into four categories, as illustrated in Figure A.2.

General-purpose registers
There are four general-purpose registers which are AX, BX, CX and DX. Each can be used
to manipulate a whole 16-bit word or with two separate 8-bit bytes. These bytes are called
the lower and upper order bytes. Each of these registers can be used as two 8-bit registers;
for example, AL represents an 8-bit register which is the lower half of AX and AH represents
the upper half of AX.
 The AX register is the most general purpose of the four registers and is usually used for
all types of operations. Each of other registers have one or more implied extra functions:

• AX is the accumulator. It is used for all input/output operations and some arithmetic op-

erations. For example, multiply, divide and translate instructions assume the use of AX.
• BX is the base register. It can be used as an address register
• CX is the count register. It is used by instructions which require to count. Typically is it

is used for controlling the number of times a loop is repeated and in bit shift operations.
• DX is the data register. It is used for some input/output and also when multiplying and

dividing.

492 Computer busses

AX (Accumulator)

BX (Base register)

CX (Count register)

DX (Data register)

SP (Stack pointer)

BP (Base pointer)

SP (Source pointer)

DI (Destination index)

CS (Code segment)

DS (Data segment)

SS (Stack segment)

AH AL

8 bits 8 bits

BH BL

8 bits 8 bits

CH CL

8 bits 8 bits

DH DL

8 bits 8 bits

* * * * O D I T S Z * A * P * C

Flags

Figure A.2 8086/88 registers

Addressing registers
The addressing registers are used in memory addressing operations, such as the holding the
source address of the memory and the destination address. These address registers are named
BP, SP, SI and DI, which are:

• SI is the source index. This is used with extended addressing commands.
• DI is the destination index. The destination is used in some addressing modes.
• BP is the base pointer.
• SP is the stack pointer.

Status registers
Status registers are used to test for various conditions in an operation, such as ‘is the result
negative’, ‘is the result zero’, and so on. The two status registers have 16 bits and are called
the instruction pointer (IP) and the flag register (F):

• IP is the instruction pointer. The IP register contains the address of the next instruction of

the program.
• Flag register. The flag register holds a collection of 16 different conditions. Table A.1

outlines the most-used flags.

Segments registers
There are four areas of memory called segments, each of which are 16 bits and can thus ad-
dress up to 64 KB (from 0000h to FFFFh). These segments are:

• Code segment (CS register) – defines the memory location where the program code (or

PC processors 493

instructions) is stored.
• Data segment (DS register) – defines where data from the program will be stored (DS

stands for data segment register).
• Stack segment (SS register) – defines where the stack is stored.
• Extra segment (ES).

All addresses are with reference to the segment registers.
 The 8086 has a segmented memory, these registers are used to manipulate these seg-
ments. Each segment provides 64 K of memory, this area of memory is known as the current
segment.

Table A.1 Processor flags

Bit Flag
position

Name Description

C 0 Set on carry Contains the carry from the most significant bit (left
hand bit) following a shift, rotate or arithmetic op-
eration.

A 4 Set on 1/2 carry

S 7 Set on negative result Contains the sign of an arithmetic operation (0 for
positive, 1 for negative).

Z 6 Set on zero
result

Contains results of last arithmetic or compare result
(0 for nonzero, 1 for zero).

O 11 Set on overflow Indicates that an overflow has occurred in the most
significant bit from an arithmetic operation.

P 2 Set on even parity

D 10 Direction

I 9 Interrupt enable Indicates whether the interrupt has been disabled.

T 8 Trap

Memory Addressing
There are several methods of accessing memory locations, these are:

• Implied addressing which uses an instruction in which it is known the which registers are

used.
• Immediate (or literal) addressing uses a simple constant number to define the address

location.
• Register addressing which uses the address registers for the addressing (such as AX, BX ,

and so on).
• Memory addressing which is used to read or write to a specified memory location.

494 Computer busses

A.2.2 Memory segmentation

The 80386, 80486 and Pentium processors run in one of two modes, either virtual or real.
When using the virtual mode they act as a pseudo-8086 16-bit processor, known as the pro-
tected mode. In the real mode they can use the full capabilities of their address and data bus.
The mode and their addressing capabilities depend on the software and thus all DOS-based
programs use the virtual mode.
 The 8086 has a 20-bit address bus so that when the PC is running 8086-compatible code
it can only address up to 1 MB of memory. It also has a segmented memory architecture and
can only directly address 64 kB of data at a time. A chunk of memory is known as a segment
and hence the phrase ‘segmented memory architecture’.
 Memory addresses are normally defined by their hexadecimal address. A 4-bit address
bus can address 16 locations from 0000b to 1111b. This can be represented in hexadecimal
as 0h to Fh. An 8-bit bus can address up to 256 locations from 00h to FFh.
 Two important addressing capabilities for the PC relate to a 16- and a 20-bit address bus.
A 16-bit address bus addresses up to 64 kB of memory from 0000h to FFFFh and a 20-bit
address bus addresses a total of 1 MB from 00000h to FFFFFh. The 80386/80486/Pentium
processors have a 32-bit address bus and can address from 00000000h to FFFFFFFFh.
 A memory location is identified with a segment and an offset address and the standard
notation is segment:offset. A segment address is a 4-digit hexadecimal address
which points to the start of a 64 kB chunk of data. The offset is also a 4-digit hexadecimal
address which defines the address offset from the segment base pointer. This is illustrated in
Figure A.3.

segment
offset

address location

segment:offset 64 kB of

data

Figure A.3 Memory addressing

 The segment:offset address is defined as the logical address, the actual physical
address is calculated by shifting the segment address; 4 bits to the left and adding the offset.
The example given next shows that the actual address of 2F84:0532 is 2FD72h:

Segment (2F84): 0010 1111 1000 0100 0000
Offset (0532): 0000 0101 0011 0010
Actual address: 0010 1111 1101 0111 0010

PC processors 495

A.3 80386/80486

A.3.1 Introduction

The 32-bit 80386 processor was a great leap in processing power and for the first time many
PCs could properly run graphical user interface software (such as Microsoft Windows). A
key to its success was that it was fully compatible with the previous 8088/8086/80286 proc-
essors. The DX version has full 32-bit data and address buses and can thus address up to
4 GB of physical memory. An SX version with a stripped-down 16-bit external data bus and
24-bit address bus version can access only up to 16 MB of physical memory (at its time of
release this has a large amount of memory).
 The 80486DX basically consists of an improved 80386 with a memory cache and math
co-processor integrated onto the chip. An SX version had the link to the math co-processor
broken. At the time a limiting factor was the speed of the system clock (which was limited to
around 25 MHz or 33 MHz). Thus clock doublers, treblers or quadrupers allows the proces-
sor to multiply the system clock frequency to a high speed. Thus internal operations within
the processor could be carried out at much higher speeds. Then accesses the external devices
would slow down to the system clock. As most of the operations within the computer involve
the processor then the overall speed of the computer is improved (roughly by about 75% for
a clock doubler). 80486 processors were also released. In these devices the processor runs at
a higher speed than the system clock. Typically, systems with clock doubler processors are
around 75% faster than the comparable non-doubled processors.

A.3.2 80486 pin out

To allow for easy upgrades and to save space the 80486 and Pentium processors are available
in pin-grid array (PGA) form. The 80486DX processor is available as a 168 pin PGA, as
illustrated in Figure A.4. The PGA chip is inserted into a zero-insertion force (ZIF) socket on
the motherboard of the PC.
 It can be seen that the 486 processor has a 32-bit address bus (A0–A31) and a 32-bit data
bus (D0–D31). The pin definitions are defined in Table A.2.
Table A.3 defines the how the control signals are interpreted. For the STOP/special bus cy-
cle, the byte enable signals (BE0 – BE3) are used to further define the cycle. These are:

• Write-back cycle BE0 =1, BE1=1, BE2 =1 , BE3 =0.
• Halt cycle BE0 =1, BE1=1, BE2 =0 , BE3 =1.
• Flush cycle BE0 =1, BE1=0, BE2 =1 , BE3 =1.
• Shut-down cycle BE0 =0, BE1=1, BE2 =1 , BE3 =1.

The 486 integrates a processor, cache and a math co-processor onto a single IC, its pin con-
nections are:

A2–A31 (I/O) The 30 most significant bits of the address bus.

A20M (I) When active low, the processor internally masks the address bit A20 before
every memory access.

ADS (O) Indicates that the processor has valid control signals and a valid address
signals.

496 Computer busses

D20 D19 D11 D9 GND DP1 GND GND Vcc GND GND GND D2 D0 A31 A28 A27

D22 D21 D18 D13 Vcc D8 VCC D3 D5 Vcc D6 Vcc D1 A29 GND A25 A26

GND CLK D17 D10 D15 D12 DP2 D16 D14 D7 D4 DP0 A30 A17 Vcc A23

D23 GND Vcc A19 GND

DP3 GND Vcc A21 A18 A14

D24 D25 D27 A24 Vcc GND

GND Vcc D26 A22 A15 A12

D29 D31 D28 A20 Vcc GND

GND Vcc D30 A16 Vcc GND

A13 Vcc GND

GND Vcc A9 Vcc GND

A5 A11 GND

A7 A8 A10

A2 Vcc GND

IGN NMI FLH BRQ A3 A6

INT RES BS8 GND RDY Vcc Vcc BE1 Vcc Vcc Vcc M/I Vcc PLK BLT A4

AHD EAD B16 BOF GND BE3 GND GND PCD GND GND GND W/R GND PCH ADS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

HOL KEN BRD BE2 BE0 PWT D/C LCK HLDAM

486DX
PGA

IGN - IGNNE

FLH - FLUSH

AM - A20M

HOL - HOLF

KEN - KEN

BRD - BRDY

D/C - D/C

BRQ - BREQ

HLD - HLDA

INT - INTR

RES - RESET

RDY - RDY

BE0 - BE0

BE1 - BE1

BE2 - BE2

BE3 - BE3

M/I - M/IO

PLK - PLOCK

BLT - BLAST

AHD - AHOLD

EAD - EADS

B16 - BS16

BOF - BOFF

W/R - W/R

PCH - PCHK

ADS - ADS

A B C D E F G H J K L M N P Q R S

Figure A.4 i486DX processor

AHOLD (I) When active a different bus controller can access have access to the address
bus. This is typically used in a multi-processor system.

BE0 – BE3 (O) The byte enable lines indicates which of the bytes of the 32-bit data bus are

active.

BLAST (O) Indicates that the current burst cycle will end after the next BRDY signal.

BOFF (I) The backoff signal informs the processor to deactivate the bus on the next

clock cycle.

BRDY (I) The burst ready signal is used by an addressed system has sent data on the

data bus or read data from the bus.

BREQ (O) Indicates that the processor has internally requested the bus.

BS16 , BS8 (I) The BS16 signal indicates that a 16-bit data bus is used, the BS8 signal

indicates that a 8-bit data bus is used. If both are high then a 32-bit data is
used.

DP0-DP3 (I/O) The data parity bits gives a parity check for each byte of the 32-bit data bus.

The parity bits are always even parity.

EADS (I) Indicates that an external bus controller has put a valid address on the ad-

dress bus.

PC processors 497

FERR (O) Indicates that the processor has detected an error in the internal floating-
point unit.

FLUSH (I) When active the processor writes the complete contents of the cache to

memory.

HOLD, HLDA (I/O) The bus hold (HOLD) and acknowledge (HLDA) are used for bus arbitra-

tion and allow other bus controllers to take control of the buses.

IGNNE (I) When active the processor ignores any numeric errors.

INTR (I) The interrupt request line is used by external devices to interrupt the proces-

sor.

KEN (I) This signal stops caching of a specific address.

LOCK (O) If active the processor will not pass control to an external bus controller,

when it receives a HOLD signal.

IOM/ , CD/ , RW/ (O) See Table A.2.

NMI (I) The non- maskable interrupt signal causes an interrupt 2.

PCHK (O) If it is set active then a data parity error has occurred.

PLOCK (O) The active pseudolock signal identifies that the current data transfer re-

quires more than one bus cycle.

PWT, PCD (O) The page write through (PWT) and page cache disable (PCD) are used with

cache control.

RDY (I) When active the addressed system has sent data on the data bus or read data

from the bus.

RESET (I) If the reset signal is high for more than 15 clock cycles then the processor

will reset itself.

Table A.2 Control signals

IOM/ CD/ RW/ Description

0 0 0 Interrupt acknowledge sequence
0 0 1 STOP/special bus cycle
0 1 0 Reading from an I/O port
0 1 1 Writing to an I/O port
1 0 0 Reading an instruction form memory
1 0 1 Reserved
1 1 0 Reading data from memory
1 1 1 Writing data to memory

498 Computer busses

Figure A.5 shows the main 80386/80486 processor connections. The Pentium processor con-
nections are similar but it has a 64-bit data bus. There are three main interface connections:
the memory/IO interface, interrupt interface and DMA interface.
 The write/read (W / R) line determines whether data is written to (W) or read from (R)
memory. PCs can interface directly with memory or can interface to isolated memory. Signal
line M / IO differentiates between the two types. If it is high then the direct memory is ad-
dressed, else if it is low then the isolated memory is accessed.
 The 80386DX and 80486 have an external 32-bit data bus (D0–D31) and a 32-bit address
bus ranging from A2 to A31. The two lower address lines, A0 and A1, are decoded to produce
the byte enable signals BE0 , BE1 , BE2 and BE3 . The BE0 line activates when A1A0 is 00,
BE1 activates when A1A0 is 01, BE2 activates when A1A0, BE3 actives when A1A0 is 11. Fig-
ure A.6 illustrates this addressing.
 The byte enable lines are also used to access 8, 16, 24 or 32 bits of data at a time. When
addressing a single byte, only the BE0 line will be active (D0-D7), if 16 bits of data are to be
accessed then BE0 and BE1 will be active (D0-D15), if 32 bits are to be accessed then BE0 ,
BE1 , BE2 and BE3 are active (D0-D31).
 The D / C line differentiates between data and control signals. When it is high then data
is read from or written to memory, else if it is low then a control operation is indicated, such
as a shutdown command.

D
M

A
in

te
rfa

ce
In

te
rru

pt
in

te
rfa

ce

A2-A31

D0-D31

BE0-BE3

W/-R
D/-C

M/-IO

HOLD

HLDA

INTR

NMI
RESET

M
em

or
y/

IO
 in

te
rfa

ce80386/
80486

Figure A.5 Some of the 80386/80486 signal connections

The interrupt lines are interrupt request (INTR), nonmaskable interrupt request (NMI) and
system reset (RESET), all of which are active high signals. The INTR line is activated when
an external device, such as a hard disk or a serial port, wishes to communicate with the
processor. This interrupt is maskable and the processor can ignore the interrupt if it wants.
The NMI is a non-maskable interrupt and is always acted on. When it becomes active the
processor calls the nonmaskable interrupt service routine. The RESET signal causes a
hardware reset and is normally made active when the processor is powered up.

A.3.3 80386/80486 registers

The 80386 and 80486 are 32-bit processors and can thus operate on 32-bits at a time. It thus
has expanded 32-bit registers, which can also be used as either 16-bit or 8-bit registers. The
general purpose registers, such as AX, BX, CX, DX, SI, DI and BP have been expanded and
are named EAX, EBX, ECX, EDX, ESI, EDI and EBP, respectively, as illustrated in Figure
A.7. The CS, SS and DS registers are still 16 bits, but the flag register has been expanded to
32 bits and is named EFLAG.

PC processors 499

A2-A31

A2-A31

A2-A31

A2-A31

BE0

BE1

BE2

BE3

BE0

BE1

BE2

BE3

BE0

BE1

BE2

BE3

BE0

Figure A.6 Memory addressing

AH ALEAX

BH BLEBX

CH CLECX

DH DLEDX

SIESI

DIEDI

BPEBP

CS

SS

DS

16 bits

32 bits

16 bits

Figure A.7 80386/80486 registers

A.3.4 Memory cache

DRAM is a relatively slow type of memory compared with SRAM. A cache memory can be
used to overcome this problem. This is a bank of fast memory (SRAM) that loads data from
main memory (typically DRAM). The cache controller guesses the data the processor re-
quires and loads this into the cache memory. If the controller guesses correctly then it is a
cache hit, else if it is wrong it is a cache miss (as illustrated in Figure A.8). A miss causes the
processor to access the memory in the normal way (that is, there may be wait states). Typical
cache memory sizes are 16KB, 32KB and 64KB. This should be compared with the size of
the RAM on a typical PC which is typically at least 64MB.
 Many modern systems have extra cache memory added to improve the hit rate. Typically
an 8KB cache memory gives 70% hit rate, a 16KB cache memory 85%, a 32K cache 93%
and a 64KB cache 95%. Cache sizes above this do not significantly effect the hit rate and
can actually slow the process down as they take so long to fill the cache memory. The Intel
80486 and Pentium have built-in cache controllers and, at least, 8KB of SRAM cache mem-
ory. Intel claim that this has a 96% hit rate, which is an extremely high hit rate for such a
small amount of cache memory.

500 Computer busses

Microprocessor Cache
controller

DRAM
memory

Cache
memory
(SRAM)

If cache hit then
microprocessor
loads for cache
memory

Controller loads memory
from DRAM into cache memory

If cache miss then data is loaded from
DRAM memory into cache and to the
microprocessor (cache controller will
try and guess right next time)

Figure A.8 Cache operation

Cache architecture

The main cache architectures are:

• Look-through cache. In a look-through cache the system memory is isolated from the

processor address and control busses. In this case the processor directly sends a memory
request to the cache controller which then determines whether it should forward the re-
quest to its own memory or the system memory. Figure A.9 illustrates this type of cache.
It can be seen that the cache controls whether the processor address contents are latched
through to the DRAM memory and it also controls whether the contents of the DRAMs
memory is loaded onto the processor data bus (through the data transceiver). The opera-
tion is described as bus cycle forwarding.

• Look-aside cache. A look-aside cache is where the cache and system memory connect to
a common bus. System memory and the cache controller see the beginning of the proces-
sor bus cycle at the same time. If the cache controller detects a cache hit then it must in-
form the system memory before it tries to find the data. If a cache miss is found then the
memory access is allowed to continue.

• Write-through cache. With a write-through cache all memory address accesses are seen
by the system memory when the processor performs a bus cycle.

• Write-back cache. With a write-back cache all system writes are controlled by the cache
controller. It thus does not write the system memory unless it has to.

PC processors 501

Processor

Cache controller

DRAM
memory

SRAM
cache memory

Data
transceiver

Latch
System
address
bus

System
data
bus

Processor
data
bus

Processor
address

bus Address
control signal

SRAM
control signals

Data
control
signal

Figure A.9 Look-through cache

Second-level caches

A L1-cache (first-level cache) provides a relatively small on-chip cache, where a L2-cache
(second-level cache) provides an external, on-board, cache which provides a cache memory
of between 128 and 512 KB. The processor looks in its own L1-cache for a cache hit, if none
is found then it searches in the on-board L2-cache. A cache hit in the L1-cache will obvi-
ously be faster than the off-chip cache.
 An L2-cache for the 486 has a maximum 512 KB memory size and is typically available
as 128 KB, 256 KB or 512 KB.

A.4 Pentium/Pentium Pro

Intel has gradually developed their range of processors from the original 16-bit 8086 proces-
sor to the 64-bit Pentium III processor. The original 8086 had just 29 000 transistors and op-
erated at a clock speed of 8 MHz. It had an external 20-bit bus and could thus only access up
to 1 MB of memory. Compare this with the Pentium III which can operate at 500 MHz, con-
tains over 8 ,000 ,000 transistors and can access up to 64 GB of physical memory. Table A.3
contrasts the Intel processor range. It can also be seen from the table that the Pentium II
processor is nearly a thousand times more powerful than an 8086 processor.

502 Computer busses

Table A.3 Processor comparison

Processor Clock
(when
released)

Register
size

External
data bus

Maxi-
mum
external
memory

Cache Perform-
ance
(MIPs)

8086 8 MHz 16 16 1 MB 0.8
286 12.5 MHz 16 16 16 MB 2.7
386DX 20 MHz 32 32 4 GB 6.0
486DX 25 MHz 32 32 4 GB 8KB L1 20
Pentium 60 MHz 32 64 4 GB 16KB L1 100
Pentium Pro 200 MHz 32 64 64 GB 16KB L1

256KB L2
440

Pentium II/III 300 MHz 32 64 64 GB 16KB L1
512KB L2

700

A.4.1 Intel processor development

The 80386 processor was a great leap in processing power over the 8086 and 80286, but it
required an on-board maths co-processor to be added to enhance its mathematical operations.
It could also only execute one instruction at a time. The 486 brought many enhancements,
such as:

• The addition of parallel execution with the expansion of the instruction decode and exe-

cution units into five pipelined stages. Each of these stages operate in parallel with the
others on up to five instructions in different stages of execution. This allows up to five in-
structions to be completed at a time.

• The addition of an 8 KB on-chip cache to greatly reduce the time taken to access data and
code.

• The addition of an integrated floating-point unit.
• Support for more complex and powerful systems, such as off-board L2 cache support and

multiprocessor operation.

With the increase in notebook and palmtop computers, the 486 was also enhanced to support
many energy and system management capabilities. These processors were named the 486SL
processors. The new enhancements included:

• System management mode – this mode is triggered by the processor’s own interrupt pin

and allows complex system management features to be added to a system transparently to
the operating system and application programs.

• Stop clock and auto halt powerdown – these allow the processor to either shut itself down
(and preserve its current state) or run at a reduced clock rate.

The Intel Pentium processor added many enhancements to the previous processors, includ-
ing:

• The addition of a second execution pipeline. These two pipelines, named u and v, can

execute two instructions per clock. This is known as superscalar operation.
• Increased on-chip L1 cache 8 KB for code and another 8 KB for data. It uses the MESI

protocol to support write-back mode, as well as the write-through mode (which is used by

PC processors 503

the 486 processor).
• Branch prediction with an on-chip branch table which improves looping characteristics.
• Enhancement to the virtual-8086 mode to allow for 4 MB as well as 4 KB pages.
• 128-bit and 256-bit data paths are possible (although the main registers are still 32 bits).
• Burstable 64-bit external data bus.
• Addition of advanced programmable interrupt controller (APIC) to support multiple Pen-

tium processors.
• New dual processing mode to support dual processor systems.

The Pentium processor has been extremely successful and has helped support enhanced mul-
titasking operating systems such as Microsoft Windows. The Intel Pentium Pro enhanced the
Pentium processor with the following:

• Incorporation of a three-way superscalar architecture, as apposed to a 2-way for the Pen-

tium. This allows three instructions to be executed for every clock cycle.
• Uses enhanced prediction of parallel code (called dynamic execution microarchitecture)

for the superscalar operation. This includes methods such as microdata flow analysis, out-
of-order execution, enhanced branch prediction and speculative execution. The three in-
struction decode units work in parallel to decode object code into smaller operations
called micro-ops. These micro-ops then go into an instruction pool, and, when there are
no interdependencies they can be executed out-of-order by the five parallel execution
units (two integer units, two for floating-point operations and one for memory opera-
tions). A retirement unit retires completed micro-ops in their original program order, tak-
ing account of any branches. This recovers the original program flow.

• Addition of register renaming. Multiple instructions not dependent on each other, using
the same registers, allow the source and destination registers to be temporarily renamed.
The original register names are used when instructions are retired and program flow is
maintained.

• Addition of a, closely coupled, on-package, 256 KB L2 cache which has a dedicated 64-
bit full clock speed bus. The L2 cache also supports up to four concurrent accesses
through a 64-bit external data bus. Each of these accesses is transaction-oriented where
each access is handled as a separate request and response. This allows for numerous re-
quests while awaiting a response.

• Expanded 36-bit address bus to give a physical address size of 64 GB.

The Pentium II/III processor is a further enhancement to the processor range. Apart from
increasing the clock speed it has several enhancements over the Pentium Pro, including:
• Integration of MMX technology. MMX instructions support high-speed multimedia op-

erations and include the addition of eight new registers (MM0 to MM7), four MMX data
types and an MMX instruction set.

• Single edge contact (SEC) cartridge packaging. This gives improved handling perform-
ance and socketability. It uses surface mount components and has a thermal plate (which
accepts a standard heat sink), a cover and a substrate with an edge finger connection.

• Integrated on-chip L1 cache 16 KB for code and another 16 KB for data. This has since
been increased to 512 KB cache.

• Increased size, on-package, 512 KB L2 cache.
• Enhanced low-power states, such as AutoHALT, Stop-Grant, Sleep and Deep Sleep.

504 Computer busses

A.4.2 Terms

Before giving an introduction to the Pentium Pro various terms have to be defined. These are
given in Table A.4.

Table A.4 Pentium terms

Term Description
Transaction Used to define a bus cycle. It consists of a set of phases, which are

related to a single bus request.

Bus agent Devices that reside on the processor bus, that is, the processor, PCI
bridge and memory controller.

Priority agent The device handling reset, configuration, initialization, error detec-
tion and handling; generally the processor-to-PCI bridge.

Requesting agent The device driving the transaction, that is, busmaster.

Addressed agent The slave device addressed by the transaction, that is, target agent.

Responding agent The device that provides the transaction response on RS<2:0># sig-
nals.

Snooping agent A caching device that snoops on the transactions to maintain cache
coherency.

Implicit
write-back

When a hit to a modified line is detected during the snoop phase, an
implicit write-back occurs. This is the mechanism used to write-back
the cache line.

A.4.3 Pentium II/III and Pentium Pro

A major objective of electronic systems design is the saving of electrical power and the mini-
misation of electromagnetic interference (EMI). Thus gunning transceiver logic (GTL) has
been used to reduce both power consumption and EMI as it has a low voltage swing. GTL
requires a 1 V reference signal and signals which use GTL logic are terminated to 1.5 V. If a
signal is 0.2 V above the reference voltage, that is, 1.2 V, then it is considered HIGH. If a
signal is 0.2 V below the reference voltage, that is, 0.8 V, then it is considered LOW.
 The Pentium Pro and II support up to four processors on the same bus without extra sup-
porting logic. Integrated into the bus structure are cache coherency signals, advanced pro-
grammable interrupt control signals and bus arbitration.
 A great enhancement of the Pentium Pro bus is data error detection and correction. The
Pentium Pro bus detects and corrects all single-bit data bus errors and also detects multiple-
bit errors on the data bus. Address and control bus signals have basic parity protection.
 The Pentium Pro bus has a modified line write-back performed without backing off the
current bus owner, where the processor must perform a write-back to memory when it de-
tects a hit to a modified line. The following mechanism eliminates the need to back-off the
current busmaster. If a memory write is being performed by the current bus owner then two
writes will be seen on the bus, that is, the original one followed by the write-back. The mem-
ory controller latches, and merges the data from the two cycles, and performs one write to
DRAM. If a memory read is being performed by the current bus owner then it accepts the
data when it is being written to memory.
 Other enhanced features are:

PC processors 505

• Deferred reply transactions stop the processor from having to wait for slow devices;

transactions that require a long time can be completed later, that is, deferred.
• Deeply pipelined bus transactions where the bus supports up to eight outstanding pipe-

lined transactions.

The Pentium III processor integrates the best features of the Pentium microarchitecture proc-
essors, such as dynamic execution performance, a multitransaction system bus, and Intel
MMX media enhancement technology. In addition, the Pentium III processor offers Stream-
ing SIMD Extensions with 70 new instructions enabling advanced imaging, 3D, streaming
audio and video, and speech recognition applications.

A.4.4 System overview

Figure A.10 outlines the main components of a Pentium system. A major upgrade is the sup-
port for up to four processors. The memory control and data path control logic provides the
memory control signals, that is, memory address, RAS and CAS signals. The data path logic
moves the data between the processor bus and the memory data bus. The memory interface
component interfaces the memory data bus with the DRAM devices. Both interleaved and
non-interleaved methods are generally supported. The memory consists of dual in line mem-
ory modules, that is, DIMMs. A DIMM module supports 64 bits of data, and eight parity or
ECC bits.

Processor

Processor

Processor

Processor

Memory
data path

and
memory
control

Memory I/F
component

Memory

PCI bridge

Standard
bridge

EISA/ISA
component

PCI bus

EISA/ISA bus

Figure A.10 Pentium architecture

The PCI bridge provides the interface between the processor bus and the PCI bus. The stan-
dard bridge provides an interface between the PCI bus and the EISA/ISA bus. The EISA/ISA
support component provides the EISA/ISA bus support functions, for example, timers, inter-
rupt control, flash ROM, keyboard interface, LA/SA translation and XD bus control.

A.5 Exercises

A.5.1 Which was one of the first 8-bit Intel processors:

506 Computer busses

 (a) 8000 (b) 8080
 (c) 8888 (d) 8280

A.5.2 The 8086 is classified as which type of processor:

 (a) 8-bit (b) 16-bit
 (c) 24-bit (d) 32-bit

A.5.3 The 80386 is classified as which type of processor:

 (a) 8-bit (b) 16-bit
 (c) 24-bit (d) 32-bit

A.5.4 How many bits does the address bus on the 8086 have:

 (a) 8 (b) 16
 (c) 20 (d) 32

A.5.5 How many bits does the address bus on the 8088 have:

 (a) 8 (b) 16
 (c) 20 (d) 32

A.5.6 How many bits does the data bus on the 8086 have:

 (a) 8 (b) 16
 (c) 20 (d) 32

A.5.7 How many bits does the data bus on the 8088 have:

 (a) 8 (b) 16
 (c) 20 (d) 32

A.5.8 What is the number of the general-purpose register in the 8086:

 (a) AX (b) BX
 (c) CX (d) DX

A.5.9 What register is used in counting operations register in the 8086:

 (a) AX (b) BX
 (c) CX (d) DX

A.5.10 What is the physical address for the segment address of 4444:0333h:

 (a) 4777h (b) 7774h
 (c) 7777h (d) 44773h

A.5.11 How does a second-level cache differ from a primary cache:

PC processors 507

 (a) It is on the motherboard, and not located beside the processor
 (b) It is located beside the processor, and not located on the motherboard
 (c) It is faster
 (d) It is made from DRAM memory rather than SRAM

A.5.12 What happens when a cache miss occurs in the second-level cache controller:

 (a) It takes data from the nearest cached address
 (b) The cache controller makes a guess about the data
 (c) An access is made to the main DRAM memory
 (d) The addressed memory is ignored

A.5.13 Explain how the byte enable lines (BE0–BE3) are used to address one or more

bytes at a time. Outline how these lines are used with the other address lines (A2–
A31).

A.5.14 Explain the method that the 80386/80486 uses to support 8-bit, 16-bit and 32-bit

registers.

A.5.15 Outline the main cache control architectures.

A.5.16 Outline major enhancements that have occurred with the Pentium (if possible,

access the www.intel.com WWW site and determine the most up-to-date informa-
tion on the latest processors).

VESA VL-Local Bus

Table B.1 lists the pin connections for the 32-bit VL-local bus and it shows that, in addition
to the standard ISA connector, there are two sides of connections, the A and the B side. Each
side has 58 connections giving a total of 116 connections. It has a full 32-bit data and address
bus. The 32 data lines are labelled DAT00–DAT31 and 32 address lines are labelled from
ADR00-ADR31. Note that although the data and address lines are contained within the extra
VL-local bus extension, some of the standard ISA lines are used, such as the IRQ lines.
 The VL-local bus uses a standard ISA connector and an extra connector to tap into the
32-bit data and address busses. Table B.1 lists the additional 32-bit VESA VL-local bus con-
nections. It has a 32-bit data bus (D0–D31) and a full 32-bit address bus (A0–A31). The VL-
Local bus is an extension to the standard ISA bus and can thus use the interrupt lines on the
ISA bus connector, that is, IRQ3–IRQ7 and IRQ10–IRQ14. It also has the memory address-
ing lines (M/ IO and R/ W).

Table B.1 32-bit VESA VL-local bus connections

Pin Side-A Side-B Pin Side-A Side-B
1 D0 D1 30 A17 A16
2 D2 D3 31 A15 A14
3 D4 GND 32 VCC A12
4 D6 D5 33 A13 A10
5 D8 D7 34 A11 A8
6 GND D9 35 A9 GND
7 D10 D11 36 A7 A6
8 D12 D13 37 A5 A4
9 VCC D15 38 GND WBACK
10 D14 GND 39 A3 BE0
11 D16 D17 40 A2 VCC
12 D18 VCC 41 NC BE1
13 D20 D19 42 RESET BE2
14 GND D21 43 D / C GND
15 D22 D23 44 M / IO BE3
16 D24 D25 45 W / R ADS
17 D26 GND 46 KEY KEY
18 D28 D27 47 KEY KEY
19 D30 D29 48 RDYRTN LRDY
20 VCC D31 49 GND LDEV
21 A31 A30 50 IRQ9 LREQ
22 GND A28 51 BRDY GND
23 A29 A26 52 BLAST LGNT
24 A27 GND 53 IDO VCC
25 A25 A24 54 ID1 ID2
26 A23 A22 55 GND ID3
27 A21 VCC 56 LCLK ID4
28 A19 A20 57 VCC NC
29 GND A18 58 LBS16 LEADS

B

Modem Codes

C.1 AT commands
The AT commands are preceded by the attention code AT. They are:

A Go on-line in answer mode
 Instructs the modem to go off-hook immediately and then make a connection with a remote mo-

dem
Bn Select protocol to 300 bps to 1200 bps
 B0 Selects CCITT operation at 300 bps or 1200 bps
 B1 Selects BELL operation at 300 bps or 1200 bps
D Go on-line in originate mode
 Instructs the modem to go off-hook and automatically dials the number contained in the dial string

which follows the D command
En Command echo
 E0 Disable command echo E1 Enables command echo (default)
Fn Select line modulation
 F0 Select auto-detect mode
 F1 Select V.21 or Bell 103
 F4 Select V.22 or Bell 212A 1200 bps
 F5 Select V.22bis line modulation.
 F6 Select V.32bis or V.32 4800 bps line modulation
 F7 Select V.32bis or V.32 7200 bps line modulation
 F8 Select V.32bis or V.32 9600 bps line modulation
 F9 Select V.32bis 12000 line modulation
 F10 Select V.32bis 14400 line modulation
Hn Hang-up
 H0 Go on-hook (hang-up connection)
 H1 Goes off-hook
In Request product code or ROM checksum
 I0 Reports the product code
 I1/I2 Reports the hardware ROM checksum
 I3 Reports the product revision code
 I4 Reports response programmed by an OEM
 I5 Reports the country code number
Ln Control speaker volume
 L0 Low volume L1 Low volume
 L2 Medium volume (default) L3 High volume
Mn Monitor speaker on/off
 M0/M Speaker is always off M1 Speaker is off while receiving carrier (default)
 M2 Speaker is always on M3 Speaker is on when dialing but is off at any other time
Nn Automode enable
 N0 Automode detection is disabled N1 Automode detection is enabled
On Return to the on-line state
 O0 Enters on-line data mode with a retrain
 O1 Enters on-line data mode without a retrain
P Set pulse dial as default
Q Result code display
 Q0 Send result codes to the computer
 Q1 No return codes
Sn Reading and writing to S registers
 Sn? Reads the Sn register

C

512 Computer busses

 Sn=val Writes the value of val to the Sn register
T Set tone dial as default
Vn Select word or digit result code
 V0 Display result codes in a numeric form
 V1 Display result code in a long form (default)
Wn Error correction message control
 W0 When connected report computer connection speed
 W1 When connected report computer connection speed, error
 correcting protocol and line speed
 W2 When connected report modem connection speed
Xn Select result code
 X0 Partial connect message, dial-tone monitor off, busy tone monitor off
 X1 Full connect message, dial-tone monitor off, busy tone monitor off
 X2 Full connect message, dial-tone monitor on, busy tone monitor off
 X3 Full connect message, dial-tone monitor off, busy tone monitor on
 X4 Full connect message, dial-tone monitor on, busy tone monitor on
Yn Enables or disables long space disconnection
 Y0 Disables long space disconnect (default)
 Y1 Enables long space disconnect
Zn Reset
 Z0 Resets modem and load stored profile 0
 Z1 Resets modem and load stored profile 1
&Cn Select DCD options
 &C0 Sets DCD permanently on
 &C1 Use state of carrier to set DCD (default)
&Dn DTR option
 This is used with the &Qn setting to determine the operation of the DTR signal
 &D0 &D1 &D2 &D3
 &Q0 a c d e
 &Q1 b c d e
 &Q2 d d d d
 &Q3 d d d d
 &Q4 b c d e
 &Q5 a c d e
 &Q6 a c d e

 where
 a – modem ignore DTR signal
 b – modem disconnects and sends OK result code
 c – modem goes into command mode and sends OK result code
 d – modem disconnects and sends OK result code.
&F Restore factory configuration
&Gn Set guard tone
 &G0 Disables guard tone (default)
 &G1 Disables guard tone
 &G2 Selects 1800 Hz guard tone
&Kn DTE/modem flow control
 &K0 Disables DTE/DCE flow control
 &K3 Enables RTS/CTS handshaking flow control (default)
 &K4 Enables XON/XOFF flow control
 &K5 Enables transparent XON/XOFF flow control
 &K6 Enables RTS/CTS and XON/XOFF flow control
&L Line selection
 &L0 Selects dial-up line operation (default)
 &L1 Selects leased line operation
&Mn Communications mode
&Pn Select pulse dialing make/break ratio
 &P0 Sets a 39/61 make-break ratio at 10 pps (default)
 &P1 Sets a 33/67 make-break ratio at 10 pps (default)
 &P2 Sets a 39/61 make-break ratio at 20 pps (default)
 &P3 Sets a 33/67 make-break ratio at 20 pps (default)

Modem codes 513

&Qn Asynchronous/synchronous mode selection
 &Q0 Set direct asynchronous operation
 &Q1 Set synchronous operation with asynchronous off-line
 &Q2 Set synchronous connect mode with asynchronous off-line
 &Q3 Set synchronous connect mode
 &Q5 Modem negotiation for error-corrected link
 &Q6 Set asynchronous operation in normal mode
&Rn RTS/CTS option
 &R0 In synchronous mode, CTS changes with RTS (the delay is defined by
 the S26 register)
 &R1 In synchronous mode, CTS is always ON
&Sn DSR option
 &S0 DSR is always ON (default)
 &S1 DSR is active after the answer tone has been detected
&Tn Testing and diagnostics
 &T0 Terminates any current test
 &T1 Local analogue loopback test
 &T2 Local digital loopback test
&V View configuration profiles
&Wn Store the current configuration in non-volatile RAM
 &W0 Writes current settings to profile 0 in nonvolatile RAM
 &W1 Writes current settings to profile 1 in nonvolatile RAM
&Xn Clock source selection
 &X0 Selects internal timing, where the modem uses its own clock for
 transmitted data
 &X1 Selects external timing, where the modem gets its timing from the DTE
 (computer)
 &X2 Selects slave receive timing, where the modem gets its timing from the
 received signal
&Yn Select default profile
 &Y0 Use profile 0 on power-up (default)
 &Y1 Use profile 1 on power-up
&Zn Store telephone numbers
 &Z0 Store telephone number 1 &Z1 Store telephone number 2
 &Z2 Store telephone number 3 &Z3 Store telephone number 4
\An Maximum MNP block size
 \A0 64 characters \A1 128 characters
 \A2 192 characters \A3 256 characters
\Bn Transmit break
 \B1 Break length 100 ms \B2 Break length 200 ms
 \B3 Break length 300 ms (Default) and so on.
\Gn Modem/modem flow control
 \G0 Disable (Default) \G1 Enable
\Jn Enable/disable DTE auto rate adjustment
 \J0 Disable \J1 Enable
\Kn Break control
 \K0 Enter on-line command mode with no break signal
 \K1 Clear data buffers and send a break to the remote modem
 \K3 Send a break to the remote modem immediately
 \K5 Send a break to the remote modem with transmitted data
\Ln MNP block transfer control
 \L0 Use stream mode for MNP connection (default)
 \L1 Use interactive MNP block mode.

C.2 Result codes
After the modem has received an AT command it responds with a return code. A complete set of return codes are
given in Table C.1.

514 Computer busses

Table C.1 Modem return codes

Message Digit Description
OK 0 Command executed without errors
CONNECT 1 A connection has been made
RING 2 An incoming call has been detected
NO CARRIER 3 No carrier detected
ERROR 4 Invalid command
CONNECT 1200 5 Connected to a 1200 bps modem
NO DIAL-TONE 6 Dial-tone not detected
BUSY 7 Remote line is busy
NO ANSWER 8 No answer from remote line
CONNECT 600 9 Connected to a 600 bps modem
CONNECT 2400 10 Connected to a 2400 bps modem
CONNECT 4800 11 Connected to a 4800 bps modem
CONNECT 9600 13 Connected to a 9600 bps modem
CONNECT 14400 15 Connected to a 14 400 bps modem
CONNECT 19200 16 Connected to a 19200 bps modem
CONNECT 28400 17 Connected to a 28400 bps modem
CONNECT 38400 18 Connected to a 38400 bps modem
CONNECT 115200 19 Connected to a 115200 bps modem
FAX 33 Connected to a FAX modem in FAX mode
DATA 35 Connected to a data modem in FAX mode
CARRIER 300 40 Connected to V.21 or Bell 103 modem
CARRIER 1200/75 44 Connected to V.23 backward channel carrier modem
CARRIER 75/1200 45 Connected to V.23 forwards channel carrier modem
CARRIER 1200 46 Connected to V.22 or Bell 212 modem
CARRIER 2400 47 Connected to V.22 modem
CARRIER 4800 48 Connected to V.32bis 4800 bps modem
CONNECT 7200 49 Connected to V.32bis 7200 bps modem
CONNECT 9600 50 Connected to V.32bis 9600 bps modem
CONNECT 12000 51 Connected to V.32bis 12000 bps modem
CONNECT 14400 52 Connected to V.32bis 14400 bps modem
CONNECT 19200 61 Connected to a 19 200 bps modem
CONNECT 28800 65 Connected to a 28 800 bps modem
COMPRESSION: CLASS 5 66 Connected to modem with MNP Class 5 compression
COMPRESSION: V.42bis 67 Connected to a V.42bis modem with compression
COMPRESSION: NONE 69 Connection to a modem with no data compression
PROTOCOL: NONE 70
PROTOCOL: LAPM 77
PROTOCOL: ALT 80

C.3 S-registers
The modem contains various status registers called the S-registers which store modem settings. Table C.2 lists these
registers.
S14 Bitmapped options
 0 1
 Bit 1 E0 E1
 Bit 2 Q0 Q1
 Bit 3 V0 V1
 Bit 4 Reserved
 Bit 5 T (tone dial) P (pulse dial)
 Bit 6 Reserved
 Bit 7 Answer mode Originate mode
S16 Modem test mode register
 0 1
 Bit 0 Local analogue loopback Local analogue loopback

Modem codes 515

 terminated test in progress
 Bit 2 Local digital loopback Local digital loopback
 terminated test in progress
 Bit 3 Remote modem analogue Remote modem analogue
 loopback test terminated loopback test in progress
 Bit 4 Remote modem digital Remote modem digital
 loopback test terminated loopback test in progress
 Bit 5 Remote modem digital Remote modem digital
 self-test terminated self-test in progress
 Bit 6 Remote modem analogue Remote modem analogue
 self-test terminated self-test in progress
 Bit 7 Unused
S21 Bitmapped options
 0 1
 Bit 0 &J0 &J1
 Bit 1
 Bit 2 &R0 &R1
 Bit 5 &C0 &C1
 Bit 6 &S0 &S1
 Bit 7 Y0 Y1
 Bit 4, 3 = 00 &D0
 Bit 4, 3 = 01 &D1
 Bit 4, 3 = 10 &D2
 Bit 4, 3 = 11 &D3
S22 Speaker/results bitmapped options
 Bit 1, 0 = 00 L0
 Bit 1, 0 = 01 L1
 Bit 1, 0 = 10 L2
 Bit 1, 0 = 11 L3
 Bit 3, 2 = 00 M0
 Bit 3, 2 = 01 M1
 Bit 3, 2 = 10 M2
 Bit 3, 2 = 11 M3
 Bit 6, 5, 4 = 000 X0
 Bit 6, 5, 4 = 001 Reserved
 Bit 6, 5, 4 = 010 Reserved
 Bit 6, 5, 4 = 011 Reserved
 Bit 6, 5, 4 = 100 X1
 Bit 6, 5, 4 = 101 X2
 Bit 6, 5, 4 = 110 X3
 Bit 6, 5, 4 = 111 X4
 Bit 7 Reserved
S23 Bitmapped options
 0 1
 Bit 0 &T5 &T4
 Bit 3, 2, 1 = 000 300 bps communications rate
 Bit 3, 2, 1 = 001 600 bps communications rate
 Bit 3, 2, 1 = 010 1200 bps communications rate
 Bit 3, 2, 1 = 011 2400 bps communications rate
 Bit 3, 2, 1 = 100 4800 bps communications rate
 Bit 3, 2, 1 = 101 9600 bps communications rate
 Bit 3, 2, 1 = 110 19 200 bps communications rate
 Bit 3, 2, 1 = 111 Reserved
 Bit 5, 4 = 00 Even parity
 Bit 5, 4 = 01 Not used
 Bit 5, 4 = 10 Odd parity
 Bit 5, 4 = 11 No parity
 Bit 7, 6 = 00 G0
 Bit 7, 6 = 01 G1
 Bit 7, 6 = 10 G2
 Bit 7, 6 = 11 G3

516 Computer busses

S23 Bitmapped options
 Bit 3, 1, 0 = 000 &M0 or &Q0
 Bit 3, 1, 0 = 001 &M1 or &Q1
 Bit 3, 1, 0 = 010 &M2 or &Q2
 Bit 3, 1, 0 = 011 &M3 or &Q3
 Bit 3, 1, 0 = 100 &Q3
 Bit 3, 1, 0 = 101 &Q4
 Bit 3, 1, 0 = 110 &Q5
 Bit 3, 1, 0 = 111 &Q6
 0 1
 Bit 2 &L0 &L1
 Bit 6 B0 B1
 Bit 5, 4 = 00 X0
 Bit 5, 4 = 01 X1
 Bit 5, 4 = 10 X2
S28 Bitmapped options
 Bit 4, 3 = 00 &P0
 Bit 4, 3 = 01 &P1
 Bit 4, 3 = 10 &P2
 Bit 4, 3 = 11 &P3
S31 Bitmapped options
 0 1
 Bit 1 N0 N1
 Bit 3, 2 = 00 W0
 Bit 3, 2 = 01 W1
 Bit 3, 2 = 10 W2
S36 LAPM failure control
 Bit 2, 1, 0 = 000 Modem disconnect
 Bit 2, 1, 0 = 001 Modem stays on line and a direct mode connection
 Bit 2, 1, 0 = 010 Reserved
 Bit 2, 1, 0 = 011 Modem stays on line and normal mode connection is established
 Bit 2, 1, 0 = 100 An MNP connection is made, if it fails then the modem disconnects
 Bit 2, 1, 0 = 101 An MNP connection is made, if it fails then the modem makes a direct
 connection
 Bit 2, 1, 0 = 110 Reserved
 Bit 2, 1, 0 = 111 An MNP connection is made, if it fails then the modem makes a normal
 mode connection
S37 Desired line connection speed
 Bit 3, 2, 1, 0 = 0000 Auto mode connection (F0)
 Bit 3, 2, 1, 0 = 0001 Modem connects at 300 bps (F1)
 Bit 3, 2, 1, 0 = 0010 Modem connects at 300 bps (F1)
 Bit 3, 2, 1, 0 = 0011 Modem connects at 300 bps (F1)
 Bit 3, 2, 1, 0 = 0100 Reserved
 Bit 3, 2, 1, 0 = 0101 Modem connects at 1200 bps (F4)
 Bit 3, 2, 1, 0 = 0110 Modem connects at 2400 bps (F5)
 Bit 3, 2, 1, 0 = 0111 Modem connects at V.23 (F3)
 Bit 3, 2, 1, 0 = 1000 Modem connects at 4800 bps (F6)
 Bit 3, 2, 1, 0 = 1001 Modem connects at 9600 bps (F8)
 Bit 3, 2, 1, 0 = 1010 Modem connects at 12 000 bps (F9)
 Bit 3, 2, 1, 0 = 1011 Modem connects at 144 000 bps (F10)
 Bit 3, 2, 1, 0 = 1100 Modem connects at 7200 bps (F7)
S39 Flow control
 Bit 2, 1, 0 = 000 No flow control
 Bit 2, 1, 0 = 011 RTS/CTS (&K3)
 Bit 2, 1, 0 = 100 XON/XOFF (&K4)
 Bit 2, 1, 0 = 101 Transparent XON (&K5)
 Bit 2, 1, 0 = 110 RTS/CTS and XON/XOFF (&K6)
S39 General bitmapped options
 Bit 5, 4, 3 = 000 \K0
 Bit 5, 4, 3 = 001 \K1
 Bit 5, 4, 3 = 010 \K2

Modem codes 517

 Bit 5, 4, 3 = 011 \K3
 Bit 5, 4, 3 = 100 \K4
 Bit 5, 4, 3 = 101 \K5
 Bit 7, 6 = 00 MNP 64 character block size (\A0)
 Bit 7, 6 = 01 MNP 128 character block size (\A1)
 Bit 7, 6 = 10 MNP 192 character block size (\A2)
 Bit 7, 6 = 11 MNP 256 character block size (\A3)

Table C.2 Modem registers

Register Function Range [typical default]
S0 Rings to Auto-answer 0–255 rings [0 rings]
S1 Ring counter 0–255 rings [0 rings]
S2 Escape character [43]
S3 Carriage return character [13]
S6 Wait time for dial-tone 2–255 s [2 s]
S7 Wait time for carrier 1–255 s [50 s]
S8 Pause time for automatic dialing 0–255 s [2 s]
S9 Carrier detect response time 1–255 in 0.1 s units [6]
S10 Carrier loss disconnection time 1–255 in 0.1 s units [14]
S11 DTMF tone duration 50–255 in 0.001 s units [95]
S12 Escape code guard time 0–255 in 0.02 s units [50]
S13 Reserved
S14 General bitmapped options [8Ah (1000 1010b)]
S15 Reserved
S16 Test mode bitmapped options (&T) [0]
S17 Reserved
S18 Test timer 0–255 s [0]
S19–S20 Reserved
S21 V.24/General bitmapped options [04h (0000 0100b)]
S22 Speak/results bitmapped options [75h (0111 0101b)]
S23 General bitmapped options [37h (0011 0111b)]
S24 Sleep activity timer 0–255 s [0]
S25 Delay to DSR off 0–255 s [5]
S26 RTS–CTS delay 0–255 in 0.01 s [1]
S27 General bitmapped options [49h (0100 1001b)]
S28 General bitmapped options [00h]
S29 Flash dial modifier time 0–255 in 10 ms [0]
S30 Disconnect inactivity timer 0–255 in 10 s [0]
S31 General bitmapped options [02h (0000 0010b)]
S32 XON character [Cntrl–Q, 11h (0001 0001b)]
S33 XOFF character [Cntrl–S, 13h (0001 0011b)]
S34–S35 Reserved
S36 LAMP failure control [7]
S37 Line connection speed [0]
S38 Delay before forced hang-up 0–255 s [20]
S39 Flow control [3]
S40 General bitmapped options [69h (0110 1001b)]
S41 General bitmapped options [3]
S42–S45 Reserved
S46 Data compression control [8Ah (1000 1010b)]
S48 V.42 negotiation control [07h (0000 0111b)]
S80 Soft-switch functions [0]
S82 LAPM break control [40h (0100 0000b)]
S86 Call failure reason code 0–255
S91 PSTN transmit attenuation level 0–15 dBm [10]
S92 Fax transmit attenuation level 0–15 dBm [10]
S95 Result code message control [0]
S99 Leased line transmit level 0–15 dBm [10]

Redundancy checking

D.1 Cyclic redundancy check (CRC)

The CRC is one of the most reliable error detection schemes and can detect up to 95.5% of
all errors. The most commonly used code is the CRC-16 standard code which is defined by
the CCITT.
 The basic idea of a CRC can be illustrated using an example. Suppose the transmitter and
receiver were both to agree that the numerical value sent by the transmitter would always be
divisible by 9. Then should the receiver get a value which was not divisible by 9 then it
would know that there was an error. For example, if a value of 32 were to be transmitted it
could be changed to 320 so that the transmitter would be able to add to the least significant
digit, making it divisible by 9. In this case the transmitter would add 4, making 324. If this
transmitted value were to be corrupted in transmission then there would only be a 10%
chance that an error would not be detected.
 In CRC-CCITT, the error correction code is 16 bits long and is the remainder of the data
message polynomial G(x) divided by the generator polynomial P(x) (x16+x12+x5+1, i.e.
10001000000100001). The quotient is discarded and the remainder is truncated to 16 bits.
This is then appended to the message as the coded word.
 The division does not use standard arithmetic division. Instead of the subtraction opera-
tion an exclusive-OR operation is employed. This is a great advantage as the CRC only re-
quires a shift register and a few XOR gates to perform the division.
 The receiver and the transmitter both use the same generating function P(x). If there are
no transmission errors then the remainder will be zero.
 The method used is as follows:

1. Let P(x) be the generator polynomial and M(x) the message polynomial.
2. Let n be the number of bits in P(x).
3. Append n zero bits onto the right-hand side of the message so that it contains m+n bits.
4. Using modulo-2 division, divide the modified bit pattern by P(x). Modulo-2 arithmetic

involves exclusive-OR operations, i.e. 0-1=1, 1-1=0, 1-0=1 and 0-0=0.
5. The final remainder is added to the modified bit pattern.

Example: For a 7-bit data code 1001100 determine the encoded bit pattern using a CRC
generating polynomial of P(x) = x3 + x2 + x0. Show that the receiver will not detect an error if
there are no bits in error.

Answer
 P(x) = x3 + x2 + x0 (1101)
 G(x) = x6 + x3 + x2 (1001100)

Multiply by the number of bits in the CRC polynomial:

D

520 Computer busses

 x3(x6 + x3 + x2)
 x9 + x6 + x5 (1001100000)

Figure D.1 shows the operations at the transmitter. The transmitted message is 1001100001
and Figure D.2 shows the operations at the receiver. It can be seen that the remainder is zero,
so there have been no errors in the transmission.

 1111101
 1101 1001100000
 1101
 1001
 1101
 1000
 1101
 1010
 1101
 1110
 1101
 1100
 1101
 001

Figure D.1 CRC coding example

 1111101
 1101 1001100001
 1101
 1001
 1101
 1000
 1101
 1010
 1101
 1110
 1101
 1101
 1101
 000

Figure D.2 CRC decoding example

The CRC-CCITT is a standard polynomial for data communications systems and can detect:

• All single and double bit errors.
• All errors with an odd number of bit.
• All burst errors of length 16 or less.
• 99.997% of 17-bit error bursts.
• 99.998% of 18-bit and longer bursts.

Redundancy checking 521

Table D.1 lists some typical CRC codes. CRC-32 is used in Ethernet, Token Ring and FDDI
networks, whereas ATM uses CRC-8 and CRC-10.

Table D.1 Typical schemes

Type Polynomial Polynomial binary
equivalent

CRC-8 x8+x2+x1+1 100000111
CRC-10 x10+x9+x5+ x4+x1 +1 11000110011
CRC-12 x12+x11+x3+ x2+1 1100000001101
CRC-16 x16+x15+x2+1 11000000000000101
CRC-CCITT x16+x12+x5+1 10001000000100001
CRC-32 x32+x26+x23+ x16+x12+x11

 +x10+x8+x7+x5+x4+x2+x+1
100000100100000010001110110110111

D.1.1 Mathematical representation of the CRC

The main steps to CRC implementation are:

1. Prescale the input polynomial of)(' xM by the highest order of the generator polynomial

P(x).

 M x x M xn' () ()=

2. Next divide)(' xM by the generator polynomial to give:

)(
)(

)(
)(

)(
)(
)('

xG
xRxQ

xG
xMx

xG
xM n

+==

which yields

)()()()(xRxQxGxMx n +=

and rearranging gives

)()()()(xQxGxRxMx n =+

This means that the transmitted message ()()(xRxMx n +) is now exactly divisible by G(x).

D.1.2 CRC example

Question A
A CRC system uses a message of 1 + x2 + x4 + x5. Design a cyclic encoder circuit with genera-
tor polynomial G(x) =1 + x2 + x3 and having appropriate gating circuitry to enable/disable the
shift out of the CRC remainder.
Answer A
The generator polynomial is G(x) =1 + x2 + x3, the circuit is given in Figure D.3.

522 Computer busses

D1 D2 D3

M(x) Z

Figure D.3 CRC coder

Now to prove that this circuit does generate the polynomial. The output Z(x) will be

[]

()
Z x Z x x M x x Z x x x

Z x x x M x x

() () () ()

() ()

= + +

= + +

− − − −

− − −

1 2 2 1

3 1 3

Thus

()

3

311)(
)(

−

−− ++=
x

xxxZxM

giving

 P x M x
Z x

x x() ()
()

= = + +3 2 1

Question B
If the previous CRC system uses a message of 1 + x2 + x4 + x5 then determine the sequence of
events that occur and hence determine the encoded message as a polynomial T(x). Synthesise
the same code algebraically using modulo-2 division.

Answer B
First prescale the input polynomial of M(x) by x3, the highest power of G(x):

 M´(x)=x3M(x)= x3 + x5 + x7 + x8

The input is thus x3 + x5 + x7 + x8 (000101011), and the generated states are:

Time M´(x) D1 D2 D3 D4
 1 000101011 0 0 0 0
 2 00010101 1 0 0 0
 3 0001010 1 1 0 0
 4 000101 0 1 1 1
 5 00010 0 0 0 0
 6 0001 0 0 0 0
 7 000 1 0 0 0
 8 00 0 1 0 0
 9 0 0 0 1 1
10 1 0 1

LSD

MSD

Redundancy checking 523

The remainder is thus 101, so R(x) is x2 + 1. The transmitted polynomial will be

 T(x) = x3 M(x) + R(x) = x8 + x7 + x5 + x3 + x2 + 1 (110101101)

To check this, use modulo-2 division to give

x3+x2+1 x8+x7+x5+x3

x8+x7+x5

x3

x3+x2+1

x2+1

x5 +1

Remainder

This gives the same answer as the state table, i.e. x2+1.
 Prove that the transmitted message does not generate a remainder when divided by P(x).
The transmitted polynomial, T(x), is x8 + x7 + x5 + x3 + x2 + 1 (110101101) and the generator
polynomial, G(x), is 1+ x2+ x3. Thus

x3+ x2+ 1 x8+ x7+ x5+ x3+ x2+ 1
x8+ x7+ x5

x3+ x2+ 1
x3+ x2+ 1

0

x5 +1

Remainder

As there is a zero remainder, there is no error.

D.2 Longitudinal/vertical redundancy checks (LRC/VRC)

RS-232 uses vertical redundancy checks (VRC) when it adds a parity bit to the transmitted
character. Longitudinal (or horizontal) redundancy checks (LRC) adds a parity bit for all bits
in the message at the same bit position. Vertical coding operates on a single character and is
known as character error coding. Horizontal checks operate on groups of characters and de-
scribed as message coding. LRC always uses even parity and the parity bit for the LRC char-
acter has the parity of the VRC code.
 In the example given next, the character sent for LRC is thus 10101000 (28h) or a ‘(’.
The message sent is ‘F’, ‘r’, ‘e’, ‘d’, ‘d’, ‘y’ and ‘(’.
 Without VR checking, LR checking detects most errors but does not detect errors where
an even number of characters have an error in the same bit position. In the previous example
if bit 2 of the ‘F’ and ‘r’ were in error then LRC would be valid.

524 Computer busses

 This problem is overcome if LRC and VRC are used together. With VRC/LRC the only
time an error goes undetected is when an even number of bits, in an even number of charac-
ters, in the same bit positions of each character are in error. This is of course very unlikely.
 On systems where only single-bit errors occur, the LRC/VRC method can be used to de-
tect and correct the single-bit error. For systems where more than one error can occur it is not
possible to locate the bits in error, so the receiver prompts the transmitter to retransmit the
message.

Example
A communications channel uses ASCII character coding and LRC/VRC bits are added to
each word sent. Encode the word ‘Freddy’ and, using odd parity for the VRC and even parity
for the LRC; determine the LRC character.

Answer

 F r e d d y LRC

b0 0 0 1 0 0 1 0
b1 1 1 0 0 0 0 0
b2 1 0 1 1 1 0 0
b3 0 0 0 0 0 1 1
b4 0 1 0 0 0 1 0
b5 0 1 1 1 1 1 1
b6 1 1 1 1 1 1 0

VRC 0 1 1 0 0 0 1

ASCII Character Code

E.1 Standard ASCII

ANSI defined a standard alphabet known as ASCII. This has since been adopted by the
CCITT as a standard, known as IA5 (International Alphabet No. 5). The following tables de-
fine this alphabet in binary, as a decimal value, as a hexadecimal value and as a character.

Binary Decimal Hex Character Binary Decimal Hex Character
00000000 0 00 NUL 00010000 16 10 DLE
00000001 1 01 SOH 00010001 17 11 DC1
00000010 2 02 STX 00010010 18 12 DC2
00000011 3 03 ETX 00010011 19 13 DC3
00000100 4 04 EOT 00010100 20 14 DC4
00000101 5 05 ENQ 00010101 21 15 NAK
00000110 6 06 ACK 00010110 22 16 SYN
00000111 7 07 BEL 00010111 23 17 ETB
00001000 8 08 BS 00011000 24 18 CAN
00001001 9 09 HT 00011001 25 19 EM
00001010 10 0A LF 00011010 26 1A SUB
00001011 11 0B VT 00011011 27 1B ESC
00001100 12 0C FF 00011100 28 1C FS
00001101 13 0D CR 00011101 29 1D GS
00001110 14 0E SO 00011110 30 1E RS
00001111 15 0F SI 00011111 31 1F US

Binary Decimal Hex Character Binary Decimal Hex Character
00100000 32 20 SPACE 00110000 48 30 0
00100001 33 21 ! 00110001 49 31 1
00100010 34 22 “ 00110010 50 32 2
00100011 35 23 # 00110011 51 33 3
00100100 36 24 $ 00110100 52 34 4
00100101 37 25 % 00110101 53 35 5
00100110 38 26 & 00110110 54 36 6
00100111 39 27 / 00110111 55 37 7
00101000 40 28 (00111000 56 38 8
00101001 41 29) 00111001 57 39 9
00101010 42 2A * 00111010 58 3A :
00101011 43 2B + 00111011 59 3B ;
00101100 44 2C , 00111100 60 3C <
00101101 45 2D - 00111101 61 3D =
00101110 46 2E . 00111110 62 3E >
00101111 47 2F / 00111111 63 3F ?

E

526 Computer busses

Binary Decimal Hex Character Binary Decimal Hex Character
01000000 64 40 @ 01010000 80 50 P

01000001 65 41 A 01010001 81 51 Q

01000010 66 42 B 01010010 82 52 R

01000011 67 43 C 01010011 83 53 S

01000100 68 44 D 01010100 84 54 T

01000101 69 45 E 01010101 85 55 U

01000110 70 46 F 01010110 86 56 V

01000111 71 47 G 01010111 87 57 W

01001000 72 48 H 01011000 88 58 X

01001001 73 49 I 01011001 89 59 Y

01001010 74 4A J 01011010 90 5A Z

01001011 75 4B K 01011011 91 5B [

01001100 76 4C L 01011100 92 5C \

01001101 77 4D M 01011101 93 5D]

01001110 78 4E N 01011110 94 5E ‘

01001111 79 4F O 01011111 95 5F _

Binary Decimal Hex Character Binary Decimal Hex Character
01100000 96 60 01110000 112 70 p

01100001 97 61 a 01110001 113 71 q

01100010 98 62 b 01110010 114 72 r

01100011 99 63 c 01110011 115 73 s

01100100 100 64 d 01110100 116 74 t

01100101 101 65 e 01110101 117 75 u

01100110 102 66 f 01110110 118 76 v

01100111 103 67 g 01110111 119 77 w

01101000 104 68 h 01111000 120 78 x

01101001 105 69 i 01111001 121 79 y

01101010 106 6A j 01111010 122 7A z

01101011 107 6B k 01111011 123 7B {

01101100 108 6C l 01111100 124 7C :

01101101 109 6D m 01111101 125 7D }

01101110 110 6E n 01111110 126 7E ~

01101111 111 6F o 01111111 127 7F DEL

ASCII 527

E.2 Extended ASCII code

The standard ASCII character has 7 bits and the basic set ranges from 0 to 127. This code is
rather limited as it does not contains symbols such as Greek letters, lines, and so on. For this
purpose the extended ASCII code has been defined. This fits into character numbers 128 to
255. The following four tables define a typical extended ASCII character set.

Binary Decimal Hex Character Binary Decimal Hex Character
10000000 128 80 Ç 10010000 144 90 É

10000001 129 81 ü 10010001 145 91 æ

10000010 130 82 é 10010010 146 92 Æ

10000011 131 83 â 10010011 147 93 ô

10000100 132 84 ä 10010100 148 94 ö

10000101 133 85 à 10010101 149 95 ò

10000110 134 86 å 10010110 150 96 û

10000111 135 87 ç 10010111 151 97 ù

10001000 136 88 ê 10011000 152 98 ÿ

10001001 137 89 ë 10011001 153 99 Ö

10001010 138 8A è 10011010 154 9A Ü

10001011 139 8B ï 10011011 155 9B ¢

10001100 140 8C î 10011100 156 9C £

10001101 141 8D ì 10011101 157 9D ¥

10001110 142 8E Ä 10011110 158 9E ₧
10001111 143 8F Å 10011111 159 9F ƒ

Binary Decimal Hex Character Binary Decimal Hex Character
10100000 160 A0 á 10110000 176 B0 ░
10100001 161 A1 í 10110001 177 B1 ▒
10100010 162 A2 ó 10110010 178 B2 ▓
10100011 163 A3 ú 10110011 179 B3 │
10100100 164 A4 ñ 10110100 180 B4 ┤
10100101 165 A5 Ñ 10110101 181 B5 ╡
10100110 166 A6 ª 10110110 182 B6 ╢
10100111 167 A7 º 10110111 183 B7 ╖
10101000 168 A8 ¿ 10111000 184 B8 ╕
10101001 169 A9 ⌐ 10111001 185 B9 ╣
10101010 170 AA ¬ 10111010 186 BA ║
10101011 171 AB ½ 10111011 187 BB ╗
10101100 172 AC ¼ 10111100 188 BC ╝
10101101 173 AD ¡ 10111101 189 BD ╜
10101110 174 AE « 10111110 190 BE ╛
10101111 175 AF » 10111111 191 BF ┐

528 Computer busses

Binary Decimal Hex Character Binary Decimal Hex Character
11000000 192 C0 └ 11010000 208 D0 ╨
11000001 193 C1 ┴ 11010001 209 D1 ╤
11000010 194 C2 ┬ 11010010 210 D2 ╥
11000011 195 C3 ├ 11010011 211 D3 ╙
11000100 196 C4 ─ 11010100 212 D4 ╘
11000101 197 C5 ┼ 11010101 213 D5 ╒
11000110 198 C6 ╞ 11010110 214 D6 ╓
11000111 199 C7 ╟ 11010111 215 D7 ╫
11001000 200 C8 ╚ 11011000 216 D8 ╪
11001001 201 C9 ╔ 11011001 217 D9 ┘
11001010 202 CA ╩ 11011010 218 DA ┌
11001011 203 CB ╦ 11011011 219 DB █
11001100 204 CC ╠ 11011100 220 DC ▄
11001101 205 CD ═ 11011101 221 DD ▌
11001110 206 CE ╬ 11011110 222 DE ▌
11001111 207 CF ╧ 11011111 223 DF ▐

Binary Decimal Hex Character Binary Decimal Hex Character
11100000 224 E0 α 11110000 240 F0 Ξ
11100001 225 E1 ß 11110001 241 F1 ±
11100010 226 E2 Γ 11110010 242 F2 ≥
11100011 227 E3 π 11110011 243 F3 ≤
11100100 228 E4 Σ 11110100 244 F4 ⌠
11100101 229 E5 σ 11110101 245 F5 ⌡
11100110 230 E6 µ 11110110 246 F6 ÷
11100111 231 E7 τ 11110111 247 F7 ≈
11101000 232 E8 Φ 11111000 248 F8 °
11101001 233 E9 Θ 11111001 249 F9 ·
11101010 234 EA Ω 11111010 250 FA ·

11101011 235 EB δ 11111011 251 FB √
11101100 236 EC ϕ 11111100 252 FC ⁿ
11101101 237 ED φ 11111101 253 FD ²

11101110 238 EE Ε 11111110 254 FE ■
11101111 239 EF Λ 11111111 255 FF

Quick Reference

Parallel port Serial port
Pin Name Pin Name Pin Name Pin Name
 1 Strobe 14 GND 1 DCD 6 CTS
 2 Auto Feed 15 D6 2 DSR 7 DTR
 3 D0 16 GND 3 RX 8 RI
 4 Error 17 D7 4 RTS 9 GND
 5 D1 18 GND 5 TX
 6 INIT 19 ACK
 7 D2 20 GND
 8 SLCT IN 21 BUSY
 9 D3 22 GND
10 GND 23 PE
11 D4 24 GND
12 GND 25 SLCT
13 D5

IDE Floppy disk
Pin Name Pin Name Pin Name Pin Name
 1 Reset 2 GND 1 GND 2 FDHDIN
 3 D7 4 D8 3 GND 4 Reserved
 5 D6 6 D9 5 Key 6 FDEDIN
 7 D5 8 D10 7 RTS 8 -Index
 9 D4 10 D11 9 GND 10 Motor En A
11 D3 12 D12 11 GND 12 Drive Sel B
13 D2 14 D13 13 GND 14 Drive Sel A
15 D1 16 D14 15 GND 16 Motor En B
17 D0 18 D15 17 GND 18 DIR
19 GND 20 Key 19 GND 20 STEP
21 DRQ3 22 GND 21 GND 22 Write Data
23 -I/O W 24 GND 23 GND 24 Write Gate
25 -I/O R 26 GND 25 GND 26 Track 00
27 IOCHRDY 28 BALE 27 GND 28 Write Protect
29 -DACK3 30 GND 29 GND 30 Read Data
31 IRQ14 32 IOCS16 31 GND 32 Side 1 Sel
33 ADD 1 34 GND 33 GND 34 Diskette
35 ADD 0 36 ADD 2
37 -CS 0 38 CS 1
39 ACTIVITY 40 GND

Bus connections Page Bus connections Page
AGP 205 Cache 126
CAN bus 336 Games port 192
IDE/ISA 144 IEEE-1394 347
IEEE-488 bus 190 ISA bus 88

F

530 Computer busses

Keyboard 196 Parallel Port 272
PCI bus 105 PCMCIA 174
PIIX3 123 RS-232 (modem) 232
RS-232 (null modem) 230 RS-232 232
SCSI 159 SCSI-II 160
TXC 125 USB 182
VESA VL-Local Bus 509

Typical IRQs Typical DMA channels
0 Internal timer 1 Keyboard 0 Any
2 Cascaded interrupt 3 COM2 1 Any
4 COM1 5 (Soundcard) 2 Floppy disk
6 Floppy disk 7 LPT1 3 Parallel port
8 Real-time clock 9 User available 4 Cascaded DMA
10 User available 11 (PCI steering) 5 Any
12 Serial bus mouse (if any) 13 Math coprocessor 6 Any
14 Primary IDE 15 Secondary IDE 7 Any

Example I/O map
0000–000F Slave DMA controller 0020–0021 Master PIC
0040–0043 System timer 0060 Keyboard
0061 Speaker 0064 Keyboard
0070–0071 Real-time clock 0080–008F DMA
00A0–00A1 Slave PIC 00F0–00FF Numeric processor
0170–0177 Secondary H/D 0200–020F Game port
0220–022F Soundcard 0294–0297 PCI bus
02F8–02FF COM2 0330–0331 Soundcard
0370–0371 Soundcard 0376 Secondary IDE
0378–037A LPT1 0388–03B8 Soundcard
03B0–03BB VGA 03C0–03DF VGA
03F6 Primary IDE 03F8–03FF COM1
0480–048F PCI bus 04D0–04D1 PCI bus
0530–0537 Soundcard 0778–077A ECP Port (LPT1)
0CF8–0CFF PCI bus 4000–403F PCI bus
5000–5018 PCI bus D000–DFFF AGP controller
E000–E01F USB controller E400–E4FF VGA

ASCII 531

Bus specification

Bus Max.

throughput
Data bus
(bits)

Address bus
(bits)

Notes

AGP 500 MB/s 64 32
EISA 32 MB/s 32 32 4 GB max address,

8 MHz clock
Ethernet 1.25 MB/s 1 N/A 10 Mbps (10BASE)
Fibre
Channel

132.5 MB/s 1 N/A 1.06 Gbps

Firewire 50 MB/s 1 N/A 400 Mbps (S400)
IDE 16.6 MB/s 16 N/A Mode 4, EIDE, Maximum 4 devices
IEEE-488 1 MB/s 8 N/A
ISA 16 MB/s 16 24 16 MB max address, 8 MHz clock
ISDN 16 kB/s 1 N/A 2×64 kbps
MCA 100 MB/s 32 32
Modem 7 kB/s 1 N/A 56 kbps
Parallel port 150 kB/s 8 N/A 150 kB/s is equivalent to 1.2 Mbps

which is the required transfer rate
for stereo, 44.1kHz, 16-bit sampled
audio

Parallel port
(ECP/EPP)

1.2 MB/s 8 N/A ×8

PC 8 MB/s 8 20 1 MB max address, 8 MHz clock
PCI 132 MB/s 32 32 33 MHz clock
PCI (32-bit) 132 MB/s 32 32 33 MHz clock
PCI (64-bit) 264 MB/s 64 32 33 MHz clock
PCMCIA 16 MB/s 16 26 64 MB max address
RS-232 14.4 kB/s 1 N/A 115.2 kbps
RS-485 1.25 MB/s 1 N/A 10 Mbps
SCSI
(Fast/wide)

40 MB/s 16 N/A 20 MHz clock

SCSI-I 5 MB/s 8 N/A
SCSI-II
(Wide)

20 MB/s 16 N/A 10 MHz clock

SCSI-II (Fast) 10 MB/s 8 N/A 10 MHz clock
USB 1.5 MB/s 1 N/A 12 Mbps
VL 132 MB/s 32 32 33 MHz clock

F.1 Notes from the author

Well, the book in nearly finished, so as a last little bit of fun here is a final league table for
the busses. They are graded on usefulness (how useful it is in its application, and how well it
can be used on other systems), availability (the ease that it can be purchased, and the num-
ber of applications that it has), data throughput (the speed of data throughput), cost (how
expensive it is to purchase applications which use the bus) and configuration (how well and
how easy it is to configure the bus).
 From the table it can be seen that the winners are the PCI bus and Ethernet (100BASE).

532 Computer busses

Over the past years, the PCI has rapidly moved up the table and takes away the top position
from the ISA bus, and as it does everything well, and beats the ISA bus, for its ease of con-
figuration. Its only problem is that it costs a bit more than the ISA bus, but it’s worth it. The
one to watch for is the USB bus. It has came straight into the forth position, and is sure to
rise further as more applications use it, and as it bit rate increases. Busses such as the key-
board, joypad and PS/2 mouse port are not included as they are too specific to a single ap-
plication (but they wouldn’t do that well, as they are very slow, and can cause configuration
problems). A special mention should go the Ethernet bus system. It is one of the oldest of the
busses given here, but has withstood a lot of pressure from other busses that would like to
take control of the networking applications, but it has beaten of all of them. Its main strength
is its cheapness, and it general usage. In networking, more any other application area, stan-
dardness counts more than virtually anything else. If a company were to adopt a new net-
work bus for their network, and within five years that technology was either too expensive to
maintain, or was not even available, it would take a major investment to redesign the net-
work. So, Ethernet wins because it has a virtual monopoly on the connection of computers to
corporate networks. Its shortcomings have been overcome with gradual migration. Its slow-
ness has been overcome with new standard such as 100BASE (100MBps) and 1000BASE
(1Gbps). Its connection and grounding problems have been solved with hubs, twisted-pair
cable and fibre optic cable.
 Special mentions should go to RS-232 (the only bus to score three top scores) and the
Parallel Port, who do some things extremely well, but their glory days have passed, and are
hoping for glorious retirement as USB mops-up their main application areas. But, who
knows, will RS-232 and Parallel Port connectors still be standard on the PCs in the year
2010? It’s an even money bet at the present.

 Usefulness Availability Data throughput Cost Configuration Total
 =1 PCI 9 9 8 6 9 41
 =1 Ethernet (100BASE) 10 9 5 10 7 41
 =3 ISA 10 9 5 10 5 39
 =3 Ethernet (10BASE) 10 9 3 10 7 39
 =5 IDE 5 9 6 9 8 37
 =5 USB 10 7 4 8 8 37
 7 RS-232 10 10 2 10 3 35
 8 Parallel port (ECP/EPP) 8 8 5 8 4 33
 =9 Parallel port 7 8 3 8 5 31
 =9 SCSI-I 8 6 5 5 7 31
 =9 AGP 5 6 9 3 8 31
 12 SCSI-II 8 4 7 4 7 30
 13 PC 5 9 3 7 3 27
 14 IEEE-488 7 5 3 6 5 26
 15 ISDN 3 6 5 2 5 21
=16 Modem 3 9 1 3 4 20
=16 RS-485 4 5 4 3 4 20
=18 Firewire 3 3 7 2 4 19
=18 PCMCIA 4 5 5 1 4 19
=20 Fibre Channel 2 2 8 2 4 18
=20 MCA 4 1 6 2 5 18
=20 VL 5 1 6 1 5 18
 23 EISA 1 1 3 2 5 12

 Relegation zone

ISDN

G.1 Introduction

A major problem in data communications and networks is the integration of real-time sam-
pled data with non-real-time (normal) computer data. Sampled data tends to create a constant
traffic flow whereas computer-type data has bursts of traffic. In addition, sampled data nor-
mally needs to be delivered at a given time but computer-type data needs a reliable path
where delays are relatively unimportant.
 The basic rate for real-time data is speech. It is normally sampled at a rate of 8 kHz and
each sample is coded with eight bits. This leads to a transmission bit rate of 64 kbps. ISDN
uses this transmission rate for its base transmission rate. Computer-type data can then be
transmitted using this rate or can be split to transmit over several 64 kbps channels. The basic
rate ISDN service uses two 64 kbps data lines and a 16 kbps control line, as illustrated in
Figure G.1. Table G.1 summarizes the I series CCITT standards.
 Typically, modems are used in the home for the transmission of computer-type data. Un-
fortunately, modems have a maximum bit rate of 56 kbps. With ISDN, this is automatically
increased, on a single channel, to 64 kbps. The connections made by a modem and by ISDN
are circuit switched.

Circuit-
switched

connection

ISDN
connection

64 kbps
(B channel)

ISDN
connection

64 kbps
(B channel)

16 kbps
(D channel
for control)

16 kbps
(D channel
for control)

Figure G.1 Basic rate ISDN services

G

534 Computer busses

Table G.1 CCITT standards on ISDN

CCITT standard number Description
I.1XX ISDN terms and technology
I.2XX ISDN services
I.3XX ISDN addressing
I.430 and I.431 ISDN physical layer interface
I.440 and I.441 ISDN data layer interface
I.450 and I.451 ISDN network layer interface
I.5XX ISDN internetworking
I.6XX ISDN maintenance

 The great advantage of an ISDN connection is that the type of data transmitted is irrele-
vant to the transmission and switching circuitry. Thus, it can carry other types of digital data,
such as facsimile, teletex, videotex and computer data. This reduces the need for modems,
which convert digital data into an analogue form, only for the public telephone network to
convert the analogue signal back into a digital form for transmission over a digital link. It is
also possible to multiplex the basic rate of 64 kbps to give even higher data rates. This multi-
plexing is known as N × 64 kbps or broadband ISDN (B-ISDN).
 Another advantage of ISDN is that it is a circuit-switched connection where a permanent
connection is established between two nodes. This connection is guaranteed for the length of
the connection. It also has a dependable delay time and is thus suited to real-time data.

G.2 ISDN channels

ISDN uses channels to identify the data rate, each based on the 64 kbps provision. Typical
channels are B, D, H0, H11 and H12. The B-channel has a data rate of 64 kbps and provides
a circuit-switched connection between endpoints. A D-channel operates at 16 kbps and it
controls the data transfers over the B channels. The other channels provide B-ISDN for much
higher data rates. Table G.2 outlines the basic data rates for these channels.
 The two main types of interface are the basic rate access and the primary rate access.
Both are based around groupings of B- and D-channels. The basic rate access allows two B-
channels and one 16 kbps D-channel.
 Primary rate provides B-ISDN, such as H12 which gives 30 B-channels and a 64 kbps D-
channel. For basic and primary rates, all channels multiplex onto a single line by combining
channels into frames and adding extra synchronisation bits. Figure G.2 gives examples of the
basic rate and primary rate.

Table G.2 ISDN channels

Channel Description
B 64 kbps
D 16 kbps signaling for channel B (ISDN)

64 kbps signaling for channel B (B-ISDN)
H0 384 kbps (6 × 64 kbps) for B-ISDN
H11 1.536 Mbps (24 × 64 kbps) for B-ISDN
H12 1.920 Mbps (30 × 64 kbps) for B-ISDN

ISDN 535

Channel 1 (64 kbps)
Channel 2 (64 kbps)

Signalling information (16 kbps)

192 kbps
(Channel 1,
Channel 2,
Signalling info.
and extra framing bits)

Channel 1 (64 kbps)
Channel 2 (64 kbps)

Signalling information (64 kbps)

1.544 Mbps
(Channel 1..24,
Signalling info.
and extra framing bits) Channel 24 (64 kbps)

Channel 1 (64 kbps)

Channel 2 (64 kbps)

Signalling information (64 kbps)

2.048 Mbps
(Channel 1..30,
Signalling info.
and extra framing bits) Channel 30 (64 kbps)

Basic rate ISDN
Data rate:
128 kbps

Primary rate
ISDN (H11)
Data rate:

1.536 Mbps

Primary rate
ISDN (H12)
Data rate:

1.920 Mbps

Figure G.2 Basic rate, H11 and H12 ISDN services

 The basic rate ISDN gives two B-channels at 64 kbps and a signalling channel at 16 kbps.
These multiplex into a frame and, after adding extra framing bits, the total output data rate is
192 kbps. The total data rate for the basic rate service is thus 128 kbps. One or many devices
may multiplex their data, such as two devices transmitting at 64 kbps, a single device multi-
plexing its 128 kbps data over two channels (giving 128 kbps), or by several devices trans-
mitting a sub-64 kbps data rate over the two channels. For example, four 32 kbps devices
could simultaneously transmit their data, eight 16 kbps devices, and so on.
 For H12, 30 × 64 kbps channels multiplex with a 64 kbps-signalling channel, and with ex-
tra framing bits, the resulting data rate is 2.048 Mbps (compatible with European PCM-TDM
systems). This means the actual data rate is 1.920 Mbps. As with the basic service this could
contain a number of devices with a data rate of less than or greater than a multiple of
64 kbps.
 For H11, 24 × 64 kbps channels multiplex with a 64 kbps-signalling channel, and with ex-
tra framing bits, it produces a data rate of 1.544 Mbps (compatible with USA PCM-TDM
systems). The actual data rate is 1.536 Mbps.

G.3 ISDN physical layer interfacing

The physical layer corresponds to layer 1 of the OSI seven-layer model and is defined in
CCITT specifications I.430 and I.431. Pulses on the line are not coded as pure binary, they
use a technique called alternate mark inversion (AMI).

536 Computer busses

G.3.1 Alternative mark inversion (AMI) line code

AMI line codes use three voltage levels. In pure AMI, 0 V represents a ‘0’, and the voltage
amplitude for each ‘1’ is the inverse of the previous ‘1’ bit. ISDN uses the inverse of this, i.e.
0 V for a ‘1’ and an inverse in voltage for a ‘0’, as shown in Figure G.3. Normally the pulse
amplitude is 0.75 V.
 Inversion of the AMI signal (i.e. inverting a ‘0’ rather than a ‘1’) allows for timing in-
formation to be recovered when there are long runs of zeros, which is typical in the idle state.
AMI line code also automatically balances the signal voltage, and the average voltage will be
approximately zero even when there are long runs of zeros (this is a requirement as the con-
nection to the network is transformer coupled).

1 0 0 1 1 0 1 1 0 0 0 0

0V

+V

-V

Figure G.3 AMI used in ISDN

G.3.2 System connections

In basic rate connections, up to eight devices, or items of termination equipment (TE), can
connect to the network termination (NT). They connect over a common four-wire bus using
two sets of twisted-pair cables. The transmit output (TX) on each TE connects to the transmit
output on the other TEs, and the receive input (RX) on each TE connects to all other TEs. On
the NT the receive input connects to the transmit of the TEs, and the transmit output of the
NT connects to the receive input of the TEs. A contention protocol allows only one TE to
communicate at a time.
 An 8-pin ISO 8877 connector connects a TE to the NT; this is similar to the RJ-45 con-
nector. Figure G.4 shows the pin connections. Pins 3 and 6 carry the TX signal from the TE,
pins 4 and 5 provide the RX to the TEs. Pins 7 and 8 are the secondary power supply from the
NT and pins 1 and 2 the power supply from the TE (if used). The TX/RX lines connect via
transformers, thus only the AC part of the bitstream transfers into the PCM circuitry of the
TE and the NT. This produces a need for a balanced DC line code such as AMI, as the DC
component in the bitstream will not pass through the transformers.

G.3.3 Frame format

Figures G.5 and G.6 show the ISDN frame formats. Each frame is 250 µs long and contains
48 bits; this give a total bit rate of 192 kbps (48/250 × 10-6) made up of two 64 kbps B chan-
nels, one 16 kbps D-channel and extra framing, DC balancing and synchronisation bits.
 The F/L pair of bits identify the start of each transmitted frame. When transmitting from a
TE to an NT there is a 10-bit offset in the return of the frame back to the TE. The E bits echo
the D-channel bits back to the TE.

ISDN 537

Power
source
1

Power
sink
1

NT

TX

RX

RX

TX

Power
source
2

Power
sink
2

Termination
equipment

2

6

5

4
7

8

Power
source
3

1

3

2

3

4

5
7

8

6

1

Network
termination

+

-

Figure G.4 Power supplies between NT and TE

B1 channel

EDAFAN

B2 channel

EDS

B1 channel

EDS

B2 channel

LEDFL
0
1
0

48 bits in 250 µs

Figure G.5 ISDN frame format for NT to TE

B1 channel

L D L FAL

B2 channel

L D L

B1 channel

L D L

B2 channel

LL DF L

0
1
0

48 bits in 250 µ s

Figure G.6 ISDN frame format for TE to NT

where F – framing bit N – set to a 1
 L – DC balancing bit D – D-channel bit
 E – D-echo channel bit FA – auxiliary framing bit (= 0)
 S – reserved for future use A – activation bit
 M – multiframing bit B1 – bits for channel 1
 B2 – bits for channel 2

When transmitting from the NT to the TE, the bits after the F/L bits, in the B-channel, have a
volition in the first 0. If any of these bits is a 0 then a volition will occur, but if they are 1s
then no volition can occur. To overcome this the FA bit forces a volition. As it is followed by

538 Computer busses

0 (the N bit) it will not be confused with the F/L pair. The start of the frame can thus be
traced backwards to find the F/L pair.
 There are 16 bits for each B-channel, giving a basic data rate of 64 kbps (16/250 × 10-6)
and there are 4 bits in the frame for the D-channel, giving a bit rate of 16 kbps (4/250 × 10-6).
 The L bit balances the DC level on the line. If the number of zeros following the last bal-
ancing bit is odd then the balancing bit is a 0, else it is a 1. When synchronised the NT in-
forms the TEs by setting the A bit.

G.4 ISDN data link layer

The data link layer uses a protocol known as the link access procedure for the D-channel
(LAPD). Figure G.7 shows the frame format. The unique bit sequence 01111110 identifies
the start and end of the frame. This bit pattern cannot occur in the rest of the frame due to
zero bit-stuffing.
 The address field contains information on the type of data contained in the frame (the
service access point identifier) and the physical address of the ISDN device (the terminal
endpoint identifier). The control field contains a supervisory, an unnumbered or an informa-
tion frame. The frame check sequence provides error detection information.

Network
data

Frame check
sequence

Control
field

Address
field01111110 01111110

Start
delimiter

End
delimiter

Service access
point identifer (SAPI) C/R EA0 Terminal endpoint

identifier (TEI) EA1

Figure G.7 D-channel frame structure

G.4.1 Address field

The data link address only contains addressing information to connect the TE to the NT and
does not have network addresses. Figure G.7 shows the address field format. The SAPI iden-
tifies the type of ISDN service. For example, a frame from a telephone would be identified as
such, and only telephones would read the frame.
 All TEs connect to a single multiplexed bus, thus each has a unique data link address,
known as a terminal endpoint identifier (TEI). The user or the network sets this; the ranges of
available addresses are:

0–63 non-automatic assignment TEIs
64–126 automatic assignment TEIs
127 global TEI

ISDN 539

The non-automatic assignment involves the user setting the address of each of the devices
connected to the network. When a device transmits data it inserts its own TEI address and
only receives data which has its TEI address. In most cases devices should not have the same
TEI address, as this would cause all devices with the same TEI address, and the SAPI, to re-
ceive the same data (although, in some cases, this may be a requirement).
 The network allocates addresses to devices requiring automatic assignment before they
can communicate with any other devices. The global TEI address is used to broadcast mes-
sages to all connected devices. A typical example is when a telephone call is incoming to a
group on a shared line where all the telephones would ring until one was answered.
 The C/R bit is the command/response bit and EA0/EA1 are extended address field bits.

G.4.2 Bit stuffing

With zero bit stuffing the transmitter inserts a zero into the bitstream when transmitting five
consecutive 1s. When the receiver receives five consecutive 1s it deletes the next bit if it is a
zero. This stops the unique 01111110 sequence occurring within the frame. For example if
the bits to be transmitted are

101000101011111100001010001010000111110101010

then with the start and end delimiter this would be

0111111010100010101111110000101000101000011111010101001111110

It can be seen from this bitstream that the stream to be transmitted contains the delimiter
within the frame. This zero bit insertion is applied to give

011111101010001010111110100001010001010000111110010101001111110

Notice that the transmitter has inserted a zero when five consecutive 1s occur. Thus the bit
pattern 01111110 cannot occur anywhere in the bitstream. When the receiver receives five
consecutive 1s it deletes the next bit if it is a zero. If it is a 1 then it is a valid delimiter. In the
example the received stream will be

0111111010100010101111110000101000101000011111010101001111110

G.4.3 Control field

ISDN uses a 16-bit control field for information and supervisory frames and an 8-bit field for
unnumbered frames, as illustrated in Figure G.8. Information frames contain sequenced data.
The format is 0SSSSSSSXRRRRRRR, where SSSSSSS is the send sequence number and
RRRRRRR is the frame sequence number that the sender expects to receive next (X is the
poll/final bit). As the extended mode uses a 7-bit sequence field then information frames are
numbered from 0 to 127.
 Supervisory frames contain flow control data. Table G.3 lists the supervisory frame types
and the control field bit settings. The RRRRRRR value represent the 7-bit receive sequence
number.

540 Computer busses

Information frame

Supervisory frame

Unnumbered frame

Address Control Info FCS01111110 01111110

8/16 bits

P/F N(R)0 N(S)

1

1

0 S 0 0 0 0 P/F N(R)

1 M P/F M

M – modifier function bits
S – supervisory function bits

Figure G.8 ISDN control field

Table G.3 Supervisory frame types and control field settings

Type Control field setting
Receiver ready (RR) 10000000PRRRRRRR
Receiver not ready (RNR) 10100000PRRRRRRR
Reject (REJ) 10010000PRRRRRRR

Unnumbered frames set up and clear connections between a node and the network. Table G.4
lists the unnumbered frame commands and Table G.5 lists the unnumbered frame responses.

Table G.4 Unnumbered frame commands and control field settings

Type Control field setting
Set asynchronous balance mode extended (SABME) 1111P110
Unnumbered information (UI) 1100F000
Disconnect mode (DISC) 1100P010

Table G.5 Unnumbered frame responses and control field settings

Type Control field setting
Disconnect mode (DM) 1111P110
Unnumbered acknowledgment (UA) 1100F000
Frame reject (FRMR) 1110P001

 In ISDN all connected nodes and the network connection can send commands and re-
ceive responses. Figure G.9 shows a sample connection of an incoming call to an ISDN node
(address TEI_1). The SABME mode is set up initially using the SABME command
(U[SABME,TEI_1,P=1]), followed by an acknowledgement from the ISDN node
(U[UA,TEI_1,F=1]). At any time, either the network or the node can disconnect the con-
nection. In this case the ISDN node disconnects the connection with the command
U[DISC,TEI_1,P=1]. The network connection acknowledges this with an unnumbered ac-
knowledgement (U[UA,TEI_1,F=1]).

ISDN 541

U[SABME,TEI_1,P=1]

U[UA,TE
I_1,F=1

]

U[DISC,
TEI_1,P

=1]

U[UA,TEI_1,F=1]

Network
connection ISDN node

Data flow

TEI_1

Incoming
call

Figure G.9 Example connection between a primary/secondary

G.4.4 D-channel contention

The D-channel contention protocol ensures that only one terminal can transmit its data at a
time. This happens because the start and the end of the D-channel bits have the bitstream
01111110, as shown below:

1111101111110XXXXXXXXX...XXXXXXXX011111101111

When idle, each TE floats to a high-impedance state, which is taken as a binary 1. To trans-
mit, a TE counts the number of 1s in the D-channel. A 0 resets this count. After a predeter-
mined number, greater than a predetermined number of consecutive 1s, the TE transmits its
data and monitors the return from the NT. If it does not receive the correct D-channel bit-
stream returned through the E bits then a collision has occurred. When a TE detects a colli-
sion it immediately stops transmitting and monitors the line.
 When a TE has finished transmitting data it increases its count value for the number of
consecutive 1s by 1. This gives other TEs an opportunity to transmit their data.

G.4.5 Frame check sequence

The frame check sequence (FCS) field contains an error detection code based on cyclic re-
dundancy check (CRC) polynomials. It uses the CCITT V.41 polynomial, which is

151216)(xxxxxG +++= .

G.5 ISDN network layer

The D-channel carriers network layer information within the LAPD frame. This information
establishes and controls a connection. The LAPD frames contain no true data as this is car-
ried in the B-channel. Its function is to set up and manage calls and to provide flow control
between connections over the network.
 Figure G.10 shows the format of the layer-three signalling message frame. The first byte
is the protocol discriminator. In the future, this byte will define different communications

542 Computer busses

protocols. At present it is normally set to 0001000. After the second byte the call reference
length value is defined. This is used to identify particular calls with a reference number. The
length of the call reference value is defined within the second byte. As it contains a 4-bit
value, up to 16 bytes can be contained in the call reference value field. The next byte gives
the message type and this type defines the information contained in the proceeding field.

Protocol discriminator

0 0 0 0 Call reference
value length

0 Mesage type

Other information
(as required)

Call reference value

Figure G.10 Signalling message structure

 There are four main types of message: call establish, call information, call clearing and
miscellaneous messages. Table G.6 outlines the main messages. Figure G.11 shows an ex-
ample connection procedure. The initial message sent is the setup. This may contain some of
the following:

• Channel identification – identifies a channel with an ISDN interface.
• Calling party number.
• Calling party subaddress.
• Called party number.
• Called party subnumber.
• Extra data (2–131 bytes).

After the calling TE has sent the setup message, the network then returns the setup ACK
message. If there is insufficient information in the setup message then other information
needs to flow between the called TE and the network. After this the network sends back a
call proceeding message and it also sends a setup message to the called TE. When the called
TE detects its TEI address and SAPI, it sends back an alerting message. This informs the net-
work that the node is alerting the user to answer the call. When it is answered, the called TE
sends a connect message to the network. The network then acknowledges this with a connect
ACK message, at the same time it sends a connect message to the calling TE. The calling TE
then acknowledges this with a connect ACK. The connection is then established between the
two nodes and data can be transferred.
 To disconnect the connection the disconnect, release and release complete messages are
used.

ISDN 543

Table G.6 ISDN network messages

Call establish Information messages Call clearing
ALERTING

RESUME DISCONNECT

CALL PROCEEDING RESUME ACKNOWLEDGE

RELEASE

CONNECT RESUME REJECT

RELEASE COMPLETE

CONNECT
ACKNOWLEDGE

SUSPEND RESTART

PROGRESS SUSPEND ACKNOWLEDGE

RESTART ACKNOWLEDGE

SETUP

SUSPEND REJECT

SETUP ACKNOWLEDGE

USER INFORMATION

SETUP ACK.

SETUP

INFORMATION

CALL PROCEED SETUP

ALERTING

CONNECT

CONNECT ACK.CONNECT

CONNECT ACK.

RELEASE

DISCONNECT

RELEASE

DISCONNECT

RELEASE
COMPLETE

RELEASE
COMPLETE

Data flow

Calling

TE

Network Called

TE

Figure G.11 Call establishment and clearing

G.6 Speech sampling

With telephone-quality speech the signal bandwidth is normally limited to 4 kHz, thus it is
sampled at 8 kHz. If each sample is coded with eight bits then the basic bit rate will be:

544 Computer busses

 Digitised speech signal rate = 8 × 8 kbps = 64 kbps

Table G.7 outlines the main compression techniques for speech. The G.722 standard allows
the best-quality signal, as the maximum speech frequency is 7 kHz rather than 4 kHz in nor-
mal coding systems; and has the equivalent of 14 coding bits. The G.728 allows extremely
low bit rates (16 kbps).

Table G.7 Speech compression standards

ITU standard Technology Bit rate Description
G.711 PCM 64 kbps Standard PCM
G.721 ADPCM 32 kbps Adaptive delta PCM where each value is

coded with four bits
G.722 SB-ADPCM 48, 56 and 64 kbps Subband ADPCM allows for higher-

quality audio signals with a sampling rate
of 16 kHz

G.728 LD-CELP 16 kbps Low-delay code excited linear prediction
for low bit rates

G.7 Exercises

G.7.1 What is the function of a B-channel in ISDN:

 (a) It transmits data (b) It sends control information
 (c) It creates a network (d) It emulates a modem

G.7.2 What is the function of a D-channel in ISDN:

 (a) It transmits data (b) It sends control information
 (c) It creates a network (d) It emulates a modem

G.7.3 What is the bit rate of a single ISDN B-channel:

 (a) 16 kbps (b) 64 kbps
 (c) 128 kbps (d) 256 kbps

G.7.4 What is the bit rate of the an ISDN D-channel:

 (a) 16 kbps (b) 64 kbps
 (c) 128 kbps (d) 256 kbps

G.7.5 What is the maximum bit rate of an ISDN connection:

 (a) 16 kbps (b) 64 kbps
 (c) 128 kbps (d) 256 kbps

ISDN 545

G.7.6 Which series of CCITT (ITU-T) specify ISDN specifications:

 (a) I-series (b) X-series
 (c) T-series (d) R-series

G.7.7 What is the base bit rate for a USA PCM-TDM system:

 (a) 1.544 Mbps (b) 64 kbps
 (c) 2.048 Mbps (d) 2 Gbps

G.7.8 What is the base bit rate for a UK PCM-TDM system:

 (a) 1.544 Mbps (b) 64 kbps
 (c) 2.048 Mbps (d) 2 Gbps

G.7.9 How many ISDN channels does the H11 (derived from USA PCM-TDM system)

support:

 (a) 20 (b) 24
 (c) 30 (d) 32

G.7.10 How many ISDN channels does the H12 (derived from UK PCM-TDM system)

support:

 (a) 20 (b) 24
 (c) 30 (d) 32

G.7.11 How does ISDN AMI (alternative mark inversion) operate:

 (a) Every bit that is sent is inverted
 (b) Every one that is sent has an alternating voltage level, but the zeros are sent

as a zero voltage level
 (c) Every zero that is sent has an alternating voltage level, but the ones are sent

as a zero voltage level
 (d) Ones are sent as negative voltages, and zeros as positive voltages

G.7.12 Why does the 01111110 bit sequence only occur at the start and end of a frame:

 (a) Bit stuffing is used whenever it appears within the data frame
 (b) It is a special code that can never occur within the data

 (c) It is coded with special voltage levels
 (d) It will hardly ever occur, so the occasional error is acceptable

G.7.13 Show why speech requires to be transmitted at 64 kbps.

G.7.14 If the bandwidth of hi-fi audio is 20 kHz and 16 bits are used to code each sample,

determine the required bit rate for single-channel transmission. Hence prove that
the bit rate required for professional hi-fi, which is sampled at 44.1 kHz is
1.4112 Mbps.

546 Computer busses

G.7.15 Using the rates determined in Question G.7.14, shows that the basic rate for a CD-

ROM drive is 150 kB/s.

G.7.16 Explain the format of the ISDN frame.

G.7.17 Suppose that an ISDN frame has 48 bits and takes 250 µs to transmit. Show that

the bit rate on each D-channel is 16 kbps and that the bit rate of the B-channel is
64 kbps.

G.7.18 Explain the different types of frames and show how a connection is made between

ISDN nodes.

G.7.19 Show how supervisory frames are used to control the flow of data.

G.7.20 Discuss the format of the ISDN network layer packet.

G.7.21 How does an ISDN node set up and disconnect a network connection.

Microsoft Windows

H.1 Introduction

DOS has long been the Achilles heel of the PC and has limited its development. It has also
been its strength in that it provides a common platform for all packages. DOS and Windows
3.x operated in a 16-bit mode and had limited memory accessing. Windows 3.0 provided a
great leap in PC systems as it provided an excellent graphical user interface to DOS. It suf-
fered from the fact that it still used DOS as the core operating system. Windows 95/98 and
Windows NT have finally moved away from DOS and operate as full 32-bit protected-mode
operating systems. Their main features are:

• Run both 16-bit and 32-bit application programs.
• Allow access to a large virtual memory (up to 4 GB).
• Support for pre-emptive multitasking and multithreading of Windows-based and MS-

DOS-based applications.
• Support for multiple file systems, including 32-bit installable file systems such as VFAT,

CDFS (CD-ROM) and network redirectors. These allow better performance, use of long
file names, and are an open architecture to support future growth.

• Support for 32-bit device drivers which give improved performance and intelligent mem-
ory usage.

• A 32-bit kernel which includes memory management, process scheduling and process
management.

• Enhanced robustness and clean-up when an application ends or crashes.
• Enhanced dynamic environment configuration.

The three most widely used operating systems are MS-DOS, Microsoft Windows and UNIX.
Microsoft Windows comes in many flavours; the main versions are outlined below and Table
H.1 lists some of their attributes.

• Microsoft Windows 3.x – 16-bit PC-based operating system with limited multitasking. It
runs from MS-DOS and thus still uses MS-DOS functionality and file system structure.

• Microsoft Windows 95/98 – robust 32-bit multitasking operating system (although there
are some 16-bit parts in it) which can run MS-DOS applications, Microsoft Windows 3.x
applications and 32-bit applications.

• Microsoft Windows NT Version 4 – robust 32-bit multitasking operating system with in-
tegrated networking. Networks are around NT servers and clients. As with Microsoft
Windows 95/98 it can run MS-DOS, Microsoft Windows 3.x applications and 32-bit ap-
plications.

• Windows NT Version 5/2000 – available as Workstation, Server and SMP Server (multi-
processor). It runs on Alphas, Intel x86, Intel IA32, Intel IA64 and AMD K7 (which is
similar to an Alpha).

H

548 Computer busses

Windows NT/2000 and 95/98 provide excellent network support as they can communicate
directly with many different types of networks, protocols and computer architectures. They
can create networks to make peer-to-peer connections and also connection to servers for ac-
cess to file systems and print servers.
 Windows NT/2000 Server has more security in running programs than Windows 95/98 as
programs and data are insulated from the operation of other programs. The operating system
parts of Windows NT/2000 and Windows 95/98 run at the most trusted level of privilege of
the Intel processor, which is ring zero. Application programs run at the least trusted level of
privilege, which is ring three. These programs can use either a 32-bit flat mode or any of the
memory models, such as large, medium, compact or small.
 There was a great leap in performance between the 16-bit Windows 3.x operating system
(which was built on DOS) to Windows 95/98 and Window NT. Apart from running in a dual
16-bit and 32-bit mode, they also allow for application robustness. Figure H.1 outlines the in-
ternal architecture of Windows 95/98.

Table H.1 Windows comparisons

Facility Windows 3.1 Windows 95/98 Windows NT
Pre-emptive multitasking
32-bit operating system
Long file names
TCP/IP
32-bit applications
Flat memory model
32-bit disk access
32-bit file access
Centralised configuration storage
OpenGL 3D graphics

H.2 Windows registry

On DOS-based systems, the main configuration files were AUTOEXEC.BAT,
CONFIG.SYS and INI files. INI files were a major problem in that each application program
and device driver configuration required one or more of these files to store default settings
(such as IRQ, I/O addresses, default directories, and so on). Several important INI files are:

• WIN.INI – information about the appearance of the Windows environment.
• SYSTEM.INI – system-specific information on the hardware and device driver configu-

ration of the system.

Windows 95/98/NT/2000 use a central database called the Registry, which stores user-
specific and configuration-specific information at a single location. This location could be on
the local computer or stored on a networked computer. It thus allows network managers to
standardise the configuration of networked PCs.

Microsoft Windows 549

Hardware

Device drivers

Virtual
Machine
Manager

Installable
Filesystem
Manager

Configuration
Manager

Windows 95/98
core

User interface tools (32-bit shell)

Applications

Registry

Figure H.1 Windows 95/98 architecture

 When a computer is initially upgraded from Windows 3.x to Windows 95/98 the upgrade
program reads the SYSTEM.INI file and system-specific information which it then puts into
the Registry. Many INI files are still retained on the system as many Win16-based applica-
tions use them. For example, Microsoft Word Version 6 uses the WINWORD6.INI to store
package information, such as location of filters, location of spell checker, location of gram-
mar checker, and so on. An example is

[Microsoft Word]
WPHelp=0
USER-DOT-PATH=C:\MSOFFICE\WINWORD\TEMPLATE
PICTURE-PATH=C:\MSOFFICE\WINWORD
PROGRAMDIR=C:\MSOFFICE\WINWORD
TOOLS-PATH=C:\MSOFFICE\WINWORD
STARTUP-PATH=C:\DOCS\NOTES\
INI-PATH=C:\MSOFFICE\WINWORD
DOC-PATH=C:\DOCS\NOTES\

An important role for the registry is to store hardware-specific information which can be
used by hardware detection and plug-and-play programs. The configuration manager deter-
mines the configuration of installed hardware (such as, IRQs, I/O addresses, and so on) and it
uses this information to update the registry. This allows new devices to be installed and
checked to see if they conflict with existing devices. If they are plug-and-play devices then
the system assigns hardware parameters that do not conflict with existing devices.
 The advantages of the registry over INI files include:

• No limit to size and data type – the Registry has no size restriction and can include binary

and text values (INI files are text based and are limited to 64 KB).
• Hierarchical information – the registry is hierarchically arranged, whereas INI files are

non-hierarchical and support only two levels of information.
• Standardised set-up – the registry provides a standardized method of setting up programs,

whereas many INI files contain a whole host of switches and entries, and are complicated
to configure.

550 Computer busses

• Support for user-specific information – the registry allows the storage of user-specific in-
formation, using the Hkey_Users key. This allows each user of a specific computer (or a
networked computer) to have their own user-specific information. INI files do not sup-
port this.

• Remote administration and system policies – the registry can be used to remotely admin-
ister and set system policies (which are stored as registry values). These can be
downloaded from a central server each time a new user logs on.

Figure H.2 shows an example of the registry in Windows 95/98.

Figure H.2 Example registry

H.3 Device drivers

In Windows 3.x, device drivers were complex entities and were, in part, static and unchang-
ing. Windows 95/98/NT now provide enhanced support for hardware devices and peripherals
including disk devices. Windows NT will be discussed in Section H.10. Windows 95/98 uses
a universal driver/mini-driver architecture that makes writing device-specific code much eas-
ier.
 The universal driver provides for most of the code for a specific class of device (such as
for printers or mice) and the mini-driver is a relatively small and simple driver that provides
additional information for the hardware.
 The actual system interface to the hardware (or some software parts) is through a virtual
device driver (VxD), which is a 32-bit, protected-mode driver. These keep track of the state
of the device for each application and ensure that the device is in the correct state whenever
an application continues. This allows for multitasking programming and also for multi-
access for a single device. VxD files also support hardware emulation, such as in the case of
the MS-DOS device driver, where any calls to the PC hardware can be handled by the device
driver and not by the physical hardware. Typical VxD drivers are:

EISA.VXD EISA bus driver ISAPNP.VXD ISA plug-and-play
SERIAL.VXD Serial port LPTENUM.VXD Parallel port
MSMOUSE.VXD MS Mouse PARALINK.VXD Parallel port
PCI.VXD PCI QC117.VXD Tape backup
IRCOMM.VXD Infra-red comms UNIMODEM.VXD Modem
WSOCK.VXD WinSock LPT.VXD LPT

Microsoft Windows 551

VMM32.VXD Memory management JAVASUP.VXD JavaScript
PPPMAC.VXD PPP connection NDIS.VXD NDIS
NDIS2SUP.VXD NDIS 2.0 NETBEUI.VXD Net BEUI
NWREDIR.VXD NetWare Redirect VNETBIOS.VXD Net BIOS
WSIPX.VXD IPX WSHTCP.VXD TCP

In Windows 95/98, VxD files are loaded dynamically and are thus only loaded when they are
required, whereas in Windows 3.x they were loaded statically (and thus took up a lot of
memory). In Window 3.x these virtual device drivers have a 386 file extension.

Hardware

Mini-driver Mini-driver

Universal driver

Operating system

Figure H.3 Device drivers

H.4 Configuration manager

A major drawback with Windows 3.x and DOS is that they did not automate PC configura-
tion. For this purpose, Windows 95/98 has a configuration manager. The left-hand side of
Figure H.4 shows how it integrates into the system and the right side of Figure H.4 shows an
example device connection of a PC. Its aims are:

• Determine, with the aid of several subcomponents, each bus and each device on the sys-

tem, and their configuration settings. This is used to ensure that each device has unique
IRQs and I/O port addresses and that there are no conflicts with other devices. With plug-
and-play, devices can be configured so that they do not conflict with other devices.

• Monitor the PC for any changes to the number of devices connected and also the device
types. If it detects any changes then it manages the reconfiguration of the devices.

The operation is as follows:

1. The configuration manager communicates with each of the bus enumerators and asks

them to identify all the devices on the buses and their respective resource requirements. A
bus enumerator is a driver that is responsible for creating a hardware tree, which is a hi-
erarchical representation of all the buses and devices on a computer. Figure H.5 shows an
example tree.

552 Computer busses

2. The bus enumerator locates and gathers information from either the device drivers or the
BIOS services for that particular device type. For example, the CD-ROM bus enumerator
calls the CD-ROM drivers to gather information.

3. Each of the drivers is then loaded and they wait for the configuration manager to assign
their specific resources (such as IRQs, I/O addresses, and so on).

4. The configuration manager calls on resource arbitrators to allocate resources for each de-
vice.

5. Resource arbitrators identify any devices which are conflicting and tries to resolve them.
6. The configuration manager informs all device drivers of their device configuration. This

process is repeated when the BIOS or one of the other bus enumerators informs the
configuration manager about a system configuration change.

Registry

Configuration
Manager

Enumerator

Device Device

Device
driverArbitrator

Bus

Figure H.4 Configuration manager and example connection of devices

H.5 Virtual machine manager (VMM)

The perfect environment for a program is to run on a stand-alone, dedicated computer, which
does not have any interference from any other programs and can have access to any device
when it wants. This is the concept of the virtual machine. In Windows 95/98 the virtual ma-
chine manager (VMM) provides each application with the system resources when it needs
them. It creates and maintains the virtual machine environments in which applications and
system processes run (in Windows 3.x the VMM was called WIN386.EXE).
 The VMM is responsible for three areas:

• Process scheduling – responsible for scheduling processes. It allows for multiple applica-

tions to run concurrently and also for providing system resources to the applications and
other processes that run. This allows multiple applications and other processes to run
concurrently, using either co-operative multitasking or pre-emptive multitasking.

Microsoft Windows 553

• Memory paging – Windows 95/98/NT uses a demand-paged virtual memory system,
which is based on a flat, linear address space accessed using 32-bit addresses. The system
allocates each process a unique virtual address space of 4 GB. The upper 2 GB is shared,
while the lower 2 GB is private to the application. This virtual address space is divided
into equal blocks (or pages).

• MS-DOS Mode support – provides support for MS-DOS-based applications which must
have exclusive access to the hardware. When an MS-DOS-based application runs in this
mode then no other applications or processes are allowed to compete for system re-
sources. The application thus has sole access to the resources, as illustrated in Figure H.5.

Virtual
Machine
Manager

Virtual
Machine
Manager

Program 1

- Process scheduling
- Memory paging
- MS-DOS support

Program 3

Program 2

Programs have access to
all the resources of the computer,
as if they were the only program running

Creating virtual
memory (up to 2/4GB) DOS

program
DOS

program

DOS
emulator

Figure H.5 Virtual Machine Manager

Windows 95/98 has a single VMM (named System VMM) in which all system processes
run. Win32-based and Win16-based applications run within this VMM. Each MS-DOS-
based application runs in its own VM.

H.5.1 Process scheduling and multitasking

This allows multiple applications and other processes to run concurrently, using either co-
operative multitasking or pre-emptive multitasking. In Windows 3.x, applications ran using
co-operative multitasking. This method requires that applications check the message queue
periodically and give up control of the system to other applications. Unfortunately, applica-
tions that do not check the message queue at frequent intervals can effectively ‘hog’ the
processor and prevent other applications from running. As this does not provide effective
multi-processing, Windows 95/98/NT uses pre-emptive multitasking for Win32-based appli-
cations (but also supports co-operative multitasking for computability reasons). Thus, the op-
erating system takes direct control away from the application tasks.
 Win16 programs need to yield to other tasks in order to multitask properly, whereas
Win32-based programs do not need to yield to share resources. This is because Win32-based
applications (called processes) use multithreading, which provides for multi-processing. A
thread in a program is a unit of code that can get a time slice from the operating system to

554 Computer busses

run concurrently with other code units. Each process consists of one or more execution
threads that identify the code path flow as it is run on the operating system. A Win32-based
application can have multiple threads for a given process. This enhances the running of an
application by improving throughput and responsiveness. It allows processes for smooth
background processing.

H.5.2 Memory paging

Windows 95/98/NT use a demand-paged virtual memory system, which is based on a flat,
linear address space using 32-bit addresses. The system allocates each process a unique vir-
tual address space of 4 GB (which should be enough for most applications). The upper 2 GB
is shared, while the lower 2 GB is private to the application. This virtual address space di-
vides into equal blocks (or pages), as illustrated in Figure H.6.

System
addressable

memory

Application
addressable

memory

0GB

2GB

4GB

System
addressable

memory

Application
addressable

memory

0GB

2GB

4GB

Application 1: Page 1

Application 2: Page 1

Application 1: Page 5

Application 1: Page 6

Application 2: Page 2

Free page: Page 1

Application 1: Page 4

Application 2: Page 3

Free page: Page 2

Application 2: Page 4

Application 1: Page 3

Free page: Page 4

Free page: Page 5

Application 1

Application 2

Virtual
mapping to
physical
memory

Physical memory

Figure H.6 Memory paging

 Demand paging is a method by which code and data are moved in pages from physical
memory to a temporary paging file on disk. When required, information is then paged back
into physical memory.
 The functions of the memory pager are:

• To map virtual addresses from the process’s address space to physical pages in memory.

This then hides the physical organisation of memory from the process’s threads and en-
sures that the thread can access the required memory when required. It also stops other
processes from writing to another memory location.

• To support a 16-bit segmented memory model for Windows 3.x and MS-DOS applica-
tions. In this addressing scheme the addresses are made from a 16-bit segment address
and a 16-bit offset address.

Microsoft Windows 555

Windows 95/98/NT use the full addressing capabilities of the 80x86/Pentium processors by
supporting a flat, linear memory model for 32-bit operating system functionality and Win32-
based applications. This linear addressing model simplifies the development process for ap-
plication vendors, and removes the performance penalties of a segmented memory architec-
ture.

H.6 Multiple file systems

Windows 95/98/NT supports a layered file system architecture that directly supports multiple
file systems (such as FAT and CDFS). Windows 95/98/NT have great performance im-
provements over Windows 3.x, for example:

• Support for 32-bit protected-mode code when reading and writing information to and

from a file system.
• Support for 32-bit dynamically allocated cache size.
• Support for an open file system architecture to enhance future system support.

Figure H.7 shows the file system architecture used by Windows 95/98. It has the following
components:

• IFS (installable file system) manager. This is the arbiter for the access to different file

system components. On MS-DOS and Windows 3.x it was provided by interrupt 21h. Un-
fortunately, some add-on components did not run correctly and interfered with other in-
stalled drivers. It also did not directly support multiple network redirections (the IFS
manager can have an unlimited number of 32-bit redirectors).

• File system drivers. These provide support file systems, such as FAT-based disk de-
vices, CD-ROM file systems and redirected network devices. They are ring 0 compo-
nents, whereas Windows 3.x supported them through MS-DOS. The two enhanced file
systems are:
• 32-bit VFAT – the ‘legacy’ 16-bit FAT file system suffers from many problems, such

as the 8.3 file format. The 32-bit VFAT format is an enhanced form which works di-
rectly in the protected mode, and thus provides smooth multitasking as it is re-entrant
and multithreaded (a non re-entrant system does not allow an interrupt within an inter-
rupt). It uses the VFAT.VXD driver and uses 32-bit code for all file accesses. Another
advantage is that it provides for real-mode disk caching (VCACHE), where cache
memory is automatically allocated or deallocated when it is required (in Windows 3.x
this was provided by the SMARTDRV.EXE program).

• 32-bit CDFS – the 32-bit, protected-mode CDFS format (as defined in the ISO 9660
standard) gives improved CD-ROM access and support for a dynamic cache (in Win-
dows 3.x the MSCDEX driver provided to access CD-ROMs).

• Block I/O subsystem. This is responsible for the actual physical access to the disk drive.

Its components are:

• Input/Output Supervisor (IOS) – this component provides for an interface between the

556 Computer busses

file systems and drivers. It is responsible for the queuing of file service requests and
for routing the requests to the appropriate file system driver.

• Port driver – this component is a 32-bit, protected-mode driver that communicates
with a specific IDE disk device. It implements the functionality of the SCSI manager
and miniport driver.

• SCSI layer – this component is a 32-bit, protected-mode, universal driver model ar-
chitecture for communicating with SCSI devices. It provides all the high-level SCSI
functionality, and then uses a miniport driver to handle device-specific I/O calls.

• Miniport driver– in Windows 95/98 these miniport driver models are used to write
device-specific code. The Windows 95/98 miniport driver is a 32-bit protected-mode
code, and is binary-compatible with Windows NT miniport drivers.

I/O Supervisor

Other layers

Port driver

SCSI Layer

Miniport driver

VFAT CDFS File System
Component

Block I/O Subsystem

Installable File System Manager

Figure H.7 File system architecture

In Windows 95/98, the I/O Supervisor (IOS) is a VxD that controls and manages all pro-
tected-mode file system and block device drivers. It loads and initialises protected-mode de-
vice drivers and provides services needed for I/O operations. In Windows 3.x the I/O Super-
visor was *BLOCKDEV. Other responsibilities of the IOS include:

• Registering drivers.
• Routing and queuing I/O requests, and sending asynchronous notifications to drivers as

needed.
• Providing services that drivers can use to allocate memory and complete I/O requests.

On Windows 95/98, the IOS stores port drivers, miniport and VxD drivers in the
SYSTEM\IOSUBSYS directory. The PDR file extension identifies the port drivers, MPD
identifies miniport drivers and VxD (or 386) identifies the VxD drivers. Other clients or vir-
tual device drivers should be stored in other directories and explicitly loaded using device=
entries in SYSTEM.INI. A sample listing of the IOSUBSYS directory is

Directory of C:\WINDOWS\SYSTEM\IOSUBSYS
AIC78XX.MPD AMSINT.MPD APIX.VXD ATAPCHNG.VXD
BIGMEM.DRV CDFS.VXD CDTSD.VXD CDVSD.VXD
DISKTSD.VXD DISKVSD.VXD DRVSPACX.VXD ESDI_506.PDR
HSFLOP.PDR NCRC710.MPD NCRC810.MPD NECATAPI.VXD
RMM.PDR SCSI1HLP.VXD SCSIPORT.PDR VOLTRACK.VXD

Microsoft Windows 557

H.7 Core system components

The core of Windows 95/98 has three components: user, kernel, and GDI (graphical device
interface), each of which has a pair of DLLs (one for 32-bit accesses; the other for 16-bit ac-
cesses). The 16-bit DLLs (dynamic link libraries) allow for Win16 and MS-DOS
computability.
 Figure H.8 shows that the lowest-level services provided by the Windows 95/98 kernel
are implemented as 32-bit code. In Windows 95/98 the names of the files are GDI32.DLL,
KERNEL32.DLL and USER32.DLL; these are contained in the \WINDOWS\SYSTEM di-
rectory.

User

GDI

Windows 95/98 core

Kernel

Figure H.8 Core components

H.7.1 User

The user component provides input and output to and from the user interface. Input is from
the keyboard, mouse, and any other input device and the output is to the user interface. It
also manages interaction with the sound driver, timer, and communications ports.
 Win32 applications and Windows 95/98 use an asynchronous input model for system in-
put. With this, devices have an associated interrupt handler (for example, the keyboard inter-
rupts with IRQ1) which converts the interrupt into a message. This message is then sent to a
raw input thread area, which then passes the message to the appropriate message queue. Each
Win32 application can have its own message queue, whereas all Win16 applications share a
common message queue.

H.7.2 Kernel
The kernel provides for core operating system components including file I/O services, virtual
memory management, task scheduling and exception handling, such as:

• File I/O services.
• Exceptions – these are events that occur as a program runs and calls additional software

which is outside of the normal flow of control. For example, if an application generates
an exception, the Kernel is able to communicate that exception to the application to per-
form the necessary functions to resolve the problem. A typical exception is caused by a
divide-by-zero error in a mathematical calculation, an exception routine can be designed
so that it handles the error and does not crash the program.

• Virtual memory management – this resolves import references and supports demand pag-
ing for the application.

558 Computer busses

• Task scheduling – the Kernel schedules and runs threads of each process associated with
an application.

• Provides services to both 16-bit and 32-bit applications by using a thunking process
which is the translation process between 16-bit and 32-bit formats. It is typically used by
a Win16 program to communicate with the 32-bit operating system core.

Virtual memory allows processes to allocate more memory than can be physically allocated.
The operating system allocates each process a unique virtual address space, which is a set of
addresses available for the process’s threads. This virtual address space appears to be 4 GB in
size, where 2 GB are reserved for program storage and 2 GB for system storage.
 Figure H.9 illustrates where the system components and applications reside in virtual
memory. Its contents are:

• 3 GB–4 GB – all Ring 0 components.
• 2 GB–3 GB – operating system core components and shared DLLs. These are available to

all applications.
• 4 MB–2 GB – Win32-based applications, where each has its own address space. This

memory is protected so that other programs cannot corrupt or otherwise hinder the appli-
cation.

• 0–640 KB – real-mode device drivers and TSRs.

Ring 0
components

Win32-based
applications

4MB

2GB

4GB

Core system
components, shared

DLLs, Win16-
based applications

3GB

Real-mode device
drivers and TSRs

640KB

SHARED

PRIVATE

Figure H.9 System memory usage

H.7.3 GDI
The graphical device interface (GDI) is the graphical system that:

• Manages information that appears on the screen.
• Draws graphic primitives and manipulates bitmaps.
• Interacts with device-independent graphics drivers, such as display and printer drivers.

The graphics subsystem provides input and output graphics support. Windows uses a 32-bit

Microsoft Windows 559

graphics engine (known as DIB, device-independent bitmaps) which:

• Directly controls the graphics output on the screen.
• Provides a set of optimized generic drawing functions for monochrome, 16-colour, 16-bit

high colour, 256-colour, and 24-bit true colour graphic devices. It also supports Bézier
curves and paths.

• Support for image Colour Matching for better color matching between display and colour
output devices.

The Windows graphics subsystem is included as a universal driver with a 32-bit mini-driver.
The mini-driver provides only for the hardware-specific instructions.
 The 32-bit Windows 95/98 printing subsystem has several enhancements over Windows
3.x. These include:

• They use a background thread processing to allow for smooth background printing.
• Smooth printing where the operating system only passes data to the printer when it is

ready to receive more information.
• They send enhanced metafile (EMF) format files, rather than raw printer data. This EMF

information is interpreted in the background and the results are then sent to the printer.
• Support for deferred printing, where a print job can be sent to a printer and then stored

until the printer becomes available.
• Support for bi-directional communication protocols for printers using the extended com-

munication port (ECP) printer communication standard. ECP mode allows printers to
send messages to the user or to application programs. Typical messages are: ‘Paper Jam’,
‘Out-of-paper’, ‘Out-of-Memory’, ‘Toner Low’, and so on.

• Plug-and-play.

H.8 Multitasking and threading

Multitasking involves running several tasks at the same time. It normally involves running a
process for a given amount of time, before releasing it and allowing another process a given
amount of time. There are two forms of multitasking:

• Pre-emptive multitasking – this involves the operating system controlling how long a

process stays on the processor. This allows for smooth multitasking and is used in Win-
dows NT/95/98 32-bit programs.

• Co-operative multitasking – this relies on a process giving up the processor. It is used
with Windows 3.x programs and suffers from processor hogging, where a process can
stay on a processor and the operating system cannot kick it off.

The logical extension to multitasking programs is to split a program into a number a parts
(threads) and run each of these on the multitasking system (multithreading). A program
which is running more than one thread at a time is known as a multithreaded program. Multi-
threaded programs have many advantages over non-multithreaded programs, including:

560 Computer busses

• They make better use of the processor, where different threads can be run when one or
more threads are waiting for data. For example, a thread could be waiting for keyboard
input, while another thread could be reading data from the disk.

• They are easier to test, as each thread can be tested independently of other threads.
• They can use standard threads, which are optimised for given hardware.

They also have disadvantages, including:

• The program has to be planned properly so that threads know on which threads they de-

pend.
• A thread may wait indefinitely for another thread which has crashed or terminated.

The main difference between multiple processes and multiple threads is that each process has
independent variables and data, while multiple threads share data from the main program.

H.8.1 Scheduling

Scheduling involves determining which thread should be run on the process at a given time.
This element is named a time slice, and its actual value depends on the system configuration.
 Each thread currently running has a base priority. The programmer who created the pro-
gram sets this base priority level of the thread. This value defines how the thread is executed
in relation to other system threads. The thread with the highest priority gets use of the proc-
essor.
 NT and 95/98 have 32 priority levels. The lowest priority is 0 and the highest is 31. A
scheduler can change a threads base priority by increasing or decreasing it by two levels.
This changes the threads priority.
 The scheduler is made up from two main parts:

• Primary scheduler. This scheduler determines the priority numbers of the threads

which are currently running. It then compares their priority and assigns resources to
them depending on their priority. Threads with the highest priority are executed for the
current time slice. When two or more threads have the same priority then the threads are
put on a stack. One thread is run and then put to the bottom of the stack, then the next is
run and it is put to the bottom, and so on. This continues until all threads with the same
priority have been run for a given time slice.

• Secondary scheduler. The primary scheduler runs threads with the highest priority,
whereas the secondary scheduler is responsible for increasing the priority of non-
executing threads (which are all other threads apart from the currently executed thread).
It is thus important for giving low priority threads a chance to run on the operating sys-
tem. Threads which are given a higher or lower priority are:

• A thread which is waiting for user input has its priority increased.
• A thread that has completed a voluntary wait also has its priority increased.
• Threads with a computation-bound thread get their priorities reduced. This prevents

the blocking of I/O operations.

Apart from these, all threads get a periodic increase. This prevents lower-priority threads
hogging shared resources that are required by higher-priority threads.

Microsoft Windows 561

H.8.2 Priority inheritance boosting

One problem that can occur is when a low priority thread accesses resources which are re-
quired by a higher priority thread. For example, an RS-232 program could be loading data
into memory while another program requires to access the memory. One method which can
be used to overcome this is priority inheritance boosting. In this case, low priority threads
gets a boost so that they can quickly release resources. For example, suppose a system has
three threads: Thread A, Thread B and Thread C. If Thread A has the highest priority and it
requires a resource from Thread C then Thread C gets a boost in its priority. Thread A re-
mains blocked until Thread C releases the required resource. When it does release it then
Thread C goes back to its normal priority and Thread A then gets access to the resource.

H.9 Plug-and-play process

Plug-and-play allows the operating system to configure hardware as required. On system
start-up, the configuration manager scans the system hardware. When it finds a new plug-
and-play device it does the following:

• Sets the device into configuration mode – this is achieved by using three I/O ports. Some

data (the initiation key) is written to one of the ports and enables the plug-and-play logic.
• Isolate and identify each device – each device is isolated, one at a time. The method used

is to assign each device a unique number, which is a unique handle for the device. This
number is made from a device ID and a serial number.

• Determine device specifications – each device sends its functionality to the operating
system, such as how many joysticks it supports, its audio functions, its networking
modes, and so on.

• Allocate resources – the operating system then allocates resources to the device depend-
ing on its functionality and the plug-and-play device is informed of the allocated re-
sources (such as IRQs, I/O addresses, DMA channels, and so on). It also checks for con-
flicts on these resources.

• Activate device – when the above have been completed the device is enabled. Only the
initiation key can re-initialise the device.

H.10 Windows NT architecture

Windows NT uses two modes:

• User mode – this is a lower privileged mode than kernel mode. It has no direct access to

the hardware or to memory. It interfaces to the operating system through well-defined
API (application program interface) calls.

• Kernel mode – this is a privileged mode of operation and allows all code direct access to
the hardware and memory, including memory allocated to user mode processes. Kernel
mode processes also have a higher priority over user mode processes.

562 Computer busses

Figure H.10 shows an outline of the architecture of NT. It can be seen that only the kernel
mode has access to the hardware. This kernel includes executive services which include
managers (for I/O, interprocess communications, and so on) and device drivers (which con-
trol the hardware). Its parts include:

• Microkernel – controls basic operating system services, such as interrupt handling and

scheduling.
• HAL (hardware abstraction layer) – this is a library of hardware-specific programs

which give a standard interface between the hardware and software. This can either be
Microsoft written or manufacturer provided. They have the advantage of allowing for
transportability of programs across different hardware platforms.

• Win32 window manager – supports Win32, MS-DOS and Windows 3.x applications.

Hardware

Device
driver

HAL (Hardware abstraction layer)

Microkernel

I/O
manager

Object
manager

Process
manager

Local
procedure

call
facility

Virtual
memory
manager

Win32
window
manager

Graphic
device
driver

Executive Services

NT Executive

Application

User mode
Kernel mode

Figure H.10 NT architecture

H.10.1 MS-DOS support

Windows NT supports MS-DOS-based applications with an NT Virtual DOS Machine
(NTVDM), where each MS-DOS application has its own NTVDM. The NTVDM is started
by the application Ntvdm.exe and when this has started the application communicates with
two system files Ntio.sys (equivalent to IO.SYS) and Ntdos.sys (equivalent to
MSDOS.SYS). Note that the AUTOEXEC.BAT and CONFIG.SYS files have also been re-
placed by Autoexec.nt and Config.nt (which are normally located in \WINNT\System32).
 Multiple NTVDMs have the advantage of being reliable because if one NTVDM fails
then it does not affect any others. It also allows MS-DOS-based applications to be multi-
tasked. Unfortunately, each NTVDM needs at least 1 MB of physical memory.
 Some MS-DOS applications require direct access to the hardware. NT supports this by

Microsoft Windows 563

providing virtual device drivers (VDDs). These detect a call to hardware and communicate
with the NT 32-bit device driver.
 Windows NT communicates with hardware through device drivers. These drivers have a
.sys file extension. An example listing of these is

Directory of C:\WINNT\system32\drivers
afd.sys atapi.sys atdisk.sys beep.sys
cdaudio.sys cdfs.sys cdrom.sys changer.sys
cirrus.sys disk.sys diskdump.sys diskperf.sys
fastfat.sys floppy.sys ftdisk.sys hpscan16.sys
i8042prt.sys kbdclass.sys ksecdd.sys modem.sys
mouclass.sys msfs.sys mup.sys ndis.sys
netdtect.sys npfs.sys ntfs.sys null.sys
parallel.sys parport.sys parvdm.sys pcmcia.sys
scsiport.sys scsiprnt.sys scsiscan.sys serial.sys
sfloppy.sys streams.sys tape.sys tdi.sys
vga.sys videoprt.sys

With this, virtual memory applications can have access to the full available memory but NT
then maps this to a private memory range (called a virtual memory space). It maps physical
memory to virtual memory in 4 KB blocks (called pages). This was previously illustrated in
Figure H.6. The driver used to perform the page file access is Pagefile.sys (which is normally
found in the top-level directory).
 Windows NT has 32 levels of priority (0 to 31). Levels 0 to 15 are used for dynamic ap-
plications (such as non-critical operations) and 16 to 31 are used for real-time applications
(such as Kernel operations). NT provides a virtual memory by paging file(s) onto the hard
disk. Priority levels 0 to 15 can be paged, but levels 16 to 31 cannot.
 A summary of the system32 directory is shown below. The wowdeb.exe and wowexec.exe
files allow Windows 3.x programs to run in a 32-bit environment.

Directory of C:\winnt\system32
ansi.sys append.exe at.exe atsvc.exe
attrib.exe autoexec.nt backup.exe bootok.exe
bootvrfy.exe cacls.exe chcp.com chkdsk.exe
clipsrv.exe comm.drv command.com comp.exe
compact.exe config.nt control.exe convert.exe
country.sys csrss.exe dcomcnfg.exe ddeshare.exe
ddhelp.exe ebug.exe diskcomp.com diskcopy.com
diskperf.exe doskey.exe dosx.exe DRIVERS
edit.com exe2bin.exe expand.exe fastopen.exe
fc.exe find.exe findstr.exe finger.exe
fontview.exe forcedos.exe format.com ftp.exe
gdi.exe graftabl.com graphics.com grpconv.exe
help.exe himem.sys inetins.exe internat.exe
kb16.com keyb.com keyboard.drv keyboard.sys
krnl386.exe label.exe lights.exe lodctr.exe
mem.exe mode.com more.com mpnotify.exe
mscdexnt.exe nddeagnt.exe nddeapir.exe net.exe
nlsfunc.exe notepad.exe ntdos.sys ntio.sys
ntvdm.exe os2ss.exe pax.exe pentnt.exe
ping.exe portuas.exe posix.exe print.exe
psxss.exe rdisk.exe recover.exe redir.exe
replace.exe restore.exe rpcss.exe rundll32.exe
runonce.exe savedump.exe setup.exe setver.exe
share.exe shmgrate.exe skeys.exe smss.exe
sort.exe SPOOL sprestrt.exe subst.exe
syncapp.exe sysedit.exe systray.exe taskman.exe

564 Computer busses

taskmgr.exe telnet.exe tree.com unlodctr.exe
ups.exe user.exe userinit.exe VIEWERS
win.com winhlp32.exe winspool.exe winver.exe
wowdeb.exe wowexec.exe

H.11 Windows 95 and Windows 98

Windows 98 was really an upgrade to Windows 95 OSR2 (which includes NetMeeting,
ScanDisk and Disk Defragmenter) and inherits many of the programs that were released with
Windows 95 OSR2. The new features include:

• Advanced plug and play. USB devices can be added to the computer without rebooting

it.
• Automatic hardware detection.
• Enhanced power management.
• Increased WWW integration. WWW page creation, integrated email, channels, and so

on.
• Windows updates. This facility allows for a single source to update system drivers, sys-

tem files and operating system programs, such as service packs.
• System file checker. The facility checks for system files and recovers old system files. It

also checks the integrity of the operating system files and if necessary restores them or
extracts them from the installation disks.

• Maintenance wizard. This facility allows tasks to be run at given time intervals.
• Multiple monitors. The facility allows the computer to display to multiple monitors.

Different parts of the screen can be sent to the connected monitors, and thus expand the
physical size of the desktop area.

• NetShow. The facility allows for the reception of streamed multimedia from a WWW
server. It synchronises video, audio and graphics data.

• WWW TV. This facility combines broadcast TV and Internet-based content into a single
program. With an Internet connection, television program listings are included giving
lists of scheduled television shows. Broadcast TV requires a TV tuner card.

• Support for new devices. Windows 98 supports many new hardware devices, such as:
universal serial bus (USB), IEEE 1394, accelerated graphics port (AGP) and DVD.
IEEE 1394 defines a class of hardware that makes it easy to add serial devices to your
computer. The AGP is an enhanced video card interface which give enhanced support
for 3-D animation. DVD drives play software, videos and music CDs.

• Subscription. This facility allows Internet Explorer to check a WWW site for new con-
tent, at given time intervals. This new content can be automatically downloaded (or
prompted for a download).

• Channels. This facility allows content from WWW sites to be automatically down-
loaded. It is similar to subscription, but the content provider can suggest a schedule for
the subscription and it gives a rich map of the WWW site (rather than a single WWW
page).

Microsoft Windows 565

H.12 Fundamentals of Operating Systems

H.12.1 Multitasking and threading

Multitasking involves running several tasks at the same time. It normally involves running a
process for a given amount of time, before releasing it and allowing another process a given
amount of time. The two forms of multitasking are illustrated in Figure H.11 and Figure
H.13.

Processor Okay No.1, you’ve
had your turn,

get to the back of
the queue. Next!

Okay No.1, you’ve
had your turn,

get to the back of
the queue. Next! Process queue

2
3 4 5

1

Come on. My
turn soon

Come on. My
turn soon

Pre-emptive multitasking:
Processes are given some time on the processor.
This allows all the processes to have some time on
the processor, and makes for smoother and more
reliable operation

Processor Okay No.1, you’ve
had your turn,

get to the back of
the queue. Next!

Okay No.1, you’ve
had your turn,

get to the back of
the queue. Next! Process queue

2
3 4 5

1

Come on. My
turn soon

Come on. My
turn soon

Pre-emptive multitasking:
Processes are given some time on the processor.
This allows all the processes to have some time on
the processor, and makes for smoother and more
reliable operation

Processor Okay No.1, you’ve
had your turn,

get to the back of
the queue. Next!

Okay No.1, you’ve
had your turn,

get to the back of
the queue. Next! Process queue

2
3 4 5

1

Come on. My
turn soon

Come on. My
turn soon

Pre-emptive multitasking:
Processes are given some time on the processor.
This allows all the processes to have some time on
the processor, and makes for smoother and more
reliable operation

Figure H.11 Pre-emptive multitasking

Sorry. You’ll have to
wait until he’s

finished

Sorry. You’ll have to
wait until he’s

finished

6

Process queue

2 3 4 5

Processor

1

Hurry up. I’m
waiting. You’ve

been on that
processor
for ages.

Hurry up. I’m
waiting. You’ve

been on that
processor
for ages.

This isn’t
very fair!

This isn’t
very fair!

Hurray. I could
stay here forever.

Anyway, I’m
not going back to

the end of the queue.

Hurray. I could
stay here forever.

Anyway, I’m
not going back to

the end of the queue.

Co-operative multitasking:
Processes must yield from
the processor, before other processes
can run on the processor

Sorry. You’ll have to
wait until he’s

finished

Sorry. You’ll have to
wait until he’s

finished

66

Process queue

2 3 4 5

Processor

1

Processor

1

Hurry up. I’m
waiting. You’ve

been on that
processor
for ages.

Hurry up. I’m
waiting. You’ve

been on that
processor
for ages.

This isn’t
very fair!

This isn’t
very fair!

Hurray. I could
stay here forever.

Anyway, I’m
not going back to

the end of the queue.

Hurray. I could
stay here forever.

Anyway, I’m
not going back to

the end of the queue.

Co-operative multitasking:
Processes must yield from
the processor, before other processes
can run on the processor

Figure H.12 Co-operative multitasking

566 Computer busses

The two types are defined as:

• Pre-emptive multitasking. This type of multitasking involves the operating system

controlling how long a process stays on the processor. This allows for smooth multitask-
ing and is used in 32-bit Microsoft Windows programs and the UNIX operating system.

• Co-operative multitasking. This type of multitasking relies on a process giving up the
processor. It is used with Windows 3.x programs and suffers from processor hogging,
where a process can stay on a processor and the operating system cannot kick it off.

The logical extension to multitasking programs is to split a program into a number of parts
(threads) and run each of these on the multitasking system (multithreading). A program that
is running more than one thread at a time is known as a multithreaded program. Multi-
threaded programs have many advantages over non-multithreaded programs, including:

• They make better use of the processor, where different threads can be run when one or

more threads are waiting for data. For example, a thread could be waiting for keyboard
input, while another thread could be reading data from the disk.

• They are easier to test, as each thread can be tested independently of other threads.
• They can use standard threads, which are optimised for given hardware.

They also have disadvantages, including:

• The program has to be planned properly so that threads know on which other threads

they depend.
• A thread may wait indefinitely for another thread which has crashed or terminated.

The main difference between multiple processes and multiple threads is that each process has
independent variables and data, while multiple threads share data from the main program, as
illustrated in Figure H.13.

Threads

Process approach

Interlinking
of threads

Independent
threads

Threads approach

Process splits
into threads

Process

Common sharing
of data between threads

Figure H.13 Process splitting into threads

Microsoft Windows 567

H.13 Exercises

The following questions are multiple choice. Please select from a to d.

H.13.1 Microsoft Windows 3.x in its standard form is:

 (a) An 8-bit operating system (b) A 16-bit operating system
 (c) A 32-bit operating system (d) A 64-bit operating system

H.13.2 Microsoft Windows NT in its standard form is:

 (a) An 8-bit operating system
 (b) A 16-bit operating system
 (c) A 32-bit operating system
 (d) A 64-bit operating system

H.13.3 How does the starting of Windows 95/98 differ from Windows 3.x?

 (a) An 8-bit operating system
 (b) A 16-bit operating system
 (c) Windows 3.x boots from DOS where as Windows 95/98 has its own
 boot procedure
 (d) A 64-bit operating system

H.13.4 Where do 16-bit application programs get their configuration data?

 (a) INF files (b) INI files
 (c) BAT files (d) The system registry

H.13.5 Where do 32-bit application programs get their configuration data?

 (a) INF files (b) INI files
 (c) BAT files (d) The system registry

H.13.6 Which file is used to set up hardware?

 (a) SYSTEM.INI (b) WIN.INI
 (c) SETUP.INI (d) AUTOEXEC.INI

H.13.7 Which files does Windows 3.x use for device drivers?

 (a) .386 (b) .VXD
 (c) .SYS (d) .DRV

H.13.8 Which files does Windows 95/98 use for device drivers?

 (a) .386 (b) .VXD
 (c) .SYS (d) .DRV

568 Computer busses

H.13.9 Which files does Windows NT use for device drivers?

 (a) .386 (b) .VXD
 (c) .SYS (d) .DRV

H.13.10 What is the 32-bit FAT disk format known as?

 (a) E-FAT (b) SFAT
 (c) Extended FAT (d) VFAT

H.13.11 What the standard CD-ROM file system known as?

 (a) CDFS (b) CD-FAT
 (c) CD-RW (d) CD-R

H.13.12 Which of the following best describes pre-emptive multitasking?

 (a) The operating system determines how long a process stays on the processor
 (b) Processes yield to other processes
 (c) Processes have a given time limit on the processor
 (d) Processes have sole access to the processor

H.13.13 Which of the following best describes co-operative multitasking:

 (a) The operating system determines how long a process stays on the processor
 (b) Processes yield to other processes
 (c) Processes have a given time limit on the processor
 (d) Processes have sole access to the processor

H.13.14 Discuss the advantages that the registry has over INI files.

H.13.15 Discuss the architecture of the 32-bit Windows system.

H.13.16 Discuss how Windows 95/98 use VxD device drivers to interface to the hardware.

How do equipment manufacturers develop drivers which use the VxD drivers?
How do device drivers in NT differ from Windows 95/98?

H.13.17 Explain how the configuration manager is used to determine the devices which are

connected to the system.

H.13.18 Explain the operation of the virtual machine manager.

H.13.19 Explain the main differences between pre-emptive and co-operative multitasking.

Discuss also how multitasking and threading is implemented.

H.13.20 Discuss how Windows 95/98 use priority systems to schedule processes.

HDLC

I.1 Introduction

The data link layer is the second layer in the OSI seven-layer model and its protocols define
rules for the orderly exchange of data information between two adjacent nodes connected by
a data link. Final framing, flow control between nodes, and error detection and correction are
added at this layer. In previous chapters the data link layer was discussed in a practical man-
ner. It is a use protocol as it provides a model for interfacing to a serial bus.
 The two types of protocol are:

• Asynchronous protocol.
• Synchronous protocol.

Asynchronous communications uses start-stop method of communication where characters
are sent between nodes, as illustrated in Figure I.1. Special characters are used to control the
data flow. Typical flow control characters are End of Transmission (EOT), Acknowledge-
ment (ACK), Start of Transmission (STX) and Negative Acknowledgement (NACK).
 Synchronous communications involves the transmission of frames of bits with start and
end bit characters to delimit the frame. The two of the most popular are IBM’s synchronous
data link communication (SDLC) and high-level data link control (HDLC). Many network
data link layers are based upon these standards, examples include the LLC layer in IEE 802.x
LAN standards and LAPB in the X.25 packet switching standard.
 Synchronous communications normally uses a bit-oriented protocol (BOP), where data is
sent one bit at a time. The data link control information is interpreted on a bit-by-bit basis
rather than with unique data link control characters.

END START

Synchronous

communications

Asynchronous

communications

10101011101001......01011101010

10101101 11100101 00101100 00000001 10101101 10001101

Figure I.1 Asynchronous and synchronous communications

I

570 Computer busses

 HDLC is a standard developed by the ISO to provide a basis for the data link layer for
point-to-point and multi-drop connections. It can transfer data either in a simplex,
half-duplex, or full-duplex mode. Frames are generally limited to 256 bytes in length and a
single control field performs most data link control functions.

I.2 HDLC protocol

In HDLC, a node is either defined as a primary station or a secondary station. A primary sta-
tion controls the flow of information and issues commands to secondary stations. The secon-
dary station then sends back responses to the primary. A primary station with one or more
secondary stations is known as unbalanced configuration.
 HDLC allows for point-to-point and multi-drop. In point-to-point communications a pri-
mary station communicates with a single secondary station. For multi-drop, one primary sta-
tion communications with many secondary stations.
 In point-to-point communications it is possible for a station be operate as a primary and a
secondary station. At any time, one of the stations can be a primary and the other the secon-
dary. Thus, commands and responses flow back and forth over the transmission link. This is
known as a balanced configuration, or combined stations.

I.2.1 HDLC modes of operation

HDLC has three modes of operation. Unbalanced configurations can use the normal response
mode (NRM). Secondary stations can only transmit when specifically instructed by the pri-
mary station. When used as a point-to-point or multi-drop configuration only one primary
station is used. Figure I.2 shows a multi-drop NRM configuration.
 Unbalanced configurations can also use the asynchronous response mode (ARM). It dif-
fers from NRM in that the secondary is allowed to communicate with the primary without
receiving permission from the primary.

Secondary
station N

Secondary
station
1

Primary
station

Commands

Responses

Primary/
Secondary
station

Commands

Responses

Primary/
Secondary
station

Normal response
mode (NRM)

Asynchronous
balanced
mode (ABM)

Figure I.2 NRM and ABM mode

Microsoft Windows 571

 In asynchronous balanced mode (ABM) all stations have the same priority and can per-
form the functions of a primary and secondary station.

I.2.2 HDLC frame format

HDLC frames are delimited by the bit sequence 01111110. Figure I.3 shows the standard
format of the HDLC frame, the 5 fields are the:

• Flag field.
• Address field.
• Control field.
• Information field.
• Frame check sequence (FCS) field.

8 bits 8/16/24
bits

8 or 16
bits

8 bits16 bits
CRC-16

Multiple of
8 bits

Span of CRC calculation

Span of zero insertion

Flag Address Control Information FCS Flag

0111111001111110

Figure I.3 HDLC frame structure

I.2.3 Information field

The information fields contain data, such as OSI level 3, and above, information. It contains
an integer number of bytes and thus the number of bits contained is always a multiple of
eight. The receiver determines the number of bytes in the data because it can detect the start
and end flag. By this method, it also finds the FCS field. Note that the number of characters
in the information can be zero as not all frames contain data.

I.2.4 Flag field

A unique flag sequence, 01111110 (or 7Eh), delimits the start and end of the frame. As this
sequence could occur anywhere within the frame a technique called bit-insertion is used to
stop this happening except at the start and end of the frame.

I.2.5 Address field

The address field is used to address connected stations an, in basic addressing, it contains an
8-bit address. It can also be extended, using extended addressing, to give any multiple of 8
bits.
 When it is 8 bits wide it can address up to 254 different nodes, as illustrated in Figure I.4.
Two special addresses are 00000000 and 11111111. The 00000000 address defines the
null or void address and the 11111111 broadcasts a message to all secondaries. The other
254 addresses are used to address secondary nodes individually.

572 Computer busses

Primary
station

Secondary
station
254

Secondary
station
1

Commands

Responses

Figure I.4 HDLC addressing range

 If there are a large number of secondary stations then extended address can be used to ex-
tend the address field indefinitely. A 0 in the first bit of the address field allows a continua-
tion of the address, or a 1 ends it. For example:

 XXXXXXX1 XXXXXXX0 XXXXXXX0 XXXXXXX0

I.2.6 Control field
The control field can either be 8 or 16 bits wide. It is used to identify the frame type and can
also contain flow control information. The first two bits of the control field define the frame
type, as shown in Figure I.5. There are three types of frames, these are:

• Information frames.
• Supervisory frames.
• Unnumbered frames.

When sent from the primary the P/F bit indicates that it is polling the secondary station. In
an unbalanced mode, a secondary station cannot transmit frames unless the primary sets the
poll bit.
 When sending frames from the secondary, the P/F bit indicates whether the frame is the
last of the message, or not. Thus if the P/F bit is set by the primary it is a poll bit (P), if it is
set by the secondary it is a final bit (F).
 The following sections describe 8-bit control fields. Sixteen-bit control fields are similar
but reserve a 7-bit field for the frame counter variables N(R) and N(S).

Information frame
An information frame contains sequenced data and is identified by a 0 in the first bit position
of the control field. The 3-bit variable N(R) is used to confirm the number of transmitted
frames received correctly and N(S) is used to number an information frame. The first frame
transmitted is numbered 0 as (000), the next as 1 (001), until the eighth which is numbered
111. The sequence then starts back at 0 again and this gives a sliding window of eight
frames.

Microsoft Windows 573

0 Information frame

Supervisory frame

Unnumbered frame

Address Control Info FCS01111110 01111110

N(S) N(R)P/F

1 S N(R)P/F0

1 M MP/F1

b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0

Figure I.5 Format of an 8-bit control field

Supervisory frame

Supervisory frames contain flow control data. They confirm or reject previously received in-
formation frames and also can indicate whether a station is ready to receive frames.
 The N(S) field is used with the S bits to acknowledge, or reject, previously transmitted
frames. Responses from the receiver are set in the S field, these are receiver ready (RR),
ready not to receive (RNR), reject (REJ) and selectively reject (SREJ). Table I.1 gives the
format of these bits.
 RR informs the receiver that it acknowledges the frames sent up to N(R). RNR tells the
transmitter that the receiver cannot receive any more frames at the present time (RR will can-
cel this). It also acknowledges frames up to N(R). The REJ control rejects all frames after
N(R). The transmitter must then send frames starting at N(R).

Table I.1 Supervisory bits

b5 b4 Receiver status
0 0 Receiver ready (RR)
1 0 Receiver not ready (RNR)
0 1 Reject (REJ)
1 1 Selectively reject (SREJ)

Unnumbered frame

If the first two bits of the control field are 1’s then it is an unnumbered frame. Apart from the
P/F flag the other bits are used to send unnumbered commands. When sending commands,
the P/F flag is a poll bit (asking for a response), and for responses it is a flag bit (end of re-
sponse).
 The available commands are SARM (set asynchronous response mode), SNRM (set nor-
mal response mode), SABM (set asynchronous balance mode), RSET (reset), FRMR (frame
reject) and Disconnect (DISC). The available responses are UA (unnumbered acknowledge),
CMDR (command reject), FRMR (frame reject) and DM (disconnect mode). Bit definitions
for some of these are:

574 Computer busses

SABM 1111P110 DM 1111F000 DISC 1100P010
UA 1100F110 FRMR 1110F001

I.2.7 Frame check sequence field

The frame check sequence (FCS) field contains an error detection code based on cyclic re-
dundancy check (CRC) polynomials. It is used to check the address, control and information
fields, as previously illustrated in Figure I.2. HDLC uses a polynomial specified by CCITT
V.41, which is 151216)(xxxxxG +++= . This is also known as CRC-16 or CRC-CCITT.

I.3 Transparency

The flag sequence 01111110 can occur anywhere in the frame. To prevent this a transpar-
ency mechanism called zero-bit insertion or zero stuffing is used. There are two main rules
that are applied, these are:

• In the transmitter, a 0 is automatically inserted after five consecutive 1’s, except when the

flag occurs.
• At the receiver, when five consecutive 1’s are received and the next bit is a 0 then the 0 is

deleted and removed. If it is a 1 then it must be a valid flag.

In the following example a flag sequence appears in the data stream where it is not supposed
to (spaces have been inserted around it). Notice that the transmitter detects five 1’s in a row
and inserts a 0 to break them up.

Message: 00111000101000 01111110 01011111 1111010101

Sent: 00111000101000 011111010 0101111101111010101

I.4 Flow control

Supervisory frames (S[]) send flow control information to acknowledge the reception of
data frames or to reject frames. Unnumbered frames (U[]) set up the link between a primary
and a secondary, by the primary sending commands and the secondary replying with re-
sponses. Information frames (I[]) contain data.

I.4.1 Link connection

Figure I.6 shows how a primary station (node A) sets up a connection with a secondary sta-
tion (node B) in NRM (normal response mode). In this mode one or many secondary stations
can exist. First the primary station requests a link by sending an unnumbered frame with:
node B’s address (ADDR_B), the set normal response mode (SNRM) command and with poll
flag set (P=1), that is, U[SNRM,ABBR_B,P=1]. If the addressed secondary wishes to make a
connection then it replies back with an unnumbered frame containing: its own address

Microsoft Windows 575

(ADDR_B), the unnumbered acknowledge (UA) response and the final bit set (F=1), i.e.
U[UA,ABBR_B,F=1]. The secondary sends back its own address because many secondaries
can exist and it thus identifies which station has responded. There is no need to send the pri-
mary station address as only one primary exists.
 Once the link is set up data can flow between the nodes. To disconnect the link, the pri-
mary station sends an unnumbered frame with: node B’s address (ADDR_B), the disconnect
(DISC) command and the poll flag set (P=1), that is, U[DISC,ABBR_B,P=1]. If the ad-
dressed secondary accepts the disconnection then it replies back with an unnumbered frame
containing: its own address (ADDR_B), the unnumbered acknowledge (UA) response and the
final bit set (F=1), i.e. U[UA,ABBR_B,F=1].
 When two stations act as both primaries and secondaries then they use the asynchronous
balanced mode (ABM). Each station has the same priority and can perform the functions of a
primary and secondary station. Figure I.7 shows a typical connection. The ABM mode is set
up initially using the SABM command (U[SABM,ABBR_B,P=1]). The connection between
node A and node B is then similar to the NRM but, as node B operates as a primary station, it
can send a disconnect command to node A (U[DISC,ABBR_B,P=1]).
 The SABM, SARM and SNRM modes set up communications using an 8-bit control
field. Three other commands exist which set up a 16-bit control field, these are SABME (set
asynchronous balanced mode extended), SARME and SNRME. The format of the 16-bit
control field is given in Figure I.8.

U[SNRM,ADDR_B,P=1]

U[UA,ADD
R_B,F=1]

U[DISC,ADDR_B,P=1]

U[UA,ADD
R_B,F=1]

Node A Node B

Data flow

A B

Primary Secondary

Primary Secondary

Figure I.6 Connection between a primary and secondary in NRM

U[SABM,ADDR_B,P=1]

U[UA,AD
DR_B,F=

1]

U[DISC,
ADDR_B,

P=1]

U[UA,ADDR_A,F=1]

Node A Node B

Data flow

A B

Primary/
Secondary

Primary/
Secondary

Primary/
Secondary

Primary/
Secondary

Figure I.7 Connection between a primary/secondary in SABM

576 Computer busses

0 Information frame

Supervisory frame

Unnumbered frame

Address Control Info FCS01111110 01111110

N(S) N(R)
P/
F

1 S N(R)
P/
F0

1 M -
P/
F1 M

P/
F

-

16 bits

Figure I.8 Extended control field.

 Figure I.9 shows an example conversation between a sending station (node A) and a re-
ceiving station (node B). Initially three information frames are sent numbered 2, 3 and 4
(I[N(S)=2], I[N(S)=3] and I[N(S)=4, P=1]). The last of these frames has the poll bit
set, which indicates to node B that node A wishes it to respond, either to acknowledge or re-
ject previously unacknowledged frames. Node B does this by sending back a supervisory
frame (S[RR, N(R)=5]) with the receiver ready (RR) acknowledgement. This informs node
A that node B expects to receive frame number 5 next. Thus it has acknowledged all frames
up to and including frame 4.
 In the example in Figure I.9 an error has occurred in the reception of frame 5. The recipi-
ent informs the sender by sending a supervisory frame with a reject flow command (S[REJ,
N(R)=5]). After the sender receives this it resends each frame after and including frame 5.
 If the receiver does not want to communicate, at the present, it sends a receiver not ready
flow command. For example S[RNR, N(R)=5] tells the transmitter to stop sending data, at
the present. It also informs the sender that all frames up to frame 5 have been accepted. The
sender will transmit frames once it has received a receiver ready frame from the receiver.
 Figure I.9 shows an example of data flow in only the one direction. With ABM both sta-
tions can transmit and receive data. Thus each frame sent contains receive and send counter
values. When stations send information frames the previously received frames can be ac-
knowledged, or rejected, by piggy-backing the receive counter value. In Figure I.10, node A
sends three information frames with I[N(S)=0,N(R)=0], I[N(S)=1, N(R)=0], and
I[N(S)=2,N(R)=0]. The last frame informs node B that node A expects to receive frame 0
next. Node B then sends frame 0 and acknowledges the reception of all frames up to, and in-
cluding frame 2 with I[N(S)=0,N(R)=3], and so on.

I.5 Derivatives of HDLC

There are many derivatives of HDLC, including:

Microsoft Windows 577

• LAPB (link access procedure balanced) is used in X.25 packet switched networks;
• LAPM (link access procedure for modems) is used in error correction modems;
• LLC (logical link control) is used in Ethernet and Token Ring networks;
• LAPD (link access procedure D-channel) is used in Integrated Services Digital Networks

(ISDNs).

Node A Node B

I[N(S)=4,P=1]

S[RR,N(
R)=5]

I[N(S)=2]

I[N(S)=3]

I[N(S)=5]

I[N(S)=6]

S[REJ,N
(R)=5,F

=1]

I[N(S)=5]

I[N(S)=6]

Error in
reception

Figure I.9 Example flow

Node A Node B

I[N(S)=2,N(R)=0]

I[N(S)=
0,N(R)=

3]

I[N(S)=0,N(R)=0]
I[N(S)=1,N(R)=0]

I[N(S)=3,N(R)=1]
I[N(S)=4,N(R)=1]

I[N(S)=
1,N(R)=

5]

I[N(S)=5,N(R)=2]
I[N(S)=6,N(R)=2]

Acknowledgement
up to and including
frame 2

Acknowledgement
up to and including
frame 1

Acknowledgement
up to and including
frame 4

0

1

2

3

4

5

6

0

1

Figure I.10 Example flow with piggy-backed acknowledgement

Example WinSock Code for Visual
Basic

J.1 My client (myClient.frm)

VERSION 5.00
Object = "{248DD890-BB45-11CF-9ABC-0080C7E7B78D}#1.0#0"; "mswinsck.ocx"
Begin VB.Form myClient
 Caption = "Client Application"
 ClientHeight = 3210
 ClientLeft = 2250
 ClientTop = 6195
 ClientWidth = 8265
 LinkTopic = "Form1"
 MaxButton = 0 'False
 ScaleHeight = 3210
 ScaleWidth = 8265
 StartUpPosition = 1 'CenterOwner
 Begin VB.CommandButton HelpClient
 Caption = "Example"
 Height = 375
 Left = 4800
 TabIndex = 15
 Top = 2640
 Width = 1335
 End
 Begin VB.ListBox PortNameC
 Height = 840
 ItemData = "myClient.frx":0000
 Left = 4560
 List = "myClient.frx":0016
 TabIndex = 1
 Top = 1080
 Width = 1815
 End
 Begin VB.TextBox AddressPort
 Height = 285
 IMEMode = 3 'DISABLE
 Left = 6480
 TabIndex = 14
 TabStop = 0 'False
 Text = "Port Number"
 Top = 1080
 Width = 1575
 End
 Begin VB.TextBox EOTClient
 Enabled = 0 'False
 Height = 195
 Left = 0
 TabIndex = 11

J

580 Computer busses

 TabStop = 0 'False
 Text = " EOT "
 Top = 120
 Visible = 0 'False
 Width = 150
 End
 Begin VB.CommandButton CloseC
 Caption = "Finish"
 Height = 375
 Left = 6480
 TabIndex = 5
 Top = 2640
 Width = 1335
 End
 Begin VB.ComboBox AddressIP
 Height = 315
 ItemData = "myClient.frx":0050
 Left = 4560
 List = "myClient.frx":005D
 TabIndex = 0
 Text = "IP or DNS"
 Top = 480
 Width = 3495
 End
 Begin VB.CommandButton cmdDisConnect
 Caption = "Disconnect"
 Height = 375
 Left = 6480
 TabIndex = 4
 Top = 2160
 Width = 1335
 End
 Begin VB.CommandButton cmdConnect
 Caption = "Connect"
 Height = 375
 Left = 4800
 TabIndex = 2
 Top = 2160
 Width = 1335
 End
 Begin VB.TextBox ShowText
 Height = 1965
 Left = 240
 Locked = -1 'True
 MultiLine = -1 'True
 ScrollBars = 2 'Vertical
 TabIndex = 6
 TabStop = 0 'False
 Top = 1080
 Width = 3975
 End
 Begin VB.TextBox SendTextData
 Height = 285
 Left = 240
 MultiLine = -1 'True
 TabIndex = 3
 Top = 480
 Width = 3975
 End
 Begin MSWinsockLib.Winsock myTCPClient
 Left = 7800
 Top = 0

Microsoft Windows 581

 _ExtentX = 741
 _ExtentY = 741
 _Version = 327681
 End
 Begin VB.Label Label1
 Caption = "PortName"
 Height = 255
 Left = 4560
 TabIndex = 13
 Top = 840
 Width = 735
 End
 Begin VB.Label CopyRight1
 Caption = "email_address"
 Enabled = 0 'False
 BeginProperty Font
 Name = "Times New Roman"
 Size = 8.25
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 255
 Left = 6360
 TabIndex = 12
 Top = 3000
 Width = 1935
 End
 Begin VB.Label Label4
 Caption = "AddressPort"
 Height = 255
 Left = 6480
 TabIndex = 10
 Top = 840
 Width = 975
 End
 Begin VB.Label Label3
 Caption = "AddressIP"
 Height = 255
 Left = 4560
 TabIndex = 9
 Top = 240
 Width = 855
 End
 Begin VB.Label ShowLabel
 Caption = "ShowText"
 Enabled = 0 'False
 Height = 255
 Left = 240
 TabIndex = 8
 Top = 840
 Width = 3495
 End
 Begin VB.Label SendLabel
 Caption = "SendTextData"
 Height = 255
 Left = 240
 TabIndex = 7
 Top = 240
 Width = 3495

582 Computer busses

 End
End
Attribute VB_Name = "myClient"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
'Last modification: 15/11/99

Private Sub Form_Load()
 Unload ChoiceSC 'Close the main menu properly
 SendTextData.Enabled = False 'Initialisation
 SendLabel.Enabled = False
 cmdDisConnect.Enabled = False
 cmdConnect.Enabled = True
 AddressIP.Enabled = True
 AddressPort.Enabled = False
End Sub

Private Sub cmdConnect_Click()
 'Connect to the server
 myTCPClient.Connect
 SendTextData.Enabled = True
 SendLabel.Enabled = True
 cmdConnect.Enabled = False
 cmdDisConnect.Enabled = True
 AddressIP.Enabled = False
 AddressPort.Enabled = False
 CloseC.Enabled = False
 PortNameC.Enabled = False
End Sub

Private Sub cmdDisConnect_Click()
 'Disconnect from the server
 myTCPClient.Close
 SendTextData.Enabled = False
 SendLabel.Enabled = False
 cmdConnect.Enabled = True
 cmdDisConnect.Enabled = False
 AddressIP.Enabled = True
 CloseC.Enabled = True
 PortNameC.Enabled = True
End Sub

Private Sub PortNameC_Click()
 'Choice of the port (name)
 If PortNameC.Text = "--Manual enter-- >" Then AddressPort.Enabled = True
Else AddressPort.Enabled = False
 If PortNameC.Text = "Test" Then AddressPort.Text = "1001"
 If PortNameC.Text = "Echo" Then AddressPort.Text = "7"
 If PortNameC.Text = "Daytime" Then AddressPort.Text = "13"
 If PortNameC.Text = "FTP" Then AddressPort.Text = "21"
 If PortNameC.Text = "Telnet" Then AddressPort.Text = "23"
 If PortNameC.Text = "SMTP" Then AddressPort.Text = "25"

End Sub

Private Sub myTCPClient_DataArrival(ByVal bytesTotal As Long)
 'Display incoming data
 Dim str1 As String, str2 As String, str As String 'declare old, new, to-
tal data
 str1 = ShowText.Text 'old data

Microsoft Windows 583

 myTCPClient.GetData str2 'incoming data (new data)
 str = str1 + str2 'total data to display
 ShowText.Text = str 'display to ShowText
End Sub

Private Sub AddressIP_Click()
 'Choose IP Address
 myTCPClient.RemoteHost = AddressIP.Text
End Sub

Private Sub AddressIP_Change()
 'Enter IP or DNS address
 myTCPClient.RemoteHost = AddressIP.Text
End Sub

Private Sub AddressPort_Change()
 'Change port number directly in the AddressPort box (manually)
 myTCPClient.RemotePort = AddressPort.Text
End Sub

Private Sub CloseC_Click()
 'Return to main menu
 ChoiceSC.Show
End Sub

Private Sub SendTextData_KeyPress(KeyAscii As Integer)
 'When you press the ENTER key the contain of the top box is sent
 If KeyAscii = 13 Then
 myTCPClient.SendData SendTextData.Text
 SendTextData.Text = ""
 End If
End Sub

J.2 My server (myServer.frm)

VERSION 5.00
Object = "{248DD890-BB45-11CF-9ABC-0080C7E7B78D}#1.0#0"; "mswinsck.ocx"
Begin VB.Form myServer
 Caption = "Server Application"
 ClientHeight = 3810
 ClientLeft = 60
 ClientTop = 345
 ClientWidth = 3840
 LinkTopic = "Form1"
 MaxButton = 0 'False
 ScaleHeight = 3810
 ScaleWidth = 3840
 StartUpPosition = 1 'CenterOwner
 Begin VB.CommandButton DisConnect
 Caption = "Disconnect"
 Height = 375
 Left = 240
 TabIndex = 7
 Top = 3120
 Width = 1335
 End
 Begin VB.TextBox ConnectionState

584 Computer busses

 Height = 375
 Left = 1800
 Locked = -1 'True
 TabIndex = 5
 TabStop = 0 'False
 Top = 2520
 Width = 1695
 End
 Begin VB.CommandButton CloseS
 Caption = "Finish"
 Height = 375
 Left = 2280
 TabIndex = 4
 Top = 3120
 Width = 1335
 End
 Begin VB.TextBox ShowText
 Enabled = 0 'False
 Height = 650
 Left = 120
 MultiLine = -1 'True
 ScrollBars = 2 'Vertical
 TabIndex = 1
 Top = 1440
 Width = 3615
 End
 Begin VB.TextBox SendTextData
 Height = 650
 Left = 120
 MultiLine = -1 'True
 ScrollBars = 2 'Vertical
 TabIndex = 0
 Top = 480
 Width = 3615
 End
 Begin MSWinsockLib.Winsock myTCPServer
 Left = 240
 Top = 3120
 _ExtentX = 741
 _ExtentY = 741
 _Version = 327681
 End
 Begin VB.Label CopyRight2
 Caption = "ncenciar@engineer.com"
 Enabled = 0 'False
 BeginProperty Font
 Name = "Times New Roman"
 Size = 8.25
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 255
 Left = 1920
 TabIndex = 8
 Top = 3600
 Width = 1815
 End
 Begin VB.Label Label3
 Caption = "Connection State:"

Microsoft Windows 585

 Height = 375
 Left = 120
 TabIndex = 6
 Top = 2520
 Width = 1575
 End
 Begin VB.Label Label2
 Caption = "ShowText"
 Height = 255
 Left = 120
 TabIndex = 3
 Top = 1200
 Width = 3615
 End
 Begin VB.Label Label1
 Caption = "SendTextData"
 Height = 255
 Left = 120
 TabIndex = 2
 Top = 240
 Width = 3615
 End
End
Attribute VB_Name = "myServer"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
'Last modification: 15/11/99

Private Sub Form_Load()
 Unload ChoiceSC 'Close main menu properly
 'Set the local port to 1001 and listen for a connection
 myTCPServer.LocalPort = 1001
 myTCPServer.Listen
 ConnectionState.Text = "Disconnected"
 DisConnect.Enabled = False
End Sub

Private Sub myTCPServer_Close()
 'Close method
 myTCPServer.Close
 ConnectionState.Text = "Disconnected"
 SendTextData.Enabled = False
End Sub

Private Sub myTCPServer_ConnectionRequest(ByVal requestID As Long)
 'Check state of socket, if it is not closed then close it.
 If myTCPServer.State <> sckClosed Then myTCPServer.Close
 'Accept the request with the requestID parameter.
 myTCPServer.Accept requestID
 ConnectionState.Text = "Connected"
 DisConnect.Enabled = True
 CloseS.Enabled = False
 SendTextData.Enabled = True
End Sub

Private Sub SendTextData_Change()
 'SendTextData contains the data to be sent
 'This data is sent using the SendData method
 myTCPServer.SendData SendTextData.Text
End Sub

586 Computer busses

Private Sub myTCPServer_DataArrival(ByVal bytesTotal As Long)
 'Read incoming data into the str variable,
 'then display it to ShowText
 Dim str As String
 myTCPServer.GetData str
 ShowText.Text = str
End Sub

Private Sub CloseS_Click()
 'Return to main menu
 ChoiceSC.Show
End Sub

Private Sub DisConnect_Click()
 myTCPServer.Close
 ConnectionState.Text = "Disconnected"
 CloseS.Enabled = True
 DisConnect.Enabled = False
End Sub

J.3 Choice form (ChoiceSC.frm)

VERSION 5.00
Begin VB.Form ChoiceSC
 Caption = "Server or Client?"
 ClientHeight = 1530
 ClientLeft = 60
 ClientTop = 345
 ClientWidth = 4125
 LinkTopic = "Form1"
 MaxButton = 0 'False
 Moveable = 0 'False
 ScaleHeight = 1530
 ScaleWidth = 4125
 StartUpPosition = 1 'CenterOwner
 Begin VB.CommandButton Client1
 Caption = "Client"
 Height = 375
 Left = 2160
 TabIndex = 2
 Top = 720
 Width = 1215
 End
 Begin VB.CommandButton Server1
 Caption = "Server"
 Height = 375
 Left = 840
 TabIndex = 1
 Top = 720
 Width = 1215
 End
 Begin VB.Label CopyRight0
 Caption = "email_address"
 Enabled = 0 'False
 BeginProperty Font
 Name = "Times New Roman"

Microsoft Windows 587

 Size = 8.25
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 255
 Left = 2160
 TabIndex = 3
 Top = 1320
 Width = 1815
 End
 Begin VB.Label Question1
 Caption = "Which mode do you want to use?"
 Height = 375
 Left = 840
 TabIndex = 0
 Top = 240
 Width = 2535
 End
End
Attribute VB_Name = "ChoiceSC"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
'Last modification: 15/11/99

Private Sub Form_Load()
 Unload myClient 'Close Client form properly
 Unload myServer 'Close Server form properly
End Sub

Private Sub Server1_Click()
 Unload myClient 'Close Client form properly
 Unload myServer 'Close Server form properly
 myServer.Show
End Sub

Private Sub Client1_Click()
 Unload myClient 'Close Client form properly
 Unload myServer 'Close Server form properly
 myClient.Show
End Sub

J.4 Error panel (ErrorPanel.frm)

VERSION 5.00
Begin VB.Form ErrorPanel
 BorderStyle = 4 'Fixed ToolWindow
 Caption = "00 Type Error"
 ClientHeight = 1545
 ClientLeft = 45
 ClientTop = 285
 ClientWidth = 2385
 LinkTopic = "Form1"

588 Computer busses

 MaxButton = 0 'False
 MinButton = 0 'False
 Moveable = 0 'False
 NegotiateMenus = 0 'False
 ScaleHeight = 1545
 ScaleWidth = 2385
 ShowInTaskbar = 0 'False
 StartUpPosition = 1 'CenterOwner
 Begin VB.CommandButton OkButton
 Caption = "OK"
 Height = 375
 Left = 960
 TabIndex = 1
 Top = 840
 Width = 615
 End
 Begin VB.Label CopyRight3
 Caption = "email_address"
 BeginProperty Font
 Name = "Times New Roman"
 Size = 8.25
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 255
 Left = 600
 TabIndex = 3
 Top = 1320
 Width = 1815
 End
 Begin VB.Label ErrorLabel
 Caption = "Click OK to continue"
 Height = 255
 Left = 480
 TabIndex = 2
 Top = 480
 Width = 1575
 End
 Begin VB.Label ErrorMessage
 Caption = "Error"
 BeginProperty Font
 Name = "System"
 Size = 9.75
 Charset = 0
 Weight = 700
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 255
 Left = 1080
 TabIndex = 0
 Top = 120
 Width = 615
 End
End
Attribute VB_Name = "ErrorPanel"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False

Microsoft Windows 589

Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
'Last modification 10/11/99

Private Sub Form_Load()
 ErrorPanel.Enabled = True
 ErrorPanel.Visible = True
End Sub

Private Sub OkButton_Click()
 ErrorPanel.Enabled = False
 ErrorPanel.Visible = False
End Sub

J.5 Help form (help.frm)

VERSION 5.00
Begin VB.Form HELP
 BorderStyle = 4 'Fixed ToolWindow
 Caption = "Example - Help"
 ClientHeight = 3195
 ClientLeft = 45
 ClientTop = 285
 ClientWidth = 4680
 MaxButton = 0 'False
 MinButton = 0 'False
 ScaleHeight = 3195
 ScaleWidth = 4680
 ShowInTaskbar = 0 'False
 Begin VB.Label Copyright4
 Caption = "email_address"
 BeginProperty Font
 Name = "Times New Roman"
 Size = 8.25
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 255
 Left = 2880
 TabIndex = 0
 Top = 2880
 Width = 1695
 End
End
Attribute VB_Name = "HELP"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

Index

01111110, 311, 526, 538, 539, 541, 545,

571, 574
100BASE-FX, 446
100BASE-TX, 443, 445–451, 461
100Mbps, 42, 58, 60, 92, 109, 190, 342,

423, 430, 435, 445–453, 462, 463
100VG-AnyLAN, 445–451, 464
10BASE2, 427, 443, 444, 462, 463
10BASE5, 443, 444, 462, 463
10BASE-FL, 443
10BASE-T, 427, 443–446, 449, 463
10Mbps, 42, 58, 92–94, 124, 223, 247,

250, 284, 288, 342, 427, 435, 437,
442, 444–447, 450, 451, 453, 462,
464, 531

2000, 3, 5, 29, 30, 36, 70, 118, 198, 421,
489, 511, 514, 547, 548

28.8kbps, 253–255, 533
4004, 5, 6, 12, 39, 489
44.1kHz, 92–94, 156, 531, 545
64kbps, 531, 533–536, 538, 544–546
6502, 7–13, 16, 23, 29, 31, 39, 40, 42
6800, 7, 8, 10, 11, 12, 38, 39, 42
8008, 6, 7, 9, 12, 38, 39, 40, 476, 489
802.2, 439, 462, 463
802.3ab, 460
80286, 20–22, 25, 26, 31, 33, 35, 87, 97,

98, 489, 495, 502
80386, 21, 22, 25, 29, 33, 35, 43, 97, 98,

246, 489, 491, 494, 495, 498, 499,
502, 506, 507

80486, 26, 100, 105, 489, 490, 494, 495,
498, 499, 507

DX, 489, 495
pin out, 495

8080, 6–16, 25, 29, 39–43, 489, 506
8085, 6–8, 13, 489
8086, 13–21, 25, 26, 29, 30, 32, 38, 97,

117, 118, 243, 489–495, 501–503,
506

8088, 27
accumulator, 491

addressing registers, 492
connections, 491
count register, 146, 491
processor flags, 493
status registers, 492

82091AA, 121, 126, 133
8237, 123, 129, 133
82438, 121, 124
8250, 229, 233, 243
8B/10B, 459, 460
8B6T, 447
8mm video tape, 139, 154
A4 image, 267
AA, 260, 376, 527
AC, 42, 527, 536
ACK, 280, 328, 337, 338, 385–387, 392–

397, 525, 529, 542, 569
acknowledgement, 161, 290, 293, 327,

328, 338, 386, 387, 389, 391, 393,
394, 396, 399, 440, 490, 540, 576,
577

Acorn, 23, 24, 35
ADC, 291, 321
address bus, 6, 13, 26, 43, 49–55, 69, 70,

80, 81, 85–88, 92, 109, 119, 121, 173,
192, 215, 317, 489, 490, 494–496,
498, 503, 506, 509

address field, 182, 303, 304, 359, 360,
380, 428, 437, 442, 538, 539, 571,
572

addressable memory, 54, 87, 112, 173
addressing

implied, 493
ADPCM, 544
advanced power management, 131, 185
AGP, 49, 77, 95, 99, 119, 181, 203–215,

529–532, 564
graphics aperture, 214

AIP, 121, 126, 127, 133, 137
AIX, 28
algorithm, 266, 325, 339, 359, 428, 429,

458

592 Computer busses

Allen, Paul, 6, 7, 11, 37, 38, 39, 46
Alpha, 43, 44, 46, 47, 547
ALT, 514
AMD, 5, 12, 14, 21, 25, 26, 118, 456, 547
American, 1, 45, 118
American Constitution, 1
AMI, 535, 536, 545
amplitude modulation, 265, 461
amplitude-shift keying, 264
analogue, 133, 261, 267, 313, 316, 320,

321, 348, 349, 351, 465, 513–515,
534

animation, 564
ANSI, 10, 36, 51, 98, 143, 144, 187, 217,

218, 238, 345, 460, 461, 463, 525
API, 127, 399, 561
APIC, 121, 123, 503
Apple, 7–20, 23–26, 28–43, 83, 96, 97,

118, 156, 172
II, 7–19, 23, 24, 26, 28, 31, 32, 34,

39, 40, 42, 83
AppleTalk, 401, 416
application layer, 327, 334, 424
arp, 221, 373, 376, 383
ASCII, 3, 225–228, 230, 244, 254–256,

269, 302–306, 310–312, 482, 486,
524, 525, 527

BEL, 525
bit stream timings, 227
CR, 242, 258, 305, 521, 525
DC1, 229, 525
DC2, 525
DC3, 525
DC4, 229, 525
EOT, 525, 569
FF, 307, 308, 309, 310, 373, 376,

382, 383, 456, 525, 528
HT, 525
LF, 242, 305, 525
NUL, 525
SUB, 525
VT, 525

ASK, 264, 265
assembly, 14, 20, 40, 73–75, 358
AST, 98, 118
asynchronous, 91, 158, 188, 189, 190,

225, 227, 254, 255, 261, 348, 513,
540, 556, 557, 570, 571, 573, 575

asynchronous modem, 254

AT, 6, 20–22, 25, 28, 31, 33, 87, 97, 98,
144, 145, 256, 257, 259–263, 265,
268, 269, 446, 477, 511, 513

ATDT, 256, 257, 258, 259, 268
ATH, 256, 257, 258, 259
commands, 256, 269, 511
task file, 145

ATM, 101, 217, 218, 220, 221, 450, 451,
453, 458, 465, 521

attenuation, 58, 59, 60, 249, 426, 517
attributes, 13, 399, 420, 547
AU, 548, 562, 567
audio, 17, 24, 30, 79, 92, 94, 151–156,

174, 181, 190, 217, 218, 374, 505,
531, 544, 545, 561, 564

digital, 19, 151
automatic power control, 151
automatically answer, 253, 256
automatically dial, 253
backbone, 99, 222, 419, 420, 443, 445,

451, 459, 461, 463
backbone network, 459
balanced lines, 249
bandwidth, 57, 96, 181–183, 186, 188,

189, 204, 217–222, 253, 264, 268,
269, 315, 320, 343, 447, 451, 457,
458, 460, 461, 465, 543, 545

BASIC, 4–13, 16, 24, 30, 31, 32, 40, 46,
113, 114, 119

baud, 17, 219, 227, 228, 229, 236, 243,
244, 247, 254, 255, 265, 266, 268,
468, 469, 474–476, 477

rate, 218, 227, 228, 236, 243, 254,
255, 265, 476

BCC, 213
BCD, 286
bee-sting, 443
Bell, 1, 2, 6, 118, 255, 511, 514
BIOS, 15, 31, 62, 63, 66, 109, 110, 119,

136, 143, 149, 156, 183, 233, 273,
274, 298, 551, 552

BIOS printer, 273, 274
B-ISDN, 534
BIST, 111
Bit rate, 42, 58, 96, 99, 190, 217, 223,

227, 241, 246, 249, 251, 254, 255,
265, 266–268, 287, 330, 333, 342,
343, 423, 426, 427, 429, 430–435,
441, 445–447, 450, 460–463, 468,

Table of contents 593

477, 532, 533, 536, 538, 543–546
bit shift, 339, 491
bit stuffing, 337, 339, 539, 545
BITBUS, 314
bit-mapped, 5, 16, 514, 515, 516
bitstream, 267, 442, 447, 448, 454, 536,

539, 541
bitwise, 10, 282, 333, 483

AND, 10, 179, 335, 337
OR, 10, 161, 162, 171, 179, 226,

276, 337, 519
Blue Book, 153
BNC, 51, 58, 427, 443, 444, 454, 463
bootp, 369, 416
Borland, 6, 31, 73–75, 148, 237, 280,

287, 479, 484
bps, 53, 54, 96, 227, 228, 241, 254–257,

260, 264, 265, 267, 268, 483, 511,
514–516

bridge, 41, 55, 77, 99, 104–112, 117, 119,
136, 137, 184, 187, 191, 201, 204,
212, 213, 221, 261, 263, 355, 356,
371, 372, 382, 419, 420, 426–428,
431, 433, 450, 451, 453, 460, 505

filtering rate, 427
forward rate, 427
source route, 428
source routing, 428
spanning tree, 382, 420, 427, 428

brightness, 267
Broadband ISDN, 534
BS, 525
bus arbitration, 109
bus enumerator, 551, 552
bus network, 421, 423, 431
bus network, 222, 423, 435
bus transactions, 205
Busicom, 4, 5
byte enable, 89, 94, 106, 107, 108, 495,

496, 498, 507
byte enable signals, 107, 495, 498
C/C++, 6, 116, 237, 479
C++, 28, 31, 45, 74, 75, 83, 148, 237,

246, 275, 415, 416, 479
cable, 57, 219

cat-3, 60, 61, 222, 445–447
cat-4, 60, 61, 445
cat-5, 60, 61, 222, 445, 446, 450,

460, 461

characteristics, 58
impedance, 444
multimode, 219
single-mode, 219
types, 57, 284, 429, 430, 431, 444

cabling, 321, 323, 424, 459, 460, 461
cache, 29, 77, 104, 111, 119, 121, 124–

126, 132, 134–137, 142, 201, 489,
495, 497, 499–507, 529, 555

architecture, 500
control register, 135
hit rate, 499
level-2, 76, 79, 119, 125, 135, 501
look-through, 500, 501
write-back, 500
write-through, 500

CAD, 326
calling party number, 542
CAN, 49, 50, 101, 314, 315, 323, 333–

339–343, 445, 525, 529
capacitance, 59
carriage return, 244, 256, 259, 273, 303,

311, 477
cartridge, 27, 153, 154, 503
CBS, 2
CCITT, 255, 260, 511, 519–521, 525,

533, 534, 535, 541, 545, 574
CD, 19, 30, 35, 51, 73, 77, 78, 83, 94, 95,

96, 100, 137, 139, 142, 143, 146,
150–157, 172, 173, 181, 190, 221,
260, 271, 288, 289, 294, 300, 377,
420, 432, 435, 436, 442, 450, 451,
457, 458, 471–474, 528, 546, 547,
552, 555, 568

audio, 152
CD-DA, 151, 153
CD-E, 152, 153
CDFS, 547, 555, 556, 568
CD-I, 153
CD-R, 30, 35, 51, 73, 77, 78, 83,

94–96, 100, 137, 139, 142, 143,
146, 150–157, 172, 173, 181, 190,
221, 271, 288, 289, 294, 300, 377,
420, 432, 457, 546, 547, 552, 555,
568

CD-ROM, 30, 35, 51, 73, 77, 78, 83,
94, 95, 96, 100, 137, 139, 142,
143, 146, 150–157, 172, 173, 181,
190, 221, 271, 288, 289, 294, 377,

594 Computer busses

420, 432, 457, 546, 547, 552, 555,
568

CD-ROM-XA, 152, 153
CD-RW, 151, 568
disk format, 151
interfaces, 142
pit, 139, 150, 151

Centronics, 271, 272, 284, 289, 291, 299
CERN, 83
channel identification, 542
characteristic impedance, 58, 59, 60, 249,

442
cheapernet, 443, 462, 463
checksum, 387, 389
circuit-switched, 533, 534
CISC, 14
classes, 320, 364, 378, 388, 460
client, 5, 183, 184, 217, 221, 400, 409,

411, 412, 415, 416, 420, 432, 433,
451

client/server, 5, 217, 221, 415, 420, 432,
433

clock, 8, 12, 15, 20, 27, 29, 35, 44, 50–
54, 65, 66, 78, 85, 86, 87, 91–94, 97,
103–106, 109, 110, 112, 119, 124,
129, 130–133, 136, 145, 171, 195,
197, 198, 204, 207, 210, 215, 225,
237, 254, 298, 325, 341, 348–350,
386, 395, 415, 437, 447, 454, 455,
456, 489, 490, 495, 496, 497, 501–
503, 513, 530, 531

doubler, 489, 495
period, 53, 210
rates, 129

coaxial, 51, 58, 223, 423, 430, 431, 433,
435, 442, 454, 459, 462

COBOL, 3, 4, 10, 16, 83
codec, 79
codes

feedback, 232, 455
collision, 42, 315, 331, 435, 436, 438,

442, 445, 446, 453, 458, 464, 541
collision detection, 331, 435
collisions, 436
COM1, 63, 65–67, 73, 80, 96, 126, 130,

173, 191, 224, 229, 233, 237, 238,
242–244, 275, 469, 474, 475, 480,
482–484, 530

COM2, 63, 65–67, 73, 75, 76, 81, 96,

126, 130, 173, 178, 191, 224, 233,
242, 243, 244, 275, 476, 477, 482,
486, 530

Commodore, 7, 9, 11–13, 16–18, 23–25,
27, 29, 32, 34, 40, 42, 83, 97

PET, 7, 9, 11–13, 17, 23, 40, 83
compression ratio, 267, 268
concentrator, 421
configuration manager, 549, 551, 552,

568
connection-oriented, 222, 385
connectors, 51, 52, 58, 59, 77, 78, 92, 95,

97, 101, 137, 143, 157, 171, 186, 190,
191, 201, 218, 219, 224, 336, 435,
443, 449, 532

control field, 168, 327, 328, 330, 337,
439, 440, 441, 538, 539, 540, 570–
573, 575, 576

control signals, 497
convolutional code

Trellis diagram, 266
core system components, 557
correction, 124, 255, 266, 415, 425, 461,

504, 512, 519, 569, 577
courier, 416
CP/M, 9–17, 19, 24, 27, 29, 40, 44
CPU, 12, 13, 20, 24, 27, 31, 131, 133,

183, 184, 204, 213, 348
CR, 258, 521
Cray Research, 12
CRC, 149, 183, 189, 303, 305, 306, 310,

312, 337–339, 436, 437, 458, 519–
522, 541, 574

CRC-10, 521
CRC-12, 521
CRC-16, 519, 521, 574
CRC-32, 521
CRC-8, 521
CRC-CCITT, 519, 520, 521, 574
decoding example, 520

cross-talk, 51, 58–61
CRT, 18
CSMA, 316, 435, 436, 442, 450, 451, 458
CSMA/CD, 435, 436, 442, 450, 451, 458
CTS, 225, 229, 231–233, 242, 471–474,

512, 513, 516, 517, 529
cylinders, 141, 149, 150
DA, 129, 152, 305, 306, 528
DAC, 209, 210

Table of contents 595

DARPA, 355, 364
DAT, 139, 154, 327, 328, 387, 420
Data

buffer, 213
compression, 255, 300, 514, 517
computer-type, 154, 533
frame, 337, 338, 339, 356, 423, 424,

425, 426, 427, 440, 545, 574
link, 355
types, 318

data link layer, 326, 327, 331, 334, 355,
426, 436, 440, 441, 538, 569, 570

Data rate, 50, 250, 444
Data Register, 73, 74, 75
datastream-oriented, 385
date and time, 61, 64
dB, 58, 59, 60, 61
DB25S, 224
DB9S, 224
DC, 443, 447, 448, 454, 456, 528, 536,

537, 538
DC balancing, 536, 537
DCD, 512, 529
DCE, 224, 225, 232, 247, 512
D-channel contention, 541
DD, 129, 140, 528
DEC, 2–4, 7, 9, 12, 19, 23, 27, 28, 29, 37,

38, 40, 43, 44, 45, 46, 47, 83, 177,
382, 435

decimal, 286
Decimal, 525, 526, 527, 528
Delphi, 6, 31, 287
Demand Priority Access Method, 448
demand-paged, 553, 554
demodulator, 253
destination address, 188, 189, 328, 362,

380, 423, 435–438, 442, 492
device driver, 183, 547, 548, 550–552,

556, 558, 562, 563, 567, 568
DIB, 368, 559
dictionary, 319
dielectric, 58, 60
digital modulation, 264

ASK, 264, 265
FSK, 264, 265
PSK, 264, 265

Digital Research, 9, 11, 14, 15, 19, 27,
33, 40, 44

DIMM, 78, 132, 505

DIN plug, 191
DISC, 540, 573, 574, 575
disconnect mode, 540
discrete, 4, 288, 304, 307
disks

automatic defect reallocation, 158
capacity, 140, 149, 150
predictive failure analysis, 158

divide error, 63
division, 25, 31, 338, 339, 519, 522, 523
DM, 320, 540, 573, 574
DMA, 20, 73, 82, 85, 87, 89, 123, 129,

130, 132, 133, 145, 296, 348, 498,
530, 561

DNS, 368, 370, 376, 377, 411, 416
DOC, 549
domain names, 366, 367, 377, 433
DOS, 9, 14, 15, 16, 20, 24, 27, 28, 31,

33–45, 62, 63, 81, 100, 246, 275, 287,
479, 494, 547, 548, 550–557, 562,
567

DOS services, 63
DOS-based, 246, 479, 494, 548, 553, 562
DPSK, 265
DR, 19, 158
DRAM, 5, 49, 78, 79, 80, 104, 121, 124,

125, 128, 132, 134–137, 201, 204,
213, 499, 500, 504, 505, 507

DRAM interface, 128, 134
drive specifications, 142
DSR, 225, 229, 232, 242, 471–474, 513,

517, 529
DTE, 224, 225, 230, 232, 242, 247, 261,

512, 513
DTR, 225, 229, 232, 242, 260, 471, 472,

512, 529
D-type, 96, 191, 224, 254, 271, 284, 300,

443
ECC, 124, 149, 505
echo cancellation, 265, 266
ECP, 96, 133, 179, 271, 296–300, 358,

530, 531, 532, 559
EDO, 78, 128, 132, 134
EGB, 429
EIA, 51, 60, 223, 247, 249, 250, 267, 463
EIDE, 142–150, 155, 156, 531
EISA, 85, 91–94, 98, 103, 105, 111, 142,

155, 215, 220, 505, 531, 532, 550
electronic mail, 41, 42, 222, 287, 288,

596 Computer busses

378, 417, 425, 432, 433, 434, 564
electronic token, 423
EMF, 559
encryption, 343, 425
end delimiter, 326, 539
end of interrupt, 69, 280–283, 346, 348,

480, 482, 484
enhanced parallel port, 96, 133, 271, 289,

294–296, 299, 300, 531, 532
byte mode, 289, 293, 294
nibble mode, 289–293
protocol, 294
registers, 296

ENIAC, 1, 3, 36
ENQ, 525
EPROM, 5, 6, 80
error

control, 10, 226, 359, 440
detection, 124, 152, 171, 226, 266,

312, 315, 327, 337, 359, 425, 436,
437, 504, 519, 538, 541, 569, 574

Esc, 485
ESDI, 142, 155, 556
ETB, 525
ether, 370, 435, 442, 454
Ethernet, 5, 9, 19, 24, 35, 39, 42, 50–52,

83, 92–94, 100, 101, 109, 111, 119,
124, 246, 288, 300, 312, 313, 315,
325, 355, 356, 362, 370–376, 382,
419, 424, 425, 427, 435–465, 521,
531, 532, 577

100Mbps, 109, 445, 463
100BASE-4T, 446, 447, 464
100BASE-FX, 446
100BASE-T, 443, 445–451, 458,

461, 464
100BASE-TX, 443, 445, 446, 448,

449, 451, 461
100VG-AnyLAN, 443, 445, 446,

448–451, 464
10BASE2, 427, 443, 444, 450, 462,

463
10BASE5, 443, 444, 462, 463
10BASE-FL, 443, 462, 463
10BASE-T, 427, 443–446, 449, 458,

462, 463
10BASE-T connections, 447
AUI, 441
cheapernet, 443, 462, 463

DSAP, 439
fast ethernet, 190, 443, 445, 446,

448–450, 460, 461, 462, 464
implementation, 456
interframe gap, 458
LLC protocol, 440
MDI, 441
migration, 449
migration, 449
PLS, 441, 442
SNAP, 439, 463
SSAP, 439
thick-wire, 443, 444, 445, 462, 463
thinnet, 443, 444
thin-wite, 443, 444, 462, 463
transceiver, 442, 456, 459
types, 443

Ethernet II, 438
ETX, 525
exabyte, 154
exceptions, 557
Explorer, 428, 564
extended capability port, 96, 133, 179,

271, 296–300, 358, 530, 531, 532,
559

channel address, 296
forward data, 298
mode signals, 297

extended parallel port
mode signals, 295
register definitions, 296

Fairchild, 2–5, 37, 44
Fast Ethernet, 190, 443, 445, 446, 448–

464
FAT, 555
fault tolerance, 19, 20
FAX, 255, 514

transmission, 267
Fax transmission, 267
FC, 218, 528
FCS, 327, 437, 440, 442, 541, 571, 574
FDDI, 101, 111, 220, 221, 355, 425, 427,

450, 451, 453, 458, 461, 521
attachments, 461
network, 111, 521

FF, 456
fiber optic, 446
fibre channel, 217–219, 222, 460, 532

standards, 218

Table of contents 597

fibre optic, 51, 52, 58, 219, 222, 269, 325,
331, 377, 423, 430, 432, 433, 435,
443, 459, 532

Fieldbus, 313–324
FOUNDATION, 313, 316–319
topology, 316
types, 313

FIFO, 133, 299, 304, 456
file system, 19, 27, 151–153, 547, 548,

555, 556, 568
FAT, 555, 568

FINGER, 387
Firewire, 181, 186–190, 529, 531, 532

packet format, 189
fixed disks, 141
floating-point, 490, 497, 502, 503
floppy disks, 140
flow control, 206, 217, 229, 249, 334,

440, 458, 512, 513, 516, 539, 541,
569, 572, 573, 574

flying head, 141
FORTRAN, 3, 4, 6, 10, 13, 16
fragment, 356, 358, 361
fragmentation, 361, 379, 380, 381, 382,

386
frame check sequence, 327, 437, 438,

538, 541, 571, 574
frame format, 225, 536
frame reject, 540
framing bits, 440, 535
frequency, 53, 54, 58, 60, 85, 93, 94, 104,

126, 129, 183, 198, 204, 236, 239,
240, 264, 265, 267, 351, 447, 454,
456, 461, 495, 544

Frequency-shift keying, 264, , 265
FRMR, 540, 573, 574
FTP, 356, 385–387, 392, 414, 416, 417,

563
full-duplex, 56, 264, 458, 460, 477, 570
G.711, 544
G.722, 544
G.728, 544
Games Port, 191
Gates, Bill, 6, 7, 9, 11, 13, 14, 23, 36, 37–

41, 46, 83
gateway, 36, 70, 118, 220, 355–362, 369–

371, 374, 377, 378, 380, 381, 382,
383, 388, 419, 420, 428

germanium, 1, 2

GIF, 253
Gigabit Ethernet Alliance, 457
gopher, 416
government, 1, 36
graphical device interface, 557, 558
graphical user interface, 27, 30, 31, 33,

40, 83, 92
gray scale, 267
green book, 153
ground, 224, 225, 233, 249, 271, 275,

300, 336, 342, 351, 454
group III, 267
group IV, 267
hackers, 417
HAL, 562
half-duplex, 56, 247, 248, 447, 458, 570
handshaking, 51, 52, 55–57, 80, 89, 90,

106, 108, 123, 164, 228–231, 232,
233, 237, 241, 242, 253, 271, 272,
290, 291, 293, 299, 346–348, 350,
352, 353, 415, 449, 467, 471, 472,
478, 512

hard-disk, 119, 146, 155, 156
hardware handshaking, 228, 231
Hayes, 17, 256, 269
hazards, 57, 430
HD, 32, 121, 140
HDLC, 569–571, 572, 574, 576
helix, 154
Hewlett-Packard, 4, 11, 18, 19, 32, 43,

98, 345
hexadecimal, 63, 302, 305, 306, 437, 494,

525
HFS, 152
hi-fi, 18, 151, 154, 545
Hollerith, 1, 36, 37
hosts, 356, 359, 362, 364, 366, 367, 371,

373–376, 378, 379, 385, 386, 388,
399, 408

HP, 4, 18, 28, 118, 382
HP-UX, 28
HTTP, 414, 416
hub, 59, 121, 124, 132, 181, 182, 184,

185, 217–221, 421, 436, 443–452,
460, 463, 532

Huffman, 267
coding, 267
modified, 267

Hz, 53, 54, 253, 264, 268, 512

598 Computer busses

I/O
digital, 73
inputting a byte, 73
isolated, 70, 71
memory mapped, 69, 70
outputting a word, 75
port, 73, 74, 145, 191, 200, 242,

299, 451, 490, 497, 551, 561
read, 86, 107, 109, 174, 490
supervisor, 555, 556
write, 86, 107, 109, 174, 295, 490

IA5, 525
IBM, 1–47, 83, 87, 91, 97, 98, 101, 118,

271, 423, 489, 569
AT, 21, 25, 26, 35, 83, 97, 489
PC, 9, 13–16, 20–46, 83, 97, 98, 489

ICMP, 359, 360, 376–378, 381, 382, 385,
401

IDE, 51, 52, 73, 77, 78, 89, 95, 100, 104,
105, 111, 119, 121, 123, 129, 132,
133, 136, 137, 139, 142–149, 155–
159, 172, 201, 215, 338, 529–532,
556

connections, 95, 143, 144
IDE0, 79, 95, 143
IDE1, 79, 95, 143
interface, 129, 132, 133, 142, 143,

145
ISA interface, 129

IEC, 60, 314, 345
IEEE, 271, 367, 375, 428, 435, 436, 437,

438, 439, 440, 441, 445, 446, 448,
457, 458, 459, 460, 462, 463, 564

802.3, 51, 435, 436, 437, 438, 439,
440, 441, 445, 446, 448, 457, 458,
459, 460, 462, 463

488, 101, 345, 346, 348, 352, 353,
529, 531, 532

802.2, 439, 462, 463
1284, 271, 289, 298
802.4, 462, 463
802.5, 448, 463
802.12, 446, 448
802.3u, 445, 446
802.3 frame format, 437
standards, 436

image scanner, 267
IMR, 68, 279, 281, 282, 283, 481, 482,

483, 484

inetd, 369
INF files, 567
initialisation, 283, 317, 318, 348, 386
installable file system, 555
Intel, 3–47, 76, 83, 85, 97–99, 104, 114,

117, 118, 121, 132, 185, 300, 314,
367, 435, 457, 489, 491, 499, 501–
503, 505, 547, 548

interconnected networks, 356, 377, 420,
425, 427, 428, 432

interconnection length, 345, 426
interfacing, 70, 73

isolated, 70
memory, 70

internet, 218, 355, 356, 357, 358, 362,
363, 364, 365, 379–381, 425

Internet, 5, 6, 28, 41, 42, 77, 83, 190, 253,
269, 312, 343, 355–361, 365–368,
371, 374, 375, 377, 378–382, 385,
401, 402, 415, 416, 420, 427, 428,
432–435, 564

addresses, 362, 364, 380
datagram, 356, 357
example, 363
example domain addresses, 367
Explorer, 564
naming structure, 367
primary domain names, 367, 377
protocol, 355, 378

inter-networking, 355
interrupt, 61–65, 68, 69, 81, 82, 87, 89,

130, 183, 279, 281, 287, 431, 479,
482, 484, 493, 497

control port, 482
controller, 130
edge-triggered, 68
handling, 63–65
hardware, 61, 63, 64, 482
mask register, 68, 279, 281–283,

481–484
port, 68
processor, 62
request, 62–65, 68, 87, 89, 490, 497,

498
service routine, 61–66, 81, 282, 283,

483, 484
software, 61, 63
vector, 62, 65

interval timer, 130

Table of contents 599

IP, 36–41, 218, 221, 355–371, 373–380,
382, 383, 385–390, 399, 402, 408, 411,
413–417, 420, 425, 426, 431, 432, 433,
435, 439, 492, 548

address format, 362
address, 41, 355–357, 359, 360,

362–377, 380, 382, 385, 386, 402,
408, 411, 413–415, 420, 426, 431,
433

addressing, 356, 363, 364, 376
class A, 364, 366, 376, 377
class B, 364, 366, 377
class C, 364, 366
data frames, 356
data frames, 356
header, 359, 360, 362, 376, 378,

379, 385, 389, 390
header, 359, 360, 385
protocol, 356, 357, 359, 362, 439
time-to-live, 358, 359, 361, 362, 376
Version 6, 385

IPX, 382, 401, 416, 439, 551
IRQ, 62, 65–68, 82, 83, 112, 123, 156,

157, 229, 276, 280, 487, 509, 548
IRQ0, 62, 63, 65, 66, 68, 69, 80, 81,

87, 112, 124, 130
IRQ1, 62, 63, 65, 66, 69, 81, 82,

123, 124, 191, 195, 197, 198, 201,
557

IRQ10, 65, 87, 109, 123, 509
IRQ11, 65, 82, 123
IRQ12, 65, 89, 123, 124, 130, 198,

201
IRQ13, 65, 82, 89, 124, 130
IRQ14, 65, 87, 89, 123, 124, 130,

143, 144, 148, 509, 529
IRQ15, 65, 68, 81, 82, 89, 112, 123,

124, 130
IRQ2, 63, 65–69, 81, 87, 124, 130
IRQ3, 63, 65–69, 80, 81, 82, 123,

124, 126, 130, 201, 284, 487, 509
IRQ4, 63, 65–69, 81, 123, 126, 130,

201, 284, 481–484, 487
IRQ5, 63, 65–67, 82, 123, 126, 284
IRQ6, 63, 65, 67, 69, 123, 126
IRQ7, 63, 65–69, 81, 82, 87, 123,

124, 126, 130, 279, 280–284, 509
IRQ8, 65, 68, 123, 130
IRQ9, 65–67, 82, 89, 123, 124, 130,

509
ISA, 49, 50, 54, 78, 85–95, 97–105, 111,

117, 119, 121, 123, 124, 126, 129,
130, 132, 136, 137, 142, 143, 155,
171, 190, 191, 201, 215, 287, 295,
298, 316, 505, 509, 529, 531, 532,
550

IDE interface, 129
ISDN, 101, 253, 267, 269, 531–546

basic rate, 533–536, 546
B-channels, 534–541, 544, 546
B-ISDN, 534
broadband, 534
call clearing, 543
call establish, 543
channels, 534, 545
data link layer, 538
D-channel contention, 541
D-channel, 534, 536–538, 541, 544,

546, 577
frame format, 536, 537
H0, 511, 534
H11, 534, 535, 545
H12, 534, 535, 545
information messages, 543
network layer, 534, 541, 546
network messages, 543
physical layer, 534, 535
supervisory frame, 539, 546
system connections, 238, 536
TEI, 538, 539, 540, 542

ISO, 51, 60, 98, 151, 152, 188, 247, 333,
335, 341, 356, 416, 424, 536, 555,
570

ISO 9660, 151, 152, 555
ISO/IEC, 60, 188
isochronous, 181, 183, 188–190
ISO-IP, 356
Isolated I/O, 70, 71
Isolator, 454
ISR, 61–66, 282, 283, 483, 484
ITU, 247, 249, 250, 255, 265–267, 544,

545
jamming signal, 435
Java, 6, 28, 43, 246, 417, 469, 475
JavaScript, 551
Joliet, 152
JPEG, 253
keyboard, 63, 65, 66, 71, 96, 101, 133,

600 Computer busses

191, 195–197, 530
data ready, 66
interface, 195, 197, 198, 505

LAN, 58–60, 93, 313, 315, 419, 421, 428,
430, 432, 435, 436, 443, 451, 569

LAPD, 538, 541, 577
laser, 5, 6, 24, 32, 139, 150, 151, 219, 459
LCR, 233, 235–240, 243, 245, 482
LD-CELP, 544
least significant, 115, 116, 227, 276, 278,

483, 519
LED, 278
Lee De Forest, 36, 37
Lempel-Ziv, 266
lens, 150
library, 399, 562
light, 1, 51, 58, 150, 151, 219, 288, 310,

343, 430, 438
line break, 223
line driver, 249, 454
Link Access Procedure, 538
Linux, 28, 368, 369, 433
listeners, 188, 347, 353
LLC, 437, 439–442, 463, 569, 577

protocol, 440
local Area Network, 101
local bus, 85, 509, 530
logical block address, 147, 149, 167
logical link control, 577
logical unit number, 167
login, 42, 356, 378, 387, 416, 420, 425,

432, 433
loopback, 237, 261, 262, 263, 474, 486,

513–515
Lorenz, 1
Lotus, 13, 29, 33, 34, 35, 44, 83
LPT1, 65, 67, 73, 96, 126, 224, 274, 275,

280, 282, 530
LPT2, 65, 67, 73, 275
LRC, 303, 305–309, 311, 312, 523, 524
LRC/VRC, 523, 524
LSR, 233, 234, 235, 237, 238, 239, 240,

241, 243, 245, 481, 482, 485
Mac, 16, 20, 26, 28, 31, 32, 35, 42, 83,

96, 97
MAC, 111, 355, 356, 362, 369, 370, 427,

431, 435–437, 440–442, 453, 462,
463

address, 355, 356, 362, 369, 370,

426, 427, 431, 437, 440, 462
address, 355, 356, 362, 369, 370,

427, 440, 462
layer, 356, 436, 437, 441, 442, 453,

463
machine code, 70
magnetic disk, 139
magnetic fields, 139
magnetic tape, 139, 153, 154
magneto-optical, 152
Manchester

coding, 325, 330, 331, 443, 454–
456, 464

decoder, 453, 454
M-ary, 265

ASK, 265
FSK, 265
modulation, 265
PSK, 265

math co-processor, 65
MAU, 442
media access control, 426, 435, 437, 441
memory, 5–10, 13, 14, 15, 16, 17, 21, 25–

30, 32, 33, 34, 40, 42, 43, 45, 46, 49,
50, 54, 55, 57, 62, 69–81, 85–89, 92,
94, 95, 99, 103, 104, 106, 107, 109,
111–115, 119, 121, 124, 125, 128,
131, 132, 134–137, 142, 148, 150,
164, 169, 173–179, 184, 188, 201,
203, 204, 210, 212, 214, 215, 228,
233, 269, 273, 275, 295, 298, 362,
395, 432, 451, 456, 489–509, 547,
548, 551, 553, 554–558, 561–563

addressing, 57, 493, 494, 499
map, 69, 71, 72, 73
mapped I/O, 70
mapped, 70
models, 548
paging, 553, 554
segmentation, 494
segmented, 13, 32, 43, 493, 494,

554, 555
metafile, 559
micro-ops, 503
microprocessor, 4–33, 38, 39, 49, 50, 70,

92, 93, 95, 97, 181, 320, 321, 489
Microsoft, 4, 6, 7, 9–47, 62, 70, 74, 75,

83, 97, 98, 100, 148, 190, 229, 237,
258, 287, 296, 300, 417, 420, 433,

Table of contents 601

495, 503, 547, 549, 562, 566, 567
Microsoft Windows, 6, 22, 27, 31, 33, 43,

44, 62, 70, 100, 229, 258, 287, 417,
433, 495, 503, 547, 566, 567

migration, 14, 446, 460, 461, 532
military, 21, 367
Miniport, 556
MIPs, 502
MIT, 33, 378
MITS, 7, 10–12, 83
MMX, 503, 505
MNP level 5, 265, 266
Modbus, 51, 301, 302, 303, 307, 309,

310, 311, 312
diagnostics, 309

Modem, 95, 96, 97, 100, 173, 181, 182,
227, 253, 254, 255, 256, 257, 260,
261, 264, 265, 266, 269, 477, 533,
534, 577

asynchronous, 254
AT commands, 256, 265
auto-answer, 253, 258, 260, 517
auto-dial, 253
commands, 256, 258, 259
connection, 199, 232, 237, 262, 263,

268, 355, 512
dialling, 259
example return codes, 257, 514
indicators, 260
profile viewing, 260
registers, 258, 517
return codes, 257
set-ups, 258
S-registers, 258, 269, 514
standards, 255
synchronous, 254
test modes, 261
typical, 265
V.22bis, 255, 265, 266, 511
V.32, 255, 265, 266, 511, 514
V.32bis, 255, 265, 266, 511, 514
V.42bis, 255, 265, 266, 514

modulator, 253
modulo-2, 338, 519, 522, 523
Moore, Gordon, 3, 4, 37, 38
MOS, 7, 8, 9, 11, 12, 39, 40, 100
MOS Technologies, 9
motherboard, 7, 12, 34, 77, 78, 100, 103–

105, 121, 124, 130, 132, 137, 142,

143, 156, 201, 206, 251, 269, 495,
507

430HX, 121, 131–134
MTXC, 132, 134, 136
TX, 3, 132, 249, 448, 450, 461, 465,

479, 529, 536
Motorola, 2, 7, 8, 10, 11, 12, 13, 16, 18,

20, 27, 32, 34, 36, 37, 38, 39, 40, 42,
97, 117, 118

mouse, 83, 96, 130, 191, 198, 199, 550
function, 130

MPEG, 151
MR, 260
MS-DOS, 11, 14, 24, 27, 28, 33, 36, 547,

550, 553–555, 557, 562
mode support, 553

MSX, 30, 44
multicast, 333, 374
multidrop, 218, 248, 316, 323, 423
multimedia, 375, 450
multiple file systems, 555
multiplexing, 106, 218, 271, 386, 534,

535
multiplexing/demultiplexing, 386
multi-station access unit, 442
multitasking, 34, 46, 486, 503, 547, 548,

550, 552–555, 559, 565, 566, 568
co-operative, 559, 565, 566
pre-emptive, 548, 559, 565, 566

multivibrator, 193
MUX, 129
NACK, 569
NAK, 310, 525
National Semiconductor, 12, 25, 29, 30,

32
NDIS, 551
NEC, 7, 15, 18, 30, 32, 38, 39, 40, 83, 98,

118, 367
Netscape, 83
netstat, 416
NetWare, 25, 28, 35, 83, 157, 421, 433,

439, 551
network, 26, 95, 218, 287, 322, 333, 355,

358, 364, 365, 372, 374, 375, 416,
421, 422, 425, 429, 433, 446, 449,
453, 454

addresses, 367, 538
cable types, 429
information center, 365

602 Computer busses

layer, 355, 357, 385, 425, 426, 428,
439, 463, 534, 541, 546

management, 342, 387, 449
topologies, 421, 422
traffic, 42, 321, 360, 433, 442

NFS
RPC, 374

NIC, 365, 453
NIS, 374
NMI, 73, 124, 497, 498
noise, 50, 249, 264, 454, 461
non real-time, 448, 465
NRZ, 335, 337
nslookup, 368
NT, 22, 43, 70, 198, 421, 536, 537, 538,

541, 547, 548, 550, 553–556, 559–
563, 567, 568

N-type, 443, 444, 463
object-oriented, 5, 28
OH, 260
operating system, 6, 9–11, 14–20, 22, 24,

26–28, 33, 34, 41–46, 61, 62, 76, 82,
83, 92, 119, 136, 153, 183, 184, 191,
195, 300, 397, 428, 433, 439, 502,
503, 547, 548, 553, 555, 557–562,
564, 566, 567, 568

operators, 285, 321
optical disks, 139, 150, 152
optical fibre, 186, 223, 325
optical storage, 150
opto-isolator, 251
OR, 276
Orange Book, 152, 153
OR-tied, 161, 171
OS/2, 22, 28, 41, 44, 157
Osborne, 7, 8, 23, 24, 29, 30, 83
OSF/1, 28
OSFP, 429
OSI, 331, 334, 335, 343, 355–357, 375,

385, 424, 425, 426, 436, 441, 463,
535, 569, 571

model, 335, 343, 355–357, 385,
424–426, 436, 441

PA, 314
packet, 152, 181–183, 188, 189, 199, 200,

315, 357, 359, 373, 386–388, 390–
396, 415, 424, 426–428, 458, 546,
569, 577

PAL, 79, 134

palette, 133
PAM, 213, 461
parallel port, 49, 65, 66, 67, 73, 81, 96,

100, 121, 124, 126, 133, 190, 191,
201, 224, 246, 271, 275, 277, 279,
280, 282–284, 286–291, 294, 296,
298–300, 529–532, 550

byte mode, 289, 293, 294
Centronics, 271, 272, 284, 289, 291,

299
compatibility mode, 289, 290
enhanced, 96, 289
nibble mode, 289–293

PARC, 5, 9, 10, 16, 38
parity, 126, 158, 197, 226, 245, 303, 472,

474
even, 110, 226, 239, 240, 469, 493,

496, 523, 524
odd, 225, 226, 524

Pascal, 6, 10, 15, 24, 31, 39, 40, 73, 74,
75, 83, 235, 275

password, 133, 420, 421
PATH, 549
PC, 1, 4, 5, 9–36, 40–87, 91–100, 103–

105, 112, 118, 119, 128–132, 137,
142, 143, 156, 172, 178, 181, 182,
186, 187, 190, 191, 195, 215, 224,
232, 233, 246, 251, 269, 271, 272,
279, 287–290, 293, 298, 352, 368,
369, 486, 489, 490, 491, 494, 495,
499, 531, 532, 547, 548, 550, 551

bus, 49, 85, 86, 87, 93, 95, 96, 97,
100, 105

connectors, 224
PCI, 16, 49, 51, 77, 78, 85, 92–95, 98–

100, 103–132, 136, 137, 142, 155,
181, 184, 185, 190, 191, 201, 203–
215, 220, 300, 345, 353, 504, 505,
530, 531, 532, 550

address phase, 108
AGP, 204, 215
bridge, 106–109, 112, 113, 117,

121, 181, 184, 201, 210–212, 504,
505

burst mode, 106, 108
bus cycles, 107
commands, 108
configuration address space, 110
configuration read access, 107, 109

Table of contents 603

configuration write access, 107, 109
dual addressing, 107, 109
interface, 204, 212
ISA bridge, 121, 123, 132
man. ID, 110, 118
multiple read, 107, 109
multiplexed mode, 106
operation, 106, 209
transfer modes, 106
unit ID, 110, 115

PCIset, 121, 122
PCM, 535, 536, 544, 545

delta modulation, 544
low-delay CELP, 544

PCMCIA, 85, 95, 99, 119, 137, 173–175,
178, 179, 287, 530, 531, 532

interface controller, 175
registers, 175
type II, 95, 173
type III, 95, 173
type IV, 95, 173

PCM-TDM, 535, 545
peer-to-peer, 315, 321, 420, 421, 431,

432, 433, 548
Pentium, 14, 21, 25, 42, 43, 78, 89, 104,

105, 109, 121, 122, 137, 288, 490,
491, 494, 495, 498, 499, 501–505,
507, 555

II, 121, 122, 490, 501–505
Pro, 501–504

permanent connection, 254, 534
phase shift keying, 264
phases, 162, 163, 164, 165, 171, 172,

266, 504
Philips, 19, 30, 151, 153
phone, 253, 256, 366
physical layer, 314, 325, 327, 331, 333–

335, 424–426, 441, 445, 446, 459,
460, 463, 534, 535

PIC, 63, 66, 68, 482
PIIX3, 121, 123, 124, 126, 127, 129–133,

136, 137, 184, 190, 530
PIIX4, 132, 133, 136, 184, 204
ping, 356, 359, 563
pipelined, 124, 135, 204, 206, 208, 209,

210, 502, 505
pixel, 33, 93, 131, 268
platter, 9, 141
PLL, 455, 456

plug-and-play, 99, 110, 118, 124, 181,
191, 549–551, 559, 561

pointer, 20, 149, 165, 213, 233, 361, 380,
381, 382, 387, 393, 398, 456, 492,
494

far, 233
near, 233

point-to-point protocol, 358, 551
polarisation, 150
poll/final bit, 539
polynomial, 306, 338, 339, 519–523, 541,

574
port driver, 556
port number, 386, 387, 389, 392, 401,

408, 414, 417, 468, 469, 476
ports and sockets, 386
power management, 121, 131, 136, 185,

207
power supplies, 537
PPI, 235
preamble, 326, 330, 437, 438, 440, 442,

443, 455, 463, 464
precedence, 386
pre-emptive, 547, 548, 552, 553, 554, 568
presentation, 319, 385, 424, 425
presentation layer, 424, 425
primary rate access, 534
print servers, 548
priority, 157, 160, 162, 171, 172, 181,

188, 205–207, 209, 213, 315, 319,
330, 333, 348, 358, 448, 450, 460,
560, 561, 563, 568, 571, 575

prism, 150
probability, 337
process scheduling, 552, 553
processor interrupts, 62
programmable interrupt controller, 63,

64, 66, 68, 280, 282, 482, 483, 530
prototyped, 73–75
PS, 22, 91, 96, 97, 101, 124, 130, 131,

137, 191, 197–199, 201, 532
PS/2, 22, 91, 96, 97, 101, 124, 130, 131,

137, 191, 197, 198, 199, 201, 532
PSK, 264, 265
PSTN, 517
PTC, 235
public telephone, 254, 356, 366, 534
pulse distortion, 249
pulse shaping, 461

604 Computer busses

QAM, 265
QIC, 154
QIC tapes, 154
QoS, 222, 460
QWERTY, 12
RADAR, 377, 432
Radio Shack, 7, 8, 12, 13, 17, 18, 23, 27,

30, 32, 34, 83
RAID, 221
RAM, 5, 7, 9, 11–13, 18, 19, 23, 24, 26,

27, 29–36, 49, 79, 93, 111, 121, 213,
456, 499, 513

RD, 225, 230, 233, 237–243, 260, 464
real-time, 101, 132, 133, 183, 188, 190,

217, 448, 460, 465, 486, 533, 534,
563

receiver not Ready, 441, 540
Receiver ready, 441, 540
Red Book, 152, 153
redundancy, 305, 337, 436, 437, 519,

523, 541, 574
reel-to-reel, 153
reflections, 58, 59
refresh rate, 135
registers, 73–75

general-purpose, 491
REJ, 441, 540, 573, 576
Reject, 441, 540, 573
repeater, 426, 427, 450, 451, 460, 463
requests, 206
resistance, 2, 58, 60, 98, 192, 193, 249,

430, 454
resolution, 24, 31, 32, 77, 93, 97, 103,

199, 203, 321, 323, 373
resource arbitrators, 552
RFC, 136, 382
RG-50, 443, 444
RG-6, 444
RGB, 131
RI, 474, 529
Ring

three, 548
zero, 548

ring in, 220, 221
ring network, 19, 111, 222, 355, 362, 421,

423, 431, 448, 577
ring out, 220, 221
RISC, 4, 9, 10, 14, 35, 36, 42, 44, 46
RJ-45, 51, 59, 427, 443, 444, 445, 448,

454, 463, 536
RLE, 267
RLE count, 297
RNR, 441, 540, 573, 576
ROM, 7, 9, 12, 13, 18, 23, 26, 27, 29–31,

49, 62, 73, 77, 79, 94, 96, 112, 139,
150, 152, 153, 271, 310, 505, 511,
552

ROM BIOS, 26, 62
routers, 374, 426, 428, 433
routing protocol

BGP, 428
EGP, 378, 428
OSPF, 429
RIP, 416, 429

RR, 441, 540, 573, 576
RS-232, 19, 51, 52, 96, 100, 101, 119,

195, 223–233, 237, 241–255, 269,
287, 300, 301, 312, 313, 345, 467,
468, 476, 477, 479, 482, 483, 523,
530, 531, 532, 561

485 converter, 250
bit stream timings, 227
communications, 224, 227, 232,

233, 242, 254, 477
DTE-DCE connections, 232
frame format, 225, 536
programming, 233
programs, 237
setup, 229

RS-328, 267
RS-422, 101, 223, 241, 246–251, 463
RS-422A, 247
RS-423, 247, 250
RS-449, 223, 247
RS-485, 247–251, 313, 314, 323, 335,

531, 532
RSVP, 460
RTS, 225, 229–233, 242, 249, 251, 471,

472, 512, 513, 516, 517, 529
RTU, 302, 303, 304, 305, 306, 312
run-length encoding, 267, 296, 297
SABME, 540, 575
sampling, 92–94, 199, 341, 543, 544
sampling rate, 92, 199, 544
SAPI, 538, 539, 542
scalability, 218, 446
SCSI, 36, 50–52, 77, 85, 96, 99, 100, 104,

111, 139, 142, 143, 156–172, 186,

Table of contents 605

191, 217, 218, 220, 221, 300, 345,
530, 531, 532, 556

A-cable, 158
arbitration, 162
B-cable, 158
commands, 162, 167
data, 162
fast/wide, 158
free-bus, 162
host, 159, 220
ID, 157, 160, 162, 172
III, 171
interface, 36, 139, 143, 159
layer, 556
logical unit number, 167
message codes, 165
message format, 165
message system description, 165
message, 163
operation, 162
P-cable, 158
pointers, 164
SCSI-I, 96, 142, 157–160, 162, 171,

172, 530, 531, 532
SCSI-II, 96, 142, 157–160, 171,

530, 531, 532
SCSI-III, 96, 157, 158
selection, 162
status, 163
tagged command queue, 157, 158

SD, 144, 260
Seagate Technologies, 17, 142
sectors, 139–141, 145, 146, 149–152
segment, 13, 42, 62, 212, 286, 327, 341,

355, 362, 373, 386–395, 426, 433,
435, 438, 443, 444, 446, 448, 450–
453, 457, 460, 461, 464, 465, 492–
494, 506, 554

sensor, 150, 319, 321
sequence number, 360, 361, 385–387,

390, 391, 393–396, 415, 441, 539
sequencing of data, 440
serial, 52, 53, 63, 65, 93, 96, 101, 129,

181, 190, 234, 237, 323, 529, 530,
550, 564

serial communications, 51, 85, 96, 223,
224, 233, 247, 275, 349, 467, 474,
479

server, 19, 44, 47, 128, 217, 221, 279,

366–370, 374, 385, 387, 392, 400,
403, 409, 410–423, 431–433, 449,
451, 453, 458, 460, 461, 547, 548,
550, 564

session layer, 425
set asynchronous balance mode extended, 540
seven-layer OSI model, 425
shielded twisted pair, 189, 222
signal-to-noise ratio, 461
silicon, 1, 2, 4, 15, 26, 30, 37, 103, 377,

432, 460
Silicon Graphics, 32, 36
SIMMs, 124, 128
simplex, 56
Sinclair, 7–9, 17, 18, 23–30, 40–42, 44
sine, 264
skin effect, 60
SMA, 443, 463
SMARTDRV.EXE, 555
SMTP, 28, 387, 414
SNMP, 28, 387, 416
SNR, 342
socket, 401, 402, 404, 406, 407, 408

number, 386
software handshaking, 229–231
software interrupts, 61, 63
Solaris, 28
Sony, 2, 7, 19, 26, 30, 99, 151, 367
sound, 27, 30, 40, 64, 66, 67, 78, 87, 92–

95, 119, 124, 137, 173, 557
source address, 328, 380, 423, 435, 436,

437, 438, 492,
SPACE, 525
SPARC, 35, 42
speaker volume, 256, 511
speech, 99, 101, 188, 190, 253, 269, 448,

505, 533, 543, 544, 545
speech compression, 544
SPX, 401, 439

SPX/IPX, 401
SRAM, 49, 79, 80, 104, 121, 124, 129,

133–135, 137, 499, 507
SREJ, 573
ST connector, 443
ST-506, 142, 155
standalone, 267, 451
standards, 85, 95, 131, 153, 247, 424, 436
star network, 222, 421–423, 431, 446
start and end delimiter, 539

606 Computer busses

start bit, 195, 225, 226, 227, 254, 302,
303, 341

start delimiter, 326, 437
static, 5, 195, 550
stereo audio, 156
STM, 220, 221
stop bit, 195, 225–227, 229, 235, 239,

240, 254, 255, 302, 303, 468, 469,
474, 475, 476, 477, 483

STP, 58, 325, 430, 445
stream-oriented, 385
subnet, 355, 364–371, 374, 377, 378
subnet masks, 366
Sun Microsystems, 19, 23, 25, 26, 28, 35,

42, 83, 97, 246, 457
supervisory frames, 539, 572, 573, 574
switch, 43, 160, 174, 220, 221, 244, 245,

279, 343, 450–453, 458, 460, 461,
517

synchronisation, 341
synchronisation bits, 534, 536
synchronised, 254, 455, 456, 538
synchronous, 73, 91, 92, 124, 132, 157,

158, 195, 204, 254, 513, 569
synchronous modems, 254
syntax, 73–75
System Management Mode, 131, 136
system policies, 550
system reset, 498
system timer, 63, 65, 66, 530
System/360, 4, 7, 13, 21, 23, 36, 37
tab, 128
tape backup, 550
TCP, 28, 41, 51, 101, 217, 312, 343, 355–

362, 373, 375–378, 385–401, 408,
413–417, 420, 425, 432, 433, 435,
439, 548, 551

header format, 387, 388
Protocol Data Unit, 386

TCP/IP, 28, 36, 37, 39, 40, 41, 51, 101,
217, 312, 343, 355, 356, 358, 362,
375, 377, 385, 399, 416, 417, 420,
425, 433, 435, 439, 548

class A, 364, 366
class B, 364, 366
class C, 364, 366
gateway, 356, 362
implementation, 362
internets, 362

ports and sockets, 386
version number, 358

TD, 225, 230, 233, 237–243, 251, 464
TDI, 105, 110
TDM, 535, 545
TE, 536–538, 541, 542
TEI, 538, 539, 540, 542
telephone, 36, 41, 56, 58, 59, 187, 253,

254, 256–258, 262–264, 267–269,
355, 356, 366, 430, 513, 534, 538,
539, 543

telephone number, 257, 355, 356, 366,
513

teletex, 534
television, 564
telnet, 356, 385–387, 392, 414, 416, 425,

564
terminal, 87, 246, 258, 269, 480, 485
Texas Instruments, 2, 3, 5, 6, 9, 12, 13,

17, 19, 23, 25, 26, 29, 30, 37, 38, 271
thinnet, 443, 444
thin-wire, 462
throughput, 26, 80, 87, 92, 97, 98, 103,

116, 136, 171, 172, 190, 204, 215,
346, 358, 429, 446, 449, 531, 532,
554

ticker timer, 63
Time, 63
timestamp, 360, 361, 381, 382
Token Ring, 18, 35, 39, 220, 355, 356,

362, 371, 419, 423, 425, 448, 450,
453, 521, 577

MAUs, 442
topology, 51, 96, 181, 186, 187, 189,

220–222, 311, 315, 317, 323, 371,
372, 420–424, 433, 435, 446, 463

TR, 260
tracks, 139, 140
traffic, 42, 184, 188, 190, 191, 329, 330,

339, 360, 362, 378, 380, 382, 415,
419, 420, 422, 424, 427, 429, 432,
433, 435, 442, 445, 446, 451, 453–
465, 533

transceiver, 335, 342, 442, 443, 444, 448,
453–456, 459, 500, 504

transfer length, 168
transfer rates, 152
transistor, 2–5, 37, 49, 79, 184, 288
transmission channel, 52, 264, 321

Table of contents 607

transmission line, 248, 249, 454
Transmission rates, 189
Transport, 355, 374, 375, 425
transport layer, 355–357, 385, 424, 425
tree topology, 422
trellis, 266
Turbo Pascal, 74, 275
twisted-pair, 51, 52, 58, 60, 182, 223,

269, 315, 316, 325, 333, 423, 426,
430, 433, 435, 442, 445–447, 459,
463, 532, 536

hubs, 445
TXC, 121, 124–127, 129, 132, 134, 136,

137, 201, 530
TX-O, 3
UDP, 383, 385, 389, 390, 401, 408, 414,

415, 417
UI, 441, 540
UK, 1, 17, 24, 36, 79, 258, 545
Ultra SCSI, 157, 158, 159
unbalanced, 250, 570
uncompressed, 151, 253

Unix, 6, 10, 18, 19, 26–28, 33, 42, 156,

172, 399, 416, 429, 433, 547, 566
unnumbered Information, 540
USB, 51, 52, 78, 96, 99, 104, 105, 119,

121, 123, 124, 125, 129, 132, 136,
137, 181, 182, 183, 184, 185, 186,
187, 190, 191, 201, 207, 215, 287,
288, 300, 530, 531, 532, 564

connection, 132, 182, 300
implementation, 183
OHCI, 183
signals, 207
UHCI, 184

UTP, 58, 60, 430, 442, 443–445, 459, 460
V.21, 255, 264, 265, 511, 514
V.22, 255, 265, 266, 511, 514
V.22bis, 255, 265, 266
V.32, 255, 265, 266, 511, 514
V.32bis, 255, 265, 266
V.42, 255, 265, 266, 514, 517
V.42bis, 255, 265, 266
vampire, 443
VCO, 455, 456
VCR, 151
VDDs, 563
vertical redundancy checking, 523

VESA, 119, 131, 133, 509, 530
VFAT, 547, 555, 568
VGA, 93, 111, 133, 137, 288, 530
VIC, 18, 24, 27, 29, 30
video, 7, 10, 13, 18, 24, 30, 63, 79, 85,

95, 99, 103, 104, 111, 114, 118, 119,
131, 133, 139, 151, 153, 154, 181,
182, 186, 188, 190, 191, 207, 215,
217, 218, 222, 253, 373, 434, 448,
505, 564

conferencing, 182, 373, 434
video device test, 114
video memory, 79
videotex, 534
violation, 3, 31, 325
virtual data flow, 424
virtual device driver, 550, 551, 556, 563
virtual machine manager, 552, 553, 568
VisiCalc, 13, 16, 17, 23, 24, 28, 83
Visual Basic, 31, 43, 287, 408, 412, 415,

416, 467, 477
Visual Java, 31
VL-local bus, 92, 93, 99, 100, 104, 119,

142, 509
VME, 101, 345, 348, 349, 351, 353
VMS, 28, 46
volatile, 1, 513
VRC, 523, 524
VxD, 550, 551, 556, 568
VXI, 345, 348, 349, 351, 353
WAN, 220, 221
WANs, 220
White Book, 153
WIMPs, 29, 33, 34
Win32, 553, 555, 557, 558, 562
Winchester, 4, 9, 19, 139
Windows

registry, 548
3.x, 43, 258, 547–556, 559, 562,

563, 566, 567
95, 62, 70, 258, 547–559, 568
95/NT, 83, 559
NT, 16, 43, 46, 157, 421, 547–550,

556, 559, 561–563, 567, 568
registry, 548
sockets, 399, 402

WinSock, 397, 399, 400, 408, 409, 411,
412, 550

WordPerfect, 17, 29, 31, 35

608 Computer busses

WorldFIP, 314, 315, 323, 325–331, 343
WORM, 139, 151
WP, 177
WWW, 42, 253, 366, 378, 414, 415, 416,

417, 420, 432, 433, 434, 507, 564
WYSIWYG, 10, 24, 38
X-terminals, 371
X.25, 569, 577
X/Open, 28
X3T9.5, 463
XD bus, 505
Xerox, 5–11, 15, 16, 23, 24, 38, 40, 44,

83, 118, 435
Xerox Corporation, 5, 435

X-OFF, 230, 231, 242, 249
X-ON, 230, 231, 242, 249
XOR, 226, 276, 306, 519
X-Windows, 33, 42
Yellow Book, 152, 153
YUV, 131
Z8000, 13, 14, 16, 18, 19, 25, 29, 38, 43
zero bit-stuffing, 538, 539
ZIF, 495
Zilog, 7, 8, 9, 12, 13, 14, 16, 17, 18, 19,

25, 29, 30, 32, 38, 39, 40, 44, 118
ZIP, 253
ZX80, 7, 9, 18, 24, 40
ZX81, 7–9, 17, 24, 27, 29, 44

	Table of Contents
	Preface
	1 Introduction
	1.1 Pre-PC Development
	1.2 8008/8080/8085
	1.3 8086/8088
	1.4 80186/80188
	1.5 80286
	1.6 Post-PC development
	1.7 Exercises
	1.8 Notes from the author
	1.9 DEC

	2 Busses, Interrupts and PC Systems
	2.1 Busses
	2.2 Interrupts
	2.3 Interfacing
	2.4 PC Systems
	2.8 Practical PC system
	2.5 Exercises
	2.6 Notes from the author

	3 Interfacing Standards
	3.1 Introduction
	3.2 PC bus
	3.3 ISA bus
	3.4 Other legacy busses
	3.5 Comparison of different types
	3.6 Exercises
	3.7 Summary of interface bus types
	3.8 The fall of the MCA bus
	3.9 Notes from the author

	4 PCI Bus
	4.1 Introduction
	4.2 PCI operation
	4.3 Bus arbitration
	4.4 Other PCI pins
	4.5 Configuration address space
	4.6 I/O addressing
	4.7 Exercises
	4.8 Example manufacturer and plug-and-play IDs
	4.9 Notes from the author

	5 Motherboard Design
	5.1 Introduction
	5.2 TX motherboard
	5.3 Exercises
	5.4 Notes from the author

	6 IDE and Mass Storage
	6.1 Introduction
	6.2 Tracks and sectors
	6.3 Floppy disks
	6.4 Fixed disks
	6.5 Drive specifications
	6.6 Hard disk and CD-ROM interfaces
	6.7 IDE interface
	6.8 IDE communication
	6.9 Optical storage
	6.10 Magnetic tape
	6.11 Exercises
	6.12 Notes from the author

	7 SCSI
	7.1 Introduction
	7.2 SCSI types
	7.3 SCSI interface
	7.4 SCSI operation
	7.5 SCSI pointers
	7.6 Message system description
	7.7 SCSI commands
	7.8 Status
	7.9 Exercises
	7.10 Notes from the author

	8 PCMCIA
	8.1 Introduction
	8.2 PCMCIA signals
	8.3 PCMCIA registers
	8.4 Exercises
	8.5 Notes from the author

	9 USB and Firewire
	9.1 Introduction
	9.2 USB
	9.3 Firewire
	9.4 Exercises
	9.5 Notes from the author

	10 Games Port, Keyboard and Mouse
	10.1 Introduction
	10.2 Games port
	10.3 Keyboard
	10.4 Mouse and keyboard interface
	10.5 Mouse
	10.6 Exercises
	10.7 Notes from the author

	11 AGP
	11.1 Introduction
	11.2 PCI and AGP
	11.3 Bus transactions
	11.4 Pin description
	11.5 AGP master configuration
	11.6 Bus commands
	11.7 Addressing modes and bus operations
	11.8 Register description
	11.9 Exercises
	11.10 Notes from the author

	12 Fibre Channel
	12.1 Introduction
	12.2 Comparison
	12.3 Fibre channel standards
	12.4 Cables, hubs, adapters and connectors
	12.5 Storage Devices and storage area networks
	12.6 Networks
	12.7 Exercises
	12.8 Notes from the author

	13 RS-232
	13.1 Introduction
	13.2 Electrical characteristics
	13.3 Communications between two nodes
	13.4 Programming RS-232
	13.5 RS-232 programs
	13.6 Exercises
	Sample run 13.1
	13.7 Notes from the author

	14 RS-422, RS-423 and RS-485
	14.1 Introduction
	14.2 RS-485 (ISO 8482)
	14.3 Line drivers
	14.4 RS-232/485 converter
	14.5 Exercises
	14.6 Note from the author

	15 Modems
	15.1 Introduction
	15.2 RS-232 communications
	15.3 Modem standards
	15.4 Modem commands
	15.5 Modem set-ups
	15.6 Modem indicator
	15.7 Profile viewing
	15.8 Test modes
	15.9 Digital modulation
	15.10 Typical modems
	15.11 Fax transmission
	15.12 Exercises
	15.13 Notes from the author

	16 Parallel Port
	16.1 Introduction
	16.2 PC connections
	16.3 Data handshaking
	16.4 I/O addressing
	16.5 Interrupt-driven parallel port
	16.6 Exercises
	16.7 Notes from the author

	17 Enhanced Parallel Port
	17.1 Introduction
	17.2 Compatibility mode
	17.3 Nibble mode
	17.4 Byte mode
	17.5 EPP
	17.6 ECP
	17.7 Exercises
	17.8 Note from the author

	18 Modbus
	18.1 Modbus protocol
	18.2 Function codes
	18.3 Modbus diagnostics
	18.4 Exercises
	18.5 Notes from the author

	19 Fieldbus
	19.1 Introduction
	19.2 Fieldbus types
	19.3 FOUNDATION Fieldbus
	19.4 Exercises
	19.5 Notes from the author

	20 WorldFIP
	20.1 Introduction
	20.2 Physical layer
	20.3 Data link layer
	20.4 Exercises
	20.5 Notes from the author

	21 CAN bus
	21.1 Introduction
	21.2 CAN physical
	21.3 CAN bus basics
	21.4 Message transfer
	21.5 Fault confinement
	21.6 Bit timing
	21.7 CAN open
	21.8 Exercises
	21.9 Notes from the author

	22 IEEE-488, VME and VXI
	22.1 Introduction
	22.2 IEEE-488 bus
	22.3 VME bus
	22.4 VXI bus
	22.5 Exercises
	22.6 Notes from the author

	23 TCP/IP
	23.1 Introduction
	23.2 TCP/IP gateways and hosts
	23.3 Function of the IP protocol
	23.4 Internet datagram
	23.5 ICMP
	23.6 TCP/IP internets
	Hosts file
	23.7 Domain name system
	23.8 Internet naming structure
	23.9 Domain name server
	23.10 Bootp protocol
	Contents of bootptab file
	23.11 Example network
	Contents of host file
	23.12 ARP
	23.13 IP multicasting
	23.14 Exercises
	23.15 Notes from the author
	23.16 Additional material

	24 TCP and UDP
	24.1 Introduction
	24.2 Transmission control protocol
	24.3 UDP
	24.4 TCP specification
	24.5 TCB parameters
	24.6 Connection states
	24.7 Opening and closing a connection
	24.8 TCP user commands
	24.9 WinSock
	24.10 Visual Basic socket implementation
	24.11 Exercises
	24.12 TCP/IP services reference
	24.13 Notes from the author

	25 Networks
	25.1 Introduction
	25.2 Network topologies
	25.3 OSI model
	25.4 Routers, bridges and repeaters
	25.5 Network cable types
	25.6 Exercises
	25.7 Notes from the author

	26 Ethernet
	26.1 Introduction
	26.2 IEEE standards
	26.3 Ethernet – media access control (MAC) layer
	26.4 IEEE 802.2 and Ethernet SNAP
	26.5 OSI and the IEEE 802.3 standard
	26.6 Ethernet transceivers
	26.7 Ethernet types
	26.8 Twisted-pair hubs
	26.9 100Mbps Ethernet
	26.10 Comparison of fast Ethernet other technologies
	26.11 Switches and switching hubs
	26.12 Network interface card design
	26.13 Gigabit Ethernet
	26.14 Exercises
	26.15 Ethernet crossover connections
	26.16 Notes from the author

	27 TCP and UDP
	24.1 Introduction
	24.2 Transmission control protocol
	24.3 UDP
	24.4 TCP specification
	24.5 TCB parameters
	24.6 Connection states
	24.7 Opening and closing a connection
	24.8 TCP user commands
	24.9 WinSock
	24.10 Visual Basic socket implementation
	24.11 Exercises
	24.12 TCP/IP services reference
	24.13 Notes from the author

	28 Interrupt-driven RS-232
	28.1 Interrupt-driven RS-232
	28.2 DOS-based RS-232 program
	Program 28.1
	Header file 28.1:
	28.3 Exercises

	A PC Processors
	A. 1 Introduction
	A. 2 8086/88
	A. 3 80386/80486
	486DX PGA
	A. 4 Pentium/Pentium Pro
	A. 5 Exercises

	B VESA VL-Local Bus
	C Modem Codes
	C.1 AT commands
	C.2 Result codes
	C.3 S-registers

	D Redundancy checking
	D.1 Cyclic redundancy check (CRC)
	D.2 Longitudinal/vertical redundancy checks (LRC/VRC)

	E ASCII Character Code
	E.1 Standard ASCII
	E.2 Extended ASCII code

	F Quick Reference
	F.1 Notes from the author

	G ISDN
	G.1 Introduction
	G.2 ISDN channels
	G.3 ISDN physical layer interfacing
	G.4 ISDN data link layer
	G.5 ISDN network layer
	G.6 Speech sampling
	G.7 Exercises

	H Microsoft Windows
	H.1 Introduction
	H.2 Windows registry
	H.3 Device drivers
	H.4 Configuration manager
	H.5 Virtual machine manager (VMM)
	H.6 Multiple file systems
	H.7 Core system components
	H.8 Multitasking and threading
	H.9 Plug-and-play process
	H.10 Windows NT architecture
	H.11 Windows 95 and Windows 98
	H.12 Fundamentals of Operating Systems
	H.13 Exercises

	I HDLC
	I.1 Introduction
	I.2 HDLC protocol
	I.3 Transparency
	I.4 Flow control
	I.5 Derivatives of HDLC

	J Example WinSock Code for Visual Basic
	J.1 My client (myClient.frm)
	J.2 My server (myServer.frm)
	J.3 Choice form (ChoiceSC.frm)
	J.4 Error panel (ErrorPanel.frm)
	J.5 Help form (help.frm)

	Index

